
P a r a l l e l S c h e d u l i n g
in Data Base S y s t e m s

Dynamic Action Scheduling in a Parallel Database
System

Paul W.P.J. Grefen Peter M.G. Apers
University of Twente, The Netherlands

Abst rac t

This paper describes a scheduling technique for parallel database systems to
obtain high performance, both in terms of response time and throughput. The
technique enables both intra- and inter-transaction paralMism while control-
ling concurrency between transactions correctly. Scheduling is performed dy-
namically at transaction execution time, taking into account dynamic aspects
of the execution and allowing paraalehsm between the scheduling and trans-
action execution processes. The technique has a solid conceptual background,
based on a simple graph-based approach. The usabihty and effectiveness of
the technique are demonstrated by implementation in and measurements on
the parallel PRISMA database system.

1 Introduct ion

In general, (parallel) database systems are meant for high performance data pro-
cessing. High performance can be seen as a combination of low response times and
high throughput. To obtain these properties, a good scheduling of the actions on
the database is essential. We distinguish between scheduling of the actions in one
single transaction, and scheduling of the actions in different transactions.

The scheduling of actions in one single transaction to obtain low response time
is called transaction optimization here. The technique is based on dependencies be-
tween the actions in a transaction, and takes the dynamic execution characteristics
of the transaction into account, using availability of resources and feedback from
the execution layer of the system. As such, the scheduling technique is based on
a dynamic model of a multi-user machine, and can be seen as the complement of
traditional query optimization techniques, which transform actions in a transaction
based on a static model of a single-user machine. Transaction optimization is espe-
cially important in an environment with complex transactions, either user-defined
or system-generated. The latter case occurs in distributed systems with fragmented
relations [3] and in systems performing integrity constraint enforcement through
transaction modification [6, 7].

The scheduling of actions of different transactions is traditionally called con-
currency control. This technique tries to optimize throughput under the condition

810

that concurrently executing transactions are 'unaware' of eachother. Concurrency
control can be based on dependencies between the involved actions of concurrent
transactions, much alike the dependencies mentioned above.

Transaction optimization and concurrency control can be integrated into one
single mechanism that operates on a global graph representing the dependencies
between actions. This leads to a system architecture with fully centralized action
scheduling. Decentralizing this task can now be modelled conceptually by splitting
up the graph into several subgraphs, operated upon by concurrency control and
decentralized transaction management processes.

The approach to action scheduling presented in this paper has a number of char-
acteristics that distinguish it from other proposals. In the first place, the approach
makes use of high level dependencies between actions; other approaches, like [5],
use lower level dependencies representing the actual flow of data in a system. The
use of high level dependencies enables simple scheduling mechanisms, causing little
overhead and allowing for distribution of and paralMism in the scheduling task.
In the second place, the scheduling technique presented in this paper performs the
dependency analysis dynamically at transaction execution time, thereby allowing
parallelism between transaction control and execution. Compiler-based techniques
perform the analysis at transaction definition time [9, 2]. The approach described
here requires no compilation of transactions and is therefore suited for ad hoc trans-
actions as well. Finally, the approach described in this paper has been implemented
and tested in a real-world parallel database machine. Other conceptually oriented
approaches often lack this practical test, whereas most database machine projects
pay little attention to scheduling of concurrent multi-action transactions.

This paper starts with a short discussion of some basic notions. Section 3 dis-
cusses the concept of order dependency and transaction optimization. Section 4
presents the concept of resource dependency and its use in concurrency control.
Order dependency and resource dependency are combined in Section 5 to obtain a
global dependency notion. Section 6 discusses architectural issues for an implemen-
tation of the techniques. Section 7 describes the practical usage of the techniques in
the PRISMA parallel database system, and presents measurements to demonstrate
the effectiveness of the proposed techniques. Conclusions are drawn in Section 8.

