Methodology to Implement an Amoeba Complex Object Server*

Wouter B. Teeuw

Henk M. Blanken

Department of Computer Science, University of Twente
P.O. Box 217, NL-7500 AE Enschede, The Netherlands

Abstract

This paper describes the methodology we use in the
design of a complex object server application for the
Amoeba distributed operating system. We use the top-
down design that was suggested by Parnas, in which a
model is turned into an implementation by gradually
adding details. We describe the abstraction levels that
show up if going from a specification of the behaviour
towards an implementation, and we show our method-
ology in which performance will be measured (instead
of estimated) whereas the system has not yet been func-
tionally implemented in its entirety.

1 Introduction

Within the Starfish project, several Dutch univer-
sities are cooperating in the design, implementation,
and application of a transparent distributed comput-
ing system. The distributed operating system Amoeba
[1] is used as a base to experiment with. The Univer-
sity of Twente studies the performance aspects of an
extensible complex object server for Amoeba. The ob-
ject server, which we call ACOS (Amoeba Complex
Object Server) has to be seen as a database applica-
tion for Amoeba.

Compler objects are used in so-called non-
standard database application areas, such as geo-
graphic information systems, robotics, cartography,
and CAD/CAM. Complex objects are data objects
that are both highly structured, and large in size.
These large clusters of structured data are a unit of
manipulation. The structural aspects of complex ob-
jects can easily be captured in object-oriented data
models [2]. But, except for rich data structuring capa-
bilities, in non-standard database applications a high
performance is generally required as well. Therefore,
the physical design of a complex object server needs
to be efficient enough to allow a fast retrieval and pro-
cessing of the complex objects.

Rather than designing and implementing our entire
system, discovering some performance bottlenecks,

*The investigations were partly supported by the Foundation
for Computer Science in the Netherlands SION under project
612-317-025 nicknamed Starfish.

0-8186-2812-X/92 $03.00 © 1992 IEEE

312

and solving these performance bottlenecks by either
last minute changes, or making a new design, we aim
at detecting performance bottlenecks as soon as pos-
sible. Therefore, we use the top-down design method-
ology as described by Parnas [3-5]. Parnas describes
a design methodology in which the close relationship
between designing computer systems and simulation
is emphasized. The idea is that a simulation model is
evolved to a real system by gradual addition of detail.
The same idea is expressed by Randell [6], who intro-
duces several levels of abstraction. Each design deci-
sion is handled at the appropriate level of abstraction.
For both Parnas and Randell, the model is not only a
true representation of the system to be designed, it is
the system.

This paper describes our approach and is organized
as follows. In Section 2 we outline a design method-
ology for computer systems in general. In Section 3
we focus on complex object servers, and we show the
successive modelling steps for designing them. In Sec-
tion 4 one of these steps, the physical database design,
is again decomposed into a number of steps. Up to
this section our paper is rather general. Issues that
are specific for our situation will be marked between
the keyword ACOS and a box Ol Finally, in Section 5,
we present the current status of our project.

2 Top-down design methodology

Parnas [3] studied a large number of student design
teams, working on the same project, all completely de-
signing a working system. A number of observations
showed up. First, a bottom-up approach, designing
small parts and trying to put them together into a to-
tal system, did not produce working systems. Second,
for the successful groups, all work done before they
hit upon the top-down approach could be classified
as false starts. Finally, with the top-down approach,
the work progressed well until it became time to test
the unit composed of the components designed sepa-
rately by various members of the design group. Either
the components did not work together since everybody
had its own idea of what each component should do,
or, if the individual components met their specifica-
tion, the combined system failed since there had been

no means of verifying that the initial structuring of
the problem was correct and feasible.

A design methodology arose, based on three im-
portant points. First, the design should begin with
a specification of the overall behaviour of the com-
puter system. From the specification, one proceeds to
a means of achieving it by either lowering the level
of abstraction or functionally decomposing the com-
ponents. Applying this technique recursively to each
component brings us from the purely behavioral spec-
ification to the purely structural final design.

Second, to avoid a situation in which an oversight in
an earlier stage is not detectable until all components
have been designed and are being tested, simulation
should be used. Also, because at times some compo-
nents of the system will still be in a relatively abstract
form, while others will have proceeded through one or
more levels closer to reality of the implementation, the
ability is needed to have several levels of abstraction
resident and interacting within the simulation.

