Minimal Semantics for action Specifications in PDL

Jan Broersen* Remco Feenstra*f Roel Wieringa*

Abstract

In this paper we investigate minimal semantics for Propositional Dynamic Logic
formulas. The goal is to be able to write action specifications in a declarative
pre/post-condition style. The declarative specification of actions comes with some
well known problems: the frame problem, the qualification problem and the ram-
ification problem. We incorporate the assumptions that are inherent to both the
frame and qualification problem into the semantics of Dynamic Logic by defining
preferences over Dynamic logic models. This gives us an intended semantics that,
for each declarative action specification, selects a unique meaning for each action.

1 Introduction

Our main interest concerns the declarative specification of transactions in a pre-/post-
condition style. a transaction can be a database transaction or any other system transac-
tion, as long as it is taken to be atomic. The only requirement we impose on transactions
is that they are terminating processes of which the intermediary states are not observable.
Transactions can be nondeterministic. That is, a transaction may result in one of several
possible next states.

A convenient starting point is dynamic logic [7] [8]. It is designed to reason about
arbitrary programs/actions (in the propositional case) or programs built up from specific
actions such as assignments (in the first order case). Dynamic Logic is a multi modal
logic in which each action is accompanied by its own modal operators.

If we try to make specifications in PDL we run into three well known problems:
the frame problem, the qualification problem and the ramification problem. The frame
problem concerns the fact that we want to leave as an assumption that anything that is
not specified to change does not change. The qualification problem can also be seen to
deal with an assumption; the assumption that actions actually occur unless it is explicitly
specified that they do not.

In this paper we define preferential semantics for PDL formulas that incorporate these
assumptions. The preference relation (ordering) that is concerned with the frame assump-
tion is based on a notion of 'difference’ between states. The preference relation guarantees
that an action is interpreted always to lead to a minimally differing state, thus implement-
ing the assumption that no state elements change that are not specified to change. The
qualification assumption is implemented by defining a second ordering over PDL-models.

'Faculty of Mathematics and Computer Science, Vrije Universiteit, De Boelelaan 1081a, 1081 HV
Amsterdam, The Netherlands, email: broersen|rbfeens|roelw@cs.vu.nl.

2This research is partially supported by the Netherlands Organization for Scientific Research (NWO),
SION project 612—-317—408.

This ordering is based on a notion of 'maximal reachability’ between states, meaning that
actions take place unless the specification contains necessary preconditions (guards) or
static constraints that contradict this. Taking the maximal elements (models) over this
ordering guarantees that actions are interpreted under the qualification assumption. Both
orderings over PDL-models can be applied successively, provided this is done in the right
order (minimization first). The orderings are also applicable in the presence of static
constraints, thus implementing that both assumptions also apply to ramifications.

The structure of the paper is as follows. In Section 2 we introduce Propositional
Dynamic Logic (PDL) and define a semantics for specifications in PDL. In Section 3,
we discuss the frame, qualification and ramification problems in more detail and indicate
what their interconnections are. Section 4 then proposes several preferential semantics for
PDL specifications. Section 5 compares our approach with other approaches. Section 6
concludes the paper and lists some topics for further research.

2 Propositional Dynamic Logic

Propositional dynamic logic (PDL) is a logic to reason about terminating programs. It
relates assertions about composite programs to assertions about its parts and vice versa.
The modal formulas {a)¢$, where a is an action, mean that there is a possible occurrence
of a after which ¢ is true. The standard PDL-semantics of actions as relations over states
is given in the next Section. We also consider compound actions; a; 3, a U 3, a? and a*
represent sequential composition, choice, test and iteration, respectively. The semantics
of these constructs is of importance when proving properties of specifications. These
constructs are however not used for the writing of specifications.

2.1 The PDL language
Definition 1 The language is built with the following elements:

Punctuation brackets:
the brackets ’)’, ’(” and the comma ’,’

Proposition symbols:
a countable set P of proposition symbols

Propositional connectives:
the set of symbols {—,V}

Atomsic actions
a countable set T of action symbols

Action connectives:
the set of symbols {U, *,;}

Combined connectives:
the set of operation symbols {(),7}

The intended use of the logic is the writing of system specifications. A specific speci-
fication uses only a finite subset of the language. A specifier has to give this subset in a
signature.

Definition 2 A signature X is thus defined as a specific combination of finite subsets
of the proposition and atomic action symbols: ¥ = (P, T).

