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1 Introduction

1.1 Why Learning Control?

One of the competitive tools manufacturers have at their disposal is the product
performance [Dibb et al., 1991]. Especially in markets involving high-tech products
it is of vital importance to manufacture products that have a superior performance.
This is also observed in the market for products we will consider in this thesis, i.e.
electro-mechanical motion systems. From a mechatronic point of view, the
performance of electro-mechanical motion systems can be improved by changing
the mechanical design and/or the controller. Consider, for example, robot
manipulators, where the motion accuracy depends on the stiffness and the inertia of
the system. If the manipulator fails to meet specifications, its stiffness can be
increased or it’s inertia can be reduced by changing the mechanical structure or by
application of new materials. Changing the controller can be done by either tuning
the parameters of the existing controller or by designing a new one. Since an
improved controller merely requires software changes and in some situations
addition of sensors, this measure is relatively easy to implement, compared to
structural adaptations. In this thesis we will focus on increasing the performance by
means of control.

The design of a controller is generally based on a model of the plant. A more
accurate model of the plant will result in a controller with a better performance.
When modelling a plant, the following problems can be encountered [Harris et al.,
1993]:
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— The system s too complex to understand or to represent in a simple way.

— The model is difficult or expensive to evaluate. The characteristics of some
(non-linear) effects may be hard to obtain, e.g. friction.

— The plant may be subject to large environmental disturbances, which are
difficult to predict.

— The plant parameters may be time-varying.

Adaptive control [Amerongen, 1982; Astrom and Wittenmark, 1989; Mareels and
Polderman, 1996] can offer a solution when the structure of the model of the plant
dynamics and the disturbances that act on it is available, but the values of some of
the parameters cannot be determined [Landau, 1979]. When the model is not
available or when many parameters cannot be determined, learning control may be
considered.

1.2 What is Learning Control?

Learning controllers are often pictured as a close representation of the human
control system and thus would possess human like properties. In this thesis we
don’t study learning controllers from this biological point of view, but rather adopt
the following definition.

Definition 1.1 (Learning controller) A learning controller is a control system that
comprises a function approzimator of which the input-output mapping is adapted
during control, in such way that a desired behaviour of the controlled system is
obtained.

Definition 1.2 (Function approximator) A function approzimator is an input-output
mapping determined by a selected function F(-,w), of which the parameter vector w
is chosen such that a function f(-) is “best” approximated.

Remark 1.1 (Learning and adaptive control) In this sense, adaptive control can be
viewed as a form of learning control in which a function approximator is used that
can only approximate a limited class of target functions. In general, a learning
controller will contain a function approximator for a much richer class of target
functions.

A wide variety of function approximators can be used, such as neural networks
[Hertz et al., 1991; Haykin, 1994; Veelenturf, 1995] neuro-fuzzy networks (also
known as adaptive fuzzy logic controllers) [Brown and Harris, 1994; Jang and Sun,
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1995], look-up tables [Moore, 1999], etc. Roughly speaking, the function
approximator can be used in two ways. Firstly, the function approximator can be
used to generate (part of) the control signal. Learning takes place by adapting the
parameter vector of the function approximator in such way that some cost function
containing the control error is minimised. This is known as direct learning control
[Ng, 1997]. Secondly, the function approximator can be used to learn a model of the
plant under control, which is adapted such as to minimise a cost function of the
prediction error. On the basis of the learned model, a controller is derived. This is
known as indirect learning control [Ng, 1997].

From the time that the first learning controller was developed in 1963 until now,
the field of learning control has grown tremendously. Many different controller
structures have been proposed and their properties, such as stability and
convergence rate, have been analysed both in practice and in theory. For an
overview of the field of learning control we refer to [Hunt et al., 1992; Prabhu and
Grag, 1996; Agarwal, 1997; Ng, 1997]. However, in spite of all research, only few
learning controllers have been applied in commercial products. Possible reasons are
[Longman, 1998]:

— Proof of stability is overrated. A large part of the theoretical research on
learning controllers is focused on stability. However, a stable learning
controller does not necessarily yield a good learning transient response. In
[Longman, 1998] the behaviour of a learning controller for a robot was
observed by means of simulations. After performing a specific motion 6
times, the tracking error had decreased by a factor 2.8. When learning
continued, the tracking error grew by a factor 10* at 62.000 repetitions and
finally decreased to a factor 10 at 250.000 repetitions. So, in spite of the
fact that finally a small tracking error was obtained, this learning controller
has no practical value because of the very large tracking error in between.

— A zero tracking error should mnot be desired. Some learning controllers
attempt to obtain a zero tracking error. However, this requires large control
signals at frequencies above the system bandwidth, which may be harmful
for the actuators and is generally undesirable.

— Wrong type of function approximator. In the majority of learning controllers,
the function approximator is implemented as a Multi Layer Perceptron
(MLP) neural network [Poggio and Girosi, 1990] (see appendix A). As we
will discuss later, this type of neural network is not especially suited for
control.

Based on these considerations we can formulate the following properties that a
learning controller should possess in order to become commercially interesting:



Introduction

— Fasy to use in an existing control system. This means that, as long as there
is a good learning transient response, a minimum performance is guaranteed,
i.e. that of the existing controller. Even during training the plant can be
kept in operation, not resulting in loss of production.

— Ability to make use of a priori knowledge of the plant. Generally, designers
and/or operators have some knowledge of the plant, e.g. in the form of a
(simple) mathematical model in terms of equations, a Bode plot of the plant
or a linguistic description of the plant behaviour. The learning controller
should allow this type of knowledge to be incorporated in the controller
design, in order to choose sensible controller parameters and to speed up
learning.

— The function approximator should be suited for control. This means that:

— The memory space that is needed for implementation should be small. In
practice, the controller is implemented in software on an embedded
computer. The amount of memory is limited. Therefore, the number of
parameters the function approximator requires to approximate the
control signal may not be too large.

— Calculation of the output of the function approximator and adaptation of
the input-output relation must be done fast. In a real-time environment,
within one sample interval, the parameters of the function approximator
are adapted and the output is calculated. Many electro-mechanical
motion systems require a small sample time, leaving little time for
calculations. Function approximators that involve a large number of
complex calculations are therefore not suited for control.

— The learning mechanism should converge fast. In order to keep the
amount of time, in which the performance of the controlled system is sub-
optimal, to a minimum, the learning mechanism should converge fast.

— The learning mechanism should not suffer from local minima. When
trapped in a local minimum, the learning mechanism assumes that the
obtained values of the parameters of the function approximator, denoted
by w,,, yield a minimum approximation error, denoted by FE(w,,). This in
spite of the fact that a w,,,=w,, exists, for which E(w,,)>E(w,,,). In
figure 1.1 a 1-dimensional example of such a phenomenon is presented. In
the local minimum, w=w,,, the gradient of the approximation error is
equal to zero. Learning mechanisms that only use the gradient of the
approximation error are unable to escape from the local minimum.
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wlm: wglob 14

Figure 1.1:  Local minimum in the learning mechanism

When the learning mechanism easily traps in a local minimum, it is
difficult to train the learning controller such that a high performance is
obtained.

— The input-output relation must be locally adaptable. In some function
approximators, the input-output relation is adapted globally. This means
that, if the value of one of the parameters of the function approximator is
adapted, the input-output relation over the entire input domain is
changed. Consider a learning controller that has been trained to perform
several motions. When the learning controller is trained to perform a new
motion, this involves adapting the parameters of the function
approximator. Because the input-output relation is adapted globally, the
previously learned control signals are changed, which may cause a loss of
performance. Therefore, it is desirable that the input-output relation of a
function approximator can be adapted locally. In this case, learning a new
motion will not change the previously learned control signals.

— The function approzimator should possess a good generalising ability. The
generalising ability is the ability to produce a sensible output for an input
that has not been presented during training but that is similar to training
examples. When the function approximator has a good generalising
ability, the learning controller will also obtain a high tracking
performance for motions that are similar to the trained motions. It thus
suffices to train the learning controller with a small number of
characteristic training motions. When the function approximator has a
poor generalising ability, the learning controller must be trained for each
motion of interest, yielding an extensive training procedure.

— The smoothness of the approximation should be controllable. As argued
before, the learning controller should only try to obtain a zero tracking
error up to some frequency, since high-frequency control signals are
undesirable. The user must be able to determine the maximum frequency
of the output of the function approximator.

— Good learning transient response. The transient response of the learning
controller should be such that the tracking error gradually converges to the
desired value. Growing tracking errors in the intermediate phase of learning
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might damage the plant. Furthermore, when this is the case, a minimum
performance can no longer be guaranteed when the controller is used as an
add-on device for an existing controller.

Long term stability has to be guaranteed. Learning can be either performed
continuously or only prior to operation. Continuous learning is required
when the plant parameters change during operation, e.g. due to wear or
environmental influences. In this case, one must be able to guarantee stable
learning in spite of changing operation conditions.

1.3 Feedback Error Learning

An interesting learning controller for robot manipulators that have to track
random paths, was proposed by Kawato [Kawato et al., 1987; Miyamoto et al.,
1988] (figure 1.2). This controller is generally known as the Feedback Error
Learning (FEL) controller.

O
7 Function |%
ro, !

~| Approximator

’";?E,Q;L

Figure 1.2: Feedback Error Learning

The learning control system consists of two parts:

— The feed-forward controller, denoted by F, ie. a mapping u, =F (). A
conventional feed-forward controller can be used to compensate for the
system dynamics and in this way obtains a high tracking accuracy. When
the feed-forward controller is equal to the inverse plant, F :Pfl, the

output of the plant, y, will equal the reference, r.

The plant, P, is always subject to disturbances. These disturbances can
either have a stochastic or a reproducible nature. Reproducible disturbances
reoccur in the same way when a specific motion is repeated. This means that
they can be viewed as a function of the state of the plant, x, see figure 1.3.
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An example is position dependent friction. Like the plant dynamics, the
reproducible disturbances can be compensated by a feed-forward controller.

L
Ltg%, y

Figure 1.3: Plant and reproducible disturbances

In order to correctly compensate for the system dynamics and the
reproducible disturbances, a detailed model is required. Inaccuracies in the
model can result in a feed-forward controller that has a poor performance.
When an accurate model is difficult to obtain, an alternative approach can
be taken.

Instead of designing a feed-forward controller on the basis of a model,
[Kawato et al., 1987] proposed to implement the feed-forward controller as a
function approximator, i.e. u;=F(r,w). During control, the input-output
relation of the function approximator is adapted such that it learns the
inverse plant and the compensation of the reproducible disturbances. The
main difficulty is now to select a learning signal, which indicates how the
input-output relation of the function approximator must be adapted. The
learning signal can be obtained in a number of ways [Er and Liew, 1997].
[Kawato et al., 1987; Kawato, 1990] showed that, when the output of the
feedback controller is used as a learning signal (figure 1.2), the input-output
relation of the function approximator converges to the inverse plant and the
compensation of the reproducible disturbances.

The type of function approximator that Kawato used is a Multi Layer
Perceptron (MLP) neural network (see appendix A). In case of the 3 Degrees
Of Freedom (DOF) manipulator that Kawato used in his experiments, the
input of the MLP consisted of the reference joint angles, 6, and their first
and second order derivatives:

. R LT 0
r= {ed,l 00041 0420,00,50,50,50,5] €R (1.1)

while the output, u, consisted of the motor torques, 7
r 3
| er (1.2)

'LLF = {Tl 7'2 7'3
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— The feedback controller. As stated, the feedback controller, C, provides the
learning signal for the feed-forward controller. Furthermore, it determines
minimum tracking performance at the beginning of learning. Finally, the
feedback controller compensates random disturbances.

The FEL controller has been applied to a number of applications by others as well,
for example:

— an automatic braking system for automobiles [Ohno et al., 1994];
— control of a camera system [Bruske et al., 1997];
— control of robot manipulators [Kim and Lee, 1996];

— welding [Tzafestas et al., 1997].

The applications showed that the FEL controller considerably improved upon the
performance of the feedback controller and that it is able to obtain a high tracking
performance without extensive modelling. In [Kraft and Campagna, 1990; Kim and
Lee, 1996; Tzafestas et al., 1997] the behaviour of a FEL controller is compared to
that of adaptive control systems. They concluded that, in case an accurate plant
model is used in the adaptive controller, the tracking performance of the adaptive
and the FEL controller are similar. Since the FEL controller converges slower than
the adaptive controller, in this situation the latter is preferred. However, when an
accurate plant model is unavailable, the adaptive controller fails to obtain a
satisfactory tracking performance. The FEL does not suffer from this and still
provides accurate tracking. This ability gives rise to the supposition that FEL
control is suited for a wide range of applications, since in practice plants are often
difficult to model accurately. The question remains whether the controller is
commercially interesting. To answer this, we will evaluate if FEL has all the
necessary features that were given in section 1.2:

— Fasy to use on an existing control system. The only extension to the existing
control system is the function approximator. When the control system is
implemented in software, this requires minor changes and can be easily done.

— Incorporation of prior knowledge in the design. When the structure of the
plant dynamics is known, the MLP network in the feed-forward controller,
can be split up in several smaller MLP networks [Katic and Vukobratovic,
1995]. Each of these networks compensates for one specific part of the plant
dynamics. Experiments showed that this speeds up learning considerably.

— Stability is addressed. It has been proven theoretically that for robot
manipulators, the FEL controller converges [Kawato, 1990]. For other
systems, stability has not been considered theoretically.
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— Good transient response. During learning, the tracking error gradually
converged to its minimum value. Like stability, the transient response has
not been considered theoretically.

— The function approximator is suited for control. Much of the practical value
of a learning controller depends on the type of function approximator that is
used. In spite of the fact that the FEL controller finally achieves a high
tracking performance, the learning behaviour is not optimal due to the MLP
network [Dean et al., 1991; Katic and Vukobratovic, 1995; Er and Liew,
1997]:

Small memory requirement. One of the nice properties of the MLP is that
it is able to approximate high dimensional target functions with a low
number of parameters. Therefore the amount of computer memory
required for implementation is small.

Computationally expensive. Calculating the output of the MLP and
adapting its weights involves a large number of complex computations.
For some real-time control applications this type of neural network may
therefore not be suited.

The learning mechanism converges slowly and suffers from local minima.
The learning mechanism is easily trapped in a local minimum. Which
local minimum the network weights end up in, depends on the initial
weights of the network. Therefore, it is necessary to perform several
training experiments with different sets of initial weights, to obtain an
acceptable tracking accuracy.

Good generalising ability. An advantage of the fact that the input-output
relation can only be adapted globally is that the MLP tends to have a
good generalising ability when training is performed properly. When a
motion system has to perform low-velocity motions, the FEL controller
tends to have a poor performance. This is caused by the fact that an
MLP network has difficulties with learning highly correlated data [Hrycej,
1997]. When the data is highly correlated, the network tends to fit the
last presented data, resulting in a poor generalising ability.

The smoothness of the approximation is not completely controllable. The
number of parameters of an MLP determines maximum accuracy of the
approximation. It does not guarantee a certain smoothness. By learning,
the MLP may approximate the target function very roughly in one part
of the input domain and very accurately in another.

Looking at the properties above, we may conclude that, in case its learning
behaviour is improved, FEL control has commercial potential. Different approaches
exist to overcome the problems of the FEL controller. In the following, we will
briefly present three methods. The first two methods alter the structure of the
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learning controller, whereas in the last approach another type of function
approximator is used.

Firstly, one can improve the learning behaviour by selecting different inputs for the
function approximator. In [Gomi and Kawato, 1993; Er and Liew, 1997] the error
signal was added as an input to the function approximator, changing the learning
controller from a pure feed-forward controller into a feed-forward / feedback
controller (figure 1.4). Experiments showed that this learning controller overcomes
some of the problems of the original FEL controller.

r (n) L3
S EEE—— .
7 : Function

v

Approximator
Y

: Up
! +
L Ae . o : »

Figure 1.4: Feedback Error Learning

A second method is to use multiple feed-forward controllers, each trained to
perform a specific task [Jacobs and Jordan, 1993]. A supervisory neural network
learns which feed-forward controller is used for which task. This learning controller
was tested on a manipulator that had to perform motions with objects of different
weight. After learning, each of the feed-forward controllers had learned to move a
specific object. The supervisory network had learned which feed-forward controller
to use for which object.

Since the difficulties of FEL control are mainly caused by the MLP network, an
obvious approach is to look for different function approximators. In [Kraft and
Campagna, 1990; Ananthraman and Grag, 1993] the MLP network is replaced by a
Cerebellar Model Articulation Controller (CMAC) network [Albus, 1975]. The
CMAC network belongs to the class of neural networks that employ basis
functions. In case of the CMAC network, the basis functions consist of piecewise
polynomial functions that have a value unequal to zero on a compact part of the
input space only. The basis functions are distributed such that at each point in the
input space p basis functions overlap. The parameter p is known as the
generalisation parameter and can be chosen by the designer. The output of the
CMAC network is a weighted sum of the basis function evaluations. Learning is
performed by adapting the weights of the network, not the basis functions
themselves. All this yields the following improvements:

— Faster convergence. Since learning takes place locally, only a small number
of weights is adapted, which results in a fast convergence.
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— Ability to learn correlated data. The locations of the basis functions are fixed.
This is beneficial for the learning of correlated data.

— No local minima. The learning mechanism does not suffer from local minima
[Ng, 1997].

However, a disadvantage is that the controller designer has to choose the
distribution of the basis functions. This requires some prior knowledge of the
desired input-output mapping and tuning of the basis function distribution may be
necessary before an acceptable performance is obtained. Experiments showed that
replacing the MLP network by a CMAC network gives a superior learning
behaviour and more accurate tracking.

1.4 Learning Feed-Forward Control

In this thesis a learning control system is considered that has the same structure as
the FEL controller (figure 1.2). However, the feed-forward part of the learning
controller is implemented as a B-spline network (BSN) (see appendix A) instead of
an MLP. This type of FEL control has been named Learning Feed-Forward
Control (LFFC) [Luenen, 1993; Starrenburg et al., 1996]. The BSN approach is
similar to the CMAC approach. Like the CMAC network, the BSN uses basis
functions, known as B-splines, for approximation.

In the design of the LFFC the following parameters of the BSN have to be chosen:

1. The inputs of the BSN. For motion systems, the inputs of the BSN consist of
the reference position, r, and derivatives thereof (see figure 1.2). Chapter 3
answers the question what inputs should be chosen such that the inverse
system can be expressed as a function of the inputs.

2. The B-spline distribution on each of the inputs of the BSN. The output of a
BSN is a weighted sum of B-spline evaluations. Therefore, the number of B-
splines and their locations determine the accuracy of an approximation.
Smooth target signals can be accurately approximated with a low number of
“wide” B-splines. Strongly fluctuating signals require a large number of
“narrow” B-splines (see figure 1.5).
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Figure 1.5: BSN mapping

A proper choice of the B-spline distribution can be made on the basis of
knowledge of the inverse plant and of the disturbances, or by means of an
iterative procedure that uses experimental data. These matters will be
discussed in chapter 4.

3. Selection of the learning mechanism. Learning, i.e. adaptation of the network
weights, can either be done after each sample, which is known as on-line
learning, or after a motion has been completed, known as off-line learning.
The on-line learning rule is

Aw, = yp,(r)e(r) (1.3)

and the off-line learning rule

Aw —n i (1.4)

with,
r; the input of the BSN. In LFFC the input consists of the
reference position and derivatives thereof, T, = {TJJ’] . } ;
i (r],) . the membership of the #th B-spline, s, (r;) € [0,1];
Aw;  the adaptation of the weight of the i-th B—spline;

~v: the learning rate, 0< v <I;
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e(r;):  the approximation error made by the network, in LFFC e(r)) is

the output of the feedback controller, u,;

N, the number of input samples.

E}

4. Selection of a learning rate. The larger the learning rate, the faster the
convergence of the learning mechanism. However, a large learning rate makes
the approximation more sensitive to noise and may cause instability.

By using a BSN, we have gained the following advantages:

— No local minima. The output of the BSN is a linear function of the weights.
This means that the learning mechanisms given in (1.3) and (1.4) do not
suffer from local minima. This implies that the initial weights of the BSN do
not influence the final tracking accuracy.

— Local learning. Since B-splines have a compact support, the input-output
mapping of the BSN can be adapted locally. Training a new motion does not
unnecessarily affect the ability to track previously learned motions.
Furthermore, due to the compact support of the B-splines only a small
number of the weights contribute to the output. During training, only these
weights need to be adapted. This in contrast to the MLP, where all network
weights were changed during learning. Therefore, the BSN converges much
faster than the MLP.

— Tuneable precision. The smoothness of the input-output relation is
determined by the choice of the B-spline distribution. Choosing B-splines
that have a more compact support, enables the BSN to more accurately
approximate high-frequency data. When, due to actuator limitations for
example, a more smooth approximation of the data is required in a specific
part of the input space, B-splines should be used that have a larger support
or a higher order. In case of the MLP, the user is not able to specify the
smoothness in different parts of the input space, instead the MLP allocates
its own resources.

