
Refusal testing for classes oftransition systems with inputsand outputsLex Heerink and Jan TretmansTele-Informatics and Open Systems group, Dept. of Computer ScienceUniversity of Twente, 7500 AE Enschede, The Netherlandsfheerink,tretmansg@cs.utwente.nlAbstractThis paper presents a testing theory that is parameterised with assumptionsabout the way implementations communicate with their environment. In thisway some existing testing theories, such as refusal testing for labelled tran-sition systems and (repetitive) quiescence testing for I/O automata, can beuni�ed in a single framework. Starting point is the theory of refusal testing.We apply this theory to classes of implementations which communicate withtheir environment via clearly distinguishable input and output actions. Theseclasses are induced by making assumptions about the geographical distribu-tion of the points of control and observation (PCO's) and about the way inputactions of implementations are enabled. For speci�c instances of these classesour theory collapses with some well-known ones. For all these classes a sin-gle test generation algorithm is presented that is able to derive sound andcomplete test suites from a speci�cation.1 INTRODUCTIONAn important aspect in the design and construction of systems is to validatewhether an implementation operates as it has been speci�ed. This can bedone using conformance testing: experiments are conducted on an implemen-tation under test (IUT) and from the observation of responses of the IUTit is concluded whether it behaves correctly. A formalisation of the confor-mance testing process hence requires formal models for the speci�cation, forthe implementation under test, and for experiments and observations, and the



formal de�nition of a correctness criterion, which is done by means of an im-plementation relation between models of implementations and speci�cations.In formal conformance testing it is assumed that the formal speci�cationis apriori known, and that the behaviour of an implementation can be for-mally modelled, but its model is not apriori known. The latter is called a testassumption. A well-known test assumption is that implementations can bemodelled as labelled transition systems [2, 3, 14] that communicate in a sym-metric and synchronous way with their environment; no notion of initiativeof actions is present. However, it has been recognised that such symmetriccommunication is not very realistic. Most implementations communicate inpractice with their environment via actions that are clearly initiated by onepartner, and accepted by the other [9, 11, 13, 14]. This has triggered researchin models that make an explicit distinction between actions that are con-trolled by the environment (input actions of the implementation) and actionsthat are controlled by the IUT (output actions of the implementation), e.g.,input/output automata (IOA) [9, 13], input/output state machines [11], andinput/output transition systems (IOTS) [15]. Many of these models addition-ally require that input actions are continuously enabled.As indicated in [4, 15] many implementation relations for labelled transitionsystems can be de�ned extensionally in terms of a set of experimenters U , aset of observations obs(u; i) that experimenter u 2 U causes when systemi is tested, and a relation 
 between obs(u; i) and obs(u; s). Formally, thisamounts to i conforms-to s =def 8u 2 U : obs(u; i)
 obs(u; s) (1)One such testing relation is refusal testing [12], where experimenters are notonly able to detect whether actions can occur, but also able to detect whetheractions can fail. Another example is the extensional characterisation of quies-cent trace preorder for input/output automata in [13].This paper continues the track of extensionally de�ned implementation re-lations and testing for models that distinguish between input and outputactions. What we add in this paper is the distinction between the di�erentlocations where these actions may occur on an interface, that is, we explicitlytake the distributed nature of interfaces into account. Moreover, we weakenthe requirement imposed on IOA and IOTS that input actions for implemen-tations must always be enabled, thereby conciliating the criticism in [13] thatthis requirement is too restrictive. We obtain classes of models of implemen-tations, one for each possible distribution of the interface. For these classeswe apply refusal testing [12] where observers are able to observe the successand failure of actions conducted at each di�erent location separately. We willshow that refusal testing for transition systems without inputs and outputs[12] and refusal testing for IOTS [15] are just instances of our parameterisedmodel (for the �nest and the coarsest distribution of locations, respectively).In that way the worlds of testing transition systems with, and without, inputsand outputs are uni�ed in a single testing framework. Furthermore, we de�ne



