
The ALIA4J Approach to Efficient
Language Implementation

Christoph Bockisch
Software Engineering group

University of Twente
P.O. Box 217, 7500 AE Enschede, the

Netherlands
c.m.bockisch@cs.utwente.nl

Andreas Sewe
Software Technology group

Technische Universität Darmstadt
Hochschulstr. 10, 64289 Darmstadt, Germany

sewe@st.informatik.tu-darmstadt.de

Abstract
New programming languages are frequently designed to
improve upon other languages or to simplify programs
through domain-specific abstractions. They are often
implemented as transformations to an established (inter-
mediate) language (IL). But while many new languages
overlap in the semantics of their core concepts, re-using
the corresponding transformations is limited by existing
compiler implementation frameworks. In the ALIA4J
approach, we have identified dispatching as fundamental
to most abstraction mechanisms and provide a meta-
model of dispatching as a rich, extensible IL. Based on
this meta-model, the semantics of new atomic language
concepts can be implemented in a modular and portable
fashion. For the execution of the IL, we provide both
platform-independent and platform-dependent Java Vir-
tual Machine extensions, the latter of which allows the
modular implementation of machine code optimizations.

In this demo, participants get an overview of advanced
dispatching and the ALIA4J approach. By the example
of a language for text-based adventure games, they will
see the usage of ALIA4J as back-end for a language
developed in a modern Language Workbench. Finally,
the implementation of new atomic language concepts
and their optimization is demonstrated.
Categories and Subject Descriptors D.3.4 [Pro-
gramming Languages]: Processors—Run-time environ-
ments
Keywords Advanced dispatching, language implemen-
tation, modular optimization

Copyright is held by the author/owner(s).
SPLASH’12, October 19–26, 2012, Tucson, Arizona, USA.
ACM 978-1-4503-1563-0/12/10.

1. The Demonstrated Technology
Addressed Problems Typically, implementations of
new languages build on the back-ends of established lan-
guages, re-using the implementation of the concepts na-
tive to that intermediate language. But not all concepts
of the new languages map directly to the established
intermediate language (e.g., Java bytecode), which was
tailored to a different source language (e.g., Java). This
task is further complicated when one element in the
source program affects the behavior of multiple elements
in the intermediate representation (requiring so-called
local-to-global transformations).

Compiler frameworks assist in generating low-level
code, and even enable to re-use non-trivial code gen-
eration logic. Open compilers for aspect-oriented lan-
guages, such as the AspectBench Compiler even support
modularizing local-to-global transformations. But these
technologies require the new language to be a syntactic
extension of an existing one. Moreover, the knowledge
about the source language concepts is lost during the
transformation and cannot, e.g., drive specific virtual-
machine-level optimizations.

Technology of Our Solution The ALIA4J1 architec-
ture realizes our approach to implementing programming
languages with advanced dispatching. At its core sits a
meta-model of advanced dispatching declarations, called
LIAM, and a framework for execution environments that
handle these declarations, called FIAL. LIAM hereby
defines a language-independent meta-model of atomic
concepts relevant for dispatching. For example, dispatch
may be ruled by predicates which depend on values in
the dynamic context of the dispatch. When mapping
the concrete advanced-dispatching concepts of an actual
programming language to it, LIAM either has to be
refined with the language-specific semantics or suitable,

1 The Advanced-dispatching Language Implementation Architec-
ture for Java. See http://www.alia4j.org/.

19



existing refinements have to be re-used. The dispatch
declarations defined in terms of this meta-model, are
partially evaluated by the FIAL framework and auto-
matically re-written into an execution model for the
dispatch sites in the program.
Uniqueness in Design and Implementation In
ALIA4J, there are three ways of modularly implement-
ing a meta-model refinement (and as such an atomic
language concept): (1) The most abstract way is imple-
menting a plain Java method that realizes the semantics
of an atomic language concept through interpretation.
This allows easy experimentation and is targeted at
designers of the semantics of language concepts. (2) Con-
trol over the generated code is gained by implementing a
Java method that compiles the concept to Java bytecode,
allowing context-dependent bytecode generation; this
allows language implementers to improve runtime perfor-
mance in a portable way. (3) The most control is gained
by implementing a method that compiles the concept to
machine code. While losing platform-independence, this
allows to achieve optimal runtime performance.
Interesting Details The STEAMLOOMALIA JVM ex-
tension, which enables the machine code optimization,
is an extension of the Jikes Research VM (RVM), a
high-performance Java VM. It can bypass bytecode gen-
eration for LIAM entities to directly generate native
machine code for them, using the two JIT compilers of
the Jikes RVM, the baseline compiler and the optimizing
compiler. The generation can access all VM internals
and rich information about the generation context to
produce the most specific machine code.

The implementation of a concept’s semantics and
optimization is modular. Implementations of different
strategies can even co-exist; the best strategy is picked
at runtime. This is very useful to implementers of
optimizations who can use the—less efficient but by
definition correct—implementation produced by the
language designer as a test oracle. Overall, we provide re-
usable implementations of more than 75 atomic language
concepts, the majority of which offers at least bytecode-
level optimizations.

We use an extensive integration test suite to assure
the high quality of ALIA4J. The integration tests use
our intermediate representation as interface; thus, all
FIAL-based JVM extensions are subject to the same
test suite which ensures compatibility between different
execution environments. Almost all of the 4,083 tests are
systematically generated to cover all relevant variations
of dispatch sites and LIAM entities. Our build process is
fully automated with the Maven build manager and our
integration test suite is automatically executed using
the Jenkins continuous integration server.

Over the past years, four PhD projects and more
than 20 master and bachelor student projects have

contributed to ALIA4J. The technologies applied in
ALIA4J are presented more than 10 peer-reviewed
journal, conference, and workshop papers.

2. Content of the Demo
The demo contains an explanation of the predicate dis-
patching and aspect-oriented programming paradigms,
which have shaped the ALIA4J approach, followed by
an introduction to ALIA4J’s meta-model and its exe-
cution semantics. By the example of a domain-specific
language for defining text-based adventure games, it is
demonstrated how an EMFText-based language imple-
mentation can use ALIA4J as an execution back-end.
The participants will see how the example language is
transformed into ALIA4J’s intermediate representation
by re-using provided atomic language concepts; and how
to implement the execution semantics of new, specific
language concepts. The concepts will be implemented in
a platform-independent, high-level way and supplanted
by bytecode and machine code optimizations.

3. Presenter
Christoph Bockisch is an assistant professor at the
University of Twente, the Netherlands. He received his
doctoral degree from Technische Universität Darmstadt,
Germany in 2008. To provide optimizations of new
language mechanisms, Christoph researches extensions
to high-performing Java virtual machines based on just-
in time compilation. He initiated the ALIA4J project as
part of his PhD studies and is now one of two project
supervisors and lead programmers. He is co-founder
and co-organizer of the workshop series on Virtual
Machines and Intermediate Languages (VMIL) and Free
Composition (FREECO), both held at the SPLASH
conference.

4. Presentation History
The demo builds on material that has been used in:

• the academic course “Advanced Programming Con-
cepts” (University of Twente, the Netherlands) in
2010/11 and 2011/12,

• the tutorial “Efficient Implementation of Efficient
(Domain-Specific) Languages” held at the Brazilian
Conference on Software: Theory and Practice (CB-
Soft) 2010, and

• the journal paper: C. Bockisch, A. Sewe, H. Yin,
M. Mezini, and M. Aksit. An in-depth look at
ALIA4J. Journal of Object Technology, 11(1):1–28,
Apr. 2012.

20




