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Abstract

In this work the problem of content-based informa-
tion retrieval is approached from a new perspective.
We look at a probabilistic approach in CBIR from
the angle of Bayesian networks. Our data structure
serves to break two bottlenecks of retrieval perfor-
mance: (1) high dimensionality of feature vectors
and (2) poor mapping of raw features into high-
level content that a human understands (the seman-
tic gap). We use the network structure instead of
the feature space, and propose updating the higher-
level content description by utilising the relevance
feedback obtained from the user. Strategies for dis-
play update for the next iteration are studied. A
new approach for selecting the next display set is
tied to our data structure.

1 Introduction

In content-based information retrieval, there is a
problem of the gap between human perception of
the document, which is often referred to as high-level
content and its actual representation at the lowest
level, in the data storage.

This problem is addressed by indexing documents
in the collection. Text documents are indexed based
on the words they contain; for images and video,
pictorial features such as colours, shapes, textures,
motion detection are used. Careful selection of the
feature set allows capturing semantics of the doc-
uments, especially in limited domains, where the
range of possible values is pre-determined. Exam-
ples of such limited domains are texture catalogues,
medical image databases, video archives of known
context. Often the number of features automatically
extracted from raw data is large, with the hope that
it helps to capture the semantics better. Modern
retrieval systems have rich feature space: in MARS
(Rui et al., 1997b) the vector space is of at least
several dozens dimensions, in PicHunter (Cox et al.,
2000) the number of features is about 128, Viper
(Miiller et al., 2000b) boasts O(80 000) values. The
objects are represented as points in metric space,
with the dimensionality corresponding to the num-
ber of extracted features. The similarity between

them is determined by means of an appropriate met-
ric, such as Euclidean distance.

A lot of work is done to determine “the best fea-
ture set”, i.e. such representation of multimedia data
that would match the human perception of it. This
is not a trivial task for images and video, since vi-
sual data carries a lot of information which is hard
to decode automatically. However, both automatic
and manual feature selection might still not solve the
problem. The user is not always certain what picto-
rial characteristics are important for his/her target,
and the semantics of an object may be ambiguous.

At the same time, due to the large number of di-
mensions, the pictorial features are subject to “the
curse of dimensionality”, when the performance of
indices drops dramatically as the number of dimen-
sions grows. Effective multidimensional indexing
and approximate retrieval based on indexing are
active research topics, as well as the problem of
(weighted) nearest neighbour search in the indexed
space (Faloutsos and Lin, 1995; Wu and Manjunath,
2001; de Vries et al., 2002). The situation turns
tricky: on one hand we have large number of fea-
tures that are hard to index; on the other hand, the
importance of a certain feature is unknown.

A significant improvement of the performance of
content-based retrieval systems can be achieved by
using relevance feedback, a technique that allows the
user to rate the (intermediary) search results. Fur-
ther ranking and retrieval of documents in the col-
lection is based on the feedback received from the
user. In the domain of image retrieval, where the
semantic gap is especially large, relevance feedback
is often used not only for ranking the output doc-
uments, but also for fine-tuning the whole system,
adapting such parameters as similarity function (Rui
et al., 1997a; Wu and Manjunath, 2001; Aksoy and
Haralick, 2000; Geman and Moquet, 1999), and/or
the feature set that is used. In the 2-layer retrieval
model in MARS (Rui et al., 1997a), the useful fea-
ture subset is determined based on the user response,
when features are examined across iterations and
most distinguishing ones get more weight in subse-
quent iterations. In the Qbic image retrieval system



(Flickner et al., 1995) the user can manually em-
phasize the importance of a certain primitive feature
by using “control knobs”. At a higher level of rep-
resentation, dealing with identified colour-texture-
shape objects, or “Blobs” in Blobworld (Carson et
al., 1999), the user can explicitly point the region of
interest, modelled by pre-computed Gaussian mix-
tures, that incorporate colour and texture informa-
tion.

In the present paper we approach the problem of
content-based image retrieval and indexing from an-
other, new perspective. We look at a probabilistic
approach to document indexing and retrieval, from
the angle of Bayesian networks. Our data struc-
ture serves to break two bottlenecks of content-based
multimedia retrieval performance: (1) high dimen-
sionality of feature vectors, preventing efficient in-
dexing and (2) ineffective mapping of raw features
into higher-level concepts reflecting the actual con-
tent. We propose using the network structure for
the data instead of multidimensional feature space.
The network encodes higher-level context and makes
use of relevance feedback. Primitive pictorial fea-
tures are not addressed at run-time to determine
the similarity of objects, but instead, a probabilis-
tic method is used at indexing time to construct the
meta-data. We will also study various approaches to
retrieval with relevance feedback in the light of our
data structure.

