
Evaluation of Scheduling Heuristics for Jitter
Reduction of Real-Time Streaming Applications on

Multi-core General Purpose Hardware
M. Westmijze, M.J.G. Bekooij and G.J.M. Smit

University of Twente, Department of EEMCS
P.O. Box 217, 7500 AE Enschede, The Netherlands
{m.westmijze, m.j.g.bekooij, g.j.m.smit}@utwente.nl

M. Schrijver
Philips Healthcare

Veenpluis 6, 5684 PC Best, The Netherlands
marc.schrijver@philips.com

Abstract—The real-time system research community has paid
a lot of attention to the design of safety critical hard real-time sys-
tems for which the use of non-standard hardware and operating
systems can be justified. However, stream processing applications
like medical imaging systems are often not considered safety
critical enough to justify the use of hard real-time techniques
that would increase the cost of these systems significantly. Instead
commercial off the shelf (COTS) hardware and OS are used, and
techniques at the application level are employed to reduce the
variation in the end-to-end latency of these imaging processing
systems.

In this paper, we study the effectiveness of a number of
scheduling heuristics that are intended to reduce the latency and
the jitter of stream processing applications that are executed on
COTS multiprocessor systems. The proposed scheduling heuristics
take the execution times of tasks into account as well as
dependencies between the tasks, the data structures accessed by
the tasks, and the memory hierarchy.

Experiments were carried out on a quad core symmetric
multiprocessing (SMP) Intel processor. These experiments show
that the proposed heuristics can reduce the end-to-end latency
with almost 60%, and reduce the variation in the latency with
more than 90% when compared with a naive scheduling heuristic
that does not consider execution times, dependencies and the
memory hierarchy.

I. INTRODUCTION

Nowadays, COTS hardware is often used for real-time (med-
ical) image processing applications, of which an interventional
X-ray application is an illustrative example.

With an interventional X-ray system, a physician makes
use of images captured with an X-ray imaging device to
perform delicate medical procedures inside a patient, where
the only visual feedback is provided by the images captured
by the X-ray device. It is therefore desirable that the latency
between the capturing of an image and displaying it is low
enough (< 200 ms) to provide sufficient eye-hand coordination.
Furthermore, the variation of the latency, which is called jitter,
must be sufficiently low such that the physician experiences a
constant delay which improves the eye-hand coordination and
prevents fatigue.

Due to low radiation limits advanced image processing is
necessary to obtain sufficient image quality. In an interventional
X-ray application, only a fraction of the latency budget is
available for image processing due to the latency that the

detector and display introduce. Therefore, the image processing
used to be performed on architectures like application specific
integrated circuits (ASICs), digital signal processors (DSPs)
and field-programmable gate arrays (FPGAs). However, high
performance SMP COTS hardware has become performance-wise
so powerful and cost-effective, that the trend is to perform
the processing on this type of hardware despite the increased
temporal uncertainty that this hardware may introduce. The use
of COTS hardware seems to be acceptable as long as temporal
constraints are rarely violated. Therefore, it is a valid approach
to use heuristics for these systems during the design process,
after which the systems performance is validated by means of
extensive testing.

In this paper we present a number of scheduling heuristics
that are intended to reduce the latency as well as the jitter
of streaming applications, such as the interventional X-ray
application described above. We implemented these heuristics
in a tool flow that can synthesize an application from a high
level description of an image processing chain. The tool flow
was used to evaluate the scheduling heuristics on one image
processing chain from the interventional X-ray application and
on a set of synthetically generated image processing chains.
The synthesized applications were executed on COTS hardware
with Intel Nehalem central processing units (CPUs).

This paper is structured as follows. First we discuss related
work in section II, after which we elaborate in section III
what components influence the latency and jitter. In ?? we
describe the hardware platform that we use as platform for our
application and in section IV we present how our tool flow
synthesizes a high level description of an image processing
chain into an application. The experiments are described in
section V. The results of the experimental evaluation can be
found in section VI. Finally we discuss the conclusions in
section VII.

II. RELATED WORK

In [1], Wilhelm et al. discuss the components in an embedded
system that affect the tightness of the computed worst-case
execution times bounds by means of static timing analysis. The
authors conclude that static timing analysis of systems with
shared caches is very complex and that the computed bounds



are often not tight. As our objective is to improve the typical
behavior instead of the worst-case behavior of an application,
we do not need to use formal timing analysis to derive the
worst case behavior. Instead we measure the execution times
and employ techniques to use the architecture in a way that
reduces jitter.

