Design and Implementation of a Genetic-Based
Algorithm for Data Mining

Sunil Choenni

National Aerospace Laboratory NLR, P.O. Box 90502, 1006 BM Amsterdam, The Netherlands

and

University of Twente, Dept. of Computer Science, P.O. Box 217, 7500 AE Enschede, The Netherlands
email: choenni@nlr.nl and choenni@cs.utwente.nl

Abstract

Many data mining problems can be consid-
ered as search problems. A database is re-
garded as a search space and a mining algo-
rithm as a search strategy. The search spaces
that rise from data mining problems are very
large, making an exhaustive search infeasible.
Therefore, heuristic search strategies are of vi-
tal importance. In this paper, we discuss the
design and implementation of a (prototype)
data mining tool that is equipped with a ge-
netic algorithm. We have mined two real-life
aircraft incident databases with this tool. We
report on the obtained mining results as well.

1 Introduction

Research and development in data mining evolves in
several directions which are not necessarily divergent.
One of these directions is the induction of classifica-
tion rules from databases [1, 2, 13, 14, 17]. Many data
mining problems in this direction can be regarded as
search problems. A search problem is characterised by
a search space and a search strategy [12]. A search
strategy is used to identify specific elements in the
search space by walking efficiently through this space.

In the context of data mining, a database is re-
garded as a set of tuples, and each (projected) sub-
set of tuples is considered as an element in the search
space. The problem is to select interesting subsets

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 26th VLDB Conference,
Cairo, Egypt, 2000.

33

without inspecting the whole search space, which is the
task of a search strategy. For example, in a car insur-
ance environment the identification of profiles of risky
drivers, i.e., drivers with (more than average) chances
of causing an accident, can be modelled as a search
problem. Consider an artificial relation Driver(gender,
age, town, category, price, damage), in which the at-
tributes gender, age, and town refer to the driver and
the other attributes refer to the car. Attribute category
records, whether a car is leased or not, and damage
records, whether a car has been involved in an acci-
dent or not. The challenge is to select a conjunction
of predicates that represents the group of risky drivers.
Assume that young males in leased cars form the group
of risky drivers. Then, an expression like: gender is
(‘male’) A age in [19,24] A category is (‘leased’) should
be searched for.

In general, the search spaces that should be in-
spected in order to answer mining questions are very
large, making an exhaustive search infeasible. There-
fore, heuristic search strategies are of vital importance
to data mining. The success of a search strategy is
often dependent on the structure of the search space.
For example, a hill climber will generally perform bet-
ter on a search that consists of a few optima, while
a genetic algorithm will perform better if the search
space consists of many optima. The reason is that a
hill climber terminates if it reaches an optimum, while
a genetic algorithm does not. In a search space that
contains many optima, it will generally be worthwhile
to continue searching the space after having found the
first optimum. Unfortunately, the search spaces that
stem from data mining problems neither have a specific
structure nor are the structures known in advance. On
the basis of evidence, one should choose for a search
algorithm. Therefore, a data mining tool should be
equipped with several search algorithms.

This paper is devoted to the design and imple-
mentation of a (prototype) data mining tool, called
SHARVIND, which is equipped with a genetic algo-
rithm. SHARVIND is primarily developed for data

mining problems that give rise to search spaces that
consist of expressions. An expression is a conjunc-
tion of predicates and each predicate is defined on a
database attribute. A genetic algorithm is brought
into action to efficiently search for interesting expres-
sions.

In general, a genetic algorithm is characterised by
the representation of individuals, a fitness function
that evaluates an individual, and the manipulation
operators cross-over and mutation [15]. We repre-
sent an individual as an expression. This represen-
tation fits seamlessly in the field of databases. The
fitness function takes care that extracted knowledge
from the database is supported by a significant part of
the database and that trivial knowledge is discarded
before-hand. Furthermore, our fitness function gives
rise to the reduction of the number of disk accesses
during the mining process. We have implemented the
mutation operator such that an expression undergoes a
minor modification. The cross-over operator takes two
expressions, selects a random point, and exchanges the
subexpressions behind this point.

SHARVIND is a re-targetable tool that is cur-
rently running in a Microsoft Access environment. Re-
targetable means that the tool can be integrated with
other database management systems, such as ORA-
CLE, without much effort. The tool takes as input a
mining question and possibly requirements (e.g., not
to use certain attributes in the mining process) posed
by a user. Then, a random number of expressions,
called initial population, is selected. The initial pop-
ulation is manipulated by applying the cross-over and
mutation operators. In order to compute the fitness
of individuals, they are translated into corresponding
SQL queries which are passed to the MS Access dbms.
The fittest individuals are selected to form the next
generation and the manipulation process is repeated
until no significant improvement of the population can
be observed. As output, the tool delivers expressions
whose corresponding number of tuples falls in a user-
defined interval.

We have mined two real-life databases with
SHARVIND. Both databases contain aircraft incident
data. The mining question that we have posed to both
databases is: ”What are the profiles of risky flights?”
To one of these databases, we have posed some addi-
tional mining questions concerning safety aspects (see
Section 7). We have presented the mining results to
safety experts at our laboratory and the overall con-
clusion was that the answers to the mining questions
were correct and promising. The mining results helped
safety experts to gain insight in the databases and
hopefully also knowledge in future.

1.1 Related work

It has been recognised by several researchers that ge-
netic algorithms might be suitable for data mining

34

tasks [3, 4, 8, 9, 10]. In [3, 10], a genetic approach
has been proposed to learn first order logic rules and
in [9], a framework is proposed for data mining based
on genetic programming. In [4], a genetic algorithm
is applied in the context of direct marketing. In [8],
a general overview of a pattern search tool is given.
Standard statistical measures are used to evaluate pat-
terns.

