
A GENERAL SCHEME FOR SOME DETERMINISTICALLY PARSABLE GRAMMARS
AND THEIR STRONG EQUIVALENTS

(Extended Abstract)

Anton Nijholt
Twente University of Technology
Dept. of Computer Science
PO Box 217, 7500 AE Enschede
The Netherlands

Jan Pittl
Research Inst. Math. Machines
Loretanske Nam. 3
11855 Prague I
Czechoslovakia

I. INTRODUCTION

In the past years there have been many attempts to fill in the gap

between the classes of LL(k) and LR(k) grammars with new classes of

deterministically parsable grammars. Almost always the introduction

of a new class was accompanied by a parsing method and/or a grammati-

cal transformation fitting the following scheme. If parsers were at

the centre of the investigation the new method used to be designed to

possess certain advantages with respect to already existing ones. As

far as transformations were concerned the intention was to produce

methods of transforming grammars into "more easily" parsable ones.

The problem of finding classes of context-free grammars which can

be transformed to LL(k) grammars has received much attention. Parsing

strategies and associated classes of grammars generating LL(k)

languages have been extensively studied (among others cf. e.g.

[6,14,18]). An equally interesting class of grammars is the class of

strict deterministic grammars [8,9], a subclass of the LR(O) grammars

with elegant theoretical properties. Generalizations of this concept

have been introduced by Friede[3] and Pittl[15]. The purpose of this

paper is to show how the above mentioned classes of grammars can be

dealt with within a general framework originated by Nijholt[12].

Roughly speaking, we study the phenomena corresponding e.g. to the re-

lationship between strong LL(k) and LL(k) grammars. A general scheme

u~ing adjectives "strong" and "weak" is shown to be applicable for

the description of the grammar families under consideration.

PRELIMINARIES

In the remainder of this section we review several concepts of for-

mal language theory. The reader is referred to Aho and Ullman[1] or

Harrison[7] for further details.

A context-free grammar (abbreviated a CFG) is denoted by

G = (N,T,P,S). Define V = N u T. Troughout the paper we assume all

the grammars under consideration to be reduced.

244

Let = c V*. The lengt h of the word ~ is denoted by ~i; the symbol

A is reserved for the empty string~ For any nonnegative integer k the

expression k : ~ denotes ~ if I~I < k, otherwise the prefix of ~ of

length k. Furthermore we define

T *k = {u e T* J lul ~ k}.

The following operations relate to derivations in G. For any ~ c V*

and A e N we define

FIRSTk(~) = {u c T ,k j ~ =~> w and k : w = u for some w e T*}

FOLLOWk(A) = {u e T *k I S ==> BAY and u e FIRSTk(Y) for some ~,7 e V*}

The FIRST k operator can be extended to handle subsets X of V*:

FIRSTk(X) = {u e T *k J u e FIRSTk(~) for some ~ ¢ X}

Finally, we recall the definitions of four wellknown classes of

grammars. The first two concepts we present describe grammars intro-

duced by Rosenkrantz and Stearns[17].

DEFINITION 1.1. Let G = (N,T,P,S) be a CFG, k ~ O. The grammar G is

called an LL(k) grammar iff for all A c N, w ¢ T* and ~, ~, 7 c V*, if

S :~> wAs :~> wS~

S :~> wA~ :~> wY~

FIRSTk(S=) n FIRSTk(7~) ~

then 8 : x.

DEFINITION 1.2. Let G = (N,T,P,S) be a CFG, k) O. G is called a

strong LL(k) grammar iff for any A c N and S, 7 ~ V*, if A ÷ 8 and

A ÷ 7 are in P then FIRSTk(SFOLLOWk(A)) n FIRSTk(TFOLLOWk(A)) # ~ im-

plies ~ : Y.

Among various (and different) definitions of LR(k) grammars we have

chosen the one due to Geller and Harrison[5].

