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Chapter 1

Introduction

1 .1  Reaction rates
Reaction rates have been the subject of experimental and theoretical research in chemistry

and physics for well over a century.1 Examples of reaction rates include chemical reactions,
isomerisations, adatoms hopping over surfaces, nucleation in undercooled liquids, diffusion
of molecules through polymers and ceramics, protein folding, and decay of uranium-235
nuclei. The common characteristic of all these processes is that they are rare compared to the
normal dynamics of the system. For instance, in the reaction on which we shall focus in this
thesis a molecule reacts about once every 10-2 second, while the typical time of normal mode
oscillations is of the order of 10-13 second: a difference of eleven orders of magnitude. The
reason why reactions are infrequent is well understood: the stable states of the system, i.e. the
minima of the potential energy surface, are separated by barriers of higher energy, which
have to be surmounted in order to go from one stable state to the next.2 If these barriers are
high compared with the thermal energy of the system, E k Ttherm B=  where kB  is
Boltzmann’s constant and T is the absolute temperature, there is only a very small chance of
the system to arrive at the top of the energy barrier, the activated state. This notion is
reflected in the well-known expression for the rate as a function of the temperature,3

k Ae E k T
f

act B= − , (1.1)

as formulated by Van ’t Hoff and Arrhenius in the 1880’s. Here A is the frequency factor,
and Eact  is the energy of activation. The Boltzmann factor, i.e. the exponential factor, is
proportional to the probability of a molecule to be at the activated state. A molecule acquires
the energy needed to reach the activated state by collisions with the molecules by which it is
surrounded. An interesting aspect of Eq. (1.1) is that one and the same reaction, when
studied in different solvents, may give different values for A and Eact . This indicates that the
solvent can stabilise or destabilise the activated state with respect to the stable states,4 just
like the solvent can stabilise or destabilise one stable state with respect to another stable
state.

The aim of the research presented in this thesis is to calculate the rate of a reaction in a
condensed phase, and to study the influence of the particular solvent. In order to realistically
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account for the influence of the solvent on the reaction, we simulate the dynamics of the
molecule and the surrounding solvent on a computer. In molecular dynamics simulations
(MD) the atoms are modelled as interacting particles moving according to the laws of
classical mechanics. Typical MD simulations cover the motion of several thousands of atoms
over a period of a few nanoseconds; on current computers such a run would take of the order
of a week to complete. Comparing this time scale with the aforementioned rate constant of
circa 100 s-1, it is obvious that MD simulations are much too slow to study reactions. Yet, by
combining simulations with statistical mechanics, in particular the transition state theory and
the reactive flux method, it proves possible to calculate even the slowest reaction rates. The
basic idea is to reformulate the rate as the product of the probability for a molecule to reach
the activated state, and the probability for this activated state to proceed to the next stable
state; the second factor is called transmission coefficient. These ideas have previously been
applied successfully to a wide variety of reactions.5-7 We shall apply them to an
isomerisation reaction of a calix[4]arene, one of the building blocks in supramolecular
chemistry.

1 .2  Supramolecules
Chemical processes in living organisms often depend on the weak but very specific

non-covalent interactions between molecules.8 Supramolecular chemistry, the field founded
by the 1987 Nobel laureates Pedersen, Cram and Lehn, is devoted to the design of host-guest
systems that are stabilised by the same interactions. These synthetic hosts offer convenient
model systems to get a better understanding of the recognition processes that occur in nature.
A variety of hosts exists: crown-ethers, spherands, cyclodextrins, carcerands and calixarenes,
to mention but a few.

The name calix[n]arene was coined by Gutsche for a class of cavity-shaped cyclic
compounds build from 4 to 8 phenol rings linked by methylene groups.9,10 Several of these
molecules are shaped like a Greek vase, calix crater, which gives them their name, see
Fig. 1.1. The explicit hydrogens in Fig. 1.1 can be replaced by sidegroups to give the
calixarene the desired property, a procedure called functionalisation. For instance, the

      
Figure 1.1. Cone (left) and partial cone (right) conformation of a calix[4]arene.
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calixarene can be made to bind selectively with sodium or potassium ions, or to bind organic
molecules in aqueous solution, or even to catalyse a hydrolysis reaction.

The calix[4]arene in Fig. 1.1 can take on four discrete forms. The most abundant
conformation is the ‘cone’ conformation in which all phenol rings are orientated in the same
direction. The four hydroxyl groups at the lower rim then form a circular array of four
internal hydrogen bonds which stabilise the molecule. In the ‘partial cone’ conformation one
of the phenol rings is rotated with respect to the other three, see Fig. 1.1. Since this
conformation allows for only two internal hydrogen bonds it is energetically less favourable.
There are two conformations in which two phenols are orientated in one direction and the
other two phenols in the other direction, namely the 1,2-alternate with two internal hydrogen
bonds, and the 1,3-alternate devoid of internal hydrogen bonds. In this thesis we shall focus
on the cone to partial cone isomerisation. In order to apply Eq. (1.1) we introduce the
concept of a reaction coordinate. This coordinate discriminates reactants from products. In
the present case, for example, it may be the angle ξ between the central annulus and the
phenol ring making the transition. In Fig. 1.2 the minimum potential energy, Φ, is plotted as
a function of ξ. The activated state, also called transition state, is seen to be located at
ξ ≈ − °20 . The activation energy Eact  of this reaction has been measured by 1H-NMR to vary
between 12 and 15 kcal/mol, depending on the solvent.

1 .3  Survey
In chapter 2 we give a concise introduction to statistical mechanics, followed by a

derivation of the reaction rate expressions that will be used in latter chapters. The basic

Φ

ξ-20°

Eact

Figure 1.2. Energy, Φ, as a function of the angle, ξ, between the central annulus and the
reacting phenol ring.
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concepts of molecular dynamics simulations are discussed. In these simulations the use of an
angle ξ, as introduced above, would be very inconvenient. In chapter 3 a new reaction
coordinate is introduced, with suitable properties for use in molecular dynamics simulations.
Also in this chapter the transmission coefficient of the isomerisation of a calix[4]arene in
vacuo and in chloroform is calculated. In the next chapter it will be shown that it is not the
energy but the free energy as a function of the reaction coordinate which determines the
probability factor of the exact reaction rate. Therefore, in chapter 4 the free energy of the
calix[4]arene in chloroform is calculated. The reaction rate calculated with these two results
is in excellent agreement with experimental data. In chapter 5 we study the effect of two
different solvents, namely chloroform and benzene, on the reaction. The reader who wants to
get familiar with the applied methods and its results without going through the mathematical
rigor will find this chapter most rewarding. In chapter 6 we discuss the calculation of free
energies by means of constrained molecular dynamics simulations. The relation between the
free energy and the constraint force is shown to be less trivial than what was assumed by
many authors. We end with a summary and a brief look at the future in chapter 7.

1 .4  References
1 P. Hanggi, P. Talkner and M. Borkovec, Rev. Mod. Phys. 62, 251 (1990).
2 We shall not consider the quantum mechanical process of tunneling through the barrier,

since it is highly improbable for the reaction studied here.
3 S. Glasstone, K. J. Laidler and H. Eyring, The Theory of Rate Processes (McGraw-Hill

Book Company, New York, 1941).
4 Note that a distinctive explanation may hold for diffusion controlled reactions.
5 D. L. Beveridge and F. M. DiCapua, Annu. Rev. Biophys. Biophys. Chem. 18, 431-92,

(1989).
6 R. M. Whitnell and K. R. Wilson, Rev. Comp. Chem. IV , 67 (1993).
7 J. B. Anderson, Adv. Chem. Phys XCI , 381 (1995).
8 L. Stryer, Biochemistry (W. H. Freeman and Company, New York, 1995).
9 C. D. Gutsche, Calixarenes (Royal Society of Chemistry, Cambridge, UK, 1989).
10 J. Vicens and V. Böhmer, Eds., Calixarenes: A Versatile class of macrocyclic compounds

(Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991).
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Chapter 2

Theory

2 .1  Statistical mechanics
Thermodynamics studies the mathematical relations between the experimental properties

of a macroscopic system in equilibrium, but it does not predict the magnitude of these
properties, nor does it provide a link between these properties and the atomic constitution of
the system. In statistical mechanics the microscopic or atomic point of view is used to study
the properties of the macroscopic system. As will be discussed below, statistical mechanics
offers alternative interpretations for macroscopic properties and thermodynamical relations,
as well as providing numerical values.

2 .1 .1  Static properties

At the heart of statistical mechanics lies the notion that a macroscopic system has an
incredible large number of microscopic realisations.1 The probability for each of these
realisations to occur can be calculated, and a macroscopic property can be calculated as the
average of the corresponding microscopic property over all realisations. Consider for
example the canonical ensemble, the collection of all realisations of a system of N identical
atoms in a volume V at an absolute temperature T. From the classical point of view any
realisation can be characterised by the coordinates, r i , and the momenta, p i , of the atoms. In
the canonical ensemble the probability to find a system in the volume element d NΓ  centred
at the point ( )Γ N

N N= r r p p1 1, , , , ,� �  in phase space is given by the Boltzmann distribution,

( ) ( )[ ]ρ βΓ Γ Γ ΓN N
N

N Nd
Q h N

H d= −
1 1

3 !
exp , (2.1)

where β = 1 k TB , kB  is Boltzmann’s constant and H is the Hamiltonian, i.e. the energy of
the realisation. The second factor on the right hand side, containing Planck’s constant h,
arises to make the classical mechanical distribution agree with the quantum mechanical
distribution. The first term on the right hand side is used to normalise the distribution, where

( )[ ]Q
h N

H dN
N N= −∫

1
3 !

exp β Γ Γ (2.2)
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is known as the partition function. The partition function is related to the Helmholtz free
energy, A U TS= − , the macroscopic potential of a closed system of constant volume in
contact with a heat bath, by

A k T QB= − ln . (2.3)

Combining this result with the usual thermodynamical expressions, one may relate the
(derivatives of the) microscopic partition function to macroscopic properties, such as the
pressure and the entropy.

If a macroscopic property, F, has a microscopic analogue, f, the measured value of F is
equal to the expectation value of f over the microscopic realisations:

( ) ( )[ ]F
Q h N

f H dN
N N N= −∫

1 1
3 !

expΓ Γ Γβ , (2.4)

henceforth to be written as

F f= . (2.5)

The analytic solution of the integral is terribly complicated, so one normally resorts to
numerical methods to approximate the result. In Monte Carlo simulations a random number
generator is used to sample points in phase space according to the Boltzmann distribution.
Another way of calculating F is based on the notion that the microscopic realisations of a
system by evolving according to classical or quantum mechanics, in the long term constitute
a representation of the distribution ( )ρ Γ N . The average obtained by following a realisation
over a time interval T is

( )[ ]f
T

f t dtN

T

= ∫
1

0

Γ . (2.6)

The ergodic hypothesis1 states that this average equals the phase space average, provided the
interval T is long enough:

f f
T

=
→∞

lim . (2.7)

The average of Eq. (2.6) is obtained by molecular dynamics simulations, as described in
section 2.3. We will now switch from static to dynamic properties.

2 .1 .2  Dynamic properties

Suppose we have a macroscopic system prepared in a non-equilibrium condition by an
external perturbation. The property F then differs from its equilibrium value by

( ) ( )∆F t F t Feq≡ − . At time t = 0  the perturbation is removed, and the system relaxes to
equilibrium. If the perturbation is small enough to lie in the linear regime of the system, the
deviation ∆F gradually vanishes according to the macroscopic law

( ) ( ) ( )∆ ∆F t F t= 0 φ , (2.8)
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where φ is the response function. We shall assume that this ‘phenomenological’ function is
known, either from experiments or from intuitive reasoning.

At the microscopic level the situation is more involved. Even without an external
perturbation, the parameter f will differ from its equilibrium value for nearly all realisations
at time t = 0 , simply because of the Boltzmann distribution. If we concentrate on a single
realisation, we will see that as time progresses the value of f behaves very erratic because of
the complex motion of the atoms in the system. All one knows is that for short times

( ) ( )∆f t f t f≡ −  is correlated to ( )∆f 0 , while for long times the correlation will vanish,
( )∆f ∞ = 0 . To reduce the noise, we now average over all realisations with the same initial

value ( )∆f 0 . Onsager’s regression hypothesis2,3 states that this average behaves as the
macroscopic system,

( ) ( ) ( ) ( )∆ ∆
∆

f t f t
f 0

0= φ , (2.9)

where φ is the macroscopic response function of Eq. (2.8). Multiplying by ( )∆f 0  and
integrating over all values of ( )∆f 0 , we arrive at the more common notation,

( ) ( ) ( ) ( )∆ ∆ ∆f t f f t0 02= φ . (2.10)

Note that an external perturbation is not required; spontaneous fluctuations of the system
will, on average, relax according to the macroscopic law too. We must, however, make the
exception that the hypothesis does not hold for very short times, since the macroscopic law
of Eq. (2.8) only holds on a macroscopic time scale.

On the left hand side of Eq. (2.10) we encountered a correlation function,

( ) ( ) ( ) ( ) ( )f t g f t g dN N N N0 0 0= ∫ ρ Γ Γ Γ Γ, , , , (2.11)

where ( )f tNΓ ,  is to be interpreted as the value of f at time t for a realisation that was at Γ N

at time t = 0 . For a system in equilibrium the correlation function depends on the time
interval only, so

( ) ( ) ( ) ( )f t g f t g+ =τ τ 0 . (2.12)

After differentiating with respect to τ the right hand side equals zero, and upon substituting
τ = 0  in the left hand side we arrive at

( ) ( ) ( ) ( )�

�f t g f t g0 0= − , (2.13)

where a dot indicates the derivative of a function with respect to time.

2 .2  Reaction rate theory
As an application of the above described Onsager regression hypothesis, we will consider

the reversible unimolecular reaction between reactants, R, and products, P, dissolved in a
liquid:
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R

k

k
P

f

r

 →
← 

. (2.14)

We shall first consider the macroscopic system, then the microscopic system.

2 .2 .1  Macroscopic reaction rate

The phenomenological equations for the population dynamics read as

� ,

� ,

R k R k P

P k R k P

f r

f r

= − +

= −
(2.15)

where k f  and kr  are the rate constants of the forward and the reverse reaction respectively.
In the above master equations it is assumed that a certain fraction of the reactants is turned
into products per unit of time, and likewise for the products. The sum of reactants and
products is seen to be constant. The equilibrium constant of the reaction is defined as the
ratio of the equilibrium fractions,

K
R

P

k

k
eq

eq

r

f

= = , (2.16)

where the right hand side follows from the fact that both expressions of Eq. (2.15) are zero at
equilibrium. By combining the last two equations, any deviation from equilibrium,

( ) ( )∆P t P t Peq≡ − , is seen to relax as

( ) ( )∆ ∆P t P e t= −0 λ , (2.17)

with the relaxation rate

λ = +k kf r . (2.18)

The forward rate constant is related to the overall relaxation rate by

k
P

R Pf

eq

eq eq

=
+

λ , (2.19)

as follows from combining Eqs. (2.16) and (2.18).
We want to calculate the forward rate constant of a reaction in a solvent. Molecular

dynamics simulations, see sec. 2.3, provides the tools to calculate the motion of a solvated
molecule, but unfortunately these simulations are fairly slow. On current computers the
simulation time span is limited to a dozen nanoseconds, so the obvious route of using
molecular dynamics simulations to follow a non-equilibrium system as it evolves to
equilibrium is not feasible for most reactions. For slow reactions we need the machinery of
statistical mechanics, as described below, to calculate a rate constant.



Theory 9

2 .2 .2  Microscopic reaction rate

For a microscopic discussion of the reaction we first of all need to introduce a more
stringent definition of reactants and products than the above tacitly used definition. The
reaction coordinate, ( )ξ r N , is a function of the coordinates of the reacting system, defined in
such a way that it is positive for products and negative for reactants. A concrete example,
apart from a shift by 20 degrees of the horizontal axis, is given in Fig. 1.2. Another example
is the dihedral angle of an isomerising n-butane molecule. A more general reaction
coordinate, based on the normal modes of the saddle point on top of the energy barrier, is
introduced in chapter 3. The dividing plane ξ = 0  will henceforth be called the transition
state. We shall consider a system with a low solute concentration, in which case the reacting
molecules do not interact. Each molecule then behaves identically, hence it suffices to
concentrate on a single molecule. The probability for a molecule to be in the product state is
obtained by summing over all realisations that classify as a product,

( )[ ] ( )[ ] ( )p H dN N N= − =∫θ ξ β θ ξΓ Γ Γexp , (2.20)

where θ is the Heaviside step function,

( )θ ξ
ξ
ξ=

<
>





0 0

1 0

if

if .
(2.21)

An expression similar to Eq. (2.20), but with ξ replaced by -ξ, gives the expectation value of
the fraction of reactants. Note that the expectation value of the number of product molecules,
and hence its time derivative, will hardly depend on the chosen reaction coordinate, since the
Boltzmann factor is very small near the top of the energy barrier. The deviation from
equilibrium for any realisation reads as

( )[ ] ( )[ ] ( )∆ ∆p N N= = −θ ξ θ ξ θ ξΓ Γ . (2.22)

Inserting this result in Eq. (2.10), and using the macroscopic law of Eq. (2.17), we find

( )[ ] ( )[ ]
( )[ ]

∆ ∆

∆θ

θ ξ θ ξ

ξ
λt

e t0

02
= − . (2.23)

We now face the problem of extracting the rate constant λ from the averages on the left hand
side. Obviously, performing a long simulation to observe the exponential decay of the left
hand side, as in the Einstein equation for the self diffusion, is out of the question. A common
alternative, a Green-Kubo-type equation does not work either as the autocorrelation of the
derivative �p  also decays too slow.4 Differentiating Eq. (2.23) with respect to time gives

( )[ ] ( )[ ]
( )[ ]

�θ ξ θ ξ

ξ
λ λt
e t∆

∆θ

0

02
= − − . (2.24)

Suppose, now, that we evaluate this expression at a time t in the interval
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τ
λv « t «
1

. (2.25)

As was remarked earlier, Onsager’s regression hypothesis does not hold on the very short
time scale of molecular vibrations, τv . Under the second condition of Eq. (2.25) the
exponential of Eq. (2.24) will be nearly unity, hence

( )[ ] ( ) ( )[ ]
( )[ ]λ

θ ξ δ ξ

ξ
=

t �ξ 0 0

02∆θ
, (2.26)

where we have used Eq. (2.13). The Dirac delta function, ( )δ ξ , arises as the derivative of the
Heaviside function; its defining properties are:

( )δ ξ ξ= ≠0 0if , (2.27)

and

( )δ ξ ξd a b
a

b

= < <∫ 1 0if . (2.28)

From Eq. (2.20) one infers

∆θ2 2 2= − =θ θ r p , (2.29)

using θ θ2 =  and r p+ = 1. Combining Eqs. (2.19), (2.26) and (2.29) gives the final
result, first proposed by Yamamoto in 1960:5,6

( )
( )[ ] ( ) ( )[ ]

( )[ ]k t
t

f
RF =

−

δ ξ θ ξ

θ ξ

0 0

0

�ξ
. (2.30)

This theory is known as the reactive flux method (RF). In the numerator we have the average
velocity of molecules that cross the transition state at t = 0  and end up in the product well a
time t later, i.e. the ‘flux’ through the transition state of molecules going from the reactant
well to the product well. This flux is called the reactive flux to distinguish it from the more
common definition of the flux as the number of molecules that cross a plane per unit of time.
In the denominator we recognise the equilibrium reactant fraction. The ratio of the reactive
flux and the population of the reactant well equals the fraction of reactants turned into
products per unit of time, which by Eq. (2.15) is seen to be the rate constant of the forward
reaction.

2 .2 .3  Transition state theory

In the limit of time t going to zero Eq. (2.30) reduces to

( )[ ] ( ) ( )[ ]
( )[ ]k f

TST =
−

δ ξ θ

θ ξ

0 0 0

0

� �ξ ξ
. (2.31)
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(from Eq. (2.13), with f g= , it follows that the right hand side of Eq. (2.30) is zero at time
t = 0 ). This is the renowned transition state theory (TST) expression for the rate, as proposed
by Eyring7 in 1935. Unlike in Eq. (2.30), where the flux is calculated by averaging over all
molecules that end up in the product well after they cross the transition state in whatever
direction, the flux is now calculated by averaging over the molecules that cross the transition
state in the positive direction. Wigner8 summarised the assumptions underlying transition
state theory in 1937:
• The Born-Oppenheimer approximation, i.e. the electron wavefunction is at all times

adapted to the nuclear configuration. The system always remains in the ground level. As
a result, the potential energy of the system is a well defined function of the coordinates of
the nuclei (adiabatic condition).

• The motion of the nuclei on the potential energy surface can be described by classical
mechanics.

• Every reactant crossing the transition state will end up as a product.
The first two assumptions are also the fundamentals of the reactive flux method and of
molecular dynamics.

For actual calculations Eq. (2.31) is conveniently rewritten as

( )[ ] ( ) ( )[ ]
( )[ ]

( )[ ]
( )[ ]k f

TST =
−

δ ξ θ

δ ξ

δ ξ

θ ξ

0 0 0

0

0

0

� �ξ ξ
. (2.32)

The first factor on the right hand side is the average velocity of reactants as they cross the
transition state, and the second factor is the probability for a molecule to be at the transition
state relative to the probability to be in the reactant well. For a simple reaction coordinate
such as the distance between two atoms, ξ = − −x xA B ABl , the first factor turns out to be
independent9 of l AB . The second factor, however, strongly depends on l AB  because of the
numerator; as we noted earlier, the denominator hardly depends on l AB  provided the
transition state lies near the top of the free energy barrier. Thus we see that the TST rate
depends on the location of the transition state, while the true rate does not depend on this
definition.

2 .2 .4  Transmission coefficient

We shall now concentrate on Wigner’s third assumption. Eyring7 already noted that ‘For
some reactions it will happen that the same activated complex may cross the barrier and
return without decomposing. This fact reduces the actual reaction rate.’ In order to
compensate for these recrossings, see trajectory 3 in Fig. 2.1, he wrote

k kf
exact

f
TST= κ , (2.33)

where the transmission coefficient, κ, is a jet unknown factor between zero and unity. Eyring
and Wigner considered reactions, like A BC AB C+ → + , in which there is no reverse
reaction because the products drift apart. In reactions with a reverse reaction, such as



12 Chapter 2

isomerisations, the product bound flux through the transition state may also contain a
contribution of products that recross the transition state after a short excursion to the reactant
state, see trajectory 4 in Fig. 2.1. The transmission function must also correct for this
contribution. An alternative way to look at κ is by realising, as already noted below
Eq. (2.32), that the TST value strongly depends on the precise location of the transition state.
Obviously, the experimental rate does not depend on this location, as long as it is in the
neighbourhood of the top of the free energy barrier. The transmission coefficient, therefore,
must depend on the chosen transition state to counteract the dependence of k f

TST on this
location.

By substituting Eqs. (2.30) and (2.31) in Eq. (2.33) we find that the transmission function
is given by

( )
( )[ ] ( ) ( )[ ]
( )[ ] ( ) ( )[ ]κ

δ ξ θ ξ

δ ξ θ
t

t
=

0 0

0 0 0

�

� �

ξ

ξ ξ
. (2.34)

In the denominator we average over all molecules that cross the transition state at time 0 in
the positive direction. In the numerator we average over all molecules that cross the
transition state at time zero and are in the product state a time t later, regardless of the
direction in which they crossed the transition state. For very short times this ratio equals
unity, but at longer times the ratio decreases because of recrossings, see Fig. 2.2. Gradually
the numerator evolves from the instantaneous product bound flux at time t = 0  into the
reactive flux: the flux of molecules that were in the reactant well at some time t «- vτ  and
are in the product well at some time t » vτ . After a fairly short time all molecules that were
at the transition state at time 0 will have arrived in the reactant or the product well. If the
molecule has lost part of its excess energy to non-reactive motions or to the solvent, the
chances for a spontaneous recrossing are virtually zero. The transmission function then has
arrived at a plateau, which will be constant on the time scale of Eq. (2.25). The reactive flux
rate of Eq. (2.30) is obtained by combining this plateau value with the TST rate:

1

2

3

4

ξ = 0ξ < 0 ξ > 0

Figure 2.1. Four schematic trajectories of molecules crossing the transition state at time
zero (dot).
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k kf
RF

plateau f
TST= κ . (2.35)

One may show, using Liouville’s theorem and the separation of time scales, Eq. (2.25), that
this rate constant is indeed independent of the location of the transition state.10 At time scales
of the order of 1 λ  the transmission function shows exponential decay.

The set of Eqs. (2.32) through (2.35), sometimes referred to as the Chandler-Bennett6,11

method, has all the characteristics we were looking for, as mentioned below Eq. (2.19),
although this is not directly evident. The transmission coefficient is typically calculated by
performing a thousand relaxation runs in which a molecule starts at the transition state and
ends up in either of the local minima. The duration of these runs is of the order of several
picoseconds, as determined by Eq. (2.25). It is less obvious why Eq. (2.32) should meet our
demands, since calculating the probability for a molecule to reach the transition state still
requires a simulation time much longer than 1 λ . The simulation can be reduced to the order
of several nanoseconds by using umbrella sampling, as explained in chapter 4. The basic idea
is to bias the potential energy surface by a term, the umbrella, which makes the barrier
between reactants and products effectively vanish; the effect of the umbrella on the sampled
distribution is later corrected for. Alternatively, the probability for a molecule to reach the
transition state can be calculated using thermodynamic integration or thermodynamic
perturbation, as discussed in chapter 6.

2 .3  Molecular dynamics simulations
In molecular dynamics simulations (MD) the motion of a collection of interacting atoms is

calculated by means of classical mechanics.12 Strictly speaking one would have to use
quantum mechanics, but in many cases the approximation of classical mechanics will do.

0

1

0 Time

κκ

plateau

τv 1/λ

κplateau exp(-λt)

Figure 2.2. Typical plot of the transmission coefficient as a function of time.
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With Wigner’s first assumption, see section 2.2.3, the potential energy of the system
becomes a unique function of the atomic coordinates only, ( )Φ r N . The motion of atom i
with mass mi  at time t follows from Newton’s equations of motion in Cartesian coordinates,

( ) ( )�r vi it t= , (2.36)

( ) ( )[ ]�v ri
i

i
Nt

m
t= −

1
∇ Φ . (2.37)

The combination of the equations of motion for the N atoms of a system leads to a
complicated set of coupled differential equations, which in general can not be solved
analytically. Consequently, we will use a numerical scheme to approximate the solution on a
computer. Rather than integrating Eqs. (2.36) and (2.37) directly, we rewrite the equations of
motion in a form that is less subjected to numerical errors. From the Taylor expansion of the
velocity at time t t n tn = +0 ∆  it follows that the velocity an interval ∆t 2 earlier or later is
given by

( ) ( ) ( )( ) ( )( ) ( )v v v vi n i n i n i nt t t t t t t O t± = ± + +1
2

1
2

1
2

1
2

2 3∆ ∆ ∆ ∆� �� , (2.38)

where the last term on the right hand side indicates that the truncation error is of the order of
the cube of the time step. The difference between the former and the new velocity reads as,

( ) ( ) ( )[ ] ( )v v ri n i n
i

i
N

nt t t t
t

m
t O t+ = − − +1

2
1
2

3∆ ∆
∆

Φ ∆∇ , (2.39)

where use was made of Eq. (2.37). A similar Taylor expansion of the coordinates, centred at
time t tn + ∆ 2 , gives

( ) ( ) ( ) ( )r r vi n i n i nt t t t t O t+ = + + +1
1
2

3∆ ∆ ∆ . (2.40)

The set of Eqs. (2.39) and (2.40) is known as the leap-frog version of the Verlet algorithm.
The simulations presented in this thesis were done with the GROMOS87 package,13 which
employs this integration scheme. The time step of the integration scheme, ∆t , is established
by a trade-off between accuracy and speed.

