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Abstract. EEG is a very useful neurological diagnosis tool, inasmuch
as the EEG exam is easy to perform and relatively cheap. However, it
generates large amounts of data, not easily interpreted by a clinician.
Several methods have been tried to automate the interpretation of EEG
recordings. However, their results are hard to compare since they are
tested on different datasets. This means a benchmark database of EEG
data is required. However, for such a database to be useful, we have to
solve the problem of retrieving information from the stored EEGs with-
out having to tag each and every EEG sequence stored in the database
(which can be a very time-consuming and error-prone process). In this
paper, we present a similarity measure, based on iterated function sys-
tems, to index EEGs.

Keywords: clustering, indexing, electroencephalograms (EEG), iterated
function systems (IFS)

1 Introduction

An electroencephalogram (EEG) captures the brain’s electric activity through
several electrodes placed on the scalp1. The result is a multidimensional time
series2. An EEG signal can be classified into several types of cerebral waves char-
acterised by their frequencies, amplitudes, morphology, stability, topography and
reactivity. The interpretation of the sequence of cerebral waves, their localisa-
tion and context of occurrence (eg eyes closed EEG or sleep EEG) leads to a
diagnosis. The complexity of the sequences of cerebral waves, the non-specificity
of EEG recordings (for example, without any context being given, the EEG
recording of a chewing artifact can be mistaken as that of a seizure (see figure
1)) and the amount of data generated make the interpretation process a difficult,
time-consuming and error-prone one. Consequently, the interpretation process is
being automated, in part at least, through several methods mostly consisting in
extracting features from EEGs and applying classification algorithms to the sets

1 usually 21 in the International 10/20 System
2 19 channels in the International 10/20 System
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of extracted features to discriminate between two different patient states (usu-
ally the ”normal” state and a pathological state). For example, empirical mode
decomposition and Fourier-Bessel expansion are used in [13] to discriminate be-
tween ictal EEGs (i.e EEGs of an epileptic seizure) and seizure-free EEGs. The

Fig. 1. EEG with a chewing artifact

interpretation methods are usually tested on different datasets. To make them
comparable, a benchmark database of EEGs is required. Such a database has
to designed so as to be able to handle queries in natural language such as the
following sample queries:

1. find EEGs of non-convulsive status epilepticus
2. find EEGs showing rhythms associated with consumption of benzodiazepines

and remove all artefacts from them

Obtaining a simple answer to this set of queries would require the EEG dataset
to be heavily and precisely annotated and tagged. But what if the annotations
are scarce or not available? Furthermore, the whole process of annotating and
tagging each and every sequence of the EEG dataset is time-consuming and error-
prone. This means that feature extraction techniques are necessary to solve all of
these queries since they can help define a set of clinical features representative of
a particular pathology (query 1) or detect particular sets of patterns and process
the EEG based on them (query 2). EEG recordings correspond to very diverse
conditions ( eg. ”normal” state, seizure episodes, Alzheimer disease). Therefore,
a generic method to index EEGs without having to deal with disease-specific
features is required3. Generic methods to index time series often rely on the def-
inition of a similarity measure. Some of the similarity measures proposed include
a function interpolation step, be it piecewise linear interpolation or interpolation
with AR (as in [8] to distinguish between normal EEGs and EEGs originating
from the injured brain undergoing transient global ischemia) or ARIMA models,
that can followed by a feature extraction step (eg. computation of LPC cep-
stral coefficients from the ARIMA model of the time series as in [9]). However,

3 as the number of disease-specific classifiers grows exponentially
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ARIMA/AR methods assume that the EEG signal is stationary, which is not
a valid assumption. In fact, EEG signals can only be considered as stationary
during short intervals, especially intervals of normal background activity, but
the stationarity assumption does not hold during episodes of physical or men-
tal activity, such as changes in alertness and wakefulness, during eye blinking
and during transitions between various ictal states. Therefore, EEG signals are
quasi-stationary. In view of that, we propose a similarity measure based on IFS
interpolation to index EEGs in this paper, as fractal interpolation does not as-
sume stationarity of the data and can adequately model complex structures.
Moreover, using fractal interpolation makes computing features such as the frac-
tal dimension simple (see theorem 21 for the link between fractal interpolation
parameters and fractal dimension) and the fractal dimension of EEGs is known
to be a relevant marker for some pathologies such as dementia (see [7]).