DEFINITION 1.3. Let G = (N,T~P,S) be a CFG, k ~ O. The grammar G is

said to be LR(k) iff S ==> S impossible and for all A, A' e N;

~' ~, S' 7 ~ V* and w, w' T ~ ~, , , , x ~ , if

S =~> eAw =~> ~8w = 7w

S =~> ~'A'x =~> ~'~'x = xw'

and k : w = k : w T then (A ~ S, I~) = (A' + 8' I~'S'I)

245

Before we can give the definition of the fourth class to be dealt

with we need a few preliminaries. Let Q be a set. A weak partition of

Q is a set ~ of nonempty subsets of Q such that for each q c Q there

is some B c ~ such that q c B. The elements of ~ are called blocks of

~. For p, q c Q we write p ~ q (mod 7) iff p ~ B and q ~ B for some

block B of ~. A weak partition ~ of Q is called a partition of Q iff

its blocks are pairwise disjoint., The following grammar family was

introduced by Harrison and Havel[8].

DEFINITION 1.4. Let G = (N,T,P~S) be a CFG, let ~ be a partition of

V = N u T. Such a partition is called strict iff T forms a block of

and for all A, A' ~ N and ~, B, B' ~ V*, if A + ~6, A' + ~6' are in P

and A e A' (mod ~) then either

(i) both 6, 6' ~ A and (I)6 e (I)8' (mod 7), or

(ii) ~ = 6' = A and A = A'.

DEFINITION 1.5. A CFG G = (N,T,P,S) is called strict deterministic

iff there exists a strict partition ~ of V.

2. GRAMMARS TRANSFORMABLE TO LL(k) GRAMMARS

In this section we shortly review some definitions of classes of

grammars which have the property that they can be transformed to LL(k)

grammars. We do not go into proofs or historical details. These can be

found in Nijholt[12] and in Soisalon-Soininen and Ukkonen[18].

In order to intuitively characterize the different classes of gram-

mars to be defined we give an intuitive idea of their parsing stra-

tegies. In Figure I we have displayed the following situation. There

exist terminal strings w, x, y and z, a nonterminal A and symbols XI,

X2, ,Xp in V, such that A + XI...X p is a production and there exist

derivations

S ==> wAz, X I ==> x, and X2°..X p ==> y.

S

w x y z

Figure I. Parsing strategies.

246

In the following table we have collected six parsing strategies

which are illustrated with the help of Figure I. The following abbre-

viations are used:

LL : reading from the left using left parses [17]

PLC: ~redictive left ~orner grammars [12]

LP : !eft ~art grammars [12,14]

LC : left corner grammars [18]

PLR: predictive LR-grammars [18]

LR : reading from the ~eft using ~ight parses [5]

GRAMMAR READ

LL w

PLC w

LP w

LC wx

PLR wx

LR wxy

RECOGNITION READ RECOGNITION

of A of A ÷ XI°.°X p

k : xyz w k : xyz

k : xyz wx k : yz

k : xyz wxy k : z

k : yz wx k : yz

k : yz wxy k : z

k : z wxy k : z

Table I. Parsing strategies.

With the help of Figure I the table should be read as follows. Con-

sider the terminal string wxyz. The production A ÷ XIX2...X p depicted

in this parse tree of wxyz can be recognized with certainty after

scanning

(i) w and k : xyz if the grammar is LL(k)

(ii) wx and k : yz if the grammar is PLC(k) or LC(k)

(iii) wxy and k : z if the grammar ±s LP(k), PLR(k) or LR(k)

However, if the grammar is PLC(k) or LP(k), then the lefthand side

A of the production A + XIX2...X p is already recognized after scanning

w and k : xyz. If the grammar is PLR(k), then A is recognized after

scanning wx and k : yz.

It is necessary to formalize the above intuitive ideas in order

that the specific properties of grammar classes may be picked up. It

is instructive to consider this formalization for LL(k) grammars.

LEMMA 2.1. Let G = (N,T,P,S) be an LL(k) grammar, k ~ 0, w ~ T*, ~, x

n E E V* and n ~ O. If S :~> w~, S : > w¥ and FIRSTk(6) n FIRSTk(~) ~

then 6 = ~.

