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Abst rac t  

This paper describes a scheduling technique for parallel database systems to 
obtain high performance, both in terms of response time and throughput. The 
technique enables both intra- and inter-transaction paralMism while control- 
ling concurrency between transactions correctly. Scheduling is performed dy- 
namically at transaction execution time, taking into account dynamic aspects 
of the execution and allowing paraalehsm between the scheduling and trans- 
action execution processes. The technique has a solid conceptual background, 
based on a simple graph-based approach. The usabihty and effectiveness of 
the technique are demonstrated by implementation in and measurements on 
the parallel PRISMA database system. 

1 Introduct ion  

In general, (parallel) database systems are meant for high performance data pro- 
cessing. High performance can be seen as a combination of low response times and 
high throughput.  To obtain these properties, a good scheduling of the actions on 
the database is essential. We distinguish between scheduling of the actions in one 
single transaction, and scheduling of the actions in different transactions. 

The scheduling of actions in one single transaction to obtain low response time 
is called transaction optimization here. The technique is based on dependencies be- 
tween the actions in a transaction, and takes the dynamic execution characteristics 
of the transaction into account, using availability of resources and feedback from 
the execution layer of the system. As such, the scheduling technique is based on 
a dynamic model of a multi-user machine, and can be seen as the complement of 
traditional query optimization techniques, which transform actions in a transaction 
based on a static model of a single-user machine. Transaction optimization is espe- 
cially important  in an environment with complex transactions, either user-defined 
or system-generated. The latter case occurs in distributed systems with fragmented 
relations [3] and in systems performing integrity constraint enforcement through 
transaction modification [6, 7]. 

The scheduling of actions of different transactions is traditionally called con- 
currency control. This technique tries to optimize throughput under the condition 
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that concurrently executing transactions are 'unaware' of eachother. Concurrency 
control can be based on dependencies between the involved actions of concurrent 
transactions, much alike the dependencies mentioned above. 

Transaction optimization and concurrency control can be integrated into one 
single mechanism that operates on a global graph representing the dependencies 
between actions. This leads to a system architecture with fully centralized action 
scheduling. Decentralizing this task can now be modelled conceptually by splitting 
up the graph into several subgraphs, operated upon by concurrency control and 
decentralized transaction management processes. 

The approach to action scheduling presented in this paper has a number of char- 
acteristics that distinguish it from other proposals. In the first place, the approach 
makes use of high level dependencies between actions; other approaches, like [5], 
use lower level dependencies representing the actual flow of data in a system. The 
use of high level dependencies enables simple scheduling mechanisms, causing little 
overhead and allowing for distribution of and paralMism in the scheduling task. 
In the second place, the scheduling technique presented in this paper performs the 
dependency analysis dynamically at transaction execution time, thereby allowing 
parallelism between transaction control and execution. Compiler-based techniques 
perform the analysis at transaction definition time [9, 2]. The approach described 
here requires no compilation of transactions and is therefore suited for ad hoc trans- 
actions as well. Finally, the approach described in this paper has been implemented 
and tested in a real-world parallel database machine. Other conceptually oriented 
approaches often lack this practical test, whereas most database machine projects 
pay little attention to scheduling of concurrent multi-action transactions. 

This paper starts with a short discussion of some basic notions. Section 3 dis- 
cusses the concept of order dependency and transaction optimization. Section 4 
presents the concept of resource dependency and its use in concurrency control. 
Order dependency and resource dependency are combined in Section 5 to obtain a 
global dependency notion. Section 6 discusses architectural issues for an implemen- 
tation of the techniques. Section 7 describes the practical usage of the techniques in 
the PRISMA parallel database system, and presents measurements to demonstrate 
the effectiveness of the proposed techniques. Conclusions are drawn in Section 8. 