an intuitive correctness criterion in the same way as [15] which is manageablefor test generation in realistic situations. A single test generation algorithm isgiven which can cope with each of these classes, and which derives tests thatcan distinguish between correct and incorrect implementations.This paper is organised as follows. Section 2 �xes notation and recapitu-lates refusal testing for labelled transition systems [12]. In section 3 classes ofimplementation models, parameterised with assumptions about the distribu-tion of the interfaces, are de�ned and co-related. Refusal testing theory forthese classes is discussed in section 4 in a single framework. Section 5 presentsa test generation algorithm which is proved to be sound and complete. Sec-tion 6 illustrates the operation of the algorithm, and section 7 wraps up withconclusions and further work.2 REFUSAL TESTING FOR TRANSITION SYSTEMSWe use labelled transition systems to specify and model the behaviour of sys-tems. This section recalls the basics of transition systems and refusal testingwithout distinguishing between inputs and outputs.Definition 1 A (labelled) transition system over L is a quadruple hS;L;!;s0i where S is a (countable) set of states, L is a (countable) set of observableactions, !� S �L� S is a set of transitions, and s0 2 S is the initial state.We denote the class of all transition systems over L by LTS(L). For thenotation of transition systems, we use some standard process-algebraic oper-ators, which are de�ned in the usual way (cf. LOTOS [5]). For this paper itsu�ces to use action-pre�x �;B, which can perform action � and then be-have as B, and unguarded choicePB which can behave as any of its membersB 2 B. We abbreviatePfB1; B2g by B1 +B2 and P ; by stop.The behaviour of a labelled transition system, starting from a particularstate (usually s0), is expressed using sequences consisting of actions and setsof refused actions, i.e., sequences in (P(L) [ L)� (P(L) denotes the set of allsubsets of L). Such sequences are called failure traces [1].Notation 1 Let p = hS;L;!; s0i be a transition system such that s; s0 2S; �; �i 2 P(L) [ L and � 2 (P(L) [ L)�. Thens ��! s0 =def � (s; �; s0) 2! if � 2 Ls = s0 and 8� 2 � : s ���!= if � 2 P(L)s �1��2�:::��n��������! s0 =def 9s0; s1; : : : ; sn : s = s0 �1��! s1 �2��! : : : �n��! sn = s0s ��! =def 9s0 : s ��! s0The self-loop transitions of the form s A��! s where A � L are called refusaltransitions; A is called a refusal of s. Such a refusal transition explicitly en-codes the inability to perform any action in A from state s. Refusal transitionscan be serialised: s A1[A2�����! s i� s A1��! s A2��! s.



Definition 2 Let p 2 LTS(L), then1. init(p) =def f� 2 L j 9p0 : p ��! p0g2. f-traces(p) =def f� 2 (P(L) [ L)� j p ��!g3. traces(p) =def f-traces(p) \ L�4. p after � deadlocks =def 9p0 : p ��! p0 and init(p0) \ L = ;5. der (p) =def fp0 j 9� 2 L� : p ��! p0g6. P after � =def fp0 j 9p 2 P : p ��! p0g where P is a set of states7. p is deterministic i� 8� 2 L� : j fpg after � j � 18. p has �nite behaviour i� 9N 2 N : 8� 2 traces(p) : j� j � NObservers are, just like speci�cations and implementations, modelled astransition systems. In order for an observer to observe the refusals of a systemp we equip an observer u with a special deadlock detection label � (� 62 L)[8]. The occurrence of � indicates that the synchronised behaviour of u and pis not able to continue with any other action than �, i.e., p refuses all otheractions o�ered by u.Definition 3 Let p 2 LTS(L) and u 2 LTS(L [ f�g), then ej: LTS(L [f�g)�LTS(L)! LTS(L [ f�g) is de�ned by the following inference rules.u a�!u0; p a�! p0u ej p a�!u0 ej p0 (a 2 L) u ��!u0; init(u) \ init(p) = ;u ej p ��!u0 ej pObservations that can be made using an observer u interacting with p bymeans of ej now may include the action �. This makes it is possible to detectwhen p was unable to perform any other action o�ered by u.Definition 4 Let p 2 LTS(L) and u 2 LTS(L [ f�g).1. The set of completed trace observations obs�c isobs�c(u; p) =def f� 2 (L [ f�g)� j (u ej p) after � deadlocks g2. The set of trace observations obs�t isobs�t (u; p) =def f� 2 (L [ f�g)� j (u ej p) ��!gBased on the ability to distinguish processes by means of observations apreorder on processes can be de�ned extensionally (cf. equation (1)). Thispreorder, called refusal preorder, is known to correspond to inclusion of failuretraces [12].Definition 5 Refusal preorder �rf� LTS(L)�LTS(L) is de�ned byi �rf s =def 8u 2 LTS(L [ f�g) : obs�c(u; i) � obs�c(u; s) andobs�t (u; i) � obs�t (u; s)Proposition 1 i �rf s i� f-traces(i) � f-traces(s)