Third, since the similarity between the simulator
and the operating computer system is so large, the
simulator or model must become the system. The sim-
ulator and the model are so close that it is not mean-
ingful to have a parallel development of the system
and its model, with the model following the system
as it develops. Rather, the simulation model should
evolve into a real system by gradual addition of detail.
In this way double effort is avoided.

We use this approach in ACOS, that is we top-down
implement the system while still designing it. The
critical parts of the system are implemented, while
other parts, which have not been designed yet, are sim-
ulated or replaced by dummies (their design is proba-
bly nothing more than a description of inputs and out-
puts). The performance of this functionally partially
implemented system can be measured and will guide
further design. That is, modelling, either analytical
or by simulation, and performance measurements will
be integrated into the design of the system.

The described top-down strategy is not equal to a
common used approach, in which the system is de-
signed (on paper) in a top-down way, each time dis-
tributing the functionality over more detailed compo-
nents, until the design is on a level of such great de-
tail that it is almost an implementation, whereupon
in a bottom-up way the functionally complete system
can be implemented on the hardware. That is, smaller
modules are implemented and tested, and will be com-
posed into larger ones. With such an approach, there
will be some kind of performance estimation during
the design, and after implementation the performance
will be measured. The performance evaluation be-
comes a design verification.

The drawback of this approach is that whether the
functionally complete design of the system meets its
performance requirements will not be discovered until
the system has been built and used in its operating
environment. At that stage system modifications can

313

be extremely difficult or costly. Even if it is possible
to measure the performance of smaller components at
an early stage, the optimization of individual compo-
nents will not automatically lead to optimization of
the whole system. Not to mention the effects of an in-
correct design. A slight oversight in the design, prob-
ably made on a high level of abstraction, will not be
discovered earlier than after the implementation.

3 Complex object server mddelling
3.1 Conceptual modelling

The first step in the design of a distributed com-
plex object server is the conceptual modelling: mak-
ing a conceptual description of the complex objects.
For, in order not to confuse the question of behaviour
with the question of how to construct the system,
a precise definition of the behaviour of the server is
needed. A problem must be defined before solving
it. The behaviour can best be described by specifying
the database data (objects and attributes) and their
relationships, as well as the constraints, queries, and
update transactions for these data and relationships.

Besides statements that specify the behaviour, there
are also design criteria for the behaviour of the system,
and restraints on the behaviour of the system. Gen-
eral design criteria are a minimization of the average
query response time or a maximization of the system
throughput. Statements that restrain the behaviour
of the system are, e.g., maximum disk capacities or a
maximum response time.

ACOS: We use the database specification lan-
guage TM for conceptual modelling [7]. A design cri-
terion is to minimize the average response time of the
server. The behaviour of ACOS is restrained by the
architecture and characteristics of Amoeba [1].

In TM, objects belong to classes that are arranged
in an inheritance hierarchy. The objects of a class are
characterized by attributes, which are either atomic,
or structured in value. In the latter case, the attribute
is typed as a list, a set (power type), a tuple (record
type), or a variant. Attributes values are chosen from
basic types, such as character, integer, etc. Among
the basic types are all object types that appear in the
database as well. In this way the object occurrences of
the classes are related to each other. Constraints and
methods can be defined on the level of object, class,
and database extensions.]

3.2 Logical modelling

As a second step, the logical modelling is performed.
The goal of logical complex object design is to map the
conceptual design on an implementable data model.
That is, the data is arranged in a non-redundant, in-
tegrable, and generally manageable way. It is a first
step towards implementation. Often used data mod-
els are the record based models, such as the relational

1 —

e R

TUPLE-OBJECT Person = {{(

identifier: oID,

name: STRING,

date of birth: (day: INT,
month: INT,
year: INT),

partner: REF(Person),

children: {REF(Person)}

)}

Figure 1: Declaration of a Person tuple-object.

model. Lately, object oriented- and logical data mod-
els get much attention. Part of each data model are
the data manipulation tools, generally consisting of a
query language and several update methods.

