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Abstract

This paper presents a testing theory that is parameterised with assumptions
about the way implementations communicate with their environment. In this
way some existing testing theories, such as refusal testing for labelled tran-
sition systems and (repetitive) quiescence testing for I/O automata, can be
unified in a single framework. Starting point is the theory of refusal testing.
We apply this theory to classes of implementations which communicate with
their environment via clearly distinguishable input and output actions. These
classes are induced by making assumptions about the geographical distribu-
tion of the points of control and observation (PCO’s) and about the way input
actions of implementations are enabled. For specific instances of these classes
our theory collapses with some well-known ones. For all these classes a sin-
gle test generation algorithm is presented that is able to derive sound and
complete test suites from a specification.

1 INTRODUCTION

An important aspect in the design and construction of systems is to validate
whether an implementation operates as it has been specified. This can be
done using conformance testing: experiments are conducted on an implemen-
tation under test (IUT) and from the observation of responses of the IUT
it is concluded whether it behaves correctly. A formalisation of the confor-
mance testing process hence requires formal models for the specification, for
the implementation under test, and for experiments and observations, and the



formal definition of a correctness criterion, which is done by means of an im-
plementation relation between models of implementations and specifications.

In formal conformance testing it is assumed that the formal specification
is apriori known, and that the behaviour of an implementation can be for-
mally modelled, but its model is not apriori known. The latter is called a test
assumption. A well-known test assumption is that implementations can be
modelled as labelled transition systems [2, 3, 14] that communicate in a sym-
metric and synchronous way with their environment; no notion of initiative
of actions is present. However, it has been recognised that such symmetric
communication is not very realistic. Most implementations communicate in
practice with their environment via actions that are clearly initiated by one
partner, and accepted by the other [9, 11, 13, 14]. This has triggered research
in models that make an explicit distinction between actions that are con-
trolled by the environment (input actions of the implementation) and actions
that are controlled by the IUT (output actions of the implementation), e.g.,
input/output automata (IOA) [9, 13], input/output state machines [11], and
input/output transition systems (IOTS) [15]. Many of these models addition-
ally require that input actions are continuously enabled.

As indicated in [4, 15] many implementation relations for labelled transition
systems can be defined extensionally in terms of a set of experimenters U, a
set of observations obs(u,?) that experimenter u € U causes when system
i is tested, and a relation ® between obs(u,i) and obs(u, s). Formally, this
amounts to

i conforms-to s =4 Yu € U : obs(u,s) ® obs(u, s) (1)

One such testing relation is refusal testing [12], where experimenters are not
only able to detect whether actions can occur, but also able to detect whether
actions can fail. Another example is the extensional characterisation of quies-
cent trace preorder for input/output automata in [13].

This paper continues the track of extensionally defined implementation re-
lations and testing for models that distinguish between input and output
actions. What we add in this paper is the distinction between the different
locations where these actions may occur on an interface, that is, we explicitly
take the distributed nature of interfaces into account. Moreover, we weaken
the requirement imposed on IOA and IOTS that input actions for implemen-
tations must always be enabled, thereby conciliating the criticism in [13] that
this requirement is too restrictive. We obtain classes of models of implemen-
tations, one for each possible distribution of the interface. For these classes
we apply refusal testing [12] where observers are able to observe the success
and failure of actions conducted at each different location separately. We will
show that refusal testing for transition systems without inputs and outputs
[12] and refusal testing for IOTS [15] are just instances of our parameterised
model (for the finest and the coarsest distribution of locations, respectively).
In that way the worlds of testing transition systems with, and without, inputs
and outputs are unified in a single testing framework. Furthermore, we define



an intuitive correctness criterion in the same way as [15] which is manageable
for test generation in realistic situations. A single test generation algorithm is
given which can cope with each of these classes, and which derives tests that
can distinguish between correct and incorrect implementations.

This paper is organised as follows. Section 2 fixes notation and recapitu-
lates refusal testing for labelled transition systems [12]. In section 3 classes of
implementation models, parameterised with assumptions about the distribu-
tion of the interfaces, are defined and co-related. Refusal testing theory for
these classes is discussed in section 4 in a single framework. Section 5 presents
a test generation algorithm which is proved to be sound and complete. Sec-
tion 6 illustrates the operation of the algorithm, and section 7 wraps up with
conclusions and further work.