The rest of the paper is organised as follows: In
section 2 we briefly describe our novel approach,
section 3 discusses some issues that arise in the re-
trieval process, the implementation of the system is
described in section 4. Finally, sections 5-6 report
preliminary experimental results and future research
directions.

2 Bayesian retrieval framework
2.1 Data organization

Consider a collection & of objects ¢ among which
there is an object that the user is looking for — the
target 1. In the search session the user retrieves a
set of candidate objects on the screen and feeds back
to the system his/her opinion about their relevance
to the target. Each object might look like the target
the user has in mind, and then it is selected by the
user, or it is de-selected, if it doesn’t resemble the
target. For the selected candidate object ¢ we denote
the event as (J; = 1), and for de-selected ones as
(0; = 0). The feedback obtained from the user allows
the system to make some inference and compile a
new display set of n elements, the display set, to
show in the next iteration. There may be several
rounds of feedback during one search session.

To perform comparison of relevant and non-
relevant objects, it is necessary to organize the col-
lection by introducing relations between the objects.

As mentioned in the introduction, the relations are
often defined by a vector space derived from prim-
itive features and a corresponding similarity func-
tion(s). In our work we suggest that the user feed-
back can be used to build up and update the objects
relations.

As in (Maron and Kuhns, 1960), we introduce a
“measure of closeness” of an object i to an object j as
a conditional probability and denote it as P(5;|T =

7).

Def. 1 P(5;|T = j) is the probability of an object 4
being selected by the user given that another
object j is the target of the search.

In other words, the user’s judgement about the
relevance of objects is a necessary component of
our system. It is reasonable to assume that
P(5;|T =1i) =1, ie. the user always identifies the
target as relevant. We also put a constraint that
the target exists in the collection and is unique:
PT=jT=i)=0,i#j, e PT=1i)=1

As an example take a user looking for an im-
age of a cherry tree. He/she may find an im-
age of an apple tree relevant to his/her query,
and the measure of this relevance is denoted as
P(bapple tree|T = cherry tree). An image of a cherry
fruit may be found relevant too, having another
value of P(dcherry|T = cherry tree).

Each P(6;|T = j) can be seen as a weighted arc,
or an oriented path of weight P from j to ¢ that
is traversed during the search session, utilising the
user’s feedback. The graph containing these arc val-
ues can be seen as a map of oriented paths between
elements in the collection. We call its matrix repre-
sentation topographic. The topographic matix need
not be symmetric. Imagine a road map, where two
cities are connected by roads with different num-
ber of lanes going in each direction. It is impor-
tant to notice, that we deliberately do not construct
the complete graph, with all existing connections be-
tween the nodes, but choose only the most significant
ones.

['/CHERRY )
L TREE J

Figure 1: Graphic representation of cherry tree example

Looking at the structure of the graph, each el-
ement in the collection can be described by a
number of other elements pointed by it, which, in



turn, are pointed by third elements. The cherry
tree in our small example is described by the set
{apple tree, cherry}, which drives at a tree with a
cherry — the cherry tree (see Fig. 1). These associa-
tions that come from users judgements and refer to
the hidden semantics of objects, serve as meta-data
for the collection. The collection describes itself by
means of meaningful relations observed in earlier re-
trieval sessions.

To initiate the system, these relations are calcu-
lated as conditional probabilities P(;|T = j) based
on low-level primitive features, which are silently
present in the system, but are addressed only once.
The subsequent successful searches are used to ac-
cumulate the knowledge about objects relations and
update the arc weights in the topographic matrix. In
this way, instead of chasing “the right feature set”
we leave this task to the users, believing that vox
populi will give us this best feature set enclosed in a
black box.

With the graph representation that refers to a
multimedia object as a whole, when a primitive
stand-alone feature does not explicitly play an im-
portant role, the nodes in the topographic matrix
need not be images only. Other types of media, such
as video, audio or speech transcripts can be plugged
in as separate nodes in the graph. Note however,
that integrating other types of media is not trivial.
Our data structure relies on multiple feedback iter-
ations. Dynamic media such as video or audio may
not stand many feedback loops, because assessing
a video clip or a music fragment requires from the
user more efforts and time compared to still images.
Nevertheless, such nodes may be potential targets
or, conversely, the starting points in a search ses-
sion. Textual nodes are of particular interest for a
retrieval system, since querying in the form of text
is very convenient for the user.