3 CLASSES OF TRANSITION SYSTEMSIn [9] it is argued that the symmetric synchronisation mechanism betweena system and its environment used in e.g., [5] exhibits the counter intuitiveproperty that the system is able to block actions that are supposed to becontrolled by its environment, and vice versa. Therefore, models have beendeveloped that distinguish between the initiative (or direction) of actions. Inthese models either an action is initiated by the environment and acceptedby the system (i.e., it is an input action), or an action is initiated by thesystem and accepted by its environment (i.e., it is an output action). Outputactions for the environment are input actions for the system, and vice versa.By requiring that implementations must always be prepared to accept inputactions and the environment must always be prepared to accept output ac-tions, counter-intuitive blocking can no longer occur. Transition systems inwhich the labelset L is partitioned in a set of inputs LI and a set of outputsLU (i.e., L = LI [LU and LI \LU = ;), and which are always prepared to ac-cept any input are called I/O automata (input/output automata) [9]. Figure1 depicts the synchronisation between a co�ee machine and its environment,both modelled as I/O automata (LI = fcoing and LU = fco�ee; teag).cointeatea teaej =cointeacoincoin cointeaco�eeco�eeco�ee co�ee cointeaco�eeE CM E ej CM
co�eeFigure 1 Co�ee machine CM and environment E as I/O automata.In [13, 15] testing theories based on the I/O automaton model (in terms ofIOA and IOTS) are presented. These theories su�er from some de�ciencies.First, the requirement imposed on IOA and IOTS to always accept input ac-tions is quite strong. Secondly, [13, 15] implicitly assume that the environmentis always capable of observing every output produced by the system, even ifthese outputs occur at geographically dispersed places (which is frequently thecase if the system under test is distributed), and thereby ignores a possibledistribution of the environment itself. In order to overcome these de�ciencieswe re�ne the I/O automaton model by taking the distribution of the interac-tion points (PCO's, points of control and observation [6]) on the interface ofa system with its environment into account, and we weaken the requirementthat inputs must be always enabled. This is accomplished by partitioning theinputs LI in pairwise disjunct sets L1I ; : : : ; LnI , and, similarly, LU in pairwisedisjunct sets L1U ; : : : ; LmI . We shall refer to such sets as channels. The ideabehind this partitioning is that each set LjI (or LkU ) re
ects the location on an



interface where these actions may occur. Furthermore, we weaken the require-ment on input enabling to `if some action in channel LjI can be performed,then all actions in channel LjI can be performed".Definition 6 A multi input-output transition system p over partitioning LIof LI and partitioning LU of LU is a transition system with inputs and out-puts, p 2 LTS(LI [ LU ), such that for all LjI 2 LI8p0 2 der (p); if 9a 2 LjI : p0 a�! then 8b 2 LjI : p0 b�!The universe of multi input-output transition systems over LI and LU is de-noted by MIOTS(LI ;LU ).Each particular partitioningLI and LU induces a class of transition systemsMIOTS(LI ;LU ) � LTS(LI [ LU ). In order to compare these we de�ne anordering� on partitionings of a set S, where we restrict to �nite partitionings.Definition 7 Let Parts(S) be the set of all partitionings of S and let X ;Y 2Parts(S), then X � Y =def 8X 2 X ; 9Y 2 Y : X � YThe relation � re
ects the ordering on the granularity of the partitioninginvolved, and de�nes a lattice on partitionings. The minimal element is thepartitioning that contains only singleton sets consisting of elements of S:min�(Parts(S)) = ffsg j s 2 Sg. The maximal element is the partitioning thatconsists of a single set containing all elements of S: max�(Parts(S)) = ffSgg.
ffag; fb; cgg�� � �ffag; fbg; fcgg � �ffa; cg; fbggffa; bg; fcgg ffa; b; cgg