The efforts in [3, 4, 8, 10] are focussed towards ma-
chine learning, and the important data mining issue
of integration with databases is superficially discussed
or not discussed at all. Although the framework in
[9] stresses on the integration of genetic programming
and databases, an elaborated approach to implement
and to evaluate the framework is not presented. Fur-
thermore, the proposed algorithms in [3, 10] are not
implemented as well.

Our work distinguishes from above-mentioned ef-
forts on the following aspects. First, we have imple-
mented our approach and have applied it on two real-
life databases. Second, we propose a re-targetable ar-
chitecture, in which a genetic algorithm is integrated
with databases. We note that in [4, 10] individuals are
represented as binary strings or as vectors. Third, we
have made a first attempt to model a fitness function
such that the number of disk accesses may be opti-
mized, which speeds up the mining session.

Other related research has been reported in [13, 14].
In these efforts, the authors use variants of a hill
climber to identify the group(s) of tuples satisfying
a mining question. Since a genetic-based algorithm is
capable of exploring different parts of a search space,
it has, by nature, a better chance to escape from a
local optimum than a hill climber.

A major advantage of our approach is that we have
solved the partitioning of attribute values —which is
necessary for many mining algorithms— by choosing a
suitable mutation operator (see Section 3). In general,
data mining algorithms require a technique that par-
titions the domain values of an attribute in a limited
set of ranges, see amongst others [17], simply because
considering all possible ranges of domain values is in-
feasible. Finding a proper partitioning technique for
attribute values is a tough problem [18].

1.2 A guided tour

In Section 2, we discuss the relation between search-
ing and data mining in more detail. In Section 3, we
tailor a genetic algorithm for mining purposes. Since
our fitness function gives rise to optimization of the
number of disk accesses, we discuss, in Section 4, a
number of optimization rules. In Section 5, we discuss
the overall genetic-based mining algorithm. Section 6
is devoted to the architecture and implementation of
SHARVIND. In Section 7, we report on some mining
results that we have obtained by mining a number of
databases. Section 8 concludes the paper.

gender age town category price damage

1 male 20 Rome leased 70K yes
2 female 35 Amsterdam not leased 80K yes
3 male 24 Amsterdam leased 75K yes
4 male 28 Rome not leased 40K yes
5 female 28 The Hague leased 50K no

Table 1: Snapshot of the database Driver

2 Data mining and searching

In the following, a database consists of a universal re-
lation [7]. The relation is defined over some indepen-
dent single valued attributes, such as atty,atts,..., att,,
and is a subset of the Cartesian product dom(att;) x
dom(atty) x...x dom(att,), in which dom(att;) is the
set of values that can be assumed by attribute att;.
A tuple is an ordered list of attribute values to
which a unique identifier, referred as tid, is attached.
An expression is defined as a conjunction of predicates,
and is used to select a set of tuples from the database,
which in turn represents a class in the database. Con-
sider the relation Driver(gender, age, town, category,
price, damage) and a snapshot of this relation as
depicted in Table 1. For example, the expression
gender="‘male’ selects the tuples corresponding to the
males, i.e., the tuples 1, 3 and 4 in Table 1, the expres-
sion age in [18,24] A category="‘leased’ selects the set
of tuples corresponding to persons between eighteen
and twenty four years old driving a leased car, i.e., the
tuples 1 and 3, etc. A main advantage of introducing
the notion of expression is that we do not have to enu-
merate explicitly all tuples of a class, and therefore an
expression can be regarded as a summary/description
of a class. So, a database contains an enormous num-
ber of classes, and each class can be represented as an
expression or a disjunction of expressions.
Note, the disjunction (gender=‘male’ A age=20
A town=‘Rome’ A category="‘leased’ A price=70K
A damage=‘yes’) V (gender=‘female’ A age=35
A town=‘Amsterdam’ A category=‘not leased’ A
price=80K A damage="‘yes’) is a straightforward way
to select the first and the second tuple from Table 1.
Data mining may now be regarded as the search for
useful, previously unknown expressions from a space of
expressions without inspecting the whole space. The
search space is formed by all possible expressions with
regard to a database. Note that the number of ex-
pressions grows exponentially with the number of at-
tributes and the number of tuples in the database.
Although the usefulness of an expression generally
depends on the application, we know before-hand that
the following three categories of expressions will not
be interesting.

1. Expressions that select zero tuples. An example of
such an expression is age=20 A age=36. Since age
is a single valued attribute, no tuples will qualify.

35

2. Expressions that select a set of arbitrary tuples
that do not have any common characteristics.
Such a set can easily be obtained by a disjunc-
tion of an arbitrary number of expressions.

Expressions that consist of a single predicate,
called elementary expression. Knowledge with re-
gard to these expressions is stored in the data dic-
tionary, which is easily accessible.

Therefore, we discard these categories from the
search space by imposing the following restrictions to
expressions: 1) an attribute appears at most once in
an expression, 2) disjunctions of expressions are not al-
lowed in the search space, and 3) an expression should
contain at least one conjunction.

So, the elements of the search space are expressions
that satisfy above-mentioned restrictions. The chal-
lenge is to come up with search strategies that are
able to find the interesting elements by inspecting a
relatively small part of the search space.

3 Mining with genetic algorithms

In this section, we discuss the issues that play a role in
tailoring a genetic algorithm for data mining. Section
3.1 is devoted to the representation of individuals in a
population. Then, in Section 3.2, we discuss a fitness
function, which computes the quality of an individual.
Finally, in Section 3.3, we discuss the two operators
that are used to manipulate an individual.