2 REFUSAL TESTING FOR TRANSITION SYSTEMS

We use labelled transition systems to specify and model the behaviour of sys-
tems. This section recalls the basics of transition systems and refusal testing
without distinguishing between inputs and outputs.

DEFINITION 1 A (labelled) transition system over L is a quadruple (S, L, —,
so) where S is a (countable) set of states, L is a (countable) set of observable
actions, >C S x L x S is a set of transitions, and so € S is the initial state.

We denote the class of all transition systems over L by L7S(L). For the
notation of transition systems, we use some standard process-algebraic oper-
ators, which are defined in the usual way (cf. LOTOS [5]). For this paper it
suffices to use action-prefix a; B, which can perform action o and then be-
have as B, and unguarded choice Y B which can behave as any of its members
B € B. We abbreviate Y {B;, B2} by By + Bz and >_ () by stop.

The behaviour of a labelled transition system, starting from a particular
state (usually sg), is expressed using sequences consisting of actions and sets
of refused actions, i.e., sequences in (P(L) U L)* (P(L) denotes the set of all
subsets of L). Such sequences are called failure traces [1].

NotaTiON 1 Let p = (S, L, —, sg) be a transition system such that s,s" €
S, a,a; € P(L)UL and o € (P(L) U L)*. Then

o (s,a,8") €= ifaelL
s s = .
e U s=s andVpea:s—Lh ifacP(L)
§-oranOny of —ier 350,81,... ,8p 18 =S50 251 2 ... 22y, =
s <5 =gef 38 15T

The self-loop transitions of the form s 45 s where A C L are called refusal
transitions; A is called a refusal of s. Such a refusal transition explicitly en-
codes the inability to perform any action in A from state s. Refusal transitions

can be serialised: s 21242, o iff g-A1y o A2y



DEFINITION 2 Let p € LTS(L), then

nit(p) =aef {a €L |3 :p-p'}

Fraces(p) =aey {o€ (PLL)UL)" | p-2}

traces(p) =qer f-traces(p) N L*

p after o deadlocks =4 Ip' : p-Z>p' and init(p') NL =10
der(p) =aes {p'|Jo€L*:p-5p'}

Paftero =4 {p'|Ip€ P:p-—Z>p'} where P is a set of states
p is deterministic iff Yo € L* : | {p} aftero | <1

p has finite behaviour iff IN € N:Vo € traces(p): |o| < N

P RS S o~

Observers are, just like specifications and implementations, modelled as
transition systems. In order for an observer to observe the refusals of a system
p we equip an observer u with a special deadlock detection label § (8 ¢ L)
[8]. The occurrence of 6 indicates that the synchronised behaviour of u and p
is not able to continue with any other action than 0, i.e., p refuses all other
actions offered by w.

DEFINITION 3 Let p € LTS(L) and u € LTS(L U {6}), then ||: LTS(L U

{0}) x LTS(L) = LTS(L U {8}) is defined by the following inference rules.
u-u,p-p
ullp—u]p

u -5 ' init(u) N init(p) = 0

@el) WllpSullp

Observations that can be made using an observer u interacting with p by
means of || now may include the action #. This makes it is possible to detect
when p was unable to perform any other action offered by wu.

DEFINITION 4 Let p € LTS(L) and u € LTS(L U {8}).
1. The set of completed trace observations obsg is

obs®(u,p) =aes {0 € (LU{B})* | (u]|p) after o deadlocks }
2. The set of trace observations obs? is
0bs{ (u,p) =daer {0 € (LU{OD)" | (ullp) -}

Based on the ability to distinguish processes by means of observations a
preorder on processes can be defined extensionally (cf. equation (1)). This
preorder, called refusal preorder, is known to correspond to inclusion of failure
traces [12].

