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Summary

Mechanics of Granular Materials:

Constitutive Behavior and Pattern Transformation

by F. Göncü

From pharmaceutical to mining or travelling desert dunes to earthquakes, granular materials
are at the heart of many industries and natural phenomena. Improving the efficiency of the
machines, handling them or, constructing safer buildings requires a critical understanding of
their behavior. However, this is not a straightforward task as opposed to what one might think
due to the abundance of particulate matter. From a fundamental point of view, it has been
only recently realized that they cannot be easily classified as a solid or liquid or even a gas as
they are able to mimic all of these states under slightly different conditions. The challenge
of the scientific research today, is to establish the link between the collective behavior and
properties of individual particles composing granular materials. Such a relation would enable
to characterize them with only a few parameters in contrast to billions of particles typically
found in practice.

In the first part of this thesis, we study the mechanical behavior of idealized disordered
sphere packings with discrete element simulations. The polydispersity and coefficient of
friction of the particles are varied systematically to characterize their influence on the macro-
scopic stress-strain response. In isotropically deformed packings, the critical volume fraction
marking the transition from a solid to fluid like state increases with polydispersity, whereas
it decreases with the coefficient of friction. The coordination number, i.e. average number
of contact per particle, is discontinuous at this density. During decompression it drops from
its isostatic value to zero and obeys a power law at higher volume fractions. The effect
of polydispersity on the pressure is determined by the ratio of critical volume fraction and
the contact density which is equal to the trace of the fabric times a correction factor that
depends only on the moments of the particle size distribution. Using the micromechanical
definition of the stress tensor, we derive an incremental constitutive model for the pressure
which includes changes of fabric. With one fit parameter the linear regime of lower pressure
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is described, while with two parameters, the model captures well the non-linear pressure
evolution in isotropically deformed polydisperse, frictionless and frictional packings.

Anisotropic deformations are studied with triaxial test simulations. The shear strength of
the packings is measured by the deviatoric stress ratio which first increases then saturates
with increasing particle coefficient of friction. Volumetric strain also depends on the particle
friction albeit in a non monotonic way. The maximum compaction after which packings start
to dilate, is achieved at a relatively small coefficient of friction. The stress-strain response
depends indirectly on the polydispersity which determines initial packing conditions. When
initially the volume fraction is fixed, the pressure as well as the shear strength decrease with
polydispersity. The opposite is observed when the initial pressure is imposed, although the
effect of polydispersity on the stress-strain behavior is less significant in this case. Finally, a
hypoplastic constitutive model is calibrated with simulation results and the resulting material
coefficients are related to particle properties.

Most granular materials are amorphous and disordered as realized up to now. However, crys-
tal structures can be built by placing uniform particles on a regular lattice. The second part
of the thesis is about pattern transformation in two-dimensional granular crystals composed
of bi-disperse soft and hard cylindrical particles. We show with experiments and simulations
that upon uniaxial compression the particles undergo structural rearrangements from an ini-
tial square to hexagon-like lattice. It is found that the characteristics of the transformation
strongly depend on the size ratio of the particles rather than their material properties. If the
ratio is small enough the transformation is homogeneous and practically reversible.

The band structure of the granular crystal changes due to the pattern transformation. Using
a linearized contact force model, we compute the dispersion relation at different levels of
deformation and show that band gaps open and close as the structure of the crystal changes.
This could find applications in tunable acoustic devices such as filters or vibration isolators.

In short, this thesis concerns the mechanics of granular materials subject to different modes
of deformation. The constitutive behavior of disordered sphere packings and pattern trans-
formation in regular arrays of cylinders have been studied.



Samenvatting

Mechanica van Granulaire Materialen:

Constitutief Gedrag en Patroontransformatie

door F. Göncü

Van farmacie tot mijnbouw en van wandelende woestijnduinen tot aardbevingen, granulaire
materialen liggen in het hart van talrijke industriële processen en natuurlijke fenomenen. Het
verbeteren van het rendement van verwerkingsmachines, het operationeel houden ervan, en
het bouwen van veiligere gebouwen vereisen een essentieel begrip van de eigenschappen van
granulaire materie. Dit is geen simpele opgave, in tegenstelling tot wat men zou verwachten
gezien de overvloed aan granulaire materialen. Pas recentelijk is vanuit een fundamenteel
standpunt het inzicht gekomen dat granulaire materie niet eenvoudig geklassificeerd kan
worden als vaste stof, noch als vloeistof of als gas, maar dat granulaire materie kenmerkend
gedrag van alle drie fases kan vertonen onder kleine veranderingen van de omstandigheden.
De uitdaging voor het hedendaags wetenschappelijk onderzoek is om een verband te vinden
tussen het collectieve gedrag en de eigenschappen van de individuele deeltjes waaruit een
granulaire materiaal bestaat. Met een dergelijke relatie zou een karakterisatie van een gran-
ulaire materiaal in termen van een paar parameters mogelijk worden, in tegenstelling tot de
huidige beschrijving in termen van miljarden deeltjes.

In het eerste deel van dit proefschrift bestuderen we met discrete elementen simulaties het
mechanisch gedrag van ideale ongeordende stapelingen van bollen. De grootteverdeling en
frictiecoëfficiënt van de deeltjes zijn systematisch gevarieerd om hun invloed op het macro-
scopische stress-strain gedrag te karakteriseren. In isotroop vervormde stapelingen stijgt de
kritieke volumefractie die de overgang van vaste stof naar vloeistof-achtig gedrag markeert
met toenemende polydispersiteit, terwijl die fractie daalt bij toenemende frictiecoëfficiënt.
Het coördinatiegetal, d.w.z. het gemiddelde aantal contacten per deeltje, is bij deze over-
gang discontinue. Het zakt bij decompressie van de isostatische waarde tot nul en volgt een
machtsfunctie voor hogere volumefracties. Het effect van polydispersiteit op de druk wordt
bepaald door de verhouding van kritieke volumefractie en contactdichtheid; deze laatste is
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gelijk aan het spoor van de structuurtensor van de stapeling vermenigvuldigd met een cor-
rectiefactor die alleen van de momenten van de deeltjesgrootte-verdeling afhangt. Gebruik
makend van de micro-mechanische definitie van de stresstensor leiden we een incrementeel
constitutief model af dat structuurveranderingen toestaat. Het lineaire regime voor lage span-
ningen wordt beschreven met n fitparameter, en het model geeft een goede beschrijving van
de niet-lineaire spanningsontwikkeling in isotroop vervormde polydisperse stapelingen van
deeltjes met en zonder wrijving.

Anisotropische deformaties zijn bestudeerd met tri-axiale test simulaties. De deformatie-
weerstand van de stapelingen is bepaald via de deviatorische spanningsverhouding, die eerst
toeneemt en dan verzadigt met toenemende frictiecoëfficiënt. De volumetrische spanning
hangt ook af van de frictiecoëfficiënt, maar op een niet-monotone wijze. De maximale
compactie waarna een de stapeling begint te dilateren wordt bereikt bij een relatief lage
frictiecoëfficiënt. Het stress-strain gedrag hangt indirect af van de polydispersiteit, via de
invloed van laatstgenoemde op de vorming van een initiële stapeling. Bij constante initiële
volumefractie nemen de druk en de deformatieweerstand af met toenemende polydisper-
siteit. Het omgekeerde wordt waargenomen bij een constante initiële spanning, al is in deze
situatie het effect van polydispersiteit op het stress-strain gedrag minder groot. Tot slot is
een hypoplastisch constitutief model geijkt met simulaties resultaten en zijn de resulterende
materiaal-parameters gerelateerd aan de deeltjes eigenschappen.

De tot nu toe besproken granulaire materialen zijn amorf en wanordelijk. Echter, granu-
laire kristallen kunnen gemaakt worden door uniforme deeltjes te stapelen in een regelmatig
rooster. Het tweede deel van dit proefschrift behandelt patroondeformaties in tweedimen-
sionale granulaire kristallen samengesteld uit zachte en harde cilindrische deeltjes met twee
verschillende groottes. We laten met experimenten en simulaties zien dat een vierkant rooster
onder uni-axiale compressie overgaat in een hexagonaal rooster. We vinden dat de karakter-
istieken van de overgang sterk afhangen van de grootte-verhouding van de deeltjes, terwijl
de materiaaleigenschappen van de deeltjes van weinig belang zijn. Voor voldoende kleine
ratio’s verloopt de transformatie homogeen en vrijwel omkeerbaar.

De bandstructuur van het granulaire kristal verandert door de patroontransformatie. Met een
gelineariseerd model voor de contactkrachten hebben we de dispersierelaties berekend voor
verscheidene deformatiegraden en aangetoond dat een ‘band gap’ ontstaat en verdwijnt als
de structuur van het kristal verandert. Dit effect zou toegepast kunnen worden in afstembare
akoestische apparaten zoals filters en trillings-isolatoren.

Samenvattend, dit proefschrift beschrijft de mechanica van granulaire materie onder ver-
scheidene vervormingen. Het constitutief gedrag van wanordelijke stapelingen van bollen
en structuur-deformaties in ordelijke stapelingen van cylinders zijn bestudeerd.
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Chapter 1

Introduction

1.1 Background: Granular materials

A glass bead has no apparent difference from a block of glass except its extensive properties
such as mass, volume, etc. However, when two or more beads are put together their behavior
significantly deviates from the glass block. Depending on the volume they occupy and the
external forces applied on them, the collection of beads behaves like a solid, a liquid or a gas.
For example, when they are poured on a frictional surface or densely packed in a container
they stay still like a solid and are able to resist external forces. On the other hand when the
container is tilted they flow like a fluid. If we increase the external force even more i.e. shake
the container they will fly around and bounce on to each other like gas molecules provided
they have enough space.

Glass beads are not the kind of substance we encounter often but they belong to a broader
class of materials which we are practically surrounded with: Granular materials. If we
make a tour in the kitchen we will quickly notice that many of the food is in granular form:
sugar, rice, coffee, cereals etc, Fig. 1.1. Walking outside we step on the soil which is par-
ticulate hence a granular matter. These are just a few examples of daily life from which
one can easily realize the importance of granular materials. Their industrial applications are
equally important and crucial for the society and our civilization. For example, mining and
construction industries rely on th e extraction, transportation and handling of rocks, gravels
and sand. Similarly agricultural and pharmaceutical industries store, process and transport
grains, powders and pills. In fact, granular materials are the second most manipulated raw
materials after fluids [25]. Nevertheless, it is estimated that 40% of the capacity of the plants
processing them is wasted [53].
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Figure 1.1: Granular materials are ubiquitous in daily life. Sugar, rice, coffee or muesli are
only a few examples from the kitchen.

Granular materials are assemblies of macroscopic objects. A glass bead is much larger than
the atoms and molecules which compose it. The consequence of this is the irrelevance of
temperature at the particle scale. The thermal energy of the bead is orders of magnitude
less than its potential and kinetic energies when it is raised by its own diameter or moved at
a speed of 1 cm/s [5, 53]. Actually, a definition of granular materials was given based on
the lower limit of size (c.a. 1 µm) of particle where thermal agitation i.e. Brownian motion
becomes important [25].

Dissipation is another characteristic feature of granular materials. Energy is lost due to in-
elasticity and friction when particles collide or slide past each other. Again this is different
from ordinary liquids or gases where it is assumed that energy is conserved during collisions
between atoms or molecules. Therefore granular materials are out of thermodynamical equi-
librium and they quickly settle to metastable configurations when external energy input is
stopped. Dissipation and the irrelevance of temperature are one of the reason why classical
theories like thermodynamics and statistical mechanics have difficulties describing granu-
lar materials. Thermal fluctuations and conservation of energy in ordinary fluids and gases
cause the molecules and atoms to explore phase space and smooth out irregularities.

Despite its simplicity and omnipresence the physics of granular matter is poorly understood.
Its distinction from ordinary phases of matter has incited some authors to present it as a
new state of matter on its own [53]. Below we will briefly touch upon some peculiarities of
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(a) (b)

Figure 1.2: (a) The jamming phase diagram. (Adapted from [77] and [114]). (b) Robotic
gripper based on jamming [12].

granular matter when it behaves like a solid, liquid or gas. For a comprehensive review we
refer to [5, 25, 37, 53, 54] among others.

1.2 Jamming, force chains, granular crystals and sound

propagation

When filling a container with granular matter we will notice that its density is variable. Ini-
tially the packing of grains is relatively loose and to open up room for more material one
usually shakes the container. The variation in density comes from the friction between par-
ticles and randomness in the packing. As pointed out in the previous section, the absence of
thermal fluctuations prevents the system to reach an equilibrium state with constant density.
Consequently particles can rearrange in a multitude of metastable states depending on the
initial conditions and history. Experiments have shown that the loosest packing of monodis-
perse spheres (commonly referred to as the random loose packing) has a filling fraction of
νrlp ≈ 0.56 [115]. On the other hand, the volume fraction of the densest “random close
packing” of hard spheres was repeatedly measured as νrcp ≈ 0.64 in experiments and simu-
lations [8, 15, 27, 113] even though there is a debate about the definition of the random close
packing [114, 136] due to the ambiguous meaning of random. Finally the maximum density
is achieved when equal size spheres are placed on a regular lattice such as hexagonal close
pack (hcp) or face centered cubic (fcc). In this case the volume fraction is νhcp = νfcc ≈ 0.74.

Sometimes granular matter stops flowing without any apparent reason, it is jammed. This
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Figure 1.3: Force chains in a compression test with birefringent photoelastic disks.

can be a major problem in many practical situations such as flows from hoppers or transport
of powders in conduits. Jamming is the general term used to describe the transition from
a flowing state to a solid like state in disorder. It is manifested by dynamical arrest, an
infinite increase of viscosity and emergence of mechanical stability with a finite resistance
to external loading. In contrast to crystals, the origin of mechanical stability in amorphous
solids is not well understood.

Jamming occurs in thermal as well as athermal systems such as glasses, colloids, foams
or granular materials. The similarities between different systems has led Liu and Nagel to
propose a jamming phase diagram [77] to unify various phenomena, see Fig. 1.2a. The
diagram is represented by three control parameters, i.e. temperature T , inverse of volume
fraction 1/ν and shear stress σ which are on the axes, and the surface which separates
the jammed phase from the unjammed state. As mentioned earlier the temperature axis is
inapplicable for granular materials and other athermal systems and therefore the transition is
solely controlled by the density and applied stress. In particular, the point J on the 1/ν axis
in Fig. 1.2a marks the transition in isotropically compressed frictionless systems with finite
range repulsive potential [113, 114].

Jamming is usually an unwanted phenomenon, but recent studies have demonstrated its use
in robotics [12, 105]. Figure 1.2b shows a gripper which holds objects by conforming an
elastic shell filled with granular matter to their shape and jamming it by sucking out the air.
Another similar but more familiar application is the vacuum mattress used to stabilize and
carry injured persons.

A consequence of randomness in the grain positions is the disorder and amorphous structure
of granular materials. This leads to the inhomogeneity in many quantities observed at the
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particle scale. For example, force chains are subsets of the contact network formed by the
particles which carry much larger forces than average. It is relatively easy to visualize them
in computer simulations whereas in experiments photoelastic materials with polarized light
are typically used, see Fig. 1.3. Depending on the nature of external loading force networks
show strong directional anisotropy. Majmudar and Behringer [93] reported that when shear
deformation is applied to an assembly of photoelastic disks, contact forces align along the
direction of shear. In case of isotropic compression a 6-fold symmetry is observed in the
angular distribution [93]. In general forces align in the direction of the major principal stress
[135].

Like many macroscopic properties, sound propagation in granular materials depends on
their amorphous disordered structure. In continuum theories, sound speed can be directly
extracted from macroscopic elastic constants i.e. shear and bulk moduli. However this ap-
proach relies on the separation of scales and discards the heterogeneity and discreteness at
the microscale. On the other hand, it is widely recognized that in granular materials there is
not a clear separation between scales as the system size may be comparable to the grain size.
For small systems a tiny disorder at particle scale may have a huge consequence on sound
propagation [78, 103]. Figure 1.4 illustrates the effect of only 0.2 % size variation on stress
propagation in an ordered packing of particles. Only low frequency signals can propagate in
the presence of disorder. The magnitude of disorder seems small relative to the particle size,
however, it is comparable to the more relevant length scale, namely contact deformation.

Recent studies investigated the role of force chains in sound propagation. It was first noted
in simulations that the coherent wave front advances independent of the force chains [129].
However, later experiments with photoelastic disks indicated that the wave amplitude is
larger in particles along the force chains [116]. Finally, based on the experimental obser-
vation that there is a reproducible coherent wave it was suggested that an effective medium
theory could describe sound propagation in granular media [60]. The observation of a re-
producible coherent wave in experiments was interpreted as a sign that irregularities at the
microscale are smoothed out and an effective medium theory could describe sound propaga-
tion in granular media in the long wave length limit [60]. However, available models (e.g.
[139]) fail to estimate correctly the shear and bulk moduli especially at low pressures due to
the assumption of affine deformation [94].

In contrast to the disorder of natural granular materials, highly uniform particles can be
placed on a lattice to build artificial granular crystals. Perhaps, the simplest example is the
linear chain of particles which has been studied extensively for its non-linear dynamics. It
was first predicted theoretically that this system can sustain solitary waves [110] which were
later observed experimentally [16, 74]. An application of this type of structure is in shock
absorbers where energy is spread through the chain in time and space [21, 29]. Further-
more, the ability to control the non-linearity of the interactions between particles with pre-
compression allows to tune the frequency of propagating waves. This property was exploited



6 Chapter 1 Introduction

Space in layers

F
re

q
u
e
n
cy

 in
 k

H
z

20 40 60 80 100 120 140

10

20

30

40

50

60

Space in layers

F
re

q
u
e
n
cy

 in
 k

H
z

20 40 60 80 100 120 140

10

20

30

40

50

60

Figure 1.4: Effect of size disorder on sound propagation in a face centered cubic structure.
Amplitude of Fourier coefficients of the propagating stress signal as function of the distance
from the source. Left: No disorder. Right: 0.2% disorder. After [103].

to focus sound with acoustic lenses and design tunable phononic crystals [10, 130].

1.3 Shear bands, dilatancy, constitutive laws and patterns

Granular materials can flow like a liquid. One of the most familiar example is the granulated
sugar we pour into our coffee or tea. However granular flows are not restricted to daily life
routines. Many industries such as agriculture, food and energy rely on them for processing
and transport of raw materials. On a much larger scale they play an important role in geo-
physical phenomena such as landslides, avalanches or earth quakes. Below we discuss some
particularities of granular flows distinguishing them from those of classical fluids.

In contrast to ordinary fluids shearing a dense granular material does not induce a linear
velocity profile, instead deformation is localized in thin shear bands of five to ten grain
diameters [106, 138]. Shear bands have been studied extensively in geomechanics because
of their role in natural hazards such as earth quakes or landslides [26]. From a continuum
mechanics point of view, it was shown that localization can result from an instability of the
constitutive model [123]. However, capturing the width of the shear bands with continuum
models has been problematic due to the lack of a microscopic length scale which reflects
the microstructure. As a result, gradient enhanced [36] and micropolar Cosserat [24] type
constitutive models have been proposed. Recent studies have demonstrated that shear bands
of arbitrary width can be achieved in split bottom Couette cell geometries [13, 35, 82]. This
allows a more detailed study of the velocity profile and microstructure within the shear band.

Shear deformation of granular materials is accompanied with positive volume change. This
phenomenon was first observed about one century ago by Reynolds who named it dilatancy
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[120]. He illustrated it by showing that to distort a crystal of rigid particles the volume must
increase. Physically dilatancy can be explained with the fact that two layers of interlocking
grains have to separate first before they can slide past each other. This principle was gen-
eralized to disordered systems and is implemented in many constitutive models for granular
media for quasi-static deformation or dense flows [63, 98].

Analyzing the behavior of granular materials by tracking the motion of particles is unfea-
sible for most applications. The huge number of particles in real size problems prohibits
practical results even with the most advanced numerical methods and computer hardware.
Instead a continuum approach is usually adopted. Then the problem consists of solving a
set of partial differential equations given by the conservation of mass, momentum and en-
ergy supplemented with boundary conditions and constitutive equations which characterize
the behavior of the material under consideration. This works well for classical fluids or
solids because there is separation of scales i.e. the macroscopic scale is much larger than
the scale of atoms or molecules composing the liquid or solid. However as discussed before
this assumption may not hold for granular media. Furthermore, dissipation and the absence
of thermal fluctuations prevents the development of a single constitutive model capable of
describing all features of granular materials. As a result, granular flows are generally studied
in three categories [5, 37, 39, 51, 53]:

1. Slow quasi-static deformation of dense systems

2. Dense but a liquid like behavior where inertia effects cannot be neglected

3. A dilute state where particles interact mainly with binary collisions.

In the following we briefly summarize main features of the flows in these regimes and the
constitutive models employed to describe them.

Slowly deforming quasi-static dense granular materials are characterized by long lasting
contacts and rate independent behavior [100]. A prominent example of this category is the
soil which is probably the most abundant and the most studied granular material on earth.
The study of mechanical properties of soil goes back to Coulomb who introduced the first
yield criterion [17]. There the condition for failure is given by the coefficient of friction
which limits the ratio of shear and normal stresses. The tangent of the angle of repose of
static piles is usually measured as the internal coefficient of friction. When the stress ratio
equals or exceeds it the material starts to deform plastically. The majority of the constitutive
models for dense granular materials are based on the theory of plasticity in combination
with the assumption of coaxiality of the stress and strain tensors [50]. The direction of the
plastic strains are determined by the flow rule which is perpendicular to the yield surface if
it is associated. The first of these models was proposed by Drucker and Prager [30] who
used the Mohr-Coulomb yield criterion to derive the flow rule [50]. Later these models
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were improved by including work hardening and softening and non-associated flow rules
[125]. Other models relaxed the condition of coaxility by adopting alternative kinematic
assumptions [3, 98]. A different approach to the modelling of rate independent behavior of
dense granular materials is given by hypoplasticity [66]. Here the relation between stress
and strain rates is defined by a non-linear equation that automatically produces an inelastic
strain-stress curve without the need to decompose the strain tensor to elastic and plastic
parts. Another advantage of hypoplastic constitutive models over classical plastic theories is
its simpler formulation which does not require a yield surface or flow rule. For an overview
of constitutive models for the plastic deformation of dense granular materials we refer to
[50].

When the shear rate is increased the grains flow similar to an ordinary liquid. There is still a
dense contact network but grain inertia cannot be neglected anymore [37, 51, 100]. Dimen-
sional analysis has shown that [19] the relative contributions of inertia and confining pressure
P can be expressed with a single dimensionless inertia number I = γ̇d/

√

P/ρ where γ̇ , d and
ρ are the macroscopic shear rate, grain diameter and density respectively. This is interpreted
as the ratio of two time scales: the macroscopic time to displace a layer of particles imposed
by the shear rate and a microscopic time scale of particle rearrangements controlled by the
pressure [100]. Several experimental and numerical results in various geometries indicate
that the effective coefficient of friction and volume fraction have a functional dependence on
the inertia number I [37]. As a result, constitutive relations have been proposed by Jop et

al. based on the local rheology assumption [62]. The generalization of this model to three-
dimensions gave good quantitative agreement with experiments in the inclined rough plane
geometry [63]. We refer to [37] for a review and [100] for a detailed comparison of several
experiments and simulations of dense granular flows.

In the limit of low density and strong agitation particles detach from the contact network and
interact mainly with binary collisions. This behavior is analogous to molecular gases and as
a result these systems have been denominated as granular gases [39]. Theoretical modeling
is naturally inspired by the kinetic theory of ideal gases which was extended to include the
inelasticity of contacts. This topic goes beyond the scope of this thesis, however, we refer to
the review of Goldhirsch [39] for the interested reader. Nevertheless, we will briefly mention
some phenomena observed in granular gases. Inelastic collapse happens in a many particle
system when an infinite number of contacts occur in a finite time, in a way similar to a
ball bouncing on the floor. It is manifested by string like structures and can be a source
of problem in event driven molecular dynamics simulations. Inelastic collapse can lead to
high density regions i.e. clusters. The rate of dissipation in these regions is higher than in the
surrounding which causes neighboring particles to migrate to them thereby growing clusters.

