o
o

173

A Parallel Functional Implementation of
Range Queries ‘

Picter H. Hartel ~ Michiel H.M. Smid* Leen Torenvliet
Willem G. Vree '

University of Amsterdam, Departments of Mathematics and Cpmpuler Science
Plantage Muidergracht 24, 1018 TV Amsterdam

Abstract

We present two parallel versions of the range tree data structure and the
corresponding range query algorithm. These structures were {inplemented for
a modest number of points in a parallel functional language: - Performance
data for the queries were obtained by simulation of a parallél reduction ma-
chine. The resulting amount of parallelism is encouraging and gives hope for
a substantial gain in efficiency by parallel implementation of query algorithms
in large databases.

1 Introduction

The orthogonal range searching problem has received considerable attention, and
many data structures have been designed to solve this problem, obtaining various
trade-offs between the complexity measures.

Knuth [7} was the first who mentioned the problem:

Let S be a set of points in d-dimensional space and let ([l : up,],loa :
up,l,. .., [loq: upy) be a hyperrectangle. The orthogonal range search-
ing problem asks for all points p = (p1,P2,...,pa) i 'S such that
loy £ p1 S upy,los < pp < upyy..nylog < pa S upy. TR

The problem arises in many applications. As an example, consider a database of
major sites in the city of Amsterdam. My coordinates run from 1 to 100 in east~
west direction, and from 1 to 300 in north-south direction. One might seek a list
of all those sites in the city center with latitude between 40 a;nd 50 and longitude
between 120 and 150. :

*This author was supported by the Netherlands Organization for Scwntlﬁc Research (NWO).

174

Several data structures have been proposed to solve the problem. For a survey
of the state of the art in 1979 concerning the range searching problem, see Bentley
and Friedman [3]. More recent data structures, besides, range trees can be found
in Edelsbrunner [5], Chazelle [4] and Overmars [9)].

The data structure we consider for solving the range searching problem is the
range iree, due to Bentley [1,2] and Lueker [8]. A d-dimensional range tree for
a set of n points has size O(n{logn)?!), and on 2 sequential computer a range
query can be solved in O((log n)? + t) time, where t is the number of reported
answers. We shall give simple parallel implementations of such a range tree and
queries on the tree. In these implementations, O(logn) processors are needed,
each containing a part of the data structure of size O(n(logn)?~2) in its own local
memory.

The results show a new application of the notion of partitioning a data structure
into parts, as initiated in [10,11,12,13]. In these papers, a range tree is partitioned
in order to maintain it efficiently in secondary memory. In the present paper,
we also partition the data structure, and the parts are distributed among the
Processors.

The paper is organized as follows. In Section 2, we introduce range trees, and
we give the algorithm to solve range queries in these trees. In Section 3, we give
the two different partition schemes for range trees that we have implemented on a
parallel machine. In Section 4 we show how range trees and the sequential query
algorithm have been implemented in a functional programming language. Section
5 describes our parallel reduction architecture and the way in which the partitioned
range trees are mapped ontoa network of processors. Section 7 presents simulated
performance results that have been obtained by applying a few queries to a small
database. The last section provides a summary of our main results and outlines
future research.

2 The range tree data structure

First we consider the one-dimensional case. Let § be a set of n real numbers. We
store the elements of § in sorted order in the leaves of a perfectly balanced binary
search tree. Let [lo : up] be a query interval., Then we have to report all elements
pin S such that lo < p < up. The algorithm is as follows. We search in the binary
tree with both lo and up. Assume without of generality that Io < up. We have
to report the elements in all leaves that lie between the paths to lo and up. (In
general, lo will not be stored in the tree. We nevertheless speak about “the search
path to lo”. This is the path to the smallest element in the tree that is at least
equal to lo. Similarly, “the search path to up” refers to the path to the largest
element in the tree that is at most equal to up.) Let u be that node in the tree for
which the path to lo resp. up proceeds to the left resp. right son of u. Then for

175

each node v # u on the path from u to lo, for which the seardh proceeds to the left
son of v, we report the elements in all leaves in the right subtree of . Similarly,
for each node w # u on the path from u to up, for which the search proceeds to
the right son of w, we report the elements in the leaves of the left subtree of w.
On a sequential processor, this data structure has size O(n), and can be built
in O(nlogn) time. A range query can be solved in O(logn/+ t) time, where ¢ is
the number of reported answers.

