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Abstract

In this paper a new method is presented to analyze the
testability of both linear and nonlinear analog systems. It
combines a rank—test algorithm with statistical methods. The
algorithm will find sets of inseparable parameters and determine
whether it is possible to calculate a certain parameter with
sufficient accuracy. It also determines a subset of appropriate
measurements if redundant measurements are present.

1. Introduction

With the increasing complexity of analog integrated circuits,
the testability of those circuits becomes more difficult. It is of
course of great importance to design circuits which are testable
within a reasonable time. This can reduce the costs of testing.
The presented method can be used to evaluate the testability of
analog integrated circuits but its use is not restricted to this type
of circuits. It can also be used to evaluate the testability of
analog  circuits  (printed  circuit boards) or  other
(elektromechanical, mechanical,...) analog systems.

An approach to investigate the correctness of a system is to
determine all the parameters necessary for its function. This does
not imply that all parameters have to be determined on the
lowest possible level (for instance transistor level); it is sufficient
to determine the high-level functional parameters. These
high-level parameters can be for instance the gain of an opamp,
the cut-off frequency or the Q-factor of a filter. It is clear that
this approach is closely related to functional testing, which is
applied to most analog circuits. With the method presented in
this paper it is possible to carry out a functional testability
evaluation in an early design stage since only a high—level
functional description of the system is required. This is
important in order to avoid expensive redesigns in a later stage.
In general, not all functional parameters of a system can be
determined independently from another, especially when a
reduced set of testvectors is used. These parameters are called
inseparable parameters. Separable parameters on the other hand
are parameters which can be determined without knowledge of
the other parameters. Parameters which are a member of a set of
inseparable parameters can only be computed if some of the
parameters of the set are known. The presented method will
detect the sets of inseparable parameters and calculates the
accuracy with which all parameters can be determined. This
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accuracy will be called the determination accuracy in the rest of
this paper. Another feature of the method is that it determines
the best subset of measurements required to compute the para—
meters.

In the following section some previous work will be
considered. This section states the advantages and disadvantages
of some testability evaluation methods as used in the past.
Section 3 describes the relations between parameters and mea-
surements. In that section the influence of measurement errors
on the determination accuracies will be explained. In section 4
the algorithm is described. This algorithm is based on relations
derived in section 3. An example of a simple circuit is included
to illustrate the advantages of the proposed algorithm. The paper
is completed with a discussion and conclusions. An appendix is
included which describes the Gaussian elimination procedure
with full pivoting. Knowledge of the Gaussian elimination
process is necessary to understand the algorithm since the algo-
rithm is mainly based on this elimination method.

2. Previous work

The testability of digital circuits can be described with
measures like controllability and observability {1,2]. Unfor-
tunately this approach is not very suitable for analog circuits.
This is because many faults appearing in. analog circuits are soft
faults, being the result of a parameter deviating too much from
its nominal value. In general, such soft faults are harder to
detect than hard faults, as they do not cause a full absence of a
function but merely result in deviating specifications. Hard faults
can be considered as extreme large parameter deviations. In the
succeeding part of this paper the assumption is made that a fault
in an analog system is the result of a parameter deviating too
much from its nominal value (soft fault).

Most testability evaluation methods which have been
presented are based on a rank-test algorithm [3..6]. These
methods determine the solvability of a set of equations
describing the relations between measurements and parameters.
The measure of solvability & equals zero if all parameters can be
determined independently from another; the equations then have
a unique solution. &=1 implies that one parameter must be
known to determine the values of the other parameters. So with
increasing values of 8 the solvability of the set of equations is
decreasing. A disadvantage of these algorithms is that the effects
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of measuring errors on the determination accuracies are not
taken into account. The set of equations describing the relations
between parameters and measurements can be ill-conditioned
due to ‘almost’ inseparable parameters. Solving such a set of
equations inevitably leads to large faults. Even a very small
measurement error can cause a large deviation of the computed
parameter value from its real value. The method proposed here
should overcome these disadvantages.

