Developments in testing
transition systems

Ed Brinksma, Lex Heerink and Jan Tretmans
Tele-Informatics and Open Systems group, Dept. of Computer Science
Unwersity of Twente, 7500 AE Enschede, The Netherlands

{brinksma,heerink,tretmans} @cs.utwente.nl

Abstract

This paper discusses some of the developments in the theory of test generation
from labelled transition systems over the last decade, and puts these devel-
opments in a historical perspective. These developments are driven by the
need to make testing theory applicable to realistic systems. We illustrate the
developments that have taken place in a chronological order, and we discuss
the main motivations that led to these developments. In this paper the claim
is made that testing theory (slowly) narrows the gap with testing practice,
and that progress is made in designing test generation algorithms that can be
used in realistic situations while maintaining a sound theoretical basis.

1 INTRODUCTION

Testing and verification  Testing and verification are complementary tech-
niques that are used to increase the level of confidence in the correct function-
ing of systems as prescribed by their specifications. While verification aims at
proving properties about systems by formal manipulation on a mathematical
model of the system, testing is performed by exercising the real, executing
implementation (or an executable simulation model). Verification can give
certainty about satisfaction of a required property, but this certainty only
applies to the model of the system: any verification is only as good as the
validity of the system model. Testing, in practice being based on observing
only a small subset of all possible instances of system behaviour, is usually
incomplete: testing shows the presence of errors, not their absence. Since test-



ing can be applied to the real implementation, it is useful in those cases when

a valid and reliable model is not present.
There is an apparent paradox between the attention that verification and

testing get in usage and research. Whereas most of the research in the area of
distributed systems is concentrated on verification, testing is the predominant
technique in practice. People from the realm of verification very often consider
testing as inferior, because it can only detect some errors, but it cannot prove
correctness; on the other hand, people from the realm of testing consider
verification as impracticable and not applicable to realistically-sized systems.

Protocol conformance testing Protocol conformance testing is concerned
with checking protocol implementations against their specifications by means
of experimentation. Tests are derived from the protocol specification, then
applied to the implementation under test, and, based on observations made
during the execution of the tests, a verdict about the correct functioning of
the implementation is given. Since conformance testing is a mainly manual,
laborious and time-consuming process, automating the testing process has
always received much attention. To automate the generation of test cases the
protocol specification must be in a form amenable to manipulation by tools.
Natural language specifications do not serve this purpose; formal languages
do. The availability and increasing use of formal methods has resulted in
theories, methods and pragmatics for the (semi-)automatic derivation of tests
from formal specifications. In the area of test execution there are currently
commercial protocol-tester tools available that can execute tests for many
different protocols. For such tools to work properly it is important that test
cases can be specified precisely and unambiguously. The standardised test
specification language TTCN [22, part 3] is widely used for this purpose.

Conformance testing and formal methods  Starting point for protocol
conformance testing based on formal methods is a formal specification, e.g.,
a specification written in one of the currently standardised formal description
techniques Estelle [20], LOTOS [21], or SDL [10]. Correctness and validity
of this specification is assumed, and is not considered as part of conformance
testing. Furthermore, there is an implementation, referred to as the implemen-
tation under test (IUT), which is treated as a black box, exhibiting external
behaviour. The IUT is a physical, real object that is in principle not amenable
to formal reasoning. We can only deal with implementations in a formal way,
if we make the assumption that any real implementation has a formal model
with which we could reason formally. This formal model is only assumed to
exist, but it need not be known a priori. This assumption is referred to as
the test hypothesis [3, 39, 23]. The test hypothesis allows to reason about
implementations as if they were formal objects, and, consequently, to express
conformance of implementations with respect to specifications by means of a
formal relation between such models of implementations and specifications.



Such a relation is called an implementation relation [8, 23]. Conformance test-
ing now consists of performing experiments to decide whether the unknown
model of the implementation relates to the specification according to the im-
plementation relation. The experiments are specified in test cases. Given a
specification, a test generation algorithm must produce a set of such test
cases, called a test suite. The test suite must be sound, i.e., it must give a
negative verdict only if the implementation is incorrect. Additionally, the test
suite must be as complete as possible, i.e., if the implementation is incorrect,
it must have a high probability to give a negative verdict.

Many different approaches to algorithmic test generation, based on differ-
ent protocol specification formalisms, have been undertaken. Two main ap-
proaches can be distinguished: those based on Finite State Machines (FSM)
and those based on Labelled Transition Systems (LTS). FSM-based protocol
testing has been inspired by functional hardware testing and is based on mod-
elling the behaviour of a protocol as a Mealy machine (Finite State Machine
FSM) [5, 16, 27, 26, 30, 37, 46].

Goal and overview LTS-based testing has its basis in the formal theory
of testing equivalences for labelled transition systems and process algebras,
which is based on the formalisation of the notion of test and observation in
[13, 12], and which continues with [1, 33, 24, 17].

The goal of this paper is to describe the developments in the theory for
test generation for labelled transition systems, as they have led to the current
status. We will show that the approach that started from practice and the one
that started from theory are now at the point of meeting each other, leading
to practical test generation algorithms that have a sound theoretical basis.
One indication for this claim is that the algorithm implemented in TVEDA
can be given a theoretical basis in the theory of refusal testing [33, 24] by
adding to this theory a distinction between input and output actions. This
was shown using the theory of Input/Output Transition Systems (IOTS) in
[41]. The model of IOTS can be used very well to describe SDL and TTCN
processes. Recent results [19] also link the notion of channel (as in SDL) or
Point of Control and Observation (PCO) into the LTS-based testing theory.