The advantages listed so far also hold for the CMAC network. We have chosen to
use the BSN for reasons of simplicity. In the CMAC network the basis-function
distribution is such that at each input value, exactly p basis function have an
evaluation larger than 0. Several distributions satisfy this [Brown and Harris, 1994]
each resulting in a different approximation. The user has to choose which
distribution is most appropriate. Furthermore, refining an approximation by adding
an extra knot (an extra basis function), results in a different basis function
distribution. This means that the new basis function distribution is not able to
exactly reproduce the approximation before refinement. This may be undesired.
The distribution of the basis functions in a BSN is straightforward.
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The principal drawback of BSNs (and of other NNs with basis functions) is that
the number of network weights grows exponentially with the dimension of the
input space. The number of network weights in an N-dimensional BSN is given by:

N
N, = HNj (1.5)

J=1

Where N]. is the number of B-splines defined on input j. Since accuracy
considerations may require many B-splines and thus large values of Nj , e.g. when

a highly non-linear function is to be approximated, these networks are impractical
when the number of inputs is large. This so-called curse of dimensionality brings

about the following problems [Brown and Harris, 1994; Bossley et al., 1996]:

— Large number of network weights. If the plant dynamics have highly non-
linear components, a highly non-linear function has to be mapped by the B-
spline network. A network that is able to map these non-linearities
accurately would take up a great deal of computer memory. In practice,
memory resources are limited, therefore, network complexity and mapping
accuracy have to be traded off against each other.

— Large training sets. When performing a certain reference motion, only the
network weights indexed by the network inputs are updated. To adapt a
large number of network weights therefore requires a large number of
training motions. This will lead to large training times if the network is
trained on-line, i.e. during control.

— Poor generalising ability. The compensation of a non-linearity may require
narrow B-splines for reasons of accuracy. However, with narrow B-splines
very different network output signals may occur with trajectories that are
‘close to each other’. Hence the large training sets mentioned above all need
to be presented before beneficial effects will become noticeable.

It can be seen that the curse of dimensionality may seriously harm the commercial
value of the LFFC. Therefore, effort should be made to overcome the curse of
dimensionality. In chapter 4 several methods are presented that may be able to do
this.
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1.5 Tllustrative Application: a Linear Motor Motion System

An interesting application of learning control, is a permanent magnet synchronous
linear motor. Linear motors [Nasar and Boldea, 1987; Basak, 1996] are often
designed to perform linear motions with sub-millimetre accuracy, e.g. for laser-
cutting, scanning, or pick-and-place tasks [Otten et al., 1997]. The linear motor
considered here is the so called Linear Motor Motion System (LiMMS), which is
manufactured by Philips. The motor configuration consists of a base plate covered
with permanent magnets, and a sliding part, the translator that holds the electric
coils and their iron cores, see figure 1.6. By applying a three-phase current to three
adjoining coils of the translator, a sequence of attracting and repelling forces
between the poles and the permanent magnets will be generated. This results in a
relative motion between the base plate and the translator. The basic behaviour of
the motor is that of a moving mass; the mass of the translator with a (dummy)
load, m, is 37 [kg].
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Figure 1.6: Working principle of the LiMMS linear motor. The indicated lines are
the fluz-lines of the permanent magnets, ¢,, @5, and ¢, are the phases
of the 3-phase motor current

During operation the translator experiences a relatively high-frequency disturbance
force, known as the force ripple. The force ripple is caused by two phenomenons:

— Firstly, a strong magnetic interaction exists between the permanent magnets
on the base plate and the iron cores that are mounted in the coils of the
translator. The iron cores are employed to obtain a high motor efficiency.
This disturbance force, known as cogging, tries to align magnets and iron
cores to stable (‘detent’) positions of the translator. The cogging force
depends only on the relative position of the translator with respect to the
magnets; it is independent of the motor current and is observed in a zero-
current situation as well. For reasons of simplicity, in simulations the
cogging force, F [N], is modelled as a sinusoidal shaped input disturbance
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with an amplitude of 10 [N] and a pitch of 1.6€” [m] that depends on the
motor position, y [m]:

Fo

(y) = 10sin (1.6¢ %) (1.6)

— Secondly, a force ripple can be generated by errors in the commutation, i.e.
the way the current is applied to the coils. When moving a coil through a
varying electro-magnetic field, a back EMF is generated that depends on the
velocity of the coil in a linear way. If the current applied to the coils is not
proportional to the back EMF a force ripple will result that depends on the
position and the velocity of the translator. The back EMF can be computed
from a detailed model of the translator and the magnets in the base plate.
This requires the position and magnetic properties of the permanent magnets
to be known accurately. In case of the LiMMS one has chosen to use
relatively low-cost magnets that have large magnetic tolerances.
Furthermore, the magnets are not placed with the highest possible accuracy.
This makes it difficult to obtain the model needed to compute the
commutation and thus a force ripple results. This effect has not been
incorporated in the simulation model.

Other disturbances that act on the LIMMS, are friction phenomenons in the ball
bearings that are present between the translator and the guiding rails it rests on. It
is assumed that in the real set-up the friction characteristics can be described by
the Stribeck curve [Armstrong-Helouvry et al., 1994], i.e. the friction consists of
Coulomb friction, stiction and viscous friction. In the simulation model, only
viscous friction, d;=10 [Nms™], is considered:

F,(3) = 10 (17)

This results in the simulation model given in figure 1.7.

Uy RN R
FEEY .

Figure 1.7: Model of the LiMMS

In chapter 2 and 3 this application will be used in simulation studies. Chapter 5
presents results with a real LIMMS.
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1.6 Outline of the Thesis

Chapter 2: Repetitive motions

Long term stability is an essential property for a learning controller. To be able to
analyse the stability of the LFFC, a special type of motion is considered, i.e.
repetitive motions. In this case, the LFFC becomes similar to two other types of
learning control: Iterative Learning Control (ILC) and Repetitive Control (RC).
Rigorous stability analyses exist both for ILC and RC. Based on this, a stability
analysis of LFFC will be performed. The stability analysis gives insight in the
learning behaviour of LFFC and provides rules for a proper choice of the design
parameters.

Chapter 3: Non-Repetitive Motions — Input Selection and Convergence

In this chapter we derive conditions that a motion system must fulfil, before it can
be controlled by an LFFC. From this, we also gain insight in the proper choice of
the inputs of the BSN. Stability of the LFFC will be addressed. The results of the
stability analysis, performed in chapter 2, are used to examine stability of an LFFC
that performs random motions. It shows that without additional stability measures,
long term stability cannot be guaranteed. Therefore, we propose a new stability
measure, referred to as regularisation, which is able to stabilise LFFC. Simulations
are presented that confirm the operation of this.

Chapter 4: Non-Repetitive Motions — Parsimonious LFFC

It appears that in general the BSN will have multiple inputs. This may cause
problems due to the curse of dimensionality. We will show that replacing the single
BSN by multiple BSNs may overcome these problems. The resulting LFFC is
known as a parsimonious LFFC. Finally, we show how the parsimonious LFFC can
be trained.

Chapter 5: Design and Applications

Here, the theoretical insight gained in the previous chapters is used to formulate a
design procedure for LFFC. This procedure will be used for two practical
applications. The first system under control is the LiIMMS, presented in section 1.5.
Next, experiments will be performed with a part of a flight simulator, i.e. the
Fokker Control Loading System.
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Chapter 6: Discussion

We end up discussing the results of the previous chapters and draw conclusions.



2  Repetitive Motions

2.1 Introduction

It is of vital importance that a learning controller features long term stability. One
way to guarantee this is to stop learning once the desired tracking performance has
been obtained. However, during operation the plant characteristics may change due
to e.g. wear or temperature influences. It may thus be desirable to learn
continuously, such that the learning controller is able to adapt to the changing
plant. Stability must then be ensured on the basis of a theoretical analysis. A large
part of literature on learning control deals with stability. As stated in the previous
chapter, not all analyses deal with stability from a practical point of view. Often
the transient behaviour is not considered. This implies that large tracking errors
are allowed in the intermediate phase of learning. In our opinion, a proper stability
analysis should:

— Indicate whether the learning controller is stable or not.

— Predict the transient response. When the learning controller is applied as an
add-on device for an existing controller, it is expected to improve the
tracking performance. Growing tracking errors during learning may cause
loss of production or may even harm the plant. To prevent this, the stability
analysis should also indicate how the tracking error converges to its final
value.

— Give insight in the stability robustness. As learning is performed
continuously, the learning controller should remain stable even when the
plant characteristics change. The stability analysis should indicate how much

19
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the plant characteristics may change before the learning controller becomes
unstable.

— Give guidelines for the choice of values for the design parameters. The values
of the design parameters of the learning controller should be chosen such
that it features fast and stable learning with a desired transient response.
The stability analysis should not only indicate whether this is the case or
not, but should also give guidelines on how the values should be chosen such
that this is obtained.

The stability analysis of LFFC, presented in section 2.5, is based on the stability
analyses of two other learning control schemes which are closely related to it, i.e.
Iterative Learning Control (ILC) and Repetitive Control (RC). Both ILC and RC
have been developed to control plants that have to perform one and the same
motion over and over again. In section 2.2 and 2.3, we will shortly review ILC and
RC. Furthermore, matters like stability, learning behaviour and design will be
discussed. Section 2.4 will show that the structure of an LFFC that is designed for
repetitive motions is similar to the structure of ILC and RC. Therefore, insight in
the role of the design parameters of ILC and RC can be used in the stability
analysis of LFFC, section 2.5. Finally, the results of the stability analysis will be
verified by means of simulations in section 2.6.

2.2 Tterative Learning Control

2.2.1 Original ILC Scheme

Many industrial motion systems repeatedly perform a specific motion. Think, for
example, of pick-and-place machines or welding robots. A learning control system
that is suited for this type of applications is ILC [Arimoto et al., 1984; Kawamura
et al., 1988; Moore, 1992,a; Moore et al., 1992,b; Bien and Xu, 1998]. A more
detailed description of the field of interest of ILC is given by the following axioms
[Arimoto, 1998]:

1. A plant repeatedly performs a specific motion that ends in a fixed duration,
T,>0 [s].

2. The plant dynamics are time-invariant.
3. The desired output, y, (t) (t€[0,T}]), is given a priori.

4. For each trial, the initial states are the same.
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5. The plant output, y(t), is observable.

6. There exists a unique input, u, (), that yields y, (¢).

The original solution to this problem, proposed in [Arimoto et al., 1984] is depicted

in figure 2.1. The steering signal for the k-the trial, uf, (t), is stored in a memory

buffer of length T, [s]. During motion, the tracking error, ek (t), is recorded. At the
end of the trial €’ (t) is used to modify the steering signal in such way that in the
following trial a smaller tracking error will result. This is done by filtering ¥ (1)
with the learning filter, L, and adding the result to uf, (t), which yields uéffl (t).

Note that this control system is open loop in nature.

20
memory

ug
— Ey
— — P

Figure 2.1:  Original ILC

i@

The (non-linear) plant, P, is given by:

= f(x + Bu

) Cn (2.1)

in which f is globally Lipschitz continuous, but unknown. In the original ILC
[Arimoto et al., 1984], L was implemented as a pure differentiator, which gives the
following learning rule:

ul™ () =y (t) + Te" (t) (2.2)

Analysis shows [Arimoto et al, 1984; Heinzinger et al., 1992] that learning
converges in the sense of the A\-norm,

Jug =l @), <o, 0 —uf )], (2.3)
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with p<1, if
| — C’Bl"||OO <1 (2.4)
The X-norm is defined as:
_ =)
. = o 2.5
7Ol = max e (2.5)

where A e RT.

Remark 2.1 (A-norm) Note that by choosing A =2, we obtain the following norm,

-2
IF @),y = e e e, 28

which is unequal to the common H, norm, || f (t)||2 .

In literature on ILC, the A-norm is often used to prove that learning converges.
However, a learning controller that converges in the sense of the A\-norm does not
necessarily have a good transient response. This is caused by the fact that values at
the end of the trial (¢ close to T,) are weighted much less than those at the
beginning (¢ close to 0) [Amann and Owens, 1996]. The tracking error at the
beginning of the trial decreases from trial to trial, while the tracking error at the
end builds up. As stated in the previous chapter, this type of learning behaviour is

unwanted.

Figure 2.2: Typical learning behaviour of the original ILC

This problem can be overcome by considering the trial length to be infinite [Amann
and Owens, 1996]. From a practical point of view it seems strange to assume the
length of a task, which is to be repeatedly performed, to be infinite. However,
mathematically this assumption is advantageous because:
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1. It enables the use of frequency domain analysis.

2. If the trial length is long compared to the time constants of the system, the
infinite trial length is a good approximation of the real situation.

3. A learning mechanism that converges on infinite trial length, must also
converge on finite trial length.

4. Tt gives insight in the properties of the controller which may be hard to
obtain by finite time analysis.

2.2.2 Current Cycle Feedback

The ILC of (2.2) is an open-loop controller. This means that the controller is not
able to compensate for random disturbances. If these are significant, compared to
the reproducible disturbances, it is not possible to obtain a high tracking
performance. Another problem may occur when the plant is unstable. To overcome
these difficulties [Chen et al., 1996; Chien and Liu, 1996], a feedback controller is
added to the ILC (figure 2.3). Since the input of the plant does not consist of the
feed-forward signal only, which depends on information gathered in previous trials,
but also of the feedback signal, this type of ILC is known as current cycle feedback.
For sake of simplicity, in the following only LTT SISO plants will be considered.

>i)<+7
memory
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r +-A€ >. Uc + v L

Figure 2.3: ILC incorporating feedback controller

In the frequency domain the learning mechanism is given by:

k+1 k k
Upt' =Up +LE (2.7)

In which, Uf, is the Fourier transform of the feed-forward signal in run % and B*
is the Fourier transform of the corresponding tracking error. Learning converges,
i.e. the system remains stable, if the feedback loop is stable and the following

condition is satisfied:
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VweR: “Ullfq+2 (jw)— Ullffl (jw) “ < HUkH w)— UII? (jw)”oo (2.8)

The left hand side of (2.8) can be written as:

k+2 k+1 _lyrk+1 k+1 k k
ot vt = ok + Bt v - LB (2.9)
Where:
EV=R-Y*
cP P
=R- R+ U 2.10
[1 +CcP 1+CP F (2.10)
1
= Jp— Uk
1+CP 1+CP
Substituting (2.10) in (2.9) gives:
e T | R O LP k1 ok
“UF Ur “oo =|YF Ur ~ 1+CP (U ~Ur ioo
__Lr i - v (2.11)
1+CP -
k+1 k
vpt -k}
H 1+CP H “(F F 0
It can thus be concluded that learning converges if:
Hl __LP H <1 (2.12)

1+CP|,

must lie in the unit circle. In order

In the Nyquist plot this means that 1— LP
1+CP

to examine in what way L must be chosen, we first present a Nyquist plot of (2.12)
P

for L=1. In figure 2.4 Nyquist plots of 1—|—PCP and 1 that are typical for

motion systems are shown.
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Im| Im|

L (1
1+ CP

(a) (b)
Figure 2.4: a) Typical Nyquist plot of b) Typical Nyquist plot of
P/(1+CP) 1-P/(1+CP)

P
The Nyquist plot of 1—
vd P 1+CP

is outside the unit circle when Re[ ]< 0,
14+ CP

lies between —0.57 and -1.57.

which occurs when the phase of

Furthermore, a too large magnitude of causes violation of (2.12). The

learning filter L has to compensate for the phase and/or the magnitude of TCoP

In figure 2.5a,b the effect of such an L on the Nyquist plot is given.

Im| m

EWWai) P
1+CP l—m

(a) (b)

Figure 2.5: a) Typical Nyquist plot of LP/(1+CP)
b) Typical Nyquist plot of 1-LP/(1+CP)

To design such an L, detailed knowledge of the plant is required. For low frequency
dynamics, a competent model of the plant often exists. However, identification and

modelling of high frequency dynamics is difficult and may lead to an incompetent
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model. This could result in an L that compensates well for low frequencies but does
not compensate appropriately for all high frequencies and therefore causes unstable

behaviour.

2.2.3 Robustness Measures

We will discuss two methods that make ILC robust for unmodelled high frequency
dynamics. In [Hara et al., 1988] it is proposed to incorporate a low-pass Q-filter in
the memory loop. The Q@Q-filter is designed such that it suppresses the frequency
components at which the plant model is inaccurate. The lower frequencies, at
which the model is accurate, are passed. The Q-filter is either placed before the
memory [Roover, 1996], as in figure 2.6, or in the memory feedback loop [Moore et
al., 1992,b].

49%7
o

memory

up
+

r € U,
T TR

Figure 2.6: ILC with low-pass Q-filter

The learning mechanism becomes:
k+1 _ k k
Uk 7Q(UF+LE ) (2.13)

Using the same approach as before, the following stability criterion can be derived:

Q[l— LP ] <1 (2.14)
14+ CP )|
In figure 2.7a,b the effect of the @-filter is presented graphically. Firstly, @ is
LP
1+CP

chosen equal to 1, which gives 1— . Apparently, L is not designed properly
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since 1— lies outside the unit disc for some frequencies and learning will

thus diverge. Next, @ is chosen as a low pass filter. By adding @), the amplitude of
LpP
1+CP

now lies in the unit circle.

at the high frequencies is decreased such that the whole Nyquist plot

Im| Im|

A et 0L
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(a) (b)

Figure 2.7: a) Typical Nyquist plot of 1-LP/(1+CP)
b) Typical Nyquist plot of Q-QLP/(1+CP) (Q low pass)

By adding the Q-filter, L no longer needs to compensate at high frequencies
exactly. This makes the ILC more robust for unmodelled high frequency dynamics.
However, a disadvantage of incorporating the Q-filter is that a zero tracking error
can no longer be obtained. The tracking error that remains can be calculated as
follows. Firstly, when (2.14) is satisfied, learning converges which means that:

Jim vkt =uy, (2.15)

Substituting (2.15) in the learning rule (2.13) gives:

lim U} = QL ph (2.16)
k—o00 1-Q

Using (2.10) we can calculate the tracking error that remains when learning has

converged:
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lm BF—— gL | QL Iph
k00 1+CP 1+CP(1-Q
: QPL 1
& lim EF|14 = R 2.17
P (1+C’P)(1—Q)] 1+CP 217)
& lim BY = (1=0Q)
k— 00 (14+CP)(1-Q)+QPL

The Q@-filter is designed as a low-pass filter, which means that @~1 for low
frequencies, while @Q~0 for high frequencies. Inspecting (2.17) we can see that for
low frequencies:

lim E¥ ~0 (2.18)
k—o00
and for high frequencies:
. k 1
lim E* = R (2.19)
k—o00 1+ CP

The bandwidth of the @Q-filter should thus be chosen larger than or equal to the
closed loop bandwidth we want to obtain.

An alternative approach was taken after noting that the original ILC features local
(point-to-point) adaptation of the feed-forward signal. This means that at each
sample instant, only the feed-forward signal belonging to that instant is adapted.
However, the feed-forward signal that has to be learned is often continuous and
changes relatively little between 2 samples. This suggests that the adaptation of
the feed-forward signal at the current instant could well be used to adapt the feed-
forward signal at neighbouring instants as well. One way to accomplish this kind of
adaptation is to define the feed-forward signal as an integral expression, consisting
of a known kernel and an unknown influence function [Horowitz et al, 1991;
Messner et al., 1991]:

T
up(t) = j; PE (1) c(t,T)dr (2.20)

In which K (¢,7) is the known kernel and c¢(f,7) is the unknown influence

function. For a good approximation of the feed-forward signal, the kernel function
has to be a smooth function. A typical example of a suitable kernel function is the

Gaussian distribution function, which is defined by:
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] ey
K (t,7)= e 2 o (2.21)

2ro

For 0=1 the Gaussian distribution has the following shape:
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Figure 2.8:  Gaussian kernel function (oc=1,t=1);

In this type of ILC, training is done by adapting the influence function. A learning
rule that can be used for control of robot manipulators is [Horowitz et al., 1989]:

de(t,7)
ot

=K(t,7)é(t) (2.22)

In which é(t) is the velocity error of the robot manipulator. Note that a Gaussian
kernel is non-zero over its entire input domain. Therefore, execution of learning
rule (2.22) at a particular sample instant implies that the feed-forward signal will
be adapted over the full domain [0, T,]. We refer to this as global adaptation. Due to
the fact that adaptation is no longer local, learning may converge faster than in

case of point to point adaptation. Experiments confirmed this.

Analyses and experiments showed that the use of kernel functions improved the
robustness properties of the ILC controller. [Horowitz, 1993] indicated that this is
to be expected, as the point to point adaptation of the feed-forward signal in the
original ILC is the cause of unstable behaviour. The use of kernel functions
improves the robustness because the ‘width’ o of the Gaussian kernel function has
the character of a low pass filter; it determines the frequencies that can be present
in a signal consisting of a combination of such kernel functions. Both the known
kernel and the learning rule are such a combination.
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2.2.4 Design Procedures

Several design procedures exist [Longman, 1998] of which we will very briefly
discuss the following. In [Kavli, 1992], a heuristic design procedure is proposed.
This procedure comprises the following steps:

1. Construct a model that describes the plant accurately up to an frequency wg

2. Manually design the learning filter, L, such that:

P (jw) ]‘1
1+ C (jw)P (jw)

V€ [0,wg | L (jw) » (2.23)

Q}:

where w,, is frequency, up to which perfect tracking is desired. This requires
a model of the plant that is accurate at least up to w,.

2. Choose Q as a low-pass filter with zero phase and a cut-off frequency wy

such that (2.14) is satisfied.