2 Background

2.1 Fractal interpolation

Fractal dimension Any given time series can be viewed as the observed data
generated by an unknown manifold or attractor. One important property of this
attractor is its fractal dimension. The fractal dimension of an attractor counts
the effective number of degrees of freedom in the dynamical system and therefore
quantifies its complexity. It can also be seen as the statistical quantity that gives
an indication of how completely a fractal object appears to fill space, as one
zooms down to finer and finer scales. Another dimension, called the topological
dimension or Lebesgue Covering dimension, is also defined for any object and a
fortiori for the attractor. A space has Lebesgue Covering dimension n if for every
open cover 4 of that space, there is an open cover that refines it such that the
refinement 5 has order at most n+ 1. For example, the topological dimension of
the Euclidean space Rn is n. The attractor of a time series can be fractal (ie its
fractal dimension is higher than its topological dimension) and is then called a
strange attractor. The fractal dimension is generally a non-integer or fractional
number. Typically, for a time series, the fractal dimension is comprised between
1 and 2 since the (topological) dimension of a plane is 2 and that of a line is 1.
The fractal dimension has been used to:
– uncover patterns in datasets and cluster data ([10, 2, 15])
– analyse medical time series ([14, 6]) such as EEGs ([1, 7])
– determine the number of features to be selected from a dataset for a similarity

search while obviating the ”dimensionality curse” ([12])

4 A covering of a subset S is a collection C of open subsets in X whose union contains
all of S at least. A subset S ⊂ X is open if it is an arbitrary union of open balls in
X. This means that every point in S is surrounded by an open ball which is entirely
contained in X. An open ball in a in metric space X is defined as a subset of X of
the form B(x0, ε) = {x ∈ X|d(x, x0) < ε} where x0 is a point of X and ε a radius.

5 A refinement of a covering C of S is another covering C′ of S such that each set B
in C′ is contained in some set A in C
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Iterated function systems We denote as K a compact metric space for which
a distance function d is defined and as C(K) the space of continuous functions
on K. We define over K a finite collection of mappings W = wii∈[1,n] and their
associated probabilities pii∈[1,n] such that

pi ≥ 0 and
n∑

i=1

pi = 1

We also define an operator T on C(K) as (Tf)(x) =
∑n
i=1 pi(f ◦ wi)(x). If T

maps C(K) into itself, then the pair (wi, pi) is called an iterated function system
on (K, d). The condition on T is satisfied for any set of probabilities pi if the
transformations wi are contracting, in other words, if, for any i, there exists a
δi < 1 such that: d(wi(x), wi(y)) ≤ δid(x, y) ∀x, y ∈ K. The IFS is also denoted as
hyperbolic in this case.

Principle of fractal interpolation If we define a set of points (xi, Fi) ∈ R2 :
i = 0, 1, ..., n with x0 < x1 < ... < xn, then an interpolation function corre-
sponding to this set of points is a continuous function f : [x0, xn]→ R such that
f(xi) = Fi for i ∈ [0, n]. In fractal interpolation, the interpolation function is
often constructed with n affine maps of the form:

wi

(
x
y

)
=

(
ai 0
ci di

)(
x
y

)
+

(
ei
fi

)
i = 1, 2, ..., n

where di is constrained to satisfy: −1 ≤ di ≤ 1. Furthermore, we have the
following constraints:

wi

(
x0

y0

)
=

(
xi−1

yi−1

)
and wi

(
xn

yn

)
=

(
xi

yi

)
After determining the contraction parameter di, we can estimate the four re-

maining parameters (namely ai,ci,ei,fi):

ai =
xi − xi−1

xn − x0

(1)

ci =
xnxi−1 − x0xi

xn − x0

(2)

ei =
yi − yi−1

xn − x0

− di
yn − y0
xn − x0

(3)

fi =
xnyi−1 − x0yi

xn − x0

− di
xny0 − x0yn

xn − x0

(4)

di can be determined using the geometrical approach given in [11]. Let t be a
time-series with end-points (x0, y0) and (xn, yn), and (xp, yp) and (xq, yq) two
consecutive interpolation points so that the map parameters desired are those
defined for wp. We also define α as the maximum height of the entire function
measured from the line connecting the end-points (x0, y0) and (xn, yn) and β
as the maximum height of the curve measured from the line connecting (xp, yp)
and (xq, yq). α and β is positive (respectively negative) if the maximum value is
reached above the line (respectively below the line). The contraction factor dp
is then defined as β