Figure 2 The partial order � applied to partitionings of fa; b; cg.The granularity of the partitioningLI uniquely de�nes the class of potentialsystem models of implementations: the �ner the partitioning of LI , the largerthe class MIOTS(LI ;LU ). The granularity of the partitioning of the set ofoutput actions LU does not in
uence the class of potential system models ofimplementations (cf. de�nition 6).Proposition 2 Let X1;X2 be partitionings of LI , and let Y be a partitioningof LU , then X1 � X2 implies MIOTS(X1;Y) �MIOTS(X2;Y)



Speci�c instances of these partitionings yield some well-known classes. Inparticular, for the �nest partitioning on LI and LU the requirement imposedon multi input-output transition systems trivially becomes true, and the setMIOTS(min�(Parts(LI));min�(Parts(LU ))) equals the set LTS(LI [ LU ).The set MIOTS(max�(Parts(LI));max�(Parts(LU ))) collapses with IOTS[15] in case input actions are always enabled.4 TESTING MULTI INPUT-OUTPUT TRANSITION SYSTEMSWe give an extensional comparison criterion, cf. equation (1), that decideswhich implementations, modelled as MIOTS, can be distinguished by externalobservers, and which cannot. The set of external observers U are assumedto be modelled as MIOTS, too: an observer is able to accept all outputsat a speci�c location that are produced by the implementation as long asthe observer is able to accept only one of them. Furthermore, in order toobserve the inability to accept an input action, or the inability to producean output action, observers are (analogous to de�nition 3) equipped withdeadlock detection labels. This time we use di�erent deadlock detection labelsfor each channel: �ji 62 LI [LU to observe the inability of the implementationto accept an input action in channel LjI , and �ku 62 LI [ LU to observe theinability to produce outputs in channel LkU .Now, implementations that are modelled as members of MIOTS(LI ; LU )are observed by observers modelled in MIOTS(L�U ;L�I), where L�U =deffL1U [f�1ug; : : : ; LmU [f�mu gg and L�I =def fL1I[f�1i g; : : : ; LnI [f�ni gg. Commu-nication between observer and system is modelled by operator ][. The set � de-notes the set of all deadlock detection labels: � =def f�1i ; : : : ; �ni ; �1u; : : : ; �mu g.Definition 8 Let LI = fL1I ; : : : ; LnI g be a �nite partitioning of LI andlet LU = fL1U ; : : : ; LmU g be a �nite partitioning of LU , then operator ][:MIOTS(L�U ;L�I) � LTS(LI [ LU ) ! LTS(LI [ LU [ �) is de�ned by thefollowing inference rules.u a�!u0; p a�! p0u ][p a�!u0 ][p0 (a 2 LI [ LU ) u �ji��!u0; init(p) \ LjI = ;u ][p �ji��!u0 ][p (j 2 f1; : : : ; ng)u �ku��!u0; init(p) \ LkU = ;u ][p �ku��!u0 ][p (k 2 f1; : : : ;mg)An observer u 2 MIOTS(L�U ;L�I) that communicates with a system p 2LTS(LI [ LU ) may perform sequences of actions in LI [ LU , possibly inter-leaved with deadlock detection labels �ji and �ku. Similar to de�nition 4, wede�ne such sequences as the observations that can be made of such a system,thereby overloading the notations obs�c and obs�t .



