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Abstract We consider a new model of a TU game endowed with both coali-
tion and two-level cooperation structures that applies to various network sit-
uations. The approach to the value is close to that of both Myerson (1977)
and Aumann and Drèze (1974): it is based on ideas of component efficiency
and of one or another deletion link property, and it treats an a priori union
as a self-contained unit; moreover, our approach incorporates also the idea
of the Owen’s quotient game property (1977). The axiomatically introduced
values possess an explicit formula representation and in many cases can be
quite simply computed. The results obtained are applied to the problem of
sharing an international river among multiple users without international
firms.
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1. Introduction

The study of TU games with coalition structures was initiated first by Aumann and
Dréze (1974), then Owen (1977). Later this approach was extended in Winter (1989)
to games with level structures. Another model of a game with limited cooperation
presented by means of a communication graph was introduced in Myerson (1977).
Various studies in both directions were done during the last three decades but
mostly either within one model or another. The generalization of the Owen and the
Myerson values, applied to the combination of both models that resulted in a TU
game with both independent coalition and cooperation structures, was investigated
by Vázquez-Brage et al. (1996).

In the paper we study TU games endowed with both coalition and coopera-
tion structures, the so-called graph games with coalition structures. Different from
Vázquez-Brage et al. (1996), in our case a cooperation structure is a two-level co-
operation structure that relates fundamentally to the given coalition structure. It
is assumed that cooperation (via bilateral agreements between participants) is only
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possible either among the entire coalitions of a coalition structure, in other terms
a priori unions, or among single players within a priori unions. No communication
and therefore no cooperation is allowed between single players from distinct ele-
ments of the coalition structure. This approach allows to model various network
situations, in particular, telecommunication problems, distribution of goods among
different cities (countries) along highway networks connecting the cities and local
road networks within the cities, or sharing an international river with multiple users
but without international firms, i.e., when no cooperation is possible among single
users located at different levels along the river, and so on. A two-level coopera-
tion structure is introduced by means of graphs of two types, first, presenting links
among a priori unions of the coalition structure and second, presenting links among
players within each a priori union. We consider cooperation structures presented
by combinations of graphs of different types both undirected – general graphs and
cycle-free graphs, and directed – line-graphs with linearly ordered players, rooted
trees and sink trees. Fig. 1(a) illustrates one of possible situations within the model
while Fig. 1(b) provides an example of a possible situation within the model of
Vázquez-Brage et al. with the same set of players, the same coalition structure, and
even the same links connecting players within a priori unions. In general, the newly
introduced model of a game with two-level cooperation structure cannot be reduced
to the model of Vázquez-Brage et al.. Consider for example negotiations between
two countries held on the level of prime ministers who in turn are citizens of their
countries. The communication link between countries can be replaced neither by
communication link connecting the prime ministers as single persons and therefore
presenting only their personal interests, nor by all communication links connecting
citizens of one country with citizens of another country that also present links only
on personal level. The two models coincide only if a communication graph between
a priori unions in our model is empty and components of a communication graph
in the model of Vázquez-Brage et al. are subsets of a priori unions. An example
illustrating this situation with the same player set, the same coalition structure,
and the same graphs within a priori unions, as on Fig. 1(a) is given on Fig. 1(c).

Figure1. a) model of the paper; b) model of Vázquez-Brage et al.; c) case of the coincidence

Our main concern is the theoretical justification of solution concepts reflecting
the two-stage distribution procedure. It is assumed that at first, a priori unions
through upper level bargaining based only on cumulative interests of all members
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of every involved entire a priori union, when nobody’s personal interests are taken
into account, collect their total shares. Thereafter, via bargaining within a priori
unions based now on personal interests of participants, the collected shares are dis-
tributed to single players. As a bargaining output on both levels one or another
value for games with cooperation structures, in other terms graph games, can be
reasonably applied. Following Myerson (1977) we assume that cooperation possible
only among connected players or connected groups of players and, therefore, we
concentrate on component efficient values. Different component efficient values for
graph games with graphs of various types, both undirected and directed, are known
in the literature. We introduce a unified approach to a number of component ef-
ficient values for graph games that allows application of various combinations of
known solutions concepts, first at the level of entire a priori unions and then at the
level within a priori unions, within the unique framework. Our approach to values
for graph games with coalition structures is close to that of both Myerson (1977)
and Aumann and Drèze (1974): it is based on ideas of component efficiency and
one or another deletion link property, and it treats an a priori union as a self-
contained unit. Moreover, to link both communication levels between and within a
priori unions we incorporate the idea of the Owen’s quotient game property (Owen,
1977). This approach generates two-stage solution concepts that provide consistent
application of values for graph games on both levels. The incorporation of differ-
ent solutions aims not only to enrich the solution concept for graph games with
coalition structures but, because there exists no universal solution for graph games
applicable to full variety of possible undirected and directed graph structures, it
also opens the broad diversity of applications impossible otherwise. Moreover, it
also allows to chose, depending on types of graph structures under scrutiny, the
most preferable, in particular, the most computationally efficient combination of
values among others suitable. The idea of the two-stage construction of solutions is
not new. The well known example is the Owen value (Owen, 1977) for games with
coalition structures that is defined by applying the Shapley value (Shapley, 1953)
twice, first, the Shapley value is employed at the level of a priori unions to define a
new game on each one of them, and then the Shapley value is applied to these new
games. Other applications of the two-stage construction of solutions can be found
in Albizuri and Zarzuelo (2004) and in Kamijo (2009). As a practical application of
the new model we consider the problem of sharing of an international river among
multiple users.

The structure of the paper is as follows. Basic definitions and notation along
with the formal definition of a graph game with coalition structure and its core
are introduced in Sect. 2.. Sect. 3. provides the uniform approach to several known
component efficient values for games with cooperation structures. In Sect. 4. we
introduce values for graph games with coalition structures axiomatically and present
the explicit formula representation, we also investigate stability and distribution of
Harsanyi dividends. Sect. 5. deals with the generalization on graph games with
level structures. Sect. 6. discusses application to the water distribution problem of
an international river among multiple users without international firms.
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2. Preliminaries

2.1. TU Games and Values

Recall some definitions and notation. A cooperative game with transferable utility
(TU game) is a pair 〈N, v〉, where N = {1, . . . , n} is a finite set of n ≥ 2 players and
v : 2N → IR is a characteristic function, defined on the power set of N , satisfying
v(∅) = 0. A subset S ⊆ N (or S ∈ 2N ) of s players is called a coalition, and
the associated real number v(S) presents the worth of S. The set of all games with
fixed N we denote by GN . For simplicity of notation and if no ambiguity appears, we
write v instead of 〈N, v〉 when refer to a game. A value is a mapping ξ : GN → IRN

that assigns to every v ∈ GN a vector ξ(v) ∈ IRN ; the real number ξi(v) represents
the payoff to player i in v. A subgame of v with a player set T ⊆ N , T �= ∅, is
a game v|T defined as v|T (S) = v(S), for all S ⊆ T . A game v is superadditive, if
v(S ∪ T ) ≥ v(S) + v(T ), for all S, T ⊆ N , such that S ∩ T = ∅. A game v is convex,
if v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ), for all S, T ⊆ N . In what follows for all
x ∈ IRN and S ⊆ N , we use standard notation x(S) =

∑
i∈S xi and xS = {xi}i∈S .

The cardinality of a given set A we denote by |A| along with lower case letters like
n = |N |, m = |M |, nk = |Nk|, and so on.

It is well known (Shapley, 1953) that unanimity games {uT} T⊆N
T �=∅

, defined as

uT (S) = 1, if T ⊆ S, and uT (S) = 0 otherwise, create a basis in GN , i.e., every
v ∈ GN can be uniquely presented in the linear form v=

∑
T⊆N,T �=∅

λvT uT , where

λvT =
∑
S⊆T

(−1)t−s v(S), for all T ⊆ N , T �= ∅. Following Harsanyi (1959) the coeffi-

cient λvT is referred to as a dividend of coalition T in game v.
For a permutation π : N → N , assigning rank number π(i) ∈ N to a player i ∈

N , let πi = {j ∈ N |π(j) ≤ π(i)} be the set of all players with rank number smaller
or equal to the rank number of i, including i itself. The marginal contribution vector
mπ(v) ∈ IRn of a game v and a permutation π is given by mπ

i (v) = v(πi)−v(πi\{i}),
i ∈ N . By u we denote the permutation on N relevant to the natural ordering from
1 to n, i.e., u(i) = i, i ∈ N , and by l the permutation relevant to the reverse ordering
n, n− 1, . . . , 1, i.e., l(i) = n+ 1− i, i ∈ N .

The Shapley value (Shapley, 1953) of a game v ∈ GN can be given by

Shi(v) =
∑

T⊆N,T
i

λvT
t
, for all i ∈ N.

The core (Gillies,1953) of v ∈ GN is defined as

C(v) = {x ∈ IRN | x(N) = v(N), x(S) ≥ v(S), for all S ⊆ N}.

A value ξ is stable, if for any v ∈ GN with nonempty core C(v), ξ(v) ∈ C(v).

2.2. Games with Coalition Structures

A coalition structure or, in other terms, a system of a priori unions on a player set N
is given by a partition P = {N1, ..., Nm} of the player set N , i.e., N1∪ ...∪Nm = N
and Nk ∩Nl = ∅ for k �= l. A pair 〈v,P〉 of a game v ∈ GN and a coalition structure
P on the player set N constitutes a game with coalition structure or, in other terms,
a game with a priori unions or simply P-game. The set of all P -games with a fixed
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player set N we denote GP
N . A P -value is a mapping ξ : GP

N → IRN that associates
with every 〈v,P〉 ∈ GP

N a vector ξ(v,P) ∈ IRN . Given 〈v,P〉 ∈ GP
N , Owen (1977)

defines a game vP , called a quotient game, on M = {1, . . . ,m} in which each a priori
union Nk acts as a player:

vP(Q) = v(
⋃
k∈Q

Nk), for all Q ⊆M.