Clustering is an example of pattern formation in granular systems. In a review on this sub-
ject Aranson and Tsimring define pattern formation as “a dynamical process leading to the

spontaneous emergence of a nontrivial spatially nonuniform structure which is weakly de-
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(a) (b)

Figure 1.5: (a) Patterns in vertically vibrated granular layers, after [5] . (b) Segregation in
rotating drums, after [46].

pendent on initial and boundary conditions” [5]. Patterns are observed in various setups
and geometries. Vertically vibrated layers of a few dozens of particle diameter thick show
surprising patterns of standing waves oscillating at half of the driving frequency. Depending
on the acceleration and the driving frequency of the container stripes, squares, hexagons and
oscillons are observed (Fig. 1.5a). Another famous phenomenon in vertically vibrated poly-
disperse assemblies known as the Brazil-nut effect is the segregation of large particles near
the top. This is counter intuitive as the classical entropy arguments would require that vibra-
tion favors mixing [53]. Segregation also occurs in chute flows or rotating drums (Fig. 1.5b).
Other examples of nontrivial patterns in granular materials are fingering and avalanches in
chute flows and dunes. Several theoretical models have been proposed to describe these
phenomena, we refer to [5] for a detailed account.

1.4 Scope and outline

This thesis relates to the quasi-static behavior of dense granular materials. We study using
discrete particle simulations the deformation and mechanical response of idealized polydis-
perse assemblies of spheres or disks. In particular, the constitutive behavior of disordered
packings and pattern transformation in crystal structures are considered. Accordingly, the
thesis can be split in two parts:

1. The effect of particle properties on the macroscopic stress-strain relation are investi-
gated in Chapters 3 and 4

2. Pattern transformations in two-dimensional regular arrays of soft and hard particles
are studied in Chapters 5 and 6
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Below we outline the contents of the chapters.

In Chapter 2 we introduce the discrete element method which is the main numerical tool
used throughout the thesis. The Verlet integration and the basic algorithm of the method are
described. We then elaborate the formalism used to obtain averaged quantities such as stress
or fabric. In the last part of this chapter we analyze the terms in a hypoplastic constitutive
model in order to determine their role in the material response.

In Chapter 3, the isotropic deformation of frictionless packings are studied. The effect of
the system size, history, deformation rate and polydispersity on the evolution of the average
number of contacts i.e. coordination number is investigated. A correction factor for the
contact density in terms of the moments of the size distribution is computed. Finally an
expression for the average pressure and effective bulk modulus taking the contact network
into account is derived and results are compared with simulations.

The effect of particle friction and the behavior under anisotropic loading are studied in Chap-
ter 4. We test the validity of the model for pressure developed in the previous chapter for
isotropically compressed frictional packings and confirm that it is also applicable in this
case. Triaxial test simulations are performed to characterize the effect of friction and poly-
dispersity on the macroscopic stress-strain response to anisotropic loading. Furthermore,
the hypoplastic model introduced in Chapter 2 is calibrated with the simulation results to
understand the relation between model parameters and particle friction and polydispersity.

In Chapter 5 we study the pattern transformation in two-dimensional regular arrays i.e. gran-
ular crystals composed of soft silicone rubber and polytetrafluoroethylene particles. We
show with experiments and simulations that under uniaxial compression the system trans-
forms from an initial square lattice arrangement to an hexagonal structure. The transfor-
mation is smooth, homogeneous and quasi-reversible for sufficiently small size ratios of
particles.

Chapter 6 investigates the phononic properties of the previously studied granular crystal. We
compute the band structure of the crystal at different levels of deformation and show that
band gaps open and close with pattern transformation. Finally, the effect of material prop-
erties and tangential contact forces on the phononic properties is analyzed and the possible
application of the crystal as a tunable phononic crystal is discussed.



Chapter 2

Discrete and continuous models of

granular materials

Abstract

The discrete element method which allows to simulate the motion of a large number

of interacting particles is the main numerical tool used in this thesis. We briefly sum-

marize the principle of the method and give the details of the contact force model used

in the next chapters. Numerical integration of the equations of motion and the for-

malism to obtain averaged quantities from the simulation results are also discussed.

In the last section of this chapter, we analyze analytically the terms of an hypoplastic

constitutive model assuming a two-dimensional bi-axial geometry. The relation of

the material coefficients of the model to the bulk and shear moduli and anisotropy are

discussed.

2.1 The Discrete Element Method

The discrete element method (DEM) has been introduced by Cundall & Strack for prob-
lems in geotechnical engineering [18]. Since then it has been adopted as an analysis tool
in many fields dealing with granular matter such as process and pharmaceutical industries.
DEM which is sometimes also called soft particle Molecular Dynamics is closely related to
Molecular Dynamics (MD). The principle of both methods can be summarized as finding the
trajectories of particles obeying principles of classical mechanics by solving Newton’s equa-
tion of motion. However, as the name suggests MD is mainly used to study thermodynamic
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properties of ensembles of atoms or molecules. DEM, on the other hand, is generally used
to simulate the motion of macroscopic particles. Consequently in DEM the interactions be-
tween particles are usually dissipative whereas in MD the forces are conservative i.e. derived
from a potential. Algorithm 1 illustrates the main steps of DEM and MD.

Algorithm 1 Discrete Element Method / Molecular Dynamics

Require: Initial positions and velocities, time end of simulation T

Initialize the time and particle positions, velocities and forces
while t < T do

for all particles do
· Find contacts or interacting pairs
· Compute and add up forces

end for

for all particles do
· Integrate the equations of motion
· Update positions and velocities

end for

Update system boundaries
t = t+∆t

end while

2.1.1 Contact forces

If particles are large enough long range interactions such as van der Waals forces are negligi-
ble. In this case particles interact only when they are in close contact. At this point they start
deforming due to the forces exerted on to each other. In real granular materials particles have
complicated shapes and their deformation and forces acting on them can be very complex.
To reduce the computational cost, in DEM particles are typically modeled as spheres or disks
and it is assumed that they are in contact when they overlap. Furthermore the contact forces
are computed as a function of the overlap.

In the following, we study the normal collision of two spherical particles interacting with the
linear spring-dashpot contact force model which is also used in the Chapters 3 and 4. The
overlap of two particles with position vectors ri and r j is defined as follows (Fig.2.1):

δ = max(0,
1
2
(di−d j)− (ri− r j) ·ni j) (2.1)

where di and d j are the diameters of the particles and ni j is the unit normal vector parallel to
the line connecting their centers. The relative speed of the particles is:

δ̇ =−vi j ·ni j (2.2)
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Figure 2.1: Schematic description of the overlap δ during a collision.

where vi j = vi−v j. The acceleration is found by taking the derivative of (2.2):

δ̈ =−(ai−a j) ·ni j =−(fi/mi− f j/mj) ·ni j =−
1
mi j

fi ·ni j =−
fi

mi j
(2.3)

where mi j =
mimj

m j+mi
is the effective mass and fi = −f j is the contact force acting on the

particles. According to the spring-dashpot model:

fi =−mi jδ̈ = kδ + γδ̇ . (2.4)

where k is the linear spring constant and γ is the viscous damping coefficient. Rearranging
this equation and using the following substitutions for the natural frequency ω0 =

√

k/mi j

and the viscous dissipation η = γ
2mi j

, we obtain the ordinary differential equation of the
harmonic oscillator

ω2
0δ +2ηδ̇ + δ̈ = 0. (2.5)

With the initial conditions δ (0) = 0 and δ̇ (0) = v0, the solution is given as:

δ (t) =
v0

ω
e−ηt sin(ωt) (2.6)

where ω =
√

ω2
0 −η2 is the oscillation frequency of the damped system.

The duration of a contact can be defined in two ways. The first criterion is expressed by
δ (tδc ) = 0. Then tc corresponds to the half-period of the oscillator.

tδc = π/ω (2.7)
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Another way is to assume that the contact ends when the force is zero i.e. f (t fc ) = 0. Then
t
f
c can be obtained by substituting (2.6) and its derivative in (2.4):

t fc =
1
ω
(π− arctan

2ηω
ω2 −η2 ) (2.8)

Finally, using one of the tc described above we can obtain the restitution coefficient with
r = − v(tc)

v0
. For tδc , this gives r = exp(−ηtδc ). The contact duration and the coefficient of

restitution for the bouncing of a particle on a wall can be computed following the same
procedure and assuming mwall = ∞.

Linear elastic and viscous tangential contact forces are modeled in a similar way

ft =−ktδt − γ tvti j (2.9)

with the spring stiffness kt , viscous dissipation γ t and tangential displacement δt and the
tangential velocity at contact

vti j = vi j− (vi j ·ni j)ni j−Ωi× li j+Ω j× l ji (2.10)

where Ω j is the angular velocity of particle i and li j =−((di−δ )/2)ni j is the branch vector
from the center of particle i to the contact point. The tangential spring length is calculated
by integrating :

dδt

dt
= vti j−

(δt ·ni j)ni j
|ri− r j|

(2.11)

starting from the time of contact. The second term of (2.11) is needed to rotate the spring so
that it is always perpendicular to the contact normal ni j.

Contact friction is described by the Coulomb friction model where µ is the coefficient of
friction which limits the tangential contact forces such that |ft | ≤ µ |fn| with fn the normal
contact force. Particles slide past each other if |ft |= µ |fn| and are stuck otherwise. If |ft |>
µ |fn| the tangential displacement is adjusted to satisfy Coulomb criterion.

For more complex contact models including, rolling, torsion, adhesion and elasto-plasticity
we refer to [85].

2.1.2 Numerical integration

After force calculation, the next step of DEM is the integration of the equations of motion:

miai = fi and Ii
dΩi

dt
= qi (2.12)

where Ii is the moment of inertia and fi and qi are the total force and torque acting on the
particle, respectively. There are a few popular numerical integration schemes used for this
purpose. We present here the Verlet and Velocity-Verlet algorithm which is also implemented
in the code we have been using.



2.1 The Discrete Element Method 15

Verlet algorithm

The main advantages of the Verlet algorithm [2] are its simplicity, numerical stability and
energy preserving properties. It can be derived by taking the Taylor series approximation of
the position vector r(t) in the neighborhood of t around ∆t and −∆t:

r(t+∆t) = r(t)+v(t)∆t+
a(t)∆t2

2
+

b(t)∆t3

6
+O(∆t4)

r(t−∆t) = r(t)−v(t)∆t+
a(t)∆t2

2
−

b(t)∆t3

6
+O(∆t4)

where b is the third derivative of the position with respect to the time. Adding these two
expressions we get:

r(t+∆t) = 2r(t)− r(t−∆t)+a(t)∆t2 +O(∆t4).

The position of the particles at t+∆t can be computed using this expression. The acceleration
is deduced from the force using Newton’s second principle. As it is seen from the above
equation the local error of the Verlet algorithm is O(∆t4). It is possible to demonstrate by
induction that the global error is O(∆t2). In this version of the algorithm velocities are not
given explicitly and must be calculated using the positions:

v(t) =
r(t+∆t)− r(t−∆t)

2∆t
+O(∆t2).

However this is not possible for velocity dependent viscous forces where the velocities must
be known before computing the positions.

The Velocity Verlet

Algorithm 2 Velocity Verlet

Require: Forces fi, positions ri and velocities vi from the previous time step
for particles i← 1,N do

ri ← ri+vi∆t+ 1
2ai(∆t)

2

vi ← vi+ai
∆t
2

ai ← fi
mi

vi ← vi+ai
∆t
2

end for

This is a slight modification of the original Verlet algorithm which accounts for the veloc-
ities explicitly. After having solved the first time step with the basic Verlet the scheme in
Algorithm 2 is applied for translations. The accuracy of the velocity Verlet is of the same
order as the basic Verlet. The velocity Verlet is necessary when velocity dependent forces
are present. Also, notice that the time step for v is half of the usual.
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2.2 Micro-Macro transition: Averaging procedures

DEM allows a very detailed description of granular materials including contact forces and
exact position of the particles. However, the amount of data generated during a DEM sim-
ulation is huge. In order to compare it to macroscopic experiments or theories, smoothing
and averaging are necessary. In this section we present the averaging procedures used to
obtain macroscopic tensorial quantities such as the fabric tensor and the stress for granular
materials which are computed in the next chapters.

2.2.1 Averaging formalism

The general rule to obtain any average quantity Q in volume V is defined as follows [73]:

Q=
1
V ∑p∈V

w
p
VV

pQp (2.13)

where is V p is the volume of the particle and w
p
V is the weight of its contribution to the

average and Qp is the pre-averaged particle quantity

Qp =
Cp

∑
c=1

Qc (2.14)

with Qc the local quantity at the contact and Cp the number of contacts of the particle. The
simplest example of averaging is the solid volume fraction of a particle assembly obtained
when Qp = 1:

ν =
1
V ∑p∈V

w
p
VV

p. (2.15)

From this the average density can be easily computed by assigning the weight to the particle
densities wp

V = ρp .

2.2.2 Fabric Tensor

The fabric is a tensorial quantity which is used to characterize the internal structure of an
assembly of grains. For a single particle its definition is given as [38, 73]:

Fp =
Cp

∑
c=1

nc⊗nc (2.16)

where nc is the unit vector pointing outwards in the direction of the contact. An equivalent
definition is given in terms of the branch vectors connecting the center of the particle to the
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contact points:

Fp =
1
a2

Cp

∑
c=1

lpc⊗ lpc (2.17)

where a is the particle radius assuming that it is spherical. The average fabric is computed
using Eq. (2.13):

F= 〈Fp〉=
1
V ∑p∈V

w
p
VV

p
Cp

∑
c=1

nc⊗nc (2.18)

Note that tr(Fp) is equal to Cp the number of contacts of the particle. In a regular lattice
arrangement assuming that wp

V = 1 ∀ p, tr(F) is exactly equal to Cν i.e. the coordination
number times the volume fraction.

2.2.3 Stress

The average stress of a body inside a volume V is defined by[71]:

σ =
1
V

∫

V
σ dV (2.19)

Using the static equilibrium condition divσ = 0 and the divergence theorem it can be shown
that:

σ =
1
V

∫

∂V
(x⊗σ) ·ndV (2.20)

where x is the position vector and n is the outward normal vector. Therefore the average
stress inside a particle which is in contact with other particles can be expressed as:

σ p =
1
V p

Cp

∑
c=1

lpc⊗ fc (2.21)

here we have assumed that the contact forces fc are equal to point loads such that σ c ·n= fc

where σ c is the stress tensor at the contact point. Now following the formalism expressed in
Eq. (2.13), the average stress tensor in a particle assembly can be written as:

σ = 〈σ p〉=
1
V ∑p∈V

w
p
V

Cp

∑
c=1

lpc⊗ fc (2.22)

If the weights w
p
V are ignored, the average stress can also be expressed as a sum over all

contacts inside the assembly [71]. Since fc = fpq = −fqp where fpq and fqp are the forces
exerted by particles q and p on to each other respectively; it is possible to write:

σ =
1
V ∑c∈V

lc⊗ fc. (2.23)
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2.3 Analysis of the components of a hypoplastic constitu-

tive model

As mentioned in §1.3 of the previous chapter, several constitutive models within the frame-
work of continuum mechanics have been developed to describe the mechanical behavior of
granular materials. In this section we focus on a variant of a hypoplastic constitutive model
proposed by Wu et al. [141]. More precisely, in a two-dimensional bi-axial geometry we
investigate the relation of the material coefficents of the model to the classical elastic moduli
such as the shear and bulk modulus, and anisotropy as introduced in a recent work by Luding
and Perdahcioglu [87].

Before giving the specific form of the equation let us summarize the basic properties of
hypoplasticity following [66, 141, 142]. A hypoplastic constitutive model relates the rate of
the stress T̊ to the stress T and rate of deformation D (i.e. symmetric part of the velocity
gradient):

T̊=H(T,D) (2.24)

where the co-rotational Jaumann rate of stress is given by T̊ = Ṫ−WT+TW with W the
skew-symmetric part of the velocity gradient. To ensure rate independence the stress rate
must be homogeneous of the first degree in D

H(T,λD) = λH(T,D). (2.25)

Objectivity with respect to rigid body rotations is satisfied by the following condition:

H(QTQT ,QDQT ) =QH(T,D)QT (2.26)

where Q is an orthogonal rotation matrix. Furthermore, it is required that (2.24) is homoge-
neous in T:

H(λ nT,D) = λ nH(T,D) (2.27)

so that proportional stress paths lead to proportional strain paths and vice versa [141, 142].
More details about these restrictions and general properties of hypoplasticity can be found
in aforementioned references.

The specific form of the constitutive equation (2.24) studied here is given by [141]:

T̊= K1 (trT)D+K2
tr(TD)

trT
T+K3

T2

trT

√
trD2 +K4

T∗2

trT

√
trD2 (2.28)

where K1,K2,K3 and K4 are dimensionless material coefficients and T∗ is the deviatoric part
of stress. Note that the first two terms are linear in D while the last two are non-linear.
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2.3.1 Decomposition into volumetric and deviatoric parts

A second order tensor in D dimensions can be split into a volumetric (i.e. isotropic) and a
deviatoric part:

M= mvI+M∗ (2.29)

where the scalar mv =
1
D

tr(M). This means that the deviatoric part of M is traceless i.e.
tr(M∗) = 0 or equivalently ∑D

i=1m
∗
i = 0 where m∗

i are the principal components. Our goal is
to express the deviatoric part M∗ as a product of a scalar and a tensor similar to its volumetric
part. This requires additional constraints on the eigenvalues of M. For example in 3D if

m∗
2 = 0 (2.30)

the deviatoric part can be expressed as:

M∗ = mdI
∗(φ), such that md = max(m∗

1,m
∗
3)≥ 0 (2.31)

and I∗(φ) =Q(φ)I∗QT(φ). The unit deviator and the rotation matrix are given by

I∗ =







1 0 0

0 0 0

0 0 −1







or I∗ =







−1 0 0

0 0 0

0 0 1







and Q(φ) =







cosφ 0 sinφ

0 1 0

−sinφ 0 cosφ






,

respectively. In general, without (2.30) or similar conditions, it is not possible to express M∗

as a product of a scalar and a tensor because, e.g. in 3D, two of its invariants are independent
(m∗

2 = 0 sets det(M∗) = 0). However, in 2D the unit deviator and the rotation matrix are
simplified by removing the second rows and columns and only one invariant is independent.
Consequently, the relation (2.31) is unambiguous up to the sign convention or the ordering
of the eigenvalues of M∗.

2.3.2 Analysis of the linear part

In the following, for simplicity we consider a 2D bi-axial system (i.e. D = 2) correspond-
ing to a plane stress or strain condition, and assume that the stress and strain rates can be
decomposed according to Eqs. (2.29) and (2.31):

T= pI+σdI∗(φT ) (2.32)

D= ε̇vI+ ε̇dI
∗(φD) (2.33)

Furthermore, we denote I∗(φT ) and I∗(φD) simply by I∗T and I∗D respectively, assuming that
the angles of rotation φT and φD are known. Note that, stress and strain rate tensors are
colinear in the bi-axial geometry, however φT /= φD in general.
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The first two terms of Eq. (2.28) express the elastic part of the hypoplastic constitutive and
are linear in D. Using Eqs. (2.32) and (2.33) the first term is given by:

K1(trT)D= 2K1p(ε̇vI+ ε̇dI
∗
D) , (2.34)

which shows its linear dependence on the pressure and deformation rate.

Similarly after substitution of Eqs. (2.32) and (2.33) the second term is given by:

K2
tr(TD)
tr(T)

T= K2
tr([pI+σdI∗T ][ε̇vI+ ε̇dI∗D])

tr(T)
(pI+σdI∗T )

= K2
tr(pε̇vI+σd ε̇vI∗T + pε̇dI∗D+σd ε̇dI∗T I

∗
D)

2p
(pI+σdI∗T )

= K2
2pε̇v+σd ε̇d tr(I∗T I

∗
D)

2p
(pI+σdI∗T )

= K2

{

p

[

ε̇v+
σd
2p

ε̇d tr(I∗T I
∗
D)

]

I

+ p

[

σd
p
ε̇v+

ε̇d
2

(
σd
p

)2

tr(I∗T I
∗
D)

]

I∗T

}

.

Using the identity tr(I∗T I
∗
D) = 2cos(2φT − 2φD) and denoting sd = σd/p as the deviatoric

stress ratio the second term is reduced to

K2
tr(TD)
tr(T)

T= K2
{

p [ε̇v+ ε̇dsd cos(2φT −2φD)]I

+p
[

ε̇vsd + ε̇ds
2
d cos(2φT −2φD)

]

I∗T
}

. (2.35)

Now we focus on the contribution of the first two terms in the hypoplastic constitutive model
by plugging back Eqs. (2.34) and (2.35) in Eq. (2.28) and neglecting the non-linear terms:

Ṫ1,2 = 2K1p(ε̇vI+ ε̇dI
∗
D)

+K2
{

p [ε̇v+ ε̇dsd cos(2φT −2φD)]I

+p
[

ε̇vsd + ε̇ds
2
d cos(2φT −2φD)

]

I∗T
}

(2.36)

where T̊= Ṫ since W= 0 in the biaxial box.

The rate of pressure change due to the linear terms can be computed by taking the trace of
Eq. (2.36):

ṗ1,2 =
1
2

tr(Ṫ1,2)

= 2K1pε̇v+K2p [ε̇v+ sd ε̇d cos(2φT −2φD)]

= (2K1 +K2)pε̇v+K2psd ε̇d cos(2φT −2φD) (2.37)
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since the traces of the unit deviators vanish.

The deviatoric part of the stress rate is:

Ṫ∗
1,2 = Ṫ1,2 − ṗ1,2I

that after plugging in Eqs. (2.36) and (2.37) and grouping under common factors leads to:

Ṫ∗
1,2 = 2K1pε̇dI

∗
D+K2p

[

ε̇vsd + ε̇ds
2
d cos(2φT −2φD)

]

I∗T . (2.38)

The meanings of material coefficients K1 and K2 become clear if pure isotropic deformation
(ε̇d = 0) is applied:

ṗ1,2(ε̇v) = 2B1,2ε̇v (2.39)

where B1,2 =
p
2 (2K1 +K2) is the “linear” bulk modulus. Likewise, for pure shear (ε̇v = 0)

one has

ṗ1,2(ε̇d) = K2psd cos(2φT −2φD)ε̇d . (2.40)

According to Luding and Perdahcioglu [87] in the 2D bi-axial geometry the deviatoric strain
and pressure increments are coupled with an anisotropy term which characterizes the differ-
ence between the horizontal and vertical stiffnesses

∆p= 2B∆εv+A∆εd .

Therefore the “linear” anisotropy A1,2 = K2psd cos(2φT −2φD) is proportional to the scalar
deviatoric stress σd = psd .

Similarly the anisotropy appears when the response of the deviatoric stress rate (2.38) to
pure isotropic deformation (ε̇d = 0) is computed:

Ṫ∗
1,2(ε̇v) = A∗

1,2ε̇vI
∗
T (2.41)

with A∗
1,2 = K2psd . Note that A∗

1,2 = A1,2 only when the stress and strain rates are colinear
i.e. cos(2φT − 2φD) = 1. Finally, computing the response to pure deviatoric strain (ε̇v = 0)
leads to

Ṫ∗
1,2(ε̇d) = 2K1pε̇dI

∗
D+K2pε̇ds

2
d cos(2φT −2φD)I∗T (2.42)

in the directions of I∗D and I∗T . In the special case of colinearity Ṫ∗
1,2(ε̇d) = 2G1,2ε̇dI∗(φ)

where the shear modulus G1,2 =
p
2 (2K1 +K2s

2
d) and φ = φT = φD.

Given constant K1,K2 both B1,2 and G1,2 are linear proportional to p, where G1,2 has a
nonlinear term σdsd = ps2

d . Both anisotropy terms are proportional to σd , whereas in [87]
they were assumed to be independent of σd a priori. In the colinear case A1,2 and A∗

1,2 are
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identical, as assumed in Ref. [87]. Because ε̇d ≥ 0, reversal of the strain rate corresponds
to φD = φT + π/2 and thus causing cos(2φT − 2φD) to change sign. Strain rate reversal
therefore affects A1,2 and the second term of G1,2. In the spirit of Ref. [87], for φT = φD one
has:

ṗ1,2 = 2B1,2ε̇v+A1,2ε̇d

Ṫ∗
1,2 = A∗

1,2ε̇vI
∗
T +2G1,2ε̇dI

∗
D.