The proposition symbols are referred to by A, B, Atomic action symbols have
associated meta-variables a, b, A signature contains the symbols that are to be
given an interpretation relative to a specification. All other symbols are given logical
interpretations.

Definition 3 An action (o) over a signature ¥ is defined as:

a == atomic action symbol | U B | o; B | o* | ¢7

A well formed formula (¢) over a signature 3 is defined as:

¢ == proposition symbol | true | false | ~¢ | ¢V Y | (o)

We use the term ”compound action” for actions that contain action connectives. As
usual, we abbreviate =(=¢ V =) to ¢ A, 7o Vi to ¢ — ¥, (¢ —) A (¥ — @) to
¢ < ¢ and ()¢ to [o]¢.

A specification Spec = (X, ®) is a pair consisting of a signature . and a finite set ®
of formulas over .

2.2 The semantics of PDL

PDL formulas are interpreted over a special kind of Kripke structures.

Definition 4 Given a signature ¥ = (P, A), a structure (W,Z,) is defined as follows:
o W C2P
e T, is a total function A — 2>V equivalently To(a) CW x W

We identify worlds with possible interpretations of the atomic formulas. So we do not
discriminate between worlds and interpretations of the set of atomic formulas. Therefore
we do not need an interpretation function to interpret atomic formulas in worlds. The
distinction between worlds and interpretations is only useful if we want to consider dif-
ferent worlds with equal interpretations of atomic formulas or different interpretations of
atomic formulas in the same world. For our purposes this restricted notion of a structure
suffices.

T4 says how actions are interpreted as transitions between possible worlds by mapping
atomic action symbols to binary relations over W.

Elements of 27 are referred to as w, v/, ...

The following definition shows how PDL formulas are interpreted over these structures.

First we define validity of a formula in a world w of a structure S = (W, Z,).

Definition 5 Validity of a formula ¢ in a world w of a structure S = (W, Z,), denoted
by S,w = ¢ is defined as:

S,w [true

S,wE P iff Pew

SSwEONVY iff SwE¢orSwEY

S,w = ¢ iff S,w ¢

S,wE{a)yp iff for somew' € W holds (w,w") € Zs(a) and S,w' = ¢
S,w [~ false

Compound actions are not used in specifications. However, compound actions may be
used in formulas that express properties we want to be able to prove of a specification.
Therefor we also give the semantics of compound actions. ({a)"¢ is defined as {(a){a)"1¢

for n > 1, (a)!'¢ as {(a)¢ and (a)’¢ as @)
Definition 6

SswE e iff SwEvAe

S,wE(a;)¢ iff Sw(a){(B)¢

S,wiE(aUpB)g iff Swl(a)oV(6)¢

S,w E {(a*)¢ iff for somemn € {0,1,2...} holds S,w = («)"¢

Note that test, sequentiation and choice could actually be introduced as syntactic
abbreviations. This means that iteration is responsible for the the real gain in expresivity
when introducing action connectives.

A formula is S-valid if it is true in all worlds of a structure S. In that case, we say
that the structure satisfies the formula and that the structure is a model of the formula.
A formula is valid if it is S-valid for every structure S. Note that this is not entirely
conventional. In the literature, the word ”structure” is reserved for frames, consisting
only of worlds and an accessibility relation, without a valuation. In our definitions worlds
are identical with interpretations. What we call a structure is in literature on modal logic
usually called a model. We prefer to use the word "model” for structures that satisfy a
set of formulas.

3 Action specification

We investigate the use of PDL for the writing of specifications for atomic actions. We focus
on two aspects: the effect and the possible occurrence of actions. For the specification of
the effect of an action @ we can use formulas called ”conditional postcondition formulas”.

e Conditional postcondition formulas: ¢; — [a]1; We say that ¢; is a sufficient
precondition of a with respect to the postcondition ;.

The possible occurrence of actions can be controlled with ”guard formulas”.

e Guard formulas: (a)true — x; We call x; a guard of a, equivalently, a necessary
precondition for the possible occurrence of a.

Guard formulas actually can be seen as a special case of conditional postcondition
formulas. This is however of no importance. What is important is that we can ex-
press guards (necessary preconditions for actions) in PDL. Furthermore it is important

to investigate guards independently because they are strongly interconnected with the
qualification problem.

We also want to investigate the influence of "static constraints” (formulas without
modalities) on the effect and possible occurrence of actions.

e Static constraints: 6, These are assertions that must be obeyed under any cir-
cumstance.