The interactions between atoms, be they in the same molecule or in a different molecule,
are of quantum mechanical origin. The calculation of these interactions from the appropriate
equations is a rather time consuming process. In MD programs, therefore, it is assumed that
the potential energy of a system can be described by the following expression:

( ) ( ) ( )

( ) ( )
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Φ r N
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The successive terms on the right hand side represent the energies of covalent bond
stretching, angle bending, Urey-Bradley potential, improper dihedrals for out of plane
bending, dihedrals for trans to gauche rotations around a covalent bond and finally the non-
bonded interactions. The parameters of the force field are obtained by fitting the force field
to experimental data and to quantum mechanical calculations. Various force fields are
available; they depend on the class of molecules for which they are designed and on the
choices made in the fitting process.
The non-bonded interactions are again subdivided into three parts, namely a repulsive term
to represent the non-bonded overlap between electron clouds, an attractive term to represent
the Van der Waals or London dispersion interaction, and a Coulomb interaction between
charged atoms. The Lennard-Jones parameters for interactions between unlike atoms are
given by the usual Lorentz-Berthelodt combination rules, ( )σ σ σij ii jj= + 2  and ( )ε ε εij ii jj= 1 2 .
In the summation over all atom pairs it is to be understood that 1-2 neighbours and 1-3
neighbours are to be excluded, and that the interactions are cut-off beyond a certain distance.
The interactions between 1-4 neighbours are not scaled. Covalently bonded charged atoms
are grouped into charge groups of zero net charge. The Coulomb interactions in Eq. (2.41)
are calculated as a double sum over the atoms in these groups. In this way the effect of the
cut-off distance on the Coulomb interaction is smoothed in a better way than by using a
switch function.

We end this section with sundry topics of MD simulations; the interested reader is referred
to textbooks12 for a more thorough coverage.

The time step of the integration algorithm is determined by the oscillation with the highest
frequency. In organic molecules that is the stretching of the C-H and O-H bonds. These
bonds hardly influence the motion of the slow degrees of freedom in which we are interested.
By constraining these bond lengths, i.e. keeping them at a constant value throughout the
simulation, the highest frequency in the system goes down by a factor of two, hence the time
step can be increased by a factor of two. In GROMOS87 the constrained bond lengths are reset
to their reference value after each simulation step using the SHAKE algorithm, as will be
explained in chapters 3 and 6. A relatively short time is spent in this procedure, so effectively
the simulation becomes almost twice as fast. In some situations it is useful to constrain other
internal coordinates of the system as well. For instance, the transition state configurations
needed in Eq. (2.34) can be sampled by a simulation in which the reaction coordinate is
constrained, see chapter 3. In chapters 3 and 6 we discuss the not so obvious consequences of
constraints on the sampled phase space distribution, and the counter-measures that have to be
taken to get the correct averages.

In simulations the molecules are confined within a box. Since the simulated systems
usually are of the order of several thousands of atoms, a relative large fraction of the atoms



16 Chapter 2

will be in contact with the walls of the box. To minimise these effects, it is common practice
to apply periodic boundary conditions. For a rectangular box this means that a molecule near
the wall on the right interacts with the molecules near the wall on the left, and likewise a
molecule near the front or near the top interacts with the molecules near the back or near the
bottom respectively. The simulation box can be envisioned as being surrounded by 26
identical images. When calculating the interaction between atoms i and j, out of the 27
images of j the one closest to i must be used (minimum image convention). The box size and
the cut-off radius of the non-bonded interactions must be chosen such that in the interaction
between two molecules only one image of the second molecule is used, if possible. In our
simulations we will frequently use a box shaped like a truncated octahedron; the minimum
image convention is adapted accordingly.

The Newtonian equations of motion imply energy conservation, so the average over a
simulation, Eq. (2.6), corresponds to a microcanonical ensemble. For a canonical average
one may perform a series of runs at different energies and calculate the weighted average.
Alternatively, one may imitate a coupling to an external heat bath by changing the energy of
the system during the simulation. Generalised equipartition gives the following relation
between the microscopic velocities and the macroscopic temperature:

1
2

2

1

3
2m Nk Ti i

i

N

Bv
=
∑ = , (2.42)

where the left hand side is the average kinetic energy. This result is generalised by stating
that the ‘instantaneous’ temperature θ of a realisation is given by

θ =
1

3
2

1Nk
m

B
i i

i

N

v
=
∑ . (2.43)

In the weak coupling method14 implemented in GROMOS87 the velocities after the integration
step, Eq. (2.39), are multiplied by

λ
τ θ

= + −



1 1

∆t T

T

, (2.44)

where T is the desired temperature and τT  is the time constant of the coupling.
Since the volume occupied by a calix[4]arene in a solvent most likely depends on the

conformation, it seems to be more appropriate to simulate at a constant pressure than at a
constant volume. Generalised equipartition yields the virial theorem,

− ⋅ =
=
∑ r Fi i

tot

i

N

BNk T
1

3 , (2.45)

where the total force acting on atom i, Fi
tot , is due to the internal interactions and the external

pressure exerted by the walls of the enclosing vessel. In a system with periodic boundary
conditions the external pressure stems from the interactions of the central box with the
surrounding images. The ‘instantaneous’ pressure then reads as15
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N

v R F , (2.46)

where r ij  and Fij  are calculated by the minimum image convention. It is also possible to
replace the sum over all atoms by a sum over all molecules, as is done in GROMOS87, by
adapting the quantities on the right hand side of Eq. (2.46) accordingly.16 In the weak
coupling method14 the coordinates after the integration step, Eq. (2.40), are multiplied by

( )µ β
τ

π= − −13
∆t

P
p

, (2.47)

where P is the desired pressure, τ p  is the time constant of the coupling, and β is the
isothermal compressibility.

2 .4  References
1 D. A. McQuarrie, Statistical mechanics (Harper and Row, New York, 1976).
2 L. Onsager, Phys. Rev. 37, 405 (1931), ibid 38, 2265 (1931).
3 D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press,

Oxford, U.K., 1987).
4 D. Brown and J. H. R. Clarke, J. Chem. Phys. 92, 3062 (1990).
5 T. Yamamoto, J. Chem. Phys. 33, 281 (1960).
6 D. Chandler, J. Chem. Phys. 68, 2959 (1978).
7 H. Eyring, J. Chem. Phys. 3, 107 (1935).
8 E. Wigner, Trans. Faraday Soc. 34, 29 (1938).
9 This follows from Eq. (4.29).
10 W. H. Miller, Acc. Chem. Res. 9, 306 (1976).
11 C. H. Bennet in Diffusion in Solids, edited by J. J. Burton and A. S. Nowick, (Academic

Press, NY, 1975), p. 73.
12 M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids (Clarendon Press,

Oxford, U. K., 1987); J. M. Haile, Molecular Dynamics Simulation: Elementary Methods
(John Wiley and Sons, New York, NY, 1992); D. Frenkel and B. Smit, Understranding
Molecular Simulations (Academic Press, San Diego, CA, 1996).

13 H. J. C. Berendsen and W. F. van Gunsteren, GROMOS Reference Manual (University of
Groningen, Groningen, The Netherlands, 1987).

14 H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola and J. R. Haak, J.
Chem. Phys. 81, 3684 (1984).

15 A. J. C. Ladd in Computer Modelling of Fluids Polymers and Solids, edited by C. R. A.
Catlow, S. C. Parker and M. P. Allen (Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1990), p. 55; R. T. W. Koperdraad, graduation report (University of Twente,
Enschede, The Netherlands, 1991).

16 G. Ciccotti and J.-P. Ryckaert, Comput. Phys. Rep. 4, 347 (1986).





19

Chapter 3

The reactive flux method applied to

complex isomerisation reactions:

using the unstable normal mode as a

reaction coordinate *

Abstract
A basic problem when calculating reaction rates using the reactive flux method is the

introduction of a reaction coordinate. In this paper we show that it is advantageous to define
a reaction coordinate by means of the unstable normal mode of the saddle point of the
potential energy surface. This particular choice is made since it yields a high transmission
function. Moreover, the reaction coordinate is calculated via a rapidly converging algorithm,
and its derivative, which is needed in constrained runs, is calculated analytically.
Calculations on the transmission coefficient of the isomerisation of n-butane are in good
agreement with results published by others. Runs with an isomerising calix[4]arene in vacuo
produce a very high transmission coefficient, as is the purpose of the reaction coordinate.
The same molecule is also studied in chloroform.

3 .1  Introduction
Conversion in condensed phases of reactants into products usually is a slow process

compared with all other molecular processes. The conversion rate is expressed in terms of a
rate coefficient, kf , giving the fraction of reactants turned into products per unit of time.
This article focuses on isomerisation reactions, but most of the ideas to be described are
equally well applicable to other reaction types as well. In isomerisation reactions the
reactants and products are different conformations of the same molecule, and

                                                
* W. K. den Otter and W. J. Briels, J. Chem. Phys. 106 5494 (1997).
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interconversions are possible without forming or breaking chemical bonds. A well known
and thoroughly studied example is the trans-gauche isomerisation of n-butane. This
particular reaction is fast enough to be studied using regular equilibrium1 or non-equilibrium2

molecular dynamics simulations (MD), in spite of the simulation time being limited to a few
nanoseconds. Most other reactions, however, are much too slow for this kind of simulations
to be possible. To calculate their rate coefficients one needs to develop models providing the
link between macroscopic long time quantities like kf , and the microscopic short time
behaviour of a single molecule in a solvent.3

Reactant and product conformations correspond to local minima of the potential energy
surface (PES), separated by a barrier of elevated energy. The conformation space at the top of
the barrier is called the transition state. Most of the time a molecule will be trapped in either
one of the minima. By intramolecular energy redistribution and by interactions with the
solvent a molecule may incidentally gain enough energy along its reactive coordinate to hop
over the barrier from one well into the other. If the barrier is high compared with the thermal
energy of the reactive coordinate then the transition state is sparsely populated and crossing
events will be rare.

Eyring’s transition state theory4 (TST) expresses the forward rate constant as the
instantaneous flux through the transition state from reactants to products, divided by the
number of reactants:

( )[ ] ( ) ( )[ ]
( )[ ]k f

TST =
−

δ ξ θ

θ ξ

0 0 0

0

� �ξ ξ
. (3.1)

Here θ is the Heaviside function and the angular brackets denote a canonical average over
phase space. The reaction coordinate { }( )ξ x i  is a function of all molecular coordinates,
defined in such a way that it is positive for products, negative for reactants and zero at the
transition state. The time indication (0) is added to stress that all quantities are calculated at
the same point in time. Assuming thermal equilibrium prevails throughout the reactants part
of phase space, the rate constant may be shown to be given by Arrhenius’ law,

k
k T

h
e A k T

f
TST B B= − ≠∆ , (3.2)

where ∆A≠  is the free energy difference between reactants and the transition state. This
simple expression and the widespread techniques of calculating free energy differences make
TST a popular technique for calculating rate constants.

At this point an important deficiency of TST needs to be addressed. The TST rate
expression very much depends on ∆A≠ , i.e. on the precise choice of the transition state. In
principle, of course, the rate expression should indeed depend on this choice, since it implies
the definition of reactants and products. In practice, however, provided the reaction is slow,
the rate constant should hardly depend on the details of this definition as long as the surface
dividing reactants from products lies somewhere near the top of the free energy barrier. A
natural choice for this dividing surface is such that it carries the least flux,5 i.e. such that
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∆A≠  is as large as possible. Even then, however, the result will in general be an overestimate
of the true reaction rate. The reason for this is that in transition state theory it is assumed that
every molecule in the reactant well that reaches the transition state will end up in the product
region. Consequently, molecules which recross the transition state, e.g. after interaction with
the solvent, and eventually stay in the reactant well will be treated incorrectly.

In this article the reactive flux method6,7 (RF) will be used to calculate the transition rate.
Instead of counting all crossing events, attention shifts towards those crossing trajectories
that actually reach the product well some time t after having crossed the transition state:

( )
( )[ ] ( ) ( )[ ]

( )[ ]k t
t

f
RF =

−

δ ξ θ ξ

θ ξ

0 0

0

�ξ
. (3.3)

One easily realises that the process of averaging in combination with the time delay turns the
numerator into the net flux from reactants to products.

Equation (3.3) is conveniently expressed as

( ) ( )k t t kf
RF

f
TST= κ , (3.4)

i.e. as the instantaneous flux at the transition state times the fraction that actually makes it to
the product state at time t. The transmission function κ(t) is given by

( )
( )[ ] ( ) ( )[ ]
( )[ ] ( ) ( )[ ]
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= =
0 0
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0

0 0

�

� �

�

� �

ξ

ξ ξ

ξ

ξ ξ
, (3.5)

where � ξ  denotes a conditional average. Since most recrossings follow shortly after a
crossing, κ(t) quickly decays on the time scale of molecular vibrations from one to a plateau7

value which remains constant on that time scale. The transmission function stabilises since
after some time the molecules have moved far enough from the transition state into one of
the two wells for recrossings to become extremely rare. Of course, on the far longer time
scale of 1 kf  recrossings do still occur, so the plateau is in fact decaying extremely slowly.
The real transmission coefficient κ is equal to the plateau value of κ(t), or more precisely to
the extrapolation of the plateau to its value at t = 0. The reactive flux method ensures that the
rate constant, i.e. the product κk f

TST, is insensitive to the precise definition of the reaction
coordinate and transition state.7

The problem usually encountered when performing MD simulations of reactions in
condensed phases is the extremely small chance for molecules to surmount the barrier. In the
expression for κ(t) this problem does not occur, since all trajectories start at the barrier,
making the improbable probable. Stabilising the transmission function on its plateau value
typically requires the simulation of several thousand trajectories for a couple of picoseconds
directly after the start at the transition state. Starting configurations in the transition plane are
efficiently obtained by performing biased MD or Monte Carlo runs. The influence of the
applied constraint or restraint on the sampled positions and velocities is simply corrected for.
Good statistics and fast convergence are obtained when the plateau value is as high as
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possible, i.e. when the TST rate is as small as possible. For a Cartesian dividing plane in
configuration space this suggests identification of the reaction coordinate with the
displacement along the unstable direction at the saddle point. The hyperplane perpendicular
to the unstable mode which includes the saddle point then is the transition state.

The reactive flux method has been used to calculate the isomerisation rates for a number
of isomerisation reactions, including those of n-butane,8 dichloro-ethane,9 cyclohexane,10-12

cyclohexene13 and n-octane14 and even the side chain rotation of BPTI
15 has been studied.

Numerous other reactions, including chemical reactions, have been simulated too.16,17 In
these examples the reaction coordinates are defined in terms of distances or dihedrals. A rare
exception is cyclohexane, where a special set of coordinates and an accompanying potential
were introduced.18 For some of the molecules the chosen reaction coordinate indeed defines
a dividing surface that includes the saddle point, while for others it is an educated guess.

Defining a reaction coordinate in a complex isomerising molecule may prove difficult.
Often a torsion is the slowest internal motion, suggesting a dihedral angle as the reaction
coordinate. Concerted motions, however, may drastically complicate the choice. In this
article it will be shown that it is advantageous to define the reaction coordinate via the
unstable normal mode at the saddle point. This objective many-body reaction coordinate is
calculated by a zero-point search. Its derivative, which is needed many times in the
subsequent MD simulations, may then be obtained non-iteratively, in contrast with other
iteratively determined coordinates. When properly implemented, a single MD program can be
used to study a wide variety of reactions.

Normal modes and their properties are introduced in section 3.2. It proves simple to
describe any molecular configuration uniquely by a translation, a rotation and the amplitudes
of the rotated vibrational normal modes of the saddle point. The coefficient of the unstable
mode is then used as a reaction coordinate. Constraining this mode, as to sample the
transition state, can be done efficiently. The constraint and its side effects are discussed in
section 3.3. A method for implementing the technique in an MD program is presented in
section 3.4. In section 3.5 it is shown that the results of test runs with n-butane in carbon
tetrachloride and with liquid n-butane are in good agreement with previously published
results. As an example of a complicated reaction the isomerisation of a calix[4]arene in
chloroform is discussed.

3 .2  The reaction coordinate
As we remarked already in the previous section, the precise definition of the reaction

coordinate is not crucial. A physically appealing reaction coordinate is the component along
the unstable normal mode of the free molecule in its transition state. In this section we shall
first make some remarks about normal mode analysis, mainly for the sake of setting our
notation. Next we shall describe a method to calculate the value of this reaction coordinate
for any molecule in whichever orientation and whichever configuration.
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Suppose we are given the potential energy surface (PES) of a molecule containing N atoms
in terms of its 3N Cartesian coordinates. We shall collect all coordinates in a 3N dimensional
column vector X of mass-weighted 3 dimensional column vectors: X T =
( )m m mT T

N N
T

1
1 2

1 2
1 2

2
1 2x x x, , ,� . At the saddle point X 0  the gradient of the potential energy equals

zero, and its Taylor expansion up to second order reads

( ) ( ) ( )E Vpot

T
= + − −X X X H X X0 1

2
0 0 . (3.6)

Here H denotes the Hessian, a matrix containing all second order derivatives of the potential
with respect to the mass-weighted coordinates. Diagonalising the Hessian yields 3N
eigenvectors and eigenvalues. In absence of external fields the potential energy is
independent of the position and orientation of the molecule, ensuring that at least six
eigenvalues (assuming we are dealing with a non-linear molecule) will be equal to zero. The
corresponding six eigenvectors can easily be constructed:

( ) ( ) ( ) ( )( )E e e el T l T l T

N
l T

m m m= 1 2, , ,� , (3.7)

( ) ( ) ( ) ( )( )S e r e r e rl T l T l T

N
l

N

T
m m m= × × ×1 1

0
2 2

0 0, , ,� , (3.8)

where e1, e2  and e3  are three unit vectors along the Cartesian axes, and ri
0  is the position of

atom i with respect to the centre of mass for a molecule in configuration X 0 . Choosing
X X− 0  proportional to one of the El  or Sl  amounts to translating or (infinitesimally)
rotating the molecule as a whole away from its reference configuration. Noticing that Epot

remains unaltered under such an operation, one easily concludes that El  and Sl  are
eigenvectors of H with eigenvalue zero. The remaining 3 6N −  eigenvectors correspond to
internal vibrations,

( ) ( ) ( ) ( )( )Q q q qj T j T j T

N N
j T

m m m= 1 1 2 2, , ,� , (3.9)

and can only be obtained by explicitly diagonalising H. In a regular normal mode analysis,
where X 0  corresponds to an energy minimum, all eigenvalues will be non-negative, equal to
the square of the oscillation frequencies. At the saddle point, however, one unstable
direction, Q r , occurs, which may be recognised by its negative eigenvalue or imaginary
frequency.

The orthogonality of eigenvectors, or the possibility to orthogonalise eigenvectors in case
of degeneracy, has some interesting consequences. The scalar product of a vibration and a
translation gives

Q E e qj l l
i i

j

i

N

m l j⋅ = ⋅ = ∀
=
∑

1

0 , , (3.10)

and the scalar product of a vibration and a rotation gives
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Q S e r qj l l
i i i
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i

N

m l j⋅ = ⋅ × = ∀
=
∑ 0

1

0 , . (3.11)

These equations are known as the Eckart conditions.19 They state that a molecule does not
translate nor rotate during an infinitesimal vibration. Put differently: vibrations are the result
of internal forces while translations and rotations require external forces. Notice that the Sl

as defined above are not orthogonal among each other. By making linear combinations they
are simply made orthogonal. Henceforth it will be assumed that all eigenvectors have been
orthonormalised.

We now come to the definition of the reaction coordinate. When the molecule is close to
the transition state we may perform a harmonic analysis as described above, and identify the
reaction coordinate with

( )X X Q− ⋅ =0 r ξ . (3.12)

We then immediately face the problem of how to define X 0 . Notice that this will not only
affect the first factor of the scalar product on the left hand side of Eq. (3.12), but also the
second factor, Q r . Because we want the reaction coordinate to describe a molecular
property, independent of the position and rotation of the molecule, we demand

( )X X E− ⋅ = ∀0 0l l , (3.13)

( )X X S− ⋅ = ∀0 0l l , (3.14)

i.e. we assume that the state X can be obtained from the state X0 without translating or
rotating the molecule. Here too, the eigenvectors depend on X 0 . Together with the fact that
X 0  should correspond to a saddle point these equations completely specify X 0 .

Equation (3.13) is trivially satisfied when all coordinates refer to the centre of mass of the
molecule, which we shall assume in the remaining part of this paper. To solve Eq. (3.14) for
X 0 , we introduce a reference geometry Y 0  with the molecule in its saddle point, and write

X AY0 0= . (3.15)

Here A is a 3N dimensional rotation matrix, containing N copies of a three dimensional
rotation matrix a along the diagonal. Once the rotation matrix A has been found, the normal
modes of X 0  are given by AE l , ASl  and AQ j , where El , Sl  and Q j  are the normal
modes belonging to the reference geometry Y 0 . Equation (3.14) now reads

( )X AY AS− ⋅ = ∀0 0l l , (3.16)

and the reaction coordinate is given by

( )X AY AQ− ⋅ =0 r ξ . (3.17)

These two equations combined uniquely define ξ for every configuration. A numerical
method for solving Eq. (3.16) will be discussed in section 3.4.
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In the neighbourhood of the transition state, where the harmonic expansion of the
potential is valid, the reaction coordinate has a clear physical interpretation as the
displacement along the unstable normal mode. Since Q r  is tangent to the mass-weighted
path of steepest descend, the definition of ξ is then closely related to the common intrinsic
reaction coordinate20 (IRC). Far away from the transition state, i.e. for large ξ, the coordinate
loses its physical interpretation and reduces to a mere mathematical description of the
molecular configuration. This does not affect the validity of our reaction coordinate, since for
large ξ, i.e. for t > 0, Eq.  (3.3) only requires the sign of ξ. Accuracy is therefore demanded
only near the transition state, i.e. at t = 0 in Eqs. (3.1) and (3.3), and that is precisely where ξ
is stringently defined. Elsewhere a rough estimate of the reaction coordinate will do. Note
that Eqs. (3.16) and (3.17) can not ensure that ξ is positive (negative) throughout the entire
product (reactant) region. This has to be verified before using the present definition of ξ.

Equations (3.16) and (3.17) may also be understood by using a slightly different point of
view. It is clear that any configuration X can be obtained from the reference geometry by a
superposition of Y 0  and all vibrations, followed by a rotation:

X A Y Q= +










=

−

∑0

1

3 6

α j
j

j

N

. (3.18)

The amplitude of the unstable normal mode is then identified with the reaction coordinate,
ξ α= r . By using the orthonormality of normal modes, the solution to this equation again
yields the Eqs. (3.16) and (3.17).

3 .3  Sampling the transition state

3 .3 .1  Constrained dynamics

In order to efficiently calculate the numerator and denominator on the right hand side of
Eq. (3.5) we need to perform a simulation with the molecule constrained to the saddle plane
ξ = 0 . This we do by means of the SHAKE algorithm of Ryckaert et al.21 Suppose we apply L
holonomic constraints ( )σ l l LX = =0 1, , ,� . As a result every atom in the molecule
experiences an additional force, a constraint force of the form − ∇=Σ l

L
l i l1λ σ , where the λl  are

L Lagrange multipliers. The λl  are determined by imposing that the L constraints hold at
every time. Several methods may be chosen to solve for the λl , the most common being that
the constraints are treated one at a time. Because imposing one constraint may do harm to all
others, one usually has to go through all constraints several times in a cyclical fashion. This
iterative procedure allows for the λl  to be calculated to lowest order only.

We shall now restrict our discussion to the constraint ξ = 0 . The result of imposing this
constraint is that a constraint force

Fi
r

r i= − ∇λ ξ (3.19)
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applies to atom i. The Lagrange multiplier λ r  has to be chosen such that the constraint is
satisfied at every instant. When using the Verlet algorithm the displacement during the
interval ( )t t, + ∆  reads

( ) ( ) ( )x xi i
i

r it t
m

t+ = ′ + − ∇∆ ∆ ∆2

λ ξ , (3.20)

where ( )′ +x i t ∆  is the position atom i would have had at time t + ∆  had there been no
constraint force. Inserting this into the constraint equation ξ = 0  yields an expression for λ r .
Usually this expression is solved to first order by writing

( ) ( ) ( ) ( )ξ ξ λ ξ ξt t
m

t tr
i

i i
i

N

+ = ′ + − ∇ ′ + ⋅ ∇
=
∑∆ ∆ ∆ ∆2

1

1
, (3.21)

where ( )′ +ξ t ∆  is the value of the constraint coordinate when the atoms are at the positions
( )′ +x i t ∆ . Putting the left hand side equal to zero yields λ r  to first order. In successive

iterations the newly calculated ( )x i t + ∆  replace the old ( )′ +x i t ∆ .
The important object to calculate now is ∇iξ . The main problem in evaluating the

gradient of Eq. (3.17) lies in the derivative of the rotation matrix, which will be dealt with
first. Since a is a rotation matrix it satisfies a a IT = , from which, after differentiating with
respect to the α-coordinate of atom i, follow the six conditions

∂
∂

∂
∂α α

a
a a

a
0

x xi

T

T

i







 +







 = . (3.22)

Expressing the matrix derivative as the product

∂
∂ α

α
a

b a
xi

i= (3.23)

and substituting this into Eq. (3.22) we find

b bi
T

iα α= − . (3.24)

Any antisymmetric matrix can be expanded as a linear combination of three independent
antisymmetric matrices ε k , so

bi i
k k

k

cα α=
=

∑ ε
1

3

. (3.25)

The unknown ci
k
α  may be obtained from the definition of a, Eq. (3.16). Differentiating this

equation with respect to the α-coordinate of atom i and substituting Eqs. (3.23) and (3.25)
we get, after changing the order of summation,

( ) ( )0
11

3

= +




















==
∑∑m c mi i

l
i
k k

j j
l

j
j

N

k

as a s x
α α ε : . (3.26)
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For every i and α this expression constitutes a set of three equations, i.e. one for every l, in
the three unknown c ki

k
α , ,2,= 1 3 . Notice that the expression between curly brackets can be

regarded as an element of a matrix, M , which does not depend on i nor on α. Equation (3.26)
is then easily solved for ci

k
α , yielding the same linear combination of ( )mi i

las α ’s for every i
and α.

We now return to the definition of the reaction coordinate, Eq. (3.17). Differentiating and
substituting Eqs. (3.23) and (3.25) yields

( ) ( )∂ξ
∂ α

α αx
m c m

i
i i

r
i
k k

j j
r

j
j

N

k

= +




















==
∑∑aq a q xε :

11

3

. (3.27)

Again, the factor between curly brackets can be regarded as an element of a vector, N r ,
which is independent of i and α. Upon substituting the ci

k
α  found from Eq. (3.26), the final

result reads

∇ = −



=

∑i i i
r

l
r

i
l

l

m dξ a q s
1

3

, (3.28)

where the coefficients,

( )d Ml
r

kl
k

= −

=
∑N k

r 1

1

3

, (3.29)

are independent of i. From a calculation point of view this is a very attractive expression,
since the cumbersome dl

r  need to be evaluated only once for every X. At the saddle point the
gradient takes a particular simple form, since then N 0r =  and dl

r = 0 . Note that the
constraint force is derived from an internal coordinate, and hence does not affect the angular
momentum of the molecule. Therefore, one does not need to explicitly use this conservation
property when defining the constraint force, as was done by Tobias and Brooks.22

3 .3 .2  The conditional average at the transition state

In this subsection we present the formulas needed to calculate the conditional averages in
Eq. (3.5). Things will be complicated a bit by the fact that apart from the constraint on ξ we
will also make use of the usual constraints on the bond lengths involving hydrogen atoms.
We therefore have one constraint ξ = 0  and L constraints σ l = 0. We introduce the
generalised coordinates q q N L L1 3 1 1, , , , , ,� �− − ξ σ σ , and write for the kinetic energy

Tq q
T

q qξσ ξσ ξσ ξσ= −1
2

1p A p , (3.30)

where pqξσ  represents the column vector of all generalised momenta. One of Hamilton’s
equations of motion then reads

v
p

A pq

q

q
q q

T
ξσ

ξσ

ξσ
ξσ ξσ

∂
∂

= = −1 , (3.31)
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where v qξσ  is the column vector of all generalised velocities. We will make use of the
following notation

A
A B

B Cq

q

Tξσ
ξσ

ξσ ξσ
=







 , (3.32)

A
X Y

Y Zq

q

Tξσ
ξσ

ξσ ξσ

− =






1 , (3.33)

where A q  is the ( ) ( )3 6 3 6N L N L− − × − −  left upper block of A qξσ , etc.
We are interested in the integral

( ) ( )[ ]d d d dp d d F Tq qq p p∫ ∫ ∫ − +ξ δ ξ βξ σ ξσσ exp Φ

( ) ( ) ( )[ ]≈ − +∫ ∫ ∫d d d dp d d F Tq qq p pξ δ ξ δ βξ σ ξσσ σ exp Φ , (3.34)

where Φ is the potential energy, β = 1 k TB , and F, the function to be averaged, may depend
on all variables. In the second expression we have made the usual assumption for stiff
variables. Because of the δ-functions, ξ and σ may be put equal to zero in F, Tqξσ  and Φ.