2.2 Retrieval during the search session

We assume that the user is comsistent in his/her
judgements, does not forget what the target is, and
that the target object is unique and exists in the col-
lection. The assumption of uniqueness is valid with
queries like “find me an image of a Golden Retriever
puppy”. Queries like “find me all pictures of Britney
Spears” are not handled by the model directly. How-
ever, there is a way to retrieve ranked lists of “most
relevant” objects which may be considered targets.
In our framework we use the following definition of
the target:

Def. 2 The target as an object, after retrieval of
which the user terminates the search success-
fully.

The goal of a retrieval system is to help the user find
the target object (and possibly all similar objects)

after few iterations, with a reasonably small amount
of time spent on each round.

Probabilistic methods in information retrieval
were initially used for text collections (Maron and
Kuhns, 1960; Robertson, 1977; Hiemstra, 2000) and
later the ideas were adapted to image retrieval (Vas-
concelos and Lippman, 2000). In content-based re-
trieval systems the user’s information need is un-
known and should be guessed. In general, retrieval
with the use of relevance feedback can be formulated
as follows:

In the current data structure, having ob-
served the user judgements in the search
process, what is the object that the user
wants to find?

We construct the answer (that is, predict the user’s
target object) using Bayes’ rule. Then the problem
is reformulated as estimating the user’s action of se-
lecting/deselecting relevant objects, given the target
that he/she has in mind:

P(T =i,Ul8(y,-..,00)) =
P(8(ys--, 00T = i)P(T = i|U)P(U)

1 n
P, 0p)

where U denotes the current user. Since we as-
sume that the state of the (unknown) user variable
does not change during one search session, and U
affects 6.y through T', we may omit the user nota-
tion in further formulae, to keep the notation short
(Gelman et al., 1995, Chapter 5). The upper in-
dex in 5(1.)...5?_) denotes n displayed objects, ei-
ther selected by the user (67, = 1) or not (d(,) = 0);
P(T = i) is the probability that the object 7 is the
target, and P(6%|T = 1) is the probability of a k-the
object on the screen to be selected by the user given
that 4 is his/her target.

We distinguish between the objects that have been
displayed to the user 5(1)" and the rest of the col-

(1)

lection {S}. The index of the element displayed
on the screen determines uniquely an element from
the collection, and further we omit the subscript,
if the upper index is used. Note that equation (1)
is regarded as recursive, i.e. the posterior proba-
bility of being the target determined at step s as
P(T =i|6%,...,6™) serves as the prior P(T = i) at
the next iteration s+1 (Gelman et al., 1995, Chap-
ter 2).

In this way, in each round the observed user re-
sponse is used to calculate probability P(T = ). In
the beginning, before any information from the user
is received, each object has a certain prior proba-
bility to be the target'. The possible output of in-

LOften equal prior probabilities are assigned to all elements
of the collection. The importance of selecting the “good”
priors is studied in, e.g. (Kraaij et al., 2002).



corporated primary textual query or previous search
sessions results may be used to define the prior value
of P(T = 1) more accurately. Recall that by defini-
tion 2, P(T =) is the probability that the search
will be completed successfully immediately after ob-
ject i is shown to the user.

The meaning of the first term in the numerator of
equation (1) is explained by the following definition:

Def. 3 P(6',...,6"|T = i) is the probability that
the user marks the displayed set of objects in
a certain way, given that i is the target for
him/her.

To determine this joint conditional probability we
assume (for the time being) that given the target,
the user picks each of n candidates independently of
other objects present on the screen. This assumption
is similar to term independence assumption used in
text retrieval. Then equation (1) becomes

. " P(6*|IT =4i)P(T =1)
P =i, om) = U= :
T =ilon..., o) P, o)

(2)
The denominator serves as normalizing factor, and,
for the purpose of ranking, it can be replaced with

a constant.

2.3 Retrieval in terms of Bayesian network

The search algorithm together with the topographic
matrix can be graphically represented as a Bayesian
Network (Fig. 2). The conditional probabilities
P(6;|T = j) indicate the influence (or casual impact)
of the fact that a user regards a certain element 4 of
the collection as “somewhat related” to the target
7 in a search session. The events observed during
an iteration are the values of random variables of
the network. These values, or states are as follows:
the node representing a user U looking for an object
T which can be any single element of the collection
(T > {1,2,...,n}), and binary variables §;,i € S,
representing the elements that are judged by the
user. They may be marked as similar to the target
T, (6; = 1), or not (§; = 0). Each state is associated
with a certainty.