The formulas ¢;, 15, 0 and x; contain no modal constructs; they are just propositional
logic formulas. To simplify the setting we assume that these are the only formulas a spec-
ifier uses when stating a specification. This follows the syntactic restrictions of LCM [5].
It is motivated by the fact that we simply don’t need intricately nested modalities to
specify actions declaratively.

Definition 7 An action specification azxiom is either a postcondition formula, a guard
formula or a static constraint. We use ®gpe. to indicate an arbitrary set of action specifi-
cation arioms.

As it appears each of the above three (groups of) formulas is associated with a (well
known) problem; the postcondition formulas with the frame problem, the guard formulas
with the qualification problem and the constraints with the ramification problem.

The standard PDL-interpretation of postcondition formulas, is that when ¢; is true,
action a, if present, leads to a situation where); is true. The formulas describe the effect
of an action. However, defining the effect of an action by means of a postcondition always
causes the frame problem [3]. This problem states that when specifying a postcondition
we only want to specify conditions that have changed. We do not want, and often are not
able, to specify all the conditions that do not change as the result of an action. So we
want to make the frame assumption that everything that has not been specified to change
has not changed. However, this is not reflected by the semantics, as defined in 2.2.

The interpretation of guard formulas is that action a can only take place when x;
is true. Thus x; is a necessary precondition for the possible occurrence of a. So guard
formulas control the possible occurrence of actions. The problem associated with the
possible occurrence of actions is the qualification problem. This problem states that
it is not possible to foresee all necessary preconditions for the success of an action [6].
This means that a specifier actually is never able to give a sufficient precondition for an
action. Of course he may want to give a sufficient precondition anyway, but he then must
face the fact that he may end up with an inconsistent specification because the action
he gave a sufficient precondition for may violate constraints or may have contradictory
postcondition axioms associated to it. A possible solution to this problem is to weaken
sufficient preconditions by specifying them as defaults [2] [10]. We take the perspective
that a specifier should only be allowed to give necessary preconditions (guards) and that
the assumption that actions occur unless this contradicts guards (or static constraints, or
conflicting postcondition axioms) is somehow implemented in the semantics. The standard
PDL-semantics does not provide this. It is easily seen that there are interpretations of
action specification axioms in which actions do not occur even if the guards are true.
In particular the structure where the accessibility relation between possible worlds is
completely empty always satisfies a set of action specification axioms.

Static constraints influence both effect and possible occurrence of actions. The possible
occurrence of actions is influenced because static constraints may ’cut out’ all the worlds

a transition would have gone to in case constraints where not given. In [9] this particular
situation is referred to by the statement that constraints can play the role of ’implicit
axioms about action preconditions’. In the context of the updating of databases this is
sometimes seen as the only way to interpret static constraints: if a database transaction
violates a constraint then 'role back’. Under this view constraints are interpreted as mere
limitations on the state space. If we adhere a more 'logical’ interpretation to constraints,
they influence the effects of actions. Under a standard logical interpretation constraints
give rise to ramifications (derived effects). On the level of worlds this is explained as
follows: if a constraint cuts out worlds, then transitions may go to other worlds that do
comply with the constraints, thus giving rise to a ramification. So constraints may give
rise to derived effects. But then for these derived effects also the qualification assumption
should hold. How to deal with derived effects is referred to in the literature as the
ramification problem.

In the following we will define semantics that incorporate all the desired properties
mentioned above.

4 Minimal change/maximal reachability semantics

In this section we implement the frame assumption by formalizing the notion of mini-
mal change between possible worlds and we implement the qualification assumption by
formalizing the notion of maximal reachability. To achieve this we define orderings over
PDL-models to sort out the intended ones. The difference with circumscription [14] is that
we do not define this ordering with respect to particular predicate(s) (proposition(s)).

4.1 Minimal change

Because we want to compare models on the change that actions accomplish, we need a
notion of difference (distance) between states.

