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AbstractThis paper discusses some of the developments in the theory of test generationfrom labelled transition systems over the last decade, and puts these devel-opments in a historical perspective. These developments are driven by theneed to make testing theory applicable to realistic systems. We illustrate thedevelopments that have taken place in a chronological order, and we discussthe main motivations that led to these developments. In this paper the claimis made that testing theory (slowly) narrows the gap with testing practice,and that progress is made in designing test generation algorithms that can beused in realistic situations while maintaining a sound theoretical basis.1 INTRODUCTIONTesting and veri�cation Testing and veri�cation are complementary tech-niques that are used to increase the level of con�dence in the correct function-ing of systems as prescribed by their speci�cations. While veri�cation aims atproving properties about systems by formal manipulation on a mathematicalmodel of the system, testing is performed by exercising the real, executingimplementation (or an executable simulation model). Veri�cation can givecertainty about satisfaction of a required property, but this certainty onlyapplies to the model of the system: any veri�cation is only as good as thevalidity of the system model. Testing, in practice being based on observingonly a small subset of all possible instances of system behaviour, is usuallyincomplete: testing shows the presence of errors, not their absence. Since test-



ing can be applied to the real implementation, it is useful in those cases whena valid and reliable model is not present.There is an apparent paradox between the attention that veri�cation andtesting get in usage and research. Whereas most of the research in the area ofdistributed systems is concentrated on veri�cation, testing is the predominanttechnique in practice. People from the realm of veri�cation very often considertesting as inferior, because it can only detect some errors, but it cannot provecorrectness; on the other hand, people from the realm of testing considerveri�cation as impracticable and not applicable to realistically-sized systems.Protocol conformance testing Protocol conformance testing is concernedwith checking protocol implementations against their speci�cations by meansof experimentation. Tests are derived from the protocol speci�cation, thenapplied to the implementation under test, and, based on observations madeduring the execution of the tests, a verdict about the correct functioning ofthe implementation is given. Since conformance testing is a mainly manual,laborious and time-consuming process, automating the testing process hasalways received much attention. To automate the generation of test cases theprotocol speci�cation must be in a form amenable to manipulation by tools.Natural language speci�cations do not serve this purpose; formal languagesdo. The availability and increasing use of formal methods has resulted intheories, methods and pragmatics for the (semi-)automatic derivation of testsfrom formal speci�cations. In the area of test execution there are currentlycommercial protocol-tester tools available that can execute tests for manydi�erent protocols. For such tools to work properly it is important that testcases can be speci�ed precisely and unambiguously. The standardised testspeci�cation language TTCN [22, part 3] is widely used for this purpose.Conformance testing and formal methods Starting point for protocolconformance testing based on formal methods is a formal speci�cation, e.g.,a speci�cation written in one of the currently standardised formal descriptiontechniques Estelle [20], LOTOS [21], or SDL [10]. Correctness and validityof this speci�cation is assumed, and is not considered as part of conformancetesting. Furthermore, there is an implementation, referred to as the implemen-tation under test (IUT), which is treated as a black box, exhibiting externalbehaviour. The IUT is a physical, real object that is in principle not amenableto formal reasoning. We can only deal with implementations in a formal way,if we make the assumption that any real implementation has a formal modelwith which we could reason formally. This formal model is only assumed toexist, but it need not be known a priori. This assumption is referred to asthe test hypothesis [3, 39, 23]. The test hypothesis allows to reason aboutimplementations as if they were formal objects, and, consequently, to expressconformance of implementations with respect to speci�cations by means of aformal relation between such models of implementations and speci�cations.



Such a relation is called an implementation relation [8, 23]. Conformance test-ing now consists of performing experiments to decide whether the unknownmodel of the implementation relates to the speci�cation according to the im-plementation relation. The experiments are speci�ed in test cases. Given aspeci�cation, a test generation algorithm must produce a set of such testcases, called a test suite. The test suite must be sound, i.e., it must give anegative verdict only if the implementation is incorrect. Additionally, the testsuite must be as complete as possible, i.e., if the implementation is incorrect,it must have a high probability to give a negative verdict.Many di�erent approaches to algorithmic test generation, based on di�er-ent protocol speci�cation formalisms, have been undertaken. Two main ap-proaches can be distinguished: those based on Finite State Machines (FSM)and those based on Labelled Transition Systems (LTS). FSM-based protocoltesting has been inspired by functional hardware testing and is based on mod-elling the behaviour of a protocol as a Mealy machine (Finite State MachineFSM) [5, 16, 27, 26, 30, 37, 46].Goal and overview LTS-based testing has its basis in the formal theoryof testing equivalences for labelled transition systems and process algebras,which is based on the formalisation of the notion of test and observation in[13, 12], and which continues with [1, 33, 24, 17].The goal of this paper is to describe the developments in the theory fortest generation for labelled transition systems, as they have led to the currentstatus. We will show that the approach that started from practice and the onethat started from theory are now at the point of meeting each other, leadingto practical test generation algorithms that have a sound theoretical basis.One indication for this claim is that the algorithm implemented in TVEDAcan be given a theoretical basis in the theory of refusal testing [33, 24] byadding to this theory a distinction between input and output actions. Thiswas shown using the theory of Input/Output Transition Systems (IOTS) in[41]. The model of IOTS can be used very well to describe SDL and TTCNprocesses. Recent results [19] also link the notion of channel (as in SDL) orPoint of Control and Observation (PCO) into the LTS-based testing theory.Section 2 introduces LTS and �xes notation, and section 3 introduces test-ing concepts for LTS as described by, e.g., [13, 12]. Next, section 4 presentsa testing theory for LTS that uses these concepts, and shows how tests canbe constructed that are able to check correctness of implementations. Sincethis theory assumes that implementations communicate in a symmetric man-ner with their environment, which is unrealistic in practice, a more re�nedtesting theory, based on IOTS, is presented in section 5. Section 6 discusses are�nement of the IOTS model that takes the distribution of PCOs of imple-mentations into account. This theory can serve as an uni�ed model in whichboth the traditional testing theory of section 3, and the re�ned theory ofsection 5, can be expressed. Section 7 ends with conclusions and further work.



