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ABSTRACT 

We present a processor and a compiler for prototyping array implementations 
of algorithms from the class of Jacobi algorithms. We use adaptive matrix 
QR decomposition as illustrative example. 
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1. INTRODUCTION 

In VLSI signal processing, there is a tendency toward the design of family 
specific processors. The (algorithm) family may consist of a number of deriv- 
atives of a single ‘mother’ algorithm such as the family of code excited linear 
predictive speech coders [l]. For this and similar classes, one can envisage a 
processor which is optimal for the family as a whole. The family may also 
be broader. Thus the video signal processor (VSP) - or ratlher an array of 
such processors - is suited for the implementation of a whole set of video algo- 
rithms. Architectures of familyspecific processors may be of VLIW type, may 
be two-level multiprocessor architectures or even native microprocessors. The 
family we consider in this paper is a set of algorithms known as Jacobi algo- 
rithms. Examples of Jacobi algorithms are (time-update) QR decomposition, 
singular value decomposition, and various types of subspace tracking algo- 
rithms [a]  [3] and adaptive orthogonal filters [4] [5]. One reason for chosing 
this family is that  it provides a nice example of regular/irregular co-design. 
Most flow graph simulation environments and behavioral design systems tend 
to be generic in that they do not distinguish between regulair and irregular 
graphs. Regular flow graphs have special properties which can be exploited to 
make their specification, description and manipulation elegant and tractable. 
Design systems that focus on such flow graphs do exist but they in turn tend 
to exclude irregularity. This paper is an attempt to bring the two domains 
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together. The idea The idea of why and how designing a specific proces- 
sor for this family of algorithms was presented in [6] where it was dubbed 
the Jacobz processor. This processor is actually a co-processor of a two-level 
multiprocessor architecture - the Jacobi array which consists of a number of 
communicating such co-processors and a supervising control generator. The 
program for the generator is compiled by letting a design system behave as 
compiler. Thus instead of designing an architecture for the parallel imple- 
mentation of a given algorithm, the system outputs a control program by 
taking in an algorithm from the family of algorithms and an implementation 
structure from the set of feasible two-level multiprocessor architectures. 

Most software programs implementing (time-update) Jacobi algorithms are 
nested loop programs (NLP) which are of the following form 

for L = 1 : 1 : li 

y k  - (n::;' A ( i , , ~ ~ ) ( a k , ~ k , 8 ~ ) ( i ~ , j , ~ )  xk (II:,' B(i<,jt)(Tkr b k > d k ) ( i , , j , l ) T  

end 
Where 

with L: a row vector and I'k E R("-')*" 

(2) 4 i , j l ( a k , , A ,  o k ) ( i , , j , )  and B ( i , j i ( ~ k ,  b k ,  6 k ) ( i s , j , )  are identity-embedded 
2 x 2 matrices A(a,  p, 8) and B(y ,6 ,  d) ,  respectively, which are both of the 
general form 

with M(y)  any member of a set of elementary coordinate transformation 
(ECT) { J ( a ) ,  G ( a ) ,  H ( a )  } defined by 

cosy -sinp j , [ 1 o ] ,  
[ coshp sinhp 

H ( F ' ) =  s inhp  coshp G(P) = 
= sin,, COS(0 -P 1 

Of course, in any specific instance of the algorithm, the set of indices i,, & , j S  
and j , ,  the boundary values N ,  and Nt as well as the rules to  determine the 
parameters a k ,  P k ,  Or, 7, bk and d k  of the matrices A(in, js)  and B(jf,j,) have 
to be specified. We say that an ECT is conditional if the angles have to be 
determined from the matrix X, it is unconditional otherwise. The processor 
- called Jacobi processor in [6] - has a hierarchical or layered structure with 

generic layer model as shown in figure 1. 
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Figure 1. Hierarchical or layered control model. 