DEFINITION 5 Refusal preorder <,;C LTS(L) x LTS(L) is defined by

i1 <pr s =gqef Yue LTS(LU{6}): obs? (u,i) C obs®(u,s) and
obs? (u,i) C obs? (u, s)

PROPOSITION 1 i <,¢ s iff f-traces(i) C f-traces(s)



3 CLASSES OF TRANSITION SYSTEMS

In [9] it is argued that the symmetric synchronisation mechanism between
a system and its environment used in e.g., [5] exhibits the counter intuitive
property that the system is able to block actions that are supposed to be
controlled by its environment, and vice versa. Therefore, models have been
developed that distinguish between the initiative (or direction) of actions. In
these models either an action is initiated by the environment and accepted
by the system (i.e., it is an snput action), or an action is initiated by the
system and accepted by its environment (i.e., it is an output action). Output
actions for the environment are input actions for the system, and vice versa.
By requiring that implementations must always be prepared to accept input
actions and the environment must always be prepared to accept output ac-
tions, counter-intuitive blocking can no longer occur. Transition systems in
which the labelset L is partitioned in a set of inputs L; and a set of outputs
Ly (i.e., L = LyULy and LyNLy = (), and which are always prepared to ac-
cept any input are called I/O automata (input/output automata) [9]. Figure
1 depicts the synchronisation between a coffee machine and its environment,
both modelled as I/O automata (L; = {coin} and Ly = {coffee, tea}).

coffee
Q tea CM El| CM
E [} o
lcom com lcoin

coin o
coffee tea coffee tea coffee tea
[ ]

coffeeOtea coﬁ‘eeOtea com como °

Figure 1 Coffee machine CM and environment E as I/O automata.

In [13, 15] testing theories based on the I/O automaton model (in terms of
IOA and IOTS) are presented. These theories suffer from some deficiencies.
First, the requirement imposed on IOA and IOTS to always accept input ac-
tions is quite strong. Secondly, [13, 15] implicitly assume that the environment
is always capable of observing every output produced by the system, even if
these outputs occur at geographically dispersed places (which is frequently the
case if the system under test is distributed), and thereby ignores a possible
distribution of the environment itself. In order to overcome these deficiencies
we refine the I/O automaton model by taking the distribution of the interac-
tion points (PCO’s, points of control and observation [6]) on the interface of
a system with its environment into account, and we weaken the requirement
that inputs must be always enabled. This is accomplished by partitioning the
inputs Ly in pairwise disjunct sets L},... , L?, and, similarly, Ly in pairwise
disjunct sets Li;,...,L™. We shall refer to such sets as channels. The idea
behind this partitioning is that each set L]I' (or L¥,) reflects the location on an



interface where these actions may occur. Furthermore, we weaken the require-
ment on input enabling to ‘if some action in channel L} can be performed,
then all actions in channel L’ can be performed”.

DEFINITION 6 A multi input-output transition system p over partitioning Ly
of Ly and partitioning Ly of Ly is a transition system with inputs and out-
puts, p € LTS(L; U Ly), such that for all L}, € L

Vp' € der(p), if Ja € L’I' :p' %5 then Vb€ L]I' ip
The universe of multi input-output transition systems over L1 and Ly is de-

noted by MIZOTS(Lr, Lv).

Each particular partitioning £; and Ly induces a class of transition systems
MIOTS(Lr,Ly) € LTS(L1 U Ly). In order to compare these we define an
ordering < on partitionings of a set S, where we restrict to finite partitionings.

DEFINITION 7 Let Parts(S) be the set of all partitionings of S and let X, €
Parts(S), then X 1Y =4 VX € X,V €Y : X CY

The relation < reflects the ordering on the granularity of the partitioning
involved, and defines a lattice on partitionings. The minimal element is the
partitioning that contains only singleton sets consisting of elements of S:
ming(Parts(S)) = {{s} | s € S}. The maximal element is the partitioning that
consists of a single set containing all elements of S: max«(Parts(S)) = {{S}}.

{{a, 0} {c}}

/{a;ﬁ\
\ /

{{a}.b,c}}

{{a}, {0}, {c}} @ o{{a,b,c}}

Figure 2 The partial order < applied to partitionings of {a, b, c}.

