
Factorized test generation for
multi-input/output transition
systems

Ed Brinksma, Lex Heerink and Jan Tretmans
University of Twente, NL-7500 AE Enschede
{brinksma,heerink,tretmans}@cs.utwente.nl

Abstract
In this paper we present factorized test generation techniques that can be
used to generate test cases from a specification that is modelled as a labelled
transition system. The test generation techniques are able to construct a sound
(and complete) test suite for correctness criterion miocoF [5] by splitting
up this correctness criterion into many simpler correctness criteria, and by
generating tests for these simpler correctness criteria. By isolating the relevant
part of the specification that is needed to generate tests for each of these
simpler correctness criteria and using this part to generate tests from, test
generation can be done more efficiently. These techniques are intended to
keep the generation of tests from a specification feasible and manageable.

1 INTRODUCTION

Testing To assess the correctness of systems testing is a frequently applied
technique. The aim of testing is to check whether an implementation is correct
with respect to its specification. This is done by conducting experiments on
the implementation, observing the responses of the implementation to these
experiments, and comparing these responses with the ones that could be ex-
pected on the basis of the specification. An implementation is considered
incorrect, or erroneous, in case the responses to an experiment are different
from the ones that could be expected. Testing can only show the presence
of errors in implementations, never their absence. However, it is commonly
agreed that confidence in the correct operation of an implementation increases
if more and more tests are conducted and no errors are found. To reason about

testing in a formal framework a clear definition of the universe of experiments
(U), observations that occur when experiment u ∈ U is carried out on sys-
tem p (obs(u, p)), and a comparison criterion (⊑) for these observations must
be defined. This results in an extensional definition of a correctness crite-
rion conforms-to (implementation relation) between implementation i and
specification s as follows

i conforms-to s =def ∀u ∈ U : obs(u, i) ⊑ obs(u, s) (1)

In this paper we assume that specifications and implementations can be
modelled by (subclasses of) labelled transition systems. In [3, 12, 14] and
others different instantiations of the relation conforms-to have been defined
by varying U , obs , and the comparison criterion ⊑.

Test generation Instead of defining implementation relations by varying
U , obs, and ⊑ (1) the problem in test generation is to obtain the set of experi-
ments that are needed to distinguish between correct and incorrect implemen-
tations for a given implementation relation and given specification. Preferably,
such experiments are calculated automatically from the specification and the
implementation relation. Unfortunately, calculating such experiments is often
too complex in space and time to be feasible.

Contribution of this paper In this paper we discuss a factorized test
generation technique that can be used to generate tests from a transition sys-
tem specification with respect to the correctness criterion multi input/output
conformance miocoF , which was introduced in [5]. The technique is factor-
ized with respect to the implementation relation miocoF in the sense that the
“complicated” correctness criterion miocoF can be split up in several inde-
pendent “easier-to-check” correctness criteria. Moreover, for the generation of
tests for each of these simpler criteria we use a specification that is obtained by
“projecting” the original specification. Such a projected specification is usu-
ally smaller in size than the original specification, and thus easier to handle
by tools. In this way test generation from large-sized specifications for com-
plicated correctness criteria becomes feasible. Some existing test tools, such
as TGV [4] and Autolink [13], have implemented test generation techniques
that are similar to the ones of which the underlying mathematical principles
are explained in this paper.

Overview Section 2 recalls [5], defining the subclass of multi-input/output
transition systems. Next, section 3 presents the correctness criterion miocoF ,
and describes an algorithm that is able to generate tests from a specification
with respect to miocoF . Section 4 investigates under which conditions spec-
ifications can be safely reduced in size without loosing the ability to generate
valid tests from it. Section 5 describes two factorized test generation tech-
niques: the technique described in section 5.1 is able to produce a sound test
suite, and the one in section 5.2 produces a complete test suite. In section
5.3 implementation techniques are discussed which make the factorized way

of generating tests more efficient. Finally, section 6 contains conclusions and
further research.

2 MULTI-INPUT/OUTPUT TRANSITION SYSTEMS

Many behaviour description languages use the formalism of labelled transition
systems as their underlying semantic model (e.g., CCS [10], Lotos [6]). In
this paper we use rigid transition systems, i.e., without internal actions, to
specify and model the behaviour of systems.

Definition 1 A (labelled) transition system (LTS) over L is a quadruple
〈S,L,→, s0〉 where S is a (countable) set of states, L is a (countable) set of
observable actions, →⊆ S × L × S is a set of transitions, and s0 ∈ S is the
initial state.

