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Abst rac t .  The Genericity Lemma is one of the most important moti- 
vations to take in the untyped lambda calculus the notion of solvability 
as a formal representation of the informal notion of undefinedness. We 
generalise solvability towards typed lambda calculi, and we call this gen- 
eralisation: usability. We then prove the Genericity Lemma for un-usable 
terms. The technique of the proof is based on leltmost reduction, which 
strongly simplifies the standard proof. 

1 I n t r o d u c t i o n  

In this paper we present an elementary and general proof of the Genericity 
Lemma. In the untyped lambda calculus this lemma says: 

Suppose M is an unsolvable term, and let N be a normal form. 
If )~ ~- F M  = N ,  then for all X we have ), }- F X  = N .  

The informal meaning of this lemma is that if a term M is meaningless (un- 
defined), and if a context containing M is convertible to a well-defined answer, 
then M did not have any influence on the computation of this answer and so 
M may be replaced by any term. In fact, the Genericity Lemma is one of the 
most important  motivations to take in the untyped lambda calculus the notion 
of solvability as a formal representation of the informal notion of undefinedness. 

Several proofs of the Genericity Lemma are known. For example, the standard 
proof (Barendregt 1984, chapter 14.3) uses a topological method, based on the 
tree topology (using BShm trees, and showing that  the compactification points in 
this topology are precisely the unsolvable terms). Takahashi gives a simpler proof 
in the untyped lambda calculus by exploiting the fact that  the solvable terms are 
precisely the terms with a head normal form (Takahashi 1994). In (Kuper 1994, 
1995) the Genericity Lemma is proved for a PCF-like calculus by generalising 
a technique introduced in (Barendregt 1971). This technique requires a tedious 
analysis of a reduction F M  --~ N .  

Here, we prove the lemma for a more general situation than just untyped 
lambda calculus. Hence, we have to generMise the notion of solvability towards 
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other lambda calculi, for example towards calculi with types, 5-reduction, #- 
reduction. This generalisation can not be done directly from the definition of 
solvability in the untyped lambda calculus. 

We will describe a generalisation of solvability (called usability) for a PCF- 
like calculus with product types and list types. We show that the Genericity 
Lemma holds for unusable terms. We prove the lemma by concentrating on the 
leflmost reduction F M  --~ N, which simplifies the proof strongly. 

l 
We remark that it is also possible to generalise Takahashi's proof to other 

calculi. However, this generalisation is not as simple as it might seem at first 
sight. There are two reasons for this. First, the connection between solvability 
and head normal forms which holds in the untyped lambda calculus, is in general 
not true for usability (see section 3). 

Second, Takahashi's proof in fact proceeds by induction on the depth of 
the BShm tree of a certain term, so a generalisation of this proof requires a 
generalisation of BShm trees towards other calculi. This falls outside the scope 
of this paper. 

2 T h e  L a m b d a  C a l c u l u s  

We prove the Genericity Lemmafor a PCF-like calculus, i.e., for a typed lambda 
calculus with full recursion and some constants, though the proof also works for 
untyped lambda calculus. We will refer to this calculus by A. 

We will assume that A has ground types Nat  and Bool. Also, if cr and v 
are types, then ~--~- (functions), a x r  (products), and ~* (lists) are types. The 
corresponding term formation rules are .~x.M, (M, N), and [M, N] respectively. 
The final one stands for the cons-operation, where M is of type ~ and N is of 
type a*. One might also choose for a constant cons, but because of the role of 
constants in forthcoming definitions (especially definition 2), we do not choose 
for this option (see section 3). The same holds for a constant pair in the case 
of product types. 

Of course, the basic reduction rule ofthe calculus is the rule of fl-reduction: 

(~x.M)N --*.M[x:=N] 

(where M[x:=N] denotes substitution of N for all free occurrences of x in M, 
implicitly avoiding unintended bindings of variables). 

