
Planning of On/Off Devices
with Minimum Run-times

Marco E. T. Gerards, Johann L. Hurink
Department of EEMCS, University of Twente

Enschede, the Netherlands

Abstract—To be able to reach objectives such as peak shaving
or self-consumption within smart grids, it becomes increasingly
important to control smart grid ready devices within households.
This paper explores the planning of devices with minimal run-
time constraints and constraints on total cumulative production
(e.g., buffer level), such as heat pumps and electric vehicles.
For such devices, a novel dynamic programming formulation is
presented that makes it possible to find the optimal planning
in O(N2) time and space, where N is the number of time
intervals. To evaluate the algorithm, we integrate it into an
existing decentralized demand side management approach. This
evaluation shows using simulations that a load curve within a
neighborhood can be flattened this way.

Index Terms—Optimal scheduling, smart grids.

I. INTRODUCTION

Demand Side Management (DSM) projects typically as-
sume that a Home Energy Management System (HEMS) is
installed inside a customers home to control devices. Common
objectives of these DSM projects are peak shaving to avoid
losses and to defer grid investments, and increasing the amount
of self-consumption of locally produced energy for economic
and environmental reasons. To accomplish this, the HEMS
steers devices within the house to meet the given objective.
This paper considers planning-based DSM (see, e.g., [1]), a
DSM approach wherein a planning for a forthcoming period
(e.g., 24 hours ahead) is made for each device and used to steer
the devices. The aim of this approach is to achieve an optimal
trade off between the possible times where the flexibility of
a device can be deployed. In Section II we give some more
background and discuss related work on this topic, with a
focus on approaches (such as [1]) that can be readily combined
with the approach presented in this paper.

For planning-based DSM there are two options to plan
the use of devices over a forthcoming period, namely using
a centralized generic planning algorithm (e.g., a commercial
MILP solver) for optimizing the planning for all devices in
simultaneously, or using tailored algorithms for the planning
of specific device classes and to use a decentralized approach
to coordinate the planning of these devices. The first option
of using a generic planning algorithm for general class of
devices is commonly time consuming, and often not a viable

This research was conducted within the DREAM project supported by STW
(#11842) and Deutsche Bundesstiftung Umwelt (#30466).

option on embedded systems with low processing power such
as the HEMS. In this paper we focus on the second option,
and specifically we study the subclass of devices with a
single mode of operation (i.e., on/off) and minimum run-time
constraints. Furthermore, we consider constraints that specify,
for each interval, the minimum and maximum time the device
should have run up to this interval. This way we support, for
example, heat producing devices (e.g., heat pumps) that have
to guarantee a given comfort level inside the house, which can
be translated to bounds on the fill level of an attached buffer.
A detailed problem formulation of our optimization problem
is given in Section III.

To solve this problem, we develop a dynamic programming
approach that solves our problem with a time/space complexity
of O(N2) (see Section IV), while a straightforward DP for-
mulation would yield O(N3), where N is the number of time
intervals. To ease the presentation, we use graphs to represent
the state space of the dynamic program, and to visualize how
the allowed state transitions enforce the minimum continuous
run-time/off-time constraints, and ensure that the constraints
on the total run-time are respected.

In Section V, we integrate our algorithm in an existing DSM
approach. While our algorithm works for a single device, the
profile steering approach is used to coordinate between many
devices and is capable of using our algorithm as a subroutine.
For a case of 121 houses together with a set of electric vehicles
(we vary the number of vehicles) it is investigated how well the
neighborhood load profile can be flattened. The results show
that this combination of the DSM approach with the presented
algorithm is a good fit and can be used to influence the load
at the transformer over a complete day. Finally, Section VI
presents the conclusions.

