WS 9. The First International Workshop on
Unanticipated Software Evolution

Giinter Kniesel', Joost Noppen?, Tom Mens?, and Jim Buckley*

! Dept. of Computer Science III, University of Bonn, Germany,
gk@cs.uni-bonn.de - http://www.cs.uni-bonn.de/ gk/
2 Software Engineering Lab, University of Twente, Enschede, The Netherlands,
noppen@cs.utwente.nl - http://wwwhome.cs.utwente.nl/ noppen/
3 Programming Technology Lab, Vrije Universiteit Brussel, Belgium
tom.mens@vub.ac.be - http://prog.vub.ac.be/ tommens/
4 University of Limerick, Castletroy, Limerick, Ireland,
jim.buckley@ul.ie - http://www.csis.ul.ie/

This workshop was dedicated to research towards better support for unantic-
ipated software evolution (USE) in development tools, programming languages,
component models and related runtime infrastructures. The report gives an
overview of the submitted papers and summarizes the essence of discussions
during plenary sessions and in working groups.

1. Introduction

Many studies of complex software systems have shown that more than 80%
of the total cost of software development is devoted to software maintenance.
This is mainly due to the need for software systems to evolve in the face of
changing requirements. Despite the importance of software evolution, techniques
and technologies that offer support for software evolution are far from ideal. In
particular, unanticipated requirement changes are not well supported, although
they account for most of the technical complications and related costs of evolving
software.

By definition, unanticipated software evolution (USE) is not something for
which one can prepare during the design of a software system. Therefore, sup-
port for such evolution in development tools, programming languages, compo-
nent models and related runtime infrastructures becomes a key issue. Without
it, unanticipated changes often force software engineers to perform extensive
invasive modification of existing designs and code.

Correspondingly, the USE workshop addressed the issues inherent in unantic-
ipated, incremental evolution of object-oriented and component based systems.
The main goal of the workshop was to increase mutual awareness of the different
research groups active in this field. By fostering exchange of ideas we wanted to
promote new approaches and technologies for dealing with unanticipated soft-
ware evolution.



2 Gilnter Kniesel, Joost Noppen, Tom Mens, and Jim Buckley
1.1 Workshop Overview

The workshop lasted one day. In keeping with the spirit and format of a work-
shop, USE 2002 had a highly discursive nature, with presentations in the morning
and different theme-based discussion tracks (“breakout groups”) in the after-
noon.

For the morning session the organizers selected presentations that covered
a wide range of approaches [6, 14, 4, 21, 20, 27]. Although more than half of
the slot devoted to each presentation was reserved for discussion, this time was
seldom long enough. The heterogeneity of approaches and of the participants’
background triggered lively debates. Occasionally, these led to general agreement
but more often they demonstrated the need for stronger exchange of ideas be-
tween different communities working on different facets of unanticipated software
evolution.

The paper presentations were followed by an overview of all received sub-
missions, intended as a starting point for identifying topics for breakout groups.
Starting from the question “What is Unanticipated Software Evolution?”, Giinter
Kniesel offered a tentative answer and a classification of the various dimensions
of the problem and proposed approaches.

1.2. What is USE and what is USE research?

Agreeing on a common definition of unanticipated software evolution (USE)
turned out to be one of the most controversial issues. The opinion that every
change is anticipated at some point in time and the opposite view that every
change is inherently unanticipated where both present. This is characteristic
of the heterogeneity of the different views on this topic. Among others, the
discussion revolved around the questions of what changed, when it changed,
whether the change depended on any hooks built into in the previous version of
the application and from whose point of view the change was (un)anticipated.

There was no conclusive answer to this question. Maybe the reason is that this
might be the wrong question, since different definitions are sensible from different
points of view. So one could step back from asking what is unanticipated software
evolution. Instead one could ask why we are concerned about unanticipated
evolution and what is the aim of research on unanticipated evolution. This is
less controversial: the obvious goal is to reduce the costs of evolving software
without sacrificing correctness and quality.

