
Ch(k) GRAMMARS: A CHARACTERIZATION OF LL[K) LANGUAGES

Anton Nijholt
Department of Mathematics
Vrije Univarsiteit, Amsterdam
The Netherlands.

Eljas Soisalon-Soininen
Department of Computer Science
University of Helsinki
F i n l a n d ,

I, INTROOUCTION

From the point of view of parsing the LL(K] grammars constitute a very attractive

class of context-free grammars. For each LL{K] grammar a top-down parsing algorithm

can be devised which is essentially a one-state deterministic push-down automaton.

From a more theoretiG point of view LL[K) grammars are attractive as well. It is

well-known, for example, that it is decidable whether two LLfk) grammars are

equivalent. Also the hierarchy of LL[K) languages with regard to the length k of the

look-ahead is a characteristic property.

The class of LL[k] grammars is properly contained in the class of LR[K] grammars,

and even the family of LLCK) languages is properly contained in the family of LR(K)

languages. If we focus on the "gap" between LL~K) and LR[K] grammars the following

points are of interest,

[i] There is the obvious difference in grammar definition.

(ii) The generating capacities are different.

(iii) Apart From the difference between LR[O) and LR(1) languages the length k

of the look-ahead does not play a role for LR[K] languages.

[iv] Every LL(K] grammar is both left parsable and right parsable but there

are LR[K] grammars which are not left parsable [i].

We consider the present paper as a contribution to the research which tries to

clarify the differences between LL(K) and LR[K) grammars. Research in this area has

been reported e.g. in RosenKrantz and Lewis [7], Brosgol [2], Hammer [4],

Soisalon-Soininen and UhKonen [B], Oemers [3] and Soisalon-Soininen [8]. In this

paper we introduce the class of so called Ch[K] grammars [pronounced "chain K

grammars"]. This class of grammars is properly contained in the class of LR(K]

grammars and it properly contains the LL(K] grammars. However, the family of Ch[K]

languages coincides with the family of LL(K] languages. Nevertheless, the parsing

properties of Ch[K] grammars are quite different from the parsing properties of LL~KI

grammars. The class of Ch[K) grammars can be considered as a generalization of the

class of simple chain grammars [6] in the same sense as the class of LL[K] grammars

is a generalization of the class of simple LL[I] grammars.

The present paper is organized as follows. In Section 2 we define the necessary

391

background concerning context-free ~rammars and parsing. The Ch[K) grammars are

defined in Section 3 where also some basic properties of Ch(K) grammars are proved.

In Section 4 ~e demonstrate that the well-known transformation process of left

factoring the given grammar will always produce an LLIK) grammar from e Ch[k) grammar

end that, in fact, this process cannot produce an LL[K) grammar from a non-Ch[K)

grammar. This result implies the equality of the classes of LL[K) and Ch(k)

languages, and it also clarifies the relationship o~ Ch(k] grammars with some other

classes of grammars.

2. BACKGROUND

In this section we review various commonly Known definitions [cf. [1]] and give some

notations. A quadruple G = [N,~,P,S] is a context-free grcc~ar [grammar for short]

if N and ~ are finite disjoint sets, P is a finite subset of the product N x (N u ~]~

and S is an element of N. Elements of the set N are called nonterminals and denoted

by capital Latin letters from the beginning of the alphabet A,B,C S. Elements sf

the set ~ are called tez~nals and denoted by small Latin letters from the beginning

of the alphabet a,b,c s. By X, Y and Z we denote elements which are either in N

or in ~. The elements [A,w) of P are called productions and denoted by A + ~. The

symbol S is called the start symbol of the grammar.

Terminal strings, i.e, strings in ~ are denoted by small Latin letters from the

end of the alphabet t,u,v z, whereas small Greek letters a,~,y ~ denote

strings in [N u ~]~. The empty string is denoted by ~. The derives relation ~ of G on

the set [N u ~]* is defined by the condition ~AB ~c~ if a and B are strings in

[N u Z]* and R + ~ is a production in P. If here ~ is required to be a terminal

string, then we get the definition of the leftmost derives relation of G, denoted by

~, and if B is required to be a terminal string, then we get the definition of the

~ghtmoat derives relation of G, denoted by ~.