2 Basic not ions

Informally, a transaction is a unit of work executed against a database state. More
formally, a transaction T can be seen as an operator that transforms a database
state D into another state T(D):

D T T(D)

Further, the execution of T can have side effects, such as the production of output.
The execution of a transaction should satisfy three important properties: atomicity
of the execution, serializability with respect to concurrent transactions, and correct-
ness with respect to a set of integrity rules. In the context of this paper, only the
serializability property is of interest. This property requires that the effect of the

811

begin
assignment
output

begin update
x = op(yl,"., yn) commit
?x

npd(, y)
commit

Table 1: Elementary action types

concurrent execution of two transactions T1 and T2 must always be the same as the
effect of some serial execution of the same transactions:

D (T ~) TI(T2(D)) or D (T~2) T2(TI(D))

The t ransformation of the database state and the generation of side effects by a
transaction T are specified as a sequence of elementary actions: T = (al; as ; - - -; a,0.
The actions a~ are described using some database language, e.g. a language based
on the relational algebra. We make an abstraction from such a language to obtain
a small set of elementary action types to specify transactions. The notat ion of
these action types is shown in Table 1. The begin action indicates the start of a
transaction. The assigment action assigns the result of a relational operation to a
new and implicitly defined relational variable; the semantics of the operation (join,
union etc.) are of no significance in this context. The output action delivers the
contents a relational variable to the user of the database system; how the output is
produced is irrelevant; the output action models side effects of a transaction. The
update action changes the current state of the database; the first parameter is the
variable (relation) to be changed, the second parameter is a variable used as source
for the change; the type of update (insert, delete or modify) is of no significance.
The commit action indicates the end of a transaction. Note, that this set of actions
can be used to model more complex actions, such as actions with nested operations.
Other choices of elementary action types are possible; the choice is not of great
importance for the techniques presented in this paper, however.

3 Order dependency and Transaction optimization

This section starts with the discussion of the dependencies between actions in a
transaction with respect to execution order. These dependencies can be represented
by means of a graph. This graph is used for the scheduling of actions to obtain an
optimized execution of a transaction.

3 . 1 O r d e r dependency

Actions in a transaction can be dependent with regard to the order in which they
have to be executed; this order dependency relation is defined below.

Definition 3.1 Given are two transactions T = (a l , - - - , ai , . . . ,aj , . - . ,a ,~) and
T ' = (a l , . . - , a j , . --, a~, - - -, a, 0 . Transaction T ' is obtained from T by interchanging
actions ai and aj. Now action aj has an order dependency with respect to action a~ in

812

begin v = op(wl , " " , wm) ?v
begin
x = op(yx , ' " , yn) true Yi -- v false
?x true x =_ v true
upd(x,y) true x =- wi V y =_ v x =_ v
commit true true true

upd(v, ~)

Yi = V

X = _ v V 3 z = w V y : v
true

commit

Table 2: Order dependency matr ix

T if at least one of the following two statements holds. (1) T and T ' model different
t ransformations of at least one database state D: (S D) (T (D) # T ' (D)) . (2) The
side effects of the execution of T and T ' on some database state D are different; in
particular, T and T ~ either produce different output, or produce the same output in
a different order. The fact that aj is order dependent on a~ is denoted as od(aj , ai). []

This definition gives a conceptual view on order dependency, which is hard to use in
a practical situation; a more operational approach is developed in the sequel of this
paper. If the order dependency relations between actions of a transaction are to be
analyzed, a minimal set of relations is preferable. Therefore, the definition above is
restricted in the definition of direct order dependency below.

D e f i n i t i o n 3.2 Given is transaction T = (a l , . . . , a i , . . . , a j , - - - , aN). Now action aj
has a direct order dependency with respect to action ai if od(aj , ai) and no action
ak exists with i < k < j such that both od(aj , a~) and od(a~, ai). The fact that aj
is direct order dependent on ai is denoted as dod(a j , ai). So, we have:

dod(a j , ai) ~ od(a j , ai) A (f l a ~) ((o d (a j , ok) A od(ak, ai))

[]

In a transaction consisting of a sequence of the elementary action types, order de-
pendency between two actions aj and ai exists in the following cases. If ai defines a
variable that is used as an operand by aj, the actions cannot be interchanged with-
out changing the effect of the transaction; this kind of order dependency is called
defini t ion dependency. Definition dependency models the dataflow between opera-
tions and is therefore also called dataf low dependency. If ai updates a variable that is
used as an operand by aj, interchanging the actions c a u s e s aj to 'see' a wrong value
of the variable; this kind of dependency is called value dependency. If both actions
ai and aj have side effects (produce output) , interchanging the actions changes the
order of the side effects; this kind of dependency is called output dependency. Every
possible ordered pair of action types can be analyzed to obtain the conditions under
which the two actions have an order dependency relation; these conditions are listed
in Table 21 .