3. Relations between parameters and ts

The algorithm described in this paper finds the sets of
inseparable  high-level parameters and computes the
determination accuracy of the parameters. The latter is
computed from a particular set of testvectors. If a parameter is a
member of a set of inseparable parameters, a fault in that para-
meter may be detected. It is not certain however which
parameter of the set caused the failure; in other words the fault
can not be located exactly. The algorithm also determines an
appropriate subset of measurements by removing measurements
containing redundant data. The number of measurements can be
less than the number of parameters in the system. This can result
in extra inseparable parameters which can be removed by
increasing the number of measurements. In general, a certain
number of parameters will remain inseparable even when the
number of measurements is increased. The only possibility to
overcome this problem is to add test points in the circuit.

If a particular set of input signals is given then the relations
between parameters and output signals can be written as follows:

u = f(p) (1)
with: u vector of output signals
b vector of parameters
£

function describing the relations between
parameters and output signals

The vector u contains the values of a number of output
signals. These output signals are not necessarily represented in
the time domain, they can be in the frequency domain as well.
Since output signals can of course be measured, equation (1) can
be used to describe the relation between the parameters and the
measurements. These measurements can not be carried out with
infinite accuracy and therefore an error vector e is introduced
which depends on the accuracy of the measurement methods
used. The following equation then describes the relation between
parameters and measurements.

X+ e = f(p) (2)

vector of measurements

vector of measurement errors,
resulting from the measurement
method used

with:

o Ix

It can be very difficult to derive the function f(p) especially
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if nonlinear systems have to be analyzed. However, simulation
can be used to obtain a set of sensitivity vectors which describe
the dependencies of parameters on output signals. These
sensitivity vectors can be used to approximate equation (2) by a
first order description. The function f(p) is nonlinear even if a
linear system is analyzed. The first order description can
therefore only be used if we assume that the parameter
deviations are sufficiently small. The first—order description is
then given by:

J
X+e=%on +] 5 b (3
j=1

with: Xnom vector of measurements with nominal
parameters
Sj vector of sensitivities of the
measurements for parameter j
J number of parameters

If a matrix notation is used then equation (3) can be
rewritten as:

Shp = Ax + e (4)

with: the sensitivity matrix of dimension I*J
number of measurements

S
I
Ap vector of parameter deviations

=

X vector X — non

If the rank of matrix S is smaller than J then this equation
can not be solved and sets of inseparable parameters have to be
found in order to reduce the number of variables. In this case
the variables are the parameters which have to be determined. It
is possible that the number of measurements is larger then the
number of parameters (I>J). In that case there are at least (I-J)
redundant measurements, which means that the number of
measurements can be reduced. This procedure will be explained
later.

Now the influences of inseparable and almost inseparable
parameters are considered. First a small example will be given
and then a general description of the problem is presented.

Consider a system with at least 3 parameters p1, pa, p3 and
assume that the corresponding sensitivity vectors are ’nearly’
dependent. This means that one of the vectors can be written as a
linear combination of the other vectors, with Just a small error.
S3 can be written as:

5 =05 +Bs (5)
with: 81,80,83 sensitivity vectors and also column

vectors of matrix S
(!,[3 real constants



Writing equation (4) in a different form resylts in:
A2 + e = sibp + Solpp + S3bps + ... (6)

Now equation (5) can be substituted in equgtion (6) to
obtain equation (7).

Ax + ¢ = 51 (Ap1+adps) + S2(Ap2+PAps) +
(83-051-P82)8ps + ... (N

The third right—hand term of equation (7) can be
considered as an extra error vector resulting from the
approximation made in equation 5. If one of the vectors S1, $2,
83 can be written as an exact linear combination of the others
then this error vector will equal 0. The 'nearly’ dependent column
vector of the matrix S can now be removed. Note that also a
suitable row vector (measurement) must be removed to construct
a square matrix again. The selection of the redundant rows and
the ‘mearly’ dependent parameters will be explained in the
description of the algorithm in section 4. Resulting from this
mechanism the extra error vector turns out to have no influence
on the computations and can therefore be ignored. The resulting
set of equations is better conditioned because one of the ‘nearly’
dependent vectors is removed. Note that also the number of
variables is reduced. The variables are not equal to the parameter
deviations anymore but are now equal to a linear combination of
the parameter deviations (y1=Api+aldps and y2 =Apy +BAp3).
The variables can now be determined with a higher accuracy
than before the reduction. Note that in this case p1,p2 and p3
are a set of inseparable parameters. This means that one of the
values Apy, Bpy or Bps must be known to determine the two other
parameter deviations. Consequently a deviation in one or more of
these parameters may be detected but can not be located
anymore.

