
STABILITY OF RESET SYSTEMS

S. POLENKOVA?, J.W. POLDERMAN∗ AND R. LANGERAK†

Abstract. We derive sufficient conditions for asymptotic stability of state reset systems in terms
of a linear matrix inequality. The reset system is modeled as a hybrid automaton with one discrete
state. The guard on the transition is a switching surface and the reset map is a projection onto
a subspace of the state space. A discrete stability indicator is introduced: the projection gain. A
modified version of the LMI provides a estimate of the projection gain.
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1. Introduction. In this paper we focus on the stability of systems with state
reset. The main motivation for studying state reset systems lies in reset control where
the controller states are reset to zero whenever its input meets a threshold. The first
reset controllers were introduced by Clegg in 1958, the so-called Clegg integrator,
whose output reset to zero when its input meets zero. Furthermore, in a series of
papers, [7, 8], reset control systems have been advanced by introducing the first-order
reset element. One of the main disadvantages of reset controllers is that the reset
action may destabilize the system. Recent work, [1, 3, 6], addressed the stability
problem of this type of systems.

Reset control systems can also be considered as a special case of hybrid systems.
Stability analysis for hybrid systems is a much harder problem than it is for smooth
systems. The reason appears to be the interplay between continuous time driven
dynamics and discrete event driven dynamics. See [2, 5, 4, 10] and the references
therein.

Necessary and sufficient conditions for stability of a seemingly simple situation, a
single linear planar system with a state reset, are derived in [11].

Motivated by reset control systems, the main goal of this paper is to study stability
of systems with state reset in a somewhat more general context.

We consider systems modeled as a hybrid automaton, as depicted in Figure 1.1. See
[11] for details on hybrid automata.
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Abstract— In this work we perform a stability analysis for a
class of switched linear systems, modeled as hybrid automata.
We deal with a switched linear planar system, modeled by a
hybrid automaton with one discrete state. We assume the guard
on the transition is a line in the state space and the reset map
is a linear projection onto the x-axis. We define necessary and
sufficient conditions for stability of the switched linear system
with fixed and arbitrary dynamics in the location.

I. INTRODUCTION

In this paper we study a seemingly simple situation: a single
linear planar system with a state reset. We derive a complete
characterization and an algorithm to determine stability.
The paper is motivated by problems occurring in reset
control. To overcome control limitations various nonlinear
feedback controllers for linear time-invariant systems were
proposed, particularly, reset control is one of such con-
trollers. Basically it consists of a linear controller whose
states is reset to zero when the input and output satisfy
certain conditions. The first resetting element was introduced
in 1958 by Clegg: the so-called Clegg integrator, which resets
whenever the input is zero [7].
Furthermore, in a series of papers, [10], [11], reset control
systems have been advanced by introducing the first-order
reset element.
One of the main disadvantage of reset controllers is that
the reset action may destabilize a stable feedback system.
Recent work, [1], [3], [9], addressed the stability problem of
this type of systems.
Reset control systems can be also considered as a special
case of hybrid systems.
Stability analysis for hybrid systems is a much harder prob-
lem than it is for smooth systems. The reason appears to be
the interplay between continuous time driven dynamics and
discrete event driven dynamics. See [2], [5], [6], [4], [8],
[12], [13] and the references therein.
The problems studied in this paper, simple as they might
appear, form no exception to this observation.

II. PROBLEM STATEMENT

The class of systems that we study can conveniently be
modeled by a hybrid automaton, see Figure 1.
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Fig. 1. Linear planar system with state reset

The dynamics in the location is described by a system of
differential equations:

ż = Az, (1)

which is asymptotically stable, i.e. A ∈ R2×2 is a Hurwitz
matrix (every eigenvalue of A has strictly negative real part).
The guard on the transition is a hyperplane in the state space,
i.e. a line ! : y = kx, for some k ∈ R and π is the orthogonal
projection onto the x-axis.
The state is reset by orthogonal projection on the x-axis
whenever the state trajectory crosses the switching line !.
Although A is Hurwitz, the state reset may lead to instability.
The problem is particularly interesting for systems with
oscillatory behavior, therefore we restrict our attention to
matrices with complex conjugate eigenvalues:

λ = α ± βi, α < 0, β "= 0. (2)

For future reference we define:

A = {A ∈ R2×2|spec(A) = α ± βi, α < 0, β "= 0}. (3)

In the sequel, without loss of generality, we assume that all
trajectories progress anti-clockwise in time. This corresponds
to a21 > 0 for all matrices A that we consider. Indeed, all
results holds, mutatis mutandis, for the cases that a21 < 0.