Using these one-dimensional binary trees, we build d-diinensional range trees
(see [1,2,8]).

Definition 1 Let S be a set of points in d-dimensional space. A d-dimensional

range tree, representing the set S, consists of the following. For d = 1, it is a

perfectly balanced binary search tree, as described above. Lt d > 2.

1. There s a perfectly balanced binary tree, called the mafn tree, containing the
points of § in its leaves, ordered according to their firs} coordinate. Internal
nodes of this main tree contain information to guide sparches.

2. For any internal node v of this main tree, let S, be the set of points that
are in the subtree of v. Then node v contains a (poi ‘ﬂger to) an assccigted
structure, which is a (d — 1)-dimensional range tree 1101 the set §,, taking
only the last d — 1 coordinates into account. |

See Figure 1 for a pictorial representation of a 2-dimensi¢nal range tree. The
main tree T contains the points of §, ordered according fio their z-coordinate.
Each node v in the main tree contains a pointer to a binary tree that stores the
points of S, in its leaves, ordered according to their y-coordinate.

Range queries are solved as follows. Let ([loy : upy],...,[loa: upy]) be a query
rectangle, where d > 2. Then we begin by searching with bgth lo; and up, in the
main tree. Assume without of generality that loy < up,. Let u be that node in the
main tree for which lo; lies in the left subtree of u, and up, lies in the right subtree
of u. Then we have to perform a range query on the last d — 1 coordinates on all
points that lie between lo; and up, in the main tree. It ig sufficient to perform
(d — 1)-dimensional range queries in the associated structure of the right son of
each node v # u on the path from u to lo, for which the seargh proceeds to the left
son of v, and in the associated structure of the left son of each node w # u on the
path from u to up, for which the search proceeds to the right son of w. If these
associated structures are one-dimensional structures, we us¢ the query algorithm
given above, otherwise we use the same algorithm recursively.

In this query algorithm, each point in the query rectangle is reported exactly
once. The number of associated structures in which (d —|1)-dimensional range
queries are performed is at most twice the height of the main tree. In the one-
dimensional associated structures, we spend an amount of tijne that is bounded by

176

oy

Figure 1: A two-dimensional range tree

O(logn+ '), where t' is the number of answers found in that associated structure.
Since the height of the main tree is bounded by O(logn), it follows by induction
on d, that-—on a sequential computer—a query in a d-dimensional range tree takes
O{(log n)? 4 t) time, where ¢ is the total number of reported answers.

Let S(n, d) be the size of a d-dimensional range tree for a set of n points. We
prove by induction on the dimension d, that S(n,d) = O(n(logn)?'). This is
clearly true for d = 1. So let d > 2, and suppose the claim is true for d — 1.
Consider a fixed level of the main tree, and let vy,...,v,, be the nodes on this
level. Each node v; contains an associated structure for a subset S; of S. By the
induction hypothesis, each such associated structure has a size that is bounded by
O(]8:](log |S:])42) = O(|Sil(log n)4~2). The sets S; form a partition of S, hence
all associated structures on this level together have a size that is bounded by

m

o (Z 1S;|(log 'n,)d'z) =0 (n(log n)d‘z) .
=1 .

Since the main tree contains O(log n) levels, it follows that the entire range tree

has size O(n(logn)?~*), which proves the claim.

Using a method called presorting, the range tree can be built in O(n(log n)9-1)
sequential time, see [2].

Note 1: In the range tree, several associated structures are never queried. For
example, the associated structures of the root of the main tree and its two sons are
never used. Also, the associated structures of all nodes in the leftmost path in the
main tree (except the leaves) are never queried. Similarly for the rightmost path
in the main tree. Therefore, these associated structures can be omitted from the

177

tree. Then, the size of the data structure remains asymptotically the same. The
constant factor will, however, be decreased. (In practice, constant factors are, of
course, very important.) ‘

Note 2: In the query algorithm lo; may be —co and/or up; may be +oo0. In
the sequential case this would be treated as a degenerate query. However in the
parallel case it is advantageous not to do so, since more procesgors will be involved
in the query. ‘

3 Solving range queries in parallel

If we want to use a range tree to solve range queries on a parallel computer, we
partition the structure into parts, and we distribute these parts among a number
of processors. The complexity of a partition will be expressed by

1. the number of processors,
2. the amount of space each processor needs in its own local memory,
3. the time needed to solve a range query,

- 4, the amount of communication needed to solve a query.