II. BACKGROUND AND RELATED WORK

Decentralized DSM systems use steering signals to control
the behavior of appliances within a house indirectly, opposed
to Demand Response (DR) where the appliances are controlled
by, for example, the Distribution System Operator (DSO)
or an aggregator [2], [3]. Within DSM, two directions are
visible: auction based systems and planning based systems.
Where auction based systems focus on a balancing of supply
and demand for the next time interval (an example is the
PowerMatcher, see e.g., [4]), planning based DSM considers

c©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI 10.1109/ISGTEurope.2016.7856220



the coordinated use of devices over several time intervals. As
such for planning based DSM approaches planning algorithms
for devices are needed. If one considers the joint optimization
of all available devices, the resulting problems are in general
(strongly) NP-hard [1], [5]. A common reaction to this is to
formulate the problem as Mixed Integer Linear Programming
(MILP) and use general solvers for this planning problem.
However, such approaches are not suitable for the use on
embedded device with low computational capabilities, and are
therefore mainly used in simulations.

An alternative is to use specialized algorithms for the
planning of specific devices or device classes and to use a
heuristic algorithm to coordinate these individual plannings
to meet a certain overall goal such as peak shaving for the
group of devices. A simple way to do this is by iteratively
adapting the steering signal that is sent to houses or (groups
of) appliances (see, e.g., [1], [3]). The appliances in such
an approach receive this steering signal and use specialized
planning algorithms that use the received steering signal while
respecting both the physical constraints of this device, and
the user constraints regarding this device. An example of
such a specialized algorithm is presented in [6] where an
electric vehicle is scheduled to minimize costs (such as price
and deviation from a received target profile) while respecting
constraints such as the required state of charge, bounds on
the charging power, arrival time of the car, and the charging
deadline. This algorithm was used as added subroutine in the
evaluation of the profile steering approach [1] to schedule a
fleet of electric vehicles according to a received steering signal.
Note, that for practical use of the sketched planning based
DSM approach it is crucial that the planning algorithms for
the devices are efficient and fast enough to be used in an
embedded device with low computational capabilities.

The algorithms we propose in this paper fulfill the men-
tioned requirements and as such can be used as a planning
subroutine in planning based DSM approaches. As mentioned,
we focus on the optimal planning of on/off devices with
minimum run-time constraints. In our evaluation in Section V,
we use smart plugs (i.e., on/off devices) to control the charging
of a fleet of electric vehicles with minimum continuous run-
time constraints, applied within profile steering.

Another application of the approach developed in this paper
is dispatching on/off devices with minimum continuous run-
time constraints in an economically optimal way. This has
been done in, e.g., [7], [8], to schedule the charging of (plug-
in) electric vehicles to attain minimal charging costs. Our
algorithm supports such monetary cost functions and can be
applied in similar settings.

Optimization problems with minimum run-time constraints
are commonly modeled as a MILP problem (see, e.g., [9]),
which typically results in a high computational load when
solved using general solvers. Scheduling of on/off devices with
minimum continuous run-time constraints are also mentioned
in [9], wherein a group of on/off devices is scheduled. Our
approach can be applied more generally, in the sense that it
can be combined with DSM approaches such as [1], [3]. In

this way, the on/off devices can easily be combined with other
types of devices, whereas the approach in [9] is tailored for
on/off devices.

In [10], also the implementation of an iterative DSM ap-
proach is discussed, together with a dynamic programming
approach for devices with minimum continuous run-time/off-
time constraints. Opposed to our approach, their approach
gives an approximation and does not guarantee optimality.

The Unit Commitment Problem (e.g., [11]–[13]) is in some
respects similar to the considered problem, namely it also
considers minimum continuous run-time/off-time constraints.
However, in addition our problem imposes a minimum and
maximum total on/off time constraint for each individual
interval (e.g., to keep a buffer fill level within certain bounds).
Furthermore, in most cases where the unit commitment prob-
lem is considered, a calculation time of several minutes on a
regular computer is required, and therefore MILP formulations
using commercial solvers may be used. In contrast, in our
setting the developed algorithm has to be executed on a HEMS,
a small embedded system or microcontroller for which less
to no MILP solvers are available, and the calculation must
be done in microseconds instead of minutes. This makes
it impossible to directly use the existing research on unit
commitment to solve the problem that we study. Since we
need a planning for just a single device, opposed to many in
the unit commitment problem, we can use a tailored algorithm
that finds the solution efficiently.