The granularity of the partitioning £; uniquely defines the class of potential
system models of implementations: the finer the partitioning of Ly, the larger
the class MZOTS (L, Ly). The granularity of the partitioning of the set of
output actions Ly does not influence the class of potential system models of
implementations (cf. definition 6).

PROPOSITION 2 Let Xy, X be partitionings of Ly, and let Y be a partitioning
of Ly, then X; <Xy implies MIOTS(X1,Y) 2 MIOTS(Xs,))



Specific instances of these partitionings yield some well-known classes. In
particular, for the finest partitioning on L; and Ly the requirement imposed
on multi input-output transition systems trivially becomes true, and the set
MZIOTS (ming(Parts(Lr)), ming(Parts(Ly))) equals the set LTS(Lr U Ly).
The set MZOTS (max«(Parts(Ly)), maxq(Parts(Ly))) collapses with IOTS
[15] in case input actions are always enabled.

4 TESTING MULTI INPUT-OUTPUT TRANSITION SYSTEMS

We give an extensional comparison criterion, cf. equation (1), that decides
which implementations, modelled as MIOTS, can be distinguished by external
observers, and which cannot. The set of external observers U are assumed
to be modelled as MIOTS, too: an observer is able to accept all outputs
at a specific location that are produced by the implementation as long as
the observer is able to accept only one of them. Furthermore, in order to
observe the inability to accept an input action, or the inability to produce
an output action, observers are (analogous to definition 3) equipped with
deadlock detection labels. This time we use different deadlock detection labels
for each channel: ] ¢ L; U Ly to observe the inability of the implementation
to accept an input action in channel LJ}’ and 0% ¢ L; U Ly to observe the
inability to produce outputs in channel L.

Now, implementations that are modelled as members of MZOTS(L, Ly)
are observed by observers modelled in MZOTS(LY, LY), where LY =gef
{LLU{6L},... , LR U{6m™}} and LY =4 {L1U{6}},...,L7U{07}}. Commu-
nication between observer and system is modelled by operator ][. The set © de-
notes the set of all deadlock detection labels: © =g4.¢ {6},...,07,0% ... 07}
DEFINITION 8 Let Ly = {L%,... L%} be a finite partitioning of L; and
let Ly = {L},..., L7} be a finite partitioning of Ly, then operator |[:
MIOTS(LY,LY) x LTS(L; U Ly) — LTS(Lr U Ly U ©) is defined by the

following inference rules.

67 . j
u-2u p-2sp u—su' init(p) N L} =0
T ST apu,”p’,’ (a € LU Ly) N.() L

ullp—=u'llp

(e{1,...,n})

.
u L)u’,im't(p) NLE =0

- (ke{l,...,m})
ullp—=u'][p

An observer u € MIOTS(LY;, £9) that communicates with a system p €
LTS(L; U Ly) may perform sequences of actions in L; U Ly, possibly inter-
leaved with deadlock detection labels 6/ and 6%. Similar to definition 4, we
define such sequences as the observations that can be made of such a system,
thereby overloading the notations obs? and obs?.



DEFINITION 9 Let p € LTS(Lr U Ly) and u € MIOTS(LY, LY).

1. The set of completed trace observations obsf is
obs?(u,p) =ae {0 € (L1ULyU®)* | (u]p) after o deadlocks }
2. The set of trace observations obs® is

0bs (u,p) =aqef {0 € (LIULyUO)* | (u]lp) =}

Now, following equation (1), and in the same line as definition 5, refusal
preorder is defined under the assumption that implementations are modelled
as members in MZOTS(Ly, Ly). However, we do not require this for specifi-
cations; specifications are just labelled transition systems over Ly U L.