3.1 Representation

As stated in Section 2, an expression is a conjunction
of predicates and a predicate is defined on a database
attribute. An individual is defined as an expression
to which some restrictions are imposed with regard to
the notation of elementary expressions.

The notation of an elementary expression depends
on the domain type of the involved attribute. If there
exists no ordering relationship between the attribute
values of an attribute att, we represent an elemen-
tary expression as follows: expression := att is (vq,
V2,..,Up), in which v; € dom(att), 1 < i < n. In this
way, we express that an attribute att assumes one of
the values in the set {v1, va,...,u,}. If an ordering re-
lationship exists between the domain values of an at-
tribute, an elementary expression is denoted as expres-
sion := att in [v;,vg], i < k, in which [v;, v] represents
the values within the range of v; and vy.

A population is defined as a set of individuals. An
example of a population, based on the relation Driver,
is given in Figure 1.

3.2 Fitness function

Since a genetic algorithm is aimed to the optimization
of a fitness function, this function is one of the keys to

p1 = genderis (‘male’) A age in [19,34]
p2 = age in [29,44] A category is (‘leased’)
A town is (‘Rome’, ‘Amsterdam’, ‘Cairo’)
p3 = genderis (‘male’) A age in [29,34] A
category is (‘leased’)
ps = genderis (‘female’) A age in [29,40] A
category is (‘leased’) A price in [50K, 100K]
ps = genderis (‘male’) A price in [20K,45K]

Figure 1: Example of a population

success. Consequently, a fitness function should rep-
resent issues that play a role in the optimization of a
specific problem. Before enumerating a number of is-
sues that play a role in the context of data mining, we
introduce the notions of cover.

Definition 1: Let D be a database and p an individ-
ual defined on D. Then, the number of tuples
that satisfies the expression corresponding to p is
called the cover of p, and is denoted as ||o,(D)]|.
The set of tuples satisfying p is denoted as ¢,(D).

Note that p can be regarded as a description of a
class in D and 0,(D) summarizes the tuples satisfy-
ing p. Within a class we can define subclasses. In
the following, we regard the classification problem as
follows: Given a target class t, search interesting sub-
classes, i.e., individuals, within class t. We note that
the target class is the class of tuples in which inter-
esting knowledge should be searched for. Suppose we
want to expose the profiles of risky drivers, i.e., the
class of persons with (more than average) chances of
causing an accident, from the database Driver. Then,
these profiles should be searched for in a class that
records the characteristics of drivers that caused ac-
cidents. Such a class may be described as damage =
(‘yes).

We feel that the following issues play a role in clas-
sification problems.

e The cover of the target class. Since results from
data mining are used for informed decision mak-
ing, knowledge extracted from databases should
be supported by a significant part of the database.
This increases the reliability of the results. So,
a fitness function should take into account that
small covers are undesired.

e The ratio of the cover of an individual p to the

cover of the target class t, i.e., W. If
the ratio is close to 0, this means that only a few
tuples of the target class satisfy individual p. This
is undesired for the same reason as a small cover
for a target class. If the ratio is close to 1, almost
all tuples of the target class satisfy p. This is also
undesired because this will result in knowledge
that is often known. A fitness function should

take these properties into account.

36

F(p)
1.0

0 Bllo ©) || lloy @) |

Il op(@) ™ 6 O) ||
Figure 2: Shape of the fitness function

Taking into account above-mentioned issues, we have
defined the following fitness function:

MC(&

Ao (D) if |op(D) No(D)|

< Blle(D)|l

llop (D)o (D) —[loe(D)]
“eonie-n - ¢

in which 0 < 8 <1, and
if loeDl < o with0<a <1

o(t) ={ 0 it o)

F(p) =

otherwise

1 otherwise

We note that the values for a and 3 should be de-
fined by the user and will vary for different applica-
tions. The value of a defines the fraction of tuples
that a target class should contain in order to be a can-
didate for further exploration. The value 3 defines the
fraction of tuples that an individual should represent
within a target class in order to obtain the maximal
fitness. In Figure 2, the shape of the fitness function
is presented.

The fitness grows linearly with the number of tuples
satisfying the description of an individual p as well as
satisfying a target class ¢, i.e., [|op(D) No(D)||, above
a user-defined value «, and decreases linearly with
[lop(D) N oy (D)|| after reaching the value g||o¢(D)]|.

It should be clear that our goal is to search for those
individuals that approximate a fitness of f§||o¢(D)]|.
Consider the target class damage = (‘yes’) that con-
sists of 100.000 tuples. Assume that a profile is con-
sidered risky if about 30.000 out of 100.000 persons
satisfy this profile. This means that § ~ 0.3. Assum-
ing that 33.000 of the persons that caused an accident
are young males, the algorithm should find individuals
like gender is (‘male’) A age in [19,28].

3.3 Manipulation operators

In this section, we discuss the effects of the mutation
and cross-over operator on an individual.

Mutation. As stated in the introduction of this sec-
tion, a mutation modifies an individual. In defining
the mutation operator, we take into account the do-
main type of an attribute. If there exists no order-
ing relationship between the domain values, then we

randomly select an attribute value and replace it by
another value, which can be a NULL value as well, in
an expression that contains this attribute. For exam-
ple, a mutation on attribute town of individual p, (see
Figure 1) may result into p), = age in [29,44] A town is
(‘Rome’, ‘The Hague’, ‘Cairo’) A category is (‘leased’).