2 Basic  not ions  

Informally, a transaction is a unit of work executed against a database state. More 
formally, a transaction T can be seen as an operator that transforms a database 
state D into another state T(D): 

D T T(D)  

Further, the execution of T can have side effects, such as the production of output. 
The execution of a transaction should satisfy three important properties: atomicity 
of the execution, serializability with respect to concurrent transactions, and correct- 
ness with respect to a set of integrity rules. In the context of this paper, only the 
serializability property is of interest. This property requires that the effect of the 
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begin 
assignment 
output 

begin update 
x = op(yl,"., yn) commit 
?x 

npd( , y) 
commit 

Table 1: Elementary action types 

concurrent execution of two transactions T1 and T2 must always be the same as the 
effect of some serial execution of the same transactions: 

D ( T ~ )  TI(T2(D)) or D (T~2) T2(TI(D)) 

The t ransformation of the database state and the generation of side effects by a 
transaction T are specified as a sequence of elementary actions: T = (al; as ; - -  -; a,0. 
The actions a~ are described using some database language, e.g. a language based 
on the relational algebra. We make an abstraction from such a language to obtain 
a small set of elementary action types to specify transactions. The notat ion of 
these action types is shown in Table 1. The begin action indicates the start  of a 
transaction. The assigment action assigns the result of a relational operation to a 
new and implicitly defined relational variable; the semantics of the operation (join, 
union etc.) are of no significance in this context. The output action delivers the 
contents a relational variable to the user of the database system; how the output  is 
produced is irrelevant; the output  action models side effects of a transaction. The 
update action changes the current state of the database; the first parameter  is the 
variable (relation) to be changed, the second parameter  is a variable used as source 
for the change; the type of update  (insert, delete or modify) is of no significance. 
The commit action indicates the end of a transaction. Note, that  this set of actions 
can be used to model more complex actions, such as actions with nested operations. 
Other choices of elementary action types are possible; the choice is not of great 
importance for the techniques presented in this paper, however. 

3 Order dependency  and Transaction optimization 

This section starts with the discussion of the dependencies between actions in a 
transaction with respect to execution order. These dependencies can be represented 
by means of a graph. This graph is used for the scheduling of actions to obtain an 
optimized execution of a transaction. 

3 . 1  O r d e r  dependency 

Actions in a transaction can be dependent with regard to the order in which they 
have to be executed; this order dependency relation is defined below. 

Definition 3.1 Given are two transactions T = ( a l , - - - ,  ai , . . . ,aj , . - . ,a ,~)  and 
T '  = ( a l , . . - ,  a j , .  --, a~, - - -, a, 0 .  Transaction T '  is obtained from T by interchanging 
actions ai and aj.  Now action aj has an order dependency with respect to action a~ in 
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begin v = op( wl , " " , wm ) ?v 
begin 
x = op(yx , ' " , yn )  true Yi -- v false 
?x true x =_ v true 
upd(x,y) true x =- wi V y =_ v x =_ v 
commit true true true 

upd(v, ~) 

Yi = V  

X = _ v V 3 z = w V y : v  
true 

commit 

Table 2: Order dependency matr ix  

T if at least one of the following two statements  holds. (1) T and T '  model different 
t ransformations of at least one database state D: ( S D ) ( T ( D )  # T ' ( D ) ) .  (2) The 
side effects of the execution of T and T '  on some database state D are different; in 
particular, T and T ~ either produce different output,  or produce the same output  in 
a different order. The fact that  aj is order dependent on a~ is denoted as od(aj ,  ai).  [] 

This definition gives a conceptual view on order dependency, which is hard to use in 
a practical situation; a more operational approach is developed in the sequel of this 
paper. If  the order dependency relations between actions of a transaction are to be 
analyzed, a minimal  set of relations is preferable. Therefore, the definition above is 
restricted in the definition of direct order dependency  below. 