Definition 8 Given a signature ¥ = (P, A) and a structure S = (W,Z4) and two worlds
w and w' in W. The difference Diff (w,w') between them is defined as the set of atoms
wn which the worlds differ:

Diff (w,w") = (w\ w') U (w"\ w)

Using this definition we can define orderings over structures that capture the notion
of minimal change between possible worlds. We will now first give two slightly different
orderings, before we explain what they are really about. (The domain of a binary relation,
dom(R) is defined as {z | (z,y) € R})

Definition 9 Given a signature ¥ = (P, A) and two structures S = (W,Z,) and S" =
(W', T),

S' Cre S iff
W' =w
and

Va € A, dom(Zy(a)) = dom(Za(a))

and
Vae A, Yw e W, Vu' € W, ((w,w") € T);(a) = Fu" € W, ((w,w") € Zs(a)
A N(Diff (w,w)) < N(Diff (w,w"))))
C,uc 18 a pre-order on structures, because C,,. can easily seen to be transitive and
reflexive. MC stands for minimal cardinality. A structure is called an MC-model of

® if it is a C,,,-minimal model of ®. MC-models determine the minimal cardinality
interpretation (semantics) of a specification (3, ®).

Definition 10 Given a signature 3 = (P, A) and two structures S = (W,Z4) and S' =

(W', Z}),
S' Cons S iff
W' =w
and
Va € A, dom(Z(a)) = dom(Z4(a))
and

Vae A, Yw e W, YVu' e W, (w,w') € T)(a) = " € W, ((w,w") € Za(a)
A Diff (w,w") C Diff (w,w"))))

C..s is a pre-order on structures, because C,,, can easily seen to be transitive and
reflexive. MS stands for minimal subset. A structure is called an MS-model of & if it
is a C,,,-minimal model of ®. MS-models determine the minimal subset interpretation
(semantics) of a specification (X, ®).

The first requirement in both C,,. and C,,s ordering is that structures can only be
compared if they are based on the same set of worlds. In figure 1, where three models
are compared on minimal change, this is reflected by the fact that all models contain the
same set of black dots. This is actually not a necessary condition for the definition of the
semantics, but it helps to make the definition more understandable. Models with exactly
the same state transitions but differing in worlds that ’stand alone’, can not be compared.
If we would drop this condition such worlds would be comparable, but one could never be
prefered above the other. The question what worlds are actually in the intended model
of a specification is dealt with by a second ordering, to be defined in 4.2.

The second requirement in both orderings forces that structures can only be compared
if the same transitions (actions) occur in the same worlds, as is also the case in figure
1. (There can be difference in to which worlds transitions lead. This is actually where
we want to compare structures on; we want to prefer structures where transitions lead
to closer worlds.) This is an intuitive criteria because we don’t want this ordering to
deal with the possible occurrence of transitions (actions); this ordering should compare
structures purely on the 'length’ of transitions. (This observation is also made in [2] [10].)

The last requirement deals with this "length’ of transitions. In words it says: if S’ C,,.
S then for all transitions (w, w') in S’ there is a transition (w,w") in S that is "longer’. In
yet other words: if S’ C,,. S then for corresponding transitions in corresponding worlds
in the compared structures, the ’longest’ transition in S’ is always less or equal to the
"longest’ transition in S. (To see why the ordering is not a partial order: when the "longest’
transitions from the same worlds in both structures are equal, still both structures can
differ in transitions that are ’shorter’ then these ’longest’ transitions.) In figure 1 the
distance between dots represents the difference between worlds. Clearly the minimal one

N

A |

.//oﬁw

Figure 1: Comparing models on minimal change

is the one for which the property holds. The reason why this looks rather complicated is
that we allow non-deterministic actions; we have to compare structures in where actions
from one world can lead to several other worlds. In 4.3 we will see that for deterministic
models orderings can be defined much simpler.

It is important that minimal models exist if ’ordinary’ models do. Therefore we prove:

Proposition 1 Let ® be a set of PDL-formulas that has a model S = (W,Z4) for which
da, Z4(a) # 0. Then there is an MS-model and an MC-model of ® for which Ja, Ta(a) #
0

Proof Let S be a model of ® for which Ja, Z4(a) # 0. It follows from the finiteness of the
number of propositions and actions that there are only finitely many models. Then either
S is already minimal, or there is a model S’ that is minimal and S’ C,,, S (S’ C,.. S)
and not S C,,; S' (S C,.c S’). In the latter case S’ can not be a model that ’contains no
transitions’ because it follows from the definitions of the orderings that in that case S’

can not be compared with S.
|

The difference between the semantics generated by both orderings will become more
clear when we look at an example in 4.5. But we can say already that the minimal
subset semantics is weaker than the minimal cardinality semantics, as is expressed by the
following proposition.

Proposition 2 An MC-model of ® is also an MS-model of ®.