For each user U we may introduce a different prior
P(T|U). Every element, and only one in the col-
lection might be the target for a certain user in a
given search session. Thus the target can be identi-
fied by the maximum probability of P(T = j|U). In
our network we talk about the user model, since the
concept of “target object” has meaning only with
respect to a particular user who wants to find the
object. However, the user him-/herself is not part of
the data structure, and needs to be separated from
it.

When the user selects a displayed object as rele-
vant to his/her target (d2 =1 in Fig. 2), he/she is

Figure 2: Bayesian Network representation.

doing reasoning in the direction opposite to the ca-
sual arrows (the dashed line). Thus the certainty of
T changes, which in its turn creates new certainties
of not-yet displayed elements §; up to dy. Thus,
when nothing is known about the state of 7" and
evidence is received at d2, nodes ¢y ... 0N are depen-
dent, which means that information on either event
affects the certainty of the other, in accordance with
the tables attached to the casual arrows. These ta-
bles are in fact columns from the topographic ma-
trix. However, when the state of T is known for
certain, then its children are independent: informa-
tion on one has no effect on another. When the
retrieval system is at work we repeatedly get new
cases, and we learn from these cases. It is a general
practice in retrieval systems to discard the results
of this learning after the search is concluded, since
the user node remains unknown. Because the sys-
tem is re-initiated for every new query, this method
is called short-term learning.

P@IT=k)

Figure 3: The network structure after the target is iden-
tified. The values from the topographic matrix subject
to update are shown in black

After T is initiated, i.e. the target of the search
is identified, some conditional probabilities, namely,
the rows of the topographic matrix corresponding
to the target object can be updated (Fig. 3). The



information obtained from a given retrieval session
is used for long-term learning. The purpose of the
update is to increase the conditional probability to
be selected by the user of all objects that the user
indeed selected. At the same time the connections
to the objects that were marked by the user as non-
relevant, may be punished.

In retrieval systems that try to learn from the user
interaction, the following assumption is made explic-
itly or implicitly (Miiller et al., 2000a; Ishikawa et
al., 1998):

The documents that the user marks as “rel-
evant” are similar to each other with re-
spect to a (hidden) feature. The docu-
ments that are discarded by the user do
not necessarily have a common feature.

One should be careful about grouping the positively
marked objects into a class of neighbours. The user
who selects relevant objects, compares them to the
target he/she is looking for, and not to each other!

In the future we would like to receive some evi-
dence about the user model, which may affect the
update strategy, and the prior distribution. How-
ever, a simple assumption about the user who wants
to find the target and responses consistently, can
serve as a generic user.

3 Display update schema

After the feedback is received from the user,
P(T =i|6',...,6™) is calculated according to the
Bayes’ rule. Then the new evidence should be re-
ceived from the information variables §; that form
the display set to present to the user in the next
round.

3.1 What is display update?

The display update is an important part of the
search process, since the speed and quality of the
search depends on it. Each iteration should bring
us closer to the target. “Closer to the target” may
have various interpretations, such as (a) the poste-
rior probability P(T = i) of the element is increas-
ing, or (b) the target element approaches the top of
the ranked list or even (¢) the expected number of
remaining iterations decreases. Recall that the goal
is not only to identify the target, but to do it in few
iterations in a limited amount of time. It is however
not clear which strategy is optimal with respect to
both iteration number and calculation costs, as one
can see below.

As an illustration to the various display schema,
consider the following story:

A person wanted to find a friend’s house
in a big city and got lost. The situation
is as follows: the friend has a map of the
area for pedestrians, the Lost person has a

satellite mobile phone. The Lost can call
her friend as often as she likes, paying $10
per minute, to ask for the way. The friend
at home looks up her position on the map
and gives to the Lost one directions.

The approach that we call naive suggests that the
friend at home directs the lost friend along the short-
est way, but at each crossroads the latter has to
make a costly call and ask where she should go next:
straight, left, right or maybe back.