D e f i n i t i o n  3.2 Given is transaction T = ( a l , . . . ,  a i , . . . ,  a j , - - - ,  aN). Now action aj 
has a direct order dependency  with respect to action ai if od(aj ,  ai) and no action 
ak exists with i < k < j such that  both od(aj ,  a~) and od(a~, ai). The fact that  aj 
is direct order dependent on ai is denoted as dod(a j ,  ai). So, we have: 

dod(a j ,  ai) ~ od(a j ,  ai) A ( f l a ~ ) ( ( o d ( a j ,  ok) A od(ak,  ai))  

[] 

In a transaction consisting of a sequence of the elementary action types, order de- 
pendency between two actions aj and ai exists in the following cases. If ai defines a 
variable that  is used as an operand by aj,  the actions cannot be interchanged with- 
out changing the effect of the transaction; this kind of order dependency is called 
defini t ion dependency.  Definition dependency models the dataflow between opera- 
tions and is therefore also called dataf low dependency.  If ai updates a variable that  is 
used as an operand by aj, interchanging the actions c a u s e s  aj to 'see' a wrong value 
of the variable; this kind of dependency is called value dependency.  If both actions 
ai and aj have side effects (produce output) ,  interchanging the actions changes the 
order of the side effects; this kind of dependency is called output  dependency.  Every 
possible ordered pair of action types can be analyzed to obtain the conditions under 
which the two actions have an order dependency relation; these conditions are listed 
in Table 21 . 

The set of all direct order dependencies between the actions in a transaction can 
be described by means of a graph. The technique to represent sets of dependencies 
by means of a graph is commonly used in compiler construction, both for general 

1In this table the symbol = is to be interpreted as 'is the same variable as'. 
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begin 
upd(x.a) 
z=op(x,y) 
upd(y.b) 
?x 
upd(y.z) 
?z 
c=op(x.b) 
d=op(y.c) 
?d 
commit 

begin 
/ 

upd(x,a) ~ . . . . ~ . . . . ~  

up~y.b) ?z / 

commit 

Figure 1: Example transaction and O-graph 

purpose programming languages [1] and for database programming languages [9]. 
The definition below describes a graph representing direct order dependencies. Fig- 
ure 1 shows an example transaction and the corresponding graph. 

De f in i t i on  3.3 Given is transaction T = (a l , . . . , am) .  The Direct Order Depen- 
dency Graph or O-graph of T is a directed graph G = (V, E). The set of vertices 
V corresponds with the actions ai in T: V = {vl,.-. ,v,~} and vi is labeled with 
ai. The set of edges E corresponds with the direct order dependencies that  exist 
between the actions ai of T: E = {(vl, v2) E Y x Y ]dod(action(vl), action(v2))}. 
[] 

3 . 2  D y n a m i c  t r a n s a c t i o n  o p t i m i z a t i o n  

Dynamic transaction optimization is the technique of scheduling the execution of 
individual actions within a transaction such, that  the overall transaction execution 
response time is reduced, under the condition that the semantics of the transaction 
are not affected. Reduction of response time is obtained by scheduling the execution 
of the actions as early as possible. This implies monitoring the execution of the ac- 
tions and acting on the occurring events; transaction optimization is thus a dynamic 
process. Transaction optimization can be seen as a form of global query optimiza- 
tion [12], complementary to the usual query optimization techniques dealing with 
expression rewriting, common subexpression elimination and such [3]. 

Scheduling the actions of a transaction to reduce transaction response times 
implies deviating from a fully sequential execution of the actions in the order specified 
by the transaction. A number of practical situations exist in which such a deviation is 
beneficial. In case of parallel processing possibilities, several actions can be scheduled 
to be executed in parallel. Take example transaction T1 in Table 3. The two 
update actions are fully independent, so they can be executed in parallel. In case of 
unavailable resources necessary for some actions, the execution order of actions can 
be changed. Resources are mostly database data (relations). This case is illustrated 
by transaction T2 in Table 3. If some other transaction holds a lock on resource a at 
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T1 
beg~n 
upd(a,b) 
upd(c,d) 
commit 

