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Abstract

Template protection techniques are privacy and security enhancing techniques of bio-
metric reference data within a biometric system. Several of the template protection
schemes known in the literature require the extraction of a binary representation from
the real-valued biometric sample, which raises the question whether the bit extraction
method reduces the classification performance. In this work we provide the theoreti-
cal performance of the optimal log likelihood ratio continuous classifier and compare it
with the theoretical performance of a binary Hamming distance classifier with a single
bit extraction scheme as known from the literature. We assume biometric data mod-
eled by a Gaussian between-class and within-class probability density with independent
feature components and we also include the effect of averaging multiple enrolment and
verification samples.

1 Introduction
The introduction of the ePassport with fingerprint raised some question marks on the privacy
of the users and the security of the stored biometric data, especially when the Dutch gov-
ernment decided to store the fingerprint samples in a centralized database [1]. The security
and privacy risks related to the storage of biometric data are (i) identity theft where an adver-
sary steals the stored reference template and impersonates the genuine user of the system by
some spoofing mechanism, (ii) limited-renewability implying the limited capability to renew
a compromised reference template due to the limited number of biometric instances (for ex-
ample we only have ten fingers, two irises or retinas, and a single face), (iii) cross-matching
or linking reference templates of the same subject across databases of different applications,
and (iv) derivation of sensitive medical information where it is known that biometric data
may reveal the presence of certain diseases.

The field of template protection aims at mitigating these privacy and security risks by
developing techniques that provide (i) irreversibility implying that it is impossible or at least
very difficult to retrieve the original biometric sample from the reference template, (ii) re-
newability where it is possible to renew the reference template when necessary, and (iii)
unlinkability which prevents cross-matching. In the literature, numerous template protec-
tion methods such as the Fuzzy Commitment Scheme (FCS) [2], Helper Data System (HDS)
[3, 4, 5], Fuzzy Extractors [6, 7], Fuzzy Vault [8, 9] and Cancellable Biometrics [10] have
been proposed.

In general, the extracted feature vector from the biometric sample is real-valued, while
several of the proposed template protection schemes depend on the extraction of a binary
representation from the biometric sample. The classification performance of the template
protection scheme thus depends on the combination of the bit extraction process and the
binary classifier. Yet, an unanswered question is what the difference is between the theoret-
ical classification performance at binary level (after the bit extraction) and the performance
at the continuous level (before the bit extraction). A potential performance loss after the bit
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extraction process may represent the penalty for the requirement to extract a binary represen-
tation from the biometric sample. In [11], the performance of a single bit extraction process
with a Hamming distance classifier has been theoretically determined under the assumption
that the biometric data is Gaussian distributed. In this work we first discuss the theoretical
performance of the optimal likelihood-ratio continuous classifier, under the assumption that
the biometric data is Gaussian distributed. In [12], the theoretical performance has been
derived where the reference template is the average of Ne enrolment samples with a single
verification sample. We extend this analysis by including the averaging of Nv verification
samples. Lastly, we compare the theoretical performance difference between the continuous
and binary classifier and study the influence of the number of feature components and the
number of enrolment and verification samples.

The outline of this paper is as follows. In Section 2 we briefly describe the model of the
biometric data under Gaussian assumption including the averaging of multiple enrolment and
verification samples. The theoretical performance estimation for the continuous classifier is
derived in Section 3 and Section 4 briefly describes the theoretical performance for the binary
classifier known from the literature. The theoretical performance comparison between the
two classifiers and the effect of averaging multiple enrolment and verification samples is
studied in Section 5. We conclude with our final remarks in Section 6.

2 Preliminaries
Random variables are underlined. Let xi ≃ N(µ

e
, σ2

w), i = 1, . . . , Ne denote the enrolment
samples (features, in fact) and y

i
≃ N(µ

v
, σ2

w), i = 1, . . . , Nv the verification samples with
σ2
w being the within-class variance. We assume that for a given class mean µ the samples

drawn from that class are i.i.d. The enrolment and verification class means are also Gaussian
random variables, in particular µ

e
, µ

v
≃ N(0, σ2

b) with σ2
b being the between-class variance.

The reference template r and the verification template v are sample means, i.e.

r =
1

Ne

Ne
∑

i=1

xi (1)

v =
1

Nv

Nv
∑

i=1

y
i
. (2)

Because the samples are assumed to be independent we obtain r ≃ N(µ
e
, σ

2
w

Ne
) and v ≃

N(µ
v
, σ2

w

Nv
).