Extensive measurements on a similar multiprocessor system
as we consider in this paper, are presented by Molka et al in [2].
However, only results are presented for a synthetic benchmark
set, while we study the behavior of complete application, which
may provide other insights than a set of synthetic benchmarks.

An approach for improving the temporal behavior of a
multiprocessor system with a shared cache by means of locking
of cache lines, is presented by Suhendra et al. in [3]. For
the machine we consider in this paper, this approach is not
applicable because cache line locking is not supported.

In [4], [5], Anderson et al. and Kim et al. analyze the
influence of thread scheduling on the behavior of the cache.
However, the focus of the papers is mainly on the interaction
of different applications, while we focus on the case that only
one application is executed on the system.

Papers [6], [7], [8] by Chakraborty et al, Schlieker et al.
and Yan et al. introduce analysis methods to take the effect
of caches and shared resources into account. However, these
papers consider either the case of a single processor system
without a shared cache, or consider systems in which only the
instruction cache is shared.

In [9], Albers et al. use another model for the mapping and
partitioning of computation to threads, but the scheduling order
of the application is not taken into account. Furthermore, the
focus is on the reduction of latency and not primarily on the
reduction of jitter.

III. SOURCES OF JITTER

This section discusses the hardware and software components
and features that typically introduce a significant variation in
the execution times of the tasks. The variation in execution
times result in a variation in the moment that the output results
of the application are produced. This variation in production
moment is called the jitter. In the following paragraphs we
first discuss the hardware components and features that have
typically a large effect on the jitter and then the influence of
the software.

A. Hardware

The systems that we consider in this paper are systems with
similar characteristics as the Intel Nehalem microarchitecture.
We consider the following hardware features: functional units,
caches, buses, simultaneous multi-threading (SMT), dynamic
frequency scaling and dynamic overclocking.

1) Functional units: When an instruction is executed it
is placed in one of the execution engines, that can perform
the specific instruction. These execution engines are deeply
pipelined and because of the out-of-order execution of the
instructions the latency between the start of an instruction and
the end of it depends on several factors like the current status of
the pipeline, data dependencies, etc. It is therefore not always

feasible [1] to give accurate upper bounds on the execution
times of each individual instruction. However, we are only
interested in the execution of large numbers of instructions and
therefore assume that the effects of the pipeline averages out.

2) Caches: Due to the difference of the clock frequency
between the processor and main memory a cache hierarchy is
used. The cache hierarchy of the Nehalem microarchitecture
consists of three levels. The last level of the cache – the level
directly connected to the main memory – is shared between all
the cores on the die [10]. When the accessed data by a core is
only available locally (e.g. in a register, the first or second level
of the cache) the latency of the access is not influenced by
other cores and only depends on where it is available locally.
The access to the data that is stored in the third level of the
cache could be influenced by other cores if the total bandwidth
to the third level of the cache is saturated [2], but due to the
large size of the second level of the cache and the locality of
reference of most streaming applications this is usually not the
case. We therefore assume that accessing data that is available
in the local cache hierarchy introduces neglectable jitter. When
this is not the case some jitter will be introduced, because data
has be loaded from main memory over a shared connected or
has to be retrieved from another part of the cache hierarchy.

Reducing the communication between the cache and main
memory will therefore mitigate some of the temporal effects
of the cache. Allocating the data such that at each moment the
actively used data fits in the last level of the cache reduces said
communication. We therefore want to use data level parallelism
as much as possible, because with functional level parallelism
more data is used at the same time, which may result in cache
trashing when the amount of accessed data exceeds the capacity
of the cache.

Another technique for reducing the communication between
the cache and main memory is preventing cache evictions of
old data. Such cache evictions can be prevented by reusing the
memory location where old data (i.e. data that was used, but is
never accessed again) resides for new data. The computation
has to be scheduled in an order that would reuse the memory
locations of old data before it is evicted from the cache.

Some jitter could also be introduced when data has to be
retrieved from non local parts of the cache hierarchy (e.g. from
the level 2 cache from another core). A reduction of non-local
cache access would therefore reduce the amount of jitter that
is introduced by this kind of access. This can be achieved by
scheduling computation on cores where the required data was
produced.

