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Abstract — Spreading of a low-concentrated admixture in the 2D (lerglepth) stream of the viscous
fluid in an open lengthy canal is considered; the admixtulessipation and diffusion are taken into
account. Apart from being long, the canal is assumed to besloping, with a given shape of the bottom-
line. A mathematical model under consideration is derivedhe small parameter technique, starting
from the 2D steady Navier—Stokes equations for the incoggioee fluid and the unsteady diffusion
equation for the moving medium.

The main feature to this model is taking account of the demgsscstructure of the stream and it lets
us investigate peculiarities of the substance transferinfaresting particular case is then a rise of the
near—surface opposite flow which may be caused e.g. by theaeimon.

The wide range of the main parameters to the problem doedlaatta point the only one particular
discretization scheme which would be superior. To our mindnost cases some refined upwinding
technique should be used to approximate the convective #srto the time-stepping process, partially
implicit (e.g., implicit with respect to the convective i@y integration schemes occured to be most ef-
ficient because of an easy solvability of the correspondiougagon (usually it is a tridiagonal linear
system).

1. Introduction

Usually, in water ecology modelling one is restricted to considering of theiygadmixture.
It means that varying of the concentration is assumed to be not affecting “the hydnoidgha
of the model (i.e., the velocity and pressure fields). Such an approach fgeqisthen the
concentration is low or if physical properties of the admixture are similanosd of water
(both the requirements are quite usual in water ecology modelling).

The so-called “camera” models are widely used currently [1]: the regidivided by rela-
tively homogeneous subregions (camerae), and the characteristics ageedvand considered
to be constant inside each camera. The interaction among the cameraedssbebed by the
boundary balance relations. When the whole model is rather complicated, thisfisiatipin
seems quite reasonable. However, in many cases the intracamerapsoaesof interest and
this requires application of more detailed “distributed” models [1, 2].

In this paper, we introduce a “distributed” model for the canal (or river) ecesystThe
model under consideration is derived by the small parameter method. The spaitihgf the
derivation is the 2D steady Navier—Stokes equations for the incompressible floiveandn-
steady diffusion equation of a substance in the moving medium. As a result, fouekcown,
it gives an initial boundary—value problem for the main term of the unknown’s expansibn wit
respect to a small parameter. The latter is the ratio of the strearn tejp$ length.
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Figure 1: Disposition of the coordinate systerf(.::) is the unknown shape function of the
stream free surface, =) is the prescribed shape function of the bottom.

The particular feature to the model is taking account of the stream crossustrudtich
extends the capabilities of the model, e.g., this allows consider a partiasamhen a near—
surface opposite flow caused by the wind action arises. Note that it would besdiiigois
the framework of the above—mentioned “camera” modelling (where one has to ledahes
averaged variables like the water consumption, velocity in the crosessedtt.). Since the
admixture is supposed to be passive, we manage to find the unknown velocity andepressur
fields as well as the function of the free surface shape from an independent subsystém
turns out to be solvable analytically. The remaining equation for the concentre®to be
solved numerically but some analytical simplifications can be applied here.

2. Derivation of the Model

Here we derive the model for the admixture spreading in an open steady long—lengémg.str
As a starting point, the steady Navier—Stokes equations (for the stream) and theeadyp—s

convection—diffusion equation (for the admixture) are taken. Then the smathptgamethod

is applied and it leads to an initial boundary—value problem for the main terms a$yineptotic

expansions with respect to the ratio of the stream depth to its length (thigosmzaneter).
Obtained in such a way equation (which describes the admixture spreading arcdb®as t

solved numerically) has the convection term only in the length direction andiftbsion term

only in the other (depth) direction.

2.1. Setting of the problem

Consider the spreading process of the nonconservative admixture in 2D steady camwsthe
the slope angle (fig. 1). Let the Cartesian coordinate systém: be placed in such a way that
the »—axis is directed downstream along the surface and-tagis is directed to the bottom.
We are interested in what is happening in the regidn< = < I (fig. 1).