Correspondingly, malign changes are those that exhibit undesired side-effects
or involve high costs either because they are non-incremental or because they
depend on prior encoding of hooks. In contrast, benign changes exhibit no unde-
sired side-effects, are incremental and do not depend on prior encoding of hooks.
Then one can simply say that the aim of research on unanticipated software
evolution is to enlarge the category of benign changes. Put differently, the aim
of USE research is to enlarge the category of changes that exhibit no undesired



WS 9: Unanticipated Software Evolution 3

side-effects and for which a non-invasive!implementation is possible without en-
coding of proper hooks in prior versions of the changed software.

Although this definition was not produced during the workshop we want to
put it forward as a working definition that can be further elaborated in the
future. It comes close to some of the opinions expressed at the workshop so we
hope it can eventually evolve into a generally accepted understanding of what
USE research is about.

2. Workshop Papers

All submitted papers were reviewed by the USE program committee?. From
the 24 accepted submissions 2 were from industrial research and development
departments. All the others contributions came from academic research.

Java HotSwap API The two industrial papers address the new dynamic class
replacement mechanism (“hot swap API”) included in JDK 1.4 and sup-
ported by Sun Microsystems’ Java HotSpot Virtual Machine:

— Pazandak [21] presents ProbeMeister, a product that uses the hot swap
API to attach to multiple remotely running applications, and effortlessly
insert software probes to gather information about their execution. This
information can be used to effect changes within the running applica-
tions, improve their operation or recover from failures.

— Dmitriev [4] describes yet unreleased improvements of the HotSwap API
for fine-grained, fast and scalable bytecode instrumentation in running
server programs. As an interesting case study he shows that a JVM
supporting an evolved API for dynamic bytecode instrumentation allows
developers to profile dynamically selected parts of a target application
much more efficiently than with other techniques.

Instance Adaptation Instance adaptation is the process of changing the lay-
out of existing objects after their class definition has changed. This is a
well-known problem in object oriented databases and manifests itself also in
systems that allow update of classes at run-time.

— Duggan and Wu [6] present “adaptable objects”, an approach to enable
interoperation of objects whose interface and layout may be updated
at runtime. It relies on lazy creation of version adapter proxies that
mediate where there is a version mismatch between an object and code
attempting to access that object.

— Hirschfeld, Wagner, and Gybels [11] suggest that there is much to learn
from the proven techniques for unplanned dynamic evolution in Smalltalk
and provide an overview of Smalltalk’s mechanisms for renaming, re-
moval, and layout change of a class.

1 An non-invasive change is one that adds something to a software without changing
any of its pre-existing parts. The terms non-invasive, incremental and additive are
synonyms.

2 See the USE 2002 web site at http://joint.org/use/2002/ for programm committee
members and additional reviewers.



4 Gilnter Kniesel, Joost Noppen, Tom Mens, and Jim Buckley

— Rashid [22] presents a comparative evaluation of schema relationships
and instance adaptation of four object database systems, each repre-
senting a particular category of evolution systems. The discussion aims
to demonstrate the benefits of an aspect-oriented approach in the face
of unanticipated changes.

Dynamic Linking The two contributions about dynamic linking differ from all
others in that they do not concentrate on enabling unanticipated changes but
instead demonstrate that unanticipated changes can sometimes be undesired
or have undesired side-effects:

— Drossopoulou and Eisenbach [5] point out that, in some situations, dy-
namic linking in Java affects program execution and the integrity of the
virtual machine. In order to let programmers understand precisely these
effects, the papers demonstrates the process in terms of a sequence of
source language examples, in which the effects of dynamic linking are
explicit.

— Eisenbach, Sadler and Jurisic [7] present a series of examples in Java and
C# that pinpoint problems in the way how these two languages deal
with dynamic linking. The examples show similarities and differences
between the two languages in the treatment of compile-time constants,
interface changes and resolution of fields (and method) access. The paper
shows that neither system can guarantee the integrity of distributed
applications, so developers need to be aware of the employed dynamic
linking process if they want to cope with “DLL hell”.

Static Linking Zenger [27] presents the programming language Keris, an ex-
tension of Java with extensible modules as the basic units of software. The
linking of modules is inferred and allows to extend systems by replacing se-
lected submodules with compatible versions without needing to re-link the
full system. Extensibility is unanticipated, type-safe and non-invasive; i.e.
the extension of a module preserves the original version and does not re-
quire access to source code.