Finally, we want to mention that the developed dynamic
programming formulation is inspired by the approach in [14],
where a problem is treated from another problem domain
(green computing), which has some similarities to the problem
considered in this paper.

III. PROBLEM STATEMENT

In planning-based demand side management systems, de-
vices are planned such that some global objective is met. In
this planning problem, the planning horizon is subdivided into
time intervals. In this paper, we denote the number of such
time intervals with N , and we assume that all intervals have
the same length. For each interval, we need to make a decision
and for the devices considered in this paper, a device is either
turned on or off in an interval n ∈ {1, . . . , N}, denoted by
x(n) = 1 and x(n) = 0 respectively.

The planning objective is commonly described using a cost
function, which expresses how well a schedule meets the
given objective (i.e., costs do not have to be monetary). For
example, if the energy price in time interval n is An (costs
per kWh), and if pn(xn) gives the power consumption (in
watt) for the off/on state xn, the costs may be specified by
the function f price

n (xn) = cAnpn(xn), where c is used as
a constant for conversion of the units, taking into account
the chosen interval length. In a similar way cost functions
can be defined to express, e.g., the self-consumption of a
household (i.e., a household prefers its own solar energy above
import from the grid), profile flattening/peak shaving (e.g.,
fn(xn) = pn(xn)

2), or minimizing the distance to some target
profile ~y = [y1, . . . , yN ] that is defined by a DSM system (i.e.,



fn(xn) = (yn − pn(xn))
2. Note, that in these cases costs are

not monetary. To obtain the costs for all N intervals together
we need a sum (i.e., a separable function). Our goal is to find a
planning for the device such that the total costs are minimized,
i.e., to find a vector ~x = [x1, . . . , xN ] that indicates for each
time interval if the device is on or off and that minimizes the
separable (global) cost function:

C(~x) =
N∑

n=1

fn(xn).

At this point we want to stress that our solution method does
not impose any restrictions on the functions f1, . . . , fN :
{0, 1} → R.

However, the device cannot be turned on/off in an arbitrary
way to minimize the costs C(~x), but device constraints must
be respected. In this paper, we consider two types of device
constraints. The first type is a total run-time constraint: before
the end of interval N , the device must have been on for (in
total) at least MN intervals. Typically, devices that fill a buffer
(heat pump, or EV battery charging) can be modeled this way.

In this situation, an optimal solution can be found easily
by turning the device on in the MN cheapest intervals. This
results in a time complexity of O(N) [15]. A more general set
of constraints results if we introduce a total run-time constraint
Mn for each intermediate interval n, which is used to express
that in interval n the buffer has to be filled according to some
demand that is expected for interval n, or to model a finite
buffer capacity. This case is treated later.

The second type of constraint we consider is a minimum
continuous run-time/off-time constraint. This constraint en-
forces that when the device is turned on, it must remain on
for at least R1 intervals, and when it is turned off it must
remain off for at least R0 intervals. Such constraints are, for
example, enforced by several thermal devices [9]. To ease
the notation, we define the set of solutions that respect the
minimum continuous run-time constraints:

X1 := {~x ∈ {0, 1}N | ∀n ∈ {1, . . . , N} : xn = 1⇒ ∃i :
i ≤ n ≤ i+R1 − 1 ∧ xi = · · · = xi+R1−1 = 1},

which expresses that whenever xn = 1, it is contained in a
consecutive sequence of “on intervals” of at least length R1.
In a similar fashion, a set of solutions that respect minimum
continuous off-time constraints is defined:

X0 := {~x ∈ {0, 1}N | ∀n ∈ {1, . . . , N} : xn = 0⇒ ∃i :
i ≤ n ≤ i+R0 − 1 ∧ xi = · · · = xi+R0−1 = 0}.