The set of all direct order dependencies between the actions in a transaction can
be described by means of a graph. The technique to represent sets of dependencies
by means of a graph is commonly used in compiler construction, both for general

1In this table the symbol = is to be interpreted as 'is the same variable as'.

813

begin
upd(x.a)
z=op(x,y)
upd(y.b)
?x
upd(y.z)
?z
c=op(x.b)
d=op(y.c)
?d
commit

begin
/

upd(x,a) ~ ~ ~

up~y.b) ?z /

commit

Figure 1: Example transaction and O-graph

purpose programming languages [1] and for database programming languages [9].
The definition below describes a graph representing direct order dependencies. Fig-
ure 1 shows an example transaction and the corresponding graph.

De f in i t i on 3.3 Given is transaction T = (a l , . . . , am) . The Direct Order Depen-
dency Graph or O-graph of T is a directed graph G = (V, E). The set of vertices
V corresponds with the actions ai in T: V = {vl,.-. ,v,~} and vi is labeled with
ai. The set of edges E corresponds with the direct order dependencies that exist
between the actions ai of T: E = {(vl, v2) E Y x Y]dod(action(vl), action(v2))}.
[]

3 . 2 D y n a m i c t r a n s a c t i o n o p t i m i z a t i o n

Dynamic transaction optimization is the technique of scheduling the execution of
individual actions within a transaction such, that the overall transaction execution
response time is reduced, under the condition that the semantics of the transaction
are not affected. Reduction of response time is obtained by scheduling the execution
of the actions as early as possible. This implies monitoring the execution of the ac-
tions and acting on the occurring events; transaction optimization is thus a dynamic
process. Transaction optimization can be seen as a form of global query optimiza-
tion [12], complementary to the usual query optimization techniques dealing with
expression rewriting, common subexpression elimination and such [3].

Scheduling the actions of a transaction to reduce transaction response times
implies deviating from a fully sequential execution of the actions in the order specified
by the transaction. A number of practical situations exist in which such a deviation is
beneficial. In case of parallel processing possibilities, several actions can be scheduled
to be executed in parallel. Take example transaction T1 in Table 3. The two
update actions are fully independent, so they can be executed in parallel. In case of
unavailable resources necessary for some actions, the execution order of actions can
be changed. Resources are mostly database data (relations). This case is illustrated
by transaction T2 in Table 3. If some other transaction holds a lock on resource a at

814

T1
beg~n
upd(a,b)
upd(c,d)
commit

T2 T3
begin
upd(~,c)
?c
commit

begin
upd(a,b)
upd(c,d)
~l~rm(op(~))
commit

Table 3: Example transactions

the start of the execut-ion of T2, the first action cannot be executed, but the second
can; therefore, changing the execution order will reduce transaction execution time.
In case of actions that may cause a transaction abort, these actions can be scheduled
earlier to avoid unnecessary work in case of an abort. This situation is common
in a system that handles integrity constraints through transaction modification [7];
using this technique, constraints are translated into an alarm operator that can
trigger a transaction abort if some condition holds on its operand. Transaction T3
in Table 3 performs two updates on relations a and c. At the end of the transaction,
an integrity constraint is evaluated over relation a 2. If this constraint is violated,
the transaction will be aborted and the update on c has been superfluous work.
Scheduling the alarm before the second update will avoid this.

Scheduling the actions of a transaction may not affect the semantics of the trans-
action. This implies that it must be guaranteed that the optimized execution of a
transaction has exactly the same effect as the fully serialized execution of the trans-
action, both in terms of database transition and side effects. The concept of order
dependency is used for this purpose: actions in a transaction may not be scheduled
such, that two actions having an order dependency are executed in an other way
than sequentially 3 in the order as indicated by the transaction. As shown before,
the dependencies in a transaction can be represented conveniently using an O-graph.
Therefore, this graph will be used as the basis for the transaction optimization al-
gorithms discussed below.