2.3.3 Analysis of the non-linear part and combination of all terms

The norm of the strain rate
√

trD2 is a common factor of the non-linear terms and is the
reason of the inelasticity in the model. Let us first compute the square of D using (2.33):

D2 = [ε̇vI+ ε̇dI
∗
D]

2

= ε̇2
vI+2ε̇vε̇dI∗D+ ε̇2

dI
∗
DI

∗
D

noting that I∗DI
∗
D = I in 2D the square root of the trace becomes:

√
trD2 =

√
2
√

ε̇2
v + ε̇2

d . (2.43)

Now grouping the 3rd and 4th terms under this factor and using (2.32) and I∗T I
∗
T = I for the

stress tensor we obtain:

Ṫ3,4 =
[

K3T
2 +K4T

∗2
]
√

trD2

trT

=
[

K3
(

p2I+2pσdI∗T +σ2
d I
)

+K4σ2
d I
]

√
2
√

ε̇2
v + ε̇2

d

2p
(2.44)

Similar to the previous section the contributions of the non-linear terms to the pressure evo-
lution are computed by taking the trace:

ṗ3,4 =
1
2

tr(Ṫ3,4)

=
[

K3p
2 +(K3 +K4)σ2

d

]

√
2
√

ε̇2
v + ε̇2

d

2p

=
p√
2

√

ε̇2
v + ε̇2

d

[

K3 + s2
d(K3 +K4)

]

(2.45)

and for the deviatoric part:

Ṫ∗
3,4 = Ṫ3,4 − ṗ3,4I

=
√

2K3σd
√

ε̇2
v + ε̇2

d I
∗
T . (2.46)
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Under pure isotropic deformation (ε̇d = 0) the non-linear terms lead to the following rate of
pressure change:

ṗ3,4(ε̇v) =
p√
2
|ε̇v|

[

K3 + s2
d(K3 +K4)

]

(2.47)

and for pure deviatoric strain (ε̇v = 0):

ṗ3,4(ε̇d) =
p√
2
|ε̇d |

[

K3 + s2
d(K3 +K4)

]

. (2.48)

The response of the deviatoric part of the non-linear terms (2.46) to pure isotropic deforma-
tion (ε̇d = 0) is:

Ṫ∗
3,4(ε̇v) =

√
2K3σd |ε̇v| I∗T , (2.49)

and for pure deviatoric strain (ε̇v = 0):

Ṫ∗
3,4(ε̇d) =

√
2K3σd |ε̇d | I∗T . (2.50)

Combining all terms The responses of pressure and deviatoric stress rates to pure isotropic
and deviatoric strains including linear and non-linear terms are:

ṗ(ε̇v) = p

{

(2K1 +K2)ε̇v+
1√
2

[

K3 + s2
d(K3 +K4)

]

|ε̇v|
}

(2.51)

ṗ(ε̇d) = p

{

K2sd cos(2φT −2φD)ε̇d +
1√
2

[

K3 + s2
d(K3 +K4)

]

|ε̇d |
}

(2.52)

Ṫ∗(ε̇v) =
(

K2psd ε̇v+
√

2K3σd |ε̇v|
)

I∗T (2.53)

Ṫ∗(ε̇d) = 2K1pε̇dI
∗
D+K2pε̇ds

2
d cos(2φT −2φD)I∗T +

√
2K3σd |ε̇d | I∗T . (2.54)

From these relations it is clear that the behavior for loading and unloading is different be-
cause of the |ε̇v| term. For example, the bulk modulus









B= p
2

{

(2K1 +K2)+
1√
2

[

K3 + s2
d(K3 +K4)

]
}

if ε̇v > 0

B= p
2

{

(2K1 +K2)− 1√
2

[

K3 + s2
d(K3 +K4)

]
}

if ε̇v < 0.
(2.55)

On the other hand, the anisotropy for the pressure and deviatoric stress rates do not coincide
even when the stress and strain rates are colinear:

A= K2σd +
p√
2

[

K3 + s2
d(K4 +K3)

]

(2.56)

A∗ =

{

(K2 +
√

2K3)σd if ε̇v > 0

(K2 −
√

2K3)σd if ε̇v < 0.
(2.57)
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Note that ε̇d is always positive or zero due to the condition in (2.31). Finally if the strain rate
and stress are colinear the shear modulus obtained from combination of all terms is

G=
p

2

(

2K1 +K2s
2
d +

√
2K3sd

)

. (2.58)

The above analysis shows that in the bi-axial geometry the material coefficients of the hy-
poplastic constitutive model (2.28) are related to the classical elastic moduli and anisotropy
as introduced in [87]. The inelastic behavior in the model also appears from the analysis
as the derived moduli depend on the direction of loading. On the other hand, there is not a
simple relation between the material coefficients and the moduli such that each term in Eq.
(2.28) corresponds to a distinct effect. In particular, the bulk modulus and anisotropy depend
on all four coefficients.



Chapter 3

Isotropic deformation of

frictionless systems*

Abstract

The isotropic compression of polydisperse packings of frictionless spheres is modeled

with the discrete element method (DEM). The evolution of coordination number, frac-

tion of rattlers, isotropic fabric, and pressure (isotropic stress) is reported as function

of volume fraction for different system parameters. The power law relationship, with

power ≈ 1/2, between coordination number and volume fraction is confirmed in the

jammed state for a broad range of volume fractions and for different (moderate) poly-

dispersities. The polydispersity in the packing causes a shift of the critical volume

fraction, i.e., more heterogeneous packings jam at higher volume fractions. Close

to jamming, the coordination number and the jamming volume fraction itself depend

on both history and rate. At larger densities, neither the deformation history nor the

loading rate have a significant effect on the evolution of the coordination number.

Concerning the fabric tensor, comparing our DEM results to theoretical predictions,

good agreement for different polydispersities is observed. An analytical expression

for the pressure as function of isotropic (volumetric) strain is proposed for polydis-

perse packings, based on the assumption of uniform deformation. We note that, be-

sides the implicit proportionality to contact number density (or fabric), no single

power-law is evidenced in the relation for the pressure. However, starting from zero

*Based on F. Göncü, O. Durán, and S. Luding. Constitutive relations for the isotropic deformation of frictionless
packings of polydisperse spheres. Comptes Rendus Mécanique, 338(10-11):570–586, Oct. 2010
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pressure at the jamming point, a linear term with a quadratic correction describes

the stress evolution rather well for a broad range of densities and for various poly-

dispersities. Finally, an incremental evolution equation is proposed for both fabric

and stress, as function of isotropic strain, and involving the coordination number

and the fraction of rattlers, as starting point for further studies involving anisotropic

deformations.

3.1 Introduction

Dense granular materials show peculiar mechanical properties quite different from classical
fluids or solids [25, 53]. This is true not only for realistic contact forces involving friction
and adhesion [18, 83], but already in the frictionless case. Describing granular matter with
continuum models is difficult due to their inherent discrete structure and since the origin of
their behavior is far from understood [77, 83, 92, 113, 118].

The transition from liquid to solid phases in disordered systems is generally investigated in
the context of jamming [28, 92, 113]. Liu and Nagel [77] have suggested that this concept
can be applied to different materials in a single framework using a jamming phase diagram
with temperature, shear stress, and volume fraction as control parameters. (The volume
fraction is the ratio of solid volume to total volume.) For athermal systems like granular ma-
terials jamming, i.e., the transition from fluid-like to solid-like behavior, is then essentially
determined by the volume fraction and the shear stress [56, 124, 126, 134]. Particularly,
if a granular packing is subject to isotropic compression the shear stress is practically zero
and the only control parameter is the volume fraction, or equivalently the density (which
is the product of volume fraction and material density). Recent numerical and experimen-
tal studies with disk and sphere assemblies were performed to identify the critical value at
which jamming first occurs [1, 40, 92, 114]. For monodisperse systems it corresponds ap-
proximately to the random close packing [1, 28, 114]. Other quantities such as coordination
number and pressure were reported to evolve as power laws of the volume fraction in a small
interval above the jamming density [92, 113, 114], resembling a phase transition and critical
phenomena [25, 53, 77, 113, 114].

Another issue is predicting the mechanical properties of granular materials, which are con-
trolled by the internal structure of the assembly of grains – where the internal structure itself
depends on the history of the sample. Although, particles are much smaller than the packing,
the presence of discrete force chains in the contact network can lead to long range correla-
tions and thus precludes a straightforward continuum description. Fluctuations of quantities
like stress are extreme on the particle scale, i.e., much larger than the mean values, and only
over rather large representative volumina these fluctuations decay.
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The fabric tensor is commonly used as first harmonic approximation to quantify the structure
in disordered systems with an average and a deviatoric (anisotropic) contact density [38, 90].
Numerical studies of the fabric tensor under isotropic deformation of systems with disks, for
different polydispersities, have been realized [89, 90] and at least the contact number density
could be related to the first three moments of the size-distribution for isotropic situations.
Advanced constitutive models within the framework of continuum mechanics employ var-
ious definitions of the fabric tensor as a non-classical field. For example, elasto-plasticity
and hypoplasticity [140, 146] were generalized to include structure field variables, however,
accurate modelling of the effect of structure on the anisotropy of granular materials remains
a challenge.

The goal of this study is to test the validity of the power law for the coordination number in
polydisperse packings of frictionless spheres also at relatively high volume fractions above
jamming and to provide incremental evolution equations for fabric and stress under isotropic
deformation. For this, we perform DEM simulations, as introduced in section 3.2, with pack-
ings of different polydispersities, number of particles and loading rates. In Secs. 3.3 and 3.4,
we numerically analyze the evolution of the coordination number and of the (isotropic) trace
of fabric as function of volume fraction and compare the result with theoretical predictions in
Refs. [33, 90]. In section 3.5, based on a theory derived in Ref. [33], we present an analytical
expression for the pressure as function of the volume fraction, resulting in an incremental
evolution equation for isotropic structure (fabric) and stress.

3.2 Simulation method

The Discrete Element Method (DEM) [18, 83, 84] allows us to enclose frictionless particles
in a cubic volume with periodic boundary conditions. A linear viscoelastic contact model
determines the particle contact forces in normal direction. In order to reduce dynamical
effects and shorten relaxation times an artificial viscous background dissipation proportional
to the particle velocity is added, resembling the damping due to a background medium. In all
simulations gravity is neglected, so that the applied deformations can be assumed isotropic.

3.2.1 Simulation Parameters

Typical values of the simulation parameters are: system size N = 1000, 5000, or 10000
particles with average radius 〈r〉= 1 [mm], density ρ = 2000 [kg/m3], elastic stiffness kn =
108 [kg/s2], particle damping coefficient γ = 1 [kg/s], background dissipation γb = 0.1 [kg/s]
(see Ref. [83] for a discussion of these artificial units, which can be re-scaled due to the
simplicity of the contact model). Since the particle size distribution is polydisperse, the
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Figure 3.1: Probability density function of the uniform distribution.

contact time depends on the radius of the particles. For example, according to Eq. (2.7)1

tc = 0.31 [µs] is the duration of a contact between the smallest and the biggest particles,
with the polydispersity parameter w = rmax/rmin = 3 as defined below. The contact time
between two average particles with r/〈r〉= 1, is tc = 0.64 [µs] and their mutual coefficient
of restitution is r= 0.92. Because tc is stiffness dependent and can be scaled arbitrarily [83],
we do not consider it as an important simulation parameter (as long as the deformation is
performed slow, i.e., quasi-statically). Increasing stiffness leads to smaller tc, i.e., the system
has a shorter response time, but has otherwise no effect on the quasi-static results presented
in this study.

In order to quantify the volume fraction rate of change during isotropic deformation, the rel-
ative loading rate for packings undergoing the same deformation is defined as D= Tref/Tsim,
where Tref = 1000 [µs] is the duration of the fastest simulation. Values of D used for simu-
lations are 10−3,10−2,10−1 and 1.

A typical deformation is applied in a strain-controlled manner to the system boundaries (pe-
riodic “walls"), with a cosine-shape in order to avoid shocks. In a few cases, other strain
functions such as pressure-controlled “wall" displacement and uniform strain field deforma-
tion were tested. In the latter case, the particle displacements are determined such that the
instantaneous strain field is uniform inside the packing, but relaxation is allowed due to the
interactions. We observe that there are no strong differences in the simulation results ob-
tained from different methods as long as the deformation rates are small. (Therefore we do
not discuss the actual strain rate, but refer to the scaled (relative) inverse period of deforma-
tion D= Tref/Tsim as dimensionless rate.)

1given by the condition δ (tc) = 0 where δ is the overlap, see Chapter §2.1.
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3.2.2 Polydispersity

The polydispersity of the particles can be quantified by the width w = rmax/rmin of the uni-
form distribution:

f (r) =
w+1

2(w−1)〈r〉
Θ
(

2w〈r〉
w+1

− r

)

Θ
(

r−
2〈r〉
w+1

)

, (3.1)

with the step function Θ(x ≥ 0) = 1 and Θ(x < 0) = 0. The dimensionless moments of the
size distribution can be expressed as functions of w:

r̂k :=
〈rk〉
〈r〉k

=
2k

(k+1)(w+1)k
k

∑
i=0

wi, (3.2)

with the first two moments r̂1 = 1, and r̂2 =
4
3

1+w+w2

(w+1)2 . Typical values of w are 1, 2 and 3,
where w = 1 corresponds to a monodisperse packing. A few simulations with larger w ≤ 8
were also performed. Simulations with other size distribution functions and a theoretical
analysis of polydisperse packings will be published elsewhere [33].

3.2.3 Preparation and test procedure

The initial packing is obtained by compressing a (fully) random granular “gas” up to a vol-
ume fraction close to jamming and letting it relax. Figure 3.2 shows the initial configuration
of a system of 1000 particles, the granular gas state, before, and the granular fluid state, after
first relaxation at an initial volume fraction below jamming νi = 0.64. The initial granular
gas (Fig. 3.2(a)) has many particles which have large overlaps due to the random position-
ing. However they quickly repel each other after a short simulation time (Fig. 3.2(b)). From
the granular fluid, below jamming, the system is slowly compressed and the evolution of the
kinetic and potential energies is displayed during relaxation and compression. The pack-
ings are isotropically compressed by moving simultaneously inwards the (fictive, periodic)
boundaries of the simulation domain, see Figs. 3.2(b)-(d). After maximal compression to
νmax = 0.75, the process is reversed until the initial volume fraction νi is recovered.

Besides (artificial) contacts at the initial state (which disappear immediately due to the high
repulsive forces involved), contacts are closed permanently only above the jamming volume
fraction. The potential energy is an indicator of the overlaps of the particles. However,
since the compression is rather fast, one can observe considerable potential energy due to
collisions in the fluid-like state, at densities νi < ν < νj, with jamming volume fraction νj.
From Fig. 3.2(f), in the loading or un-loading state, one observes that the kinetic energy is
smaller than the potential energy at the higher densities. In the (isotropic) jammed, solid
state, the potential energy is considerably larger than the kinetic energy, whereas in the
fluid-like state referred to above it is significantly smaller. This is a rough indicator of the
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Figure 3.2: Snapshots of the (a) initial (fully) random configuration of the particles (N =

1000) with big (artificial) overlaps and (b) the situation after only 40 µseconds compression
when all artificial overlaps have disappeared. The color code indicates overlaps of the parti-
cles (red: big overlaps, blue: no overlap). (c) Snapshot of the relaxed granular “fluid” with
volume fraction νi = 0.64. Note that although particles are densely packed they have still
practically no overlap, since the volume fraction is below the jamming value νj. (d) Snapshot
of the strongly compressed packing, with νmax = 0.75 using the same color code as in (a),
(b) and (c). (e) Evolution of the volume fraction, the potential and the kinetic energy during
initial compression and relaxation and (f) the loading-unloading cycle.
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jammed regime, however, not really an objective criterion due to the dynamic loading and un-
loading. Close to the maximal volume fraction, due to our co-sinusoidal loading procedure,
the kinetic energy drops exponentially over about two orders of magnitude between times
t = 480 µs and ∼580 µs. For larger times, the rate of change increases so that the kinetic
energy increases again, showing jumps whenever the packing re-arranges.

Around time t = 850 µs, the volume fraction drops below the un-loading jamming value and
the kinetic energy becomes larger than the potential energy. Also in this fluid-like high-
density granular gas, the kinetic energy drops approximately exponentially due to collisional
cooling, however, with a different rate as before in the high density, slow deformation regime.

3.3 Evolution of the coordination number

In theory, the jamming transition occurs at the isostatic point [113, 114, 127]. In an isostatic
packing of frictionless particles, the coordination number, i.e., the average number of con-
tacts per particle, is C = 2D where D is the dimensionality of the system. One can expect
smaller coordination numbers when tangential elastic forces are involved, however, even in
simulations and experiments with very small tangential forces, the reported values of C are
consistently below 2D. This is due to the definition of an isostatic packing, which excludes
all particles that do not belong to the force network, i.e., ideally, particles with exactly zero
contacts are excluded. Nevertheless, in addition to the particles with zero contacts, there may
be particles having a finite number of contacts for some short time, which do not contribute
to the mechanical stability of the packing. The contacts of these rattlers are transient because
the repulsive contact forces push them away from the mechanically stable backbone. Thus,
if the packing was allowed to relax after every deformation step, or deformed very slowly,
these particles would lose all of their contacts.

Although it is possible to numerically check the contribution of every particle to the force
network [70] an easier although less rigorous way to identify rattlers is to just count their
contacts. Since frictionless particles with less than four contacts are not mechanically stable
they are defined as rattlers. This leads to the following abbreviations and definitions as used
in the rest of this study.

N : Total number of particles

N4 := NC≥4 : Number of particles with at least 4 contacts

M : Total number of contacts

M4 :=MC≥4 : Total number of contacts of particles with at
least 4 contacts
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Cr :=
M

N
: Coordination number (classical definition)

C :=Cm =
M4

N
: Coordination number (modified definition)

C∗ :=
M4

N4
=

C

1−φr
: Corrected coordination number

φr :=
N−N4

N
: (Number) fraction of rattlers

ν :=
1
V ∑p∈N

Vp : Volume fraction of particles

ν∗ := ν−νr =
1
V ∑

p∈N4

Vp : Volume fraction of particles excluding rattlers

νr :=
1
V ∑

p/∈N4

Vp : Volume fraction of rattlers

The difference between coordination numbers Cr and C is not caused by the “ideal rattlers”
with C = 0, since those do not contribute to C anyway. It is caused by those particles (vir-
tual, dynamic rattlers) with 1 ≤ C ≤ 3, which are not mechanically stable, i.e., temporary,
members of the contact network. They are neglected when counting the contacts M4. In the
following, we will use the modified coordination number C := Cm, instead of Cr, since it
better resembles the slow, quasi-static deformation mode of the system, as will be discussed
below.

The ratio of M4 and N4 provides the corrected coordination number C∗, which perfectly
follows the isostaticity arguments. The fraction of rattlers and a comparison between the
classical, the modified and the corrected definitions are shown in Fig. 3.3. The values of Cr

and Cm are very similar, since the number of contacts originating from particles with C = 1,
2, or 3 contacts is small anyway and decays with decaying rate of deformation. considerably
larger and all coordination numbers display a sharp jump at the jamming transition during
un-loading. In the left panel, Fig. 3.3(a), the respective fractions of particles with different
numbers of contacts are shown, where the red solid line represents φr. Coming from high
densities, the fraction of rattlers increases and jumps to unity when approaching νr. In the
right panel, Fig. 3.3(b), the different versions of the coordination numbers are compared,
showing that, while the loading and unloading branch are clearly different, Cr, and C, are
only slightly different close to and below the critical volume fraction νc. Even though larger,
C∗ behaves qualitatively similar below and above the jamming transition.

However, since C∗ involves not all particles, it cannot easily be related to the total particle
volume, or the mass-density of the system – that is equivalent to the volume fraction, i.e.,
ρ = ρ p ν , with the particle material density ρ p – as experimentally accessible for many
systems. The average contact number density νC can be related to the mechanically relevant



3.3 Evolution of the coordination number 33

 0

 0.2

 0.4

 0.6

 0.8

 1

0.64 0.66 0.68 0.70 0.72 0.74

φ

ν

C=0
C=1
C=2
C=3
C<4

 0.01

 0.1

 1

0.64 0.66 0.68 0.70 0.72 0.74

φ

ν

φr(ν)

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

0.64 0.66 0.68 0.70 0.72 0.74

C
o
o
rd

in
a
tio

n
 n

u
m

b
e
r

ν

C
r

C
m

C*

(b)

Figure 3.3: (a) Evolution of the fraction of rattlers as function of volume during fraction
during unloading for a simulation with N = 10000, w = 3, and D = 0.001. Inset: Fit of
Eq. (3.3). (b) Comparison of the coordination numbers computed using the classical Cr,
the modified C and the corrected C∗, for the same simulation. The data for loading and
unloading are shown by solid and dashed lines, respectively.
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contact number density ν∗C∗ (without rattlers):

νC =
N〈Vp〉
V

C =
(1−φr)N〈Vp〉

V

C

1−φr
= (1−φr)νC∗ /= ν∗C∗ = (ν−νr)C∗ ,

whereV is the volume occupied by the packing. The non-equality could become equal only if
the average volume of rattlers is equal to the average volume of all particles, i.e., if νr/ν = φr.
Unfortunately, there is no simple exact relation between νC and ν∗C∗, as discussed below in
section 3.4, since the smaller particles are more likely to be rattlers. Therefore, we will work
with the parameters ν , C∗(ν) (see below), and φr(ν).

The fraction of rattlers, in the quasi-static limit, i.e., for extremely slow deformations, as
presented below, obeys the empirical relation:

φr(ν) = φc exp
[

−φν
(
ν
νc

−1
)]

(3.3)

for ν ≥ νc and φr(ν < νc) = 1 otherwise. This involves two fit parameters (i) the fraction of
rattlers at jamming, φc, and (ii) the rate of decay of rattlers with increasing packing fraction,
φν . A fit of φr(ν) is shown in the inset of Fig. 3.3(a). Note that νc cannot be obtained by
the fit like Eq. (3.3), but has to be obtained by other means [40], e.g., by identification of
the jump/discontinuity of φr(νc). Typical values are φc ≈ 0.13±0.03 and φν ≈ 15±2. The
observation that one has φr(νRLP) ≈ 1 at the random loose packing fraction νRLP ≈ 0.57 is
presumably accidental.

The corrected coordination number C∗, obtained by disregarding rattlers, obeys a power law
of volume fraction as reported previously [92, 113, 114, 127]:

C∗(ν) =C0 +C1

(
ν
νc

−1
)α

, (3.4)

where νc is the critical volume fraction, C0 is the critical coordination number, and C1 is the
prefactor for the power-law with power α . Given C0 = 4, 6 in two and three dimensions,
for isostatic packings of frictionless particles, this would leave three more fit parameters (iii)
νc ≈ νRCP, (iv) C1 ≈ 8, and (v) α ≈ 0.5. However, we sometimes allow alsoC0 as a variable
in order to check the consistency with the isostaticity assumption for the packings.

Below we check this analytical expression for C∗(ν) for the un-loading branch of our sim-
ulations, since these data show less dynamical artefacts than data from the loading branch.
We do not discuss cyclic loading and un-loading, which can lead to a continuous “drift”
(increase) of νc with each loading cycle [23]. Within the present work, the hysteresis under
cyclic loading, and possible quantitative information that can be extracted from it (as, e.g.,
in magnetic systems), is not studied in detail.

Note that we do not identify the νc for un-loading with the jamming volume fraction ν j.
Actually, we doubt if there is one jamming volume fraction. The critical value rather de-
pends on the contact properties and on the history of the packing, especially when realistic
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properties like friction are involved, but also for the frictionless case studied here. A detailed
study of the dependence of νc on the contact properties and on the history of the packing in
general is far from the scope of this study, so that we focus mainly on the first un-loading
branch.

