
*
Philips Semiconductors (PCALE)
Building BE3
P.O.Box 218 5600MD Eindhoven

ABSTRACT

We present a processor and a compiler for prototyping array implementations
of algorithms from the class of Jacobi algorithms. We use adaptive matrix
QR decomposition as illustrative example.

t
Dept. of Electrical Engineering
Delft University of Technology

2628 CD Delft

1. INTRODUCTION

In VLSI signal processing, there is a tendency toward the design of family
specific processors. The (algorithm) family may consist of a number of deriv-
atives of a single ‘mother’ algorithm such as the family of code excited linear
predictive speech coders [l]. For this and similar classes, one can envisage a
processor which is optimal for the family as a whole. The family may also
be broader. Thus the video signal processor (VSP) - or ratlher an array of
such processors - is suited for the implementation of a whole set of video algo-
rithms. Architectures of familyspecific processors may be of VLIW type, may
be two-level multiprocessor architectures or even native microprocessors. The
family we consider in this paper is a set of algorithms known as Jacobi algo-
rithms. Examples of Jacobi algorithms are (time-update) QR decomposition,
singular value decomposition, and various types of subspace tracking algo-
rithms [a] [3] and adaptive orthogonal filters [4] [5]. One reason for chosing
this family is that it provides a nice example of regular/irregular co-design.
Most flow graph simulation environments and behavioral design systems tend
to be generic in that they do not distinguish between regulair and irregular
graphs. Regular flow graphs have special properties which can be exploited to
make their specification, description and manipulation elegant and tractable.
Design systems that focus on such flow graphs do exist but they in turn tend
to exclude irregularity. This paper is an attempt to bring the two domains

1063-6862/96 $5.00 0 1996 IEEE 323

together. The idea The idea of why and how designing a specific proces-
sor for this family of algorithms was presented in [6] where it was dubbed
the Jacobz processor. This processor is actually a co-processor of a two-level
multiprocessor architecture - the Jacobi array which consists of a number of
communicating such co-processors and a supervising control generator. The
program for the generator is compiled by letting a design system behave as
compiler. Thus instead of designing an architecture for the parallel imple-
mentation of a given algorithm, the system outputs a control program by
taking in an algorithm from the family of algorithms and an implementation
structure from the set of feasible two-level multiprocessor architectures.

Most software programs implementing (time-update) Jacobi algorithms are
nested loop programs (NLP) which are of the following form

for L = 1 : 1 : li

y k - (n::;' A (i , , ~ ~) (a k , ~ k , 8 ~) (i ~ , j , ~) xk (II:,' B(i<,jt)(Tkr b k > d k) (i , , j , l) T

end
Where

with L: a row vector and I'k E R("-')*"

(2) 4 i , j l (a k , , A , o k) (i , , j ,) and B (i , j i (~ k , b k , 6 k) (i s , j ,) are identity-embedded
2 x 2 matrices A(a, p, 8) and B(y ,6 , d) , respectively, which are both of the
general form

with M(y) any member of a set of elementary coordinate transformation
(ECT) { J (a) , G (a) , H (a) } defined by

cosy -sinp j , [1 o] ,
[coshp sinhp

H (F ') = s inhp coshp G(P) =
= sin,, COS(0 -P 1

Of course, in any specific instance of the algorithm, the set of indices i,, & , j S
and j , , the boundary values N , and Nt as well as the rules to determine the
parameters a k , P k , Or, 7, bk and d k of the matrices A(in, js) and B(jf,j,) have
to be specified. We say that an ECT is conditional if the angles have to be
determined from the matrix X, it is unconditional otherwise. The processor
- called Jacobi processor in [6] - has a hierarchical or layered structure with

generic layer model as shown in figure 1.

324

'N+1

0
,

level N level N
control in 4 ~ 1 control out
D I generator 1 0

function 0-4
distribul.

storage
data in

Figure 1. Hierarchical or layered control model.

