
Smoothed Analysis of the Successive
Shortest Path Algorithm∗

Tobias Brunsch1, Kamiel Cornelissen2, Bodo Manthey2, and Heiko
Röglin1

1University of Bonn, Department of Computer Science, Germany.
2University of Twente, Department of Applied Mathematics, Enschede, The Netherlands.

The minimum-cost flow problem is a classic problem in combinatorial opti-
mization with various applications. Several pseudo-polynomial, polynomial, and
strongly polynomial algorithms have been developed in the past decades, and it
seems that both the problem and the algorithms are well understood. However,
some of the algorithms’ running times observed in empirical studies contrast the
running times obtained by worst-case analysis not only in the order of magnitude
but also in the ranking when compared to each other. For example, the Succes-
sive Shortest Path (SSP) algorithm, which has an exponential worst-case running
time, seems to outperform the strongly polynomial Minimum-Mean Cycle Cancel-
ing algorithm. To explain this discrepancy, we study the SSP algorithm in the
framework of smoothed analysis and establish a bound of O(mnφ(m + n log n))
for its smoothed running time. This shows that worst-case instances for the SSP
algorithm are not robust and unlikely to be encountered in practice.

1 Introduction

Flow problems have gained a lot of attention in the second half of the twentieth century
to model, for example, transportation and communication networks [1]. Plenty of pseudo-
polynomial, polynomial, and strongly polynomial algorithms have been developed for the
minimum-cost flow problem over the last fifty years. The fastest known strongly polyno-
mial algorithm up to now is the Enhanced Capacity Scaling algorithm due to Orlin [10] and it
has a running time of O(m log(n)(m + n log n)). For an extensive overview of minimum-cost
flow algorithms we suggest the book of Ahuja, Magnanti, and Orlin [1].

Zadeh [14] showed that the Successive Shortest Path (SSP) algorithm has an exponential
worst-case running time. Contrary to this, the worst-case running time of the strongly polyno-
mial Minimum-Mean Cycle Canceling (MMCC) algorithm is O(m2n2 min{log(nC),m}) [11].
Here, C denotes the maximum edge cost. However, the notions of pseudo-polynomial, poly-
nomial, and strongly polynomial algorithms always refer to worst-case running times, which
do not always resemble the algorithms’ behavior on real-life instances. Algorithms with large

∗This research was supported by ERC Starting Grant 306465 (BeyondWorstCase) and NWO grant 613.001.023.
It was presented at SODA 2013.

worst-case running times do not inevitably perform poorly in practice. An experimental study
of Király and Kovács [7] indeed observes running time behaviors significantly deviating from
what the worst-case running times indicate. The MMCC algorithm is completely outperformed
by the SSP algorithm. In this paper, we explain why the SSP algorithm comes off so well by
applying the framework of smoothed analysis.

Smoothed analysis was introduced by Spielman and Teng [12] to explain why the simplex
method is efficient in practice despite its exponential worst-case running time. In the original
model, an adversary chooses an arbitrary instance which is subsequently slightly perturbed at
random. In this way, pathological instances no longer dominate the analysis. Good smoothed
bounds usually indicate good behavior in practice because in practice inputs are often subject to
a small amount of random noise. For instance, this random noise can stem from measurement
errors, numerical imprecision, or rounding errors. It can also model influences that cannot be
quantified exactly but for which there is no reason to believe that they are adversarial. Since
its invention, smoothed analysis has been successfully applied in a variety of contexts. We
refer to [9] for a recent survey.

We follow a more general model of smoothed analysis due to Beier and Vöcking [2]. In
this model, the adversary is even allowed to specify the probability distribution of the random
noise. The power of the adversary is only limited by the smoothing parameter φ. In particular,
in our input model the adversary does not fix the edge costs ce ∈ [0, 1] for each edge e, but
he specifies probability density functions fe : [0, 1]→ [0, φ] according to which the costs ce are
randomly drawn independently of each other. If φ = 1, then the adversary has no choice but
to specify a uniform distribution on the interval [0, 1] for each edge cost. In this case, our
analysis becomes an average-case analysis. On the other hand, if φ becomes large, then the
analysis approaches a worst-case analysis since the adversary can specify small intervals Ie of
length 1/φ (that contain the worst-case costs) for each edge e from which the costs ce are
drawn uniformly.