We intend to compute the integral (3.34) by using the constrained molecular dynamics
simulations described in the previous section. Since in these simulations not only ξ and σ are
constrained to zero, but also �ξ  and �σ , it is advantageous to change coordinates from

( ) ( )p p p pq qp, , ,ξ σ ξσ=  to ( ) ( )p p vq q, , � ,ξ σ = ξσ  according to

p

v

1 0

Y Z

p

p
q

T

q

ξσ ξσ ξσ ξσ







 =














 , (3.35)

where the second line follows from Eqs. (3.31) and (3.33). The Jacobian of this

transformation equals Z ξσ
−1 . The kinetic energy can be calculated by inverting Eq. (3.35)

and introducing the result into Eq. (3.30):

Tq q
T

q q
T

ξσ ξσ ξσ ξσ= +− −1
2

1 1
2

1p A p v Z v . (3.36)

Integral (3.34) then reads

( )[ ] ( ) ( ) [ ]d d d d d d F Tq q
Tq p Z v Z v∫ ∫ ∫ − + −

− −ξ β δ ξ δ βξσ ξσ ξσ ξσ
� � exp expξ σσ σ σΦ

1
1
2

1

( ) [ ]∝ −∫ ∫ ∫
− −d d d d F Pq

c
q

Tq p q p Z v Z v� � , expξ σσ ξσ ξσ ξσ ξσ ξσβ
1

1
2

1 , (3.37)

where Tq q
T

q q= −1
2

1p A p , and ( )Pc
qξσ q p,  is the probability distribution in ( )q p, q -space as it is

generated by a molecular dynamics simulation during which ξ and σ are constrained.23

In the application ahead of us F will be ( ) ( )[ ]�ξ 0 θ ξ t . We shall assume that this function is
rather independent of �σ , i.e. we assume that the evolution of the reaction coordinate hardly
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depends on the vibrations of the C−H and O−H bonds. In this case we can easily calculate
the integral over �σ  analytically. Defining

Z
D

D Zξσ
ξ

σ
=









Z
T , (3.38)

Z
L

L Mξσ
ξ

σ

− =






1

K
T , (3.39)

we write

( ) ( )v Z v M L M M Lξσ ξσ ξσ ξ σ σ σ
T T

T
TZ− − − −= + + +1 1 1 1� � � � � �ξ ξ ξ ξσ σ . (3.40)

Introducing this result into Eq. (3.37) and performing the Gaussian integral over �σ , we
obtain, apart from a constant factor,

( ) [ ]d d d F P Zq
c

qq p q p M Z∫ ∫ − − − −
� , exp � �ξ ξ ξξσ ξ σ ξσβ1

2
1 1 2 1

( ) ( )∝ ∫ ∫ − −
d d d F P P Zq

c
qq p q p q M Z� , �ξ ξξσ ξ σ ξσ

1 2 1 2 1
. (3.41)

In the second expression ( )P �ξ q  is the normalised Gaussian probability density of the
velocity �ξ  for a given value of q. Using Zξ ξσ σ= Z M , which is proven in the appendix, we
derive the final result

( ) ( )[ ]d d d dp d d F Tq qq p p∫ ∫ ∫ − +ξ δ ξ βξ σ ξσσ exp Φ

( ) ( )∝ ∫ ∫
−

d d d FP Pq
c

qq p q p q Z� , �ξ ξξσ ξσ

1 2

. (3.42)

This expression can easily be used in computations by means of molecular dynamics

simulations. First a set of ( )q p, q  distributed according to ( )Pc
qξσ q p,  is generated by means of

a molecular dynamics simulation during which both ξ and σ are constrained. Next, velocities
�ξ  are drawn according to ( )P �ξ q . In order to calculate the velocities v qξσ  at this point, we

notice that

�q

v
A A B

0 1

p

vξσ

ξσ

ξσ







 =

−
















− −
q q q

1 1

. (3.43)

This result can easily be derived by using Eq. (3.31) in the form p A q B vq q= +� ξσ ξσ .
Equation (3.43) tells us that after the first constrained run �q A p= −

q q
1 , and that after having

drawn vξσ  we should add − −A B vq
1

ξσ ξσ . Since we shall continue to constrain σ we only need
the first column of Bξσ . The changes in the generalised velocities are then transformed into
the Cartesian velocities of the MD run by v Jv= qξσ , where
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{ }
{ }J

x

q
=

∂
∂ ξ

i

, ,σ
. (3.44)

In the final step F is calculated by means of a molecular dynamics run with σ constrained,

multiplied by Z ξσ
−1 2 , and averaged.

We conclude this derivation with an expression for the matrix A qξσ  and its inverse. The
kinetic energy of the molecule can be expressed in terms of the generalised velocities by
combining Eqs. (3.30) and (3.31),

T mi i
i

N

q
T

q q= =
=
∑1

2
2

1

1
2v v A vξσ ξσ ξσ . (3.45)

Introducing the aforementioned relation between the Cartesian velocities and the generalised
velocities one finds23

( )A
x x

q jk i
i

j

i

ki

N

m
q q

= ⋅
=
∑ ∂

∂
∂
∂1

, (3.46)

and likewise for Bξσ  and Cξσ . It is then straightforward to prove that the elements of the
inverse matrix are given by

( )X
x xq jk

i

j

i

k

ii

N

m

q q
= ⋅

=
∑ 1

1

∂
∂

∂
∂

, (3.47)

and likewise for Yξσ  and Z ξσ . A similar equation also holds for the width of ( )P �ξ q , which
by using Eq.  (3.28) is found to be

( )Z dk
r

k
ξ = +

=
∑1

2

1

3

. (3.48)

An obvious drawback of the method presented so far is that Eq. (3.43) explicitly requires
an expression for the matrix A qξσ . Moreover, in order to transform all generalised velocities
to the Cartesian velocities used in the simulation run, one needs the Jacobian matrix J. If we
use the normal mode based internal coordinates, Eq. (3.18), then the evaluation of J is
straightforward. Furthermore, at the saddle point we then have Zξ = 1 and B 0ξσ = . The
fluctuations around these values in a ξ-constrained run are small, as we will see in
section 3.5.

An alternative expression for the constrained average was presented by Carter et al.24

Similar to the steps leading from Eq. (3.34) to Eq. (3.37), where pqξσ  was replaced by

( )p vq , ξσ , we can also make the transformation from pqξσ  to ( )pqξ , �σ . Integration over �σ
then yields

( ) ( )[ ]d d d dp d d F Tq qq p p∫ ∫ ∫ − +ξ δ ξ βξ σ ξσσ exp Φ

( ) ( )∝ ∫
−

d d FP Pq
c

qq p q p q Zξ ξσ σ ξ ξσ

1 2

, (3.49)
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where ( )Pc
ξσ q  is the again the probability of finding a ξ and σ constrained molecule at point

q and ( )P qσ ξp q  is the momenta distribution of a σ constrained molecule at this point. The
latter distribution can be sampled without prior knowledge on A qξσ  or J by assigning a
Maxwellian velocity to all atoms and SHAKEing the coordinates after a single MD step.25 Our
expression differs from the one by Carter et al.24 by a factor of Z σ

1 2  since we integrated
over the �σ  rather than demanding ( )δ �σ .

3 .4  Implementation
The numerical results presented in this paper were calculated using the GROMOS8726

package. The molecular dynamics program was adapted to employ the above described
reaction coordinate. Some details of the implementation will be discussed here.

Several algorithms have been developed to locate the required saddle point Y 0  of a
potential energy surface.27-30 We used the TRAVEL routine30 implemented in the QUANTA/
CHARMM package.31 The atomic coordinates were transferred to GROMOS and refined by
minimising the potential-gradient using Newton-Raphson. The Hessian matrix of second
derivatives of the potential energy was calculated by numerically differentiating the atomic
forces with respect to the atomic coordinates. Standard routines32 were used to diagonalise
the matrix, yielding both the eigenvalues and the eigenvectors. Because of the sixfold
degeneracy of the zero frequency eigenvalue it is not simple to split the corresponding
eigenvectors into rotational and translational modes. Therefore the rotational eigenvectors
were evaluated directly using the orthonormalised version of Eq. (3.8). All modes were
normalised to 1 a.m.u. 1/2 nm.

The rotation matrix of a molecule with coordinates X is found by solving Eq. (3.16).
Using the orthogonality of Y 0  and Sk , Eq. (3.8), we find the three equations

a s x: mi i
k

i
i

N

=
∑





=
1

0 . (3.50)

All information about the orientation of the molecule is condensed in the bracketed term,
which needs to be evaluated only once for each configuration. Several methods are available
to solve this equation.18,19 In our calculations we have used a numerical zero-point search. A
rotation matrix can be defined as a function of three parameters, e.g. the Euler angles, by
writing each element as a function of these three parameters. Unfortunately, any three
parameter definition will contain singularities which complicate numerical handling of the
matrix.33 This problem does not occur when using the four quaternions34 qi . In this
definition the elements of the matrix are second order polynomials in the qi ’s. The
redundancy of using a fourth parameters is elevated by the constraint

q q q q0
2

1
2

2
2

3
2 1 0+ + + − = . (3.51)

Eqs. (3.50) and (3.51) then constitute a set of four quadratic equations in four variables. The
derivatives of these equations with respect to the quaternions are straightforward to calculate,
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hence this set of coupled equations is efficiently solved numerically using the rapidly
converging Newton-Raphson method.

A minor problem made its appearance during test runs: there are four solutions (eight if
left-handed rotation matrices are also allowed) to Eq. (3.51), so care must be taken to pick
the right one. During MD runs, when the changes in atomic coordinates between successive
evaluations of the rotation are small, the correct matrix is simply identified as the one that
best resembles its predecessor,

( ) ( )a a IT t t+ ≈∆ . (3.52)

In practice, the correct matrix will be found directly when the solution to the previous matrix
evaluation is used as the starting point of the next iteration procedure. A different technique
is needed at the start of the MD run. We note that in many molecules part of the molecule is
not affected by the reaction (in the current runs the starting configurations lie in the saddle
plane, making this requirement less strict). A set of three orthonormal vectors can then be
constructed from the relative positions of at least three atoms of the ‘rigid’ section of the
saddle point configuration Y 0 . For instance, in the case of the calix[4]arene of section 3.5.3
we used the hinge to hinge vectors. This procedure is also applied to the molecule of
unknown rotation. Comparing the two sets of vectors yields a good initial guess at the
rotation matrix.

The code was tested in a series of runs. It proved simple to reproduce the correct rotation
matrix of randomly rotated excited molecules. The normal mode constraint was found to
work well, also when combined with simultaneous constraints on the hydrogen bond lengths.
In vacuum runs the angular momentum of molecules was unaffected by the constraints.
Leuwerink and Briels35 have successfully used the code to calculate the rotation
autocorrelation function of 18-crown-6.

3 .5  Results
The reaction coordinate has been applied to calculate the transmission function of three

isomerisation models. Two models, namely n-butane in carbon tetrachloride and liquid
n-butane, were taken from the literature, and the results show that the code reproduces
known transmission coefficients in those cases where our reaction coordinate is similar to the
conventional reaction coordinate. Some features of these reactions are discussed. A third
model describes an isomerising calix[4]arene dissolved in chloroform.

3 .5 .1  Flexible n-butane in carbon tetrachloride

In an early paper combining the reactive flux method and full-MD simulations Rosenberg
et al.8 calculated the transmission function of the trans-gauche isomerisation of n-butane
dissolved in carbon tetrachloride (CCl4). This model serves as our first test case. By using the
united atom model the butane molecule is reduced to four interacting pointmasses, and the
dihedral angle emerges as the designated reaction coordinate. The potential energy of the
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molecule is modelled by the torsion potential of Ryckaert and Bellemans, in combination
with harmonic potentials for bond stretching and angle bending.36 The molecule is immersed
in a box of 122 pointmasses, each representing a carbon tetrachloride molecule. All
intermolecular interactions are described by Lennard-Jones potentials. Details on the force
field can be found in the original article.

A butane molecule with a dihedral φ of 60° was made by hand. Starting from this
configuration the saddle point was calculated by reducing the force down to ( )Σ i

N
i=1
2 1 2F

= 2.4⋅10-14 kJ mol-1 nm-1, resulting in a slightly shifted dihedral, φ = 59.96°. Normal modes
and eigenfrequencies were obtained by diagonalising the Hessian matrix. The positive
direction of the reaction coordinate was chosen to coincide with an increase in dihedral
angle. From evaluating the derivatives ∂φ ∂α j  at the saddle point it follows that four out of
six vibrational modes affect the dihedral, in a 1.00/0.31/0.24/0.09 ratio. Our reaction
coordinate, therefore, differs from the obvious choice, the dihedral angle, even in the
neighbourhood of the saddle point. Notice that it is possible to construct a set of orthonormal
mass-weighted vectors, including El and Sl, such that at the saddle point only one vector,

( ) ( ) ( )( )Qφ φ φ
T T

N N

T
m m∝ ∇ ∇1 1 , ,� , (3.53)

couples to the dihedral. Along this vector the decrease in torsion energy reaches a maximum,
but the accompanying increase in bending and stretching potential energy is even bigger.
Since this vector is strongly correlated to the unstable mode, Q Qφ ⋅ =r 0 93. , it is to be
expected that our reaction coordinate and the dihedral will lead to equivalent results.

A cubic carbon tetrachloride box was made by placing 125 particles at random in spheres
centred at lattice points of a simple cubic lattice with the proper density. The excess potential
energy was discharged by a short energy minimisation run and a consecutive MD run. Three
particles were then removed to provide space for a butane molecule in its saddle point
configuration. Again the excess potential energy was reduced, followed by a 0.1 ns
equilibration MD run. The transition state was sampled in a production run of 10 ns, saving
the positions and velocities of all atoms in the box at intervals of 1 ps. The acceptation
criterion on the rotation matrix was such that the left hand side of Eqs. (3.50) and (3.51) did
not exceed 10-6 and 10-8 respectively. The constraint on the normal mode was satisfied to
within 10-10. Due to inaccuracies of the rotation matrix the actual precision of the reaction
coordinate is about 3⋅10-8. In the MD runs the time step was 2 fs, the temperature was kept at
300 K using velocity scaling37 with a time constant of 0.1 ps and the volume of the box was
kept constant.

The dihedral distribution of the sampled saddle plane configurations is shown in Fig. 3.1.
This broad distribution results from the coupling of the dihedral to the unconstrained normal
modes. Obviously, the transition state differs from the dihedral constrained distribution of
Rosenberg et al.8 Constraining the projection along the vector Qφ, i.e. using a basis where
only one direction couples in first order to the dihedral, leads to a narrower distribution, see
Fig. 3.1. The remaining dispersion reflects the second and higher order contributions of the
other internal coordinates to the dihedral.
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The sampled transition state configurations and corresponding velocities serve as the

starting points of relaxation runs. As outlined in section 3.3.2, we start by supplying a

velocity �ξ  sampled from ( )P �ξ q . The width of this distribution depends on q, but in the

constrained run the fluctuations in the width were found to be very small, Zξ =
1.005±0.006. We used Zξ = 1. Next in line is the coupling of �ξ  to �q , resulting in a velocity

change ( )δ ξσ�qj q j= − −A B1 ξ . By combining Eqs. (3.18) and (3.45), it follows that the matrix

A qξσ  is diagonal, except for the three rows and the three columns containing derivatives

with respect to the rotation angles. These were calculated numerically for the sampled

configurations. The average velocity correction, δ �qj , is easily shown to be zero. The

standard deviation of the correction is small compared to the standard deviation of the

existing velocities: for the rotation we find ( )δ � � .q qj j
2 2 1 2 0 06≈ , while for the vibrations

this ratio is about 3⋅10-3. The velocity of the centre of mass is unaffected. Since this effect is

fairly small, and expected to be smaller for bigger molecules, we neglected it. In the final

step the generalised velocity is transformed into Cartesian velocities by v aqi i
r= �ξ  and

superimposed on the already existing velocities.
The relaxating molecule is followed for 10 ps. During these runs the solvent is still

temperature scaled. The solute is excluded from scaling, so it can only lose its excess energy
by means of collisions with the solvent. Each transition state configuration is used as the
starting point of only one relaxation run.

The time evolution of both reaction coordinates in four typical relaxation runs is displayed
in Fig. 3.2. Figures 3.2(a) and (b) show the most common trajectories, in which a butane

0

0.04

0.08

0.12

45 55 65 75

φφ / deg

pe
r 

de
gr

ee

0

0.4

0.8

1.2

pe
r 

de
gr

ee

Figure 3.1. The distribution function of the dihedral angle during a constrained run, in
which the unstable normal mode (solid line, left axis) or the dihedral mode (dotted line, right
axis) is kept constant.
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molecule with a negative (positive) transient reaction velocity enters the trans (gauche+) well
and remains there for some time. In Fig. 3.2(c) a butane molecule with a positive transient
velocity recrosses the transition state after oscillating in the gauche+ well. Surprisingly,
nearly all molecules showing this behaviour were found to recross after two, rather than one,
oscillations in the gauche+ well. Figure 3.2(d) shows a direct gauche+ to gauche− transition
without equilibration in the trans well. The plot also shows that the close harmony of the two
reaction coordinates suddenly breaks down near the trans-gauche− barrier. In this region it
proves difficult to find a rotation matrix that meets all requirements. Of the runs entering this
region many crashed since they failed to find a proper rotation matrix, while in the surviving
runs the reaction coordinate made a sudden change of direction, as in Fig. 3.2(d). In all runs
that made it to the gauche− well the reaction coordinate was found to be positive; upon
re-entering the trans well the reaction coordinate made a second jump to become negative
again.

The transmission function is calculated from 3000 relaxation runs. In view of the above
mentioned problems with the normal mode based reaction coordinate, we decided to use the
dihedral angle as discriminator, see Eq. (3.55). In compliance with common practice both
gauche configurations are regarded as product states of the reaction, i.e. ξ φ= − °60 . The
resulting transmission function is shown in Fig. 3.3 as a solid line. Because the transition
state was sampled with αr = 0, and the discriminator is taken to be ξ φ= − °60 , the
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Figure 3.2. Four typical relaxation runs of butane in carbon tetrachloride, showing both the
unstable mode reaction coordinate (solid line, left axis) and the dihedral angle (dotted line,
right axis).



36 Chapter 3

transmission function does not start at the value one at t = 0 . Almost all molecules with a
positive (negative) velocity ( )�α r 0  will quickly reach φ ≥ °60  (φ ≤ °60 ), so the function
rapidly raises to nearly one. The function then decreases down to about 0.4 before levelling
off to a slowly decaying plateau.

Rosenberg et al.8 fitted their 2.6 ps transmission function with

( ) ( )κ κ κt e k t e kt= − − + −1 1 . (3.54)

The second exponential, with the relaxation rate k kTST= κ  and k k kTST
f
TST

b
TST= + , is the

analytic long time solution to Eq. (3.5) for a system evolving to equilibrium, and the first
exponential is added to match the transient decay to the plateau. In a free energy
calculation8,38,39 it was found that kTST= 200 ns-1, which was used in the fit to yield
k1 = 7.1 ps-1 and κ = 0.361. Using the same fit procedure, but shifted to the right by 0.05 ps
for obvious reasons, we find k1 = 3.6 ps-1 and κ = 0.34. The plateau values are in good
agreement. However, on a logarithmic scale it is apparent that the final exponential decay of
the plateau starts after about 5 ps. Fitting the 5-10 ps range with a single exponential yields
k = 29 ns-1 and κ = 0.28, hence a small kTST of 102 ns-1. The fitted region of the plateau is
too short and too noisy to get an accurate value for k; the κ is far more reliable since it is
insensitive to the details of the fit. We further want to remark that the free energy profile, i.e.
kTST, was calculated for a molecule with rigid bond lengths and rigid bending angles and
may therefore differ from the free energy profile of the extremely flexible molecule
discussed here, even after a correction for the different phase space distributions of the
constrained and unconstrained runs.

Subdividing the transmission function into various contributions reveals some interesting
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Figure 3.3. The transmission function (solid line) of butane in carbon tetrachloride for the
first 2.5 ps. The meaning and interpretation of the other lines is given in the text.
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features that are not apparent from the function itself. In Fig. 3.3 the upper (lower) dashed
line represents the contribution f +  ( f − ) to κ of molecules that have reached gauche+ at
time t, after having started with a positive (negative) transient velocity, i.e.,

( )
( )[ ] ( ) ( )[ ] ( )[ ]

( )[ ] ( ) ( )[ ]f t
tr r r

r r r

± = ±
± − °

±

δ α θ θ φ

δ α θ

0 0 0 60

0 0 0

� �

� �

α α

α α
. (3.55)

The upper dashed line nearly starts at the value one, so almost all molecules with a positive
transient velocity are in the gauche+ well. After about 0.3 ps the line suddenly drops due to a
massive recrossing, the elapsed time corresponding to twice the period of an oscillation in
the gauche+ well, as in Fig. 3.2(c). The decrease of the function is larger than the actual
fraction of recrossing trajectories, indicating that the recrossing trajectories have on average a
higher initial velocity than the non-recrossing trajectories. As time goes by the function
gradually decreases to its equilibrium value without showing any structure. The lower dashed
line corresponds to molecules that have reached the gauche+ well after having started with a
negative transient velocity. This line starts at zero and decreases only gradually. The mean
transient velocity of these trajectories is only about a third of the average transient velocity,
meaning that this kind of trajectory is much more likely than it appears from the plot. The
gradual decrease of the line is predominantly caused by an increase in the average transient
velocity, rather than by the small rise in the number of molecules reaching gauche+.

The dotted lines give the contribution to κ of those molecules that have reached either one
of the two gauche wells, again grouped according to their transient velocity. They differ from
the dashed lines by those molecules that have reached the gauche− well. At the bottom of the
plot the difference between the dotted and the dashed line rapidly increases after about 0.1 ps
due to direct gauche+ to gauche− transitions, as in Fig. 3.2(d). The average transient velocity
of these trajectories is well above the overall average, since direct gauche+ to gauche−
transitions account for only 17% of the trajectories with a negative transient velocity. The
upper dotted line and the upper dashed line coincide for the first 0.4 ps and then slowly grow
apart. It takes about 0.2 ps before the first molecules with a (small) positive transient velocity
reach gauche−. After 0.4 ps their numbers start to increase and so does their average transient
velocity: it looks as though a considerable fraction of the molecules that leave gauche+ after
a double oscillation proceed directly to the gauche− well. The transmission function, the
solid line, is obtained as the sum of the two dotted lines. It is seen then that the rapid decline
between 0.1 and 0.4 ps is the combined effect of two independent processes. From the above
discussion and the plots of individual relaxation runs it is obvious that the reaction tends to
the low friction regime.

We also calculated the transmission function using the unstable normal mode as the
reaction coordinate to monitor the relaxation runs. In view of the particular problems of this
coordinate, as discussed above, we assumed that:
i) Molecules with a positive reaction coordinate are in a product well. Considering the

jumpy behaviour of the coordinate in the gauche− well, this properly includes gauche− as
being a product.
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ii) Crashed runs are in a product configuration for the rest of the run. Since runs are found to
crash when a molecule enters the gauche− well, this is correct as long as the molecule
does not return to the trans well (which does occur after 0.5 ps).

Figure 3.3 shows the transmission function calculated from 1000 relaxation runs of 1 ps as a
dash-dotted line. There is a good resemblance to the solid line. The difference between the
two curves after about 0.5 ps is attributed to the failure of the second assumption. In the 1 ps
interval already 14% of the runs aborted prematurely.

In a third set of relaxation runs the usual technique of replacing all velocities of the
sampled transition state configurations by velocities sampled from a Maxwellian distribution
was used, Eq. (3.49). The transient velocity of the reaction coordinate was obtained by
projecting the assigned Cartesian velocities onto the unstable normal mode. The transmission
function, which is not shown here, was identical to the one discussed above to within about
0.01. This indicates that the assumptions underlying our velocity assignment are justified.

3 .5 .2  Liquid rigidified n-butane

As a second test-case we study the isomerisation process of liquid n-butane. The
appealing feature of this model is the high number of barrier crossings at little computational
expense. This allows for a direct determination of the rate constant from the time evolution
of the fractions trans and gauche. Edberg et al.2 studied the relaxation of non-equilibrium
boxes with all molecules initially in the same configuration. Brown and Clarke1 showed that
the rate constant can also be calculated from an equilibrium run by studying the relaxation to
equilibrium of those molecules that are trans (gauche) at some time t.

The butane model employed in this section is the one by Brown and Clarke.1 The butane
molecule consists of four pointmasses interacting by Lennard-Jones potentials. The bond
lengths and the bending angles are rigidified by means of five distance constraints, leaving
the dihedral as the sole internal degree of freedom. The torsional energy is modelled by the
Ryckaert-Bellemans potential. The saddle point of this molecule is exactly identical to the
one of the previous section. We now ought to calculate the unstable normal mode Qc  of the
constrained molecule, a mode that does not couple to the constrained coordinates. Instead,
we will make use of the unstable normal mode Q r  of the unconstrained molecule. This
mode, in comparison with the other normal modes, is indeed only weakly coupled to the
constrained coordinates. For a molecule as simple as the current butane model it is
straightforward to calculate the accuracy of this approximation, Q Qc r⋅ = 0 995. , so it will be
of little effect.

A simulation box was made by placing 108 randomly orientated molecules, all in the
saddle point configuration, at random points within spheres centred around the lattice points
of a simple cubic lattice. The unstable normal mode of the first molecule is constrained in the
runs to come, while the dihedrals of the remaining 107 bath molecules are free. The excess
energy of the box was released by an energy minimisation, followed by a 0.5 ns equilibration
MD run. In a subsequent 3 ns production run the saddle plane was sampled, saving a
configuration every picosecond. A thermostat37 maintained an average temperature of
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291.6 K. Because of the five distance constraints on each molecule, the effect of constraining
the normal mode of the first molecule is identical to making this molecule completely rigid.
In the production run the dihedral angle of the first molecule fluctuated within 0.001° of the
saddle point value.

At the start of a relaxation run the normal mode constraint on the first molecule is lifted.
Since the molecule is at the saddle point it is evident that Zξ = 1 and δ �qj = 0 . A Maxwellian
velocity �ξ  is assigned to the unstable mode. This velocity then ought to be transformed into
atomic Cartesian velocities by v aqi i

c= �ξ , but, here too, we made the approximation
v aqi i

r= �ξ . As a check on the validity of this assumption we calculated the resulting dihedral
velocity �φ  using the virtual time step method:25 a molecule in vacuo is placed at the saddle
point, velocities are assigned using the above approximation, positions are advanced by a
2 fs MD step without forces, constraints are applied, and the change in the dihedral is
calculated. The distribution of the dihedral velocities, averaged over 16,000 trials, was found
to be a Gaussian with �φ  = 4.46 rad/ps, in excellent agreement with the 4.445 rad/ps found
by Brown and Clarke.40

The transmission function, depicted in Fig. 3.4 as a solid line, was calculated from 3000
relaxation runs of 5 ps. In these runs the dihedral angle of the previously constrained first
molecule was used as the reaction coordinate; unlike with the other butane model, this time
the transition at t = 0 is smooth. The decaying plateau was fitted with an exponential in the
range 2.5−5.0 ps, yielding κ = 0.32 and k = 35 ns-1. Again, the upper and lower parts of the
figure are obtained by splitting the transmission function into contributions from trajectories
with positive or negative transient velocities; the dashed lines correspond to molecules which
have reached the gauche+ well, and the dotted lines to molecules which have reached either
the gauche+ or the gauche− well. Like before, a number of molecules with a positive initial
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Figure 3.4. The transmission function (solid line) of liquid butane. The meaning and
interpretation of the other lines is given in the text.
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velocity are found to recross the barrier after oscillating in the gauche+ well. But this time
they oscillate only once due to the absence of other degrees of freedom, so the decay of the
upper dashed line sets in earlier than in Fig. 3.3. A few of these molecules even manage to
pass through the trans well into gauche−, causing the upper dotted and dashed lines to rapidly
grow apart after 0.3 ps, and making the total transmission function rise for a short while. The
latter rise is enhanced by molecules with a negative transient velocity that follow a trans-
gauche− trans route.

As a comparison, we have also calculated the reaction rate from a 2 ns equilibrium run.
The temperature of this box was kept at 291.6 K using a time constant of 10 ps. We observed
NBC = 16,415 barrier crossings in this run. The TST rate constant was calculated by directly
evaluating Eq. (3.1), and by1

k
N

N X t X
TST BC

mol T run T

=
−2

1

1
, (3.56)

where XT  is the average fraction of trans molecules. Both produced a value of 160 ns-1.
The true rate constant was obtained from the bulk relaxation,1

( )R t X

X X
e

TT T

T T

kt
−

−
= −

2

2 (3.57)

where ( )R tTT  is the fraction of molecules that are in the trans conformation at time 0 and
also at time t. A fit over the interval 10-50 ps yields k = 47 ns-1, which together with
kTST= 160 ns-1 yields a κ of 0.29. This means that the plateau of the transmission function
predicts the correct κ, while the absolute rate is in error. The reason for this is poor statistics,
the transmission function is too short and too noisy to really probe the exponential decay.