3) Buses: The use of a single bus has been replaced by a
interconnect called QuickPath [11] in the Nehalem architecture.
Where in a typical system that employs a single bus all cores
can influence each other, the QuickPath interconnect limits the
influence to cores that share a QuickPath connection. In a multi-
die system the communication between the level 3 caches of the
cache hierarchy is routed through the QuickPath interconnect.
However, a side effect of the cache aware scheduling that
reduces the on die communication also reduces the amount
of data that is moved through the QuickPath interconnect, e.g.
cache coherency traffic, and therefore we assume that effects



introduced by the QuickPath interconnect can be neglected.
4) Simultaneous multi threading: With SMT [12], [13],

multiple threads use the same execution engines. The use
of SMT can have a significant influence on the execution time
of a task. In our experiments we evaluate the system with SMT
enabled and disabled in order to compare the effects of this
hardware feature.

5) Dynamic Frequency Scaling and Dynamic Overclocking:
The clock frequency of a core in the Nehalem architecture
can be scaled dynamically in order to reduce energy usage.
Running a core on different clock frequencies introduces jitter,
this technique is therefore disabled.

An additional technique (TurboBoost [14], [2]) can dynam-
ically overclock the clock frequency of a core when certain
conditions and thresholds (e.g. temperature) are not violated.
This technique also introduces jitter and it is therefore disabled.

B. Software
An operating system (OS) can have a significant influence on

the jitter of an application because it is responsible for thread
scheduling. Because the operating system decides where and
when to execute threads, it is important to map the data in such a
way that it is likely that a thread is executed on a core where the
data is already available. We want to achieve this by replacing
the OS scheduler by statically mapping the computations to a
limited number of threads so that the operating system can
schedule these threads efficiently and that there is only minimal
data movement between the caches.

IV. TOOL FLOW

In this section we describe our tool flow that we use to
synthesize an application from a high level description of the
image processing chain. The tool flow and associated high
level description language are designed in such a way that
they can vary the usage of the two components that influence
the jitter the most, namely, the cache hierarchy and the OS.
Our tool flow takes a high level description that only describes
functional level parallelism and will then perform the following
steps:

a) Introduction of data parallelism
b) Scheduling computational steps to threads
c) Allocate memory
d) Introduce synchronization
e) Generate code
In the following paragraphs we will describe the steps in

our tool flow in more detail. The tool flow takes as input a
high level description in which the functional behavior (e.g.
code, functions, etc) is encapsulated in a box and connect boxes
together to describe the structure of the image processing chain,
we will refer to this description as the structural description.
Hence, the structural description exposes the functional level
parallelism. Each box has a number of associated input and
output ports that can be used to connect boxes together. A
connection between an output and input port is associated with
a memory buffer in order to store the data between the execution
of the connected boxes. The applications that we describe with
our high level description are streaming applications. In our

description it means that the source boxes (i.e. boxes without
inputs) are triggered periodically or are triggered at some
external event (i.e. arrival of input data). Each execution of
an (sub) box takes places in an iteration. Depending on the
scheduling and mapping of the application it is possible that
(sub) boxes from multiple iterations are executing at the same
time. In this context we also define the current iteration as
the oldest iterations that still has (sub) boxes to execute. See
?? 1(a) for a simple example where the image processing chain
first applies a gain filter and secondly a convolution on the
image that is produced by the source. Each edge that connects
two boxes together represents a memory buffer.

A. Introduction of data parallelism

The structural description, that only contains functional
level parallelism, is transformed into another description,
which we call the instantiated description. This description
also incorporates data level parallelisms, where the tool flow
has instantiated data parallelism by splitting the boxes into
sub boxes. Under most circumstances, which we do not
elaborate, it is not necessary to introduce more data parallelism
than processors available in the hardware platform. Our tool
therefore splits each box into as many sub boxes as there are
processors. The box is annotated with additional information
that is used by the compiler to split the box into sub boxes.

Each sub box performs a part of the computation from the
original box where it was instantiated from; the tool annotates
each sub box with the part of the computation that it has to
perform. In our structural description we have also annotated
each box with additional information that can be used to derive
fine grained dependencies between sub boxes. Without this
information we would have to instantiate dependencies between
all sub boxes of subsequent boxes and this would limit the
freedom during the scheduling step and thereby would introduce
unnecessary synchronization.

