
Basic P r o o f Skills of
C o m p u t e r Science S tudents

Pieter H. Hartel 1, Bert van Es 1, Dick Tromp 2

1 Faculty of Mathematics and Computer Science, University of Amsterdam,
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands, {pieter,vanes}@fwi.uva.nl

2 Dick Tromp Formerly at SCO-KIOO (Foundation Centre for Education Research
at the University of Amsterdam)

Abst rac t . Computer science students need mathematical proof skills.
At our University, these skills are being taught as part of various math-
ematics and computer science courses. To test the skills of our students,
we have asked them to work out a number of exercises. We found that
our students are not as well trained in basic proof skills as we would have
hoped. The main reason is that proof skills are not emphasized enough.
Our findings are the result of a small experiment using a longitudinal
measurement of skills. This method gives better insight in the skills of
students than more traditional exam-based testing methods. Longitu-
dinal measurement does not allow the students to specifically prepare
themselves for particular questions. The measurements thus relate to
skills that are retained for a longer period of time.
In our Department, fierce debates have been held in the past discussing
such issues as "what proof skills do our students have?". An important
aspect of our work is that it tries to find evidence to help answer to
such questions. Research such as ours is rare in the field of teaching
mathematics and computer science.

1 I n t r o d u c t i o n

Computer scientists must be able to study the foundations of their discipline.
Discrete mathematics and mathematical logic are foundations of the core of Com-
puter Science (CS) [14]. A computer scientist must therefore be skilled in the use
of basic tools and techniques from discrete mathematics and logic. Continuous
mathematics and other branches of mathematics are used more in applied CS
subjects such as robotics and scientific computing. Mathematical tools and tech-
niques from such areas are also important but perhaps not quite as fundamental.
We will therefore concentrate on discrete mathematics and logic.

The development of skills in mathematical manipulation should also be an
integral part of the programming activity. Gries, on the occasion of receiving the
annual SIGCSE award for outstanding contributions to CS education, made it
clear that such skills are essential to be able to manipulate large complex struc-
tures [3]. Parnas, another well known computer scientist subscribes to this view:
"CS programs must return to a classical engineering approach that emphasizes
fundamentals" [10].

270

It is thus rather unfortunate that mathematics is mostly taught to CS stu-
dents as a separate activity. When the necessary skills are being taught, they
are not always perceived as related to programming. The powerful interpreta-
tion of 'proofs as programs' is then not seen as natural. Many algorithms can be
viewed as a slightly different rendering of a proof; see Asch [15] for a number of
examples.

For CS, mathematics is best taught as part of an integrated curriculum in
which the relationships between programming and mathematics are exploited [20].
Declarative programming styles (functional and logic programming) facilitate
this integration. Teaching mathematics and declarative programming in an in-
tegrated fashion has received attention in the literature [7, 19, 6], and many CS
departments are considering such issues [4].

In the CS department at the Universiteit van Amsterdam (UvA) we have
also been discussing these issues. Our present curriculum begins with a first
programming course in Pascal using methodical problem solving methods [13]
and separate courses in logic and discrete mathematics. Functional program-
ming is offered as the option 'functional languages and architectures' during the
3rd/4th year. As of the academic year 1995/1996, the first programming lan-
guage will be a functional language. The relationship between the logic course,
the discrete mathematics course and the functional programming course will be
strengthened: all three subjects will be taught in parallel, thus providing the
opportunity for integrated teaching.

As a preparation for the transition~ we were interested in the present level
of proof skills that our students have, and also in the question: Does the study
of functional programming have an effect on the acquisition of such skills? Here
we look at specific but essential aspects of discrete mathematics as a first step
towards exploring the full set of mathematical skills of our CS students.

The aspects that we consider are basic equational reasoning and induction.
This represents a choice out of a vast range of mathematical tools and techniques.
Equational reasoning is the basis of all program transformation methods and
as such an essential tool for the computer scientist. Induction is the only tool
that supports the manipulation of potentially infinite structures, such as often
encountered in CS. Induction and equational reasoning are therefore important.