If we combine the above constraints with the objective
function, we get the following optimization problem, which
we call the Simple Minimum Run-Time (SMR) problem.

min
~x∈X0∩X1

N∑
n=1

fn(xn),

subject to
N∑

n=1

xn = MN .

(SMR)

This problem is solved in Section IV. In the same section,
we extend our approach to take into account a total run-time
constraint for each interval. This optimization problem, called
Minimum Run-Time (MR), is formulated as:

min
x1,...,xN∈{0,1}

N∑
n=1

fn(xn),

subject to Lk ≤
k∑

n=1

xn ≤ Uk, for k ∈ {1, . . . , N},

(MR)
where Lk and Uk place bounds on the cumulative on time of
the device.

IV. SOLUTION APPROACH

To solve both (SMR) and (MR), we use dynamic program-
ming. The dynamic program determines for each possible state
the cheapest way to get in this state. More precisely, we
represent states as a triple (n, a,m) ∈ {1, . . . , N} × {0, 1} ×
{1, . . . , N}, where n is the interval, a is the on/off state (0/1)
of the device in this interval, and m is the total on time of the
device up to this interval. For each state (n, a,m), we define
a mapping T ′(n, a,m) = (n′, a′,m′, c′), where (n′, a′,m′) is
the preceding state (i.e., n′ < n) on the shortest path from the
initial state to (n, a,m) and c′ is the lowest cost. Hence, this
(implicitly) gives the path that leads to the lowest costs, by
backtracking from the desired end state.

To ease the presentation and analysis, we give a graph
representation of this DP wherein the tuples of intervals and
on/off state are mapped on vertices of the graph (i.e., the
tuples (n, a) ∈ {1, . . . , N} × {0, 1}). Section IV-A discusses
this graph and how a path in this graph corresponds to a
solution. To ensure that the minimum continuous run-time/off-
time constraints are met, we construct the graph such that all
paths in the graph correspond to a solution that respects these
constraints (Section IV-B). More precisely, in Section IV-C we
construct a mapping T (v,m) = (v′, c) that implicitly gives the
lowest cost (c) path (through v′) with a total on-time m to a
vertex v. By backtracking from the desired state (i.e., run-
time MN in interval N ), we obtain the optimal solution with
a complexity of O(N2) for both space and time. To respect
the additional constraints of (MR), Section IV-D encodes the
minimum and maximum run-time constraints (commonly user
or capacity constraints) by assigning infinite costs to paths that
do not respect these constraints.

A. Graph representation

To make it easier to reason about the (SMR) optimization
problem, we introduce a graph that depicts the decisions that
can be made. Let V = {v0,1, . . . , v0,N , v1,1, . . . , v1,N} be the
set of vertices in this graph. Before we discuss how the other
ingredients of these graphs are constructed, we describe how
a path from v0,1 to either v0,N or v1,N within this graph is
related to a solution ~x. Consider a path p with L vertices
starting at vertex v0,1 and ending at v0,N or v1,N :

p = va0,k0
va1,k1

. . . vaN ,kL
,



v0,0

v0,1

v1,0

v1,1

v2,0

v2,1

v3,0

v3,1

v4,0

v4,1

v5,0

v5,1

Off

On

(a) Graph depicting the minimum continuous run-time/off-time constraints.

1 2 3 4 5

(b) On/off schedule of device corresponding with the dashed blue path from Fig. 1a.

Fig. 1: Example of a graph with the minimum continuous run-time/off-time constraint, with the corresponding schedule for a
single path. The graph nodes from Fig. 1a are aligned to the intervals from Fig. 1b.

with 0 = k0 < k1 < k2 < · · · < kL = N . In the above path,
the indices ki correspond to intervals up to where the device
is switched on/off as is indicated by ai. More precisely, the
solution ~x corresponding to a path p can be constructed using
the following transformation. For each edge vaj ,kjvaj+1,kj+1

we set xkj+1 = · · · = xkj+1
= aj+1. The following example

illustrates this translation.

