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Abstract: In this paper we develop one of the first control applications of the
recently proposed port-contact framework. We show how it is possible to model
and control a bilateral telemanipulation system using port-contact systems and
we develop a port-contact impedance controller that allows to impose a desired
interactive behavior and a zero steady state position error during contact tasks.
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1. INTRODUCTION

The port-Hamiltonian framework (van der Schaft
2000) has been introduced as a generalization
of Hamiltonian systems and it allows to build
energy based models and controllers for phys-
ical systems. A physical system is modeled as
a set of energy processing elements (i.e. energy
storing, energy dissipating and energy injecting
elements) that exchange energy along a power
preserving interconnection. The amount of en-
ergy stored in a certain configuration is repre-
sented by a real valued Hamiltonian function
H(:) on the state manifold A of energy vari-
ables while the power preserving interconnection
is represented by a geometric object called Dirac
structure which is defined as a linear sub-bundle.
Dirac structure can depend only on the state
variable and they allow to model only reversible
energy transfers. Dissipative effects, namely irre-
versible energy transfers, are modeled by termi-
nating some power ports of the Dirac structure
with energy absorbing elements that are char-
acterized by no state. This problem limits the
modeling power of port-Hamiltonian systems. In

fact, it is not possible to model irreversible energy
storage phenomena as, for example, the entropy
storage that takes place in Thermodynamical pro-
cesses. Recently, the so-called port-contact frame-
work (Eberard et al. 2005a, Eberard et al. 2005b)
has been introduced as a generalization of the
port-Hamiltonian framework for modeling ther-
modynamical systems. It strictly contains port-
Hamiltonian systems and it allows to model ir-
reversible energy tranfers between the elements
composing a physical system. The structure of
port-Hamiltonian systems has been extensively
exploited for building energy based controllers
whose structure is again port-Hamiltonian. In
particular, in robotics, port-Hamiltonian systems
have been used for controlling the interaction be-
tween a robot and the environment. From this
point of view, port-Hamiltonian controllers can
be thought as virtual mechanical systems which
impose a desired impedance in the interaction
(Stramigioli et al. 2005). In (Stramigioli et al.
2002, Stramigioli et al. 2005) a port-Hamiltonian
bilateral telemanipulation scheme has been pro-
posed. Both master and slave robots are modeled



as port-Hamiltonian systems which are controlled
by port-Hamiltonian impedance controllers. Mas-
ter and slave sides are interconnected by a scat-
tering based communication channel (Anderson
and Spong 1989, Niemeyer and Slotine 1991)
which guarantees a lossless interconnection in-
dependently of the communication delay. When
using a scattering based communication channel
in port-Hamiltonian telemanipulation, it happens
that during contact tasks there is a mismatch
between the steady state positions of master and
slave. In (Secchi et al. 2006) some irreversibe en-
ergy transfers have been introduced in the con-
troller for compensating this position error.

In this paper we provide one of the first control
applications of port-contact systems. We consider
a port-Hamiltonian based telemanipulation sys-
tem and we show how it can be modeled using
port-contact systems. Furthermore, we build a
port-contact controller that allows to implement
a desired impedance on the slave side and to
compensate the position error arising at steady
state during contact tasks, generalizing what has
been proposed in (Secchi et al. 2006). The paper
is organized as follows: in Sec. 2 some background
on port-contact systems and bilateral telemanip-
ulation are given; in Sec. 3 we show how it is
possible to represent a port-Hamiltonian based
bilateral telemanipulator in terms of port-contact
systems and in Sec. 4 we modify the port-contact
controller in order to be able to compensate the
steady state position error. In Sec. 5 we draw some
conclusions and we address some future work.

2. BACKGROUND

Port-contact systems. We shall present a brief
overview of port-contact systems for modeling
physical s ystems; for a more detailed description
see (Eberard et al. 20054, Eberard et al. 2005b).