Section 2 introduces LTS and fixes notation, and section 3 introduces test-
ing concepts for LTS as described by, e.g., [13, 12]. Next, section 4 presents
a testing theory for LTS that uses these concepts, and shows how tests can
be constructed that are able to check correctness of implementations. Since
this theory assumes that implementations communicate in a symmetric man-
ner with their environment, which is unrealistic in practice, a more refined
testing theory, based on IOTS, is presented in section 5. Section 6 discusses a
refinement of the IOTS model that takes the distribution of PCOs of imple-
mentations into account. This theory can serve as an unified model in which
both the traditional testing theory of section 3, and the refined theory of
section 5, can be expressed. Section 7 ends with conclusions and further work.



2 LABELLED TRANSITION SYSTEMS

In this paper we will concentrate on a testing theory for labelled transition
systems. We will use this formalism to model the behaviour of specifications,
implementations and tests. A labelled transition consists of nodes and tran-
sitions between nodes that are labelled with actions. Formally, a (labelled)
transition system (LTS) over L is a quadruple (S, L, —, so) where

® S is a (countable) set of states;

® [ is a (countable) set of observable actions;

® »C Sx(LU{r}) x S isa set of transitions; and
® sy € S is the initial state.

The special action 7 ¢ L represents an unobservable, internal action. We re-
strict to (strongly) convergent transition systems, i.e., transition systems that
are not able to perform an infinite sequence of internal transitions. The class
of all convergent transition systems over L is denoted by L7S(L), and the
set of all finite words over L is denoted by L*. In order to describe the se-
quences of actions in L and P(L) that can be performed from a given state
(where P(-) denotes the powerset operator on sets) we use the following ab-
breviations, with p = (S, L, —,sp) a labelled transition system such that
s,s' € S, € P(L)ULU{r},a,; € P(L)U L and o € (P(L) UL)*.

(s,\, ") €=, ifAe LU{r}
5258 =def § s=¢5 and Vpe AU{r},Vs": (st 5"),
if AeP(L)

5 ArAztedn g o =def 350,51,...,80 18 = So Myg A2y Anyg o
5 Ardzrdny =gef 38’ s AAzeedn y of
s=s' =def § =8 or s =Ty

& ! _ J . € o € i
§—S§ —def 151,82:8=—>81 —>S2—S§

a1-Qg-. [e3} a2 Qxn 1]
§=—i=gn, of =def 350,51,..,8n 18§ =85 =281 == ... —> S, = §
s = =def 38" : s=s'

Self-loop transitions of the form s —4+ s where A C L are called refusal transi-
tions. In this case A is called a refusal of s. Such a refusal transition explicitly
encodes the inability to perform any action in A U {7} in state s. A failure
trace consists of a sequence over refusal transitions —4» with A C L and
‘normal’ transitions £ with u € LU{7} where an abstraction from internal
actions 7 is made. For readability we do not distinguish between a labelled
transition system and its initial state, e.g., p == =def S0 == where s is the
initial state of labelled transition system p. If p== where o € L* then o is
called a trace of p. For p € LTS(L) we will use the following definitions.



f-traces(p) =qef {0 € (P(L)UL)* | p=}

traces(p) =gqef {0 € L* | p=}

pafter o refuses A =4y Ip' :p==p' and Vp € AU {7} : ~(p %)
p after o deadlocks =4, p after o refuses L

der(p) =4ef {p' | o € L* : p=>p'}

init(p) =aef {p € LU{7} | I : p-p'}

Pafteroc =4 {p' | 3p € P: p==p'} where P is a set of states

p is deterministic iff Vo € L* : | {p} aftero | <1

p has finite behaviour iff AN € N : Vo € traces(p) : |o| < N

©oON DO W=

In testing, an external observer experiments on an implementation in order
to unravel its (unknown) behaviour. A test specifies the behaviour of an ob-
server, and we assume that tests are modelled as LTS. Tests can be run, or
executed, against implementations. From the execution of a test against an
implementation observations can be made. These observations are then com-
pared with the expected observations that can be obtained by running the
same test against the specified behaviour, and a verdict (success or failure) is
assigned. Failure should indicate that there is evidence that the implementa-
tion did not behave correct, otherwise success should be assigned. Section 5
treats test execution in more detail.

3 TESTING RELATIONS FOR TRANSITION SYSTEMS

In order to decide the correctness of implementations a clear correctness cri-
terion is needed: when is an implementation considered correct with respect
to its specification? In the context of labelled transition systems many pro-
posals for such correctness criteria in the form of implementation relations
have been made [17]. One of the first significant implementation relations was
observation equivalence [29]. Observation equivalence is defined as a relation
over states of transition systems by means of (weak) bisimulation relations.
Informally, two systems p,q € LTS(L) are called observation equivalent, de-
noted by p = g, if for every trace ¢ € L* every state that is reachable from p
after having performed trace o is itself observation equivalent to some state
of ¢ that is also reachable after having performed trace o, and similarly with
p and ¢ interchanged. Observation equivalence intuitively captures the no-
tion of equivalent external behaviour of systems; two systems are observation
equivalent if they exhibit “exactly the same” external behaviour. See [29] for
a formal definition of observation equivalence.

Instead of relating behaviours intensionally in terms of relations over states
and transitions between states, it is also possible to relate system behaviour
in an extensional way; what kind of systems can be distinguished from each
from each other by means of experimentation? [13, 12] were first in compar-



ing system behaviour in this way by explicitly modelling the behaviour of
experiments, and relating the observations that can be made when these ex-
periments are applied to systems. In general, for a set of experiments U, and
a set of observations obs(u, p) that experiment v € U may cause when system
p is tested, they define a so-called testing relation over systems by relating the
observations obs(u,i) and obs(u, s) that are made when experiments v € U
are carried out against the systems ¢ and s. Formally, such testing relations
are defined as follows

i conforms-to s =g Yu €U : 0bs(u,i) C obs(u,s) (1)

where conforms-to denotes the testing relation that is defined. By varying
the set of experiments U, the set of observations obs and the relation C be-
tween these sets of observations, different testing equivalences can be defined.
[13, 12] discuss, and compare, several different testing relations by varying
the set of observations obs and the relation C between these sets of observa-
tions. The theory described in [13, 12] forms the basis for testing theories for
transitions systems. We will discuss three instances of such testing relations
that are relevant for the remainder of this paper, viz., observation equivalence,
testing preorder and refusal preorder, and use a formalisation following [39]
that slightly differs from the original formalisation given in the seminal work
of [13, 12].