This long run also offers an alternative route to the transmission function, by following
the dihedral of a molecule after it incidentally crosses a barrier. Selecting those molecules
that are in one well at time t and in another at time t+∆ biases the distribution of crossing
velocities, but this is simply corrected for.40 The transmission function, shown in Fig. 3.4 as
a dash-dot line, resembles the result found in the relaxation runs. On a logarithmic scale the
linear decay sets in at 2.5 ps, so we fitted the plateau over the range 2.5−10 ps to find
κ = 0.28 and k = 47 ns-1, in good agreement with the bulk data.

3 .5 .3  Calix[4]arene

As an example of a really complex reaction we will now discuss the isomerisation of a
calix[4]arene. This molecule consists of four phenol groups, each of which is connected to
two neighbouring phenols by methyl bridges located ortho to the hydroxyl group, see
Fig. 3.5. In supramolecular chemistry they are being used as building blocks for larger
molecules that are designed for the complexation of cations and neutral molecules. Various
sidegroups can be attached at the upper and lower rim, replacing the explicitly named
hydrogens in Fig. 3.5, to influence the characteristics of the molecule. We will use hydrogen
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sidegroups only. The most interesting feature in the current context is that this molecule has
four stable conformations. The favourable configuration is one in which all phenol groups
point in the same direction. This conformation, the so-called ‘cone’, is stabilised by a cyclic
array of four hydrogen bonds at the lower rim. Its chalice-like shape gives its name to this
class of molecules. Flipping one phenol group, with two methyl bridges acting as hinges and
the hydroxyl group swinging through the annulus, yields the partial cone or ‘paco’. It is this
particular reaction step that will be studied here. In a following reaction step either one of the
two neighbouring phenol groups can flip over to form the ‘1,2-alternate’, or the opposing
phenol group can rotate to form the ‘1,3-alternate’. After two more steps the cone is
transformed into an inverted cone. The rate of this inversion process has been measured by
1H NMR to be about 150 s-1 at room temperature.41,42

Computational studies on the conformations of calix[4]arenes with various sidegroups
have mainly focused on the energy minima and the resulting conformational distribution,
using a variety of force fields.43-46 In a recent article by Fischer et al.47 the saddle points and
the reaction paths between the local minima of the PES were calculated using the Conjugated
Peak Refinement algorithm. The cone to paco transition was found to be the rate limiting
step for cone inversion, but this energy-based picture could change if entropic effects are
included. With the all-hydrogen CHARMM parameter set 2247,48 the saddle point lies
15.2 kcal/mol above the minimum of the cone and 5.6 kcal/mol above the minimum of the
paco. This saddle point was taken as the starting point of the present calculations, employing
the same force field. The accuracy of the saddle point after minimising the gradient is
( )Σ i iF2 1 2  = 5.8⋅10−10 kJ mol-1 nm-1. All 3N normal modes of the molecule were calculated by
diagonalising the Hessian matrix. The eigenvalues of the zero-frequency normal modes were
smaller than any other frequency by almost six orders of magnitude. The unstable normal
mode, Q r , pointed in the direction of the paco.

Since we intend to do MD runs with a molecule with L constraints on the bonds containing
hydrogen, we should have calculated the 3N − L normal modes 

~Q j  of the σ-constrained
molecule. Only for these modes will the velocity transformation v aqi i

r= ~ �ξ  hold (to lowest
order). If we use v aqi i

r= �ξ  on the regular modes, then SHAKEing the molecule will eliminate
the velocities along σ, hence effectively reduce �ξ . We then would have to go through the

   
Figure 3.5. The cone (left) and paco (right) conformation of a calix[4]arene.
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elaborate process of evaluating J and A qξσ  before being able to assign a velocity.
Fortunately, nature offers a helping hand. The 3N − 6 vibrational modes of the unconstrained
molecule are subdivided into two groups. The low frequency modes, the 3 6N L− −  modes
with wavenumbers up to 1600 cm-1, are only very weakly coupled to the bonds with
hydrogens. The high frequency modes, the L modes with wavenumbers over 2800 cm-1, are
strongly coupled to the bonds with hydrogens. This suggests that the low frequency modes of
the unconstrained molecule will be nearly identical to the modes of the constrained molecule.
We, therefore, will make use of v aqi i

r= �ξ  and neglect the small effects of the σ constraints.
The calix[4]arene was dissolved in a bath of chloroform (CHCl3) molecules. The

chloroform potential by Dietz and Heinzinger49,50 was used. Each chloroform molecule is
treaded as a rigid five-sided entity, modelling the atoms by a mass, charge and Lennard-Jones
parameters. A cubic solvent box of 216 molecules was made by placing randomly orientated
molecules at random positions within cubes centred at the lattice sites of a simple cubic
lattice. The size of the box was chosen to match the experimental density of 1489 kg m-3 at
293 K and 1 bar. The excess potential energy of the box was released by a couple of energy
minimisation steps, followed by a short NVT MD run. The calix[4]arene was combined with
several copies of (fractions of) the solvent box to form a truncated octahedral box of roughly
4.4 nm, containing about 320 chloroform molecules. Again, the excess potential energy was
reduced by a minimisation run, followed by a 150 ps NPT equilibration run. In the subsequent
production run of 500 ps the configuration was saved every 1 ps. This procedure of making a
box and sampling the transition state was repeated four times. All 24 hydrogen bonds of the
calix[4]arene and 9 distances in each chloroform molecule were constrained to a relative
accuracy of 10-5. The unstable mode was constrained to within 10-8, the rotation matrix was
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Figure 3.6. The four angles between each of the four benzene rings and the central annulus
of a calix[4]arene as a function of time for a constrained dynamics run in chloroform.
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calculated with a tolerance of 10-10. A constant pressure37 was maintained by scaling the box,
using a compressibility of 10-9 m2 N-1 and a time constant of 0.5 ps. The temperature37 was
fixed at 300 K with a time constant of 0.1 ps. A time step of 2 fs was used. Intermolecular
interaction were cut off beyond 1.3 nm, and the dielectric constant equalled one.

The dynamics of the calix[4]arene in the constrained runs was visualised on a SGI

workstation. It clearly showed that the motion of the partially rotated phenol group was
confined. To give an impression of what is going on, we have calculated the four angles
between the annulus and the phenols. Planes were fitted to the six carbon atoms of each
phenol group. In the annulus a plane was fitted to the four methyl hinges. These planes were
obtained by numerically minimising the sum of the squared perpendicular distances between
the plane and the atoms. Figure 3.6 shows the resulting four angles as a function of time
during a constrained run, ξ = 0. The rotated phenol dangles at an angle of −21°, the opposing
phenol oscillates at 45° and the two neighbouring phenols are at about 70°. In the two
minima the rotated phenol is at either 58° (cone) or −77° (paco). The oscillations of the
rotated group are mainly caused by deformations of the annulus, while for the other groups
there are also contributions from low frequency vibrations that lead to periodic back and
forth rotation of the phenols.

Two typical relaxation runs of a calix[4]arene in chloroform are shown in Fig. 3.7. In the
first plot the molecule quickly adopts the cone conformation. In the second plot it takes a
while before the molecule leaves the saddle region and ends up as a paco. The reaction
coordinate (dashed line) and the angle of the rotated phenol behave remarkably similar.
Therefore, the angle would probably have done a good job when used as the reaction
coordinate. However, its cumbersome calculation, and the lack of a non-numerical method to
evaluate the derivatives needed in constrained runs, are serious drawbacks.

In Fig. 3.8 the transmission function for a calix[4]arene in vacuo is presented. The saddle
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Figure 3.7. Two typical relaxation runs of a calix[4]arene in chloroform. The solid lines
denote the angle between each benzene and the central annulus, the dotted line shows the
reaction coordinate. The angle of the flipping benzene ring follows the reaction coordinate
closely.
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plane was sampled in a constant energy simulation with an average temperature of 301 K.
The angular momentum was eliminated at the start of this run and remained virtually zero
throughout the run. After a 0.2 ns equilibration run followed a 4 ns production run in which
configurations were saved every 2 ps. Each of these 2000 configurations served as the
starting point for one relaxation run, with Zξ = 1 and δ �qj = 0 . The figure shows that after
the transient decay a plateau sets in with κ = ±0 923 0 007. . . This high transmission
coefficient indicates that the used transition state is indeed near the optimum, ‘the
watershed’. Virtually all molecules with a positive transient velocity end up as paco. Nearly a
quarter of all molecules with a negative transient velocity recross the barrier, but they reduce
κ by only 0.08 since their average transient velocity is about 30% of the mean transient
velocity. The characteristics of the PES near the saddle point seem to play an important role.
The sudden decrease of κ at 0.8 ps is caused by particles that recross the transition state after
an oscillation in the paco well. Apparently, the flow of the high excess energy to the bath of
internal vibrations of the molecule is inefficient. The error in κ was estimated by the
variation in κ’s calculated from sets of randomly selected relaxation runs.

We calculated 2000 relaxation runs of a calix[4]arene in chloroform. In the 2 ps relaxation
runs the solute was excluded from temperature scaling. The transmission function, Fig. 3.9,
smoothly decreases from one to a stable plateau of κ = ±0 43 0 02. . . The trajectories that
resulted in the paco conformation at time t were subdivided into those with a positive or a
negative transient velocity. Both groups, shown as dotted lines, behave as expected. The
mean transient velocity of the first group lies 10% above average, that of the second group
lies 20% below average. Molecules with a high transient velocity were found to recross the
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Figure 3.8. The transmission function of a calix[4]arene in vacuo (solid line). The dotted
lines correspond to molecules that have reached the paco conformation with a positive (top)
or negative (bottom) transient velocity.
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transition state less often than molecules with a low transient velocity. Of all molecules with
a positive transient velocity some 60% end up as a paco conformer without ever recrossing.
Those with a negative transient velocity recross more often, only 45% does not recross. As a
result, the majority of trajectories will end up in the paco well: 70 (40)% of those with a
positive (negative) transient velocity.

Analysis of the individual trajectories revealed that the two wells act as nearly perfect
sinks. Only molecules that are still close to the transition state, ξ< 0.5 so
∆E ≈ 2.0 kcal/mol, were observed to recross. This region is rapidly cleared in the relaxation
runs, after 1 ps only 10% still remains and after 2 ps just 1%. So, 95% of all recrossings
occurred within 1 ps after the start of the run. Molecules outside this region only rarely
(about one in every hundred) recross the transition state. Comparing this with the vacuo
relaxation runs makes it clear that the solvent bath must be absorbing the liberated energy
efficiently. It is to be expected that the plateau of the transmission function will be a constant
for quite some time to come. Indeed, extending 100 runs to 15 ps hardly altered the plateau.

In some studies on transmission functions a relatively small set of transition state
configurations is created with a short constrained or restrained MD or MC run. Each of these
configurations is then used as the starting point of a dozen relaxation runs.8,12 New initial
velocities for all atoms in the simulation box are sampled from a Maxwellian distribution,
Eq. (3.49), so the dozen relaxation runs are relatively uncorrelated. The velocity assignment
used in this paper, affecting only one internal velocity, hardly randomises the starting point.
It is therefore to be expected that relaxation runs based on the same transition state
configuration will yield highly correlated trajectories. To test this hypothesis, 25 independent
configurations were used as the starting point of 10 relaxation runs each. For most of the 10
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Figure 3.9. The transmission function of a calix[4]arene in chloroform (solid line). The
dotted lines have the same meaning as in Fig. 3.8.



46 Chapter 3

trajectories the time evolution of the reaction coordinate is more or less the same, but runs
with a high transient velocity were sometimes seen to deviate from the main stream. The
same 25 configurations were also each used to start 10 relaxation runs with a Maxwellian
velocity for all atoms. These trajectories were found to be less correlated. Surprisingly then,
the transmission functions calculated for both sets of 250 runs are similar.

Sofar, little has been said about the Z ξσ  of Eq. (3.42). We first take a look at Z σ ,
Eq. (3.38). The L constrained bond lengths are commonly defined as ( )σ l l H l A AHl= − −r r, ,

2 2 ,
where l AH  is the equilibrium length of the A−H bond.23 It then follows that the diagonal
elements of Z σ  are constants, ( )4 2 1 1l m mAH H A

− −+ . Since only four atoms are involved in two
distance constraints, namely the carbons of the methyl hinges, there are only eight
non-vanishing off-diagonal elements. They are of the form 42 1l mC C HCH

− cosϕ , which amounts
to about −1/40th of the diagonal elements. These elements are not constants, but the harmonic
bending potential limits the fluctuations. The Zξ , Eq. (3.48), is nearly constant during the
constrained run at 1.00010±0.00011. From the above discussion on low frequency and high
frequency modes it follows that the elements of D are of the order Σ k k

r
k
ld d , Eq. (3.29); the

exact value amounts to about 0 ± 1⋅10-3. We then arrive at the final result, Z ξσ

= 3.658 ± 0.002⋅10-32. Because of the relatively very small fluctuations this term can savely
be neglected when calculating the constrained average.

In the so-called [14]metacyclophane the hydroxyl groups at the lower rim of the
calix[4]arene have been replaced by hydrogens. This molecule is extremely flexible due to
the absence of stabilising hydrogen bonds. The energy barriers between the local minima,
3.8 kcal/mol,47 are only slightly higher than those of n-butane. A short constrained MD run
showed that this molecule is much to floppy to be studied with the reactive flux method.
Even with a constraint on the unstable normal mode of the cone to paco saddle point, the
molecule is still flexible enough to allow for spontaneous conformational changes. This
clearly shows the limited effect of the normal mode constraint on the remaining vibrations of
the molecule. In principle, this problem could also have occurred with the calix[4]arene, but
there the energy barriers are high enough to suppress side-reactions.

3 .6  Conclusions
A new versatile reaction coordinate was introduced that can be used on a wide variety of

reactions. In combination with the reactive flux method the transmission functions of several
reactions have been calculated. The results for isomerising n-butane are in good agreement
with results found previously. A calix[4]arene served as an example of a more complex
isomerising molecule. Two pitfalls of the technique, in fact problems of any reaction
coordinate, were discussed: i) the sign of the reaction coordinate need not be the same
throughout the entire reactant or product well, and ii) simultaneous reactions in the molecule
are not suppressed. Provided these two problems do not arise, the reaction coordinate is
found to be a very efficient one. The coordinate is shown to yield a high plateau value, at
least for reactions in vacuo, at small computational expense. In the following chapter the
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calculation of the free energy of a solvated calix[4]arene will be discussed using the same
reaction coordinate.

3 .7  Appendix: calculation of Z ξ.
Starting with the identity

Z Z
T T
ξ

ξσ ξσ
ξ0

D 1
Z Z

0

D 1






 =







−1 , (3.58)

replacing Z ξσ
−1  by equation (3.39) and evaluating all resulting matrix products by using the

combination rules that follow from Z Z 1ξσ ξσ
− =1  yields

Z
T
ξ

ξσ
σ

0

D 1
Z

L

0 M






 =









1
. (3.59)

Taking the determinant produces the final result,

Zξ ξσ σ= Z M . (3.60)
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Chapter 4

Free energy and conformational transition

rates of calix[4]arene in chloroform *

Abstract
In a previous article we introduced a reaction coordinate based on the unstable normal

mode at the saddle point of the potential energy surface. We here calculate the free energy
distribution along this coordinate for the isomerisation of calix[4]arene in vacuo and in
chloroform using umbrella sampling, with one umbrella covering the entire range of the
reaction coordinate. An excellent first guess at this umbrella is obtained by performing a
normal mode analysis at various points along the reaction path. The isomerisation rate
constant of this reaction is determined using the reactive flux method, and is found to be in
good agreement with experimental data. The rate was found to be independent of the location
of the transition state, as it should be.

4 .1  Introduction
The forward rate constant k f  of a reaction, i.e. the fraction of reactants turned into

products per unit of time, in a solvent is a complicated function of the internal potential of
the reacting solute molecule(s), the solute-solvent interactions and the solvent-solvent
interactions. Molecular dynamics simulations (MD) are perfectly well suited for the numerical
analysis of such involved situations. Based on the statistical mechanical ideas discussed
below, it is possible to deduce from a total of about 10 nanosecond simulation time a
reaction rate that is slower by many orders of magnitude. The particular reaction studied here
is the isomerisation of a calix[4]arene in vacuo and in chloroform.

In Eyring’s transition state theory1 (TST) a hyperplane, the transition state, is introduced to
split configuration space into a reactant space and a product space. This plane is
characterised by { }( )ξ x i = ≠ξ , where the reaction coordinate { }( )ξ x i  is a function of the
atomic coordinates. Product space and reactant space are defined by ξ > ≠ξ  and ξ < ≠ξ

                                                
* W. K. den Otter and W. J. Briels, J. Chem. Phys. 107 4968 (1997).
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respectively. The forward rate constant is calculated as the instantaneous product-bound flux
through the transition state, normalised by the population of the reactant space:2

( )[ ] ( ) ( )[ ]
( )[ ]k f

TST =
−

−

≠

≠

δ ξ θ

θ ξ

0 0 0

0

ξ ξ ξ

ξ

� �

. (4.1)

Here the angular brackets denote a canonical average and θ is the Heaviside function.
The TST expression is conveniently rewritten as

( )[ ] ( ) ( )[ ]
( )[ ]

( )[ ]
( )[ ]k f

TST =
−

−

−

−

≠

≠

≠

≠

δ ξ θ

δ ξ

δ ξ

θ ξ

0 0 0

0

0

0

ξ ξ ξ

ξ

ξ

ξ

� �

. (4.2)

The second term on the right hand side is the probability of finding the molecule at the
transition state, ( )P ξ ≠ , divided by the probability for the molecule to be in reactant space,

( )P P dR =
−∞

≠

∫ ξ ξ
ξ

. (4.3)

We will discuss two techniques for the calculation of the probability distribution ( )P ξ :
normal mode analysis in section 4.2.2, and umbrella sampling in section 4.2.3. The first term
on the right hand side of Eq. (4.2), the average positive velocity of the reaction coordinate at
the transition state, will be addressed in section 4.2.4. The particular reaction coordinate that
we will use is discussed in section 4.2.1. Numerical results for the probability function and
the TST isomerisation rate of a calix[4]arene in vacuo and in chloroform are presented in
section 4.3.

Transition state theory, by focusing on the instantaneous forward flux, neglects the fact
that some fraction of this flux will recross the transition state shortly (order of a picosecond)
after having crossed it. Likewise, the forward flux also contains a contribution of ‘product
molecules’ that have crossed the transition state with a negative velocity shortly before they
recross with a positive velocity. These recrossings are the result of the normal dynamics of a
reacting molecule, induced by both the internal interactions of the molecule and its
interactions with the solvent. To a macroscopic observer, though, these rapid recrossings are
invisible, irrelevant. He defines the rate by the number of molecules that are in the reactant
well at time t = 0 and are in the product well at time t, normalised by the overall number of
molecules in the reactant well at time t = 0. Only if there are no recrossings will his rate
equal the TST rate, otherwise TST overestimates the true rate.

In the reactive flux method (RF) the aforementioned macroscopic definition of the rate is
related to the microscopic behaviour of a single molecule in a solvent by means of Onsager’s
regression hypothesis.3,4 The resulting rate expression is

( )
( )[ ] ( ) ( )[ ]

( )[ ]k t
t

f
RF =

− −

−

≠ ≠

≠

δ ξ ξ θ ξ ξ

θ ξ ξ

0 0

0

�ξ
. (4.4)
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In comparison with TST, attention has shifted from those molecules that cross the transition
state with a positive velocity to those molecules that actually end up in the product space at
some time t after crossing the transition state in whatever direction. The rate is often
expressed as

( ) ( )k t t kf
RF

f
TST= κ , (4.5)

( )
( )[ ] ( ) ( )[ ]

( )[ ] ( ) ( )[ ]κ
δ ξ ξ θ ξ ξ

δ ξ ξ θ
t

t
=

− −

−

≠ ≠

≠

0 0

0 0 0

�

� �

ξ

ξ ξ
, (4.6)

where ( )κ t  is the transmission function. On the time scale of the recrossings, about a
picosecond, the transmission function decays from unity at t = 0  to the so-called plateau
level. The true rate constant is found by inserting this plateau value into Eq. (4.5). Actually,
the plateau is not constant but decaying on the time scale of the reaction, but for most
reactions this is too slow to be seen in MD simulations. In a previous article5 we discussed the
calculation of the transmission function of the reaction studied here.

From Eqs. (4.1) and (4.4) one could infer that the calculated rate depends on the definition
of the transition state, i.e. on ξ ≠  and { }( )ξ x i  (for simplicity we will neglect the latter
dependence). The rate should of course depend on this definition, since it is embodied in the
definition of the number of reactant molecules, PR , and hence in the therefrom derived rate.
But, provided the free energy barrier is high and ξ ≠  lies somewhere near the top, the number
of reactants is virtually independent to the precise location of ξ ≠ , and so must the rate be.
The TST rate obviously strongly depends on ξ ≠ ; in the RF method the dynamics incorporated
in the transmission function blurs the picture. Miller6 showed, using Liouville’s theorem, that
the RF rate is independent of the precise location of the transition state. Chandler4 arrived at
the same conclusion in a discussion based on the separation in time scales between
recrossing and reactive events. In section 4.3.3 this independence is verified numerically.

4 .2  Theory

4 .2 .1  Reaction coordinate

We here briefly discuss the unstable normal mode reaction coordinate; an elaborate
introduction is to be found in a previous article.5 The reasoning behind this reaction
coordinate is the fact that in a reactive system most reactant to product trajectories will
surmount the potential energy barrier somewhere near the lowest point of the barrier, i.e. the
saddle point. It is therefore natural to construct a reaction coordinate based on the properties
of the saddle point. The Taylor expansion of the potential energy around a saddle point, X 0 ,
up to second order reads

( ) ( ) ( ) ( )Φ ΦX X X X H X X= + − −0 1
2

0 0T
. (4.7)
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For notational convenience, we collect all coordinates of the reacting molecule in a single 3N
dimensional column vector of mass-weighted atomic coordinates, X T =
( )m m mT T

N N
T

1
1 2

1 2
1 2

2
1 2x x x, , ,� . The Hessian matrix, H, contains all second order derivatives of

the potential energy with respect to the components of X. Its eigenvectors are orthogonal, or
orthogonalisable in case of degeneracy, since the Hessian is symmetric. Henceforth, all
eigenvectors will be assumed to be normalised. We shall assume that there is no external
field.

The set of 3N eigenvectors can be split into three groups. First, there are three independent
vectors E l  that correspond to an overall translation of the molecule. Obviously, they leave
the potential energy unchanged and therefore are eigenvectors of H with eigenvalues zero, as
follows from Eq. (4.7) after replacing X X− 0  by E l . Similarly, there are three independent
(assuming a non-linear molecule) eigenvectors Sk  corresponding to infinitesimal rotations of
the molecule. If r x xi i com

0 0 0= −  is the vector pointing from the centre of mass of the molecule
to atom i, then an infinitesimal rotation around an axes ek  through the centre of mass leads
to the atomic displacements

( ) ( ) ( ) ( )( )S e r e r e rk T

k

T

k

T

N k N

T
m m m= × × ×1 1

0
2 2

0 0, , ,� . (4.8)

Obviously, assuming orthonormality of the eigenvectors Sk , the three ek  are not orthogonal.
The six modes of the first two groups are degenerate, they all have eigenvalue zero, if there
is no external field. Finally, the remaining 3 6N −  eigenvectors Q j  are the normal modes of
vibration.

At an energy minimum all vibrational modes have a non-negative eigenvalue, but at a first
order saddle point there will be exactly one mode, Q r , with a negative eigenvalue. It is this
unstable normal mode that we are interested in; it points downhill, from the saddle point
towards the reactant and product wells, while all other modes are pointing uphill. Motion of
the molecule along this mode, therefore, corresponds to a reaction. The reaction coordinate
of a molecule with coordinates X might now be defined as the projection of the displacement
with respect to the saddle point configuration onto the unstable normal mode,

( )ξ = − ⋅X X Q0 r . (4.9)

This coordinate, however, is not invariant under rotations of the molecule X. This problem is
solved by making the saddle point X 0  depend on X. First we note that the rotated saddle
point AR 0 , where A is a 3N dimensional rotation matrix containing N copies of a regular
three dimensional rotation matrix a down the diagonal, and R 0  is a mass-weighted column
vector of the r i

0 , is also a saddle point. The normal modes of this rotated configuration
simply are E l , ASk  and AQ j . We next define the reaction coordinate by

( )ξ = − ⋅X AR AQ0 r . (4.10)

The rotation matrix A, which is a function of just three parameters, is determined from the
three equations
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( ) { }0 1 2 30= − ⋅ ∈X AR AS k k, , , , (4.11)

and assures rotational invariance. One may check that the above two equations are invariant
under translation, as follows from the orthogonality of the eigenvectors of the Hessian.

The inverse transformation reads

X AR E R R Q= + = +
= =

−

∑ ∑γ αl
l

l
j

j

j

N

1

3
0

1

3 6

, , (4.12)

where the centre of mass of R  evidently lies at the origin. The reaction coordinate is one of
the deviations, ξ α= r . At this point the reader might argue that the reaction coordinate now
is dimensionless, while in Eq. (4.10) it seems to have a dimension of kg m2. However, the
orthonormality of the vectors Q j  that is assumed in going from Eq. (4.12) to Eq. (4.10)
cancels the dimensionality.

In the following we will make use of the derivative of ξ with respect to X. From the
orthogonality of the rotation matrix in combination with the derivatives of Eqs. (4.10) and
(4.11) it follows that

∇ = −




=

∑X
r

k
r k

k

dξ A Q S
1

3

. (4.13)

The expression relating dk
r  to X, A, Sk  and Q r  is given in a previous article.5

4 .2 .2  Theory of small vibrations

The free energy of a classical molecule in vacuo can be calculated in reasonable
approximation by the theory of small vibrations. If we assume that the potential energy
function around the energy minimum is quadratic, and if we neglect the coupling between
rotations and vibrations, then the well-known semi-classical partition function of the
minimum reads7

( )[ ]
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β

π π
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π
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(4.14)

Here β = 1 k TB , T is the absolute temperature, kB is the Boltzmann constant, H is the
Hamiltonian, h is the Planck constant, � = h 2π , M is the total mass of the molecule, V is the
volume of the box, σ is the symmetry number, the IX are the momenta of inertia, the ωi  are
the eigenfrequencies of vibration (the square roots of the non-zero eigenvalues of the
Hessian), ωe  is the electronic degeneracy and Emin  is the energy at the potential minimum.
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We will now give a derivation of this expression, such that it later can be generalised to
calculate a ξ-dependent partition function.

To solve the integral of Eq. (4.14) we use the generalised coordinates of Eq. (4.12), where
now the configuration R 0  is assumed to be a local minimum of the potential function, and
Sk , E l  and Q j  are evaluated at this point. The obvious reason is that the potential energy in
terms of these coordinates reduces to a simple formula,

Φ ≅ +
=

−

∑Emin j j
j

N
1
2

2 2

1

3 6

ω α , (4.15)

provided the vibrations are small. After the canonical transformation of Eq. (4.14) from
Cartesian coordinates to mass-weighted Cartesian coordinates the integration over the
conjugate momenta yields ( )2 3 2πk TB

N . The subsequent transformation of the coordinates to
the generalised coordinates ψ k ,α j  and γ l  is accompanied by the Jacobi matrix

{ } ( )J
X

A Q A E= = −∂
∂ ψ α γk j l

k j l

, ,
Ψ 1 , (4.16)

where the rightmost matrix is expressed in terms of ( )3 3 6 3+ − +N  column vectors, and the
three ψ k  parameterise the rotation matrix A. Since the derivative of the rotation matrix with
respect to its kth argument can be written as the product of the rotation matrix and an
antisymmetric matrix, B k , we find

( ) ( )Ψ ψ ε ψk
k

l
lk

l

c= =
=
∑B R R

1

3

. (4.17)

Here the ε l  are three 3N dimensional matrices containing N copies of a three dimensional
antisymmetric matrix, an infinitesimal rotation generator,8 down the diagonal. The Jacobi
matrix can then be written as

( )J A R Q A E

c 0 0

0 1 0

0 0 1

=
















−ε k j l1 . (4.18)

If the Euler angles8 are used to parameterise the rotation matrix, then 0 21≤ ≤ψ π ,
0 2≤ ≤ψ π , 0 23≤ ≤ψ π , and c = sinψ 2 . Obviously, A a= =N 1.