In the genuine case, the features originate from the same, unknown, mean, i.e. µ
e
=

µ
v
= µ. In the impostor case the features originate form arbitrary means drawn from the

between-class density. The purpose of the classifier is to discriminate between genuine and
impostor comparisons.

3 Continuous Classifier Performance

3.1 The Log Likelihood Ratio Comparison Score
Let pr,v(r, v|gen), pr,v(r, v|imp) denote the joint probability densities of r and v in the gen-
uine and impostor cases, respectively. The likelihood ratio in this case is defined by

l(r, v) =
pr,v(r, v|gen)

pr,v(r, v|imp)
. (3)
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We conveniently arrange r and v in a column vector z = (r, v)T. We write

pr,v|gen(r, v|gen) =
1

2π
√

|Cgen|
e−

z
T
C
−1
genz

2 (4)

pr,v|imp(r, v|imp) =
1

2π
√

|Cimp|
e−

z
T
C
−1
imp

z

2 , (5)

where Cgen and Cimp are the co-variance matrices for the genuine and imposter comparisons,
respectively. For pr,v|gen(r, v|gen), we can write

pr,v|gen(r, v|gen) =

∞
∫

−∞

pr|µ(r|µ)pv|µ(v|µ)pµ(µ)dµ. (6)

Using this we obtain E{r|gen} = E{v|gen} = 0, E{r2|gen} = σ2
b +

1
Ne
σ2
w, E{v2|gen} =

σ2
b +

1
Nv

σ2
w, and E{rv|gen} = σ2

b, therefore,

Cgen =

(

σ2
b +

1
Ne
σ2
w σ2

b

σ2
b σ2

b +
1
Nv

σ2
w

)

. (7)

In the impostor case, r and v are independent and

Cimp =

(

σ2
b +

1
Ne
σ2
w 0

0 σ2
b +

1
Nv

σ2
w

)

. (8)

Instead of the likelihood ratio we compute a comparison score based on the log likelihood
ratio, from which constant terms and factors have been removed:

s(r, v;Ne, Nv) = −z
TC−1genz+ z

TC−1impz. (9)

On substitution of (7) and (8) into (9) and after simplification and elimination of constants
we obtain the following expression for the comparison score

s(r, v;Ne, Nv) = −
r2

σ2
b +

1
Ne
σ2
w

−
v2

σ2
b +

1
Nv

σ2
w

+ 2
rv

σ2
b

, (10)

in which we included the number of enrolmentNe and verification Nv samples as parameters.
Examples of s(r, v;Ne, Nv) are portrayed by contour plots in Fig. 1 for different number
of enrolment Ne or verification Nv samples with within-class and between class variance
σ2
w = σ2

b = 1. Positive comparisons scores are obtained when the {r, v}-pair is close the
r = v-axis (the positive diagonal line) and being further away from the origin increases the
comparison score. Negative comparisons scores are obtained when the {r, v}-pair is closer
the −r = v-axis (the negative diagonal line) and increases when further away from the
origin. Increasing both the number of enrolment and verification samples shifts the zero-
contour lines closer to the r = v-axis, because the expected uncertainty has decreased due to
the reduction of the within-class variance by averaging multiple samples. Hence, a similar
behavior can be expected when decreasing the within-class variance directly. Increasing
only the number of enrolment (verification) samples mainly shifts the horizontal (vertical)
zero-contour line closer to the r = v-axis.
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Figure 1: Contour plot of the log likelihood ratio comparison score s(r, v;Ne, Nv) from (10)
with within-class and between class variance σ2

w = σ2
b = 1 for different number of enrolment

Ne or verification Nv samples.

3.2 Comparison Score Density and the Classification Performance
In order to estimate the performance, first we to have to derive the density of the log likeli-
hood comparison score s(r, v;Ne, Nv) from (10), denoted as psj |gen(s|gen) for the genuine
case and psj |imp(s|imp) for the imposter case. By combining (10) with the joint probabil-
ity density pr,v|gen(r, v|gen) from (4) for the genuine and pr,v|imp(r, v|imp) from (5) for the
imposter case, respectively, we approximate the score density by means of numerical inte-
gration of the joint probability density along the score contour. Because s(r, v;Ne, Nv) from
(10) is derived for the univariate case, thus the score densities psj |gen(s|gen) and psj |imp(s|imp)

are for the univariate case as denoted by the j subscript.
For the multivariate case, when there are n independent feature components, the like-

lihood ratio equals the product of the likelihood ratio of each component. Because we use
the log likelihood ratio as the comparison score, the multivariate comparison score equals the
sum of the n univariate scores defined in (10). Hence, the multivariate comparison score den-
sity for the genuine ps|gen(s|gen) and imposter case ps|imp(s|imp) becomes the convolution
of the univariate score density psj |gen(s|gen) and psj |imp(s|imp), respectively, namely

ps(s)
def
= (ps1 ∗ ps2 ∗ . . . ∗ psn)(s). (11)