Let N' > z be the n-dimensional state manifold
of energy variables. We can define the associ-
ated thermodynamical phase space M = R x
T*N > (2°, 2, p), where T*\ indicates the cotan-
gent bundle of N. The thermodynamical phase
space contains both energy variables (e.g. momen-
tum, charge, displacement) which live on A/, and
co-energy variables (e.g. velocity, voltage, elastic
force), which live on TN and the internal en-
ergy 2°. In M there is all what is necessary for
describing the dynamics of any physical system.
In the following we will indicate with 2 and p;,
where ¢ = 1,...,n, the coordinates of z and p
respectively. It can be shown that M is a 2n + 1-
dimensional manifold endowed with a canonical
contact form 1 which, using canonical coordi-
nates, can be expressed as ¢ = dz? — S pidat.
The role of 9 is that of setting up a relation among
the internal energy, the energy and the co-energy

variables which defines the physical properties of
a system. It is often more convenient to express
physical properties in an integral form. A Legendre
submanifold of the 2n + 1-dimensional contact
manifold M is a n-dimensional submanifold of
M which is an integral manifold of 1J. Loosely
speaking a Legendre submanifold is the region of
the thermodynamical phase space where a phys-
ical system satisfying certain physical properties
is constrained to evolve. For a given set of coor-
dinates, a Legendre submanifold is determined by
a generating function F': T*N +— R with n argu-
ments. In the particular case in which F : N — R,
the Legendre submanifold is the set
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A contact vector field over M is a vector field
which preserves the contact structure 1. There
exists an isomorphism between contact vector
fields and differentiable functions over M. Given a
generating function f, called contact Hamiltonian,
the corresponding contact vector field will be
indicated by X;. Using coordinates X can be
expressed as:
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Furthermore, given two function f,g: M — R it
is possible to define the following Jacobi brackets
which, in coordinates are defined as:

f.g} = Zﬁﬂ_ﬂa_f)+(f_
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When using contact vector fields for describing the
dynamics of a physical system, it is necessary that
they leave the Legendre submanifold, capturing
the physical properties of the system, invariant.
It can be proven that a contact vector field Xy
leaves invariant a Legendre submanifold £ if and
only if f is identically zero on £, (Eberard et al.
2005b).

A control contact system is defined by a strictly
contact manifold (M, 0), a Legendre submanifold
L of M, an input space 4 = R™ and input
functions w;, ¢ = 1,...m; m + 1 contact Hamil-
tonians: K the internal contact Hamiltonian and
K the interaction Hamiltonians, satisfying the in-
variance condition Kj o = 0for j =0,...,m. The
dynamics of the system is given by the following
differential equation

m
(moax’p) = Xk, +ZUJXKj (4)
j=1

dt



Given a function V on M, it is possible to define
the V-conjugated output variable iy as
; oK; .
y€/={Kj,V}+V8—§ j=1....m (5
i

and a source term sy as
0K,
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If sy = 0, then V is a conserved quantity of a
conservative control contact system, in the sense
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A port-contact system is a conservative control
contact system such that the generating function
of the Legendre submanifold is a conserved quan-
tity. In this case, we have that the dynamics of the
system restricted to the Legendre submanifold is
lossless.

Sy = {Ko,V} +V

Port-Hamiltonian based bilateral telema-
nipulation. Port-Hamiltonian systems are de-
fined on the space of energy variables N/. They
are characterized by an Hamiltonian energy func-
tion, expressing the stored energy, and by a Dirac
structure D, representing the internal energetic
interconnections. Using coordinates, in their sim-
plest form, they are represented by the following
equations
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where J(z) is a skew-symmetric matrix repre-
senting the Dirac structure, R(z) is a positive
semidefinite function representing the energy dis-
sipated by the system, Hy is the Hamiltonian
function, u = (u1,...,u,)" is the input vector.
J1,---,9m are the input vector fields on N and
y = (y',...,y™)7 is the conjugated output vari-
able. It can be easily seen (van der Schaft 2000)
that a port-Hamiltonian system is passive with re-
spect to Hy. Thanks to their passivity and to their
capability of describing both linear and nonlin-
ear electro-mechanical systems, port-Hamiltonian
systems have been quite extensively used for mod-
eling and controlling interactive robotic devices
as for example telemanipulation systems. A port-
Hamiltonian based bilateral telemanipulation sys-
tem is reported in Fig. 1 in a bond-graph no-
tation. The system is made up of a local robot
(called master) and of a remote robot called slave.
Both robots can be modeled as port-Hamiltonian
systems. The slave robot is interconnected to a
port-Hamiltonian impedance controller whose role
is to regulate the interaction of the slave with
the remote environment. A human operator can
interact with the master whose motion is trans-
mitted to the remote side in order to move the
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Fig. 1. The Port-Hamiltonian based Telemanipu-
lation Scheme.

slave accordingly. When the slave interacts with
the remote environment, the interaction force is
fed back to the master side in order to improve
the feeling of the remote interaction perceived by
the user. Master and slave side exchange force and
velocity information through a scattering based
communication channel (Anderson and Spong
1989, Niemeyer and Slotine 1991, Stramigioli et al.
2002) which is characterized by a lossless behavior
independently of any constant communication de-
lay. The overall telemanipulation system consists
of the interconnection of passive master and slave
sides through a lossless communication channel
and, therefore, it is a passive system characterized
by a stable behavior both in free motion and when
interacting with the remote environment.