For small vibrations we may approximate R  by R 0  in Eq. (4.18). Then ε kR  is of the
form of Eq. (4.8), hence perpendicular to both A E−1 l  and Q j . Denoting the second matrix
on the right-hand side of Eq. (4.18) by m, and using m m m= T 1 2  in combination with
these orthogonality relations and the orthonormality of the eigenvectors of the Hessian, the
resulting Jacobian reads

( )J I= =0 1 2

2
0 0 0 1 2

2sin sinψ ψI I IA B C . (4.19)
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The inertia tensor I 0  is the upper left 3 3×  submatrix of m mT , with elements
( ) ( )I lk

l k0 0 0= ⋅ε εR R , and the I X
0  are the eigenvalues of this tensor. The integrals over the

generalised coordinates are straightforward, and combination with the previously evaluated
integral over the momenta leads to Eq. (4.14). One should keep in mind that in a cubic box
of side L the coordinates γ l  run from 0 to L M  due to the normalisation of the
translational eigenvectors. The integrals over the α j  are supposed to run from minus infinity
to plus infinity.

In order to be able to calculate the numerator in the second factor in Eq. (4.2), we now
derive an expression for the partition function as a function of the reaction coordinate,

( ) ( )[ ] ( )[ ]Q
h

d d HN x xξ β δ ξ ξ* *exp ,= − −∫ ∫
1
3 x p x p x , (4.20)

using the same assumptions that were used in the above derivation of Eq. (4.14). This
partition function is often expressed in terms of a free energy by

( ) ( )A k T QBξ ξ* *ln= − . (4.21)

We first transform to mass-weighted coordinates, and define a standard minimum R *  on the
hyperplane ( )ξ ξX = * . This minimum is found by varying the α j  in Eq. (4.12), while
keeping αr  equal to ξ * . The minimum R *  is not rotated with respect to R 0 , and their
centres of mass coincide. In the present partition function the configuration R *  plays a role
analogous to that of R 0  in Eq. (4.14). In the appendix it is shown that

( ) ( )

[ ] ( )

Q
Mk T

h
V

k T

h
I I I

k T
E k T k T h

B B
A B C

B

ii

N

e B B

ξ
π π

σ
π

ω
ω ξ π

* * * *

*
*

*exp ,

= 



 ⋅









× ⋅ − ⋅ ∇ ⋅
=

− −
−∏

2 8

2

2

3 2 1 2 2

2

3 2
1 2

1

3 7 1 1 2 1

� R

(4.22)

where a superscript asterisk denotes a quantity that is to be calculated at R * . An alternative
expression for the partition function is also derived in the appendix.

To locate the minimum R *  on the hyperplane ( )ξ ξX = *  we used a standard minimum
search routine in combination with a constraint on the reaction coordinate. The resulting
configuration was further refined by reducing the projection of the gradient of the potential
onto the tangent hyperplane. This was achieved by an iterative Newton-Raphson zero point
search, using forces and Hessians calculated in the plane spanned by the basisvectors T l

defined in the appendix. Since the tangent hyperplane is only locally correct, each iterated
point was reset to ( )ξ ξX = *  by a SHAKE-routine,5,9 followed by a recalculation of the normal
to the hyperplane, N, and of the basisvectors T l . If these minimisations are performed in the
full 3N dimensional space, then the molecule will rotate inevitably. This is easily corrected
for, either by rotating the vectors N and T l , or by counter-rotating the molecule after each
step. This effect does not arise if the minimum is directly located in the 3 6N −  dimensional
α-space.
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Eqs. (4.14) and (4.22) obviously do not take into account the anharmonicity of the force
field, nor the coupling between rotations and vibrations. The inclusion of interactions with a
solvent is difficult. In the next section an alternative technique is discussed which does not
suffer from these drawbacks.

4 .2 .3  Umbrella sampling

A straightforward way of obtaining the correct probability distribution ( )P ξ  of a
(dissolved) molecule is to calculate this distribution directly from a long MD run. The MD run
should include numerous barrier crossings to ensure that both wells and the barrier region are
sampled sufficiently. For reactions with a high barrier, exceeding several kBT, such a run
would last prohibitively long. Two techniques are commonly employed to circumvent this
problem.10–12 In the potential of mean force method the derivative of the free energy with
respect to the reaction coordinate is calculated in a series of ξ-constrained runs and then
integrated. We will use the second method, and apply an ‘umbrella potential’, a modification
to the force field that can easily be corrected for, to effectively reduce the barrier.

We are interested in the probability distribution of the reaction coordinate,

( ) ( ) ( )[ ]P d pξ δ ξ ξ* *= −∫ X X X . (4.23)

Here

( ) ( )[ ]p
Z

X X= −
1

exp βΦ (4.24)

is the Boltzmann factor for a molecule in configuration X with potential Φ, and Z is a
normalisation factor. X represents all coordinates, including the solvent coordinates, and Φ
includes solvent-solvent and solute-solvent interactions. In the barrier region this probability
becomes extremely small, too small to be sampled efficiently. Addition of an umbrella
potential, U, changes the Boltzmann factor into

( ) ( ) ( ){ }[ ]p
Z

UU
U

X X X= − +
1

exp β Φ . (4.25)

The umbrella potential is used to favour the distribution pU  in areas that would otherwise
have been difficult to sample. The requested probability distribution of the reaction
coordinate is readily obtained from the biased distribution by combining Eqs. (4.23) through
(4.25) into

( ) ( ) ( )[ ] ( )[ ]P
Z

Z
d p UU

Uξ β δ ξ ξ* *exp= −∫ X X X X . (4.26)

The normalisation factors ZU  and Z do not have to be calculated independently, only the
factor which normalises the final distribution ( )P ξ *  is needed.

In many applications the umbrella potential is chosen to be a function of the reaction
coordinate ξ only, in which case the exponential in the integral of Eq. (4.26) becomes a



Free energy and conformational transition rates of calix[4]arene in chloroform 57

constant.13,14 For molecules with more than two local minima, as in our case, it may prove
necessary to use a somewhat more complicated umbrella potential to suppress unwanted side
reactions.

Often a series of L umbrellas of the form ( ) ( )Φ l l lkξ ξ ξ= −1
2

2 , l L= 1, ,� , is used. At
each l a small area of configuration space, a so-called ‘window’, is sampled, resulting in a
distribution ( )Pl ξ  for each window. The various distributions are then combined into the
overall distribution, using the overlap of successive windows to match the partial
distributions.15 We use a single umbrella covering the whole range of ξ. Only if the diffusion
along the reaction coordinate is relatively fast this method will work, so care must be taken
to make the reaction coordinate distribution in the biased run as flat as possible.

4 .2 .4  Transition state crossing velocity

The first term on the right hand side of Eq. (4.2) is most easily calculated by using the
mass-weighted coordinates introduced above. The velocity of the reaction coordinate can be
expressed in terms of the mass-weighted Cartesian momenta as

� �ξ = ∇ ⋅ = ∇ ⋅X X Xξ ξX p , (4.27)

and the kinetic energy of the molecule reduces to Ekin X X= ⋅p p . These equations remain the
same if the coordinate system is rotated. We now apply a rotation such that the first
mass-weighted coordinate axis lies parallel to ∇ X ξ ; all other axes are then perpendicular to
the gradient. Integration over the momentum parallel to this axis, using
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yields the average positive crossing velocity
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The length of the gradient, Eq. (4.42), is seen to act as the reciproke effective mass of the
reaction coordinate. Combining Eqs. (4.2), (4.14), (4.22) and (4.29) yields the classical
analogue to Eyring’s expression.

It is common practice to express the rate constant in terms of a free energy difference
between the transition state and the reactant well, ∆A A AR

≠ ≠= − , as in

k
k T

h
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k Tf
B

B

= −
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
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≠

exp
∆

. (4.30)

This free energy difference should not be confused with the free energy difference calculated
by means of Eqs. (4.2) and (4.21). First, the free energy A≠  is based on the partition function
of a molecule which is constrained to ( )ξ ξX = ≠  and which explicitly excludes any motion
along the reaction coordinate, �ξ = 0 . In the harmonic approximation
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( )A k T Q
h

k TB
B

≠ ≠= −
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ln ξ
π2

. (4.31)

Using this result, the transition state theory value of the rate constant in the harmonic
approximation takes the form of Eq. (4.30). Second, in the literature on experiments the ∆A≠

includes the transmission factor.

4 .3  Results
The techniques introduced above are now applied to the isomerisation reaction of

calix[4]arene.16 This molecule consists of four phenol groups, each of which is connected to
two neighbouring phenols by methyl bridges located ortho to the hydroxyl group, see
Fig. 4.1. In supramolecular chemistry they are being used as building blocks. The interesting
property in the current context is the fact that they have four stable conformations. The
‘cone’ conformation, with all phenol groups pointing in the same direction, is most
abundant. It is stabilised by a cyclic array of four hydrogen bonds. The partial cone, ‘paco’
for short, is formed by rotating one phenol group, with the methyl groups acting as hinges
and the hydroxyl group moving through the central annulus. In this process two hydrogen
bonds are broken. We will focus here on this reaction step. In a following reaction step one
of the phenol groups nearest to the rotated phenol can rotate and form the ‘1,2-alternate’, or
the opposing phenol group can rotate to form the ‘1,3-alternate’. After two more steps all
phenol groups have rotated, and the final ‘inverted cone’ conformation is reached. This name
will be used to distinguish it from the initial ‘cone’ configuration.

All simulations were done with a modified version of GROMOS87.17 Several routines were
adapted or added for the handling of the normal mode reaction coordinate. The calix[4]arene
was modelled with the all-atom CHARMM parameter set 22.18 The saddle point of the cone to
paco reaction was calculated with the Conjugate Peak Refinement algorithm.18,19 The
unstable normal mode of the saddle point, Q r , was chosen to point towards the paco well.
All normal modes were normalised to 1 a.m.u.1/2 nm. In the MD runs all bonds involving
hydrogen atoms were constrained to constant lengths using SHAKE,9 and in several runs the
reaction coordinate was also constrained. The effect of these constraints on the sampling of

   
Figure 4.1. The cone (left) and partial cone (paco, right) conformation of a calix[4]arene.
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phase space was shown to be very small, so we applied no corrections. We refer to a
previous article5 for more details.

In section 4.3.1 the free energy profile of a calix[4]arene in vacuo is calculated using the
theory of small vibrations. The runs with umbrella sampling, both in vacuo and in
chloroform, are described in section 4.3.2. Combining the free energy and the transmission
function allows us to calculate the reaction rates of section 4.3.3.

4 .3 .1  Small vibrations

The minimum energy of a calix[4]arene in vacuo as a function of the reaction coordinate
was calculated by two series of ξ-constrained energy minimisations. Starting at the saddle
point, the value of ξ was increased (decreased) by 0.01 up to a maximum value of 2 (-2), and
a minimum was located at each value. The resulting function is shown in Fig. 4.2 by the
dotted line, while the plot is shifted vertically to place the saddle point at zero energy. The
local minima of the cone and paco conformations are seen to be at 15.2 and 5.6 kcal/mol
respectively below the saddle point, in agreement with the results of previous unconstrained
minimisation runs.18 At both extremes of the ξ-axis, with energies exceeding the saddle point
value, the minimum search algorithm ran into problems. In these areas, as a result of the
constraint on the reaction coordinate, the strain on the molecules was so extreme that the
molecule ‘spontaneously’ changed into another conformation. These areas are irrelevant to
the problem at hand, so these problems are of no consequence. For energies below the saddle
point value, in the range − ≤ ≤171 153. .ξ , the minimisation produces a smooth energy
profile.

Next, each minimum in the intermediate range was refined by a Newton-Raphson zero
point search in 3N dimensions, as described in section 4.2.2. After each iteration step SHAKE

was applied to prevent the molecule from slowly drifting away from the hyperplane. The
Hessian H * , as defined in the appendix, of the converged configurations were diagonalised
to obtain the eigenfrequencies of vibration. All frequencies were positive, so Eq. (4.22) could
be used to evaluate the partition function. The absolute values of the rotational
eigenfrequencies, which should have been zero, were found to be smaller than the lowest
vibrational eigenfrequency by 4 to 5 orders of magnitude for most configurations, indicating
that the constrained minima were indeed well converged.

The free energy function in vacuo was calculated by means of Eq. (4.22). In Fig. 4.2 this
function is shown as a dashed line, shifted vertically in order to make it pass through the
origin. The difference with the minimum energy function is considerable, ranging from
+1.2 kcal/mol near the cone minimum to -0.5 kcal/mol near the paco minimum. This
difference is predominantly of vibrational origin, i.e. it reflects the ξ-dependence of the
eigenfrequencies of vibration perpendicular to the gradient of ξ. The other two ξ-dependent
terms, due to rotation and due to the gradient of ξ, vary by just 2.9% and 0.8%, respectively,
of the variation of the vibrational contribution. The top of the free energy function has
shifted from the origin towards ξ = −0 06. , as can be seen in the inset of Fig. 4.2. The
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transmission function calculated in vacuo with ξ≠ = 0  must therefore yield a transmission
coefficient less then unity, as was indeed found.5

In an alternative calculation the potential energy as a function of the α j , Eq. (4.12), was
minimised using Newton-Raphson, at intervals of 0.01 for ξ. The partition function was then
calculated according to Eq. (4.47) of the appendix. The resulting minimum energy and free
energy distributions are identical to the ones discussed above, but the two methods are
clearly different in the assignment of the rotational and vibrational free energy.

Replacing the vibrational partition function by its quantised version is of little effect on
the free energy function: after forcing the function to pass through the origin, the differences
with the semi-classical result range from about +0.25 kcal/mol for the cone to -0.2 kcal/mol
for the paco. However, now the two expressions for the partition function differ by at most
0.02 kcal/mol. Omission of the 24 highest frequencies is of little influence, namely of the
order of 0.06 kcal/mol for the quantised partition function and 0.008 kcal/mol for the semi-
classical partition function. These 24 modes correspond to the stretching of bonds including
hydrogen atoms; bonds that will be constrained in the MD simulations.

4 .3 .2  Umbrella sampling

As the initial trial umbrella for the umbrella sampling in vacuo served the above
calculated minimum energy function,13 ( ) ( )U fX = ξ . At first a tenth order polynomial was
used to fit the function in the interval where ξ ranges from -1.7 to +1.5, i.e. the region in
which the potential energy is less than the saddle point energy. The umbrella was
supplemented with two Fermi-Dirac functions at both extremes to delimit the range of
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Figure 4.2. Minimum energy (dotted), free energy according to normal mode analysis
(dashed) and free energy according to umbrella sampling (solid) for a calix[4]arene in
vacuo. The inset shows the three functions near the saddle point.
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accessible ξ-values to those values that are relevant to the isomerisation rate. The least-
squares fitted polynomial oscillated around the minimum energy function with an amplitude
of about 0.25 kcal/mol. These oscillations were clearly visible in the sampled probability
distribution, which contained corresponding maxima and minima. Upon examination of the
trajectory it became clear that the molecule was hopping from one local minimum to the
next. Since the time spent in the evaluation of the umbrella potential is negligible in
comparison with the overall execution time, a more complicate umbrella, which represented
the minimum energy function better, was used next. The cone well and the paco well were
both fitted with a fifteenth order polynomial. In the saddle point region, which was covered
by both fits, a third order ‘switch’ polynomial was used to make a smooth transition from
one fit to the other. With this umbrella the time evolution of the reaction coordinate was
effectively smoothed.

A second problem arose during the simulations. When the reaction coordinate reached a
value of about 0.7, it proved possible for a phenol ring neighbouring the freely rotating ring
to flip over. Thus the calix[4]arene reached the 1,2-alternate configuration, where it was
captured for the rest of the MD-run. The reason for this problem was that the umbrella not
only lowers the energies of the paco and the barrier conformations to the energy of the cone
conformations, but it also lowers other saddle points to within a few kBT of the cone
conformations. We therefore located the saddle point of the paco to 1,2-alternate transition,
in the absence of an umbrella, using the TRAVEL algorithm and refined it with Newton-
Raphson. Because of the circular orientation of the hydrogen bonds at the lower rim of the
calix[4]arene there are two saddle points, depending on which neighbouring phenol ring is
being rotated. One saddle point is located at ξ = 102.  with an energy of 0.5 kcal/mol below
the saddle point of the cone to paco transition, the other saddle point is located at ξ = 0 96.
with an energy of 0.3 kcal/mol above the saddle point of the cone to paco transition. This
second saddle point was not mentioned by Fischer et al.18 The umbrella potential was next
extended to

( ) ( ) ( ) ( )U f f fX = + +ξ ξ ξ1 1 2 2 , (4.32)

where f1 and f 2  are two Fermi-Dirac functions used to delimit the range of accessible
values of the reaction coordinates ξ1 and ξ2  calculated with respect to the saddle points of
the paco to 1,2-alternate transitions. Analysis of the configurations sampled in simulations
showed that these two reaction coordinates are well behaved and of constant sign throughout
the cone and paco wells. Inclusion of the two potentials hardly effected the motion of the
molecule for most of the time, but it effectively suppressed the rare but fatal transitions to the
1,2-alternate. Of course, the two additional potential functions were corrected for in the
evaluation of the probability distribution of ξ, see Eq. (4.26).

A calix[4]arene in vacuo with the above described umbrella potential was equilibrated at a
temperature of 300 K using velocity scaling. When a steady temperature was reached the
velocity scaling was turned off, the angular velocity was eliminated and the molecule was
simulated for 30 ns. The resulting biased probability distribution ( )Pf ξ , corrected for f1 and
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f 2  but not for f, contained some strongly preferred regions. The vast majority of the sampled
configurations was distributed over the paco well, and a peak was found at the outer extreme
of the cone well. The cone well itself, i.e. the region with the highest population in the
unbiased distribution, was sampled very poorly. To improve the sampling of this region, the
sofar sampled probability distribution was transformed into a potential which was added to
the existing umbrella. A second 30 ns run and a repeat of this recipe eventually lead to the
relatively flat distribution ( )Pf ξ  of Fig. 4.3. The resulting free energy profile after correction
for f is shown in Fig. 4.2 as a solid line. Note the excellent resemblance to the normal mode
based free energy function, they differ by less than 0.3 kcal/mol, and the less striking
resemblance to the minimum energy function.

The final vacuum umbrella was also used in a run of a calix[4]arene dissolved in
chloroform (CHCl3). The run was performed at a constant temperature of 300 K and a
constant pressure of 1 bar, bonds containing hydrogen atoms were constrained, the time step
was 2 fs, long range interactions were cut off beyond 1.3 nm and the periodic box was a
truncated octahedron containing 324 rigid solvent molecules. The system was equilibrated
for 150 ps, followed by a production run of 2 ns. The sampled probability distribution ( )Pf ξ
is shown in Fig. 4.3 as a solid line. Comparison with the vacuum distribution shows that the
solvent environment induces a preference for the cone and the saddle point configurations.
Fortunately, the differences with the vacuum run are fairly small since otherwise it would
have been impossible to make the leap from vacuum to solvent without breaking up the
range of the umbrella into smaller parts. Once more, the sampled probability distribution was
turned into a potential and added to the umbrella. This umbrella was then used in a 5 ns
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Figure 4.3. Probability distributions Pf(ξ) in vacuo (dotted) and in chloroform (solid),
calculated with the same umbrella potential. The areas under both graphs are identical.
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simulation to sample the conclusive distribution of the reaction coordinate of the dissolved
molecule.

4 .3 .3  Rate constants

In this section the free energy profiles of the previous two sections are used to calculate
rate constants according to transition state theory. The transmission coefficient is calculated
next, and the reactive flux rate is obtained by multiplication of this coefficient with the
transition state theory rate constant.

We first discuss the isomerisation rate of a calix[4]arene in vacuo. The partition function
of the cone well, Qcone, is equal to the integral of the partition function ( )Q ξ , Eq. (4.20), over
the interval from minus infinity to ξ ≠ . Because of the depth of the well the result is virtually
independent of ξ ≠ . With ξ ≠ = 0  and the approximation of small vibrations we find
Acone = 172.7 kcal/mol, and similarly, Apaco = 180.6 kcal/mol. Direct evaluation of the free
energies with the full normal mode analysis of Eq. (4.14) yields almost identical values.
Next, we look at the transition state theory rate constant as a function of ξ ≠ . Approximating
∇ =ξ Q r , which is exact at the saddle point, we find that transition state theory predicts a
minimum rate constant of 167 s–1 at ξ = −0 06. , corresponding to the maximum of the free
energy in Fig. 4.2. If, following Eyring, we use ξ ≠ = 0  as the transition state, we find
A(0) = 185.9 kcal/mol and k f

TST = 174 s–1. Using the free energy Acone obtained with
Eq. (4.14) in this case, i.e. using the textbook equation in which the rate constant is
expressed in terms of the energies and the eigenfrequencies of the reactant well and the
saddlepoint,2,20 we find a value of 177 s–1.
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Figure 4.4. Transition state theory rate (dashed line), transmission coefficients (open
markers) and reactive flux rates (solid markers) as a function of the location of the transition
state in vacuo, for t = 0.6 ps (squares) and t = 2.0 ps (circles).
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The changes of the free energy profile in going from the normal mode analysis to the
umbrella sampling method are found to be fairly small. Nevertheless, the population of the
paco well nearly doubles from 1.8⋅10-6 to 3.4⋅10-6, while A Apaco cone−  changes form 7.9 to
7.5 kcal/mol. At ξ = 0  the population rises by about 50%, while ( )A Acone0 −  changes from
13.1 to 12.9 kcal/mol, and the rate rises to k f

TST = 256 s–1. Combination with the previously
established transmission coefficient5 of 0.923 at t = 0.6 ps yields the reactive flux method
rate of 237 s-1. The transmission coefficient after 2 ps is slightly lower, κ = 0.82, and leads to
k f

RF  = 209 s-1.
In principle the rate constant should be independent of the precise choice of the transition

state, as long as this state is close enough to the top of the free energy barrier. To test this
requirement in the case of the reactive flux method and to verify our results, we have
calculated the rate constant as a function of ξ ≠  in vacuo. At various values the transmission
function was evaluated by performing 2000 relaxation runs following the procedure outlined
in a previous article. These transmission functions behaved as expected. For positive ξ ≠

virtually all molecules with a positive transient velocity, ( )�ξ 0 , ended up as a paco. A
considerable amount of those with a negative transient velocity also ended up as paco, and
their number increased with increasing ξ ≠ . For negative ξ ≠  it was the other way round:
many molecules with a positive transient velocity were found to recross the transition state,
while molecules with a negative transient velocity recrossed only rarely. As reported earlier,
a significant fraction of the molecules entering the paco well was found to return to the cone
after a single oscillation of about 0.7 ps in the paco well. We therefore calculated the reactive
flux rate constant using two transmission coefficients, namely the value of ( )κ t  at 0.6 ps, as
if the wells are perfect sinks, and the one at 2.0 ps. In Fig. 4.4 it is evident that the rates
hardly depend on the transition state, as it should be.
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Figure 4.5. Transmission coefficient (open markers) and reactive flux rate (solid markers) as
a function of the location of the transition state of a calix[4]arene in chloroform.
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The effect of the chloroform solvent on the calix[4]arene is to shift the probability
distribution to the cone conformation, leading to an equilibrium constant of 2.4⋅10–7 and
A Apaco cone− = 9.1 kcal/mol. With ( )A Acone0 − = 13.6 kcal/mol the transition state rate
decreases to 84 s-1. The transmission function for this system5 was found to be 0.43, so the
reactive flux rate equals 36 s-1. The solvent is thus seen to reduce the reaction rate by a factor
of six.

In a previous article we calculated the transmission coefficient in chloroform from a set of
2000 relaxation runs. The transition velocities ( )�ξ 0  were sampled from a Gaussian
distribution and according to Eq. (4.6) these velocities were used as weight factor in an
average over all runs. In order to reduce the number of relaxation runs we here used the
product of the Gaussian and the weight factor as the new probability distribution from which
velocities were drawn. Between 500 and 1000 relaxations runs were found to suffice for an
accurate calculation of the transmission coefficient. The effects of the transition state on the
transmission function and the reactive flux rate are shown in Fig. 4.5. In the range of ξ ≠

between +0.45 and -0.45 the transmission function is seen to vary by a factor of ten. The
reactive flux rate constant, on the other hand, is fairly constant.

Isomerisation rates of calix[4]arenes with various sidegroups and in various solvents have
been measured with 1H-NMR.21-24 With the calix[4]arene of this paper, however, comparison
of the theoretical and experimental transition rates is complicated by the fact that the paco
conformation is only very short-lived. Hence, only the cone to inverted cone rate is
experimentally accessible. This inversion results from a series of independent reactions with
one phenol ring flipping over in each step,18 as illustrated in Fig. 4.6. Because of symmetry,
the flowchart can be reduced to
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Here C denotes the cone with all four phenol rings pointing upwards, P denotes the set of
four conformations with three phenol rings pointing upwards, A denotes the set of six
alternate conformations with two phenol rings pointing upwards, and C’ and P’ are defined
likewise as inverted paco and inverted cone. The five time constants of the relaxation
processes of this system are obtained as the eigenvalues of the matrix of the transition
probabilities. The relevant eigenvalue is
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where in the second line it is assumed that k1 is much smaller than the other k-s. The
corresponding eigenvector describes the exchange of molecules between C and C’ with
accompanying changes in P smaller by a factor of ( )k k k1 2 3+  and no changes in A. In
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Fig. 4.6 the rates of going from one particular conformation, e.g. a paco with phenol ring
number 2 rotated, to another particular confirmation are marked by (double) primes. These
primed rates can be calculated with the techniques described in this paper, while the
unprimed rates are the experimentally accessible rates.24 We now want to find a relation
between k and ′k1 .

There are four possible routes leading from the cone to the paco, so k k1 14= ′ . Rather than
calculating k2 and k3 exactly, we will estimate their values from transition state theory based
on normal mode analysis. The rate of the paco to cone transition then is
k k2 2= ′  = 1.1⋅108 s-1, ∆A≠ = 6.6 kcal/mol. The rate of the paco to alternate transition equals
the sum of the two different paco to 1,2-alternate transitions, k k k3 3 3= ′ + ′′ , with

′k3  = 2.1⋅108 s-1, ∆A≠ = 6.2 kcal/mol and ′′k3  = 1.1⋅108 s-1, ∆A≠ = 6.6 kcal/mol. With
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Figure 4.6. Flowchart of the various stable conformations and the possible interconversions
of a calix[4]arene. In the cone conformation (C) all phenol rings are pointing upwards, in
conformation ‘1’ the ring numbered 1 is pointing downwards, etc. The entire outer circle
corresponds to the inverted cone (C’), in which all phenols are pointing downward. The
1,3-alternate conformations are not shown.
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∆A≠ = 12.4 kcal/mol, the paco to 1,3-alternate transition is too slow to be of any influence.
Substitution of these rates in the second line of Eq. (4.34) yields k k= ′2 99 1. , so as a rule of
thumb the experimentally observed cone to inverted cone rate k equals three times the cone
to paco reaction rate ′k1 . Of course, this estimate should not be taken for granted, but it gives
a reasonable approximation of the effect that is to be expected in exact calculations.

Gutsche and Bauer21 measured a ∆A≠ of 14.9 kcal/mol, k = 189 s-1, at the coalescence
temperature of 36 °C. Araki et al.22 found a slightly higher coalescence temperature of 44 °C,
and rate of 20 s-1, ∆A≠ = 15.7 kcal/mol, at 24 °C. With the rule of thumb they yield a cone to
paco rate ′k1  of 63 and 7 s-1 respectively. These figures compare surprisingly well with the
36 s-1 calculated with the reactive flux method. The various rate constants are summarised in
Table 4.1.

4 .4  Conclusions
The reaction coordinate based on the unstable normal mode at the saddle point of the

potential energy surface is shown the be a very convenient reaction coordinate, both in the
calculation of the probability distribution along the reaction coordinate and in the calculation
of transmission coefficients. The free energy function obtained by a normal mode analysis as
a function of ξ proves to be an excellent first guess at the umbrella function. The reaction
rates calculated with the reactive flux method for a calix[4]arene in vacuo and in chloroform
are virtually independent of the chosen transition state. The isomerisation rate of the solvated
molecule is in good agreement with experimental data.

4 .5  Appendix: Normal mode analysis and Q( ξξ).
In this appendix we will calculate the partition function ( )Q ξ * , defined by Eq. (4.20),

within the harmonic approximation. To this end we first locate the minimum energy
configuration R * , as indicated in section 4.2.2. We next perform a normal mode analysis in
the neighbourhood of R * . We approximate the hyperplane ( )ξ ξX = *  by a tangent plane at
R * . The unit vector normal to this hyperplane at R *  follows from the gradient of ξ,
Eq. (4.13),

Table 4.1. Computed and experimental reaction rates.