3.3.1 Influence of polydispersity

In order to understand the effect of polydispersity, we first perform simulations using three
rather small packings of 1000 particles with three different widths of the size distribution
w = 1, 2, 3. These samples are compressed and then decompressed, at the same rate, be-
tween νi = 0.5 and νmax 1 0.9. Figure 3.4 displays the relation between volume fraction
and coordination number for these packings. The finite values of the coordination number
during compression, at low densities, make the transition from fluid to solid state difficult to
detect. This is due to temporary contacts which arise from the dynamics at low densities. If
the packing is allowed to relax the dynamic contacts become less and the state of zero coor-
dination is approached, as expected.2 However, not even our slowest simulations allowed us
to avoid dynamic contacts in the compression branch.

On the other hand, a much cleaner, very sharp decrease in C is observed during un-loading
(decompression), when we approach νc from high densities, see Fig. 3.4. The fit of Eq. (3.4)
to the corrected coordination number, C∗, computed during decompression, is shown in the
inset of Fig. 3.4. The transition from the jammed to the unjammed state occurs at higher
volume fractions for more polydisperse, heterogeneous packings. A list of the numerical
values of the fit parameters is given in table 3.2.

Even though the system is rather small and the deformation rate is rather high, the fitted
parameters are almost consistent with the isostaticity assumption, C0 = 6. When this is
imposed, the fit parameters are close to each other and become almost independent of w.
Only for νc there is an increasing trend for increasing w.

2Remark on the fit of Equation (3.4). We choose to fit Eq. (3.4) to the decompression branch of the simulation
data because the system’s kinetic to potential energy ratio is much lower than during compression in this density
range, see Fig. 3.2(f), even for the rather fast compression used. Furthermore, boundary effects are less important
during decompression because the system is expanding and possible spurious contacts caused by the (virtual, pe-
riodic) wall motion are avoided. In a separate set of simulations, we find that by adding extra relaxation between
deformation steps, the compression and decompression branches of C(ν) can get closer to each other (data not
shown). The distance between the branches reduces with the relaxation step but does not disappear even for the
largest relaxation-times. Since the unloading branch is much less sensible to the protocol and rate of deformation,
from now on, we will fit Eq. (3.4), i.e., the analytical expression of the corrected coordination number, exclusively
to the decompression branch of the simulation data.
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Figure 3.4: Coordination number C as function of volume fraction ν for packings of 1000
particles with different size distributions of width w, as given in the figure. The arrows
indicate the compression (up) and decompression (down) directions. Inset: The lines are fits
of the corrected coordination number according to Eq. (3.4), with the fit-parameters given in
table 3.2.

3.3.2 History and system size dependence

It is especially interesting to see how parameters such as deformation history and system
size affect jamming and the evolution of the coordination number. We studied the effect
of deformation history by compressing and decompressing isotropically two packings with
1000 particles and polydispersity w = 3, but for different volume fraction ranges. The first
sample is compressed from an initial state close to jamming up to a very high volume fraction
(ν : 0.64 ! 0.9) and back. The second sample is compressed from the same initial state up
to a moderate volume fraction (ν : 0.64 ! 0.75) and back.

Figure 3.5(a) shows the evolution of the coordination number as function of ν for both
samples. Although, the highly compressed packing seems to have a larger critical volume
fraction, the difference practically disappears when rattlers are removed. Figure 3.5(b) shows
the corrected coordination number C∗ during decompression and the fit of Eq. (3.4) to the
data obtained from the moderately compressed sample. Note that the fit is also quite good
as an extrapolation for stronger compression, i.e., higher densities, suggesting that isotropic
deformation history has no substantial effect on the coordination number at higher volume
fractions.

The size of the system has no effect on the critical volume fraction and the evolution of the
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(a) (b)
w 1 2 3

C0 6.0000 5.9690 6.1158
C1 8.7989 8.5539 7.9439
α 0.5363 0.5776 0.5737
νc 0.6524 0.6582 0.6718

w 1 2 3

C0 6 6 6
C1 8.7363 8.5561 7.9367
α 0.5662 0.5826 0.5542
νc 0.6548 0.6585 0.6707

Table 3.2: (a) Numerical values of the fit-parameters obtained by fitting Eq. (3.4) to the un-
loading simulation data of Fig. 3.4, in the intervals [0.655:0.85], [0.66:0.85] and [0.672:0.85]
for w= 1,2 and 3, respectively. (b) Numerical values of the fit-parameters obtained by fitting
Eq. (3.4) to the un-loading simulation data of Fig. 3.4, in the same intervals and fixingC0 = 6.
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Figure 3.5: (a) Coordination number C as function of volume fraction ν for different com-
pression histories. (b) Evolution of C∗ during decompression. The solid line is the fit of Eq.
(3.4) to the data obtained from the moderately compressed sample (ν : 0.64 ! 0.75).

coordination number. Figure 3.6 illustrates the coordination number as function of volume
fraction during a cycle of compression–decompression for three packings comprising N =

1000, 5000 and 10000 particles. All samples are deformed at the same relative rate D =

0.5, with the same polydispersity parameter w = 3. The small size systems show stronger
fluctuations prior to jamming since dynamical effects are more pronounced for. On the other
hand, after jamming all curves obey a similar power law as confirmed by the fits of Eq. (3.4)
to the corrected coordination number C∗, shown in the inset of Figure 3.6.

The values of the critical volume fractions obtained from the fits are 0.6650 ± 0.0002, 0.6647
± 0.0001, and 0.6652 ± 0.0001, for N = 1000, 5000, and 10000, respectively. The other
parameters, see Table 3.3, are very close to each other and to those reported in Table 3.2.
These rather small differences between the critical volume fractions (and also the other fit
parameters) for different N imply that the system size does not have an important effect on
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Figure 3.6: Evolution of the coordination number for different system sizes, with w= 3 and
D = 0.5. Inset: Fits of the corrected coordination number C∗ according to Eq. (3.4). The
red, green and blue lines are the fits for N = 1000, 5000 and 10000, respectively.

the evolution of the (corrected) coordination number C∗. Larger systems display smaller
statistical fluctuations, however.

3.3.3 Effect of loading rate

The effect of the loading rate on jamming and the evolution of the coordination number is
analyzed by applying isotropic deformation to a polydisperse (w= 3) sample at various rates.
Figure 3.7(a) shows the evolution of the coordination number as function of volume fraction
for a packing of 10000 particles deformed at relative rates D = 1, 0.5, 0.1, 0.01, and 0.001.
The fits of Eq. (3.4) to the corrected coordination number are shown in Fig. 3.7(b) and the
fit parameters are summarized in table 3.3.

The jamming transition should best be studied in the quasi-static limit, i.e., for D→ 0, when
the sample has infinitely long time to relax. However, practically, this is impossible [114].
Using the fit of Eq. (3.4) for a systematic study of the deformation rate effect on the critical
volume fraction is not reliable due to the singularity of its derivative at this point. The rapid
change of the slope of C∗(ν) near jamming increases the sensitivity of other parameters to
the fit range and causes them to fluctuate. When studying the jamming transition, in recent
studies, the densities very close to νc were carefully studied. Note that here, we provide data
for a much wider range of densities, far away from the transition – to be used for practical
applications. Therefore, the parameters and especially the exponents reported in this study
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N = 1000 N = 5000

D= 1 D= 0.5 D= 1 D= 0.5

C0 5.0256 5.8221 5.7645 5.8838
C1 7.5938 8.4875 8.2019 8.1661
α 0.3904 0.5572 0.5279 0.5431
νc 0.6650 0.6650 0.6654 0.6647
ν†
c 0.6652 0.6644 0.6624 0.6620

N = 10000

D= 1 D= 0.5 D= 0.1 D= 0.01 D= 0.001

C0 5.7645 5.7887 6.0643 6.1587 6.1853
C1 8.2019 7.9915 8.4204 8.8347 8.7514
α 0.5279 0.5199 0.5909 0.6301 0.6318
νc 0.6654 0.6652 0.6648 0.6645 0.6644
ν†
c 0.6627 0.6632 0.6633 0.6634 0.6633

Table 3.3: Numerical values of the fit parameters of Eq. (3.4) for various system sizes and
loading rates. All packings have the polydispersity parameter w= 3 and are deformed within
the range ν : 0.64 ! 0.75. The fits are performed in the intervals [ν1 : ν2], with ν1 = 0.665
and ν2 = 0.75. ν†

c are the volume fractions at which the pressure vanishes during unloading,
see Ref. [40]. Note that the data in table 3.2 are slightly different (since they come from
simulations with different initial conditions), which tells us something about the sensitivity
and variation of parameters with different initial configurations.

can be slightly different from those in previous studies.

For example, the exponent α 1 0.5 previously reported in [92] for 2D and [113, 114] for
3D, cannot be always recovered (see Table 3.3) for very slow compression; we rather find
α 1 0.66 for the slowest compression rates. The critical volume fraction, on the other hand,
is not varying much and these variations are presumably due to the sensitive fit function with
a singular slope close to νc, as mentioned already above. In Ref. [40], alternative methods
were compared to determine the critical volume fraction based on the fraction of rattlers, the
pressure, and the ratio of the kinetic and potential energies of the packing. For a better, more
objective analysis of rate effects, we believe that the fit should be used in conjunction with at
least one of these methods. Then, when obtained independently, νc is not a free fit parameter
anymore. However, since changing the loading rate seems to have no strong effect on νc,
and the coordination numbers at volume fractions considerably above νc, we do not pursue
this further.
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Figure 3.7: (a) Evolution of the coordination number for different deformation rates. Inset:
Zoom into the decompression branch during transition from the jammed to the unjammed
state. (b) The corrected coordination number C∗ and the fits of Eq. (3.4). (c) Log-log plot of
C∗ −C0 against (ν/νc−1) from the same data as in (a) and (b). (d) the ratio of data and fit,
c∗/c∗(ν), indicates that the quality of the fit is better than one percent for the full range of
data [νc;0.75].

3.4 Fabric Tensor

In the following, we compare the simulation results on the trace of the fabric tensor to the
recent 3D predictions of Durán et al. [33] that complement the older 2D results by Madadi
et al. [89, 90]. In these studies, the effect of polydispersity on the trace of the fabric tensor
was expressed in terms of the moments of the size distribution. The basic assumption, in
both 2D and 3D, is that the linear compacity cs, defined as the fraction of the particle surface
shielded by its neighbors, is independent of the particle radius. From this the trace of the
fabric is found to be proportional to the contact number density, νC, and a dimensionless
pre-factor (see g3 below) that only depends on the moments of the size-distribution. Since
derivation is similar in both 2D and 3D, only some formulas are shown; for more details we
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refer to Refs. [33, 89, 90].

As first order approximation, in 3D, the mean number of contacts, C(r), of a particle with
radius r is inversely proportional to the fraction of its surface Ω(r)/(4π) shielded by a neigh-
boring sphere of characteristic radius 〈r〉, such that:

C(r) =
4πcs
Ω(r)

, (3.5)

where Ω(r) = 2π (1− cosα), with the sinus and cosinus of the shielding half-angle, sinα =

1/(r/〈r〉+1) and cosα =
√

1− sin2α , respectively. When inserting Eq. (3.5) into the def-
inition of the average coordination number C =

∫ ∞
0 C(r) f (r)dr = 4πcs

∫ ∞
0 [ f (r)/Ω(r)]dr, it

is possible to calculate explicitly the expected compacity for different C:

cs(C) =
a2C

1−C2 +C2r̂2
, (3.6)

with the dimensionless second moment r̂2 from Eq. (3.2). Using the quadratic approximation
of Durán et al. [33] for the solid angle Ω(r) leads to a2 = Ω(〈r〉)/(4π) = 1

2

(

1−
√

3/2
)

,
B2 =

√
3/24a2, and C2 = B2(B2 − 5/6). For example, in the monodisperse special case

one has cs = a2C, so that inserting the isostatic limit C∗ = C(1 − φc) = 6 leads to cs =

6a2/(1−φc)≈ 0.47 for φc ≈ 0.15, i.e., about half of the surface of particles is shielded close
to the jamming point.

Figure 3.8 shows the numerical data for the coordination number C(r) and the compacity
cs(r) as function of r/〈r〉 for w = 3 (for which r̂2 = 13/12) and two different volume frac-
tions: a very high one (ν ≈ 0.74) and one close to jamming (ν ≈ 0.67), along with the
predicted relations from Eqs. (3.5) and (3.6), for coordination number and compacity, re-
spectively. Although, Eq. (3.5) describes the size-dependent contact number qualitatively
well for a broad range of densities, at small radii, the contact number drops considerably be-
low the predictions, see Figs. 3.8(a) and 3.8(c). The assumption of a constant compacity is
confirmed for the larger particle radii, but fails for smaller radii, see Figs. 3.8(b) and 3.8(d).

Using the average coordination number, C, or inserting C∗ =C/(1−φr) into Eq. (3.6) leads
to the red and blue data sets, respectively. Clearly the theoretical prediction that uses C is
superior to the one usingC∗. Nevertheless, we report the interesting and intuitive observation
that the latter coordination number has a lower limit C∗(r) ≥ 4, since rattlers are excluded.
Since small particles have smaller surface area, their chance to have less than four contacts
is higher, so that more rattlers are from the small fractions. Interestingly, the data for cs(r)
indicate that those small particles that are not rattlers have a higher compacity than the
average. Different shapes and wider size distributions have to be studied to allow more
general insights.

Using the definition of the average coordination number, C, the trace of the fabric can be
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Figure 3.8: (a,b) Average number of contacts C(r) as function of the normalized particle ra-
dius, including (red) and excluding (blue) rattlers, at different volume fractions for packings
with N = 10000 particles. The points are data from the simulations while the solid lines
are the analytical predictions of Eq. (3.5) using either cs(C) (red) or cs(C∗) (blue), and thus
confirming that using cs(C) = cs((1− φr)C∗)) in Eq. (3.6) is self-consistent. (c,d) Linear
compacity cs as function of the normalized radius, computed from the same packings as
in (a) and (b), including (red) and excluding (blue) rattlers. Again the solid lines are the
theoretical prediction of Eq. (3.6).

written as detailed in Ref. [33]:

FV = tr(F) = (1/V ) ∑
p∈V

VpCp = (N/V )
∫ ∞

0
drVp(r)C(r) f (r) = g3νC , (3.7)

with the volumes Vp and the contact numbers Cp of particles p, and the term g3, which
contains the information about the polydispersity, which is defined as [33]:

g3 =
〈r3〉Ω
〈r3〉

=

∫ ∞

0
r3[ f (r)/Ω(r)]dr

〈r3〉
∫ ∞

0
[ f (r)/Ω(r)]dr

, (3.8)
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where the brackets 〈. . .〉Ω indicate the normalized averaging over the modified distribution
function [ f (r)/Ω(r)]. Using the moment expansion of Durán et al. [33], the lowest order
analytical approximation (that involves moments up to order k = 5) is:

g3 ≈
1−B2 +C2 +(B2 −2C2)

〈r4〉
〈r〉〈r3〉

+C2
〈r5〉

〈r〉2〈r3〉

1+C2

[
〈r2〉
〈r〉2 −1

] (3.9)

where the constants B2 and C2 were defined in the previous section. This is considerably
more involved than the 2D results [89, 90], since none of the above terms can be neglected
[33]. Only for the monodisperse situation, one has the simplification g3 = 1.

Equation (3.7) is plotted in Fig. 3.9 using the simulation data for different distribution widths
w. For all distributions and packing densities from very loose up to very dense packings
(ν ∼ 0.9), the proportionality between the trace of the fabric and the contact density is well
described by Eq. (3.9), when the correction factor g3 is used. More explicitly, the correction
factor, even though not perfect, improves the quality of the prediction considerably. The rea-
son for the remaining disagreement of order of 1% can be due to the assumption of particles
of radius r being surrounded by particles of mean radius, due to neglecting the overlap of the
particles in the theoretical considerations, or due to the higher probability for small particles
to be rattlers.

The moments of the size distribution can be expressed in terms of the relative width w using
Eq. (3.2), which allows us to study the behavior of g3 as a function of w. The inset of
Fig. 3.9 shows the analytical approximation and the exact definition of g3, from Eq. (3.8),
along with the values of g3 obtained from the DEM simulation. For highly polydisperse
packings, corresponding to large w, the kth moment becomes 〈rk〉 → 〈r〉k2k/(k+ 1) and
g3 thus saturates at a constant gmax

3 ≈ 1.62. Therefore, the influence of an increase in the
polydispersity on tr(F) is limited for high w in the framework of the approximations made.
A more detailed study of this prediction for wide size distributions is, however, far from the
scope of this study.

3.5 Pressure

In this section, the pressure is introduced and related to the other system properties volume
fraction, coordination number, fraction of rattlers, and fabric. In order to better understand
the final analytical expressions, the stress is rewritten and re-phrased, starting from the tra-
ditional definitions.

The micromechanical stress tensor components for a (static) particle (in mechanical equilib-
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The constant g3 plotted as function of w from its definition (◦), the analytical approximation
(solid line) and the simulation data (+).

rium) are defined as:

σ p
i j =

1
Vp

Cp

∑
c=1

l
pc
i f

pc
j , (3.10)

where lpc = (rp−δc/2)n̂ is the branch vector of contact c and fpc = knδcn̂ is the (linear) force
associated, with particle radius, rp, overlap δc, spring-stiffness, kn, and the contact-direction
unit vector, n̂. Here we assume [83] that the contact point is located at the middle of the
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overlap. 3 From these definitions, the trace of the stress for a single particle becomes:

tr(σp) =
kn

Vp

Cp

∑
c=1

δc

(

rp−
δc
2

)

, (3.11)

with the number of contacts Cp of particle p. For a packing of N particles, the trace of the
average stress tensor can be computed by weighing the particles according to their volume
[73]:

tr(σ) =
1
V ∑p∈V

Vp tr(σp)

=
kn

V

N

∑
p=1

(

rp

Cp

∑
c=1

δc−
1
2

Cp

∑
c=1

δ 2
c

)

, (3.12)

where V is the total volume of the packing.

One can express V in terms of the volume fraction and the volume of N particles as V =

N〈Vp〉/ν , with 〈Vp〉= 4π
3 〈r3

p〉, where the brackets denote averaging of a particle-property Ap

over all particles in a packing, e.g., 〈A〉 := 〈Ap〉 = 1
N ∑

N
p=1Ap. Introducing also the normal-

ized average normal force for each particle p as φp ≡ fp/〈 fp〉, with fp =∑
Cp

c=1 knδc, the trace
of the averaged stress tensor becomes:

tr(σ) =
3knν

4π〈r3〉
1
N

N

∑
p=1

(

rp

Cp

∑
c=1

δc−
1
2

Cp

∑
c=1

δ 2
c

)

=
3kn
4π

ν
〈r3〉

(

〈
Cp

∑
c=1

δc〉〈rpφp〉−
1
2
〈
Cp

∑
c=1

δ 2
c 〉

)

=
3kn
4π

νC〈δ 〉c
〈r3〉

(

〈rpφp〉−
〈δ 2〉c
2〈δ 〉c

)

whereC= M4
N = 1

N ∑p∈N4
Cp is the mean coordination number (or just coordination number,

averaged over all particles), 〈δ 〉c ≡ 1
M4
∑c∈M4

δc is the average overlap over all M4 contacts,
of particles with four or more contacts that contribute to the contact network, and we have
used the identities: 〈∑Cp

c=1 δc〉 ≡C〈δ 〉c and 〈∑Cp

c=1 δ
2
c 〉 ≡C〈δ 2〉c.

The non-dimensional pressure is defined as p= 2〈r〉
3kn

tr(σ), so that introducing the normalized
particle radius ξp = rp/〈r〉 and overlap ∆c = δc/〈r〉 leads to:

p= p(〈∆〉c) =
1

4π
νC〈∆〉c (2gp−b〈∆〉c) , (3.13)

3A more realistic alternative would be to define it on the plane bisecting the particles in contact and split the
overlap accordingly, however, the accuracy gained in doing so would be negligible for small overlaps and similar
particle radii.
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where the factors are

gp =
〈ξpφp〉
〈ξ 3〉

and b=
1

〈ξ 3〉
〈∆2〉c
〈∆〉2

c

.

For a monodisperse packing the factor gp simplifies to 1. In the general polydisperse case,
the evaluation of gp necessitates an integration over the normalized particle size distribution
h(ξ ) using the pdf s of the normalized average normal force φ(ξ ) acting on particles of radius
ξ :

gp =
1

〈ξ 3〉

∫ ∞

0
ξφ(ξ )h(ξ )dξ , (3.14)

as discussed in more detail in Ref. [33]. On the other hand, the nonlinear factor b involves
the second moment of the normalized normal force distribution function 〈∆2〉c/〈∆〉2

c .

Now we turn our attention to the remaining variable in Eq. (3.13), i.e., the normalized aver-
age overlap 〈∆〉c. We relate it to the volumetric strain under the simplifying assumption of
uniform deformation in the packing (non-affine deformations are relevant but go beyond the
scope of this study). Given the displacement gradient, ui, j, the change of the branch vector
of a contact is:

dli = ui, j l j, (3.15)

where summation is implied over repeating indices and the comma indicates the derivative
with respect to the following index, i.e., the j-coordinate. The scalar product with the contact
normal corresponds to the change of overlap δ and we assume that for small overlaps the
length of the branch vector is equal to 〈r〉, so that:

dδ = nidli = 〈r〉niui, jn j (3.16)

For an isotropic deformation and contact distribution, as considered in this study, the off-
diagonal (i.e., the deviatoric as well as the anti-symmetric) elements of the displacement
gradient will cancel in average. Hence, recalling the definition of the normalized contact
overlap, ∆c = δc/〈r〉, one can write:

d〈∆〉c = Dεv. (3.17)

where εv = εii is the trace of the infinitesimal strain tensor defined by εi j =
1
2 (ui, j + u j,i)

and D is a proportionality constant that depends on the size distribution and reflects the
non-affinities in the deformation, however, this issue is beyond the scope of this study.

The average normalized overlap 〈∆〉c can be obtained by integrating Eq. (3.17), where the
integral of εv, denoted by εv, is the true or logarithmic volume change of the system, relative
to the reference volume V0, with corresponding reference volume fraction, ν0, which we



3.5 Pressure 47

choose – without loss of generality – to be equal to the critical, jamming volume fraction
ν0 = νc, so that:

〈∆〉c = D

∫ V

V0

εv = Dεv = D ln
(νc
ν

)

. (3.18)

Substituting Eq. (3.18) into Eq. (3.13) we obtain for the non-dimensional pressure:

p= p0
νC
νc

(−εv) [1− γp(−εv)] , (3.19)

where the prefactors are condensed into p0 ≡ νcgpD/2π and γp ≡ bD/2gp. The implications
of this, e.g., the combination gpD should not depend on νc, will be further studied and
discussed elsewhere [33].

Note that in our sign-convention, compressive strains are negative – corresponding to de-
creasing volume with ongoing compression – so that, accordingly, compressive stresses
should be negative too. However, we rather use positive compressive stress as above, for
the sake of continuity.
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Figure 3.10: The dimensionless pressure as function of the volume fraction (left) (where the
solid line is Eq. (3.19), with νc = 0.666 and otherwise using the numbers given in table 3.4
that fit well data-set S with N≈ 5000 particles and w= 3.) and the scaled pressure as function
of the (negative) volumetric strain (right). The solid line is obtained from Eq. (3.20) and the
dashed line is the linear approximation. Inset: Zoom into the small deformation regime.

Figure 3.10 shows the non-dimensional pressure as function of volumetric strain, from repre-
sentative simulations of isotropic deformation for different size distributions. Various other
data (not shown, except for one that is indicated by S) using different system sizes and defor-
mation protocols collapse with the same curves – as long as the rate of deformation is small.
Interestingly, the scaled pressure

p∗ =
pνc
νC

= p0(−εv) [1− γp(−εv)] , (3.20)
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is independent of the polydispersity and is well represented by the linear relation in Eq.
(3.19), namely p∗ ≈ −p0εv, valid for small deformations. The correction factor [1+ γpεv]

is only required for large volumetric strain. The (positive) coefficients p0 ≈ 0.0418 and
γp ≈ 0.110 fit the data well4.