Example 1 (Correspondence between a path and a feasible
solution). Fig. 1a shows an example of a graph that corre-
sponds to 4 intervals. The vertices v0,0 and v0,1 are dummy
nodes that ease the notation.

The path p = v0,0v2,1v3,0v5,1 is the dashed blue path
indicated in the graph of Fig. 1a. Using the transformation
described above we find the corresponding solution, which
turns on the device in the first two intervals, turns the device
off in interval three and turns the device on in intervals four
and five (depicted in Fig. 1b).

B. Feasible paths

In the following, we describe how to construct a graph such
that any path from vertex v0,0 to either vertex vN,0 or vertex
vN,1 corresponds (using the procedure discussed above) to
a vector ~x ∈ X0 ∩ X1, i.e., only solutions that respect the
minimum continuous run-time/off-time constraints correspond
to paths in our graph.

To construct such a graph, we first consider a transition
vki,avki+1,a, which means that when the device is in some
state, it remains in this state. Such transitions always respect
the minimum continuous run-time/off-time constraints, if we
assume that the path up to vki,a was feasible. Hence, we can
add all edges of the form vki,avki+1,a without problems.

To switch from on to off, or from off to on, we (only)
add edges that guarantee to respect the minimum continuous
run-time constraints. This leads to edges in the form of
vki,0vki+R1

,1, which describe a transition from the off state
to the on state, and guarantees that the device remains on
for R1 intervals. Since such an on interval can be extended
using the edge in the form vki,1vki+1,1, any feasible on period
can be modeled. Using the same line of thought, we can also

model off to on transitions using the edges that respect the
minimum continuous off-time constraints, namely those of the
form vki,1vki+R0

,0.
Summarizing, the set of edges E contains all edges that

describe remaining in the same state for one extra time
interval, a transition from off to on and remaining on for R1

intervals, and a transition from on to off and remaining off
for R0 intervals. Using these edges, any path from vertex v0,0
to either vertex v0,N or vertex v1,N corresponds (using the
transformation from Section IV-A) to a vector ~x ∈ X0 ∩ X1

and vice versa.

Example 2 (Minimum continuous run-time/off-time con-
straints (continued from Example 1)). For N = 5, a minimum
continuous run-time constraint of two intervals (R1 = 2),
and a minimum continuous off-time constraint of one interval
(R0 = 1) the graph with all feasible paths is given in
Fig. 1a. By construction all paths from v0,a0

to vN,aN
(with

a0, aN ∈ {0, 1}) correspond to a feasible schedule (e.g., the
schedule in Fig. 1b that corresponds to the dashed blue path
is feasible).

The next section describes how costs can be added to the
graph and how cost minimization can be combined with the
constraint that the total on time of a device is within a certain
range for each interval.

C. Cost minimization

Each edge e ∈ E represents a decision that is made for a
set of consecutive intervals. For example, an edge e = vk,0v`,1
models xk+1 = · · · = x` = 1. Based on this, we introduce a
cost function F (e) defined as

F (vk,1−av`,a) =
∑̀

i=k+1

fi(a),

where a ∈ {0, 1}.
To make sure that we only consider paths that correspond to

feasible solutions of (SMR), we construct a representation of
all feasible (sub)paths starting in v0,0. In this step we already
consider the costs, such that we can prune inefficient paths. For



each node v ∈ V and total run-time of m time intervals, we
have a mapping T (v,m) = (v′, c) ∈ V × R that (implicitly)
describes a path from vertex v0,0 to v with a total on-time
of m time intervals and minimal costs whenever such a path
exists (otherwise we set c = ∞). Here, c specifies the costs
of the path, and v′ is the preceding vertex on this path. It
is easy to see that using this mapping, the path we get by
backtracking from either (vN,0,MN ) or (vN,1,MN )—the one
with the lowest c—corresponds to the optimal solution to
(SMR) using the transformation from Section IV-A.