Evolving Components and Services — Evans et al [8] describe the evo-
lution a distributed run-time system that itself is designed to support
the evolution of the topology and implementation of an executing, dis-
tributed system. The paper presents the different versions of the archi-
tecture, discusses how each architecture addresses the problems of topo-
logical and functional evolution, explains the reasons for the evolution
of the architecture and discusses lessons learned in this process.

— Sora et al [26] present a component model that supports unanticipated
customization of systems in a top-down stepwise refinement manner,
while composing also the structure of components. This strategy allows
to realize very fine-tuned compositions even when the composition deci-
sion is made automatically, as it is necessary for self-customizable sys-
tems. The presented component composition model is able to cope with
evolving requirements and discovery of new component types.

— Oriol [20] argues that application evolution at runtime is prevented by
connections between different software entities and proposes a discon-



WS 9: Unanticipated Software Evolution 5

nected communication architecture based on three main concepts: ex-
treme associative naming, late binding and asynchrony of communica-
tions. Everything is a service. Service registration and invocation oc-
cur through a semantic description. The choice of the service that best
matches the description of the requested service is performed at the mo-
ment of the invocation.

— Gorinsek [9] presents novel work in the field of component-based evo-
lution of embedded systems. It addresses the necessary properties of a
system supporting dynamic updating of components in an embedded
platform and proposes a new approach to design such a system.

— Buckley [2] describes work towards the development an environment
where software components could autonomously adapt their interfaces
to each other at runtime. Such adaptation by components would allow
them adjust to unanticipated software evolution by enabling their inter-
faces to change in response to amendments in the service components
they use and in the client components that they service.

— McGurren and Conroy [14] define the notion of a dynamic system, presents
a taxonomy of dynamic systems and introduces three types of adaptation
that may be used in the implementation of dynamic systems: instance
replacement, service level adaptation and interface adaptation. Then the
X-Adapt architecture is proposed as a design to support these three types
of adaptation while combining them with integrity management.

Change Impact Analysis — Neumann, Strembeck and Zdun [18] present an
approach that fosters changes of software by managing runtime-traceable
dependencies of requirement specifications and test cases to correspond-
ing architectural elements and source code fragments. In case of (unex-
pected) change requests it is easy to find the affected system parts, thus
facilitating timely change propagation and regression testing.

— Mens, Mens and Wermelinger [15] propose intentional software views as
an intuitive and lightweight technique to model crosscutting concerns.
This technique provides the formal basis for tools that help grouping to-
gether source-code entities that address the same concern. The technique
also facilitates unanticipated software evolution by providing the ability
to automatically verify the consistency of views and detect invalidation
of important intentional relationships among views when the software
evolves.

— Mens, Demeyer, Janssens [17] addresses the need to formalise behaviour
preserving software evolution as a basis for dealing with refactoring. The
paper introduces a graph representation of those aspects of the source
code that should be preserved by a refactoring, and graph rewriting rules
as a formal specification for the refactorings themselves. The authors
show that it is feasible to reason about the effect of refactorings on
object-oriented programs independently of the programming language
being used, which is crucial for the next generation of refactoring tools.

Dynamic Object Models: Roles, Views, Delegation — Markovic and So-
chor [13] present an formal object model unifying wrapping, replacement



6 Gilnter Kniesel, Joost Noppen, Tom Mens, and Jim Buckley

and roled-objects techniques. In this model the objects with roles can
dynamically change the interfaces they support. The model comprises
also other techniques used to handle evolving objects.

— Sadou [25] presents an approach unanticipated evolution of distribted
objects at run time. New client programs may add behavior to existing
server objects, whereas old clients may continue to use the unadapted
version of the server. The approach relies on a combination of the adapter
pattern and of delegation. A prototype version of the Adapter system is
implemented as a set of Java libraries that does not require addition of
new language constructs.

— Anderson and Drossopoulou [1] present Delta, a first imperative calculus
for object-based languages with delegation. Such languages (eg SELF)
support exploratory programming by composition of objects, sharing of
attributes and modification of objects’ behaviour at run-time. Further-
more delegation allows objects to delegate execution of methods to other
objects. These features allow for creation of very flexible programs that
can accommodate changes in requirement at a very late stage.

