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Abstract—This paper is about fitting a model for the spreading
of a computer virus to measured data, contributing not only
the fitted model, but equally important, an account of the
process of getting there. Over the last years, there has been
an increased interest in epidemic models to study the speed of
virus spread. But parameterising such models is hard, because
due to the unexpected nature of real outbreaks, there is not
much solid measurement data available, and the data may often
have imperfections. We propose a mean-field model for computer
virus spread, and use parameter fitting techniques to set the
model’s parameter values based on measured data. We discuss a
number of steps that had to be taken to make the fitting work,
including preprocessing and interpreting the measurement data,
and restructuring the model based on the available data. We
show that the resulting parameterised model closely mimics real
system behaviour, with a relative squared error of 0.7%.

I. INTRODUCTION

Over the last years, there has been an increased interest in
epidemic models to study the speed of virus spread (worms) in
computer networks [11], [9], [15], [26], [19], [20]. However,
although these models are often mathematically elegant, they
mostly suffer from the lack of realistic parameters to study
real system behavior. This is particular so for internet-scale
systems, for which a structured measurement set-up is very
difficult to achieve, if not impossible at all. Moreover, when
studying attacks launched via the internet, there normally is
no adequate measurement infrastructure at all, hence, in such
cases, one has to work with whatever has been measured
(observed) from the attack. The challenges encountered (as
well as some solutions) along that trajectory are described in
this paper. Hence, the contribution of the paper not only lies
in the product (a parametrised model) but also in the process
of parametrisation.

To make this more concrete, this paper aims to obtain a
better understanding of the spreading phase of a computer
worm, and does so by combining a mean-field model of worm
behaviour with parameter fitting techniques, and illustrates
this on the case of Code-Red [17]. We explain how to
build the mean-field model of the worm [12], and how to
estimate the corresponding parameters, so as to find the best fit
between the available data and the model prediction. We also
present a number of intricate technical issues, ranging from
the additional (preprocessing) work to be done on the available
measurement data, the interpretation of the data, for instance in
relation to performed measurements, as well as a restructuring
of the model (based on data unavailability), that has to be
performed before applying the parameter fitting algorithms.
As proof of the pudding, we show that our approach does
provide a set of parameters that, when used in the proposed

models, allows us to closely mimic real system behaviour, with
a relative squared error of, at most, 0.7%. The presented model
and parametric study is, as far as we know, the most detailed
study of the spreading phase of Code-Red.

The presented model has certain properties that very well
fit the application purpose. First, it does assume a very large
number of similar interacting objects cf., [5], and, secondly,
it does not assume anything about the underlying network
topology. Indeed, we think these two properties are valid
at internet-scale, in which potentially millions of computers
interact with each other in a fully-connected overlay network
(at TCP/IP-level). As third important property we mention that
the number of parameters is very small; as we will see, even
with such a small number of parameters, the fitting is already
quite challenging.

It is important to note that we do not claim that our
proposed model is the best model (or better than other models),
however, we do claim that the model has certain properties that
very well fit the application purpose.

To summarise, the aim and contribution of the paper is
threefold:

• it shows how a simple behavioural model of a virus
can be used as basis for modelling virus spread;

• it illustrates that such a model can be parameterised
well, based on measurements performed during the
outbreak, using standard parameter estimation tech-
niques, provided the measurements are very carefully
dealt with;

• maybe most importantly, it discusses the challenges
encountered when performing such a detailed study,
in which the measurements show all sorts of artefacts
that are easily overlooked, but do have a substantial
impact on the fitting.

Finally, one could remark that the Code-Red outbreak is
more than ten years ago, hence, that our study is too late to
be of value. We do not think that this is the case. Indeed, one
could question what, at this point in time, the value is of a
good parameter set for a particular Code Red model. However,
the learnings from the process of obtaining these parameters
under circumstances that are typical for virus spreading, are
important, now and in the future. Also, the paper has as
implicit message that work on obtaining mathematically more
refined models is probably of little use, as long as the model
parametrisation process is as challenging as described here.