We can also advise the friend at home to look up
the crossroads where there might be road signs on
the way (say, major crossroads) and lead the Lost
one towards them, so that from time to time she
could see where to go further without calling, or walk
in the direction of “through traffic” road sign. This
will be called best-selected approach, discussed in
Section (3.4). The most informative schema, which
is also discussed briefly below, is to send the friend
to the highway, where all the road signs are present
(but it takes a lot of walking!).

3.2 Best target approach (naive)

The probability that the target is an element 4,
P(T =1i), can be considered as the score that the
element receives during the session. In the naive
model we show to the user the most-probable ob-
jects, hoping that the target is among them. This
is a simple application of a standard technique used
in information retrieval under the name probability
ranking principle (Robertson, 1977). We note that
the denominator in equation (2) does not depend on
a particular element we want to rank, and can be
replaced with a value that is a constant given object
1, since this will not affect the ranking order. Thus,
we replace the denominator, noting that in general

P, 6%) £ T, P(6°):

I, e = P(r =)
[T, P0°)
3)

It is interesting to note that by assuming that each
object is selected/de-selected independently of oth-
ers, we can treat the display set as a series of single
objects shown one after another, where the order
becomes unimportant.

Any monotonic transformation of the ranking
function (3) will produce the same ordering of the
objects. Instead of using the product of weights, the
formula can be implemented by using the sum of
logarithmic weights. All objects that have the ratio
P(6%|T =1i)/P(6°) close to 1 give almost zero contri-
bution to the score (log(1) = 0). Their probability
to be selected by the user does not depend on the
user’s target.

The obtained values are used to select n objects
for the next display set. These are the objects that

P(T =i|6*,...,0")




have the highest score and have not been shown to
the user yet. Strictly speaking, the objects that have
been shown to the user have zero probability to be
the target, since for them it is known for sure that
they are not the target.

The probability ranking principle fits well in the
framework of text retrieval, since texts require some
time for reading and relevance judgment. Therefore
only few feedback iterations are possible. When vi-
sual information is presented on the screen, a quick
glance is sufficient to evaluate the results, and a new
round of feedback can be started at once. Hence the
strategy of the display update can be changed, al-
lowing the user to evaluate as large data regions as
possible, before the ranked list of results is produced.

3.3 Best information approach (costly)

We may choose the next display set in such a way,
that it would maximally reduce the uncertainty of
the system, based on the expected amount of on in-
formation that could be obtained (Cox et al., 2000;
Zhang and Chen, 2002). Such an approach is used in
machine learning and it is considered optimal with
respect to the number of iterations. We use infor-
mation theory (Guiasu, 1977) to find the optimal
display set for the next iteration. The information
I obtained from a display set (6%,...,d") is

I(0",...,6") == _P(6",...,0") log, P(6"..67),
S
(4)

where

n

P@',...0") =Y P(T =i) [[ P(&*|T =)

1€ s=1

S is a set of all possible combinations of selected
and de-selected objects in the display set (§1,..., ")
that may occur in the following iteration. Here as in
(2) we assume that the user selects each object inde-
pendently of other objects presented on the screen.
Note that the denominator in equation (2) is the
probability of only one possible feedback on the dis-
play set. There are 2" possible ways of selecting/de-
selecting n objects. As one can see, the information-
based display update schema is costly. Straightfor-
ward scanning the collection and selecting all possi-
ble combinations of n objects, and taking the best
subset, is exponential with respect to the collec-
tion size. In PicHunter (Cox et al., 2000), Monte
Carlo sampling was used to find a sub-optimal solu-
tion. Thus, although the best-information approach
may be optimal with respect to the number of itera-
tions, it is far from optimal when speaking about the
computation intensity and total time spent on the
search. However, the implication that information
theory gives is the following: to reduce the number
of communication rounds, each cycle should contain

as much of (unknown) information as possible, and
one should bear in mind that deviation from the
optimal strategy may lead to the decrease of infor-
mation gain and therefore result in declined quality
of the search.

3.4 Best selected object approach
(intuitive)

As we noticed, to minimize the number of iterations
when selecting the new display set, we want to show
such objects to the user that would result into best
information about the “location” of the target in
the database. If we take the case of text retrieval, in
some situations the target can be, for instance, a list
of articles about the subject. Such articles retrieved
as the result set are likely to have the probability
to be the target relatively high compared to other
documents. However it is more likely that the user
will prefer a document containing a (complete) list of
references along with some most relevant documents
from that list to several relevant documents, that are
very similar to each other, but do not cover all the
subject.