Proof Follows directly from the fact that from Diff (w,w") C Diff (w,w") it follows that
N(Diff (w,w")) < N(Diff (w, w")).
|

The correspondence between both semantics is best shown by focusing on a special
class of formulas for which both semantics coincide. This is also a class of formulas for
which both MS-models and MC-models are deterministic. This is actually an important
class. Because the minimal (intended) models are deterministic for these formulas, the
only intention a specifier can have when providing formulas of this form, is to specify a
deterministic system. Interpreting the formulas under a non-minimal semantics would
allow for non-deterministic interpretation of the formulas, which is not what is intended.

Definition 11 A structure S = (W,Z4) is deterministic if for each world w € W and
for each a there is mazimally one world w' such that (w,w') € Z4(a).

Definition 12 Description of the class @4 of determinate action specification formulas.

postconditionformulas : ¢ — [a](L1 ALy A ...\ Ly)
guards : (a)true — x
constraints : (My AMyN...ANM;)V (Nt ANy A ... A Np)

with the Ly, M; and N; positive or negated atomic formulas (literals).

First we prove the property that for formulas of the class ®4;, minus the constraints,
both MS-models and MC-models are deterministic. We leave out the constraints here
because otherwise the proof would become to lengthy.

Definition 13 A structure S = (W,Z4) is deterministic if for each world w € W and
for each a there is mazimally one world w' such that (w,w') € Z4(a).

Proposition 3 For a specification (X, ®ge;) (minus the constraints) MS-models are de-
termanistic.

Proof

Assume that there is an MS-model S of ®,4.; that is not deterministic. Then we have
that Ja € A, Jw e W, FJw' e W, Fu" e W, (w,w') € Zs(a) A (w,w") € Ta(a)

Now let {Li, ..., Li,} be the set of literals that appear in the determinate postcondi-
tion formulas ¢; — [a](Ly A Lig A ... A Li,) in @4 for which S, w,Zy = ¢;. Because S is
a model, the atoms in {L;1, L, ..., L, } have the same valuation in both w” and all w'.
This means that w” differs from w in the same atoms among {L;i,..., Ly, }, as w’ does.
This means that w"” and w’ differ in at least one atom, say Ay not among the atoms in
{Li1, L3, . .., Ly, }. Without loss of generality we assume that w' is the world where Ay
has an interpretation different from its interpretation in w and w” is the world where Ay
has an interpretation equal to its interpretation in w. Now we can construct the model S’
that is equal to S’ except for that the transition (w,w’) is left out. Obviously S’ is below
S in the C,,s-ordering, because the transition w,w’ that changes more then w,w"” is left

out. But this contradicts that S is an MS-model.
|

Proposition 4 For a specification (3, ®g4er) MC-models are deterministic.

Proof The proof is analogous to the former one.
|

Proposition 5 For a specification (2, ®ge) the minimal subset and minimal cardinality
semantics coincide.

Proof We already proved that an MC-model is always an MS-model. We also proved
that for determinate specification formulas MS-models and MC-models are deterministic.
It’s not difficult to see that this implies that for determinate specification formulas, MS-
models are also MC-models. In both MS-models and MC-models we can have only one
transition from each state in the model and each MC-model is an MS-model, then each

M
° ° L
./.ﬁ. .2.
M
° °

Figure 2: Comparing models on maximal reachability

MS-model is also an MC-model.
|

The minimal interpretation of sets of formulas results in a non-monotonic notion of
entailment. As an example of this take the set of formulas ® = {A — [a¢|B}. Al
structures that MS-satisfy (MC-satisfy) ® also satisfy the formula [a|A A B. So, under
these interpretations, ® preferentially entails [a] AA B. But the entailment no longer holds
for @ U {(a)—A}.

4.2 Maximal reachability

Guards are necessary preconditions, so they do not ’force’ transitions. In this section
we look for interpretations that tend to interpret the guards specified for an action a as
sufficient, provided that the possible occurrence of a is compatible with the constraints
and postconditions in the postcondition axioms. We accomplish this by formalizing the
qualification assumption in the notion of maximal reachability.

Definition 14 Given a signature ¥ = (P, A) and two structures S' = (W', 7)) and
S = (W,Za)

S" Conr S iff
W Ccw
and
for alla € A, T)(a) C Za(a)

C.n. 18 a partial order on structures, because C,,, can easily seen to be transitive,
reflexive and anti-symmetric. The ordering just 'prefers’ as much worlds and transitions
over them as possible, thus implementing the notion of 'maximal reachability’. In Figure
2 this is reflected by the fact that all transitions and worlds in lower models are also in
the model at the top.