As in the worst-case analysis, the network graph G = (V,E), the edge capacities u(e) ∈ R+,
and the balance values b(v) ∈ R of the nodes – indicating how much of a resource a node
requires (b(v) < 0) or offers (b(v) > 0) – are chosen adversarially. We define the smoothed
running time of an algorithm as the worst expected running time the adversary can achieve
and we prove the following theorem.

Theorem 1. The smoothed running time of the SSP algorithm is O(mnφ(m+ n log n)).

If φ is a constant – which seems to be a reasonable assumption if it models, for example,
measurement errors – then the smoothed bound simplifies to O(mn(m+n log n)). Hence, it is
unlikely to encounter instances on which the SSP algorithm requires an exponential amount of
time. Still, this bound is worse than the bound O(m log(n)(m+ n log n)) of Orlin’s Enhanced
Capacity Scaling algorithm, but this coincides with practical observations.

In practice, an instance of the minimum-cost flow problem is usually first transformed to an
equivalent instance with only one source (a node with positive balance value) s and one sink
(a node with negative balance value) t. The SSP algorithm then starts with the empty flow
f0. In each iteration i, it computes the shortest path Pi from the source s to the sink t in
the residual network and maximally augments the flow along Pi to obtain a new flow fi. The
algorithm terminates when no s− t path is present in the residual network.

Theorem 2. In any round i, flow fi is a minimum-cost bi-flow for the balance function bi
defined by bi(s) = −bi(t) = |fi| and bi(v) = 0 for v /∈ {s, t}.

Theorem 2 is due to Jewell [6], Iri [5], and Busacker and Gowen [4]. As a consequence, no
residual network Gfi contains a directed cycle with negative total costs. Otherwise, we could
augment along such a cycle to obtain a bi-flow f ′ with smaller costs than fi.

2 Terminology and Notation

Consider the run of the SSP algorithm on the flow network G. We denote the set {f0, f1, . . .}
of all flows encountered by the SSP algorithm by F0(G). Furthermore, we set F(G) = F0(G)\
{f0}. (We omit the parameter G if it is clear from the context.)

By f0, we denote the empty flow, i.e., the flow that assigns 0 to all edges e. Let fi−1 and fi
be two consecutive flows encountered by the SSP algorithm and let Pi be the shortest path in
the residual network Gfi−1

, i.e., the SSP algorithm augments along Pi to increase flow fi−1 to
obtain flow fi. We call Pi the next path of fi−1 and the previous path of fi. To distinguish
between the original network G and some residual network Gf in the remainder of this paper,
we refer to the edges in the residual network as arcs, whereas we refer to the edges in the
original network as edges.

For a given arc e in a residual network Gf , we denote by e0 the corresponding edge in the
original network G, i.e., e0 = e if e ∈ E (i.e. e is a forward arc) and e0 = e−1 if e /∈ E (i.e. e
is a backward arc). An arc e is called empty (with respect to some residual network Gf) if e
belongs to Gf , but e−1 does not. Empty arcs e are either forward arcs that do not carry flow
or backward arcs whose corresponding edge e0 carries as much flow as possible.

3 Outline of Our Approach

Our analysis of the SSP algorithm is based on the following idea: We identify a flow fi ∈ F0

with a real number by mapping fi to the length `i of the previous path Pi of fi. The flow f0 is
identified with `0 = 0. In this way, we obtain a sequence L = (`0, `1, . . .) of real numbers. We
show that this sequence is strictly monotonically increasing with a probability of 1. Since all
costs are drawn from the interval [0, 1], each element of L is from the interval [0, n]. To count
the number of elements of L, we partition the interval [0, n] into small subintervals of length ε
and sum up the number of elements of L in these intervals. By linearity of expectation, this
approach carries over to the expected number of elements of L. If ε is very small, then – with
sufficiently high probability – each interval contains at most one element. Thus, it suffices to
bound the probability that an element of L falls into some interval (d, d+ ε].