The universe of LTSs over L is denoted by LTS(L). Instead of (s, a, s′) ∈→
we write s a−→ s′. We extend the relation −→ with labels that are sets of
actions: s A−−→ s means that s cannot perform actions a ∈ A, i.e., s A−−→ s =def

∀µ ∈ A : s
µ

−−→/ . Such self-loop transitions are called refusal transitions [12].
A failure trace is a finite sequence µ1·. . .·µn of actions and refusals. We write
p µ1·...·µn−−−−−→ pn for ∃p1, . . . pn−1 : p µ1−−→ p1

µ2−−→ . . . µn−−→ pn, and p µ1·...·µn−−−−−→ for
∃pn : p µ1·...·µn−−−−−→ pn. The set of finite sequences over actions in L is denoted
by L∗, and the set of derivates of p is defined as der(p) =def {p′ | ∃σ ∈ L∗ :
p σ−→ p′}. The set of failure traces of p over L is defined as f-traces(p) =def

{σ ∈ (L ∪ P(L))∗ | p σ−→} where P(·) denotes the powerset operator. For
the notation of transition systems we use some standard process-algebraic
operators (cf. Lotos [6]). For this paper it suffices to use action-prefix µ;B
which can perform action µ and then behave as B, and unguarded choice

∑

B
which can behave as any of its members B ∈ B. We abbreviate

∑

{B1, B2}
by B1 + B2 and

∑

∅ by stop.
In traditional testing theory [1, 3] an LTS abstracts from the initiative of

actions. In reality, however, many implementations communicate with their
environment via clearly distinguishable input actions (actions that are initi-
ated by the environment and consumed by the implementation, e.g., button
push experiments) and output actions (actions that are initiated by the im-
plementation and consumed by the environment, e.g., messages that occur on
a display). In testing the distinction between input actions and output actions
is crucial to model realistic implementations faithfully. This has triggered re-
search in transition system models where the labelset L is partitioned in a
set of input actions LI and a set of output actions LU , e.g., input/output au-
tomata (IOA, [9]), input/output state machines (IOSM, [11]), input/output
labelled transition systems (IOLTS, [4]) and input/output transition systems
(IOTS, [14]). These models additionally require that input actions are contin-
uously enabled [2].

A further refinement with respect to distinguishing inputs and outputs was
proposed in [5]. There not only a distinction between input actions and output
actions is made, but also the interface of the implementation with its environ-
ment (“PCO”) is explicitly modelled. This is done by partitioning the set of
input actions LI in a set of channels LI =def {L1

I , . . . , Ln
I }, and the set of out-

put actions LU in a set of channels LU =def {L1
U , . . . , Lm

U }. Each channel Lj
I

or Lk
U represents a location on the interface of the implementation where the

actions in Lj
I or Lk

U may occur, respectively. Moreover, to enlarge the diversity
of systems that can be modelled (compared to IOA, IOSM, IOLTS and IOTS)
a more liberal condition with respect to the enabling of inputs is imposed: in-
puts need not always be enabled, but for each input channel input actions
must be simultaneously enabled. Such systems are called multi-input/output
transition systems (MIOTS).

Definition 2 A multi-input/output transition system (MIOTS) p over parti-
tioning LI of LI and partitioning LU of LU is a transition system with inputs
and outputs, p ∈ LTS(LI ∪ LU), such that for all Lj

I ∈ LI

∀p′ ∈ der (p), if ∃a ∈ Lj
I : p′ a−→ then ∀b ∈ Lj

I : p′ b−→

The universe of multi-input/output transition systems over LI and LU is de-
noted by MIOTS(LI ,LU).

The formalisms LTS and IOTS are special classes of MIOTS(LI ,LU) for
specific instantiations of the sets LI and LU [5]. Because many realistic im-
plementations can be modelled as MIOTS we will use MIOTS as the mod-
elling formalism of implementations. The choice to model implementations as
MIOTS still leaves freedom to choose the interface of these implementations
with their environment by instantiating these MIOTS with the proper par-
titionings LI and LU . Figure 1 depicts the interface of a multi-input/output
transition system.

In [5] an extensional correctness criterion ≤mior has been defined that in-
dicates when an implementation is correct with respect to its specification.
This relation can be defined in the same style as equation (1), where the set
of observers is taken as the set of singular observers. A singular observer acts
as a special multi-input/output transition system which supplies inputs and
observes outputs, where inputs for the implementation are outputs for the
observer and vice versa. Moreover, these observers are equipped with labels
to detect input suspension, i.e., the non-acceptance of an input action by the
implementation (e.g., a button that is pressed but that does not go down),
and with labels to detect output suspension, i.e., the inability of the implemen-
tation to produce an output action (e.g., a display that remains empty). By
having the ability to detect input suspension a larger class of implementations
can be tested than in, e.g., the testing theory of IOTS [14]. In the extensional

observer

buttons

display

implementation

Y

X
eye

finger

finger

eye

buttons

display

Figure 1 An interface for a multi-input/output transition system

definition of ≤mior an implementation i is related to its specification s if, for
every singular observer u, all observations obs(u, i) that u can make of i are
included in the set of observations obs(u, s) that u can make of s. We will
not present the extensional definition of ≤mior here, but instead we will use
an intensional characterization of ≤mior as its definition. For more details we
refer to [5].