The following problems are treated:
1) Find a criterion that for a given pair (A, !) determines

its stability properties (Section 3).
2) For a given matrix A, find all switching lines ! for which

the system is (asymptotically) stable (Section 4).
3) For a given switching line !, find all matrices A for

which the system is (asymptotically) stable (Section 5).

ẋ = Ax
x !∈ V x ∈ V

x := Πx

Fig. 1.1. Linear system with state reset

Here A is a Hurwitz matrix and V is
a linear subspace of the state space.
Whenever the state trajectory hits V,
part of the state is put to zero by the
projection operator Π.

The dynamics in the location is de-
scribed by a system of differential equa-
tions:
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ẋ = Ax. (1.1)

The guard on the transition is the linear subspace V of dimension m, the generalization
of the subspace corresponding to error zero in reset control systems.

V = {x ∈ Rn
∣∣∣x = My, y ∈ Rm}, (1.2)

for some matrix M ∈ Rn×m of rank m and Π =

[
I 0
0 0

]
with I ∈ Rk×k is the

orthogonal projection onto k-dimensional subspace of Rn. We define

W = {Πx ∈ Rn
∣∣∣x ∈ Rn}. (1.3)

The subspaces V and W are called the switching plane and projection plane respec-
tively.

The system depicted in Figure 1.1 can be written as follows:

{
ẋ = Ax, x 6∈ V,
x+ = Πx, x ∈ V, (1.4)

where x+ is the state of the system after reset.

To avoid ill-posedness we assume that V ∩ W = {0}. This implies that k +m ≤ n.

The state is reset by orthogonal projection Π whenever the state trajectory crosses
the switching plane V. Although system (1.1) has no unstable poles, the state reset
may lead to instability. Examples that illustrate this can easily be constructed. See
Figure 1.2 for an example of a system that is destabilized due to state reset.
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Fig. 1.2. Unstable reset system

Checking stability of reset systems
is non-trivial. In this paper we
derive sufficient conditions for sta-
bility by constructing an appropri-
ate quadratic Lyapunov function.
Moreover by optimizing the Lya-
punov function we provide an esti-
mate of the so called projection gain,
a measure of how much resetting the
state contributes to stability.

2. LMI-based stability criterion. In this section we formulate sufficient con-
ditions for stability of the reset system depicted in Figure 1.1. We assume that the
dynamics in the location A, the switching plane V and projection matrix Π, hence also
the projection plane W, are given. Furthermore, a positive definite matrix P with
ATP + PA < 0 is given. Our objective is to find criteria that guarantee stability of
the system for the given triple (A,V,Π) and matrix P . First we shall give a geometric
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criterion. Using this we translate the geometric stability criterion into a linear matrix
inequality.

We partition the state as x =

[
x1

x2

]
, where x1 ∈ Rk. We partition P and M accord-

ingly, P =

[
P11 P12

P12 P22

]
, with P11 ∈ Rk×k, M =

[
M1

M2

]
, with M1 ∈ Rk×m.

We define ellipsoidal set:

E = {x ∈ Rn
∣∣∣xTPx = 1}. (2.1)

The intersection of E with V:

E1 = {x ∈ E
∣∣∣∃y ∈ Rm : x = My}. (2.2)

Finally we shall use the intersection of E and its interior with W:

E2 = {x ∈ W | xT
1 P11x1 ≤ 1}. (2.3)

Intuitively, the relevance of the sets defined above in relation to stability is as follows.
Any state trajectory that starts from the boundary of E2 will stay within the ellipsoid
E, since P defines a quadratic Lyapunov function for the unswitched system. As soon
as the state trajectory intersects with the switching plane V it is projected back onto
W. Since it hits V within E, this must be the case on or inside E1. After projection
onto W the state will therefore be on or inside ΠE1. Now, stability is guaranteed if
ΠE1 is contained in E2.