PROOF. Cf. [I], Lemma 8.1.

247

Here we will not pay attention to a formal definition of PLC(k)

grammars (cf.[12]) but instead we immediately define LP(k) grammars.

In [14] these grammars were originally called Ch(k) grammars. We give

here a slight restatement of the original definition.

DEFINITION 2.1. Let G = (N,T,P,S) be a CFG, k) O. G is said to be an

LP(k) grammar iff for any A c N; e, 8, 8', ¥, Y' e V* and w e T*, if

S :~> wAy :~> w~Sy and S :~> wAy :F> waS'y'

and FIRSTk(Sy) n FIRSTk(8'y') ~ ~ then (I)8 = (I)8'

The "strong" variant of this class (strong LP(k) grammars) is de-

fined analogously to the LL(k) case by demanding that (I)8 = (I)8'

for any two productions of the form A + ~8 and A + ~8' such that

FIRSTk(SFOLLOWk(A)) n FIRSTk(~,FOLLOWk(A)) ~ ~.

We refer the reader to [12,14] for more detailed treatments on the

class of LP(k) grammars. For the purposes of comparison we only give a

result related to Lemma 2.1.

LEMMA 2.2. Let G = (N,T,P,S) be an LP(k) grammar, k) O, w ~ T*, 8, Y

V* and n) O. If S =~>L wS, S =~>L wy and FIRSTk(~) n FIRSTk(Y) ~
then (I) 8 = (1)y.

PROOF. Cf. [12], Lemmas 12.3 and 12.4. D

A probably better known class of grammars generating LL(k)

languages is represented by LC(k) grammars (cf. [I]). We consider here

the characterization of this class given by Soisalon-Soininen and Uk-

konen[18] in terms of rightmost derivations. Recall that a production

A + 8 is said to satisfy the LR(k) condition iff the body of Defini-

tion 1.3 is satisfied for it,. The underlining in the following two

definitions denotes that the underlined substrings are not rewritten

in the rightmost derivation.

DEFINITION 2.2. A CFG G = (N,T,P,S) is said to be an LC(k) grammar if
+

S =~> S is not possible, each A-production satisfies the LR(k) condi-

tion and if for each w, w' y' T* e' ~" , Y, ~ ; ~, , , B, y ~ V*; X ~ V;

A, A' c N and production A ÷ X~ in P, the conditions

248

(i) S :~> ~Aw :~> aXSw :~> &(yw

(ii) S =~> ~'A'w' =~> a'~"X~w' =~> a'a"Xy'w'

(iii) ~'a" = a and k : yw = k : y'w',

always imply that aA = a'A' and 6 = ~.

We have included the condition that S =~> S is not possible for an

LC(k) grammar. Otherwise the following ambiguous grammar with produc-

tions S ÷ S I a is to be called LC(0) (cf.[5] where similar problems

are treated for LR(k) definitions). Finally the following class of

grammars has been shown [18] to generate LL(k) languages.

DEFINITION 2.3. A CFG G = (N,T,P,S) is said to be a PLR(k) grammar if

G is LR(k) and if for each w, w', y, y' ~ T*; ~,~', ~", 6, ~ ~ V*;

X c V; A, A' ~ N and production A + X6 in P, the conditions

(i) S =~> aAw :~> aX6w :~> ~Xyw

(ii) S =~> a'A'w' =~> ~'~"Xyw' =~> ~'a"Xy'w'

(iii) a'a" = ~ and k : yw = k : y'w'

always imply that aA = ~'A'

In Figure 2 we present the relationships between the classes of

grammars which have been mentioned in this section. All arrows denote

proper inclusions.

PLR

LC
stron

/
s t r o ~ /

str°ng LL ~ L L

Figure 2. First inclusion diagram.

249

This paper is not meant to bring a discussion on the transforma-

tions converting grammars into LL(k) ones. However, for the sake of

completeness, Hammer's "k-transformable" grammars [6] should be men-

tioned to provide such a transformation.