For information about partitions, see {10,11,12,13]. In these papers partitions
appear in a different context. There, an efficient partition i§ one in which each
query visits only a small number of parts. In our case, however, this means that
only few processors are used to answer the query, or equivalently, most of the
processors do nothing,

We shall consider two different partitions. In both cases, we need O(logn)
processors, each containing an amount of O(n(log n)¥2?) data. (Note that a range
tree has size O(n(logn)?-*).)

3.1 The slice partition

In our first partition we store the main tree T in process‘lcir‘Pm, and for [=
0,1,...,logn, we store all associated structures of the nodes at level l in processor
. This gives us O(logn) processors, each having an amount of O(n(log n)*"?)
data. P

The query algorithm is as follows. Let ([loy : up,],...,[loq : up,]) be a query
rectangle. ‘

1. Processor P, determines—ifrom top to bottom—all noclés v in T in whose
associated structure a (d — 1)-dimensional range query has to be performed.

178

2. For each node v found in step 1, say at level {(v), command processor Py,
to perform a (d — 1)-dimensional range query in the associated structure of
v, with query interval ([lo; : up,],...,[los : up,]).

In step 1 of this algorithm, at each level in T at most two nodes are found.
Hence each processo. P; has tc perform at most two (d — 1)-dimensional range
queries. Since all these processors can do their work simultaneously, the time
required to solve the entire query is bounded by O((logn)?-! + #'), where ¢’ is
the maximal number of points found in any associated structure. Note that in
the ideal case almost all processors are involved in the query algorithm. In that

case, the value of ¢’ will—in general—be much smaller than the total number of
reported answers.

We now give a slight variation of the implementation of the slice partition. For
eachl =0,1,2,...,logn, we store all nodes of the main tree that are positioned
at the levels 0,1,...,!, together with the associated structures of the nodes at
level [, in processor P. Again this gives us O(log n) processors, each containing
an amount of O(n(logn)9-2) data.

Let ([los : up,],...,[log : up,]) be a query rectangle. Then all processors start
working simultaneously in the following way. Processor P, starts searching in the
upper [levels of the main tree for lo; and up,. If the search paths are the same
in the highest I — 1 levels, we are done. Otherwise, let u be the node—at a level
< I —2—for which the search for lo; resp. up, proceeds to the left resp. right son
of u. Then we follow the search for lo, in the left subtree of u. If this search
proceeds at the node v at level I — 1 to the left son, this processor performs a
(d — 1)-dimensional range query in the associated structure of the right son of v.
Similarly for the search for up,.

Again the query time is bounded by O({log n)?! 4), where #' is the maximal
number of points found in any associated structure. In this solution, all processors
perform the same algorithm, and no communication among processors is needed
(all processors can read the query rectangle from a common input).

3.2 The wedge partition

We first sketch how the range tree is distributed among the processors. We want
to give each processor an amount of O(n(logn)-2) data. The associated structure
of the root of the main tree T has size O(n(log n)?-?), and hence we store it in
one processor. Now consider the two sons v and w of the root of the main tree.
Look at the subtree consisting of v and its two sons. It takes, together with
its associated structures, O(n(logn)??) storage and, hence, can be stored in one
processor. Similarly for w. We have now removed three levels of T'; so we are left
with 8 sons. For each of these sons u, we make a part consisting of the tree with
root u, of depth 8. This subtree, with its associated structures, uses O(n(log n)d-2)

179

- space, and is stored in one processor. We have now removed 11 levels. So we are

left with 21! sons. For each son, we take a subtree of depth 2!, with associated
structures, which takes O(n(log n)?-?) storage, and put it in vne processor. Nert
we are left with 22 +1! sons, etc. Note that a node on level i|represents o(n/2)
points.]