Method kTST / s-1 κ kRF / s-1

Vacuum normal modes 174
Vacuum umbrella sampling, t = 0.6 ps 256 0.92 237
Vacuum umbrella sampling, t = 2.0 ps 256 0.82 209
Chloroform umbrella sampling 84 0.43 36
1H-NMR experiment 7 - 63
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The tangent plane is spanned by a set of 3 1N −  unit vectors perpendicular to N,
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where the final three vectors still need to be orthonormalised. The eigenfrequencies of
vibration, ω j

* , in the hyperplane

X R T= +
=

−

∑* τ l
l

l

N

1

3 1

(4.37)

are found by diagonalising the 3 1N −  dimensional Hessian at R * ,

Hkl
k l

* =
∂

∂τ ∂τ

2Φ
. (4.38)

Each 3 1N −  dimensional eigenvector is next transformed into a 3N  dimensional atomic
displacements vector by summing over the T l  using the components of the eigenvector as
weight factors. The displacement vectors are again subdivided into three groups, the
translational vectors E* l , identical to the E l , and the rotational vectors S* k , of the form of
Eq. (4.8) with r i

0  replaced by r i
* , all having eigenfrequency zero, and the vibrational vectors

Q* j  all having positive eigenfrequencies. Analogously to Eq. (4.12), we now express any
configuration as

X A R E R R Q N= + = + +
= =

−

∑ ∑* * * * * * *,γ α βl
l

l
j

j

j

N

1

3

1

3 7
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where the rotation matrix A *  is determined by

( ) { }0 1 2 3= − ⋅ ∈X A R A S* * * * , , ,k k . (4.40)

It is obvious that ( )ξ X  (with ξ still defined with respect to R 0 ) is a function of the α j
*  and

β*  only, and does not depend on A * . Because of the construction of the Q* j , we have

( )ξ ξX
R

= +ξ β* *
*∇ , (4.41)

up to first order in α j
*  and β* , where it was used that N  is a unit vector parallel to ∇ Xξ .

The integrals of the partition function in Eq. (4.20) are solved analogously to those in
Eq. (4.14). The sole exception is the integral over β*  which, because of the delta–function,
yields not a frequency factor but ∇ R*ξ

−1, with
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We then arrive at
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We end this appendix with the derivation of an alternative expression for the above
integral. Rather than introducing a new set of coordinates based on R * , we keep on using the
coordinates defined with respect to R 0 . The delta-function in the partition function is then
trivially dealt with. The Jacobi matrix of the transformation from mass-weighted coordinates
to generalised coordinates is again given by Eq. (4.18). However, for small vibrations around
R *  the approximation of R  by R *  leads to three vectors ε kR *  that are no longer
orthogonal to the Q j . Expressing these vectors in the R 0 -based vectors yields
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( )J =
−

σ * sinI I IA B C
0 0 0 1 2

2ψ , (4.45)

where

( ) ( ) ( )σ ρlk
l k

lj
l j* * * *,= ⋅ = ⋅ε ε εR R R Q0 , (4.46)

and the ( )I 0 1−  arises because the ε kR 0  are not orthogonal. Performing the integration over
the generalised coordinates and multiplying with the integral over the momenta gives
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The required eigenfrequencies are found as the square roots of the eigenvalues of the 3 7N −
dimensional Hessian at R * ,

H j k rjk
j k

** , ,= ≠
∂

∂α ∂α

2Φ
, (4.48)

and differ from the eigenfrequencies used in Eq. (4.22).
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Chapter 5

Solvent effect on the isomerisation rate

of calix[4]arene studied by molecular

dynamics simulations *

Abstract
The isomerisation rates of a calix[4]arene in benzene and in chloroform have been

calculated using molecular dynamics simulations. The reaction coordinate that is employed is
based on the unstable normal mode at the saddle point of the potential energy surface. The
free energy as a function of this coordinate has been calculated by means of umbrella
sampling. Comparison of the free energies in the solvents with those in vacuum reveals that
both solvents destabilise the paco conformation and stabilise the transition state region. In
chloroform the calix[4]arene shows a stronger preference for the cone conformation than in
benzene or in vacuum. The isomerisation rate has been determined by the reactive flux
method. Both solvents yield comparable transmission coefficients. The calculated rates are in
perfect agreement with experimental data.

5 .1  Introduction
Calix[4]arenes, cyclic arrays of four phenol rings, are versatile molecules:1 they are used

as building blocks in supramolecular chemistry, they can selectively bind ions, they show
non-linear optical behaviour and they can take on various conformations. The latter property
will be studied in this paper. In the cone conformation all phenol rings are orientated in the
same direction, see Fig. 5.1. The molecule is then stabilised by four internal hydrogen bonds
at the lower rim of the molecule. In the partial cone conformation, ‘paco’ for short, one of
the phenol rings is rotated with respect to the other three phenol rings. During the
isomerisation from cone to paco the methyl groups between the phenol rings act as the
hinges around which the phenol ring rotates, and the hydroxyl moiety moves through the

                                                
* W. K. den Otter and W. J. Briels, submitted to J. Am. Chem. Soc.
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central annulus. The paco conformation has only two internal hydrogen bonds, making it
energetically less stable than the cone conformation by about 10 kcal/mol. The energy barrier
between the two conformations is about 15 kcal/mol, so the isomerisation rate at 300 K is of
the order of 100 s-1. This energy barrier makes it impossible to calculate the isomerisation
rate by simply monitoring the conformation of the molecule during a long molecular
dynamics simulations (MD). Currently simulations up to a dozen nanoseconds are feasible,
but the isomerisation reaction requires simulations of the order of a second long. In this
article we apply statistical mechanical theories which make it possible to calculate very slow
reaction rates by simulations of only a few nanoseconds.

In section 5.2 the statistical mechanical ideas underlying reaction rate calculations are
introduced. An important quantity in this theory is the reaction coordinate. We have recently
introduced a convenient definition of this coordinate, based on the unstable normal mode at
the saddle point of the potential energy surface. This definition is computationally efficient,
and can be applied to a wide variety of reactions. Simulations of a calix[4]arene in vacuo and
in two solvents are discussed in section 5.3, and compared with experiments.

5 .2  Theory

5 .2 .1  Reaction rate

The forward reaction rate is defined as the fraction of reactants that turns into products per
unit of time. We shall assume that the rate is predominantly determined by the (free) energy
barrier separating reactants from products. In order to calculate the reaction rate, we first of
all need a method of telling reactants and products apart. We therefore introduce the reaction
coordinate, ξ, which is taken to be a function of the coordinates of the reacting molecule
only. The reaction coordinate is defined in such a way that it is larger than ξ ≠  for products
and smaller than ξ ≠  for reactants. Conformations with ξ ξ= ≠  are at the dividing plane
between reactants and products, the so-called transition state, which is located in the sparsely

   
Figure 5.1. Cone (left) and paco (right) conformations of a calix[4]arene.
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populated area at the top of the energy barrier. The definition of the reaction coordinate
employed in this article is deferred till the next section.

In Eyring’s transition state theory (TST) the rate is expressed as the instantaneous product
bound flux through the transition state, normalised by the number of reactant molecules:2

( )
( )

k
P

P d
f
TST = ≠

≠

−∞

≠

∫
1
2

�ξ
ξ ξ

ξ

ξ ξ
, (5.1)

where �ξ = d dtξ . The first factor on the right hand side is half the average absolute velocity
of molecules at the transition state, which, because of symmetry, equals the average velocity
of molecules crossing the transition state with a positive velocity. Once the definition of the
reaction coordinate is chosen, this factor is readily evaluated. In the second factor we have
used the probability distribution of the reaction coordinate in the canonical ensemble,

( ) ( )[ ] ( )[ ]P
Q

h H d dN
X Xξ δ ξ ξ β= − −− ∫∫

1 3 X X p X pexp , , (5.2)

where H is the Hamiltonian, X is the collection of all 3N coordinates of the reacting
molecule and the solvent, p X  are the conjugate momenta, δ is the Dirac delta function, h is
Planck’s constant and β = 1 k TB  with T the absolute temperature and kB  Boltzmann’s
constant. The partition function Q arises as the normalisation factor of the distribution. The
second factor in Eq. (5.1) is therefore to be interpreted as the probability for a molecule in
the reactant state to reach the transition state. Two methods for calculating the probability
distribution are discussed in section 5.2.3.

It is a well known fact that transition state theory overestimates the true reaction rate.3 The
underlying reason simply is the implicit assumption of TST that each molecule crossing the
transition state with a positive velocity will end up in the product well. However, there is a
chance that a molecule crossing the transition state with a positive velocity rapidly recrosses
the transition state before settling in the product well. Likewise, a molecule crossing the
transition state with a negative velocity can recross the transition state with a positive
velocity to return to the product state. Both these cases contribute to the TST rate, but neither
of them corresponds to a reaction, as the molecule returns to its initial state. In textbooks this
fact is compensated for ad hoc by multiplying the TST rate with a transmission coefficient, κ,
whose value lies between zero and one:3

k kf f
TST= κ . (5.3)

It is less well known that the transmission coefficient can be calculated exactly, under the
condition that classical mechanics adequately describes the motion of the molecule. From
Onsager’s regression hypothesis it follows that2,4

( )κ κ=
→∞
lim
t

t , (5.4)
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where θ is the Heaviside step function, t and 0 denote the time, and the pointed brackets
indicate a canonical average. The denominator of Eq. (5.5) is the average velocity of
molecules crossing the transition state at time 0 in the positive direction, i.e. the first factor
on the right hand side of Eq. (5.1). The numerator is the average velocity of molecules
crossing the transition at time 0 of those molecules that are in the product state some time t
after crossing the transition state, regardless of the initial crossing direction. One readily sees
that in the limit of t going to zero the numerator equals the denominator. At longer times the
contributions of recrossing trajectories will start to diminish the transmission coefficient (it
may temporary increase, though, depending on the characteristics of the reaction). After
some time, which is longer than the typical time of the molecular motions but much shorter
than the time constant of the reaction, the transmission coefficient will stabilise at a plateau
level. At this point all molecules which crossed the transition state at time 0 have reached
either the product well or the reactant well, and will stay there for a long while until they
incidentally escape. The numerator of Eq. (5.5) then contains contributions only from those
molecules that originated in the reactant well and have settled in the product well, hence the
name reactive flux method (RF). By inserting the plateau value of the transmission coefficient
into Eq. (5.3) we find the exact rate. Note that the transmission coefficient is easily
calculated by MD simulations: first one samples configurations in the dividing plane, and
next one calculates relaxation runs to see where each of these configurations ends up about a
picosecond later.

From Eq. (5.1) it follows that the TST rate constant depends on the precise definition of
the dividing plane between reactants and products. Obviously, the dividing plane must lie
near the top of the energy barrier to cohere with the intuitive notion of reactants and
products. But, there is no clear reason why one plane in this region should be preferred over
another, or to put it differently, why one TST rate is better than another. The only thing one
knows for sure is that even the lowest TST rate will still overestimate the true rate. It has been
shown that the reactive flux method does not suffer from these problems: provided the
dividing plane lies near the top of the barrier, the reactive flux method will always yield the
same rate constant.4,5 The only problem is that the number of relaxation runs required to
accurately calculate the transmission coefficient increases exponentially as the plateau value
of the transmission coefficient decreases. We therefore now set forth to find a reaction
coordinate which yields a high plateau value, i.e. a low TST rate.

5 .2 .2  Reaction coordinate

In the previous section we have pointed at the significance of the dividing plane to the
reaction rate. A particularly important point in the dividing plane is the saddle point, the
lowest point on the top of the energy barrier: any molecule going from the reactant state to
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the product state must at least rise to the energy of the saddle point to overcome the reaction
barrier. According to the Boltzmann distribution, molecules crossing the barrier will do so
preferably with the least amount of energy, so the majority of the molecules will surmount
the barrier in the vicinity of the saddle point. It is only natural, therefore, to introduce a
reaction coordinate based on the properties of the saddle point, as will be done next.

Suppose we have located the first order saddle point, R 0 , of the potential energy surface
of an N atom molecule. For notational convenience and to make the results more transparent,
we have collected all 3N coordinates into a single mass-weighted column vector, R 0 =

( ) ( )( )m mT
N N

T T
1
1 2

1
0 1 2 0r r, ,� , where r i

0  is the column vector of the coordinates of atom i with
mass mi . We shall assume that there is no external potential acting on the molecule. At the
saddle point the gradient of the potential energy is zero, so a Taylor expansion up to second
order of the potential energy yields an energy of

( ) ( ) ( ) ( )Φ ΦX R X R H X R= + − −0 1
2

0 0T
(5.6)

at a point X close to the saddle point. The Hessian matrix, H, contains all second derivatives
of the potential energy with respect to the mass-weighted Cartesian coordinates. This matrix
is then diagonalised to find its eigenvectors and eigenvalues, just as one normally does for a
molecule at the potential energy minimum.

The eigenvectors of the Hessian can be subdivided into two groups. The first group
contains the three eigenvectors which correspond to a rigid body translation and the three
eigenvectors which correspond to a rigid body rotation. In the absence of an external field,
one easily sees that the potential energy of the molecule does not change during these moves,
hence the eigenvalues of these six eigenvectors are all equal to zero. The second group
contains the 3 6N −  eigenvectors with a non-zero eigenvalue, the normal modes of
vibration.3 These vibrations are, in first order approximation, independent of one another; the
eigenvalues are the squares of the frequencies of vibration, which are experimentally
accessible. If the Hessian were to be evaluated at a local minimum of the potential energy
surface, then all eigenvalues would be positive: move along any normal mode and the
potential energy will rise. At a first order saddle point, however, there is exactly one
eigenvector with a negative eigenvalue, i.e. an imaginary eigenfrequency. Move along this
direction, henceforth called the unstable direction Q r , and the potential energy will fall. In
other words, in this direction the molecule is going from the saddle point towards the product
(or reactant) well. As an illustration of this unstable normal mode, the resulting atomic
displacements of a calix[4]arene at the cone to paco saddle point are depicted in Fig. 5.2.

We now define the reaction coordinate as the displacement of the molecule, with respect
to the saddle point, along the unstable direction. For a molecule with coordinates X we thus
arrive at the projection

( )
ξ =

− ⋅
⋅

X R Q

Q Q

0 r

r r . (5.7)
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The particularly simple form of this equation arises because the eigenvectors of the Hessian
are orthogonal.

At this point the reader might argue that the above definition of the reaction coordinate is
intuitively appealing, but that under practical conditions the definition is useless since it is
not invariant under rotations. To solve this problem we exploit the freedom in choosing the
saddle point configuration: the rotated saddle point, ( ) ( )( )AR ar ar0

1
1 2

1
0 1 2 0= m mT

N N
T T, ,�

where a is an ordinary three dimensional rotation matrix, is also a saddle point. One readily
verifies that the eigenvectors of the Hessian are rotated in the same manner, so the unstable
normal mode of the rotated saddle point is AQ r . By inserting these two rotated vectors into
Eq. (5.7), the reaction coordinate becomes a function of the coordinates X and the rotation
matrix a,

( )
ξ =

− ⋅
⋅

X AR AQ

Q Q

0 r

r r . (5.8)

We now must find a connection between X, R 0  and a to make the definition of the rotation
matrix, and hence the definition of the reaction coordinate, unequivocal. Analogous to
Eq. (5.8), we may calculate the ‘rotation’ of the molecule with respect to AR 0  as the
projection of the displacement X AR− 0  onto the three rotated rotational eigenvectors of the
Hessian. The correct rotation matrix a is then defined as the one which makes all three
projections simultaneously equal to zero. A more elaborate discussion of this topic, as well
as an algorithm to calculate the rotation matrix, are given elsewhere.6

Figure 5.2. Saddle point configuration of a calix[4]arene. The arrows attached to the atoms
indicate the displacements of the atoms under the unstable normal mode Qr.
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5 .2 .3  Free energy

It is common practice to convert probability distributions and partition functions, as
defined by Eq. (5.2), into free energies,

( ) ( )A k T P cBξ ξ= − +ln , (5.9)

where c is an irrelevant constant arising from the partition function Q. The RF rate then
reads7
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where we have combined Eqs. (5.1) through (5.3). Here AR  is the free energy of the reactant
well, obtained by replacing ( )P ξ  in Eq. (5.9) by the denominator of Eq. (5.1). With the
reaction coordinate as defined in section 5.2.2 we find ∇ Xξ = 1 kg-1/2 m-1 at the saddle
point, and this value increases only slightly on taking the average over the saddle plane. In
the experimental literature a slightly different definition of the free energy is commonly used
by writing a measured reaction rate as
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By comparing these two expressions we find
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The second term on the right hand side removes from ( )A ξ ≠  the contribution of the velocity
�ξ , so the free energy difference ∆A≠  is based on the probability of finding a molecule at the
transition state with zero crossing velocity, while the free energy ( )A ξ ≠  is based on the
probability for the molecule to be at the transition state regardless of the crossing velocity.
Notice that ∆A≠  also includes a contribution from the transmission coefficient, while ( )A ξ ≠

does not.
Perhaps the best known method of calculating the free energy of a molecule in vacuo, i.e.

AR , is to perform a normal mode analysis.3 Combining contributions from the 3 6N −
eigenfrequencies of vibration, the inertia tensor and the total mass of the molecule gives the
desired result. The assumptions underlying this theory are that the amplitudes of the
vibrations are small, and that there is no coupling between rotations and vibrations. As we
have shown elsewhere,7 it is straightforward to calculate the free energy as a function of the
reaction coordinate under the same conditions. The basic task is to calculate the 3 7N −
eigenfrequencies of vibrations in the hyperplane of configurations with a prescribed value of
the reaction coordinate, and to calculate the moments of inertia of the corresponding
deformed molecule. The method is reliable and fast for calculations in vacuo, but it is of
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little practice for a molecule in a solvent, since the inclusion of solvent effects in the theory
is virtually impossible.

If we were to directly sample the probability distribution of the reaction coordinate of the
solvated molecule in one single long simulation, then the height of the energy barrier
between reactants and products would obviously create insurmountable difficulties. The
barrier region would be sampled very poorly, and the molecule might even stay in one
conformation for the entire run. In fact, this is precisely the problem that we try to avoid by
using reaction rate theory. Suppose now that we add to the existing potential energy surface a
so-called umbrella potential,8 ( )U X . The probability distribution of the system with the
umbrella reads as

( ) ( )[ ] ( ) ( ){ }[ ]P
Q

h H U d dU
U

N
X Xξ δ ξ ξ β= − − +− ∫∫

1 3 X X p X X pexp , . (5.13)

In case the umbrella is a function of the reaction coordinate only, ( )P ξ  may be calculated
according to

( ) ( ) ( )[ ]P cP UUξ ξ β= exp X , (5.14)

where c is a proportionality constant. The probability distribution of ξ in the biased run is
thus seen to be easily converted into the probability distribution of the unbiased run. This
remains true regardless of the kind of umbrella potential used, so we are free to chose the
umbrella that suits us the best. The best choice is ( ) ( )U Aξ ξ= − , since it renders PU

independent of ξ. In the biased run the barrier between reactants and products then
effectively vanishes, and both configurations can be sampled efficiently with a single long
simulation. In such a simulation the reaction coordinate behaves like a diffusing particle. An
obvious problem is that we do not know ( )A ξ  in advance, but by making a good initial
guess, like according to the above discussed normal mode method, we can get close enough
for the method to work properly. Alternatively, we may chose the umbrella in such a way
that only a small range of ξ, a so-called window, is sampled. Combining the probability
distributions from overlapping windows by making them match in the overlap region then
yields the desired result. Since diffusion over long distances is a slow process, it may be
advantageous to combine both methods: use a good guess of the free energy as umbrella and
partitionate the range into windows that are rapidly sampled.

5 .3  Results
The calix[4]arene was modelled with the all-atom CHARMM parameter set 22.9 The saddle

points on the potential energy surface of a calix[4]arene in vacuo were calculated using the
conjugate peak refinement algorithm9,10 implemented in QUANTA/CHARMM.11 All other
calculations were done with GROMOS87,12 which we adapted to meet our specific needs. The
saddle points were transported to GROMOS87, and further refined using Newton-Raphson to
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minimise the gradient of the potential. The normal modes were calculated, and the positive
value of the reaction coordinate were chosen to correspond to the paco conformation.

5 .3 .1  Free energy

The minimum energy conformations as a function of the reaction coordinate for the
molecule in vacuo were calculated using Newton-Raphson in which the reaction coordinate
was kept at a prescribed value. For each conformation a normal mode analysis was
performed to calculate the free energy as a function of the reaction coordinate at 300 K. Both
functions are plotted in Fig. 5.3. The free energy difference between the paco well and the
cone well is 7.9 kcal/mol. From the free energy difference between the saddle plane and the
cone well, ( )A Acone0 − = 13.1 kcal/mol, follows the reaction rate k f

TST= 174 s-1.
The free energy function obtained by the normal mode analysis was used as the umbrella

potential in a vacuum simulation. For this purpose the free energy function was fitted with
two fifteenth order polynomials, one for the cone well and the saddle point region, and one
for the paco well and the saddle point region. In the saddle point region a third order
polynomial was used to make a smooth transition from one fit to the other. High order
polynomials were used because they made possible a smooth fit; previously we had noticed
that small deviations in the fit were very much reflected in the probability distribution PU .
The motion of the reaction coordinate was limited to the region between roughly -1.8 and
+1.6 to prevent the molecule from sampling highly improbable conformations, and to reduce
the chances of ‘spontaneous’ conformational transitions due to the high stress in the
molecule at these extremes. This was done by adding two Fermi-Dirac-like functions to the
umbrella, chosen such that they were virtually zero in the region of interest and rapidly
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Figure 5.3. Minimum energy (dotted) and free energy as calculated by means of umbrella
sampling (solid) as a function of the reaction coordinate for a calix[4]arene in vacuo.
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increased at the borders. During the simulation the lengths of the bonds involving a hydrogen
atom were constrained. Langevin dynamics with a friction constant of 1 ps-1 was used to
maintain a temperature of 300 K, to promote the energy exchange between vibrational
modes, and to make the molecule rotate with a variable angular momentum. The simulation
lasted 30 ns, with a time step of 2 fs. The probability distribution of the biased run was very
flat, see Fig. 5.4, indicating that the umbrella function is an excellent approximation of the
real free energy. Inserting the distribution in Eq. (5.14), we find ( )A Acone0 − = 12.9 kcal/mol,
and k f

TST= 241 s-1.
During the simulation we encountered the problem that molecules in the ξ ≈ 0.5 region

occasionally made transitions from a paco conformation to a 1,2-alternate conformation. In
this conformation two neighbouring phenol rings are pointing upwards and the other two are
pointing downwards. Once the molecule had reached the 1,2-alternate conformation it never
returned to the paco conformation. There are two ways for a paco conformation to transform
into a 1,2-alternate, depending on whether the rotating phenol ring neighbours the rotated
phenol ring of the original paco on the left or on the right.7 Both 1,2-alternates have the same
energy, but the transition states between each of them and the paco have slightly different
energies because of the orientation of the hydrogen bonds. The reason for the occurrence of
the unwanted side-reactions was that our umbrella not only had lowered the cone to paco
transition state, but also the two paco to 1,2-alternate transition states. To prevent these rare
side reactions we expanded the umbrella by adding two Fermi-Dirac-like potentials, each
depending on the reaction coordinate corresponding to one of the two saddle points of the
paco to 12-alternate barrier. Equations (5.13) and (5.14) were adapted accordingly.

In order to calculate the isomerisation rate of a calix[4]arene dissolved in benzene, we
first simulated a box of pure benzene. The force field parameters of the benzene molecules

0

0.5

1

-2 -1 0 1 2
ξ

PU

Figure 5.4. Probability distributions Pu in vacuo (solid), chloroform (dashed) and benzene
(dotted), all corresponding to the same umbrella. The areas under the curves are equal.
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were identical to those of the benzene in the calix[4]arene. The non-bonded parameters of
this model have been used previously in Monte Carlo13 and MD

14 simulations of liquid
benzene. The cubic simulation box contained 343 molecules, a thermostat15 kept the
temperature at 300 K with a time constant of 0.1 ps. Non-bonded interactions were included
up to 16 Å, with the interactions beyond 13 Å being updated every tenth step; no long-range
corrections were applied. Only the C-H bond lengths were constrained. The box was first
equilibrated at a constant volume corresponding to the experimental density.16 Then a
manostat15 was turned on to keep the pressure at 1 atmosphere, using a typical time constant
τp = 0.5 ps and the experimental value of the isothermal compressibility,16 β = 9.7·10-10 Pa-1.
Immediately the volume of the box decreased by about 15%. At this new value the volume
oscillated with a period of 10 ps. By increasing τp to 5.0 ps, in which case our β to τp ratio
equalled the one used by Müller-Plathe,14 the box regained its proper density. We conjecture
that the manostat failed because of the shape and corresponding potential of the benzene
molecule.

After equilibrating the benzene box at 1 atmosphere, the calix[4]arene and the solvent
were combined into a single box, a truncated octahedron of about 52 nm3 containing 343
benzene molecules. This box was thoroughly equilibrated, at constant volume first and at
constant pressure next, before the actual production run began. The normal mode based
umbrella, that performed so well in vacuo, was used as the umbrella of the solvated
molecule. The resulting probability distribution, sampled in 0.75 ns of simulation time, is
shown in Fig. 5.4. Comparison of this distribution with the one from the simulation in
vacuum beautifully reveals the solvent effect: the probability at ξ ≈ -0.4 increases drastically,
while the paco conformation is depleted. In order to get better statistics, two additional
simulations were run in which the reaction coordinate was limited to sample the two wells
only. The three distributions were combined and transformed into a free energy by means of
Eq. (5.9). As a check, this potential was added to the existing umbrella, which was then used
to sample the final distribution, which indeed was satisfactorily flat. The free energy
difference between the paco and the cone was calculated to be 8.4 kcal/mol, the difference
between the saddle plane and the cone is 12.5 kcal/mol, from which finally followed
k f

TST= 471 s-1.
As a comparison, in Fig. 5.4 we have also plotted the probability distribution of a

calix[4]arene in chloroform. This distribution was calculated previously using the same
techniques described here, but with a different umbrella.7 We converted this distribution into
the distribution that we would have obtained in chloroform with the current vacuum
umbrella. From the plot it follows that both solvents destabilise the paco conformation. The
region around the saddle point is stabilised by both solvents, but appreciably more so by
benzene than by chloroform. The main difference between the two solvents occurs in the
cone region, which is strongly promoted in chloroform but hardly in benzene. The resulting
free energy difference between the saddle plane and the cone well in chloroform therefore is
larger than in benzene; correspondingly k f

TST= 84 s-1 is smaller than in benzene.
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5 .3 .2  Transmission coefficient

In order to calculate the transmission coefficient, Eq. (5.5), conformations needed to be
sampled in the transition plane. One thousand conformations were created by means of an
MD simulation of a solvated calix[4]arene during which the value of the reaction coordinate
was constrained to zero; atomic coordinates and velocities were saved every picosecond.
Each of these configurations was used as the starting point of a 2 ps relaxation run. At the
start of every relaxation run the velocity of the reaction coordinate, which was zero during
the constrained run, was replaced by a new velocity drawn from a velocity-weighted
Maxwell-Boltzmann distribution.6 The transmission coefficient as a function of time is
shown in Fig. 5.5. The dotted line shows the contribution to the transmission coefficient
from those molecules which cross the transition state at time zero with a positive velocity
and finally settle in the product well, or to put differently, the fraction of the product bound
flux through the transition state that ends up in the product well. Likewise, the dashed line
gives the contribution to the transmission coefficient from those molecules which cross the
transition state at time zero with a negative velocity and end up in the product state; these
molecules must therefore have crossed the transition state at least once. Both curves live up
to their expectation: they start at respectively one and zero, at short times they decrease
because of molecules recrossing the transition state, and at longer times they settle at a stable
level. The solid line, the transmission function, is obtained by summing these two
contributions. After 2 ps a plateau of 0.56 is reached. In combination with the previously
calculated k f

TST, the true reaction rate is then found to be k f
RF  = 264 s-1.

Similar simulations of calix[4]arene in chloroform yielded κ = 0.43, which together with
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Figure 5.5. Transmission coefficient (solid) of a calix[4]arene in benzene. The dotted
(dashed) line gives the contribution of molecules that settle in the paco conformation after
crossing the transition state with a positive (negative) transient velocity.
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the transition state value k f
TST= 84 s-1 yielded k f

RF  = 36 s-1. The influence of the solvent is
seen to be more prominent in the free energy differences than on the transmission
coefficients.