The paper is further organised as follows. In Section II the
background and history of the Code-Red worm is presented.
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The mean-field model for Code-Red is built in Section III.
The available data is described in Section IV, whereupon the
proposed mean-field model is re-assessed in Section V. Sec-
tion VI provides the results of the Code-Red case-study for the
July 2001 outbreak; the results for the August 2001 outbreak
are provided in Section VII. Related work is discussed in
Section VIII, whereas Section IX concludes the paper.

II. CODE-RED

On June 18, 2001, information about a buffer-overflow
vulnerability in Microsoft’s IIS web servers was released by
eEye [4], which was followed by a Microsoft patch eight
days later [6]. On July 12, 2001, Code-Red version 1 (further
referred to as CRv1) started to spread by exploiting this
vulnerability. There was no direct damage done by CRv1,
except for the phrase “Hacked by Chinese” added to the top
level of web pages of some hosts that happened to run web
servers. CRv1 did not spread widely due to the static seed in its
pseudo-random number generator, which caused each infected
host to scan (that is, try to infect) the same list of hosts. The
only tangible effects were visible in local networks due to the
resources consumed on infected hosts (servers); the impact on
the global resources was negligible.

Following CRv1, on July 19, 2001, at approximately 10:00,
Code-Red version 2 (further referred to as CRv2) started to
spread. It appears that unlike CRv1, CRv2 used a random
seed. Therefore, each of the infected machines tried to infect a
different list of randomly generated IP addresses at an observed
rate of, approximately, 11 probes per second. Although the
worm did not cause any direct damage (again apart from the
“Hacked by Chinese” message), CRv2 had a major impact
due to the huge number of infected hosts and probes sent. It
is considered to be the most costly malware of 2001, with a
total estimated cost of 2.75 billion USD. Moreover, since the
lists of IP addresses to infect were drawn randomly, CRv2 was
sending the probes not only to vulnerable IIS web-servers, but
to all kinds of hosts; although these could not be infected as
such, they could crash or reboot under the attack.

Both versions of Code-Red were programmed to take
identical actions when infecting a new host. First, the worm
checks the system time and date, followed by one of the
following actions:

• Spreading phase. If the date is between the 1st
and the 19th of each month, the worm generates a
random list of IP addresses and tries to infect as many
machines in this list as possible by trying to connect
to them on TCP port 80.

• Attacking phase. If the date is between the 20th
and the 28th of a month, the worm stops spread-
ing and starts a Denial-of-Service attack against
the site www.whitehouse.gov. These attacks
did overwhelm the corresponding servers with so
much useless data that they were unable to func-
tion properly [3]. Luckily, the attackers addressed
www.whitehouse.gov through a fixed IP address
and not through the hostname; the problem was solved
by moving the website to another IP address.

• Inactive phase. The worm is inactive after the 28th
of each month.

Note that the employed system clock call returns UTC
time [21], therefore, all hosts switch between these three
phases simultaneously, unless a host is malfunctioning. When
an infected machine is rebooted, it is disinfected; however,
it remains vulnerable. The only way to protect a machine is
applying a patch.

CRv2 was able to cause major damage during the 14 hours
it was spreading; at midnight of July 20 it stopped spreading, as
it was programmed to. On August 1, 2001, the worm started to
spread again, and by midnight approximately 275 000 unique
hosts were infected (according to the CAIDA data set; see
details in Section IV). The difference between the first and the
second outbreak of CRv2 might be due to the fact that some
machines were patched before August 1, which reduces the
probability of finding vulnerable hosts.

III. A FIRST MODEL OF CRV2 SPREADING

In the following we propose a model for the spreading
phase of CRv2, which takes place on infected hosts between
the 1st and the 19th of each month. This model is based on
the description of the worm behaviour given in the previous
section.

Let us first address a model that reflects the behaviour of
a single host. From the description of CRv2 we infer that
there are three modes a node (or host) can be in while the
worm spreads: Vulnerable, Infected, and Patched. This results
in a 3-state model with state space Sl = {s1, s2, s3}, with
|Sl| = K = 3 states. The states are labelled as Vulnerable,
Infected, and Patched, as indicated in Figure 1. The transition
rates are as follows:

• A Vulnerable machine becomes Infected with rate k∗1 ,
which increases if the number of infected hosts grows.