α . This procedure is also valid when the contraction factor is
computed for an interval instead of for the whole function. The end-points are
then taken as being the end-points of the interval. For more details on fractal
interpolation, see [3, 11].
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Estimation of the fractal dimension from a fractal interpolation The
theorem that links the fractal interpolation function and its fractal dimension is
given in [3].The theorem is as follows:

Theorem 21 Let n be a positive integer greater than 1, {(xi, Fi) ∈ R2 : i =
1, 2, ..., n} a set of points and {R2;wi, i = 1, 2, .., n} an IFS associated with the
set of points where:

wi

(
x
y

)
=

(
ai 0
ci di

)(
x
y

)
+

(
ei
fi

)
for i = 1, 2, .., n.

The vertical scaling factors di satisfy 0 ≤ di < 1 and the constants ai,ci,ei
and fi are defined as in section 2.1 (in equations 1,2,3 and 4) for i = 1, 2, ..., n.
We denote G the attractor of the IFS such that G is the graph of a fractal
interpolation function associated with the set of points.
If
∑n
i=1 |di| > 1 and the interpolation points do not lie on a straight line, then

the fractal dimension of G is the unique real solution D of
∑
i=1 |di|a

D−1
i = 1.

2.2 K-medoid clustering

An m×m symmetric similarity matrix S can be associated to the EEGs to be
indexed (with m being the number of EEGs to index):

S =


d11 d12 . . . d1m
d12 d22 . . . d2m
.
.
.

.

.

.
. . .

.

.

.
d1m d2m . . . dmm

 where dnm is the distance between EEGs n and m (5)

Given the computed similarity matrix S (defined by equation 5), we can use the
k-medoids algorithm to cluster the EEGs. This algorithm requires the number
of clusters k to be known. We describe our choice of the number of clusters
below, in section 2.3. The k-medoids algorithm is similar to k-means and can be
applied through the use of the EM algorithm. k random elements are, initially,
chosen as representatives of the k clusters. At each iteration, a representative
element of a cluster is replaced by a randomly chosen nonrepresentative element
of the cluster if the selected criterion (e.g. mean-squared error) is improved by
this choice. The data points are then reassigned to their closest cluster, given
the new cluster representative elements. The iterations are stopped when no
reassignments is possible. We use the PyCluster function kmedoids described in
[5] to make our k-medoids clustering.

2.3 Choice of number of clusters

The number of clusters in the dataset is estimated based on the similarity matrix
obtained following the steps in section 3 and using the method described in [4].
The method described in [4] takes the similarity matrix and outputs a vector
called envelope intensity associated to the similarity matrix. The number of
distinct regions in the plot of the envelope intensity versus the index gives an
estimation of the number of clusters. For details on how the envelope intensity
vector is computed, see [4].
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3 An IFS-based similarity measure

3.1 Fractal interpolation step

We interpolate each channel of each EEG (except the annotations channel) us-
ing piecewise fractal interpolation. For this purpose, we split each EEG channel
into windows and then estimate the IFS for each window. The previous descrip-
tion implies that a few parameters, namely the window size and therefore the
embedding dimension, have to be determined before estimating the piecewise
fractal interpolation function for each channel. The embedding dimension is de-
termined thanks to Takens’ theorem which states that, for the attractor of a
time series to be reconstructed correctly (i.e the same information content is
found in the state (latent) and observation spaces), the embedding dimension
denoted m satisfies : m > 2D + 1 where D is the dimension of the attractor, in
other words its fractal dimension. Since the fractal dimension of a time series
is between 1 and 2, we can get a satisfactory embedding dimension as long as
m > 2 ∗ 2 + 1 i.e m > 5. We therefore choose an embedding dimension equal to
6. And we choose the lag τ between different elements of the delay vector to be
equal to the average duration of an EEG data record i.e 1s. Therefore, we split
our EEGs in (non-overlapping) windows of 6 seconds. A standard 20-minutes
EEG (which therefore contains about 1200 data records of 1 second) would then
be split in about 200 windows of 6 seconds. Each window is subdivided into
intervals of one second each and the end-points of these intervals are taken as
interpolation points. This means there are 7 interpolation points per interval:
the starting point p0 of the window, the point one second away from p0, the
point two seconds from p0, the point three seconds away from p0, the point four
seconds away from p0, the point five seconds away from p0 and the last point of
the window. The algorithm6 to compute the fractal interpolation function per
window is as follows:

1. Choose, as an initial point, the starting point of the interval considered (the
first interval considered is the interval corresponding to the first second of
the window).

2. Choose, as the end point of the interval considered, the next interpolation
point.

3. Compute the contraction factor d for the interval considered.
4. If |d| > 1 go to 2, otherwise go to 5.
5. Form the map wi associated with the interval considered. In other words,

compute the a, c, e and f parameters associated to the interval (see equa-
tions). Apply the map to the entire window (i.e six seconds window) to yield

wi

(
x
y

)
for all x in the window. 6. Compute and store the distance between

the original values of the time series on the interval considered (i.e the inter-
val constructed in steps 2 and 3) and the values given by wi on that interval.
A possible distance is the Euclidean distance.

6 inspired from [11]
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6. Go to 2 until the end of the window is reached.
7. Store the interpolation points and contraction factor which yield the min-

imum distance between the original values on the interval and the values
yielded by the computed map under the influence of each individual map in
steps 5 and 6.

8. Repeat steps from 1 to 8 for each window of the EEG channel.
9. Apply steps 1 to 9 to all EEG channels.

3.2 Fractal dimensions estimation

After this fractal interpolation step, each window of each signal is represented by
5 parameters instead of by signal frequency.window duration points. The
dimension of the analysed time series is therefore reduced in this step. For a stan-
dard 20-minutes EEG containing 23 signals of frequency 250 Hz, this amounts to
representing each signal with 1000 values instead 50000 and the whole EEG with
23000 values instead of 1150000, thus to reducing the number of signal values
by almost 98%. This dimension reduction may be exploited in future work to
compress EGGs and store compressed representations of EEGs in the database
instead of raw EEGs as the whole EEGs can be reconstructed from their fractal
interpolations. Further work needs to be done on the compression of EEG data
using fractal interpolation and the loss of information that may result from this
compression. Then, for each EEG channel and for each window, we compute the
fractal dimension thanks to theorem 21. The equation of theorem 21 is solved
heuristically for each 6-second interval of each EEG signal using a bisection al-
gorithm. As we know that the fractal dimension for a time series is between 1
and 2, we search a root of the equation of theorem 21 in the interval [1,2] and
split the search interval by half at each iteration until the value of the root is
approached by an ε-margin ( ε7 being the admissible error on the desired root).
Therefore, for each EEG channel, we have the same number of computed frac-
tal dimensions as the number of windows. This feature extraction extraction
step (fractal dimension computations) further reduces the dimensionality of the
analysed time series. In fact, the number of values representing the time series is
divided by 5 in this step. This leads to representing a standard 20-minute EEG
containing 23 signals of frequency 250 Hz by 4600 values instead of the initial
1150000 points.

3.3 Similarity matrix computation

We only compare EEGs that have at least a subset of identical channels (i.e
having the same labels). When two EEGs don’t have any channels (except the
annotations channel) in common, the similarity measure between them is set to
1 (as the farther (resp. closer) the distance between two EEGs, the higher (resp.
lower) and the closer to 1 (resp. closer to 0) the similarity measure). If, for the
two EEGs compared, the matching pairs of feature vectors (i.e vectors made of

7 We choose ε = 0.0001 in our experiments
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the fractal dimensions computed for each signal) do not have the same dimension
then the vector of highest dimension is approximated by a histogram and the
M most frequent values according to the histogram (M being the dimension of
the shortest vector) are taken as representatives of that vector and the distance
between the two feature vectors is approximated by the distance between the
shortest feature vector and the vector formed with the M most frequent values
of the longest vector. The similarity measure between two EEGs is given by:∑N
i=1