DEFINITION 10 The relation <mi0rC MIOTS(Ly, Lu)xLTS(L1ULY), called
multi input-output refusal preorder, is defined by

t <mior § =def VU € MIOTS(E?],E?) : obsf(u,i) C obsg(u,s) and
obs? (u,7) C obs?(u, s)

Conceptually, when an observer experiments on an implementation that is
modelled as MIOTS it can either provide inputs at an input channel (e.g.,
press a button), or observe outputs from an output channel (e.g., view a
display). For each input channel the observer is equipped with a “finger” to
perform a button-push experiment, and for each output channel the observer
is equipped with an “eye” that notices the output actions occurring on the
display (figure 3). By assumption, output actions at a specific location cannot
be selectively perceived by observers: if one output can be observed, then all
output actions at the same location can potentially be observed. Furthermore,
it is assumed that unsuccessful input experiments and output experiments are
noticed by the observer. Figure 3 depicts an interface for MIOTS.

. buttonsi@g):
:8: é; finger

" X |implementation ~-*
| display Y
buttons __,
(ICJOJOIO!

,,,,,,,, i display

eye

observer

Figure 3 Observers of multi input-output transition systems.



A special class of observers are the singular observers. They consist of finite,
serial compositions of providing a single input action at some channel L} and
detection of its acceptance or rejection, and observing some channel L’f] and
detection of the occurrence, or absence, of outputs produced at this channel. It
turns out that it suffices to restrict to singular observers in order to establish
whether implementations are <,,;,~-correct or not.

DEFINITION 11 A singular observer u over Ly and L is a finite, determin-
istic multi input-output transition system u € MIOTS (LY, LY) such that

Vu' € der(u): init(u') =0 or init(u') = L& U{0F} or init(u') = {a,67}

for some j € {1,...,n},k € {1,...,m} and a € L]I' € L. The set of all
singular observers over Ly and Ly is denoted by SOBS(LY,, LY).

PROPOSITION 3 Leti € MZOTS(Ly,Ly) and s € LTS(Lr U Ly), then
t <mior $
iff Yu e SOBS(LY, LY) : 0bs®(u,i) C obs®(u,s) and obs?(u,i) C obs? (u, s)
iff Yu e SOBS(LY;, LY) : obs®(u,i) C obs®(u, s)
iff f-traces(i) N (Ly ULy ULrULy)* C f-traces(s)

Since each singular observer is composed of actions that are able to detect
whether an input at channel L7 is accepted or not, and observations that are
able to detect whether outputs are produced at some channel L’,"j or not, it
follows that execution of singular observers only ends in case no more actions
can be conducted; the only way for a test execution u][i to deadlock is by
deadlock of w.

PROPOSITION 4 Let u € SOBS (LY, LY) and p € MIOTS (L1, Ly), then

(u][p) after o deadlocks implies wu after o deadlocks

The observation that can be made from observer v communicating with
system p uniquely determines the failure trace that was performed by p. This
is possible because every observation of 6/ and 6% in u][p corresponds to

refusal of L]I' and L’{], respectively. We denote with & the trace o where each

occurrence of a refusals L’ or L is replaced by its detection label 7 or 6%,
and vice versa.

PROPOSITION 5 Letp € LTS(LrULy) and u € SOBS(LY;, LY), then for any
o€ (LrULyUBO)*

ullp-=u'|[p) iff uw-Sru andp-Zp



Yet another characterisation of the relation <,,;,, exists that is based on
the responses that the implementation can produce after having performed a
specific trace. These responses consist of the output suspension labels (§*) in-
dicating that the implementation is in a state that cannot produce an output
at channel L’{], the input suspension labels (£7) indicating that the implemen-
tation is in a state that cannot accept any input from channel L]I', and the
outputs in Ly that the implementation can produce in the current state. All
these responses are collected in the set out.

DEFINITION 12 Let p € LTS(L; U Ly) and o € (L ULy ULy U Ly)*, then
the set out(p after o) is defined by

out(pafterc) =4 {r€Ly|Ip :p-Sp =}
U{g |1<j<n,3p :p-Tp and init(p') N L} = 0}
U{s* | 1 <k <m,3p :p-Sp' and init(p') N LY = 0}

The inability to accept input at channel L (i.e., input suspension) and the
inability to produce output at channel L’,"j (i.e., output suspension) is now
explicitly visible in terms of the input suspension labels ¢/ and the output
suspension labels 8%, respectively. It turns out that an implementations is
<mior-related to a specification in case all responses that the implementation
can perform after a trace in (Ly U Ly U L5 U Ly)* are specified, i.e., an
implementation is not allowed to suspend at some channel in case this is
not specified, and the implementation is not allowed to produce unspecified
outputs.