• An Infected machine is rebooted and returns back to
the Vulnerable state with constant rate k2.

• The patch might be installed on a Vulnerable or
Infected machine, which happens with rates k∗4 and k∗3 ,
respectively. These rates depend on the awareness of
operators on the worm existence. It is to be expected
that as the number of infected machine grows, the
awareness grows with it, so these rates should increase
too.

• A Patched machine can not be infected and stays in
that state for the remaining time.
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*
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Figure 1. The model of CRv2 propagation for a single host.
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Given a network of N nodes (where N is assumed to be
large, which is a reasonable assumption in this context), we
can model the overall average behaviour via a so-called mean-
field model. It has the same underlying state space structure as
the individual host model, as given in Figure 1, however, each
state now should be interpreted as a vector m = (m1,m2,m3),
where m1(t) denotes the fraction of Vulnerable machines at
time t, and m2(t) and m3(t) correspond to the fraction of
Infected and Patched machines at time t, respectively. That is,
a state is given as a triple of non-negative real numbers in
[0, 1], together summing up to 1.

After defining the global model the transition rates need to
be specified. The rates k∗1 , k∗3 , k∗4 depend on the number of
infected hosts and can be expressed as follows:

k∗1(t) = k1 ·m2(t), k∗3(t) = k3 ·m2(t), k∗4(t) = k4 ·m2(t),

where k1 is the infection rate of one machine; k3 and k4
are the rates of patching for an infected or vulnerable host,
respectively. Note that the representation of the infection rate
takes into account the fraction m2(t) of infected computers,
which each spread the virus with identical constant rate k1.
The patching rates are difficult to estimate, because human
behaviour plays an important role in these. At this point, we
assume that the rate of patching is directly proportional to
the number of infected machines, as human awareness of the
problem presumably is also proportional to this number.

Now that we have defined the rates, we can apply the
well-known mean-field theorem, cf. [13], to derive a system
of ordinary differential equations (ODEs) that describes the
transient behaviour of the model, as follows:{

ṁ1(t) = k2m2(t)− k1m2(t)m1(t)− k4m1(t)m2(t),
ṁ2(t) = k1m2(t)m1(t)− k2m2(t)− k3m2(t)m2(t),
ṁ3(t) = k4m1(t)m2(t) + k3m2(t)m2(t),

(1)
where ṁi(t) denotes the time-derivative of mi(t), and initial
condition m(0) = (m1(0),m2(0),m3(0)). Earlier require-
ments on the mean-field model state that for all t ≥ 0
and all i ∈ {1, · · · ,K}, we have mi(t) ∈ [0, 1], and for
all t ≥ 0, we have

∑
i mi(t) = 1. This is the model we

will use as starting point for the data to be fitted. Finally,
we let M = (M1,M2,M3) represent the vector of actual
numbers of nodes in each state, rather than fractions of the
total population; the difference is only a multiplicative factor:

M(t) = N ·m(t). (2)

IV. CODE-RED MEASUREMENT DATA

The measurement data used in this paper is the so-called
“CAIDA Dataset on the Code-Red Worms, July and August
2001”, cf. [22]. This is a publicly available set of files,
containing summarised information that does not identify in-
fected hosts individually, gathered during the outbreak. For the
July outbreak, the data is based on combining measurements
done with a /8 “Telescope network” at UCSD (University of
California at San Diego) until 16:30 UTC, sampled netflow
data from a router upstream of this /8 network (after 16:30
UTC), and data from two /16 networks at Lawrence Berkeley
Laboratory (LBL) [1]. For the August outbreak, only the
USCD Telescope network data has been used.
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Figure 2. The total number of unique infected (red) and inactive (blue) hosts
on July 19-20.
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Figure 3. The total number of unique infected (red) and inactive (blue) hosts
on August 1-2, 2001.