The controller can be interpreted as a virtual
physical system imposing the desired impedance
on the slave; it always contains at least one elastic
element used to set the stiffness of the interac-
tion. The scattering based communication channel
can be interpreted as a distributed mass-spring
system and it implements a virtual mechanical
coupling between master and slave sides. As re-
ported in (Niemeyer 2004), during contact tasks,
the force feedback is transmitted to the slave side
through a virtual deformation of the distributed
system representing the communication channel.
This gives rise to a difference in the steady state
positions of master and slave which is equal to
A = TZ 'ep, where T is the communication
delay, Z is the positive definite impedance of the
scattering transformation and ep is the contact
force between the slave and the environment. In
(Secchi et al. 2006), in order to solve this problem,
a modification to the port-Hamiltonian controller
at the slave side has been proposed. Shortly, the
dissipative element used to match the impedance
of the scattering transformation, has been re-
placed with an energy storing element called tank
and a modification to the Dirac structure of the
controller has been made in order to force an
energy absorbing behavior of the tank. Further-
more, the interconnection structure of the con-
troller has been modified to create a controllable
energy transfer between the tank and the rest
length characterizing one of the elastic elements
of the controller. By driving energy form the tank
to the rest length it is possible to introduce an



offset that compensates the position error taking
place between master and slave.

3. PORT-CONTACT BASED BILATERAL
TELEMANIPULATION

In this section we will show how it is possi-
ble to model a port-Hamiltonian based bilateral
telemanipulation using port-contact systems. Fur-
thermore, generalizing the approach proposed in
(Eberard et al. 2005b, Secchi et al. 2006) and ex-
ploiting the properties of port-contact systems, we
will model the energy dissipation that is present in
port-Hamiltonian systems as an irreversible stor-
age of energy that will be used, as it will be shown
in the next section, for passively compensating the
steady state position error between master and
slave robots during contact tasks.

A port-Hamiltonian system with dissipation can
be modeled as a port-contact system characterized
by an irreversible energy storage phenomenon. Let
us considered a port-Hamiltonian system defined
on the manifold of energy variables N and de-
scribed by Eq.(8). In order to build the port-
contact representation of the system we follow the
approach proposed in (Eberard et al. 2005b) and
we firstly define the extended base space N, of
energy variables as N, = N x R. Using the same
notation of (Secchi et al. 2006), the extra energy
variable added will model the state of a tank
where the energy that would be dissipated using
the port-Hamiltonian framework is irreversibly
stored. In other words, it plays the same role
as entropy in physical systems where dissipative
phenomena correspond to an increase of entropy.
It is now possible to define the thermodynamical
phase space on which to build the port-contact
system as

M=RxT*N, 3 (z°,z", .. ,Pnspt)  (9)

where the index ¢ denotes the energy and the
co-energy variable associated to the tank. The
contact form associated to M is given by ¥ =
dz® — 3" pida’ — pidat. We can describe the
Legendre submanifold that defines the relation
between energy variables, co-energy variables and
internal energy, using as a generating function the
internal energy function H, : N, — R defined as

H,(z,2") = Ho(x) + Hy(a") (10)

where the first term describes the reversible en-
ergy storage phenomena modeled in Eq.(8) and
the second term models the irreversible energy
storage corresponding to the dissipative phenom-
ena modeled in Eq.(8). The Legendre manifold is
defined by

L={H/(z,z"),z" ... " 2,
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We can now define the m+1 contact Hamiltonians
as
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where p = (p1,...,pn)T and x = (z*,...,2™)7. It
can be easily seen that Ky and K1, ..., K,, vanish

on L and that therefore the corresponding vector
fields leave invariant the Legendre submanifold
and consequently the physical properties charac-
terizing the system. Using Eq.(4) and Eq.(2) we
can easily compute the dynamics on the extended
space of energy variables restricted to L:

OHy =
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=1 (13)
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We can see that the dynamics of the state vari-
ables over which the port-Hamiltonian system is
defined is exactly the same as that of Eq.(8) and
this means that the port-contact system we are
building can represent the dynamics of a port-
Hamiltonian system with dissipation; in partic-
ular;, both master and slave robots can be rep-
resented by port-contact systems and the inter-
active behavior imposed by the impedance con-
troller can be exactly reproduced using a port-
contact impedance controller. Furthermore, we
have that the energy that was dissipated by the
port-Hamiltonian system is now stored in the tank
and the variation of this storage is represented by
the variable z;. In fact, formally, we have that

T
OH ;0 _ 9" Ho HOR(.I)% (14)
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The two dynamics represented in Eq.(13) are
coupled using co-energy variables and, therefore,
the resulting system cannot be represented as a
port-Hamiltonian system since Dirac structures
cannot represent this kind of interconnection; see
(Eberard et al. 2005a) for further details. In order
to define the define a port-contact system we need
to introduce the output variable and to show that
the total energy is conserved. Using Eq.(5) with
V = H(z,2') and Ky and K; defined as in
Eq.(12), it is possible to see that the conjugated
output is

-

0H,

yj:gJT(x)W j=1...,m (15)

namely, exactly the same output of Eq.(8). Using
this output and Eq.(6) it can be seen that the
source term is zero on all the thermodynamical
phase space and that therefore the total energy
H. is conserved and, consequently, the system is
lossless.

Thus, we have that all the port-Hamiltonian sys-
tems present in Fig. 1 can be modeled as port-



contact systems. Since all the systems in Fig. 1
are interconnected by means of power preserv-
ing interconnections and since the power preserv-
ing interconnection of two port-contact systems
is again a port-contact system (Eberard et al.
2005b), we have that the overall telemanipulation
system is lossless and, consequently, passive. We
can build an intrinsically passive bilateral tele-
manipulation system using port-contact system.
We can achieve exactly the same dynamic be-
havior that we have when using port-Hamiltonian
system and, therefore, the storage of the energy
that would be dissipated by port-Hamiltonian
systems is completely invisible to the user who
does not perceive any spurious behavior when
using the telemanipulator. Thanks to the port-
contact structure, we have that the energy that
was dissipated is now stored in a tank. In the
case of master and slave robots, the tank just
represent the increase of some entropy-like en-
ergy variable due to dissipative phenomena. In
the case of the impedance controller, we can use
this reserve of energy to modify the state of the
controller without affecting its passive behavior
and, therefore, without destabilizing the telema-
nipulation system. The definition of H. give in
Eq.(10) generalizes that given in (Eberard et al.
2005b) where the co-energy variable associated to
the irreversible energy storage was constant. This
is because the main goal of (Eberard et al. 2005b)
was to model systems arising from thermodynam-
ics and NOT the use of port-contact systems for
control purposes. Using Eq.(10) we allow a greater
flexibility in the way in which the energy dissi-
pated is stored which depends on the particular
choice of H;. The port-contact controller derived
using the construction developed in this section
generalizes also the results of (Secchi et al. 2006)
where only a part of the energy dissipated by the
port-Hamiltonian controller is stored.

4. NONLINEAR COUPLINGS AND THE
POSITION ERROR COMPENSATION

In this section, we modify the port-contact con-
troller used in the scheme developed in the pre-
vious section in order to use the energy stored
in 2! for changing the rest length of one of the
elastic elements of the controller. Consider the
port-contact system modeling the dynamics of
a port-Hamiltonian impedance controller, whose
dynamics is described by the equations Eq.(8),
and storing in 2! the energy dissipated by the
port-Hamiltonian dynamics. Since we just want
to modify the internal interconnections of the
controller, both the input contact Hamiltonians
Ki,..., K, and the output of the systems will
remain the same as those proposed in Eq.(12).
What we need to change is the internal contact

Hamiltonian K. In order to use energy for chang-
ing its value, we need to model the rest length of
one of the elastic elements of the system, which
is usually described by a constant parameter, as
an energy variable and, therefore, we need to
further extend the base space of energy variables
N, defined in the previous section and to define
N; = N, x X;.where Xj is the [-dimensional mani-
fold on which the energy variable representing the
rest length lives. Proceeding as in Sec. 3, we can
define the thermodynamical phase space as