It is unusual to find experimental data relating the skills of CS students to
what their teachers would have expected, other than straightforward examina-
tion results. In a previous study we looked at all issues of the ACM SIGCSE
bulletin over the past seven years. This study revealed that precious little hard
evidence can be found for statements about CS education [5]. A notable excep-
tion to this rule is formed by the CS department of the Technical University
at Twente. A recent Ph.D. thesis contains a comprehensive investigation into
the effects that various decisions about the CS curriculum have on student per-
formance [17]. Our experiment is of course small compared to the Twente ex-
periment. It is interesting to note that both experiments relate to functional
programming.

In the next section we discuss the context of the exploration into the mathe-

271

matical skills of our students. Section 3 describes the experiment that has been
carried out to measure the skills. The exercises and the evaluation criteria used to
mark the exercises are described in Sect. 4. Section 5 presents the experimental
results. The final section gives the conclusions.

2 C u r r i c u l u m

The CS curriculum at the UvA nominally takes 4 years. A year has three terms
of 14 weeks each. During a term 2-4 different subjects are taught. The amount
of effort required to study a subject is rated using a point system. Each point
corresponds to one week (that is 38 hours) of effort. The total number of points
available during one term is thus 14. Subjects may be rated at 3, 4 or 7 points,
depending on the amount of effort required by a hypothetical 'average' student.
The point rating of each subject should cover all activities related to master-
ing that particular subject, including lectures, laboratories, homework and the
preparation of the test.

2.1 T e s t s

Students normally take tests in a subject at the end of the term. There is no
obligation to take a test directly after the course; tests are scheduled regularly.
Students are also allowed to take a test a number of times until the test has been
passed.

During the first 7 terms, the UvA CS curriculum has a common programme.
Then, a choice must be made out of three specialisations, each of which lasts
for another 5 terms. The specialisations on offer are theoretical CS (emphasis on
mathematical logic, complexity theory, data base theory and natural languages),
programming methodology (emphasis on algebraic formal methods) and tech-
nical CS (emphasis on robotics, image processing and parallel computing). The
last 6 months of the specialisation are devoted to the final year project. There is
a large degree of freedom in selecting topics for the specialisation. Students are
encouraged to take courses from the different specialisations on offer. They are
also allowed to choose some subjects from other disciplines.

The organisation of the curriculum offers the student considerable freedom
in planning the programme of study. Firstly, a student chooses a number of
subjects and an order in which they are studied. The dependencies specified by
the prerequisites of each course constrain the freedom somewhat. Secondly, once
a course has been taken, the student may delay taking the test until sufficient
knowledge, experience and confidence has been acquired.

The system makes it difficult both for the student and for the staff to have
accurate information about the progress that is being made. The data that are
presently available record the number of points earned and the selection of tests
passed. In theory, this should be a good predictor for the progress made. In
practice, this is not always the case, as the points are awarded on the basis of
how much work an 'average' student is supposed to spend studying a subject.

272

Table 1. Subjects taught during the first 6 terms of the CS curriculum. The numbers
represent the point rating of each subject. One point corresponds to one week of full
time study.

term I term II term III
Introduction CS 3 Relational data bases 4
Logic 4 Discrete Mathematics 4 Graph Theory 3

Continuous Mathematics 3
Programming 7 Data Structures 7 Computer organisation 7
term IV term V term VI

CS ethics; presentation skills 7
Automata & 7 Linear Algebra 4 Calculus 4
complexity theory Probability ~z statistics 3 Algebraic Structures 3
Operating systems 7 Programming Environments 7

Many students spend more time, especially on the more theoretically-oriented
subjects.

As a consequence, few students manage to complete their studies within 4
years even though a delay has severe financial implications. There are also other
factors that cause delays, such as the need for many students to supplement
their income through par t - t ime employment.

The main problem with the present system of student performance assess-
ment is that it does not give clear early warnings. A student who feels ill at
ease with a particular subject will perhaps postpone a thorough study of the
subject and also delay taking the test. For the staff this is not easy to detect,
as one would have to monitor what students are not doing. For the student, the
implications of postponing study of a particular subject may not be obvious: it is
often the case that an insufficient background makes the s tudy of new subjects
more difficult, even though the newly-experienced difficulties are not directly
traceable to the earlier, explicit or implicit choice to delay the previous subject.