2 LABELLED TRANSITION SYSTEMSIn this paper we will concentrate on a testing theory for labelled transitionsystems. We will use this formalism to model the behaviour of speci�cations,implementations and tests. A labelled transition consists of nodes and tran-sitions between nodes that are labelled with actions. Formally, a (labelled)transition system (LTS) over L is a quadruple hS;L;!; s0i where� S is a (countable) set of states;� L is a (countable) set of observable actions;� !� S � (L [ f�g)� S is a set of transitions; and� s0 2 S is the initial state.The special action � 62 L represents an unobservable, internal action. We re-strict to (strongly) convergent transition systems, i.e., transition systems thatare not able to perform an in�nite sequence of internal transitions. The classof all convergent transition systems over L is denoted by LTS(L), and theset of all �nite words over L is denoted by L�. In order to describe the se-quences of actions in L and P(L) that can be performed from a given state(where P(�) denotes the powerset operator on sets) we use the following ab-breviations, with p = hS;L;!; s0i a labelled transition system such thats; s0 2 S; �; �i 2 P(L) [ L [ f�g; �; �i 2 P(L) [ L and � 2 (P(L) [ L)�.s ��! s0 =def 8<: (s; �; s0) 2!; if � 2 L [ f�gs = s0 and 8� 2 � [ f�g;8s00 : :(s ��! s00);if � 2 P(L)s �1��2�:::��n��������! s0 =def 9s0; s1; : : : ; sn : s = s0 �1��! s1 �2��! : : : �n��! sn = s0s �1��2�:::��n��������! =def 9s0 : s �1��2�:::��n��������! s0s �=) s0 =def s = s0 or s � �:::������! s0s �=) s0 =def 9s1; s2 : s �=) s1 ��! s2 �=) s0s �1��2�:::��n========) s0 =def 9s0; s1; : : : ; sn : s = s0 �1==) s1 �2==) : : : �n==) sn = s0s �=) =def 9s0 : s �=) s0Self-loop transitions of the form s A��! s where A � L are called refusal transi-tions. In this case A is called a refusal of s. Such a refusal transition explicitlyencodes the inability to perform any action in A [ f�g in state s. A failuretrace consists of a sequence over refusal transitions A��! with A � L and`normal' transitions ��! with � 2 L[f�g where an abstraction from internalactions � is made. For readability we do not distinguish between a labelledtransition system and its initial state, e.g., p �=) =def s0 �=) where s0 is theinitial state of labelled transition system p. If p �=) where � 2 L� then � iscalled a trace of p. For p 2 LTS(L) we will use the following de�nitions.



1. f-traces(p) =def f� 2 (P(L) [ L)� j p �=)g2. traces(p) =def f� 2 L� j p �=)g3. p after � refusesA =def 9p0 : p �=) p0 and 8� 2 A [ f�g : :(p0 ��! )4. p after � deadlocks =def p after � refuses L5. der (p) =def fp0 j 9� 2 L� : p �=) p0g6. init(p) =def f� 2 L [ f�g j 9p0 : p ��! p0g7. P after � =def fp0 j 9p 2 P : p �=) p0g where P is a set of states8. p is deterministic i� 8� 2 L� : j fpg after � j � 19. p has �nite behaviour i� 9N 2 N : 8� 2 traces(p) : j� j � NIn testing, an external observer experiments on an implementation in orderto unravel its (unknown) behaviour. A test speci�es the behaviour of an ob-server, and we assume that tests are modelled as LTS. Tests can be run, orexecuted, against implementations. From the execution of a test against animplementation observations can be made. These observations are then com-pared with the expected observations that can be obtained by running thesame test against the speci�ed behaviour, and a verdict (success or failure) isassigned. Failure should indicate that there is evidence that the implementa-tion did not behave correct, otherwise success should be assigned. Section 5treats test execution in more detail.3 TESTING RELATIONS FOR TRANSITION SYSTEMSIn order to decide the correctness of implementations a clear correctness cri-terion is needed: when is an implementation considered correct with respectto its speci�cation? In the context of labelled transition systems many pro-posals for such correctness criteria in the form of implementation relationshave been made [17]. One of the �rst signi�cant implementation relations wasobservation equivalence [29]. Observation equivalence is de�ned as a relationover states of transition systems by means of (weak) bisimulation relations.Informally, two systems p; q 2 LTS(L) are called observation equivalent, de-noted by p � q, if for every trace � 2 L� every state that is reachable from pafter having performed trace � is itself observation equivalent to some stateof q that is also reachable after having performed trace �, and similarly withp and q interchanged. Observation equivalence intuitively captures the no-tion of equivalent external behaviour of systems; two systems are observationequivalent if they exhibit \exactly the same" external behaviour. See [29] fora formal de�nition of observation equivalence.Instead of relating behaviours intensionally in terms of relations over statesand transitions between states, it is also possible to relate system behaviourin an extensional way; what kind of systems can be distinguished from eachfrom each other by means of experimentation? [13, 12] were �rst in compar-