The only thing that remains is the construction of the
mapping T (v,m) = (v′, c) that supports this backtracking
approach. This can be described using a table that can be
constructed by a simple forward scan over all possible combi-
nations of v and m, and evaluating all possible edges leaving
this state. The resulting method is summarized in Algorithm 1.

Summarizing, to find the optimal solution to (SMR) we can
proceed as follows:

1) Use Algorithm 1 to construct the table T .
2) Backtrack from (vN,0,Mn) or (vN,1,Mn) and recon-

struct the cheapest path.
3) Translate this path to an optimal solution ~x using the

transformation from Section IV-A.
Since the table contains O(N2) entries, the space com-

plexity of this approach is O(N2). The time complexity is
O(N2), since each table entry can be calculated in O(1) time.
In practical implementations, calculation time may be saved
for many problem instances by calculating the values in T
for required values only, e.g., by using a recursive function.
A recursive approach prunes the unreachable states, e.g., the
states that cannot be reached because MN is very low or high.

Algorithm 1 Create the table T

T (v,m) := (v,∞) for all (v,m) ∈ V × {1, . . . ,M}
for n = 0 to N − 1 do

for m = 0 to n do
. Consider transitions from the state (vn,0,m)
(v′, c′) = T (vn,0,m)
if n+R1 ≤ N and c′+F (vn,0vn+R1,1) < F (vn+R1,1)
then
T (vn+R1,1,m+R1) := (vn,0, c

′+F (vn,0vn+R1,1))
end if
if c′ + F (vn,0vn+1,0) < F (vn+1,0) then
T (vn+1,0,m) := (vn,0, c

′ + F (vn,0vn+1,0))
end if
. Consider transitions from the state (vn,1,m)
(v′, c′) = T (vn,1,m)
if n+R0 ≤ N and c′+F (vn,1vn+R0,0) < F (vn+R0,0)
then
T (vn+R0,0,m) := (vn,1, c

′ + F (vn,1vn+R0,0))
end if
if c′ + F (vn,1vn+1,1) < F (vn+1,1) then
T (vn+1,1,m+ 1) := (vn,1, c

′ + F (vn,1vn+1,1))
end if

end for
end for

18:00 07:00
0

100

200

300

Time

Po
w

er
(k

W
) No control

DSM

(a) 10 EVs

18:00 07:00
0

100

200

300

Time

Po
w

er
(k

W
) No control

DSM

(b) 20 EVs

18:00 07:00
0

100

200

300

Time

Po
w

er
(k

W
) No control

DSM

(c) 40 EVs

Fig. 2: Total power at transformer (incl. losses)

D. Generalization

To solve the Minimum Run-Time problem (MR), only a
minor extension to Algorithm 1 is required. The algorithm
calculates for each vertex vn,a the cheapest path to this
vertex, and stores the costs and predecessor vertex in this
path. As for an interval k we have to fulfill the constraint
Lk ≤

∑k
n=1 xn ≤ Uk, we only need to consider the states

(vk,a, Lk), . . . , (vk,a, Uk) (for a = {0, 1}). This implies that
the inner ’for’-loop of Algorithm 1 should be skipped when
m < Ln or m > Un. Hence, such additional restrictions on
the permitted state space may even speed up the algorithm.

V. EVALUATION

The device planning algorithm developed in this paper was
designed with integration into existing DSM methodologies in
mind. Each HEM executes the device planning algorithm from
this paper to function as subroutine within such a methodology.
In this evaluation, we combine our algorithm with the profile
steering approach from [1] to study if the algorithm can be
applied in the setting it was designed for.

The profile steering approach iteratively requests improve-
ments in the form of desired power profiles and aims to
converge toward a given profile at the transformer; in our case
a flat profile. The algorithm from Section IV can be used to
minimize the distance toward such desired profiles, and be
used to create a planning based on such requests, hence it can
be directly used within the approach from [1].