The following lemma relates this inclusion property to a linear matrix inequality.

Lemma 2.1. ΠE1 ⊂ E2 if and only if MTΠPΠM −MTPM ≤ 0.

Proof. (⇒) Assume that the ΠE1 ⊂ E2. Choose y ∈ Rm with yTMTPMy = 1. It
follows that My ∈ E1 and therefore ΠMy ∈ ΠE1. Since ΠE1 ⊂ E2 it follows that
ΠMy ∈ E2 and hence yTMTΠPΠMy ≤ 1. This means that yTMTPMy = 1 implies
yTMTΠPΠMy ≤ 1 and hence MTΠPΠM −MTPM ≤ 0.

(⇐) Assume that MTΠPΠM −MTPM ≤ 0. Then, for all y ∈ Rm

yTMTΠPΠMy − yTMTPMy ≤ 0. (2.4)

Choose x ∈ ΠE1, then there exists y ∈ Rm with x = ΠMy and yTMTPMy = 1.
Therefore we have that yTMTΠPΠMy ≤ 1. Hence x ∈ E2.

The intuitive geometric criterion for stability has now been translated into a linear
matrix inequality. Existence of global solutions and stability can now readily be
proven by invoking Proposition 3.1 in [12].

We want to apply this proposition to quadratic Lyapunov function V (x) = xTPx,
where P is a positive-definite symmetric matrix.

Before we can do that, we need to establish that the switching time instants are sepa-
rated by a uniform positive constant δ. It is exactly this point where the assumption
that the switching plane V and the projection plane W intersect trivially is used.

Lemma 2.2. Let V,W ⊂ Rn be linear subspaces of Rn and A ∈ Rn×n. If V and W
are such that V ∩ W = {0} then there exists δ > 0 such that for all x ∈ W, x 6= 0,
we have that eAtx 6∈ V for 0 ≤ t < δ.
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Proof. Since the traveling time from a point inW to a point in V is scale invariant, we
can restrict the attention to points on the unit sphere. Suppose that the statement is
not true. Then for all δ > 0 there exists x ∈ W, and, ||x|| = 1, and 0 ≤ t < δ such
that eAtx ∈ V.
As a consequence there exist sequences {tn}, tn > 0 and {xn}, ||xn|| = 1 with
lim
n→∞

tn = 0, such that eAtnxn ∈ V for all n, and lim
n→∞

xn = x∗. It follows that

lim
n→∞

eAtnxn = x∗ ∈ V since V as a finite-dimensional linear subspace is closed.

Since xn ∈ W for all n it follows that x∗ ∈ W since also W as a finite-dimensional
linear subspace is closed.

It follows that x∗ ∈ V ∩ W and hence x∗ = 0. Since ||xn|| = ||x∗|| = 1, we have a
contradiction. This proves the statement.

We are now ready to formally present the geometric condition for stability.

Theorem 2.3. If there exists P = PT > 0 such that ATP + PA < 0 and ΠE1 ⊂ E2,
then

• there exists a left-continuous function x(t), satisfying (1.4) for all t ≥ 0;
• the equilibrium point x = 0 is asymptotically stable.

Proof. The existence of solutions of (1.4) follows from Proposition 3.1 in [12] and
Lemma 2.2.

Define a quadratic Lyapunov function V (x) = xTPx.

We have

V̇ (x) < 0, x 6= 0. (2.5)

It remains to show, [12][Proposition 3.1], that ΠE1 ⊂ E2 is equivalent to

V (Πx)− V (x) ≤ 0, x ∈ V. (2.6)

By Lemma 2.1, we have that ΠE1 ⊂ E2 implies

yTMTΠPΠMy − yTMTPMy ≤ 0, for all y ∈ Rm. (2.7)

This equivalent to

(Πx)TP (Πx)− xTPx ≤ 0, x ∈ V. (2.8)

It follows that (2.8) implies (2.6). This completes the proof.

Corollary 2.4. If there exists P = PT > 0 such that ATP + PA < 0 and

MTΠPΠM −MTPM ≤ 0, (2.9)

then the equilibrium point x = 0 is asymptotically stable.