Definition 3 ≤mior⊆ MIOTS(LI ,LU) ×LTS(LI ∪ LU) is defined by

i ≤mior s

=def ∀σ ∈ (LI ∪ LU ∪ LI ∪ LU)∗ : out(i after σ) ⊆ out(s after σ)

where
out(p after σ) =def {x ∈ LU | ∃p′ : p σ−→ p′ x−→} (i)

∪{Lj
I | 1 ≤ j ≤ n,∃p′ : p σ−→ p′ and p′

L
j

I−−→} (ii)

∪{Lk
U | 1 ≤ k ≤ m,∃p′ : p σ−→ p′ and p′

LK
U−−−→} (iii)

The relation ≤mior states that an implementation is ≤mior -incorrect if (i)
the implementation produces an output, which cannot be produced by the
specification after the same trace, or (ii) the implementation has an input
suspension at some input channel Lj

I where the specification has none, or
(iii) the implementation has an output suspension at some output channel
Lk

U where the specification has none.

3 TEST GENERATION FOR MIOTS

Checking for ≤mior requires checking out(i after σ) ⊆ out(s after σ) for
all σ ∈ (LI ∪ LU ∪ LI ∪ LU)∗. Since this is too time consuming in practice,
the relation miocoF restricts ≤mior by checking this condition for all failure
traces in F for particularly chosen F (cf. the conformance relation conf in
[1]).

Definition 4 The relation miocoF ⊆ MIOTS(LI ,LU) × LTS(LI ∪ LU),
where F ⊆ (LI ∪ LU ∪ LI ∪ LU)∗, is defined by

i miocoF s =def ∀σ ∈ F : out(i after σ) ⊆ out(s after σ)

Proposition 1 Let F1,F2 ⊆ (LI ∪ LU ∪ LI ∪ LU)∗

1. miocoF1∪F2
= miocoF1

∩miocoF2

2. F1 ⊆ F2 implies miocoF1
⊇ miocoF2

We use the parameterized relation miocoF as the class of correctness crite-
ria for well-chosen F . This is motivated by the fact that for specific instances
of LI , LU and F this relation coincides with well-known implementation rela-
tions such as ioco and ioconf advocated in [14]. The set F can be considered
as a set of test purposes for which tests must be derived [7]. The selection of
such traces could be based on testing heuristics or experience. For complex
and critical applications, such as communication protocols, the set F can be
very large.

In [5] a test generation algorithm Π has been presented that is able to
generate tests from a specification s ∈ LTS(LI ∪LU). These tests can decide
whether an implementation is miocoF -correct with respect to its specification
or not. Tests are modelled as singular observers and use special labels θj

i to

detect input suspension at channel Lj
I , and the special labels θk

u to detect
output suspension at channel Lk

U . Tests are built up recursively by either

applying an input action a to channel Lj
I and detecting its acceptance or

suspension (t ::= a; t+θj
i ; t), or observing an output channel Lk

U and detecting
the occurrence of an output or output suspension (t ::=

∑

x∈Lk
U
∪{θk

u}
x; t), or

ending the test [5]. The end states of a test are labelled with pass or fail and
indicate success or failure of test execution.

Figure 2 depicts test algorithm Π from [5]. The algorithm takes a specifica-
tion s ∈ LTS(LI ∪LU) and a set of failure traces F and computes a test case
ΠF ,S by applying one of the steps in the algorithm. The set S keeps track
of the possible current states of the specification, and initially contains the
initial state of specification s. The set F contains the failure traces for which
the condition out(i after σ) ⊆ out(s after σ) has to be tested. Both sets S
and F are updated in case the test generation algorithm proceeds recursively.
We define S after σ =def {s′ | ∃s ∈ S : s σ−→ s′} as the set of states that are
reachable from a state in S after σ. The trace σ denotes the trace σ where all
occurrences of refusals Lj

I and Lk
U are replaced by there suspension detection

labels θj
i and θk

u, and vice versa.
Running a test against an implementation means that the experiments pre-

scribed in the test (supplying an input to an input channel, or observing an
output from an output channel) are applied to the implementation. In case an
input action is supplied, then it is either accepted or rejected, after which the

Input: set of states S

Input: set of failure traces F ⊆ (LI ∪ LU ∪ LI ∪ LU)∗

Output: test case ΠF,S

Initial value: S = {s0}, where s0 is the initial state of s.