Eq. (3.19) now represents the constitutive relation for pressure, from which we can compute,
e.g., the bulk modulus of a polydisperse packing, using the definition B = −V (∂ p/∂V ) =
∂ p/∂ (−εv) = ν∂ p/∂ν . Given the dimensionless bulk modulus,

B=
∂ p

∂ (−εv)
=

p0FV

g3 νc

[

1−2γp(−εv)+(−εv) [1− γp(−εv)]
∂ ln(FV )
∂ (−εv)

]

(3.21)

with FV = tr(F) = g3νC, one has an incremental evolution equation for the dimensionless
stress:

dp= B(−dεv) , (3.22)

with the incremental evolution equation for the isotropic fabric:

dFV = FV

(

1+ν
∂C
∂ν

)

(−dεv) , (3.23)

where the classical coordination number, C = (1− φr(ν))C∗(ν), is an analytically known
function of ν , see Eqs. (3.3) and (3.4), involving the parameters/coefficients as summarized
in Table 3.4.

Note that the above evolution equation for the dimensionless pressure Eq. (3.22), together
with Eqs. (3.21), (3.23) and Eqs. (3.3), (3.4), represents the main result of this study that can
be easily translated into dimensional pressure and bulk modulus by multiplication with the
factor kn/(2〈r〉). As final remark, the bulk modulus does not explicitly depend on pressure,
but FV does implicitly, hiding the pressure dependence of B. Furthermore, the last term in
the bulk modulus involves the derivative ∂C/∂ν , which can be very large close the critical
density, due to the power α < 1, and thus is not negligible. Future work should focus on the
validation and comparison of the present approach with experimental data, e.g., concerning
the density dependence of pressure and the pressure dependence of B.

4The best fit quality (error less than one per-cent for all densities) is obtained when Eq. (3.20) is used to fit the
pressure, disregarding the data very close to jamming, i.e., for the best fits, data for ν < νc+ 0.002 are neglected,
since those are hampered by dynamic effects and are thus most unreliable – even when following a very slow
unloading procedure (data-set S). Thus we cannot exclude the possibility that the behavior very close to jamming
turns out to be different from our results. However, as compared to the very wide range of densities covered, this
concerns only a very small regime at very low pressures. The parameter p0 is of major importance, while γp depends
on p0 rather strongly, however, contributing only a small variation to the pressure. Furthermore, fitting power laws
proportional to (ν − νc)β to the pressure was not possible over the whole range. For the ranges 0.67 < ν < 0.72
and 0.7 < ν < 0.9 rather good fits lead to power β = 1.21 and 1.34, respectively.
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3.6 Summary and Conclusion

The transition between fluid- and solid-like phases in idealized, frictionless packings of poly-
disperse spheres has been investigated by means of discrete element simulations of isotropic
compression and de-compression. As main result, an incremental constitutive relation is
given in Eq. (3.22) for the pressure change under isotropic deformation, to be used together
with Eqs. (3.21), (3.23) and Eqs. (3.3), (3.4). The pressure evolution equation should be
(i) valid for a road range of volume fractions ν ≥ νc, (ii) should be rather insensitive to
(moderate) polydispersity and (iii) involves only analytically known functions of the volume
fraction.

The coordination number, i.e., the average number of contacts per all particles,C, is analyzed
as function of the volume fraction in order to characterize the state of the granular packing.
When the rattlers (i.e. particles with less than four contacts) are disregarded, one obtains the
corrected coordination number C∗ ≈ C/(1− φr). The fraction of rattlers, φr, jumps at the
jamming volume fraction from φr = 1 to φc and then decays exponentially with increasing
volume fraction. Previous studies have shown that the coordination C∗ number is discontin-
uous at the transition and evolves as a power law in the jammed phase close to the critical
volume fraction. However, to the authors knowledge, the validity of the power law has not
been checked in a broader range up to much higher volume fractions. We fitted an analyti-
cal expression of the power law to the simulation data obtained from various packings and
confirm that it is not only valid in the neighborhood of νc but also for very dense packings.

The effect of different system and simulation parameters on the coordination number and the
critical volume fraction have been analyzed. We find that changing the polydispersity of the
packing causes a shift in the critical volume fraction, i.e., more heterogeneous packings jam
at higher volume fractions. However, the power law behavior of the coordination number is
not affected by polydispersity. Lowering the deformation rate has the effect of steepening the
slope of the coordination number vs. volume fraction curve at the transition, which suggests
that the discontinuity will be only achieved in the limit of quasistatic deformation. A study
of the effect of deformation rate on the critical volume fraction based on the fit of the power
law is unreliable because of the singularity at this point. We recommend that the fit should
be used in conjunction with one of the methods proposed in Ref. [40] to determine νc self-
consistently. Finally, we note that varying the deformation rate as well as the system size and
deformation history does not have a significant effect on the evolution of the coordination
number at high volume fractions: when the rattlers are removed, the power law behavior
remains unaffected, at higher densities.

The structure of the contact network plays an important role in determining the mechanical
properties of granular materials. In section 3.4 we reviewed previous theoretical predictions
regarding the trace of the fabric tensor and compared them with our numerical results. The
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Fit parameters forC(ν)
jamming volume fraction νc 0.66±0.01 variable νc(D,w, ...)
coordination number at jamming C0 6 exact
prefactor for the algebraic
coordination number

C1 8±0.5 variable

power for the algebraic coordination
number

α 0.58±0.05 approximate

Fit parameters for φr(ν)
fraction of rattlers at jamming φc 0.13±0.03 approximate
decay rate of fraction of rattlers φν 15±2 approximate
Relation between fabric and

contact number density

polydispersity correction factor g3 ≥ 1 variable g3(w)

Fit parameters for p

linear pressure factor p0 0.0418±0.001 approximate
non-linear pressure factor γp 0.110 strongly dependent on

p0

Table 3.4: Summary of the coefficients involved in the constitutive relations for the pressure
p and the isotropic fabric FV . In the column right of the symbols are given typical values
– some of them are exact, some are fits with a broad spread and some are not changing so
much. In the last column some strong dependencies are indicated, e.g., g3 depends only on
the width of the size distribution, w, but not on other variables.

contact number density νC obtained from the simulations and corrected by the factor g3,
which only depends on the moments of the particle size distribution, as proposed in Ref.
[33], is in good agreement with the trace of the fabric tensor, so that tr(F) = g3νC∗(1−φr).

Additionally, an incremental expression of the pressure has been derived in section 3.5 based
on the micromechanical properties of the particles. The volumetric strain applied to the
packing and the isotropic fabric was related to it, thereby enabling us to give an analytical
expression for the bulk modulus that includes an evolution term of the isotropic fabric, as
specified above. Scaling is observed between the numerical results for different polydisper-
sities when the scaled pressure p∗ is plotted against volumetric strain relative to the critical
configuration at volume fraction ν = νc. We note that the analytical form of the pressure
does not explicitly contain a closed power-law relation. The pressure is proportional to the
trace of fabric (which contains the power-law relation for the coordination number) and oth-
erwise linear with volumetric strain – involving a rather small quadratic correction for very
large strains.

In this chapter we only considered isotropic deformations applied to frictionless packings of
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spheres. The natural next steps are to also apply deviatoric (or shear) strain and to include
friction and other material parameters. The former will lead to structural anisotropy, while
the latter allows to study the effect of various contact properties – like friction – on the evo-
lution of the fabric and the stress. The evolution of, not only, pressure but also of deviatoric
stresses is related to the anisotropy of the structure, see the 2D observations in Refs. [80, 81]
and the more recent results in 3D, [31, 32], which also confirm that the scaling relation of
the fabric – as observed here without friction – holds also in the presence of friction [82, 84].

We note that the jamming volume fraction νc (e.g. under cyclic loading) is not a constant,
but depends on the history of the packing. This issue was not addressed in this study, but
will be subject to future research.

Finally, the relations proposed in this study should be compared to experimental data in order
to test their predictive value. For example, the pressure dependence of the bulk-modulus is a
measurable bulk property, whereas the fraction of rattlers and the isotropic fabric are usually
not easily available experimentally.
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3.A Determination of the critical volume fraction*

Abstract

The jamming transition in granular packings is characterized by a sudden change in

the coordination number. In this work we investigate the evolution of coordination

number as function of volume fraction for frictionless packings of spheres undergo-

ing isotropic deformation. Using the results obtained from Discrete Element Method

simulations, we confirm that the coordination number depends on volume fraction

by a power law with exponent α ≈ 0.5 above the critical volume fraction and up to

*Published as F. Göncü, O. Durán, and S. Luding. Jamming in frictionless packings of spheres: determination
of the critical volume fraction. In M. Nakagawa and S. Luding, editors, Powders and Grains 2009: Proceedings

of the 6th International Conference on Micromechanics of Granular Media, 13-17 July 2009, Golden, Colorado,
pages 531–534. AIP, 2009
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rather high densities. We find that the system size and loading rate do not have an

important effect on the evolution of the coordination number. Polydispersity of the

packing seems to cause a shift in the critical volume fraction, i.e., more heteroge-

neous packings jam at higher volume fractions. Finally, we propose and evaluate

alternative methods to determine the critical volume fraction based on the number of

rattlers, the pressure and the ratio of kinetic and potential energies. The results are

all consistent with the critical volume fractions obtained from the fits of the power

law to the simulation data.

3.A.1 Introduction

A common property of materials like molecular liquids, colloids, foams or granular materials
is that they have an amorphous structure and they behave like a solid when either temperature
or applied shear force is decreased or volume fraction is increased. The transition from fluid
to solid-like behavior in disordered states is generally referred to as jamming. Liu and Nagel
[77] have proposed a “jamming phase diagram” to unify this concept for different materials
with temperature, volume fraction and applied shear stress as control parameters. For ather-
mal systems such as granular materials, temperature has no effect and at zero applied shear
stress, there is a well defined point on the volume fraction axis at which jamming first occurs
[114]. The objective of this study is to gain a better understanding of this critical volume
fraction, the effect of various system parameters on it and how to best identify it.

In particular, we analyze the coordination number as function of the volume fraction which is
discontinuous at jamming and evolves as a power law above the critical volume fraction [92,
113, 114]. We perform DEM simulations of isotropic compression in frictionless packings
of spheres. We vary system properties such as the number of particles, polydispersity and
loading rate.

3.A.2 Simulation setup

The Discrete Element Method [18, 83, 84] is used. Frictionless spherical particles are en-
closed in a cubic volume with periodic boundary conditions. A linear viscoelastic contact
model defines the particle normal contact forces. Besides the damping at the contact, an
artificial background dissipation is introduced to reduce dynamical effects. Furthermore, in
all simulations we neglect gravity. Typical values of the simulation parameters are: system
size N = 1000,5000,10000 particles, density ρ = 2000 [kg/m3], elastic stiffness kn = 5000
[N/m], particle damping coefficient γ = 1000 [kg/s], background dissipation γb = 100 [kg/s]
(see Ref. [83] for a discussion of the units). The contact duration of two average particles
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is tc = 0.64 seconds in these units and the coefficient of restitution is r = 0.92. Polydis-
persity is measured by the width w = rmax/rmin of the uniform particle radius distribution.
Typical values of w are 1, 2 and 3. Note that w= 1 corresponds to a monodisperse packing.
The (average) loading rate is defined as the ratio of relative volume change over the total
simulation time. Since we are interested in relative rates for identical deformations, we use
instead D= Tref/Tsim where Tref is the simulation time of the fastest simulation which is 1000
seconds. Typical values of D are 0.1, 0.5 and 1.

3.A.3 Effect of system size

Figure 3.11 shows the evolution of coordination number C including rattlers, i.e. the parti-
cles without contacts, for polydisperse packings (w = 3) with different sizes. Frictionless
particles cannot be mechanically stable unless they have at least 4 contacts. Therefore we
define as rattlers those particles having less than 4 contacts. The evolution of the corrected
coordination number C∗ which excludes rattlers is given by:

C∗(ν) =C0 +A

(
ν
νc

−1
)α

(3.24)

where νc is the critical volume fraction and C0 corresponds to the isostatic limit [114, 143]
which is C0 = 6 for 3D and C0 = 4 for 2D.

The fluctuations and the finite values of the coordination numberC during compression prior
to jamming are due to dynamical effects caused by the moving boundaries of the simulation
domain. After jamming, these effects are less visible since the ratio between the kinetic
and potential energies is much smaller, i.e., e = Ekin/Epot 5 1. The strong jump in the
coordination number is only clean during decompression at the transition from solid to fluid
phase.

The inset of Figure 3.11 shows the fit of Eq. (3.24) to the decompression branch of the
simulation data. The critical densities obtained from the fits are 0.6650 ± 0.0002, 0.6647 ±
0.0002 and 0.6652 ± 0.0001 for N = 1000,5000 and 10000, respectively. Other parameters
are reported in Table 3.5. It is clear that the system size has no significant effect on the
critical volume fraction.

3.A.4 Influence of polydispersity

We have performed simulations using three packings of 1000 particles with respective widths
of the size distribution w = 1,2,3. All of the samples were compressed from ν = 0.5 to
ν = 0.9 and then decompressed. Figure 3.12 shows coordination number as function of the
volume fraction for the corresponding packings. The inset shows the fit of Eq. (3.24) to the
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Figure 3.11: Coordination number C as function of density ν for different system sizes.
Inset: Fit of Eq. (3.24) to the corrected coordination number C∗ computed from the data
excluding rattlers recorded during decompression with D = 0.5. The red, green and blue
lines are the fits of the systems containing 1000, 5000 and 10000 particles, respectively.

decompression branch of the simulation data. The critical volume fractions obtained from
the fits are 0.649 ± 0.002, 0.658 ± 0.002 and 0.671 ± 0.002 for w= 1,2 and 3, respectively.
This indicates that more heterogeneous packings jam at higher volume fractions.

3.A.5 Effect of loading rate

Figure 3.13 shows the coordination number as function of the volume fraction for a poly-
disperse packing (w = 3) of 10000 particles deformed at three different rates. The relative
rates of loading are D = 0.1,0.5 and 1. Jamming occurs at vanishing deformation rates,
which is consistent with the observation that the slower the system is deformed, the sharper
the transition gets. The evolution of the corrected coordination number and the fits of Eq.
(3.24) are shown in the inset of Figure 3.13. It seems that by removal of rattlers the effect of
loading rate disappears in high volume fraction. The critical volume fractions obtained from
the fits are 0.6648 ± 0.0002, 0.6652 ± 0.0001 and 0.6654 ± 0.0001 for D= 0.1,0.5 and 1,
respectively. However, these values are questionable since the derivative of Eq. (3.24) has a
singularity at νc which makes the results very sensitive to the fit range. Consequently, the
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Figure 3.12: The evolution of the coordination number C with the volume fraction ν for
different polydispersities. The arrows indicate the compression (up) and decompression
(down) directions. Inset: The solid lines are the fits of the corrected coordination numberC∗

according to Eq. (3.24).

exponent α ≈ 0.5 which is reported in 2D experiments and simulations [92, 113] cannot al-
ways be recovered (see Table 3.5). Furthermore, knowing that the rate effects are important
close to νc, using the fit of Eq. (3.24) to analyze the effect of the compression rate might be
unreliable. Therefore we propose and evaluate different alternatives.

3.A.6 The fractions of rattlers

An alternative way to determine the critical density νc at which the jamming transition oc-
curs is to examine the number of rattlers, i.e. particles with fewer than 4 contacts. Typically,
it has a reverse behavior to the coordination number, i.e. when C decreases it increases and
vice versa. However the number of particles with less than four but more than zero contacts
increases or decreases only during the transition. Figure 3.14 shows the evolution of the
fraction of particles having different number of contacts during decompression. The critical
volume fractions are determined by taking the average of the volume fractions at which the
the peaks occur in the ν–φ graphs for the fractions of particles with 0 < C < 4. The νc
obtained using this method are 0.6634, 0.6623 and 0.6634 for packings with N = 1000,5000
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Figure 3.13: Coordination number C as function of density ν for different loading rates.
Inset: The fits of Eq. (3.24).

N D C0 A α νc νc∗ νc† νc∗∗

1000
0.5 5.8221 8.4875 0.5572 0.6650 0.6641 0.6644 0.6705
1 5.0256 7.5938 0.3904 0.6650 0.6634 0.6652 0.6669

5000
0.5 5.8838 8.1661 0.5431 0.6647 0.6622 0.6620 0.6658
1 5.7645 8.2019 0.5279 0.6654 0.6623 0.6624 0.6685

10000
0.1 6.0643 8.4204 0.5909 0.6648 0.6636 0.6624 0.6647
0.5 5.7887 7.9915 0.5199 0.6652 0.6624 0.6632 0.6665
1 5.7645 8.2019 0.5279 0.6654 0.6634 0.6627 0.6675

∗
Obtained from the peaks in the evolution of fraction of rattlers.

†
Obtained from the fits of Eq. (3.26).

∗∗
Obtained from the intersection points in the e–ν graphs.

Table 3.5: Critical volume fractions and fit parameters for polydisperse (w = 3) packings
obtained from the fits of Eq. (3.24) and alternative methods for different system sizes and
loading rates.

and 10000, respectively. These values are close to those obtained from the fits of Eq. (3.24).
The advantage of this method is that it can be given a physical explanation. During the tran-
sition from the solid to fluid phase, most of the contacts will open and as mentioned earlier
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Figure 3.14: Evolution of fractions of rattlers during decompression.

the number of rattlers will quickly increase. However, after the transition the coordination
number is normally equal to zero. Therefore, the number of particles with less than four but
more than zero contacts will first increase then decrease, which results in the peaks in their
fraction.

3.A.7 Pressure

The static pressure p in a packing is obtained from the (1/3) trace of the averaged microme-
chanical stress:

σ i j =
1
V ∑c∈V

f ci l
c
j (3.25)

where V is the total volume of the packing, lcj is the branch vector of contact c and f ci is the
force associated with the contact. During decompression most of the contacts open at the
jamming point and the static pressure drops to zero. Hence, an alternative definition of νc
can be given as the volume fraction at which the pressure vanishes. In order to determine
numerical values of νc we use the relation:

P

Cν
= Pref log

(
ν
νc

)

(3.26)

where P= pa0/kn is the pressure normalized by kn and the average particle radius a0. Figure
3.15 shows the fit of Eq. (3.26) to the simulation data. The critical volume fractions obtained
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from the fits are shown in Table 3.5. Note the good agreement between the values obtained
from the peaks in the fraction of rattlers and the pressure.

3.A.8 An Energy based criterion

The values of the critical density νc and coordination number C0 at the jamming transition
can also be obtained from considerations of the ratio of the kinetic and potential energies
of the system e = Ekin/Epot [83]. We identify the jammed state as the point where the
compression branch of the e–ν curve crosses its decompression branch (Fig. 3.16). At this
point e diverges, which implies a sudden drop in the elastic energy as a clear signature that
the unjammed state is reached. This method leads to the expected coordination number
C0 ≈ 6 which corresponds to the mechanical stability of an isostatic system [114]. The
critical volume fractions found using this method are νc = 0.652±0.005, 0.659±0.005 and
0.6666± 0.0006 for polydisperse samples with w = 1, 2 and 3, respectively. The accuracy
of this method is limited by the spacing of the data points around the crossing point.



3.A Determination of the critical volume fraction 59

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

10-4 10-2 100 102 104
 4

 5

 6

 7

 8

 9

ν C
*

Ekin/Epot

ν
C*

Figure 3.16: Corrected coordination number C∗ and volume fraction ν as functions of the
energy ratio for a polydisperse (w = 3) packing of 10000 particles. The arrows indicate the
compression (up) and decompression (down) directions.

3.A.9 Conclusions

We have analyzed the effect of different system properties on the critical volume fraction
in jamming and the evolution of the coordination number. We find that system size does
not have a significant effect on both of these parameters. On the other hand, polydispersity
causes a shift in the critical volume fraction, i.e. less homogeneous packings jam at higher
volume fractions. We find that the jump in the coordination number becomes sharper as the
loading rate is lowered. A more detailed study of the effects of much slower loading rates on
the critical volume fraction are required. However, the loading rate has no visible effect on
the evolution of the coordination at high volume fractions – after the removal of the rattlers.
Finally, we proposed alternative methods to identify the critical volume fraction based on (1)
the fraction of rattlers, (2) the energy ratio, and (3) the pressure. A summary of the fits to the
power law Eq. (3.24) and the νc obtained from the proposed methods for different system
sizes and compression rates is given in Table 3.5. In conclusion, we recommend to not rely
on a single method but, e.g., use the fits to coordination number and pressure in parallel.
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Chapter 4

Effect of particle friction and

polydispersity*

Abstract

The macroscopic mechanical behavior of granular materials inherently depends on

the properties of the particles which compose them, but it is still unclear how. Us-

ing the Discrete Element Method, the effect of particle friction and polydispersity on

the macroscopic stress response of 3D sphere packings is studied. The analytical

expressions for the pressure, coordination number and fraction of rattlers proposed

for isotropically deformed frictionless systems also hold when the interparticle coef-

ficient of friction is finite, however the numerical values of the parameters such as

jamming volume fraction change.

The macroscopic response under deviatoric loading is studied with triaxial test simu-

lations. Concerning the shear strength, our results agree with previous studies show-

ing that the deviatoric stress ratio increases with particle coefficient of friction µ
starting from a non-zero value for µ = 0 and saturating for large µ . On the other

hand, the volumetric strain does not have a monotonic dependence on the particle

friction. Most notably, the maximum compaction is reached at a relatively small value

of the coefficient of friction µ ≈ 0.3. The effect of polydispersity on the macroscopic

stress-strain relationship cannot be studied independent of initial packing conditions.

Unlike pressure, the shear strength increases with polydispersity when the initial vol-

ume fraction is fixed, but the effect of polydispersity is much less pronounced when

*Based on F. Göncü and S. Luding. Effect of particle friction and polydispersity on the macroscopic stress-strain
relations of granular materials. Acta Geotechnica, Submitted, 2012
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the initial pressure of the packings is fixed. Finally, a hypoplastic constitutive model

is calibrated with the numerical test results to ascertain the relation between particle

properties and material coefficients of the model.

4.1 Introduction

Understanding the mechanical properties of granular materials and their connection to the
microscale particle properties is important for many industrial applications and basic re-
search. Even when grain scale properties such as shape, roughness and elasticity are known
it is not straight forward to relate them to the macroscopic constitutive behavior. The main
difficulty arises from the discreteness and disorder of granular materials which lead to inho-
mogeneous and anisotropic contact and force distributions [101, 107].

In general, two types of approaches focusing on different length scales are pursued to model
the mechanical behavior of granular materials. Micro-mechanical [57] models consider in-
dividual particles and their interactions with the surrounding for example by specifying con-
tact force laws and inter-particle friction. Although this is analytically tractable for a limited
number of particles, it is usually implemented numerically in discrete particle methods [18]
for useful results. Large scale phenomena and industrial applications of granular materials
involve countless particles. Even with the most advanced computational technology of today
it is not possible to simulate a nature-scale realistic system following this approach.

An alternative is to assume a granular medium as a continuum and apply the principles of
continuum mechanics to obtain macroscopic field variables. Generally numerical methods
implementing this approach require comparatively less computational resources. However,
besides the lower resolution one has to sacrifice many features of granular materials read-
ily implemented in discrete methods, such as geometric non-linearity due to discreteness,
explicit control over particle properties etc. Instead a constitutive model has to be defined
typically based on phenomenological observations of the relation between stress and strain.
Although, micromechanical parameters are introduced [14, 99, 109] to enhance the mod-
els, the main drawback of the continuum approach remains its lack of connection with the
microscopic properties of the constituent particles.

The goal of this study is to understand the effect of micro-scale particles properties on the
macroscopic mechanical behavior of granular materials. Our approach which is illustrated in
Fig. 4.1 tries to combine the advantages of discrete particle simulation and continuum theory.
We use numerical simulations as a virtual test facility to systematically characterize the
effect of particle properties on the macroscopic mechanical stress-strain relationship of ideal
granular packings. In particular, we analyze the effect of particle friction and polydispersity
on the macroscopic stress-strain relationship of numerical assemblies subject to isotropic and
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Figure 4.1: From particle simulations to continuum description of granular materials.
Schematic illustration of the approach for the development of micromechanically based con-
stitutive models for granular materials using discrete particle methods. In this study we focus
on model systems of frictional polydisperse assemblies of spheres.

triaxial loading. Finally we calibrate a hypoplastic constitutive model with the simulation
data to characterize the relation between particle properties and the material coefficients of
the model.