A more formal design method, based on an H_ approach, is proposed in [Amann
and Owens, 1996; Roover, 1996; Roover, 1997]. The design procedure consists of
the following steps:

1. Choose low-pass Q-filter with cut-off frequency wy,.

2. By means of H synthesis find an L such that

1+C (ju) P (ju) )|

L(jw) = argmin (2.24)

The advantages of this method over the heuristic design procedure are that an L is
obtained that minimises (2.14), and thus has the largest possible convergence rate,
and that this method can be applied to multivariate ILC. However, the method
does not take uncertainty in the plant model into account. In [Roover, 1996] a
design method is proposed that is based on u-synthesis and that does allow plant
uncertainty.

2.2.5 Extension of the Field of Application

At the begin of this section, 6 axioms are given that describe the type of problems
ILC considers. Not all practical applications fulfil these 6 axioms. Therefore,
extensive research is undertaken to modify ILC, such that it can be applied to
these applications.
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Axiom 4 states that for each trial, the initial conditions are the same. However,
this may not always be the case. In [Lee and Bien, 1996; Lee and Bien, 1998], the
robustness for a bounded but random initial error is examined of an ILC with a
PD-type L. It was shown that learning still converges and that the final tracking
error depends on the bound of the initial error.

ILC considers one specific motion that is to be repeated over and over again.
However, in practice some motion systems have to perform non-repeating motions.
In this case, ILC can be applied in the following way. For a number of repeating
trajectories we design ILCs and train them until the feed-forward signal has
converged. The trajectories and the feed-forward signal that the ILC has learned
are stored in a database. When a new motion must be performed that has not been
presented before, the feed-forward signal is constructed from the feed-forward
signals in the database. In [Xu and Song, 1998] three different relations between
the new motion and previously presented motions are considered:

— The new motion has the same time scale, but a different spatial scale [Xu,
1997].

— The new motion has the same spatial scale, but a different time scale [Xu,
1998].

— Both the time and the spatial scale differ.

In [Arif et al., 1999] no direct relation between the new motion and the stored
motions is assumed. Instead, their similarity is calculated. The result is a similarity
index J,, 0 <J, <1. The feed-forward signal of the new motion is set to the feed-

forward signal of the most similar stored motion multiplied by J..

2.3 Repetitive Control

In ILC, it was assumed that in each run the initial states are the same. When
continuously performing a repetitive task, this is not the case. The states of the
system at the end of the k™ trial are equal to the initial states of the k+1™ trial.
Repetitive Control (RC) [Hara et al., 1988; Tomizuka et al., 1989; Steinbuch and
Schootstra, 1996] is a type of learning control that has been created for these
motions. The applications RC considers can thus be described by the axioms given
in the previous section, except axiom 4. The plant may furthermore be subject to
periodic disturbances with period nT,, where n€N and T, is the period of the
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reference trajectory. According to the internal model principle [Francis and
Wonham, 1975] perfect tracking of a reference signal or perfect attenuation of a
disturbance requires a model of the reference/disturbance generating system to be
included in the controller. In case of periodic trajectories or disturbances, this
means that the repetitive controller has to include a periodic signal generator, such
as a memory loop. The structure of the repetitive controller is presented in figure
2.9. Repetitive Control (RC) is very similar to ILC. It is to be expected that the
learning controllers have comparable stability criteria and design procedures. We
discuss RC to give the reader valuable insight in the learning behaviour when
continuously performing a specific reference motion.

Figure 2.9: Repetitive control scheme

In figure 2.9 R is a learning filter. In order to examine the stability of the RC, the
system is represented in another way [Hara et al., 1988], see figure 2.10.

r 1 e RCP Y
_ —w 1_p-sTh > 1- >
Ircp e M iop

e

Figure 2.10: Equivalent repetitive control scheme

The above system is stable if:

— The system without RC is stable, which means that N +1CP is stable.

— The feedback loop is stable. According to the small gain theorem
[Vidyasagar and Desoer, 1975] a sufficient condition for the loop to be stable

1S:

HlR cr H <1 (2.25)
14 CP|,
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Note that this stability criterion is almost the same as for ILC with an infinite trial
length, given in (2.12). Therefore, it is to be expected that RC will also have
difficulties with unmodelled high-frequency dynamics. The robustness measures for
ILC, such as the low-pass @-filter and the integral expression, have also been
proposed for RC. Of course, the design procedures that are used in ILC can be
applied to RC.

Next, we will study the behaviour of the RC by means of the sensitivity function,
S. For the RC of figure 2.9, S'is given by:

S = - L (2.26)
[, _RCP | 1+CP
(1+CP)

Next, we assume that the learning filter, R, is designed such that (2.25) is satisfied
for all frequencies. From the previous section it follows that in this case:

ne[f ] 221

This yields the following S:

§=(-eh ﬁ (2.28)

Without RC, the sensitivity function is given by:

§——1
1+ CP

(2.29)

The sensitivity function of an RC controlled system is thus equal to the sensitivity

function without RC multiplied by (].7678]1”). In figure 2.11, a Bode plot of

(1 —e % ) for T,=0.1 [s] is shown.



34 Repetitive Motions
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Figure 2.11: Bode plot of (1 - eiSTP)

From figure 2.11 it can be concluded that the repetitive controller strongly
attenuates disturbances that have an frequency w=n2nT,”" [rad s'] where neN.

However, this is obtained at the expense of the suppression of disturbances at the

intermediate frequencies, which are even amplified by the RC.

2.4 LFFC for Repetitive Motions

The main disadvantage of the BSN in the LFFC is the curse of dimensionality.
This means that when the number of inputs increases, the number of weights grows
exponentially, learning gets slower and the BSN looses its ability to generalise. The
most effective method to prevent this is to keep the number of inputs of the BSN
to a minimum. In the standard configuration, the input of the feed-forward
controller consists of the reference position and derivatives thereof. When repetitive
motions are considered only, as in ILC and RC, the desired feed-forward signal
up (1) becomes a function of the periodic motion time, ¢ €[0,7,], where, T, [s] is
the period of the motion. In that case, it is beneficial to choose the periodic motion
time as the only input (figure 2.12). This reduces the number of inputs and will be
beneficial for the learning behaviour. In the following, this type of LFFC will be
denoted as time-indexed LFFC.
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Figure 2.12: Time-indexed LFFC

Figure 2.13 shows the B-spline distribution in case of N uniformly distributed 2"
order B-splines defined on the input domain [0,7,] [s]. The basis functions have a
sequence-based label i € {1 ... N}. Basis functions 1 and N have only half the
width of the remaining basis functions.

rooy

051X 2 3 X4 +1)x 4 N+l N-1X N

0 < (1 > A A A t [S] T

di:oy di:qy d;
5(2—2) §(z—l) 5

Figure 2.13: B-spline distribution in case of time-indexed LFFC

This type of B-spline distribution can be used when at the begin of a motion the
initial states of the system are always the same, as is the case for ILC. In RC the
motions are performed consecutively, which means that the states at the end of the
n™ motion are equal to the states at the begin of the (n+1)" motion. For this type
motions it is desired to have a continuous feed-forward signal, which means that

Up (0)= Up (Tp ) This can be obtained by making B-spline 1 and N share the same

weight. The B-spline distribution that results can graphically be represented as

below.
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Figure 2.14: Time-indexed B-splines for RC-type of motions

Note that the structure of the time-indexed LFFC (figure 2.12) is the same as the
structure of the ILC, when L=C (figure 2.3) and as the structure of RC (figure
2.9), when R=1. When looking at the stability criteria of ILC (2.12) and RC (2.25),

we can see that L and R have to compensate the phase shift and the magnitude of

respectively — P and — i . If this is not realised, due to e.g. unmodelled
14+ CP 1+ CP

dynamics, the ILC and RC will become unstable. Since the structure of the time-

indexed LFFC is similar to the structure of ILC and RC, it is to be expected that

this will also take place in LFFC. Experiments indicated that if the BSN is able to

accurately approximate the frequency components for which L and R do not

and
1+CP 1+CP
unstable [Velthuis et al., 1996]. To prevent this, we have to choose the width of the

compensate for — in a correct way, the LFFC becomes

B-splines in a proper way. Whether the BSN is able to accurately approximate a
certain signal depends on the width of the B-splines that is chosen. In case ‘wide’
B-splines are chosen, the BSN can only store low-frequency signals (figure 2.15a).
Using such a BSN to approximate a signal that has low-frequency as well as high-
frequency components, will yield a good approximation of the low frequent part
only (figure 2.15b). Decreasing the width of the B-splines enables the BSN to
approximate the high-frequency part as well. The role of the B-splines in the BSN
can thus be compared to the Q-filter in ILC and the kernel function in the integral
expression (2.20).
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— = target signal = approximation

v\

¢ [s] t[s]
(a) (b)

Figure 2.15: a) Approzimation of a low-frequency target signal
b) Approzimation of a high-frequency target signal, filtering effect of a
BSN

Stabilising the time-indexed LFFC can be done by choosing the width of the B-
splines such that the BSN is only able to accurately approximate signals in the low
frequency range, where L compensates correctly, and not signals in the high
frequency range, where L would cause unstable behaviour. In the next section, the
relation between the width of the B-splines, the system dynamics and the stability
will be studied thoroughly. Furthermore the influence of the learning rate on the
stability of the system will be analysed [Schaak, 1996; Velthuis et al., 2000].

2.5 Stability Analysis of Time-Indexed LFFC

2.5.1 Assumptions

In order to be able to analyse the stability of the time-indexed LFFC we assume
the following;:
1. The plant under control is SISO LTT.

2. The feedback controller, C| is linear, time-invariant and chosen such that the
feedback loop is stable.

3. The discrete learning rule,
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7
S, (kb g (kh)
Aw. = v k=0
1 T%

Zﬂz‘ (kh)
k=0

(2.30)

(where h is the sample time) is replaced by a continuous one

T

[ o

Aw, =y, —F——

»

[ o

0

(2.31)

4. The B-spline distribution is assumed to be uniform (figure 2.13).

Assume N B-splines, uniformly distributed on the input domain, [0, T}] [s], as shown

in figure 2.13. The width, d [s], of the support of basis functions 2 to N-1, is given

by the following relation:

d= 2Ty [s] (2.32)
N -1 ’

The membership of the i-th B-spline is now defined as:

A= LG gycy<dio
d 2 2
() = dz;% for g(zq)gtg%i (2.33)
0 elsewhere

Substituting the membership (2.33) in the learning rule (2.31) gives the following
adaptation of the weights:
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%(H) 4
2 —d(i—2) di—2t
f ug () dt + f g (e
-2 L)
Aw, =1, T T (2.34)
—(i-1) —i
f 2t—d(i—2) i+ f d2d2tdt
-2 -
For the denominator of (2.34) holds:
QQ—U g
Y 2—d(i-2) odi-2 . d
f 2 f dt == (2.35)
J d J d 2
5(2’—2) E(i—l)

Using (2.35), the adaptation of the weights (2.34) can be simplified to:

(i-1) 4

2
4t —d(2i —4 2di — 4t
Aw; =7, f %uc(t)dt—k% f Zdz ug (t)dt (2.36)
gU*% (i—1)

[CEE-W

|

This implies that learning is linear in u, (t), and hence the feed-forward adaptation
loop is linear. Since the feedback loop is also linear, the reference path may be
taken equal to zero in the stability analysis (see figure 2.16). The desired situation

is then u,=0.

Pakd

Figure 2.16: Time-indexed LFFC when r=0.

This system is stable if an arbitrarily chosen initial feed-forward signal will not
result in an unbounded output of the plant. The (initial) feed-forward signal is
determined by the (initial) values of the weights in the B-spline network. As the
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feedback controlled system is stable, the output can only become unbounded when
the feed-forward signal u,(t) becomes unbounded, which implies that at least one
weight has become infinitely large. So, if the weights are adapted in such way that
their value remains bounded, the system is stable; otherwise the system is unstable.
The values of the weights remain bounded if:

1. Each weight is adapted in the right direction (towards wu,(t)=0), which
means that:

Awl.ZO forwi§0

2.37
Aw, <0 for w, >0 ( )
2. The weights are not adapted too strongly:

Aw; < 2w, forw, <0
) ’ ’ (2.38)

Awi > —2w, for w, >0

Combining (2.37) and (2.38) yields:
0< Awi <—2w;, forw, <0

(2.39)

—2w, SAwi <0 forw;,>0

Note that (2.39) is a sufficient condition and not a necessary one. The problem is
to select width d and learning rate 7, in accordance with (2.39). In order to solve
this problem, we assume that the shape of the initial feed-forward signal, ug(t) is
triangular. This choice is motivated by the fact that experiments showed that when
unstable behaviour occurs, the output of the BSN has a triangular shape [Velthuis
et al., 1996]. This input-output mapping can be realised by choosing the weights as
w=g for i=1,3,5... and w=—g for i=2,4,6... where g € R, see figure 2.17.

) |
Up ‘ p
-g-
17
2 1 2 3 4 5
0 t

Figure 2.17: Initial feed-forward signal
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The signal u (t) can be written as a Fourier-series:
89 =~  cos(wyt)
up == >, —5 (2.40)

with,

w, = 27;” rads™!] (2.41)

In the frequency domain the relation between the output of the feed-forward
controller U, and the learning signal U, is given by,

Uo=-TUg (2.42)
in which T is the complementary sensitivity function:
P
¢ (2.43)
1+CP

—T amplifies the magnitude of each frequency component of (2.40) by a factor
a, = |—T (jw, )| and introduces a phase shift ¢, = arg (—T (jw, )), so that wu (t)

can be written as:

2

o a, cos(w,t -+
u, (t):i—‘g oo (n" #u) (2.44)
=1,3,5

Substitution of (2.44) in (2.34) and reformulation gives:

_32%9 Z COb for 1=2,4,6...

n=1,3,5..
Aw, = (2.45)

32 cos
'ycg Z <,0n for i =1,3,5...
ml n=1,35...

It can be seen that all weights that have the same initial value (w=g for i=1,3,5...
and w=—g for i=2,4,6...) are equally adapted. Therefore learning does not change
the shape of the feed-forward signal. Hence, for each iteration the feed-forward
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signal can again be expressed as (2.40) and the weight adaptation as (2.45). In the
following, the adaptation of weights that have a positive initial value, w=a, will be
considered; for the other case, an analogous analysis can be made. Substituting
(2.45) in the stability conditions (2.39) results in:

32v.9 = COS (Spn)
—2g <= N g, — <0 (2.46)
T n=135... n
4 00
— COSs )
s < S, —<f”) <0 (2.47)
167, n=1,3,5.. n

< i anM (2.48)

contains 7, , a, and ¢, . The values of a, and ¢, depend on the value of w,, , which
is determined by the choice of the B-spline width, d, see (2.41). Whether or not
(2.48) is satisfied, depends thus on the choice of the learning rate and the B-spline
width, d. The right hand side inequality of (2.47):

m o)
3 a, ﬂf") <0 (2.49)
n=135 "

only contains ¢, and a, This means that only the choice of d determines whether
(2.49) is satisfied. Therefore, we propose to firstly choose d such that (2.49) is
satisfied. Next, using the obtained d (and thus w, ) we can calculate =, from
(2.48). In the following we will try to find the smallest value of d for which (2.49) is
still satisfied.
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2.5.2 B-Spline Width

In case an exact model of the plant, P, and the controller, C, is available, the

values of a, and ¢, can be calculated for all frequencies. This would allow the

selection of the minimal d for which (2.49) is satisfied by means of the following

simple iterative search:

Algorithm 2.1 (Calculation of the smallest stable value of d, based on a detailed

2.

model of the controlled system)

Choose a uniform B-spline distribution that consists of 3 B-splines; N=3 in
figure 2.13. Because according to (2.32) in this case d=T, [s], this is the
minimum number of B-splines that can be chosen.

Determine a, and ¢, . This is done in the following way:

2.1 Choose n=1.

2.2 Calculate w, according to (2.41). Use the model of the plant and w, to

determine q, and ¢, .

2.31f a,~0 go to step 3, otherwise, increase n by 1 and go to step 2.2.

3.

Check if the a, and ¢, obtained in the previous steps satisty (2.49). If so, go
to step 4, else go to step 6.

Increase the number of B-splines in the distribution by 1, N:=N+1.

Go to step 2.

Apparently N is the smallest number of B-splines that results in unstable
behaviour. Therefore, the maximum number of B-splines is N—1, which
according to (2.32) gives:

d=—2" (2.50)

However, in general only the low-frequency dynamics of the plant are known and

the model is inaccurate at high frequencies. Therefore, algorithm 2.1 may be

unreliable. To resolve this, we take an approach that seems somewhat conservative.

Firstly, we start by writing (2.49) as:
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o0
a, cos (gpl)+ Z anﬂf")go (2.51)

Next, we determine the smallest value of d (which means the largest value of w,)
that satisfies (2.51), under the assumption that a, and ¢, all have their worst
case values. To gain insight in the worst case values, we make use of a part of a

typical phase diagram of — T (figure 2.18).

@ [deg]

-180 e

-280 1

-380 : 5 5
10 10 10
w [rad s7!

Figure 2.18: Phase diagram of a typical —T

In which ¢ is the phase of —T. The corresponding diagram of cos(yp) is shown in

figure 2.19.

1
cos(y)
-0
19 2 - 3
10 10 10
w [rad s7!

Figure 2.19: Typical plot of cos(p)

When we choose a large d, w; ~ 0, which results in ¢ =—180 [deg] and thus
a, cos (@1)% —a,. When we increase w, (decrease d), eventually we reach a value
at which ¢, >—90 [deg] or ¢, <—270 [deg] such that a, cos (@1)> 0, since a; > 0.
Whether or not (2.51) is violated at this point depends on the value of

o0 o0
cos cos
E a, M When E a, # < 0 we can further increase the value

’fl4 n
n=3,5... n=3,5...
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COS <(pn )

4

o0
of w, without violating (2.51). On the other hand, when z a, -

n=3,5...

>0 we

must decrease the value of w,. So the worst situation (from a stability point of

view) is obtained when:

- cos(p,) = cos () 5 5o
Z an—n4 = max Z an—n4 (2.52)

n=3,5... n=3,

ot

Of which the upper bound is given by:

0 . 00
max Z a, ) (f”> < Z max (an)—max (CZS (o )) =
n=3,5... n n=3,5... n
X, max(a X, max|-T(jw
= > —n4( n) > max| ()| n4( ) (2.53)
n=3,5... n=3,>5...
00 .
[=T(jw)]
<
n=3,5
Thus (2.51) is certainly satisfied if:
% |_T(i
a, cos (<p1>+ Z |(n+)|°° <0 (2.54)

n=3,5...

The largest value of w, for which (2.54) is satisfied can now be obtained by means
of an iterative search in which a model of the low-frequency dynamics of the

system is used:

Algorithm 2.2 (Calculation of the smallest stable value d, mild assumptions on the

dynamics of the controlled system)

XN FTGw)
1. Use a low-frequency model of the system to calculate Z —

n=35.. "
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2. Choose a uniform B-spline distribution consisting of 3 B-splines; N=3 in
figure 2.13.

3. Calculate w, according to (2.41) for n=1.
4. Use the model to determine a, and ¢, .

5. Check if a; and ¢, satisfy (2.54), using the result of step 1. If so, go to step

6, else go to step 8.
6 Create a uniform B-spline distribution of N+41 B-splines (in other words
N:=N+1).
7. Go to step 3.
2T,

D
N -2

8. The minimum width d is given by d =

To overcome the need of an iterative search procedure, we can make some further

assumptions about a, . Firstly we represent (2.54) as:

< |-T(jw
cos (g )+ > %go (2.55)

n=35.. W"

As before, the worst situation is obtained when the second term of the left-hand

side of (2.55) reaches its maximum:

0 |7 0 |_T(i 0 —T(i
3 | (Ju;)loo x| 3 | (J‘*;)|OO _ vk (Jw)l004 (2.56)
n=35.. N n=35. 4N n=3,5... 1 al)n
Using (2.56) we can express (2.55) as:
00 .
=T (jw)|
cos ((pl>+ ——<0 (2.57)
n—?);. .mln (al )714

We now have to determine the value of min (al). This is done by evaluating
|—T( jw1)| for all possible values of w, that satisfy (2.55). The upper bound of the

value of w; can be determined as follows. Using the fact that:
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| -T(w)
> Tﬁ‘m >0 (2.58)
n=3>5... 1
¢, should satisfy (using (2.55)):
cos ((pl ) <0 (2.59)

The upper bound of the value of w, is thus the frequency, w, at which cos (¢)<0.

This results in:

min (al ) > {MER‘I&E@)SO} |—T(jw)| (2.60)

In figure 2.20 an example of a typical Bode plot of —T is presented, in which all w
for which cos(¢) <0 are shaded.

” magnitude (dB)

0 g max(ay, )

\

-20 - min(a, )

-40

-180
-230
-280
-330

-380 _ \
10 10 10 10

Figure 2.20: Example of a Bode plot of —T

Substituting (2.60) in (2.57) yields,
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S T (jw)
COS(@I) <_ Z | J |oo

; T 1
n=35... {WGR‘I?(}SI@SOH (jw)|n
i (2.61)
~ —0.0147 7 Gl :
min |-T(jw)|

{weR|cos(p)<0}

The above can be used to formulate an algorithm according to which the minimum
value of d can be obtained:

Algorithm 2.3 (Calculation of the smallest stable value of d, strict assumptions

about the dynamics of the controlled system)
1. Determine |-T'( jw)|oo from a model of the closed loop system.