Apply one of the following non-deterministic choices recursively.

1. (* terminate the test case if there are no more specified traces in F *)
if F = ∅ then

ΠF,S := pass

2. (* terminate the test case when a trace σ ∈ F has been performed *)
if ǫ ∈ F then take some L

j

I ∈ LI , and for some a ∈ L
j

I (* supply input a *)

ΠF,S :=

�
a;pass + θ

j
i ; fail if S after L

j
I = ∅

a;pass + θ
j
i ;pass if S after L

j
I 6= ∅

3. (* terminate the test case when a trace σ ∈ F has been performed *)
if ǫ ∈ F then take some Lk

U ∈ LU , then (* observe channel Lk
U *)

ΠF,S :=
P

{x;pass | x ∈ Lk
U ∪ {θk

u} and S after x 6= ∅}
+
P

{x; fail | x ∈ Lk
U ∪ {θk

u} and S after x = ∅}

4. (* supply an input for which you want to test deeper *)
take some L

j
I ∈ LI and a ∈ L

j
I such that {σ | a·σ ∈ F} 6= ∅, then

ΠF,S := a; ΠF′,S′ + θ
j
i ;pass

where S′ = S after a ,F ′ = {σ | a·σ ∈ F}
5. (* supply some input and continue if it is refused *)

take some L
j
I ∈ LI such that {σ | L

j
I ·σ ∈ F} 6= ∅, then

ΠF,S := a;pass + θ
j
i ; ΠF′′,S′′

where a ∈ L
j
I , S

′′ = S after L
j
I ,F ′′ = {σ | L

j
I ·σ ∈ F}

6. (* Find a channel Lk
U that produces an output for which to test deeper *)

take some Lk
U ∈ LU such that {σ | ∃x ∈ Lk

U ∪ {Lk
U} : x·σ ∈ F} 6= ∅, then

ΠF,S :=
X

{x; ΠF′,S′ | x ∈ L
k
U ∪ {θk

u} and F ′ = {σ | x·σ ∈ F}
and S′ = S after x }

Figure 2 Test generation algorithm.

test continues accordingly. Similarly, for any output channel either an output
action is produced by the implementation and observed by the test, or output
at this channel is suspended, and the test continues with its corresponding
successor experiment. Consequently, when running a test against an imple-
mentation the test will always end up in one of its end states (i.e., a pass or
a fail state).

We say that implementation i passes test t if t can only end up in a pass
state after running against i. This is denoted by the predicate i passes t. The
dual is denoted by i fails t, meaning that t may end up in a fail state after

running against i. For test suite T we define i passes T =def ∀t ∈ T : i passes t,
and i fails T =def ¬(i passes T).

To assess the correctness of implementations by means of testing we have to
link the passing and failing of these tests when run against implementations to
the correctness of these implementations. For that we use the terms soundness,
exhaustiveness and completeness of test suites [8]. A test suite T is sound
(for specification s with respect to miocoF) if every correct implementation
will always pass this test suite: i miocoF s =⇒ i passes T . Test suite T
is exhaustive if passing test suite T guarantees correctness: i miocoF s ⇐=
i passes T . Test suite T is complete if it is both sound and exhaustive. A sound
test suite is never able to reject correct implementations, and an exhaustive
test suite is theoretically able to fail with all incorrect ones (which, in practice,
may take an infinite amount of time).

It has been shown [5] that every test that can be generated by algorithm Π
for F and s is sound for s with respect to miocoF . Moreover, the set of all
tests that can be generated by algorithm Π for F and s, denoted by ΠF(s),
is complete for s with respect to miocoF .

Proposition 2 Let F ⊆ (LI ∪ LU ∪ LI ∪ LU)∗ and s ∈ LTS(LI ∪ LU)

1. Any test case obtained from algorithm Π for s and F is sound for s with
respect to miocoF .

2. The set of all test cases that can be obtained from algorithm Π for s and F
is complete for s with respect to miocoF .

The algorithm may generate tests that are not very efficient in detecting
incorrect implementations, however, optimizations are not considered here.

4 LOOSER SPECIFICATIONS

We discuss a technique that can be used to isolate a part of the specification,
and use this part to generate tests. This technique is called loosening of spec-
ifications [8]. We analyse the conditions under which it is valid to isolate such
a part of the specification. Sections 5.1 and 5.2 will show how to generate a
sound and complete test suite from these parts for implementation relation
miocoF in a factorized way.