Observation equivalence  [1] shows that observation equivalence can be
characterised in an extensional way (i.e., following the characterisation of
equation (1)), under the assumption that at each stage of a test run infinitely
many local copies of the internal state of the system under test can be made,
and infinitely many experiments can be conducted on these local copies. In-
tuitively, this means that at each stage of a test run the implementation must
be tested against all possible operating environments. These assumptions are
quite strong and too difficult to meet in practice. Therefore, observation equiv-
alence is, in general, too fine to serve as a realistic implementation relation,
and weaker notions of correctness between implementations and specifications
have to be defined.

Testing preorder In testing preorder it is assumed that the behaviour of
external observers can, just as the behaviour of implementations and specifi-
cations, be modelled as transition systems (that is, ¥ = LTS(L)) and these
observers communicate in a synchronous and symmetric way with the system
under test [13, 12]. From an observer u and system under test p, the binary
infix operator || creates a transition system u || p that models the behaviour
of u experimenting on p in a synchronous way. The transitions that u || p can
perform are defined by the smallest set of transitions induced by the following
inference rules
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Using || a testing preorder on transition systems [13] can be defined in an
extensional way following equation (1). Intuitively, an implementation ¢ is
testing preorder related to specification s, denoted as i < s, if for every
external observer u that is modelled as a transition system, each trace that
u || @ can perform is preserved by u || s, and each deadlock of u || 7 is
preserved by u || s. Formally, testing preorder <;. is defined by

i <te 5 =qe YueLTS(L): obsi(u,1)
and obs.(u,1)

where 0bs;(u,p) =gef {0 € L* | (v || p)==} and obs.(u,p) =4ef {0 €
L* | (u || p) after o deadlocks}. The relation <;. can be intensionally
characterised by ¢ <4 s iff Vo € L*,VA C L : i after o refuses A implies
s after o refuses A. Testing preorder allows implementations to be “more
deterministic” than their specification, but it does not allow that implementa-
tions “can do more” than is specified; in this sense the specification not only
prescribes what behaviour is allowed, but also what behaviour is not allowed!
The relation <. serves as the basic implementation relation in many testing
theories for transition systems.

Refusal preorder  Refusal preorder can be seen as a refinement of testing
preorder, and is defined extensionally in the theory of refusal testing [33].
Instead of administrating the successful actions that are conducted on an
implementation by an observer, refusal testing also takes the unsuccessful
actions into account. The difference between refusal preorder and testing pre-
order is that observers can detect deadlock, and act on it, i.e., in refusal
preorder observers are able to continue after observation of deadlock. For-
mally, we model this as in [24] by using a special deadlock detection label
0 &L (ie,U = LTS(L U {6}), cf. equation (1)) that is used to detect the
inability to synchronise between the observer w and system under test p.
The f-action is observed if there is no other way to continue, i.e., when p
is not able to interact with the actions offered by u. The transition system
ul| p € LTS(L U {6}) that occurs as the result of communication between a
deadlock observer u € LTS(L U {#}) and a transition system p € LTS(L) is
defined by the following inference rules.

u T u' u-2u p-%p
T ——- 7 (@€L)
ullp—Tru']lp ullp-=u']lp

p-Tsp u-Lu',u "5, p—f init(u) Ninit(p) = 0

ullp—"rullp uw]lp-Hu'llp



Observations made by an observer u by means of the operator || now may
include the action 6. The testing preorder induced for observers in L7S(L U
{6}) is called refusal preorder, and is defined in the style of equation (1):

i <. 8 =a Yu€LTS(LU{B}): obs? (u,i) C obs?(u, s)
and o0bs? (u,1) C obs? (u, s)

where obs®(u,p) =45 {0 € (LU{O})* | (u]]| p) after o deadlocks}
and obs?(u,p) =g {0 € (LU{0})* | (u]| p)==}. Informally, i <, s
if, for every observer u € LTS(L U {8}), every sequence of actions that may
occur when w is run against ¢ (using ||) is specified in u ]| s; ¢ is not al-
lowed to accept, or reject, an action when communicating with u, if this is
not specified by s. Refusal preorder is strictly stronger than testing preorder,
i.e., <;C<¢. Refusal preorder is characterised by inclusion of failure traces:
i <, s iff f-traces(i) C f-traces(s).

We emphasize that implementation relations that abstract from the non-
deterministic characteristics of protocols (e.g., trace preorder or trace equiva-
lence) are, in general, not sufficient to capture the intuition behind correctness
of systems. Even if protocols are defined as deterministic automata, their joint
operation with underlying layers, such as operating systems, generally will be-
have in a nondeterministic manner.

4 CONF TESTING

As shown in section 3 [13, 12] define a correctness criterion (in terms of a test-
ing relation) by providing a set of experiments (I{), a notion of observation
(0bs), and a way to relate observations of different systems (C) (equation (1)).
In test generation the opposite happens: for some implementation relation a
set of tests U has to be designed that is able to distinguish between correct
and incorrect implementations by comparing the observations that the im-
plementation produces with the expected observations when the same test is
applied to the specification. The first testing theory that treats the problem
of test generation in this way is [6, 7].