PROPOSITION 6 Leti € MZOTS(Lr,Ly) and s € LTS(Lr U Ly), then

i <mior s iff Vo€ (LyULyULyULy)" : out(iafter o) C out(safter o)
Checking the condition in proposition 6 for all traces in (L;ULyULiULy)*

is too time consuming in practice. Therefore, we generalise this condition to

an arbitrary (and possible finite) set F C (L; U Ly U £; U Ly)*, and define

a corresponding implementation relation miocox in the same way as iocor

in [15]. We will use this relation in the next section as the basis for deriving
tests.

DEFINITION 13 The implementation relation miocor C MZOTS (L1, Ly) X
LTS(Lr U Ly), where F C (LU Ly U LU Ly)*, is defined by

i miocor s =g Vo € F: out(iafter o) C out(saftero)
Furthermore, we define mioco =4 mMi0COs traces(s)n(L;ULyULIULY)" -

We remark here that, in general, observers in SOBS([,‘)U,[,?) are more
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Figure 4 The relation mioco with £; = {{a}, {b}} and Ly = {{z,y}}.

powerful than observers for input/output automata or IOTS (cf. [13, 15])
due to their ability to observe output suspension at different output channels:
singular observers can distinguish between systems that are unable to produce
output actions at one channel, while at another channel the system is able to
produce output actions. In terms of the relation < on partitions, this means
that the finer the outputs are partitioned (i.e., the more output channels are
present), the more selectively observers are able to observe. In particular,
for the finest partitioning of inputs and the finest partitioning of outputs
our relation <,;,, collapses with <,¢, while we claim that for the coarsest
partitioning of the inputs and the outputs the relation <,,;,. collapses with
ioco [15] in case it is assumed that for implementations inputs are always
enabled.

PROPOSITION 7 Let i € MZOTS(ming(Parts(Lr)), ming(Parts(Ly))) and

s € LTS(L; U Ly) such that ming(Parts(Lr)) and ming(Parts(Ly))) are
finite, then & <,rs ff & <pior$

5 TEST GENERATION FOR MIOTS

In this section we develop an algorithm to derive tests systematically from a
specification such that these tests are able to reject implementations that are



miocor-incorrect, and accept implementations that are miocoz-correct. The
algorithm depends on the specification (modelled as a member of LTS(L; U
Ly)), the correctness criterion (miocoz for some F), and the test assumption
(implementations are modelled as members of MZOTS(Lr, Lv)).

Test cases need to incorporate some kind of verdict that can be used to give
such an indication about the (in)correctness of implementations when running
these test cases against implementations. We distinguish between two kinds
of verdicts: pass to indicate that the implementation behaved as expected,
and fail to indicate that the implementation behaved erroneously (cf. [6, 7]).
We define a test as a member of SOBS(LY;, L9) where the final states are
identified with the verdicts pass or fail.

DEFINITION 14 A testt over L9 and LY, is a singular observer t € SOBS(LY,,
LY) such that for each t' € der(t)

init(t) =0 iff t' =pass or t' = fail
The universe of tests over L9 and LY, is denoted by TESTS(LY,, LY).

Since tests will always end in a final state of the test (proposition 4) every
test run is assigned a verdict, viz., the verdict of the final state of the test.
Trace o is a test run of ¢][i iff ¢ € 0bs®(¢,). An implementation i fails test ¢ if
there exists a test run of ¢][¢ leading to a fail state, (i.e., ¢ fails t =4 Jo €
obs?(t,4), 3" : t][i <= fail][i'), and implementation i passes test ¢ if it does
not fail ¢. Implementation ¢ fails a set of tests T if 7 fails a test ¢t € T, otherwise
it passes T'.