For correctness criterion miocoF only the behaviour after failure traces
specified in F has to be investigated (definition 4). For analysing whether the
responses to failure traces in F are valid or not there is no need to investigate
the complete specification; responses to experiments that are not specified in
F can be discarded. This argument shows that it may be possible to generate
tests from a smaller specification (in size). The question is how to obtain such
a smaller specification.

Such a smaller specification can be obtained by having the tester provide

the input actions of the failure traces in F for which correctness has to be
checked. Because a tester fully controls the input actions of an implementa-
tion but not the output actions, such a tester can “steer” the implementation
towards checking a specific failure trace in F as much as possible by providing
the input actions that are necessary to perform this failure trace. Determinis-
tic processes that specify such sequences of input actions are called selection
processes. Such processes can be seen as test purposes. From a selection pro-
cess q and specification s a specification s ‖ LI

q is isolated that contains the
responses to the input sequences specified in q, but discards all responses to
input sequences that are not specified in q. The operator ‖ LI

describes how
the part s‖LI

q is isolated from s, and its formal definition is given below (cf.
Lotos [6])

Definition 5 The universe of selection processes SLTS(LI) over LI is

SLTS(LI) =def {p ∈ LTS(LI) | p is deterministic}

Let s ∈ LTS(LI ∪ LU) and q ∈ SLTS(LI) then the transition system s ‖

LI
q ∈ LTS(LI ∪ LU) is inductively defined by the following inference rules.

s a−→ s′, q a−→ q′

s ‖LI
q a−→ s′ ‖LI

q′
(a ∈ LI)

s x−→ s′

s ‖LI
q x−→ s′ ‖LI

q
(x ∈ LU)

The operator‖LI
forces synchronization on actions in LI , but allows actions

not in LI (i.e., actions in LU) to occur independently.
We focus on what conditions need to be imposed on q in order to use s‖LI

q
instead of s as the specification to generate tests from without running the risk
to generate tests that are able to reject implementations that are miocoF -
correct for s, that is, what conditions need to be imposed on q in order to
generate test suites from s‖LI

q that are sound with respect to miocoF for s.
As a first step in analysing these conditions we compare the input refusals

and output refusals of s with the ones of s‖LI
q. Because all and only output

actions that s ‖ LI
q can perform are the ones that s is able to perform, any

refusal X ⊆ LU of s is also a refusal of s‖LI
q and vice versa. For refusals of

input actions A ⊆ LI the situation is slightly different. Because s and q need
to synchronize on input actions it follows that the inability of s to perform
an input action is reflected by the inability of s ‖LI

q to perform this action,
but not vice versa!

Proposition 3 Let A ⊆ LI and X ⊆ LU .

1. s A−−→ s implies s ‖LI
q A−−→ s ‖LI

q

2. s X−−→ s iff s ‖LI
q X−−→ s ‖LI

q

Proposition 3 states that s‖LI
q preserves the refusals A ⊆ LI and X ⊆ LU

of s. This result can be used to show that s‖LI
q preserves all failure traces of

s in (LI ∪LU ∪LI ∪LU)∗ for which q specifies the sequences of input actions
to be performed. We use σ⌈LI to denote the sequence that arises from σ when
restricted to actions in LI .

Proposition 4 For all σ ∈ (LI ∪ LU ∪ LI ∪ LU)∗

s σ−→ s′ and q
σ⌈LI−−−−→ q′ implies s‖LI

q σ−→ s′ ‖LI
q′

Combining the facts that all output actions of s′ ‖ LI
q′ are produced by

s′ (definition 5) and that all input refusals and output refusals of s′ are pre-
served by s′ ‖LI

q′ (proposition 3), it follows, together with proposition 4, that
out(s after σ) is included in out(s‖LI

q after σ) for those σ such that σ⌈LI

is specified by q.

Proposition 5 Let σ ∈ (LI ∪ LU ∪ LI ∪ LU)∗

q σ⌈LI−−−−→ implies out(s after σ) ⊆ out(s‖LI
q after σ)

By choosing suitable q it is possible to “steer” for which failure traces the
inclusion out(s after σ) ⊆ out(s ‖ LI

q after σ) holds. In particular, if q
contains the input sequences of the failures traces specified in F , then this
inclusion holds (at least) for all σ ∈ F . But then, according to definition 4,
any implementation that is miocoF -correct for s is also miocoF -correct for
s ‖ LI

q, or alternatively, any miocoF -incorrect implementation for s ‖ LI
q is

also miocoF -incorrect for s. We define F⌈LI as the set-wise restriction on
failure traces in F : F⌈LI =def {σ⌈LI | σ ∈ F}.