3 . 3 S c h e d u l i n g u s i n g t h e O - g r a p h

Transaction optimization is performed by scheduling algorithms operating on an O-
graph as follows. A new vertex is added to the graph when a new action in the
transaction is submitted to the system. Adding a new vertex implies adding all
edges that originate from this vertex, using a decision matrix as depicted in Ta-
ble 2. When a new resource becomes available, the resource administration of the
transaction is updated. This administration is used to check when all resources for
an action are available. The action associated with a certain vertex is submitted

2If relation a has a domain constraint c on attribute i, the constraint enforcement action is
alarm(cr~c(i)a). This construct triggers a transaction abort whenever the result of the selection is
non-empty, i.e. whenever tuples in a violate c.

3 As described later in this paper (Section 7.2), some form of parallelism can be allowed between
two actions that have a dataflow dependency. This is an operational aspect, however, that is not
of importance on the conceptual level discussed here.

815

for execution when the action is order executable (see below), and all necessary re-
sources are available to the transaction. A vertex is removed from the graph when
the execution of the action associated with this vertex has.been completed. Remov-
ing a vertex implies removing all vertices ending in this vertex. The concept order
executable is used to indicate wether an action can be executed with respect to its
order dependencies. This concept is defined formally as follows:

D e f i n i t i o n 3.4 An action ai of a transaction T is order executable if the vertex
that corresponds with ai has no outgoing edges in the O-graph G = (V, E). So:

oexec(ai) ~ {(vl,v2) e E I action(v1) = ai} = 0

[]

4 Resource dependency and Concurrency control

This section discusses the dependencies between actions belonging to different trans-
actions that make use of the same resources. These resource dependencies can be
represented by means of a graph, usable for the scheduling of the actions to obtain
a concurrency control protocol.

4.1 Resource dependency

Below the definitions of resource dependency and direct resource dependency are
given; these are analogous to the definitions of order dependency and direct order
dependency given before. In short, two actions are resource dependent if an execu-
tion of these actions other than sequential and in the specified order, may violate
the serializability property of the transactions the actions belong to.

D e f i n i t i o n 4.1 Given are two transactions T1 = (a l , . . . , a i , . . . , a m) and T2 =
(b l , . - - , bj , . . . , bn). Now action ai has a resource dependency with respect to action
bj if the execution of ai in T1 requires resources that are obtained or will be obtained
by T2 and that cannot be released before the execution of bj has been completed.
The fact that a~ is resource dependent on bj is denoted as rd(a~, bj). []

D e f i n i t i o n 4.2 Given are transactions T1 and T2 as shown above. Now action
al has a direct resource dependency with respect to action bj, if rd(ai, bj) and no
action c~ exists in any transaction T~ being executed by the system, such that both
rd(ai,ck) and rd(ck,bj). The fact that ai is direct resource dependent on bj is
denoted as drd(ai, bj). So we have:

drd(al, bj) r rd(ai, bj) A (]flc~ e T,)(rd(ai, c~) A rd(c~, bj))

[]

The set of all direct resource dependencies between the actions of transactions being
executed by the system at a given time can be described by means of a graph, called
R-graph. This graph is similar to the Wait-For-Graph (WFG) used commonly in

816

begin begin begin

upd(x,b) < . upd(x.z)~. i upd(x.c)

commit commit

Figure 2: Example transactions and R-graph

concurrency control [4, 3]. The R-graph as defined below contains more information
than a WFG, however, since its nodes are not transactions, but actions of the trans-
actions.

D e f i n i t i o n 4.3 Given is a set of transactions T = {T1, .- . ,T,~} being executed
by the system at a given time, with T/ (a/l, i , an~). A Direct Resource Depen-
dency Graph or R-graph of a transaction set 7- is a directed graph G = (V, E).

i of the transactions in 7-: The set of vertices V corresponds with the actions aj

i The i is labeled with action aj V = {v i I l < i < m A l _ < j _ < ni} and vertex aj
set of edges E corresponds with the direct resource dependencies that exist between

i ofT-: E = {(vl,v2} 6 V • V Idrd(action(vl) ,action(v2))}. [] the actions aj

The use of an R-graph is independent of the locking scheme used. Figure 2 shows
an example of an R-graph with three concurrently executing transactions. The re-
source dependencies associated with the solid edges are based on a two-phase locking
protocol with shared and exclusive locks [4]. If exclusive locks are used only, the
dependencies associated with the dotted edges are added to the graph.