The bottom most layer in the hierarchy bears the core function. One 1aye.r
up is found the kernel functions, the ECTs, which are composed by means of
the core hnction. The layer above the ECT-level is the compoand function
layer. On this layer are mapped irregular flow graphs whose nodes are kernel
functions. One level up - the highest layer of the Jacobi co-processor - is th'e
layer of chster functions. These are tiles from a regular dependence graph
whose node functions are compound functions. A network: of such clusters,
that is, a flow graph whose nodes are tiles is implemented in a yet higher
layer which consists of communicating Jacobi ceprocessors. This constitutes
the Jacobi processor. An array of Jacobi processors can form a next layei.
The highest layer is the system level. Figure 2 summarizes the distinctive
hierarchical levels of the architecture. The functionality of the layers is given
through sets of functions F(i), one for each level. Level i = 0 lays at the
transition between regular and irregular flow graphs. Thus, F(') is the set of
all feasible (compound) functions' that can appear in the dependence graph of
a Jacobi algorithm. Similarly, F(-') is the set of all possib:le kernel functions
that appear in the refinement of the compound functions aind that are known

'By functions, we mean applicative state transition functions (A9Ts) as defined in [?]
or [SI.

325

Figure 2. The hierarchical implemetation structure for execution of Jacobi algo-
rithms.

Figure 3. Conditional [left) and unconditional complex rotations

to the compiler. This set is the set {J(p), G(p), H(p)} - implemented in
Cordic arithmetic[g] [lo], and the set of micro-rotations defined in [ll] and

P I .
Control is expressed in terms of control vectors a('). This vector selects
the appropriate function f(') from the set F (i) . Take for example level (0).
This is the dependence graph level. Jacobi algorithm dependence graphs are
generally piecewise regular graphs, each piece or domain being characterized
by a linearly bounded lattice [13]. Within a domain, all nodes have identical
functionality. Therefore, there is one vector aio) for each domain 0 3 , The

unique function on this domain is f:') = F (o) (a i o)) . See [6] for more details.

Examples of elements from the set F(') are shown in figure 3 . They are both
complex rotations &'(a, /3, p), expressed in terms of real rotations J (p) and
J [i p) The real rotations themselves belong to the set F(-') and are built on
shift-and-add operations from F(- ') .

326

Levels (0), (-1) and (-2) are jointly visualized in figure 4 for the adaptive
QR example [14].

The level (0) graph is a portion of a dependence graph wherein the dark nodes
are conditional Givens rotations and the gray ones are unconditional Givens
rotations. Layer (-1) provides the two complex rotations, see also figure 3.
A possible unfolded flow graph of the two real rotations on level (-2) are also
shown.

Similarly, levels (0), (1) and (2), for the same example, are jointly shown in
figure 5.

In this figure, the dependence graph (level (0)), is partitioned by tiling the
graph with parallelepipeds. A single tile resides on level (1) and is folded into
a cluster of the cluster layer. Another tiling, one hierarchical level up, leads
to a layer (2) communicating co-processor structure, that is, a single Jacobi
processor.

2. The layers in the hierarchy

As said before, level (0) functions are the (applicative state transitmion) func-
tions in the dependence graph of the Jacobi algorithm. The d,ependence
analysis as well as the generation of the dependence graph is performed by a
tool (called HiPars [SI). For example, the input to HiPars for the adaptive
QR algorithm is (part of) the following nested loop program.

Where the functions vecOP and rotOP are both ECTs M (a , a , p) , condi-
tional and unconditional, respectively, with M(p) = J(p). HiParri returns a
reduced dependence graph as shown in figure 7.

The nodes NDzo and ND45 are the index domains supporting the functions
vecOP and rolOP, respectively. The arcs are inter and intra node dependen-
cies, see [8]. These functions are implemented using the shift-and-add core
operations at level (-2). They may be full angle range Cordics [9] [lo], or
restricted angle range (inexpensive) protations [12] [11]. A ECT generator
- called Bangles is available with which the shift coefficients for the look-up
table at level (-2) are computed (given type of ECT, angle range and re-
quired accuracy or cost bound). The specification of level (-2) is as shown
in table 1.