Two types of traces from this data set have been used in
this paper:

(1) The number of new unique infected hosts that are
starting to spread infection over time. Hosts are con-
sidered to be infected if they sent at least two TCP
SYN packets to port 80 on non-existent hosts, which
helps to eliminate random source denial-of-service
attacks from the Code-Red data.

(2) The number of hosts that have stopped being in-
fected (inactive) over time. A host which was pre-
viously infected is considered to be inactive after no
further unsollicited traffic has been observed from it.

Note that since the data represents only a sample of all probes
sent by infected hosts, it provides a lower bound of the number
of hosts infected (and inactive) at any given time.

Figures 2 and 3 depict the total number of unique newly
infected hosts (red) and inactive hosts (blue) on July 19–20
and August 1–2, 2001, respectively. Clearly, there are some un-
natural jumps in these cumulative curves, indicating moments
where apparently data collection was postponed for a while
and then resumed; in particular, there has been a large such
gap on July 19 between 16:51 and 17:21 [17]. The number of
infected (and inactive) hosts stops growing at midnight because
the worm was programmed to stop spreading.
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The data sets presented here, clearly show the challenges
encountered when analysing measurements that have been
made in the past (and not for the purpose of this particular
modelling study), and that might be partly incomplete due to
(non-documented) measurement problems. For instance, the
stop in growth in Figure 2 at midnight can be explained from
the fact that the worm was programmed to stop spreading
at that point in time; there is not much debate about that.
However, the reason why the rate of increase (the derivative
of the red curve in Figure 2) declines has been attributed in
the literature to various reasons, e.g., overloaded networks due
to the worm spreading itself [26], or to the un-availability of
vulnerable hosts [17]. It is impossible to find ground truth
for this now, however, another reason might lie in the fact
that according to [17] many of the infected machines were
actually office desktops, whose users were not aware that they
are running an active web server. Therefore, the slow down
might be due to the fact that more and more computers are
switched off in each time-zone when the working day is over
(starting at 16:00 UTC), hence, do not contribute anymore to
the propagation of CRv2.

It is generally assumed that the CRv2 outbreak started at
July 19, 10:00 UTC. Before that time point, infected hosts are
assumed to have been infected by the CRv1 outbreak. As can
be seen in Figure 2, the true outbreak of CRv2 starts around
14:00 UTC. Comparing Figures 2 and 3, we see that the growth
of the number of infected hosts is lower in August than it was
in July; it appears that some hosts have been patched after the
first outbreak, so that there are fewer vulnerable hosts left.

V. CRV2 SPREADING MODEL RECONSIDERATION

In Section III a model for CRv2 was proposed based on
the description of the worm. The next step is finding the
parameters of this model which provide the best fit to the
data as described in the previous section. However, we notice
that an extra step has to be taken here, in order to make
sure that the model not only reflects the behaviour of the
system (network under CRv2 attack), but also matches the
available (observable) data. This is the case for the following
two reasons.

First of all, we think that the rebooting of infected hosts
has to be reconsidered, since rebooting was not captured
(measured) in the dataset. A rebooted host either is not re-
infected and is therefore added to the set of inactive hosts,
or it gets re-infected, however, in that case it will still not be
counted since it is not a new unique infected host (it has been
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Figure 4. The rethought model for CRv2 virus propagation

seen before). Therefore, since rebooting cannot be observed
from the data, we think that the rebooting transition needs
to be eliminated from the model since there is no possibility
to fit it. Note, however, that the number of rebooting events
is significantly lower compared to actual infections, therefore,
the influence of the rebooting is relatively insignificant.

Secondly, it appears that the patched hosts have to be
split into two groups, that is, (i) hosts which became inactive
after being infected, and (ii) hosts which were never infected
before getting patched. This distinction is needed because
only the first group of hosts can be observed in the available
measurement data.