Proposition 6 Let ® be a set of formulas for which there is an model. Then there is a
Cnr-mazimal, model.

Proof follows from the fact that there are only finitely many different MS-models of a

set of formulas ® and the fact that C,,, is a partial order on them.
|

Preferring C,,,-maximal structures leads to yet another interpretation of formulas.
Again, this interpretation results in non-monotonic entailment. An example of this is
provided by the set ® = {[a]A}. Under interpretation over C,,,-maximal structures, (a)A
is entailed by ®. However, this is no longer true for ® U {[a]-A}.

4.3 Min-Max-models

For the interpretation of specifications under both frame and qualification assumption
we have to combine orderings. We do this by applying them one after the other. What
is the right (intuitive) order in which to do this? The answer can be found by looking
at what the orderings are supposed to represent. The minimal change orderings concern
the effect of actions independent from whether they occur or not. Maximal reachability
deals with possible occurrence. It is intuitive then to apply minimal change first. The
minimal change ordering determines what action we actually mean by ’determining’ their
effects. After that we can ’talk’ about the possible occurrence of actions. This motivates
the following definition.

Definition 15 Given a specification (X, ®), a Min-Maz-model is defined as a C,,,-mazimal
element of the set of MS-models of ®.

(Of course we can make a similar definition with MC-models. Actually, in the rest of
this paper ” MS-model” can at any time be replaced by MC-model, resulting in a somewhat
different semantics.) The next example shows that defining this in reverse order does not
provide the semantics we are looking for.

We take a signature with P = {A, B}, and A = {a}, and the following set of formulas:
¢ = {[a]A, (a)true — -A N ~B}.

{} o ® {A} {} ® ® (A}

{AB} o (B} {AB} ® ® {B}

The left picture shows the C,,.-maximal structure that satisfies ®. This structure is
not MS-satisfying. This means it is not useful to apply maximality and minimality in
this order. There are only two MS-models of the example formulas, the structure with no
access to other worlds at all and the one shown in the right picture. Clearly the one in
the picture is C,,,-maximal. We show in refexample that this construction also works in
case there are ramifications.

The MS-models of a set of formulas & (we mean general formulas here) form a partially
ordered set. This set is not a lattice, as is shown by the following example. Take the
formula =({a) AA{a)B) and the two MS-satisfying structures S with Z, is {a — ({}, {A})}
and S’ with 7/, is {a — ({},{B})}. There is no MS-satisfying structure that is an upper
bound for both structures S and S’. The structure S” with 7/ is {a — ({},{A}),a —
({},{B})} is an upper bound under the C,,.-ordering, but is not MS-satisfying (not even
satisfying). So in general there can be more Min-Max-models of a set of formulas ®.
However, for specification formulas as defined in 3, we can prove that the MS-models do
form a complete lattice. Therefore, the following proposition holds.

Proposition 7 Fach specification ®p.. has a unique Min-Maz-model if it has a model.

Proof We must prove that the MS-satisfying structures of a specification ®,,.. form a
complete lattice under the C,,.-ordering. For this it is sufficient to prove that they form
a lattice, because the set is finite. To prove that the set forms a lattice we define the
lub of two MS-satisfying structures S = (W,Z4) and §' = (W', 7)) as S" = (W",T%)
with W"” = W U W' and 7'{ such that Va € A, T%(a) = Z);(a) U Z4(a) and the glb as
S" = (W, Z%) with W’ =W NW' and 7% such that Va € A, 7% (a) = Z,(a) N Za(a). It
is not difficult to see that both lub and glb are MS-satisfying structures of ®p..

|

For deterministic structures (models) a Min-Max model can be defined with the help
of one, much simpler ordering C,,,,.

Definition 16 Given a signature ¥ = (P, A) and two structures S = (W,Z,) and S' =
(W', T}),
S' Coum S iff
W Ccw
and
Vae A, YVw € W, (Fu" e W, (w,w") € Za(a) = ' € W', (w,w') € T/,(a)
ADiff (w, w') C Diff (w,w")))

It is not difficult to see that the above (partial) ordering combines the notion of
maximal reachability and minimal change. It can be proven that for specifications with
determinate postcondition formulas, guards and static constraints, the minimal models
determined by the above ordering coincide with Min-Max-models.