Similar tables could be given for the other levels as well. They are omitted
for lack of space. The ‘Port Map’ defines the relation between the port type

327

Level(0)

i3

i2

Level (-1)
-

Level (-2)
. , I ~ ~~~

Figure 4. Hierarchical decomposition of the level 0 graph

328

Level(0) - 1

i3

Level i l l

Figure 5 . Hierarchical partitioning of the level 0 graph.

329

Level -2

3.(-*) Function Set

loop control
shift factor

generated Control a (- ') , , ~ - ~ E Z+
Vector

Notes

F{-" = add
F?"" = shift

add - full adder,
shift +.+ barrel shifter

Scheduling follows the lexicographical

Assignment Application specific

in Order

Input Control

dering of the computation graph (t ;
evaluation)
scalar pointer in J(-') a (- l) E z+

Programmability

Table 1. Level - 2 functional description (Cordic core)

provided as sequence of alternating s
and add operations

{h l
li - factor

330

Figure 6. adaptive QR algorithm in matlab NLP form.

of a member , say ff), of the set F('), and the port type of th'e 'physical'
node into which the function is mapped. For example, the input and output
of the conditional rotation I(p) is a 2D and 3D vector, respectively, whereas
these are both 3D for the unconditional rotation J(p). However, both may
be mapped into a physical node having only scalar input and output ports.
As a result, the vector valued arguments and results of the functions have to
be converted to input and output streams of scalars as part of the mapping
of the functions into a physical node.

The compound level implements a generic Jacobi step which we define here
to be

where all matrices are of dimension 2. The corresponding (irregular) com-
putation graph is a network of communicating ECT nodes. The distinction
between conditional and unconditional ECTs is made through a control vari-
able that is received by the node to select between them. In addition to these
functions there are some register handling functions for initializing or copying
memory cells. Programmability is through program selection from a program
memory. This program contains read and write instructions to realize the

331

ND-45

QRadap t-dg

Figure 7. Reduced dependence graph for the adaptive QR algorithm

flow in the graph as well as selection instructions which are sent one level
down to select the node functions. This in turn causes fetching of instruc-
tions needed at the towest level to compose these functions. The functionality
of the nodes in the dependence graph (level (0)) is given in the form of a
sequential program. The conversion of this program to a program that the
interpreter can understand can he implemented in e.g., Mathematica.

It will by now be clear that at levels having an index i 5 0 , functions are
stored in the form of a set of instructions and are selected by the control
vector cyj"). Strategy changes, however, when considering layers with index
i > 0 as they correspond to graphs that are piecewise regular. The control
vectors, then, have a parameter setting nature. For example, the dependence
graph of a Jacohy algorithm - defined at level (0) - may be partitioned using
parallelepiped shaped tiles. The tool that does this outputs a (reduced) tile
graph [7] as well as the specification of a single tile, again a reduced depen-
dence graph of it. This tile may be parametrized with respect to its size.
The clustering or folding of the tile requires a sequential schedule which is ex-
pressed in t,he form of a nested loop program. This program is obtained from
the dependence graph of the tile by reversing the procedure that generates
dependence graphs from nested loop programs. The parametrized schedule

vector do) carries the parameter values.
program is stored on layer (1) of the Jacobi co-procejsor and the control

332

3. Simulation of the adaptive QR Jacobi array

In order not to overburden the section we define a ‘mini’ Jacobi processor
which consists of only one Jacobi cc-processor and which processes only real
data. Moreover, level (-2) has been omitted so that the lowest level is the
ECT level om which the ECTs are functions, not graphs. As ‘test vehicle
we considered is the time-adaptive QR algorithm with real values only. In
nowadays wireless applications (GSM) a typical example uses np to ten an-
tennas (N = 10) and requires a data throughput rate of 275 k vectors per
second. A first investigation of the algorithm shows that each vector com-
prises 9 = 55 Cordic operations. Assuming we use a serial Cordic, as is
the case in the Jacobi processor, a clock rate of 40 MHz and each Cordic
operation takes 32 cycles then we need at least

40 MHz -- ss - 275 kHz
- 32
P

so p = 12.1 processors. In a triangular array this yields

or pj = 5 > 4.4 and p = 15. This choice allows a duty cycle of

d = 1.24 or M 40 cycles per Cordic, that includes memory access

I t will turn out (figure 8) that we need on average 47 cycles per Cordic or a
duty cycle of d = 1.47. The throughput is thus

-- 40 MHz - 210 kHz

[El55
47

Figure 8 shows the respective output times’ for each t vector entry ti (1 5
i 5 10). It takes up to 188 units of time before a next value of a vector entry
+i is produced.