A system of progress tests, such as operated by the University of Limburg
Medical school in Maastricht [12] might be considered as an alternative to the
present assessment system or as a means to supplement the present system. The
progress test as used in Maastricht uses a set of questions tha t is fixed for the
entire programme of study. The set is very large so tha t students cannot prepare
specifically for the tests.

2.2 P r o o f Skil ls

The present paper reports on a small experiment with a test designed to identify
progress in the acquisition of skills of the CS students. The small scale of the
experiment required us to concentrate on a few aspects of the curriculum that
we find essential. These are the skill in giving a simple proof by equational
reasoning, the skill in constructing a proof by induction and the skill in creating
an inductive definition.

273

Table 1 gives an overview of the subjects taught during the first two years
together with their point rating. The contents of most courses will probably be
obvious; the programming environment course includes as one of its components
the subject of compiler construction.

The basic proof skills required are explicitly taught during the first term
and reinforced during later terms. Explicit teaching of a concept means that
the concept is taught for its own sake. Most teaching activities involve several
concepts of which one is taught explicitly. The other concepts involved will then
be taught more or less implicitly.

The following subjects contribute explicitly to a mastery of basic proof skills:

Logic - t e r m I As part of the Introductory course on Logic equational reason-
ing and the principle of induction are taught. These techniques are applied to
inductive proofs and definitions. On page 15 of the text book [16], the con-
cept of an inductive definition is first explained. This is followed by several
examples (the first example is actually the same as Exercise 3 of Round 1
of our experiments). The students practice giving inductive definitions dur-
ing the tutorials. The test includes an exercise that requires an inductive
definition.
Proofs by induction are the main subject of chapter 5 (page 69-86) of the
text [16]. Here properties of formulae are proved by structural induction
over inductively defined formulae. The tutorials include several exercises.
However, the test is designed such that students may pass if they decide
to skip the inductive proof. Students often do not appreciate the power of
the principle of induction and prefer simple arguments or even a 'proof by
example'.

D i sc re t e M a t h e m a t i c s - t e r m I I Both set theory and induction are taught
as part of the discrete mathematics course. Many proofs are shown as ex-
amples. Students are advised to try some of the proofs at home but do
not always follow the advice. The test includes an exercise that requires an
inductive proof. The test results for this exercise show that there are two
main categories of students: those that do well and those that fail; there are
not many intermediate scores. In the discrete mathematics course, inductive
proofs are used mostly to prove equalities. Students find it harder to prove
an inequality instead. This indicates that at this stage of the curriculum, the
full generality of the principle of induction is not appreciated by all students.

G r a p h T h e o r y - t e r m I I I The graph theory course makes use of the princi-
ple of induction, both for the purpose of giving inductive definitions and for
proving properties of graphs and graph algorithms. The course is aimed
specifically at CS students and therefore emphasizes algorithmic aspects
more than proofs. The exam does not require the construction of inductive
proofs.

A u t o m a t a a n d C o m p l e x i t y t h e o r y - t e r m IV Set theory is used in the
course on automata and complexity theory. Inductive proofs are used here
often. The students are given exercises that require inductive proofs; the ex-
ercises are discussed during tutorials. The test also includes an exercise that
requires an inductive proof.

274

A l g e b r a i c s t r u c t u r e s - t e r m V Set theory is heavily used in the course on
algebraic structures, inductive proofs are rare in this course.

Towards the end of the first year, we would expect students to have acquired
a reasonable level of proof skills. However, it is possible that students progress
to this point without actually understanding the principle of induction. During
the second year, the students should improve their basic proof skills to the point
where one would expect all students to be able to carry out at least a simple
inductive proof.

Inductive definitions do not play quite such an important role in the courses
described, so one might expect the students to have difficulties creating an in-
ductive definition.