Aspect-Oriented Approaches David and Ledoux [3] present an approach to
dynamic adaptation to changing execution conditions based on distinguish-
ing functional and non-functional concerns. These two kinds of concerns are
composed together, at run-time, by a weaver which is aware of the execution
conditions so that it can adapt its weaving to their evolution.

JVM Extensions for USE Redmond and Cahill [23, 24] present the Iguana/J
architecture, which supports unanticipated, non-invasive, dynamic modifica-
tion in an interpreted language without extending the language, without a
preprocessor, and without requiring the source code of the application.

Anticipating Requirements Noppen et al [19] talk about optimisation of
software development policies for evolutionary system requirements based
on a Software Evolution Analysis Model (SEAM). This is a probabilistic
model for evolution requirements, which helps anticipating on future re-
quirements.

Classification Gustavson et al [10] present a classification of dynamic software
evolution built the distinction of two major facets, the technical facet and
the motivation facet.

The above summaries cannot give more than a raw idea of the topics ad-
dressed in each paper. Furthermore, the classification above could be replaced
by many others, depending on one’s personal point of view. Therefore, interested
readers are invited to consult the full papers. They can be download from the
USE 2002 web site either selectively or as an archive containing the entire online
proceedings [12].

3. Working Group: Scenarios

The “Scenarios” working group consisted of Misha Dmitriev, Sophia Drossopoulou,
Dominic Duggan, Susan Eisenbach, Robert Hirschfeld, Jens Gustavson, Giinter



WS 9: Unanticipated Software Evolution 7

Kniesel, Finbar McGurren, Yahya Mirza, Manuel Oriol and Bernard Pagurek.
Its goal was to collect real-life scenarios of unanticipated software evolution from
the experience of the participants.

The intent of such a collection was to serve as a basis for evaluating the
expressiveness of a possible taxonomy® and as a set of “functional benchmarks”
on which to compare different approaches to USE. Another possible use could
be to identify specific requirements of certain application areas.

The group discussed the scenarios summarised in the following. For scenarios
from already completed projects, the participants reported also about the ap-
proach towards USE taken in their project, the individual techniques that had
been applied and the reasons why they were sufficient for that scenario. For sce-
narios from new or planned projects the discussion focused more on identifying
the particular problems of USE that arise in that scenario and on the applicable
techniques.

Network management An often encountered problem in network manage-
ment is how to perform a consistent change of protocols on a server and its
clients. The challenge here is to perform the change as an atomic operation
while the network is still up and running. Bernard Pagurek reported on a
solution of this problem based on “software hot swapping”. This technique
was applicable because the protocols that had to be updated were stateless,
so there were no complications related to state transfer between old and new
object versions. A similar example was the move from IP4 to IP6.

Mobile Devices Presently, updating the operating software on mobile devices
(e.g. handhelds) requires users to turn the device in to a dealer after making
himself a backup of any personal data, configurations, preferences, etc. The
opposite is highly desirable: remote software updates (at the user’s site),
without needing a reboot, without loss of data and without loss of function-
ality. This is still a topic of ongoing research.

Independent Evolution of Platform and Services Another challenging sce-
nario is independent evolution of a distributed platform and of the services
running on that platform. Updates in the platform must still support services
written for previous versions of the platform. New and updated services must
be able to run in platforms that were not prepared for that service update.
All this must happen dynamically and be transparent to the user.

Change of Law Legislation is in a permanent flux. Unanticipated changes in
legislation can have a significant impact on existing products and services.
For example, a new law that all hearing impaired people have to be sup-
ported by communication devices might require dynamic upgrades to the
user interfaces of already delivered devices. The new user interface version
would need to contain functionality that was not anticipated in its original
design.

Computer Games Modern computer games provide a multitude of characters
and scenarios (worlds) in which these characters interact. If new characters

3 Development of a taxonomy was the topic of another working group.



8 Gilnter Kniesel, Joost Noppen, Tom Mens, and Jim Buckley

and scenarios can be loaded dynamically into a game a “protocol discovery
protocol” is needed that allows the new behaviour of new types of beings to
be determined. Existing character types must learn dynamically how to deal
with the newly introduced ones. For instance, an existing “dog” character
will have to “learn” that it should chase a new “cat” character.