Note that 〈v, {N}〉 represents the same situation as v itself. Later on by 〈N〉 denote
the coalition structure composed by singletons, i.e., 〈N〉 = {{1}, . . . , {n}}. Further-
more, for every i ∈ N , let k(i) be defined by the relation i ∈ Nk(i), and for any
x∈IRN , let xP =

(
x(Nk)

)
k∈M ∈IRM be the corresponding vector of total payoffs to

a priori unions.

2.3. Games with Cooperation Structures
A cooperation structure on N is specified by a graph Γ , undirected or directed.
An undirected/directed graph is a collection of unordered/ordered pairs of nodes
(players) Γ ⊆ Γ cN = { {i, j} | i, j ∈ N, i �= j} or Γ ⊆ Γ̄ cN = {(i, j) | i, j ∈ N, i �=
j} respectively, where an unordered/ordered pair {i, j} or correspondingly (i, j)
presents a undirected/directed link between i, j ∈ N . A pair 〈v, Γ 〉 of a game v ∈ GN
and a communication graph Γ on N constitutes a game with graph (cooperation)
structure or simply Γ -game. The set of all Γ -games with a fixed player set N we
denote GΓN . A Γ -value is a mapping ξ : GΓN → IRN that assigns to every 〈v, Γ 〉 ∈ GΓN
a vector ξ(v, Γ ) ∈ IRN .

For any graph Γ on N and any S ⊆ N , the subgraph of Γ on S is the graph Γ |S =
{{i, j} ∈ Γ | i, j ∈ S}. In an undirected graph Γ on N a sequence of different nodes
(i1, . . . , ik), k ≥ 2, is a path from i1 to ik, if for all h = 1, . . . , k−1, {ih, ih+1} ∈ Γ . In
a digraph Γ on N a sequence of different nodes (i1, . . . , ik), k ≥ 2, is an undirected
path from i1 to ik, if for all h = 1, . . . , k − 1, (ih, ih+1) ∈ Γ and/or (ih+1, ih) ∈ Γ ,
and is a directed path from i1 to ik, if for all h = 1, . . . , k − 1, (ih, ih+1) ∈ Γ . We
consider connectedness with respect to (undirected) paths and say that two nodes
are connected, if there exists an (undirected) path from one node to another. A graph
is connected, if any two nodes are connected. Given a graph Γ , S ⊆ N is connected,
if Γ |S is connected. Denote by CΓ (S) the set of all connected subcoalitions of S,
by S/Γ the set of maximally connected subcoalitions, called components, and let
(S/Γ )i be the component of S containing i ∈ S. Notice that S/Γ is a partition of
S. Besides, for any coalition structure P , the graph Γ c(P) =

⋃
P∈P Γ cP , splits into

completely connected components P ∈ P , and N/Γ c(P) = P . For any 〈v, Γ 〉 ∈ GΓN ,
a payoff vector x ∈ IRN is component efficient, if x(C) = v(C), for every C ∈ N/Γ .
Later on, when for avoiding confusion it is necessary to specify the set of nodes N ,
we write ΓN instead of Γ .

Following Myerson (1977), we assume that for 〈v, Γ 〉∈GΓN cooperation is possible
only among connected players and consider a restricted game vΓ ∈GN defined as

vΓ (S) =
∑

C∈S/Γ
v(C), for all S ⊆ N.

The core C(v, Γ ) of 〈v, Γ 〉 ∈ GΓN is defined as a set of component efficient payoff
vectors that are not dominated by any connected coalition, i.e.,

C(v, Γ )={x ∈ IRN |x(C)=v(C), ∀C∈N/Γ, and x(T )≥v(T ), ∀T ∈CΓ (N)}. (1)
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It is easy to see that C(v, Γ ) = C(vΓ ).
Below along with cooperation structures given by general undirected graphs we

consider also those given by cycle-free undirected graphs and by directed graphs –
line-graphs with linearly ordered players, rooted and sink forests. In an undirected
graph a path (i1, . . . , ik), k ≥ 3, is a cycle, if i1 = ik. An undirected graph is cycle-
free, if it contains no cycles. In a directed link (i, j), j is a subordinate of i and i is a
superior of j. In a digraph Γ , j �= i is a successor of i and i is a predecessor of j, if
there exists a path (i1, . . . , ik) with i1 = i and ik = j. A digraph Γ is a rooted tree,
if there is one node in N , called a root, having no predecessors in Γ and there is a
unique directed path in Γ from this node to any other node in N . A digraph Γ is
a sink tree, if the directed graph, composed by the same set of links as Γ but with
the opposite orientation, is a rooted tree; in this case the root of a tree changes its
meaning to the absorbing sink. A digraph is a rooted/sink forest, if it is composed
by a number of nonoverlapping rooted)/sink trees. A line-graph is a digraph that
contains links only between subsequent nodes. Without loss of generality we may
assume that in a line-graph L nodes are ordered according to the natural order from
1 to n, i.e., line-graph Γ ⊆ {(i, i+ 1) | i = 1, . . . , n− 1}.
2.4. Graph Games with Coalition Structures

A triple 〈v,P , ΓP〉 presenting a combination of a TU game v ∈ GN with a coali-
tion structure P and with limited cooperation possibilities presented via a two-
level graph structure ΓP =〈ΓM , {ΓNk}k∈M 〉 constitutes a graph game with coalition
structure or simply PΓ -game. The set of all PΓ -games with a fixed player set N
we denote GPΓ

N . A PΓ -value is defined as a mapping ξ : GPΓ
N → IRN that associates

with every 〈v,P , ΓP〉 ∈ GPΓ
N a vector ξ(v,P , ΓP) ∈ IRN .

It is worth to emphasize that in the model under scrutiny the primary is a coali-
tion structure and a cooperation structure is introduced above the given coalition
structure. The graph structure ΓP is specified by means of graphs of two types –
a graph ΓM connecting a priori unions as single elements, and graphs ΓNk within
a priori unions Nk, k ∈ M , connecting single players. Moreover, observe that PΓ -
games 〈v, 〈N〉, Γ〈N〉〉 and 〈v, {N}, Γ{N}〉 with trivial coalition structures reduce to
a Γ -game 〈v, ΓN 〉. Later on for simplicity of notation, when it causes no ambiguity,
we denote graphs ΓNk within a priori unions Nk, k ∈M , by Γk.

Given 〈v,P , ΓP〉 ∈ GPΓ
N , one can consider graph games within a priori unions

〈vk, Γk〉 ∈ GΓNk , with vk = v|Nk , k ∈M . Moreover, owning a coalition structure one
can consider a quotient game. However, a quotient game relating to a PΓ -game
should take into account the limited cooperation within a priori unions, and hence,
it must differ from the classical one of Owen. For any 〈v,P , ΓP〉 ∈ GPΓ

N , we define
the quotient game vPΓ ∈ GM as

vPΓ (Q) =

⎧⎪⎨⎪⎩
vΓkk (Nk), Q = {k},
v(

⋃
k∈Q

Nk), |Q| > 1, for all Q ⊆M. (2)

Next, it is natural to consider a quotient Γ -game 〈vPΓ , ΓM 〉 ∈ GΓM .
Furthermore, given a Γ -value φ, for any 〈v,P , ΓP〉 ∈ GPΓ

N with a graph structure
ΓM on the level of a priori unions suitable for application of φ to the corresponding
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quotient Γ -game 〈vPΓ , ΓM 〉1, along with a subgame vk within a priori union Nk,
k ∈M , one can also consider a φk-game vφk defined as

vφk (S) =
{

φk(vPΓ , ΓM ), S = Nk,
v(S), S �= Nk,

for all S ⊆ Nk,

where φk(vPΓ , ΓM) is the payoff to Nk given by φ in 〈vPΓ , ΓM〉. In particular, for
any x ∈ IRM , a xk-game vxk within Nk, k ∈M , is defined by

vxk (S) =
{

xk, S = Nk,
v(S), S �= Nk,

for all S ⊆ Nk.

In this context it is natural to consider Γ -games 〈vξk, Γk〉, k ∈M , as well.

Following the similar approach as for games with cooperation structure, the core
C(v,P , ΓP) of 〈v,P , ΓP〉∈GPΓ

N is the set of payoff vectors that are

(i) component efficient both in the quotient Γ -game 〈vPΓ , ΓM 〉 and in all graph
games within a priori unions 〈vk, Γk〉, k∈M , containing more than one player,

(ii) not dominated by any connected coalition:

C(v,P , ΓP) =
{
x ∈ IRN |

[[
xP(K) = vPΓ (K), ∀K ∈M/ΓM

]
&[

xP (Q) ≥ vPΓ (Q), ∀Q ∈ CΓM (M)
]]

& (3)[[
x(C)=v(C), ∀C ∈Nk/Γk, C �=Nk

]
&

[
x(S)≥v(S), ∀S∈CΓk (Nk)

]
, ∀k∈M : nk>1

]}
.