We describe the above more precisely. We cut the main tree T' at level
|loglogn|. Each node on level |loglogn| is the root of a d-dimensional range
tree for ©®(n/logn) points. Hence such a range tree has size

-1 ‘
0 (—2— (log —n—)) = O(n(log n)*"?)
logn logn

o
We store each such tree, together with its associated structq.res in its own pro-

cessor. This gives us O(logn) processors, each having an amount of O(n(log)?2)
data. Let T' be the tree, consisting of the highest |loglog ;TLJ levels of T'. We
store T' in one processor. Let ag = 0, and apq = 2% -+ g for k > 0. Let
m = min{i > 0|e; > loglogn}. Now the associated structureF of nodes of T' are
distributed as follows. For each k, 0 < k < m — 1, there gre 2% parts.. Eaf:h
such part is a subtree of T", together with its associated SE uctures, having its
root at level ay, of depth 2. Each part has size O(n(log n)%2). We store all the

associated structures of one part in one processor. The number of parts in .which
T" is partitioned, and hence the number of processors we neeid in this way, is

m-1

k=0

Z 20k — 0(2""‘_‘) = O(2l°51°3“) = O(log nv .

So again we have O(log n) processors, each containing O(n(lo n)4-?) data.
The query algorithm is similar to the first one in Section 3.1. Now the pro-

cessor containing T" starts working, and it commands the

appropriate proces-

sors to perform (d — 1)-dimensional range queries in the ap{:propriatc associated
structures. It can easily be shown that a range query takes in the worst case

O((log n)® + t') time, where #' is the maximal number of poi
processor. (In a d-dimensional range tree having its root on !

nts reported by any
evel |loglogn) in T,

it takes O((log 2)4+1') = O((log n)?+1') time to answer a query.) Note that this

l . +
is the same amooi:nt of time as we need in the sequential alg

In this parallel version, however, the constant factor in the ‘

rithm of Section 2.
)((log n)?) term will

be smaller. Also, often the value of ¢/ will be much smaller thJB,n the total number

of reported answers.

The problem here is how much communication is needed. Let log*n be the
number of times we have to take the logarithm of n until the result is at most one.

It is shown in [11] that to answer a query at most 4log™n -+
needed, where the O(1) factor is a small constant. Also, the,
4 is very pessimistic. Finally, for all practical values of n, we;

.O(1) processors are
multiplicative factor
have log*n < 5. (In

180

fact, log"n < 5 for all n < 265536 o 10'°%%1.) Hence, it seems that here very little
communication is needed.

4 Functional implementation of range queries

We will describe the parallel implementation of the range query algorithm in two
steps. In the next section we present the implementation of the sequential search
algorithm. This implementation is used unmodified by the parallel range queries
that we will describe in subsequent sections. We use the functional programming

language SASL [14]. The essential properties of the language will be explained as
we proceed.

4.1 Sequential range query

The implementation of the range tree search algorithm requires two data struc-
tures: one to represent the range tree and the other to represent the query. The
search process is implemented by a set of three recursive functions and two auxil-
iary functions. Before discussing these functions we introduce the data structures.

A query is represented by a list of lower and upper bounds (loy : up, : loy:...:
()) on the intervals of the hyperrectangle. A query on a d-dimensional range tree
requires a 2 X d element bounds list. In SASL, lists are constructed from primitive
data objects or other lists by the infix operator colon (:). Primitive data objects
in SASL include numbers, booleans and the symbol (), which is to be pronounced
as “nil”. A construction whose last element is nil is usually called a list, one
that is not terminated by nil is called a tuple. A d-dimensional range tree for a
database with n records consists of a balanced binary tree with n leaves. A node is
represented by a 4-tuple (key : left : right : associated). The left and right fields
represent the left and right subtrees of the node; the key field gives the smallest
key value of any node in the right subtree and the associated field represents the
(d—1)-dimensional range tree for the structure that is associated with the current
node. If the dimension of the range tree is one, the associated structures represent
database record(s). Data base records with the same d-dimensional key are stored
as separate nodes.

The functions that operate on a range tree and a query are shownin Figure2. A
SASL program has the form of a set of recursive equations. Function application is
denoted by mere juxtaposition and parentheses serve to delineate subexpressions.
Function application has higher priority than any other operator. Conditionals
have the form condition — then part; else part.