The rule of y-reduction 

~x.Mx ~ M 

(where x is not free in M) may or may not hold. 
Since non-termination is essential for the Genericity Lemma, we will assume 

that full recursion is possible in the calculus. We prefer to represent recursion 
by means of the #-abstractor, accompanied with the rule 

~x.M ~ M[x:=px.M], 
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but clearly, recursion might also be represented by means of fixed point combi- 
nators Y. 

We assume that  the following constants and the accompanying reduction 
rules (6-rules) are present in the calculus: 

- there are constants for natural numbers, booleans, successor function, test 
for zero. The accompanying 6-rules are standard, 

- there is a conditional i f ,  with accompanying rules 

if true -~ Axy.x, 

if false -+ Axy.y, 

- there are constants for the projection functions lri (i = 1, 2): 

and for lists: 

head [M, N] --~ M, 

tail [M, N] --, N. 

Notice that  all 6-redexes are of the form fM,  with f a constant. 
Two essential properties of the calculus that are necessary for the proof 

of the Genericity Lemma given here, are the Church-Rosser Property and the 
Standardisalion Property. 

Church-Rosser property. For all terms M, N1 and N2 such that 

N1 ~- M---~ N2, 

there is a term L such that  

N1---~ L ~--- N2. 

A well-known corollary of the Church-Rosser property is that if a term M is 
convertible to a normal form N, then M ~ N. Of course, X has the Church- 
Rosser property. 

Standardisation. Consider the following reduction: 

M0 z~o M1 z h  . . .  

This reduction is a standard reduction if there is no j < i such that A~ is a 
residual of a redex in Mj to the left of Aj. 

Now the standardisation property says: for every M --~ N, there is a standard 
reduction from M to N. A sufficient and elegant way to prove that a calculus 
has the standardisation property, is to show that  the calculus is a left-normal 
combinatory reduction system (introduced in (Klop 1980), reformulated with 
some simplifications in (Kuper 1994)). It is easy to see that  indeed A is a left- 
normal combinatory reduction system. 

An important  corollary of the standardisation property is the normalisation 
theorem: if a term M has a normal form N, then M ~ N by the leftmost 
reduction, i.e., by contracting the leffmost redex in each reduction step (notation: 
M - *  N). 

s 
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3 S o l v a b i l i t y  a n d  U s a b i l i t y  

We start  with the definition of solvability from the untyped lambda calculus, and 
generalise this notion towards some other calculi (for a more detailed treatment 
of this generalisation, see (Kuper 1994, 1995)). Recall that  solvability is intended 
to formalise the concept of meaningfulness (or (un)definedness, cf. (Barendregt 
1984)). 

D e f i n i t i o n  1 (So lvab i l i t y ) .  Let Sx .M be a closure of M. M is solvable if there 
is a sequence of terms N such that  ( $ x . M ) N  --~ I, where I -- $z.z .  

This definition can not be directly generalised towards other calculi for two 
reasons: because of the restriction to contexts of the form ($x.[_ ]) N, and because 
of the restriction of the result to I. To overcome the first of these restrictions we 
introduce in )~ the notion of strict context: 

D e f i n i t i o n 2  ( S t r i c t  C o n t e x t ) .  A strict context C[_] is inductively defined as 
follows: 

- the empty context, [_], is strict 
- If C[_] is a strict context, and M a term, then 

(i) (C[_])M, 
(it) 

are strict contexts. 
- If f is a constant of function type, and C[_] is a strict context, then also 

(iii) f(C[_]) 

is a strict context. 

In this definition we silently assume type correctness. Notice that  each strict 
context has precisely one hole. 

Intuitively, the strictness of a context C[_] means that  in a (leftmost) reduc- 
tion of C[M] information from M is really used. This intuition can be considered 
as a starting point for a further generalisation of strict contexts towards other 
calculi. 

Motivated by this intuition, we will use strict contexts in order to generalise 
the notion of solvability towards )~. To overcome the second restriction in the 
definition of solvability (definition 1), we allow for any normal form instead of 
just  I. We call our generalisation of solvability: usability. 

D e f i n i t i o n 3  ( U s a b i l i t y ) .  A term M is usable if there is a strict context C[-] 
such that  C[M] has a normal form. 

