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Abstract — Spreading of a low-concentrated admixture in the 2D (length – depth) stream of the viscous
fluid in an open lengthy canal is considered; the admixture’sdissipation and diffusion are taken into
account. Apart from being long, the canal is assumed to be low-sloping, with a given shape of the bottom-
line. A mathematical model under consideration is derived by the small parameter technique, starting
from the 2D steady Navier–Stokes equations for the incompressible fluid and the unsteady diffusion
equation for the moving medium.

The main feature to this model is taking account of the deep–cross structure of the stream and it lets
us investigate peculiarities of the substance transfer. Aninteresting particular case is then a rise of the
near–surface opposite flow which may be caused e.g. by the wind action.

The wide range of the main parameters to the problem does not allow to point the only one particular
discretization scheme which would be superior. To our mind,in most cases some refined upwinding
technique should be used to approximate the convective term. As to the time-stepping process, partially
implicit (e.g., implicit with respect to the convective term) integration schemes occured to be most ef-
ficient because of an easy solvability of the corresponding equation (usually it is a tridiagonal linear
system).

1. Introduction
Usually, in water ecology modelling one is restricted to considering of the passive admixture.
It means that varying of the concentration is assumed to be not affecting “the hydrodynamics”
of the model (i.e., the velocity and pressure fields). Such an approach is justified when the
concentration is low or if physical properties of the admixture are similar to those of water
(both the requirements are quite usual in water ecology modelling).

The so-called “camera” models are widely used currently [1]: the region isdivided by rela-
tively homogeneous subregions (camerae), and the characteristics are averaged and considered
to be constant inside each camera. The interaction among the camerae is thendescribed by the
boundary balance relations. When the whole model is rather complicated, this simplification
seems quite reasonable. However, in many cases the intracamera processes are of interest and
this requires application of more detailed “distributed” models [1, 2].

In this paper, we introduce a “distributed” model for the canal (or river) ecosystem. The
model under consideration is derived by the small parameter method. The startingpoint of the
derivation is the 2D steady Navier–Stokes equations for the incompressible flow andthe non-
steady diffusion equation of a substance in the moving medium. As a result, for each unknown,
it gives an initial boundary–value problem for the main term of the unknown’s expansion with
respect to a small parameter. The latter is the ratio of the stream depth to its length.
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Figure 1: Disposition of the coordinate system.�(x) is the unknown shape function of the
stream free surface,h(x) is the prescribed shape function of the bottom.

The particular feature to the model is taking account of the stream cross–structure which
extends the capabilities of the model, e.g., this allows consider a particular case when a near–
surface opposite flow caused by the wind action arises. Note that it would be impossible in
the framework of the above–mentioned “camera” modelling (where one has to deal with the
averaged variables like the water consumption, velocity in the cross-section etc.). Since the
admixture is supposed to be passive, we manage to find the unknown velocity and pressure
fields as well as the function of the free surface shape from an independent subsystemwhich
turns out to be solvable analytically. The remaining equation for the concentrationhas to be
solved numerically but some analytical simplifications can be applied here.

2. Derivation of the Model
Here we derive the model for the admixture spreading in an open steady long–lengthy stream.

As a starting point, the steady Navier–Stokes equations (for the stream) and the non–steady
convection–diffusion equation (for the admixture) are taken. Then the small-parameter method
is applied and it leads to an initial boundary–value problem for the main terms of theasymptotic
expansions with respect to the ratio of the stream depth to its length (the small parameter).

Obtained in such a way equation (which describes the admixture spreading and has to be
solved numerically) has the convection term only in the length direction and thediffusion term
only in the other (depth) direction.

2.1. Setting of the problem

Consider the spreading process of the nonconservative admixture in 2D steady open stream with
the slope angle� (fig. 1). Let the Cartesian coordinate systemOxz be placed in such a way that
thex–axis is directed downstream along the surface and thez–axis is directed to the bottom.
We are interested in what is happening in the region�L 6 x 6 L (fig. 1).

Initial physical model describing the transfer of the substance (admixture) in thesteady
stream of fluid and taking into account the diffusion and dissipation includes [3] theNavier–
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Stokes equations for the incompressible flow:uux + wuz = ���1px + �1uxx + �2uzz + g sin� ;uwx + wwz = ���1pz + �1wxx + �2wzz + g cos� ;ux + wz = 0 ; (1)

the no-slip condition on the rigid bottom:ujz=h(x) = 0 ; wjz=h(x) = 0 ; (2)

the kinematic and dynamic conditions on the free surface:w � �0(x)ujz=�(x) = 0 ; ��wx � uz � �00(x)u1 + �02(x)�����z=�(x) = � ; pjz=�(x) = 0 ; (3)

the convection–diffusion equation:ct + ucx + wcz = D1cxx +D2czz � 
c ; (4)

the flux absence conditions on both lower and upper boundaries:cz � h0(x)cxjz=h(x) = 0 ; cz � �0(x)cxjz=�(x) = 0 ; (5)

and the initial distribution of the substance:c(x; z; 0) = c0(x; z) : (6)