In [6, 7] a method is presented to derive test cases from a specification that
is able to discriminate between correct and incorrect implementation with re-
spect to the implementation relation conf. The relation conf can be seen as
a liberal variant of <;.. The difference with < is that the implementation
may do things that are not specified; in conf there is no need to perform
any robustness tests! Since in conf there is no need to check how the imple-
mentation behaves for unspecified traces, test generation algorithms for conf
are better suited for automation than test generation algorithms for <. In
particular, for a finite behaviour specification this means that only a finite



number of traces have to be checked. Formally, the relation conf is defined as
<¢e restricted to the traces of the specification.

iconfs =g YueLTS(L): obst(u, 1) N traces(s)
and obs.(u, i) N traces(s)

C obsy (uv S)

c ObSC(U, 5)

In literature, this relation is usually known in its intentional characterisation:
i confs iff Vo € traces(s),YA C L* : i after o refuses A implies s
after o refuses A. Informally, the conf relation indicates that an implemen-
tation is correct with respect to its specification if, after executing a speci-
fied trace, the implementation is not able to reach an unspecified deadlock
when synchronised with an arbitrary test process. [6, 7] develops a theory
for the construction of a so-called canonical tester from a specification. The
canonical tester T'(s) of s is a process that preserves the traces of s (i.e.,
traces(T(s)) = traces(s)) and that is able to decide unambiguously whether
an implementation ¢ is conf-correct with respect to specification s, i.e.,

Vi€ LTS(L) : i conf s iff i conf-passes T(s)

where ¢ conf-passes T(s) =qe Yo € L* : (i || T(s)) after o deadlocks
implies 7T(s) after o deadlocks. This is done by running T'(s) against
implementation ¢ until it deadlocks, and checking that every deadlock of 7 ||
T'(s) can be explained by a deadlock of T'(s); if T'(s) did not end in a deadlock
state, evidence of non-conformance with respect to conf has been found. The
elegance of conf-testing is nicely illustrated by the fact that the canonical
tester of a canonical tester is testing equivalent with the original specification;
T(T(s)) ~te s (where = is the symmetric reduction of <) [6].

In [2, 45] a procedure to construct canonical testers has been implemented
for finite Basic LOTOS processes, that is, from a finite behaviour LOTOS
specification s without data a tester T'(s) is constructed that is again rep-
resented as a finite behaviour Basic LOTOS process. [35] has extended this
to Basic LOTOS processes with infinite behaviour. A procedure for the con-
struction of tests from a specification related to the theory of canonical testers
in such a way that these tests preserve the structure of the specification is
sketched in [34]. In [25] a variant of the theory of canonical testers is discussed
for a transitive version of the conf relation. [15] derives, and simplifies, canon-
ical testers using refusal graphs. Figure 1 presents an example of a process
and its canonical tester.

The theory of canonical testers is applicable to situations where the system
under test communicates in a symmetric and synchronous manner with an ex-
ternal observer; both the observer and the system under test have to agree on
an action in order to interact, and there is no notion of initiative of actions.
Since asynchronously communicating systems can be modelled in terms of
synchronously communicating systems by explicitly modelling the intermedi-



Figure 1 Canonical testers.

ate communication medium between these two systems conf-testing can also
be applied to asynchronously communicating systems (e.g., the queue systems
discussed in section 5). Consequently, conf-testing is widely applicable to a
large variety of systems.

However, the theory of canonical testers also has some difficulties that re-
stricts its applicability in practice. We will mention the two important ones
in our view. The first difficulty has to do with the large application scope
of the theory of canonical testers. In general, the more widely applicable a
theory becomes, the less powerful this theory becomes for specific situations.
In particular, communication between realistic systems is, in practice, often
asymmetric. By exploiting the characteristics of such asymmetric commu-
nication, a more refined testing theory can be developed. The next section
discusses in detail how this can be done.

Another drawback of the theory of canonical testers is its difficulty to handle
data in a symbolic way. Since in most realistic applications data is involved,
it is necessary to deal with data in a symbolic way in order to generate canon-
ical testers in an efficient way. In [14, 39] some problems with the derivation
of canonical testers for transition systems that are specified in full LOTOS
(i.e., LOTOS with data) have been identified, such as an explosion in the data
part of the specification. In particular, the derivation of canonical testers in a
symbolic way is complicated by the fact that not only the data domains and
the constraints imposed on the data values that are communicated need to be
composed in a correct way, but also the branching structure of the specifica-
tion (and thus of the canonical tester itself) needs to be taken into account.
The problem is that the test generation algorithm for conf uses powerset
constructions that are, in principle, able to transform countable branching
structures into uncountable branching structures.

5 CHANGING THE INTERFACES

Several approaches have been proposed to model the interaction between im-
plementations and their environment more faithfully, e.g., by explicitly con-
sidering the asymmetric nature of communication with the aim to come to a



testing theory that is better suited for test generation in realistic situations.
Moreover, since the standardised test notation TTCN [22, part 3] uses inputs
and outputs to specify tests, theories that incorporate such asymmetric com-
munication allow the generation of tests in TTCN. In this section we present
a short overview of some of the approaches that have been proposed in this
area, and we will elaborate on one of them.

Apply asynchronous theory to transition systems  Much research has
been done in systems that communicate in an asynchronous manner (e.g.,
[4]), and some languages used in protocol conformance testing are based on
asynchronous paradigms (e.g., SDL [10] , Estelle [20], TTCN [22, part 3]).
[9] gives a short overview of translation between labelled transition systems
and Mealy machines, which can be used as an underlying semantic model for,
e.g., SDL [10]. In particular, research has been done in transforming transition
systems without inputs and outputs into FSMs with inputs and outputs, and
deriving tests for these FSMs (e.g., [18]). However, many of these develop-
ments lack a solid, formal basis, and their use in practice is restricted.