3. Projection gain γ. Theorem 2.3 provides an intuitive and appealing geo-
metric condition for stability of the switched system. However, more information can
be extracted from the underlying linear matrix inequality. Indeed, refer to Figure 3.1.
Obviously, ΠE1 ⊂ E2 indicates stability. Intuitively it is clear that the further apart
the boundary of E2 and ΠE1 are, the more switching contributes to stability.

If the system is initialized in x0 on the boundary of E2, i.e on the level set of P,
corresponding to level equal to one, then after the switch the state is projected into
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the set ΠE1. Now, define γ as the worst case level of P taken over ΠE1. So, if γ < 1,
then by switching the state moves from level one to a lower level. Hence the switch
adds a discrete factor γ to the continuous stability of the system. We call γ the
projection gain. The formal definition is given below.

Definition 3.1. (Projection gain.) The projection gain γ of switched system is
defined as

γ = max
x1∈ΠE1

xT
1 P11x1. (3.1)

Fig. 3.1. The ellipsoidal sets E2 (dashed) and ΠE1 (solid)

The next result shows how γ can be computed.

Theorem 3.2.

1. γ = max
yTMTPMy=1

yTMTΠPΠMy.

2. γ = λmax((MTPM)−1/2MTΠPΠM(MTPM)−1/2).

Here λmax denotes the maximum eigenvalue. Note that since M has full column rank
and P > 0 the matrix MTPM is non-singular.

Proof. Part 1. This follows directly from the observation that for each x1 ∈ ΠE1

there exists a y ∈ Rm with yTMTPMy = 1 such that xT
1 P11x1 = yTMTΠPΠMy

and vice versa.

Part 2. Define R = MTPM and S = MTΠPΠM , then:

γ = max
yTRy=1

yTSy = max
zTz=1

zTR−1/2SR−1/2z = λmax(R−1/2SR−1/2).

4. Optimal Lyapunov function. The projection gain γ is related to stability
in that γ ≤ 1 guarantees stability. Additionally, smaller γ implies that at each switch
there is boost in stability. Indeed, if γ < 1, then due to switching the state moves
from level one to a lower level and asymptotic stability of reset system is guaranteed.
Disregarding the continuous time stability we see that at each switching time sk we
have

x(sk)Tx(sk) ≤ γk λmax(P )

λmin(P )
x(0)Tx(0). (4.1)
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From (4.1) it follows the smaller γ, the faster convergence of the state to zero. From
Theorem 3.2 it follows that γ depends on P . It therefore makes sense to search for a
P that minimizes γ. As the dependence of γ is highly non-linear, this appears not to
be an easy task. On the other hand, inequality (2.9) allows the situation where, see
Figure 3.1, E2 and ΠE1 intersect tangentially, thus leading to γ = 1. By replacing
the right hand side of (2.9) by a negative definite matrix, this is avoided.

So, consider

ATP +AP < 0, MTΠPΠM −MTPM ≤ −εI, ε > 0. (4.2)

The joint problem of checking for stability and finding a γ < 1 now becomes:

Find maximal ε ∈ R such that (4.2) has a positive definite solution P .

Of course, since (4.2) is linear in P and ε we need to normalize P appropriately to
guarantee the existence of a maximal ε. The following theorem ensures that this can
be done. We choose a x0 ∈ Rn of norm one, that is, xT

0 x0 = 1 and define the set

Ω = {P ∈ Rn×n|P = PT ≥ 0, ATP + PA ≤ 0, xT
0 Px0 = 1}. (4.3)

Theorem 4.1 ([9]). Let A ∈ Rn×n be a Hurwitz matrix and let x0 ∈ Rn be a nonzero
vector. If x0 does not belong to a proper A-invariant subspace then Ω is compact.

Corollary 4.2. For a generic choice of x0 on the unit sphere there exists εmax ∈ R
such that for all ε ≥ εmax (4.2) does not have a positive definite solution.

A Lyapunov function is called optimal if the projection gain γ is minimal over Ω. For
given matrices A,Π,M an optimal Lyapunov function exists since from Theorem 4.1
follows that the set Ω is compact.

One could expect that somehow γ decreases monotonically with increasing ε. How-
ever, counter examples may be constructed that show that such a conjecture is wrong.
But fortunately γ admits an upper bound that is monotonically decreasing as ε in-
creases. This is the content of the following theorem.