2. Use the Bode plot of the model to determine min |-T(jw)|-
{weR|cos(p)<0}

3. Search for the smallest value of w, at which ¢, = arg (—T( jwl)) satisfies

=T (jw)

e
(el oy T

¢, = arccos|—0.0147 (2.62)

4. The minimum value of the width of the B-splines, d,,, is given by

2

d . =lrads™].
1

2.5.3 Learning Rate

To determine the maximum learning rate, we will use (2.38) for w, >0:

Aw. > —2uw, (2.63)

7 =

As a candidate feed-forward signal we choose the triangular shaped feed-forward

signal of (2.40), to which a constant, c, is added:
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89 =~ cos(wyt)
n=1,3,5.

In the following we will show that the constant term causes a larger relative
adaptation than the rest of the terms. The feedback signal caused by (2.64) is given
by:

8¢ =\ a, cos (wnt + gpn)
U (t) = ayccos (@0 )—i— = Z 3 (2.65)
n=13,5...

where ¢, is the phase of —T at w= O[rad sfl], which is typically equal to —180

[deg].

8 o0 a, cos|w,t +
U (1) = —%C"‘_g Z n 005 (nt + o) (2.66)

2
n=123.5...

The adaptation of Aw; can be split up as:

Aw; = Aw,  + Aw, (2.67)

1,rest

where, Aw, , and Aw, . are the part of the adaptation of the weight caused by

respectively, the constant term and the triangular signal. Using (2.36) we obtain:

d,. d .
5(171) 2
At —d (2 —4) 2di — 4t
Awi,c =7, f —d2 (—aoc)dt + 7 f —d2 (—aoc)dt (2.68)
) i)
2 2
= —7e0C

and according to (2.45):

A 3279 e cos (gpn) 9 69
wi,rest - 4 Z an, 4 ( ! )
& n=1,3,5... n
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When ¢, = —180 [deg], the largest possible negative weight adaptation is obtained:

32v.a = cos (p
Awi,rsst = 4C Z a M =
n=13,5...

m

327,04 —1

== > a—= (2.70)
n=13,5...

32v.a N @

e s

n=1,3,5...

When we assume that ) = a, = |—T ( jw)| , the maximum adaptations are:
g oo

Aw, . = —, |—T (jw)| (2.71)

C
) e¢]

32 0 =T jw .
Aw. | — _% 3 |;—4)|00 ~ = 0.01477, |-T (jw)| g (2.72)

i,rest
n=1,3,5...

Note that in practice a, will be close to |-T (jw)|oo, whereas a,, will be much

smaller for n not close to 1. It can be seen that Aw, > Aw, Therefore, to

1,rest
determine the maximum learning rate, the initial feed-forward signal is assumed to

be a constant signal, u, ()= c. Using (2.71) condition (2.63) can be written as:

—ee| =T (jw)|, > —2¢ (2.73)
Which gives:
2
y, < —————— (2.74)
¢ |—T (jw)|oo

Herewith, a maximum value of the learning rate for a continuous learning
mechanism has been obtained. However, when implemented, the time-indexed
LFFC utilises the discrete learning mechanism (2.30). To calculate the maximum
value of y, a discrete approximation of the continuous learning mechanism, (2.31),

is made. Assume that the sample time is small compared to the width of the B-
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splines, h<<d, then s, () and wu, (t) are almost constant over one sample interval.

The adaptation of the weights can then be written as:

T, T /h

f p Oug Odt 1" g (k) ug, (kh)

_ 0 ~ k=0
Aw, =~ R~

Cc
P

T )
fﬂi (bt WY g (kh)
0

k=0 (2.75)

The adaptation of the weights by the discrete approximation of the continuous
learning rule, (2.75), is equal to the adaptation by the discrete learning rule, (2.30),
when:

2
Y= < |—T (jw)|

o0

(2.76)

With (2.61) and (2.76) guidelines on how to choose the width of the B-splines and
the learning rate, such that the learning mechanism remains stable, based on a
Bode plot of the negative complementary sensitivity function. In the following
section these guidelines will be validated by means of simulations.

2.6 Simulations

The simulations presented in this section have two purposes. Firstly, they are used
to check whether the minimal B-spline width and the maximum learning rate, as
obtained by the stability analysis, will result in a stable system. Secondly, it will be
examined how conservative these values are. In the stability analysis a number of
worst case assumption were made that might result in conservative values of the
minimum B-spline width and the maximum learning rate.
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2.6.1 Mass Spring Mass Plant

The first system that is simulated is a mass-spring-mass (MSM) plant (figure 2.21).
This plant has been chosen because it represents the dominant dynamic behaviour
of many industrial motion systems [Groenhuis, 1991; Coelingh, 2000]. Here m;
(=4.94 [kg]) represents mass of the motor, which drives a load mass m, (=5.39 [kg])
through a flexible transmission ¢ (1.37 10" [Nm™]).

C
T

Ty Ta

Figure 2.21: Model of a industrial motion system

In many situations it is difficult and/or expensive to measure the position of the
load mass (z,). Instead, the position of the motor (z;) is used for control. In this
research a PD-type feedback controller is considered of which the parameters were
selected according to the rules given in [Coelingh, 2000]:

1-10 3 jw +1

v (2.77
1-107%jw +1 )

C:1.68-106[

We use algorithm 2.3 to determine the value of d,,,. Since the controlled system is

LTI, assumption 1 is satisfied. The Bode plot of — T is presented in figure 2.22.

magnitude (dB)

-50 P

-130

180 i
-230 \

-280 ] \
!
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10° w10 10* 10°
w [rad 7]

Figure 2.22: Bode plot of =T (jw) for the MSM plant

From figure 2.22 it can seen that:
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. . _ . -1
{%REESI@)SON_T(MM =1(0dB)  forw=0[rads™'| (2.78)

[~ (juw)|, =3.024 (0.54 dB) (2.79)
This means that (2.61) results in:
cos (ip, ) < —0.0445 = 92.55 [deg] < ¢, < 267.5 [deg] (2.80)

The smallest w, that violates (2.80) is @,=428 [rad s™']. The minimum B-spline
width is:

2w —92
d . = i 1.47-107 [sec] (2.81)

The maximum learning rate can be calculated according to (2.76):

v < 2 2

= = 0.661 2.82
T T (w),,  3.024 (282)

The motion that the system is to perform repeatedly is given in figure 2.23.

— 04

= 0.2

Figure 2.23: Path for the MSM system

Simulation 2.1 (feedback controlled MSM)

In the first simulation that is performed, the system is only controlled by the
feedback controller. The tracking error that results is shown in figure 2.24.



54 Repetitive Motions
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Figure 2.24: Tracking error MSM, d conform the stability criterion

Simulation 2.2 (time-indexed LFFC controlled MSM, d conform (2.81))

In this series of simulations the B-spline width is chosen slightly larger than d,,,,
ie. d=1.51-107* [s]. We choose y=0.15, which should yield a stable system. The
tracking error that results after, 10 [s], 40 [s] and 100.000 [s] is depicted in figure
2.25.

100 1a
10 10000 [s]

40 [s]

0 0.5 1 1.5 2
Figure 2.25: Tracking error MSM, d conform the stability criterion

It can be seen that after 40 [s], which corresponds to 20 motions, the LFFC was
able to considerably improve upon the tracking performance of the feedback
controller. When training is continued, the tracking error is decreased further.
After 100000 [s] the tracking changed no more, from which we conclude that the
LFFC is stable.

Simulation 2.3 (time-indexed LFFC controlled MSM, d not conform (2.81))

To test whether d,,, has a conservative value, a series of simulations is performed
in which the B-spline width is chosen slightly smaller than d,,;,, d=1.46-10"* [s].
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Again, we choose y=0.15. Simulations show that after the tracking error has
decreased in the first few runs, it increases thereafter. In figure 2.26 the tracking
error after 600 seconds is presented. When the simulations are continued, the
tracking error keeps on growing without bound, which means that the system has
become unstable.

15
10 |

e [100m]
(@)

-101
-15

Figure 2.26: Tracking error MSM, d just not conform stability criterion

Simulation 2.4 (time-indexed LFFC controlled MSM, d conform (2.81), maximum
learning rate)

Next, we examine whether the maximum value of the learning rate is correct and
whether it is a conservative value. In the simulations, the width of the B-splines is
chosen d=1.51-10"7 [s]. In figure 2.27 the tracking error is shown when y=0.661.
The tracking clearly converges and learning remains stable.

0 2.5 5 7.5 10

Figure 2.27: Tracking error MSM, y=0.661

Next, a series of simulations is performed in which we start with a small learning
rate and then increase it until the system becomes unstable. For 0<y<0.98 the
feed-forward signal gradually converges to its final value. In figure 2.28 the feed-

forward signal for the first 5 motions is shown (y=0.661).
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Figure 2.28: Feed-forward signal, y=0.661

When 0.98<y<1.96 the feed-forward signal is adapted in an oscillatory way. In
figure 2.29 the feed-forward signal is shown in a simulation in which y=1.5. It can
be seen that after the first motion, the amplitude of the feed-forward has increased,
while after the second motion the amplitude has decreased. However, the amplitude
of the oscillation decreases and the feed-forward signal still converges to its desired
value.

30 A
" 90/ [ %
10-
0,
10
220
30

0 25 5 75 10

Figure 2.29: Feed-forward signal, y=1.5

The simulations showed that the time-indexed LFFC became unstable when
y>1.96. This value is much larger than the value in (2.82). We may thus conclude
that, for this system, the worst case assumptions in the stability analysis of the
learning rate resulted in an conservative value.

2.6.2 LIMMS

The second system that is simulated is the Linear Motor Motion System (LiMMS)
presented in chapter 1. The position of the translator is controlled by means of a
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PD-type feedback controller. The parameters of the feedback controller were
obtained by means of an auto-tuning mechanism, present in the LIMMS set-up.

¢ = 275080| 202w L (2.83)
0.002jw +1

The Bode plot of — T is shown in figure 2.30. It can be seen that:

min =T (jw)| = 0.7395 (~2.62 dB) for w = 220 rads™'| (2.84)
{weR|cos(p)<0}
|-T(jw),, = 1.2937 (2.34 dB) (2.85)
which gives:

cos (p, )< —0.0257 = -91.5 [deg] < o < -268 [deg] (2.86)

2 magnitude (dB)
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Figure 2.30: Bode plot of the LiMMS
Inspecting figure 2.30 shows that we should choose w,<=220 [rad s'| and thus:

_ 2T 5.855-1072s] (2.87)
220

min

The learning rate should now be chosen:
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2 2

= = 1.5459 2.88
|-T (jw), ~ 1.2937 (28)
o0

IS

Now, comparable results will be pursued by simulations with a model of the
LiMMS. The reference position that has to be tracked is given in figure 2.31.

—. 02
El
= 0.1
0\ T T T T T
o 1 2 3 4 5

Figure 2.31: Reference position for the LiMMS

Simulation 2.5 (feedback controlled LIMMS)

The tracking error that is obtained, when the LiIMMS is controlled by the feedback
controller only, is given in figure 2.32. It can be seen that the feedback controller is
not able to fully compensate for the cogging.

7
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Figure 2.32: Tracking error LiMMS, feedback control only

Simulation 2.6 (time-indexed LFFC controlled LiMMS, d conform (2.87))

In the first series of simulations with the time-indexed LFFC, the width of the B-
splines is larger than its minimum value, d=2.91-10"* [s]. We choose y=0.5. The
tracking error after 22.5 [s] is shown in figure 2.33. It can be seen that the time-

indexed LFFC has been able to decrease the tracking error drastically.
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225 245 275
ts]

Figure 2.33: Tracking error LiMMS, d conform the stability criterion

When learning is continued the tracking error decreases further. Learning remains

stable though. In figure 2.34 the tracking error after 100.000 seconds is shown.

————— = feedback control —— = LFFC

Figure 2.34: Tracking error LiMMS, d conform the stability criterion

The time-indexed LFFC is able to learn to compensate for the cogging force and
obtains a considerably smaller tracking error than the feedback controller.
Furthermore, when learning is continued the system remains stable.

Simulation 2.7 (time-indexed LFFC controlled LIMMS, d not conform (2.87))

In the following series of simulations the width of the B-splines is chosen
d=2.78-10"? [s]. For this width, the system becomes unstable as can be seen in
figure 2.35, where the tracking error after 2000 seconds is depicted. When learning
is continued, this error keeps on growing.
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-—-- = feedback control —— = LFFC

Figure 2.35: Tracking error LiMMS, d just not conform the stability criterion

We may conclude that even though the LIMMS is a non-linear plant, the value of
d,;» 1s still valid and not conservative.

min

Simulation 2.8 (time-indexed LFFC controlled LiMMS, d conform (2.87),
maximum learning rate)

Next, the maximum value of the learning rate is examined for which the system is
stable. In these simulations we take d=2.91-10"* [s]. First, we choose y=1.5459.
Figure 2.36 shows that in this case the weights are adapted in an oscillatory way.

50

Up

50 :
0 10 20
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Figure 2.36: Tracking error LiMMS, d just not conform the stability criterion

Simulations show that for 0<y<1 the feed-forward signal converges gradually, for
1<y<1.99 in an oscillatory way and for y>1.99 the feed-forward signal diverges. So,
the maximum of the learning rate as determined in (2.88) gives a stable system and
is not as conservative a value as for the mass-spring-mass system.
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2.7 Discussion

The analysis of section 2.5 revealed that a stable time-indexed LFFC based on 2"
order B-spline can be designed using algorithm 2.3. During the derivation a number
of rather strong assumptions has been made. In this section, we will comment on
these assumptions. In order to determine the minimum B-spline width, we had to
assume the following;:

— The weights are adapted in the right direction:

AwiZO forwiSO

2.89
Aw; <0 for w; >0 ( )

This condition is necessary in case of the triangular shaped initial feed-
forward signal with zero mean (2.40). In that case all weights are adapted
equally strong; the positive weights in one direction and the negative weights
in the other. By learning, only the amplitude of the feed-forward signal
changes, not the shape or the mean. If in one run the negative weights are
adapted in the negative direction (and the positive weights in the positive
direction), this will also occur in the next run and the feed-forward signal
will thus grow without bound.

When choosing a different initial feed-forward signal, (2.89) becomes a
sufficient condition, not a necessary one. This can be easily seen when we
add an offset to the triangular initial feed-forward signal, such as in (2.64).
When the offset, ¢, equals g—é (8 is chosen very small), the following initial
feed-forward signal is obtained.

Up 2g

condition (2.89) says that w,, must be adapted in the positive direction.
According to section 2.5, the weight adaptation consists of 2 parts, one
caused by the constant term and one caused by the triangular signal.
Furthermore, it was stated that the largest part of the weight adaptation is
caused by the constant term. During learning, the amplitude of the constant
term will thus decrease faster than the amplitude of the triangular signal.
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This means that the weights w,, _are first adapted in the negative direction
and once the constant term is small enough, in the positive direction. So
during the first phase, condition (2.89) is not satisfied, and yet the system is
guaranteed to be stable.

The initial feed-forward signal was assumed to be triangular with zero mean.
Choosing this feed-forward signal was motivated by observing that in
experiments in which the time-indexed LFFC became unstable, the feed-
forward signal had a triangular shape. Furthermore, this initial feed-forward
signal could be written as a simple Fourier series, of which the period of the
lowest frequency component equals the B-spline width. This enabled us to
make some worst-case assumptions on the high-frequency terms and then
calculate what phase shift the lowest frequency component may have such
that the weights still converge. When, instead, a random initial feed forward
signal is chosen, the following Fourier series results:

G G 2t
ugp () =c, + ;cn COS[ + ;sn sin [T_] (2.90)

p

2wkt
Tp

In (2.90), the B-spline width does not correspond to the period of the lowest
frequency term (k=1, [=1), but to a higher frequency component (the width
of the B-spines determines which one). This means that, in order to calculate
the minimum B-spline width, we have to make worst-case assumptions on
both the low-frequency terms as well as the high-frequency terms. This
makes the analysis so complex, that we suggest that, to examine stability for
random initial feed-forward signals, another approach must be sought.

Although the choice of the initial feed-forward signal seems rather restrictive,
the resulting minimum B-spline width is accurate. Simulations were
performed with different sets of initial weights, w=0. In spite of the fact that
the initial weights do not satisfy the assumption, the time-indexed LFFC
remained stable when the B-spline width was chosen slightly larger than the
minimum width and became unstable when the B-spline width was chosen
slightly smaller. Additionally, we performed a large number of stability
simulations of the LiMMS, where the initial weights of the BSN were chosen
randomly. None of the simulations showed unstable behaviour.

Worst case assumptions concerning the system dynamics. In order to be able
to calculate the maximum stable value of d for a certain system, in (2.51)-
(2.61) a number of worst case assumptions on the system dynamics was
made. Regarding the results of section 2.5 we conclude that for these

systems, the assumptions did not result in a conservative value of d,,,. This
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is understandable considering that a;, a,, ¢, (n=23,...) in (2.51) are

1
amplified by a factor - The assumptions are particularly conservative for
n

larger n, because then the factor n~* is dominantly small.

— The system is linear. We have only been able to derive a condition for the
width of the support of the B-splines, in case the controlled system is LTI.
The cogging force in the LiIMMS makes the plant (and thus the controlled
system) non-linear. In spite of this, the value of d,,, that was determined on
the basis of a Bode-plot of the frequency response of the controlled system,
proved to be accurate. This does not necessarily mean that for any non-
linear plant we can determine the value of d,;, on the basis of a linearisation

of the plant. Further research on stability of time-indexed LFFC for non-

linear plants is needed.

For the calculation of the maximum learning rate we assumed that:

— The worst case initial feed-forward signal is a constant signal. This
assumption is based on calculating the maximum weight adaptation by a
triangular feed-forward signal with an offset. Since the maximum weight
adaptation for the constant signal was the largest, this signal was taken as
the initial feed-forward signal. As before, allowing a random initial feed-
forward signal would require a different approach.

— The amplification of the initial feed-forward signal by the system is
|—T ( jw)|oo. Looking at the results of the simulations we may conclude that
this assumption may lead to conservative maximum values of the learning
rate. However, the difference between the theoretical and the practical values

is not so large, that it will lead to very long training periods.

In the standard time-indexed LFFC, the minimum B-spline width, and thus the
maximum achievable accuracy, is determined by the system dynamics only. To
further increase the accuracy, a learning filter, L, can be added to the time-indexed
LFFC (see figure 2.38).
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Figure 2.38: Time-indexed LFFC with an additional learning filter

The design of the L filter can be performed according to the same procedure as the

design of L in ILC (section 2.2).



3  Non-Repetitive Motions:

Input Selection and Convergence

3.1 Introduction

The time-indexed LFFC, the ILC and the RC store the feed-forward signal that
compensates the plant dynamics and the reproducible disturbances, as a function of
the periodic motion time. Consequently, these learning controllers can be used for
repetitive motions only. Each time the reference motion changes, the learning
controller must be retrained, which means that it is no longer able to track the old
reference motion. This is necessary even when the old and the new reference
motions are almost the same. In order to overcome this problem, and enable the
learning controller to track several motions without retraining, it has been
proposed to apply multiple feed-forward controllers instead of only one [Arif et al.,
1999]. Each of these feed-forward controllers is trained for one specific reference
motion. LFFC offers a different solution. By choosing the reference position and
derivatives thereof as inputs of the feed-forward part, instead of the periodic
motion time, we are able to store the feed-forward signals for several motions in
one feed-forward controller [Vries and Velthuis, 1998].

The inputs of the feed-forward part depend on the plant and the reproducible
disturbances. In section 3.2 we will discuss in detail which inputs should be
selected. Next, long term stability will be addressed in section 3.3. Based on the
analysis of the time-indexed LFFC we can conclude that, without any additional
robustness measures we cannot ensure stability. Therefore, a new robustness
measure that we will refer to as regularisation, will be introduced in section 3.4.

65
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3.2 Input Selection

Motion systems can often be modelled as a (non-)linear state space model and
additive static non-linear functions, as shown in figure 3.1.

_@ Y

Figure 8.1: General notation of a class of (non-linear) motion system
This yields,

t=A@z+h@+B@u
(3.1)
y=Cz

The LFFC is intended to learn the steering signal, u, that makes the output y
equal to the desired output y, The state trajectory for which y=y, is denoted as

z,. We can reformulate (3.1) in the following way (if B”'(z) exists):

t—A@xz—h@) =B@u

. (3.2)
B @(z—-A@z—h@)=1u
From (3.2) we can conclude that the desired feed-forward signal is given by:
-1 .
u, =B (z, )( i~ Alz,)z, —h(, )) (3.3)

The input-output relation of the BSN is a static mapping from y, and if necessary

derivatives / integrals ofy,, {...,ffyd,fyd,yd,yd,;i/'d,...} to wug The integrals
are needed when y, does not represent the reference position, e.g. the reference

velocity  or  acceleration. The question is now, which conditions
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{A@),h(x),B@),C} must fulfil, so that (3.3) can be written as a static function

of {ffyd,fyd,yd,yd»yd,m}-

n (3.1) the state-vector, @, can be chosen such that:

T
T [mlT z, 7|, z,..,x, € R™, meNT
yeR"
0 I .. 0 0
0 o - 0 0
A(@ = , A7 (x) € R™™ (34)
0 o - 0 I
A (@A (@ A (@ A, (@

T
B@w=[0 - 0B, @], B, @ € R™™

n

17

c=lc - ¢, c,....C, e R™"
The additive non-linearities, h(-), can be written as a function the state:
N T X1
ho)=[0 -~ 0|k, @| , h, @cR™" (3.5)

For mechanical systems we typically find that n=2, where @, consists of positions

and z, of the corresponding velocities.