3 E x p e r i m e n t

The aims of the experiment were, firstly, to investigate to what extent UvA
CS students are able to construct simple proofs and, secondly, to investigate at
what stage of the curriculum basic proof skills were mastered. More specifically,
the second aim has been to measure progress from one year to another, and to
measure progress within each year.

The experiment consisted of two rounds. During both rounds we asked the
participants to work out a set of three exercises. The two sets were different, but
comparable: they were designed to be of the same level of difficulty.

For the first-year students the exercises might have been hard; for the final
year students they might have been easy; but all participants have been taught
how to work out such exercises. Any difference in skills should thus be at t r ibuted
to the experience that participants may have gained during their programme of
study.

The first round was held at the beginning of term III of the academic year
1994/1995. The second round was held two months later, at the end of that same
term. The participants were asked to supply their registration numbers, so that
the progress made by participants who would cooperate on both occasions could
be recorded accurately.

To keep the conditions during which the experiments were carried out the
same, the exercises were completed during regular lecture or laboratory hours.
On both rounds we allowed 20 minutes in total to allow for a reasonable amount
of time to work out the exercises and at the same time to disrupt regular teaching
as little as possible. The participants were not prepared in any way for the first
round. After that they knew that the second round was coming, but not when
it would come. The results or model answers were not communicated to the
participants.

During the first round we asked 77 students to participate, of which only one
refused. Five students refused to cooperate during the second round when we
asked 60 students to take part. The participants were told in advance that the

275

results would only be used for research purposes. They would thus not be disad-
vantaged by participating. As a small reward, six (CS) books were distributed
amongst the participants.

The cohorts 1990 . . . 1994 of UvA CS students all contain roughly the same
number of students. For our two samples to be representative for the total pop-
ulation we would thus expect the numbers of students from these cohorts in the
samples to be similar. This was found to be the case with one exception: the
1992 cohort on Round 1 contains twice as many students as expected. This gives
a slight bias towards third year students on Round 1.

We have no indication tha t the skills of the students who did part icipate are
not representative for the skills of the population as a whole. Both very able
students and less able students sometimes do not go to class. The experiments
were carried out towards the end of the year, when the student population that
goes to class is relatively stable. Most students who drop out do so towards the
beginning of the year. There is thus no indication that we may have worked with
particularly skilled or particularly unskilled students. We could have investigated
this mat te r further by using the exam-based results of our students. We decided
against this to guarantee students that part icipating in the experiment would
not be connected with their exam-based results.

Table 2. A fragment of the algebra of sets: A, B e n C are subsets of a universal set
U, the complement of a set A is written as A c.

la. A U B = B O A Commutativity
b, A N B = B n A

2a. AU (B M C) = (AUB) M (AUC)
b. A N (B U C) = (A n B) U (A M C)

3a. A U O = A
b. A U U = U

c. A n 0 = 0
d. A M U = A

Distributivity

Identity

4a. A U A ~ = U Complement
b. A N A C = O
c. (A~) c = A

5a. A f l B C_ A Inclusion
b. A C A U B

4 E x e r c i s e s

In both rounds, the first exercise tested equational reasoning, the second tested
the skill in constructing an inductive proof and the third exercise required the
construction of an inductive definition.

276

We have tried to make all execises of the same level of difficulty. During the
design of the exercises we consulted with a number of colleagues to make sure
that the exercises would represent a good test of basic proof skills.

4.1 Exercise 1: Equational Reasoning

Equational reasoning is the basis of many proof systems. Set theory is an im-
portant part of discrete mathematics.

The first round required the participants to prove the inequality below, while
using the axioms of Table 2:

(A U B) A A c C B

The second round required the participants to prove the inequality:

BC_(ACNB) UA

These exercises are of the same level of difficulty. We give the model answer to
the first:

(AU B) N A c = A c N (AU B) {lb}
= (A c N A) U (A ~ N B) {2b}
= (d NA ~) U (A r N B) {lb}
= ~ U (A ~ N B) {4b}
= (A c n B) u q~ {la}
= (A r n B) {3a}
= (B n A c) {lb}

and: (B n A c) c_ B {5a}
therefore: (A U B) n A c C B

The model answer for Exercise 1 of the second round follows the same lines,
taking basically the same steps in a slightly different order.