In this evaluation we use detailed grid information of a
Dutch LV grid that consists of 121 houses combined with
household measurement data that is representative for the



region. We use this to calculate the power (incl. losses) at the
transformer. This given grid is extended with appliances that
are controlled by our algorithm, and we use the profile steering
algorithm to create steering signals such that the power profile
as observed at the transformer becomes as flat as possible.
Here, the power profile contains the controllable device as
well as the given load profile of the 121 houses.

In our evaluation we use Electric Vehicles (EVs) as con-
trollable appliances. Where in experiments with fast chargers
often the possibility of adapting the charging power is used,
for home charging installations that are currently in the field,
the controllability of the charging is often only in switching
on or off the charging (e.g., in a joint project with industry
the control of charging the EV was realized by a smart plug
that can handle such loads; see [16] for a description of the
project). In order to reduce the stress on the equipment and to
prevent damage, a minimum continuous run-time is desirable
and in this evaluation it is set to 60 minutes. While in a
practical setting a lower minimum run-time may be acceptable,
a rather long minimum run-time restricts the planning freedom
and demonstrates the capabilities of the algorithms since
it creates more difficult circumstances. Note, that also the
restriction to on/off control, increases the difficulty for the
control because of a relatively low flexibility.

In this evaluation, we randomly distribute K EVs over the
121 houses, whereby the values K ∈ {10, 20, 40} are used.
To study the operation under extreme load, we schedule all
EVs to arrive simultaneously at 18:00, and set the deadline to
07:00 the next morning. We use time intervals of 15 minutes
each, hence there are in total 52 charging intervals. When the
switch is turned on, each car charges at 4 kW, and in total
it should charge 20 kWh within the charging horizon (i.e., it
charges 20 intervals of the in total 52 intervals).

Fig. 2c shows that greedy charging upon arrival creates a
peak of approximately 250 kW when the neighborhood con-
tains 40 EVs. In contrast, the profile steering DSM approach in
combination with our planning algorithm removes the peak by
flattening the load profile. Fig. 2a demonstrates the case with
10 EVs, and shows that a DSM implementation can apply
our algorithm for on/off devices to flatten the load profile.
When more EVs are used there is more freedom, and as
a result the load profile becomes even flatter (see Fig. 2b
and Fig. 2c). Hence, the profile steering algorithm, using the
presented algorithm as a subroutine, avoids charging at the
peak and schedules the EVs to flatten the load curve, while
taking into account the minimum run-time constraint.

VI. CONCLUSIONS

Many DSM and economic dispatch approaches control
devices by some steering signal. This paper shows how to
plan on/off devices optimally for any separable steering signal.
More precisely, it presents a dynamic programming algorithm
that optimally schedules on/off devices with minimum con-
tinuous run-times/off-times, and total run-time constraints for
each individual time interval. In our algorithm, the permitted
state space is constructed and can be explicitly represented in
O(N2) space. Subsequently, the optimal solution can be found

by backtracking from the desired state in the final interval. This
yields an approach that runs in O(N2) time, and execution
time improvements can be achieved using a recursive approach
that constructs the state space lazily.

The algorithm is evaluated in a decentralized DSM context,
wherein it is used as a subroutine to control the charging
of electric vehicles. Our evaluation shows that the algorithm
naturally supplements the existing DSM approaches, and can
be used to influence the load curve.

In future work, we plan to extend this approach to take
uncertainty in both the steering signal (e.g., matching unknown
prices or profiles) and constraints (e.g., producing enough to
meet unknown heat consumption) into account in a robust way.

REFERENCES

[1] M. E. T. Gerards, H. A. Toersche, G. Hoogsteen, T. van der Klauw,
J. L. Hurink, and G. J. M. Smit, “Demand side management using
profile steering,” in PowerTech, 2015 IEEE Eindhoven, June 2015, pp.
457 759:1–457 759:6.