Queue systems In [42] asynchronous communication between an imple-
mentation and its environment is modelled explicitly by the introduction of
an underlying communication layer. This layer essentially consists of two un-
bounded FIFO queues, one of which is used for message transfer from the
implementation to the environment, and the other for message transfer in the
opposite direction (figure 2). Such systems are called queue systems.

IUT

environment

Figure 2 Architecture of a queue system.

In order to formalise the notion of queue systems the set of labels L is
partitioned in a set of input labels L; and a set of output labels Ly (i.e.,
L=L;ULy,LrN Ly = 0). Input labels are supplied from the environment
via the input queue to the IUT, and, similarly, output labels run via the
output queue. In particular, [42] is interested in what kind of systems can
be distinguished from each other in the asynchronous setting sketched above,
and how this compares to the synchronous setting. They therefore define a



new implementation relation Sg that captures whether two systems are <;.-
related when tested through the queues. Formally,

i <25 =ap Qi) <te Q(5)

where Q(p) denotes the transition system that is induced when p is placed in
an environment where communication runs via two queues as sketched above.

They also define classes of asynchronous implementation relations called
queue preorders SS as preorders that disallow the implementation to produce
unspecified outputs (where the inability to produce outputs is considered ob-
servable) after having performed arbitrary trace in some specified F C L*,
ie.,

i<hs =4 Vo€ F:0i0)C 0O40) (2)

where O, (0) =4¢f {z € Ly | Q(p) == }U{d | Q(p)after orefuses Ly} and
é ¢ L. By restricting the set F to sets of traces that depend on the specifi-
cation s asynchronous conf-like relations can be defined, and their properties
can be investigated. [44] presents an algorithm that is able to derive a com-
plete test suite for such classes of queue implementation relations.

The asynchronous testing theory for queue systems can be seen as an at-
tempt to narrow the gap between testing based on synchronous theories (such
as the theory for canonical testers, section 4) and testing based on asyn-
chronous theories via inputs and outputs (e.g., testing based on systems spec-
ified in SDL [10]). However, queue systems are restricted in their use; the
theory is only appropriate for systems that explicitly communicate with each
other via two unbounded FIFO queues, and other communication architec-
tures (such as having more than two queues, allowing media to be non-FIFO,
etc.) cannot be described in this model. Fortunately, the requirement that
systems communicate with each other via unbounded FIFO queues turns out
not to be necessary in order to apply the ideas discussed before: the only
essential requirements are that the set of actions can be partitioned in a set
of input actions L and a set of output actions Ly, and that implementations
can never refuse input actions, whereas the environment is always prepared
to accept output actions (where input actions and output actions are viewed
from the perspective of the system under test). By considering in figure 2
the input queue as part of the implementation, and the output queue as part
of the environment, queue systems are just a special case of systems satisfy-
ing this requirement. This observation has triggered research on systems that
are never able to refuse input actions. We discuss three of such (marginally)
different system models: input/output automata (IOA), input/output state
machines (IOSM), and input/output transition systems (IOTS).



Input/Output Automata (IOA) Formally, a transition system p where
the set of labels L is partitioned in a set of input labels L; and a set of output
labels Ly (i.e., L = Ly U Ly and Ly N Ly = @), and that satisfies

Vp' € der(p),VYa € Ly : p' %

is called an input/output automaton (IOA) [28]. By explicitly distinguishing
between inputs and outputs, implementations and their observers are allowed
to communicate in a complementary manner; observers control and supply
the input actions, while implementations control and produce output actions.
[36] applies the ideas from [13] to implementations that are assumed to be
modelled as IOA.

Input/Output State Machines (IOSM) [32] introduces a model called
(complete) input/output state machines (IOSM) that differs from IOA by
requiring that IOSM must have a finite number of states. This model is used
as a semantic underpinning for test derivation in the tool TVEDA [11].

Input/Output Transition Systems (IOTS)  According to [40, 41] an in-
put/output transition system (IOTS) is a transition system that marginally
differs from IOA and IOSM. Like in IOA the set of labels is partitioned in a
set of input labels L; and a set of output labels Ly, but the difference is that
instead of requiring that inputs are always strongly enabled, we require for
IOTS that inputs are weakly enabled, i.e., p € LTS(L; U Ly) is IOTS iff

Vp' € der(p),Va € Ly : p' == (3)

The above condition is strictly weaker than the one imposed on IOA. Conse-
quently, test theory for IOTS is more general than for IOA. Note that queue
systems can be seen as subclass of IOTS: every implementation in a queue
context satisfies the condition imposed on IOTS, but not vice versa.
Although IOA, IOSM and IOTS differ marginally, we concentrate here on
the most liberal one, namely IOTS, and discuss testing theory for implemen-
tations that can be modelled as IOTS in the same way as [40, 41]. We denote
the universe of IOTS with input set L; and output set Ly by ZOTS(Ly, Ly).

Inputs and outputs are complementary: inputs for IUT are outputs from
the perspective of the environment, and outputs produced by the IUT are
inputs for the environment (figure 3). By convention, we will use the terms
inputs and outputs always from the perspective of the IUT. Many existing
implementations satisfy the test assumption that inputs are always enabled
(that is, they can be modelled as an IOTS), and that inputs are initiated and
controlled by the environment, whereas outputs are initiated and controlled
by the implementation. From now on we will assume that implementations can
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Figure 3 Asymmetric communication between IUT and its environment.

be modelled as members of ZOTS(Ly, Ly). However, if the implementation
is not able to refuse inputs initiated by the environment, then it is reasonable
to assume that the environment is not able to refuse outputs produced by
the implementation. If we allow the environment to also observe the inability
of implementations to produce any output by means of 6 (see section 3),
then this means that the behaviour of the environment can be modelled as
a member of ZOTS(Ly, Ly U {#}). By instantiating the set of observers with
ZOTS(Ly,Lr U {0}) and the set of implementations with ZOTS(Ly, L),
input/output refusal preorder, <;,r [41], is defined following the extensional
characterisation given in equation (1))

i <ior 8 =daef Yu € ZOTS(Ly, Ly U{6}): obs? (u,i) C obs®(u,s) (4)
and obs? (u,i) C obs? (u, s)