Remark 1. Notice that in the above definition the condition of component ef-
ficiency on components equal to the entire a priori unions at the level within a
priori unions is excluded. The reason is the following. By definition of a quotient
game, for any k ∈ M , vPΓ ({k}) = vΓkk (Nk). If Nk ∈ Nk/Γk, i.e., if Γk is con-
nected, vΓkk (Nk) = v(Nk), and therefore, vPΓ ({k}) = v(Nk). Besides by definition,
xP({k}) = xPk = x(Nk), for all k ∈M . Furthermore, singleton coalitions are always
connected, i.e., {k} ∈ CΓM (M), for all k ∈M . Thus, in case when Nk ∈ Nk/Γk, the
presence of a stronger condition x(Nk) = v(Nk) at the level within a priori unions
may conflict with a weaker condition xP({k}) ≥ vPΓ ({k}), which in this case is the
same as x(Nk) ≥ v(Nk), at the level of a priori unions, that as a result can lead to
the emptiness of the core.

The next statement easily follows from the latter definition.

Proposition 1. For any 〈v,P , ΓP〉 ∈ GPΓ
N and x ∈ IRN ,

x ∈ C(v,P , ΓP) ⇐⇒ [
xP ∈ C(vPΓ , ΓM )

]
&

[
xNk ∈ C(vx

P
k , Γk), ∀k ∈M : nk>1

]
.

Remark 2. The claim xNk ∈ C(vx
P
k , Γk), k∈M , is vital only if Nk ∈Nk/Γk, i.e.,

if Γk is connected; when Γk is disconnected, it can be replaced by xNk ∈C(vk, Γk),
as well.
1 In general Γ -values can be applied only to Γ -games determined by graphs of certain

types; for more detailed discussion see Sect. 3..
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3. Uniform Approach to Component Efficient Γ -Values

We show now that a number of known component efficient Γ -values for games
with cooperation structures given by undirected and directed graphs of different
types can be approached within a unique framework. This unique approach will be
employed later in Section 4. for the two-stage construction of PΓ -values.

A Γ -value ξ is component efficient (CE) if, for any 〈v, Γ 〉 ∈ GΓN , for all C∈N/Γ ,∑
i∈C

ξi(v, Γ ) = v(C).

3.1. The Myerson Value

The Myerson value µ (Myerson, 1977) is defined for any Γ -game 〈v, Γ 〉 ∈ GΓN with
arbitrary undirected graph Γ as the Shapley value of the restricted game vΓ , i.e.,

µi(v, Γ ) = Shi(vΓ ), for all i ∈ N.

The Myerson value is characterized by two axioms of component efficiency and
fairness.

A Γ -value ξ is fair (F) if, for any 〈v, Γ 〉 ∈ GΓN , for every link {i, j} ∈ Γ ,

ξi(v, Γ )− ξi(v, Γ\{i, j}) = ξj(v, Γ )− ξj(v, Γ\{i, j}).

3.2. The Position Value

The position value, introduced in Meessen (1988) and developed in Borm et al.
(1992), is defined for any 〈v, Γ 〉 ∈ GΓN with arbitrary undirected graph Γ . The
position value π attributes to each player in a graph game 〈v, Γ 〉 the sum of his
individual value v(i) and half of the value of each link he is involved in, where the
value of a link is defined as the Shapley payoff to this link in the associated link
game on links of Γ . More precisely,

πi(v, Γ ) = v(i) +
1
2

∑
l∈Γi

Shl(Γ, v0
Γ ), for all i ∈ N,

where Γi = {l ∈ Γ |l � i}, v0 is the zero-normalization of v, i.e., for all S ⊆ N ,
v0(S) = v(S) −∑

i∈S v(i), and for any zero-normalized game v ∈ GN and a graph
Γ , the associated link game 〈Γ, vΓ 〉 between links in Γ is defined as

vΓ (Γ ′) = vΓ
′
(N), for all Γ ′ ∈ 2Γ .

Slikker (2005) characterizes the position value on the class of all graph games via
component efficiency and balanced link contributions.

AΓ -value ξ meets balanced link contributions (BLC) if, for any 〈v, Γ 〉 ∈ GΓN and
i, j ∈ N ,∑

h|{i,h}∈Γ

[
ξj(v, Γ )− ξj(v, Γ\{i, h})

]
=

∑
h|{j,h}∈Γ

[
ξi(v, Γ )− ξi(v, Γ\{j, h})

]
.



228 Anna B.Khmelnitskaya

3.3. The Average Tree Solution

A new algorithmically very attractive2 solution concept for undirected cycle-free
Γ -games, the so called average tree solution (AT-solution), recently introduced in
Herings et al. (2008). Recall the definition. Consider a cycle-free graph game 〈v, Γ 〉
and let i ∈ N . Then i belongs to the component (N/Γ )i and induces a unique
rooted tree T (i) on (N/Γ )i in the following way. For every j ∈ (N/Γ )i\{i}, there is
a unique path in the subgraph 〈(N/Γ )i, Γ |(N/Γ )i〉 from i to j. That allows to change
undirected links on this path to directed so that the first node in any ordered pair
is the node coming first on the path from i to j. The payoff tij(v, Γ ) associated in
the tree T (i) to any player j ∈ (N/Γ )i (obviously, in this case (N/Γ )j = (N/Γ )i)
is equal to the worth of the coalition composed of player j and all his subordinates
in T (i) minus the sum of the worths of all coalitions composed of any successor of
player j and all subordinates of this successor in T (i), i.e.,

tij(v, Γ ) = v(S̄T (i)(j))−
∑

h∈FT (i)(j)

v(S̄T (i)(h)), for all j ∈ (N/Γ )i,

where for any node j ∈ (N/Γ )i, FT (i)(j) = {h ∈ (N/Γ )i | (j, h) ∈ T (i)} is the
set of all subordinates of j in T (i), ST (i)(j) is the set of all successors of j in
T (i), and S̄T (i)(j) = ST (i)(j) ∪ j. Every component C ∈ N/Γ in the cycle-free
graph Γ induces |C| different trees, one tree for each one of different nodes. The
average tree solution assigns to each cycle-free graph game 〈v, Γ 〉 the payoff vector
in which player j ∈ N receives the average over i ∈ (N/Γ )j of the payoffs tij(v, Γ ),
i.e.,

ATj(v, Γ ) =
1

|(N/Γ )j|
∑

i∈(N/Γ )j

tij(v, Γ ), for all j ∈ N.

The average tree solution defined on the class of superadditive cycle-free graph
games appears to be stable. On the entire class of cycle-free graph games the average
tree solution is characterized via two axioms of component efficiency and component
fairness.

A Γ -value ξ is component fair (CF) if, for any cycle-free 〈v, Γ 〉 ∈ GΓN , for every
link {i, j} ∈ Γ ,

1
|(N/Γ\{i, j})i|

∑
t∈(N/Γ\{i,j})i

(
ξt(v, Γ )− ξt(v, Γ\{i, j}

)
=

1
|(N/Γ\{i, j})j|

∑
t∈(N/Γ\{i,j})j

(
ξt(v, Γ )− ξt(v, Γ\{i, j}

)
.

3.4. Values for Line-Graph Games

Three following values for line-graph Γ -games are studied in Brink et al. (2007),
namely, the upper equivalent solution given by

ξUEi (v, Γ ) = mu
i (v

Γ ), for all i ∈ N,
2 In comparison with the Myerson value (the Shapley value) with computational com-

plexity of the order n!, the AT-solution has the computational complexity of the order
n.
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the lower equivalent solution given by

ξLEi (v, Γ ) = ml
i(v

Γ ), for all i ∈ N,
and the equal loss solution given by

ξELi (v, Γ ) =
mu
i (v

Γ ) +ml
i(v

Γ )
2

, for all i ∈ N.

All of these three solutions for superadditive line-graph games turn out to be stable.
Moreover, on the entire class of line-graph games each one of them is characterized
via component efficiency and one of the three following axioms expressing different
fairness properties.

A Γ -value ξ is upper equivalent (UE) if, for any line-graph 〈v, Γ 〉 ∈ GΓN , for any
i = 1, . . . , n− 1, for all j = 1, . . . , i,

ξj(v, Γ\{i, i+1}) = ξj(v, Γ ).

A Γ -value ξ is lower equivalent (LE) if, for any line-graph 〈v, Γ 〉 ∈ GΓN , for any
i = 1, . . . , n− 1, for all j = i+ 1, . . . , n,

ξj(v, Γ\{i, i+1}) = ξj(v, Γ ).

A Γ -value ξ possesses the equal loss property (EL) if, for any line-graph 〈v, Γ 〉 ∈
GΓN , for any i = 1, . . . , n− 1,

i∑
j=1

(
ξj(v, Γ )− ξj(v, Γ\{i, i+1})

)
=

n∑
j=i+1

(
ξj(v, Γ )− ξj(v, Γ\{i, i+1})

)
.

3.5. Tree-Type Values for Forest-Graph Games
The tree value

ti(v, Γ ) = v(S̄Γ (i))−
∑

j∈TΓ (i)

v(S̄Γ (j)), for all i ∈ N

and the sink value

si(v, Γ ) = v(P̄Γ (i))−
∑

j∈OΓ (i)

v(P̄Γ (j)), for all i ∈ N

respectively for rooted/sink forest Γ -games are studied in Khmelnitskaya (2009).
Both these values are stable on the subclass of superadditive games. Moreover,
the tree and sink values on the correspondent entire class of rooted/sink forest Γ -
games can be characterized via component efficiency and successor equivalence or
predecessor equivalence respectively.

A Γ -value ξ is successor equivalent (SE) if, for any rooted forest 〈v, Γ 〉 ∈ GΓN ,
for every link {i, j} ∈ Γ , for all k being successors of j, or k = j,

ξk(v, Γ\{i, j}) = ξk(v, Γ ).