All results so far have been collected in Table 5.1, together with a few more results from
vacuum simulations. Simulations6 in vacuo with the same transition state produced a
transmission coefficient which arrived at a plateau of 0.92 after 0.6 ps, indicating that in this
case the TST rate is an excellent approximation of the real rate. After about 0.8 ps the
transmission function started to decrease again, and eventually settled at a second plateau of
0.82. This decrease was caused by molecules which left the paco well after having made one
full oscillation in this well; this would not have occurred if the paco well had acted as a
perfect sink.

The isomerisation rates of calix[4]arenes in solvents have been measured using
1H-NMR.17,18 It was found that for the particular molecule studied here, the paco is too
short-lived to be detectable. The measured rate constants correspond to the cone to inverted
cone reaction, i.e. a process in which all four phenol rings rotate. This reaction consists of
four steps, with one phenol ring rotating in each step.9 If we assume these steps to be
independent, the reaction scheme becomes
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′ , (5.1)

where C, P and A denote respectively cone, paco and alternate, and where primes indicate
conformations in which the majority of the phenols is pointing downwards. In reasonable
approximation the overall cone to inverted cone rate constant is found to be related to the
calculated cone to paco rate by7 k kCC f

RF
′ ≈ 3 .

Gutsche and Bauer17 measured the coalescence temperature with temperature dependent
1H-NMR, and derived the isomerisation rate at this temperature from the chemical shift.
They converted the rate into a free energy by

Table 5.1. Computed and experimental rates for the cone to paco conversion.

Solvent and method kTST /
s-1

κ kRF /
s-1

kexp / s-1

Vacuum normal mode analysis 174
Vacuum umbrella sampling, t = 0.6 ps 241 0.92 222
Vacuum umbrella sampling, t = 2.0 ps 241 0.82 198
Chloroform umbrella sampling 84 0.43 36 30,a 8b

Benzene umbrella sampling 471 0.56 264 202a

a Data by Gutsche and Bauer,17 converted to 300 K.
b Data by Araki et al.18
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∆A RT
kcoalescence

coalescence

≠ =
⋅






ln

.6 62 1012

. (5.2)

For calix[4]arene in benzene they found ∆A≠ = 13.8 kcal/mol and Tcoalescence= 15 °C. With
these data we have calculated the isomerisation rate at the coalescence temperature. By using
Eq. (5.11), and assuming that the free energy is independent of the temperature, we then
found a rate of 607 s-1 at 300 K for the cone to inverted cone reaction, hence a rate of 202 s-1

for the cone to paco reaction. The data for a calix[4]arene in chloroform were converted
likewise, and yielded a rate of 30 s-1. Araki et al.18 measured the reaction rate and the free
energy of a calix[4]arene in chloroform as a function of temperature, resulting in a rate of
8 s-1 at 300 K. From their data it followed that the entropic contribution to the free energy is
of minor importance in the above extrapolations, at most equal to about 0.1 kcal/mol, which
is comparable with the uncertainty of the ∆A≠ . All data are summarised in Table 5.1. The
computed reaction rates compare very well with the measured rates, the former being slightly
higher.

5 .4  Conclusions
The isomerisation rate of a calix[4]arene in benzene and in chloroform has been studied

with molecular dynamics simulations. The free energy as a function of the reaction
coordinate was calculated by means of umbrella sampling. The rate constants obtained with
the reactive flux method were in good agreement with the experimental values. In
chloroform the cone conformation was found to be stabilised by the solvent, appreciably
reducing the reaction rate with respect to the vacuum value. The reaction coordinate defined
as the displacement along the unstable normal mode at the saddle point of the potential
energy surface was shown to be very convenient in these calculations. An excellent first
guess at the umbrella potential was obtained by a straightforward normal mode analysis. The
same reaction coordinate can, in principle, be applied to numerous reactions.
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Chapter 6

The calculation of free energy differences

by constrained molecular dynamics

simulations ∗

Abstract
The use of constraints in molecular dynamics simulations is known to affect the sampled

phase space distribution. We derive the corrections needed to calculate the free energy of an
unconstrained system from an MD simulation with constraints, for the thermodynamic
integration and the thermodynamic perturbation methods. Both the dependence of the free
energy on a coupling parameter and on a reaction coordinate are discussed. The correct
relation between the constraint force and the derivative of the free energy with respect to an
internal coordinate is derived. Two applications are presented. Several other methods with a
similar objective are discussed and proven incorrect.

6 .1  Introduction
It is common practice in molecular dynamics (MD) simulations to constrain the ‘hard’

coordinates of a molecule, often the bond lengths.1 The elimination of these high frequency
vibrations allows for a larger time step in the simulation, which is often desirable.
Constraints may also be used to restrict the dynamics of a system to a specific part of
configuration space in order to calculate conditional averages. For instance, in the calculation
of the transmission coefficient of the reactive flux method a constraint can be used to sample
configurations in the transition state of the reacting molecule.2

Obviously, the constrained molecule samples only a hyperplane of the full phase space.
But, in addition, the probability distribution on this hyperplane is different for the
constrained and the unconstrained molecule.3,4 Both distributions are derived in section 6.2.
The difference between the two distributions is relatively easily corrected for, so the

                                                
∗ W. K. den Otter and W. J. Briels, submitted to J. Chem. Phys.
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unconstrained averages needed in the calculation of the free energy can be calculated by
means of a constrained MD simulation, as is described in section 6.3.

In rate theory one is interested in the free energy of a reacting system as a function of an
internal coordinate of the system, the reaction coordinate { }( )ξ x i . From this free energy
function follow the equilibrium constant of the reaction and the transition state theory
estimate of the reaction rate. In section 6.4 it will be shown that the derivative of the free
energy with respect to ξ is closely related to the constraint force needed to keep the system at
the hyperplane { }( )ξ x i = ξ . This relation is illustrated in section 6.5 with the simulations of
two prototypical molecules. In the literature there have appeared a number of methods to
calculate the free energy as a function of a reaction coordinate. Several of these methods, and
their shortcomings, are discussed in section 6.6. The GASP method, which in a sense is very
similar to these methods, will also be discussed. We end with a short remark on how the
theory presented here for molecular dynamics simulations ought to be used in Monte Carlo
simulations.

6 .2  Constraints and probability distributions
In this section we introduce the probability distributions resulting from unconstrained and

constrained molecular dynamics simulations, and describe them. Their relation is derived in
section 6.2.1 in terms of generalised coordinates. Some aspects of the implementation of
constraints in Cartesian coordinates are discussed in section 6.2.2.

6 .2 .1  Generalised coordinates

Consider a molecule consisting of N atoms. The configuration of this molecule is
described by 3N Cartesian coordinates, { }X x= i , or by an equal number of generalised
coordinates, ( )q,σ . We have split the generalised coordinates into two groups, namely the L
coordinates σ that are going to be constrained in the MD run and the remaining 3N L−
unconstrained coordinates.

First we consider the case in which none of the coordinates, including σ, is constrained.
The Lagrangian of this system reads as

( ) ( )Lu
q q

T
q qq v v A v q, , ,σ σσ σ σ σ= −1

2 Φ , (6.1)

where ( )v qq
T T

σ = � , �σ Τ  is the row vector of all generalised velocities and Φ is the potential
energy. The conjugate momenta are given by

p A vq q qσ σ σ= , (6.2)

with ( )p p pq
T

q
T T

σ σ= , , and the Hamiltonian reads

( ) ( )H u
q q

T
q qq p p A p q, , ,σ σσ σ σ σ= +−1

2
1 Φ . (6.3)

The probability distribution of the unconstrained system with these coordinates is
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( ) ( )[ ]P Hu
q

u
qq p q p, , exp , ,σ σσ σβ∝ − , (6.4)

where β = 1 k TB , kB  is Boltzmann’s constant and T is the absolute temperature.
For future convenience we will write the 3N×3N dimensional mass-metric matrix A qσ  in

block form as

A
A B

B Cq

q

Tσ
σ

σ σ
=







 , (6.5)

A
X Y

Y Zq

q

Tσ
σ

σ σ

− =






1 , (6.6)

where A q  is the ( ) ( )3 3N L N L− × −  upper left block of A qσ , etc. The mass-metric matrix
can easily be obtained by transforming the kinetic energy of the unconstrained system from
Cartesian coordinates to generalised coordinates:

A J MJq
T

σ = , (6.7)

where M  is a 3N×3N matrix containing all atomic masses down the diagonal, and

J
X
q

X
=









∂
∂

∂
∂σ

(6.8)

is the Jacobi matrix of the transformation. The inverse matrix A qσ
−1  is readily obtained from

Eqs. (6.7) and (6.8). In what follows we will use the matrices Z σ  and Yσ , whose
components are then found to be

( )Z
x xσ

∂σ
∂

∂σ
∂ij

k

i

k

j

kk

N

m
= ⋅

=
∑ 1

1

, (6.9)

( )Y
x xσ

∂
∂

∂σ
∂ij

k

i

k

j

kk

N

m

q
= ⋅

=
∑ 1

1

. (6.10)

A second important relation is3

A A Zq q= σ σ , (6.11)

which follows from

A 0

B 1
A A

A 0

B 1
A

1 Y

0 Z
q

T q q

q

T q
σ

σ σ
σ

σ
σ

σ







 =







 =







−1 (6.12)

by using Eqs. (6.5) and (6.6), and taking the determinant on both sides.
The Hamiltonian of the σ-constrained system must be derived from the Lagrangian of the

constrained system, which in turn is obtained form the Lagrangian of the unconstrained
system by imposing the constraints σ σ=  and �σ = 0 . The usual operations yield
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( ) ( )H c
q q

T
q qσ q p p A p q, ,= +−1

2
1 Φ σσ , (6.13)

with p A qq q= � . The corresponding probability distribution reads as

( ) ( )[ ]P Hc
q

c
qσ σβq p q p, exp ,∝ − . (6.14)

This is the distribution which is sampled with a constrained MD run. It differs from the
unconstrained distribution not only by σ being equal to σ , but also by the absence of the
impulses pσ , so care must be taken if one is to calculate unconstrained conditional averages,
with σ σ=  being the conditions, by means of a constrained dynamics simulation.

We will denote by

( )
( )F

d d FP

d d P

q
c

q

q
c

q

σ

σ

σ

= ∫ ∫
∫ ∫

q p q p

q p q p

,

,
(6.15)

the average of some function F over a constrained Hamiltonian, and by

( )
( )F

d d FP

d d P
u

X
u

X

X
u

X

= ∫ ∫
∫ ∫

X p X p

X p X p

,

,
(6.16)

the corresponding unconstrained average. We will now express the unconstrained average of
the function F in terms of a constrained average, for those cases when the usual assumption
for ‘hard’ variables can be made, i.e. when a factor of ( )δ σ σ−  can be introduced in the
integral. More precisely, we write the potential energy as5

( ) ( ) [ ] [ ]Φ Φq q F, ,σ σ σ − σ σ − σ≈ + 1
2

T , (6.17)

where F is assumed to be independent of q, and integrate over the σ to obtain for the
numerator of Eq. (6.16):

( ){ }[ ] [ ]N d d d Fq q
T

q q∝ − +− −∫ ∫F q p p A p q1 2 1
2

1σ σ σ − σσ σ σ σβ δexp ,Φ . (6.18)

Making the same approximation in the denominator, Q, we arrive at the conditional average
referred to above. Even though the variations in σ are so small that they can be replaced by a
Dirac-delta in the integral, the variations in the associated momenta are not small and must
be taken into account explicitly. Writing

( ) ( )p A p p A p p Z Y p Z p Z Y pq
T

q q q
T

q q
T

q

T
T

qσ σ σ σ σ σ σ σ σ σ
− − − −= + − −1 1 1 1 (6.19)

and integrating over the momenta pσ , we find

( ){ }[ ]N d d Fq q
T

q q∝ − +∫ ∫ − −
q p p A p q Zexp ,β σ

1
2

1 1 2
Φ σσ . (6.20)

The exponential is proportional to the probability distribution of the constrained system,
Eq. (6.14). The factor Z σ

−1 2  is seen to convert the integral over the constrained ensemble
into the corresponding integral over the unconstrained ensemble; this factor is to be
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interpreted as the ratio of the momentum spaces of the constrained and the unconstrained
systems at ( )q,σ . By applying the above transformation rule, the expectation value of F in an
unconstrained ensemble can be calculated from a constrained ensemble by

F
F

u =

−

−

Z

Z

σ
σ

σ
σ

1 2

1 2
. (6.21)

Almost all expressions in this article will be of this form. It is clear that F may not depend on
σ, nor on ( )�σ = − −Z p Z Y pσ σ σ σ

1 T
q , for this expression to hold. Notice that the expression is

valid even if F depends on the momenta pq , a fact overlooked by Ruiz-Montero et al.,6 but

not if F depends on the velocities �q .

6 .2 .2  Simulation in Cartesian coordinates

The generalised coordinates of the previous section are very useful for the theoretical
understanding of the problem. However, in computer simulations the generalised coordinates
are rather awkward to use, and Cartesian coordinates are being used instead. The Cartesian
equations of motion for a constrained system follow from the Lagrangian

( ) ( ) ( )( )L t L tu
l l l

l

L
* , � , , � ,X X X X X= + ⋅ −

=
∑λ σ σ

1

, (6.22)

where the Lagrange multipliers, λl , are determined by demanding that the constraints are
fulfilled at all times. From the equations of motion it follows that each atom feels a
constraint force given by

Fi
c

l i l
l

L

=
=
∑λ σ∇

1

. (6.23)

If initially ( )σ l lX = σ  and �σ l = 0, the constraints can be fulfilled by demanding ��σ l = 0;
together with the equations of motion and Eq. (6.9) this leads to1,7

( )λ σ σσl lk i i k i
i

N

j i j k i
i j

N

k

L

m= ⋅ − ⋅ ⋅








− −

= ==
∑ ∑∑ Z x x1 1

1 11

∇ ∇ ∇ ∇Φ � �

,

. (6.24)

Simulations in which these analytical expressions for the Lagrange multipliers are actually
being used, as a consequence of numerical inaccuracies due to the use of a finite time step,
gradually drift away from the constraint hyperplane, ( )σ σX = . They therefore need to be
reset to the hyperplane once every while.8

In the SHAKE
9 algorithm the constraints are rigorously met every simulation step. First, in

a regular MD step without constraints the atomic positions are advanced from ( )x i t  to
( )′ +x i t t∆ , resulting in a violation of the constraints. In the second step a force of the form of

Eq. (6.23) is used in the Verlet algorithm to move the atoms to
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( ) ( ) ( )
x xi i

i
l i l

l

L

t t t t
t

m
+ = ′ + +

=
∑∆ ∆

∆ 2

1

λ σ∇ , (6.25)

again accompanied by a change of the constraints. The Lagrange multipliers are chosen such
that the constraints are restored to their initial values. To this end a Taylor expansion of σ is
made to first order in ( ) ( )x xi it t+ − ′ +∆ ∆ , assuming that the gradients of σ l  hardly change
during the unconstrained MD step,

( ) ( ) ( ) ( ) ( )σ σ λ σ σl l k
i

i l i k
i

N

k

L

t t t t t
m

t t+ = ′ + + ⋅
==
∑∑∆ ∆ ∆ 2

11

1
∇ ∇ . (6.26)

With ( )σ l t t+ ∆  equal to σ l , this is a set of equations which may be solved for the λk . The
second step must be repeated until all constraints are met to within acceptable accuracy. The
Lagrange multipliers obtained in this way are comparable with the ones calculated
analytically, so in section 6.4 we shall assume them to be identical.

One particular system worth mentioning is a molecule in which only the distance between
atoms 1 and 2 is constrained, σ = r12 , where r r r12 2 1= − . Equation (6.24) then yields

λ µ µ= −






 ⋅ +

⋅F F r r r1

1

2

2

12

12

12 12

12m m r r

� �

, (6.27)

the familiar result from the Gauss’ principle of least constraint.8

As a final remark we note that the constraint force resulting from constraining an internal
coordinate of a molecule does not effect the total momentum nor the total angular
momentum of this molecule. Therefore, there is no need to explicitly use this conservation
property when calculating the constraint force, as was done by Tobias and Brooks.10

6 .3  Thermodynamic integration and perturbation
Suppose one is interested to know the free energy of a system as a function of some

parameter. This parameter could be an internal coordinate of some molecule, for example a
reaction coordinate. Or it could be a parameter occurring in the potential energy of the
molecule, a so-called coupling parameter. There are two common ways of calculating free
energy differences in these cases, namely thermodynamic integration and thermodynamic
perturbation. All four possible combinations will be briefly addressed in this section.

6 .3 .1  Reaction coordinate ξξ
In this subsection we will calculate the probability distribution of a given molecule along

some internal coordinate ξ. Our main interest is when ξ is a reaction coordinate, since the
probability of finding the molecule at the transition state, i.e. when ξ ξ= ≠ , is directly related
to the rate of the reaction. The calculation of this distribution by means of a standard MD run
usually is an impossible task, since the high energy barriers prohibit sampling all values of ξ.
With umbrella sampling the probability of crossing existing energy barriers is enhanced by
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deliberately lowering the barriers by means of an extra potential. In the subsequent analysis
of the run appropriate corrections are made for this extra potential. In this section we will
discuss an alternative method, using constrained MD simulations, in which the system is
forced to sample only regions of phase space where ξ has some prescribed value. In addition
to this constraint on the reaction coordinate ξ, L hard variables σ will also be constrained.
The atomic masses and σ , the values to which the σ variables will be constrained, are
assumed independent of ξ.

Our notation requires some minor changes to accommodate the extra constrained
coordinate. The 3N×3N mass-metric matrix will henceforth be written as

A
A B

B C
A B

B Cq

q

T
q
Tξσ

ξσ

ξσ ξσ

ξ σ

σ σ
=







 =







 , (6.28)

A
X Y

Y Z
X Y

Y Zq

q

T
q

Tξσ
ξσ

ξσ ξσ

ξ σ

σ σ

− =






 =







1 , (6.29)

where A q  and X q  are ( ) ( )3 1 3 1N L N L− − × − −  dimensional matrices, A qξ  and X qξ  are
( ) ( )3 3N L N L− × −  dimensional, etc. The results of section 6.2.1 can now easily be
generalised, for example Eq. (6.11) now reads as

A A Z A Zq q qξσ ξ σ ξσ= =
− −1 1

. (6.30)

The probability distribution of the ( )ξ,σ -constrained ensemble can be shown to be

( ) ( ){ }[ ]Pc
q q

T
q qξσ β ξq p p A p q, exp , ,∝ − +−1

2
1 Φ σσ , (6.31)

where q and pq  have ( )3 1N L− −  elements. Equation (6.15) generalises to

( )
( )F

d d FP

d d P

q
c

q

q
c

q

ξσ
ξσ

ξσ

= ∫ ∫
∫ ∫

q p q p

q p q p

,

,
. (6.32)

The probability distribution along the reaction coordinate reads

( ) ( ) ( )[ ] ( )[ ]p
Q

Q Q
d d HX

u
Xξ

ξ
β δ ξ ξ= = − −∫ ∫

1
X p X p Xexp , , (6.33)

where Q is a normalisation factor. This distribution is often expressed as a free energy by

( ) ( )A k T QBξ ξ= − ln . (6.34)

The direct evaluation of the partition function ( )Q ξ  is virtually impossible, but its derivative
is relatively simple to calculate. This fact is used in the thermodynamic integration method,
which allows ( )A ξ  to be calculated up to some constant:

( ) ( ) ( )
A A

dA

d
dξ

ξ
ξ

ξ
ξ

= +
′

′
′∫0

0

, (6.35)
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with

( )
( )

( )dA

d

k T

Q

dQ

d
Bξ

ξ ξ
ξ

ξ
= − . (6.36)

There are several ways to differentiate the partition function with respect to the reaction
coordinate, all leading to the same final result of course. The obvious way to go at this point,
given what has been said in the previous sections, is to write

( ) [ ]Q d d Hq
cξ β ξσ∝ −∫ ∫

−
q p Zexp

1 2

, (6.37)

and to differentiate with respect to ξ, obtaining
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Using
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and Eq. (6.30) we arrive at

( )dA

d
k TB

q

q

ξ
ξ

∂
∂ξ

∂
∂ξ

ξσ
ξσ

ξσ
ξσ

ξσ
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A Z

Φ
. (6.40)

In Eq. (6.39) Tr denotes the trace; in the first step of this equation we have used the
symmetry of A q , and in the second step we have used ( )Tr A Aq q∂ ∂ξ−1  = −∂ ∂ξ Tr ln A q

1

= −∂ ∂ξ ln A q
1  = −∂ ∂ξ ln A q . If finally we would use Eq. (6.7) in the form A M Jqξσ = 2 , we

would arrive at a result similar to Eq. (6.40), with A qξσ  in the last term replaced by J , and
the factor ½ replaced by unity.7 The two terms between the large square brackets are readily
recognised by their temperature dependence as being the energetic and the entropic
contributions to the free energy difference.

A different technique for calculating free energy differences is the thermodynamic
perturbation method. The free energy difference is then calculated directly by
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where Hi
c  is the constrained Hamiltonian with ξ constrained to the value ξi . We now want

to refer the numerator to an average over the probability distribution used in the
denominator. To this end we use
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and A Z A M Jq qξσ ξσ
− = =1 2 , obtaining

( ) ( )
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A A k TBξ ξ
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exp ∆Φ J J Z
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, (6.43)

where ( ) ( )∆Φ Φ Φ12 2 1= −q q, , , ,ξ ξσ σ  and ( )J ξi  is the Jacobian with ξ put equal to ξi .
Dividing Eq. (6.43) by ξ ξ2 1−  and taking the limit of this difference going to zero we again
obtain Eq. (6.40).

6 .3 .2  Coupling parameter λλ
A coupling parameter λ is used to transform the force field representative of molecule A

into the force field representative of molecule B via a series of intermediate, non-physical,
molecules. For a linear transformation the intermediate force fields read as

( )Φ Φ Φλ λ λ= − ⋅ + ⋅1 A B . Non-linear transformations were found to be useful in cases
where the number of atoms in molecules A and B differ. Examples where the method has
been used include the calculation of the difference of the free energy of hydration of ethanol
and the free energy of hydration of ethane11, the difference of the free energies of
complexation of 18-crown-6 with sodium or potassium ions,12 and the solvability of methane
versus neopentane in water.13

The partition function of an unconstrained molecule with a λ-dependent Hamiltonian is
given by

( ) ( )[ ]
( ) ( ) ( ){ }[ ] ( )[ ]

Q d d H

d d d
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q q
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q q

λ β λ
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X p X p

F q p p A q p q

exp , ;

exp , ; , ; ,
1 2 1

2
1σ σ σ σ − σΦ

(6.44)
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where in the second line we have made the usual assumptions for the hard variables. In
trying to be as general as possible, we allow for a coupling parameter dependence of the
force field, the atomic masses and the value of the constrained coordinates. In the present
case we shall explicitly assume that the force constant matrix F associated with the
constraints depends on λ, like for example when a constrained C-H bond is turned into a
constrained O-H bond.

The derivation of the expressions for thermodynamic integration is analogous to that of
the previous section, and the final result reads
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(6.45)

There are a few differences between this result and Eq. (6.40). First, the potential energy
function may depend on the coupling parameter explicitly, but also implicitly via the
constrained coordinates,
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Second, since the atomic masses may depend on λ, use of Eq. (6.7) yields
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The first term on the right hand side is the usual term. The second term on the right hand
side, after having been used in Eq. (6.45), and after a subsequent integration with respect to λ
yields the obvious contribution to ∆A. In all meaningful applications this contribution will be
irrelevant. Finally, there is an extra term in Eq. (6.45), stemming from the constrained
variables, which in many applications, but not all, will be irrelevant.

The expression for thermodynamic perturbation is readily found to be
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∆
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Z
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where ( )( ) ( )( )∆Φ Φ Φ12 2 2 1 1= −q q, ; , ;σ σλ λ λ λ , as follows by reasoning along the lines that
lead to Eq. (6.43).
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6 .4  Relation between the thermodynamic force and the
constraint force

We now return to Eq. (6.40), restricting ourselves to the case where no additional
constraints σ are being applied. Using A M Jqξ = 2 , we may write

( ) ( )dA

d Z
k T ZB

ξ
ξ

∂
∂ξ

ξ ξ

ξ
ξ

= −
−

−1
1 2

1 2Φ ln J . (6.49)

Calculation of the right hand side of this equation is rather cumbersome, because the
evaluation of J  and ∂ ∂ξ  require the introduction of a full set of generalised coordinates.

The combination Φ − k TB ln J  may be interpreted as a potential, whose negative
derivative with respect to ξ is a force. Equation (6.49) then says that the average of this force
is equal to the thermodynamic force ( )− dA dξ ξ . On similar intuitive grounds van
Gunsteren14 suggested that all that the constraint forces do during a constrained MD

simulation is to counterbalance the thermodynamic force, and that therefore ( )dA dξ ξ  should
be equal to the constraint force. Later, Mülders et al.15 provided an almost correct
justification for this method. Based on their methods we shall now derive the correct
relationship between ( )dA dξ ξ  and the average constraint force.

Since we shall need it further on in this section, we shall first derive the explicit
expression of the Lagrange multiplier λξ  in terms of the quantities occurring in the
Lagrangian. From the Lagrangian L* , Eq. (6.22), expressed in generalised coordinates, we
obtain the equation of motion of the constrained coordinate,
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Φ
. (6.50)

Upon substitution of �ξ = 0, we solve for the Lagrange multiplier by demanding ��ξ = 0,
obtaining
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where we have used �q A p= −
q q
1  in the second line.

We now start the main derivation of this section. In the present case, Eq. (6.38) reads
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Combining this equation with Eq. (6.51) we find
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The last term, being the average of a time derivative, vanishes when ergodicity is assumed
and the ensemble average may be replaced by a time average. We next make use of
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where ∂ ∂ξZ q  denotes the column vector of derivatives of Zξ  with respect to the
generalised coordinates except ξ. Introducing Eq. (6.54) into Eq. (6.53), and replacing
B Aξ

T
q
−1 by - Zξ ξ

−1Y T , as follows from A A 1q qξ ξ
− =1 , we obtain
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We finally introduce the analogues of Eqs. (6.9) and (6.10) to obtain
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The importance of this expression is that it can be evaluated without explicitly introducing
the complementary generalised coordinates q; all that is needed is the readily available
expression for ξ in terms of the Cartesian coordinates. A second important property of
Eq. (6.56) is that it is manifestly independent of the coordinates q, as is obvious from
Eq. (6.33), but which is not evident at all from Eq. (6.40).

6 .5  Numerical examples
To illustrate Eq. (6.56) with concrete applications, we have calculated the free energies

along the reaction coordinate for two simple systems. As our first example serves a molecule
consisting of three atoms, with the bending angle in the role of the reaction coordinate. The
Jacobian determinant of the transformation from Cartesian coordinates to a set of coordinates
containing the bond lengths l12  and l23  and the bending angle ξ, is J = l l12

2
23
2

2sin sinξ ψ ,
where ψ 2  is one of the Euler angles needed to describe the orientation of the molecule. We
shall assume that the potential energy can be written as a sum of terms, with only one term
depending on the reaction coordinate, ( ) ( )Φ = +V V l lrestξ 12 23, . The partition function is then
readily evaluated, and the free energy reads
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( ) ( ) ( )A k T V AB restξ ξ ξ= − + +ln sin , (6.57)

where Arest is independent of ξ. Differentiation with respect to ξ gives

( ) ( )dA

d
k T

V
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ξ

ξ
∂ ξ

∂ξ
= − +cot , (6.58)

which is to be compared with the results from the simulation runs.
In our simulation the bending potential was put equal to zero, ( )V ξ = 0, in order to

enhance the effect of the other contributions to the free energy. All atoms had a mass of
12 a.m.u. The two potentials for bond stretching were quadratic with a spring constant of
600 kcal mol-1 Å-2 and an equilibrium length of 1.5 Å. The integration time step was 0.2 fs.
Brownian dynamics with a friction constant of 25 ps-1 was used to maintain an average
temperature of 300 K. The maximum allowed deviation in the bending angle when applying
the shake algorithm was 10-4 degree. At each value of the reaction coordinate the molecule
was first equilibrated for 0.1 ns, followed by a production run of 1 ns. Figure 6.1 shows the
averaged constraint force, once as the uncorrected average of the Lagrange multiplier and
once as the corrected average of the Lagrange multiplier, with

Z
m l

l l l l

m l l m lξ

ξ
= +

+ −
+

1 2 1

1 12
2

12
2

23
2

12 23

2 12
2

23
2

3 23
2

cos
. (6.59)

The difference between the two results is surprisingly large, and neither of the two is in
agreement with Eq. (6.58). The most probable value of the reaction coordinate is too large by
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Figure 6.1. Derivative of the free energy along the bending angle of a three atom molecule.
The averaged constraint force is shown as a dotted line, the same quantity averaged
according to Eq. (6.21) is shown as a dashed line, the crosses are obtained with Eq. (6.56)
and the solid line is the theoretical result.
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10 to 20 degrees. The crosses in Fig. 6.1 represent the results obtained with Eq. (6.56), with

1 4

1

3

2 12 23m
Z

m l l
Z

i
i i

i

∇ ∇ξ
ξ

ξ ξ⋅ =
=
∑ sin

. (6.60)

The agreement with the theoretically predicted results is perfect; the differences between the
calculated points and the predicted values are of the order of 0.05 kJ mol-1, with the
calculated values being predominantly too high. With similar simulations of molecules
consisting of three atoms of unequal masses and non-zero bending potentials Eq. (6.56) was
found to be in good agreement with the theoretical predictions.