Profiling Another example was selective, dynamic profiling of applications, in-
cluding library code, as reported in [4].

Bank Account Evolution A bank might conduct surveys of its customers’
habits and decide to offer selected customers new types of accounts that
are more attractive for that particular group. Similar unanticipated changes
could be possible for credit card users. The changes of account type would
need to happen dynamically, too.

This list still needs to be completed and related systematically to the differ-
ent existing USE approaches and to the USE taxonomy proposed by the next
working group.

4. Working Group: Taxonomy

The “Taxonomy” working group consisted of Jim Buckley, Tom Mens, Awais
Rashid, Salah Sadou, Stefan Van Baelen and Matthias Zenger. Its aim was the
development of a taxonomy based on characterizing mechanisms of software
evolution and the factors that impact upon these mechanisms.

The goal of the taxonomy is to position concrete tools and techniques within
the domain of software evolution, so that it becomes easier to compare and
combine them, or to evaluate their potential use for a particular maintenance or
change context.

The group proposes a categorisation along the four following dimensions:

— properties of the change mechanism,
— properties of the change itself,
system properties and

change process.

4.1 Properties of the change mechanism

Time of change Depending on the programming language, or the development
environment being used, it is possible to distinguish between phases such as
design time, compile time, load time, link time and run time. Relative to
these phases one can determine four times of change: T1 = the time (interval)
when a change is requested; T2 = the time (interval) when a change is
prepared; T3 = the time (interval) when the change becomes available for
execution; T4 = the time (interval) when the change is executed for the first
time.



WS 9: Unanticipated Software Evolution 9

Parallelism Software evolution may be carried out sequentially or in parallel.

With sequential software evolution, only one version of the software is avail-
able at any given time. With parallel evolution, many versions of the same
system can co-exist for some time.
Within parallel evolution, one can further distinguish between convergent
change and divergent change. With convergent changes, as in the exam-
ple above, two parallel versions can be merged together into a new unified
version. With divergent change, different versions of the system co-exist in-
definitely as part of the maintenance process.

Incrementality Something that is closely related to versioning is the incre-
mentality of the change. For incremental changes, an altered component can
be incorporated into a system while the old (non-extended) version gets pre-
served. This is the basis for versioning mechanisms and it is required for
systems in which old and new versions coexist simultaneously.

Degree of automation In software re-engineering, numerous attempts have
been made to automate, or partially automate, software maintenance tasks.
Typically, the tasks suited to automation are structural transformations of
the software system.

4.2 Properties of the change

Semantic or purely structural A distinction can be made between purely
structural and semantic changes. While semantic changes have an impact
on the behaviour of the software, structural changes aim to preserve the
semantics. In contrast to several structural changes, semantic changes are
very difficult to automate.

Addition, subtraction, modification Another distinction is between addi-
tion, subtraction, and modification of an element in the software. These ac-
tivities can be structural in that files or modules can be rationalized, added
to or altered structurally. Likewise the activities can be semantic, when func-
tionality is added, removed or altered.

Granularity of change Another distinguishing feature of change would be its
granularity. This can go from very coarse granularity (such as system, sub-
system and module level) to an extremely fine granularity (such as variable,
method and statement level).

Impact of change Related to the granularity is the impact of the change.
Sometimes, seemingly local changes may have a global impact because the
change is propagated through the rest of the code.

Change effort Another related issue is the change effort. In many cases, changes
with a high change impact also require a significant effort to make the
changes. However, in some situations this can be overcome by automated
tools. For example, source code renaming is typically a global change with
a high change impact, but the corresponding change effort is low because
renaming can proceed in an automated way.



10 Gilnter Kniesel, Joost Noppen, Tom Mens, and Jim Buckley

4.3 System properties

Activeness The system can be passive (changes are driven externally) or active
(the system can drive the changes itself). Typically, for a system to be active,
it must contain some monitors that record external and internal state. It
must also contain some logic that allows self-change based on the information
received from those monitors. A system is passive if change must be driven
by an external agent, typically using some sort of user interface.