4.4 Static constraint interpretation

There are two alternatives for the semantics of the static constraints. Given a specification
(32, Popec) With Pypee = Ppost U Pyyara U Peons, we define two models that interpret it.

e Constraint semantics: The C,,,-maximal model of the set MSIC, with MSIC the
set of MS-models of @, U @ guarq that in addition satisfy ®eons

e Ramification semantics: The Min-Max-model of ®...

The ramification semantics corresponds to the standard logic interpretation of con-
straints and gives rise to ’derived effects’.

The constraint semantics does not give rise to derived effects (worlds), it merely ’cuts
out’ access to worlds in which the constraints are not satisfied. We accomplish this
by first looking at minimal models of specifications without taking the constraints into
account. Transitions in these minimal models possibly lead to worlds that do not comply
with constraints. By applying the criterion that models also have to comply with static
constraints in a second step, we lose these transitions all together.

In section 4.5 we show how the Ramification semantics extends the frame assumption
and the qualification assumption to ramifications. Constraint and ramification semantics
can of course be combined by splitting the sets of non-modal axioms into two set: one set
to be interpreted by the constraint semantics and one by the ramification semantics. The
formulas to be interpreted by the ramification semantics are called derivation rules.
Spruit et al. [12] works this out for Propositional Dynamic Database Logic (PDDL) with
Horn Clauses as derivation rules.

4.5 FExample

As an example specification we take:

Gun_loaded_sharp — |fire_gun|Gun_blown_up V Bullet_emitted
Gun_loaded_blank — [fire_gun|Gun_blown_up V Air_and_dust_emitted
— [fire_gun|Big_noise

(fire_gun)true — —Gun_blown _up

(fire_gun)true — Gun_loaded_sharp V Gun_loaded_blank
Bullet_emitted — Somebody_is_hit

—(Gun_loaded_sharp A Gun_loaded_blank)

For the interpretation of this specification we have to choose between the several se-
mantics we defined. First we look at the interpretation of constraints. There is only
one action, fire_gun. It is a nondeterministic action because some postcondition for-
mulas contain disjunctions. One of the alternatives represented by the disjunction is
Bullet_emitted. This atom is also present in one of the constraints. If we interpret this
constraint under the ”constraint semantics”, the condition ”Somebody_is_hit” can actu-
ally never change to true as a result of the action fire_gun, it can only be true after
the action fire_gun if it was already true in the world before fire_gun took place. This
means the most intuitive interpretation for this constraint is the ramification semantics.
We think the ramification semantics is usually the best interpretation for constraints.

Now we look at which minimality criterion to apply. We have to choose between
the minimal subset and the minimal cardinality criterion. The choice is not too difficult
if we look at the postcondition Gun_blown_up V Bullet_emitted. Given the choice that
we interpret constraints under the ramification semantics, the truth of Bullet_emitted
will imply the truth of Somebody_is_hit in resulting states. This means that the action
fire_gun usually ’has the choice’ between making one atom true (Gun_blown_up) or two
(Bullet_emitted and Somebody_is_hit). The minimal cardinality semantics will choose
the first alternative which is really counterintuitive. The minimal subset semantics just
makes no choice; both successor worlds are possible. This means that the minimal sub-
set semantics is a more non-deterministic interpretation. We think the minimal subset
semantics is always the more intuitive one.

We now show how the action fire_gun can be qualified. The maximality criterion
assures that in the Min-max-model of the specification, fire_gun-transitions are actually
there. But of course we can constrain the occurrence of transitions by adding extra
formulas to the specification. Adding {Gun_blown_up} or {—Big_noise} would leave us
with no transitions at all. Adding {—~Gun_loaded_sharp} would result in transitions that
never make Somebody_is_hit true.

Finally we name some properties that are true in the Min-max-model (with the min-
imal subset / ramification criteria) of the specification and that are formulated using
action connectives. The first one is:

Gun_loaded_blank — [fire_gun*|Gun_loaded blank

It says that if the gun was loaded with a blank it will stay loaded with blanks after a
possibly infinite amount times of shooting. A second one is:

[?Gun_loaded_sharp ; fire_gun](—~Gun_blown_up — Somebody_is_hit).

It says that if the gun is fired in a situation where it is loaded with a bullet, and as
the result of it the gun will not blow up, then somebody is hit.

5 Discussion

The frame problem and the associated problems of qualification and ramification are
common themes in the Al literature on knowledge representation and reasoning about
action and change [3].

Reiter [11] discusses dealing with the frame problem from a database point of view by
using precondition axioms and successor state axioms to specify actions in the situation
calculus. Lin and Reiter [9] study the interrelationship between the ramification and
qualification problems caused by interacting state constraints and action effects.