ing system behaviour in this way by explicitly modelling the behaviour ofexperiments, and relating the observations that can be made when these ex-periments are applied to systems. In general, for a set of experiments U , anda set of observations obs(u; p) that experiment u 2 U may cause when systemp is tested, they de�ne a so-called testing relation over systems by relating theobservations obs(u; i) and obs(u; s) that are made when experiments u 2 Uare carried out against the systems i and s. Formally, such testing relationsare de�ned as followsi conforms-to s =def 8u 2 U : obs(u; i) v obs(u; s) (1)where conforms-to denotes the testing relation that is de�ned. By varyingthe set of experiments U , the set of observations obs and the relation v be-tween these sets of observations, di�erent testing equivalences can be de�ned.[13, 12] discuss, and compare, several di�erent testing relations by varyingthe set of observations obs and the relation v between these sets of observa-tions. The theory described in [13, 12] forms the basis for testing theories fortransitions systems. We will discuss three instances of such testing relationsthat are relevant for the remainder of this paper, viz., observation equivalence,testing preorder and refusal preorder, and use a formalisation following [39]that slightly di�ers from the original formalisation given in the seminal workof [13, 12].Observation equivalence [1] shows that observation equivalence can becharacterised in an extensional way (i.e., following the characterisation ofequation (1)), under the assumption that at each stage of a test run in�nitelymany local copies of the internal state of the system under test can be made,and in�nitely many experiments can be conducted on these local copies. In-tuitively, this means that at each stage of a test run the implementation mustbe tested against all possible operating environments. These assumptions arequite strong and too di�cult to meet in practice. Therefore, observation equiv-alence is, in general, too �ne to serve as a realistic implementation relation,and weaker notions of correctness between implementations and speci�cationshave to be de�ned.Testing preorder In testing preorder it is assumed that the behaviour ofexternal observers can, just as the behaviour of implementations and speci�-cations, be modelled as transition systems (that is, U � LTS(L)) and theseobservers communicate in a synchronous and symmetric way with the systemunder test [13, 12]. From an observer u and system under test p, the binaryin�x operator jj creates a transition system u jj p that models the behaviourof u experimenting on p in a synchronous way. The transitions that u jj p canperform are de�ned by the smallest set of transitions induced by the followinginference rules



u ��!u0u jj p ��!u0 jj p p ��! p0u jj p ��!u jj p0 u a�!u0; p a�! p0u jj p a�!u0 jj p0 (a 2 L)Using jj a testing preorder on transition systems [13] can be de�ned in anextensional way following equation (1). Intuitively, an implementation i istesting preorder related to speci�cation s, denoted as i �te s, if for everyexternal observer u that is modelled as a transition system, each trace thatu jj i can perform is preserved by u jj s, and each deadlock of u jj i ispreserved by u jj s. Formally, testing preorder �te is de�ned byi �te s =def 8u 2 LTS(L) : obst(u; i) � obst(u; s)and obsc(u; i) � obsc(u; s)where obst(u; p) =def f� 2 L� j (u jj p) �=)g and obsc(u; p) =def f� 2L� j (u jj p) after � deadlocksg. The relation �te can be intensionallycharacterised by i �te s i� 8� 2 L�;8A � L : i after � refuses A impliess after � refuses A. Testing preorder allows implementations to be \moredeterministic" than their speci�cation, but it does not allow that implementa-tions \can do more" than is speci�ed; in this sense the speci�cation not onlyprescribes what behaviour is allowed, but also what behaviour is not allowed!The relation �te serves as the basic implementation relation in many testingtheories for transition systems.Refusal preorder Refusal preorder can be seen as a re�nement of testingpreorder, and is de�ned extensionally in the theory of refusal testing [33].Instead of administrating the successful actions that are conducted on animplementation by an observer, refusal testing also takes the unsuccessfulactions into account. The di�erence between refusal preorder and testing pre-order is that observers can detect deadlock, and act on it, i.e., in refusalpreorder observers are able to continue after observation of deadlock. For-mally, we model this as in [24] by using a special deadlock detection label� 62 L (i.e., U � LTS(L [ f�g), cf. equation (1)) that is used to detect theinability to synchronise between the observer u and system under test p.The �-action is observed if there is no other way to continue, i.e., when pis not able to interact with the actions o�ered by u. The transition systemu ej p 2 LTS(L [ f�g) that occurs as the result of communication between adeadlock observer u 2 LTS(L [ f�g) and a transition system p 2 LTS(L) isde�ned by the following inference rules.u ��!u0u ej p ��!u0 ej p u a�!u0; p a�! p0u ej p a�!u0 ej p0 (a 2 L)p ��! p0u ej p ��!u ej p0 u ��!u0; u ���!= ; p ���!= ; init(u) \ init(p) = ;u ej p ��!u0 ej p



Observations made by an observer u by means of the operator ej now mayinclude the action �. The testing preorder induced for observers in LTS(L [f�g) is called refusal preorder, and is de�ned in the style of equation (1):i �rf s =def 8u 2 LTS(L [ f�g) : obs�c(u; i) � obs�c(u; s)and obs�t (u; i) � obs�t (u; s)where obs�c(u; p) =def f� 2 (L [ f�g)� j (u e j p) after � deadlocksgand obs�t (u; p) =def f� 2 (L [ f�g)� j (u e j p) �=)g. Informally, i �rf sif, for every observer u 2 LTS(L [ f�g), every sequence of actions that mayoccur when u is run against i (using e j) is speci�ed in u e j s; i is not al-lowed to accept, or reject, an action when communicating with u, if this isnot speci�ed by s. Refusal preorder is strictly stronger than testing preorder,i.e., �rf��te . Refusal preorder is characterised by inclusion of failure traces:i �rf s i� f-traces(i) � f-traces(s).We emphasize that implementation relations that abstract from the non-deterministic characteristics of protocols (e.g., trace preorder or trace equiva-lence) are, in general, not su�cient to capture the intuition behind correctnessof systems. Even if protocols are de�ned as deterministic automata, their jointoperation with underlying layers, such as operating systems, generally will be-have in a nondeterministic manner.4 CONF TESTINGAs shown in section 3 [13, 12] de�ne a correctness criterion (in terms of a test-ing relation) by providing a set of experiments (U), a notion of observation(obs), and a way to relate observations of di�erent systems (v) (equation (1)).In test generation the opposite happens: for some implementation relation aset of tests U has to be designed that is able to distinguish between correctand incorrect implementations by comparing the observations that the im-plementation produces with the expected observations when the same test isapplied to the speci�cation. The �rst testing theory that treats the problemof test generation in this way is [6, 7].In [6, 7] a method is presented to derive test cases from a speci�cation thatis able to discriminate between correct and incorrect implementation with re-spect to the implementation relation conf. The relation conf can be seen asa liberal variant of �te . The di�erence with �te is that the implementationmay do things that are not speci�ed; in conf there is no need to performany robustness tests! Since in conf there is no need to check how the imple-mentation behaves for unspeci�ed traces, test generation algorithms for confare better suited for automation than test generation algorithms for �te . Inparticular, for a �nite behaviour speci�cation this means that only a �nite