If there exists a relationship between the domain
values of an attribute, the mutation operator acts in
the case that a single value is associated with this at-
tribute in an expression, i.e., the expression looks as
att is (v.), as follows. Let [vp, ve] be the domain of at-
tribute att. In order to mutate v., we choose randomly
a value 0, € [0, (ve — vp)p], in which 0 < p < 1. The
parameter p is used to control the maximal increase
or decrease of an attribute value. The mutated value
v!, is defined as v), = v, + §, or v, = v, — d, as long as
v, € [vp,ve]- To handle overflow, i.e., if v} & [vp,v.],
we assume that the successor of v, is vy, and, conse-
quently the predecessor of vy is v.. To compute a mu-
tated value vl appropriately, we distinguish between
whether v, will be increased or decreased, which is
randomly determined. In the case that v, is increased

r_
UC_{

and in the case v, is decreased

r_ Uc_‘sv
vc—{

Ve — 0y + (Ve — vp)

Let us consider the situation in which more than one
value is associated with an attribute att in an expres-
sion. If a list of non successive (enumerable) values
is associated with att, we select one of the values and
compute the new value according to one of the above-
mentioned formulas. If a range of successive values,
i.e., an interval, is associated with att, we select ei-
ther the lower or upper bound value and mutate it. A
potential disadvantage of this strategy for intervals is
that an interval may be significantly enlarged, if the
mutated value crosses a domain boundary. Suppose
that the domain of age is [18,60], and we mutate the
upper bound value of the expression age in [55,59],
i.e., the value 59. Assuming that the value 59 is in-
creased by 6, then 59 is mutated in the value 23. The
new expression becomes age in [23, 55].

We note that the partitioning of attribute values,
i.e., the selection of proper intervals in an expression,
is simply adjusted by the mutation operator. As noted
before, partitioning of attribute values is in general a
tough problem [18].

Ve + Oy
Vp + 0y — (Ve — V)

if v, + &y € [p, ve]
otherwise

if v, — &y € [Up, V]
otherwise

Cross-over. The idea behind a crossover operation
is as follows; it takes as input 2 expressions, selects a
random point, and exchanges the subexpressions be-
hind this point. To illustrate this idea, we consider
a relation R(att;,atty,..., att,) and two expressions, e
and e/, in which all attributes are involved. Let e’ be

37

defined as follows: (e AebAesA...Aef_; Aej Aef i A
... Aey,), in which e] represents an elementary expres-
sion in which attribute att; is involved. And, let e’ be
defined as (e] Aez AegA...Nej_ AeyAej g N Nej).
Then, a cross-over between e’ and e’ at point k may
result into the following two expressions, namely e’
(el’1 NesNes A Nej_y Aeg A ??c+1./\ .. Ael) .and
el =(efNesy NesN...Nej_y Nep Nep Ao Nep).

In general, not all attributes will be involved in an
expression. This may have some undesired effects for
a cross-over [6]. Solutions to these effects are also dis-
cussed in [6)].

4 Optimization rules

We discuss two propositions that may be used to pre-
vent the exploration of unprofitable individuals. These
propositions are derived from the shape of the fitness
function. The complexity of a genetic-based algorithm
is determined by the evaluation of the fitness function
[16]. Before presenting these propositions, we intro-
duce the notion of a similar of an individual.

Definition 2: Let length(p) be the number of ele-
mentary expressions involved in p. An individ-
ual pgim is a similar of p if each elementary ex-
pression of pg;,, is contained in p or ps;, contains
each elementary expression of p and length(ps,)

length(p).

As stated in the foregoing, we search for individuals
with high values for the fitness function F'. For the
definition of F, we refer to Section 3.2. Note that
the computation of F(p) requires the number of tuples
that satisfy individual p. So, these tuples should be
searched for and retrieved from the database, which
is a costly operation [7]. Although several techniques
may be used to minimize the number of retrievals from
a database [5], still large amounts of tuples have to be
retrieved from the database in mining applications.

In the following, two propositions will be presented
that may be used to avoid the computation of fitness
values of unprofitable individuals. These propositions
decide if the fitness value of a similar of an individual
p is worse than the fitness of p. If this is the case, this
similar can be excluded from the search process.

Proposition 1: Let ps;n, be a similar of p. If ||op(D)N
oi(D)|| < Bllow(D)|| and length(psim) > length(p)
then F(psim) < F(p)

Proof. From length(ps;m) > length(p) follows that
Opun(D) C op(D). As a consequence, ||op,, (D) N
o((D)|| < llop(D) No¢(D)]|. Since ||op(D) N oy (D) <
Bllot(D)]|, it follows F(py,) < F(p). O

Proposition 2: Let pg;y, be a similar of p. If ||o,(D)N
o¢(D)|| = Bllo+(D)|| and length(psim) < length(p)
then F(psim) S F(p)

Proof. Similar to the proof of Proposition 1. O

Note that the propositions do not require additional
retrievals from a database to decide if F'(psim) < F(p).
The propositions may contribute in optimizing the
search process in different ways. Due to space limi-
tation, we discuss an application at population level.

Recall that a cross-over is applied on a mating pair
and results into two offsprings. Suppose that a mu-
tation is performed after a cross-over, and the parent
and the offspring with the highest fitness values are
eligible to be mutated (see Section 5). Consider an
offspring p, resulted from a cross-over, and let p, be a
similar of p, one of its parents. If we can decide that
F(p,) < F(p), then it is efficient to mutate p,. The
reason is that computation on an unmutated p, will
be a wasting of effort.

5 Algorithm

Before describing the overall genetic-based mining al-
gorithm, we discuss a mechanism to select an individ-
ual for a next generation.

The mechanism to select individuals for a new gen-
eration is based on the technique of elitist recombina-
tion [19]. According to this technique, the individuals
in a population are randomly shuffled. Then, the cross-
over operation is applied on each mating pair, result-
ing into two offsprings. The parent and the offspring
with the highest fitness value are selected for the next
generation. In this way, there is a direct competition
between the offsprings and their own parents.