Intuitively, a group of similar elements in the col-
lection is described best not with the element that
only has the highest score P(T = i), but by the one
that, in the topographic matrix, is pointed by the
largest number of elements that have high proba-
bility to be the target. It is easy to show that the
maximum information can be expected from the user
response to one displayed object when the probabil-
ity of the object to be selected is exactly 1/2. In
this case the uncertainty about the following user
action is largest. Let us have a closer look at P(4;).
As mentioned in Section (2.1), this term denotes the
probability of ¢ being selected by the user in the cur-
rent iteration, despite the target. We can evaluate
it as follows:

P(6i) = P(6:|T = j)P(T = j) +
P(&i|T = j)P(T # j)- (5)

The probability of a single object not to be the target
P(T # j) is unknown, but, assuming that the target
exists in the collection and is unique, we note that

Pi#T)=P|JT =) |, (6)
Jjeu
J#i

i.e. if ¢ is not the target then some other element in
the collection can be the target.

From (5) and (6), the probability of an object to



be selected can be rewritten as

P(6;)=P(T =i)+ | Y P(|T = j)P(T =) |,
JEU,
i
(7)
where the sum is greater than or equal to zero. If
the candidate object is selected based on P(T" = 1),
then one has to specify what is the optimal value
of this probability or what is the selection criteria.
Note that the “largest value of P(T = 14) criterion”
gives in most cases an arbitrary value of P(9;) and,
thus, not optimal from the information gain point of
view?. The drop in information gain may ultimately
lead to unnecessary search iterations.

A similar statement holds for the display set con-
sisting of more than one element. The optimal, with
respect to information, selection consists of indepen-
dent objects with equal probability for every out-
come (see equation (4)). In other words, the op-
timal selection is such that for the display set un-
der consideration P(d!,...,8™) = 1/2" for every pos-
sible combination of candidate objects. This consid-
eration is especially important in the begin phase,
when all probabilities P(T = 7) are not quite distin-
guishing. Then the maximum information criteria
can_be, without too big loss of information, reduced
to I = max [P(4',...,6™)], which in turn can be ap-
proximated by maximum of the product of the corre-
sponding P(6°). This maximum is delivered by the
first n elements with the largest value of P(d). Every
selection based on P(T =) will be different from
those based on P(4;) and thus systematically fur-
ther from the approximation based on “best P(4;)”
selection.

This update strategy, however, has its limitations.
Computation of P(§;) according to (7) requires scan-
ning all the topographic matrix for each element.
For a collection of useful size this will inevitably be-
come a bottleneck. Our approach to the data organ-
isation, when the topographic matrix contains quite
many “holes”, overcomes this problem. More detail
about the construction of the initial topographic ma-
trix is given in the next section.

4 Implementation
4.1 Topographic matrix

The topographic matrix containing conditional
probabilities plays an important role in our retrieval
model. We performed feature extraction and nor-
malisation, to obtain N x N kick-off values for the
collection of N elements. We store only a fraction of

2Generally speaking, P(d;) is always greater than the cor-
responding P(T = i), with two exceptions: when ¢ is the tar-
get itself, and then P(6;) = P(T =14) = 1. This case is unin-
teresting in our framework.

them, assuming that for a large number of objects
the following holds:

P(&°|T = i) = P(6°), (8)

i.e. the fact that the target is i does not affect the
probability for s to be selected by the user.

By dropping useless connections between the ele-
ments that have weak or no influence on each other,
the waste of time and disk space is avoided. In addi-
tion, we preserved not only the most similar objects,
but also those that are the furthest from each other,
assuming that they have negative impact, i.e. 7 is
unlikely to be marked by the user as resembling the
target when j is the target: P(6'|T = j) — 0. The
question is, what are the assumed, or default, val-
ues of the dropouts? It is interesting to notice that
in (8) the elements are the ones that do not af-
fect the score in the naive display update scheme.
The missing conditional probabilities are simply ig-
nored when updating the object scores according to
equation (3). These scores, strictly speaking, are
not probabilities, although they are derived with the
help of probability theory. Setting P(§°|T = i) to
zero would inevitably turn the whole equation (2)
into zero, since we certainly leave most of the con-
nections out. In similar situation in content-based
text retrieval, (Hiemstra, 2000) used linear interpo-
lation, introducing the notation of importance for
the query term. We will simply use equation (8)
to obtain the default value, retreating to P(§®) as
a substitute for the missing P(0°|T = ¢). This is
referred to as a “back-off model”.