To construct the above proof, the student needs to be able to instantiate an
axiom and to use the transitivity of equality. This tests only the very essentials
of equational reasoning. The choice of the particular proof steps must be driven
by intuition. All students should be thoroughly familiar with the axioms of set
theory that we are using here. All should therefore have sufficient intuition to
choose the appropriate proof steps. The danger of choosing a familiar domain to
test basic equational reasoning skills is that some of the axioms may be viewed as
trivial. The commutativity axioms are obvious examples. We decided to choose
familiar axioms, as using unfamiliar ones would have disabled the intuition of
the student. This would have made the exercise too difficult.

The individual steps in the proof above have been labelled with the number
of the axiom used. This makes the proof easier to read. Annotating proof steps
should therefore be considered good practice. This view is not universally held.
Many mathematics texts will give long sequences of proof steps without annota-
tions. Examples of computing books that do annotate proof steps and derivation
steps are the books by Morgan [9] and Bird and Wadler [1].

277

All exercises were marked on a scale from 0=poor to 10=excellent. A pass
mark is at least 5.5. A general criterion and some specific criteria were used
to calculate the marks. The general criterion looks at whether the question has
been answered at all and, if so, whether the answer is complete.

For Exercise 1, the full set of criteria and the percentages of the mark awarded
are:

connectedness: 2 0 ~ Have the individual proof steps been connected prop-
erly? Some participants write a number of formulae without a hint of how
they are connected, so that there is no apparent logic in the reasoning.

explicitness: 4 0 ~ Have all steps been made explicit? Many participants for-
get to note the use of the commutativity axiom. Most other axioms were
used explicitly but not by every participant. Each of the seven steps above
contributes 1/8 of 40%.

a n n o t a t i o n s : 2 0 ~ Has each step been labelled with the name or the number
of the axiom applied? Many participants leave it to the reader to guess which
axioms have been applied. Each of the seven steps above contributes 1/8 of
20%.

genera l : 2 0 ~ The general criterion for Exercise 1 accounts for 20% of the
mark.

Some criteria are awarded 20% of the full mark. This indicates that an otherwise
perfect answer that completely fails on just one such criterion would still result
in a good mark. Completely failing on a criterion that is awarded with 40%
yields a mark that is just sufficient. Explicitness falls into the 40% category as
this criterion essentially captures whether students are able to instantiate the
axioms properly.

4.2 E x e r c i s e 2 : I n d u c t i v e Proof

The properties of some formal systems can be proved by simple induction over
the natural numbers. Properties of many more formal systems can be proved by
structural induction. To test the skill in proving a property by induction we have
chosen to work in the domain that is most familiar to the students; the natural
numbers. Other domains such as formal languages would have been unsuitable
for the first-year students.

The first round required the participants to prove by induction that for all
positive natural numbers n the following equality holds:

~?~k2 = n(n+l)(2n+l)
6

k = l

The second round required the participants to prove that for all positive natural
numbers n the following property is true:

n 3 - 4n + 6 is divisible by 3

278

Both proofs involve elementary algebra using cubic polynomials.
n The hypothesis ~ k = l k2 ---- n('~+l)(2n+D6 is used to prove the first equation

by induction over n:

1 k2 Case 1: ~-'~=1 = 1
1(1+1)(2•

6
m

~ n + l k 2 n k2 (n 1) 2
k=l

_ n(n+l)(2n+l)
- 6 + (n + 1) 2

_~ n (n T 1) (2 n + l) - k 6 (n + l) 2
6

--. (n + l) (n (2 n - F 1) + 6 (n - - b l))
6

_ (n+l)(2n2 +n+6n+6)
6

__ (n . .~ l) (n-{ -2) (2n ' -b3)
- - 6

__ (n + l) ((n + l) + l) (2 (n + l) + 1)
- - 6

Case (n+l) :

(hypothesis)

The proof of Exercise 2 from the second round follows the same lines.
The evaluation criteria for Exercise 2 are:

c o n n e c t e d n e s s : 20% Have the individual proof steps been connected prop-
erly? (See under Exercise 1).