Proposition 6 If traces(q) ⊇ F⌈LI, then

i miocoF s implies i miocoF (s‖LI
q)

The significance of proposition 6 is that in order to obtain a sound test
suite that can check whether an implementation is miocoF -correct for “big”
specification s, it is possible to generate a sound test suite from the “smaller”
specification s ‖ LI

q as long as q specifies all input sequences of the failures
traces in F . If traces(q) ⊇ F we call the specification s ‖ LI

q the projected
specification of s on miocoF . The reverse implication of proposition 6 does
not hold in general: erroneous implementations with respect to miocoF and
s may pass a sound test suite that is generated from s‖LI

q. This is caused by
the fact that, due to the pruning of s using q, additional input refusals may
be introduced in s‖LI

q that were not present in s itself (cf. proposition 3.1).

5 FACTORIZED TEST GENERATION

In this section we describe two techniques to generate tests for miocoF in
a factorized way. We do this by generating tests from a specification that is
projected on the correctness criterion mioco{σ} for all σ ∈ F . Section 5.1
discusses how a sound test suite can be obtained in this way, and section 5.2
shows how to obtain a complete test suite.

5.1 Factorized test generation (soundness)

In practice, when generating tests for miocoF , the set F may contain a
large number of failure traces, and the specification s can be very large (e.g.,
measured in number of states and transitions). Consequently, the generation
of tests ΠF (s) directly from F and s can be a time and space consuming task,
and tools may not be able to generate this set. In this subsection we present
a technique to cope (at least partially) with this complexity.

In order to reduce the size of the specification s selection processes can be
used (see section 4). A special class of selection processes is the class consisting
of linear sequences over the set of input actions LI . Such selection processes
are called sticks.

Definition 6 Let σ, σ′ ∈ (LI ∪LU ∪LI ∪LU)∗, then stick(σ) is the transition
system that is inductively defined by

stick(ǫ) =def stop

stick(a·σ′) =def

{

a; stick(σ′) if a ∈ LI

stick(σ′) otherwise

The universe of all sticks is denoted by STICK(LI).

Note that STICK(LI) ⊂ SLTS(LI). Figure 4(a) depicts the structure of a
stick.

From the generalized version of proposition 1.1 it follows that checking for
correctness with respect to miocoF can be expressed in terms of checking for
mioco{σ} for each σ ∈ F , viz.

miocoF =
⋂

σ∈F

mioco{σ} (2)

Each correctness check with respect to mioco{σ} can be performed indepen-
dently. For this correctness criterion it suffices to take a selection process that
is able to perform the sequence σ⌈LI according to proposition 5. The process
stick(σ) is such a selection process. Thus, according to proposition 6 we have

i mioco{σ} s implies i mioco{σ} (s‖LI
stick(σ)) (3)

Combining the results of equations (2) and (3) shows that instead of gen-
erating tests from s for miocoF we can generate tests from s ‖ LI

stick(σ)
for mioco{σ} without running the risk that miocoF -correct implementations
are rejected. For all σ ∈ F this can be done independently. This leads to the
parallelization procedure sketched in figure 3.

Π{σ2}(s‖LI
stick(σ2))Π{σ1}(s‖LI

stick(σ1)) Π{σn}(s‖LI
stick(σn))

Π Π Π. . .

. . .

. . .mioco{σ1}s‖LI
stick(σ1) mioco{σ2}s‖LI

stick(σ2) mioco{σn}s‖LI
stick(σn)

Figure 3 Factorized test suite generation (soundness)

Proposition 7 i miocoF s implies ∀σ ∈ F : i mioco{σ} (s‖LI
stick(σ))

Algorithm Π can be applied to generate tests from s ‖ LI
stick(σ) for

mioco{σ}. This gives us a test suite Π{σ}(s ‖ LI
stick(σ)) for each σ ∈ F .

The union of all these tests suites is sound for miocoF . Now any implemen-
tation that fails a test in

⋃

σ∈F Π{σ}(s ‖ LI
stick(σ)) will also fail test suite

ΠF(s), and hence is miocoF -incorrect for s (remember the convention that
ΠF(s) denotes the set of all tests that are generated by Π from s for miocoF ,
and that this set is complete (proposition 2.2)).

Corollary 1 i fails
⋃

σ∈F Π{σ}(s‖LI
stick(σ)) implies i fails ΠF (s)

Instead of generating tests from s for miocoF we can generate tests from
s‖LI

stick(σ) for mioco{σ}. This reduces complexity in several ways. Specifi-
cation s‖LI

stick(σ) is in most cases much smaller than s (in number of states
and transitions) due to its projection on {σ}, and mioco{σ} is less complex,
and thus easier to check, than miocoF . Although the number of test gen-
eration activities increases (for each σ ∈ F a test suite Π{σ}(s ‖ LI

stick(σ))
is generated) all these test generation activities are simpler and can be done
independently.