Definition 9 Let p 2 LTS(LI [ LU ) and u 2MIOTS(L�U ;L�I).1. The set of completed trace observations obs�c isobs�c(u; p) =def f� 2 (LI [ LU [�)� j (u ][p) after � deadlocks g2. The set of trace observations obs�t isobs�t (u; p) =def f� 2 (LI [ LU [�)� j (u ][p) ��!gNow, following equation (1), and in the same line as de�nition 5, refusalpreorder is de�ned under the assumption that implementations are modelledas members in MIOTS(LI ;LU ). However, we do not require this for speci�-cations; speci�cations are just labelled transition systems over LI [ LU .Definition 10 The relation �mior�MIOTS(LI ;LU )�LTS(LI[LU ), calledmulti input-output refusal preorder, is de�ned byi �mior s =def 8u 2MIOTS(L�U ;L�I) : obs�c(u; i) � obs�c(u; s) andobs�t (u; i) � obs�t (u; s)Conceptually, when an observer experiments on an implementation that ismodelled as MIOTS it can either provide inputs at an input channel (e.g.,press a button), or observe outputs from an output channel (e.g., view adisplay). For each input channel the observer is equipped with a \�nger" toperform a button-push experiment, and for each output channel the observeris equipped with an \eye" that notices the output actions occurring on thedisplay (�gure 3). By assumption, output actions at a speci�c location cannotbe selectively perceived by observers: if one output can be observed, then alloutput actions at the same location can potentially be observed. Furthermore,it is assumed that unsuccessful input experiments and output experiments arenoticed by the observer. Figure 3 depicts an interface for MIOTS.
observerbuttonsdisplay implementationYXeye
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�nger

eye
buttonsdisplay

Figure 3 Observers of multi input-output transition systems.



A special class of observers are the singular observers. They consist of �nite,serial compositions of providing a single input action at some channel LjI anddetection of its acceptance or rejection, and observing some channel LkU anddetection of the occurrence, or absence, of outputs produced at this channel. Itturns out that it su�ces to restrict to singular observers in order to establishwhether implementations are �mior -correct or not.Definition 11 A singular observer u over LU and LI is a �nite, determin-istic multi input-output transition system u 2 MIOTS(L�U ;L�I ) such that8u0 2 der (u) : init(u0) = ; or init(u0) = LkU [ f�kug or init(u0) = fa; �ji gfor some j 2 f1; : : : ; ng; k 2 f1; : : : ;mg and a 2 LjI 2 LI . The set of allsingular observers over LU and LI is denoted by SOBS(L�U ;L�I ).Proposition 3 Let i 2MIOTS(LI ;LU ) and s 2 LTS(LI [ LU ), theni �mior si� 8u 2 SOBS(L�U ;L�I) : obs�c(u; i) � obs�c(u; s) and obs�t (u; i) � obs�t (u; s)i� 8u 2 SOBS(L�U ;L�I) : obs�c(u; i) � obs�c(u; s)i� f-traces(i) \ (LI [ LU [ LI [ LU )� � f-traces(s)Since each singular observer is composed of actions that are able to detectwhether an input at channel LjI is accepted or not, and observations that areable to detect whether outputs are produced at some channel LkU or not, itfollows that execution of singular observers only ends in case no more actionscan be conducted; the only way for a test execution u ][i to deadlock is bydeadlock of u.Proposition 4 Let u 2 SOBS(L�U ;L�I) and p 2MIOTS(LI ;LU ), then(u ][p) after � deadlocks implies u after � deadlocksThe observation that can be made from observer u communicating withsystem p uniquely determines the failure trace that was performed by p. Thisis possible because every observation of �ji and �ku in u ][p corresponds torefusal of LjI and LkU , respectively. We denote with � the trace � where eachoccurrence of a refusals LjI or LkU is replaced by its detection label �ji or �ku,and vice versa.Proposition 5 Let p 2 LTS(LI [LU ) and u 2 SOBS(L�U ;L�I ), then for any� 2 (LI [ LU [�)�u ][p ��!u0 ][p0 i� u ��!u0 and p ��! p0