For this, assume that there is an integer i such that `i ∈ (d, d + ε]. By the previous
assumption that for any interval of length ε there is at most one path whose length is within
this interval, we obtain that `i−1 ≤ d. We show that the augmenting path Pi uses an empty
arc e. Moreover, we will see that we can reconstruct flow fi−1 without knowing the cost of
edge e0 that corresponds to arc e in the original network. Hence, we do not have to reveal ce0
for this. However, the length of Pi, which equals `i, depends linearly on ce0 , and the coefficient
is +1 or −1. Consequently, the probability that `i falls into the interval (d, d+ ε] is bounded
by εφ, as the probability density of ce0 is bounded by φ. Since the arc e is not always the same,
we have to apply a union bound over all 2m possible arcs. Summing up over all n/ε intervals
the expected number of flows encountered by the SSP algorithm can be bounded by roughly
(n/ε) · 2m · εφ = 2mnφ.

There are some parallels to the analysis of the smoothed number of Pareto-optimal solutions
in bicriteria linear optimization problems by Beier and Vöcking [3], although we have only
one objective function. In this context, we would call fi the loser, fi−1 the winner, and the
difference `i − d the loser gap. Beier and Vöcking’s analysis is also based on the observation
that the winner (which in their analysis is a Pareto-optimal solution and not a flow) can be re-
constructed when all except for one random coefficients are revealed. While this reconstruction
is simple in the setting of bicriteria optimization problems, the reconstruction of the flow fi−1
in our setting is significantly more challenging and a main difficulty in our analysis.

References

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows – theory,
algorithms and applications. Prentice Hall, 1993.

[2] René Beier and Berthold Vöcking. Random knapsack in expected polynomial time. Jour-
nal of Computer and System Sciences, 69(3):306–329, 2004.

[3] René Beier and Berthold Vöcking. Typical properties of winners and losers in discrete
optimization. SIAM Journal on Computing, 35(4):855–881, 2006.

[4] Robert G. Busacker and Paul J. Gowen. A procedure for determining a family of miminum-
cost network flow patterns. Technical Paper 15, Operations Research Office, Johns Hop-
kins University, 1960.

[5] Masao Iri. A new method for solving transportation-network problems. Journal of the
Operations Research Society of Japan, 3(1,2):27–87, 1960.

[6] William S. Jewell. Optimal flow through networks. Oper. Res., 10(4):476–499, 1962.

[7] Zoltán Király and Péter Kovács. Efficient implementations of minimum-cost flow algo-
rithms. Acta Universitatis Sapientiae, Informatica, 4(1):67–118, 2012.

[8] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algorithms.
Springer, 4th edition, 2007.

[9] Bodo Manthey and Heiko Röglin. Smoothed analysis: analysis of algorithms beyond worst
case. it – Information Technology, 53(6):280-286, 2011.

[10] James B. Orlin. A faster strongly polynomial minimum cost flow algorithm. Oper. Res.,
41(2):338–350, 1993.

[11] Tomasz Radzik and Andrew V. Goldberg. Tight bounds on the number of minimum-mean
cycle cancellations and related results. Algorithmica, 11(3):226–242, 1994.

[12] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. J. ACM, 51(3):385–463, 2004.

[13] Roman Vershynin. Beyond hirsch conjecture: Walks on random polytopes and smoothed
complexity of the simplex method. SIAM Journal on Computing, 39(2):646–678, 2009.

[14] Norman Zadeh. A bad network problem for the simplex method and other minimum cost
flow algorithms. Mathematical Programming, 5(1):255–266, 1973.