Openness A software system can be open in that it is specifically built to al-
low for dynamic, unanticipated evolution. Unanticipated adaptations can be
specified and incorporated at runtime. For example, a system might rely on
plug-ins at runtime. While the plug-in modules may be unknown in advance,
the ability to add them to the system at runtime is explicitly provided.
Closed systems are those that have their complete functionality and adap-
tation logic specific at build time. A system however, cannot be open to
every possible change. It is likely that systems will only be open to certain
(unanticipated) changes.

4.4 Change process

A final classification of software evolution can be based on the change process,
which is a part of the software development process, and is typically imposed by
the project manager.

Planning We can distinguish between planned or unplanned evolution, based
on whether the changes that are to be applied are managed in a more or less

coherent manner.

Control During or after a change, we can distinguish between controlled or
uncontrolled evolution. Controlled evolution typically happens in a planned
context, when the constraints in the change process are explicit and enforced.
For example, versioning rules may be used to impose constraints on the
evolution.

After the workshop the “Taxonomy” group continued its discussion via the
USE mailing list (use@joint.org) with occasional contributions of other work-
shop participants. The results of this ongoing effort are being compiled into
a technical report [16] that will provide a much more complete account of all
the issues involved than is possible within the limited space available here. The
summary in this section reflects a snapshot of the discussion at the beginning of
September 2002.

1 Working Group: Language-Level Support for USE

This group consisted of Christopher Anderson, Misha Dmitriev, Huw Evans,
Joris Gorinsek, Lubomir Markovic, Kim Mens, Ioana Sora and Barry Redmond

The discussion addressed existing challenges and emerging techniques for
direct support of unanticipated evolution in languages and run-time infrastruc-
tures. It focused on the following issues:



WS 9: Unanticipated Software Evolution 11

Language annotations versus tool support Language annotations could be
used to explicitly specify properties of a program, that must be known at
evolution time. However, changing languages is difficult and “non-standard”
languages seldom find wide-spread acceptance. Therefore, tool support to
help programmers reason about evolution and about the related properties
of a program might be a better alternative.

Object replacement There are many problems involved in designing a power-
ful and generally applicable mechanism for dynamic replacement of objects
or components: when should the change happen, how and by whom is it
triggered, how is it performed, and at which granularity. When moving from
replacement of objects to replacement of entire component instances a sort
of transaction concept is needed for ensuring atomicity of the change. All
this is even harder in a resource restricted system.

Dynamic update The issue of transaction is also related to the issue of ensur-
ing consistency of a system after a dynamic update, possibly based on some
constraint mechanism. If dynamic update is based on object replacement
rather than addition of new objects and delegation, than state transfer be-
tween the object versions can become difficult. On one hand, encapsulation
might prevent transfer of all relevant information. On the other hand, there
complex interactions can exist between multiple versions.

Dependency management Dependencies between objects need to be tracked.
They can occur at many levels: invocation dependencies, structural depen-
dencies, architectural dependencies, etc. Dependencies may need to work in
both directions: if change is made to A then B must be checked and vice
versa. There are more open questions here than ideas of how to address
them.

Performance Evolution can be an expensive operation and building evolution
support into a system can be at odds with performance. One possible way
out is the approach pioneered by the dynamic language Self and successfully
adopted for a commercial environment by the Java HotSpot virtual machine:
The idea is to perform extensive optimizations for performance but make the
optimizations undoable for evolution.

5. Working Group: USE in the Software Life Cycle

Support for USE in languages, architectures and infrastructures addresses the
late phases of the software life-cycle (implementation and deployment). Tool
support for static evolution additionally addresses the design phase. There is
hardly any work about what support for unanticipated evolution might mean in
early phases (An exception is [19].). Therefore, this group explicitly addressed
USE during the entire life-cycle, including requirement elicitation and analysis.
The group consisted of Pascal Costanza, Thomas Ledoux, Joost Noppen, and
Uwe Zdun.

In the first place, support for USE is needed because changes to requirements
and their consequences for software systems are, by definition, not known in ad-
vance. So talking about USE during requirement elicitation might sound like a



12 Gilnter Kniesel, Joost Noppen, Tom Mens, and Jim Buckley

contradiction and it was indeed perceived as such by other workshop partici-
pants. However, there is no contradiction, as shown in the following.