T2 T3 
begin 
upd(~,c) 
?c 
commit 

begin 
upd(a,b) 
upd(c,d) 
~l~rm(op(~)) 
commit 

Table 3: Example transactions 

the start of the execut-ion of T2, the first action cannot be executed, but the second 
can; therefore, changing the execution order will reduce transaction execution time. 
In case of actions that may cause a transaction abort, these actions can be scheduled 
earlier to avoid unnecessary work in case of an abort. This situation is common 
in a system that handles integrity constraints through transaction modification [7]; 
using this technique, constraints are translated into an alarm operator that can 
trigger a transaction abort if some condition holds on its operand. Transaction T3 
in Table 3 performs two updates on relations a and c. At the end of the transaction, 
an integrity constraint is evaluated over relation a 2. If this constraint is violated, 
the transaction will be aborted and the update on c has been superfluous work. 
Scheduling the alarm before the second update will avoid this. 

Scheduling the actions of a transaction may not affect the semantics of the trans- 
action. This implies that it must be guaranteed that the optimized execution of a 
transaction has exactly the same effect as the fully serialized execution of the trans- 
action, both in terms of database transition and side effects. The concept of order 
dependency is used for this purpose: actions in a transaction may not be scheduled 
such, that  two actions having an order dependency are executed in an other way 
than sequentially 3 in the order as indicated by the transaction. As shown before, 
the dependencies in a transaction can be represented conveniently using an O-graph. 
Therefore, this graph will be used as the basis for the transaction optimization al- 
gorithms discussed below. 

3 . 3  S c h e d u l i n g  u s i n g  t h e  O - g r a p h  

Transaction optimization is performed by scheduling algorithms operating on an O- 
graph as follows. A new vertex is added to the graph when a new action in the 
transaction is submitted to the system. Adding a new vertex implies adding all 
edges that originate from this vertex, using a decision matrix as depicted in Ta- 
ble 2. When a new resource becomes available, the resource administration of the 
transaction is updated. This administration is used to check when all resources for 
an action are available. The action associated with a certain vertex is submitted 

2If relation a has a domain constraint c on attribute i, the constraint enforcement action is 
alarm(cr~c(i)a ). This construct triggers a transaction abort whenever the result of the selection is 
non-empty, i.e. whenever tuples in a violate c. 

3 As described later in this paper (Section 7.2), some form of parallelism can be allowed between 
two actions that have a dataflow dependency. This is an operational aspect, however, that is not 
of importance on the conceptual level discussed here. 
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for execution when the action is order executable (see below), and all necessary re- 
sources are available to the transaction. A vertex is removed from the graph when 
the execution of the action associated with this vertex has.been completed. Remov- 
ing a vertex implies removing all vertices ending in this vertex. The concept order 
executable is used to indicate wether an action can be executed with respect to its 
order dependencies. This concept is defined formally as follows: 

D e f i n i t i o n  3.4 An action ai of a transaction T is order executable if the vertex 
that  corresponds with ai has no outgoing edges in the O-graph G = (V, E). So: 

oexec(ai) ~ {(vl,v2) e E I action(v1) = ai} = 0 

[] 

4 Resource dependency and Concurrency control 

This section discusses the dependencies between actions belonging to different trans- 
actions that  make use of the same resources. These resource dependencies can be 
represented by means of a graph, usable for the scheduling of the actions to obtain 
a concurrency control protocol. 

4.1 Resource dependency 

Below the definitions of resource dependency and direct resource dependency are 
given; these are analogous to the definitions of order dependency and direct order 
dependency given before. In short, two actions are resource dependent if an execu- 
tion of these actions other than sequential and in the specified order, may violate 
the serializability property of the transactions the actions belong to. 