In general, if there are D column vectors dependent or
‘nearly’ dependent on other column vectors then these dependent
(or 'nearly’ dependent) vectors must be removed. The procedure
described above has to be repeated D times in that case. This
results in a set of independent column vectors and the old matrix
S is reduced to a matrix of dimension (J-D)*(J-D). The number
of variables Ay is also reduced from J to (J-D). Applying this to
the general equation (4), we thus obtain:

Ay = s1(Mx - &) (8)

with: §-! the inverted sensitivity matrix of
dimension (J-D)*(J-D)
Ay variables of the reduced set of equations
(vector with dimension (J-D))

In equation (8), Ax is a known (measured) vector but the
error vector ¢ is unknown. The elements of g are assumed to be
normally distributed with a zero mean value and a standard
deviation dependent on the measurement method and statistically
independent of another. The assumption that the mean values of
the elements of ¢ are zero is not necessary but it simplifies the
computations. Therefore the determination accuracies (eyj) of
the variables can be computed with the following equation:

I
eyj? =] (5711 .€)? (9
i=1

with: €; standard deviation of the error in
measurement i
eyj determination accuracy of variable j

The next step is the computation of the determination
accuracy of the parameter deviations (ep) from the determination
accuracies of the variables (ey). As seen previously, the elements
of the vector Ay are linear combinations of the parameter devia—
tions. So the relation between Ap and Ay can be written in a
matrix form as shown in equation (10).

Ay = hp (10)
with: T transformation matrix of dimension (J-D)*J

The rank of matrix T equals J-D, which means that D
determination accuracies must be known to compute all the
remaining determination accuracies. If a row vector of T
contains only one non-zero element then the associated
parameter deviation and its determination accuracy can be
computed independently of the other parameters. The remaining
parameters form sets of inseparable parameters. At least one
parameter has to be assumed fault free in order to be able to
compute the parameter deviation and the associated deter—
mination accuracy for the other parameters in a particular set of
inseparable parameters. The value of a fault free parameter is
normally distributed with a mean value which equals the nominal
value and a standard deviation which is related to the deviation
of the parameter due to production variations. This decreases the
determination accuracy of the other parameters of the set. The
calculation of the best case determination accuracy of the
inseparable parameters is explained in the description of the
algorithm in the next section.

4. The algorithm

The input required for the algorithm is a set of sensitivity
vectors. These vectors contain the sensitivity of the output
signals of the system for a variation of the high-level parameters.
These vectors can be determined by means of simulation. In our
case we use high—level (circuit) models, for instance, operational
amplifiers, multipliers, veo's, different kinds of filters and so on.
A relevant set of high-level parameters for an amplifier can be
for instance: differential-gain, common-mode gain, offset
voltage and gain-bandwidth product.

The algorithm used to find inseparabilities between
parameters and to compute the determination accuracy of the
parameters is based on Gaussian elimination with full pivoting
(see appendix). Together with data about the desired
determination accuracy of the parameters it is also possible to
find the nearly inseparable parameters.
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Equation (4) can be rewritten as:
IA

1 Axy +eg
1 0 Axg+ey

0
1| | Axg +eg
A
01.5811 02.512 ... 04.51y||Ap1 /0y
01.521 02.822 ... 04.524|Apy /0y
. . . (11)
01.811 62.512 ... 6).81y||Apy/0y
with: I number of measurements
J number of parameters
aj standard deviation of parameter i due

to production variations
Api /0 normalised parameter deviation of
parameter i

The matrix in the most left hand term of this equation is
an I*I unity matrix (called IA) and the matrix in the right hand
term is the normalized I*J sensitivity matrix (called A). Different
from the description given in equation (4), the parameters in
equation (11) are normalized with respect to their standard
deviations as they result from production variations during the
manufacturing process. This is done in order to simplify the
pivot-finding routine as will become clear in the following part.