A sequence ~1,02 @n of strings Qi in [N u ~]* is called a leftmoat derivation

[respectively rightmost derivation) of O n from 01 in the grammar G if O i ~ Oi+ 1

Crespectively ~i ~ Qi+1) holds in G for each i = I n-1 whenever n > I. The

sequence of productions used in a leftmost derivation of a string @ from the start

symbol S is a left parse of 0 in. G, and the reverse of the sequence of productions

in a rightmost derivation of @ from S is a ~ght parse of 0 in G.

Let G = CN,~,P,S) and G' = IN',~,P',S') be grammars and let h: P'~ ÷ P~ be a

homomorphism. We say that G' left-to-right covers G with respect to the homomorphism

h, if the following two conditions hold:

~i) if ~' is a left parse s¢a terminal string w in the grammar G', then

h(~') is a right parse of w in the grammar G;

[ii) if ~ is a right parse of a terminal string w in the grammar G, then there

is a left parse ~' of w in G' such that h(~') = ~.

392

If, in these conditions, "left" [rasp. "right"] is replaced by "right" (rasp.

"left"), then, under the conditions, G' right-to-right covers (resp. left-to-left

covers) the grammar G with respect to the homomorphism h. The shorthand "right

cover" is often used ~or "right-to-right cover", as well as the shorthand "left

cover" is used for "left-to-left cover". If the grammar G' left-to-right covers,

right covers or left covers the grammar G, then we say that G' covers G. Observe

that the l~guage L(G'] = {x ~ ~* I S' ~* x} generated by the grammar G' equals the

language L(G} if G' covers G.

Let G = (N,~,P,S} be a grammar and let k be a nonnegative integer. If a is string

in (N u Z)* then we denote by K:a the first k symbols of ~ whenever the length I~I

of ~ is greater than or equal to K, and ~ otherwise. By FIRSTK{~] we denote the set

of all strings K:u such that u is a terminal string end ~ derives u. The grammar G

is said to be LL[K] if, for a terminal string w, a nonterminal A and strings y, 61

and ~2 in (N o Z]* such that A ÷ ~i and A ÷ ~2 are distinct productions of G, the

condition

S ~ L wAy

implies that

FIRSTK(61y} n FIRSTK(~2~) = ~.

The definition of an LL[K] grammar immediately implies some properties of LL[K)

~rammars. For example, each LL(K) grammar is unambiguous, i.e, each termina3 strin~

in the language has exactly one left parse. In addition, if an LL[K) grammar is

reduced, i.e. every production is used in a le~t [or right) parse of some terminal

string, then it is not left-recursive, i.e. it has no nonterminal A such that

A ~+ A~ for a general string ~.

3. OEFINITION OF Ch(k] GRAMMARS

In order to intuitively characterize the class of grammars to be defined and its

relationship with uther classes of grammars, we first illustrate the determLnistie

top-down, bottom-up and left-corner parsing algorithms; i.e. the parsing algorithms

that apply to LL[K), LRIK) and LC(K] [7,8] grammars, respectively. Consider the

derivation tree shown in Figure I.

, \ / , ,
a B C E

i t A
b c d e f

Figure I. Derivation tree

393

In the top-down parsing algorithm for LL[K) grammars the productions for the non-

terminals in the tree are recognized in the order S,A,8,D,C,E,F. Each production in

the tree is recognized before its descendants and its right siblings and their

descendants. In the bottom-up parsing algorithm for LR[K) grammars the productions

for the nonterminals in the tree are recognized in the order B,A,C,E,O,F,S.

Each production in the tree is recognized after its descendants but before its

ancestors and its right siblings and their descendants. In the left-corner parsing

algorithm for LC(K] grammars the productions are recognized in the order A,B,S,C,O,

E,F. Each production is recognized after its left corner but before any of the

siblings of the left corner [or their descendants].