A Γ -value ξ is predecessor equivalent (PE) if, for any sink forest 〈v, Γ 〉 ∈ GΓN ,
for every link {i, j} ∈ Γ , for all k being predecessors of i, or k = i,

ξk(v, Γ\{i, j}) = ξk(v, Γ ).
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3.6. Uniform Framework

Notice that each one of the considered above Γ -values for Γ -games with suitable
graph structures is characterized by two axioms, CE and one or another deletion
link (DL) property, reflecting the relevant reaction of a Γ -value on the deletion of
a link in the communication graph, i.e.,

CE + F for all undirected Γ -games⇐⇒ µ(v, Γ ),
CE + BLC for all undirected Γ -games⇐⇒ π(v, Γ ),

CE + CF for undirected cycle-free Γ -games⇐⇒ AT (v, Γ ),
CE + UE for line-graph Γ -games⇐⇒ UE(v, Γ ),
CE + LE for line-graph Γ -games⇐⇒ LE(v, Γ ),
CE + EL for line-graph Γ -games⇐⇒ EL(v, Γ ),

CE + SE for rooted forest Γ -games⇐⇒ t(v, Γ ),
CE + PE for sink forest Γ -games⇐⇒ s(v, Γ ).

In the sequel, for the unification of presentation and simplicity of notation, we
identify each one of Γ -values with the corresponding DL axiom. For a given DL,
let GDLN ⊆ GΓN be a set of all 〈v, Γ 〉 ∈ GΓN with Γ suitable for DL application. To
summarize,

CE + DL on GDLN ⇐⇒ DL(v, Γ ),

where DL is one of the axioms F, BLC, CF, LE, UE, El, SE, or PE. Whence,
F (v, Γ ) = µ(v, Γ ) andBLC(v, Γ ) = π(v, Γ ) for all undirected Γ -games,CF (v, Γ ) =
AT (v, Γ ) for all undirected cycle-free Γ -games, UE(v, Γ ), LE(v, Γ ), and EL(v, Γ )
are UE, LE, and EL solutions correspondingly for all line-graph Γ -games, SE(v, Γ ) =
t(v, Γ ) for all rooted forest Γ -games, and PE(v, Γ ) = t(v, Γ ) for all sink forest Γ -
games.

4. PΓ -Values

4.1. Component Efficient PΓ -Values

We adapt now the notions of component efficiency and discussed above deletion link
properties to PΓ -values and show that similar to component efficient Γ -values, the
deletion link properties uniquely define component efficient PΓ -values on a class
of PΓ -games with suitable graph structure. The involvement of different deletion
link properties, depending on the considered graph structure, allows to pick the
most favorable among other appropriate combinations of Γ -values applied on both
levels between and within a priori unions in the two-stage construction of PΓ -values
discussed below. Moreover, consideration of the only one specific combination of Γ -
values restricts the variability of applications, since Γ -values developed for Γ -games
defined by undirected graphs are not applicable in Γ -games with, for example,
directed rooted forest graph structures, and vice versa.

Introduce first two new axioms of component efficiency with respect to PΓ -
values that inherit the idea of component efficiency for Γ -values and also incorporate
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the quotient game property3 of the Owen value in a sense that the vector of total
payoffs to a priori unions coincides with the payoff vector in the quotient game.

A PΓ -value ξ is component efficient in quotient (CEQ) if, for any 〈v,P , ΓP〉 ∈
GPΓ
N , for each K ∈M/ΓM ,∑

k∈K

∑
i∈Nk

ξi(v,P , ΓP) = vPΓ (K).

A PΓ -value ξ is component efficient within a priori unions (CEU) if, for any
〈v,P , ΓP〉 ∈ GPΓ

N , for every k∈M and all C∈Nk/Γk, C �=Nk,∑
i∈C

ξi(v,P , ΓP) = v(C).

Reconsider deletion link properties, now with respect to PΓ -games. Recall that
every PΓ -value is a mapping ξ : GPΓ

N → IRN . A mapping ξ = {ξi}i∈N generates
on the domain of PΓ -games a mapping ξP : GPΓ

N → IRM , ξP = {ξPk }k∈M , with
ξPk =

∑
i∈Nk ξi, k ∈M , and m mappings ξNk : GPΓ

N → IRNk , ξNk = {ξi}i∈Nk , k ∈
M . Since there are many PΓ -games 〈v,P , ΓP〉 with the same quotient Γ -game
〈vPΓ , ΓM 〉, there exists a variety of mappings ψP : GΓM → GPΓ

N assigning to any
Γ -game 〈u, Γ 〉 ∈ GΓM , some PΓ -game 〈v,P , ΓP〉 ∈ GPΓ

N , such that vPΓ = u and
ΓM = Γ . In general, it is not necessarily that ψP(vPΓ , ΓM ) = 〈v,P , ΓP〉. However,
for some fixed PΓ -game 〈v∗,P∗, Γ ∗

P 〉 one can always choose a mapping ψ∗
P , such

that ψ∗
P(v∗PΓ , Γ

∗
M )= 〈v∗,P∗, Γ ∗

P〉. Any mapping ξP ◦ ψP : GΓM → IRM by definition
represents a Γ -value that, in particular, can be applied to the quotient Γ -game
〈vPΓ , ΓM 〉∈GΓM of some PΓ -game 〈v,P , ΓP〉∈GPΓ

N . Similarly, for a given Γ -value
φ : GΓM → IRM , for every k∈M , there exists a variety of mappings ψφk : GΓNk → GPΓ

N

assigning to any Γ -game 〈u, Γ 〉 ∈GΓNk , some PΓ -game 〈v,P , ΓP〉 ∈GPΓ
N , such that

vφk = u and Γk =Γ . For every k ∈M , a mapping ξNk ◦ ψφk : GΓNk → IRNk presents a
Γ -value that, in particular, can be applied to Γ -games 〈vφk , Γk〉 ∈ GΓNk relevant to
some PΓ -game 〈v,P , ΓP〉 ∈ GPΓ

N together with the given Γ -value φ. For a given
(m+1)-tuple of deletion link axioms 〈DLP , {DLk}k∈M 〉 consider a set of PΓ -games
GDLP ,{DLk}k∈M
N ⊆ GPΓ

N composed of PΓ -games 〈v,P , ΓP〉 with graph structures
ΓP = 〈ΓM , {Γk}k∈M 〉 such that 〈vPΓ , ΓM 〉 ∈ GDLP

M , and 〈vDLP
k , Γk〉 ∈ GDLkNk

, k ∈
M .

A PΓ -value ξ defined on GDLP ,{DLk}k∈M
N satisfies (m+ 1)-tuple of deletion link

axioms 〈DLP, {DLk}k∈M 〉, if Γ -value ξP ◦ ψP meets DLP and every Γ -value ξNk ◦
ψDL

P
k , k∈M , meets the corresponding DLk.

We focus on PΓ -values that reflect the two-stage distribution procedure when at
first the quotient Γ -game 〈vPΓ ,ΓM〉 is played between a priori unions, and then the
total payoffs yk, k ∈M , obtained by each Nk are distributed among their members
by playing Γ -games 〈vyk, Γk〉. To ensure that benefits of cooperation between a priori

3 A P-value ξ satisfies the quotient game property, if for any 〈v, P 〉 ∈ GP
N , for all k ∈ M ,

ξk(vP , {M}) = ξk(vP , 〈M〉) =
∑

i∈Nk

ξi(v,P).
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unions can be fully distributed among single players, we assume that solutions
in all Γ -games 〈vyk, Γk〉, k ∈M , are efficient. Since we concentrate on component
efficient solutions, it is important to ensure that the requirement of efficiency does
not conflict with component efficiency, which is equivalent to the claim that for
every k∈M , ∑

C∈Nk/Γk

vyk(C) = yk.

If Γk is connected, i.e. if Nk is the only element of Nk/Γk, then the last equality
holds automatically since by definition vyk(Nk) = yk. Otherwise, for every k ∈ M ,
for which Γk is disconnected, it is necessary to require that∑

C∈Nk/Γk

v(C) = yk. (4)

We say that in 〈v,P , ΓP〉 ∈ GPΓ
N the graph structure {Γk}k∈M is compatible with

a payoff y ∈ IRM in 〈vPΓ , ΓM 〉, if for every k ∈ M , either Γk is connected, or (4)
holds.

For applications involving disconnected graphs Γk, the requirement of compati-
bility (4) appears to be too demanding. But it is worth to emphasize the following.

Remark 3. If all Γk, k ∈M , are connected, then {Γk}k∈M is always compati-
ble with any payoff y ∈ IRM in 〈vPΓ , ΓM 〉, and efficiency follows from component
efficiency automatically.

Denote by ḠDLP ,{DLk}k∈M
N the set of all 〈v,P , ΓP〉 ∈ GDL

P ,{DLk}k∈M
N with graph

structures {Γk}k∈M compatible with DLP(vPΓ , ΓM ).

Theorem 1. There is a unique PΓ -value defined on ḠDLP ,{DLk}k∈M
N , that meets

CEQ, CEU, and 〈DLP , {DLk}k∈M 〉, and for any 〈v,P , ΓP〉∈ḠDL
P ,{DLk}k∈M

N it is
given by

ξi(v,P , ΓP) =

⎧⎨⎩DLP
k(i)(vPΓ , ΓM ), Nk(i) = {i},

DL
k(i)
i (vDL

P
k(i) , Γk(i)), nk(i) > 1,

for all i ∈ N. (5)

From now on we refer to the PΓ -value ξ as to the 〈DLP, {DLk}k∈M 〉-value.