See ?? 1(b) for an example of how the tool flow transforms
the structural description from ?? 1(a) and derives the fine
grained dependencies. In this example, there is a gain filter,
where each pixel only depends on one pixel and therefore needs
the minimal amount of dependencies. This is in contrast to the
convolution filter, where each pixels depends on a region of
pixels, and each sub box of the convolution therefore depends
on multiple sub boxes of the gain filter. Lastly, we can see
that our tool could not split the output box into multiple sub
boxes because the implementation of that box could not be
parallelized.

B. Scheduling computational steps to threads

At this step, we have a description of our image processing
chain with data and functional level parallelism, and fine
grained dependencies. We can now schedule and order the sub
boxes of this description to threads. In our tool we implemented
several scheduling heuristics so that we can evaluate the
influence of each scheduling heuristic on latency and jitter.

1) One-to-One: The One-to-One is the simplest scheduling
heuristics where each sub box is given its own thread. We will
refer to this mapping method as the simple method. In this



source gain conv output

(a) Structural description

o0

s0 g0 c0

s1 g1 c1

s2 g2 c2

s3 g3 c3

(b) Instantiated description

Fig. 1. Example description

method it is possible that some sub boxes of the subsequent
iteration execute before the end of a complete iteration, because
there is no synchronization between iteration.

2) One-to-One without pipelining: Pipelining can signif-
icantly increase the amount of sub boxes that can execute
and because the OS does not have a notion of which sub
boxes belong to the current iteration it may execute sub
boxes of subsequent iterations and thereby increase the latency.
Pipelining can be prevented by adding a barrier between the
last sub box(es) of the current iteration and the first sub box(es)
of the next iteration. This method will be called the barrier
method.

3) Many-to-One: The Many-to-One scheduling technique
schedules and orders all sub boxes to a configurable amount
of threads, we call it the fixed method. For each processor that
is available for the execution of the application one thread is
instantiated. Each of these threads can be fixed to a specific core
or to a subset of cores that share a cache level in order to prevent
the OS from moving the thread and thereby trashing the cache.
The scheduling and ordering is performed by first constructing
a homogeneous synchronous dataflow graph (HSDFG) [15] that
models the temporal behavior of the application. For each sub
box in the application an actor will be instantiated in the HSDFG.
The dependencies are translated into the edges of the HSDFG.
This HSDFG graph is used to construct a static schedule for
each thread.

The advantage of a static schedule is that the application
controls the order in which the boxes are executed instead of
the scheduler of the operating system. A disadvantage is that
this technique does not take into account the state of the cache,
which might result in a lot of cache trashing.

4) Many-to-One cache aware: This scheduling technique
works almost in the same way as the fixed method, but it tries
to schedule boxes to a thread taking the state of the cache into
account in order to reduce cache misses. During the scheduling
of sub boxes this technique gives priority to sub boxes of which
the input data is most likely to be in the cache. We will refer
to this mapping method as the predictable method.

5) Many-to-One cache aware reduced: Furthermore, a
heuristic can be used to reduce the amount of active data (i.e.
data that will be used in this or subsequent iteration) throughout
an iteration that was generated using the predictable method. A
static order schedule (SOS) is constructed of the structural graph
where actors of which execution results in the least amount of
active data to be stored in memory are scheduled first. Then a
back-tracking algorithm is used to check whether some choices
of actor ordering would have resulted in a schedule with a
smaller amount of active data during the execution of one
iteration. Because the exponential complexity of this back-
tracking algorithm, it is stopped when a specific amount of
tokens is reached or when it takes too long to explore the
complete state space to find the optimal solution. This method
will be referred to as the reduced method.

C. Allocate memory

When the thread mapping has completed, the memory
allocation for the application can be computed. We have
examined two memory allocation methods.

1) Simple: The simple memory allocation scheme allocates
a separate memory range for each memory buffer.

2) Reuse: The reuse memory allocation schemes tries to
reuse memory buffers from actors that have already finished
their execution (within an iteration). First, an interference graph
[16] is derived from the thread schedules. Secondly, a first fit
heuristic is used to allocate memory for all memory buffers.