Borgida et al. [1] take the perspective of the designer of specification languages and
discuss ways to state that “nothing else changes” by syntactic as well as semantic means.
Our work can be regarded as introducing a richer semantics for the specification language
to capture this.

On the other side of the spectrum, Winslett’s work on database update semantics [13]
focuses on a model-oriented approach to updates, de-emphasizing the relation between the
specification and the models. Instead, we base our semantics on the declarative semantics
of a specification in PDL, which allows us to reason about updates in the same language.

Brass and Lipeck [2] [10] study action specification with the help of defaults. They also
define orderings over modal interpretations. Frame and other assumptions are represented
by formulas interpreted as defaults. This still puts the responsibility on the specifier to
provide such formulas, which does not always seem desirable. Furthermore their models
represent 'action traces’ and do not allow for non-determinism.

When restricting ourselves to finite sets of atomic actions and atomic formulas, some
of the semantics presented here for explicit effect axioms are a convenient starting point
for operationalization. In this case, the state space of the specified systems is finite, and
we are able to construct it explicitly. This opens the door to the application of model
checking techniques (like in [4]) on this state space to verify system properties.

6 Conclusions and future work

In this paper we defined several alternative semantics for action specification formulas
under the frame assumption and the qualification assumption. Choosing one of them
removes the ambiguity introduced by implicit frame assumptions and implicit qualification
assumptions. Procedures such as adding frame axioms or applying completion that are
usually necessary to reveal the intended meaning of a specification, can be checked against
the semantics we defined. We plan to define similar semantics for the first order case.
Furthermore, we plan to check existing procedures for scenario generation and reachability
analysis in the first order case against our semantics.

References

[1] A. Borgida, J. Mylopoulos, and R. Reiter. On the frame problem in procedure specifications. IEEE
Transactions on Software Engineering, 21:785-798, 1995.

[2] S. Brass, U. W. Lipeck, and P. Resende. Specification of object behaviour with defaults. In
G. Koschorreck U. W. Lipeck, editor, Proceedings of the International Workshop on Information
Systems — Correctness and Reusability (IS-CORE’93), pages 155-177. Informatik-Berichte 01/93,
Universit t Hannover, Januari 1993.

(3]

(4]

[5]

[6]

[7]
(8]

[9]

[11]
[12]

[13]
[14]

Frank M. Brown, editor. The frame problem in artificial intelligence: proceedings of the 1987 work-
shop, April 12-15, 1987, Lawrence, Kansas. Kaufmann, 1987.

E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state concurrent systems
using temporal logic specifications. ACM Transactions on Programming Languages and Systems,
8(2), April 1986.

R.B. Feenstra and R.J. Wieringa. LCM 3.0: a language for describing conceptual models. Techni-
cal Report IR-344, Faculty of Mathematics and Computer Science, Vrije Universiteit, Amsterdam,
December 1993.

Matthew L. Ginsberg and David E. Smith. Reasoning about action 2: the qualification problem.
Artificial Intelligence, 35:311-342, 1988.

D. Harel. First Order Dynamic Logic. Springer, 1979. Lecture Notes in Computer Science 68.

D. Kozen and J. Tiuryn. Logics of programs. In Jan van Leeuwen, editor, Handbook of Theoretical
Computer Science, pages 789-840. Elsevier Science Publishers, 1990.

F. Lin and R. Reiter. State Constraints Revisited. Journal of Logic and Computation, 4(5):655-678,
1994. Special Issue on Action and Processes.

U. W. Lipeck and S. Brass. Object-oriented system specification using defaults. In H. Marburger
K. von Luck, editor, Management and Processing of Complex Data Structures - Third Workshop on
Information Systems and Artificial Intelligence 1994, Lecture Notes in Computer Science 777, pages
22-43. Springer-Verlag, 1994.

R. Reiter. On specifying databse updates. Journal of Logic Programming, 25(1):53-91, 1995.

P.A. Spruit, R.J. Wieringa, and J.-J.Ch. Meyer. Axiomatization, declarative semantics and opera-
tional semantics of passive and active updates in logic databases. Journal of Logic and Computation,
5(1):27-50, 1995.

M. Winslett. Updating Logical Databases. Cambridge University Press, 1990.

M. Winslett. Cicrumscriptive semantics for updating knowledge bases. Annals of Mathematics and
Artificial Intelligence, 3:429-450, 1991.