The various parameter setting in this particular simulation have been col-
lected in table 2. A plot of the load balance monitor is shown in figure 9 in
terms of the time profiles of the 15 ‘mini’ Jacobi processors.

333

unit

3000

2500

2000

1500

1000

500

-

(Cluster)

time Output times of vector x

3 6

Figure 8. Out put times of entries x , , ~ of the processed input vectors zk in adaptive
QR algorithm.

level - 1 Vectoring Rotation
(Cordic)
level 0 control FiFo cap. data FiFo cap.
(Compound)

(Cluster) I 20

Table 2. Parameter settings in the adaptive QR simulation on the triangular array
of 5 x 5 Jacobi processors

334

Load Balance monitoir
Y

0.00 100 2.1m 3.00 ‘1.00

Figure 9. Activity monitoring of the Cordic cores in each of the Jacobi processors
in figure 13.

335

Figure 10. The compound layer of the ‘mini’ Jacobi processor

Figure 11. The cluster layer of the ‘mini’ Jacobi processor

The simulation as a whole was performed in Ptolemy. The various layers are
shown in figures 10 (Compound node built on the Cordic core), 11 (Cluster
node), and 12 (The ‘mini’ Jacobi processor). The triangular array configura-
tion of the test vehicle is shown in figure 13.

4. Conclusion

The processor, architecture and compiling strategy presented here is based
on a hierarchical specification and description of piecewise regular algorithms
and architectures. Starting from a piecewise regular dependence graph, the
function nodes are refined hierarchically stepping down the hierarchy and

2These are the time instants at which the entries of incoming vectors are nulled. In
steady state operation of the system, they are proportional to the time instants at which
new vector samples are taken in.

336

Figure 12. The 'mini' Jacobi processor, the data path and clus1,er function are
visible.

337

I I I
";li

I I

& & h
Figure 13. A Tri array of fifteen 'mini' Jacobi processors

338

penetrating eventually into the domain of irregular flow gmphs. Partitioning
(tiling) the dependence graph takes us up in the hierarchy until we reach thte
system level. The example that we provided has been overly simplified - thl:
size of the antenna array has been rather small and so has been the size of
the cluster tile; moreover the Jacobi processor has been taken to be identica,l
t.o t,he Jacobi-co-processor as a result of which computations inside it are all
serially ordered - a result of which the emerging array turns out not t o be
very efficient. In a more realistic scenario better performance would not be
difficult to obtain. On the other hand, overhead cannot be avoided as the
architecture is family specific. However, an essential aspect of the approach
is that the compiler makes uses of tools from a design system so that thce
capabilititis of it will grow with those of the system. This facilitates achieving
the goal of providing multi-processor structures with which Jacobi algorithms
could be quickly prototyped. For an application specific .Jacobi algorithm,
specific architectures and processors can be designed which will most 1ikel:y
be quite different from the Jacobi arrays and processors, respectively. For
example, the same adaptive QR algorithm (processing complex data) has
been implemented in a single pipelined complex Cordic (three real paralleil
Cordic pipelines) [15] which could be easily mapped into a single chip. With
the Jacobi processor, however, the behavior and performance of many Jacobi
a1gorithm:s can be evaluated quickly by interconnecting Jacobi processors in ,a
multi-processor configuration. Some of these algorithms are complicated, yet
the desiga/compile toolbox contains several transformation tools, inclndin,g
algorithmic transformation tools [I61 to render the mapping onto the Jacob’i
array sufficiently efficient for prototyping purposes.