5.1 No Silver Bullet Yet

For practitioners and researchers of USE techniques it is a sad but nevertheless
true fact that no single approach to USE is capable of dealing gracefully with all
possible types of evolution. A particular evolution can still be outside the scope
of the language in which a system is programmed, of its run-time infrastructure
and of the adaptation patterns implemented in the system. Including as many
evolution techniques as possible is no viable solution either, since this would
increase the complexity of the system and lead to problems in performance,
usability, size, cost-effectiveness, etc. In the end, there will always be changes
that require extensive invasive modifications of an existing application.

5.2 Selection Models for Software Evolution Techniques

Since every technique for coping with evolution addresses a certain set of evolu-
tion problems it should only be applied in the context in which it functions best.
However, choosing the right technique at analysis and design time is non-trivial.
It requires analysts and designers to be aware of existing USE techniques and
be able to assess their strength and weaknesses with respect to certain evolution
scenarios. Experience shows that awareness and skilful use of novel techniques
spreads slowly in the software engineering community. In general, the pace of
innovation is faster than the pace of dissemination. Even experts in a certain
domain sometimes have difficulties in keeping up with new developments.

So there is ample room for tool support in this area. Its intention is to help
software engineers make an informed decision about proper evolution approaches
without having to spend a significant share of their work researching and com-
piling the newest developments in the field of software evolution.

In order to achieve such tool support, a better understanding of the soft-
ware evolution process is needed. This should be expressed by a model that can
support the decisions on which evolution techniques to consider without com-
mitting to the occurrence of particular evolution scenarios. For the selection of
the proper design and evolution mechanisms there is no clear-cut solution, but
many different research directions can provide relevant feedback on this topic,
like for instance: probabilistic models, market analysis, domain models, etc.

5.3 Summary

The essence of the discussion in this group can be summarized as follows:

— No single approach to USE is capable of dealing gracefully with all possible
types of evolution. There will always be changes that will require extensive
modifications of an existing system.



WS 9: Unanticipated Software Evolution 13

— Being aware of this fact, one can still take advantage of the fact that some
evolution scenarios are more likely to occur than others and that some ap-
proaches to USE are better suited for certain types of evolution than others.

— So, techniques for improved upfront analysis and design do not compete with
techniques for USE but rather complement them. One obvious way to com-
bine both is to make analysts and designers aware of existing USE techniques
and of their strength and weaknesses with respect to certain evolution sce-
narios. Another one, advocated here, is to devise models of evolution that
already include such knowledge and help programmers make an informed
decision as to which evolution support techniques are most promising for a
given application.

Unanticipated evolution can invalidate an existing product, even if several prepa-
ration techniques have been included. But by making a sound choice of extension
mechanisms and adaptation techniques as well as a good initial architecture
design it should be possible to make software systems more resilient towards
evolution.

6. Conclusions

From individual discussions with participants the organisers gained the impres-
sion that the feelings about the workshop were split. On one hand, many people
appreciated the chance to meet and exchange ideas in a forum in which unantic-
ipated software evolution was the primary topic. On the other hand, many par-
ticipants were unhappy about not having enough time for discussion in breakout
groups and for presentation of all submitted papers. Also the 10 to 12 minutes
discussion per presented paper were occasionally perceived as too short. Ob-
viously, the organizers had underestimated the high interest in unanticipated
software evolution and also the particularly high need for discussion in a newly
forming research community. Therefore the next USE workshop, organised in
conjunction with ETAPS 2003, will last two days (http://joint.org/use/2003/).

The workshop showed that there is considerable work on USE in many aca-
demic and industrial research centers. The majority focuses on unanticipated
run-time evolution but approaches that address all other phases of the software
life cycle are present too. The surprising diversity of proposed techniques shows
that there is really a strong need for forming a community of USE researchers,
where groups with very different backgrounds can meet and learn from each
other. Establishing a common understanding of basic notions, a catalogue of
benchmark scenarios, techniques, and their classification are just the very first
steps towards synergetic joint work.