The intuition behind this definition is that  a term M is meaningful (i.e., usable) 
if there is a terminating computation in which M is effectively used. 

As examples of usable terms we mention that  constants are usable. More 
general, all normal forms are usable. The standard example of a meaningless 
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term, /2, is not usable (in A one can define /2 as px.x). On the other hand, 
(x/2,/2) is usable: define the strict context 

c [ _ ]  = 

and notice that  C[(x/2,/2)] --* 0.0_. 
Now we can motivate our choice to consider pairing as a syntactical term 

forming construction, and not by means of a constant p a i r :  having a constant 
p a i r  would make ~2 usable (~r2(pair [_] 0) is a strict context), which is not 
intended. To avoid this effect, one might add exceptions to definition 2, but this is 
rather clumsy. Having pairs by means of a syntactical term forming construction 
is much nicer. 

In order to show that  usability really is a generalisation of solvability, we 
restrict definition 2 to the untyped lambda calculus by removing clause (iii) 
from it. 

L e m m a 4 .  In the untyped lambda calculus: M is usable iff M is solvable. 

P r o o f .  Left to the reader. [] 

As a remarkable difference between the notions of solvability and usability, we 
mention that  the usable terms are not precisely the terms with a head normal 
form. In A one only has that  usable terms have a weak head normal form, but 
not vice versa. In contrast to the situation in untyped lambda calculus, it is 
highly unlikely that  there is a syntactical characterisation of usable terms at all. 
Consider the following two terms: 

M1 - i f  Zero?(Pred x) t hen  0 e lse  /2, 

M2 ---- i f  Zero?(Succ x) t h e n  0 e lse /2 ,  

and notice that  M1 is usable, but M2 is not. 
As further evidence for the appropriateness of usability to formalise mean- 

ingfulness, we mention that  all unusable terms can be consistently identified 
(respecting their types, of course). If in addition to this identification, a usable 
term is also identified to the unusable terms, then the calculus becomes incon- 
sistent (Kuper 1994, 1995). Furthermore, usability has the genericity property 
(see theorem 10). 

We will need the following lemma. 

L e m m a  5. A is usable iff )~x.A is usable. 

P r o o f .  " ~ " :  I f A  is usable, then there is a strict context C[_] such that C[A] has 
a normal form. Hence, C[(~x.A)x] (=_ C[A]) has a normal form. Since C[[_]x] is 
a strict context, it follows that  ~x.A is usable. 

"r If Sz.A is usable, then there is a strict context C[_] such that  C[,~x.A] has 
a normal form. Now C[Ax.[_]] is a strict context, so A is usable. [] 
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4 T h e  G e n e r i c i t y  L e m m a  

The Genericity Lemma says: if M is not usable, and F M  has a normal form, 
then for all X, F X  has the same normal form. 

In the proof of this lemma we will concentrate on the leflmost reduction 
F M  ~ N,  and we show that  M is not "in an essential way" involved in a 

leftmost reduction step. Then it is intuitively clear that  M may be replaced by 
any X without changing the reduction steps. 

In order to keep track of M during the reduction, we extend ,~ with a pos- 
sibility to "pack" M. If M is in an essential way involved in a reduction step, 
then M must be "unpacked" first. 

D e f i n i t i o n 6  ( T h e  ca lcu lus  J~n). The terms of J~rn are formed by the same 
term formation rules as the rules of the original calculus ~. In addition, if M is 
a )~rn-term, then ~ is a )~D-term. 

The reduction rules of ,krl are the same as the rules of the original calculus 
J~. In addition, there is the m-rule (the "unpack rule"): 

~--]  ---~ M. 

The term ~ is to the left of all subterms of M. 
Substitution is defined in the usual way, extended with the clause 

Strict contexts are defined by precisely the same clauses as in definition 2, 
and usability is defined as in definition 3. a 

We will use the following notations with the obvious interpretations: 7, 
n cl 

)), 7). 
g 

Remarks. If [ - ~  is involved in a )~-reduction step in an essential way, then M 

must first be unpacked. For example, (;~x. [ ~  ) g  and (Ax.M) ~ are fl- 

redexes, but  ~ N is not. To obtain a fl-redex from this term, we first have 

to apply the D-rule on the subterm ~ .  The same holds for terms of the 

form [ - ~ M  and f[-M-], whenever f M  is a 5-redex. 