Initial physical model describing the transfer of the substance (admixture) isttaely
stream of fluid and taking into account the diffusion and dissipation includes [3{ldvesr—
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Stokes equations for the incompressible flow:
U, + Wi, = —,0*1 Do+ V1 Uy + ot + gsina,
uw, + ww, = —,0*1 Dy + V1 Weyp + VoW, + gcosa, (1)
Uy +w, =0,

the no-slip condition on the rigid bottom:

7/,|Z:h(m) =0, 11)|Z:h(m) =0, (2)

the kinematic and dynamic conditions on the free surface:

, _ S GO
w— & ('77)“’|z:£(m) =0, pu (wm Uz 1+ 5’2(7‘)>

=0, P|Z:g(m) =0, (3
2=¢(x)

the convection—diffusion equation:
ci 4+ ue, +we, = Dycp, + Dyc., — e, (4)

the flux absence conditions on both lower and upper boundaries:

€z — hl(”f)cm|zzh(m) =0, €z — 51(”7)Cm|2:5(m) =0, (5)
and the initial distribution of the substance:
c(r,2,0) = co(x,2). (6)

Here, the unknown functions are= u(x, z), w = w(x,z), p = p(x, z), ande = ¢(x, z, 1),
which respectively are the longitudinal and the transversabfid-—) components of the fluid
velocity vector, the pressure and the concentration of the admixture. Furtlegmmigrthe
constant density of the fluid; and., are coefficients of the turbulent viscosity respectively
for = andz directions, andy is the slope angle of the stream (fig. 1). Unknown function)
describes the free surface shape by the equatiere () (fig. 1) whereas the bottom shape is
defined by the functiot () in the similar way. This functio(x) is assumed to be known
(possibly up to an arbitrary constant — in this case the fluid consumption has tesiped
and it will define the constant). Parametedefines the tangential tension on the free surface
which may be caused e.g. by the wind action. Nexis the dynamical viscosity coefficient,
D, and D, are the turbulent diffusion coefficients, respectivelyfand: directions, andy is
the coefficient of the substance dissipation (destruction). Finally, the knowtidang(:, )
gives initial (e.g. background) distribution of the substance.

The model under consideration has the peculiarity that the system (1)—(6) can teel split
two. First, from (1)—(3), the unknown velocity fiefdl = («,w) and pressure together with
the free surface shagér) are defined, and then the concentration distributiomay be found
from (4)—(6) (note that then the velocity and the shape function of the free surfdiégading
respectively in (4) and (5) may be supposed to be already known). In the assuthptidme
fluid density and the diffusion coefficients do not depend on the concentration, the outlined
splitting is valid.
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2.2. Equations in dimensionless variables

There are two spatial characteristic scales in the model, they dentitd /., for thex-direction,

and the depth/, for the direction:. The depth may be defined e.g. By= £(0). Then the
small parameter = HI.~' arises in a natural way (similarly to the shallow water equations
[3]); we will call it the shallowness parameter.

We takel/ = /0.5¢gH sin a andW = </ for the scales of- andz- components of velocity,
respectively. Itis natural to take the value of hydrostatic pressure on tloatgeipth” = pgH
as the scale for the pressure. Then,llet L.U/~', time for a fluid particle to pass the region
— I < 2 < I, be the scale to measure time. Finally, we chadse max,. . co(, z) to be the
scale for the concentration.

The dimensionless variables (withsign) are introduced by = .7, = = Hz,t = Ti,
u=Uu,w=Ww,p=Pp,c=Cc¢,cog=Ccy,6E=HE, h=Hh.

With the new variables substituted, the equations (1)—(6) take the form (we nowtildnit
““" everywhere):

2P, 1
P + — (Va’f??l,mm + 7/,ZZ> +2, (7)

sina  Re

e(ut, + wu,) = —

2D, 1
&2 (uw, + ww,) = — _p + — (vetw,, + ew,, ) + 2ctgor, 8
g
sin a 2
Uy + w, =0, 9
7/,|Z:h(m) =0, 11)|Z:h(m) =0, w-— f'(m)uL:E(m) =0, (20)
2 ¢
2w, — 1, — L(TQ)“ =0, p|Z_£(T) =0, (11)
1 +€2£I (T) 2=¢(x) Y
1
¢+ uc, +we, = = (Dazcm + CZZ> — Ac, (12)
e
c, + ezh'(m)cm|zzh(m) =0, ¢+ 525'(m)cm|zzg(m) =0, (13)
c(r,2,0) = co(x,2). (14)

Apart from the defined parameter= H/I~', the other dimensionless parameters are: the
Reynolds numbeke = H1/v_ ', the anisotropy parameter of the turbulent viscosity v, '

the wind tension parameter= 3H (ul/) ', the diffusion Peclet numbet: = W H D', the
anisotropy parameter of the turbulent diffusion= D, D, ', and the dissipation parameter
A=AT.
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2.3. Equations for the main terms and solution of the hydrodynamics subsystem

We are looking for the solutions of the system (7)—(14) in the form of the asymptetipalver
expansion (recall thatis the shallowness parameter):