D. Introduce synchronization

After the third step all sub boxes are mapped to threads and
the required memory has been allocated. The next step is to
instantiate the synchronization between the execution of the
instantiated boxes. The box level dependencies are instantiated
using signals. After a thread has executed a box it will send
signals for all box level dependencies of which it is the source.
Vice versa before a thread can execute a box it has to wait for
all box level dependencies of which it is the destination.

E. Generate code

The final step of the application synthesis is the code
generation. Four important pieces of code will be generated
that are used to construct the complete application. Firstly, the
initialization code will be generated. During the initialization
memory will be allocated, synchronization primitives will be
created and configured and other data structures that configure
the application will be configured. Secondly, the thread code
will be generated. In each thread the call to the sub boxes and
synchronization statements are inserted. Thirdly, the code is
generated that is responsible for starting the execution of all
threads. Lastly, the the cleanup code is generated that stops
the threads, deallocates memory and cleans up all the used
resources.

V. EXPERIMENTS

In this section, we present the experiments that we have
run for the evaluation of the described techniques. Firstly, we
describe the platform that we executed the experiments on in



Fig. 2. Topology for the X-ray image processing chain

section V-A. Secondly, the applications that have been used as
input for the experiments are elaborated in section V-B. Thirdly,
we define the experiments that we have run in section V-C.

A. Experimental setup

The experiments were performed on a quad-core Core i7
860 from Intel. The four cores share the third level of the cache
that has a size of 8 MiB. A minimal Ubuntu installation [17]
with the 2.6.32 Linux kernel was used as operating system,
the system was running without a graphical user interface
and unnecessary services were shutdown. Furthermore, the
processors were run at 2.8 GHz with TurboBoost disabled.

In each experiment we measured the end-to-end latency of
each iteration by collecting time stamps before and after its
execution.

B. Experimental input

Figure 2 shows the topology of the structural description
of an image processing chain from the interventional X-ray
application. Due to the limited amount of image processing
chains in the real-life interventional X-ray system we chose
to generate additional image processing chains. A tool was
created that could generate random graphs that have similar
characteristics as the actual image processing chains in the
interventional X-ray system. Each graph was created with
roughly 100 boxes with a topology that resembles the topology
of the actual image processing chain. Furthermore, the number
of input and output boxes was chosen to match with some of the
interventional X-ray scenarios. After the graphs were generated
each box was associated with a random image processing
algorithm such as: averaging, addition and convolution. In total
250 image processing chains were generated.

C. Experiments

In each experiment the application was run for 100.000
iterations.

1) Execution on four physical cores: In this experiment we
applied all the scheduling techniques and where applicable both
memory allocation techniques to all the input applications. For
the fixed, predictable and reduced techniques we instantiated
four threads so that each of those threads could be mapped to
one physical core (i.e. the affinity of the thread was reduced
to one physical core). Hence, our application did not use SMT
but we did not disable SMT altogether, so that the OS could
still perform computation on the empty virtual core.

2) Execution on eight physical cores: For this experiment we
only applied the reduced technique with both memory allocation
techniques on one of the synthetic image processing chains.
Furthermore we applied the techniques thrice. We instantiated
four, eight and sixteen threads respectively in each test. Each
thread was mapped onto a single logical core.

VI. RESULTS

A. Execution on four physical cores

In table I and table II detailed results can be found from the
real image processing chain and one of the synthetic chains,
respectively.

First of all, the simple mapping technique does have a
significant variation in latency. This is due to pipelining, as
explained in section IV-B2. Pipelining is prevented in the
barrier technique and we can see that this reduces the jitter
significantly.

The mapping techniques fixed, predictable and reduce result
in almost the same jitter regardless of the memory allocation
method.

When these heuristics are used in conjunction with the
memory reuse technique, a reduction in end-to-end latency
is observed. The jitter, however, does not seem to reduce
significantly when the reuse heuristic is applied.

When we compare these techniques when the memory reuse
heuristic is used we can see a significant difference between
the fixed scheduling heuristic and the predictable and reduced
scheduling heuristic. The memory reduction algorithm does
not immediately seem to impact the average execution length
or jitter, but this is due to the fact that in both cases all the
accessed memory will fit in the cache. However, the reduction
in memory usage might have additional benefits such as a high
hit rate on the second level of the cache and it could be more
robust against the cache thrashing that might be the result of
other applications running on the same system. These possible
benefits have not been explored in this paper.