4 .2 C o n c u r r e n c y c o n t r o l

As shown above, resource dependencies between actions of multiple transactions
can be represented conveniently by means of an R-graph. Therefore, this graph
can easily be used for concurrency control purposes. Concurrency control is then
performed by manipulating the R-graph and keeping a resource administration as
follows.

A new vertex is added to the R-graph when a new action in a transaction is to be
executed. This can be done at two different moments: when the action is submitted
to the system, or when the transaction is ready to actually execute the action.
These situations can be described as "greedy locking" respectively "lazy locking".
Inserting a new vertex implies inserting all edges originating from this vertex. After
a vertex has been added to or removed from the R-graph, the graph is scanned for
actions that can be submitted for execution, i.e. actions that are resource executable.
When an action is submitted for execution, the resource administration may need
to be updated (resources may have become unavailable). A vertex associated with

817

an action is removed from the R-graph when the execution of that action has been
completed. Removing a vertex implies removing all edges ending in this vertex.
Further, the resource administration may need to be updated (resources may have
become available). The definition of resource executable used here is analogous to
the definition of order executable as given before.

5 Integrat ing both worlds

In the previous sections the notions of order and resource dependency and their
graph representations were discussed; as mentioned before, the concepts are much
alike. Therefore, both types of dependencies can be integrated into one global graph
representation describing all dependencies between the actions being handled by the
system.

Definit ion 5.1 Given is a set of transactions T = {T1,...,T,~} being executed
by the system at a given time, with T~ = (a~,--., a~). A Global Direct Depen-
dency Graph or G-graph of T is a directed graph G = (V,E). The set of vet-

of the transactions in T: V = {~ [tices V corresponds with the actions aj
i The set of i is labeled with action aj. 1 < i _< m A 1 _< j _< hi} and vertex vj

edges corresponds with the direct dependencies that exist between the actions of T:
E = {(vl, v2) ldd(action(vl), action(v2))}. The direct dependency relation between
two actions is defined as follows:

dd(vl, v2) r dod(vl, v2) V (drd(vl, v2) A -~(2v3 I od(vl, v3) A rd(v3, v2)))

[]

Informally, a G-graph is constructed by merging the R-graph and all the O-graphs
of the transactions being executed, and removing all superfluous resource depen-
dencies; a resource dependency is superfluous here, if it indicates that an action
al must wait for a resource while an action a2 that is surely executed before al is
waiting for the same resource. Figure 3 shows a G-graph with three transactions,
based on the R-graph shown before. In this graph, the edges within the boundaries
of the transactions represent direct order dependencies; edges crossing transaction
boundaries represent direct resource dependencies.

Global scheduling of the execution of actions in a system can be based on the
G-graph. The scheduling is analogous to the scheduling based on an O-graph or R-
graph: actions submitted to the system are added to the graph, executable actions
are submitted to the action execution layer, and completed actions are removed from
the graph. Global scheduling based on the G-graph implements both dynamic trans-
action optimization and concurrency control within one simple conceptual mecha-
nism.

6 Architectural issues

In this section the architecture of an action scheduler and its integration into a
DBMS are discussed at a conceptual level. These ideas are used in Section 7 in a

818

~ begin

pd(t.b)

p d (a , b) ~

t=~(x.~)/~ ff
4'
?t

4`
commit

(- . .

i begin

up;x,z) <
ornmit

begin

commit

Figure 3: Example transactions and G-graph

real world DBMS.

6.1 A c t i o n s c h e d u l e r a r c h i t e c t u r e

An architecture for the action scheduler is shown in Figure 4. The Graph Processor
forms the heart of the action scheduler; this module maintains the dependency
graph using the algorithms described before. The processor receives new actions
to be added to the graph when new taks are submitted to the action scheduler.
Actions that are executable are sent for execution to the execution control. When
the execution of an action has been completed, the action is removed from the graph;
its resources are handed back to the resource control module. The Action Analyzer
module analyzes incoming actions prior to sending them to the graph processor. The
analysis detects the resources necessary for the execution of the actions; resource
requests are sent to the resource control module. The Resource Control module
keeps an administration of the resources needed for transaction execution. If it does
not manage all resources in the system, it can take steps to acquire resources from
other resource controllers. Available resources are sent to the graph processor. The
Execution Control module controls the execution of actions that were released by
the graph processor. It monitors the execution, such that completion of actions can
be notified to the graph processor.