4.2 Available TREC data

As the data set we used the test set of TREC-2002
video collection, containing N = 8869 key frames
extracted automatically from video data. To ini-
tiate the topographic matrix we used colour-based
features, similar to those described in (Stricker and
Orengo, 1995). For each image we took three cen-
tral moments in HSV colour space: average value,
variance and skewness in combination with weighted
L; (Manhattan) distance. This compact feature set
has quite good discriminating ability. The values of
pair-wise distances varied from 0 to 7 and needed
to be brought to probability range of [0, 1]. Simple
division by the largest value (or the sum of all val-
ues) may distort the real distances, since an outlying
value of 7 would cause squeezing the rest of similar-
ities, most of which lied in [1, 3], into a small inter-
val, making the features undistinguishing. Usually
as an approximation the “3-sigma” rule is applied
(see e.g. (Rui et al., 1997b; Su et al., 2001)), because
the features are processed online when the timing is
constrained. Since we address the feature space off-
line, we could afford using the “full” normalisation
that consisted of the following steps:



1. Calculate pair-wise distances in the HSV met-
ric feature space. Make sure that the pair-wise
distance values have a distribution resembling
the Gaussian.

2. Assuming normal distribution of pair-wise dis-
tances, for each pair of objects calculate the
probability of their metric distance to be smaller
or equal than its value using a cumulative nor-
mal distribution. This operation will re-scale
the similarities with respect to their frequency
of occurrence.

3. Subtract the obtained probability value from 1.
This inversion assigns the largest probability for
the objects that have the smallest distance in
the selected feature space.

We plotted histograms of pair-wise distances in
the selected feature space (Fig. 4) and found that
logarithms of the distances are close to the shape of
normal curve®. The log-igification of the similari-
ties gives more distinguishing scale to the elements
that have small distance from each other, which is a
desired property, since we are more interested in dif-
ferentiating between elements that affect each other

rather than between those that seem independent.
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Figure 4: Example histogram of log-ifyed pair-wise dis-
tances of the collection, random sample of 3%.

The normalization is computationally quite inten-
sive to perform for the whole dataset, since the ma-
jor part of it would be discarded. We calculated it-
eratively the mean and standard deviation, and for
each pair of images checked the metric distance be-
fore calculating the probability. Finally, we added
neighbours for those elements that had too few close
connections, disregarding the threshold. In this way
we obtained an initial topographic matrix which can
be updated based on the successful search sessions.

3Colour histograms and Lg distance (histogram intersec-
tion) yielded similar distribution, with somewhat less steep
right tail.

The optimal threshold, or the cut-off value for the
dataset, is a topic for further investigation. The
question is, how many connections from the topo-
graphic matrix can be sacrificed to performance so
that the search quality would not drop dramatically.
If we use a 9-element display set and leave 10% of
connections, then, in the case when the elements
on the screen are representing 9 non-overlapping re-
gions from the collection, we have 90% of the col-
lection affected by the user feedback. We realise
that such a display update is unfeasible unless the
user’s information need is known. The upper bounds
for the cut-off value is 1.5 of standard deviation for
neighbours and 1.8 o for anti-neighbours, which gives
roughly 10% of the data. In any case we stored at
least 1% of the elements as closest neighbours.

Ideally, if we leave only random 7 ~ 1.1% con-
nections, then in the case of display set containing
2 elements the expected number of objects that are
connected to them would approximately be 8869 -
(0.011 % 0.011) = 1.073149,. i.e. at lest one ele-
ment. Since the remaining connections are not (com-
pletely) random, some meaningful results could al-
ready be expected with even smaller n. However,
when the display set contains n > 2 objects, it is
unlikely that there will be an object connected to
all n candidates, but the expected number of images
connected to at least 2 of them is C2, and a new
display set can be selected among them.

4.3 “Toy” collection

In addition to the real dataset we used generated
data containing geometric shapes: triangles, squares
and circles of different colours, in various combi-
nations. Some images were duplicated, and hand-
drawn objects were added as noise. Part of the col-
lection was duplicated once more and the colours
were inversed. We used three feature sets with this
collection: one addressed colours, and thus ignored
the geometric shapes. Second contained a higher-
level feature set, taking into account only type and
the number of each kind of geometric shape, regard-
less the colour. Finally, the third feature representa-
tion was the combination of shape-based and colour-
based features with weights, respectively, 0.2 and
0.8. The mapping of distances to probabilities was
performed in the same way as in the TREC collec-
tion.