ACOQOS: We use the nested relational model for
logical modelling [8]. A so-called tuple-object is con-
structed by applying the list, set, and tuple construc-
tors an orthogonal way to basic values. The top level
construct is always a tuple. Connected to each tuple-
object instance is a unique system generated identifier
that distinguishes the object from all others in the
system. Among the basic types is a reference type
as well, which makes tuple-objects the unit of shar-
ing among a number of composed objects. Data is
not shared among tuple-objects. Figure 1 shows an
example tuple-object. a

3.3 Physical modelling

Finally, we have the physical modelling. In this step
we go towards implementation. The goal is to imple-
ment the data in such a way that queries are efficiently
supported. The physical modelling consists of several
steps. Each step represents an abstraction level that
hides the implementation details of the next levels of
lower detail: the implementation details of lower lev-
els are transparent. We start with the result of logi-
cal modelling as the highest level of transparency. If
data processing, communication, and I/O would be
infinitely fast, the physical design would be simple.
But, devices have a limited speed and the data struc-
tures and software are often fairly complex, leading
to a performance that is often lower than desirable or
acceptable.

4 The physical design
4.1 Separation of programs and data

A first step is to make a clear distinction between
what will be stored as data and what will be im-
plemented as programs. Although in most cases the
choice might be obvious, this decision remains depen-
dent on system and workload aspects. For instance,
it is most likely that an attribute date of birth will be

314

stored as data and the derived one age as code. For,
date of birth is immutable (will not be updated), and
age can ‘easily’ be calculated from it. But, although
the (imaginary) attribute City can be derived from
the attribute Zip-code, City will be materialized since
it will be ‘often used’ and its derivation from Zip-code
is ‘complex’ or might even require an additional table.
Such a motivation is based on physical aspects.

4.2 Fragmentation of the data

A next step in the physical design process is the
fragmentation of the (nested) relations (or in general:
of the sets of records). Fragmentation enhances per-
formance by allowing the access to data units that
are as small as possible for the tasks that need them.
On the other hand, joins and unions will be neces-
sary to reconstruct the relation from its fragments.
Horizontal fragmentation is the partitioning of the tu-
ples of a relation into subsets. Vertical fragmentation
is the clustering of the attributes of a relation into
groups. Three conditions must be met when defining
fragments. First, all the data of the relation must be
mapped into the fragments (completeness condition).
Second, it must always be possible to reconstruct the
relation from its fragments (reconstruction condition).
Third, fragments have to be disjoint so that the repli-
cation of data can be controlled explicitly at the allo-
cation level (disjointness condition).

ACOS: Within ACOS an identifier mechanism
guarantees that tuple-objects can always be reassem-
bled from their fragments. Therefore, the reconstruc-
tion condition is superfluous. We do not take care
of the disjointness condition as well! For, complex
objects are used in non-standard databases for which
performance is often critical. Leaving out the disjoint-
ness condition enables us to introduce redundant stor-
age of data, not only by simply storing identical copies
of a single fragment, but also by replication of data
within different clusterings. This might improve the
performance of the system. m]

4.3 Allocation of the fragments

The allocation problem may be described as given
a workload and a certain cost function to be op-
timized, determine for each fragment the nodes on
which this fragment will be physically materialized.
Since a query may use many fragments and may be
executed in parallel, fragments cannot be allocated
independently and we have to allocate the operations
on the fragments simultaneously. Notice that strong
and complex relationships between the fragments may
exist. The allocation problem consists of two basic
sub-problems. The fragment replication problem de-
termines the number of replicas of a fragment to be
stored. Network placement determines the nodes on
which these copies will be stored.

ACQOS: With ACOS the goal of the allocation step
is to minimize the overall response time for queries

and updates. We have a shared-nothing system with
a local area network. For such systems the disk 10
seems to be the bottleneck [9]. Therefore, we try to use
the allocation to enlarge the effective 1/O bandwidth
by parallel disk I/Os. 0

4.4 Mapping of fragments on storage
models

A next step is mapping the fragments on storage
models. The minimum unit of retrieval, and the clus-
tering of these units into files is determined. Also,
the secondary indices are chosen. The relations be-
tween the basic units, as well as their internal struc-
ture, have to be stored as well, either as meta data or
within these units. We still have physical device in-
dependence. Using a different storage device does not
alter the decisions taken during this step.

ACOS: The basic storage unit in ACOS is a
(nested) tuple. The internal structure information
will be stored within this tuple. Also, an identifier
keeps inter-object relationships. For example, with a
normalization of the hierarchically structured tuple-
objects, each flat tuple will get a tuple identifier con-
taining the identification of itself, its parent tuple, and
its root tuple. Also, tuples belonging to the same
tuple-object will be clustered.