To compute the influence of measurement errors on the
determination accuracies of the elements of vector Ap/o, the
assumption Ax = 0 can be made. If the measurement vector A&
equals O then the normalized parameter vector Ap/o generally
does not equal 0 due to the error vector . In this case equation
(11) reduces to (in matrix notation):

IA.e = A.Ap/g (12)
with: Ap/0 normalized parameter deviation vector

Equation (12) is used as input for the algorithm shown in
fig. 1.
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|1—-C REDUNDANT MEASUREMENTS

SCALE ROWS 1 TO €| 15

J—| DEPENDENT PARAMETERS
NO REDUNDANT MEASUREMENTS

NO DEPENDENT PARAMETERS
}=J REDUNDANT MEASUREMENTS

Figure 1 The algorith

In order to find the best pivot element in matrix A (see
appendix) we look for the best determination accuracy of a
parameter based on only one measurement. Suppose the system
is described as in (12) and the first cycle (C=1) of the algorithm
is in progress. Consider the first row of equation (12):

e; = 01.511.4p1 /07 + 02.812.Apa/oy +.. .+
0.8 4.4py/0; (13)

This equation can be rewritten as:

bp1 /01 = £1-02.810 Apo/on—. . .0, .S 1.Ap /g, (14)
01.511

In order to estimate the relative determination accuracy of
Ap1 /61, the other parameters are assumed to be fault free. This
means a standard deviation of 1 for all Ap; /o; with j#1. The
measurement error ey is also assumed to be normally distributed
with standard deviation € and statistically independent of



Apj/o;. In this case the estimated relative determination
accuracy ep; /o of Apy /oy can be calculated with:

(ep1/01)2 = €22 + (02.512)2 ...+ (01.5) P2 (15)

(01.811)2

A similar equation can be derived for all parameters with
respect to measurement 1. It is obvious from equation (15) that
the parameter corresponding with the largest value of jS;j has
the smallest value of epj/oj. This is a result of the
normalization of the parameter vector as mentioned previously
and makes it superfluous to compute all the ep; /0] of a row:
looking for the largest value of 6;S;; in row i of matrix A is
sufficient to find the best element in that row. A comparison of
the best values of epj/o; over all rows is carried out next and
the row with the smallest value of epj/o; is chosen as the pivot
row. The pivot column is the column with the largest absolute
value of 0jS;; in that row. This concludes the pivot-finding
part of the algorithm (step 3).

Next, the pivot element is placed in the position of matrix
element Aj; by swapping the pivot row with row 1 and the
pivot column with column 1 (step 5). The following step in the
algorithm is to eliminate all elements in column 1 of matrix A
except the pivot element (step 6). This is described in the
conventional Gaussian elimination routine (see appendix). After
the elimination of the first column a second column must be
eliminated if possible. The same procedure will be used to find a
new pivot element in the resulting rows (row 2,3,...).

For the general case it is now assumed that the elimination
process is in the beginning of the C-th cycle. Hence, a pivot
element must be found in the rows C up to I of matrix A. In
these rows the first (C-1) elements are made zero by the
previously executed elimination steps. Row i, with i)C, can now

be described as:

I J
X IAjk.e = Z Ain.(Ap'n/0 n) (16)
k=1 m=C
with: I number of measurements
J number of parameters

Ap',,, /(J"rI1 swapped normalized parameter
deviation

The swapped normalized parameter deviation vector is
changing during the elimination process. If a column of matrix A
is swapped, then the corresponding element of the normalized
parameter deviation vector is swapped too. Equation (16) can be
used to determine the remaining (J-C) parameter deviations. To
compute the relative parameter deviation corresponding with the
j~th column, with j>C, equation (16) can be rewritten as

follows:

I J
Bij.(be' /05y = | TAik.e - ] ain-(dp'a/0’s) (D)
k=1 m=C, -
bt

As mentioned in section 3, the elements of the vector g are
statistically independent and the mean values are zero. The
relative determination accuracy (see equation 15) is then in the
general case determined by:

I J
(ep’j/0’j)? = [ (IA(y €2 + { (A;g)?2 (18)
k=1 (aij)2  m=1, (Aij)?
m#i
with: i row number
1 number of measurements
J number of parameters

ep' j /c’ j swapped normalized determination
accuracy vector
€y standard deviation of measurement k

The smallest value of (ep’ j/a’ j) over all columns C to J
and measurements C to I provides the best expected deter—
mination accuracy and the associated element of matrix A is
used as the pivot element. After this pivot—finding part row C
and column C are respectively swapped with the pivot row and
the pivot column. Now column C (except the pivot element
A¢¢) can be eliminated.