Given the above considerations, a fourth state is added to
the model. The states are now labelled as Vulnerable, Infected,
Inactive, Patched, where the Inactive state reflects patching
after being infected (as also represented in the dataset); hosts
patched before being infected now are thought to belong to the
Patched state (see Figure 4). The model again has a finite local
state space Sl = {s1, s2, s3, s4} with |Sl| = K = 4 states, and
the transition rates are as follows:

• A vulnerable machine becomes Infected with rate
k∗1(t) = k1 ·m2(t), as discussed in Section III.

• Infected machines are patched (and become Inactive)
with rate k∗5(t) = k5 ·m2(t).

• Vulnerable machines are patched with rate k∗6(t) =
k6 ·m2(t).

The expressions for the transition rates are kept the same
as in Section III. The infection rate k1 remains unchanged,
the patching rates for infected and vulnerable hosts are now
denoted as k5 and k6, respectively. Now, given a system of
N such hosts, the overall model has state variables m =
(m1,m2,m3,m4), with mi ∈ [0, 1] and

∑
i mi = 1, and its

dynamics are similar to those in Section III:
ṁ1(t) = −k1 ·m2(t) ·m1(t)− k6 ·m1(t) ·m2(t),
ṁ2(t) = k1 ·m2(t) ·m1(t)− k5 ·m2(t) ·m2(t),
ṁ3(t) = k5 ·m2(t) ·m2(t),
ṁ4(t) = k6 ·m1(t) ·m2(t),

(3)
with initial conditions m(0) = (m1(0),m2(0),m3(0),m4(0))
(using the similar vector notation as before). The actual
number of hosts in each state is again addressed by M =
(M1,M2,M3,M4). Notice that in this extended model, we
still do not address issues related to network congestion, nor to
the different time-zones from which infections might originate.
Although both these issues have been put forward as potential
explanations for certain aspects in the spreading behaviour, we
do not see how we can sensibly fit our models on the basis of
these considerations, simply because we do not have the data
available for that purpose. Instead, we make sure that we use
the data which fits the proposed model (see Sections VI and
VII).

The available measurement data (as shown in Figures 2
and 3) shows the total number of infected and patched hosts,
neither of which corresponds directly to state s2 of the model.
To obtain data corresponding to s2 of the overall model, i.e.,
the number of hosts still infected at a given time, the number
of inactive hosts has to be subtracted from the number of
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Figure 5. The total number of hosts, still infected at time t (orange); and
inactive hosts (blue) on July 19-20, 2001.
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Figure 6. The total number of hosts, still infected at time t (orange); and
inactive hosts (blue) on August 1, 2001.

infected hosts. This results in Figures 5 and 6, which depict
this modified view on the data, for July and August 2001,
respectively. This data corresponds directly to the states of the
extended model: (i) the number of still infected hosts (orange
solid line) is reflected by m2(t) (and state s2), (ii) the number
of inactivated hosts (blue solid line) corresponds to m3(t) (and
state s3).

A final point of notice concerns the estimation of the initial
conditions m(0). There is no clear evidence to set these four
values a priori correctly. We see three possible ways to deal
with this:

1) We obtain, as good as possible, information about
the initial state from the measurements or the mea-
surement set-up. Note that this will be very difficult,
as the measurement data we have, has not been
specifically set-up for this purpose.

2) We use any circumstantial evidence from the litera-
ture describing the Code-Red outbreaks to come up
with good estimates.

3) We add the initial conditions as extra parameters to
be fitted.

In what follows, we will make use of each of the above
three approaches, thus also showing their advantages and
disadvantages. Now, with this new view on the model, the data
and the initial conditions, the fitting procedure can be started.

VI. CRV2 OUTBREAK IN JULY 2011

In this section we present the best fitting models for the
outbreaks of CRv2 in July 2001.