The bottom most layer in the hierarchy bears the core function. One 1aye.r 
up is found the kernel functions, the ECTs, which are composed by means of 
the core hnction. The layer above the ECT-level is the compoand function 
layer. On this layer are mapped irregular flow graphs whose nodes are kernel 
functions. One level up - the highest layer of the Jacobi co-processor - is th'e 
layer of chster functions. These are tiles from a regular dependence graph 
whose node functions are compound functions. A network: of such clusters, 
that is, a flow graph whose nodes are tiles is implemented in a yet higher 
layer which consists of communicating Jacobi ceprocessors. This constitutes 
the Jacobi processor. An array of Jacobi processors can form a next layei. 
The highest layer is the system level. Figure 2 summarizes the distinctive 
hierarchical levels of the architecture. The functionality of the layers is given 
through sets of functions F(i), one for each level. Level i = 0 lays at  the 
transition between regular and irregular flow graphs. Thus, F(') is the set of 
all feasible (compound) functions' that can appear in the dependence graph of 
a Jacobi algorithm. Similarly, F(-')  is the set of all possib:le kernel functions 
that appear in the refinement of the compound functions aind that are known 

'By functions, we mean applicative state transition functions (A9Ts) as defined in [?] 
or [SI. 
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Figure 2.  The hierarchical implemetation structure for execution of Jacobi algo- 
rithms. 

Figure 3.  Conditional [left) and unconditional complex rotations 

to the compiler. This set is the set {J(p), G(p), H(p)} - implemented in 
Cordic arithmetic[g] [lo], and the set of micro-rotations defined in [ll] and 

P I .  
Control is expressed in terms of control vectors a('). This vector selects 
the appropriate function f(') from the set F ( i ) .  Take for example level (0).  
This is the dependence graph level. Jacobi algorithm dependence graphs are 
generally piecewise regular graphs, each piece or domain being characterized 
by a linearly bounded lattice [13]. Within a domain, all nodes have identical 
functionality. Therefore, there is one vector aio) for each domain 0 3 ,  The 

unique function on this domain is f:') = F ( o ) ( a i o ) ) .  See [6 ]  for more details. 

Examples of elements from the set F(')  are shown in figure 3 .  They are both 
complex rotations &'(a, /3, p), expressed in terms of real rotations J ( p )  and 
J [ i p )  The real rotations themselves belong to the set F(-') and are built on 
shift-and-add operations from F(- ' ) .  
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Levels (0), (-1) and (-2) are jointly visualized in figure 4 for the adaptive 
QR example [14]. 

The level ( 0 )  graph is a portion of a dependence graph wherein the dark nodes 
are conditional Givens rotations and the gray ones are unconditional Givens 
rotations. Layer (-1) provides the two complex rotations, see also figure 3. 
A possible unfolded flow graph of the two real rotations on level (-2) are also 
shown. 

Similarly, levels (0), (1) and (2), for the same example, are jointly shown in 
figure 5. 

In this figure, the dependence graph (level (0) ), is partitioned by tiling the 
graph with parallelepipeds. A single tile resides on level (1) and is folded into 
a cluster of the cluster layer. Another tiling, one hierarchical level up, leads 
to a layer (2) communicating co-processor structure, that is, a single Jacobi 
processor. 

2. The layers in the hierarchy 

As said before, level (0) functions are the (applicative state transitmion) func- 
tions in the dependence graph of the Jacobi algorithm. The d,ependence 
analysis as well as the generation of the dependence graph is performed by a 
tool (called HiPars [SI). For example, the input to HiPars for the adaptive 
QR algorithm is (part of) the following nested loop program. 

Where the functions vecOP and rotOP are both ECTs M ( a , a , p ) ,  condi- 
tional and unconditional, respectively, with M(p) = J(p). HiParri returns a 
reduced dependence graph as shown in figure 7. 

The nodes NDzo and ND45 are the index domains supporting the functions 
vecOP and rolOP, respectively. The arcs are inter and intra node dependen- 
cies, see [8]. These functions are implemented using the shift-and-add core 
operations at level (-2). They may be full angle range Cordics [9] [lo], or 
restricted angle range (inexpensive) protations [12] [11]. A ECT generator 
- called Bangles is available with which the shift coefficients for the look-up 
table at  level (-2) are computed (given type of ECT, angle range and re- 
quired accuracy or cost bound). The specification of level (-2) is as shown 
in table 1. 