6 . 2 I n t e g r a t i n g t h e a c t i o n s c h e d u l e r i n t o a D B M S

The action scheduler as discussed above can be integrated into a complete DBMS
architecture. The most simple approach is to have one central action scheduler in
the system. In the case of a distributed system, it can be advantageous to split up
the scheduler into a number of schedulers that each perfrom part of the scheduling
task. These two cases are discussed below.

An action scheduler managing the entire G-graph of a system can be used as a
centralized transaction management layer of the DBMS, controlling both transac-
tion execution and concurrency between transactions. This situation is depicted in
Figure 5. The action scheduler forms the interface between the action preprocessing

819

. . i_
graph L processor-------

Figure 4: Action Scheduler architecture

layer and the action execution layer of the system. It accepts transaction specifica-
tions from the query optimizer, and submits actions to the execution layer of the
system. Note, that pipelining is possible in this process: the transactions can be
handed in several pieces to the action scheduler, and scheduling can start immedi-
ately when a piece is available. In this way, parallelism can be obtained between
action preprocessing, scheduling, and execution. Parallelism between the various
query processing layers of a DBMS can result in an improved overall performance
[i i] .

In a distributed (parallel) DBMS it can be advantageous to distribute the action
scheduling tasks to avoid the scheduler becoming a performance bottleneck. Dis-
tributing the scheduling tasks can easily be done by partitioning the dependency
graph and assigning a private graph processor to each partition. The graph pro-
cessors can then be allocated on different processors of the hardware architecture.
A natural form of distribution is obtained by partitioning the central G-graph into
one central R-graph and an O-graph for each transaction being executed. This leads
to a situation with distributed transaction management and centralized concurrency
control. The corresponding system architecture is depicted in Figure 6. It is possible
to distribute the central R-graph also to obtain distributed concurrency control as
well.

7 Action scheduling in PRISMA/DB
The action scheduler architectures as depicted in Figures 5 and 6 can be used in real
world database systems. This section discusses the application of the ideas in the
context of the PRISMA parallel database management system [10, 14].

7.1 A r c h i t e c t u r e

PRISMA is a parallel and multi-user database management system; therefore, the
distributed architecture as shown in Figure 6 is used. The PRISMA architecture
consists of three layers. The transaction preparation layer consists of the various
user interfaces to the system and the query optimizer. This layer accepts transac-

820

query |
optimize~

/

|

action I
analysis

L J resourcel
G - g r a p h ~ - ~ control !
proc;sso~--~ ,

[execution][
[control~

action]
execution layer

Figure 5: Action scheduling with centralized transaction management

[dbms !
l interfa~eJ interfaceJ

query
optimizer

action
analysis

O-graph

! . . :

action execution layer

Figure 6: Action scheduling with distributed transaction management

821

tion specifications submitted to the system and performs some transformations on
the specification of the transactions. The transaction management layer manages
the parallel execution of the transactions. It consists of a centralized concurrency
controller and a transaction ' manager per transaction being executed. The trans-
action execution layer consists of a parallel relational algebra engine that executes
the actions submitted by the transaction management layer in a parallel fashion.
Transaction are specified in an extension to the relational algebra, that can easily
be mapped to the abstract actions presented before.

The O-graph processor is located in the transaction manager (TM) of PRISMA.
It uses a variation on the graph processing algorithms presented in Section 3.3. Note,
that a separate TM process is created for each transaction to be executed by the
system. As such, O-graph-based scheduling is decentralized per transaction. The
R-graph processor islocated in the concurrency control unit (CC) of PRISMA. In
cooperation with the TM's, the CC employs a simple two-phase locking protocol
[4, 3] with shared and exclusive locks. Locks are always released at transaction
commit. This implies that all edges in the R-graph end in a commit action. A
centralized CC process is used because this simplifies the design of the system, and
enables cheap deadlock detection (the entire R-graph is located on one node of the
system).