Note that the reverse of corollary 1 does not hold; an implementation that
passes test suite

⋃

σ∈F Π{σ}(s ‖ LI
stick(σ)) does not have to pass test suite

ΠF(s). This is a direct consequence of the one-way implication of (3), that is
a direct consequence of the one-way implication in proposition 3.1.

LI

ai

aj

ak

an

an

an

an

a1 an
a2

a2

a1

a1

a1

a1

a2

a2

a2

ai

aj

ak

(b) fan(σ)(a) stick(σ)

Figure 4 stick(σ) and fan(σ) with σ⌈LI = ai ·aj ·. . .·ak

5.2 Factorized test generation (completeness)

The factorized test generation technique sketched in section 5.1 produces a
sound but not necessarily complete test suite (corollary 1). In our attempts
to develop a test suite that is able to reject as many faulty implementations
as possible, we develop in this section a factorized test generation technique
which can generate a complete test suite.

For arbitrary selection process q proposition 3.1 states that any input refusal
of s is preserved in s‖LI

q, but not necessarily vice versa: an input refusal of
s ‖ LI

q can be caused by s itself, or by pruning of s with q. This also holds
if the selection process q is a stick. Consequently, s ‖ LI

q may have input
suspension where s has none. This exactly explains the absence of the reverse
implication in proposition 6.

In order to prevent the unwanted introduction of input refusals in s‖LI
q we

have to enforce that every input refusal of s‖LI
q is caused by s. This can be

done by requiring that q is always able to offer any input action. In that case
any input refusal of s ‖ LI

q must be caused by s itself, i.e., s A−−→ s iff s ‖

LI
q A−−→ s ‖ LI

q. Selection processes that are prepared to synchronize on all
input actions in states that lie on a particular sequence of input actions are
called fans. A fan can be seen as a stick where in each state all input actions
are offered. Figure 4(b) visualizes the structure of a fan.

Definition 7 Let σ, σ′ ∈ (LI ∪LU ∪LI ∪LU)∗, then fan(σ) is the transition
system that is inductively defined by

fan(ǫ) =def

∑

{a; stop | a ∈ LI}

fan(a·σ′) =def

{
∑

{b; stop | b ∈ LI , b 6= a} + a; fan(σ′) if a ∈ LI

fan(σ′) otherwise

The universe of all fans is denoted by FAN (LI).

We now claim that s ‖ LI
fan(σ) can be used for complete test generation

from s for mioco{σ}:

i mioco{σ} s iff i mioco{σ} (s‖LI
fan(σ)) (4)

Since s ‖LI
fan(σ) will, in most cases, be smaller than s itself it is profitable

to use s‖LI
fan(σ) for the generation of tests. Together with equation (2) this

procedure can be repeated for each σ ∈ F , thereby obtaining a paralleliza-
tion procedure for the generation of a complete test suite for miocoF . This
procedure can be visualized by replacing all stick(σi) with fan(σi) in figure 3.

Proposition 8 i miocoF s iff ∀σ ∈ F : i mioco{σ} (s‖LI
fan(σ))

As test generation algorithm Π is able to generate a test suite ΠF (s) from
specification s that is complete with respect to miocoF (see proposition 2.2),
it immediately follows from proposition 8 that an implementation is miocoF -
correct for s in case it passes every test in Π{σ}(s‖LI

fan(σ)) for all σ ∈ F .

Corollary 2 i fails
⋃

σ∈F Π{σ}(s‖LI
fan(σ)) iff i fails ΠF (s)

5.3 Efficient implementation of factorized test generation

Efficient implementation of factorized test generation techniques can be ob-
tained by exploiting the special structure of the set of failure traces F , and
by sharing common parts of tests that are generated. In this subsection we
briefly discuss (i) reducing the set F as far as possible without weakening the
correctness criterion, and (ii) sharing common prefixes of test generation.

Reduction of F : One way to reduce the set F of failure traces is to pre-
process F and remove all “equivalent” failure traces that would apriori lead
to the generation of identical test cases, that is, to reduce F to a smaller set
F ′ without weakening the correctness criterion.

Find the smallest F ′ ⊆ F such that {i | i miocoF ′ s} = {i | i miocoF s}

An example of such a reduction is the removal of failure traces that only
differ in permutations of failures. Since the algorithm produces tests that

check whether out(i after σ) ⊆ out(s after σ) for each σ ∈ F and the set of
states reachable by failure trace σ1 ·A·X ·σ2 equals the set of states reachable
by failure trace σ1 ·X ·A·σ2 (where A and X are refusals), one of these tests
is redundant.