Here, the unknown functions areu = u(x; z), w = w(x; z), p = p(x; z), andc = c(x; z; t),
which respectively are the longitudinal and the transversal (x– andz–) components of the fluid
velocity vector, the pressure and the concentration of the admixture. Furthermore, � is the
constant density of the fluid,�1 and�2 are coefficients of the turbulent viscosity respectively
for x andz directions, and� is the slope angle of the stream (fig. 1). Unknown function�(x)
describes the free surface shape by the equationz = �(x) (fig. 1) whereas the bottom shape is
defined by the functionh(x) in the similar way. This functionh(x) is assumed to be known
(possibly up to an arbitrary constant — in this case the fluid consumption has to be prescribed
and it will define the constant). Parameter� defines the tangential tension on the free surface
which may be caused e.g. by the wind action. Next,� is the dynamical viscosity coefficient,D1 andD2 are the turbulent diffusion coefficients, respectively forx andz directions, and
 is
the coefficient of the substance dissipation (destruction). Finally, the known function c0(x; z)
gives initial (e.g. background) distribution of the substance.

The model under consideration has the peculiarity that the system (1)–(6) can be splitted in
two. First, from (1)–(3), the unknown velocity field~v = (u;w) and pressurep together with
the free surface shape�(x) are defined, and then the concentration distributionc may be found
from (4)–(6) (note that then the velocity and the shape function of the free surface participating
respectively in (4) and (5) may be supposed to be already known). In the assumptionthat the
fluid density and the diffusion coefficients do not depend on the concentration, the outlined
splitting is valid.



4 2nd Int. Symp. on Turbulence, Heat and Mass Transfer

2.2. Equations in dimensionless variables

There are two spatial characteristic scales in the model, they are thelengthL, for thex-direction,
and the depthH, for the directionz. The depth may be defined e.g. byH = h(0). Then the
small parameter" = HL�1 arises in a natural way (similarly to the shallow water equations
[3]); we will call it the shallowness parameter.

We takeU = p0:5gH sin� andW = "U for the scales ofx- andz- components of velocity,
respectively. It is natural to take the value of hydrostatic pressure on the typical depthP = �gH
as the scale for the pressure. Then, letT = LU�1, time for a fluid particle to pass the region�L 6 x 6 L, be the scale to measure time. Finally, we chooseC = maxx;z c0(x; z) to be the
scale for the concentration.

The dimensionless variables (with~ sign) are introduced byx = L~x , z = H~z , t = T~t ,u = U ~u , w = W ~w , p = P ~p , c = C~c , c0 = C~c0 , � = H ~� , h = H~h .

With the new variables substituted, the equations (1)–(6) take the form (we now omittilde
“~” everywhere): "(uux + wuz) = � 2"pxsin� + 1Re ��"2uxx + uzz�+ 2 ; (7)"2(uwx + wwz) = � 2pzsin� + 1Re ��"3wxx + "wzz�+ 2ctg� ; (8)ux + wz = 0 ; (9)ujz=h(x) = 0 ; wjz=h(x) = 0 ; w � �0(x)ujz=�(x) = 0 ; (10)"2wx � uz � "2�00(x)u1 + "2�02(x)����z=�(x) = � ; pjz=�(x) = 0 ; (11)ct + ucx + wcz = 1Pe �D"2cxx + czz�� �c ; (12)cz + "2h0(x)cxjz=h(x) = 0 ; cz + "2�0(x)cxjz=�(x) = 0 ; (13)c(x; z; 0) = c0(x; z) : (14)

Apart from the defined parameter" = HL�1, the other dimensionless parameters are: the
Reynolds numberRe = HU��1z , the anisotropy parameter of the turbulent viscosity� = �1��12
the wind tension parameter� = �H(�U)�1, the diffusion Peclet numberPe = WHD�12 , the
anisotropy parameter of the turbulent diffusionD = D1D�12 , and the dissipation parameter� = 
T .
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2.3. Equations for the main terms and solution of the hydrodynamics subsystem
We are looking for the solutions of the system (7)–(14) in the form of the asymptotical"–power
expansion (recall that" is the shallowness parameter):u = u(0) + "u(1) + "2u(2) + : : : ;w = w(0) + "w(1) + "2w(2) + : : : ;� = �(0) + "�(1) + "2�(2) + : : : ;p = p(0) + "p(1) + "2p(2) + : : : ;c = c(0) + "c(1) + "2c(2) + : : : : (15)