ba se case: 10% Is the ba"e case present and has it been worked out properly?
Some participants prove the base case for n = 0 instead of n -- 1. The
exercise explicitly states that the proof should apply to the positive natural
numbers.

i n d u c t i v e case: 30% Is the inductive case properly worked out? Some partic-
k ipants start to work with ~-~k=l(+ 1) 2.

a n n o t a t i o n s : 10% Has the use of the induction hypothesis been annotated?
A useful sanity check when giving an inductive proof is to verify that the
induction hypothesis has been used. Some participants leave it up to the
reader to find out when the hypothesis has been used.

a lgebra : 10% Is the elementary high school algebra a problem? Many mistakes
were made with the elementary algebra.

genera l : 20% The general criterion for Exercise 2 accounts for 20% of the
mark.

Some criteria are awarded 10% of the mark. These represent relatively minor
issues or elements of the proof that require little work. The inductive case rep-
resents a relatively large amount of work, which justifies its relatively large con-
tribution to the mark.

4.3 E x e r c i s e 3 : I n d u c t i v e D e f i n i t i o n

Compositionality is the key to reasoning about complex structures in terms of
their simpler components. An inductive definition can be given for a vast number

279

of complex structures. The skill in producing such an inductive definition was
the target of our third and last exercise.

Constructing inductive definitions is taught explicitly as par t of the course
on logic during the first term.

The first round required the part icipants to give an inductive definition of
the formulae of propositionM logic using the connectives V, A, -% *-* and ~ and
using as basis elements the variables p, q, r.

The model answer is:

B a s e case The variables p, q en r are formulae.
I n d u c t i v e case Let P and Q be formulae, then (P v Q), (P A Q), (P --* Q),

(P ~ Q) and ~ P are formulae.
C l o s u r e No other terms than the ones mentioned under Base and Inductive

case above are formulae.

The second round required the participants to give an inductive definition of the
formulae of arithmetic, using the connectives +, x, >, = , - and the numbers 0,
1, 2 . . . as basis elements.

Strictly speaking, this exercise does not test a proof skill, but rather a 'defi-
nition skill'. A more interesting test would have been to construct an inductive
definition and its induction principle. Then, some property of the inductively
defined structure could have been proved. Unfortunately, such an exercise would
have been too time-consuming for the present constrained experiment.

The evaluation criteria for Exercise 3 are:

B a s e case: 20~o Is the base case properly identified? Many participants forget
to s tate which formulae are the basic elements.

I n d u c t i v e case : 60% Has the inductive case been formulated? Part ic ipants ei-
ther describe the inductive case properly or reproduce something completely
different, such as the laws of boolean algebra (Round 1) or the Peano axioms
(Round 2).

C l o s u r e : 20~o Have other terms been explicitly excluded? Part icipants often
forget to make it explicit that only the smallest class of formula is relevant.
(The 'no junk ' rule).

For this exercise the general criterion is subsumed by the inductive case. The
inductive case has a weight of 60% as without it, the answer would be insufficient.
A correct base case gives 20% of the mark, such that the ratio base case :
inductive case = 1 : 3. This is the same ratio as for Exercise 2.

280

T a b l e 3. Various sub-groups of the participants of Rounds 1 and 2. Here n = the
number of participants; �9 = average mark (on a scale from 0=poor - 10=excellent; a
pass mark is at least 5.5), m . o . e . = margin of error, s= standard deviation.

Sub-groups round 1 round 2
n ~2 s m . o . e , n ~2 s m . o . e .

difference 34 -0.6 1.5 0.5 34 +0.6 1.5 0.5
total 76 6.0 2.2 0.5 55 6.4 2.7 0.7

(a) Exercise 1 results of all participants

Sub-groups round 1 round 2
n .~ s m . o . e , n 5: s m . o . e .

difference 34 -0.4 3.9 1.3 34 +0.4 3.9 1.3
total 76 6.1 3.3 0.8 55 6.8 3.5 0.9
(b) Exercise 2 results of all participants

Sub-groups round I round 2
n �9 s m . o . e , n ~ s m . o . e .

difference 34 -1.4 3.4 1.1 34 +1.4 3.4 1.1
total 76 2.1 3.7 0.8 55 3.0 3.9 1.0

(c) Exercise 3 results of all participants

Sub-groups round 1 round 2
'/% X 8 Tr~.o.e . n x 8 T/%.o.e.