4.4 User interface

Before starting the search, the user is given a short
introduction and instructions, how to give the feed-
back. The target image is then picked randomly
from the collection. The user should find the target
image, which for convenience is always present on
the screen. The display set for the TREC data col-
lection consisted of 9 images, and the feedback was
ternary: the user was allowed to mark whether the



image was “good” or “bad”, or set the pointer into
neutral position (“don’t know”, default value). For
the toy collection we showed only 4 images, because
the collection size is small.

We started testing with the naive update schema.
The user was supposed to do one of the tree actions:
(1) Select suitable images and press “Feedback” or
(2) Select the target image if it is on the screen and
press “Found” to retrieve the target and the ranked
list of neighbours, or (3) Press ‘Cancel” to termi-
nate the unfinished search and get the best ranking
images on the screen anyway. Only action (2) was
considered as a successful search. All user actions
are logged, and the distribution of P(T = i) may
be reconstructed for each moment of the search. In
the best-selected display update, the user may only
see the current ranked list by pressing “Found” and,
if necessary, continue search by giving the feedback.
The target is then indicated by the user as an extra
step.

5 First conclusions

There are some conclusions that can be drawn al-
ready at the initial stage of the experiments:

1. Colour-based features alone are confusing for
the images with contrasting colours. These fea-
tures are far to low level, and large relevance
feedback statistics should be collected before
the topographic matrix is updated to the se-
mantic level.

2. The naive and best-selected display update

schema both tend to select objects that are very
similar to each other. This is especially obvi-
ous in the toy-collection, where some part of
the data is identical to another part, with re-
spect to geometric feature space. We expect
that this effect would be decreased for the best-
selected scheme by introducing a penalty func-
tion P, which would improve approximation to
the display update made in section 3.4.
Since in the naive scheme, the best targets in
the current iteration are displayed to the user
in the next round, the updated display consists
of the closest neighbours of the good examples
selected by the user, and, respectively, the fur-
thest objects from the bad examples, and in this
form mimics k-nearest neighbour retrieval tech-
nique. No wonder that k nearest neighbours are
likely to be nearest neighbours of each other!

3. When binary feedback is used, the user’s incon-
sistency is especially harmful, since images from
the same class occasionally get different marks
(one is selected, the other one is not). As men-
tioned in (Miller et al., 2000a), too much of
negative feedback may damage the search ses-
sion. However, the use of the “neutral” feed-

back button in the interface reduces the qual-
ity of the search, since it wastes screen space
(and the user’s attention). Alternatively, over-
whelming influence of negative feedback can be
eliminated by more careful selection of the dis-
play set and reducing (or even eliminating) the
amount of anti-neighbours in the topographic
matrix.

6 Future work

In the experiments we plan to clarify the following
points:

1. What is the optimal strategy for the display up-
date with respect to our data structure?

2. What is the optimal amount of connections in
the topological matrix?

3. How does “neutral” feedback affect the search
quality; What effect is brought by the presence
of anti-neighbours in the database?

4. How to integrate transcripts of speech recogni-
tion of the video material into the system?

We need to perform a number of experiments,
clarifying the questions listed above. In the exper-
imental phase the target is always picked up from
the dataset. To perform automatic simulation, we
will use TREC-2002 topics as possible targets. The
result sets provided by the TREC as answers to
each query, will indicate positive feedback from the
user. In this way we are able to clarify some re-
search questions. The advantage of the automated
system is that the exact same relevance judgement
is done for different setups, and the same target may
be retrieved many times by different versions of the
system.

We plan two types of search: unbounded and lim-
ited. In the unbounded version the user is free to
search as long as needed. In the limited conditions
the user is allowed to make only a certain number of
iterations, and then the resulting ranked list is stud-
ied. The checkpoints for the results are determined
after 10 (log,(8869/9) = 9.945, expected number of
rounds in case of optimal strategy) and 20 iterations.

We determine the quality of the search by the rank
of the target object achieved at the checkpoints, and
the highest rank achieved by the target element. In
the unbounded version, the criteria are the number
of iterations before seeing the target and the number
of successful searches with a given number of itera-
tions. Precision-recall graphs, a traditional method
of evaluation the search quality, have a somewhat
different meaning when the assumption that the tar-
get is unique and exists in the collection is made.
Nevertheless, the subjective manual judgement of
relevance of the result set is feasible. To evaluate
any of the above strategies, we will also look at the



convergence of the rank of the target object during
the search session.
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