4.5 Storage on physical devices

Finally, the storage model has to be implemented
on the physical storage devices. Concepts like physical
blocks, tracks, and cylinders show up.

ACOS: In ACOS, we use the Amoeba disk server
called bullet server. This server is based on caching
and immutable files that are variable in length. O

5 Current status and conclusions

The current status of our project is as follows. We
started with an extensive analytical performance eval-
uation (e.g., [10]). We derived formulas for disk I/O,
network communication, and CPU time and compared
geveral strategies for parallelism, query execution, and
communication. Based on the results of this perfor-
mance evaluation, we are currently designing and im-
plementing a simplified version of the object server
ACOS. The critical parts (according to our analyt-
ical performance evaluation) that get most attention
are the storage of objects on disk, the start of all pro-
cesses on all nodes, and the communication. For im-
plementation, simulation, and evaluation test, we have
a seven node system. Performance test results are not
available yet, but are expected in the near future.

Most of the ideas presented in this paper are, by
the standards of Computer Science, old. They are
like the wheel, which is often reinvented because it
is a good idea. But, the authors who reported on

[10] W. B. Teeuw and H. M. Blanken,

315

the students design experiment and proposed a design
methodology [3] felt quite strongly that the described
problems were not confined to students in courses, but
were common in professional circles as well. Often, we
get the impression that, after more than twenty years,
still the same errors tend to be made.

A top-down implementation of a complex object
server suggests an_empirical approach. First we have
an analysis of what could be the best design. That is,
we define our hypothesis. Then by analytical perfor-
mance evaluation, simulation, or experimental mea-
surements we test our hypothesis. Depending on the
results, the design model is improved or adapted, and
the same cycle starts again. Each time the model is
enhance like physical scientists and engineers make use
of theories. That is, each time the model, which is a
simplified description of reality, becomes inadequate
we have to search for a better one.

References

(1) S. J. Mullender, G. van Rossum, A. S. Tanenbaum, R.
van Renesse and H. van Staveren, “Amoeba— A Distributed
Operating System for the 1990s,” Computer 23 (5), pp- 44—
53, May 1990.

B. R. M. van den Akker and H. M. Blanken, “Geographic
Data Modelling in TM,” in Advances in Data Management.
Proceedings Third International Conference on Management
of Data, Bombay, India, Dec. 12-14, 1991, P. Sadanandan
and T. M. Vijayaraman, Eds. New Dehli, India: McGraw-
Hill, pp. 107-126, 1991.

D. L. Parnas and J. A. Darringer, “SODAS and a method-
ology for system design,” in Proceedings AFIPS 1967 Fall

2]

3]

Joint Computer Conference, Anaheim, CA, Nov. 14-16,
1967. Washington, DC: Thompson Book, pp. 449-474,
1967.

(4} D. L. Parnas and J. Madey, “Functional Documentation for
Computer Systems Engineering (version 2),” McMaster Uni-

versity, Hamilton, Ontario, Canada, CRL-237, Sept. 1991.

D. L. Parnas, “The Application of Modelling to System De-

velopment and Design,” in Proceedings International Com-

puting Symposium, Bonn, Germany, May 21-22, 1970, W.

D. Itzfeldt, Ed. Frankfurt, Germany: German Chapter of

the ACM, pp. 134-142, 1973.

F. W. Zurcher and B. Randell, «Iterative Multi-Level Mod-

elling — A Methodology for Computer System Design,” in

Proceedings International Federation of Information Pro-

cessing Societies 1968. pp. 138-142, 1968.

H. Balsters, R. A. de By and C. C. de Vreeze, “The TM

Manual,” Universiteit Twente, Enschede, The Netherlands,

working document, Nov. 1991, (version 1.21).

(8] H. -J. Schek and M. H. Scholl, “The Relational Model with
Relation-Valued Attributes,” Inf. Syst. 11 (2), pp. 137-147,
1986.

[9] D. J. DeWitt and J. Gray, “Parallel Database Systems: The

Future of Database Processing or a Passing Fad?,” ACM

SIGMOD Record 19 (4), pp. 104-112, 1990.

“Joining Distributed Com-
plex Objects: Definition and Performance,” Data & Knowl.
Eng. 9 (1), Jan. 1993, (to appear).

18]

(7