D e f i n i t i o n  4.1 Given are two transactions T1 = ( a l , . . . , a i , . . . , a m )  and T2 = 
(b l , . - - ,  bj , . . . ,  bn). Now action ai has a resource dependency with respect to action 
bj if the execution of ai in T1 requires resources that are obtained or will be obtained 
by T2 and that  cannot be released before the execution of bj has been completed. 
The fact that  a~ is resource dependent on bj is denoted as rd(a~, bj). [] 

D e f i n i t i o n  4.2 Given are transactions T1 and T2 as shown above. Now action 
al has a direct resource dependency with respect to action bj, if rd(ai, bj) and no 
action c~ exists in any transaction T~ being executed by the system, such that both 
rd(ai,ck) and rd(ck,bj). The fact that  ai is direct resource dependent on bj is 
denoted as drd(ai, bj). So we have: 

drd(al, bj) r rd(ai, bj) A (]flc~ e T,)(rd(ai, c~) A rd(c~, bj)) 

[] 

The set of all direct resource dependencies between the actions of transactions being 
executed by the system at a given time can be described by means of a graph, called 
R-graph. This graph is similar to the Wait-For-Graph (WFG) used commonly in 
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begin begin begin 

upd(x,b) < . upd(x.z)~. ...... i upd(x.c) 

commit commit 

Figure 2: Example transactions and R-graph 

concurrency control [4, 3]. The R-graph as defined below contains more information 
than a WFG, however, since its nodes are not transactions, but actions of the trans- 
actions. 

D e f i n i t i o n  4.3 Given is a set of transactions T = {T1, .- . ,T,~} being executed 
by the system at a given time, with T/ (a/l, i . . . .  , an~ ). A Direct Resource Depen- 
dency Graph or R-graph of a transaction set 7- is a directed graph G = (V, E). 

i of the transactions in 7-: The set of vertices V corresponds with the actions aj 

i The i is labeled with action aj V =  {v i I l < i < m A l _ < j _ <  ni} and vertex aj 
set of edges E corresponds with the direct resource dependencies that exist between 

i ofT-: E = {(vl,v2} 6 V • V Idrd(action(vl) ,action(v2))}.  [] the actions aj 

The use of an R-graph is independent of the locking scheme used. Figure 2 shows 
an example of an R-graph with three concurrently executing transactions. The re- 
source dependencies associated with the solid edges are based on a two-phase locking 
protocol with shared and exclusive locks [4]. If exclusive locks are used only, the 
dependencies associated with the dotted edges are added to the graph. 

4 .2  C o n c u r r e n c y  c o n t r o l  

As shown above, resource dependencies between actions of multiple transactions 
can be represented conveniently by means of an R-graph. Therefore, this graph 
can easily be used for concurrency control purposes. Concurrency control is then 
performed by manipulating the R-graph and keeping a resource administration as 
follows. 

A new vertex is added to the R-graph when a new action in a transaction is to be 
executed. This can be done at two different moments: when the action is submitted 
to the system, or when the transaction is ready to actually execute the action. 
These situations can be described as "greedy locking" respectively "lazy locking". 
Inserting a new vertex implies inserting all edges originating from this vertex. After 
a vertex has been added to or removed from the R-graph, the graph is scanned for 
actions that  can be submitted for execution, i.e. actions that are resource executable. 
When an action is submitted for execution, the resource administration may need 
to be updated (resources may have become unavailable). A vertex associated with 
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an action is removed from the R-graph when the execution of that action has been 
completed. Removing a vertex implies removing all edges ending in this vertex. 
Further, the resource administration may need to be updated (resources may have 
become available). The definition of resource executable used here is analogous to 
the definition of order executable as given before. 

5 Integrat ing both  worlds 

In the previous sections the notions of order and resource dependency and their 
graph representations were discussed; as mentioned before, the concepts are much 
alike. Therefore, both types of dependencies can be integrated into one global graph 
representation describing all dependencies between the actions being handled by the 
system. 