1-7 common 21 4.1 2.0 0.8 15 4.9 2.5 1.2
8-14 common 22 5.0 1.4 0.6 14 4.7 1.8 0.9
common+theory 16 5.3 1.1 0.5 12 6.4 1.8 1.0
common+programming 20 5.6 1.8 0.8 17 6.8 1.8 0.9
common+technical 36 5.2 1.8 0.6 33 6.4 1.9 0.7
once 42 4.5 2.0 0.6 21 4.8 2.4 1.0
twice 34 5.0 1.9 0.6 34 5.8 2.2 0.7
twice (functional) 11 6.3 1.6 0.9 11 7.2 1.9 1.1

VU 14 5.4 1.1 0.6 7 6.3 2.0 1.5
UvA 62 4.6 2.1 0.5 48 5.3 2.4 0.7

total 76 4.7 2.0 0.4 55 5.4 2.3 0.6

(d) Overall results of all participants based on the average of Exercises 1, 2 and 3

281

5 R e s u l t s

The total number of registered UvA CS students during the academic year
1994/1995 is 163. A number of these students do not go to class, in particular
when they are working on their final year project. We could thus not reasonably
expect the entire student population to participate. During the first round, 76
students took part and during the second round there were 55 participants. 34
participants cooperated in both rounds. We specifically handed out the exercises
during laboratories and lectures scheduled for UvA CS students, but a fraction
of the participants were not UvA CS students. On the first round 51 (of 76) were
UvA CS students and on the second round 35 (of 55) were UvA CS students.

5.1 Student Groups

Table 3 presents various breakdowns of the group. Table 3-a, 3-b and 3-c apply
to Exercises 1, 2 and 3 respectively. Table 3-d applies to the total test, based on
the average of the three exercises. The exercises have equal weight.

The rows within the table correspond to certain sub-groups of the group of
participants. Each row gives results obtained during the first and the second
round of the experiment. The results are the number of participants (n), their
average mark (~), the margin of error of the average (m.o.e.) and the standard
deviation of the average (s). (The margin of error is defined as m.o.e. = 1 .96s /n) .
The number n varies from row to row because not all participants are part of
each sub-group.

The sub-groups in Table 3 have been chosen partly such that progress in
the acquisition of basic proof skills of the group as a whole is visible; partly to
investigate whether students interested in one specialisation/subject have better
proof skills than others.

The sub-group 1-7 common has studied between 1 and 7 subjects from the
list given by Table 1. These students may or may not have taken the tests for
these first subjects. This sub-group has studied at most about one third of the
common programme. The sub-group 8-14 common has studied between 8 and 14
subjects (two thirds of the common programme). The sub-group common+theory
has studied all or most of the common programme and at least one theoretical
CS subject, which indicates that they may perhaps be more interested in theoret-
ical issues than other students. Similarly, the sub-group common+programming
has studied at least one programming methodology subject and the sub-group
common+technical has studied at least one technical CS subject. Many students
will study subjects from the different specialisations. There is thus some overlap
between these five sub-groups.

The sub-group once has participated either in Round I or in Round 2 but not
in both. The sub-group twice has participated in both Rounds 1 and 2. There
is therefore no overlap between the sub-groups once and twice. The sub-group
difference is the same as the sub-group twice except that for each student in
the sub-group the difference between the marks awarded in Rounds 1 and 2 is
calculated. The statistics given apply to these differences. A positive average in

286

The methodology that we have used could be a first step towards a more
comprehensive longitudinal measurement of skill. The results highlight certain
problems that are not so evident from the results of the more tradit ional testing
scheme.