L e m m a  7. ,~rn has the Church-Rosser property and the standardization prop- 
erty. 

P r o o f .  Straightforward. One may consider [] as a new constant c for each type, 
with the rule 

c M  ~ M, 

i.e., c behaves like the identity. It is clear that the resulting calculus is a left- 
normal CRS. Hence it has the indicated properties (Klop 1980). [] 
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L e m m a  8 .  ~ is usable iff M is usable. 

P r o o f .  Immediate from the definition of usability, since ~ = M. [] 

The following lemma holds in both A and Am. 

L e m m a 9 .  I f  C[M] has a normal form, and the displayed M is the leftmost 
redex in C[M], then M is usable. 

P r o o f .  Since the displayed M is the leftmost redex in C[M], this M is not inside 
a box. For the same reason, M is not in the scope of a #. 

Let C~ [_] be the largest strict context inside C[_], where the hole of Cs [-] is 
the same as the hole of C[_]. It is easily seen that C[_] is of one of the following 
four forms: 

- C[_] - C8[_]. Then C,[M] has a normal form, i.e., M is usable. 
- C[_] -= C'[F(C~[_])]. Let N be the normal form of C[M], then 

C'[F(C~[M])] ~ ~, N (1) 

by lemma 7. Since M is the leftmost redex and C~ [_] is the largest possible 
strict context, it follows that  F is either a variable, or an application term of 
the form GL1 .. �9 Ln (n>] ) ,  with G a constant or a variable. Hence, during 
reduction (1) reducts of C~[M] will not be a proper subterm of some redex. 
Hence, there is an N ~ C_ N such that  C~[M] --~ N ~. Clearly, N ~ is a normal 
form, so M is usable. 

- C[_] = C'[(C~[_], X/] or C[_] -- C'[(X, Cs[-]}]. We consider the first case, 
the second case being analogous. Suppose C'[(Cs[M], X}] ~ N.  Since M is 
the leftmost redex, it follows that  Cs[M] --* N '  C_ N.  As above, M is usable. 

- C [ - ] - C ' [ [ C ~ [ - ] , X ] ] o r C [ _ ] - C ' [ [ X , C ~ [ _ ] ] ] . A s a b o v e .  [] 

T h e o r e m  10 ( T h e  G e n e r i c i t y  L e m m a ) .  Suppose M is not usable, and N is 
a normal form. I f  ~- F M  = N,  then for all X 

f - F X = N .  

P r o o f .  The proof consists of two steps: 

(a) for closed M only, 
(b) for arbitrary M. 

Proof of (a): Consider in A the leftmost reduction 7r : F M  ~ N.  It is straight- 

forward to construct from 7r the leftmost reduction 

7r ~ : F [ - M ]  D N. 

Since M is closed, and since there are no reductions inside boxed terms (the 

reduction 7r p is leftmost) it follows that for all terms of the form [~]  which 
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arise during the reduction ~ ,  we have that  L - M. Now suppose there is an 
application of the []-rule in 7U, say 

C [ ~ - ~ ]  ~  n N. 
t 

Then ~-~  is the leftmost redex in c[FM-~] , and so (by lemma 9) ~ is usable, 
i.e., M is usable. This is a contradiction, so there are no applications of the 
[]-rule in 7U. Since N is []-free, it can now easily be shown (by induction on the 

length of 7~ ~) that  ~ - ~  can be replaced by any X. 

Proof of (b): Let x be the sequence of variables free in M. Then Ax.M is closed 
and not usable (by lemma 5). Hence, 

F M  = F((Ax.M)x) 

= (~y .F(yx) ) ( ) t x .M)  

~- N, 

and so 

E x  = F ( ( a x . X ) x )  

= ( A y . F ( y x ) ) ( A x . X )  

= N .  [] 
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