7.2 M e a s u r e m e n t r e s u l t s

This section presents the results of measurements to show the effectiveness of trans-
action optimization in the PRISMA context. The goal of this section is to give the
reader a general impression, not to present a complete performance analysis. Two
situations are discussed: the situation in which parallel execution of actions is used
to reduce the execution time of a transaction, and the situation in which the or-
der of execution of actions is changed because of unavailable resources. Currently,
PRISMA does not make extensive use of early abort situations, so this situation
cannot be demonstrated here. The measurements presented below were performed
on a POOMA shared-nothing multi-processor [13]. Further details can be found in
[8].

Figure 7 shows the execution of a transaction T1. The upper left part of the
figure shows the transaction in terms of the action types presented before. The O-
graph of the transaction is depicted in the upper right part of the figure. The lower
part of the figure shows how the execution of the actions takes place in time on
the processors of the system. Each bar represents one processor executing actions
of the transaction. The length of the bars represents the total execution time of
the transaction, including control overhead at the beginning of the transaction and
logging at the end of the transaction. Only the execution of the actions is shown in
the bars; the scheduling of the transaction takes place on a different processor and
is not shown. Transaction T1 performs actions on relations r l and r2 allocated on
processors P1 and P2. The actions on r l and r2 are mutually independent, so they
can be executed in parallel. The time bars show that this is indeed the case. The
gain in transaction execution time compared to a sequential execution of all actions
is obvious.

Figure 8 shows the execution of a transaction in which order dependencies exist

822

Tt = begin [1]
u = op (rl) [21
t2 = op (r2)
upd (r l , t l) 13]

commit

[~] [31
4, 4,
[41 ~ [5]

[6] /~

tsme

Figure 7: Scheduling of a transaction

T2 = begin
tl = op (rl)
t2 = op (r3)
upd (rl,tl)
upd (r3,t2)
t3 = r3
upd (rl,t3)
upd (r3,t2)
commit

I

,il
16'
17'
18'
19'

~[1]~
[21 [3]
4` 4,
[41 [51

[71~ [8]

Pal | t] |~] ~]1|11 I
[z2ee "~ i v

Figure 8: Scheduling of a transaction

between the actions on the relations involved. Transaction T 2 performs actions on
relations r l and r3. Actions [2] through [5] can be scheduled in the same way as in
the previous example. As shown in the O-graph, action [7] is order dependent on
action [6]. Action [6], however, involves the transfer of data between processors P1
and P 2 (modelled here as a "remote" assignment), and cannot be executed before
P2 is ready to receive, i.e. has executed action [4]. The fact that PRISMA exploits
pipelining parallelism [14, 15] enables a parallel execution of actions [6] and [7].
This is an implementation detail, however, that does not violate the theory of order
dependency. Action [8] is order dependent on action [6], and has to wait for the
completion of this action. This example shows again, that the execution of actions
is scheduled as early as possible.

In Figure 9 the execution of two concurrent transactions T3 and T4 is depicted.
Transaction T3 is started slightly earlier than T4 in this example. Therefore, T3
first obtains an exclusive lock on relation r l . Resource r l is unavailable at the start

823

T3 =

T4 =

begin [I]

tl = op (rl)
upd (rl.tl}
commit [5]

begin 16]
t l = o p (r l) ~]
upd (rl,tl)
t2 = op (r2) 9]
upd (r2.t2) 10]
commit 11

[1]
,~, [~1

[10]
[41

[51

P 1 I N|!iI~!i!J~NiiNiN!l!!iii!!iNtNiiiiiii L',~ !i~i!~i~iNliiiiii i ii!ill~i~ I NI ~ Niiil I
P21 liiii~N,',NNi!iiiiiiiiill~,',i~ii~lil I

time ~" V

Figure 9: Scheduling of concurrent transactions

of T4, so the actions of T4 on r2 are scheduled earlier than those on r l . The actions
of T4 on r l are executed as soon as T3 has released its locks. Note, that T3 has to
log its updates before it can release its locks on relation r14; this accounts for the
time gap between the execution of actions [4] and [7].