Soundness, exhaustiveness and completeness [7] are properties of test suites
(i-e., sets of tests) that link the passing or failing of test suites to the correct-
ness of the implementations. A test suite is called sound if this test suite
will never reject miocoz-correct implementations, and a test suite is called
exhaustive if each incorrect implementation always fails this test suite. In
practice test suites are required to be sound, but not necessarily exhaustive;
any error that is detected by a test suite indeed proves that the implemen-
tation under test was incorrect, but not finding an error does not mean that
the implementation is error free! A test suite is called complete if it is both
sound and exhaustive.

Figure 5 presents a test generation algorithm II that produces tests that
are able to distinguish between miocogf—correct and miocogf-incorrect imple-
mentations. The rationale behind the test algorithm is that it construct tests
that check the condition

out(i after o) C out( s after o)

for o € F (cf. definition 13). The test generation algorithm takes a specifica-
tion s € LTS(Lr U Ly) and a set of failure traces F C (L ULy UL U Ly)*,
and produces tests in TESTS(LY;, £9). The variable S keeps track of the cur-
rent states in the specification, which initially equals {so} after ¢, and the



variable F keeps track of the failure traces that need to be investigated in
order to establish correctness. Each time an action is performed the sets S
and F are updated accordingly.

Input: set of states S
Input: set of failure traces F C (L ULy ULy U Ly)*
Output: test case Il s € TESTS(LY, LY).

Initial value: S = {so} after ¢, where s is the initial state of s.

Apply one of the following non-deterministic choices recursively.
1. (* terminate the test case if there are no more specified traces in F *)
if 7 = 0 then
Il s := pass

2. (* terminate the test case when a trace o € F has been performed *)
if € € F then take some L} € L, and for some a € L’} (* supply input a *)

e o.od GiPass+ ¢);fail  if Safter L] =0
75 = a;pass + 0] ;pass if Safter L} #0
3. (* terminate the test case when a trace o € F has been performed *)
if € € F then take some L¥ € Ly, then (* observe channel LY *)
IIr s := S {z;pass | z € L}, U{#%} and S after 7 # 0}
+ Y {z;fail | z € L}, U{0%} and S afterz = 0}
4. (* supply an input for which you want to test deeper *)
Take some L%} € L1 and a € L} such that {o | a-o € F} # 0, then
IIrs:=a;llz g + 0?; pass
where §' = S aftera,F = {0 | a-0 € F}
5. (* supply some input and continue if it is refused *)
Take some L} € L; such that {o | L}-0 € F} # 0, then
7,5 := a;pass + 67; Iz gn
where a € L},S" = Safter L) , 7' = {o | L}-0 € F}
6. (* Find a channel L that produces an output for which to test deeper *)
Take some L¥ € Ly such that {o | Iz € LE U{LE} : z-0 € F} # 0, then

IFs:= Z{fll;]:[‘y:lysl |z e L U{6f} and F' ={o | T-0c € F}
and S’ = S afterz}

Figure 5 Test generation algorithm.

Step 1 of the algorithm assigns pass in case no failure trace in F was
performed (e.g., because the implementation responds with an output action
that is not checked for in F). Step 2 of the algorithm checks for all input
channels whether the implementation is allowed to suspend input. Note that
Safter L7 = () means that there is no state in S that can perform refusal tran-

sition LJI'. Step 3 checks for all output channels whether all outputs that the



implementation can produce are indeed specified. Step 4 supplies an input to
the implementation at some channel L’} and continues if the implementation
is able to accept this input. Step 5 also supplies an input to the implemen-
tation at some channel L} but now the algorithm recursively proceeds if the
input is refused. Finally, step 6 awaits an output action or observes an out-
put suspension at output channel L’,"j after which the algorithm recursively
proceeds.

Note that the algorithm is guaranteed to finish in case the set F contains
a finite number of failure traces; in every step the length of the failure traces
in F are reduced, and since all failure traces in F are (by definition) finite
eventually step 2 or step 3 will always be applied.

PROPOSITION 8 Let F C (Ly ULy ULy ULy)* and s € LTS(L; U Ly)

1. Any test case obtained from algorithm II for s and F is sound for s with
respect to miocosr.

2. The set of all test cases that can be obtained from algorithm II for s and F
is complete for s with respect to miocogr.