7 Acknowledgements

We thank Natasha Alechina, Marcel Beemster, Johan van Benthem, Jan Bergstra,
Mark van den Brand, Ben Bruidegom, Kees Doets, Edo Dooijes, Peter van Emde
Boas, Theo Janssen, Paul Klint, Hugh McEvoy, Hans van der Meer, Jon Moun-
tjoy, Cora Smit, Leen Torenvliet and Rob Veldman for their help with the ex-
periments and for their comments on draft versions of the paper. The comments
of the anonymous referees are gratefully acknowledged. The willingness of many
of our students to part icipate was greatly appreciated.

References

1. R. S. Bird and P. L. Wadler. Introduction to functional programming. Prentice
Hall, New York, 1988.

2. A. J. Field and P. G. Harrison. Functional programming. Addison Wesley, Read-
ing, Massachusetts, 1988.

3. D. Gries. Improving the curriculum through the teaching of calculation and dis-
crimination. Education and computing, 7(1,2), 1991.

4. R. Harrison. The use of functional programming languages in teaching computer
science. J. functional programming, 3(1):67-75, Jan 1993.

5. P. H. Hartel and L. O. Hertzberger. Paradigms and laboratories in the core com-
puter science curriculum: An overview. Technical report CS-95-03, Dept. of Comp.
Sys~ Univ. of Amsterdam, Jan 1995.

6. J. L. Hein. A declarative laboratory approach for discrete structures, logic and
computability. ACM SIGCSE bulletin, 25(3):19-24, Sep 1993.

7. P. B. Henderson and F. J. Romero. Teaching recursion as a problem-solving tool
using standard ML. In R. A. Barrett and M. J. Mansfield, editors, 20th Computer
science education, pages 27-31, Louisville, Kentucky, Feb 1989. ACM SIGCSE
bulletin, 21(1).

8. E. L. Lehman. Nonparametrics: Statistical methods based on ranks. Holden & Day,
San Francisco, Calofornia, 1975.

9. C. Morgan. Programming from specifications. Prentice Hall, Hemel Hempstead,
England, 1990.

10. D. L. Parnas. Education for computing professionals. Computer~ 23(1):17-22, Jan
1990.

11. S. L. Peyton Jones. The implementation of functional programming languages.
Prentice Hall, Englewood Cliffs, New Jersey, 1987.

12. E. S. Tan. A stochastic growth model for the longitudinal measurement of ability.
PhD thesis, Dept. of Maths. and Comp. Sys, Univ. of Amsterdam, Dec 1994.

13. Th. J. M. (Dick) Tromp. The acquisition of expertise in computer programming.
PhD thesis, Dept. of Psychology, Univ. of Amsterdam, Sep 1989.

287

14. A. J. Turner. A summary of the ACM/IEEE-CS joint curriculum task force report:
Computing curricula 1991. CACM, 34(6):69-84, Jun 1991.

15. A. G. van Asch. To prove, why and how? Int. J. Mathematical education in science
and technology, 24(2):301-313, Mar 1993.

16. J. F. A. K. van Benthem, H. P. van Ditmaxsch, J. Ketting, and W. P. M. Meyer-
Viol. Logica voor Informatici. Addison-Wesley Nederland, Amsterdam, 1991.

17. K. van den Berg. Software measurement and functional programming. PhD thesis,
Twente technical Univ., Jun 1995.

18. P. L. Wadler. How to replace failure by a list of successes, a method for excep-
tion handling, backtracking, and pattern matching in lazy functional languages.
In J.-P. Jouannaud, editor, 2nd Functional programming languages and computer
architecture, LNCS 201, pages 113-128, Nancy, France, Sep 1985. Springer-Verlag,
Berlin.

19. R. L. Wainwright. Introducing functional programming in discrete mathematics.
In M. J. Mansfield, C. M. White, and J. Haxtman, editors, 23rd Computer science
education, pages 147-152, Kansas, Missouri, Max 1992. ACM SIGCSE bulletin,
24(1).

20. U. Wolz and E. Conjura. Integrating mathematics and programming into a three
tiered model for computer science education. In D. Joyce, editor, P5th Computer
science education, pages 223-227, Phoenix, Arizona, Mar 1994. ACM SIGCSE
bulletin, 26(1).