8 C o n c l u s i o n s

This paper describes a dynamic action scheduling technique that makes use of par-
allel action execution, resource availability information and early abort situations to
improve both the response times of transactions and the throughput of a database
system. This results in an improvement of the overall system performance. The
scheduling technique will be most beneficial in multi-user systems with complex
transactions, i.e. transactions consisting of many actions. These complex transac-
tions may be defined by the user, or generated by the system.

Dynamic action scheduling can easily be described using a graph-based approach,
casting the scheduling algorithms into graph processor algorithms, used for a graph-
based action scheduler. This scheduler can be integrated into an abstract DBMS
architecture. To accomodate decentralized transaction management, the scheduler
can be decentralized by partitioning the global graph it operates upon. The fea-
sibility of the approach is demonstrated by the implementation of a decentralized
graph processor in the PRISMA parallel database system. Measurements performed
on this system show the effectiveness of the scheduling technique, both for reducing
transaction response times and for improving system throughput. Further measure-
ments with more complex situations will be conducted in future.

The technique can easily be extended and improved in a number of ways. Firstly,
the analysis of the dependencies between actions can be made more "intelligent".

4This is due to t he fact t h a t t r a n s a c t i o n s in P R I S M A do no t release any locks before end of
t r ansac t ion , a n d logging is cons idered an in tegra l p a r t of a t r a n s a c t i o n p e r f o r m i n g u p d a t e s .

824

Secondly, the scheduling algorithms can use resource information not only concerning
data resources, but also concerning processing resources.

R e f e r e n c e s

[1] A.V. Aho, J.D. Ullman; Principles of Compiler Design; Addison-Wesley, 1978.

[2] H. Bor~l et aL; Prototyping Bubba, A Highly Parallel Database System; IEEE Trans.
on Knowledge and Data Engineering, Vol. 2, No. 1, 1990.

[3] S. Ceri, G. Pelagatti; Distributed Databases, Principles and Systems; McGraw-Hill,
1984.

[4]

[5]

[6]

[7]

[8]

[9]

C.J. Date; An Introduction to Database Systems, Volume II; Addison-Wesley, 1983.

M.H. Eich, D.L. Wells; Database Concurrency Control Using Data Flow Graphs; ACM
Trans. on Database Systems, Vo1.13, No.2, 1988.

P.W.P.J. Grefen, P.M.G. Apers; Parallel Handling of Integrity Constraints on Frag-
mented Relations; Proc. Int. Syrup. on Databases in Parallel and Distributed Systems;
Dublin, Ireland, 1990.

P.W.P.J. Grefen, P.M.G. Apers; Integrity Constraint Enforcement through Transac-
tion Modification; Proc. Int. Conf. on Database and Expert Systems Applications;
Berhn, Germany, 1991.

P.W.P.J. Grefen; Dynamic Action Scheduling in a Parallel Database System; Memo-
randum INF91-58; University of Twente, The Netherlands, 1991.

B.E. Hart, S. Danforth, P. Valduriez; Parallelizing a Database Programming Language;
Proc. Int. Syrup. on Databases in Parallel and Distributed Systems; Austin, USA,
1988.

[10] M.L. Kersten et al.; A Distributed Main Memory Database Machine; Proc. 5th Int.
Workshop on Database Machines; Karuizawa, Japan, 1987.

[11] K. Li, J.F. Naughton; Multiprocessor Main Memory Transaction Processing; Proc.
Int. Symp. on Databases in Parallel and Distributed Systems; Austin, USA, 1988.

[12] K. Satoh, M. Tsuchida, F. Nakamure, K. Oomachi; Local and Global Query Optimiza-
tion Mechanisms for Relational Databases; Proc. Conf. on Very Large Data Bases;
Stockholm, Sweden, 1985.

[13] M.C. Vlot; The POOMA Architecture; Proc. PRISMA Workshop on Parallel Database
Systems; Noordwijk, The Netherlands, 1990.

[14] A.N. Wilschut, P.W.P.J. Grefen, P.M.G. Apers, M.L. Kersten; Implementing
PRISMA/DB in an OOPL; Proc. Int. Workshop on Database Machines; Deauville,
France, 1989.

[15] A.N. Wilschut, P.M.G. Apers; Dataflow Query Execution in a Parallel Main-Memory
Environment; Proc. Int. Conf. on Parallel and Distributed Information Systems; Mi-
ami Beach, USA, 1991.