number of traces have to be checked. Formally, the relation conf is de�ned as�te restricted to the traces of the speci�cation.i conf s =def 8u 2 LTS(L) : obst(u; i) \ traces(s) � obst(u; s)and obsc(u; i) \ traces(s) � obsc(u; s)In literature, this relation is usually known in its intentional characterisation:i conf s i� 8� 2 traces(s);8A � L� : i after � refuses A implies safter � refuses A. Informally, the conf relation indicates that an implemen-tation is correct with respect to its speci�cation if, after executing a speci-�ed trace, the implementation is not able to reach an unspeci�ed deadlockwhen synchronised with an arbitrary test process. [6, 7] develops a theoryfor the construction of a so-called canonical tester from a speci�cation. Thecanonical tester T (s) of s is a process that preserves the traces of s (i.e.,traces(T (s)) = traces(s)) and that is able to decide unambiguously whetheran implementation i is conf-correct with respect to speci�cation s, i.e.,8i 2 LTS(L) : i conf s i� i conf-passes T (s)where i conf-passes T (s) =def 8� 2 L� : (i jj T (s)) after � deadlocksimplies T (s) after � deadlocks. This is done by running T (s) againstimplementation i until it deadlocks, and checking that every deadlock of i jjT (s) can be explained by a deadlock of T (s); if T (s) did not end in a deadlockstate, evidence of non-conformance with respect to conf has been found. Theelegance of conf-testing is nicely illustrated by the fact that the canonicaltester of a canonical tester is testing equivalent with the original speci�cation;T (T (s)) �te s (where �te is the symmetric reduction of �te) [6].In [2, 45] a procedure to construct canonical testers has been implementedfor �nite Basic LOTOS processes, that is, from a �nite behaviour LOTOSspeci�cation s without data a tester T (s) is constructed that is again rep-resented as a �nite behaviour Basic LOTOS process. [35] has extended thisto Basic LOTOS processes with in�nite behaviour. A procedure for the con-struction of tests from a speci�cation related to the theory of canonical testersin such a way that these tests preserve the structure of the speci�cation issketched in [34]. In [25] a variant of the theory of canonical testers is discussedfor a transitive version of the conf relation. [15] derives, and simpli�es, canon-ical testers using refusal graphs. Figure 1 presents an example of a processand its canonical tester.The theory of canonical testers is applicable to situations where the systemunder test communicates in a symmetric and synchronous manner with an ex-ternal observer; both the observer and the system under test have to agree onan action in order to interact, and there is no notion of initiative of actions.Since asynchronously communicating systems can be modelled in terms ofsynchronously communicating systems by explicitly modelling the intermedi-



cab ab cas �te T (T (s)) T (s)
Figure 1 Canonical testers.ate communication medium between these two systems conf-testing can alsobe applied to asynchronously communicating systems (e.g., the queue systemsdiscussed in section 5). Consequently, conf-testing is widely applicable to alarge variety of systems.However, the theory of canonical testers also has some di�culties that re-stricts its applicability in practice. We will mention the two important onesin our view. The �rst di�culty has to do with the large application scopeof the theory of canonical testers. In general, the more widely applicable atheory becomes, the less powerful this theory becomes for speci�c situations.In particular, communication between realistic systems is, in practice, oftenasymmetric. By exploiting the characteristics of such asymmetric commu-nication, a more re�ned testing theory can be developed. The next sectiondiscusses in detail how this can be done.Another drawback of the theory of canonical testers is its di�culty to handledata in a symbolic way. Since in most realistic applications data is involved,it is necessary to deal with data in a symbolic way in order to generate canon-ical testers in an e�cient way. In [14, 39] some problems with the derivationof canonical testers for transition systems that are speci�ed in full LOTOS(i.e., LOTOS with data) have been identi�ed, such as an explosion in the datapart of the speci�cation. In particular, the derivation of canonical testers in asymbolic way is complicated by the fact that not only the data domains andthe constraints imposed on the data values that are communicated need to becomposed in a correct way, but also the branching structure of the speci�ca-tion (and thus of the canonical tester itself) needs to be taken into account.The problem is that the test generation algorithm for conf uses powersetconstructions that are, in principle, able to transform countable branchingstructures into uncountable branching structures.5 CHANGING THE INTERFACESSeveral approaches have been proposed to model the interaction between im-plementations and their environment more faithfully, e.g., by explicitly con-sidering the asymmetric nature of communication with the aim to come to a