Proof. I. First prove that the PΓ -value given by (5) is the unique one on
ḠDLP,{DLk}k∈M
N that satisfies CEQ, CEU, and 〈DLP , {DLk}k∈M 〉. Take a PΓ -value

ξ on ḠDLP,{DLk}k∈M
N meeting CEQ, CEU, and 〈DLP, {DLk}k∈M〉. Let 〈v∗,P∗, Γ ∗

P〉 ∈
ḠDLP ,{DLk}k∈M
N with Γ ∗

P = 〈Γ ∗
M , {Γ ∗

k }k∈M 〉, and let v∗PΓ denote its quotient game.
Notice that by choice of 〈v∗,P∗, Γ ∗

P〉, it holds that 〈v∗PΓ , Γ ∗
M 〉 ∈ GDLP

M and
〈(v∗)DLP

k , Γ ∗
k 〉∈GDL

k

Nk
, for all k∈M .

Step 1. Level of a priori unions.
Consider the mapping ψ∗

P : GDLP
M → ḠDLP ,{DLk}k∈M

N that assigns to any Γ -game

〈u, Γ 〉 ∈ GDLP
M , the PΓ -game 〈v,P , ΓP〉 ∈ ḠDL

P ,{DLk}k∈M
N , such that vPΓ = u and
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ΓM = Γ , and satisfies the condition ψ∗
P (v∗PΓ , Γ

∗
M ) = 〈v∗,P∗, Γ ∗

P〉. By definition of
ξP , for any 〈u, Γ 〉∈GDLP

M and 〈v,P , ΓP〉=ψ∗
P(u, Γ ), it holds that

(ξP ◦ ψ∗
P )k(u, Γ ) =

∑
i∈Nk

ξi(v,P , ΓP), for all k ∈M. (6)

Since ξ meets CEQ, for any 〈v,P , ΓP〉∈ḠDL
P,{DLk}k∈M

N , for all K∈M/ΓM ,∑
k∈K

∑
i∈Nk

ξi(v,P , ΓP) = vPΓ (K).

Combining the last two equalities and taking into account that by definition of ψ∗
P ,

vPΓ =u and ΓM =Γ , we get that for any 〈u, Γ 〉∈GDLP
M , for every K∈M/Γ ,∑

k∈K
(ξP ◦ ψ∗

P)k(u, Γ ) = u(K),

i.e., the Γ -value ξP◦ψ∗
P on GDLP

M satisfies CE. From the characterization results for
Γ -values, discussed above in Sect. 3., it follows that CE and DLP together guarantee
that for any 〈u, Γ 〉 ∈ GDLP

M ,

(ξP ◦ ψ∗
P)k(u, Γ ) = DLP

k (u, Γ ), for all k ∈M.

In particular, the last equality is valid for 〈u, Γ 〉 = 〈v∗PΓ , Γ ∗
M 〉 ∈ GDL

P
M , i.e.,

(ξP ◦ ψ∗
P)k(v∗PΓ , Γ

∗
M ) = DLP

k (v∗PΓ , Γ
∗
M ), for all k ∈M.

Wherefrom, because of (6) and by choice of ψ∗
P ,∑

i∈Nk

ξi(v∗,P∗, Γ ∗
P) = DLP

k (v∗PΓ , Γ
∗
M ), for all k ∈M.

Hence, due to arbitrary choice of the PΓ -game 〈v∗,P∗, Γ ∗
P〉, it follows that for any

〈v,P , ΓP〉 ∈ ḠDL
P ,{DLk}k∈M

N ,∑
i∈Nk

ξi(v,P , ΓP) = DLP
k (vPΓ , ΓM ), for all k ∈M. (7)

Notice that for k ∈M such that Nk = {i}, equality (7) reduces to

ξi(v,P , ΓP) = DLP
k(i)(vPΓ , ΓM ), for all i ∈ N s.t. Nk(i) = {i}. (8)

Step 2. Level of single players within a priori unions.
Consider k′∈M for which nk′ >1. Let the mapping ψ∗

k′ :GDL
k′

Nk′
→ḠDLP,{DLk}k∈M

N

assign to 〈u, Γ 〉 ∈ GDLk′Nk′
, the PΓ -game 〈v,P , ΓP〉 ∈ ḠDL

P,{DLk}k∈M
N , such that

vDL
P

k′ =u and Γk′ =Γ , and let ψ∗
k′ meet the condition ψ∗

k′ ((v
∗)DL

P
k′ , Γ ∗

k′)=〈v∗,P∗, Γ ∗
P〉.

By definition of ξNk′ , for any 〈u, Γ 〉∈GDLk′Nk′
and 〈v,P , ΓP〉=ψ∗

k′ (u, Γ ), it holds that

(ξNk′ ◦ ψ∗
k′)i(u, Γ ) = ξi(v,P , ΓP), for all i ∈ Nk′ . (9)
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Since ξ meets CEU, for any 〈v,P , ΓP〉∈ḠDL
P,{DLk}k∈M

N , for all C∈Nk′/Γk′ , C �=Nk′ ,∑
i∈C

ξi(v,P , ΓP) = v(C).

From (7) it follows, in particular, that for any 〈v,P , ΓP〉 ∈ ḠDL
P ,{DLk}k∈M

N , such
that Nk′ ∈Nk′/Γk′ , ∑

i∈Nk′
ξi(v,P , ΓP) = DLP

k′ (vPΓ , ΓM ).

Combining the last two equalities with (9) and recalling that by choice of ψ∗
k′ ,

vDL
P

k′ =u and Γk′ =Γ , and therefore for any C∈Nk′/Γ , C �=Nk′ , v(C)=v|NK′ (C)=

vDL
P

k′ (C)=u(C), we obtain that for any 〈u, Γ 〉∈GDLk′Nk′
, for every C∈Nk′/Γ ,∑

i∈C
(ξNk′ ◦ ψ∗

k′ )i(u, Γ ) =
{

DLP
k′(vPΓ , ΓM ), C = Nk′ ,

u(C), C �= Nk′ ,

with 〈vPΓ , ΓM 〉 being the quotient Γ -game for 〈v,P , ΓP〉 = ψ∗
k′(u, Γ ). Whence, on

a set of Γ -games GDLk′Nk′
(DLP

k′) defined as

GDLk
′

Nk′ (DLP
k′) =

{〈u, Γ 〉 ∈ GDLk′Nk′ |u(Nk′)=DLP
k′(vPΓ , ΓM ) for 〈v,P , ΓP〉=ψ∗

k′ (u, Γ )
}
,

the Γ -value ξNk′ ◦ ψ∗
k′ meets CE. CE together with DLk

′
guarantee that for any

〈u, Γ 〉∈GDLk′Nk′
(DLP

k′),

(ξNk′ ◦ ψ∗
k′ )i(u, Γ ) = DLk

′
i (u, Γ ), for all i ∈ Nk′ .

Observe that by choice of ψ∗
k′ , 〈(v∗)DL

P
k′ , Γ ∗

k′〉 ∈ GDL
k′

Nk′
(DLP

k′ ). Hence, in particular,

the last equality holds on the Γ -game 〈(v∗)DLP
k′ , Γ ∗

k′〉, i.e.,

(ξNk′ ◦ ψ∗
k′ )i((v

∗)DL
P

k′ , Γ ∗
k′) = DLk

′
i ((v∗)DL

P
k′ , Γ ∗

k′), for all i ∈ Nk′ .
Wherefrom, since (9) and by choice of ψ∗

k′ , we obtain that

ξi(v∗,P∗, Γ ∗
P) = DLk

′
i ((v∗)DL

P
k′ , Γ ∗

k′ ), for all i ∈ Nk′ .
Due to the arbitrary choice of both, 〈v∗,P∗, Γ ∗

P〉 and k′ ∈ M for which nk′ > 1, it

holds that for any 〈v,P , ΓP〉 ∈ ḠDL
P ,{DLk}k∈M

N ,

ξi(v,P , ΓP) = DL
k(i)
i (vDL

P
k(i) , Γk(i)), for all i ∈ N s.t. nk(i) > 1. (10)

Observe that the proof of equality (10) is based on equality (7) only when
Nk ∈ Nk/Γk, but (7) holds for all Nk, k ∈ M . To exclude any conflict, we show
now that on ḠDLP ,{DLk}k∈M

N , (10) agrees with (7), when Nk /∈ Nk/Γk, as well. Let

〈v,P, ΓP〉 ∈ ḠDL
P,{DLk}k∈M

N be such that for some k′′ ∈ M , nk′′ > 1 and Nk′′ /∈
Nk′′/Γk′′ . Then,∑
i∈Nk′′

ξi(v,P , ΓP) =
∑

C∈Nk′′/Γk′′

∑
i∈C

ξi(v,P , ΓP)
(10)
=

∑
C∈Nk′′/Γk′′

∑
i∈C

DLk
′′
i (vDL

P
k′′ , Γk′′).



Graph-Restricted Games with Coalition Structures 235

Whence, due to component efficiency of DLk
′′
-value and since, for every C ∈

Nk′′/Γk′′ , C � Nk′′ , it holds that vDL
P

k′′ (C) = vk′′ (C) = v|Nk′′ (C) = v(C), we
obtain ∑

i∈Nk′′
ξi(v,P , ΓP) =

∑
C∈Nk′′/Γk′′

v(C).