The Ch[k] grammars can now be characterized as LR[K] grammars for which the left-

hand sides of the productions can be recognized in the same order as the whole

productions in top-down parsing, but the right-hand sides are recognized in the

order of the bottom-up parse. This method for constructing the derivation tree

"node by node" corresponds to the way in which the well-known recursive descent-

parser constructs the tree. For example, when the top-down parsing algorithm has

recognized the productions for S,A,B and D in the derivation tree of Figure 1, then

in the case of Ch[K) grammars the left-hand sides S,A,B and 0 are determined but

the whole productions only for 8 and A.

In a sense, the Ch[k] grammars constitute a dual of the PLR(K) grammars [8,B] in a

similar way as the LL[K] grammars constitute a dual of LR[K) grammars as regards

the construction of the derivation tree. The PLRIK] grammars are LR[K) grammars for

which the left-hand sides of the productions can be recognized in the same order as

the whole productions in left-corner parsing, but the right-hand sides are

recognized in the order of the bottom-up parse. Thus the PLR[K) grammars are those

for which deterministic "node by node" parsing bottom-up is possible, whereas the

Ch[K] grammars era those for which deterministic "node by node" parsing top-down is

possible.

DEFINITION 3.1. Let k be a non-negative integer. A grammar G = ~N,Z,P,S) is said

to be a ChCk) gra~rmn~ if, for a terminal string w, a nonterminal A and strings T,

~, 61 and 62 in [N u Z)* such that A ÷ ~61 and A ÷ ~2 are distinct productions of

G and ~ is the longest common prefix of ~61 end ~62, the condition

S ~ wAy

implies that

FIRSTKC61~) n FIRSTK[62T] = ~. 0

Observe the obvious difference with the definition of LL[K) grammars. In that case

the implidation FIRSTK[~61y) n FIRSTK[~62T) = ~ is used. Thus in the case of Ch[k)

grammars it is not necessary to consider the terminal strings which can be derived

from the longest common prefix ~ of the right-hand sides of two distinct

394

productions A + ~61 and A + ~62" These observations imply immediately

THEOREM 3.2. Every LL(K] grammar is a Ch(k] grammar.

Proof. Assume that a grammar G = [N,E,P,S) is not a Ch(K) grammar. Then there

exist a terminal string w, a nonterminel A and strings y, ~, 81 and 62 in (N u Z] ~

such that A ÷ ~61 and A ÷ ~2' where ~ is the longest common prefix of ~61 and
~2'

are two distinct productions of G, S ~ __ way and FIRSTK[61y) n FIRSTK[62#] # 0.

But then also FIRSTK{~Iy) n FIRSTK(~62y) # H, which means that the grammar G is

not LL[k), as desired. 0

As an informal description of the definition of Ch(K] grammars and of its relation-

ship with the definitions of other classes of grammars consider the following

situation, There exist terminal strings w, x, y and z, a nonterminel A, a symbol X

which is a nonterminal or a terminal, and a general string ~ such that A ÷ X~ is e

production and

S ~ wAz, X ~* ~* Xj ~ y.

Consider then the terminal string wxyz. The production A + X~ in question in the

derivation tree of wxyz can be recognized with certainty after scanning

(i) w and K:xyz if the grammar is LL[K),

(ii) wx and k:yz if the grammar is LC(K),

(iii] wxy and k:z if the grammar is LR[K], PLR(K) or Ch[k).

However, if the grammar is PLR[K] then the left-hand side A o£ the production

A + X~ is recognized after scanning wx and k:yz, and if the grammar is Ch(k) then

the left-hand side A is recognized after scanning w and K:xyz.

As we remarKed in the introduction the Ch(K) grammars can be considered as a

generalization of simple chain grammars E6]. A grammar G = [N,~,P,S) is said to be

a simple chain grammar if G is E-free (i.e. P contains no production of the form

A + s), P is prefix-free (i.e. there are no two productions A ÷ ~6 and A + ~ in P)

and for any pair of productions A ÷ ~X6 and A ÷ ~Yy, X and Y are in N u Z, such

that X # Y, we have FIRSTI(X] n FIRSTI(Y) = ~. For left part grammars [5] the

requirement that P is prefix-free is dropped. The following theorem is an immediate

consequence of the above discussion.