testing theory that is better suited for test generation in realistic situations.Moreover, since the standardised test notation TTCN [22, part 3] uses inputsand outputs to specify tests, theories that incorporate such asymmetric com-munication allow the generation of tests in TTCN. In this section we presenta short overview of some of the approaches that have been proposed in thisarea, and we will elaborate on one of them.Apply asynchronous theory to transition systems Much research hasbeen done in systems that communicate in an asynchronous manner (e.g.,[4]), and some languages used in protocol conformance testing are based onasynchronous paradigms (e.g., SDL [10] , Estelle [20], TTCN [22, part 3]).[9] gives a short overview of translation between labelled transition systemsand Mealy machines, which can be used as an underlying semantic model for,e.g., SDL [10]. In particular, research has been done in transforming transitionsystems without inputs and outputs into FSMs with inputs and outputs, andderiving tests for these FSMs (e.g., [18]). However, many of these develop-ments lack a solid, formal basis, and their use in practice is restricted.Queue systems In [42] asynchronous communication between an imple-mentation and its environment is modelled explicitly by the introduction ofan underlying communication layer. This layer essentially consists of two un-bounded FIFO queues, one of which is used for message transfer from theimplementation to the environment, and the other for message transfer in theopposite direction (�gure 2). Such systems are called queue systems.IUTenvironment
Figure 2 Architecture of a queue system.In order to formalise the notion of queue systems the set of labels L ispartitioned in a set of input labels LI and a set of output labels LU (i.e.,L = LI [ LU ; LI \ LU = ;). Input labels are supplied from the environmentvia the input queue to the IUT, and, similarly, output labels run via theoutput queue. In particular, [42] is interested in what kind of systems canbe distinguished from each other in the asynchronous setting sketched above,and how this compares to the synchronous setting. They therefore de�ne a



new implementation relation �Qte that captures whether two systems are �te-related when tested through the queues. Formally,i �Qte s =def Q(i) �te Q(s)where Q(p) denotes the transition system that is induced when p is placed inan environment where communication runs via two queues as sketched above.They also de�ne classes of asynchronous implementation relations calledqueue preorders �FQ as preorders that disallow the implementation to produceunspeci�ed outputs (where the inability to produce outputs is considered ob-servable) after having performed arbitrary trace in some speci�ed F � L�,i.e.,i �FQ s =def 8� 2 F : Oi(�) � Os(�) (2)where Op(�) =def fx 2 LU j Q(p) ��x===)g[f� j Q(p)after� refusesLUg and� 62 L. By restricting the set F to sets of traces that depend on the speci�-cation s asynchronous conf-like relations can be de�ned, and their propertiescan be investigated. [44] presents an algorithm that is able to derive a com-plete test suite for such classes of queue implementation relations.The asynchronous testing theory for queue systems can be seen as an at-tempt to narrow the gap between testing based on synchronous theories (suchas the theory for canonical testers, section 4) and testing based on asyn-chronous theories via inputs and outputs (e.g., testing based on systems spec-i�ed in SDL [10]). However, queue systems are restricted in their use; thetheory is only appropriate for systems that explicitly communicate with eachother via two unbounded FIFO queues, and other communication architec-tures (such as having more than two queues, allowing media to be non-FIFO,etc.) cannot be described in this model. Fortunately, the requirement thatsystems communicate with each other via unbounded FIFO queues turns outnot to be necessary in order to apply the ideas discussed before: the onlyessential requirements are that the set of actions can be partitioned in a setof input actions LI and a set of output actions LU , and that implementationscan never refuse input actions, whereas the environment is always preparedto accept output actions (where input actions and output actions are viewedfrom the perspective of the system under test). By considering in �gure 2the input queue as part of the implementation, and the output queue as partof the environment, queue systems are just a special case of systems satisfy-ing this requirement. This observation has triggered research on systems thatare never able to refuse input actions. We discuss three of such (marginally)di�erent system models: input/output automata (IOA), input/output statemachines (IOSM), and input/output transition systems (IOTS).



Input/Output Automata (IOA) Formally, a transition system p wherethe set of labels L is partitioned in a set of input labels LI and a set of outputlabels LU (i.e., L = LI [ LU and LI \ LU = ;), and that satis�es8p0 2 der (p);8a 2 LI : p0 a�!is called an input/output automaton (IOA) [28]. By explicitly distinguishingbetween inputs and outputs, implementations and their observers are allowedto communicate in a complementary manner; observers control and supplythe input actions, while implementations control and produce output actions.[36] applies the ideas from [13] to implementations that are assumed to bemodelled as IOA.Input/Output State Machines (IOSM) [32] introduces a model called(complete) input/output state machines (IOSM) that di�ers from IOA byrequiring that IOSM must have a �nite number of states. This model is usedas a semantic underpinning for test derivation in the tool TVEDA [11].Input/Output Transition Systems (IOTS) According to [40, 41] an in-put/output transition system (IOTS) is a transition system that marginallydi�ers from IOA and IOSM. Like in IOA the set of labels is partitioned in aset of input labels LI and a set of output labels LU , but the di�erence is thatinstead of requiring that inputs are always strongly enabled, we require forIOTS that inputs are weakly enabled, i.e., p 2 LTS(LI [ LU ) is IOTS i�8p0 2 der (p);8a 2 LI : p0 a=) (3)The above condition is strictly weaker than the one imposed on IOA. Conse-quently, test theory for IOTS is more general than for IOA. Note that queuesystems can be seen as subclass of IOTS: every implementation in a queuecontext satis�es the condition imposed on IOTS, but not vice versa.Although IOA, IOSM and IOTS di�er marginally, we concentrate here onthe most liberal one, namely IOTS, and discuss testing theory for implemen-tations that can be modelled as IOTS in the same way as [40, 41]. We denotethe universe of IOTS with input set LI and output set LU by IOTS(LI ; LU ).Inputs and outputs are complementary: inputs for IUT are outputs fromthe perspective of the environment, and outputs produced by the IUT areinputs for the environment (�gure 3). By convention, we will use the termsinputs and outputs always from the perspective of the IUT. Many existingimplementations satisfy the test assumption that inputs are always enabled(that is, they can be modelled as an IOTS), and that inputs are initiated andcontrolled by the environment, whereas outputs are initiated and controlledby the implementation. From now on we will assume that implementations can
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Figure 3 Asymmetric communication between IUT and its environment.be modelled as members of IOTS(LI ; LU ). However, if the implementationis not able to refuse inputs initiated by the environment, then it is reasonableto assume that the environment is not able to refuse outputs produced bythe implementation. If we allow the environment to also observe the inabilityof implementations to produce any output by means of � (see section 3),then this means that the behaviour of the environment can be modelled asa member of IOTS(LU ; LI [ f�g). By instantiating the set of observers withIOTS(LU ; LI [ f�g) and the set of implementations with IOTS(LI ; LU ),input/output refusal preorder, �ior [41], is de�ned following the extensionalcharacterisation given in equation (1))i �ior s =def 8u 2 IOTS(LU ; LU [ f�g) : obs�c(u; i) � obs�c(u; s)and obs�t (u; i) � obs�t (u; s) (4)Since implementations are, by assumption, always prepared to accept inputactions and the environment is always prepared to accept output actions, theonly way to deadlock for these kind of systems is if the environment does notprovide an input action, and the IUT does not produce an output action. Theinability to produce outputs is an important characteristic of implementationsthat is observable by observers that are equipped with a �-label. Followingterminology introduced in [43] we call a state quiescent if no output actionor internal transition can be produced from this state; �(s) =def s LU���! s.Observing quiescence can be made explicit by means of a special event withlabel � 62 L; � can be observed if the implementation is in a quiescent state. [41]proves that �ior can also be characterised intensionally in terms of inclusionbetween the sets of output actions, including �, that the implementation andthe speci�cation can perform. Formally, i �ior s i� after all failure traces in� 2 (L [ fLUg)� the outputs produced by the implementation are speci�ed,and the implementationmay only refuse to produce outputs if the speci�cationdoes so, viz.,i �ior s i� 8� 2 (L [ fLUg)� : out( i after � ) � out( s after � )