As a second example we have calculated the free energy of a four atom molecule as a
function of the dihedral angle. This particular example was chosen because there are
numerous reactions in which a rotation around a dihedral can serve as the reaction
coordinate. As internal coordinates we use the bond lengths l12 , l23  and l34 , the bending
angles φ2  and φ3  and the dihedral angle ξ. The transformation from Cartesian coordinates to
the internal coordinates yields the Jacobian5 determinant J = l l l12

2
23
2

34
2

2 3 2sin sin sinφ φ ψ ,
which is independent of ξ; ψ 2  again is one of the Euler angles needed to specify the
orientation of the molecule. Assuming again that the potential energy can be split into parts
of which only one term depends on ξ, the free energy is equal to this particular term,

( ) ( )A Vξ ξ= .
The derivation of Zξ  is considerably more complicated in this case. Using the expressions

for ∇ iξ  given by Wilson et al.,16 which were recently rederived by Bekker et al.,17 we found

( ) ( )
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(6.61)

with
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− cos
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, (6.62)
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, (6.63)
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, (6.64)
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φ
φ

, (6.65)

in agreement with the result of Depaepe et al..18 Next, after some laborious mathematics we
arrived at
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The simulations with the four atom molecule were done under the same conditions as
those with the three atomic molecule; the bending potential was quadratic with a spring
constant of 50 kcal mol-1rad-2 and an equilibrium value of 120°. In particular, ( )V ξ = 0, so
we expect ( )dA dξ ξ = 0. The results of the calculations are presented in Fig. 6.2. Again, the
average constraint force gives an incorrect distribution, even more so after correcting the
average by means of Eq. (6.21). From the area under the curves it follows that the free energy
difference between the cis and the trans conformation is off by -1.1 and -2.6 kcal/mol. The
values obtained with Eq. (6.56) are in good agreement with the theoretical predictions.
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Figure 6.2. Derivative of the free energy along the dihedral angle of a four atom molecule.
The meaning of the lines is the same as in Fig. 6.1.
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6 .6  Comments on the literature
The topics covered in the previous sections have been the subject of various articles in the

literature. In this section we will comment on several of these articles.

6 .6 .1  Use and misuse of Zξ , Z σ  and Z ξσ

If only bond lengths are constrained, Z σ  in Eq. (6.21) is a function of the atomic masses
of the atoms involved in the constrained bonds, and of the bending angles between the
constrained bonds. The latter dependence only arises if there are atoms that are involved in
more than one constraint. For instance, in the case of the three atom molecule of section 6.5
with two bond length constraints one finds

Z σ
ξ

= +






 +






 −

1 1 1 1

1 2 3 2

2

2
2m m m m m

cos
. (6.67)

If atom 2 is much heavier than the other two atoms, or if the variation of the bending angle is
strongly limited by a bending potential, then the factor Z σ  may be assumed constant and
can be neglected in the averages. For other constraints than the one considered here, or in the
case the atoms are of comparable masses, omission of Z σ  should be considered with the
outmost care.

Many authors are aware of the difference between constrained and unconstrained
averages, yet all too often they calculate the partition function of constrained rather than
unconstrained systems.14,15,19-22 When dealing with a coupling parameter they consequently
have no factor Z σ

−1 2  in the partition function. All terms in the derivative of the partition
function then lack a factor Z σ

−1 2 , and moreover a term − −1
2

1 2Z Zσ σ σ λλd dln ;  is
missing. In the equivalent of Eq. (6.45) again all terms lack the factor Z σ

−1 2 , and in the
second term on the right hand side A qσ  is replaced by A q . Since in the coupling parameter
method often only bond lengths are constrained, the effect of neglecting Z σ

−1 2  turns out to
be of minor importance according to the considerations following Eq. (6.67).

When dealing with a reaction coordinate, however, the often complicated nature of this
coordinate makes Zξ

−1 2  an essential, non-negligible, ingredient of the partition function.
Omission of the factor Zξ

−1 2 , like it has been done by van Gunsteren et al.19 for the system
described in section 6.4 produces the partition function of a ξ-constrained molecule, i. e. a
molecule with a prescribed value for ξ and with �ξ = 0. However, one would like to know the
partition function of a molecule with a prescribed value of ξ, regardless of the velocity �ξ ; the
contribution of this velocity to the partition function is lost when Zξ

−1 2  is omitted. If
section 6.4 had been based on this partition function, the result would have been15

dA dξ λξ= . As a second example, consider a molecule with one reaction coordinate, ξ, and
with L constraints on the σ. Ciccotti, Kapral and co-workers21,22 have used the partition
function
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( ) ( )[ ] ( )[ ] ( )[ ] ( )′ ∝ − − −∫Q dξ β δ ξ δ σX X X X Z Xexp Φ ξ σσ σ
1 2

( ){ }[ ] [ ]∝ − + −∫∫ −d d d q q
T

q qq p p A p qξ β ξ δ ξξ ξ ξ ξexp , , .1
2

1 Φ σσ ξ (6.68)

for this case. From the second line this function is seen to be proportional to the probability
distribution along ξ of a σ-constrained system, i.e. with σ equal to the prescribed value σ ,
and with �σ = 0 . Note that �ξ  is treated correctly, and in this respect the procedure is superior
to the one of van Gunsteren et al.,19 but contributions to the partition function resulting from
motion along σ are still lost. The correct application of this partition function to the
calculation of the transmission coefficient in the reactive flux method has been discussed
elsewhere.2

As was said above, van Gunsteren et al.14,19 in their discussion of the coupling parameter
approach ignore the factor Z σ

−1 2 . They then go on by ascribing the properties of Z σ

discussed above to A q , i.e. that in common cases the latter is nearly independent of q and
can therefore be ignored. Effectively then, by ignoring Z σ  and A q  they have performed a
coordinate transformation from Cartesian coordinates to generalised coordinates without
introducing the appropriate Jacobian determinant.

6 .6 .2  Equivalence of thermodynamic force and constraint force

The possibility of a relationship between the thermodynamic force, Eq. (6.49), and the
constraint force was first suggested by van Gunsteren.14 His motivation is rather poor, since
it is based on the work done by the constraint forces, which according to textbooks23 on
classical mechanics vanishes. The algorithm proposed to calculate the thermodynamic force
has, to the best of our knowledge, never been used.

In the hands of Straatsma et al.11 the relationship underwent a drastic change. They
suggested that in those cases where constraints can profitably be used, the constrained
coordinates and the unconstrained coordinates are completely decoupled, i.e. that the
Hamiltonian can be split into two parts of which one depends on the unconstrained
coordinates and one on the constrained coordinates. In the case of a coupling parameter and
one constraint, for example,

( ) ( ) ( )( )H Hu cq q, ; ; ;σ σλ λ λ λ= +� . (6.69)

Neglecting the factor Zσ
−1 2  in the partition function, they then conclude that the derivative of

the free energy with respect to λ is proportional to

dH

d

u

λ
∂
∂λ

λ
∂σ
∂λσ λ

σ σ λ
= +

Φ

;
;

. (6.70)

Obviously, the complete decoupling of the Hamiltonian needed for this derivation is a gross
oversimplification. Incidentally, notice that λσ  would be constant in this case. Continuing to
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neglect Zσ
−1 2 , Mülders et al.15 have given a convincing derivation of Eq. (6.70). Using the

methods of sections 6.3 and 6.4 one easily obtains the correct expression:
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(6.71)

From the results of Straatsma et al.11 it can be seen that the constraint force makes a major
contribution to the free energy if a constrained bond length changes. This effect arises from
the velocity term in the Lagrange multiplier, Eq. (6.24). Over the years several physical
interpretations have been given to this term, ranging from momenta of inertia correction,11

dynamic stretch force resulting from the centrifugal force24 to the Jacobian.20 From the
intricate nature of Eq. (6.56) it follows that all these interpretations are incorrect, and that a
physically intuitive explanation most likely does not exist.

6 .6 .3  Potential force method

Pearlman25 discussed a non-circular molecule with a constraint on the length of the bond
between the atoms A and B, ξ = rAB . He used

∂
∂ξ

∂
∂ξ ξ

H i
i

i

N

= − ⋅
=
∑ x

F
1

, (6.72)

∂
∂ξ

ε
x ri

i
AB

ABr
=

2
, (6.73)

where εi = +1 for all atoms that are connected to atom A, and εi = −1 for all atoms that are
connected to atom B. It is clear that during the displacements ( )d di ix x= ∂ ∂ξ ξ  internal
coordinates other than ξ do not change, but in general the external coordinates will be
affected. Obviously, in Eq. (6.72) the Jacobian term is missing, see Eq. (6.49).

As a test case, Pearlman transformed an ethane molecule with dummy atoms bonded to a
hydrogen atom at a distance rA  into an ethane molecule with dummy atoms bonded to a
different hydrogen atom at a distance rB , expecting a zero free energy difference. In the
simulations in vacuo he indeed found no free energy difference between the two final
molecules. However, direct evaluation of the partition function shows that the free energy
difference is20,26 6k T r rB A Bln , which we verified numerically by normal mode analysis. For
r rA B≠  the free energy difference should therefore be non-zero. This incorrect ‘zero sum’
test case has also been used by others.13,27 Only when performing two legs of a
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thermodynamic cycle, i.e. performing the same change in vacuo and in a solvent, will both
runs yield the same result regardless of rA  and rB .

6 .6 .4  Mean force independent of complementary coordinates

Recently, Ruiz-Montero et al.6 exploited the freedom of choice of the q in Eq.  (6.49) to
simplify the resulting expressions. They chose to complement the coordinate ξ, which is
dictated by the physics of the problem under investigation, by a set of coordinates obeying

∇ ∇i j i k
i

N

jkq q⋅ =
=
∑

1

δ , (6.74)
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i

N
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=
∑

1

0 . (6.75)

The Jacobian and the partial derivatives needed in Eq. (6.49) then take a particularly simple
form, and the derivative of the free energy reads
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where ∇ ∇ ∇ξ ξ ξ2
1= ⋅=Σ i

N
i i .

Generalised coordinates with the above properties do in general not exist, however, and
the validity of Eq. (6.76) consequently must be doubted. As an example, consider a two
dimensional plane in which an atom is constrained to a circle with radius ξ, centred at the
origin. Obviously,

∇ξ =
+


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

1
2 2x y

x

y
, (6.77)

and the only possible solution of Eqs. (6.74) and (6.75), up to a minus sign, is
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The second derivatives of the alleged function q then are
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from which it follows that the coordinate q with the requested properties does not exist.
Coordinates of the form of Eqs. (6.74) and (6.75) are reminiscent of the non-coordinate bases
of differential geometry.28

To test the validity of Eq. (6.76) we have applied it to the three atom molecule of
section 6.5. The results shown in Fig. 6.3 prove that Eq. (6.76) must be wrong.

Incidentally, if the masses of all atoms whose Cartesian coordinates occur in the definition
of the reaction coordinate are equal,

( )∇ ∇ ∇
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2
5 2

1

1
, (6.81)

and the first term between the curly brackets on the right hand side of Eq. (6.76) reduces to
the contribution of the potential to λξ ξ ξZ −1 2 , see Eq. (6.24). Therefore, under the equal mass
condition the expression by Ruiz-Montero et al. differs from our result only by the velocity
contribution to the Lagrange multiplier.

6 .6 .5  Generalised Alteration of Structure and Parameters ( GASP)

An inherent problem of the free energy perturbation technique is that configurations of the
‘ λ1  ensemble’ are used to sample the ‘λ2  ensemble’, see Eq. (6.48). Only if these two
ensembles are rather similar, i.e. if their minimum energy conformations are alike, will the
average in the numerator of Eq. (6.48) converge rapidly. This often means that the step size
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Figure 6.3. The right hand sides of Eqs. (6.76) (solid line) for the three atom molecule. The
dotted line is the second term on the right hand side of Eq.  (6.76), which under the current
conditions is identical to the second term on the right hand side of Eq. (6.56).
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λ λ2 1−  should be fairly small. Especially potentials with a quadratic contribution whose
minimum depends on the coupling parameter,

( ) ( ) ( )[ ]ϕ λ λ λq C q q; = −1
2 0

2
, (6.82)

are prone to problems.13 An interesting way of avoiding these problems is by using the
generalised alteration of structure and parameters method (GASP) of Severance et al.27 They
suggested to transform to new coordinates r q qi i i= − ∆  in the λ2  ensemble, and r qi i=  in
the λ1 ensemble. Here ∆qi = 0 , except for the coordinate q of Eq. (6.82), in which case it is
∆q . The potential energy difference then reads

( ) ( )[ ] ( ) ( )[ ]∆ ∆ϕ λ λ λ λ12
1
2 2 0 2

2
1
2 1 0 1

2
= + − − −C r q q C r q . (6.83)

Obviously, if ∆q  is of the order ( ) ( )q q0 2 0 1λ λ− , ( )exp − β∆Φ12  will fluctuate much less than
before. Notice that ∆Φ12  not only contains ∆ϕ12 , but also contributions resulting from a
change of the Cartesian coordinates of all atoms in the molecule caused by the change of q.
In the case of an ideal gas of two atom molecules, with q chosen to be the length of the bond,
and if ( ) ( )C Cλ λ2 1=  and ( ) ( )∆q q q= −0 2 0 1λ λ , then this exponent will even be constantly
equal to one. This should make us suspicious. Indeed, what has not yet been discussed is the
Jacobian determinant. To appreciate this factor, which is not present in the equations of
Severance et al., we write the partition function as
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Following the usual procedure we obtain
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where we have added the possibility that constraints are applied to the σ variables. We could
have anticipated this result from Eq. (6.48). Let us finally notice that in the derivation we
have tacitly assumed that the coordinates r  in both ensembles are defined on the same
intervals.

6 .6 .6  Monte Carlo

So far we have concentrated on the calculation of free energies by molecular dynamics
simulations. We will now briefly consider doing the same thing with Monte Carlo
simulations, restricting ourselves to the example of section 6.3.1. Starting with the partition
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function ( )Q ξ  of Eq. (6.33), we integrate over all Cartesian momenta, transform to the
generalised coordinates ( )q, ,ξ σ , integrate over σ using Eq. (6.17) and integrate over ξ to
arrive at

( ) ( ) ( )[ ]Q dξ ξ β ξ∝ −− ∫F q J q q1 2 , , exp , ,σ σΦ . (6.86)

Differentiation with respect to ξ yields

( ) [ ]
[ ]

dA

d

d k T

d

Bξ
ξ

β
∂
∂ξ

∂
∂ξ

β
=

− −








−

∫
∫

−q J J
J

q J

exp

exp

Φ
Φ

Φ

1
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From this example we see that the sampling of phase space with constrained Monte Carlo
requires the rather cumbersome evaluation of the Jacobian to get the correct sampling of
configuration space. Secondly, the expressions for the derivative of the free energy are the
same as those for the molecular dynamics simulations, apart from the factors Z ξσ

−1 2 .

6 .7  Conclusions
We have derived the correct relation between the constraint force needed to constrain an

internal coordinate in a molecular dynamics simulation and the derivative of the free energy
with respect to this internal coordinate. Previously published methods with a similar
objective are critically discussed. We show that in most of these methods a term arising from
integration over the momenta, i.e. a Jacobian, is included only partly, or not included at all.
Two prototypical numerical examples are included to support our views. Of particular
importance is the discussion on the calculation of the free energy as a function of a dihedral
angle, as the dihedral angle is often used as the reaction coordinate in reaction rate
calculations.
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Chapter 7

Summary and outlook

7 .1  Summary
The isomerisation rates of a calix[4]arene in vacuo and in two solvents have been

computed by means of molecular dynamics simulations (MD). In MD the equations of
classical mechanics are used to calculate the motion of the reacting molecule and the
surrounding solvent molecules. Thus, the intricate influence of the solvent on the reacting
molecule is realistically accounted for. Unfortunately, MD simulations are computationally
very demanding because of the large number of non-bonded interactions between the
molecules, and the rapid internal motions of the molecules which make it necessary to
calculate the interactions at femtosecond intervals.

During an isomerisation reaction a molecule goes from one energetically favourable
conformation to another energetically favourable conformation without breaking or forming
covalent bonds. Such events are rare on the time scale of the normal dynamics of the
molecule, i. e. the motion within a low energy region, since during the reaction the molecule
has to pass through an energetically unfavourable region. In MD simulations of the
isomerisation of a calix[4]arene in a solvent, with an experimental rate constant of about
100 s-1, a reaction event occurs roughly once every 100,000 CPU-years.

With the appropriate statistical mechanical methods, as explained in chapter 2, the
required CPU time can be reduced to the order of a month. Before these methods can be
applied to a particular reaction, one has to introduce a reaction coordinate, a method of
telling reactants and products apart. This coordinate also defines a dividing-plane between
the reactants and the products. In transition state theory (TST) the forward rate constant of a
reaction is expressed in terms of the instantaneous product bound flux through this plane and
the average number of molecules on the reactant side of the plane. The calculation of the TST

rate only requires knowing the free energy of the molecule as a function of the reaction
coordinate. In the reactive flux method (RF) the exact rate is obtained by multiplying the TST

rate by a transmission coefficient, κ, which takes into account that only a fraction of the
product bound flux through the dividing plane will actually reach the product well.

In chapter 3 we propose a systematic definition of the reaction coordinate, based on the
unstable normal mode at the saddle point of the potential energy surface. This coordinate has
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several features which make it a very useful coordinate in rate calculations. Although the
coordinate can not be expressed as a simple analytic function of the Cartesian coordinates of
the reacting molecule, it can be computed swiftly by means of the rapidly converging
Newton-Raphson method. The gradient of the reaction coordinate, which is needed in
constrained runs and in umbrella sampling runs, is then obtained analytically. With this
coordinate the transmission coefficient will be fairly high, thus reducing the CPU-time spent
in the calculation of the rate constant. An excellent approximation of the free energy of the
molecule in vacuo is obtained by performing a normal mode analysis at fixed values of the
reaction coordinate.

These topics are discussed in detail in chapters 3 through 5, where the proposed reaction
coordinate is employed to calculate the TST and RF isomerisation rates of a calix[4]arene in
vacuo, in chloroform and in benzene. We find that both solvents destabilise the paco
conformation and stabilise the transition state configuration with respect to the situation in
vacuum. Chloroform stabilises the cone conformation, thus reducing the rate constant to
below the value in vacuum, while in benzene the reaction is faster than in vacuum. The
calculated rates are in good agreement with the experimental data. Although we have
concentrated on the isomerisation of a calix[4]arene, the introduced reaction coordinate can
in principle be applied to any reaction with a high energy barrier between the reactants and
the products. The isomerisation of n-butane is briefly discussed in chapter 3.

In chapter 6 we explore the connection between the derivative of the free energy as a
function of a coordinate, and the force needed to constrain this coordinate to a fixed value in
an MD simulation. The relation between the two is found to be more complicated than was
previously assumed by other authors. The correct formula is applied to calculate the free
energy of a butane-like molecule as a function of the dihedral angle, as in many
isomerisation reactions a dihedral angle serves as the reaction coordinate. Several methods
for calculating free energy differences that have appeared in the literature are commented
upon.

7 .2  Outlook
The erratic motion of the reaction coordinate, as calculated in the above discussed MD

simulations, is reminiscent of the motion of a Brownian particle. In some reaction rate
theories, therefore, the rate of escape from the reactant well is modelled by the statistical
tools developed in the study of Brownian dynamics. The idealised motion of the reaction
coordinate, ξ, with an effective mass, m, in a bath of non-reactive motions is given by the
Langevin equation,

( ) ( )m
dU

d
R t�� �ξ = − ξ

ξ
ξ

ζ− + . (7.1)

The potential is often approximated by a parabola near the transition state,
U E mact b= − 1

2
2 2ω ξ . The motion of the reaction coordinate is opposed by the friction, ζ, of
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the bath. The stochastic force, R, with zero mean, models the unpredictable aspects of the
interactions with the bath. In a consistent model the friction and the random force are related
by the second fluctuation-dissipation theorem,

( ) ( ) ( )R t R k T tB0 2= ζ δ . (7.2)

Kramers1 in 1940 derived an expression for the transmission coefficient of the system
described in Eq. (7.1), yielding the curve of Fig. 7.1. At high friction the transmission
coefficient becomes inversely proportional to the friction coefficient. Due to the strong
interactions with the bath, the velocity �ξ  often changes direction, while ξ hardly changes.
Thus any correlation between the direction in which the molecule crossed the transition state
and the well where the molecule ends up some time later is lost. At low friction the reaction
coordinates keeps swinging back and forth through the reactant well and the product well
before losing enough energy to settle in either of the two wells. The transmission coefficient
then is proportional to the friction coefficient. This regime is commonly referred to as the
energy-diffusion regime, as the energy of the molecule performs a Brownian motion. In
chapter 3 we saw that the isomerisations of n-butane and of calix[4]arene in vacuo tend to
the low friction regime. The isomerisation of a dissolved calix[4]arene lies in the high
friction regime. By increasing the friction, for instance by replacing the hydrogens at the
upper rim by a more bulky group such as a tert-butyl, we expect the transmission function to
decrease.

In chapter 6 we derived two expressions for the derivative of the free energy with respect
to the reaction coordinate, see Eqs. (6.49) and (6.56). Both these equations can be combined
with the reaction coordinate introduced in chapter 3. The Jacobian in Eq. (6.49) is already
given in Eq. (4.45), and the partial derivatives follow from ∂ ∂ξF Fi

N
i i

r= ⋅=Σ 1∇ aq . The
gradient of Zξ , as required in Eq. (6.56), is readily evaluated with the methods described in

0

1

0 ζ/ωb

κ

TST

energy 
diffusion

spatial 
diffusion

Figure 7.1. Sketch of transmission coefficient as a function of the friction.
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section 3.3.1. Both methods can be applied to a set of ξ-constrained simulations to verify the
free energy distributions of chapters 4 and 5. With these simulations one may also calculate
the autocorrelation of the stochastic force. If this force is delta-correlated, as in Eq. (7.2), the
transmission coefficient follows directly from Kramers expression, and can then be
compared with the results of chapters 3 and 5. Probably, the stochastic force will not be
delta-correlated, in which case the equation of motion for the reaction coordinate, Eq. (7.1),
must be expanded to contain a friction coefficient with memory. Even for this situation the
transmission coefficient can be calculated analytically. 2,3
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Samenvatting

De isomerisatiesnelheden van een calix[4]areen in vacuüm en in twee oplosmiddelen zijn
berekend gebruik makend van moleculaire dynamica simulaties (MD). In MD worden de
bewegingsvergelijkingen van de klassieke mechanica gebruikt om de bewegingen van het
reagerende molecuul en van de omringende oplosmiddelmoleculen te bepalen. Zodoende
wordt de gecompliceerde invloed van het oplosmiddel op de reactie realistisch in rekening
gebracht. Helaas zijn MD simulaties erg rekenintensief vanwege het grote aantal
wisselwerkingen tussen de moleculen, en door de snelle bewegingen van die moleculen
waardoor de interacties om de femtoseconde (10-15 s) opnieuw bepaald dienen te worden.

Tijdens een isomerisatiereactie gaat een molecuul van de ene energetisch gunstige
conformatie naar een andere energetisch gunstige conformatie, zonder dat daarbij covalente
bindingen worden gevormd of verbroken. Deze overgangen zijn uiterst zeldzaam op de
tijdschaal van de normale bewegingen van de moleculen, omdat een reagerend molecuul
door een energetisch ongustige overgangstoestand heen moet. In MD simulaties van de
isomerisatie van een calix[4]areen in een oplosmiddel, waarvan de experimentele
reactiesnelheid ongeveer 100 s-1 is, vindt er gemiddeld één reactie plaats per 100.000 jaar
rekentijd.

Met de geschikte statistisch mechanische methoden, zoals beschreven in hoofdstuk 2, kan
de benodigde rekentijd worden teruggebracht tot de orde van grootte van een maand.
Voordat deze methoden op een willekeurige reactie kunnen worden toegepast moet er een
reactiecoördinaat worden geïntroduceerd, een coördinaat om reactanten en producten te
kunnen onderscheiden. Deze coördinaat definieert tevens een scheidingsvlak tussen de
reactanten en de producten. In de overgangstoestand-theorie (transition state theory, TST)
wordt de snelheid van de voorwaartse reactie uitgedrukt in termen van de instantane product-
gerichte flux door dit scheidingsvlak en het gemiddelde aantal moleculen aan de reactant
zijde van het scheidingsvlak. De berekening van de TST reactiesnelheid vereist alleen kennis
van de vrije energie van het molecuul als een functie van de reactiecoördinaat. In de
reactieve flux methode (RF) wordt de reactiesnelheid verkregen door de TST snelheid te
vermenigvuldigen met een transmissiecoëfficiënt, die verdisconteert dat slechts een deel van
de product-gerichte flux door het scheidingsvlak ook daadwerkelijk aankomt aan de
productzijde.

In hoofdstuk 3 stellen we een systematische definitie van de reactiecoördinaat voor,
gebaseerd op de instabiele normal mode van het zadelpunt van het potentiële-energie-
oppervlak van de reactie. Deze coördinaat heeft verscheidene kenmerken die hem uitermate
geschikt maken voor gebruik in reactiesnelheidsberekeningen. Alhoewel de coördinaat niet
geschreven kan worden als een analytische uitdrukking in termen van de Carthesische
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coördinaten van het molecuul, kan hij toch snel worden uitgerekend met de vlug
convergerende Newton-Raphson methode. De gradiënt van de reactiecoördinaat, die we
nodig hebben in geconstrainde simulaties en bij umbrella sampling, kan dan analytisch
worden bepaald. Met deze reactiecoördinaat zal de transmissiecoëfficiënt vrij hoog zijn,
waardoor de benodigde hoeveelheid rekentijd binnen de perken blijft. Een uitstekende
benadering van de vrije energie van een molecuul in vacuüm wordt verkregen door een
aantal normal mode analyses uit te voeren bij constante waarden van de reactiecoördinaat.

Deze onderwerpen worden verder toegelicht in de hoofdstukken 3 tot en met 5, waar de
voorgestelde reactiecoördinaat gebruikt wordt om de TST en RF reactiesnelheden te bepalen
van een calix[4]areen in vacuüm, in chloroform en in benzeen. We vinden dat beide
oplosmiddelen de paco conformatie destabiliseren en de overgangstoestand stabiliseren ten
opzichte van de situatie in vacuüm. Chloroform stabiliseert de cone conformatie, waardoor
de reactiesnelheid lager wordt dan in vacuüm, terwijl in benzeen de reactie sneller verloopt
dan in vacuüm. De berekende snelheden zijn in goede overeenstemming met de
experimentele gegevens. Alhoewel we ons onderzoek geconcentreerd hebben op de
isomerisatie van een calix[4]areen, kan de beschreven reactiecoördinaat in principe voor elke
reactie met een hoge energiebarrière tussen de reactanten en de producten gebruikt worden.
Zo wordt in hoofdstuk 3 de isomerisatie van n-butaan kort bekeken.

In hoofdstuk 6 onderzoeken we het verband tussen de afgeleide van de vrije energie als
functie van een coördinaat en de kracht die nodig is om deze coördinaat in een MD simulatie
op een constante waarde te houden. Het verband blijkt veel gecompliceerder te zijn dan tot
nu toe in de literatuur wordt aangenomen. De gecorrigeerde formule wordt gebruikt om de
vrije energie van een butaan-achtig molecuul uit te rekenen als een functie van de dihedrale
coördinaat, daar in veel isomerisatiereacties de dihedrale coördinaat als reactiecoördinaat
wordt gebruikt. Verscheidene in de literatuur beschreven methoden om vrije energie
verschillen uit te rekenen zijn kritisch bekeken.
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