3. STRICT DETERMINISTIC GRAMMARS WITH LOOKAHEAD

Harrison and Havel[8] mentioned the possibility of generalizing

their results by a suitable incorporation of lookahead. One of the ap-

proaches leading to the goal has appeared in Friede[4]. For notation-

al purposes we prefer to call these grammars strong SD(k) instead of

the original denotation having sounded as partitioned LL(k) grammars.

DEFINITION 3.1. Let G = (N,T,P,S) be a CFG, k) O. G is said to be a

strong SD(k) grammar iff there exists a partition 7 of V such that T

forms a block of 7 and for all A, A' ~ N, ~, 6, ~' ~ V*, if

A ÷ ~, A' ÷ ~8' are in P, A ~ A' (mod 7) and

FIRSTk(SFOLLOWk(A)) n FIRSTk(8,FOLLOWk(A,)) ~

then either

(i) both 8, 8' ~ A and (I)8 ~ (I)8' (mod 7), or

(ii) 8 = 8' = A and A = A'.

To justify our terminology we refer the reader to compare the above

definition with the one describing strong LP(k) grammars (Section 2).

THEOREM 3.1. Let G = (N,T,P,S) be a strong LP(k) grammar, k) O. Then

G is a strong SD(k) grammar.

PROOF. It follows immediately from the definitions that the partition

7 = {{A} I A ~ N} u {T} satisfies the desired properties. D

This inclusion is proper since LP(k) grammars generate merely LL(k)

languages whereas strong SD(k) ones were shown to generate all deter-

ministic context-free languages (cf.[3]). A more intriguing generali-

zation of strict deterministic grammars has been given by Pittl[15].

This latter generalization was obtained as a characterization of an

existing class of grammars, namely, the LLP(k) grammars (cf.

Lomet[10]).

DEFINITION 3.2. Let G : (N,T,P,S) be a CFG, k ~ O. We define

Mk(G) = {(A,u) ~ A ~ N and u ~ FOLLOWk(A)}.

Let 7 be a weak partition of Mk(G). Such a weak partition is called

admissible iff for any (A,u), (A',u') ~ Mk(G) , ~, B, 6' ~ V*, if

A + ~B, A' ÷ ~8' are in P, (A,u) ~ (A',u') (mod 7) and

250

FIRSTk(6U) n FIRSTk(6'u') ~ ~ then either

(i) both 6,6' are in TV*, or

(ii) B = Cy, 6' = C'y' for some C, C' c N, X, Y' ~ V*

and (C,z) ~ (C,z') (mod ~) for all z c FIRSTk(XU)

and z' ~ FIRSTk(Y'u') , or

(iii) 6 = 6' = A and A = A'.

In [15] it is shown that LLP(k) grammars are exactly those possess-

ing an admissible weak partition. For this reason in [12] they were

renamed as weak SD(k) grammars.

DEFINITION 3.3. Let G = (N,T,P,S) be a CFG, k ~ O. G is called a

weak SD(k) grammar iff there exists an admissible weak partition of

Mk(G).

Again, we wish to relate the new concept

ones. An admissible weak partition with

called an admissible partition.

to previously defined

disjoint blocks will be

LEMMA 3.1. Let G = (N,T,P,S) be a CFG, k) O. The grammar G is strong

SD(k) iff there exists an admissible partition ~ of Mk(G) such that

for any block B of ~ and (A,u) ~ Mk(G) , (A,u) ~ B implies (A,v) ~ B

for all v ~ FOLLOWk(A).

PROOF. Let ~ be an admissible partition of Mk(G) which satisfies the

above condition. Define ~' = {{A i (A,u) ~ B} I B ~ ~} u {T}. Then ~'

is a partition of V possessing the desired properties. On the other

hand let ~' be a partition of V mentioned in Definition 3.1. Then the

partition ~ = {{(A,u) I A ~ B and u c FOLLOWk(A)} I B ~ ~' - {T}}

yields clearly the result. D

THEOREM 3.2. Let G = (N,T,P,S) be a strong SD(k) grammar, k) O. Then

G is weak SD(k).