REMARK 1 The algorithm presented in figure 5 can be seen as an extension
of the one presented in [15] in two ways. First of all, [15] considers imple-
mentations that are modelled as IOTS, so refusal of input is not considered.
Secondly, the algorithm in [15] is not able to deal with the different input
channels and different output channels on interfaces of implementations.

Although our algorithm is applicable to different classes of implementations,
the algorithm in [15] is (probably) more efficient in deriving tests for IOTS
than ours; it is likely that they need less tests to obtain a complete test suite
for these kind of systems than we do.

6 ILLUSTRATION OF THE ALGORITHM

Consider the coffee machine CM depicted in figure 6. After insertion of a
coin (coin) a user may press either the coffee button (cb) or the tea but-
ton (tb), which results in the production of coffee (cof) or tea (tea), respec-
tively. There are two distinct input channels (a channel to insert coins and
a channel to push buttons) and a single output channel for providing coffee
or tea: CM € MIOTS ({{coin}, {cb, tb}}, {{cof, tea}}). The dashed arrows la-
belled £, &2 and 4! denote refusal transitions for the sets {coin}, {cb, tb} and
{ cof, tea}, respectively.

Figure 6 also depicts some tests that are derived from CM for F = {, coin-
cb} using algorithm II (see figure 5). For readability the steps of the algo-
rithm that were applied are indicated in the nodes of the tests. Tests (a) is
an immediate consequence of step (2) of the algorithm, and test (b) an imme-
diate consequence of step (3). Test (a) checks that implementations initially
must accept a coin (refusal of a coin gives a fail verdict), and test (b) checks
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Figure 6 Some tests generated by II from CM.

that implementations are initially not allowed to provide free drinks. Test (c)
follows from the successive application of step (4), again step (4), and step
(3). It checks that after coin-cb the production of tea, or the suspension of
providing a drink, is considered incorrect.

Note that algorithm II may produce tests that always return the verdict
pass (e.g., cb-pass + 02 -pass). Execution of such tests is not very sensible.
The derivation of such meaningless tests indicates that the algorithm is not
optimal and that there is room for improvement.

7 CONCLUSIONS AND FURTHER WORK

Conclusions In this paper the theory of refusal testing [12] has been applied
to several classes of transition systems that distinguish between the initiative
of actions: either input or output. Each class is induced by the distribution of
the locations through which these systems communicate with their environ-
ment. In this way a refusal testing theory is obtained that is parameterised by
the distribution of the interface of implementations. Specific choices for the
interfaces yield the seminal refusal testing theory of [12], and the (repetitive)
quiescent trace testing theory for I/O automata [13] and for input/output
transition systems [14, 15]. For the large variety of classes of transition sys-
tems that can be obtained, a correctness criterion miocox (definition 13) is
defined that is explicitly parameterised by a set of failure traces F. For all
these classes of systems and the corresponding correctness criteria a single
test generation algorithm (figure 5) is defined that is able to produce a sound
and complete test suite from a specification. This algorithm is an extension
of the one in [15]: that one is applicable to a smaller class of systems and is
not parameterised over the distribution of the interface of implementations.

Further work  The test generation algorithm II can produce a large, and
possibly infinite, number of tests. Since it is not feasible to execute all of them,
techniques have to be developed to measure the relevance of tests (coverage),
to select the most relevant tests from a larger set of tests (test selection), or



to avoid the generation of irrelevant tests. Furthermore, the test generation
algorithm needs to handle data in a symbolic way in order to avoid explosion
of the state space, and keep test generation manageable. Since the correctness
criterion mioco is based on traces, i.e., linear sequences only, an explosion
due to the branching structure of specifications (e.g., as in [2]) is avoided.
Also, mechanisms to observe the suspension of input or output have to be
developed, e.g., making use of timers: if no action occurs before the time-out
it is assumed that no action can occur anymore. This requires techniques
to carefully choose the timer values such that no incorrect suspension can
be observed. Furthermore, the relation between MIOTS and input-complete
Finite State Machines needs to be investigated (see, e.g., [10]).
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