Since implementations are, by assumption, always prepared to accept input
actions and the environment is always prepared to accept output actions, the
only way to deadlock for these kind of systems is if the environment does not
provide an input action, and the IUT does not produce an output action. The
inability to produce outputs is an important characteristic of implementations
that is observable by observers that are equipped with a 6-label. Following
terminology introduced in [43] we call a state quiescent if no output action
or internal transition can be produced from this state; §(s) =gef s <L+ s.
Observing quiescence can be made explicit by means of a special event with
label § ¢ L; § can be observed if the implementation is in a quiescent state. [41]
proves that <;,,. can also be characterised intensionally in terms of inclusion
between the sets of output actions, including 4, that the implementation and
the specification can perform. Formally, i <;,, s iff after all failure traces in
o € (LU{Ly})* the outputs produced by the implementation are specified,
and the implementation may only refuse to produce outputs if the specification
does so, viz.,

i <ior s iff Yoe (LU{Ly})*: out(iafter o) C out(s aftero)



where 0ut(S) =gqe; { € Ly | 3s € S : s=}U{d | Is € S : §(s)} for S
a set of states. A failure trace in (L U {Ly})* is called a suspension trace;
s-traces(p) =qef f-traces(p) N (LU {Ly})*.

Since checking out(i after o) C out(s after o) for all suspension traces
is hard to achieve by means of testing, the above characterisation can be
relaxed by checking this condition for fewer suspension traces. In general, for
each F C (LU{Ly})* an implementation relation iocor can be defined that
only checks the condition out(: after o) C out( s after o) for o € F, viz.,

iiocor s =g Vo € F:out(iaftero) C out(saftero) (5)

Note the correspondence in structure between equation (5) and equation (2).

Validating a system by means of testing involves, in practice, checking how
the system reacts to stimuli from the environment. The relation iocor cap-
tures this intuitive notion of correctness [41]: correct implementations may
only give reactions that are specified. From now on we focus on the genera-
tion of tests for implementation relation iocor with F C s-traces(s).

For testing implementations in ZOTS (Ly, Ly) it suffices to restrict the class
of tests to a specific subclass of ZOTS(Ly, Ly U{0}) C LTS(LU{}) in order
to check whether systems are <;,.-related or not. In particular, [41] shows
that it suffices to restrict to deterministic members with finite behaviour of
LTS(Ly, Ly U {6}), such that either a single input action is supplied, or all
output actions, including €, can be observed. There is no need to introduce ad-
ditional nondeterminism in the test, and, since all errors occur within a finite
depth of a transition system, they can be found using a finite series of exper-
iments. Formally, a test case ¢ for iocor is a labelled transition system over
L;ULy U{6} such that (i) ¢ is deterministic and has finite behaviour, (ii) there
exists two states pass, fail such that init( pass ) = init( fail ) = 0, and (iii)
for all states t' € der(t) with ¢’ # pass , fail we have init(t') = {a} for some
a € Ly, or init(t') = LyU{0}. The universe of tests over Ly and Ly is denoted
as TESTS(Ly, Lj), and a test suite T is a set of tests: T' C TESTS(Ly, Ly).
We denote test cases with a LOTOS-like syntax: ¢t :=a;t | )T | pass | fail
where ) # T C TESTS(Ly,L;). The semantics of these expressions is the
obvious one: a;7T is able to do action a, after which it behaves as ¢, >. T
behaves make a choice between the behaviours of T', and pass, fail cannot
perform any action at all. Instead of Y {Bj, B2} we also write By + Bs.

In order to give an indication about the (in)correctness of implementations
based on observations made after execution of a test case, a verdict (success
or failure) is assigned to implementations. For brevity we will identify the
verdicts success and failure with the states pass and fail, respectively. The
execution of a test is modelled in terms of test runs. A test run ¢ € L* of
test ¢ and implementation i is a trace that ¢ ]| ¢ can perform such that test



t ends in pass or fail: 3i' : t]| i==> pass || i’ ort]| i== fail || i'. An
implementation 7 is said to fail test ¢ if there exists a test run of ¢]]| ¢ that
ends in fail, i.e., i fails t =4¢f 30 € L*,3i' : t]| i == fail ]| i'. Dually, an im-
plementation passes test ¢ if it does not fail test ¢: i passes t =g (i fails t).
We shall say that an implementation passes a set of test cases T, denoted
as ¢ passes T, if it passes all tests in test suite 7. The failing of a test suite
is defined conversively. To link the passing and failing of an implementation
to the correctness and incorrectness of this implementation, respectively, the
verdicts pass and fail in the test case have to be assigned carefully. Ideally,
test cases are designed in such a way that correct implementations always
pass this set of tests (soundness), and incorrect implementations always fail
this set of tests (exhaustiveness). Since exhaustiveness is difficult (if not im-
possible) to reach in practice we require soundness when designing test suites,
and strive for exhaustiveness; erroneous behaviour is likely to be detected by
the test suite. A test suite that is both sound and exhaustive is called complete.

Now we can give a test generation algorithm that is able to produce test
cases in TESTS(Ly, Ly) from a specification s € LTS(L;ULy) with respect to
implementation relation iocor, and where it is assumed that implementations
can be modelled as members of ZOTS(Ly, Ly). The algorithm is inspired
by the one presented in [41] and given in figure 4. In the algorithm we use
the notation @ for a trace in which all occurrences of § are replaced by the
deadlock detection symbol # that is used to observe this output deadlock, and
vice versa: & leaves other actions unchanged.