The elitist recombination technique has been cho-
sen for two reasons. First, there is no need to specify a
particular cross-over probability, since each individual
is involved in exactly one cross-over. Second, there is
no need for intermediate populations in order to gen-
erate a new population as is the case in a traditional
genetic algorithm. These properties simplify the im-
plementation of a genetic algorithm. Let us outline
the overall algorithm.

The algorithm starts with the initialization of a
population consisting of an even number of individu-
als, called P(t). The individuals in this population are
shuffled. Then, the cross-over operation is applied on
two successive individuals. After completion of a cross-
over, the fitness values of the parents are compared!;
the parent with the highest value is selected and it
may be mutated with a probability ¢. This parent,
Pl is added to the next generation, and in case it
is mutated its fitness value is computed. Then, for
each offspring, p,, we test if this offspring is a similar
of pl, and if its fitness value is worse or equal than
Ple- If this is the case, p, is an unpromising individ-
ual, and, therefore, we always mutate p,. Otherwise,
we mutate p, with probability ¢. Note, to compare the
fitness value between p., and p,, the propositions of

!These values are already computed and stored by the
algorithm.

38

program Genetic Algorithm;
initialize(P(t));

FOR p € P(t) DO F(p) OD;
F/(P(t+ 1)) := e+ 15 F(P(t)) :=

WHILE F/(P(t + 1)) — F'(P(t) 2
F(PW) = F(P(+ 1) = 0
ahuffle(P(1));

WHILE j < population_size DO
cross-over(p;j,pj+1, 01,02);
IF F(p;) > F(pj+1) THEN pge; :=p;
ELSE pge) := Dj+1
FI;
mutate(psel, ’psel)
H:j psel # Psel THEN F(p,
Deol —* P(t+1);
FOR k£ =1,2 DO
IF (sumlar(p o100k) AND F(og) < F(psel))
THEN mutate(ok, 1.0, 0},);
ELSE mutate(og, ¢, ok)

FI;
OD;
F(0}); F(ob);
IF F(o}) > F(o,) THEN o} — P(t+1)
ELSE o}, — P(t + 1);

Pla) FL;

FI;
Ji=3+2
OD;
For p € P(t) DO F'(P(t)) := F'(P(t)) +
For p € P(t+ 1) DO
F'(P(t +1)) == F'(P(t + 1)) + F(p)
OD;
P(t+1) := P(t);
OD;
END.

F(p) OD;

Figure 3: Sketch of the genetic-based algorithm

the previous section are used. So, no additional fitness
values are computed for this comparison. After possi-
ble mutation of the offsprings, their fitness values are
computed, and the fittest offspring is added to the new
generation. This process is repeated for all individuals
in a generation.

Once the new population has been built up, the
total fitness of the existing as well as of the new pop-
ulation is computed, and compared. The algorithm
terminates if the total fitness of the new population
does not significantly improve compared with the to-
tal fitness of the existing population, i.e., that the im-
provement of the total fitness of the new population is
less than a threshold value e.

In Figure 3, the algorithm is sketched. We note
that the procedure cross-over(pi, p2, 01,02) takes two
individuals p; and po as input, applies a cross-over,
and produces two offsprings o; and os. Procedure
mutate(p, ¢, p') mutates an individual p with probabil-
ity ¢ into p’ and similar(p;, p2) is a boolean function
that decides whether two individuals are similar or not.
The symbol P(t) represents a population at time ¢,
while p; is the j-th individual in P(t). The total fitness
of a population is defined as F'(P(t)) = 3, ¢ py) F(p)-

mining question user requirements

Data Mining Tool

Genetic-Based Mining
Algorithm User

answers

User

Interface additional
individuals input

Query generator

queries results

MSACCESS DBMS

5.

databases

Figure 4: Architecture of SHARVIND

6 SHARVIND: a genetic-based data
mining tool

In two successive subsections, we discuss the architec-
ture of and some implementation issues with regard to
SHARVIND.

6.1 Architecture

We distinguish three modules in SHARVIND, a
user interface, a genetic-based mining algorithm,
and a query generator. The overall architecture of
SHARVIND is depicted in Figure 4. The input con-
sists of a mining question and additional requirements
that may be posed by the user. For example, a user
may demand that an attribute in a database should
not be involved in the mining process for reasons of
privacy (e.g., income of pilots). The user is allowed
to request intermediate mining results, and if desired,
the user is able to modify the input. We note that this
is a useful feature of a mining tool, since, in practice,
a user starts a mining session with a rough idea of the
information that might be interesting, and during the
mining session the user more precisely specifies, based
on, amongst others, the mining results obtained so far,
which information should be searched for.

Once SHARVIND receives the input, it invokes the
genetic-based mining algorithm. To compute the fit-
ness value of an individual, the algorithm needs the
number of tuples that satisfies the description of the
individual. Therefore, the database should be interro-
gated. An individual should be translated into queries
that are understood by the underlying dbms. This is
the task of the query generator.

Since in our case an individual is an expression, the

39

translation of an individual into an equivalent set of
SQL queries is straightforward. Note that the indi-
vidual already forms the WHERE clause of a SQL
query. Therefore, the query generator is relatively sim-
ple. Suppose that we require the number of tuples in
the database Driver that satisfies the description of an
individual p = gender is (‘male’) A age in [18,24] then
the corresponding SQL query is: SELECT COUNT(*)
FROM Driver WHERE (gender is ‘male’) AND (age
BETWEEN 18 AND 24).