PROOF. An immediate consequence of Lemma 3.1.

It can be shown that the above inclusion is proper. Weak SD(k)

grammars can be characterized in an interesting way by means of left-

most derivations.

THEOREM 3-3- Let G = (N,T,P,S) be a CFG, k ~ O. Then G is a weak

SD(k) grammar iff for any n ~ O, A, A' ~ N, ~ 6, 6', Y, Y' ~ V* and

w ~ T*, if

S =~> wAx =~> w~6y

S :~> wA'y' :L> w~6'X v

251

FIRSTk(By) n FIRSTk (8,Y,) ~

then either (i) both 6, 8' are in TV*, or

(ii) both 8, 8' are in NV*, or

(iii) 6 = 6' : A and A = A'

PROOF. Cf. [15], Theorem 3.2.(c). 0

This characterization allows us to compare the classes of LP(k) and

weak SD(k) grammars.

THEOREM 3.4. Let G = (N,T,P,S) be an LP(k) grammar, k ; 0. Then G is

a weak SD(k) grammar.

PROOF. Use Lemma 2.2. and Theorem 3.3.

As mentioned in [9], a lot of erroneous results has appeared in the

literature connected with the conversion of rightmost derivations to

leftmost ones. These technical difficulties can be overcome using the

approach presented in Pittl[15]. The crucial result of that paper we

recall is that proving any weak SD(k) grammar to be LR(k). We next im-

prove it by showing these grammars to be included in an interesting

subclass of LR(k) grammars introduced by Ukkonen[19,20].

DEFINITION 3.4. Let G = (N,T,P,S) be a CFG, k ~ 0. G is called to be

a weak PLR(k) grammar iff it is LR(k) and for all A, A' E N,

~, ~', ~", 8, 6' E V*, w, w' ~ T* and X ~ V, if

S =~> mAw =~> ~X6w and S :~> ~'A'w' :~> ~'~"X6'w' = ~X6'w'

and FIRSTk(6W) n FIRSTk(6,w,) ~

then a = ~, (i.e. ~" = A).

Clearly, any PLR(k) grammar is weak PLR(k). The inclusion is proper

due to the different classes of languages generated.

THEOREM 3.5. Let G = (N,T,P,S) be a weak SD(k) grammar, k ; O. Then G

is weak PLR(k).

PROOF. A slight modification of the proof of Theorem 5.2.[15] which

proves G to be LR(k) can be shown to yield the required argument. D

The inclusion mentioned in the theorem is proper since there are

left recursive PLR(k) grammars. By [15] no such grammar can be weak

SD(k). Figure 3 summarizes the results concerning relationships

252

between the families of grammars. An arrow means a proper inclusion.

weak PLR(k)

weak SD(k) ~ /
I

PLR k)
strong SD(k) ~ /

LP k) /

/ LC k)
stro g LP(k) / ~ ' ~

strong PLC (/k) ~

s t r o LL(k)

Figure 3. Second inclusion diagram.

4. TRANSFORMATIONS TO "STRONG" GRAMMARS

Most of the grammatical concepts treated in this paper originated

from the attempts to facilitate parser construction for deterministic

languages. From this point of view "strong" versions of grammars ap-

peared very attractive. Indeed, the utilization of FOLLOW k sets in-

stead of local follow sets for each sentential form yields consider-

able improvements in parser size. As typical examples strong LL(k)

grammars and simple LR(k) grammars [2] deserve to be mentioned. This

fact has lead to the investigation of transformations converting gram-

mars into their "strong" counterparts (cf. [2,17]). We next show all

these classes of grammars to possess a certain "common denominator".

We present a general method providing "strong" grammars for all the

types of grammar families known to the authors.