The manuscript is organized as follows: In section 4.2 we describe the general numerical
setup for sample preparation and parameters used in simulations. Next in section 4.3 we
present results of isotropic deformation simulations of frictional packings and compare the
evolution of the pressure with previously studied frictionless packings with varying poly-
dispersity. Section 4.4 introduces the hypoplastic constitutive model. Following a short
description of the numerical test setup, in Section 4.5 we present the results of triaxial test
simulations with the calibration of the hypoplastic model for different particle coefficients
of friction and polydispersities.

4.2 Simulation setup

The motion of spherical particles with uniformly distributed radii between rmin and rmax was
simulated using the Discrete Element Method (DEM) [18]. Linear spring–dashpot contact
force laws as function of the overlaps are used to model the interaction of particles in the
normal and tangential directions. Artificial background dissipation proportional to the trans-
lational and rotational velocities was included to damp dynamics. Friction was modelled
according to the Coulomb law involving tangential elasticity, i.e. static friction. Gravity was
neglected during all simulations. Numerical values of the parameters used in simulations are
presented in Table 4.1.

Cube shape samples were prepared from random granular gases (ν = 0.3) with prescribed
polydispersities. The packings were compressed isotropically by moving periodic bound-
aries until the volume fraction reached the initial value required for subsequent simulations.
The boundaries were displaced using a cosine wave function to avoid shocks. They were then
relaxed at constant volume fraction to dissipate most of the remaining kinetic energy. Fig.
4.2 illustrates the sample preparation and a typical simulation of an isotropic deformation
cycle.
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Parameter Value Description
N 9261 [–] Number of particles
〈r〉 1 [mm] Average radius
w 1−5 [–] Polydispersity parameter w= rmax/rmin

ρ 2000 [kg/m3] Density
kn 108 [kg/s2] Stiffness–normal spring
kt 2×107 [kg/s2] Stiffness–tangential spring
µ 0−100 [–] Coefficient of friction
γn 1 [kg/s] Viscous dissipation–normal direction
γt 0.2 [kg/s] Viscous dissipation–tangential direction
γtr 0.01 [kg/s] Background damping–Translation
γrot 0.002 [kg/s] Background damping–Rotation
τc 0.64 [µs] Duration of a normal collision for an average size

particle

Table 4.1: Summary and numerical values of the particle parameters used in DEM simula-
tions.

It was previously observed [1, 127] that friction has an important effect on the structure
and geometry of loose packings generated by compressing random granular gases. The
preparation history, which can influence the mechanical behavior of granular packings at
later stages, is not our aim in this study. However, when studying the effect of friction,
we did not entirely disregard it by preparing frictionless samples. Instead, to minimize the
effect of friction during the preparation procedure, we used very soft tangential springs,
i.e. kt/kn = 0.01, with the coefficient of friction used in the final simulation. This has no
visible consequences for the samples prepared below the jamming density. However, as it
will be shown in Sec. 4.5.1, even with soft tangential springs particle friction has noticeable
repercussion, e.g. on pressure, at higher densities.

4.3 Isotropic deformations: Evolution of the pressure

Experimental [92] and numerical investigations [1, 114] in 2 and 3 dimensions have shown
that pressure along with other quantities such as the coordination number are evolving as
a power law of volume fraction in the vicinity of jamming. In our earlier work [41] we
derived an analytical expression of the dimensionless pressure p= 2〈r〉

3kn
tr(σ) for packings of

frictionless polydisperse particles which is applicable to a wide range of volume fractions
after jamming:

p= p0
νC
νc

(−εv) [1− γp(−εv)] , (4.1)
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Figure 4.2: Preparation of a sample and isotropic compression-expansion cycle. The initial
random granular gas (A) is compressed until the volume fraction reaches the desired value.
It is then relaxed at constant volume and used as the initial packing (B) for subsequent
simulations. The color of the particles indicates their overlap. Large overlaps are present
in the random gas (red particles) whereas in the relaxed packing (blue) particles practically
do not touch. The variation in color in the static packing (C) at maximum density is due to
well known force-chain inhomogeneity. The data presented later in the manuscript are taken
from the branch (C)-(D).

where C is the coordination number, νc is the critical volume fraction where the pressure
drops to zero during unloading, εv = ln(νc/ν) is the compressive volumetric strain applied
to the packing and p0 and γp are fit parameters. The derivation is based on the assumptions
that the compacity (contacts per surface area) of the particles is independent of their size
distribution and they deform affinely in the assembly. The scaling of the dimensionless
pressure by the ratio of inverse contact density and the critical volume fraction, p∗ = νc

νC p,
indicates that the effect of the polydispersity on pressure is characterized by these quantities.
This was also confirmed in simulations [41] for polydispersities up to w = 3. Furthermore,
we tested the validity of the power law for the coordination number ignoring rattlers, i.e.
particles having less than 4 contacts, at high volume fractions:

C∗(ν) =C0 +C1

(
ν
νc

−1
)α

, (4.2)

where C0 is the critical coordination number at jamming, which is equal to 6 in the isostatic
limit for frictionless particles, and C1 and α are fit parameters. The classical coordination
number C (taking rattlers in to account) is related to C∗ through C =C∗(1−φr), where φr is
the fraction of rattlers, which we observed to decay [41] exponentially as a function of the
volume fraction:

φr(ν) = φc exp
[

−φν
(
ν
νc

−1
)]

, (4.3)
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Figure 4.3: (a) Non-dimensional pressure p as function of the volume fraction and (b) scaled
pressure p∗ = pνc/(νC) as function of volumetric strain. The points represent simulation
data, while the line in (b) is p∗ =−εvp0 with p0 = 0.045.

where φc is the fraction of rattlers at jamming and φν is the rate of decay. In summary,
combining Eqs. (4.2) and (4.3) one can express the dimensionless pressure (4.1) merely as a
function of the volume fraction.

Next we study numerically the evolution of pressure in isotropically deformed assemblies
with varying particle coefficient of friction and fixed polydispersity w= 1.5. Samples were
prepared, as described in Section 4.2, at a few decimals, i.e. ∆ν = νc−ν0 ≈ 0.05, below the
estimated jamming volume fractions [86]. The packings were compressed up to ν = 0.75
and decompressed back to their initial density by imposing a cosine shape displacement on
the periodic boundaries. We applied the strains at very low rates in order to approach the
quasi-static limit. The maximum average compression rate1 was 6.33×10−6 τ−1

c .

Figure 4.3a shows the dimensionless pressures of isotropically expanding2 packings as a
function of volume fraction for different levels of particle friction. The pressure at a given
volume fraction increases with the coefficient of friction and the volume fraction of vanishing
pressure νc decreases with friction [1, 82, 86, 95, 127]. However the effect of particle friction
on pressure seems to be limited as the lowest value of νc saturates around a minimum of
∼ 0.60 when µ tends to infinity. Numerical values of νc are given in Table 4.2 and the
procedure to obtain them will be discussed below. In moderately frictionless polydisperse
packings νc is observed to increase with w [41, 112], whereas it is decreasing with friction
and rolling resistance [86] as consistent with present data.

The scaled dimensionless pressure is shown in Figure 4.3b. In contrast to previously studied

1The average compression (expansion) rate is computed as ∆V/V0
Tc

= ν/ν0−1
Tc

where Tc is the half period of the
cosine wave displacement function.

2The data is not shown during compression but during decompression because of artificial dynamical effects in
the former, see Chapter 3 for a detailed discussion.
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frictionless polydisperse systems, there is not a perfect collapse of the data on a single line,
which indicates that the effect of particle friction on pressure cannot be assessed solely by
the contact density and critical volume fraction. However, the quasi-linear dependence on
strain is similar. Nevertheless somewhat stronger non-linearity at low strains is noticeable
for large coefficients of friction which causes the quality of the fit of Eq. (4.1) to deteriorate
for ν ≈ νc.

For completeness we also show in Figures 4.4a and 4.4b the coordination number C∗ and
fraction of rattlers φr as a function of volume fraction. The critical coordination number
C0 = 5.95 of the frictionless packing obtained from the fit of Eq. (4.2) is very close to the
theoretically predicted isostatic limit 6. As the particle friction increases C0 decreases to-
wards 4 (see Table 4.2). The exponential decay function is underestimating the fraction of
rattlers close to unjamming for large particle friction. This is due to the fact that the criterion
of having less than 4 contact for identifying rattlers is not accurate for frictional particles.
About 2.7 % of the particles are rattlers in the frictionless packing (see Table 4.2). Earlier
studies have reported about 2 % rattlers for frictionless monodisperse systems [1, 114]. The
slightly higher value in our simulation is due to the small amount of polydispersity (w= 1.5)
present. However, in more polydisperse systems (w = 3) we have measured considerably
higher percentage of rattlers i.e. φc ≈ 15 % [41]. We also observe that the decay rate is
decreasing as the particle coefficient of friction is increasing which is in line with the expec-
tation that frictional packings are more likely to contain a higher number of rattlers.
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Figure 4.4: (a) Coordination number excluding rattlers as function of the volume fraction
for different particle friction coefficients. (b) fraction of rattlers i.e., particles with less than
4 contacts for different particle friction coefficients.

The analytical expressions (4.1), (4.2) and (4.3) of the pressure, coordination number and
fraction of rattlers respectively, all depend sensibly on the critical volume fraction νc. There-
fore, it cannot be obtained from the fits as a parameter but must be determined independently.
During isotropic decompression, νc corresponds to the volume fraction where the pressure
vanishes and the system looses its mechanical stability [1, 114]. We expressed this with an
energy criterion which states that νc is the first point on the volume fraction axis where the
average elastic energy per particle drops below 10−5 µJ. Note that there is not a precise
definition of νc and other authors [1, 40, 41, 114] have used similar criteria to quantify νc.
The numerical values of the fit parameters based on two alternative ways to determine νc are
given in Table 4.2.

We studied the evolution of pressure in isotropically deformed frictional packings prepared
with soft tangential springs kt/kn = 0.01. Interestingly, the equations for pressure, coordi-
nation number and rattlers originally proposed for frictionless systems also hold for finite
particle coefficient of friction. We note that, the prefactor p0 is practically constant thus
independent of µ , which to our knowledge, has not been predicted theoretically before.

4.4 Hypoplastic constitutive model

As pointed out earlier, a continuum mechanical description of granular materials disregards
their discrete nature and focuses on the macroscopic relation between stress and strain. Con-
stitutive models for the plastic deformation of granular materials have been typically devel-
oped in the framework of elasto-plasticity [30] which requires a yield surface defined in the
principal stress space and a flow rule to determine the direction of plastic strain. More re-
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cently, enhanced models based on higher order gradients of the strain tensor and micropolar
Cosserat medium with additional degrees of freedom have been recently developed, to ad-
dress the microstructural effects, see e.g. [131, 132] among others. Alternative formulations
based on rate equations were proposed as hypoplastic models [66]. It is claimed that they
lead to simpler formulations without explicit recourse to a yield surface or flow rule and are
able to capture basic features of granular materials. We choose a variant of these models for
subsequent analysis because of their aforementioned advantages and the ability to calibrate
the model with a single triaxial test.

A hypoplastic constitutive model T̊=H(T,D) relates [66, 67, 141] the rate of the stress ten-
sor T̊ to itself and the rate of deformation tensor D, where "̊ denotes the objective Jaumann
rate. The basic ingredients of hypoplasticity are (i) rate independence, (ii) homogeneity in
stress and (iii) objectivity, which is a requirement for all constitutive models. One of the sim-
plest hypoplastic constitutive models, which satisfies these conditions has the form [141]:

T̊= K1 tr(T)D+K2
tr(TD)T

trT
+

(

K3
T2

trT
+K4

T∗2

trT

)

||D||, (4.4)

where T∗ is the deviatoric part of the stress tensor. ||D|| =
√

trD2 is the norm of the rate
of deformation tensor and K1,K2,K3 and K4 are material coefficients. The first two terms of
Eq. (4.4) express the linear elastic part of the model. A decomposition of stress and strain
tensors into isotropic and deviatoric parts shows that under simple biaxial conditions the bulk
modulus and the anisotropy can be directly related to the coefficients K1 and K2 [72].

In order to predict the mechanical behavior of a specific material, a constitutive model needs
to be adapted by providing a suitable set of material coefficients which are usually obtained
by calibrating the model with experimental data. Results of a single triaxial test are sufficient
to calibrate the hypoplastic constitutive model given in Eq. (4.4). The procedure [67, 141]
which consists of solving a linear system of equations to find the numerical values of the
material coefficients K1,K2,K3 and K4 is summarized in Appendix 4.A.

4.5 The triaxial test

The triaxial test is a standard laboratory test procedure widely used to measure mechanical
properties of soils [67] and other granular materials. The classical experiment typically con-
sists of compressing a cylindrical specimen wrapped in a membrane in axial direction while
keeping the lateral stress constant by means of hydrostatic pressure. We have implemented
the triaxial test in DEM simulations for a cubic geometry with periodic boundary conditions
in order to avoid wall effects. Similar to the experimental setup, the pressure on the lateral
walls (i.e. periodic boundaries) is kept constant while applying a monotonically increasing
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Figure 4.5: Triaxial test simulated with DEM. The boundary conditions are such that the
pressure on the side walls is kept constant σ2 = σ3 and the strain on top is increased mono-
tonically. The color of the particles indicates the pressure they feel. Shades of red and blue
correspond to high and low pressures, respectively.

strain in the third direction. Figure 4.5 illustrates the numerical simulation setup. The aver-
age stress of the packing is measured according to the procedure described in [31, 32, 41].

In the following we perform triaxial test simulations with frictional and polydisperse pack-
ings and calibrate the hypoplastic constitutive model with the numerical data to understand
the relation between material coefficients and particle properties. The initial packings were
prepared as described in Sec. 4.2 with different particle friction and polydispersities at vol-
ume fractions ν0 > νc.

4.5.1 Friction

Figure 4.6 shows the pressure of the initial samples prepared at ν0 = 0.70 from a granular
gas with w = 1.5 as a function of the particle friction. In accordance with the observations
in Section 4.3 the pressure increases with friction and saturates at very high values of µ .
However, note that we have used very soft tangential springs (kt = 106 [kg/s2], kt/kn = 0.01)
to reduce the effect of friction during the preparation. Nevertheless, it has still a noticeable
effect on pressure built-up during initial compression as the difference of pressure for µ =

0.01 and µ = 100 is about 10 %.
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Figure 4.6: Average pressure of the packings (N = 9261) as function of particle coefficient
of friction for ν0 = 0.70 and w = 1.5. The pressure of the frictionless packing is indicated
by the arrow. The symbols are data, the lines only a guide to the eye.

The results of the DEM triaxial test simulations are shown in Figures 4.7a and 4.7b for the
evolution of the deviatoric stress ratio and the volumetric strain. The fluctuations and non-
zero values at the initial loading are due to the stress control algorithm which cannot strictly
enforce the prescribed lateral stress. For the strain levels applied in the simulations softening
after the maximum stress is not observed. However, in a few simulations up to 20 % axial
strain the packings with higher particle friction exhibited some softening. In any case the
strain levels were not enough to reach the critical state where the stress and volumetric strain
have stationary values [125]. The inset of Figure 4.7b shows that the maximum compaction
of the packings does not have a linear relationship with the particle friction. It increases
with friction and reaches an extremum at µ = 0.3, then decreases and stagnates around
εv ≈−0.009 for µ ≥ 1. The axial strains where the maximum compaction is achieved show
a similar trend.

Figure 4.8a shows the macroscopic angle of friction defined by ϕ f = arcsin((σ1−σ2)/(σ1+

σ2))max as a function of the particle coefficient of friction. It is rapidly increasing and sat-
urates around 21 degrees for µ ≥ 1. The percentage of sliding contacts at the peak stress is
given in Fig. 4.8b. For large particle friction i.e. µ ≥ 1 less than 1 % of the contacts are slid-
ing. This is in agreement with previous experiments [111] and simulations [4, 6, 133]. As
shown in Fig. 4.8c the average number of contacts at the peak stress is also decreasing when
particle friction is increased. The average contact force is higher in packings with large parti-
cle friction because of the lower coordination number and higher macroscopic stress carried
by the structure. We also observe that the coordination number of the frictionless packing is
practically constant during loading whereas for high friction it decreases linearly with axial
strain (data not shown). Finally we note that the macroscopic friction angle is larger than
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Figure 4.7: Results of DEM triaxial test simulations with different particle coefficients of
friction. (a) Deviatoric stress ratio, (b) volumetric strain as a function of axial strain. The
inset shows the minimum volumetric strain during axial compression as a function of particle
friction.

contact friction angle when µ > 0.4.

We now compare the results of the triaxial tests performed with DEM and calibrated hy-
poplastic model. Figure 4.9a shows the deviatoric stress ratio and volumetric strain as a
function of axial strain for small and large particle friction. The calibrated hypoplastic model
captures the stress-strain relationship relatively well, however deviates from the numerical
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Figure 4.8: Macroscopic angle of friction (a), percentage of sliding contacts (b) and coordi-
nation number (c) at the peak stress plotted as a function of particle coefficient of friction.
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Figure 4.9: (a) Comparison of the triaxial test simulation results of DEM (dashed and dash-
dotted lines) and the calibrated hypoplastic constitutive model (solid lines) for µ = 0.01 and
1. (b) Evolution of the material coefficients as function of particle friction.

data over a broad range of volumetric strain when the coefficient of friction is small. Another
disagreement between the model and DEM simulations is the longer linear range during ini-
tial loading which leads higher stiffness and compactancy. Consequently, the model system-
atically underestimates the axial strains where the packing starts to dilate. Figure 4.9b shows
the relation between the particle coefficient of friction µ and material coefficients K1,K2,K3

and K4 obtained from the calibration of the model with DEM simulation data. Although the
model results are not in perfect agreement with DEM data we can make a few observations.
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Figure 4.10: (a) Relation between polydispersity w and pressure p in packings with constant
volume fraction (ν0 = 0.70). (b) Relation between polydispersity w and volume fraction ν
in packings with constant pressure (p0 = 1540.83 MPa).

First, the numerical values all coefficients seem to saturate at high coefficients of friction i.e.
the change for µ > 1 is limited. This is in line with the previously observed limited effect of
particle friction on the macroscopic stress-strain relationship for large µ in Fig. 4.7. Next,
K2 reaches its minimum value at µ = 0.3 which coincides with the coefficient of friction of
the packing which is most compacted. We also note that K1 and K3 have extremal values
at µ 1 0.09 but we were not able to relate it to any of the microscopic quantities studied
here. Finally, the coefficient K4 which is multiplying the last term of the hypoplastic model,
i.e. Eq. (4.4), with the deviatoric stress is strongly correlated with the macroscopic angle of
friction.

4.5.2 Polydispersity

An important property of natural granular materials is polydispersity i.e. the size disorder of
the grains. In this subsection we study effect of size distribution on the macroscopic stress-
strain relationship of granular materials with DEM simulations of the triaxial test. In contrast
to subsection 4.5.1, initial samples were prepared at ν0 = 0.70 by isotropic compression and
relaxation of a frictionless granular gas. Figure 4.10a shows the pressure of the samples as
a function of the size ratio w = rmax/rmin. The results confirm previous studies which have
shown that the pressure of frictionless packings at a constant volume fraction decreases with
polydispersity [41, 112]. The dependence of the mechanical behavior of granular materials
on the initial density and stress level has long been recognized in soil mechanics [7, 68, 141].
The variation of the volume fraction as function of the polydispersity is shown in Fig. 4.10b
for another set of initial samples prepared (again without friction) at constant pressure (p0 =

1540.83 MPa). As expected denser packings are needed to achieve a certain level of pressure
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Figure 4.11: Triaxial test simulation results for polydisperse packings of spheres with fixed
initial volume fraction ν0 = 0.70. (a) Deviatoric stress ratio and (b) volumetric strain plotted
against axial strain.

with polydisperse particles.

After the frictionless preparation procedure, the coefficient of friction was set to µ = 0.4 for
all polydispersities during the triaxial test simulations. Deviatoric stress ratio and volumetric
strain as a function of axial strain are shown in Figures 4.11 and 4.12 for the constant ini-
tial volume fraction and constant initial pressure conditions, respectively. When ν0 is fixed
the shear strength of the packing increases with polydispersity. Note that the initial pres-
sure which determines the confining stress σ2 = σ3 = p0 is decreasing with polydispersity,
see Fig. 4.10a. This is in agreement with laboratory experiments of triaxial test performed
at different stress levels which indicate that the macroscopic friction angle decreases with
confining pressure [68]. However, as illustrated in Fig. 4.11b, we observe that the “com-
pactancy” angle ψ0 = arctan(ε̇v/ε̇1)ε1=0 at the initial loading and the dilatancy angle at the
peak stress ψ = arctan(ε̇v/ε̇1)ε1|σ1=σ1,max are practically independent of polydispersity and
thus of pressure. The average values are ψ0 ≈−21.4◦ and ψ ≈ 34.8◦.

The results of the triaxial test simulations for the packings prepared at constant pressure are
shown in Figure 4.12. The effect of polydispersity (and that of the initial volume fraction
indirectly) is significantly less visible compared to the case of fixed initial volume frac-
tion. Nevertheless, we still observe that the maximum compaction increases with polydis-
persity as shown in Fig. 4.12b. Tables 4.3 and 4.4 list the macroscopic angles of friction, the
compactancy and dilatancy angles and the calibrated material coefficients of the hypoplas-
tic model for the constant initial volume fraction and constant pressure cases, respectively.
Figure 4.13 illustrates the material coefficients scaled with the values corresponding to the
monodisperse packing. Remarkably the dependence of all coefficients on polydispersity
is the same. When the initial volume fraction is fixed they increase with polydispersity
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Figure 4.12: Triaxial test simulation results for polydisperse packings of spheres with fixed
initial pressure (constant confining stress) p0 = 1540.83 MPa. (a) Deviatoric stress ratio, (b)
volumetric strain vs. axial strain.
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(pressure). On the other hand, the coefficients do not show much variation when the initial
pressure is fixed.
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4.6 Summary and conclusions

We studied the effect of particle friction and polydispersity on the macroscopic mechanical
behavior of sphere packings using the discrete element method. Our results support previous
observations on the effect of particle friction in isotropically deformed systems, i.e. the pres-
sure at a given volume fraction decreases with friction and saturates at large values. We also
confirm that the critical volume fraction νc where the packing looses mechanical stability
decreases with friction. The scaling of the dimensionless pressure by the ratio of inverse
contact number density and the critical volume fraction found for frictionless polydisperse
packings also applies although less perfectly close to νc.

The response of the packings to anisotropic deformations was measured with triaxial tests.
An increase in particle friction leads to higher macroscopic friction angles, however the shear
strength is bounded and does not increase further for µ ≥ 1. The effect of particle friction
on the evolution of volumetric strain is more subtle. The angle of compactancy decreases
with friction, however, the maximum level of compaction is attained with the packing with
µ = 0.3. The axial strain of maximum compaction does not correspond to the strain of max-
imum stress and displays a non monotonic behavior as function of particle friction. Other
microscopic quantities such as the fraction of sliding contacts and the coordination number
decrease with increasing friction.

The hypoplastic constitutive model is able to reproduce the basic features of the stress strain
relationship of the packings. The quantitative agreement is far from perfect, but qualitatively
all features are captured very well. However because of its phenomenological derivation,
and the complex interplay of the different deformation modes, it is not possible to link di-
rectly the coefficients of the model to the microscopic particle properties. We systematically
calibrated the model with DEM simulations in order to clarify the relation between mate-
rial constants and particle friction. We observe that the fourth coefficient follows a trend
similar to the macroscopic angle of friction. The other coefficients have extremal values at
various particle friction coefficients corresponding to those of the packings with maximum
compaction and initial confining pressure. Their non-monotonous variation with µ reflects
the complex influence of the contact friction on the different macroscopic terms in the hy-
poplastic constitutive relation in Eq. (4.4).

The effect of the polydispersity of the packings cannot be studied independent of the volume
fraction or the pressure of the initial samples. When the volume fraction is fixed the pressure
decreases as function of polydispersity. The opposite is observed for the volume fraction
when the initial pressure is fixed. The shear strength increases with polydispersity for the
packings with fixed initial volume fraction. On the other hand, the effect of polydispersity is
much less pronounced when the initial pressure is constant.