Theorem 4.3. The projection gain γ admits a monotonically decreasing upper
bound.

Proof. Since Ω is compact we can define

C = min
P∈Ω

λmax(MTPM).

From Corollary 2.4 and Theorem 3.2 it follows that:

γ = max
yTMTPMy=1

yTMTΠPΠMy ≤ −εyTy + 1 (4.4)

=1− ε

λmax(MTPM)
≤ 1− ε

C
. (4.5)

Example 4.4. Consider the reset system (1.4) with Hurwitz matrix A and projection
matrix Π given by

A =


−4.25 −0.5 1.75 −1
−2 −2 1 0
−0.75 −1.5 −0.75 −3
1.25 −0.5 −0.75 −3

 Π =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 .
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The state x ∈ R4 is reset by orthogonal projection Πx whenever the state trajectory hits

the switching plane V. The switching plane is given by V =
{
x ∈ R4

∣∣∣x = My, y ∈ R2
}
,

where M =


1 0
0 1
1 0
0 1

. We check whether system (1.4) is asymptotically stable.

We choose the vector x0 = [1 0 0 0]T . By Theorem 4.1 it follows that Ω is compact.

Using LMI toolbox, we find P =


1 0 0 0
0 4.195 −2.3715 2.3715
0 −2.3715 5.2083 −3.6768
0 2.3715 −3.6768 5.0207

 and εmax = 9.065

satisfy (4.2). It follows that the reset system is asymptotically stable. We compute
the projection gain γ = λmax((MTPM)−1/2MTΠPΠM(MTPM)−1/2) = 0.6992.

One could hope that stability conditions, obtained in Corollary 2.4, are necessary and
sufficient. We construct an example, that demonstrates, however, that the conditions
are only sufficient, i.e., asymptotic stability of reset systems does not imply existence
of P , satisfying all the conditions of Corollary 2.4.

Example 4.5. Consider the reset system (1.4) with A =

[
1.775 −2.125
2.125 −1.975

]
, A is

Hurwitz, the state x = [x1 x2]T ∈ R2 is reset by orthogonal projection Π =

[
1 0
0 0

]
,

whenever the state trajectory hits the switching plane V. The switching plane is given

by V =
{
x ∈ R2

∣∣∣x = My, y ∈ R,
}
, with M =

[
5
8

]
.

Using necessary and sufficient conditions for stability, given in [11], we can prove that
the reset system is asymptotically stable. For more details see Example 6.3 of [11].

We show that there does not exist a symmetric matrix P ∈ R2 such that:

P > 0,
ATP + PA < 0,
MT ΠPΠM −MTPM ≤ 0.

(4.6)

Without loss of generality, we normalize the set of Lyapunov functions as follows:

P̄ =

{[
1 p12

p12 p22

] ∣∣∣p22 − p2
12 > 0, p22 > 0

}
. (4.7)

Substitute A,Π,M into (4.6) we derive the following LMI system:


p22 − p2

12 > 0[
3.55 + 4.25p12 −0.2p12 + 2.125p22 − 2.125

−0.2p12 + 2.125p22 − 2.125 −4.25p12 − 3.92p22

]
< 0

−1.25p12 − p22 ≤ 0

(4.8)

In Figure 4.1 we have depicted the solutions of the system (4.8) in the p12p22- plane:

Ω̄ denotes the solutions of the first and second inequalities in (4.8). The shaded region
forms the solution set of the third inequality in (4.8). As these sets do not intersect
it follows that there does not exists P ∈ P̄ , satisfying (4.6).
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-1

1

p12

p22

1.25p12 + p22 = 0

Ω̄

0

Fig. 4.1. Solutions of (4.8) in p12p22- plane

5. Conclusions. Motivated by the stability problem of reset control systems
we have studied stability of more general state reset systems. Through a quadratic
Lyapunov function of the unswitched system we gave a geometric interpretation of
stability of the reset system. Subsequently, the geometric condition was translated
into a linear matrix inequality. The projection gain was introduced as a discrete
stability indicator. Finally we showed how to optimize the estimate of the projection
gain by an appropriate modification of the linear matrix inequality.
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