Theorem 3.1 (Plant conditions) Consider a motion system conform (3.1). In order
to control such a plant with LFFC, the following conditions must be satisfied:

1. C may contain only one element, Cj , that is unequal to zero.

2. C]. must be invertible.

3. B, () must be invertible.
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Proof 3.1: First, we will derive that for the linear case, the above conditions are
necessary. Next, it is shown that in the general case they are sufficient. From (3.4)
it can be seen that z, , =x,. This gives us the opportunity to write y as a

function of z

v=le, ¢, ~ Clls o - @
:[Cl CQ C"Hml :I}f) minfl)]T

n

is denoted as z™ . The same is done for x, and u:

where

al) = Az +Azx, ++ Az, +Bu
& s'z =Azx +sAx +--+ {9"71An:1:1 +B,u (3.7)
& (S"I—A1 — 54, —~--—s”71An):c1 =B u

Substituting (3.6) in (3.7) yields:

(5”[ —A —sA, -~ 5"714L)~ (C’1 +5C, + -+ s"C, )71 y=Bu (3.8)

The desired feed-forward signal, w, , which it to produce the desired output, y, , is

given by:

u, = B! (s"’[ —A —sA, -~ s"flAn)
1

(3.9)
(C1 +5C, +- + s"_lCn> p

The LFFC is able to learn the desired feed-forward signal, when (3.9) can be
written as a  static mapping of the inputs of the  BSN,
{...,S_de,s_lyd,yd,syd,52yd,...}. This is the case when only one of the Cj is

unequal to zero. The desired feed-forward signal that results is:



3.2 Input Selection 69

u, = B, (s"_jHI - s_j'HA1 - s_jJrQA2 ——s"UA, )C’j_lyd (3.10)

That C, and B, must be invertible, follows directly from (3.10). If several

submatrices of C are unequal to zero, for example C| and C,, u, contains the
—1

term (C1 +sC2) y, that cannot be written as a static function of

-2 -1 2
{"'78 ydas yd7yd7syd78yd7“'} .

To prove that in the non-linear case these conditions are (at least) sufficient, we
will show that when they are satisfied, the LFFC is able to learn the desired feed-

forward signal. Because y = C].:l:]. and A is such that ¢, =, we can transform

the state space model:

.’L{l) 0 I 0 :B1 0 0
= . ' . . . + . + u
z), 0 o - I |z, 0 0 (3.11)
zV A@ A @ - A @| % h, @| |B, ®
y=Ca,

into

:z:g."ﬂfj) =A (..wzc;*l),a:. :c?)%..)w;l*j) +--+A, <...,:c(.71),a:, 'V ...)wﬁ"ij) +

-1 _ o . . .
where z ' = fw], . Substituting y = C.z, in (3.12) gives
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—1, (n+l-j) _ 1, (<1) ~—1, ~—1,(1) —1, (1-j)
Ciy _Al("Cj y .0 uCiy )C]. y ot
+ 4, (-C 'y C ey ) +
! T (3.13)
+hy (€YY 0y )+
n b 7 ’ J ) j k)
1, (-1) -1, ~—1, (1)
+B, (nC;ly N Cly c Y,
The desired feed-forward signal is then given by:
B ( C—ly(—l) C_ly C_ly(l) )—1 . (C_1y(n+1—j) .
(- C Yy L C Y, C b Y,
-1,,(=1) -1 -1,.(1) —1,,(1=4)
—A (el V. elly ey ey -
(€0 ) ) (3.14)

S1(=1) pv=l =l (1 n—j
—An<~-7C]- y,".Cly.C y()v---)yfl LR

—1, (1) -1 ~1, (1) _
_h,,L(..,Cj Y, ,C], y,C], Y, ,...))f u,

Each term of w; can be written as a static mapping of

{ffyd,fyd,yd,yd,:ijd,...}, which means that the BSN is able to learn the

desired feed-forward signal O

The inputs of the feed-forward part follow directly from the desired feed-forward

signal, (3.14). Each {ffyd,fyd,yd,yd, y‘d,...} in (3.14) should also be used as

an input for the feed-forward part.

3.2.1 Example 1: LIMMS

In order to illustrate the above, we will verify whether the LiMMS can be
controlled by LFFC and when this is possible, what inputs of the feed-forward
controller we should select. The dynamics of the LiMMS are given by (see Chapter
1):

j=—— (10§~ 10sin (161072 ) (3.15)
my,
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Where y is the position of the LIMMS. Next, we try to express (3.15) in the form of
(3.4). This yields the following equations.

o1 0 0

T z 9

=g =10]|;|+|—10sin(16-107%2) +| 1 |u
mL mL mL (316)
X

y:[l Ob

For the LIMMS, m and n in (3.4) are m=1 and n=2. Next, we check whether all
conditions are satisfied:

— C may contain only one element, C’j, that is unequal to zero. In (3.16),

C = {1 O} , which means that this condition is satisfied.

— Cj must be invertible. Since C| =1, it is invertible.
— B, must be invertible. In (3.16) B, = 1 , which is invertible if m,6 >0.
m
L

We may conclude that the output of the LIMMS can be controlled by LFFC. When

r is the reference position, the desired feed-forward signal is given by:

10 . 10sin(1.6-107°r)
— i+ +
my my,

u =m

‘ r (3.17)

=107 +10sin (1.6 - 1077 )+ m, i

We should select {r,7,7} as inputs of the feed-forward controller.

<= Up

r , BSN T
gt ol sd A

Figure 3.2: LFFC applied to the LiMMS

‘ =
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3.2.2 Example 2: MSM Plant

We will also examine whether the MSM-plant (figure 3.3), presented in chapter 2,
can be controlled by means of standard LFFC (instead of time-indexed LFFC).

c
S m
1 o

When writing the dynamics in the shape of (3.4), the following results:

Figure 3.3: MSM-plant

0 0 i1 0
4 1o 0 o 1f[a] |°
) | o
2= S0 of[5 || F
Tlogmmy ! 1 (3.18)
IQ L __C 00 IQ 0

my My

N . T

y:[O 1;0 OH;I:1 T, | T xZ]

Thus, for the MSM plant m=2 and n=2. Next, we check if (3.18) fulfils all

conditions:

— C may contain only one element, Cj , that is unequal to zero. In (3.18) the
only element of C that is unequal to zero is C| = [0 1] . This condition is

satisfied.

— Ci must be invertible: C1 = [0 1} is not invertible. This condition is thus

not.

T
— B, must be invertible. B, :[1 0] , which is also not invertible. This

condition is not satisfied either.

We must conclude that, in spite of the fact that the MSM plant could be controlled
by means of time-indexed LFFC, it cannot be controlled by the standard LFFC.
Note that this fact cannot be altered by adding a secondary sensor for xz,. Hence,
the implication of condition 3 of theorem 3.1 is significant.
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3.3 Stability Issues

The width of the support of the B-splines determines the accuracy of the
approximation. B-splines that have a narrow support will be able to approximate a
function more accurately than B-splines that have a wide support. To obtain a high
tracking accuracy, one might therefore intuitively choose a B-spline distribution
that consists of a large number of B-splines with a narrow support. However, in the
time-indexed LFFC, the width of the support of the B-splines influences the
stability of the control system. Choosing B-splines that had a too narrow support
resulted in unstable behaviour. In case of the standard LFFC, the width of the
support of the B-splines also determines the stability of the controlled system.
Unfortunately, for the standard LFFC, we have not been able to find a theoretical
analysis, as was the case for time-indexed LFFC. However, we can use the results
of chapter 2 to give an indication of whether the LFFC is stable or not.

The stability analysis of the time-indexed LFFC (see chapter 2) shows that
stability can be ensured when:

1. The width of the B-splines defined on the periodic motion time, d, is larger
than the minimum allowed width, d,,, [s]. The value of d,,, depends on the
dynamics of the plant and can be obtained by means of a Bode plot of the
closed loop system.

2. The learning rate, ~, satisfies

v, 2 (3.19)

—T (jw)

o

where —T (jw) is the negative complementary sensitivity function.

For specific cases, which we will discuss below, the conditions for the time-indexed
LFFC can be transformed into conditions that the standard LFFC must fulfil, in
order to ensure stability. This can be seen by looking at the following example in
which the LIMMS is controlled by an LFFC that has {r,7,#} as inputs. Consider a
reference motion in which the velocity is constant for some time (figure 3.4a).

When the velocity is constant # =0 [ms_Q]. This means that two of the three

inputs of the BSN have a constant value. Multi-dimensional B-splines are formed

by the tensor product of 1-dimensional B-splines (appendix A). When all inputs



74 Non-repetitive motions: Input Selection and Convergence

but one are kept constant, the shape of the membership of the multi-dimensional
B-spline, equals that of a 1-dimensional B-spline. To clarify this, an example of a 2-
dimensional B-spline with inputs {r,7} and its cross section for constant 7 are

shown in figure 3.4b.

intersection

K N
e
7 [ms-1] \‘ ‘

7 [ms-1]

(c) (d)

Figure 3.4: a) Reference motion
b) Cross section of a 2-dimensional B-spline
¢,d) Memberships of the B-splines in the LEFC, as seen in time

At those sections of the reference motion where the reference velocity is constant,
the memberships of the multi-dimensional B-splines have the shape shown in figure
3.4c,d. In the two dimensional case, each input is covered by 4 B-splines. Figure
3.4c shows the membership of two of these, while figure 3.4d shows the membership
of the others. The sum of the memberships always equals 1. So the only difference
between this case and the time-indexed LFFC is the height of the membership.
When the controlled system is linear, the LFFC will thus behave in the same way
as a time-indexed LFFC. For the time-indexed LFFC, we know that their support
has to be at least d,,, [s] wide and that the learning rate has to satisfy (3.19), in
order to ensure stability. For the multi-dimensional B-splines in the LFFC this
means that in order to ensure stability,

1. The supports of the (multi-dimensional) B-splines have to cover at least d,;,
[s] of the reference motion.

2. The learning rate has to satisfy (3.19).
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So far, we have only considered the part of the reference motion where the velocity
is constant. When looking at other parts of the reference motion, we can observe
that the shape of the multi-dimensional B-splines, as seen in time, may differ from
the shape shown in figure 3.4c,d. In figure 3.5b, an example of this is presented.

7 [ms-]

Figure 3.5: a) Reference motion
b) Membership of a 2-dimensional B-spline, as seen in time

Obviously, the results of chapter 2 cannot be used for B-splines that have the
shape that is shown figure 3.5b. We are thus able to formulate stability conditions
for the B-splines for a specific case, i.e. when all inputs but one of the B-splines are
constant. For all other cases we are unable to derive stability conditions in terms of
the width of the B-splines, as seen in time.

Even if we were able to derive stability conditions in terms of a required width as
seen in time, it would be difficult to design a B-spline distribution that satisfies
these conditions for a large number of motions. When projecting the reference
motion on the input domain of the B-spline network, as done in figure 3.6, it can
be seen that the support of some B-splines covers only a very small part of the
reference motion. When considering several motions, it is virtually impossible to
design a B-spline distribution, such that for all cases the B-splines cover a
sufficiently large part of the reference motion. The only option would be to set the
learning rate to zero for those B-splines that do not satisfy the condition.



76 Non-repetitive motions: Input Selection and Convergence

Figure 3.6:  Violation of a (not known) stability criterion

It may even be unwanted to design a B-spline distribution that satisfies these
stability conditions. This may lead to an overly conservative B-spline distribution.
The standard BSN is a lattice-based network, which means that the density of B-
splines in one direction is equal throughout the network. In figure 3.7, an example
of a 2-dimensional BSN is given that has the reference position and velocity as
inputs. The density of the B-splines in the direction of the reference position is
equal for all values of the reference velocity.

7 [ms-1] |- 2

7 [m]
Figure 3.7: Dense B-spline distribution

Consider two reference motions that both have a section in which the reference
velocity is constant. According to the above, the width of the B-splines, as seen in
time, has to be at least d,;, [s]. When the B-splines cover d,,;, [s] of motion 1 in
figure 3.7, this means that for motion 2, which has a higher velocity, they cover
less than d,,, [s]. For motion 2, the LFFC will become unstable. This can be
prevented by choosing the width in the rdirection such that the B-splines cover at
least d,,;, [s] of motion 2 (figure 3.8). However, this results in a very low-frequency
feed-forward signal for low velocities. The tracking accuracy for motion 1 will
decrease, because the B-spline distribution is chosen such that the LFFC remains
stable for motion 2.
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7 [ms-] 9

r [m]
Figure 3.8: Rough B-spline distribution

We can conclude that only for motions in which all inputs but one of the B-splines
are constant, we are able to ensure stability of the LFFC. For all other types of
motions we cannot formulate stability conditions in terms of minimum support
width. However, when stability conditions in terms of the width of the B-splines
would exist, designing a B-spline distribution that fulfils these conditions is difficult
and leads to a poor tracking accuracy. Therefore, we will pursue a different
approach, presented in the next section.

3.4 Stability Measures

Instead of designing a B-spline distribution that ensures convergence, we can design
a B-spline distribution that will yield a high tracking accuracy and then add extra
stabilising measures to the BSN. We would like the weights to be adapted such
that signals with a frequency content above d,,;, ' [Hz| are not stored in the BSN
(see chapter 2). In literature, several methods have been presented that influence
the adaptation of the weights of the BSN in such way that the input-output
mapping gets certain desired properties [Bossley, 1997]. These methods are
generally known as regularisation.

3.4.1 Regularisation

Regularisation is generally used to improve the generalising ability of a neuro-fuzzy
model, in case it is trained with sparsely distributed or noisy data. For example,
consider the case shown in figure 3.9, where the training data is distributed such
that only the weights of B-splines 1, 2, 4 and 5 are adapted and not those of B-
splines 3, 6 and 7. In spite of the fact the we usually want to approximate smooth
functions, the input-output mapping is not smooth.
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Figure 8.9: Poor generalising ability due to sparse training data

Until now, the cost function that underlies the training algorithm only contained
the mean squared approximation error. The smoothness of the approximation can
be improved by adding an extra regularisation term, Fj, to the cost function that
learning minimises (3.20) (appendix A).

J = MSE (y, —y)+ By (3.20)

In (3.20) X is the regularisation parameter that determines how much regularisation
is applied. Common examples of regularisation are [Bishop, 1991]:

— Zero order regularisation. In this case, F, contains the absolute value of the
output of the BSN. The growth of weights is penalised, to prevent large
values of the weights [Sjoberg, 1995].

— Second order regularisation. With this type of regularisation we assume that
the function we would like to approximate is smooth. To prevent large
fluctuations in the input-output mapping, we let FE, contain the absolute

value of the second derivative of the output [Girosi et al., 1995].

Second order regularisation is able to prevent the BSN from learning high-
frequency signals and could thus be used to stabilise LFFC. However, finding the
right value of A\ such that the BSN only learns signals up to frequency d,,;, ' [Hz] is
difficult [Bossley, 1997; Haring, 1998]. Therefore, we propose an alternative form of
regularisation for LFFC.



3.4 Stability Measures 79

3.4.2 Regularisation in LFFC

An LFFC becomes unstable because signals that have a frequency content larger
than d,,, " [Hz] are amplified in the learning loop. This means that to stabilise an

'min

LFFC, we have two options:

— Add a regularisation mechanism, such that the BSN is unable to learn signals
that have a frequency larger than d,, ' [Hz]. As discussed, it is difficult to
choose the right value of the regularisation parameter.

— Remove the signal components that cause instability from the learning loop.
In other words, add a learning filter that removes all signal components from
uc that have a frequency larger d,,;,”' [Hz], and pass all others.

In this research, the second approach is taken. We propose to use a time-indexed
LFFC as a learning filter (figure 3.10).

r : , BSN

— BSN

+
T (& Ucr
e el s iy

Figure 3.10: LFFC with regularisation network

A BSN can be used as a filter because of the following. Between 2 knots, the input-
output relation of a 1-dimensional 2™ order time-indexed BSN consists of a first-
order polynomial function (appendix A). The accuracy of an approximation
depends on the width of the B-splines (see chapter 2). By choosing the width
appropriately, the BSN is unable to approximate signals that have a frequency
larger than d,,;, ' [Hz]. We propose to choose the width equal to 2d,,, [s]. In this
case, the BSN tries to approximate one period of a sine-shaped signal that has a
frequency equal to d,,;,,”' [Hz], using one first order polynomial function. Figure 3.11
shows the resulting approximation. We may thus conclude that, using this B-spline
distribution, the BSN is unable to approximate signals that have a frequency larger
than d,,,”' [Hz] and that they are thus removed from the learning signal.

min
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u dmin i i
B B — = approximation

— = target signal

Qdmm t [S]
Figure 8.11: BSN approzimation of a high-frequency target signal

Ideally, the learning filter should pass any signals that have a frequency lower than
d,., " [Hz]. However, for the time-indexed BSN this is not the case. Figure 3.12
shows that by making a BSN approximation of a sine-shaped signal with a
frequency slightly smaller than d,,,”" [Hz] also a part of these signal components is
removed. The result may be that by adding regularisation to the LFFC, the
tracking accuracy gets worse.

U

Bl e T = approximation

— = target signal

2y t]s]

Figure 8.12: BSN approzimation of a medium-frequency target signal

Signal components that have a much lower frequency than d,,, ' [Hz] can be

approximated accurately by the time-indexed BSN and are thus passed.

w = target signal - = approximation
r

MT
0

Figure 3.13: BSN approzimation of the low-frequency part of a target signal

2 dmm t [S]
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In order not to change the amplitude of the learning signal, the learning rate of the

time-indexed BSN is chosen equal to 1.

Roughly speaking, the adaptation of the feed-forward signal of the LFFC is now
performed in two different steps, see figure 3.14 and 3.15.

1. The weights of the time-indexed BSN are adapted on the basis of u,. The
BSN is trained off-line (in a way that we will explain in detail in the

following), using a learning rate equal to 1. This yields an output Up .

UCWW

t
l time domain

Figure 3.14: Training the time-indexed BSN
2. After the weights of the time-indexed BSN have been adapted, the LFFC is

trained, using u, as a learning signal

—————— = uy before adaptation
— = up after adaptation

Figure 8.15: Adaptation of the weights of the LFFC
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In the following we will discuss the regularisation mechanism in detail. This will be
done on the basis of two examples. In the first example, the width of the support of
the B-splines in the LFFC is smaller than the width of the support of the B-splines
in the time-indexed BSN. Next, we consider the case where the width of the
support of the B-splines in the LFFC is the largest.

The regularisation mechanism can be split up in the following phases:

— t=0 [s]. At the beginning of the experiment the weights of the time-indexed
BSN are equal to 0. We assume that the weights of the LFFC have some
initial value, obtained by training in a previous experiment. However,
learning has not converged yet and the LFFC requires more training.

— 0 [s] <t < d,, [8]. Figure 3.16a shows the output of the feed-forward part
and the feedback signal that results. The time-indexed BSN is trained off-
line, which means that the adaptation of weights 1 and 2 are calculated
according to

Aw, = yZe (3.21)

— t=d,,;, [s]; The membership of B-spline 1 of the time-indexed BSN becomes
equal to 0. Since the value of ¢ increases, this B-spline will never be visited

again (the value of Aw; in (3.21) for j7=1 remains constant). Therefore, we
choose to update the weight of B-spline 1 at this point in time.

— dpin [8] < t < 2d,,, [s]. The adaptation of weights 2 and 3 are calculated
according to (3.21). No special actions are taken further (figure 3.16b).
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Figure 3.16: a) Regularisation after t=d,,, [s/

b) Regularisation after t=2d,,, [s]

— t=2d,,, [s]. The membership of B-spline 2 of the time-indexed BSN becomes
equal to zero. This means that we can apply its weight adaptation. After
adapting the weights of B-spline 1 and 2, we have obtained a part of the
regularised learning signal, ug (see figure 3.17a). Note that wup does not
contain frequency components that have a frequency larger than d,,;, " [Hz],
even though these were present in u. The newly obtained uj, fully covers the
support of B-splines 1, 2 and 3 of the LFFC. This means that the weights of
these  B-splines can be adapted on  the basis of Ug.

iuk (r (ti ))“R (t)
Aw, = vy izl N
; g (r (ti ))

Because uyp becomes available after B-splines 1, 2 and 3 of the LFFC have
been visited, their memberships (or the reference trajectory) need to be
stored. Figure 3.17b shows the adapted feed-forward signal that results.

, k=123 (3.22)

After this, the whole sequence repeats for time-domain B-splines 2 and 3,
etc.



Non-repetitive motions: Input Selection and Convergence

o /\/\/ uc /\/\/

0 ‘ 0 —

t=2d, 18] t=2d,,, T[]

UR/ time domain UR/ time domain
7 5 2 5

0 t:2(‘imin t [S} 0 tzz‘dmm t [S]
up position domain up| position domain

/\/\’/\ : i

0 tZQdmin t [S} 0 t:2dmz’n t [S]
HI2(3 HiX2x(3

(a) (b)

Figure 8.17: a) Regularisation at t=2d,,, [s], weight adaptation of the time-indexed

BSN
b) Regularisation at t=2d,

min

[s], weight adaptation of the LFFC

We will perform a similar discussion of the regularisation mechanism, for the case
where the B-splines in the LFFC have the largest width.

t=0 [s]. Again, we assume that the weights of the time-indexed BSN are
equal to 0 and that the weights of the LFFC have some initial value.