In general terms, there exists a number of well-known
parameter estimation techniques, such as, least-squared error
[2], maximum likelihood [18], generalised maximum spacing
estimates [8], generalized method of moments [10], etc. These
methods have been used in a wide variety of application areas,
e.g., [16], [25], [14], etc. In this paper, we minimize the relative
squared error, defined as

Erel =
∑R

r=1 ||O(tr)−m(tr)||2∑R
r=1 ||O(tr)−O||2

, (4)

where O is the actual data, O its average, and m the data
from the mean-field model to be fitted; this measure has
the advantage of not depending on the quantities’ order of
magnitude. In our case, minimizing Erel can be shown to be
equivalent to the least squared error and the maximum likeli-
hood methods. We use the Wolfram Mathematica optimisation
function NMinimize [24]; this function attempts to find a
global minimum subject to given constraints. Accuracy and
the number of iterations can be adapted to obtain a good
compromise between precision and speed.

As discussed in Section V the measurement data provides
information on: (i) the number of infected hosts over time,
which corresponds to M2(t) in our model, and (ii) the number
of inactive hosts, which corresponds to M3(t) in our model.
Measurement data directly corresponding to M1(t) and M4(t)
is not available, so these cannot be included in the fitting pro-
cedure. We also discuss different choices of initial conditions.

While estimating the model parameters for the July 2001
outbreak, we limit ourselves to the data collected before 16:20
UTC, in order to avoid mixing data from the two different
sources, cf. Section IV, and to avoid the slowing-down phase,
which was not included in the model.

We need to set the initial conditions for the model. In [23]
it was mentioned that CRv2 infected between 1 and 2 million
out of a potential number of 6 million hosts. Therefore, to start
with, we set the initial number of vulnerable hosts M1(0) equal
to 6 million (abbreviated as “6H”), minus the number of nodes
initially infected, patched or inactive. We set the initial number
of patched nodes M4(0) = 0, whereas for the initial number of
infected and patched nodes we take the corresponding number
from the trace at 10:00 o’clock (the generally assumed starting
time of the outbreak of CRv2), that is, we set M2(0) = 4181
and M3(0) = 2528. Note that these could be ”left-overs” from
the CRv1 outbreak, hence, we cannot be sure whether this is
a good choice.

Figure 7 depicts the (fitted) model prediction of the number
of infected (orange solid line) and inactive (blue solid line)
hosts, and the measured number of infected (orange dashed
line) and inactive (blue dashed line) hosts. As one can see,
the fitted model (solid lines) does not fit the measurement
data (dashed lines) very well. It overestimates the number of
infected hosts in the beginning by 10 to 20 thousand hosts,
and underestimates it after 15:30 UTC. This is also reflected
in the relative squared error of the fitting procedure, which is
approximately 9.9%. Apparently, there is a factor we did not
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Figure 7. Fitting results for July 19, 2001 with initial condition M(0) =
(6H − 6709, 4181, 2528, 0) = (5 993 291, 4181, 2528, 0).
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Figure 8. Fitting results for July 19, 2001 with initial condition m(0) =
(6H − 3, 3, 0, 0).

take in account well enough. Most probably, the parameter
k1 (the speed of the virus propagation) is underestimated (see
results after 15:30), whereas the initial overestimation might be
due to the incorrect initial settings (the number of the initially
infected hosts is too big).

As suggested in [17], another reason for the bad fit might
lie in the fact that the activity of CRv1 and other background
unsolicited SYN probes were already registered before CRv2
started to spread. Because of this, all infections that took place
before 10:00 UTC have to be subtracted; doing so, leaves only
3 infected hosts at 10:00 UTC. In this context, note that the
initial number of hosts infected with CRv1 is known to be 3
[17]; it appears consistent that CRv2, as direct “improvement”
of CRv1 starts from the same number of initially compromised
hosts. Similarly, all the hosts which were registered as inactive
at 10:00 UTC have to be eliminated since they were not
counted due to the CRv2 activity and are not captured by
the model. Hence, we refitted the model, but now with initial
conditions M(0) = (6H − 3; 3, 0, 0). The results of the new
parameter fitting is shown in Figure 8. The fit for the number of
infected hosts is quite good: the observed data (orange dashed
line) is almost indistinguishable from the number predicted by
the model (solid orange line). Also the relative squared error
of the fitting procedure has reduced to 1.6%.