Similar tables could be given for the other levels as well. They are omitted 
for lack of space. The ‘Port Map’ defines the relation between the port type 
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Figure 4. Hierarchical decomposition of the level 0 graph 
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Level(0) - 1  

i3 

Level i l l  

Figure 5 .  Hierarchical partitioning of the level 0 graph. 
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Level -2 

3.(-*) Function Set 

loop control 
shift factor 

generated Control a ( - ' ) , , ~ - ~  E Z+ 
Vector 

Notes 

F{-" = add 
F?"" = shift 

add - full adder, 
shift +.+ barrel shifter 

Scheduling follows the lexicographical 

Assignment Application specific 

in Order 

Input Control 

dering of the computation graph (t ;  
evaluation) 
scalar pointer in J(-') a ( - l )  E z+ 

Programmability 

Table 1. Level - 2  functional description (Cordic core) 

provided as sequence of alternating s 
and add operations 

{h l  
li - factor 
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Figure 6. adaptive QR algorithm in matlab NLP form. 

of a member , say ff), of the set F('), and the port type of th'e 'physical' 
node into which the function is mapped. For example, the input and output 
of the conditional rotation I(p) is a 2D and 3D vector, respectively, whereas 
these are both 3D for the unconditional rotation J(p). However, both may 
be mapped into a physical node having only scalar input and output ports. 
As a result, the vector valued arguments and results of the functions have to 
be converted to input and output streams of scalars as part of the mapping 
of the functions into a physical node. 

The compound level implements a generic Jacobi step which we define here 
to be 

where all matrices are of dimension 2. The corresponding (irregular) com- 
putation graph is a network of communicating ECT nodes. The distinction 
between conditional and unconditional ECTs is made through a control vari- 
able that is received by the node to select between them. In addition to these 
functions there are some register handling functions for initializing or copying 
memory cells. Programmability is through program selection from a program 
memory. This program contains read and write instructions to realize the 
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Figure 7. Reduced dependence graph for the adaptive QR algorithm 

flow in the graph as well as selection instructions which are sent one level 
down to select the node functions. This in turn causes fetching of instruc- 
tions needed at the towest level to compose these functions. The functionality 
of the nodes in the dependence graph ( level (0)  ) is given in the form of a 
sequential program. The conversion of this program to a program that the 
interpreter can understand can he implemented in e.g., Mathematica. 

It will by now be clear that at levels having an index i 5 0 ,  functions are 
stored in the form of a set of instructions and are selected by the control 
vector cyj"). Strategy changes, however, when considering layers with index 
i > 0 as they correspond to graphs that are piecewise regular. The control 
vectors, then, have a parameter setting nature. For example, the dependence 
graph of a Jacohy algorithm - defined at level (0) - may be partitioned using 
parallelepiped shaped tiles. The tool that does this outputs a (reduced) tile 
graph [7] as well as the specification of a single tile, again a reduced depen- 
dence graph of it. This tile may be parametrized with respect to its size. 
The clustering or folding of the tile requires a sequential schedule which is ex- 
pressed in t,he form of a nested loop program. This program is obtained from 
the dependence graph of the tile by reversing the procedure that generates 
dependence graphs from nested loop programs. The parametrized schedule 

vector do) carries the parameter values. 
program is stored on layer (1) of the Jacobi co-procejsor and the control 
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3. Simulation of the adaptive QR Jacobi array 

In order not to overburden the section we define a ‘mini’ Jacobi processor 
which consists of only one Jacobi cc-processor and which processes only real 
data. Moreover, level (-2) has been omitted so that the lowest level is the 
ECT level om which the ECTs are functions, not graphs. As ‘test vehicle 
we considered is the time-adaptive QR algorithm with real values only. In 
nowadays wireless applications (GSM) a typical example uses np to ten an- 
tennas ( N  = 10) and requires a data throughput rate of 275 k vectors per 
second. A first investigation of the algorithm shows that each vector com- 
prises 9 = 55 Cordic operations. Assuming we use a serial Cordic, as is 
the case in the Jacobi processor, a clock rate of 40 MHz and each Cordic 
operation takes 32 cycles then we need at  least 