This procedure continues as described above until one of
the following conditions is satisfied:

A: the value of the pivot—counter equals the number of
columns (after the elimination step). This means that all columns
are eliminated; so there are no dependencies found between
parameters and a number of redundant measurements are found
(step 9,10 and 11).

B: the value of the pivot—counter equals the number of
rows (after the elimination step). If also the number of columns
is larger than the number of rows, then (J-I) dependent
parameters are found. Some of the dependencies are presumably
caused by a lack of measurements. The only way to check this is
to increase the number of rows in equation (11) by adding
measurement results and re—executing the algorithm (step 15,16
and 17).

C: no pivot is found. Resulting in a number of dependent
parameters and redundant measurements. Probably the number
of dependencies can be reduced by using other measurements
(step 12,13 and 14).

In steps 9,12 and 15 the matrix A is scaled. This means
that all diagonal elements of matrix A are made equal to 1 by
multiplying the rows of matrix A and IA with a particular factor
(VA ).
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The influence of dependent parameters is shown in the
following part of this section. First an example will be given,
followed by a description of the general case with D dependent
parameters.

Assume that a system with 1 dependent parameter is given,
then the algorithm will change equation (12) to:

IA1; IRy ... IALI||e
Iap1 IA22 ... IMgT]|e2

IAR] IAR2 ... IART||er

10 ..... ny|[dp’1/0"1
01 ..... ny||dp’2/0" o

(19)
00 ... 12y[|8p ys0y

with: R the number of dependent parameters
subtracted from the number of parameters
((J-D); in this case (J-1))

Probably some rows in A will have only one non—zero
element (Aji=1 and Aj;=0). The column containing this
element is related with a parameter deviation which can be
determined independently of the other parameters; that parameter
is a member of the set of separable parameters.

The determination accuracy of the parameters can in this
case be computed by using the following equation:

I
ep'i/0"i)? = ) (1nij €2 + a2 (20)
j=1

Note that the determination accuracy of the dependent
parameter p’ § can not be computed with equation (20). It is also
assumed that Ap' e’y is normally distributed with a zero mean
value and a standard deviation equal to 1 (fault free parameter).

A parameter p, with a determination accuracy not as small
as desired (ep,>a; with a, the desired determination accuracy)
can be a parameter which is a member of a set of nearly
inseparable parameters. These inéeparabilities can be determined
with the described algorithm. The sensitivity vector corres—
ponding with p, must be placed in the last column of matrix A.
The algorithm is executed again but it is not allowed to search
for a pivot in the last column. Resulting from this it is also not
allowed to eliminate the last column. After the scaling the
matrix A has the same form as in equation (19).

In the general case there can be more parameters which are
dependent (or nearly dependent) of the other parameters.
Equation (19) can then be written in the following general form:
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IA1r I21p ... IAI| (e

1221 IApp ... IRgI||e

IAR1 IAR2 ... IARI||er
10..... MR...Ay|{Ap"1 /071
01..... AgR...Any AP’Q/G,Q

(21)

00...12RR...20,]|8p y/0°

with: R the pumber of dependent parameters subtrac-
ted from the number of parameters (J-D)

The coefficients of the D last columns of matrix A describe
the dependencies between the dependent parameters and the
other parameters. Note that one measurement is removed for
each parameter which is assumed to be dependent of the others.
The matrix IA contains (J-D) columns which not equal 0. The
measurements corresponding with these columns are used to
determine the parameter deviations. The measurement which is
removed contains the information which distinguishes the nearly
dependent parameter from the other parameters. After this the
nearly dependent parameter is considered to be fully dependent
of the other parameters. The determination accuracy of the
other parameters can now be computed by assuming all the
dependent parameters to be normally distributed with zero mean
and standard deviation ¢ (fault free parameters). Equation (20)
can now be rewritten in the following general form:

I J
(ep'i/0’i)? = | (1aij.¢))2 +] a2 (22)
3=1 m=J-D

It is not possible to compute the determination accuracies
of the dependent parameters p’'R to p’j with equation (22). To
compute the determination accuracy of these D dependent
parameters, D other parameters must be assumed to be fault
free. To determine the most suitable parameters the described
algorithm can be used again in a slightly modified form. The
sensitivity vectors corresponding with one of the D dependent
parameters is placed in the first column of matrix A. Then the
first pivot used for the elimination process must be found in
this first column. After the first cycle the elimination process
can be continued in the normal way. The elimination process
must be stopped when D columns remain. Then (J-D) columns
are eliminated and also (J-D) measurements are left. Care must
be taken that these are the same measurements as in the original
solution. Now again a set of equations like equation (21) is the
result of the elimination process. The determination accuracy of
the dependent parameter can now be determined with equation
(22). This procedure is repeated until all determination accuracies
are computed.



The assumption that a parameter is nearly dependent on
other parameters usually results in a better determination
accuracy of the set of inseparable parameters. If this is not the
case, then the determination accuracy can only be improved by
using other testvectors.

5. Example

In this section an example of a testability analysis is given.
The analysis is carried out with the help of the computer
program "TASTE’. The algorithm described in this paper and a
simulation program which is used to compute the necessary
sensitivity vectors are both implemented in the program
"TASTE”. The models implemented in the simulation part of the
program are high—level models, so it is possible to analyze the
testability of a system in an early design stage.

The analyzed system is very straightforward and linear in
order to facilitate the interpretation of the results of the
analysis. Of course nonlinear systems can be analyzed too, but
the results of such an analysis are not as easy to interpret as the
results maintained with a simple linear circuit.

in . "
——3{gaint low—pass gain2

out
0] @ ©)] @

3
?

@ node number i

Figure 2 Analog system with one output node

In fig. 2 a linear analog system is given. The low-pass filter
is a second order filter. Its transfer function can be described as:

H(jW) = 1 (23)
1+ a.jw+ b.(jw)?2

with: W frequency in rad/s
a,b filter coefficients

A deviation of this transfer function from the nominal
transfer function can be represented as a deviation in the
coefficients a and b. It is not necessary to use these parameters,
it is also possible to use for instance the Q-factor and the
cut—off frequency as the parameters which describe the behavior
of the filter. The Q—factor and cut—off frequency can be written
as a function of the coefficients a and b. The function of a gain
block can be described with only one parameter: the input signal
is multiplied with the corresponding gain to obtain the output
signal.

The behavior of this system can be described with 4
parameters: a, b, gainl and gain2. If we want to determine all
parameters then 4 measurements are required. Consider that only
the output signal of the system can be observed. Therefore it is
obvious that the parameters gainl and gain2 can not be
determined independent of each other, only their product can be

determined. Thus only three measurements are required.

The algorithm described in this paper can be used to select
an opimal set of measurements. For this an input signal with an
excessive number of frequency components can be used. A very
suitable signal is the sum of a number of sine functions with
random phase:

m
in(t) = (A/}lm).[ sin(n.2%f5.t + ¥n) (24)

n=1

with: m the number of frequency components
f, the lowest frequency component in the input
signal
A determines the amplitude of the signal
¢n phase of n—th frequency component

Due to the random phase components ¢, this signal
approximates a white noise signal. For m>3 the output signal
will contain a number of redundant frequency components, that
will be removed by the algorithm.

To use the algorithm the following data are needed: the
nominal values, the standard deviations and the desired
determination accuracies of the parameters, the standard
deviations of the measurement errors and the definition of the
input signal. These data are listed below:

nominal value standard deviation desired accuracy
(% of nominal value)

a = 1.4142/27f, 10% 10%
b = 1.0/(2%fc )2 10% 10%
gainl = 2.0 5% 5%
gain2 = 2.0 10% 10%

with: £ = 1.0 (cut-off frequency in Hz.)

It is assumed that the standard deviation of the
measurement errors equals 1E-3, if the output signal is a voltage
this corresponds with a voltage of 1.0 mV.

The input signal consists of a number of frequency
components with equal amplitude of 25 mV and random phase.

20
in(t) = o.ozs.z sin(n.2Tfo.t + Pn) (25)

n=1
with: fo = 0.1 Hz.