To a large extent, the remaining uncertainty is due to
the estimation of the number of inactive hosts. This can be

explained by the fact that the inactive hosts are difficult to
model because it involves modelling human behaviour: as
explained in Section III we have assumed for simplicity that
the rate of patching hosts is linearly proportional to the number
of infected hosts.

10:00 12:00 14:00 16:0011:00 13:00 15:00
0

50000

100000

150000

10:00 12:00 14:00 16:0011:00 13:00 15:00

time HUTCL

h
o
st

s

Inactive hosts. Model

Infected hosts. Model

Inactive hosts. Data

Infected hosts. Data

Figure 9. Fitting results for July 19, 2001 with initial condition M(0) =
(2H − 3, 3, 0, 0).

We now go further into the choice of the initial condi-
tions, in particular, the number of initially vulnerable hosts
(M1(0) in our model). We performed 60 fitting experi-
ments, where we took M1(0) = I − M2(0), with I ∈
{500 000, 600 000, · · · , 6 400 000}, M2(0) = 3 and M3(0) =
M4(0) = 0. We then find that when the number of initially vul-
nerable hosts is taken in the range from 500 000 to 2 000 000,
the relative error is smallest, and almost does not change (and
has value close to 0.2%). For the initial number of vulnerable
hosts larger than 2 million (denoted as “2H”), the relative
error increases. Hence, without relying on any textual source,
the (purely numerical) optimal choice for the initial number
of hosts lies in the smaller range (and is smaller than the 6H
assumed previously). Figure 9 presents the fitting results for
initial conditions M = (2H − 3, 3, 0, 0).
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Figure 10. Fitting results for July 19, 2001, including model results for
vulnerable and patched hosts for which no measured data is available. Initial
condition M(0) = (2H − 3, 3, 0, 0).

Finally, Figure 10 depicts the fitted model behaviour for
all four states, that is, including the two states for which no
data was available. The number of patched hosts is estimated
to be quite high, and the number of vulnerable hosts is getting
smaller, which can explain the slowing down of the infection.
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Figure 11. The observed data points and fitting results (dashed lines) for the
number of infected hosts at time t (orange); and inactivated hosts (blue) on
August 1, with initial conditions M(0) = (1 498 669, 1331, 0, 0) (rounded
values).

VII. CRV2 OUTBREAK IN AUGUST 2001

We now address the parameter fitting for the measurements
from August 1, 2001. As before, also for the August dataset the
initial conditions are unknown. It seems reasonable to assume
that the number of vulnerable hosts did not change dramati-
cally after the first outbreak of CRv2; only a limited number
of hosts was patched during the attacking phase of CRv2, as
also suggested in [17]. We therefore set M1(0) = 1.5 · 106
(denoted as “1.5H”). It is again difficult to find good values for
the initial number of infected machines and inactive machines,
due to the fact that all the activity of CRv2 before 00:00 UTC
has to be taken into account, and, in addition, all the nodes
being affected by background activity (as in the case of July)
have to be subtracted.

In this section we want to illustrate the third way (cf. Sec-
tion V) of dealing with unknown initial conditions, that is, we
add these as extra parameters to the fitting procedure. Notice
that although this way seems to be the most straightforward,
adding extra degrees of freedom to the fitting procedure can
lead to the worse result. Therefore, using this method while
having limited data traces (as in CRv2 case) is a “last resort”
rather then obvious solution. We here take the initial numbers
of infected nodes (M2(0)) as extra parameters to the parameter
fitting procedure; the number of inactive (M3(0)) and patched
hosts (M4(0)) can again be set to zero, as the patching before
midnight was not due to the activity of CRv2 for this outbreak.
Given the above assumptions, we need to find the parameters
k1, k5, k6, and initial condition M2(0) that minimise the
relative squared error.

Figure 11 depicts the result of the model fitting procedure
for the initial conditions M(0) ≈ (1 498 669, 1331, 0, 0).
These initial conditions allowed us to obtain the best fit with
a squared error of approximately 0.7%. Note that the number
of initially infected hosts is actually not an integer number
(but 1 331.16) due to the fact that the mean-field model is a
model that addresses fractions of objects, but not every object
independently. As one can see, the fitted model reflects the
number of infected hosts during the second outbreak of CRv2
quite well, despite a still unresolved problem with the data
collection around 13:00 UTC.