Definit ion 5.1 Given is a set of transactions T = {T1,...,T,~} being executed 
by the system at a given time, with T~ = (a~,--., a~).  A Global Direct Depen- 
dency Graph or G-graph of T is a directed graph G = (V,E). The set of vet- 

of the transactions in T: V = {~ [ tices V corresponds with the actions aj 
i The set of i is labeled with action aj. 1 < i _< m A 1  _< j _< hi} and vertex vj 

edges corresponds with the direct dependencies that exist between the actions of T: 
E = {(vl, v2) ldd(action(vl), action(v2))}. The direct dependency relation between 
two actions is defined as follows: 

dd(vl, v2) r dod(vl, v2) V (drd(vl, v2) A -~(2v3 I od(vl, v3) A rd(v3, v2))) 

[] 

Informally, a G-graph is constructed by merging the R-graph and all the O-graphs 
of the transactions being executed, and removing all superfluous resource depen- 
dencies; a resource dependency is superfluous here, if it indicates that an action 
al must wait for a resource while an action a2 that is surely executed before al is 
waiting for the same resource. Figure 3 shows a G-graph with three transactions, 
based on the R-graph shown before. In this graph, the edges within the boundaries 
of the transactions represent direct order dependencies; edges crossing transaction 
boundaries represent direct resource dependencies. 

Global scheduling of the execution of actions in a system can be based on the 
G-graph. The scheduling is analogous to the scheduling based on an O-graph or R- 
graph: actions submitted to the system are added to the graph, executable actions 
are submitted to the action execution layer, and completed actions are removed from 
the graph. Global scheduling based on the G-graph implements both dynamic trans- 
action optimization and concurrency control within one simple conceptual mecha- 
nism. 

6 Architectural  issues 

In this section the architecture of an action scheduler and its integration into a 
DBMS are discussed at a conceptual level. These ideas are used in Section 7 in a 
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~ begin 

pd(t.b) 

p d ( a , b ) ~  

t=~(x.~)/~ ff 
4' 
?t 

4` 
commit 

( -  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 

i begin 

up;x,z) < 
ornmit 

begin 

commit 

Figure 3: Example transactions and G-graph 

real world DBMS. 

6.1 A c t i o n  s c h e d u l e r  a r c h i t e c t u r e  

An architecture for the action scheduler is shown in Figure 4. The Graph Processor 
forms the heart of the action scheduler; this module maintains the dependency 
graph using the algorithms described before. The processor receives new actions 
to be added to the graph when new taks are submitted to the action scheduler. 
Actions that are executable are sent for execution to the execution control. When 
the execution of an action has been completed, the action is removed from the graph; 
its resources are handed back to the resource control module. The Action Analyzer 
module analyzes incoming actions prior to sending them to the graph processor. The 
analysis detects the resources necessary for the execution of the actions; resource 
requests are sent to the resource control module. The Resource Control module 
keeps an administration of the resources needed for transaction execution. If it does 
not manage all resources in the system, it can take steps to acquire resources from 
other resource controllers. Available resources are sent to the graph processor. The 
Execution Control module controls the execution of actions that  were released by 
the graph processor. It monitors the execution, such that  completion of actions can 
be notified to the graph processor. 

6 . 2  I n t e g r a t i n g  t h e  a c t i o n  s c h e d u l e r  i n t o  a D B M S  

The action scheduler as discussed above can be integrated into a complete DBMS 
architecture. The most simple approach is to have one central action scheduler in 
the system. In the case of a distributed system, it can be advantageous to split up 
the scheduler into a number of schedulers that each perfrom part of the scheduling 
task. These two cases are discussed below. 

An action scheduler managing the entire G-graph of a system can be used as a 
centralized transaction management layer of the DBMS, controlling both transac- 
tion execution and concurrency between transactions. This situation is depicted in 
Figure 5. The action scheduler forms the interface between the action preprocessing 
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. . i_ 
graph L processor------- 

Figure 4: Action Scheduler architecture 

layer and the action execution layer of the system. It accepts transaction specifica- 
tions from the query optimizer, and submits actions to the execution layer of the 
system. Note, that pipelining is possible in this process: the transactions can be 
handed in several pieces to the action scheduler, and scheduling can start immedi- 
ately when a piece is available. In this way, parallelism can be obtained between 
action preprocessing, scheduling, and execution. Parallelism between the various 
query processing layers of a DBMS can result in an improved overall performance 
[ i i ] .  