First a simulation of the system is carried out in order to
obtain the sensitivity vectors. The absolute value of the relative
sensitivities (sensitivity multiplied by the standard deviation of
the corresponding parameter) is shown in a graphical form in
figure 3.
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Figure 3 Absolute value of the relative sensitivities on node 4

The relative sensitivity vectors obtained by the simulation
are used as input for the testability analysis algorithm. This
algorithm is used to find dependencies between parameters, to
compute the determination accuracies and to select an optimal
set of measurements.

The results of the analysis are listed below:

parameter relative deter- required non faulty
mination accuracy parameters
gain2 0.510 gainl
a 0.180 none
b 0.549 none
gainl 2.010 gain2

The relative determination accuracy of a
parameter equals the determination accuracy divided
by the standard deviation (due to the production
process) of the parameter.

The selected frequency components are: 0.1, 1.0
and 1.7 Hz.

To explain the results obtained by the algorithm the plot of
the relative sensitivities (fig. 3) can be used. The sensitivity of
the amplitude of the 1.0 Hz component on parameter a is much
larger than the sensitivity on parameter b, at 1.7 Hz. the
sensitivities on both parameters are almost the same, thus these
measurements are very suitable to determine the parameters a
and b independent from another.

The parameters gainl and gain2 are dependent, so only one
extra measurement is required to determine the product of these
parameters. The frequency selected by the algorithm is 0.1 Hz.,
at this frequency the sensitivity on gainl and gain2 is large
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compared to the sensitivity on the parameters a and b. To
determine the determination accuracy of parameter gainl the
parameter gain2 must be assumed to be non faulty and vice
versa. The relative determination accuracy of the parameter gainl
is not quite as good as the relative determination accuracy of
parameter gain2, this is caused by the larger standard deviation
of parameter gain2 compared to the standard deviation of gainl.
The parameter gainl can not be determined with sufficient
accuracy (relative determination accuracy > 1.0).

6. Discussion

The algorithm described in this paper is implemented on an
APOLLO workstation. The program is written in PASCAL and
can be used to perform an analysis in the frequency domain. In
order to obtain the required sensitivity vectors a simple high level
simulation program is developed. First the response of the
nominal circuit is simulated and after that further simulations are
required to determine the sensitivity vectors. Because of the
possible nonlinearities in the system a simulation must be carried
out for each parameter, so it is clear that this simulation part of
the algorithm will be time consuming. After the necessary
simulations the testability analysis can be carried out

At this moment only the amplitude of the frequency
components is used in the analysis. In most practical situations
this will be sufficient but for example a delay-line will cause
testability problems when no phase information is available. The
program can easily be changed to overcome this problem.

As shown in the example the algorithm is useful to analyze
the testability of an analog circuit. It is also shown that the
algorithm can be used for test frequency selection. Therefore it
might be possible to use this algorithm as part of an automatic
test pattern generation program.

7. Conclusions

An algorithm is developed to compute the determination
accuracies of the high-level parameters in an analog system based
on user—defined measurements. The algorithm detects
dependencies and near dependencies between parameters of the
system and selects the best set of measurements from a given set.
It can be used for both linear and nonlinear systems. The
algorithm combines a rank-test method with statistical methods.

The algorithm has been implemented on a workstation and
evaluations with small linear and nonlinear analog systems show
the usefulness of the method.
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Appendix: Gaussian elimination procedure

The Gaussian elimination procedure with full pivoting is
used to compute the solution of a set of n equations with n
variables. Due to finite word-length effects in digital computers
Jarge fauits can occur if the set of equations is ill-conditioned.
A set of equations described with a matrix representation is
ill-conditioned if two or more column vectors of the matrix are
nearly dependent on other column vectors. In that case, a so
called pivoting technique can be used to obtain the highest
possible accuracy. First the Gaussian elimination with partial
pivoting will be explained.