TRANSFORMATION. Input: A CFG G = (N,T,P,S), k) O. Output: A CFG

• (G) = (N',T,P',S'). Method: Let Y g Mk(G), ~ ~ V*. Then we define

SUCC(Y,~) = {(B,v) I (A,u) ~ Y, A + eB~ ~ P, v ~ FIRSTk(~U)

for some B c N and 6 ~ V*}

Let Im(G) = max{l~l I A + ~ is in P}. Next a

Mk(G) is to be created in three phases.

set ~ of subsets of
C

253

• ~. Then place the set {(S,A)} into Step I Initially let ~c = c

as an unmarked element.

Step 2. If a set Y ¢ ~ is unmarked then for all a • V* such that
....... C

lal ~ lm(G) compute the set SUCC(Y,a). If this set is nonempty then

place it into ~ unmarked. Then mark Y.
C

Step 3. Repeat Step 2. until all sets in ~ are marked•
c

Clearly this algorithm is guaranteed to halt since Mk(G) is a fin-

ite set. Now the grammar ~(G) = (N',T,P',S') is constructed as fol-

lows. Define S' = ({(S,A)},S) and

N' = {(Y,A) I Y • ~ and (A,u) • Y for some u • T *k}
e

The set P' contains only the productions described below. For any

production A + XI...X n in P, where A • N, n) 0, X i • V, 1<i<n, P' in-

volves ali the productions B + ZI...Z n such that B = (Y,A), Y • ~c'

(A,u) E y for some u ~ T *k and Z i = X i if X i • T,

Z i = (SUCC(Y,XI...Xi_I),X i) if X i • N, 1~i<n.

This transformation represents a generalization of a similar one

used in Pittl[15], Theorem 4.2. To facilitate the investigation of its

properties we introduce a homomorphism ~ : V'* + V* by defining

¢(a) : a for all a • T and ¢((Y,A)) = A for all (Y,A) • N'. Induction

arguments on the length of the derivations prove the following two

assertions.

LEMMA 4.1. Let G : (N,~,P,S) be a CFG, k) 0, Z • V', Y e V'* and

Z ==~(G) Y" Then ¢(Z) ==>G ~(Y)"

LEMMA 4.2. Let G = (N,T,P,S) be a CFG, k) 0, X • V, e • V* and

X =~>G ~" Then there are X' • V' and a • V'* such that ~(X') = X,

~(a') = a and X' ==~(G) a'.

We conclude that L(G) = L(~(G)). It is easy to see that the pairs

of derivations corresponding to each other are structurally equivalent

with respect to the homomorphism ¢. One can easily recuperate any

parse of a word w in L(G) from a parse of w according to T(G). Similar

results appear in Moura[11]. A comparison of his results with ours

has not yet been done. The next lemmas are almost direct consequences

of the definitions.

LEMMA 4.3. Let G = (N,T,P,S) be a CFG, k) 0, (Y,A) c N'. Then

FOLLOW~(G)((Y,A)) = {u • T *k I (A,u) Y}.

LEMMA 4.4. Let G = (N,T,P,S) be a CFG, k) 0, n) 0, (Y,A) • N',

~, 8 • V'* and (B,v) • Y. If S' =g~(G) e(Y,A)8 then there is Y • V'*

254

such that S' =~> ~ ~(G)(7 ~(G) ~(Y,B)y and v ¢ FIRST).

It remains to verify that • produces the desired output.

THEOREM 4.1. Let G = (N,T,P,S) be a CFG, k ~ 0. If G is an LL(k)

(PLC(k), LP(k)) grammar then ~(G) is a strong LL(k) (strong PLC(k),

strong LP(k)) grammar respectively.

THEOREM 4.2.

grammar then T(G) is a strong SD(k) grammar.

PROOF (hint). The partition ~ of V' ensuring ~(G) to be

is constructed as follows. Let Y ~ ~ . Define c
By = {(Y,A) I (A,u) ~ Y for some u ~ T *k}

and

= {By I Y c ~c } u {T}. D

Let G = (N,T,P,S) be a CFG, k ~ 0. If G is a weak SD(k)

strong SD(k)

THEOREM 4.3. Let G = (N,T,P,S) be a CFG, k ~ O. If G

grammar then ~(G) is a simple LR(k) grammar.

is an LR(k)

Due to its generality, our transformation is far from being optimal

for many classes of grammars.