In conclusion, our results support and confirm previous numerical [4, 6, 133] and experi-
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mental [68] studies based on biaxial and triaxial deformation tests. However, an important
difference is that in our simulations we have relatively dense packings and soft particles
(normal stiffness corresponds approximately to PMMA) and a wide range of particle fric-
tion including the frictionless case. In our opinion, this leads to interesting behavior such as
the reversal of the maximum compaction after µ = 0.3 which was not reported previously to
the authors knowledge.

Systematic variation of the simulation parameters allow to study the effect of micro-scale
properties on the macroscopic behavior of granular materials in the spirit of the approach
sketched in Fig. 4.1. However, it is difficult to establish a formal relation between the ma-
terial parameters of a phenomenological constitutive model and microscopic particle prop-
erties. Particle simulations can help to identify microscopic mechanisms relevant at the
macroscopic scale and facilitate the development of micromechanically based constitutive
models for granular materials. The qualitative agreement between DEM and the hypoplastic
constitutive model is very encouraging, but the visible quantitative differences could be a
sign that an important property, namely the structural anisotropy is missing. The comparison
and calibration of an anisotropic constitutive model [87, 91] is in progress.
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4.A Calibration of the hypoplastic constitutive model

The hypoplastic constitutive model given in Eq. (4.4) can be calibrated for a specific material
with the results of a triaxial test [67].

Due to the simple geometry of the test setup the stress and strain rate tensors are characterized
by their principal components:

−T=






σ1 0 0
0 σ2 0
0 0 σ3




 , D=






ε̇1 0 0
0 ε̇2 0
0 0 ε̇3




 . (4.5)

As illustrated in Fig. 4.14, the values of (σ1−σ2)max, the slope 3 E and the angles βA and βB
3Due to the fluctuations in the simulation results the stress-strain curves cannot be differentiated easily. In order
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Figure 4.14: Schematic representation of a triaxial test result for the calibration of the hy-
poplastic constitutive model.

at points A and B can be computed from the test results and are related to T and D:

βA/B = arctan
(
ε̇v

ε̇1

)

A/B

= arctan
(
ε̇1 +2ε̇2

ε̇1

)

A/B

= arctan
(

1+2
ε̇2

ε̇1

)

A/B

(4.6)

Since the hypoplastic constitutive model is rate independent the magnitude of the strain rate
|ε̇1| can be arbitrary. However, the sign of ε̇1 must be negative due to compression during a
conventional triaxial test. Therefore for simplicity ε̇1 = −1 is chosen so that the strain rate
tensor D at points A and B is:

DA/B =






−1 0 0
0 1

2 (1− tanβA/B) 0
0 0 1

2 (1− tanβA/B)




 . (4.7)

The stress tensor T at points A and B is known:

−TA =






σ2 0 0
0 σ2 0
0 0 σ2




 and −TB =






σ2 − (σ1 −σ2)max 0 0
0 σ2 0
0 0 σ2




 , (4.8)

to obtain smooth curves, a fifth order polynomial has been fitted to the data and the slopes have been computed
using the fitted curves.
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and the stress rates are given by:

ṪA =






−E 0 0
0 0 0
0 0 0




 , ṪB =






0 0 0
0 0 0
0 0 0




 , (4.9)

where at the point A, σ̇1 = E ε̇1 since σ̇2 = 0 and ε̇1 =−1.

Substituting D,T and Ṫ computed at points A and B into Eq. (4.4), the following system of
equations is obtained with the unknowns K1,K2,K3 and K4:
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(4.10)

where for clarity the letters A and B have been switched to superscripts when the indicial
notation of the tensors is used. The solution to (4.10) can be obtained by simple matrix
inversion using linear algebra or well known numerical methods such as e.g. Gauss-Seidel.
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Chapter 5

Pattern transformation in a soft

granular crystal*

Abstract

We report the results of an experimental and numerical investigation into a novel

pattern transformation induced in a regular array of particles with contrasting di-

mensions and softness. The results indicate new directions for the creation of soft

solids with tunable acoustic and optical properties.

5.1 Introduction

It has been realized in recent years that buckling instabilities in elastomeric periodic foams
can give rise to counterintuitive pattern switching phenomena [108, 128] with potential for
phononic [9, 55] and photonic [147] tunability. An interesting question to ask is whether this
richness in behaviour will exist in a broader class of problems.

Ordered arrays of particles are excellent candidates for components of future acoustic, op-
tical and electronic devices and important advances have been reported in the fabrication of
such structures at the micro- and nano-scale [47, 65]. Here, we consider the discrete prob-
lem of a highly regular array of particles arranged on a two dimensional periodic lattice i.e.
a granular crystal (Fig. 5.1a) and we explore its behaviour under uniaxial compression.

*Based on F. Göncü, S. Willshaw, J. Shim, J. Cusack, S. Luding, T. Mullin, and K. Bertoldi. Deformation
induced pattern transformation in a soft granular crystal. Soft Matter, 7(6):2321, 2011
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Figure 5.1: (a) Initial configuration of the 2D granular crystal. (b) Deformed configuration
of the crystal at 30% uniaxial compression. (c) The initial structure of the crystal consists of
two embedded square lattices for small and large particles. (d) The final pattern consists of
a vertically aligned pair of small particles surrounded by 6 large ones.

We report the results of an experimental and numerical study of a pattern transformation
in a regular array of millimeter-scale cylindrical particles with contrasting dimensions and
softness. Under uniaxial compression the system undergoes a rearrangement which leads to a
new periodic pattern (Fig. 5.1b). The details of the transformation process depend on the size
ratio of the constituent particles but the final state after compression is robust. At small ratios
it is homogeneous and approximately reversible i.e. the initial geometry is almost recovered
after unloading. In contrast, when the size ratio is increased the same final pattern is reached
but now involves the sudden rearrangement of the particles via the formation of a shear band.
The robustness of the experimental results and the scalability of the numerical work suggests
a way of creating novel soft solids with interesting acoustic and optical properties.
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5.2 Experiments

The building blocks of the crystal are two types of cylindrical particles with different dimen-
sions and mechanical properties. Soft particles, which are larger in diameter, are cast from
the addition-curing silicone rubber “Sil AD Translucent” (Feguramed GmbH, with Young
Modulus E = 360kPa) and the “hard” cylinders are machined from a PTFE (Young Modulus
E = 1GPa) rod. The average height of soft and hard particles were measured 9 ±0.5 mm and
9 ±0.02 mm, respectively.

The initial configuration consisted of hard and soft particles placed on two embedded square
lattices. Each experimental configuration was constructed carefully by hand and repeatabil-
ity checks were performed on stress/strain datasets. The distances between the particles was
such that they touched but were not compressed (see Fig. 5.1c). Focus in the experiments
was on investigations of two crystals formed from particles with size ratios χ = r/R where
r and R are the radii of hard and soft particles, respectively. The first one with χ = 0.53
consists of a 7 by 9 array of 2.7 mm radius hard particles embedded in a 8 by 10 array of 5.1
mm radius soft particles. The second one with size ratio χ = 0.61 is a 9 by 9 array of 3.1
mm radius hard particles embedded in a 10 by 10 array of 5.1 mm radius soft particles. The
crystals were assembled manually into a PMMA housing with dimensions adjusted to hold
the sample in the horizontal and out of plane directions.

Experiments were performed using a 1kN load cell on an “Instron 5569” machine and com-
pression was applied to the top surface of the granular crystal at a constant speed of 1mm/s
up to a strain (ε) of 0.25 relative to its original height, with rigid lateral walls. Before each
experiment, all cylinders were coated with Vaseline to help reduce friction. For each experi-
ment the stress-strain data was recorded and stored for post-processing and analysis.

5.3 Simulations

The commercial software package Abaqus/Explicit was used to perform the finite element
(FEM) simulations. Both large–soft and small–hard particles were modelled as nearly in-
compressible neo-Hookean [137] solids with Poisson ratio ν = 0.49 and Young’s moduli
as mentioned above. Friction between contacting particles was accounted using a Coulomb
friction model with µ = 0.01. The simulations were performed under plane stress condition
using a quasi-2D mesh to reduce computational cost, and the results match the experimental
data reasonably well. Note that out-of-plane displacements are observed during the experi-
ments, making the setup closer to plane stress condition.

In addition to FEM, a 2D soft particle Molecular Dynamics (MD) approach [83] was used to
simulate the pattern transformation due to its computational advantage. The force f between
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contacting particles is determined by f (δ ) = k1δ+k2δα , where δ is the geometrical overlap.
Numerical values of the fit parameters k1,k2 and α 1 were obtained from contact simulations
performed with FEM for ranges of pairs of particles. A Coulomb type friction between par-
ticles was used with µ = 0.01. In addition to normal and tangential contact forces artificial
damping proportional to the particle velocity was added. It should be noted that the simplifi-
cation of particle deformations by geometrical overlaps is best suited for small strains where
point contacts can be assumed. Furthermore, soft particle MD assumes uncoupled contacts
(i.e. the force-overlap relationship does not depend on the number of contacts) which obvi-
ously neglects volumetric effects at large deformations. Therefore, this approach may not be
appropriate beyond certain particle deformation.

5.4 Results

The pattern transformation is captured both by FEM and MD simulations. Snapshots taken
from the experiments, FEM and MD simulations for the small size ratio crystal (χ = 0.53) at
intermediate (15 %), maximum (25 %) and zero strain after unloading are shown in Figure
5.2a-i . The pattern transformation in this case occurs gradually and homogeneously over
the packing. The full pattern (i.e. the pairing of hard particles) is complete at around 20%
deformation and after unloading, the initial square lattice is approximately recovered. Re-
versible structural rearrangements have been also observed in localized zones of 2D foams
undergoing cyclic shear [88]. The stress-strain curves obtained from the experiment and the
numerical simulations are shown in Figure 5.2j. The hysteresis in the experimental curve
comes from the friction between particles and the PMMA plates which hold the samples in
the out of plane direction. Although this was not modelled in the numerical simulations,
there is still good quantitative agreement between all sets of results up to 13% compression
where the result of MD begins to deviate due to its aforementioned limitation. This affirms
the robustness of the phenomena under investigation since each experimental arrangement
will contain imperfections at different locations within the crystal. All of the curves are
relatively smooth in accordance with the gradual and homogeneous transformation.

For larger size ratio χ , the transformation is inhomogeneous and proceeds through sudden
local rearrangements of groups of particles. Snapshots of the experiment, FEM and MD
simulations for the χ = 0.61 crystal are shown in Figure 5.3a-i. A rather disordered configu-
ration is reached after unloading, hence the transformation is not reversible for this case. The
jumps in the stress in Figure 5.3g are associated with local rearrangements. In particular, the

1Contact force parameters used in MD simulations for the crystal with size ratio χ = 0.51: Soft-Soft k1 = 1.3458
Nmm−1, k2 = 0.1264 Nmm−α and α = 2.9792, Soft-Hard k1 = 2.6443 Nmm−1, k2 = 0.1816 Nmm−α and α =
3.4942, Hard-Hard k1 = 3362.8 Nmm−1, k2 = 1597.2 Nmm−α and α = 2.7198 and for the crystal with size ratio
χ = 0.61: Soft-Hard k1 = 2.8328 Nmm−1, k2 = 0.1274 Nmm−α and α = 3.7673, Hard-Hard k1 = 3205.5 Nmm−1,
k2 = 1393.7 Nmm−α and α = 2.5769. See Appendix 5.A for a detailed discussion of FEM contact simulations.
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Figure 5.2: Snapshots of the experiment (a, b, c), Finite Element (d, e, f) and Molecular
Dynamics simulations (g, h, i) at 15%, 25% strain levels and after unloading for the crystal
with size ratio χ = 0.53. The transformation is homogeneous and occurring gradually over
the loading phase. (j) Experimental and numerical stress-strain curves.
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final state in the experiment is reached after a sudden stress drop at ∼16% strain after the
reordering of a diagonal structure which is reminiscent of a shear band.

The results of the experiments and the numerical simulations both indicate that the size ratio
of the particles changes the qualitative nature of the pattern transformation process whereas
the mechanical properties are of lesser importance. Indeed, we have performed FEM and
MD simulations where the relative stiffness of the particles Esmall/Elarge have been varied
by three orders of magnitude and find that, for an appropriate size ratio, the characteristic
pairing of small particles occurred irrespective of the relative particle stiffness. Moreover,
we observe that large values of friction, loading rate or artificial damping can prevent pattern
formation. However, small variations of these do not appear to change the qualitative nature
of the pattern transformation.

Analytical calculations based on the structure of the crystal [75] before and after transforma-
tion and the assumption that both particle types are rigid can be used to provide an estimate of
the range of size ratio where a paired pattern can occur. The minimum value χmin =

√
2−1

is determined by the geometry of the initial square lattice such that large particles are touch-
ing and the small one in the middle is in contact with its neighbors. In practice, the pattern
transformation is unlikely to occur in this situation because small particles are trapped inside
the cage of large ones which strictly constrains their mobility. Similarly, the maximum size
ratio χmax = 0.637 is obtained when rigid particles satisfy the connectivity of the patterned
state (See Fig. 5.1b,d).

To further investigate the qualitative difference induced by the size ratio, we have performed
a series of simulations based on Energy Minimization (EM) [114]. The total elastic energy of
the system was computed by adding up the work of the contact forces. For the sake of brevity,
we present only the results for three cases which show a qualitatively distinct transformation
behavior i.e. quasi-reversible (χ = 0.5), irreversible (χ = 0.6) and transformation leading to
another non-periodic structure (χ = 1). We monitored the structural changes of the crystals
during loading using the concept of shape factor based on Voronoi tessellation of the particle
centers introduced by Moucka and Nezbeda [104]. The shape factor for a Voronoi cell
associated with particle i is given by ζi =C2

i /4πSi where Ci and Si are the cell’s perimeter
and surface area, respectively.

A contour plot of the probability distribution of the shape factors for the crystal with size
ratio χ = 0.5 over a cycle of loading and unloading is shown in Figure 5.4a. Two distinct
branches of high probability shape factors appear gradually as the packing is compressed
and upon unloading the branches converge back. At maximum strain, the upper branch at
ζ 1 1.17 corresponds to the Voronoi cells of the small (hard) particles which are irregular
pentagons (at the patterned state). The lower branch which groups cells with shape factor
ζ 1 1.11 corresponds to the Voronoi cells of the big (soft) particles which are heptagons (not
regular; almost hexagons). The symmetry of the branches about 25 % strain axis confirms
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Figure 5.3: Snapshots of the experiment (a, b, c) Finite Element simulations (d, e, f) and
Molecular Dynamics simulations (g, h, i) at 15%, 25% strain levels and after unloading for
the crystal with size ratio χ = 0.61. The transformation is inhomogeneous and happens as a
result of a series of spontaneous local rearrangements. (j) Experimental and numerical plots
of the stress-strain data. The drops in the stress correspond to reordering events.
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the reversibility of the pattern transformation for this size ratio.

On the other hand, as can be seen in Figure 5.4b, the evolution of the probability distribution
of the shape factor ζ for the crystal with χ = 0.6 is significantly different. First, two bands
appear spontaneously around ζ 1 1.16 and ζ 1 1.12 at approximately 5% compression in-
dicating that the characteristic structure of the pattern begins to form very early. Secondly,
they remain until the end of the loading cycle. Thus, the transformation for χ = 0.6 is ir-
reversible in contrast with the crystal with size ratio χ = 0.5 where reversibility was found.
The evolution of the shape factor distribution for a crystal with size ratio χ = 1 as function
of compression is illustrated by the results shown in Figure 5.4c. In this case the crystal
develops a non-periodic structure and the deformation is irreversible.

5.5 Conclusions

In conclusion, a combined experimental and numerical study has been used to uncover a
novel pattern transformation when regular arrays of macroscopic particles are subjected to
uniaxial compression. The reversibility of the transition process only depends on the size
ratio of the particles but the final transformed state is robust and it does not depend on the
details of its evolution. The work was inspired by bifurcation sequences found in model
martensitic transitions [34] at the microscopic level. Connections can also be drawn with
energy absorption processes at the macroscopic level in one-dimensional granular crystals
which may be considered as shock absorbers and nonlinear acoustic lenses [21, 48, 130].
We believe that the 2D granular crystals studied in the current study combined with pattern
transformation can find equivalently interesting applications as tunable phononic devices
[9, 59]. Furthermore, we expect that the same mechanism will persist at microscopic scales
leading to exciting prospects such as color tuning by mechanical loading [59] and novel
applications in photonic crystals [144, 147].
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Figure 5.5: Uniaxial compression test of silicone rubber and fit of the neo-Hookean hypere-
lastic model.

5.A Finite element simulations of contact and pattern trans-

formation

Details of the finite element model and constitutive equation used to simulate contacts be-
tween particles and the pattern transformation are given.

5.A.1 Material behavior

Compression tests were performed to characterize the material response of the silicone rub-
ber particles. The specimens were compressed uniaxially at a constant rate up to 0.25 strain.
The stress-strain response at 1 mm/s rate of compression is shown in Fig. 5.5.

The observed material behavior is modeled as hyperelastic. Here, we briefly summarize
the constitutive model. The strain energy density an isotropic hyperelastic material W is
expressed as a function of the invariants of the right Cauchy-Green tensor C = FTF (or,
alternatively those of the left Cauchy-Green tensor B=FFT) where the deformation gradient
F= ∂x/∂X maps a material point from the reference position X to its current location x:

W =W (I1, I2, I3) (5.1)

with

I1 = trC, I2 =
1
2
[(trC)2 − trC2], I3 = detC= J2, (5.2)
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and J = detF the determinant of the deformation gradient.

The neo-Hookean strain energy density which is special case of the Money-Rivlin model
[102, 121] was used:

W (I1, I3) = c1(I1 −3)+
K

2
(J−1)2, (5.3)

where c1 is related to the elastic modulus and K is the bulk modulus. Note that the model
was modified to include compressibility. The Cauchy stress, is given by

σ =
2
J

∂W
∂ I1

B+
∂W
∂J

I (5.4)

yielding

σ =
2c1

J
B+K(J−1)I. (5.5)

Both silicone rubber and PTFE were modeled as nearly incompressible, characterized by
K/µ ≈ 50, where G is the initial shear modulus. The initial Young’s modulus of silicone
rubber was measured to be 360 kPa, so that c1 = G/2 = 61 kPa. Fig. 5.5 shows that the
neo-Hookean model captures the stress-strain behavior very well in the strain range of ex-
perimental data.

5.A.2 Finite Element Model

The pattern transformation (see Chapter 5) was analyzed using the finite element method
where the commercial finite element software ABAQUS/Explicit is used. The boundary
conditions of the numerical models aimed to replicate the experimental setup. The PMMA
side-wall housing in the experiment is modeled as a rigid body and only the motion of the top
plate is allowed during the simulation. Since both finite element (FE) and discrete element
(DE) modelings were performed under the 2D assumption, the PMMA front/back-wall hous-
ing was not modeled in the simulations. Instead, in FE simultions, the effect of constraint on
the out-of-plane degree of freedom (DOF) was investigated by plane strain and plane stress
conditions. For plane strain conditions, the displacement in thickness direction (i.e., the out-
of-plane direction) was constrained to have no strain through the thickness direction. On
the other hand, plane stress conditions release the displacement constraint in the thickness
direction, so that the out-of-plane stresses do not develop through the simulations. The DE
model is also performed in the 2D assumption, and the simulations can considered as either
plane strain or plane stress depending on the method how the contact force is defined. Since
the FEM simulations showed that the experimental conditions was close to the plane stress
conditions, the contact forces for DE modelings was estimated based on the plane stress
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Figure 5.6: Force overlap relation of a 5 mm soft and 3 mm hard particle.

condition of FE models. Thus, all the DE simulations should be considered as plane stress
simulation.

The typical length of the mesh was designed to be the length of the thickness dimension,
i.e.0.25mm. The 8-node 3D cubic element with reduced integration points (i.e., C3D8R) was
employed. In order to model contact conditions, the friction between all the contacting bod-
ies was modeled by the Coulomb friction model with a friction coefficient of µ = 0.01. When
explicit calculations are employed for the exact simulation of the quasi-static experiments,
it is usually takes very expensive computation time due to the existence of the stable time
limit. Thus to perform the analysis in reasonable time, a mass scaling factor of fms = 104 was
used after confirming the total kinematic energy is less than 1% of the total external work
throughout the simulations. Both silicone rubber and PTFE particles were modeled using
the neo-Hookean constitutive model introduced in the previous subsection with the material
coefficients for silicone rubber c1 = 60.9 kPa, K = 6.05 MPa, and for PTFE c1 = 168 MPa,
K = 1.67 GPa.

Contact force parameters

The parameters of the contact force model used in discrete element simulations of pattern
transformation (cf. Chapter 5) and dispersion relation calculations (cf. Chapter 6) of the
granular crystal were determined from finite element simulations of contact. The constitutive
model and material properties given in the previous subsections were used. Only half of a
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R1 R2 k1 k2 α
[mm] [mm] [N/mm] [N/mmα ] [–]

Hard – Hard

2 2 3693.4927 1941.8071 3.0181
3 3 3205.1825 1432.9685 2.5775
5 2 2761.2961 1596.3658 2.1687
5 3 3114.6429 1011.8045 2.4750
5 5 3212.9765 649.4558 2.5665

Soft – Soft

2 2 1.3510 0.6942 3.0370
3 3 1.4554 0.2565 3.2507
5 2 1.1149 0.4586 2.3951
5 3 1.0864 0.4122 2.3791
5 5 1.3459 0.1265 2.9793

Soft – Hard

2 5 3.4126 2.8023 4.0336
3 5 3.1614 0.9300 3.7652
5 2 2.2523 0.3078 2.8921
5 3 2.8313 0.1215 3.7815
5 5 2.8624 0.2401 3.4990

Wall – Hard
∞ 2 8012.34 15588.4 3.27358
∞ 3 8065.78 6747.28 3.27158
∞ 5 8135.72 2081.98 3.29001

Wall – Soft
∞ 2 2.91963 5.64501 3.28119
∞ 3 2.93891 2.43643 3.27949
∞ 5 2.96433 0.748355 3.29851

Table 5.1: Fitted values of k1, k2 and α for different types of contact simulated with FEM.

pair of particles in contact was meshed due to symmetry. The contact force model

f = k1δ + k2δα , (5.6)

was calibrated by fitting it to the force displacement data obtained from FEM simulations
with a least square method. Figure 5.6 shows the force-overlap relation of a pair of 5 mm
soft and 3 mm hard particles. In order to study the effect of size ratio and material properties
of the particles on the pattern transformation contact simulations with several combinations
of radii and materials were performed. A list of the calibrated contact parameters is given
in Table 5.1. If FEM simulations were not available for a given combination of radius or
materials, the contact force model parameters were interpolated from the closest available
pairs of particles.
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Chapter 6

Phononic band gaps in a

two-dimensional granular crystal*

Abstract

The band structure of a two-dimensional granular crystal composed of silicone rub-

ber and polytetrafluoroethylene (PTFE) cylinders is investigated numerically. This

system was previously shown to undergo a pattern transformation with uniaxial com-

pression [Göncü et al. Soft Matter 7, 2321 (2011)]. The dispersion relations of the

crystal are computed at different levels of deformation to demonstrate the tunability

of the band structure which is strongly affected by the pattern transformation that in-

duces new band gaps. Replacement of PTFE particles with rubber ones reveals that

the change of the band structure is essentially governed by pattern transformation

rather than particles’ mechanical properties.

6.1 Introduction

Wave propagation in materials with periodic microstructures [11] has been studied exten-
sively in the context of photonic and more recently phononic crystals [96]. The attenuation

*Published as F. Göncü, S. Luding, and K. Bertoldi. Exploiting pattern transformation to tune phononic band
gaps in a two-dimensional granular crystal. The Journal of the Acoustical Society of America, 131(6), 2012
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of electromagnetic, acoustic or elastic waves in certain frequency ranges known as band gaps
is an important feature of these materials which allows to use them as wave guides or filters
[64, 117].