where out(S) =def fx 2 LU j 9s 2 S : s x=)g [ f� j 9s 2 S : �(s)g for Sa set of states. A failure trace in (L [ fLUg)� is called a suspension trace;s-traces(p) =def f-traces(p) \ (L [ fLUg)�.Since checking out( i after � ) � out( s after � ) for all suspension tracesis hard to achieve by means of testing, the above characterisation can berelaxed by checking this condition for fewer suspension traces. In general, foreach F � (L[ fLUg)� an implementation relation iocoF can be de�ned thatonly checks the condition out( i after � ) � out( s after � ) for � 2 F , viz.,i iocoF s =def 8� 2 F : out( i after � ) � out( s after � ) (5)Note the correspondence in structure between equation (5) and equation (2).Validating a system by means of testing involves, in practice, checking howthe system reacts to stimuli from the environment. The relation iocoF cap-tures this intuitive notion of correctness [41]: correct implementations mayonly give reactions that are speci�ed. From now on we focus on the genera-tion of tests for implementation relation iocoF with F � s-traces(s).For testing implementations in IOTS(LI ; LU ) it su�ces to restrict the classof tests to a speci�c subclass of IOTS(LU ; LI [f�g) � LTS(L[f�g) in orderto check whether systems are �ior -related or not. In particular, [41] showsthat it su�ces to restrict to deterministic members with �nite behaviour ofLTS(LU ; LI [ f�g), such that either a single input action is supplied, or alloutput actions, including �, can be observed. There is no need to introduce ad-ditional nondeterminism in the test, and, since all errors occur within a �nitedepth of a transition system, they can be found using a �nite series of exper-iments. Formally, a test case t for iocoF is a labelled transition system overLI[LU [f�g such that (i) t is deterministic and has �nite behaviour, (ii) thereexists two states pass, fail such that init( pass ) = init( fail ) = ;, and (iii)for all states t0 2 der(t) with t0 6= pass ; fail we have init(t0) = fag for somea 2 LI , or init(t0) = LU[f�g. The universe of tests over LU and LI is denotedas TESTS (LU ; LI), and a test suite T is a set of tests: T � TESTS (LU ; LI).We denote test cases with a LOTOS-like syntax: t := a; t j PT j pass j failwhere ; 6= T � TESTS (LU ; LI). The semantics of these expressions is theobvious one: a;T is able to do action a, after which it behaves as t, PTbehaves make a choice between the behaviours of T , and pass, fail cannotperform any action at all. Instead of PfB1; B2g we also write B1 +B2.In order to give an indication about the (in)correctness of implementationsbased on observations made after execution of a test case, a verdict (successor failure) is assigned to implementations. For brevity we will identify theverdicts success and failure with the states pass and fail, respectively. Theexecution of a test is modelled in terms of test runs. A test run � 2 L� oftest t and implementation i is a trace that t ej i can perform such that test



t ends in pass or fail: 9i0 : t ej i �=) pass ej i0 or t ej i �=) fail ej i0. Animplementation i is said to fail test t if there exists a test run of t ej i thatends in fail, i.e., i fails t =def 9� 2 L�; 9i0 : t ej i �=) fail ej i0. Dually, an im-plementation passes test t if it does not fail test t: i passes t =def :(i fails t).We shall say that an implementation passes a set of test cases T , denotedas i passes T , if it passes all tests in test suite T . The failing of a test suiteis de�ned conversively. To link the passing and failing of an implementationto the correctness and incorrectness of this implementation, respectively, theverdicts pass and fail in the test case have to be assigned carefully. Ideally,test cases are designed in such a way that correct implementations alwayspass this set of tests (soundness), and incorrect implementations always failthis set of tests (exhaustiveness). Since exhaustiveness is di�cult (if not im-possible) to reach in practice we require soundness when designing test suites,and strive for exhaustiveness; erroneous behaviour is likely to be detected bythe test suite. A test suite that is both sound and exhaustive is called complete.Now we can give a test generation algorithm that is able to produce testcases in TESTS (LU ; LI) from a speci�cation s 2 LTS(LI[LU ) with respect toimplementation relation iocoF , and where it is assumed that implementationscan be modelled as members of IOTS(LI ; LU ). The algorithm is inspiredby the one presented in [41] and given in �gure 4. In the algorithm we usethe notation � for a trace in which all occurrences of � are replaced by thedeadlock detection symbol � that is used to observe this output deadlock, andvice versa: � leaves other actions unchanged.The algorithm is parameterised over a set of suspension traces F and aspeci�cation s 2 LTS(LI [LU ). For each suspension trace in F the algorithmproduces a test case that is able to check that the implementation producesan valid output(cf. equation (5)). The algorithm keeps track of the currentstates of the speci�cation that are exercised by means of the variable S, whichis initialised with fs0gafter � (where s0 is the initial state of speci�cation s).Tests are constructed by recursive application of three di�erent steps. Step 1is used to terminate a test case by assigning pass. Step 2 supplies an inputa 2 LI , that is speci�ed by some trace in F , to the implementation, updatesthe set of possible current states S of the speci�cation and the set of suspensiontracesF that need to be veri�ed, and recursively proceeds. In step 3 the outputactions that the implementation produces are checked for validity: a fail isassigned if the implementation produces an output that cannot be producedby the speci�cation, and we have already executed a trace in F , i.e., � 2 F .In this case there is evidence that the implementation violates equation (5).If the implementation produces an unspeci�ed output for which no checkingis required (� 62 F) a pass is assigned: there is no evidence of incorrectnesswith respect to iocoF . In case the implementation produces a speci�ed outputthen checking needs to be continued, i.e., the algorithm recursively proceeds,where S and F are updated accordingly.