We also see a difference in the effectiveness of the techniques
between the actual image processing chain and the synthetic
one. On the actual image processing chain the predictable and
reduced techniques do not decrease the latency as much as we
observe in the synthetic image processing chains. Although we
have not shown the box plots of all the synthetic chains, this
observations holds for the complete set of synthetics chains.



Thread Memory Memory

scheduling allocation size (KiB) x̄ (µs) σ (µs)
1855 µs 5516 µs

simple naive 30635 49494 3400

barrier naive 30635 4940 37

fixed naive 30635 5439 29

predictable naive 30635 4561 24

reduced naive 30635 4117 30

fixed reuse 18250 3527 14

predictable reuse 14074 2823 18

reduced reuse 7486 1871 8

TABLE I
RESULTS FOR X-RAY IMAGE PROCESSING CHAIN

Thread Memory Memory

scheduling allocation size (KiB) x̄ (µs) σ (µs)
4288 µs 12906 µs

simple naive 75456 271618 23726

barrier naive 75456 12118 207

fixed naive 75456 11088 50

predictable naive 75456 10965 62

reduced naive 75456 10831 57

fixed reuse 11520 5271 11

predictable reuse 9792 4622 38

reduced reuse 5760 4309 25

TABLE II
RESULTS FOR SYNTHETIC IMAGE PROCESSING CHAIN

In fig. 3 we have stacked a compact representation of the
box plots of all the executions of the synthetic chains when
they were scheduled with the reduced technique and the reuse
memory allocation technique was applied. For clarity we have
sorted the graphs on the median latency. In the figure we see
that the typically observed latency is roughly the same for all
the graphs and more importantly that the maximum observed
latency is relative to the median.

B. Execution on eight physical cores

In this experiment SMT was evaluated on the synthetic image
processing chains. In table III we see that using the logical
cores does increase the latency, most likely due to additional
synchronization. However, there is no significant change in
the jitter. We expected that there would be an increase in
jitter because the execution of the threads on logical cores
are highly dependent on each other, but we speculate that
since both threads execute similar code they both receive a
fair amount of time on the execution engines.

VII. CONCLUSIONS

In this paper we have presented eight scheduling heuristics
for the scheduling of static streaming applications on a general
purpose multiprocessor system. The scheduling heuristics are
intended to reduce the variation in the execution times of the
tasks and thereby the jitter of an application that is described as

3695 4169 4643 5117 5591 6065
latency (µs)

ap
pl

ic
at

io
ns

Fig. 3. Detailed results for run with reduce reuse on 4 cores

a high level streaming application. Furthermore, it is desirable
that these heuristics reduced the end-to-end latency of the
application. The scheduling heuristics have been evaluated
using a Quad core SMP Intel machine.

From the experimentally obtained results we observe that
if the scheduler in the OS is given the maximum scheduling
freedom, the variation of the end-to-end latency, i.e. the jitter,
is typically large. If the freedom of the OS scheduler is reduced



Threads Memory x̄ (µs) σ (µs)
4825 µs 8350 µs

4 Interference 4929 38

8 Interference 5452 37

16 Interference 7942 76

TABLE III
HYPER THREADING ENABLED ON 4 CORES

by using at compile time computed static-order schedules, the
jitter is reduced drastically. Our experimental results indicate
that the jitter is reduced by roughly 90% by making use of the
fixed, predictable and reduced techniques. Another interesting
result is that once the influence of the OS scheduler has been
removed the jitter is almost equal for all the techniques. We
think this a surprising result, we expected more influence of
the cache on the jitter.

Furthermore, from the experimentally obtained results we
observe that the average latency is mostly dependent on the
total data set that is alive at any point in time during the
execution of the application. The reuse memory allocation
technique decreases the size of this data set because it takes
care that memory buffers are reused within one iteration. In
the case that the data set fits in the cache, most of the memory
accesses will result in cache hits so that the end-to-end latency
as well as the jitter is reduced significantly.

In our experiments, we found that using cache aware
scheduling techniques that reduce the memory footprint can
reduce the average latency by roughly 60% compared to the
case that the memory buffers does not fit into the cache.