0 [s] < t < d,; [s]. No special actions are taken (figure 3.18a).

t=d,,;, [s]. Since B-spline 1 will not be visited again, its weight adaptation is
applied.

dpin [8] < t < 2d,,;, [8]. No special actions are taken (figure 3.18b).

t=2d,,, [s]- The weight of B-spline 2 is adapted. This gives the first part of
the regularised learning signal (figure 3.18b). Since the obtained part of wug
does not fully cover the support of one of the B-splines in the LFFC, none of
the weights of the LFFC can be adapted. We can only adapt a weight in the
LFFC, when we have a wuy that covers the entire support of the
corresponding B-spline. So, we continue to train the time-indexed BSN.
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Figure 3.18: a) Regularisation after t=d,,;, [s/
b) Regularisation at t=2d,,, [s], weight adaptation of the time-indexed
BSN

— t=4d,,, [s]; At this point of time, the weights of B-spline 1, 2 and 3 of the
time-indexed BSN have already been trained. By adapting the weight of B-
spline 4 in the time-indexed BSN, a regularised learning signal has been
obtained, that fully covers the support of B-spline 1 in the LFFC (figure
3.19a). Therefore, the weight of B-spline 1 in the LFFC is adapted.

— t=7d,;, [s] (at t=bd,,, [s] and t=6d,,, [s] the weights of B-splines 5 and 6
have been adapted). The weight of B-spline 7 in the time-indexed BSN is
adapted (figure 3.19b). We have now obtained a regularised learning signal
that covers the entire support of B-spline 2 in the LFFC. The weight of B-
spline 2 is adapted on the basis of u,. Figure 3.19¢ shows the adapted feed-
forward signal. Note that in this case both u, and the membership of the B-
splines in the LFFC need to be stored.
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Figure 3.19: a) Regularisation at t=4d,,, [s], weight adaptation of the time-indexed
BSN
b) Regularisation at t=7d,,, [s], weight adaptation of the time-indexed
BSN
¢) Regularisation at t="7d,,, [s], weight adaptation of the LFFC

In figure 3.20, an alternative representation of the regularisation mechanism is
given. The supports of the B-splines of the time-indexed BSN have been projected
on the reference motion. The learning signal for the LFFC consists of piecewise first

order polynomial functions between the knots of the B-splines of the time-indexed
BSN.

regularisation network

reference motion

Figure 3.20: Alternative representation of the regqularisation mechanism

In short, regularisation in LFFC can be described as:
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Algorithm 3.1 (Regularisation in LFFC)

1. Add a time-indexed BSN to the LFFC, which filters the learning signal. The
width of the support of the B-splines in the time-indexed BSN should be
chosen equal to 2d,,, [s].

2. Choose a random training motion.

3. Train the time-indexed BSN in an off-line way, with a 9=1. Use the output
of the time-indexed BSN, u, ({), as a learning signal for the LFFC. In detail,

this can be described by the following steps:

3.1 At t=0 [s], initialise the weights of the time-indexed BSN to 0. Define
n=1.

3.2 While t<n d,,, [s], use the LFFC for control and calculate the adaptation
of the weights in the time-indexed BSN. Of each B-spline in the LFFC
that contributes to the feed-forward signal store {¢, 1 (¢)} .

3.3At t=nd

min

BSN becomes equal to 0. Adapt the weight of that B-spline. Herewith, we

[s], the membership of one of the B-splines in the time-indexed

have obtained a new part of u, ().

3.4 When u (f) fully covers the support of one of the B-splines in the LFFC
that have been stored, adapt the corresponding weight using u, (t) as a

learning signal and {¢,4(¢)} from the memory.

3.5 n=n+1, go to step 3.2.

3.4.3 Simulations

In order to validate the above algorithm, simulations will be performed in which
the LIMMS is controlled by an LFFC with a regularisation algorithm 3.1. For the
values of the parameters in the simulation model and the controller, we refer to
section 2.6.

The LiIMMS repeatedly has to track two reference motions. The reference motion
shown in figure 3.21a corresponds to motion 2 of figures 3.7 and 3.8. This is the
“fast” motion that requires B-splines that have a large support, in order to ensure



88 Non-repetitive motions: Input Selection and Convergence

stability. The reference motion that is given in figure 3.21b corresponds to motion
1. This motion allows a more dense B-spline distribution.

El 0.6 E) 0.5
= Y
0.3 0.25
0- T T T \ 0+ T T T T —
0 2 4 6 8 0 4 8 12 16 20 24
t[s] t[s]

Figure 3.21: a) “Fast” reference motion
b) “Slow” reference motion

Simulation 3.1 (feedback control only, “fast” reference motion)

In the first simulation, the LiIMMS is controlled by the feedback controller only. In
figure 3.22 the tracking error is presented. In the tracking error two components
can be observed. The small sine-shaped ripple in the tracking error is caused by
cogging. The larger part has the shape of the reference acceleration. The feedback
controller is unable to realise the desired acceleration.

1
E
S
B
1
0 4 8

t[s]

Figure 3.22: Tracking error without LFFC, “fast” motion

Simulation 3.2 (feedback control only, “slow” reference motion)

The tracking error of the “slow” motion, is presented in figure 3.23. The major part
of the tracking error is caused by cogging.
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Figure 3.23: Tracking error without LFFC, “slow” motion

Next, an LFFC will be applied. The structure of the LFFC has been presented in
figure 3.2. In chapter 2, it has been derived that the minimum width of the support
of the B-splines, as seen in time, is (chapter 2):

o

min 2920

[s] = 0.0288 [s] (3.23)
First, we apply LFFC without regularisation and try to select a B-spline
distribution that will avoid instability. In order to keep the number of B-splines

that contribute to the output for less than d,, to a minimum, we select the B-
spline distribution as follows:

min

— At the highest reference velocity, 7, , it should take at least d_. [s] to cross

a B-spline in the direction of the reference position.

it should take at least d

— At the highest reference acceleration, 8] to
min

éﬂ;naz ’
cross a B-spline in the direction of the reference velocity.

— At the highest reference jerk, 7, , it should take at least d . [s] to cross a
min

:ax )

B-spline in the direction of the reference acceleration.

This way of selecting the B-spline distribution guarantees that the supports of the
B-splines are wide enough when only one of the inputs of the BSN varies, while the
other inputs are constant. Such a distribution cannot prevent situations as
described in figure 3.6, where all inputs vary. It may thus occur that some B-

splines do not cover d,,;, [s] of the reference motion.
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For the slow motion the above yields:

Frar = 0.05 [ms '], 7, = 0.15 [ms 2], #,,, = 0.5 [ms ] (3.24)

maxr
and for the fast motion:

Foge = 0.31[ms ™|, 7, = 0.39 [ms™?] #,,, = 0.5 [ms ] (3.25)

maxr

This yields the following minimum width of the support on each of the input

domains:

d = = 0.31[ms’1] -2.88-1072 [s1=8.928 - 10 m]

T, min

d. . =039[ms?]-2.88-10% [s]=1.123-10" [ms™| (3.26)

T,min

- 0.5[ms'3] -2.88-1072[s]=1.44-10" [ms'Q}

7, min

Simulation 3.3 (LFFC, conservative distribution, “fast” reference motion)

First, we choose a conservative B-spline distribution, in which the widths are
slightly larger than the minimum widths: d, = 9.3-107* [m], d, = 1.4-10"" [ms™'], d,
= 1.6-10"% [ms?]. The learning rate is chosen 0.9. In figure 3.24 the tracking error
after 2000 [s] is shown. It can clearly be seen that the LFFC has removed the part
of the tracking error that had the shape of the reference acceleration. The sine-
shaped part, caused by cogging, is not removed completely.

R O

0 4 8
t[s]

Figure 3.24: Tracking error (conservative distribution, “ fast” reference motion)
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Simulation 3.4 (LFFC, conservative distribution, “slow” reference motion)

Using the same LFFC for the “slow” motion, gives the tracking error depicted in
figure 3.25. Due to the large supports of the B-splines, the LFFC has not been able
to compensate for cogging.

0 12 24
ts]

Figure 3.25: Tracking error (conservative distribution, “ slow” reference motion)

The LFFC is stable for both types of motions. However, due to the large width of
the B-splines on the reference position, the LFFC is not able to compensate the
cogging forces. This can be seen in figure 3.26, where the desired compensation of
the cogging, u, and the actual compensation, uy, are shown.

Figure 3.26: Desired and actual compensation of cogging

Simulation 3.5 (LFFC, dense distribution, “slow” reference motion)

To obtain better tracking for slow motions, the width of the B-splines on the
reference position is decreased to d, = 2.8:107° [m]. Using this distribution, a much
smaller tracking error results after performing a slow motion for 2000 [s] (figure
3.27).
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Figure 3.27: Tracking error (dense distribution, “ slow” reference motion)

Simulation 3.6 (LFFC, dense distribution, “fast” reference motion)

When this B-spline distribution is used to track fast motions, the LEFFC becomes
unstable. The tracking error depicted in figure 3.28 grows as learning continues.

1
i
=
.
0
-1
0 4 8

t[s]

Figure 8.28: Tracking error (dense distribution, “ fast” reference motion)

Simulation 3.7 (LFFC, dense distribution, regularisation, “fast” reference motion)

To overcome this problem we add the regularisation mechanism to the LFFC of
simulation 3.6. The width of the B-splines in the time-indexed BSN is chosen
2-0.0288[s]=0.059 [s]. After performing the fast motion with the regularised LFFC
for 2000 [s], no sign of instability can be seen (figure 3.29). We may thus conclude
that the regularisation mechanism stabilised the LFFC.
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Figure 3.29: LFFC with regularisation, “fast” motion

Simulation 3.8 (LFFC, dense distribution, regularisation, “slow” reference motion)

Next, we examine whether the regularisation mechanism may cause a loss of
performance. Therefore, simulation 3.5 is performed again with a regularised LFFC.
In figure 3.30 the tracking error is presented after performing the slow motion for
2000 sec. This tracking error is comparable to the tracking error that was obtained
without the regularisation mechanism (figure 3.27). It may thus be concluded that
the regularisation mechanism does not cause a significant loss of performance for
slow motions.

1
ﬁ
=
Al
20
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0 12 24
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Figure 3.30: LFFC with regularisation, “slow” motion

3.5 Discussion

We have not been able to derive general stability conditions for LFFC, like we
have done for the time-indexed LFFC in chapter 2. Only in specific situations,
when all inputs but one of the B-splines are constant, the outcome of chapter 2 can
be used to indicate whether a certain B-spline distribution will yield unstable
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behaviour or not. However, even if we were able to formulate stability conditions in
terms of the B-spline support width, the B-spline distribution that fulfils these
conditions would be very conservative, resulting in a large tracking error.
Therefore, instead of stabilising the LFFC by means of a sufficiently wide B-spline
support, we proposed to add extra stabilising measures to the BSN.

This can, for example, be done by means of regularisation. Regularisation usually
means changing the learning mechanism of the BSN by adding an extra term to
the cost function that must be minimised. This extra term penalises undesired
input-output behaviour (e.g. large output values). In case of LFFC we would
penalise learning of signals that have a frequency larger than d,,,, ' [Hz]. This is
done by penalising the output curvature. However, it is difficult to determine how
much the output curvature should be penalised, such that only signals that have a
frequency lower than d,, ' [Hz] are learned. Therefore, an alternative form of

man

regularisation was proposed.

Regularisation is performed by filtering the learning signal of the LFFC by a time-
indexed BSN. This approach is based on the fact that the smoothness of an
approximation is determined by the width of the support of the B-splines. By
choosing the width of the support of the B-splines in the time-indexed BSN
sufficiently wide, all frequency components that have a frequency larger than d,,;,
[Hz], and therefore cause unstable behaviour, are removed from the learning signal.
By removing these frequency contents from the learning loop, the LFFC remains
stable. To ensure that frequency components that have a frequency larger than
d,,, ' [Hz] cannot be approximated, the width of the support of the B-splines in the

time-indexed BSN is chosen equal to 2d,,, [s].

Simulations showed that learning diverged when the width of the support of B-
splines in the LFFC became too small. Adding the regularisation mechanism
stabilised the LFFC. However, by choosing the width of the B-splines in the time-
indexed LFFC equal to 2d,,, [s], also signals that have a frequency that is slightly
lower than d,,, ' [Hz] are (partly) removed from the learning signal. This may

cause loss of tracking performance, even though this was not observable in the
simulations that were performed.

The regularisation mechanism proposed here is a rather heuristic stabilising
measure. While a proper choice of the width of the B-splines in the time-indexed
BSN can stabilise LFFC, little is known about the filtering properties at
frequencies that are slightly lower than d,,, ' [Hz]. It is unclear whether the

selected width of 2d,,, [s] is a proper choice or if it is a conservative one. This
makes the results preliminary. Further research on this topic is desired.



4 Non-Repetitive Motions:

Parsimonious LFFC

4.1 Introduction

In the standard LFFC, the reference position and derivatives/integrals thereof, are
used as inputs of the feed-forward part. In general, this will result in a BSN that
has multiple inputs. When the number of inputs of a BSN is large, the problems
associated with the curse of dimensionality occur that make the LFFC less suited
for practical application. In section 4.2 we will show that, in case the inputs of the
feed-forward part are selected as proposed in chapter 3, we quickly end up with a
BSN that has a large number of inputs.

Similar problems are encountered in the field of neuro-fuzzy modelling [Brown and
Harris, 1994]. Here, a neuro-fuzzy network, such as a BSN, is used to model the
plant dynamics. The BSN is trained on the basis of observed input-output data.
When the inputs are chosen in a straightforward way (similar to the way the
inputs of the LFFC are chosen in chapter 3), one encounters problems associated
with the curse of dimensionality. To keep these problems to a minimum, it has
been proposed to choose the inputs of the BSN and the B-spline distribution in an
alternative way. This design approach requires more detailed knowledge of the
plant dynamics. This knowledge may either be present in the form of a qualitative
a-priori model or can be obtained in an automated way by means of experiments.

In section 4.3, we examine whether the same approach can also be used to
overcome the problems associated with the curse of dimensionality in LFFC

[Idema, 1996; Vries et al., 1998].

95
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4.2 Curse of Dimensionality in LFFC

In chapter 3, it was proposed to select the inputs of the BSN by expressing the
plant in the form of (3.4). The desired feed-forward signal was then given by (3.14).
Each term {yd,yd,...} existing in (3.14) should be selected as an input of the BSN.
This method quickly results in a large number of inputs. We will show this, by
selecting the inputs of the BSN for a class of plants for which this is especially the

case, i.e. rigid robot manipulators.

4.2.1 Nlustrative Example: Rigid Robot Manipulator

The dynamics of a rigid revolute-joint robot manipulator are well known [Craig,
1989]:

M(6)6+C(0,6)0+ D+ Ssgn (8)+G(6) =u (4.1)

where @ is the vector of joint angles, M (@) is the inertia-matrix, C (0,9) models
Coriolis and centrifugal effects, D is a diagonal matrix containing viscous friction
coefficients, S is a diagonal matrix containing Coulomb friction coefficients, G ()
describes gravitational load and w is the vector of joint motor torques. In case of a

2-DOF robot manipulator, shown in figure 4.1, the dynamics are given by (4.2):

Figure 4.1: 2-DOF robot manipulator
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J
1 2 2 2 2
el +m, <12 + 211, cos (02 ) + 1 )—i— Lim, 1ymy + 211,m, cos ((92) 9-1
1 ; ; i
2 2 72
lym, + 21,1,m, cos (92 ) =l +1lm, 2
2
—2l,1,m, sin (92 )02 —l,l;m, sin (92)92 0, N d 06 N (42)
L,l,m, sin (92 )91 0|0, 0 d, 0,
s, Of|sgn (91) . gml, cos (91 +0, ) + gl, cos (01 )(m1 + m2) u,
0 $|sgn (02) gl,m, cos (01 + 02) Uy
where
m, 5. mass of link 1,2
li: length of link 1,2
Jyo: inertia of motor 1,2
T, gear ratio of motor 1,2
d, »: viscous friction in joint 1,2
;9. Coulomb friction joint 1,2
Writing (4.1) in the shape of (3.4) results in :
ol [0 I 0
b |0 —M(@©) " C(6.6)-M(6) " D6
0 0
NEE L u (4.3)
~M(0) ' G(6)-M(6) ' Ssgn(0) |M(6)"
(7]
o0=|1 0

T
Where 6 = [91 92} ,0 € R* and M () is a positive definite matrix [Lewis et al.,
1993)].
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Next, we check whether the conditions derived in chapter 3 are satisfied.

— C may contain only one element, C'j , that is unequal to zero. In (4.3) it can

be seen that C has the correct form, namely:

c=1 o (4.4)

— C]. must be invertible. Since, C|=I, it is invertible. This condition is

satisfied.

— B, (0) must be invertible. From (4.3) it follows that:

B, (0)=M(0)" (4.5)

B, (0) is thus invertible. This condition is satisfied as well.

We may conclude that the joint angles of a rigid robot manipulator can be

controlled by means of LFFC. The desired feed-forward signal is:

w,=C(0,.6,)0, +Db,+G(6,)+Ssen(0,)+M(6,)0, (4.6)

From (4.6), it follows that in a straightforward implementation, the inputs of the

BSN must consist of {Bd,Od,éd} (figure 4.2), which means 6 inputs for a 2 DOF

manipulator.

i .
reference | g¢ BSN
generator | \ Up
e Up + Yy
{ C Lt p

Figure 4.2: LFFC of a rigid robot
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4.2.2 Curse of Dimensionality

From the previous example, one can see that even for a relatively simple system,
such as the 2 DOF robot manipulator, the BSN has a large number of inputs, in
this case 6. When considerable non-linearities are present, each input needs to be
covered with a significant number of basis functions. In this situation, one
encounters problems that are associated with the curse of dimensionality [Bellman,
1961; Brown and Harris, 1994; Bossley et al., 1996]. As briefly discussed in chapter

1, these problems are:

— A large number of network weights. The number of weights in a BSN
depends on the dimension of the input in an exponential way. If, in case of
the 2-DOF robot manipulator, the number of B-splines on each of the inputs
of the BSN is, for example, 15, the total number of network weights is:

N,=15°=11.390.625 (4.7)

Since the LFFC is usually implemented in an embedded computer, the
amount of computer memory is limited. Storing the number of weights of
(4.7), as real numbers (requiring 4 bytes of memory each) requires
approximately 45 MB of computer memory. This makes it difficult to
implement the LFFC on smaller embedded computers. It will be clear that
for a 6 DOF manipulator this problem is dramatic.

— Large training sets. To properly train the BSN, a number of training samples
should be present for each B-spline. A large number of B-splines means that
a large number of training samples is needed. Slow learning will be the
result.

— Poor generalising ability. The generalising ability is the ability to produce a
sensible output for motions that are similar to previously trained motions.
When the dimension of the input of a BSN is large, a poor generalising
ability results. This can easily be seen by the following example. Consider a
system that is subject to two independent disturbances, one depending on
the velocity and one on the position. The feed-forward signal that
compensates these disturbances can be stored in a 2-dimensional BSN that
has the reference velocity and position as inputs (figure 4.3). Next, two
training motions are performed that contain each possible reference position
and reference velocity. In figure 4.3, the B-splines of which the weights are
adapted during these training motions are marked grey. It can be seen that
the LFFC is not able to generate a feed-forward signal for a 3™ motion even
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if it is similar to the training motions. Thus, in spite of the fact that all
possible velocities and positions have been presented during training, and
thus each possible disturbance has occurred, the LFFC is not able to
compensate the disturbances for a new motion.

v [ms-1]

I
\
\
:1

=

7 [m]
Figure 4.3: Generalising ability

We may conclude that for practical applicability it is important to keep the
problems associated with the curse of dimensionality to a minimum. In the
following section, we present methods that achieve this.

4.3 Parsimonious LFFC

4.3.1 Relations with Neuro-Fuzzy Modelling

In neuro-fuzzy modelling [Wang, 1994; Jang and Sun, 1995] the problems
associated with the curse of dimensionality are kept to a minimum by employing
parsimonious modelling techniques. According to the principle of parsimony
[Bossley, 1997]: “the best models are obtained using the simplest possible, acceptable
structures that contain the smallest number of parameters’. In general, parsimony
can be obtained by either of the following strategies:

— Minimise the number of B-splines on each input domain. A large number of
B-splines causes a large number of weights, large training sets and a poor
generalising ability. It logically follows that for a certain BSN, these
problems can be minimised by minimising the number of B-splines on each

input domain.
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— Split up the high-dimensional BSN in several lower-dimensional BSNs. The
number of B-splines depends on the dimension of the BSN in an exponential
way. Thus reducing the dimension of the BSN is a much more effective
method to overcome the effect of the curse of than minimising the number of
B-splines on each input domain. In which way one can split up the high-
dimensional BSN can be seen by writing the target function in the ANalysis
Of VAriance (ANOVA) representation. The ANalysis Of VAriance

(ANOVA) representation of an n-dimensional function f(-) is given by:

y :f(xl’x27"’x7l)

— b S @)+ S L) ety @ayes,) )
i i

where f; (), f,; (-), etc. represent univariate, bivariate, etc. additive
components of f(). Instead of using one BSN that learns f(z,z,,..,z,), we
can create a parsimonious network structure in which for each term in (4.8)
a specific BSN exists. When the maximum input dimension of the BSNs in
the parsimonious network structure is smaller than n, a reduction of the

number of B-splines results. As an example, we take the following

f(l’l,Z'Q,iL'g)i
y = fla,2y,5) = fi(2) +f173(:£1,:£3) +f2’3(x2,x3) (4.9)

This function can either be approximated by 1 BSN or by a parsimonious
network structure consisting of 3 BSNs, see figure 4.4.