Because the log likelihood comparison score is a similarity score, a match is returned only
when the comparison score is larger than or equal to the operating point T . The two error
types are a match obtained at an imposter comparison known as a false match and a non-
match at a genuine comparison known as a false non-match. As the performance measures,
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we use the false non-match rate (FNMR) β(T ) and the false match rate (FMR) α(T ) at the
operating point T . With the multivariate score density we can compute the FNMR and FMR
as

β(T ) =

∫ T

∞

ps|gen(s|gen)ds, (12)

α(T ) =

∫ ∞

T

ps|imp(s|imp)ds. (13)

3.3 Results
Fig. 2 illustrates several examples of the approximated score density at (a) genuine and (b)
imposter comparisons for the univariate case for different number number of enrolment and
verification samples with σ2

b = σ2
w = 1, and (c) their corresponding receiver operating char-

acteristics (ROC) curves. Similarly for the multivariate case in (d), (e) and (f), respectively,
but for different dimensions n with σ2

b = σ2
w = Ne = Nv = 1. Note that the genuine

score density is symmetric at a score of zero, while the imposter density is skewed towards
the negative scores. Averaging multiple enrolment and verification samples has the effect of
concentrating the genuine score density closer to zero, while skewing the imposter score den-
sity further towards the negative values. Both effects improve the performance as observed
by the ROC curves. For the multivariate case, when increasing the number of components
n the imposter score density significantly skews and shifts to the negative values while the
genuine density becomes broader but remains symmetric. Overall, both effect combined
improve the performance as illustrated by the ROC curves.

4 Binary Classifier Performance
The theoretical performance of a binary classifier when using a bit extraction method based
on a single threshold at the background mean has been studied in [11]. For the genuine
comparisons, the average bit-error probability of component j is analytically determined to
be equal to

P ge
e [j] = 1

2
− 1

π
arctan

(

σb[j]
σw[j]

√
NeNv

√

Ne+Nv+
(

σb[j]

σw[j]

)

−2

)

. (14)

The bit-error probability determines the number of bit errors or Hamming distance ǫ between
the binary vectors extracted in the enrolment and verification phase. Under the assumption
of having independent components, the probability mass function (pmf) of ǫ is the following
convolution

pǫ(ǫ)
def
= (P1 ∗ P2 ∗ . . . ∗ Pnc)(ǫ), (15)

where Pj = [1−Pe[j], Pe[j]] is the marginal pmf of the single bit extracted from component
j. Note that the number of bit errors ǫ is a distance score and a match is obtained when ǫ
is smaller or equal to the operating point T . Thus, the FNMR β(T ) and FMR α(T ) at the
operating point T are defined as

β(T ) =
n
∑

ǫ=T+1

pǫ|gen(ǫ|gen),

α(T ) =
T
∑

ǫ=0

pǫ|imp(ǫ|imp),
(16)

where the bit-error probability P ge
e from (14) is used for the genuine case and P im

e = 0.5 for
the imposter case.

Thirty-first Symposium on Information Theory in the Benelux

165



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

s

p s
j
|g
en
(s
|g
en
)

Ne = 1, Nv = 1

Ne = 10, Nv = 1

Ne = 10, Nv = 10

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

s

p s
j
|i
m
p
(s
|i
m
p
)

Ne = 1, Nv = 1

Ne = 10, Nv = 1

Ne = 10, Nv = 10

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

1
−

β

Ne = 1, Nv = 1

Ne = 10, Nv = 1

Ne = 10, Nv = 10

(a) (b) (c)

−100 −80 −60 −40 −20 0 20 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

s

p s
|g
en
(s
|g
en
)

n = 1
n = 5
n = 10
n = 20

−100 −80 −60 −40 −20 0 20 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

s

p s
|i
m
p
(s
|i
m
p
)

n = 1
n = 5
n = 10
n = 20

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

1
−

β

n = 1
n = 5
n = 10
n = 20

(c) (d) (e)

Figure 2: The approximated comparison score density for the univariate case with within-
class and between class variance σ2

w = σ2
b = 1 for different number of enrolmentNe or verifi-

cation Nv samples is shown (a) for the genuine psj |gen(s|gen) and (b) imposter psj |imp(s|imp)
case, and (c) portrays the corresponding ROC curves. Furthermore, for the multivariate case
is shown (d) psj |gen(s|gen), (e) psj |imp(s|imp), and (f) the ROC curves for different number
of components n with σ2

w = σ2
b = Ne = Nv = 1.