In a distributed (parallel) DBMS it can be advantageous to distribute the action 
scheduling tasks to avoid the scheduler becoming a performance bottleneck. Dis- 
tributing the scheduling tasks can easily be done by partitioning the dependency 
graph and assigning a private graph processor to each partition. The graph pro- 
cessors can then be allocated on different processors of the hardware architecture. 
A natural form of distribution is obtained by partitioning the central G-graph into 
one central R-graph and an O-graph for each transaction being executed. This leads 
to a situation with distributed transaction management and centralized concurrency 
control. The corresponding system architecture is depicted in Figure 6. It is possible 
to distribute the central R-graph also to obtain distributed concurrency control as 
well. 

7 Action scheduling in PRISMA/DB 
The action scheduler architectures as depicted in Figures 5 and 6 can be used in real 
world database systems. This section discusses the application of the ideas in the 
context of the PRISMA parallel database management system [10, 14]. 

7.1 A r c h i t e c t u r e  

PRISMA is a parallel and multi-user database management system; therefore, the 
distributed architecture as shown in Figure 6 is used. The PRISMA architecture 
consists of three layers. The transaction preparation layer consists of the various 
user interfaces to the system and the query optimizer. This layer accepts transac- 
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action I 
analysis 

L J resourcel 
G - g r a p h ~ - ~  control ! 
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[execution][ 
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action ] 
execution layer 

Figure 5: Action scheduling with centralized transaction management 

[ dbms ! 
l interfa~eJ interfaceJ 

query 
optimizer 

action 
analysis 

O-graph 

! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : 

action execution layer 

Figure 6: Action scheduling with distributed transaction management 
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tion specifications submitted to the system and performs some transformations on 
the specification of the transactions. The transaction management layer manages 
the parallel execution of the transactions. It consists of a centralized concurrency 
controller and a transaction ' manager per transaction being executed. The trans- 
action execution layer consists of a parallel relational algebra engine that executes 
the actions submitted by the transaction management layer in a parallel fashion. 
Transaction are specified in an extension to the relational algebra, that can easily 
be mapped to the abstract actions presented before. 

The O-graph processor is located in the transaction manager (TM) of PRISMA. 
It uses a variation on the graph processing algorithms presented in Section 3.3. Note, 
that a separate TM process is created for each transaction to be executed by the 
system. As such, O-graph-based scheduling is decentralized per transaction. The 
R-graph processor islocated in the concurrency control unit (CC) of PRISMA. In 
cooperation with the TM's, the CC employs a simple two-phase locking protocol 
[4, 3] with shared and exclusive locks. Locks are always released at transaction 
commit. This implies that all edges in the R-graph end in a commit action. A 
centralized CC process is used because this simplifies the design of the system, and 
enables cheap deadlock detection (the entire R-graph is located on one node of the 
system). 

7.2 M e a s u r e m e n t  r e s u l t s  

This section presents the results of measurements to show the effectiveness of trans- 
action optimization in the PRISMA context. The goal of this section is to give the 
reader a general impression, not to present a complete performance analysis. Two 
situations are discussed: the situation in which parallel execution of actions is used 
to reduce the execution time of a transaction, and the situation in which the or- 
der of execution of actions is changed because of unavailable resources. Currently, 
PRISMA does not make extensive use of early abort situations, so this situation 
cannot be demonstrated here. The measurements presented below were performed 
on a POOMA shared-nothing multi-processor [13]. Further details can be found in 
[8]. 