Yet another characterisation of the relation �mior exists that is based onthe responses that the implementation can produce after having performed aspeci�c trace. These responses consist of the output suspension labels (�k) in-dicating that the implementation is in a state that cannot produce an outputat channel LkU , the input suspension labels (�j) indicating that the implemen-tation is in a state that cannot accept any input from channel LjI , and theoutputs in LU that the implementation can produce in the current state. Allthese responses are collected in the set out .Definition 12 Let p 2 LTS(LI [ LU ) and � 2 (LI [ LU [ LI [ LU )�, thenthe set out( p after � ) is de�ned byout( p after � ) =def fx 2 LU j 9p0 : p ��! p0 x�!g[f�j j 1 � j � n; 9p0 : p ��! p0 and init(p0) \ LjI = ;g[f�k j 1 � k � m; 9p0 : p ��! p0 and init(p0) \ LkU = ;gThe inability to accept input at channel LjI (i.e., input suspension) and theinability to produce output at channel LkU (i.e., output suspension) is nowexplicitly visible in terms of the input suspension labels �j and the outputsuspension labels �k, respectively. It turns out that an implementations is�mior -related to a speci�cation in case all responses that the implementationcan perform after a trace in (LI [ LU [ LI [ LU )� are speci�ed, i.e., animplementation is not allowed to suspend at some channel in case this isnot speci�ed, and the implementation is not allowed to produce unspeci�edoutputs.Proposition 6 Let i 2MIOTS(LI ;LU ) and s 2 LTS(LI [ LU ), theni �mior s i� 8� 2 (LI [ LU [ LI [ LU )� : out( i after � ) � out( s after � )Checking the condition in proposition 6 for all traces in (LI[LU[LI[LU )�is too time consuming in practice. Therefore, we generalise this condition toan arbitrary (and possible �nite) set F � (LI [ LU [ LI [ LU )�, and de�nea corresponding implementation relation miocoF in the same way as iocoFin [15]. We will use this relation in the next section as the basis for derivingtests.Definition 13 The implementation relation miocoF �MIOTS(LI ;LU )�LTS(LI [ LU ), where F � (LI [ LU [ LI [ LU )�, is de�ned byi miocoF s =def 8� 2 F : out( i after � ) � out( s after � )Furthermore, we de�ne mioco =def miocof-traces(s)\(LI[LU[LI[LU )� .We remark here that, in general, observers in SOBS(L�U ;L�I) are more



a
a

axa b yp1 p2
p3

xa�1; �2; �
xa

�1; �2; � �1; �2; ��1; �2; �
�1; �2�1; �2�2; �

�1; �2
�1; �2; � �1; �2; ��2; �

mioconot (mioco)
not (mioco)mioco miocoy

�2; � ��1; �2� b
�1; �2 � bnot (mioco)

Figure 4 The relation mioco with LI = ffag; fbgg and LU = ffx; ygg.powerful than observers for input/output automata or IOTS (cf. [13, 15])due to their ability to observe output suspension at di�erent output channels:singular observers can distinguish between systems that are unable to produceoutput actions at one channel, while at another channel the system is able toproduce output actions. In terms of the relation � on partitions, this meansthat the �ner the outputs are partitioned (i.e., the more output channels arepresent), the more selectively observers are able to observe. In particular,for the �nest partitioning of inputs and the �nest partitioning of outputsour relation �mior collapses with �rf , while we claim that for the coarsestpartitioning of the inputs and the outputs the relation �mior collapses withioco [15] in case it is assumed that for implementations inputs are alwaysenabled.Proposition 7 Let i 2 MIOTS(min�(Parts(LI));min�(Parts(LU ))) ands 2 LTS(LI [ LU ) such that min�(Parts(LI)) and min�(Parts(LU ))) are�nite, then i �rf s i� i �mior s5 TEST GENERATION FOR MIOTSIn this section we develop an algorithm to derive tests systematically from aspeci�cation such that these tests are able to reject implementations that are