T

BSN 1

bl

@ !
+>

2 > Y . )
Ty —— BSN — - > BSN 2 O—>
3 ’ 3

~| BSN 3

(®)

Figure 4.4: a) Single BSN
b) ANOVA-based BSN structure
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The number of weights in the 3-dimensional BSN is (figure 4.4a):

N,, = NN,N, (4.10)
where N, is the number of 1-dimensional B-spline functions defined on the
input domain . Assuming that in the parsimonious network structure the

number of B-splines on each input domain is the same as in the 3-

dimensional BSN (figure 4.4a), the total number of weights results in:
N,, =N +N,N, + NN, (4.11)

Especially for large N, this means a drastic reduction of the number of B-

splines.

4.3.2 ANOVA based LFFC

It is straightforward that the main idea of parsimony in neuro-fuzzy modelling can

also be applied to LFFC [Idema, 1996]. The problems associated with the curse of

dimensionality can be kept to a minimum, when the LFFC consisting of one BSN

is replaced by an LFFC that consist of several BSNs that each have a low input

dimension. Figure 4.5a,b presents an example.
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Figure 4.5: a) Single LFFC

b) Parsimonious LEFC structure
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The parsimonious network structure follows directly from the desired feed-forward
signal. One BSN should be created for each combination of 1Y Yy5Yyoep In (3.14).
The minimum number of B-splines depends on the shape of the term that each
BSN is intended to learn.

The parsimonious network structure can be obtained in the three ways:

— Manually. In this case the designer has a-priori knowledge of the desired
feed-forward signal, (chapter 3), such that a parsimonious network structure
can be created.

— Awutomated. When insufficient a-priori knowledge exists, the parsimonious
network structure can be created by means of empirical modelling
techniques, using data gathered in experiments.

— Combination. In this case the designer first chooses a parsimonious network
structure based on a-priori knowledge. Subsequently, empirical modelling
techniques will be used to optimise the parsimonious network structure.

First, we will discuss the manual way.

4.3.3 Parsimony by Means of Prior Knowledge

In practice, the a-priori plant knowledge may include one or more of the following
items:

— Structure of A(x), B(x), h(x). Often, the designer has knowledge of the
dynamic behaviour of the plant. It is then possible to express the dynamics
in the form presented in chapter 3, and herewith calculate the desired feed-
forward signal, u, The terms in u, can be divided such that each of them
contains one specific combination of {y YU d,...}. For each of these terms,
one BSN can be created. E.g. in case of the robot manipulator, we know that
the system behaves as a rigid robot manipulator. Furthermore, we know that
it is subject to viscous and Coulomb friction. From these it follows that the

dynamics are given by (4.1) and that w, is given by (4.6)

— Relevance of terms. Besides the occurrence of certain combinations of

{yd,yd,yjd,...} in the desired feed-forward signal, the designer often has

knowledge about the magnitude and the shape of the terms. The
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parsimonious network structure can be simplified by deleting all BSNs that
learn terms that hardly contribute to the feed-forward signal. For the 2 DOF
robot manipulator, C may be disregarded when the velocities are low and
the load is relative small. Furthermore, because the gear ratio, r,, is small

M can often be considered diagonal and constant.

J
— 0
T
M~|! (4.12)
0o
2
T

Substituting (4.12) in (4.6) and disregarding C' yields the following desired
feed-forward signal:

Ugq

Uyo

J .. . .
7”1_59(1’1 + d19d,,1 + s, sgn (9{171 )—|— gm)l, cos (9{1_’1 + 9{172 )—|— gl, cos (9{171 )(m1 + m2)

Q

Jy . . .
r_20d.2 +dy0,, + 5, sgn <9d,2 )+ glym, cos <9d,1 + 9d.2>
P

(4.13)

The parsimonious network structure that follows from (4.13) is presented in
figure 4.6. It consists of the following BNSs:

BSN 1 has 2 inputs, {9 9d2} and two outputs, {u } The target

a1 a1 Y2

function it has to learn is:

_ gmyl, cos (9&1 +0,, >+ gl, cos <0d,1 )(ml + m2) (4.14)
gl2m2 cos <9d,1 + 0d12 )
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Figure 4.6: Parsimonious learning feed-forward controller for a rigid robot

BSN 2 and 3 each learn to compensate the friction phenomenons of one
joint:

BSN2: u,, = d20.d72 + 8, sgn (H'dz) (4.15)

BSN3: u,, =d0,, +s sgn (Hd"l) (4.16)
Finally, BSN 4 and 5 compensate for the inertia of the robot manipulator.

BSN4: Uyy = (4.17)

BSN5: w,, =0 (4.18)

— Shape of the terms. In order to approximate a function using a minimum
number of B-splines, the shape of the target function must be known. In case
of the robot manipulator, we know that the target functions of BSN 4 and 5
are smooth, which means that the B-spline distributions of these BSNs may
consist of B-splines that have a large support. It has no use approximating a
smooth function with a large number of B-splines that have a narrow

support.
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Sometimes, the qualitative knowledge of the system is insufficient to create a
parsimonious LFFC. In this situation, iterative application of empirical modelling
techniques may offer a solution.

4.3.4 Parsimony by Iterative Empirical Modelling

Empirical modelling techniques are able to construct a model of a plant, on the
basis of observed input-output data, without utilising any prior knowledge of the
dynamics of the plant [Bossley, 1997]. For LFFC, we would like the empirical
modelling techniques to create a parsimonious model of the inverse plant dynamics.
However, we do not have appropriate training data of the function we want to
approximate, i.e. the relation between the reference motion, consisting of {r,r,...}
and the desired feed-forward signal. Instead, we have the output of the feedback
controller, u,, that indicates how the feed-forward signal, u,. , should be adapted
such that it resembles u, better. This means that the parsimonious network
structure could be obtained in the following iterative way:

Algorithm 4.1 (Parsimony by means of iterative empirical modelling)

1. Choose an initial network structure and B-spline distribution. Any prior
knowledge of the plant that is available can be used to create an initial
network structure and B-spline distribution (i.e., the manual method). If this
is not the case, the empirical modelling technique in step 5 will select it.

2. Select a training motion and train the LEFFC until convergence. Convergence
is noticeable from the fact that the weight adaptation is zero. Note that after

learning has converged u, is not equal to zero.

3. To collect the data needed in step 5, {r, 'r",...,uF,uC}7 the training motion is

performed once using the fully trained LFFC.

4. If the MSFE tracking error of the motion performed in step 8 has decreased as
compared with previous iterations go to 5 else go to 7.

5. Build a new parsimonious network structure based on the collected data.

6. Go to step 2.
7. Stop.
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Building a parsimonious network structure on the basis of the collected data (step

5) is done in the following way. Because learning has converged, wu, is the best

possible feed-forward signal, given the present parsimonious network structure.

Since wu,, indicates the error in w, , we can conclude that u, +u, resembles the

C F’

desired feed-forward signal, u ,» better than the present one, u,, and will thus
yield a smaller tracking error. Therefore, we now employ empirical modelling
techniques to create a parsimonious network structure that is able to approximate
u, +u,. This is done by setting {r,7,..} as the inputs and wu, +u, as the
target function for the empirical modeller. Note that the new parsimonious network

structure is only able to accurately approximate w, +wu,, which is in general

C )

unequal to wu,. After training the LFFC with the new parsimonious network

E

structure, a wu, will remain that indicates how the feed-forward signal (and

C
therefore the parsimonious network structure) can be further improved. The
empirical modelling technique should thus be applied in an iterative way. In the
following, we will briefly discuss two examples of implementing step 5 using an

empirical modelling technique.

4.3.5 Empirical Modelling: ASMOD

The Adaptive Spline Modelling of Observational Data (ASMOD) algorithm [Kavli,
1992; Kavli, 1993; Kavli and Weyer, 1995] creates a parsimonious BSN model by
means of an iterative procedure that utilises refinement and pruning
(simplification) methods. The outline of the iterative procedure is given below.

Algorithm 4.2 (ASMOD modelling)

5.1 Generate candidate models. In this step, a set of candidate models is
generated by refining and pruning the existing parsimonious BSN model.
The existing parsimonious BSN model can either be the initial model, chosen
in step 1, or a model that has been obtained by previous application of the
ASMOD algorithm. Possible steps for refining and pruning will be discussed
in more detail below.

5.2 Train and evaluate all candidates. The most common way to evaluate the

candidate models is by means of validation. Firstly, the collected data,
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{r, Ty Up + uo} , is split in a training set and an evaluation set. Next, the
candidate models are trained with the training set. Their performance is
evaluated by presenting the input values of the evaluation set, {r,7,...} , to
the candidate models and comparing their outputs to the desired
output,w, + u,. The best performing model is the model that has the
lowest MSE approximation error.

5.3 If the MSE approzimation error for the evaluation set of the best performing

model is lower than that of the current model, then select this model as the
current model and go to 5.1 else go to 5.4.

5.4 Stop.
The refinement and pruning methods that ASMOD may apply in step 5.1 are:

— Adding / deleting a 1-dimensional BSN. Each iteration step, one 1-
dimensional BSN can either be added to the parsimonious network structure,
or be removed. In figure 4.7 an example is presented, in which a 1-
dimensional BSN with input z; is added / removed.

univariate BSN
addition

X

: BSN 1 y :
T3 + Yy

univariate BSN
deletion

Figure 4.7: Addition / deletion of a 1-dimensional BSN

— Splitting / combining BSNs. To enable the model to approximate a larger
class of functions, ASMOD can combine BSNs. In figure 4.8, two BSNs that
have respectively z; and z, as inputs, are combined into one BSN that has
both z; and x, as inputs. While the separate BSNs can approximate functions

of the class f <x1)+ g(x4), the single BSN can approximate functions of the
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class f ($1,$4), which is a larger class. For reasons of parsimony, ASMOD

can also split up a single BSN into two separate BSNs.

combining BSNs

- BSN 1 o
3
BSN 1
2 Ay m
+

e [ R
|

' | BN [ R
7 BSN 2

splitting a BSN

Figure 4.8: Splitting / combining BSNs

— Knot insertion / removal. The accuracy of an approximation depends on the
size of the support and the location of the B-splines. ASMOD searches for
the optimal B-spline distribution by adding a new B-spline halfway between
two existing B-splines or by deleting B-splines from a distribution. In figure
4.9 an extra B-spline is added on the domain of input variable z,.

knot insertion

— T

A A
Lo )

> >

I Iy

“v

knot removal

Figure 4.9: Knot insertion / removal

The ASMOD algorithm can apply several methods for refinement and pruning. For
example, each B-spline in the model can be selected for combining. This large
amount of possibilities makes the algorithm computationally expensive.
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4.3.6 Empirical Modelling: Fuzzy Product Space Clustering

Fuzzy product space clustering, also called fuzzy clustering, is an empirical
modelling technique that can be used to construct the B-spline distribution of the
LFFC [Jang et al., 1997; Babuska, 1997,b]. In short, fuzzy clustering [Bezdek and
Pal, 1992] [Backer, 1995] generates fuzzy sets [Zadeh, 1973; Lee, 1990] (appendix
A) that describe observed data. The fuzzy sets are generated in such way, that
similar data points belong to the same fuzzy set. For example, consider the 2-
dimensional data set shown in figure 4.10.

Figure 4.10: Data for clustering

Applying fuzzy clustering would yield the following fuzzy sets, F;, F, and F;, in
which the data is categorised (figure 4.11).

Figure 4.11: Data and fuzzy sets

Many fuzzy clustering algorithms exist. The fuzzy clustering algorithm that we use
to obtain the clusters is the Gustafson-Kessel (GK) algorithm [Gustafson and
Kessel, 1979]. This algorithm is chosen because it can create fuzzy sets of different
shapes and orientations.

The data for fuzzy clustering consists of {r, Tyeees Up, —l—uC}. We will now explain

how a B-spline distribution can be created by generating fuzzy sets that categorise
this data. For reasons of clarity, we consider an LFFC that only has the reference

position, r, as an input. The data is shown in figure 4.12.
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uo(t)+up(t)

Figure 4.12: Data for clustering algorithm in case of LFFC

Next, the GK-algorithm is applied to construct fuzzy sets that describe the data.
The fuzzy sets that have been obtained are represented by their level curves (figure
4.13).

ug(t)+up(?)

Figure 4.13: Data and fuzzy sets in case of LFFC

We have now obtained fuzzy sets that describe similar data points in the data set

{r, Up +uc}. In order to give insight in how B-splines can be formed from the

fuzzy sets, we first build a Takagi-Sugeno (TS) fuzzy model [Takagi and Sugeno,
1985](appendix A) of the data. Subsequently, from the TS fuzzy model, a B-spline
distribution is generated [Babuska, 1997,b]. A TS fuzzy model consists of a set of

rules that have the following form:

IF ('r is 4, )AND ... AND <r<"> iS4 )

Rule (4.19)

_ (n)
THEN u, =a, . r+--+a "+ bl,

Where, A, ,...A,; are the fuzzy sets defined on the inputs of the model, also known
as fuzzy antecedent sets. Both the fuzzy antecedent sets and the coefficients a, ...,

a,; and b,, can be derived from the fuzzy sets obtained by fuzzy clustering. The

1,0

fuzzy antecedent sets A; can be obtained by projecting the fuzzy sets, I}, ..., Fg, on

the input axis, r (figure 4.14).
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r(t) [m]

Figure 4.14: Projection of the fuzzy sets

The parameters a,;, ..., a,; and b;; can be derived from the position and the
orientation of the clusters [Babugka, 1997.b]. In figure 4.15, the data of figure 4.12
is approximated by a TS fuzzy model, using the fuzzy antecedent sets obtained in
figure 4.14. It can be seen that the approximation consists of locally-linear
approximations with smooth transitions.

Y= 2+b) y=ay2ytby  y=azrstby  y=agustbg

~—

Ry
S|
+

—

ue(t

y=a325+by  y=a.z,+0,

Figure 4.15: TS-model approzimation of the data

Next, we use the fuzzy antecedent sets of the TS fuzzy model to design a B-spline
distribution. To explain how this can be done, in figure 4.16 a BSN approximation
and a TS fuzzy model approximation of the data of figure 4.12 are shown.
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ue(t)+up(t)
ue(t)+up(t)

(t) [m]
H 1
Ky g, By,
0 [
r(t) [m] r(t) [m]

Figure 4.16: Equivalence between a TS-fuzzy model and a BSN

It can be seen that both approximations consist of a number of locally-linear
approximations. In case of the TS fuzzy model, the transitions between locally-
linear approximations is smooth. Switching from one locally-linear approximation
to another occurs at those points where the fuzzy antecedent sets have the same
membership. In case of the BSN, the transition between locally-linear
approximations is sharp. The transition occurs when a B-spline reaches its
maximum membership. Note that this point corresponds to the point where one B-
spline ends and the other begins. B-splines can thus be derived from the fuzzy
antecedent sets, by locating the B-spline knots at to those points where the fuzzy
antecedent sets have equal memberships (figure 4.17).

B-spline knots / r(t) [m]
Figure 4.17: B-spline knots and fuzzy sets
The previous can be summarised in the following algorithm.

Algorithm 4.3 (B-spline distribution by means of fuzzy clustering)
5.1 Employ GK fuzzy clustering [Gustafson and Kessel, 1979; Babuska, 1997,b]

using the data set {r, Tyewoy Uy + UC}.
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5.2 Construct a TS fuzzy model that describes the relation between {r,r,...} and
U, +u,, on the basis of the fuzzy sets obtained in the previous step. The
fuzzy antecedent sets of the TS fuzzy model are created by projecting the
fuzzy sets on the input domain {r,7,...} . The coefficients of the locally-linear
functions that describe the output follow from the position and the
orientation of the fuzzy sets.

5.3 Transform the fuzzy antecedent sets of the TS fuzzy model into B-splines.
The modelling capabilities of a TS fuzzy model and a BSN are equivalent

when the B-spline knots are situated that the intersections of the fuzzy
antecedent sets.

4.4 Training the Parsimonious LFFC

Unlike training of a standard LFFC, training a parsimonious LFFC is not a trivial
task. This is caused by the fact that only one common training signal is available
for all BSNs in the parsimonious LFFC. For the parsimonious LFFC for the 2 DOF
robot manipulator, represented in figure 4.18, this means that one learning signal

exists for 5 BSNs. This learning signal indicates how the total input-output relation
(from {0 d,é d’éd} to uy) has to be adapted and not how the separate network

input-output relations (from Gd to u, , éd to u, and éd to u, ) should change.
1

)

) 3

It may thus occur that, even though the total feed-forward signal is correctly
adapted, the weights of the separate BSNs are adapted in the wrong way. The only
way the designer can influence the training of the BSNs is by selecting the
reference motions and the learning rates. In the following, we will examine in what
way the training motions and the learning rates should be chosen such that the

BSNs are correctly trained on the basis of one learning signal.
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6, 5 BSN5 }» Uy,
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6, % BSN3 +4t
) e

B a4 "

1

Figure 4.18: Parsimonious LFFC for a robot manipulator

Consider, for example, training BSN 1 in figure 4.18, which has to compensate for
gravitational influences and has the reference joint angles as inputs. The learning
signal wu, indicates how the feed forward signal, u,, must be adapted, such that it

resembles the desired feed-forward signal of the entire LFFC (4.20):

J, .. .
rl_%ed,l +d0,, + s sgn (9(1,1 )+ gmyl, cos (ed,l 0, )"' gl, cos (Hd,l )(ml +m, )

i_géd’Q +d0,. + 8, sgn (9'(1‘2 )—i— glym, cos (Hd’l + 90{.2)

27d,2
2
(4.20)
while the target function of BSN 1 is given by:
gmyl, cos (9(171 + 9{1‘2 )+ gl, cos (Gd‘l )(m1 + m2) (421)

ngm2 Cos <0d_’1 + Hd’2>

When only a few training motions would be performed, there is no way of
guaranteeing that BSN 1 would not learn part of the desired feed-forward signals of
the other BSNs. In other words, BSN 1 would learn to compensate the friction
forces and the inertia of the manipulator for these particular motions. However, the

inputs of BSN 1 consist of 6, while the friction forces depend on 0 , - This means

d )
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that the LFFC is not able to compensate the friction forces for other motions than

the training motions. In short, the LFFC has a poor generalising ability.

To correctly train BSN 1 using a particular set of motions, the terms of (4.20) that
are not in (4.21), should cancel out. This can be formalised as follows. Consider a

set of N training motions, ', = {1,...,N} . To train BSN 1 at the input values

d’

T
6, = [9 the following should be satisfied:

d a1 0

o

N
Z[J_% é;,l (ti.l >+ dlécé.,l (ti-l )+ e (92'1 (tiﬂl ))] -

— | r

s (4.22)
2 . —

Z T_QH(;,? (ti,Q )+ dz% (tz',z )+ 5, Sgn (0(21,2 (tz.z ))] =0
=1\ "2

where, ?;, is the point in time where 9;1 =0,,and {;, the points in time where

i .
0d,2 - 9d,2'

t, =arg (9{’;_,1 (t) = 9d,1)

, (4.23)
t, = arg (9;72 (t) = %,2)

We will refer to a set of training motions that satisfies the above as a sufficiently
rich set of training motions. One way to obtain a sufficiently rich set of training
motions is to perform a large amount of different reference motions. For the above
example, the same reference angles will be realised at a range of different reference
angular velocities and reference angular accelerations. However, a large number of
training motions results in an extensive training period, which is undesired.
Furthermore, some of these reference motions may be hard to realise due to
hardware limitations. Think, for example, of large reference velocities near
hardware end-stops.

We propose to generate a sufficiently rich set of training motions in another way. A
training motion should be chosen such that the desired output of one specific BSN
is temporarily much larger than the desired outputs of the other BSNs. Since the
desired outputs of the other BSNs can be disregarded, this training motion is
sufficiently rich with respect to one BSN. In this situation, the desired feed-forward
signal of the entire LFFC is equal to the desired feed-forward signal of one of the
BSNs in the LFFC. The learning signal indicates how the weights of a separate
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BSN must be adapted. Instead of training all BSNs simultaneously, only the
weights of the BSN of which the desired output is dominant are adapted. The
weights of the other BSNs are kept constant. To train all BSNs, we need to select a
series of training motions which each make the desired output of one specific BSN
dominant. Note that when choosing a training motion, we only need to consider the
untrained BSNs in the LFFC. We assume that the trained BSNs have learned their
desired input-output mapping, such that the learning signal only contains
information on how to adapt the weights of the untrained BSNs.

Proposition 4.1 (Strategic training procedure) In a parsimonious LFFC, one BSN
should be trained at a time. The training reference motions should be chosen such,
that the desired output of one of the untrained BSNs is temporarily dominant. Only
the weights of this BSN are adapted during this period, the weights of the other
BSNs are kept constant. This yields the following training procedure:

1. Choose a training motion, such that the target signal of one of the untrained
BSNs in the parsimonious LEFC is dominant.