THEOREM 3.3. A grammar G = (N,2,P,S] is a simple chain grammar if and only if P is

prefix-free and G is an E-free Ch(1) grammar.

For example, the grammar with productions

S + a , S + a b

is not a simple chain grammar, because these two productions do not constitute a

prefix-free set of productions. However, this grammar is Ch(1]. Thus we conclude

by Theorem 3.3 that the class of simple chain grammars is properly contained in

395

the class of Ch{k] grammars whenever k > O. Further, since there exist simple chaln

grammars which are not LL[K) for any k [6], we conclude by Theorems 3.2 add 3.3

that the class of LL{K) grammars is properly contained in the class of ChCK]

grammars whenever K > O. In the case K = 0 both classes contain only the grammars

that derive at most one terminal string.

The follow±ng two theorems ere also immediate consequences of the Ch[k) definition.

The proofs are analogous to corresponding ones in the LLCK) case and therefore

omitted.

THEOREM 3.4. Each Ch[k] grammar is unambiguous.

THEOREM 3.5, A reduced Ch[k] grammar is not left-recursive.

4. PROPERTIES OF Ch{k) GRAMMARS

In this section our primary interest is to relate the ChCK) grammars and LL[K]

grammars by a grammatical transformation. In fact, we shall show that the Ch[K]

grammars are exactly those which can be transformed into LL[K] grammars by left-

faoto~ng the grammar until it has no two productions of the form A + ~B and

A + ~y where ~ # g. This implies, in particular, that the language generated by a

Ch[K) grammar Is always an LL~K} language, and thus, by Theorem 3.2, the family o4

Chlh) languages equals the family o~ LLIK] languages. Furthermore, this result

implies the interesting property that ChIk) grammars are PLRIK) grammars [8,9].

Since the left factoring process yields an LL[K) grammar if and only if the given

grammar is Ch(k), we can perform the test whether a grammar is Ch{K) by left-

factoring the grammar and then testing the LL(K)-property. However, the LL(K)

parser of the resulting grammar cannot be used to produce left or right parses in

the original grammar. That is, left-factoring can distort the structure of the

grammar such that no left-to-left nor left-to-right cover is obtained [6].

Nevertheless, we can give a simple modification of the left-factoriog process such

that the above mentioned properties are preserved except that, as an additional

bonus, the transformed grammar left-to-right covers the original grammar.

We begin by defining that a grammar is in the left-factored form, if it has no two

productions A + ~ end A + ~T such that ~ is not the empty string. The definitions

of LL(K] and Oh{K) grammars imply immediately

THEOREM 4.1. A grammar in the left-factored form is LL[K] if and only if it is

Ch[K).

The process of left-factoring can be regarded as a transformation which is composed

396

by consecutive steps of "factoring" two distinct productions A ÷ m~ and A ÷ my,

~, into productions A ÷ mA', A' -> B end A' ~ y, where A' is a new nontarminal.

These steps are performed, in an arbitrary way, until the grammar is in the left-

factored form. It should be noticed that the aOove specification of the process

does not define the "left-featured" grammar uniquely. However, our results are

independent of the particular way in which the individual steps and thelr order

in the left-factoring process ere chosen.

THEOREM 4.2. The grammar obtained by the left-factoring process is LL[K] if and

only if the original grammar is Ch[K).

Sketch of proof. By Theorem 4.1 it is enough to show that the process of left-

factoring does not affect the Ch[k)-ness of a grammar and that the process of left-

factoring cannot produce a Ch[k) grammar from a non-Ch(K) grammar. It is clear

by the definition that this is true as regards one individual step in the left-

factoring process. Since the whole process is just a consecutive sequence of these

individual steps, we thus conclude the theorem. 0

COROLLARY 4.3. The families of Ch(K] and LL(K) languages are identical.