miocoF -incorrect, and accept implementations that aremiocoF -correct. Thealgorithm depends on the speci�cation (modelled as a member of LTS(LI [LU )), the correctness criterion (miocoF for some F), and the test assumption(implementations are modelled as members of MIOTS(LI ;LU )).Test cases need to incorporate some kind of verdict that can be used to givesuch an indication about the (in)correctness of implementations when runningthese test cases against implementations. We distinguish between two kindsof verdicts: pass to indicate that the implementation behaved as expected,and fail to indicate that the implementation behaved erroneously (cf. [6, 7]).We de�ne a test as a member of SOBS(L�U ;L�I) where the �nal states areidenti�ed with the verdicts pass or fail.Definition 14 A test t over L�I and L�U is a singular observer t 2 SOBS(L�U ;L�I) such that for each t0 2 der(t)init(t0) = ; i� t0 = pass or t0 = failThe universe of tests over L�I and L�U is denoted by TESTS (L�U ;L�I ).Since tests will always end in a �nal state of the test (proposition 4) everytest run is assigned a verdict, viz., the verdict of the �nal state of the test.Trace � is a test run of t ][i i� � 2 obs�c(t; i). An implementation i fails test t ifthere exists a test run of t ][i leading to a fail state, (i.e., i fails t =def 9� 2obs�c(t; i); 9i0 : t ][i ��! fail ][i0), and implementation i passes test t if it doesnot fail t. Implementation i fails a set of tests T if i fails a test t 2 T , otherwiseit passes T .Soundness, exhaustiveness and completeness [7] are properties of test suites(i.e., sets of tests) that link the passing or failing of test suites to the correct-ness of the implementations. A test suite is called sound if this test suitewill never reject miocoF -correct implementations, and a test suite is calledexhaustive if each incorrect implementation always fails this test suite. Inpractice test suites are required to be sound, but not necessarily exhaustive;any error that is detected by a test suite indeed proves that the implemen-tation under test was incorrect, but not �nding an error does not mean thatthe implementation is error free! A test suite is called complete if it is bothsound and exhaustive.Figure 5 presents a test generation algorithm � that produces tests thatare able to distinguish betweenmioco�F -correct andmioco�F -incorrect imple-mentations. The rationale behind the test algorithm is that it construct teststhat check the conditionout( i after � ) � out( s after � )for � 2 F (cf. de�nition 13). The test generation algorithm takes a speci�ca-tion s 2 LTS(LI [LU ) and a set of failure traces F � (LI [LU [ LI [ LU )�,and produces tests in TESTS (L�U ;L�I). The variable S keeps track of the cur-rent states in the speci�cation, which initially equals fs0g after � , and the



variable F keeps track of the failure traces that need to be investigated inorder to establish correctness. Each time an action is performed the sets Sand F are updated accordingly.Input: set of states SInput: set of failure traces F � (LI [ LU [ LI [ LU)�Output: test case �F;S 2 TESTS(L�U ;L�I).Initial value: S = fs0g after � , where s0 is the initial state of s.Apply one of the following non-deterministic choices recursively.1. (* terminate the test case if there are no more speci�ed traces in F *)if F = ; then�F;S := pass2. (* terminate the test case when a trace � 2 F has been performed *)if � 2 F then take some LjI 2 LI , and for some a 2 LjI (* supply input a *)�F;S := � a;pass+ �ji ; fail if S after LjI = ;a;pass+ �ji ;pass if S after LjI 6= ;3. (* terminate the test case when a trace � 2 F has been performed *)if � 2 F then take some LkU 2 LU , then (* observe channel LkU *)�F;S := Pfx;pass j x 2 LkU [ f�kug and S after x 6= ;g+ Pfx; fail j x 2 LkU [ f�kug and S after x = ;g4. (* supply an input for which you want to test deeper *)Take some LjI 2 LI and a 2 LjI such that f� j a�� 2 Fg 6= ;, then�F;S := a; �F0;S0 + �ji ;passwhere S0 = S after a ;F 0 = f� j a�� 2 Fg5. (* supply some input and continue if it is refused *)Take some LjI 2 LI such that f� j LjI �� 2 Fg 6= ;, then�F;S := a;pass+ �ji ; �F00;S00where a 2 LjI ; S00 = S after LjI ;F 00 = f� j LjI �� 2 Fg6. (* Find a channel LkU that produces an output for which to test deeper *)Take some LkU 2 LU such that f� j 9x 2 LkU [ fLkUg : x�� 2 Fg 6= ;, then�F;S :=Xfx; �F0;S0 j x 2 LkU [ f�kug and F 0 = f� j x�� 2 Fgand S0 = S after x gFigure 5 Test generation algorithm.Step 1 of the algorithm assigns pass in case no failure trace in F wasperformed (e.g., because the implementation responds with an output actionthat is not checked for in F). Step 2 of the algorithm checks for all inputchannels whether the implementation is allowed to suspend input. Note thatSafterLjI = ; means that there is no state in S that can perform refusal tran-sition LjI . Step 3 checks for all output channels whether all outputs that the