The fixed, predictable and reduce scheduling heuristics
further improve the locality of the memory accesses, such
that more – ideally all – accessed data that fits in the cache
and that more data is closer to the core. As expected, this
results in a further decrease of the end-to-end latency while
the jitter remains roughly the same.

Given these observations we conclude that a reduction of
the scheduling freedom of the operating system scheduler by
applying scheduling heuristics, can reduce the latency and
jitter of stream processing applications significantly, and can
therefore be a valuable technique for the design of e.g. medical
image processing applications that are executed on general
purpose multiprocessor systems.

REFERENCES

[1] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and
C. Ferdinand, “Memory hierarchies, pipelines, and buses for future
architectures in time-critical embedded systems,” Trans. Comp.-Aided
Des. Integ. Cir. Sys., vol. 28, pp. 966–978, July 2009. [Online].
Available: http://portal.acm.org/citation.cfm?id=1669804.1669808

[2] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller, “Memory
performance and cache coherency effects on an Intel Nehalem
multiprocessor system,” in Proceedings of the 2009 18th International
Conference on Parallel Architectures and Compilation Techniques.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 261–
270. [Online]. Available: http://portal.acm.org/citation.cfm?id=1636712.
1637764

[3] V. Suhendra and T. Mitra, “Exploring locking & partitioning for
predictable shared caches on multi-cores,” in Proceedings of the
45th annual Design Automation Conference, ser. DAC ’08. New
York, NY, USA: ACM, 2008, pp. 300–303. [Online]. Available:
http://doi.acm.org/10.1145/1391469.1391545

[4] J. H. Anderson, J. M. Calandrino, and U. C. Devi, “Real-time scheduling
on multicore platforms,” pp. 179–190, 2006. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1128017.1128438

[5] S. Kim, D. Chandra, and Y. Solihin, “Fair cache sharing and partitioning
in a chip multiprocessor architecture,” pp. 111–122, 2004. [Online].
Available: http://dx.doi.org/10.1109/PACT.2004.15

[6] S. Chakraborty, T. Mitra, A. Roychoudhury, and L. Thiele,
“Cache-aware timing analysis of streaming applications,” Real-Time
Syst., vol. 41, pp. 52–85, January 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1485069.1485080

[7] S. Schliecker, M. Negrean, and R. Ernst, “Bounding the shared resource
load for the performance analysis of multiprocessor systems,” Proc. of
Design, Automation, and Test in Europe (DATE), March 2010.

[8] J. Yan and W. Zhang, “WCET analysis for multi-core processors with
shared l2 instruction caches,” Proceedings of the 2008 IEEE Real-Time
and Embedded Technology and Applications Symposium, pp. 80–89,
2008. [Online]. Available: http://portal.acm.org/citation.cfm?id=1440456.
1440579

[9] R. Albers, E. Suijs, and P. H. N. de With, “Optimization model for
memory bandwidth usage in X-ray image enhancement,” in SPIE
Electronic Imaging, 2008, pp. 6811–04.

[10] (2011) Smart cache. [Online]. Available: http://www.intel.com
[11] (2011, Apr.) Intel quickpath architecture. [Online]. Available: http:

//www.intel.com/technology/quickpath/whitepaper.pdf
[12] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multithread-

ing: maximizing on-chip parallelism,” in ISCA ’95: Proceedings of the
22nd annual international symposium on Computer architecture. New
York, NY, USA: ACM, 1995, pp. 392–403.

[13] D. Koufaty and D. Marr, “Hyperthreading technology in the netburst
microarchitecture,” Micro, IEEE, vol. 23, no. 2, pp. 56 – 65, march-april
2003.

[14] (2011, April) Turbo boost. [Online]. Available: http://www.intel.com
[15] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous

data flow programs for digital signal processing,” IEEE Trans.
Comput., vol. 36, pp. 24–35, January 1987. [Online]. Available:
http://dx.doi.org/10.1109/TC.1987.5009446

[16] G. J. Chaitin, “Register allocation & spilling via graph coloring,”
SIGPLAN Not., vol. 17, pp. 98–101, June 1982. [Online]. Available:
http://doi.acm.org/10.1145/872726.806984

[17] (2011, July) Ubuntu. [Online]. Available: http://www.ubuntu.com