[2] P. Siano, “Demand response and smart grids–a survey,” Renewable and
Sustainable Energy Reviews, vol. 30, pp. 461–478, 2014.

[3] A. Molderink, V. Bakker, J. L. Hurink, and G. J. M. Smit, “On indirect
controlled cost function based DSM strategies,” in Proceedings of IEEE
PowerTech (POWERTECH), Grenoble, June 2013, pp. 2236–2241.

[4] K. Kok, “The PowerMatcher: Smart coordination for the smart electricity
grid,” Ph.D. dissertation, Vrije Universiteit Amsterdam and TNO, 2013.

[5] M. G. C. Bosman, V. Bakker, A. Molderink, J. L. Hurink, and G. J. M.
Smit, “On the microCHP scheduling problem,” in Proceedings of the
3rd Global Conference on Power Control and Optimization PCO, 2010,
Gold Coast, Australia, ser. AIP Conference Proceedings, vol. 1239.
Australia: PCO, February 2010, pp. 367–374.

[6] T. van der Klauw, M. E. T. Gerards, G. J. M. Smit, and J. L. Hurink,
“Optimal scheduling of electrical vehicle charging under two types of
steering signals,” in IEEE PES Innovative Smart Grid Technologies
Conference Europe (ISGT-Europe), Istanbul, Turkey, October 2014, pp.
122:1–122:6.

[7] M. Sarker, M. Ortega-Vazquez, and D. Kirschen, “Optimal coordination
and scheduling of demand response via monetary incentives,” Smart
Grid, IEEE Transactions on, vol. 6, no. 3, pp. 1341–1352, May 2015.

[8] D. Wu, D. Aliprantis, and L. Ying, “Load scheduling and dispatch for
aggregators of plug-in electric vehicles,” Smart Grid, IEEE Transactions
on, vol. 3, no. 1, pp. 368–376, March 2012.

[9] B. Biegel, P. Andersen, T. Pedersen, K. Nielsen, J. Stoustrup, and
L. Hansen, “Smart grid dispatch strategy for ON/OFF demand-side
devices,” in Control Conference (ECC), 2013 European, July 2013, pp.
2541–2548.

[10] H. Toersche, J. Hurink, and M. Konsman, “Energy management with
TRIANA on FPAI,” in PowerTech, 2015 IEEE Eindhoven, June 2015,
pp. 462 751:1–462 751:6.

[11] M. Carrion and J. M. Arroyo, “A computationally efficient mixed-integer
linear formulation for the thermal unit commitment problem,” IEEE
Transactions on Power Systems, vol. 21, no. 3, pp. 1371–1378, Aug
2006.

[12] J. M. Arroyo and A. J. Conejo, “Optimal response of a thermal unit
to an electricity spot market,” IEEE Transactions on Power Systems,
vol. 15, no. 3, pp. 1098–1104, Aug 2000.

[13] J. Ostrowski, M. F. Anjos, and A. Vannelli, “Tight mixed integer linear
programming formulations for the unit commitment problem,” IEEE
Transactions on Power Systems, vol. 27, no. 1, pp. 39–46, Feb 2012.

[14] M. E. T. Gerards and J. Kuper, “Optimal DPM and DVFS for frame-
based real-time systems,” ACM Trans. Archit. Code Optim., vol. 9, no. 4,
pp. 41:1–41:23, jan 2013.

[15] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan, “Time
bounds for selection,” Journal of Computer and System Sciences, vol. 7,
no. 4, pp. 448–461, 1973.

[16] V. Bakker, A. Molderink, J. Hurink, G. Smit, S. Nykamp, and J. Reinelt,
“Controlling and optimizing of energy streams in local buildings in a
field test,” in Electricity Distribution (CIRED 2013), 22nd International
Conference and Exhibition on, June 2013, pp. 506:1–506:4.