SHARVIND has as main advantages that it is
extensible and re-targetable. For the time-being,
SHARVIND is equipped with a genetic-based algo-
rithm but other mining algorithms that are based on
e.g., a hill climber, simulated annealing, etc., can be
easily plugged in. SHARVIND is re-targetable since
the tool can be coupled to other dbmss without much
effort. In the case that a dbms does not understand
SQL, a new module in the query generator should be
built in that translates individuals in the language that
is understood by the underlying dbms, while the re-
mainder of the system can be left untouched.

6.2 Implementation

SHARVIND is running in a MS Access 97 environment
that uses the Microsoft Jet Engine. The genetic-based
algorithm is implemented in Visual Basic and consists
of approximately 2000 lines of code. Our choice for this
environment is mainly determined by its suitability for
rapid application and the fact that the databases we
want to mine are stored in MS Access.

As discussed in Section 3, major components in de-
veloping a genetic-based algorithm are the represen-
tation of individuals, manipulation operators, fitness
function, and the translation of an individual into a
query that is understood by the MS Access dbms.

Individuals, which are regarded as a conjunction of
predicates over attributes, are implemented as binary
tables. An ordered attribute, att is implemented as
two tuples: <att, lower bound value> and <att, up-
per bound value>. An unordered attribute having n
values is implemented as n tuples, having the form
<att, value> in the table. For each individual, a bi-
nary table is built up in this way. So, the individual
gender is (‘male’) A age in [18,24] is implemented as
follows:

| Attribute name | Attribute value |

gender male
age 18
age 24

Once the data structure of an individual was defined,
the implementation of the manipulation operators was
straightforward. A cross-over is obtained by select-
ing two tables, splitting each table into two subtables,
let’s say a head and a tail table. Then, the tail tables
are exchanged. A mutation is obtained by deleting

and/or inserting one or more tuples. Suppose that
in the above-mentioned individual gender is (‘male’)
should be mutated in gender is (‘female’). This is ob-
tained by removing the tuple gender is (‘male’) from
the table and inserting the new tuple gender is (‘fe-
male’).

Due to mutations it may occur that the range in-
terval of an attribute grows to the domain of that at-
tribute. In such a case, the whole database will be
covered by that attribute, which is undesired for the
search process. To prevent this situation, we have de-
cided that an interval corresponding to an attribute
may not grow harder than a user defined threshold
value, e.g., (upper bound domain value - lower bound
domain value)xz, in which z € (0, 1].

The implementations of the fitness function as well
as the query generator were straightforward. For each
generation, we keep track of the average fitness, and
the individuals with the highest and lowest fitness.

7 Mining an artificial and two real-life
databases

We give an overview of the databases that we have
mined with SHARVIND and of the results that have
been obtained. Section 7.1 is devoted to an artificial
database, in which pre-defined knowledge was hidden.
Section 7.2 is devoted to the mining of two real-life
incident databases.

7.1 Artificial database

This database consists of the relation Driver. For this
database 100.000 tuples have been generated of which
50% have a value (‘yes’) for attribute damage, i.e., 50%
of the tuples relate to an accident. Furthermore, the
following fact was hidden in this database: young men
in leased cars have more than average chances of caus-
ing an accident. The goal of mining this database was
to determine whether the tool is capable of finding the
hidden fact. Therefore, we have set the target class
as damage = (‘yes’), and we searched for the profile
of risky drivers. The expression for the hidden profile
is: age in [19,24] A category is (‘leased’) A gender is
(‘male’).

We have mined the database with varying initial
populations, consisting of 36 individuals. The follow-
ing classes of initial populations were distinguished. 1)
random: this population contained a few individuals
that could set the algorithm quickly on a promising
route, 2) modified random: individuals that could ap-
parently set the algorithm on a promising route were
replaced by other (not promising) individuals, 3) bad
converged: this population contained individuals with
low fitness values.

We have observed that the algorithm usually finds
near optimal solutions, i.e. profiles that look like
the hidden one, in less than 1000 fitness evaluations.

40

The differences between the hidden profile and profiles
found by the algorithm (for different initial popula-
tions) were mainly caused by variations in the range
of attribute age.

The type of the initial population plays a role in
the number of fitness evaluations required to find a
near optimal solution. Running the algorithm on the
database with random initial populations, the algo-
rithm was able to find a near optimal expression quite
rapidly, i.e., in about 100 fitness evaluations. Starting
from modified random initial populations, 300 to 400
fitness evaluations were required for a near optimal so-
lution. Starting from bad converged initial population,
900 to 1000 fitness evaluations were required.

With regard to the settings of the parameters
and (3, we note that appropriate values could easily be
selected, since the content of the database is precisely
known.

7.2 Two real-life databases

The first database, called ECCAIRS is located at
the Joint Research Centre in Italy. Currently, this
database contains serious incident and accident data
that is converted from the Scandinavian accident- and
incident reporting system. This database grows with
approximately 4% each year. Detailed information can
be found on http://eccairs-www.jrc.it, and in [11].

The second database, called the FAA database, con-
tains aircraft incident data that have been recorded
from 1978 to 1995. For example, the database con-
tains reports of collisions between aircraft and birds
while on approach to or departure from an airport.
This database can be obtained from the Internet at
http://www.asy.faa.gov/asp/asy fids.asp.

Both databases are stored in MS Access and con-
tain NULL values and redundant data. Furthermore,
integrity rules (e.g., for domain values) are hardly im-
plemented.

In two successive sections, we discuss these
databases in more detail. In Section 7.2.3, we report
on the mining results.