A single function may have more than one defining equation. The appropriate
equation is selected based on matching actual arguments to patterns specified
by formal arguments. Patterns within one equation are tried from left to right

N

181

search () query = ()
search node () = node :
search (k:1:7r:a) query = k<lo — search r query;

up< k — search | gquery;
leaf 1 + — isearch a rest;
left 1 lo rest : right r up rest
WHERE

lo: up : rest = query

left () lo rest = () ,
left (k:1l:r:a) lo rest = k<lo — left r lo rest ;
leaf Ir — .search a rest;
left 1 lo rest ; search (assoc r) rest
right () up rest = () .
right (k:1:7r:a) up rest = up<k — ‘right 1 wup rest ;

leaf 1 + — séarch a rest;
search (assoc I) rest : right r up vest

()

. assoc ()
. assoc (k:l:r:a)

= a
leaf {) () = TRUE
leaf z y = FALSE

Figure 2: Range tree search algorithm

and equations are tried from top to bottom. The elements:‘.vhthat may occur in
patterns are list constructors, constants and variables. Constants and constructors
must occur as written. A variable matches anything and is bound to the data
it matches. Any expression may be adorned with a WHERE clause to name
commonly occurring subexpressions.

Once the data structures have been established, a range query is performed as
follows. The function search is initially applied to (the root of) a d—dimen?ional
range tree and a query with 2 x d bounds. Line 1 of the de:ﬁni.ng equation of
search specifies that if the root is nil, the result should also l'Je nil. If the query ‘
is nil, the current node is taken to represent database record(s;'), becau‘se ther'e are
no more dimensions to query (line 2). If neither case applies, we arrive at line 3
of the defining equation of search. Here the components of the root are isolated
by pattern matching (i.c. k is bound to the key of the node, I to the left subtree
etc.), such that by comparing the current key (k) to the lower{lo) and upper (up)
bound of the current query interval we may decide whether to continue searching

182

to the right (line 3) to the left (line 4) or in both directions. In the first two cases
the interval is either entirely to the left or entirely to the right of the key. In the
latter case the lower bound is to the left of the current key and the upper bound
to the right. Hence the current node satisfies the constraints of the current query
interval. The searching process now splits into two separate paths to be handled
by the functions left and right (line 6). These functions search the path to the left
respectively the right of the bifurcation point found by search. Each requires one
bound of the current query interval only.

Leafs have to be handled specially (line 5), because whenever the key of a leaf
falls within the current query interval, its associated structure must be searched.
Searching associated structures of lower dimension is performed by the function
search as before, but with two fewer elements in the list rest that will serve as
the new query. If the current dimension is the last to query (when rest is nil),
the associated structure of that leaf will be included in the database records to be
reported.

The auxiliary function assoc extracts the associated structure from a node.
The function leaf is a predicate that determines whether the current node is a
leaf. Only leaves have nil values for both their left and right descendants.

5 Parallel implementation of reduction

Before we can describe the parallel versions of the range query algorithm we need
to introduce the concept of our parallel reduction machine. The architecture that
we use is a collection of reduction processors, each equipped with its own local
memory and interconnected by a (fast) data communication network [6]. A fun-
damental property of this architecture is that the access time of a processor to its
own memory is much shorter than the access time to the other memories. These
two access times may differ by one to two orders of magnitude. To account for
this property we have decided not to support a global address space. A special
‘mechanism is provided to transport a subexpression from one local memory to
another. Our parallel implementation of SASL is based on lazy graph reduction.
Lazy evaluation means that arguments to a function are only computed at the
time they are needed by the computation. To perform lazy evaluation efficiently,
graph reduction shares unevaluated expressions as much as possible.

5.1 Job based parallel reduction

The architectural features discussed above limit the kind of expressions that can be

efficiently reduced in parallel. Only certain coarse grain parts of the program that

we call “jobs” are allowed to be copied to another processor for parallel evaluation.
A job is an expression with the following properties:

183

G < joby > < job, > ... < job, >

WHERE
jobl = F1 apn a2 ... Qipy
jObp = Fp a1 G612 ... Qim,

Figure 3: Parallel job annotation

1. it is self-contained (i.e., a subgraph that does not contain references to other
points of the graph);

2. its evaluation is needed to compute the final result;

3. the cost to evaluate the expression outweighs the cost involved in transporta-
tion. :

Job property 3 guarantees that parallel execution of a set cxf jobs will be fas.ter
than their sequential execution. Property 2 makes sure thaf the resu.lt of a job
is essentially used in the whole computation and so no actu;xl processing will be
wasted. Finally property 1 allows jobs to be evaluated in a se¢parate address space
and avoids the need for global garbage collection. : . .