5 . ACKNOWLEDGEMENT

This research was supported in part by the Commission of the EU under
contract ESPRIT BRA 6632 (NaNa2) and in part by the National Techno1og.y
Foundation under contract DEL55.3941.

Referenctes

[l] A. Abnous and J . Rabaey, “Low-Power Application-Specific Proces-
sors.”.

339

[2] h:J. van der Veen. Ed F. Deprettere, and A. Lee Swindlehurst,
“Subspace-Based Signal Analysis Using Singular Value Decomposition,”
Proceedings of the IEEE, 81(9):1277-1308, 1993.

[3] J . Gotze and A.J. van der Veen, “On-line Subspace Estimation using a
Schur-type Method,” IEEE Trans. Signal Processing, October 1995.

[4] Filiep Vanpoucke, Marc Moonen, and Ed F. Deprettere, “Stable Jacobi
SVD Updating by Factorization of the Orthogonal M atrix,” In Marc
Moonen and Bart De Moor, editors, SVD and Signal Processzng, I l l , pp.
267-276. Kluwer Academic Publishers, Dordrecht, 1995.

[5] P. Kapteijn, H. van Dijk, and E. Deprettere, “Controling the critical
path in time adaptive QR-’ recursions,” In Proc. IEEE Workshop on
VLSI Signal Processzng, volume VII, pp. 326-335, 1994.

[GI H.W. van Dijk, G.J. Hekstra, and E.F. Deprettere, “Scalable parallel
processor array for Jacobi-type matrix comput ations,” Integratzon, the
VLSIjournal, 20:41-61, 1995.

[7] Ed Deprettere, Peter Held, and Paul Wielage, “Model and Methods for
Regular Array Design,” Int. d. of High Speed Electronics, Special issue
o n Massiz ie ly Parallel Compatzng-Part I I , 4(2):133-201, 1993.

[8] Peter Held, “Fzlnctional Deszgn of D a t a - F l o ~ Networks, ” PhD thesis,
Dept. EE, Delft University of Technology, May 1986.

[9] A . de Lange and Ed F. Deprettere, “Design and Implementation of a
Floating-point Quasi-Systolic General Purpose Cordic Rotor for high-
rate Data and Signal Processing,” In Proceedzngs 10th IEEE Symp.
Computer Arzlhmetzc, pp. 272-281, Grenoble, France, June 26-28 1991.

[lo] Gerben J . Hekstra and Ed F. Deprettere, “Floating Point Cordic,” In
Proceedings A R I T H 11, Windsor, Ontario, June 30 - July 2 , 1993 1993.

[I l l Ed F. Deprettere, Gerben Hekstra, and Richard Heusdens, “Fast VLSI
Overlapped Transform Kernel,” In 1995 IEEE Workshop on VLSI Signa/
Processing, volume VLSI Signal Processing VIII, pp. 287-302, Osaka,
Japan, October 1995.

[I21 J . Gotze and G. Hekstra, “An algorithm and architecture based on
orthonormal p-rottions for computing the symmetric EVD,” In legmi ion ,
the VLSI Journal, 20:21-39, 1995.

340

[13] L. Thiele, “On the design of piecewise regular processor arrays,” In Proc.
IEEF Symp. on Circuits and Systems, pp. 2239-2242, Portland, 1989.

I141 S. Haykin, “Adaptive Filter Theory,” Englewood C’lifTs, NJ: Prentice
Hall, 1992.

[15] P. Kapteijn, E. Deprettere, L. Timmoneri, and A. Farina, “Implementa-
tion of the recursive QR algorithm on a 2x2 CQRDIC te stboard: a case
study for radar applications,” In Proceedings 25th European Microwave
Con,ferenee, pp. 500-505, Bolognia, September 1995.

[16] Hyllre W. van Dijk and Ed F. Deprettere, “Transformational Reasoning
on Time-Adaptive Jacobi Type Algorit hms,” In Marc Moonen and
Bart De Moor, editors, SVD and Signal Processing> III, pp. 277-286.
Kluwer Academic Publishers, Dordrecht, 1995.

341