U = u(o) + 57/,(1) + 527/,(2) + ...,

w = w(o) + 511)(1) + 5211)(2) + ...,

€ =€60 4o p2¢@ 4 (15)
p= p(o) + EP(1) + 5273(2) +...,

c= C(O) + 50(1) + 520(2) 4+ ...,

Substitution of these series in equations (7)—(14) and collecting the sintitas tead to the
following problem for the main terms of the asymptotics (15):

U, = —2FRe, p. = cosa, Uy + 1w, =0, (16)

u|z:h(m) =0, “)|z:h(m) =0, (17)

w — f'(m)uL:g(m) =0, 7/,Z|Z:£(m) = —0, p|Z:£(m) =0, (18)
1

¢+ uc, +we, = —c.. — Ac, (29)
FPe

CZ|Z:E(.T,) = 07 CZ|Z:]’L(.77) = 07 (20)

c(r,2,0) = co(x,2). (21)

The main terms for the longitudinal and transversal velocities, as will &ise pressure and the
shape function of the free surface, may be found by the straightforward integphggnations
(16)—(18). Indeed, solution of the first equation in (16) accompanied by the boundary conditions
(17) and (18) gives

u=(h(z)—z)|Re(h(x)+2z—26x)) + o] . (22)

As we see, the longitudinal velocity has the parabolic shape with respectDepending on
the direction and the strength of the wind (both values are governed by the paranéehe
opposite flow may arise near the surface. Such a flow takes place provided that

o< —FRe(h(z)—£&(x)) .

Now, using (22) and boundary conditions (17), we integrate the last equation in (16) with
respect ta.. It results in the expression for the transversal velocity

w = (h(z) — 2) {h’(m) (25@ (h(x) — £(x)) + (r) — Re€'(x) (h(x) — Z)] . (23

Then, the first equation in (18) together with (22) and (23) leads to the followiagaelfor
the main term of the free surface functigf: ):

(h(a) — €W () — €101 |28 o) — o))+ 0| =0, (24)
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Evidently, due to the setting of the problefn;> ¢£. Hence, at least for positive the expression
in square brackets does not vanish, therefore

The last means that in the 2D setting the main t&(m) for the shape function of the free
surface coincides with the shape function of the bottgm) up to an additive constant. Due to
the choice of the transversal scale, this constant can be taken equal to 1:

() = hi) 1. (25)

Next, substitution of the last relation in (22) and (23) gives
u=(h(z)— 2) {B’e (2—h(x)+2)+ (r} , (26)
w = (h(x) —2)h'(x) {B’e (2—h(x)+2)+ (r} . (27)

As it can be seen from (27), if the bottom is flat (ii€2) = const) then the transversal com-
ponent of the velocitys is zero. Thus, for this approximation (when we are interested only
in the main terms of the asymptotics), the transversal motion of the fluidearged only by
irregularities of the bottom.

Finally, with (25), the second equation in (16) accompanied by the last relat{@8) has a
solution

p=(z4+1—h(x))cosa. (28)

By (25)—(28), the main asymptotical terms of the hydrodynamics subsystem (7)—(11) are
defined. Now, the diffusion subsystem (19)—(21) remains to be treated.

2.4. The diffusion subsystem
Making the change in (19)—(21):
z=y+h(z)—1,

with (25)—(27), we arrive at

1

e+ u(y)e, = G Ae, (29)
u(y) = (1 —y) [Be(1 +y) + o] , (30)
eyl,—o =0, eyl,—y =0, (31)
c(r,y,0) = co(x,y), (32)

where—1 < x < 1 and0 < y < 1. The initial boundary—value problem above is not solvable
analytically. Numerical technique for solution of (29) is briefly discussetiémiext section.
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3. Numerical Solution of the Diffusion Subsystem
3.1. Spatial discretization
Applying the finite difference method to solve (29)—(32), we choose the grid

wi = {(xiyx) |2 =ik, 0 =1,...,n7 — 1;

yn = (k —1/2)hy, k=1,...,ny —1}. (33)

The diffusion termPe'¢,, is approximated with the second order accuracy by the central dif-
ferences:

Pe ' [—cix + Cipt1] hQQ, k=1,
[Peley,] =8 Pelleinot — 2¢ip + cipp] hy?, 2<k<ny— 1, (34)
’ Pe ' cip 1 — ikl h§27 k=mny—1,

where (second order) approximations of boundary conditions (31) are incorporated.
We avoid the use of the central differences to approximate the convectie(fiar more

discussion see e.g. [4]). Instead, the upwinding of the first or the second orderéelappl
The regular upwind differences give the first order approximation