By definition of ḠDLP ,{DLk}k∈M
N , the graph structure within a priori unions {Γk}k∈M

in 〈v,P , ΓP〉 is compatible with DLP(vPΓ , ΓM ), which means that∑
C∈Nk/Γk

v(C) = DLP
k (vPΓ , ΓM ), for all k ∈M : Nk /∈ Nk/Γk. (11)

Combining the last two equalities we obtain that (7) holds for k′′ as well.
Notice now that (8) and (10) together produce formula (5).

II. To complete the proof we verify that the PΓ -value ξ on ḠDLP ,{DLk}k∈M
N given

by (5) meets all axioms CEQ, CEU, and 〈DLP , {DLk}k∈M 〉. Consider arbitrary
〈v,P , ΓP〉 ∈ ḠDL

P ,{DLk}k∈M
N . To simplify discussion and w.l.o.g. we assume that for

all k ∈M , nk > 1. Consider some k ∈M and let C ∈ Nk/Γk. Because of component
efficiency of DLk-value, from (5) it follows that∑

i∈C
ξi(v,P , ΓP) = vDL

P
k (C). (12)

If C �= Nk, then vDL
P

k (C) = vk(C) = v|Nk(C) = v(C). Hence, due to arbitrary
choice of k, ξ satisfies CEU. Moreover, from (12) and by definition of DLP

k -game
vDL

P
k , it also follows that∑

i∈Nk

ξi(v,P , ΓP) = DLP
k (vPΓ , ΓM ), for all k ∈M : Nk ∈ Nk/Γk.

Observe that on ḠDLP ,{DLk}k∈M
N , due to validity of equality (11), just proved CEU

provides that for all k ∈M , for which Nk /∈ Nk/Γk, the last equality holds as well:∑
i∈Nk

ξi(v,P , ΓP) =
∑

C∈Nk/Γk

∑
i∈C

ξi(v,P , ΓP) CEU=
∑

C∈Nk/Γk

v(C)
(11)
= DLP

k (vPΓ , ΓM ).

Hence, ∑
i∈Nk

ξi(v,P , ΓP) = DLP
k (vPΓ , ΓM ), for all k ∈M. (13)

Consider K ∈M/ΓM .∑
k∈K

∑
i∈Nk

ξi(v,P , ΓP)
(13)
=

∑
k∈K

DLP
k (vPΓ , ΓM ).

Whence and due to component efficiency of DLP -value, we obtain that ξ meets
CEQ. Next, let a mapping ψP : GDLP

M → ḠDLP,{DLk}k∈M
N assign to any 〈u, Γ 〉∈GDLP

M ,

the PΓ -game 〈v,P, ΓP〉∈ḠDL
P,{DLk}k∈M

N , such that vPΓ =u and ΓM =Γ . Then, for
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any 〈u, Γ 〉 ∈ GDLP
M and 〈v,P , ΓP〉 = ψ∗

P (u, Γ ), by definition of ξP and due to (13),
it holds

(ξP◦ψP)k(u, Γ )=ξPk (v,P , ΓP)=
∑
i∈Nk

ξi(v,P , ΓP)
(13)
= DLP

k (vPΓ , ΓM ), for all k∈M.

Hence, (ξP◦ψP)(u, Γ ) = DLP(u, Γ ), i.e., Γ -value ξP◦ψP meets DLP . Similarly we
can show that for every k ∈M , Γ -value ξNk ◦ ψDL

P
k satisfies DLk. ��

A simple algorithm for computing the 〈DLP , {DLk}k∈M 〉-value of a PΓ -game
〈v,P , ΓP〉 ∈ ḠDL

P ,{DLk}k∈M
N follows from Theorem 1:

- compute the DLP -value of 〈vPΓ , ΓM 〉;
- distribute the rewardsDLP

k (vPΓ , ΓM ), k∈M , obtained by a priori unions among
single players applying the DLk-values to Γ -games 〈vDLP

k , Γk〉 within a priori
unions.

Example 1. Consider a numerical example for the 〈LE,CF, . . . , CF︸ ︷︷ ︸
m

〉-value ξ of a

PΓ -game 〈v,P , ΓP〉 with cooperation structure ΓP = 〈ΓM , {Γk}k∈M 〉 given by line-
graph ΓM and undirected trees Γk, k ∈ M . As we will see below in Sect. 6., the
〈LE,CF, . . . , CF︸ ︷︷ ︸

m

〉-value provides a reasonable solution for the river game with mul-

tiple users.
Assume that N contains 6 players, the game v is defined as follows:

v({i}) = 0, for all i ∈ N ;
v({2, 3}) = 1, v({4, 5}) = v({4, 6}) = 2.8, v({5, 6}) = 2.9,
otherwise v({i, j}) = 0, for all i, j∈N ;
v({1, 2, 3}) = 2, v({1, 2, 3, i}) = 3, for i=4, 5, 6; otherwise v(S) = |S|, if |S| ≥ 3;

and the coalition and cooperation structures, respectively, are given by Fig. 2.

Figure2.

In this case N = N1 ∪N2 ∪N3;

N1 ={1}, N2 ={2, 3}, N3 ={4, 5, 6}; Γ1 =∅, Γ2 ={{2, 3}}, Γ3 ={{4, 5}, {5, 6}};
M = {1, 2, 3}; ΓM = {(1, 2), (2, 3)};
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the quotient game vPΓ is given by

vPΓ ({1}) = 0, vPΓ ({2}) = 1, vPΓ ({3}) = 3,
vPΓ ({1, 2}) = 2, vPΓ ({2, 3}) = 5, vPΓ ({1, 3}) = 4, vPΓ ({1, 2, 3}) = 6;

the restricted quotient game vΓMPΓ is

vΓMPΓ ({1}) = 0, vΓMPΓ ({2}) = 1, vΓMPΓ ({3}) = 3,

vΓMPΓ ({1, 2}) = 2, vΓMPΓ ({2, 3}) = 5, vΓMPΓ ({1, 3}) = vΓMPΓ ({1}) + vΓMPΓ ({3}) = 3,

vΓMPΓ ({1, 2, 3}) = 6;

the games vk, k = 1, 2, 3, within a priori unions Nk are given respectively by

v1({1}) = 0;
v2({2}) = v2({3}) = 0, v2({2, 3}) = 1;
v3({4})=v3({5})=v3({6})=0, v3({4, 5})=v3({4, 6})=2.8, v3({5, 6})=2.9,
v3({4, 5, 6}) = 3;

and the restricted games vΓkk , k = 1, 2, 3, within a priori unions Nk are

vΓ1
1 ({1}) = 0;
vΓ2
2 ({2}) = vΓ2

2 ({3}) = 0, vΓ2
2 ({2, 3}) = 1;

vΓ3
3 ({4})=vΓ3

3 ({5})=vΓ3
3 ({6})=0, vΓ3

3 ({4, 5})=2.8, vΓ3
3 ({4, 6})=0,

vΓ3
3 ({5, 6})=2.9, vΓ3

3 ({4, 5, 6}) = 3.

Due to the above algorithm, the PG-value ξ can be obtained by finding of the lower
equivalent solution in the line-graph quotient game 〈vPΓ , ΓM 〉 and thereafter the
total payoffs to the a priori unions LEk(vPΓ , ΓM ), k ∈ M , should be distributed
according to the average-tree solution applied to cycle-free graph LE-games within
a priori unions, i.e., for all i ∈ N , ξi(v,P , ΓP) = AT i(vLEk(i), Γk(i)). Simple computa-
tions show that

LE1(vPΓ , ΓM )=vΓMPΓ ({1, 2, 3})− vΓMPΓ ({2, 3})=1,

LE2(vPΓ , ΓM )=vΓMPΓ ({2, 3})− vΓMPΓ ({3})=2,

LE3(vPΓ , ΓM )=vΓMPΓ ({3})=3;

AT1(vLE1 , Γ1)=LE1 =1,
AT2(vLE2 , Γ2)=[[LE2−v2({3})]+v2({2})]/2=(2+0)/2=1,
AT3(vLE2 , Γ2)=[v2({3})+[LE2−v2({2})]]/2=(0+2)/2=1,

AT4(vLE3 , Γ3)=[[LE3−v3({5, 6})]+v3({4})+v3({4})]/3=

=[(3−2.9)+0+0]/3=
1
30
,

AT5(vLE3 , Γ3)=[[v3({5, 6})−v3({6})]+[LE3−v3({4})−v3({6})]+
+[v3({4, 5})−v3({4})]]/3=(2.9+3+2.8)/3=2

27
30
,

AT6(vLE3 , Γ3)=[v3({6})+v3({6})+[LE3−v3({4, 5})]]/3=

=[0+0+(3− 2.8)]/3=
2
30
.
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Thus, ξ(v,P , ΓP) = (1, 1, 1,
1
30
, 2

27
30
,

2
30

).

It was already mentioned before that the PΓ -games 〈v,〈N〉,Γ〈N〉〉 and
〈v,{N},Γ{N}〉 reduce to the Γ -game 〈v, ΓN 〉. Whence, any 〈F, {DLk}k∈N 〉-value of
〈v, 〈N〉, Γ〈N〉〉 and any 〈DL,F 〉-value of 〈v, {N}, Γ{N}〉 coincide with the Myerson
value of 〈v, ΓN 〉; moreover, if the graph ΓN is complete, they coincide also with the
Shapley value and the Owen value. Thereafter note that in a PΓ -game 〈v,P , ΓP〉
with any coalition structure P , empty graph ΓM , and complete graphs Γk, k ∈M ,
any 〈DLP , F, . . . , F︸ ︷︷ ︸

m

〉-value coincides with the Aumann-Drèze value of the P-game

〈v,P〉. However, the 〈DLP , {DLk}k∈M 〉-value of a PΓ -game 〈v,P , ΓP〉 with non-
trivial coalition structure P never coincides with the Owen value (and therefore
with the value of Vázquez-Brage et al. (1996), as well) because in our model no
cooperation is allowed between a proper subcoalition of any a priori union with
members of other a priori unions. On the contrary, the Owen model assumes that
every subcoalition of any chosen a priori union may represent this union in the
negotiation procedure with other entire a priori unions.