Recent research has focused on the ability to control and tune the band gaps in phononic
crystals. Several authors have reported [61, 122, 145] the modification and tuning of the
band structure of phononic crystals with external fields. On the other hand, 1D granular
crystals (i.e. periodic chains of particles) attracted increasing attention due to their non-linear
dynamics arising from tensionless contacts and non-linear interactions between particles.
Their non-linear response can be tuned by changing the initial compression of the chain
[16, 20, 22], leading to the design of tunable acoustic lenses [130] and phononic band gap
materials [10]. Moreover, theoretical studies [52] point out the possibility to control the band
gaps of a periodic 2D granular crystal by introducing new periodicities in addition to existing
ones.

Here, we investigate numerically the propagation of elastic waves in a 2D bi-disperse gran-
ular crystal composed of large (and soft) silicone rubber and small (and stiff) polytetraflu-
oroethylene (PTFE) cylinders [45]. In the undeformed crystal, particles are placed on two
embedded square lattices [Fig. 6.1(a)]. When the system is uniaxially compressed particles
rearrange into a new periodic pattern[45] as illustrated in Fig. 6.1(b). We will show that the
pattern transformation triggered by deformation can be effectively used to tune and trans-
form the band gaps of the structure. The crystal under consideration consists of 5 mm radius
silicone rubber and 2.5 mm radius PTFE particles. Material properties of silicone rubber
are characterized by density ρr = 1.05× 103 kg/m3, Young’s modulus Er = 360 kPa, shear
modulus Gr = 120 kPa and longitudinal speed of sound cl0r = 77.1 m/s, while for PTFE one
has ρt = 2.15×103 kg/m3, Et = 1 GPa, Gt = 336.2 MPa, and cl0t = 1350 m/s.

6.2 Modeling

Particles are modeled as 2D disks in a way similar to soft-particle Molecular Dynamics
(MD)[49]. The forces in the normal contact direction are described by a non-linear contact
force law as function of the geometric overlap δ [see Figures 6.1(c) and (d)] :

f (δ ) = k1δ + k2δα . (6.1)

The parameters k1,k2 and α depend on the radii and mechanical properties of the particles in
contact and their numerical values (listed in Table 6.1) are determined by fitting Eq. (6.1) to
force-displacement data obtained from Finite Element Method (FEM) simulations of various
contacts. For the sake of simplicity, tangential contact forces are modeled with a linear
spring of stiffness kt . Since a parametric study reveals that the magnitude of the tangential
stiffness does not have a significant effect on the pattern transformation, here we assume
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kt/kn = 0.1481 based on an estimate by Luding [79], with the linearized normal stiffness,
kn, defined below.

The propagation of elastic waves in infinite periodic lattices has been studied using tech-
niques based on structural mechanics and FEM [58, 97, 119]. Following this approach two
contacting particles p and q can be viewed as a finite element [69] with the nodes located
at the particle centers. Their interaction is then characterized by a stiffness matrix Kpq

which relates the displacements and orientations [Fig. 6.1(c)] Upq = [upx u
p
y θ p u

q
x u

q
y θ q]T to

the forces and torques acting on the particle centers Fpq = [ f px f
p
y τ p f

q
x f

q
y τq]T such that

Fpq =KpqUpq in the local coordinate system of the contact defined by the normal n̂ and tan-
gent ŝ, see Fig. 6.1(c). For a contact characterized by linear stiffnesses kn and kt in normal

Figure 6.1: (a) Initial undeformed granular crystal and (b) patterned configuration after 25%
uniaxial compression, adapted from Göncü et al. [45]. (c) Sketch of two particles in contact
showing displacements and the geometric overlap δ . (d) Normal contact force as a function
of the overlap for a pair of (5 mm) silicone rubber and (2.5 mm) PTFE particles.
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Figure 6.2: Top: Dispersion curves of the bi-disperse granular crystal composed of large
rubber (5 mm) and small PTFE (2.5 mm) particles with tangential stiffness kt = 0.1481×kn

at (a) 0%, (b) 15% and (c) 25% uniaxial compression. The vertical axes represent the non-
dimensional frequencies ω̃ = ωA/(2πcl0r ) with A = (||t1||+ ||t2||)/2. Bottom: Unit cells,
lattice vectors t1 and t2 and the first Brillouin zones of the crystal at (d) 0%, (e) 15% and (f)
25% uniaxial compression. The shaded areas indicate the irreducible parts of the Brillouin
zones.

and tangential direction, respectively, Kpq is given by[69]:

Kpq =












kn 0 0 −kn 0 0
0 kt ktR

p 0 −kt ktR
q

0 ktR
p ktR

pRp 0 ktR
p ktR

pRq

−kn 0 0 kn 0 0
0 −kt −ktR

p 0 −kt −ktR
q

0 ktR
q ktR

pRp 0 −ktR
q ktR

qRq












, (6.2)

where Rp and Rq are the radii of the particles. Note that, since we consider small ampli-
tude perturbations of statically compressed particles with initial overlap δ0, Eq. (6.1) can be
linearized as

f (δ )≈ f (δ0)+ kn(δ −δ0), (6.3)

where kn = d f/dδ |δ=δ0
is the linearized contact stiffness.

To compute the dispersion relation we consider an infinite crystal and solve the equations
of motion for its periodic unit cell, disregarding effects due to finite systems with walls.
Free harmonic oscillations are assumed and periodic boundary conditions are applied using
Bloch’s theorem [97, 119]. The final form of the equation of motion is of a generalized
eigenvalue problem:

[

−ω2M+K
]

U= 0, (6.4)
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k1 [N/mm] k2 [N/mmα ] α

SR1– SR1 1.3459 0.1264 2.9793
SR1– PTFE2 2.5197 0.2217 3.3028
PTFE2– PTFE2 3468 1706.9 2.8147
SR1– SR2 1.3992 0.4921 3.1357
SR2– SR2 1.1018 0.4372 2.3877
1 R= 5 mm
2 R= 2.5 mm

Table 6.1: Numerical values of contact force parameters k1, k2 and α for pairs of silicone
rubber (SR) and PTFE particles.

where ω is the radial frequency of the oscillations. M and U are the mass matrix and dis-
placement vector of the unit cell, respectively and the global stiffness matrix K is assembled
from the contributions of individual contacts according to the classical finite element as-
sembly procedure. Note that although this approach assumes a fixed contact network and
sliding between particles (i.e. friction) is neglected, it is still valid for this study since small
amplitude perturbations superimposed to a given (finite) state of deformation are considered.

6.3 Results

The dispersion diagrams for the 2D granular crystal at different levels of macroscopic nomi-
nal strain are provided in Fig. 6.2, clearly revealing the transformation of the band gaps with
deformation. In the undeformed configuration the periodic unit cell of the crystal consists of
a pair of rubber and PTFE particles arranged on a square lattice (Fig. 6.2(d)) and the structure
possesses a phononic band gap for nondimensional frequencies 0.590 < ω̃ < 0.823, where
ω̃ = ωA/(2πcl0r ) with A= (||t1||+ ||t2||)/2, t1 and t2 being the lattice vectors.

At 15% compression the new pattern starts to emerge and the crystal has a unit cell composed
of two pairs of rubber and PTFE particles (Fig. 6.2(e)). The structural transformation alters
the dispersion relation of the crystal. Remarkably, a new band gap is open and the structure
has now two band gaps at 0.141 < ω̃ < 0.419 and 0.712 < ω̃ < 0.778 [Fig. 6.2(b)].

The transformation is complete when the PTFE particles touch (Fig. 6.2(f)). Figure 6.2(c)
shows the corresponding band structure of the patterned crystal at 25% compression. The
stiff contacts between PTFE particles leads to transmission and band gaps at much higher
frequencies. At this level of deformation the structure is characterized by three band gaps
in the intervals 0.142 < ω̃ < 0.545, 0.885 < ω̃ < 3.557 (partially shown in Fig. 6.2(c)) and
3.557 < ω̃ < 19.417 (not shown in Fig. 6.2(c)).
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Figure 6.3: Dispersion relation of a soft granular crystal made of rubber particles in the (a)
undeformed and (b) patterned state (at 25% compression) with kt/kn = 0.1481. Evolution of
the band gaps in the (c) undeformed and (d) patterned (band gaps marked by I, II and III in
Fig. 6.3(b)) soft granular crystal as function of the stiffness ratio kt/kn.

Our previous study suggested that the qualitative nature of the pattern transformation mainly
depends on the size ratio of the particles [45]. The characteristic pattern was observed to
form only when the size ratio χ = Rsmall/Rlarge of the small and large particles is in the
range

√
2− 1 ≤ χ ≤ 0.637 and the transformation was found to be practically reversible

around χ ≈ 0.5. Both FEM and MD simulations showed that the material properties of the
particles do not play an essential role in the pattern transformation [45]. To investigate the
effect of the material properties on the band gaps, we consider a crystal made entirely of
rubber, replacing the 2.5 mm radius PTFE particles with rubber ones of the same size. The
dispersion curves of the structure in the undeformed configuration and at 25% compression
after pattern transformation are shown in Figs. 6.3(a) and 6.3(b), respectively, showing that
the band structure is not affected qualitatively by the replacement. However, (i) the band
structure is lowered due to the softer particles [Fig. 6.3(a)], and is significantly lowered
at large strains [Fig. 6.3(b)] due to the absence of stiff contacts, (ii) the band gap of the
undeformed rubber-rubber crystal [Fig. 6.3(a)] is wider than before [Fig. 6.2(a)], and (iii)
in the deformed state of the soft structure, an additional narrow band gap is present at low
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frequencies.

Finally, we investigate the effect of the tangential stiffness of the contacts on the band struc-
ture by varying the ratio kt/kn in the crystal composed of rubber-rubber particles, since the
tangential stiffness depends on the material properties of the particles and can change when
the crystal is further processed (e.g. by sintering [76]). Increasing tangential stiffness kt

leads to higher frequencies, but does not influence the pattern transformation. Focusing on
the phononic properties, Figs. 6.3(c) and 6.3(d) show that both width and frequency of the
band gaps increase with increasing tangential stiffness.

6.4 Discussion and conclusion

In conclusion, we have shown that the band structure of a 2D bi-disperse soft granular crystal
composed of large and small particles placed on two embedded square lattices can be mod-
ified considerably by deformation. The structural transformation triggered by compression
leads to the opening of new band gaps. When translated to real frequencies the band gap
marked with I in Fig. 6.3(b) falls between 5015.8 Hz and 5706.5 Hz, which indicates that
the crystal could be used as a tunable filter in the audible range, which makes such crys-
tals promising candidates for applications in acoustics, when tunable band gap materials are
needed. In this study we focused on the dispersion relations of infinite regularly patterned
granular crystals neglecting damping. Nevertheless, band gaps have been also detected in
finite size, viscous systems [58]. Therefore we expect our results to hold also for the finite
size, dissipative versions of the granular crystals studied here.
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6.A Wave propagation in periodic lattices

A general procedure for the computation of the dispersion relation of mechanical lattices is
given as follows [97, 119]:
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1. Define reference (unit) cell

2. Define the nodes in the reference (unit) cell

3. Define the connectivity of the nodes including the nodes in the neighbor cells

4. Assemble stiffness matrix for the reference (unit) cell using Bloch’s theorem to ac-
count for periodicity

The unit cell is the irreducible unit of the lattice which tessellates space by translation along
the lattice vectors {t1, t2, · · · , tD} in D dimensions. Any cell in the lattice can be indexed
with respect to the reference cell by specifying how much it is translated from the origin:

Ωn =Ω0+Tn (6.5)

where the index of the cell n ∈ ZD and T = [t1, t2, · · · , tD].

The nodes {x1,x2, · · · ,xq}n ⊂ Ωn denote the centers of the particles which are indexed by
their number in the unit cell and the index of the cell they belong to e.g x(λ ,m) for the node
λ in cell m.

The connectivity of the nodes is determined by the physical contacts between particles. To
assemble the stiffness matrix for the unit cell only the contacts between particles within the
cell and neighbor cells need to be specified.

The force acting on the particles is computed from contact forces. A contact between two
particles located at x(κ ,0) and x(λ ,m) is denoted by (κ ,m,λ ) and can be modelled as a ficti-
tious bar or beam element assuming contacts are permanent. The force-displacement relation
for two particles in contact is given by:

[

f(κ ,0)

f(λ ,m)

]

= K(κ ,m,λ )

[

u(κ ,0)

u(λ ,m)

]

(6.6)

where K(κ ,m,λ ) is the element stiffness matrix composed of symmetric non-negative sub-
matrices:

K(κ ,m,λ ) =

[

K
(κ ,m,λ )
11 K

(κ ,m,λ )
12

K
(κ ,m,λ )
21 K

(κ ,m,λ )
22

]

. (6.7)

The equation of motion for a particle is obtained from (6.6) and (6.7):

f(κ ,0) =Mκ ü(0,κ) + ∑
(λ ,m)∈Bκ

[

K
(κ ,m,λ )
11 u(κ ,0) +K

(κ ,m,λ )
12 u(λ ,m)

]

(6.8)



6.A Wave propagation in periodic lattices 107

where Bκ = {(λ ,m)} is a set of nodes (λ ,m) connected to the node (κ ,0). Now using
Bloch’s theorem, we apply the condition of periodicity u(n+m,κ) = eik·Tmu(n,κ):

f(κ ,0) =Mκ ü(0,κ) + ∑
(λ ,m)∈Bκ

[

K
(κ ,m,λ )
11 u(κ ,0) +K

(κ ,m,λ )
12 eik·Tmu(λ ,0)

]

(6.9)

The equation of motion for the unit cell can be written in matrix form by assembling the
global stiffness matrix K from the contributions of all elements i.e. contacts using Eq. 6.9 :

F=MÜ+KU (6.10)

where U = [u1,u2, · · · ,uq]T and F = [f1, f2, · · · , fq]T and M = diag{M1,M2, · · · ,Mq} is the
mass matrix.

Assuming harmonic oscillations of frequency ω and free wave motion we obtain the follow-
ing generalized eigenvalue problem:

[

−ω2M+K
]

U= 0. (6.11)

Figure 6.4: Geometry and displacement of two particles in contacts.
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Element (contact) stiffness matrix

If particles transmit only normal forces along the contact line, contacts can be modelled as
truss elements. The stiffness matrix for a truss element in 2D is:

K = kn

[

aaT −aaT

−aaT aaT

]

(6.12)

where a is the unit vector along the contact direction and kn is the normal contact stiffness.

When particles also support transverse loads tangential contact forces must be considered. In
this case, the rotation in the third direction is introduced as an additional degree of freedom
corresponding to the moment acting on the particles. The equation of equilibrium in local
coordinates is given by [69]:
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(6.13)

where K(λκ) is the stiffness matrix, R(κ) and R(λ ) are the radii of the particles and kt is the
tangential contact stiffness.



Chapter 7

Conclusions and

Recommendations

Conclusions

Understanding the mechanical properties of granular materials is important both for practical
and fundamental reasons. In the first part of this thesis, we have studied the constitutive
behavior of idealized granular materials modeled as random polydisperse sphere packings
using the discrete element method. Particle scale properties such as coefficient of friction
and polydispersity were varied systematically to characterize their effect on the macroscopic
stress-strain response. Several conclusions can be drawn from the analysis:

In isotropically deformed systems:

1. The coordination number is discontinuous at the transition between solid and fluid like
states. Previous studies have shown that it obeys a power law of volume fraction near
jamming. Our results indicate that this relation holds in a broader range extending to
very high densities.

2. The critical volume fraction marking the transition, increases with particle polydisper-
sity1 and decreases with the coefficient of friction.

3. The dimensionless pressure scales with the ratio of contact number density and the

1Recent studies have shown that it saturates at large polydispersities when the radius is uniformly distributed
(c.f. Ogarko and Luding [112]).
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critical volume fraction for different polydispersities which indicates that it is charac-
terized by these numbers.

4. A constitutive model for the bulk modulus derived from the micromechanical stress
tensor captures the pressure evolution unifying different polydispersities. Remarkably,
this model is also applicable to frictional packings, despite not taking friction into
account.

In packings under triaxial loading:

5. The shear strength increases with particle coefficient of friction when the initial vol-
ume fraction is fixed. However, the effect is limited and saturates at high values.

6. There is a non monotonic relation between particle friction and the volumetric strain.
The maximum compaction is reached at relatively small (i.e. µ = 0.3) coefficient of
friction. Higher friction does not improve because particles can “roll” away.

7. The polydispersity determines initial pressure and volume fraction which cannot be
imposed simultaneously. When the volume fraction is set constant the initial pressure
and the shear strength decrease with polydispersity. If the initial pressure is fixed the
opposite is observed, however, the effect of polydispersity on the stress-strain behavior
is less pronounced in this case.

8. A hypoplastic constitutive model captures main features of the stress-strain behavior
but there is not a perfect quantitative agreement between the model and simulation
results. Calibration of the model with simulations suggests that the fourth material
coefficient multiplying the deviatoric stress is correlated to the macroscopic angle of
friction.

Granular materials are notorious for their disorder. However, artificial crystal structures can
be constructed by placing particles on a lattice. The second part of this thesis is dedicated
to such two-dimensional granular crystals composed of bi-disperse soft and hard particles.
We studied structural transformations in these systems triggered by mechanical loading. The
main conclusions of this study are:

9. Upon uniaxial compression a uniform hexagonal pattern is formed from an initial
square lattice arrangement.

10. The characteristics of the transformation are predominantly controlled by the geom-
etry. Material properties of the particles seem to play a lesser role. If the ratio of
small and large particles’ radii is small and within a certain range the transformation
is smooth and homogeneous. Moreover, it is quasi-reversible i.e. the initial arrange-
ment is almost recovered after unloading.

11. Pattern transformation changes the band structure of the granular crystal. Bandgaps
open and close as the particles rearrange.
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Recommendations

The work in this thesis is a first step towards understanding the relation between microscale
particle properties and macroscopic behavior of granular materials and pattern transforma-
tion in regular arrays of particles. There are several limitations and many aspects can be
improved in future research.

In disordered packings, interactions between particles were modeled with a linear contact
force-overlap law. This simple approach is able to capture important features of granular
materials, however simulations with more realistic contact models such as Hertz-Mindlin
should be performed to generalize the results in this thesis for the case of elastic spheres.
Similarly, the constitutive model for the bulk modulus was derived assuming a linear contact
force. Effective medium theories based on Hertz contact model were proposed previously,
but they did not take into account structure evolution. Therefore, a possible direction of fu-
ture research is the generalization of the model to include non-linear contact forces together
with the structural changes. Interestingly, friction does not destroy the validity of relations
derived from frictionless packings. Furthermore, non-affine deformation of particles was not
considered in the derivation. This should be given particular attention if a model were to be
developed for the shear modulus as previous studies indicate that non-affine deformations
play an important role in this case.

Furthermore, the simulation results should be checked against available experiments and if
required new experiments should be carried out. Some parameters such as the coordination
number are not easily accessible in experiments. Therefore, the use of advanced imaging
techniques like X-ray tomography may be necessary for this purpose.

Anisotropy in granular materials is apparent at the microscale and can also be measured
in the macroscopic stress-strain behavior. We have shown that the material coefficients of
the hypoplastic model can be related to the stress anisotropy. However, a study was not
conducted for the microscopic origins of it and therefore is a future direction of research.
Likewise, a rigorous derivation of the relation between particle properties and the material
coefficients of the hypoplastic model was not attempted, even though calibration with sim-
ulation results indicated that they are correlated. Note that the hypoplastic model does not
contain structural anisotropy as found in DEM simulations.

Discrete element simulations of pattern transformation were performed with a non-linear
contact force model calibrated with finite element simulations. A drawback of this approach
is that the model considers only a single contact at a time and volumetric effects arising in
multiple contact situations are not taken into account. This is the reason why the stress is
underestimated in discrete element simulations at large compression. To overcome this, the
model can be calibrated with finite element simulations of multiple contacts, however it is yet
to be determined how the force will be distributed among different contacts. Furthermore,
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the stress may be overestimated at low compression, in this case. A more robust approach
would be to incorporate the number of contacts in the model.

It would be interesting for future research to investigate whether similar pattern transfor-
mation occurs in granular crystals composed of particles other than cylindrical shape and
topology. The study could be repeated also for three-dimensional crystals and different ini-
tial lattice arrangements. Finally, the prospect of using pattern transformation in tunable
acoustic devices should be verified with physical realizations.

Outlook

Discrete particle methods offer a convenient way to simulate the collective behavior of gran-
ular materials. With the advance of computational technology their use in practical situations
will certainly increase. However, the computational cost is still very high and it is unlikely,
at least in the near future, that they will replace mainstream analysis tools based on the con-
tinuum assumption. Nevertheless, they can still play an important role in bridging the gap
between microscale and macroscopic continuum by providing valuable insight for the devel-
opment of physically based, realistic constitutive models. We hope that the results presented
in this thesis will be useful in the future for the formulation of such constitutive models.

Granular materials are often considered as a paradigm to understand the behavior of more
complex materials. For example as mentioned in the introduction, jamming is a common
property of many amorphous materials that is usually studied with simplified disk or sphere
models. Similarly, the pattern transformation presented in this work is reminiscent of marten-
sitic phase transformations in shape memory alloys and could provide an opportunity to
study and better understand this phenomenon directly at the macroscale.
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Propositions

1. The effect of particle friction on the macroscopic stress-strain response of disordered
sphere packings is stronger than the effect of particle polydispersity.

2. A two-dimensional granular crystal composed of soft and hard cylindrical particles
undergoes a pattern transformation from an initial square lattice to hexagon-like struc-
ture when subjected to uniaxial compression.

3. Pattern transformation can be used to control wave propagation in soft granular crys-
tals.

4. Discrete particle methods will eventually be the main tool to analyze granular materi-
als.

5. Disorder and discreteness are the main reasons of the non-linear mechanical behavior
of granular materials.

6. It is not necessary neither important for the prime minister of a country to speak a
foreign language.

7. The view of Turkish people about the Ottoman Empire is generally biased towards
extremes. Some refuse to attribute it any merit while others ignore obvious mistakes.
Unfortunately, foreigners are not more objective on this topic.

8. Religion and people who adhere to it will always exist unless science gives a definitive
answer to the existential questions of mankind.

9. Good parenting balances between discipline and freedom. Although freedom must
always prevail.

10. Successful governments bring together people sharing the same passion and ideal re-
gardless of their background, race or nationality.

These propositions are considered opposable and defendable and as such have been approved
by the supervisors Prof.dr. S. Luding and Prof.dr. A. Schmidt-Ott.





Stellingen

1. Het effect van wrijving op de macroscopische spanning-rek relatie van ongeordende
pakkingen van bolvormige deeltjes is sterker dan het effect van deeltjes polydisper-
siteit.

2. Een tweedimensionaal granulair kristal, bestaande uit harde en zachte cilindrische
deeltjes, ondergaat een transformatie van een initieel rechthoekig rooster naar een
hexagonaalachtige structuur, wanneer belast met uniaxiale compressie.

3. Structuur transformaties kunnen gebruikt worden om golf propagatie in zachte granu-
laire kristallen te beheersen.

4. Discrete deeltjes methodes, zullen uiteindelijk het voornaamste gereedschap worden
om granulaire materialen te analyseren.

5. Wanorde en discreetheid zijn de belangrijkste oorzaken van het mechanische niet-
lineaire gedrag van granulaire materialen.

6. Het is niet noodzakelijk, noch belangrijk voor een minister president om een buiten-
landse taal te spreken.

7. De standpunten van Turken, betreffende het Ottomaanse rijk, zijn voornamelijk ver-
deeld over de twee extremen. Sommigen weigeren het enige verdienste toe te schri-
jven, waar anderen de Ottomaanse periode verheerlijken en daarbij gemaakte fouten
negeren. Jammer genoeg zijn buitenlanders ook niet objectief over dit onderwerp.

8. Geloof en gelovigen zullen altijd blijven bestaan, tenzij de wetenschap een sluitend
antwoord geeft op de vraag van het bestaan.

9. Goed ouderschap balanceert tussen discipline en vrijheid, hoewel vrijheid altijd moet
overheersen.

10. Succesvolle overheden/regeringen brengen mensen met dezelfde passies en idealen
samen, onafhankelijk van hun achtergrond, ras en nationaliteit.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig goedge-
keurd door de promotoren Prof.dr. S. Luding and Prof.dr. A. Schmidt-Ott.
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