—1

[uy)eal; o = 0-5{(un + [un]) [ein — cirp] + (i — |ugl) [eivr s — cinlbhy

=1 (39)

7...777/1*]7

which severes from the massive artificial diffusion destroying the acgyt. However, for
this particular problem, the artificial diffusion is added only streamline.
The second order approximation of the convective term may be obtained with [6]

(y)e]. = 0.5(tip1 — 7/,7;,1)h171 — Cp(uigr — 3u; + 3u;q — 7/,7;,2)h171, up =0,
WY )l = 0.5(tip1 — 7/,7;,1)hf1 + Cp(uwi—1 — 3u; + 3wy — U,H.Q)hf], up < 0 (35)

The choice”r = 0.5 leads to the second order upwinding, whereasfor= 1/8 one gets the
so-called QUICK-scheme [6].

The problem (29)—(32) does not have any boundary conditions fat the ends of the canal
region). The use of the upwind differences allows to get around this formal diffidalieed,
if we assume that there are no sources of the admixture outside the fegion< 1 then, on
the in-flow ends of the region, the concentration can be set to zero:

cop=car=0 forv, >0, Coy k= Cpyr1p =0 fOrop <0. (36)

Now it is easy to see that the upwinding schemes (35) anjl 8&h C'» = 0.5) do not contain
any other values,; ; outside the grid (33).

3.2. The time-stepping process
Equation (29) may be rewritten as
e = —Lld, (29)
and Llc] = (7]36*16% + Ac) + u(y)er = Agre + AconvC -

where L is the spatial convection—diffusion operater= {c; (1)}, Aaig and A, are the
discrete diffusion and convection operators respectively defined by (34) an@®(33p)).
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If the first order time accuracy is sufficient for the time—stepping thendioaethe computa-
tional work, it is better to use partly implicit schemes. For example, foc#ise of dominating
convection the time—stepping process

Cm_l—1 = [[—I—TACO“V]71 [[*TAdiﬁ]ij 777/:07]7... R (37)

can be appropriate (hee€ = {¢; ,(.,)}). With (34), (35), the scheme (37) gives the restriction
for the step size [7]

r<r’ = the/@ + )\h%P@) .

The linear equation with matrix + = A, can be solved very efficiently: for the natura# *
first” ordering of the grid noded....., has its (at most four) non-main diagonals next to the main
diagonal. Similarly, one can use the time—stepping process with impliakgntdiffusion term.

If the second order accurate time—stepping is required, we suggest use e.g. thedBieme
[8] (in this case the iterative solution of the arising linear systemallmany possibilities to
decrease the computational expences, see e.g. [9] and citation therein)aftjthstep size is
not an issue then one can use explicit stabilized RK methods [10].

3.3. Analytical integrability

There are two specific cases where the problem (29)—(32) can be simplifiedsaigdseled
analytically. The analytical solution then may be used for testing the tisatien schemes.
These cases are (i) absence of the diffusion term and (ii) the constantyel@gi = const.

4. Numerical Experiments

Assume that the accident ejection of a pollution occured at the specific (Qint.) of the
canal. Then we may model the spreading of the pollution by solving the problem (29)—(32)
with the initial distribution of the form

C0(5177 y) = Coeia(mim*)Qib(yiy*)Q ) (38)

wherea,b andC, are parameters depending e.g. on the mass of the ejected pollution.
We present results of the numerical experiments for such a model situation fotltivéng
choice of parameters in (29)—(32):

Re=100, o= 130, A=0, Pe=10?, and (39)
Re=100, o= —130, A=0, Pe=10". (40)

Both sets of parameter values here correspond to the dominating convectioeshési (40)
there exists an intensive transverse intermixing in the stream. For asés there is the near—
surface opposite flow( y) is negative near the surface). In (38), weset b = 64, Cy = 1.

We used the spatial grid (33 withy = 300 andn, = 51 and the second order scheme
(34),(38) with C'» = 1/8 in all grid nodes except in the nodes with indices 1 andi = n — 1
where('r was set td).5. For the time—stepping process, the convectionally implicit scheme
(37) was employed, with = 0.02.

The pollution distribution for several moments of time is shown on fig. 2.
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5. Conclusions

In this paper, we introduce a distributed model for the advection process of arstésiahe
lengthy canal (or river) 2D stream. The pleasant feature to the model se&mgs$ simplicity;
the hydrodynamical part of the model turns out to be integrable analytically, so thabthlenr

is reduced to the non-steady convection—diffusion problem with the only longitudinagdconv
tion and the only transversal diffusion presented. The model can be used as atpannoire
comprehensive ecosystem model.
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