4.2. Stability

Theorem 2. If the set of DL axioms is restricted to CF, LE, UE, EL, SE, and PE,
then the 〈DLP , {DLk}k∈M 〉-value of any superadditive 〈v,P , ΓP〉 ∈ ḠDL

P ,{DLk}k∈M
N

belongs to the core C(v,P , ΓP).

Remark 4. Under the hypothesis of Theorem 2, all 〈DLP , {DLk}k∈M 〉-values are
combinations of the AT solution for undirected cycle-free Γ -games, the UE, LE,
and EL solutions for line-graph Γ -games, and the tree/sink value for rooted/sink
forest Γ -games, that are stable on the class of superadditive Γ -games (cf. Herings
et al. (2008), Brink et al. (2007), Demange (2004), Khmelnitskaya (2009)).

Proof. For any superadditive PΓ -game 〈v,P , ΓP〉, the quotient game vPΓ and
games vk, k ∈ M , within a priori unions are superadditive as well. Due to Re-
mark 4, DL(v, Γ ) ∈ C(v, Γ ), for every superadditive 〈v, Γ 〉) ∈ GDLN . Whence,

DLP(vPΓ , ΓM ) ∈ C(vPΓ , ΓM ), (14)

DLk(vk, Γk) ∈ C(vk, Γk), for all k ∈M : nk>1. (15)

From (14) and because every singleton coalition is connected it follows that

DLP
k (vPΓ , ΓM ) ≥ vPΓ ({k}) (2)

= vΓkk (Nk), for all k ∈M : nk>1.

Observe that, if Nk ∈ Nk/Γk, the games vΓkk and vk coincide, and therefore, because
of the last inequality, the DLP

k -game vDL
P

k is superadditive as well. Thus,

DLk(vDL
P

k , Γk) ∈ C(vDL
P

k , Γk), for all k ∈M : nk>1 & Nk∈Nk/Γk. (16)

If Nk /∈Nk/Γk, then by definition C(vDL
P

k , Γk)
(1)
= C(vk,Γk). Besides, by definition

any of the following Γ -values: the AT solution for undirected cycle-free Γ -games,
the UE, LE, and EL solutions for line-graph Γ -games, and the tree/sink values
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for rooted/sink forest Γ -games, is defined via the correspondent restricted game.
Hence, if Nk /∈ Nk/Γk, then DLk(vDL

P
k , Γk) = DLk(vk, Γk). Wherefrom, together

with the previous equality and because of (16) and (15), we arrive at

DLk(vDL
P

k , Γk) ∈ C(vDL
P

k , Γk), for all k ∈M : nk>1. (17)

As it is shown in part II of the proof of Theorem 1 (equality (13)), the vector

〈DLP, {DLk}k∈M 〉P(v,P , ΓP) =
{∑
i∈Nk

〈DLP, {DLk}k∈M 〉i(v,P , ΓP)
}
k∈M

is the DLP -value for the quotient Γ -game 〈vPΓ , ΓM 〉. Therefore, from (14),

〈DLP, {DLk}k∈M 〉P(v,P , ΓP) ∈ C(vPΓ , ΓM ). (18)

Further,

〈DLP, {DLk}k∈M 〉|Nk(v,P , ΓP)
(5)
= DLk(vDL

P
k , Γk), for all k ∈M : nk>1.

Whence together with (17), it follows that

〈DLP, {DLk}k∈M 〉|Nk(v,P , ΓP) ∈ C(vDL
P

k , Γk), for all k ∈M : nk>1. (19)

Due to Proposition 1, (18) and (19) ensure that

〈DLP , {DLk}k∈M 〉(v,P , ΓP) ∈ C(v,P , ΓP). ��

Return back to Example 1 and notice that it illustrates Theorem 2 as well.
Observe, that v is superadditive, and ξ(v,P , ΓP ) = 〈LE,CF,CF,CF 〉(v,P , ΓP ) ∈
C(v,P , ΓP). But φ(v,P , ΓP ) = 〈F, F, F, F 〉(v,P , ΓP ) being the combination of the
Myerson values, i.e., φi(v,P , ΓP) = µi(v

µ
k(i), Γk(i)), i ∈ N , does not belong to

C(v,P , ΓP). Indeed, φ(v,P , ΓP ) = (0.5, 1, 1,
2
3
, 2

7
60
,
43
60

). However, since φ4 + φ5 =

2
47
60

< vΓ3
3 ({4, 5}) = 2.8 = 2

48
60

, φN3 /∈ C(vµ3 , Γ3). Whence, due to Proposition 1,

φ(v,P , ΓP) /∈ C(v,P , ΓP).
Due to Proposition 1, every core selecting PΓ -value meets the weaker properties

of CEQ and CEU together. Whence and from Theorem 2 the next theorem follows.

Theorem 3. If the set of DL axioms is restricted to CF, UE, LE, EL, SE, and PE,
then the 〈DLP , {DLk}k∈M 〉-value of a superadditive 〈v,P , ΓP〉 ∈ ḠDL

P ,{DLk}k∈M
N

is the unique core selector that satisfies (m+1)-tuple of axioms 〈DLP , {DLk}k∈M 〉.
Now let 〈v,P , ΓP〉 be a superadditive PΓ -game in which all graphs in ΓP =

〈ΓM , {Γk}k∈M 〉 are either undirected cycle-free, or directed line-graphs or rooted/sink
forests, and besides all Γk, k∈M , are connected. Then there exists a (m+1)-tuple
of 〈DLP, {DLk}k∈M 〉 axioms of types CF, UE, LE, EL, SE, or PE, for which the co-
operation structure ΓP =〈ΓM, {Γk}k∈M 〉 is suitable. Due to Remark 3, 〈v,P , ΓP〉∈
ḠDLP ,{DLk}k∈M
N . Whence applying Theorem 2, we obtain that Theorem 4 below

holds true. It is worth to note that it is impossible to guarantee that {Γk}k∈M , is
compatible with DLP(vPΓ , ΓM ), when among Γk, k ∈M , some graphs are discon-
nected.
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Theorem 4. For every superadditive 〈v,P , ΓP〉 ∈ ḠDL
P ,{DLk}k∈M

N , for which all
graphs in ΓP = 〈ΓM , {Γk}k∈M 〉 are either undirected cycle-free, or directed line-
graphs or rooted/sink forests, and all graphs Γk, k ∈M , are connected, C(v,P , ΓP) �=
∅.

4.3. Harsanyi Dividends

Consider now 〈DLP , {DLk}k∈M 〉-values with respect to the distribution of Harsanyi
dividends. Since for every v ∈ GN and S ⊆ N , it holds that v(S)=

∑
T⊆N,T �=∅

λvT uT (S),

where λvT is the dividend of T in v, the Harsanyi dividend of a coalition has a nat-
ural interpretation as the extra revenue from cooperation among its players that
they could not realize staying in proper subcoalitions. How the value under scrutiny
distributes the dividend of a coalition among the players provides the important in-
formation concerning the interest of different players to create the coalition. This
information is especially important in games with limited cooperation when it might
happen that one player (or some group of players) is responsible for the creation of
a coalition. In this case, if such a player obtains no quota from the dividend of the
coalition, she may simply block at all the coalition creation. This happens, for ex-
ample, with some values for line-graph games (see discussion in Brink et al. (2007)).

Because of Theorem 1, every 〈DLP , {DLk}k∈M 〉-value is a combination of the
DLP -value in the quotient Γ -game and DLk-values, k ∈ M , in the corresponding
Γ -games within a priori unions. Whence and by definition of a PΓ -game we obtain

Proposition 2. In any 〈v,P , ΓP〉∈GPΓ
N the only feasible coalitions are either S=⋃

k∈QNk, Q ⊆M , or S ⊂ Nk, k ∈M . Every 〈DLP, {DLk}k∈M 〉-value distributes
λvS of S =

⋃
k∈QNk according to the DLP -value and of S ⊂ Nk according to the

DLk-value.

5. Generalization on Games with Level Structures

Games with (multi)level (coalition) structures were first considered in Winter (1989).
A level structure on N is a finite sequence of partitions L = (P1, ...,Pq) such that
every Pr, is a refinement of Pr+1, that is, if P ∈ Pr, then P ⊂ Q for some Q ∈ Pr+1.
Similarly as for games with coalition structures, for games with level structures it
is assumed that cooperation possible only either between single players within a
priori unions N1

k ∈ P1, k ∈ M1, at the first level, or at each level r = 1, . . . , q − 1
among entire a priori unions N r

k , N
r
l ∈ Pr, k, l ∈ Mr, that simultaneously belong

to the same element of Pr+1, or among entire a priori unions N q
k ∈ Pq, k ∈ Mq,

at the upper level q, and besides no cooperation is allowed between elements from
different levels. It is worth to stress that when we consider cooperation among a
priori unions we bear in mind a priori unions as entire units and not as collec-
tions of single players or smaller subunions belonging to coalition structures at the
lower levels. A multilevel graph (cooperation) structure on N is specified by a tuple
of graphs ΓL = 〈ΓMq , {{Γ rk }k∈Mr}qr=1〉, where ΓMq defines links between a priori
unions N q

k ∈ Pq, k ∈Mq at the upper level q; any Γ rk , k ∈Mr, r = 2, . . . , q, presents
links between a priori unions N r−1

k ∈ Pr−1 at the level r−1 that belong to the same
a priori union N r

k ∈ Pr at the level r; and graphs Γ 1
k , k ∈M1, connect single players

within a priori unions N1
k ∈ P1, k ∈M1, at the first level. Fig. 3 provides a possible
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Figure3.
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example of the (two-)level (coalition) structure endowed with the three-level graph
structure.