In our implementation of parallel reduction, expressions ihat clas;mfy as a job
have to be marked by the programmer, using a special annotation (job bra.c.kets)
to be presented in the following section. The restriction of pa;tra.l%el reduction t'o
jobs defines a minimum granularity on which the data commupication of the archi-
tecture can be based. Overhead incurred by transmission prgftocol's can be spread
over the cost of transporting a whole subgraph. A disa.dvantaﬁ,e of job b.ased paral-
lel reduction on a local memory architecture is that sharing l:lf expressions cannot
be exploited globally across jobs. Within a job all sharing can be maintained.

5.2 Parallel reduction strategy

To avoid the major disadvantage of copying jobs (duplicati(?’!; of work), a special
reduction strategy has been devised on the job level. This stpﬁztegy guarantees that
a job is an application of a function to completely evaluf:.ted zlfrguments. Therefore
copying jobs can not result in the duplication of work in thegia.rgumer.xts. _—

We have implemented the parallel reduction strategy 1.)y & job annotation that
has to be given by the programmer. An example is shov.vn in ‘la“he program ﬁ'a.gmen.}t1
of Figure 3. The SASL syntax has been augmented with ‘]Oh annotation t.hroug
angular brackets. Apart from their meaning as an annotation of parallelism the
angular brackets serve the same purpose as normal pareni‘ih;e:?es.

The (angular) job brackets provide the only means in "the %anguage to an-
notate parallel jobs. A program is sequenﬁially evaluated until an expression

184

that contains job brackets is needed. In the case of Figure 3 the application
G < joby > ... < job, > is then suspended until the parallel evaluations of
joby,job,,...,job, have been completed. However, before the jobs are submitted
for parallel evaluation, all arguments a; a;, ... aim; of each job,; are sequentially
evaluated. Now copying the evaluated arguments aij, as part of the jobs, cannot
result in extra work. If ay @iz ... aim, would have been evaluated in parallel, then
any function application shared between the a;; would have been copied, This
would result in the duplication of work.

5.3 Parallel range queries

On an architecture without a globally accessible store, it is normally difficult to
decide how to distribute common data over a network of cooperating processors,
because replication of common data can be costly. In the case of range trees there
is already a large amount of redundancy in the data structures. Hence we can
afford to invest a little more space to solve the distribution problem. In case of
the wedge partition the extra space is O(logn). Theslice partition does not require
extra space because the subtrees in each part have to be grouped into a single data
structure anyway.

For both kinds of range tree partitions we have chosen not only to store the
data structures that represent a part itself but also to copy the set of access paths
from the root of the main tree to the nodes within the part. All structures beyond
a part are omitted. Since the access paths to most parts lead through other parts
we must make sure that the same result is reported only once. This is achieved
by removing the associated structures from nodes on the access paths. Consider
as an example the unpartitioned main tree as shown in Figure 4-a. (We argued
at the end of Section 2 that several nodes of the main tree do not have to store
an associated structure.) We will show how to construct the slice partition of
this tree. The processor appointed to report records in the lowest layer (part 3)
requires access to the root and all its right descendants, but not the left subtree of
the root. In Figure 4-b the associated structures at level 2 are therefore pruned as
well as the left subtree of the root. The main tree for the processor appointed to
search layer 2 is shown in Figure 4-c. It has been constructed in a similar fashion.

The organization as sketched above allows all processors to start working at
the same time on the query to be answered. In the beginning they will all be doing
exactly the same work, since the root of the main tree must first be investigated.
When a particular processor enters its own part, other processors will find that the
subtree they are trying to enter is either not present and therefore cease to follow
such a dead end, or find it devoid from associated structures because they must
follow a path to a part further down the main tree. Because the parts are disjoint
with respect to the associated structures, the answers reported by the individual
processors must be gathered to form the total result of the query.