Input: speci�cation s 2 LTS(LI [ LU )Input: set of failure traces F � (L [ fLUg)�Output: test case �F ;S 2 TESTS (LU ; LI).Initial value: S = fs0g after � , where s0 is the initial state of s.Apply one of the following non-deterministic choices recursively.1. (* terminate the test case *)�F ;S := pass2. (* supply an input to the implementation *)Take a 2 LI such that F 0 6= ;, then�F ;S := a; �F 0;S0where F 0 = f� j a�� 2 Fg and S0 = S after a3. (* check the next output of the implementation *)�F ;S := Pfx; fail j x 2 LU [ f�g; x 62 out(S); � 2 Fg+Pfx; pass j x 2 LU [ f�g; x 62 out(S); � 62 Fg+Pfx; �F 0x;S0x j x 2 LU [ f�g; x 2 out(S)gwhere F 0x = f� j x�� 2 Fg and S0x = S after xFigure 4 Test generation algorithm.When executing tests obtained using the algorithm in �gure 4, implemen-tations that are iocoF -correct will never be considered erroneous, i.e., there isno test run that will lead to a fail-state when these tests are executed againstiocoF -correct implementations (soundness). Moreover, executing all (usuallyin�nitely many) test cases that are generated by the algorithm can detect allerroneous implementations (exhaustiveness) [41].Theorem 1 Let s 2 LTS(LI [ LU ) and F � s-traces(s).1. A test case obtained with the algorithm depicted in �gure 4 is sound for swith respect to iocoF .2. The set of all test cases that can be obtained by the algorithm depicted in�gure 4 is exhaustive for s with respect to iocoF .



The testing theory for IOTS is expected to be more useful, due to the dis-tinction between inputs and outputs, than theories that do not make such ex-plicit distinction. This is also motivated by the existence of the tool TVEDA,that originated from protocol testing experience. TVEDA can derive teststhat are similar to tests that can be derived by algorithm 4. In [32] an at-tempt to provide an theoretical foundation behind TVEDA was given, whichresulted in an implementation relation R1 that is very similar to iocotraces(s).Moreover, since algorithm 4 abstracts from the branching structure of im-plementations and only deals with trace structures, it is expected that dataaspects are more easy to incorporate than in the algorithm for the construc-tion of canonical testers (section 4): in testing for iocoF the explosion fromcountably branching structures to uncountably branching structures (that ispresent in the construction of canonical testers) is avoided.6 CLOSING THE CIRCLEAlthough the shift from symmetric to asymmetric communication allows for amore realistic modelling of the testing process, still some criticism can be ven-tilated towards the asymmetric model. As indicated in [36] the requirementthat implementations must be modelled as members of IOTS(LI ; LU ) is stillrestrictive; not all implementations satisfy the requirement that inputs arealways enabled (e.g., systems that communicate with each other via boundedqueues; if the queue is full, no input can be accepted any more). Furthermore,observers for IOTS are forced to accept all outputs, even if these outputsoccur at geographically dispersed places, and thereby a possible distributionof the environment itself is ignored. As, in practice, many distributed imple-mentations communicate with their environment via distributed locations, orPCOs (Point of Control and Observation [22]), the distributed nature of theinterfaces should be taken into account when testing these systems. For exam-ple, the standardised language SDL [10] explicitly incorporates the di�erentlocations through which an implementation communicates with its environ-ment by means of channels, and the standardised test notation TTCN [22,part 3] is also able to express the sending and reception of messages to spe-ci�c locations. In the IOTS model it is not possible to exploit the distributednature of interfaces. An example of a system that cannot be described as anIOTS is depicted in �gure 5.In order to overcome these de�ciencies recent research has lead to a modelthat re�nes the IOTSmodel, and, at the same time, uni�es both the symmetricand asymmetric communication paradigm in a single framework. Basically,this is done by making two re�nements to the IOTSmodel that are su�cient tomodel systems like the one in �gure 5, i.e., (i) distinguishing between di�erentlocations, or channels, through which an implementation communicates withits environment, and (ii) weaken the requirement for IOTS that all input