A triple 〈v,L, ΓL〉 presenting a combination of a TU game v ∈ GN with level
structure L and with limited cooperation possibilities presented via multilevel graph
structure ΓL constitutes a graph game with level structure or simply LΓ -game. The
set of all LΓ -games with a fixed player set N we denote GLΓ

N . A LΓ -value is defined
as a mapping ξ : GLΓ

N → IRN that associates with every 〈v,L, ΓP〉 ∈ GLΓ
N a vector

ξ(v,L, ΓL) ∈ IRN .
We extend now the approach suggested to PΓ -values on LΓ -values. First adapt

the notion of component efficiency. Introduce some extra notation. Let kr(i) is such
that i ∈ N r

kr(i)
∈ Pr, for all r = 1, . . . , q. For every r= 2, ..., q−1 and kr ∈Mr, let

Pkrr−1 ={Nk ∈ Pr−1 | Nk ⊆ Nkr ∈Pr}, Mkr
r−1 ={k∈Mr−1 | Nk ⊆ Nkr ∈Pr}, and define

a game vkrr−1, kr∈Mr, on Mkr
r−1 as follows:

vkrr−1(Q) =

⎧⎪⎨⎪⎩
v
r−2,kr−1
PΓ (Nkr(kr−1)), Q = {kr(kr−1)},
v(

⋃
k∈Q

Nk), |Q| > 1, for all Q ⊆Mkr
r−1,

where vr−1,kr
PΓ is the quotient restricted game in PΓ -game 〈vkrr−1,Pkrr−1,〈Γkr ,{Γk}k∈Mkr

r−1
〉〉.

Define a game vq on Mq as

vq(Q) =

⎧⎪⎨⎪⎩
v
q−2,kq−1
PΓ (Nkq(kq−1)), Q = {kq(kq−1)},
v(

⋃
k∈Q

Nk), |Q| > 1, for all Q ⊆Mq,

where vqPΓ is the quotient restricted game inPΓ -game 〈vq,Pq,〈ΓMq,{Γkq}kq∈Mq〉〉.
A LΓ -value ξ is component efficient in levels (CEL) if, for any 〈v,L, ΓP〉 ∈ GLΓ

N ,

(i) for all k1 ∈M1, for any C ∈ Nk1/Γk1 , C �= Nk1 ,∑
i∈C

ξi(v,L, ΓL) = v(C),

(ii) for every level r = 2, . . . , q−1, for all kr ∈Mr, for any C∈Nkr/Γkr , C �=Nkr ,∑
kr∈C

∑
i∈Nkr

ξi(v,L, ΓL) = vr−1,kr
PΓ (C),

(iii) for any component C ∈Mq/ΓMq ,∑
kq∈C

∑
i∈Nkq

ξi(v,L, ΓL) = vqPΓ (C).

Notice that for LΓ -games with at least two levels there are three conditions
of component efficiency instead of two given by CEU and CEQ for PΓ -games.
This happens because the graph structures within a priori unions at quotient levels
r=2, . . . , q−1 possess peculiarities of both graph structures, within a priori unions
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containing single players at the first level and among a priori unions at the upper
level.

In case of LΓ -games a few issues, such as the consideration of a tuple of DL
axioms 〈DLPq,{{DLk}k∈Mr}q−1

r=1〉 with respect to a LΓ -value, the compatibility of co-
operation structures {Γk}k∈Mr , r=1, . . . , q−1, with the payoffs in quotient Γ -games

at all upper levels, and the definition of a set of LΓ -games ḠDLPq,{{DLk}k∈Mr }
q−1
r=1

N ,
are much similar to their analogs for PΓ -games. So, without any loss we skip the
detailed discussion over these matters.

Theorem 5. There is a unique LΓ -value defined on ḠDLPq,{{DLk}k∈Mr }
q−1
r=1

N that meets

CEL, and 〈DLPq, {{DLk}k∈Mr}q−1
r=1〉, and for any 〈v,L, ΓL〉 ∈ ḠDL

Pq,{{DLk}k∈Mr }
q−1
r=1

N it
is given by

ξi(v,L, ΓL) = DL
k1(i)
i (vDL

k2(i)

k1(i) , Γ 1
k1(i)

), for all i ∈ N,

where for all r = 2, . . . , q − 1, for any S ⊆ Nkr−1(i),

vDL
kr(i)

kr−1(i) (S) =

{
DL

kr(i)
kr−1(i)

(vDL
kr+1(i)

kr(i)
, Γ rkr(i)), S = Nkr−1(i),

vPr−1Γ (S), S � Nkr−1(i),

and

vDL
kq(i)

kq−1(i) (S) =

{
DL

Pq
kq(i)

(vPqΓ , ΓMq), S = Nkq−1(i),

vPq−1Γ (S), S � Nkq−1(i),
for all S ⊆ Nkq−1(i).

The proof of Theorem 5 is a straightforward generalization of the proof of The-
orem 1 and we leave it to the careful reader.

Theorems 2-4 for PΓ -values also admit natural extensions on LΓ -values.

6. Sharing a River with Multiple Users

Ambec and Sprumont (2002) approach the problem of optimal water allocation for a
given river with certain capacity over the agents (countries) located along the river
from the game theoretic point of view. Their model assumes that between each
pair of neighboring agents there is an additional inflow of water. Each agent, in
principal, can use all the inflow between itself and its upstream neighbor, however,
this allocation in general is not optimal in respect to total welfare. To obtain more
profitable allocation it is allowed to allocate more water to downstream agents which
in turn can compensate the extra water obtained by side-payments to upstream
ones. The problem of optimal water allocation is approached as the problem of
optimal welfare distribution. Brink et al. (2007) show that the Ambec-Sprumont
river game model can be naturally embedded into the framework of a line-graph Γ -
game. In Khmelnitskaya (2009) the line-graph river model is extended to the rooted-
tree and sink-tree digraph model of a river with a delta or with multiple sources
respectively. All these models consider each agent as a single unit. We extend the
model to multiple agents assuming that each agent represents a community of users.
However, in our model no cooperation between single users or proper subgroups of
users belonging to different agents is allowed, i.e., the presence of international firms
having branches at different levels along the river is excluded.
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Let N =
⋃
k∈M Nk be a set players (users of water) composed of the commu-

nities of users Nk, k ∈ M , located along the river and numbered successively from
upstream to downstream. Let elk ≥ 0, k ∈M , l is a predecessor of k, be the inflow
of water in front of the most upstream community(ies) (in this case l = 0) or the
inflow of water entering the river between neighboring communities in front of Nk.
Moreover, we assume that each Nk is equipped by a connected pipe system bind-
ing all its members. Without loss of generality we may assume that all graphs Γk,
k ∈ M , presenting pipe systems within communities Nk are cycle free; otherwise
it is always possible to close some pipes responsible for cycles. Indeed, for a graph
with cycles there is a final set of cycle-free subgraphs with the same set of nodes as
in the original graph. It is not a problem to choose an optimal subgraph from this
set with respect to minimizing technological costs of water transportation within
the community. Fig. 4–6 illustrate the model.

Figure4. Line-graph river

Figure5. River with delta

Following Ambec and Sprumont (2002) it is assumed that for each Nk there is a
quasi-linear utility function representing the utility of Nk as a single unit and which
is given by uk(xk, tk) = bk(xk) + tk where xk is the amount of water allocated to
Nk, bk : IR+ → IR is a continuous nondecreasing function providing benefit bk(xk)
to Nk through the consumption of xk of water, and tk is a monetary compensation
to Nk. Moreover, in case of a river with a delta it is also assumed that, if splitting
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Figure6. River with multiple sources

of the river into branches happens to occur after a certain Nk, then this comunity
takes, besides his own quota, also the responsibility to split the rest of the water
flow to the branches such to guarantee the realization of the water distribution plan
to his successors. Further, we assume that, if the total shares of water for all Nk,
k ∈ M , are fixed, then for each Nk there is a mechanism presented in terms of a
TU game vk that allocates the obtained share of water optimally to the players in
Nk. We do not discuss how the games vk, k ∈M , are constructed and leave it open
outside the scope of the paper.

In the model under scrutiny, no cooperation is allowed among single users from
different levels along the course of the river. Thus, the problem of optimal water al-
location fits the framework of the introduced above PΓ -game which solution is given
by a PΓ -value that in turn is a combination of solutions for a line-graph, rooted-
tree, or sink-tree Γ -game among Nk, k ∈ M , and cycle-free graph games within
each Nk. In accordance with the results obtained in Ambec and Sprumont (2002),
Brink et al. (2007), Khmelnitskaya (2009), the optimal water distribution among
Nk, k∈M , can be modeled as a line-graph, rooted-tree, or sink-tree superadditive
river game. If all games vk, k ∈M , determining water distribution within commu-
nities are superadditive as well, then all discussed in the paper PΓ -values for such
type of PΓ -games are selectors of the core of the river game with multiple users.
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