Another example of such a reduction has to do with robustness testing. In
case the behaviour of an implementation for a failure trace which is not in
the specification is checked, then any implementation that accepts this fail-
ure trace is considered erroneous. Checking correctness for any longer failure
trace would not be senseful, since the implementation was already considered
erroneous. Consequently, it suffices to restrict to the smallest prefix of failure
traces that occur in F and not in s.

Sharing common prefixes: For common prefixes of failures traces in F
the application of Π can be done in a shared way, e.g., in case Π has to be
applied for failure trace σ ·σ1 and for σ ·σ2, then the application for σ can be
shared. So, test generation could be started by a single master test generation
process which spawns new test generation processes at points where failure
traces in F bifurcate.

6 CONCLUSIONS

In this paper, factorized test generation techniques were presented which can
be used to generate test cases from a specification for implementation re-
lation miocoF . The factorized techniques consist of two steps. Firstly, the
“complex” correctness criterion miocoF is split up in several independent
and “easy-to-check” correctness criteria mioco{σ}. Secondly, the specifica-
tion that is used for test generation for mioco{σ} is reduced to a smaller
specification than the original one by projecting the original specification on
the correctness criterion mioco{σ}. In this way test generation from a speci-
fication for miocoF can be done more efficiently, which is necessary to make
test generation for realistically-sized applications feasible. Depending on the
type of selection process that is used (a stick or a fan) the factorized test
generation proves to produce a sound or a complete test suite with respect to
miocoF , respectively.

Related work In the tool TGV [4] tests are generated with respect to a
test purpose that is given as a IOLTS automaton. This test purpose acts as a
selection process that is used to isolate the relevant part of the specification
from which tests are generated. A similar facility is provided by the Au-

tolink tool [13] that supports the (semi-)automatic generation of tests from
SDL specifications with respect to test purposes that are specified as Message
Sequence Charts. This tool runs in cooperation with the SDL development
environment SDT.

Further work The next step to be taken is the implementation of a tool
on the basis of the theory presented here. This will require more than the

direct translation into actual code of the algorithms presented in this paper.
For example, algorithm Π is an abstract, generic algorithm that captures the
essential idea of test generation for miocoF , but which should be optimized.
and made more efficient. Moreover, this paper considered factorized test gen-
eration from given F . How to select F , the test selection problem, was not
discussed.

7 REFERENCES

[1] E. Brinksma. A theory for the derivation of tests. In S. Aggarwal et al. (eds.),
PSTV VIII, pages 63–74. North-Holland, 1988.

[2] E. Brinksma, L. Heerink, and J. Tretmans. Developments in testing transition
systems. In M. Kim et al. (eds.), IWTCS X, pages 143–166. Chapman &
Hall, 1997.

[3] R. De Nicola and M.C.B. Hennessy. Testing equivalences for processes. The-
oretical Computer Science, 34:83–133, 1984.

[4] J.-C. Fernandez, C. Jard, T. Jéron, and C. Viho. Using on-the-fly verification
techniques for the generation of test suites. In R. Alur et al. (eds.), CAV’96.
LNCS 1102, Springer-Verlag, 1996.

[5] L. Heerink and J. Tretmans. Refusal testing for classes of transition systems
with inputs and outputs. In T. Mizuno et al. (eds.), FORTE X/PSTV XVII,
pages 23–38. Chapman & Hall, 1997.

[6] ISO. LOTOS. International Standard IS-8807. Geneve, 1989.
[7] ISO. Conformance Testing Methodology and Framework. International Stan-

dard IS-9646. Geneve, 1991.
[8] ISO/IEC JTC1/SC21 WG7, ITU-T SG 10/Q.8. Framework: Formal Methods

in Conformance Testing. Committee Draft CD 13245-1, ITU-T proposed
recommendation Z.500. Geneve, 1996.

[9] N.A. Lynch and M.R. Tuttle. An introduction to Input/Output Automata.
CWI Quarterly, 2(3):219–246, 1989.

[10] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
[11] M. Phalippou. Relations d’Implantation et Hypothèses de Test sur des Auto-

mates à Entrées et Sorties. PhD thesis, Uni. Bordeaux I, France, 1994.
[12] I. Phillips. Refusal testing. Theoretical Computer Science, 50(2):241–284, 1987.
[13] M. Schmitt, B. Koch, J. Grabowski, and D. Hogrefe. – Autolink – a tool

for the automatic and semi-automatic test generation. In A. Wolisz et al.
(eds.), Formale Beschreibungstechniken für verteilte Systeme, number Nr.
315 in GMD-Studien, St. Augustin, 1997.

[14] J. Tretmans. Test generation with inputs, outputs and repetitive quiescence.
Software—Concepts and Tools, 17(3):103–120, 1996.