Figure 7 shows the execution of a transaction T1. The upper left part of the 
figure shows the transaction in terms of the action types presented before. The O- 
graph of the transaction is depicted in the upper right part of the figure. The lower 
part of the figure shows how the execution of the actions takes place in time on 
the processors of the system. Each bar represents one processor executing actions 
of the transaction. The length of the bars represents the total execution time of 
the transaction, including control overhead at the beginning of the transaction and 
logging at the end of the transaction. Only the execution of the actions is shown in 
the bars; the scheduling of the transaction takes place on a different processor and 
is not shown. Transaction T1 performs actions on relations r l  and r2 allocated on 
processors P1 and P2. The actions on r l  and r2 are mutually independent, so they 
can be executed in parallel. The time bars show that this is indeed the case. The 
gain in transaction execution time compared to a sequential execution of all actions 
is obvious. 

Figure 8 shows the execution of a transaction in which order dependencies exist 
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Figure 7: Scheduling of a transaction 

T2 = begin 
tl = op (rl) 
t2 = op (r3) 
upd (rl,tl) 
upd (r3,t2) 
t3 = r3 
upd (rl,t3) 
upd (r3,t2) 
commit 
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Figure 8: Scheduling of a transaction 

between the actions on the relations involved. Transaction T 2  performs actions on 
relations r l  and r3. Actions [2] through [5] can be scheduled in the same way as in 
the previous example. As shown in the O-graph, action [7] is order dependent on 
action [6]. Action [6], however, involves the transfer of data between processors P1 
and P 2  (modelled here as a "remote" assignment), and cannot be executed before 
P2 is ready to receive, i.e. has executed action [4]. The fact that  PRISMA exploits 
pipelining parallelism [14, 15] enables a parallel execution of actions [6] and [7]. 
This is an implementation detail, however, that  does not violate the theory of order 
dependency. Action [8] is order dependent on action [6], and has to wait for the 
completion of this action. This example shows again, that  the execution of actions 
is scheduled as early as possible. 

In Figure 9 the execution of two concurrent transactions T3 and T4 is depicted. 
Transaction T3 is started slightly earlier than T4 in this example. Therefore, T3 
first obtains an exclusive lock on relation r l .  Resource r l  is unavailable at the start 
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Figure 9: Scheduling of concurrent transactions 

of T4, so the actions of T4 on r2 are scheduled earlier than those on r l .  The actions 
of T4 on r l  are executed as soon as T3 has released its locks. Note, that T3 has to 
log its updates before it can release its locks on relation r14; this accounts for the 
time gap between the execution of actions [4] and [7]. 

8 C o n c l u s i o n s  

This paper describes a dynamic action scheduling technique that makes use of par- 
allel action execution, resource availability information and early abort situations to 
improve both the response times of transactions and the throughput of a database 
system. This results in an improvement of the overall system performance. The 
scheduling technique will be most beneficial in multi-user systems with complex 
transactions, i.e. transactions consisting of many actions. These complex transac- 
tions may be defined by the user, or generated by the system. 

Dynamic action scheduling can easily be described using a graph-based approach, 
casting the scheduling algorithms into graph processor algorithms, used for a graph- 
based action scheduler. This scheduler can be integrated into an abstract DBMS 
architecture. To accomodate decentralized transaction management, the scheduler 
can be decentralized by partitioning the global graph it operates upon. The fea- 
sibility of the approach is demonstrated by the implementation of a decentralized 
graph processor in the PRISMA parallel database system. Measurements performed 
on this system show the effectiveness of the scheduling technique, both for reducing 
transaction response times and for improving system throughput. Further measure- 
ments with more complex situations will be conducted in future. 

The technique can easily be extended and improved in a number of ways. Firstly, 
the analysis of the dependencies between actions can be made more "intelligent". 

4This  is due  to t he  fact  t h a t  t r a n s a c t i o n s  in  P R I S M A  do no t  release any  locks before  end  of 
t r ansac t ion ,  a n d  logging  is cons idered  an  in tegra l  p a r t  of a t r a n s a c t i o n  p e r f o r m i n g  u p d a t e s .  
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Secondly, the scheduling algorithms can use resource information not only concerning 
data resources, but also concerning processing resources. 
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