1
N

d(ch
EEG1
i ,ch

EEG2
i )−dmin

dmax−dmin

where N is the number of EEG channels, d(chEEG1
i , chEEG2

i ) the distance be-
tween the fractal dimensions extracted from channels with the same label in the
two EEGs compared and dmin and dmax respectively the minimum and maxi-
mum distances between two EEGs in the analysed set. We choose as metrics (d)
the Euclidean distance and the normalized mutual information.

4 Description of the dataset and experiments

We interpolate (with fractal interpolation, as described in section 3) 476 EEGs8

whose durations range from 1 minute 50 seconds to 5 hours 21 minutes and
whose sizes are between 1133KB and 138 MB. All signals in all these files have
a frequency of 250Hz. Of the files used, 260 have a duration between 15 and 30
minutes (54.6%)-which is the most frequent duration range for EEGs-, 40 files
(8.4%) a duration below 15 minutes and 176 files (37%) a duration higher than
30 minutes. Moreover, 386 files contain 23 signals (81.1 %), 63 20 signals (13.2
%), 13 19 signals (2.7 %), 7 25 signals (1.5 %), 3 28 signals (0.6 %), 1 12 signals
(0.2 %), 2 13 signals (0.4 %) and 1 2 signals (0.2 %). The experiments were run
on an openSuSe 10.3(x86-64) (kernel version 2.6.22.5-31) server (RAM 32GB,
Intel R© Quad-Core Xeon R© E5420@2.50GHz processor). The files for which the
diagnosis conclusion is either unknown or known to be abnormal without any
further details are not considered in the distance computation and clustering
steps described in section 3. This means that the distance computation and
clustering steps are performed on a subset of 328 files of the original 476 files.
The similarity matrice obtained is a 328×328 matrix . The files contained in the
subset chosen for clustering can be separated in 4 classes: normal EEG (195 files
i.e 59.5%), EEG of epilepsy(64 files i.e 19.5%), EEG of encephalopathy(31 files
i.e 9.5%) and EEG of brain damage (vascular damage, infarct, or ischemia)(34
files i.e 10.4%). Figure 2 shows the plot of the envelope intensity versus the
index for the euclidean-distance-based similarity measure and the plot of the
envelope intensity versus the index for the mutual-information-based similarity
measure. The plot for the Euclidean-distance based similarity matrix exhibits
2 distinct regions whereas the plot for the mutual-information based similarity
matrix exhibits 4 distinct regions. We therefore cluster the data first in 2 different
clusters using the Euclidean-based similarity matrix and then in 4 clusters using

8 unprocessed and unnormalised
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the mutual-information based matrix. As we can see, the mutual information-
based measure yields the correct number of clusters while the Euclidean distance-
based similarity measure isn’t spread enough to yield the correct number of
clusters. We compare the performance of the IFS-based similarity measure with
an autoregressive (AR)-based similarity measure inspired from [9]:

– An AR model is fitted to each of the signals of each of the EEG files consid-
ered (at this stage 476). The order of the AR model fitted is selected using
the AIC criterion. The order is equal to 4 for our dataset.

– The LPC cepstrum coefficients are computed based on the AR model fitted
to each signal using the formulas given in [9]. The number of coefficients
selected is the PGCD of the number of points for all signals from all files.

– The Euclidean distance, as well as the mutual information between the com-
puted cepstral coefficients are computed in the same way as with the fractal
dimension-based distances for the subset of 328 files for which the diagnosis
are known. The resulting similarity matrices (328 × 328 matrices) are used
to perform k-medoid clustering.

Finally, we use the similarity matrices to cluster the EEGs (see Section 3.3).