185

0, ‘ 0,

VAN AN
\

O,

N N AL

O/ Q—a —~a /3\ [l O—K
- O—=a O—+a 4\ zé ‘ A L

(a) original tree (b) part 3 . (c) part 2

Figure 4: Original tree and two derived slices (“a” is an associated structure)

The construction of parts as described above allows us ta apply the sequential
search functions of Figure 2 unmodified to each of the parts in parallel. Annotated
by job brackets the parallel main program is as shown in Figyre 5. The figure al‘so
shows that instead of applying the function search to a single query, a list of queries
is used. The function map applies the partial application (aie}zqrch part;) to each
element of the list of queries. In this way experiments with xnpltiple queries can
be performed and a single query can be answered by using & ‘siz‘ngleton query_list,

gather <map (search part;) query list> --. <map (search partp) query_list>
WHERE v
gather resulty --- result, = resulty: --- : result,

map f () = 0 |
map f (head:tail) = f headimap f tail

Figure 5: Parallel main program for a list of dataliase queries

6 Results

We have run experiments on a simulator of our architecture fwith a 2-dimensional
database of 1024 records and three sets of queries. The datatase descri_bes 1024
major sites (all coordinate pairs are different) in the city if ‘Amsterdam. Map
coordinates run from 1 to 100 in east-west direction (first dimension) and from 1
to 300 in north-south direction (second dimension). Most sifes are located in the
city center. . ' .

The experiments assume that a sufficient number of processors is available
to absorb all parallelism. With a small database this is realistic but for a re'al
database some parts will have to be grouped onto a single processor. We will
not pursue this issue in the current paper. Based on this"assumption we may

186

calculate speedup results by comparing the time necessary to perform all queries
sequentially to the time that the longest job needs to complete. As an indication
of datacommunication cost we count the number of coordinates that are sent to
the processor running the longest job and the number of answers this processor
returns.

Figure 6 shows the results for the three sets of queries and both partitioning
methods. The last column pertains to a single typical query (center). Neither of
the partitioning methods can achieve a significant speedup for this query. When
queries are processed in batches the situation becomes different. The first two
columns in Figure 6 (east-west and north-south) show the speedups that we have
measured when processing a list of queries. Instead of constructing a list of ran-
dom queries we preferred to analyze two extreme situations: one in which queries
generate a maximum amount of parallelism (i.e., all processors contribute answers)
and the other in which only a few processors are active.

In case of the slice partition all processors will be active when the query interval
in the first dimension spans the entire range of points in the data base. On the
other hand only a few parts will be active if each query specifies a narrow range
in the first dimension. The corresponding results are shown in the columns east-
west and north-south respectively. Both sets of queries specify a list of congruent
rectangles, narrow in one and wide in the other dimension. The first set of queries
contains 30 rectangles running east-west over the entire map area and the second
contains 26 rectangles that run north-south. Both sets of queries cover the entire
map area, with some overlap.

It is more difficult to control the amount of parallelism in case of the wedge
partition. To enable us to make comparisons we applied the same sets of queries
with wedge partition as we did before with slice partition. It is interesting to note
that the north-south set of queries (narrow in the first dimension) of which each
query only visits one part of the partition turns out to yield best results, because
the queries in the list activate different parts and together they use most of the
available processors. On the other hand the east-west set of queries yields lower
speedup because each query always visits the same processors, such that using a
list of queries does not improve the processor utilization.

The communication involved in the parallel range queries is negligible because
only the list of queries has to be sent to all processors and the lists of results have
to be returned. Each processor has its private copy of the relevant parts of the
data base.

The experiment did not show the inferior behaviour of the wedge partition
compared to the slice partition, as could be expected from the worst-case time
bounds derived in section 3. (For 1024 data points the performance ratio of both
mehtods is (logn)*/(logn)?! ~ 10.) This may be due to special bias of the
experimental data or the worst-case time bound may be overly pessimistic. To
investigate this we plan to increase the size of the data base and/or to develop a

187
query east—west | north-south | center
communicated coordinates 4 x 30 4 %26 4x1
slice partition (8 processors in total)
number of reporting processors 6 3 3
number of answers busiest processor 704 468 27
speedup 3.6 1.7 1.6
wedge partition (11 processors in total)

number of reporting processors 6 8 2
number of answers busiest processor 166 421 128
speedup 2.6 4:,2 1.3

Figure 6: Performance summary of parallel range queries

statistical model for expected case analysis. .
Memory usage is not shown in Figure 6 because it is the same (&(n)) for all

processors in both cases.