7.2.1 ECCAIRS

The ECCAIRS database consists of 36 relations and
about 300 attributes. Two major relations of the
database are the AC'S and the OCC'S relations. The
AC'S relation contains information with regard to air-
craft, such as manufacturer, motor, speed of the air-
craft, etc., and information about the environment in
which the aircraft is involved, such as weather condi-
tions. The OCC'S relation describes in general terms
an occurrence (incident or accident) and contains gen-
eral information with regard to an occurrence, for ex-
ample, time and location of an occurrence, etc. The re-
lation ACCS contains 5202 tuples and 186 attributes
and OCCS contains 5202 tuples and 27 attributes. Al-

though the number of tuples is not large, mining might
be interesting due to the large number of attributes.

However, currently 17 relations do not contain any
tuples, while other relations consist of tuples having
many NULL values. To gain insight in the number
of NULL values in each relation, we define a filling
factor as follows:

filling(R) = —70alues(B) 10006 in which

~ maz(values(R))

maz(values(R)) = #tuples(R) X #attributes(R).
Note that #values(R) is the number of values in re-
lation R, #tuples(R) is the number of tuples in R,
etc.

It appears that filling(ACCS) = 19% which is a
bad score especially for mining and filling(OCCS) =
72%. In order to make the database suitable for mining
we have removed:

e All attributes with less than 2000 entries filled in.

e All attributes whose values consist of natural lan-
guage. Although these attributes may expose in-
teresting knowledge, they are removed, since our
algorithm is not yet able to handle them.

e Attributes that are fully functional dependent on
another attribute. For example, from the lati-
tude/longitude attribute the city name can be de-
rived. So, city name is a redundant attribute

o Attributes with a selectivity factor? close to one
and attributes with a very low selectivity factor,

: 1
i.e., close to Fraples(B)

After performing the removals 64 attributes were
left and the filling factors for ACCS and OCCS be-
come 81% and 84% respectively. Then, we join these
relations into a single relation.

Since the amount of tuples is relatively small, we
have mined the whole joined relation.

7.2.2 FAA

At our laboratory, this database is implemented as a
single table that is sorted on an attribute, called report
number, which served as primary key. In the following,
we mean by the FAA database, the database as it is
implemented and filled at our laboratory.

The FAA database consists of more than 70 at-
tributes and about 60.000 tuples. As in the case of
ECCAIRS, this database contains also NULL values,
redundant data, and attributes with very high and
low selectivity factors. Therefore, we have cleaned
this database in the same way as ECCAIRS, in or-
der to make it suitable for mining. After cleaning 30
attributes were left and 60.000 tuples.

2The selectivity factor of an attribute att is defined as

m, in which card(att) is the number of distinct values

that att assumes.

41

7.2.3 Mining results

We have mined above-mentioned databases with dif-
ferent values for a number of parameters such as num-
ber of individuals of a population, average length of
an individual, mutation probability, and the maximal
interval to which an attribute is allowed to grow. For
the influence of different parameter settings, we refer
to [11] and [16]. It appears to be reasonable to set the
number of individuals around 50, the average length
between 2 and 5 attributes, mutation probability be-
tween 0.1 and 0.4, and the maximum interval to which
an attribute may grow around 10%.

For the ECCAIRS database, the mining question

was: ‘What are profiles of risky flights?’. Since the
amount of tuples in the ECCAIRS database is rela-
tively small, we have mined the joined relations. So
in this case, we have not defined any specific target
classes. We have proposed the mining question to
SHARVIND with different 8 values. Recall that 8 de-
fines the fraction of tuples that an individual should
represent within a target class (in this case the whole
database) in order to obtain the maximal fitness. The
results that we obtain were correct but most of them
were trivial. For example, when we set 8 to 0.2, it
appears that male pilots and scattered (1/8 to 4/8)
sky conditions are involved in 19% of the incidents.
Although most of the results were trivial, it helped to
gain insight in the database. For example, we have
observed that about 50% of the database consist of
incidents where no serious injury occurs and the pilot
satisfies the required license. Setting 3 to 0.3 delivers
the following (more complex) association:
aireraft_type is (‘fixed wing’) A power-type is (‘recip-
rocating’) A license_class is (‘required rating’) A high-
est_degree_of_injury is (‘none’) — pilot_induced.
This rule says that pilots who hold the required li-
censes and are flying with fixed wing aircraft and a
reciprocating power-type cause about 30% of the ac-
cidents. However, these incidents do not cause any
injury.

We have mined the FAA database by posing several
mining questions to SHARVIND. Our initial mining
question was: search for the class of flights with (more
than average) chances of causing an incident, i.e., pro-
files of risky flights. We have searched for this class
with different input values. These searches resulted in
(valid) profiles that could easily be explained by our
flight safety experts. An example of such a profile is
that aircraft with 1 or 2 engines are more often in-
volved in incidents. The explanation for this profile is
that these types of aircraft perform more flights.

We successively have refined our mining question
into a number of questions, such as: 1) given the fact
that an incident was due to operational defects not
inflicted by the pilot, what is the profile of this type of
incident?, 2) given the fact that an incident was due to
mistakes of the pilot, what is the profile of this type of

incident?, and 3) given the fact that an incident was
due to improper maintenance, what is the profile of
this type of incident?

The cardinality of the target classes associated with
the questions posed to SHARVIND varied from 2500
to 30000 tuples and 3 varied from 0.10 to 0.20.

The answers to the proposed questions were correct

and most of them contained no surprise to our domain
expert. In one case the tool came up with an inter-
esting and unexpected result. In this case, we had
chosen as target class = ‘pilot_induced’. We had cho-
sen to mine this target class in order to find out what
type of pilots was causing incidents. The target class
contains 26000 tuples. Mining the target class with
B = 0.15 resulted in the following association:
aircraft_damage is (‘minor’) A primary_flight_type is
(‘personal’) A type_of-operation is (‘general operating
rules’) A flight_plan is (‘none’) A pilot_rating is (‘no
rating’) — pilot.induced.
This association means that pilots without flight cer-
tificates and flight plans who are flying in private air-
craft are causing more incidents than other groups.
This result was on the first glance a bit strange for our
safety expert, since pilots without flight certificates are
not allowed to fly. After a while it appeared that the
association was correct and our safety expert was able
to explain the association. The pilots without certifi-
cates appeared to be students whose incidents were
recorded in the FAA database as well.