The algorithm is parameterised over a set of suspension traces F and a
specification s € LTS(L;U Ly). For each suspension trace in F the algorithm
produces a test case that is able to check that the implementation produces
an valid output(cf. equation (5)). The algorithm keeps track of the current
states of the specification that are exercised by means of the variable S, which
is initialised with {so} aftere (where so is the initial state of specification s).
Tests are constructed by recursive application of three different steps. Step 1
is used to terminate a test case by assigning pass. Step 2 supplies an input
a € Ly, that is specified by some trace in F, to the implementation, updates
the set of possible current states S of the specification and the set of suspension
traces F that need to be verified, and recursively proceeds. In step 3 the output
actions that the implementation produces are checked for validity: a fail is
assigned if the implementation produces an output that cannot be produced
by the specification, and we have already executed a trace in F, i.e., € € F.
In this case there is evidence that the implementation violates equation (5).
If the implementation produces an unspecified output for which no checking
is required (e ¢ F) a pass is assigned: there is no evidence of incorrectness
with respect to iocor. In case the implementation produces a specified output
then checking needs to be continued, i.e., the algorithm recursively proceeds,
where S and F are updated accordingly.



Input: specification s € LTS(Lr U Ly)
Input: set of failure traces F C (LU {Ly})*
Output: test case I s € TESTS(Ly, Ly).

Initial value: S = {so} after ¢, where s is the initial state of s.

Apply one of the following non-deterministic choices recursively.
1. (* terminate the test case *)
IIr s := pass

2. (* supply an input to the implementation *)
Take a € Ly such that ' # (), then

Urs:=a;llz g

where 7' = {0 | a-0 € F} and S’ = S aftera
3. (* check the next output of the implementation *)

Ors:= Y {x; fail |z € Ly U{8},T & out(S),e € F}
+ > {z; pass |z € Ly U{0},T & out(S),e & F}
+ Z{J);Hy:;ys; | z € Ly U{6},T € out(S)}

where ] = {0 | T-0c € F} and S, = S after®

Figure 4 Test generation algorithm.

When executing tests obtained using the algorithm in figure 4, implemen-
tations that are iocoz-correct will never be considered erroneous, i.e., there is
no test run that will lead to a fail-state when these tests are executed against
iocoz-correct implementations (soundness). Moreover, executing all (usually
infinitely many) test cases that are generated by the algorithm can detect all
erroneous implementations (exhaustiveness) [41].

Theorem 1 Let s € LTS(L; U Ly) and F C s-traces(s).

1. A test case obtained with the algorithm depicted in figure 4 is sound for s
with respect to iocor.

2. The set of all test cases that can be obtained by the algorithm depicted in
figure 4 is exhaustive for s with respect to iocox.



The testing theory for IOTS is expected to be more useful, due to the dis-
tinction between inputs and outputs, than theories that do not make such ex-
plicit distinction. This is also motivated by the existence of the tool TVEDA,
that originated from protocol testing experience. TVEDA can derive tests
that are similar to tests that can be derived by algorithm 4. In [32] an at-
tempt to provide an theoretical foundation behind TVEDA was given, which
resulted in an implementation relation R; that is very similar to i0€0O4yqces(s)-
Moreover, since algorithm 4 abstracts from the branching structure of im-
plementations and only deals with trace structures, it is expected that data
aspects are more easy to incorporate than in the algorithm for the construc-
tion of canonical testers (section 4): in testing for iocox the explosion from
countably branching structures to uncountably branching structures (that is
present in the construction of canonical testers) is avoided.

6 CLOSING THE CIRCLE

Although the shift from symmetric to asymmetric communication allows for a
more realistic modelling of the testing process, still some criticism can be ven-
tilated towards the asymmetric model. As indicated in [36] the requirement
that implementations must be modelled as members of ZOTS(Ly, Ly) is still
restrictive; not all implementations satisfy the requirement that inputs are
always enabled (e.g., systems that communicate with each other via bounded
queues; if the queue is full, no input can be accepted any more). Furthermore,
observers for IOTS are forced to accept all outputs, even if these outputs
occur at geographically dispersed places, and thereby a possible distribution
of the environment itself is ignored. As, in practice, many distributed imple-
mentations communicate with their environment via distributed locations, or
PCOs (Point of Control and Observation [22]), the distributed nature of the
interfaces should be taken into account when testing these systems. For exam-
ple, the standardised language SDL [10] explicitly incorporates the different
locations through which an implementation communicates with its environ-
ment by means of channels, and the standardised test notation TTCN [22,
part 3] is also able to express the sending and reception of messages to spe-
cific locations. In the IOTS model it is not possible to exploit the distributed
nature of interfaces. An example of a system that cannot be described as an
IOTS is depicted in figure 5.

In order to overcome these deficiencies recent research has lead to a model
that refines the IOTS model, and, at the same time, unifies both the symmetric
and asymmetric communication paradigm in a single framework. Basically,
this is done by making two refinements to the IOTS model that are sufficient to
model systems like the one in figure 5, i.e., (i) distinguishing between different
locations, or channels, through which an implementation communicates with
its environment, and (ii) weaken the requirement for IOTS that all input
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Figure 5 Example of a multi input/output queue system.

actions have to be continuously enabled. We will briefly elaborate on both
refinements.

Ad (i) Instead of partitioning the label set L in an input set L; and an
output set Ly, these sets themselves are partitioned in one or more groups
(i-e., sets) of actions; Ly = U, <;<p Lt and Ly = Ui<j<m Li;. Each group of
actions defines a channel where these actions may occur. By distinguishing
between the different channels of an implementation an external observer is
(potentially) able to observe the inability of an implementation to produce an
output at some output channel, while at another output channel the imple-
mentation can produce an output. Note that this is not possible in the IOTS
model: observers of an IOTS are not able to check that subsets of outputs
cannot occur.