Substitution of these series in equations (7)–(14) and collecting the similar terms lead to the
following problem for the main terms of the asymptotics (15):uzz = �2Re ; pz = cos� ; ux + wz = 0 ; (16)ujz=h(x) = 0 ; wjz=h(x) = 0 ; (17)w � �0(x)ujz=�(x) = 0 ; uzjz=�(x) = �� ; pjz=�(x) = 0 ; (18)ct + ucx + wcz = 1Peczz � �c ; (19)czjz=�(x) = 0 ; czjz=h(x) = 0 ; (20)c(x; z; 0) = c0(x; z) : (21)

The main terms for the longitudinal and transversal velocities, as well asfor the pressure and the
shape function of the free surface, may be found by the straightforward integrationof equations
(16)–(18). Indeed, solution of the first equation in (16) accompanied by the boundary conditions
(17) and (18) gives u = (h(x)� z)�Re (h(x) + z � 2�(x)) + �� : (22)

As we see, the longitudinal velocity has the parabolic shape with respect toz. Depending on
the direction and the strength of the wind (both values are governed by the parameter �), the
opposite flow may arise near the surface. Such a flow takes place provided that� < �Re (h(x)� �(x)) :

Now, using (22) and boundary conditions (17), we integrate the last equation in (16) with
respect toz. It results in the expression for the transversal velocityw = (h(x)� z)�h0(x)�2Re (h(x)� �(x)) + ���Re�0(x) (h(x)� z)� : (23)

Then, the first equation in (18) together with (22) and (23) leads to the following relation for
the main term of the free surface function�(x):(h(x)� �(x))(h0(x)� �0(x))�2Re (h(x)� �(x)) + �� = 0 : (24)
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Evidently, due to the setting of the problem,h > �. Hence, at least for positive�, the expression
in square brackets does not vanish, thereforeh0(x)� �0(x) � 0 :
The last means that in the 2D setting the main term�(x) for the shape function of the free
surface coincides with the shape function of the bottomh(x) up to an additive constant. Due to
the choice of the transversal scale, this constant can be taken equal to 1:�(x) = h(x)� 1 : (25)

Next, substitution of the last relation in (22) and (23) givesu = (h(x)� z) �Re (2� h(x) + z) + �� ; (26)w = (h(x)� z)h0(x)�Re (2� h(x) + z) + �� : (27)

As it can be seen from (27), if the bottom is flat (i.e.h(x) � const) then the transversal com-
ponent of the velocityw is zero. Thus, for this approximation (when we are interested only
in the main terms of the asymptotics), the transversal motion of the fluid arecaused only by
irregularities of the bottom.

Finally, with (25), the second equation in (16) accompanied by the last relationin (18) has a
solution p = (z + 1� h(x)) cos� : (28)

By (25)–(28), the main asymptotical terms of the hydrodynamics subsystem (7)–(11) are
defined. Now, the diffusion subsystem (19)–(21) remains to be treated.

2.4. The diffusion subsystem

Making the change in (19)–(21): z = y + h(x)� 1 ;
with (25)–(27), we arrive at ct + u(y)cx = 1Pecyy � �c ; (29)u(y) = (1� y) [Re(1 + y) + �] ; (30)cyjy=0 = 0 ; cyjy=1 = 0 ; (31)c(x; y; 0) = c0(x; y) ; (32)

where�1 < x < 1 and0 < y < 1. The initial boundary–value problem above is not solvable
analytically. Numerical technique for solution of (29) is briefly discussed in the next section.
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3. Numerical Solution of the Diffusion Subsystem
3.1. Spatial discretization
Applying the finite difference method to solve (29)–(32), we choose the grid!h = f(xi; yk) jxi = ih1; i = 1; : : : ; n1 � 1;yk = (k � 1=2)h2; k = 1; : : : ; n2 � 1g : (33)

The diffusion termPe�1cyy is approximated with the second order accuracy by the central dif-
ferences: �Pe�1cyy�i;k �= 8<: Pe�1 [�ci;k + ci;k+1]h�22 ; k = 1 ;Pe�1 [ci;k�1 � 2ci;k + ci;k+1]h�22 ; 2 6 k 6 n2 � 1 ;Pe�1 [ci;k�1 � ci;k]h�22 ; k = n2 � 1 ; (34)

where (second order) approximations of boundary conditions (31) are incorporated.
We avoid the use of the central differences to approximate the convective term (for more

discussion see e.g. [4]). Instead, the upwinding of the first or the second order is applied.
The regular upwind differences give the first order approximation[u(y)cx]i;k �= 0:5f(uk + jukj) [ci;k � ci�1;k] + (uk � jukj) [ci+1;k � ci;k]gh�11 ;i = 1; : : : ; n1 � 1 ; (35)

which severes from the massive artificial diffusion destroying the accuracy [5]. However, for
this particular problem, the artificial diffusion is added only streamline.