7. Acknowledgements

In the first place want to thank all the participants for making this a successful
workshop. Big thanks are due also to all the members of the programm commit-
tee for the time and expertise they put into their work. Many participants have



14

Gilnter Kniesel, Joost Noppen, Tom Mens, and Jim Buckley

expressed their gratefulness for the very detailed, and constructive reviewer com-
ments they received. Last but not least, the organizers of ECOOP 2002 provided
an excellent infrastructure for the USE workshop.

References

(1]

[10]
[11]

[12]

[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

Christopher Anderson and Sophia Drossopoulou. Delta - an imperative object-
based calculus with delegation. In [12], 2002.

Jim Buckley. Adaptive component interfaces. In [12], 2002.

Pierre-Charles David and Thomas Ledoux. Dynamic adaptation of non-functional
concerns. In [12], 2002.

Mikhail Dmitriev. Hotswap technology application for advanced profiling. In [12],
2002.

Sophia Drossopoulou and Susan Eisenbach. Manifestations of java dynamic link-
ing - an approximate understanding at source language level. In [12], 2002.
Dominic Duggan and Zhaobin Wu. Adaptable objects for dynamic updating of
software libraries. In [12], 2002.

Susan Eisenbach, Chris Sadler, and Vladimir Jurisic. Feeling the way through
DLL Hell. In [12], 2002.

Huw Evans, Malcolm Atkinson, Margaret Brown, Julie Cargill, Murray Crease,
Phil Draper, Steve Gray, and Richard Thomas. The pervasiveness of evolution in
GRUMPS software. In [12], 2002.

Joris Gorinsek. Empres: Component-based evolution for embedded systems. In
[12], 2002.

Jens Gustavson and Uwe Assmann. A classification of runtime software changes.
In [12], 2002.

Robert Hirschfeld, Matthias Wagner, and Kris Gybels. Assisting system evolution:
A Smalltalk retrospective. In [12], 2002.

Gunter Kniesel, Pascal Costanza, and Mikhail Dmitriev (eds). Online proceedings
of USE 2002 — First International Workshop on Unanticipated Software Evolution,
June 2002. http://joint.org/use/2002/sub/.

Lubomir Markovic and Jiri Sochor. Object model unifying wrapping, replacement
and roled-objects techniques. In [12], 2002.

Finnbar McGurren and Damien Conroy. X-Adapt: An architecture for dynamic
systems. In [12], 2002.

Kim Mens, Tom Mens, and Michel Wermelinger. Supporting unanticipated soft-
ware evolution through intentional software views. In [12], 2002.

Tom Mens, Jim Buckley, and other authors pending. Towards a software evolution
taxonomy. Technical report, Programming Technology Lab, Vrije Universiteit
Brussel, 2002.

Tom Mens, Serge Demeyer, and Dirk Janssens. Formalising behaviour preserving
software evolution. In [12], 2002.

Gustaf Neumann, Mark Strembeck, and Uwe Zdun. Using runtime introspectible
metadata to integrate requirement traces and design traces in software compo-
nents. In [12], 2002.

Joost Noppen, Bedir Tekinerdogan, Mehmet Aksit, Maurice Glandrup, and Vic-
tor Nicola. Optimising software development policies for evolutionary system
requirements. In [12], 2002.

Manuel Oriol. Evolution of code through asynchronous services. In [12], 2002.



[21]
[22]

23]

[24]
[25]

[26]

[27]

WS 9: Unanticipated Software Evolution 15

Paul Pazandak. ProbeMeister: Distributed runtime software instrumentation. In
[12], 2002.

Awais Rashid. Aspect-oriented schema evolution in object databases: A compar-
ative case study. In [12], 2002.

Barry Redmond and Vinny Cahill. Supporting unanticipated dynamic adapta-
tion of application behaviour. In Object-Oriented Programming — Proceedings of
ECOOP 2002, LNCS, 2002.

Barry Redmond and Vinny Cahill. Supporting unanticipated dynamic adaptation
of application behaviour. In [12], 2002.

Salah Sadou and Hafedh Mili. Unanticipated evolution for distributed applica-
tions. In [12], 2002.

Toana Sora, Nico Janssens, Pierre Verbaeten, and Yolande Berbers. A component
composition model to support unanticipated customization of systems. In [12],
2002.

Matthias Zenger. Evolving software with extensible modules. In [12], 2002.