Ad (7) Instead of requiring that input actions must always be enabled, it
is required for each input channel that “if an input in a channel is enabled,
then all inputs at this channel should be simultaneously enabled”, i.e., For
each input channel L} we require

Vp' € der(p), if Ja € L} : p' = then Vbe L} : p 2 (6)

This requirement is strictly weaker than the one imposed on IOTS where all
inputs are always enabled. In particular, this requirement allows us to model
communication by means of bounded queues; all inputs in a channel are only
enabled if the queue is not full.

Systems that are modelled with these two refinements are called multi in-
put/output transition systems (MIOTS) [40, 41]. The class of MIOTS under



consideration depends on the specific partitioning of the channels, that is, the
set of implementations in MIOTS is parameterised by the location of interfaces
through which these implementations communicate with their environment.
Such systems can be tested by means of observers that are also modelled as
MIOTS (where input channels of the system are output channels for the ob-
server, and vice versa). This yields an implementation relation <,,;,, defined
similarly as <;,, (equation (4)), and a characterisation in terms of miocor
similarly as iocoz (equation (5)), that are parameterised over the distribution
of the interfaces of the implementation with the environment. [19] investigates
testing theory for MIOTS, and they relate the different instances of <,,;, for
the specific distributions of interfaces.

MIOTS allow to relate synchronous and asynchronous testing theories by
varying the granularity of the interfaces, and thus close the circle with re-
fusal testing (section 1, [33]). Moreover, the different instances of <,,;,, for
the specific distributions of the interfaces are related. If all inputs run via a
single channel and all outputs run via a single channel, and requirement (6) is
strengthened to requirement (3) for inputs on this single input channel, then
<mior corresponds to <;,-. On the other hand, if each action runs through
a separate channel, i.e., the sets L; and Ly are partitioned in singletons,
then <por equals <,¢ [19]. This means that the symmetric testing theory
discussed in section 3 and the asymmetric testing theory discussed in section
5 are unified in a single testing framework, and the test algorithm presented
in [19] is able to generate tests for <,r, <ior, <mior, i0cOF and miocogr.

7 CONCLUSIONS

History In this paper we sketched the developments that have taken place
(and still take place) in testing based on labelled transition systems. The sem-
inal work in [13, 12] introduces a testing theory for labelled transition systems
based on the assumption that communication between systems and their en-
vironments is symmetric. They define, and compare, many testing relations
by varying the class of tests, and the class of observations. [33] discusses a
refinement of [13, 12] by allowing observers to continue after observation of
deadlock. The first mature theory based on [13, 12] that presents an algorithm
to derive tests from a specification is presented in [6, 7]. They discuss how
to generate a test suite that can distinguish between correct and incorrect
implementations (with respect to implementation relation conf).

As, in practice, communication between implementations and testers is of-
ten asymmetric, many approaches that incorporate such asymmetric com-
munication have been done with the aim to apply testing theory to realistic
systems (SDL [10], TTCN [22, part 3]). One of these approaches is [42]. They
assume that communication between implementations and testers runs via
two unbounded queues, and they define, and analyse, testing relations (so-



called queue preorders) for systems that communicate with their environment
through these queues. A more general approach is taken by assuming that im-
plementations can be modelled as input/output transition systems (IOTS).
An IOTS is a LTS that makes an explicit distinction between input actions
and output actions, and assumes that input actions are weakly enabled. In
this way it isolates the relevant aspects of queue systems without requiring
that communication with the environment is done via queues.

[41] applies the ideas of [33] to IOTS, and defines a testing theory for im-
plementations that can be modelled as IOTS. They assume that the inability
to produce output actions, i.e., quiescence, is observable, and define an imple-
mentation relation ioco s that captures the intuition of correctness in practice.
They also present an algorithm that is able to derive a sound and complete
set of tests from a specification. These tests resemble tests generated by the
tool TVEDA [11] that originated from practical testing experience.

[19] refines the theory of IOTS by taking the distribution of the interfaces
of implementations into account. They explicitly model the locations (also:
PCOs or channels) where actions can take place, and they require that in-
put actions per input channel are either simultaneously enabled or simultane-
ously disabled. Such systems are called multi input/output transition systems
(MIOTS). For implementations that can be modelled as MIOTS refusal test-
ing [33] is applied, and quiescence is assumed to be observable (cf. [36, 40, 41]).
Similar to iocor they define an implementation relation miocox relative to
the distribution of interfaces of implementations, and present an algorithm
that is able to derive sound and complete test cases for miocor. This results
in a testing theory that is parameterised over the granularity of interfaces of
implementations. [19] shows that specific instances yield the traditional re-
fusal testing theory of [33], and the refusal testing for IOTS [41], and hence
incorporates both theories in a single framework.

Future The theory and the algorithm for IOTS/MIOTS can form the basis
for the development of test generation tools. In order to use such tools in
realistic testing experiments several aspects need elaboration. One of these
aspects involves data handling. In many realistic applications data is involved.
To deal with data in an efficient way the test generation algorithm has to
incorporate such data aspects in a symbolic way; otherwise automation of
tests is not feasible due to explosion in the data part. Another aspect concerns
the well-known problem of test selection. As test suites grow in size, execution
of all of the tests in the test suite becomes too expensive, and selections have
to made; which tests are executed, and which are not? (Partial) solutions
can be found in defining coverage measures, fault models, strengtening test
assumptions, etc. [3, 23, 31]. Experiments in applying the algorithm to realistic
problems have to be conducted in order to show the strengths and weaknesses
in the testing theory for IOTS. A first trial in which a preliminary version of
the theory for IOTS was applied to a simple protocol looks promising [38],
but more experiments are needed to draw meaningful conclusions. Finally, the



relation between formalisms that incorporate channels (e.g., SDL, TTCN),
and MIOTS needs further investigation.
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