8 Conclusions & further research

We have discussed a genetic-based algorithm that may
be used for data mining. Contrary to the conventional
bit string representation in genetic algorithms, we have
chosen a representation that fits better in the field of
databases. Furthermore, we have chosen a fitness func-
tion that is close to our intuition to rank individuals.
The fitness function gives rise to an optimization of
the search process.

A genetic-based algorithm for data mining has two
major advantages. First, the problem of partitioning
attribute values in proper ranges, which is in general
a tough problem [18], could be solved by choosing a
suitable mutation operator. Second, a genetic-based
algorithm is able to escape a local optimum and does
not pose any restrictions on the structure of a search
space.

We have implemented vital parts of a prototype
data mining tool that is based on a genetic algorithm.
We have coupled the tool to an MS Access environment
in order to mine two aircraft incident databases. Our
overall conclusion is threefold. First, both databases
could be significantly reduced, especially in the num-
ber of attributes, due to NULL values, text attributes,
etc. Second, although both databases are significantly
reduced after cleaning, we feel that data mining is
a promising direction for analysing aircraft incident

42

databases. The mining results helped safety experts to
gain insight in these databases. We expect that data
mining may expose knowledge from these databases in
future, if more and better data will be loaded. We note
that data is recently started to be loaded in the EC-
CAIRS database. Third, our experience is that a ge-
netic algorithm may rapidly be implemented for data
mining, yielding reasonable results. However, to build
an operational tool, there is still a significant effort
required.

Since many real-life databases contain many un-
structured data, i.e., natural language, a topic for fur-
ther research is to extend our tool with this type of
data. Furthermore, to get insight in the results and
performance provided by a genetic-based data mining
tool, a large scale evaluation is required, which is a
topic for further research as well.

Acknowledgments The author is grateful to W. Pelt
from the Royal Netherlands Navy, who made this re-
search possible. E. Groenheiden, L. de Penning, and
M. Suurd are thanked for their implementation efforts.

References

[1] Agrawal, R., Ghosh, S., Imielinski, T., Iyer, B., Swami, A., An
Interval Classiefier for Database Mining Applications, in Proc.
of the 18th VLDB Conf., 1992, 560-573.

[2] Agrawal, R., Imielinski, T., Swami, A., Database Mining: A
Performance Perspective, IEEE TKDE 5(6), 1993, 914-925.

[3] Augier, S., Venturini, G., Kodratoff, Y., Learning First Order
Logic Rules with a Genetic Algorithm, Int. Conf. on KDD,
1995, 21-26.

[4] Bhattacharyya, S., Direct Marketing Performance Modeling
Using Genetic Algorithms, INFORMS journal on Computing,
11(3), 248-257, 1999.

[5] Choenni, R., Siebes, A., Query Optimization to Support Data
Mining, in Proc. DEXA ’97 8th Int. Workshop on Database
and Expert Systems Applications, 1997, 658-663.

[6] Choenni, R., On the Suitability of Genetic-Based Algorithms
for Data MIning. ER Workshops 1998, LNCS 1552, 55-67.

[7]1 Elmasri, R., Navathe, S., Fundamentals of Database Systems,
The Benjamin/Cummings Publishing Comp., 1989.

[8] Flockhart, I., Radcliffe, N., A Genetic Algorithm-Based Ap-
proach to Data Mining, Int. Conf. on KDD, 1996, 299-302.

[9] Freitas, A., A Genetic Programming Framework for two Data
Mining Tasks: Classification and Generalized Rule Induction,
Conf on Genetic Programming, 1997, 96-101.

[10] Giordana, A., Neri, F., Saitta, L., Botta, M., Integrating Mul-
tiple Learning Strategies in First Order Logics, ML 27(3), 1997,
209-240.

[11] Groenheiden, E., A Genetic Data Mining Feasibility Study, in-
ternal report, University of Twente, The Netherlands.

[12] Giivner, H., Akman, V., Problem Representation for Refine-
ment, Minds and Machines 2(3), 1992, 267-282.

[13] Han, J., Cai, Y., Cerone, N., Knowledge Discovery in
Databases: An Attribute-Oriented Approach, Proc. of the 18th
VLDB Conf., 1992, 547-559.

[14] Holsheimer, M., Kersten, M., Architectural Support for Data
Mining, AAAI-94 Worksh. on Knowl. Discovery, 217-228.

[15] Michalewicz, Z., Genetic Algorithms 4+ Data Structures = Evo-
lution Programs. Springer-Verlag, New York, USA.

[16] Penning, H. de, Suurd, P., NLR Genetic Search Base, internal
report, University of Twente, 1998.

[17] Shafer, J., Agrawal, R., Mehta, M., SPRINT: A Scalable Par-
allel Clasifier for Data Mining, in Proc. 22nd Int. Conf. on
VLDB, 1996, 544-555.

[18] Srikant, R., Agrawal, R., Mining Quantitative Association
Rules in Large Relational Tables, in Proc. ACM SIGMOD ’96
Int. Conf. on Management of Data, 1996, 1-12.

[19] Thierens, D., Goldberg, D., Elitist Recombination: an inte-
grated selection recombination GA, in 1st IEEE Conf. on Evo-
lutionary Computing, 1994, 508-512.

	Am241.pdf
	eur240v2.pdf
	asia157.pdf
	Eur136V2.pdf