5 Results

Figure 3 illustrates the relation between the duration of the EEG and the time
it takes to interpolate EEGs. It shows that the increase of the fractal interpo-
lation time with respect to the interpolated EEG’s duration is less than linear.
In comparison, AR modelling execution times increase almost linearly with the
EEG duration. Therefore, fractal interpolation is a scalable method and is more
scalable than AR modelling. In particular, the execution times for files of du-
rations between 15 and 30 minutes are between 8.8 seconds and 131.7 seconds,
that is execution times between 6.8 to 204.5 times lower than the duration of
the original EEGs. Furthermore, the method doesn’t impose any condition on
the signals to be compared as it handles the cases where EEGs to be compared
have no or limited common channels and have signals of different lengths. More-
over, fractal interpolation doesn’t require model selection as AR modelling does,
which considerably speeds up EEG interpolation. Moreover, with our dataset,
the computation of the Euclidean distance between the cepstrum coefficients
calculated based on the EEGs AR models leads to a matrix of NaN9: the AR
modelling method is therefore less stable than the fractal interpolation-based
method. Table 1 summarises the clustering results for all similarity matrices. The
low sensitivity obtained for the abnormal EEGs (epilepsy,encephalopathy,brain
damage) can be be explained through the following reasons:

– most of the misclassified abnormal EEGs are EEGs representing mild forms
of the pathology represented therefore their deviation from a normal EEG
is minimal

9 The same happens when the mutual information is used instead of the Euclidean
distance (all programs are written in Python 2.6)
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(a) Euclidean distance-based matrix

(b) Mutual information-based matrix

Fig. 2. Envelope intensity of the dissimilarity matrices

– most of the misclassified abnormal EEGs (in particular for epilepsy and brain
damage) exhibit abnormalities on only a restricted number of channels (lo-
calised version of the pathologies considered). The similarity measures, giving
equal weights to all channels, are not sensitive enough to abnormalities affect-
ing one channel. In future work, we will explore the influence of weights on
the clustering performance. About 76% of the normal EEGs are well classi-
fied. The remaining misclassified EEGs are misclassified because they exhibit
artifacts, age-specific patterns and/or sleep-specific patterns that distort the
EEGs significantly enough to make the EEGs seem abnormal. Filtering arti-
facts before computing the similarity measures and incorporating metadata
knowledge in the similarity measure would improve the clustering results.

6 Conclusion

In this paper, we considered the problem of defining a similarity measure for
EEGs that would be generic enough to cluster EEGs without having to build
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Fig. 3. Execution times of the fractal interpolation in function of the EEG dura-
tion compared to the AR modelling of the EEGs. The red triangles represent the
fractal interpolation execution times and the blue crosses the AR modelling execu-
tion times. the black stars the fitting of the fractal interpolation measured execu-
tion times with function 1.14145161064 ∗ (1 − exp(−(0.5 ∗ x)2.0)) + 275.735500586 ∗
(1− exp(−(0.000274218988011 ∗ (x))2.12063087537)) using the Levenberg-Marquardt al-
gorithm

Table 1. Specificity and sensivity of the EEG clusterings

Specificity Sensitivity

normal EEG 0.312 0.770833333333

abnormal EEG 0.770833333333 0.312

Specificity Sensitivity

normal EEG 0.297752808989 0.657534246575

epilepsy 0.65564738292 0.183006535948

encephalopathy 0.838709677419 0.051724137931

brain damage 0.818713450292 0.114285714286

an exponential number of disease-specific classifiers. We use fractal interpolation
followed by fractal dimension computation to define a similarity measure. Not
only does the fractal interpolation provide a very compact representation of
EEGs (which may be used later on to compress EEGs) but it also yields execution
times that grow less than linearly with the EEG duration and is therefore a highly
scalable method. It is a method that can compare EEGs of different lengths
containing at least a common subset of channels. It also overcomes several of
the shortcomings of an AR modelling-based measure as it doesn’t require model
selection and is more stable and scalable than AR modelling-based measures.
Furthermore, the mutual-information based measure is more sensitive to the
correct number of clusters than the Euclidean distance-based one. In future
work, we will explore other entropy-based measures. It was also shown that the
shortcomings of the similarity measure when it comes to clustering abnormal
EEGs can be overcome through pre-processing the EEGs before interpolation
to remove artifacts, tuning the weight parameters in the measure to account for
small localised abnormalities and incorporating qualitative metadata knowledge
to the measure. All those solutions constitute future work.
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