40 MHz -- ss - 275 kHz 
- 32 
P 

so p = 12.1 processors. In a triangular array this yields 

or pj = 5 > 4.4 and p = 15. This choice allows a duty cycle of 

d = 1.24 or M 40 cycles per Cordic, that includes memory access 

I t  will turn out (figure 8) that we need on average 47 cycles per Cordic or a 
duty cycle of d = 1.47. The throughput is thus 

-- 40 MHz - 210 kHz 

[El55 
47 

Figure 8 shows the respective output times’ for each t vector entry ti (1 5 
i 5 10). It takes up to 188 units of time before a next value of a vector entry 
+i is produced. 

The various parameter setting in this particular simulation have been col- 
lected in table 2. A plot of the load balance monitor is shown in figure 9 in 
terms of the time profiles of the 15 ‘mini’ Jacobi processors. 
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Figure 8. Out put times of entries x , , ~  of the processed input vectors zk in adaptive 
QR algorithm. 

level - 1 Vectoring Rotation 
(Cordic) 
level 0 control FiFo cap. data FiFo cap. 
(Compound) 

(Cluster) I 20 

Table 2. Parameter settings in the adaptive QR simulation on the triangular array 
of 5 x 5 Jacobi processors 
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Load Balance monitoir 
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0.00 100 2.1m 3.00 ‘1.00 

Figure 9. Activity monitoring of the Cordic cores in each of the Jacobi processors 
in figure 13. 
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Figure 10. The compound layer of the ‘mini’ Jacobi processor 

Figure 11. The cluster layer of the ‘mini’ Jacobi processor 

The simulation as a whole was performed in Ptolemy. The various layers are 
shown in figures 10 (Compound node built on the Cordic core), 11 (Cluster 
node), and 12 (The ‘mini’ Jacobi processor). The triangular array configura- 
tion of the test vehicle is shown in figure 13. 

4. Conclusion 

The processor, architecture and compiling strategy presented here is based 
on a hierarchical specification and description of piecewise regular algorithms 
and architectures. Starting from a piecewise regular dependence graph, the 
function nodes are refined hierarchically stepping down the hierarchy and 

2These are the time instants at which the entries of incoming vectors are nulled. In 
steady state operation of the system, they are proportional to the time instants at which 
new vector samples are taken in. 
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Figure 12. The 'mini' Jacobi processor, the data path and clus1,er function are 
visible. 
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Figure 13. A Tri array of fifteen 'mini' Jacobi processors 
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penetrating eventually into the domain of irregular flow gmphs. Partitioning 
(tiling) the dependence graph takes us up in the hierarchy until we reach thte 
system level. The example that we provided has been overly simplified - thl: 
size of the antenna array has been rather small and so has been the size of 
the cluster tile; moreover the Jacobi processor has been taken to  be identica,l 
t.o t,he Jacobi-co-processor as a result of which computations inside it are all 
serially ordered - a result of which the emerging array turns out not t o  be 
very efficient. In a more realistic scenario better performance would not be 
difficult to  obtain. On the other hand, overhead cannot be avoided as the 
architecture is family specific. However, an essential aspect of the approach 
is that the compiler makes uses of tools from a design system so that thce 
capabilititis of it will grow with those of the system. This facilitates achieving 
the goal of providing multi-processor structures with which Jacobi algorithms 
could be quickly prototyped. For an application specific .Jacobi algorithm, 
specific architectures and processors can be designed which will most 1ikel:y 
be quite different from the Jacobi arrays and processors, respectively. For 
example, the same adaptive QR algorithm (processing complex data) has 
been implemented in a single pipelined complex Cordic (three real paralleil 
Cordic pipelines) [15] which could be easily mapped into a single chip. With 
the Jacobi processor, however, the behavior and performance of many Jacobi 
a1gorithm:s can be evaluated quickly by interconnecting Jacobi processors in ,a 
multi-processor configuration. Some of these algorithms are complicated, yet 
the desiga/compile toolbox contains several transformation tools, inclndin,g 
algorithmic transformation tools [I61 to  render the mapping onto the Jacob’i 
array sufficiently efficient for prototyping purposes. 
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