7 Conclusions and future research

We have presented a parallel implementation of a well-known query mechanism
used in many database applications. We obtained encouraging spefadup f‘igures
with a small database, which gives hope for a substantial gain in efficiency in real
life applications. ‘

The idea of applying functional languages to data.basesv is not a new one,
However—to our knowledge—the strategy up till now has beﬁn to implement the
database’s query language in a functional style. Here we proposed to implement
the index structure in a functional language independent of the nature of the query

age lying above this structure.

lan%\lleghaw{e cgonsidered two different partition schemes, the “wedge and the slif:e
partition. If we perform the queries in a batched way, the slice partition gives in
general the best results—notwithstanding the results represgnted by thc.a chond
column in Figure 6, which are due to the particular type of query. T.hJs is not
surprising, since in this case the number of processors that are l'nvolved in a single
query can be logarithmic. In the wedge partition, only O(lqg T) processors are
needed for a query.

If the number of answers in the first coordinate is small, however, the Wedg‘e
partition gives much better results than the slice partition _doe?. The reason is
that in this case, associated structures are needed that are low in the main tree,
and many of these associated structures are stored in different processors. Hence,
to perform a number of batched queries, processing a query does not have to be
postponed until the previous query is completed.

188

In the slice partition, all associated structures that are low in the main tree,
are stored in only a few processors. Hence many queries have to wait until the
previous ones are finished.

We expect that for larger n, the slice partition will perform better than the
wedge partion, since the number of processors that are needed in the slice partition
for a query—which can be proportional to log n—grows faster than the number of
processors that are needed in the wedge partition—which is only proportional to
log" n.

In the future, we will extend this work, by experimenting with higher dimen-
sional queries and lager databases. We also plan to extend the parallel implemen-
tation such that points can be inserted and deleted in the range tree. Finally, we
will investigate whether it is possible to apply the ideas of partitioning to parallel
implementations of other data structures,

References

(1] J.L. Bentley. Decomposable searching problems. Inf. Proc. Lett. 8 (1979), pp.
244-251,

(2] 1.L. Bentley. Multidimensional divide-and-conguer. Comm. of the ACM 23
(1920), pp. 214-229.

[3] J.L. Bentley and J.R. Friedman. Data structures for range searching. Com-
puting Surveys 11 (1979), pp. 397-409.

[4] B. Chazelle. A functional approach to data structures and its use in multidi-
mensional searching. SIAM 1. Comput. 17 (1988), pp. 427-462.

[5] H. Edelsbrunner. 4 note on dynamic range searching. Bull. of the EATCS,
Number 15 (1981), pp. 34-40.

(6] P.H. Hartel and W.G. Vree. Parallel graph reduction for divide-and-conquer
applications, part II: program performance. PRM project internal report D-
20, Department of Computer Science, University of Amsterdam, 1988,

[7] D.E. Knuth. The Art of Computer Programming, Vol. 3, Sorting and Search-
ing. Addison-Wesley, Reading, Mass., 1973.

[8] G.S. Lueker. 4 data structure for orthogonal range queries. Proc. 19-th An.
nual IEEE Symp. on Foundations of Computer Science, 1978, pp. 28-34.

[9] M.H. Overmars. Efficient data structures for range searching on a grid, J. of
Algorithms 9 (1988), pp. 254-275.

189

(10] M.H. Overmars and M.H.M. Smid. Maintaining range irees in secondary
memory. Proc. 5-th Annual STACS, Springer Lecture Notes in Computer
Science, Vol. 294, Springer Verlag, 1988, pp. 38-51. |

[11] M.H. Overmars, M.H.M. Smid, M.T. de Berg and M.J.|van Kreveld. Main-
taining range trees in secondary memory, part I: partition. Report FVI-87-14,
Department of Computer Science, University of Amsterdam, 1987. To appear
in Acta Informatica.

[12] M.H.M. Smid. General lower bounds for the partitioning of range trees. ITLI
Prepublication Series CT-88-02, University of Amsterdaim, 1988.

(13] M.H.M. Smid and M.H. Overmars. Mainiaining range irees in secondary
memory, part II: lower bounds. Report FVI-87-15, Department of Computer

Science, University of Amsterdam, 1987.

[14] D.A. Turner. 4 new implementation technique for applicative languages. Soft-
ware Practice and Experience 9 (1979), pp. 31-49.

[15] W.G. Vree and P.H. Hartel. Parallel graph reduction for diviclie-and-conquer
applications, part I: program transformation. PRM project internal report
D-15, Department of Computer Science, University of Amsterdam, 1988.