Assume that a vector x which represents the n variables xj ,
X2,...,%y and a matrix A with dimension n*n are given:

A11 A2 ... Amnf|x| (B
Bg1 RAg2 ... Mn|[x2| |b2
A31 A32 ... RAan||x3|=|b3 (R.1)
A1 Bn2 ... Panf|Xa| |bn

Now a suitable element of the first column of matrix A,
Aj1, must be found such that |Ajq1[>]Ag1] for all k=1,2,...,n.
If for instance Agy satisfies this condition, then this element is
chosen to be the pivot element. Rows 1 and 3 are swapped and
thus Ag; is moved to the position of Aj;. The equations are
now changed to:

A31 232 ... A3n 'X1 bg

Bp1 Ag2 ... Mnl|x2f |b2
A1l A12 ... Aln|[®[=|b1 (a.2)
Bal Bn2 ... Ranf|%a| |Dba

This can be rewritten as:

A'11 Ay2 ... Anf|x)| [P
)
2’21 Agp ... Alan||®| |P2
A'31 A'sg ... Aanl|xs|=|bs (A.3)
Anl Ap2 ... Aaqn||%n b g

with: A'11=Bg1, A 12=Ba2,...
, ,
b 1=b3, b 2=by,...

Now (n-1) factors can be defined:

) ) .
mi=A i1/A 11 i=2,3,...,n

After this operation m; times the first equation is
subtracted from the i-th equation (for i=2 to mn). This results in
a new equation:

A11 A2 ... Amn|{=| |b1
0 RAp2 ... RAppl|x2 by
0 Ag2 ... A3n||x3|=|b3 (A.4)
0 BAp2 ... Ban||%n| |bn

The first column of the matrix is now eliminated except for
the pivot element Aj;. Note that the coefficients A’ j and
b’; are renamed to A, j and bj and also that these coefficients
do not equal the coefficients appearing in equation (A.D).

The next step is finding a suitable pivot element in the
second column of matrix A, Ajz (i=2,3,...,n). Again (n-1)
factors can be defined:
mi=a"j1/A 11 i=1,3,4,...,n

The second column can now be eliminated and the
equation changes to:

A1 0 ... Az (b1
0 Rog ... Mp||x2| |b2
0 0 ... Agp|{x3|=|bs (A.5)
0 0 ... Zan||®n by

This process is continued until all n columns are eliminated.
The following form is then obtained:

AL 0 ... O X] b1

0 RApg ... O X9 by
0 0 0 ||x3|=|b3 (A.6)
0 0 ... Bn||x| |bn

The solution of the set of equations can be easily computed
(xj=bj/A;; fori=1to n).

If Gaussian elimination with full pivoting is used, then a
pivot element is not just searched in one column but over all
columns. In this case the columns of matrix A must be swapped
and also the corresponding elements of vector x. Suppose that in
(A.1), element Agg is found to be the best pivot element, then
after the swapping of columns and rows (A.1) changes to:
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A32 A31 ... Azp||x2| |bs

A22 A21 ... Mpf[x| |b2
A2 A1l ... Ap|[x3|=|b; a.7)
An2 BAnl ... Bpni|%a| {bn

Note that the elements 1 and 2 of vector x are swapped
because the columns 1 and 2 are swapped. The elimination
process can now be continued as previously, only the searching
of the pivot and the swapping of the columns and the elements
of vector x is changed.

The above described Gaussian elimination procedure can
also be used to compute the inverse of matrix A, therefore only
minor modifications are required. The procedure can only be
used with a set of equations consisting of n equations and n
unknown variables. It is also necessary that the rank of matrix A
equals n (this means that the determinant of A not equals zero)
to guarantee that a valid solution of the equations can be found.
A problem which occurs in the algorithm (section 4) is the fact
that in general the number of equations not equals the number
of variables and also the rank of the matrix A not equals the
number of variables. To overcome this problem the procedure is
modified. Also the criterion used to find a pivot element is
changed, in order to select the best subset of measurements.

Nomenclature
J number of parameters
I number of measurements

Pj nominal value of parameter j

Ap; deviation of Pj

g standard deviation of Pj

aj required accuracy of parameter j

epj 1inaccuracy of the computed value of parameter j
X measurement vector

Xnon measurement vector of nominal system
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X=Xnom
measurement error vector
standard deviation of measurement i

Sij sensitivity of measurement i for deviation of

—

. G. Iuculano,

parameter j
sensitivity matrix

-1 inverse of matrix S

number of dependent column vectors
transformation matrix
solution of reduced set of equations
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