ACKNOWLEDGEMENTS. Part of these results first appeared in an internal
report of McMaster University (Report No. 80-CS-25) in 1980. Indepen-
dently, Friede[4] has obtained similar results.

REFERENCES

I. A.V. Aho and J.D. Ullman. The . Theor~ of Parsing~ Translation~ and
C£mpiling. Vols. I and 2, Prentice Hall, N.J., 1972 and 1973.

2. F.L. DeRemer. Simple LR(k) grammars. Comm. ACM 14 (1971), 453-
460.

3. D. Friede. Partitioned LL(k) grammars. In: Automata~ Languages and
Programming. H.A. Maurer (ed.), Lect. Notes in Comp. Sci. 71,
Springer, Berlin, 1979, 245-255.

4. D. Friede. Partitioned context-free grammars. TUM-I8115, December
1981, Institut fuer Informatik, Technische Universitaet Muenchen.

5. M.M. Geller and M.A. Harrison. On LR(k) grammars and languages.
Theoret. Comput. Sci. 4 (1977), 245-276.

6. M. Hammer. A new grammatical transformation into deterministic
top-down form. MAC TR-119, Mass. Inst. of Technology, 1974.

7. M.A. Harrison. Introduction to Formal Language Theory. Addison-
Wesley, Reading, Mass., 1978.

255

8. M.A. Harrison and I.M. Havel. Strict deterministic grammars. J.
Comput. System Sci. 7 (1973), 237-277.

9. M.A. Harrison and I.M. Havel. On the parsing of deterministic
languages. J. Assoc. Comput. Mach. 21 (1974), 525-548.

10. D.B. Lomet. The construction of efficient deterministic language
processors. Ph.D. Thesis, Univ. of Pennsylvania, 1969.

11. A. Moura. Syntactic equivalence of grammar classes. Ph.D. Thesis,
Univ. of California at Berkeley, September 1980.

12. A. Nijholt. Context-Free Grammars: Covers~ Normal Forms_~ and
Parsing. Lec~. N-~ i~- Com-~. ~ 93, SpringeY, -B~lin~]980.

13. A. Nijholt. Parsing strategies: A concise survey. In: Mathematical
Foundations of Computer Science. J. Gruska and M. Chytil {eds.),
Lect. Notes in Comp. Sci. 118, Springer, Berlin, 1981.

14. A. Nijholt and E. Soisalon-Soininen. Ch(k) grammars - A character-
ization of LL(k) languages. In: Mathematical Foundations of
Computer Science. J. Becvar (ed.), Lect. Notes in Comp. Sci. 7~,
Springer, Berlin, 1979, 390-397.

15. J. Pittl. On LLP(k) grammars and languages. Theoret. Comput. Sci.
16 (1981), 149-175.

16. J. Pittl. On LLP(k) parsers. J__~. Comput. System Sci. 24 (1982),
36-68.

17. D.J. Rosenkrantz and R.E. Stearns. Properties of deterministic
top-down grammars. Information and Control 17 (1970), 226-256.

18. E. Soisalon-Soininen and E. Ukkonen. A method for transforming
grammars into LL(k) form. Acta Informatica 12 (1979), 339-369.

19. E. Ukkonen. Transformations to produce certain covering grammars.
In: Mathematical Foundations of Computer Science. J. Winkowski
(ed.), Lect. Notes in Comput. ScT~. 64, Springer, Berlin, 1978,
516-525.

20. E. Ukkonen. A modification of the LR(k) method for constructing
compact bottom-up parsers. In: Automata~ Languages and
Programming. H.A. Maurer (ed.), Lect. Notes in Comput. Sci. 71,
Springer, Berlin, 1979, 646-658.