5 Performance Comparison
A comparison of the theoretical performances determined in Section 3 for the continuous
classifier and Section 4 for the binary classifier is portrayed by the ROC curves in Fig. 3(a)
for different feature dimensions n with σ2

w = σ2
b = Ne = Nv = 1, for different num-

ber of enrolment samples Ne with n = 10 and σ2
w = σ2

b = Nv = 1 in Fig. 3(b), and in
Fig. 3(c) for different number of enrolment and verification samples Ne = Nv with n = 10
and σ2

w = σ2
b = 1. The continuous classifier is denoted by the prefix C, while the binary

classifier is denoted by the prefix B. In all three cases the results clearly show that the contin-
uous classifier outperforms the binary classifier and changing either the dimension n or the
number of enrolment or verification samples has a greater improvement for the continuous
classifier. A drawback of the binary classifier is that the binarization process under consid-
eration extracts a single bit by coarsely dividing the feature space of a component in two
regions only and therefore discarding essential information. This loss is clearly shown by
the ‘n=1’ ROC curve in Fig. 3(a), where the continuous classifier ROC curve has an infinite
number of operating points and can reach any FMR of FNMR value, while the binary classi-
fier has only two operating points where the smallest FMR is 50%. As observed in Fig. 3(a),
this information loss has a snowball effect when increasing the dimension n, because the per-
formance of the continuous classifier has a greater improvement with increasing n than the
binary classifier performance. Extracting a single bit becomes more disadvantageous when
the within-class variance is suppressed by increasing the number of enrolment or verification
samples, or similarly having better feature components, i.e. feature components with a larger
feature quality ratio σb

σw
. When having better feature components it may be better to extract
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Figure 3: The ROC performance comparison between the continuous (denoted by C) and
binary classifier (denoted by B) for (a) different feature dimensions n with σ2

w = σ2
b = Ne =

Nv = 1, (b) different number of enrolment samples Ne with n = 10 and σ2
w = σ2

b = Nv = 1,
and (c) different number of enrolment and verification samples Ne = Nv with n = 10 and
σ2
w = σ2

b = 1.

more bits instead of one.

6 Conclusion
The requirement to extract a binary representation from the real-valued biometric sample for
several template protection schemes known in the literature raises the question whether the
bit extraction method reduces the classification performance. In this work we compared the
theoretical performance of the optimal log likelihood ratio continuous classifier with the bi-
nary Hamming distance classifier under the assumption of Gaussian biometric data modeled
by the between-class and within-class densities with independent feature components and
including the averaging of multiple enrolment and verification samples.

In the literature, the theoretical performance for the binary classifier consisting of a sin-
gle bit extraction method based on thresholding has been studied. Similarly, the theoretical
performance of a continuous classifier based on the log likelihood ratio comparison scores
has been analyzed, but was limited to the averaging of multiple enrolment samples only.
Hence, in this work we extended the analysis by including the averaging of multiple verifi-
cation samples. We approximated the density of the comparison score for the univariate and
multivariate case, from which we computed the corresponding performance curve.

Consequently, we compared the theoretical performance of the continuous and binary
classifier and studied the effect of the number of the feature dimension and the number of
enrolment and verification samples. In all cases the continuous classifier outperforms the
binary classifier, which is expected as the likelihood ratio is the optimal classifier if the
class-conditional probability is well-known. In this work we assumed the class-conditional
probability to be well defined. In practice, however, the performance advantage of the con-
tinuous classifier will be less because it is known to be difficult to have a perfect estimation of
the class-conditional probability, especially at high feature dimensions or correlated feature
components. A drawback of the binary classifier under consideration is that the bit extrac-
tion method coarsely divides the feature space of a component in only two regions in order
to extract a single bit and therefore discarding essential information. This drawback is am-
plified when the within-class noise is suppressed by increasing the number of enrolment or
verification samples, where it may be more advantageous to extract more than one bit from
each feature component.

As future work, it would be of great interest to derive the theoretical performance of more
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advanced bit extraction methods that can extract more robust bits or multiple bits from each
component in order to close the gap between the continuous and binary classifier. Further-
more, it is important to investigate the sensitivity of both classifiers with respect to correlated
feature components and estimation errors of the class-conditional probability.
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