environment IUTunbounded queues z
c

yabx bounded queue
no queue

Figure 5 Example of a multi input/output queue system.actions have to be continuously enabled. We will brie
y elaborate on bothre�nements.Ad (i) Instead of partitioning the label set L in an input set LI and anoutput set LU , these sets themselves are partitioned in one or more groups(i.e., sets) of actions; LI = S1�i�n LiI and LU = S1�j�m LjU . Each group ofactions de�nes a channel where these actions may occur. By distinguishingbetween the di�erent channels of an implementation an external observer is(potentially) able to observe the inability of an implementation to produce anoutput at some output channel, while at another output channel the imple-mentation can produce an output. Note that this is not possible in the IOTSmodel: observers of an IOTS are not able to check that subsets of outputscannot occur.Ad (ii) Instead of requiring that input actions must always be enabled, itis required for each input channel that \if an input in a channel is enabled,then all inputs at this channel should be simultaneously enabled", i.e., Foreach input channel LiI we require8p0 2 der (p); if 9a 2 LiI : p0 a=) then 8b 2 LiI : p0 b=) (6)This requirement is strictly weaker than the one imposed on IOTS where allinputs are always enabled. In particular, this requirement allows us to modelcommunication by means of bounded queues; all inputs in a channel are onlyenabled if the queue is not full.Systems that are modelled with these two re�nements are called multi in-put/output transition systems (MIOTS) [40, 41]. The class of MIOTS under



consideration depends on the speci�c partitioning of the channels, that is, theset of implementations in MIOTS is parameterised by the location of interfacesthrough which these implementations communicate with their environment.Such systems can be tested by means of observers that are also modelled asMIOTS (where input channels of the system are output channels for the ob-server, and vice versa). This yields an implementation relation �mior de�nedsimilarly as �ior (equation (4)), and a characterisation in terms of miocoFsimilarly as iocoF (equation (5)), that are parameterised over the distributionof the interfaces of the implementation with the environment. [19] investigatestesting theory for MIOTS, and they relate the di�erent instances of �mior forthe speci�c distributions of interfaces.MIOTS allow to relate synchronous and asynchronous testing theories byvarying the granularity of the interfaces, and thus close the circle with re-fusal testing (section 1, [33]). Moreover, the di�erent instances of �mior forthe speci�c distributions of the interfaces are related. If all inputs run via asingle channel and all outputs run via a single channel, and requirement (6) isstrengthened to requirement (3) for inputs on this single input channel, then�mior corresponds to �ior . On the other hand, if each action runs througha separate channel, i.e., the sets LI and LU are partitioned in singletons,then �mior equals �rf [19]. This means that the symmetric testing theorydiscussed in section 3 and the asymmetric testing theory discussed in section5 are uni�ed in a single testing framework, and the test algorithm presentedin [19] is able to generate tests for �rf , �ior , �mior , iocoF and miocoF .7 CONCLUSIONSHistory In this paper we sketched the developments that have taken place(and still take place) in testing based on labelled transition systems. The sem-inal work in [13, 12] introduces a testing theory for labelled transition systemsbased on the assumption that communication between systems and their en-vironments is symmetric. They de�ne, and compare, many testing relationsby varying the class of tests, and the class of observations. [33] discusses are�nement of [13, 12] by allowing observers to continue after observation ofdeadlock. The �rst mature theory based on [13, 12] that presents an algorithmto derive tests from a speci�cation is presented in [6, 7]. They discuss howto generate a test suite that can distinguish between correct and incorrectimplementations (with respect to implementation relation conf).As, in practice, communication between implementations and testers is of-ten asymmetric, many approaches that incorporate such asymmetric com-munication have been done with the aim to apply testing theory to realisticsystems (SDL [10], TTCN [22, part 3]). One of these approaches is [42]. Theyassume that communication between implementations and testers runs viatwo unbounded queues, and they de�ne, and analyse, testing relations (so-



called queue preorders) for systems that communicate with their environmentthrough these queues. A more general approach is taken by assuming that im-plementations can be modelled as input/output transition systems (IOTS).An IOTS is a LTS that makes an explicit distinction between input actionsand output actions, and assumes that input actions are weakly enabled. Inthis way it isolates the relevant aspects of queue systems without requiringthat communication with the environment is done via queues.[41] applies the ideas of [33] to IOTS, and de�nes a testing theory for im-plementations that can be modelled as IOTS. They assume that the inabilityto produce output actions, i.e., quiescence, is observable, and de�ne an imple-mentation relation iocoF that captures the intuition of correctness in practice.They also present an algorithm that is able to derive a sound and completeset of tests from a speci�cation. These tests resemble tests generated by thetool TVEDA [11] that originated from practical testing experience.[19] re�nes the theory of IOTS by taking the distribution of the interfacesof implementations into account. They explicitly model the locations (also:PCOs or channels) where actions can take place, and they require that in-put actions per input channel are either simultaneously enabled or simultane-ously disabled. Such systems are called multi input/output transition systems(MIOTS). For implementations that can be modelled as MIOTS refusal test-ing [33] is applied, and quiescence is assumed to be observable (cf. [36, 40, 41]).Similar to iocoF they de�ne an implementation relation miocoF relative tothe distribution of interfaces of implementations, and present an algorithmthat is able to derive sound and complete test cases for miocoF . This resultsin a testing theory that is parameterised over the granularity of interfaces ofimplementations. [19] shows that speci�c instances yield the traditional re-fusal testing theory of [33], and the refusal testing for IOTS [41], and henceincorporates both theories in a single framework.Future The theory and the algorithm for IOTS/MIOTS can form the basisfor the development of test generation tools. In order to use such tools inrealistic testing experiments several aspects need elaboration. One of theseaspects involves data handling. In many realistic applications data is involved.To deal with data in an e�cient way the test generation algorithm has toincorporate such data aspects in a symbolic way; otherwise automation oftests is not feasible due to explosion in the data part. Another aspect concernsthe well-known problem of test selection. As test suites grow in size, executionof all of the tests in the test suite becomes too expensive, and selections haveto made; which tests are executed, and which are not? (Partial) solutionscan be found in de�ning coverage measures, fault models, strengtening testassumptions, etc. [3, 23, 31]. Experiments in applying the algorithm to realisticproblems have to be conducted in order to show the strengths and weaknessesin the testing theory for IOTS. A �rst trial in which a preliminary version ofthe theory for IOTS was applied to a simple protocol looks promising [38],but more experiments are needed to draw meaningful conclusions. Finally, the
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