implementation can produce are indeed speci�ed. Step 4 supplies an input tothe implementation at some channel LjI and continues if the implementationis able to accept this input. Step 5 also supplies an input to the implemen-tation at some channel LjI but now the algorithm recursively proceeds if theinput is refused. Finally, step 6 awaits an output action or observes an out-put suspension at output channel LkU after which the algorithm recursivelyproceeds.Note that the algorithm is guaranteed to �nish in case the set F containsa �nite number of failure traces; in every step the length of the failure tracesin F are reduced, and since all failure traces in F are (by de�nition) �niteeventually step 2 or step 3 will always be applied.Proposition 8 Let F � (LI [ LU [ LI [ LU )� and s 2 LTS(LI [ LU )1. Any test case obtained from algorithm � for s and F is sound for s withrespect to miocoF .2. The set of all test cases that can be obtained from algorithm � for s and Fis complete for s with respect to miocoF .Remark 1 The algorithm presented in �gure 5 can be seen as an extensionof the one presented in [15] in two ways. First of all, [15] considers imple-mentations that are modelled as IOTS, so refusal of input is not considered.Secondly, the algorithm in [15] is not able to deal with the di�erent inputchannels and di�erent output channels on interfaces of implementations.Although our algorithm is applicable to di�erent classes of implementations,the algorithm in [15] is (probably) more e�cient in deriving tests for IOTSthan ours; it is likely that they need less tests to obtain a complete test suitefor these kind of systems than we do.6 ILLUSTRATION OF THE ALGORITHMConsider the co�ee machine CM depicted in �gure 6. After insertion of acoin (coin) a user may press either the co�ee button (cb) or the tea but-ton (tb), which results in the production of co�ee (cof ) or tea (tea), respec-tively. There are two distinct input channels (a channel to insert coins anda channel to push buttons) and a single output channel for providing co�eeor tea: CM 2MIOTS(ffcoing; fcb; tbgg; ffcof; teagg). The dashed arrows la-belled �1; �2 and �1 denote refusal transitions for the sets fcoing; fcb; tbg andfcof; teag, respectively.Figure 6 also depicts some tests that are derived from CM for F = f�; coin�cbg using algorithm � (see �gure 5). For readability the steps of the algo-rithm that were applied are indicated in the nodes of the tests. Tests (a) isan immediate consequence of step (2) of the algorithm, and test (b) an imme-diate consequence of step (3). Test (a) checks that implementations initiallymust accept a coin (refusal of a coin gives a fail verdict), and test (b) checks



�2; �1�1�1�1; �2 �1; �2cb tbcof teacoinCM
cof �1upassfailfail tea(3)(b) �1i�2i cbcof �1upass fail fail

cointea pass(4)(4) (3)(c)pass
(2) �1ifailcoinpass (a)

Figure 6 Some tests generated by � from CM.that implementations are initially not allowed to provide free drinks. Test (c)follows from the successive application of step (4), again step (4), and step(3). It checks that after coin �cb the production of tea, or the suspension ofproviding a drink, is considered incorrect.Note that algorithm � may produce tests that always return the verdictpass (e.g., cb �pass + �2i �pass). Execution of such tests is not very sensible.The derivation of such meaningless tests indicates that the algorithm is notoptimal and that there is room for improvement.7 CONCLUSIONS AND FURTHER WORKConclusions In this paper the theory of refusal testing [12] has been appliedto several classes of transition systems that distinguish between the initiativeof actions: either input or output. Each class is induced by the distribution ofthe locations through which these systems communicate with their environ-ment. In this way a refusal testing theory is obtained that is parameterised bythe distribution of the interface of implementations. Speci�c choices for theinterfaces yield the seminal refusal testing theory of [12], and the (repetitive)quiescent trace testing theory for I/O automata [13] and for input/outputtransition systems [14, 15]. For the large variety of classes of transition sys-tems that can be obtained, a correctness criterion miocoF (de�nition 13) isde�ned that is explicitly parameterised by a set of failure traces F . For allthese classes of systems and the corresponding correctness criteria a singletest generation algorithm (�gure 5) is de�ned that is able to produce a soundand complete test suite from a speci�cation. This algorithm is an extensionof the one in [15]: that one is applicable to a smaller class of systems and isnot parameterised over the distribution of the interface of implementations.Further work The test generation algorithm � can produce a large, andpossibly in�nite, number of tests. Since it is not feasible to execute all of them,techniques have to be developed to measure the relevance of tests (coverage),to select the most relevant tests from a larger set of tests (test selection), or
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