The second order approximation of the convective term may be obtained with [6][u(y)cx]i;k �= � 0:5(ui+1 � ui�1)h�11 � CF (ui+1 � 3ui + 3ui�1 � ui�2)h�11 ; uk > 0 ;0:5(ui+1 � ui�1)h�11 + CF (ui�1 � 3ui + 3ui+1 � ui+2)h�11 ; uk < 0 :
(350)

The choiceCF = 0:5 leads to the second order upwinding, whereas forCF = 1=8 one gets the
so-called QUICK-scheme [6].

The problem (29)–(32) does not have any boundary conditions forx (at the ends of the canal
region). The use of the upwind differences allows to get around this formal difficulty. Indeed,
if we assume that there are no sources of the admixture outside the region0 < x < 1 then, on
the in-flow ends of the region, the concentration can be set to zero:c0;k = c�1;k = 0 for vk > 0 ; cn1;k = cn1+1;k = 0 for vk < 0 : (36)

Now it is easy to see that the upwinding schemes (35) and (350) (with CF = 0:5) do not contain
any other valuesci;k outside the grid (33).

3.2. The time–stepping process
Equation (29) may be rewritten as ct = �L[c] ; (290)

and L[c] � ��Pe�1cyy + �c�+ u(y)cx �= Adi�c+Aconvc :
whereL is the spatial convection–diffusion operator,c = fci;k(t)g, Adi� andAconv are the
discrete diffusion and convection operators respectively defined by (34) and (35)(or (350)).
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If the first order time accuracy is sufficient for the time–stepping then, to reduce the computa-
tional work, it is better to use partly implicit schemes. For example, for thecase of dominating
convection the time–stepping processcm+1 = [I + �Aconv]�1 [I � �Adi�] cm; m = 0; 1; : : : ; (37)

can be appropriate (herecm = fci;k(tm)g). With (34), (35), the scheme (37) gives the restriction
for the step size [7] � 6 � 00 = h22Pe��2 + �h22Pe� :
The linear equation with matrixI + �Aconv can be solved very efficiently: for the natural “i-
first” ordering of the grid nodesAconv has its (at most four) non-main diagonals next to the main
diagonal. Similarly, one can use the time–stepping process with implicitly taken diffusion term.

If the second order accurate time–stepping is required, we suggest use e.g. the BDF2 scheme
[8] (in this case the iterative solution of the arising linear system allows many possibilities to
decrease the computational expences, see e.g. [9] and citation therein). If thelarge step size is
not an issue then one can use explicit stabilized RK methods [10].

3.3. Analytical integrability

There are two specific cases where the problem (29)–(32) can be simplified and easily solved
analytically. The analytical solution then may be used for testing the discretization schemes.
These cases are (i) absence of the diffusion term and (ii) the constant velocity u(y) � const.
4. Numerical Experiments
Assume that the accident ejection of a pollution occured at the specific point(x�; y�) of the
canal. Then we may model the spreading of the pollution by solving the problem (29)–(32)
with the initial distribution of the formc0(x; y) = C0e�a(x�x�)2�b(y�y�)2 ; (38)

wherea,b andC0 are parameters depending e.g. on the mass of the ejected pollution.
We present results of the numerical experiments for such a model situation for thefollowing

choice of parameters in (29)–(32):Re = 100 ; � = �130 ; � = 0 ; Pe = 102 ; and (39)Re = 100 ; � = �130 ; � = 0 ; Pe = 104 : (40)

Both sets of parameter values here correspond to the dominating convection, besides, for (40)
there exists an intensive transverse intermixing in the stream. For both cases there is the near–
surface opposite flow (u(y) is negative near the surface). In (38), we seta = b = 64, C0 = 1.

We used the spatial grid (33 withn1 = 300 andn2 = 51 and the second order scheme
(34),(350) with CF = 1=8 in all grid nodes except in the nodes with indicesi = 1 andi = n1�1
whereCF was set to0:5. For the time–stepping process, the convectionally implicit scheme
(37) was employed, with� = 0:02.

The pollution distribution for several moments of time is shown on fig. 2.
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5. Conclusions
In this paper, we introduce a distributed model for the advection process of a substance in the
lengthy canal (or river) 2D stream. The pleasant feature to the model seems to be its simplicity;
the hydrodynamical part of the model turns out to be integrable analytically, so that the problem
is reduced to the non-steady convection–diffusion problem with the only longitudinal convec-
tion and the only transversal diffusion presented. The model can be used as a part ofthe more
comprehensive ecosystem model.
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Figure 2: Pollution at the momentst = 0 (top), andt = 0:1, 0:2, and0:4 for parameter values
(39) (left) and (40) (right)