My =RxT*N; 3 (2, 2%, ..., z™, 2t 2t p1,. .., pnspespr)

(16)
which is characterized by the following contact
form ¥ = dz° — 3" pidat — pdat — pidat
The internal energy function is H,(z,2!,2!) =
Ho(z,2') + Hy(x'). Now the rest length enters
as an argument of the energy function and not
simply as a parameter. Using H. as a generating
function, it is possible to determine the Legendre

submanifold as:

L= {H(x,a' 2", 2, ..  a" 2t 2l
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Now we want to extend the internal contact
Hamiltonian K in order to energetically couple
2! and 2! in a controllable way while preserving
the losslessness of the controller; in this way part
of the energy stored in the can be used to change
2!, Consider the following internal contact Hamil-
tonian:

OH. pe T H, 0H.
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where p = (p1,...,pn)T, z = (z1,..., 27T, Ais

a matrix of proper dimensions and J; is a skew-
symmetric matrix. Both A and J; can be freely
chosen. It can be easily seen that Ko, = 0.
Using Eq.(18) for defining X, and using the
same interaction contact Hamiltonians proposed
in Eq.(12) for defining the Xx, and by keeping
the same output used in Eq.(15), we obtain a port-
contact system whose dynamics projected on N
is given by:

. OHy |
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The dynamics of the energy variables 2!, ... 2" is

the same as that imposed by the port-Hamiltonian
controller, the energy dissipated by the port-
Hamiltonian dynamics is stored in the tank whose
state is described by the energy variable z¢. We



now can see that, by properly setting A and .J;
we can change z! and, therefore, we can impose
an offset that compensates the steady state posi-
tion error arising during contact tasks. Using the
internal contact-Hamiltonian reported in Eq.(18)
we have built a power preserving interconnection
between the energy variables 2! and z!. In fact,
we have that

OTH, . i 8 H, , 8TH6_Z
H, = Z s Dt Tt + 9l i (20)
—
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Furthermore we can write
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(21)
and
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The energy supplied by the variation of 2! is equal
to that extracted from the energy tank. Thanks
to this energy balance, the total energy of the
system remains the same. In order to regulate the
variation of z! independently of the behavior of
the system, we need to design A and .J; in order
to be able to control the energy flow between the
tank and z!. A possible choice is the following,
which is a generalization of the interconnection
proposed in (Secchi et al. 2006):

OH. 0H,

Oxt Ozt
where I' is a [ x [ diagonal matrix whose diagonal
entries are vy, ...,7;. In this way

0TH. .0H. 0H,. ,
ozl = 0xl  Oxy )
Setting v; > 0, for i« = 1,...,] we always sup-
ply energy to the tank and setting v; < 0 for
i = 1,...,1 we always extract energy from the
tank. The magnitude of +; can be used to boost
the energy transfer. We are interested in changing
the value of 2! and, therefore, when setting the
values of the entries of I' we have to monitor the
value o jth component of

z! increases, we have to set v; > 0 if the i** com-

ponent of %I;f is negative and ~; < 0 otherwise.
Similar considerations hold in case we want to
decrease a component of 2!. A possible algorithm
for determining the sign and the magnitude of
the elements of I' for compensating the steady
state position error can be found in (Secchi et al.
2006). Notice that the choice reported in Eq.(23)
introduces a coupling between the dynamics of z!
and of 2! that depend both on energy and co-
energy variables. This interconnection is the key
for being able to control the transfer of energy
between z! and z! using I" and it cannot be mod-
eled using Dirac structures. Thus, using contact
systems it is possible to embed irreversible energy

Ji=0 (23)

H=- (24)

transfers in the controller which can be used for
compensating the steady state position error. The
controller proposed in Eq.(19) generalizes the one
proposed in (Secchi et al. 2006) and it provides
a greater flexibility in the design of the coupling
between 2! adn z?.

5. CONCLUSIONS

In this paper we have shown the benefits of the
port-contact framework in the control of a bi-
lateral telemanipulation system. Thanks to the
port-contact structure, it has been possible to
store the energy that was dissipated by the port-
Hamiltonian controller and to use to compensate
an undesired steady state position error. For a
matter of space it has not been possible to insert
the simulations that validate the controller. Fu-
ture work will investigate other possible choices of
A and J; for shaping the port-contact controller in
bilateral telemanipulation and the use of the port-
contact framework for controlling physical system.
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