VIII. RELATED WORK

In this section we provide a short overview of the related
work on the spreading phase of Code-Red. The measurement
data used in our study was collected and studied by CAIDA;
the results were presented in [17], providing the background
of the worm as well as the details of the data collection.
The survey provides insight in the infection and deactivation
processes. Moreover, geographical locations and types of the
infected hosts were studied. The authors conclude that on
July 19, between 11:00 and 16:30 UTC, the infection grows
exponentially. However, no formal model justifying this claim
has been provided.

Staniford [20] also provides an analysis of worm spreading.
A model was proposed to explain the infection rate (only for
the number of infected hosts) for both outbreaks of Code-
Red. The proposed model is very similar to an epidemiological
model:

da

dt
= K · a · (1− a),

where K is the infection rate of one compromised machine,
and a is the fraction of compromised machines. This model
is explained as follows: each of the a infected hosts is able to
compromise K hosts per unit of time while only 1−a machines
are not infected yet. Moreover, the author provides a manually
made fit to the data, obtained from [7]. The parameters were
obtained as a guess, and no formal explanation was provided.

Another model of CRv2 worm propagation was proposed
by Zou et al. in [26]. The proposed model was based on a
classical epidemiological model, which was modified in order
to provide better accuracy. Their so-called two-factor worm
model includes two additional aspects:

• human counter-measures against worm spreading
(patching, rebooting, etc.);

• slowing down of the worm infection rate due to the
worm’s impact on internet traffic and infrastructure.

Adding these factors explained the slowing down of the worm
spread before midnight of July 19, 2001. This model was
compared against the data collected on July 19, 2001 (again
for the number of infected machines only), and provided good
results for the proposed parameter set. However, no evidence
on the source of the chosen parameters was provided. The
two-factor model is closely related to the mean-field model
proposed by us.

Unlike all the previously proposed models, the mean field
model proposed by us is based on insight in the actual
operation of the virus. Furthermore, our model is parameterised
with well-known estimation techniques and uses the most
elaborate data set available so far. Therefore, we think our
model is more trustworthy and is better suited for reasoning
about the spread of CRv2. Furthermore, the parameters in
our model have a physical interpretation, which can help in
reasoning about countermeasures.

IX. CONCLUSIONS

This paper provides a full account of the fitting process to
obtain a fully parameterised model of virus spread. We base
our model and fitting procedure on publicly known insight in
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the operation of CRv2, and on publicly available data sets. The
paper foremost shows the challenges encountered when trying
to parameterise a simple model of a large-scale distributed
system based on publicly available data sets.

Starting from the characterisation of the system itself, i.e.,
CRv2, we proposed an initial model describing the state of
each host in the network, and subsequently discussed why the
unavailability of certain measurement data leads to a slightly
adapted model. We also presented why the measurement data
has to be handled very carefully, e.g., due to the fact that
certain measurement intervals are missing or incomplete (due
to sampling). Furthermore, the available data only reflects part
of the system under study, that is, the data does not provide
information on the number of rebooted and patched hosts nor
on the total number of vulnerable hosts. For these reasons, the
fitting procedure has been a very tedious process, which cannot
be easily automated, and from which no final “once-and-for-all
recipe” can be given. Moreover, the process described in this
paper indicates that the construction of an abstract model for
virus spread can best be done “in parallel” with the study of the
available measurement data, particularly so for virus outbreaks,
when incomplete data sets are (expected to be) more rule than
exception.

Despite all the above, we have shown that it is possible to
find a model and a set of parameters that closely captures the
first part of the virus spreading. Whether these are the “ultimate
correct parameters” cannot be concluded, simply because we
are missing ground truth. However, the models we fitted, did
allow us to obtain parameters which ensure a relative squared
error of 0.2% and 0.7% between the model prediction and the
measurement, for the July and August outbreaks, respectively.
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