The PLR(K) grammars [8,8] ere exactly those grammars which can be transformed into

LC[Kj grammars by the le%t-faotoring process [8]. Thus, since the class of LL[K)

grammars is properly contained in the class of LC(K] grammars [B], we conclude by

Theorem 4.2 that the class of Ch[K) grammars is properly contained in the class of

PLR(K] grammars. This implies further that Ch[K) grammars are LR(K) grammars, since

PLR{K) grammars are LRCK) grammars [8].

The inclusion of the Ch(k) grammars in the class of PLR(K) grammars is an

interesting property because PLR[K) grammars can be transformed into LL[K) grammars

such that the transformed grammar left-to-right covers the original grammar [8].

This is thus true also for Ch[k) grammars. However, the transformation involved is

rather complicated, and it is thus desirable to find out easier possibilities.

Let therefore g I = [N1,E,PI,S) be a grammar and let G~ = [N~,~,P~,S) where

N~ = N I U { [A ~] I A ÷ m i s i n P} and P~ = {A ÷ m [Ae] I A ÷ ~ i s i n PI } u { [A m] ÷ s l

A ÷ ~ is in PI }. Further let G 2 = [N2,E,P2,S] be a grammar obtained by the left-

* * be a homomorphism defined by the factoring process from G~, and let hl P2 ÷ P1

conditions

h{[Am] + a) = A + m, and

h(A ÷ m) = s.

LEMMA 4.4. The grammar G 2 left-to-right covers the grammar O I with respect to the

hemomorphism ho

397

SKetch of proof. The appearance of a production of the form EA~] ÷ ~ in a left

parse o# e terminal string x in G~ means that a substring y of x for which
W

A ~ ~ y in G 1 has been analyzed. Thus it can be shown by any easy induction

that the sequence of these productions in a left parse of x in G~ defines a right

parse of x in G I. Further, this is also true when G~ is replaced by the grammar

O 2 , since the process of left-factoring does not affect the order in which the

productions of the form EA~] ÷ g are recognized. By formalizing the above

discus@ion we can conclude that the grammar G 2 left-to-right covers the grammar G 1

with respect to the homomorphism h.

Since the grammar G 2 obtained by the left-factoring process from G~ is LL[K) if

and only if any grammar obtained by the left-factoring process from G 1 is LL(K],

we conclude by Theorem 4.2 and Lemma 4.4 that the following theorem holds.

*)
THEOREM 4.5. Each Ch(K) grammar of size n can be left-to-right covered by an

LL(K) grammar of size O(n).

REFERENCES

1. A.V. Aho and J.D, Ullman, The Theory of Parsing, Translation and Compiling,
Vals 1 and 2, Prentice Hall, Englewaod Cliffs, N.J., 1972 and 1973.

2. 8.M, 8rosgol, Deterministic translation grammars, Proc. 8th Princeton Conf.
on Information Sciences and Systems 1974, pp. 300-306.

3. A.J. Oemers, Generalized left corner parsing, Conf. Record of the 4th ACM
Symposo on Principles of Programming Languages 1977, pp. 170-182.

4. M. Hammer, A new grammatical transformation into LL[K) form, Conf. Record of
the 6th Annual ACM Sympos. on Theory of Computing 1974, pp. 266-275.

5. A. Nijholt, A left part theorem for grammatical trees, Oiscrete Mathematics
25 (1976], pp. 51-63.

6. A. Nijholt, Simple chain grammars and languages, to appear in Theoretical
Computer Science.

7. O.J. RosenKrantz and P.M. Lewis, Deterministic left-corner parsing, IEEE Conf.
Record of the 11th Annual Sympos. on Switching and Automata Theory
1970, pp. 139-152.

8. E. Soisalon-Soininen, Characterization of LL[K) languages by restricted LR(K)
grammars, Ph.D. Thesis, Report A-1977-3, Department of Computer
Science, University of Helsinki.

9. E. Soisalon-Soininen and E. Ukkonen, A characterization of LL(K) languages,
in: Automata, Languages and Programming [ads. S. Michaelson end
R. Milner), Third Colloquium, Edinburgh University Press, Edinburgh,
1975, pp. 20-30.

*)The size IGI c f a grammar G i s de f i ned by I~1 = E IA~I .
A-+(:~P