2. Train the corresponding BSN wuntil its weights have converged. During
training, the previously trained BSNs are used for control.

3. If there are any untrained BSNs left, go to 1, else, go to 4.
4. Stop.

For the robot manipulator, the strategic training procedure will look as follows
[Steenkuijl, 1999]:

Algorithm 4.5 (Strategic learning procedure for a robot manipulator)

1. The first BSN that is trained is the BSN that has to compensate the
gravitation force, see figure 4.6. By choosing a low-velocity low-acceleration
reference motion, the effects of the inertia of the manipulator and the friction

in the joints can be made small. Since the desired feed-forward signal (4.21)
contains the term (9 o d2), the reference motion should contain various

combinations of {0d1’9d.2} . After training the weights of this BSN are fixed.

2. Next, the BSN is trained that compensates for the inertia of the
manipulator. The reference motions should be chosen such that the friction

forces are kept low. This means that the reference motion will consists of a
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rapid sequence of short accelerations and decelerations. After training, the

weights of this BSN are also fixed.

3. Finally, we train the BSN that compensates for the friction forces. Since the
other BSNs have already been trained, no specific reference motion is
necessary. However, the reference motion should span all velocities that will

occur during normal operation.

4.5 Discussion

When using the straightforward way to determine the inputs of the LFFC, as
presented in chapter 3, a multidimensional BSN will often result. This confronts us
with the problems associated with the curse of dimensionality. As a solution, we
proposed to split up the single high-dimensional BSN into a number of low-
dimensional BSNs, each compensating for one specific disturbance. The result is
known as a parsimonious network structure. Splitting up the single BSN can be
performed in two ways:

— Firstly, we make use of prior qualitative knowledge of the plant dynamics
and the reproducible disturbances to split up the BSN.

— Secondly, when prior knowledge is unavailable or insufficient, we can employ
empirical modelling techniques to obtain the parsimonious network
structure. Two different techniques have been discussed, ASMOD and fuzzy
clustering. Both techniques are computationally intensive. At the time of
this research, generating a parsimonious network structure from a highly
non-linear, multi-dimensional data set took excessive computer time. This
makes these solutions inapplicable in practice, until the computer power has
increased drastically. To show that, in principal, these techniques can create
a parsimonious network structure, in the next chapter, fuzzy clustering is
used to optimise the B-spline distribution in a time-indexed LFFC.

Training the BSNs in a parsimonious LFFC is not a trivial task. When all BSNs
are trained simultaneously, a large number of training reference motions is usually
needed. Otherwise, BSNs may learn part of desired feed-forward signals of other
BSNs. To train a parsimonious LFFC with a small number of training reference

motions, we proposed a strategic learning procedure. Instead of training all BSNs
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simultaneously, each BSN is trained individually. The training reference motion is
chosen such that the desired feed-forward signal of this BSN is much larger than
the desired feed-forward signals of the other untrained BSNs.

Sometimes it may be difficult or even impossible to design a set of training motions
suitable for strategic training. Consider, for example, the case where the Coriolis
and centrifugal effects in the robot manipulator cannot be disregarded. To
compensate for these effects, two BSNs should be added to the parsimonious LFFC
that have respectively {91,02,92} and {91,02} as inputs. The desired feed-forward

signals are:

BSN 6: u, = —2[l,m, sin (92 )9291 — 1, l,m, sin (92)9292 (4.24)

BSN 7: u, = L1,m, sin (6, )6,0, (4.25)

The desired feed-forward signal of BSN 6 makes proper training of BSN 2, which
has to compensate for the friction in the second joint, difficult. The desired feed-
forward signal of BSN 2 is Ugy = d2t9'd12 + s, sgn (0.d,2>. To properly train BSN 2, a
wide range of velocities should be realised. However, in this case the term
—l,l,m, sin (02 )9292 cannot be kept small. The solution in this kind of situations is
to combine the two separate BSNs in one BSN. In the above case, this means that

5 = d2(9.d72 + 5, sgn (édz)’ is stored in a BSN that

the compensation of the friction, u,
has {91,02,92} as inputs. Consequently, the network structure is less parsimonious
and more training samples are needed to compensate for the friction, but at least

the BSN can be trained properly.

The strategic training procedure remains rather heuristic. More research is needed

on the following topics:

— Existence of a strategic training procedure given a parsimonious LFFC. As
discussed above, it may not always be possible to select a set of training
motions that make only one specific desired feed-forward signal dominant. It
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would be desirable to have a systematic procedure that indicates whether a
set of training motions exists that is sufficiently rich.

Systematic procedure that gives sufficiently rich training motions. The way in
which the training motions are selected is ad-hoc. This may result in
designing a set of strategic training motions by means of trial and error. To
prevent this, a systematic procedure is needed, that derives a set of
sufficiently rich training motions, on the basis of qualitative knowledge of the
plant dynamics and the disturbances.

Other types of training motions that are sufficiently rich. We proposed to
design a set of sufficiently rich training motions, by making the desired feed-
forward signal of one of the untrained BSNs dominant. Other training
motions may exist, that are also sufficiently rich. One could think, for
example, of adding noise to the reference motion.
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5.1 Introduction

In the previous chapters, several aspects of LFFC have been dealt with. The
obtained knowledge and insight will now be used to formulate a practical design
procedure. In short, the following design choices have to be made:

1. Feedback controller. The feedback controller compensates for random
disturbances and generates a learning signal for the feed-forward part. In
chapter 2, it has been shown that the minimum width of the B-splines, and
thus the maximum achievable accuracy, depends on the frequency response
of the closed loop system. Since the frequency response of the closed loop
system depends on the feedback controller, it indirectly determines the
maximum achievable tracking performance. When the minimum width of the
B-splines is too large to achieve an acceptable tracking error, redesigning the
feedback controller offers a solution. However, this requires that the feedback
controller has to be designed such that the bandwidth of the closed-loop
system increases (see chapter 2) and it means that the stability robustness
for variations in the plant dynamics decreases. We propose to solve this
problem in an alternative way. The feedback controller is designed such that
it features robust stability. If the resulting minimum width of the B-splines
does not yield the desired tracking performance, a learning filter is added to
the LFFC. If the learning filter is designed as proposed in chapter 3, the
minimum allowable width of the B-splines decreases.

2. Inputs of feed-forward part. The inputs of the feed-forward part depend on
the type of motion that has to be performed. In case of repetitive motions,
the periodic motion time is preferred as input (see chapter 2). When

121
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performing random motions, the inputs should consist of the reference
position and eventually derivatives/integrals thereof. In chapter 3 it has been
shown how the inputs can be selected on the basis of a state-space
description of the plant.

3. Structure of the feed-forward part. In general, the result of the previous
design choice is that the feed-forward part should have multiple inputs.
When implementing the feed-forward part as one multi-dimensional BSN, we
are confronted with the problems associated with the curse of dimensionality.
This problem can be overcome by replacing the multi-dimensional BSN by a
so-called parsimonious network structure, consisting of several BSNs that
have a lower dimension. Chapter 4 shows that this can be done either on the
basis of prior knowledge of the plant dynamics and the disturbances, or in an
automated way by using empirical modelling techniques.

4. B-spline distribution. Chapter 2 clarified that a too small width of the B-
splines causes learning to diverge. For the time-indexed LFFC, the minimum
width of the B-splines, for which learning converges, can be determined on
the basis of the frequency response of the closed loop system. In chapter 3, it
was argued that in case of an LFFC, the width of the B-splines, as seen in
time, should also be sufficiently wide, in order to guarantee that learning
converges. In case of a multi-dimensional BSN it may be difficult to design a
B-spline distribution that satisfies this. It was shown that regularisation may
overcome this problem.

5. Learning rate. The learning rate determines how strong the weights of the
BSN are adapted. In chapter 2, the maximum value of the learning rate, for
which learning converges, has been determined by means of a frequency
response of the closed loop system. The learning rate should be chosen small
(close to 0), when the plant is subject to considerable noise. Otherwise, a
large learning rate can be chosen.

6. Training motions. Training a time-indexed LFFC and an LFFC that
comprises only one BSN can be performed in a straightforward way. Special
care should be taken when training a parsimonious LFFC. Chapter 4 shows
that simultaneously training all BSNs, generally results in BSNs that learn
feed-forward signals other than the desired ones. To overcome this, the BSNs
are trained one at a time. The reference motions should be chosen such that
the desired feed-forward signal of one of the untrained BSNs becomes
dominant. Only the corresponding BSN is trained, the weights of the other
BSNs are kept constant.

In the following, design procedures for both a time-indexed LFFC and an LFFC
will be dealt with in more detail. This will be done for two applications. The first
application is the LIMMS. The second application is a part of a flight simulator.
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5.2 LIMMS

5.2.1 Set-up

The LiMMS has been described in chapter 1. An approximate model, used in the
simulations, is show in figure 5.1.

Uy NEREEENRE .
o 'sj's g
F
e dy e
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Figure 5.1:  Simulation model of the LiMMS

The cogging was modelled as:
F, () =10sin (1.6 10"z (5.1)

Experiments showed that (5.1) is only a rough approximation of the actual cogging
characteristic. This is caused by the fact that relatively low-cost magnets have been
used with considerable magnetic tolerances and that the magnets are not placed
with the highest possible accuracy. The cogging characteristic that results is a sine-
shaped function of which both the period and the amplitude depend on the position
of the translator LiMMS. Furthermore, the cogging characteristic showed to be
dependent on the motion direction. In the simulation model, only viscous friction is
considered. It is assumed that in the real set-up the friction characteristics can be
described by the Stribeck curve. We conclude that the LFFC has to compensate
for:

— The inertia of the LIMMS.
— Non-linear friction.

— The cogging forces.
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5.2.2 Design Procedure for a Time-Indexed LFFC

In some applications the LiIMMS has to perform repetitive motions. Therefore, we
firstly consider a time-indexed LFFC. The design procedure for a time-indexed
LFFC is given below.

Step 1: Design the feedback controller

In these experiments, the feedback controller was obtained by means of an auto-
tuning mechanism present in the LiIMMS set-up. The feedback controller is of the
PD-type, which is put in series with a low-pass filter:

(4007)?
s2 +1007s + (4007)°

C (s) = (55385 + 275280) (5.2)

Step 2: Determine the minimum width of the support of the B-splines and the
maximum learning rate

In order to determine the minimum width of the B-splines for which learning
converges, a Bode plot of the negative complementary sensitivity function is
required. This Bode plot of figure 5.2 has been obtained by means of experimental
frequency analysis.

The peak in the amplitude at approximately 20 Hz is caused by a measurement

error and should be disregarded. To obtain the minimum B-spline width, we need
to determine (see chapter 2):

=T (jw)|,

¢, = arccos|—0.0147 — |—T(jw)| (5.3)
{weR|cos(p)<0}
Close inspection of figure 5.2 gives:
-7 (jw)] . =15 (3.5 dB) (5.4)
min |-T(jw) = 0.84 (—1.5 dB| (5.5)

{wER\cos(p)SO}
Using (5.4) and (5.5), (5.3) yields:

¢, = arccos(—0.0263) = —1.497 (5.6)
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Figure 5.2: Bode plot of —T

The frequency at which the phase shift is equal to —1.497 is:
w=>52 27r{rad sfl] = 1047r[rad sfl] (5.7)

This gives the following minimum width of the support of the B-splines (see

chapter 2):
(5.8)

i =2 = 0.01921s)
min 1047{‘

Next, the maximum learning rate is determined. In order for learning to converge,

the learning rate should satisfy:
2 (5.9)

Using (5.4) this gives:
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2
|-T (jw)|

o

S

233 (5.10)
15

Step 4: Choose the B-spline distribution
The B-spline distribution should be chosen such that the width of the support of
the B-splines is larger than d,,;,.

Step 5: Select a learning rate

As discussed before, v should be chosen small (close to 0), when the plant is subject

to considerable noise. If this is not the case, a larger value of v is allowed. When

, the tracking error will decrease gradually (see chapter 2),

1
hile ——MM <~ < ——
U Friel, T T e,

oscillatory way. Since we consider the latter learning behaviour undesired, we

recommend 7y & 1 = 0.67.

|-T ( jw)]

causes the tracking error to decrease in an

o0

Step 6: Train the time-indexed LFFC

Training a time-indexed is straightforward.

5.2.3 Validation Experiments of the Time-Indexed LFFC

In the following, two series of experiments will be performed. The goal of the first
series of experiments is to validate the minimum width of the support of the B-
splines and the maximum learning rate. Next, the ability of fuzzy clustering to
determine a B-spline distribution will be examined.

In order to validate the minimum width of the support of the B-spline and the
maximum learning rate, these values will be determined by means of experiments.
The reference position that the LIMMS has to track is given in figure 5.3.
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-0.1 A

-0.2 A

Figure 5.3: Reference position

Experiment 5.1 (Width and learning rate conform the rules)

In the first experiment, the support of the B-splines is chosen slightly larger than
the minimum support, namely d=0.0197 [s]. In order to be sure that eventual
occurrence of unstable behaviour is caused by a too small width of the support of
the B-splines and not by a too large learning rate, the value of the learning rate is
chosen significantly smaller than the maximum value, namely y =0.6. These values
should yield a stable and well-performing LFFC. The tracking error before learning
is given in figure 5.4.
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Figure 5.4: Tracking error without learning

Within 10 repetitions the time-indexed LFFC has converged. In order to examine
whether the LFFC remains stable, learning is continued. In figure 5.5, the tracking
error after 400 runs is presented. By learning the tracking error has decreased
drastically. The controller remains stable and the learning mechanism has
converged, which means that the tracking error does not decrease any further.
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Figure 5.5: Experiments with d>d . ,andy ;<Y e

Experiment 5.2 (Width not conform the rules)

In the second experiment the support of the B-splines is chosen somewhat smaller
than d,,;,, d=0.0183 [s]. Again, the learning rate is chosen p=0.6. When these values
are used the LFFC should become unstable. In figure 5.6 the tracking error after
200 runs is given. After the error had decreased in the first number of runs, it

started to increase as learning continued.
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Figure 5.6:  Ezperiments with d<d_. —and y,<y 4

Using this result and the result of experiment 5.1, it can be concluded that the
value of d,;, is not conservative. When the support of the B-splines is chosen only
slightly smaller than d,,, an unstable LFFC results.
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Experiment 5.3 (Determination of the maximum learning rate)

Next, the maximum value of p, as obtained in (5.10), is validated. This is done by
searching for the maximum experimental value of » in an iterative way. The width
of the support of the B-splines is chosen d=0.035 [s]. The result of these
experiments is that the maximum value of y is equal to 2. This can be seen in the
following two experiments. First, the learning rate is chosen y =1.98. In figure 5.7
the tracking error in the first, the 15" and the 50" run is given. The tracking error
slowly converges and remains small as learning continues.
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Figure 5.7:  Learning rate experiments, d>d_. —and y =1.98

Next, the learning rate is chosen p=2.01. Figure 5.8 shows the tracking error in the
first and 6™ run. It can be seen that the tracking error has increased.
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Figure 5.8: Learning rate experiments, d>d

min

andy =2.01



130 Design & Applications

As learning continues, it will increase even further. The maximum value of y as
determined in (5.10) is thus a somewhat conservative value.

Next, fuzzy clustering will be used to construct a B-spline distribution for a time-
indexed LFFC. In chapter 4, it was proposed to use fuzzy clustering to obtain a B-
spline distribution for an LFFC. However, such an LFFC involves large multi-
dimensional data sets. The computational complexity of fuzzy clustering would
cause excessive computation time. Therefore, we choose to demonstrate fuzzy-
clustering with a time-indexed LFFC. The reference position that the LiIMMS has
to track repeatedly is shown in figure 5.9.

Z 005
S0
0.1
0.2 ‘
0 1 2

t[s]

Figure 5.9: Reference position for fuzzy clustering experiment

Experiment 5.4 (First step of the clustering algorithm)

The basic idea of applying empirical modelling techniques in LFFC is the following.
After learning has converged, a tracking error (and wu.) remains. Apparently, using
the current B-spline distribution, the BSN is unable to approximate the desired
feed-forward signal better. In other words, it is unable to approximate uz+u, To
overcome this, empirical modelling techniques are used to find a B-spline
distribution that is better able to approximate wu +u, Since at the start of the
algorithm w=0, the initial B-spline distribution is thus based on u.. The initial B-
spline distribution can be either constructed by fuzzy clustering or by hand (after
which fuzzy clustering optimises this B-spline distribution). The output of the
feedback controller and the resulting tracking error are given in figure 5.10 and
5.11.
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Figure 5.10:

Figure 5.11:
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Tracking error of the feedback controller

A B-spline distribution is chosen that has a small number of B-splines. In this way,
the positions of the B-splines strongly determine the ability of the LFFC to
accurately compensate for disturbances such as cogging. In this research, we choose

to select the

initial B-spline distribution by hand, based on the shape of . (figure

5.10). The BSN approximates u. by piecewise first-order polynomial functions.
Approximately 75 piecewise first-order polynomial functions are required to make a
rough approximation of u.. Therefore, a total number of 75 B-splines is chosen.
The learning rate is chosen small, »=0.4. The tracking error that remains after
learning can be seen in figure 5.12. (Note the difference in scale compared to figure

5.11).
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0 1 t[s] 2

Figure 5.12: Tracking error using initial B-spline distribution

The reference path had to be presented 8 times before learning had converged and
no further improvement could be obtained. The tracking error has been reduced by
a factor 10 compared to the tracking error of the feedback controller.

Experiment 5.5 (Result of the clustering algorithm)

To obtain an even higher performance, fuzzy clustering is used to optimise the B-
spline distribution. After the fuzzy clustering algorithm (as described in chapter 4)
has been performed twice, no further improvement of the tracking error could be
obtained. In figure 5.13, the tracking error that resulted after optimisation is
shown.

40

20

e (10" [m])

0 1 2
t[s]

Figure 5.13: Tracking error using improved distribution

It can be seen that fuzzy clustering has been able to obtain a B-spline distribution
that gives a smaller tracking error than could be obtained by the initial B-spline
distribution.
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5.2.4 Design of a Parsimonious LFFC

Design Step 1: Design the feedback controller

The same feedback controller is used as in case of the time-indexed LFFC:

(4007)?
s% +1007s +(4007)>

C (s) = (55385 + 275280) (5.11)

Step 2: Determine the inputs of the feed-forward part

The required inputs of the feed-forward part can be obtained by expressing the
plant dynamics in the form presented in chapter 3. For the LiMMS, this yields the
following state-space description (see chapter 3):

. 0 1 0 0

z T

5= 0 _d_L x.-i-_FC(:z:x)_Ff(ﬂC) +| 1 |u
mp, mp mp mp (5.12)
T

"

Where Ff (#) represents the Coulomb friction and the stiction (note that this term

is not present in the model used in chapter 3), F,, (z) represents the cogging force

and d; is the viscous friction. In section 3.2 it was derived that the LIMMS (5.12)
belongs to the class of plants that can be controlled by means of LFFC. From

(5.12) we can derive the following desired feed forward signal:

d F(r,7)  F (7]

u, =m, Lyq4 L + + 7
my my my (5.13)
= dyi + F, (r,#) + F, () + m,

The feed-forward part should thus have the following inputs {r,7,#} .

Step 3: Choose the structure of the feed-forward part

In (5.13) it can be clearly seen that the u, consists of 3 independent parts.
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Friction compensation: dL7*+Ff(1*J , which requires a BSN that has 7 as
input.

Cogging compensation: F,,, (r,7). In the first part of this section, it was
argued that the cogging characteristic differs for positive and negative
velocities. We could compensate cogging using a BSN that has r and 7 as
inputs. Since the cogging characteristic only depends on the motion
direction, it is also possible to compensate cogging by 2 BSNs, one for each
motion direction. From a parsimonious point of view, the latter option is

attractive.

Compensation of the inertia: m, ¥ , requiring a BSN that has ¥ as input.

L

By creating one BSN for each term, the following parsimonious LFFC results.

s

» BSN
N
+

> BSN H?
~ BSN J—*»TZF
Lol ZIER A E

Figure 5.14: Parsimonious LEFC for the LiMMS

Step 4: Choose the B-Spline distribution

Once a network structure has been created, the B-Spline distribution should be
selected. The B-splines that are defined on the reference motion, need to be
sufficiently wide when seen in time (see chapter 3). Therefore, the analysis that is
performed in step 2 of the design procedure for a time-indexed LFFC should also
be carried out for the LFFC. From the previous design procedure, we know that
the B-splines need to be at least 0.0192 [s] wide. With this in mind, we design a B-
spline distribution on the basis of prior knowledge of the plant dynamics and the
disturbances:
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— Cogging BSNs. The period of the cogging is known to be 1.6 [cm]. In order to
be able to accurately approximate the desired feed-forward signal, which can

roughly be described by 10 sin(l.G 10727’) , we choose to define 1000 B-splines

on the input domain, [—0.61 [m], 0.11 [m]]. This means that 21 B-splines are
defined on 1 cogging period. The width of the B-splines is 0.00144 [m]. In
figure 5.15 a part of the B-spline distribution and the desired feed-forward
signal (based on the cogging in the simulation model) are shown. The width
of the B-splines is sufficiently small to accurately approximate the desired

feed-forward signal.

« 1.6 |[cm >
T [cm]
(cogging) /\
710,
r
2 14
0.5 1
0 w \
<> r
0.14 [cm]

Figure 5.15: B-spline distribution of the friction BSN

In order to guarantee that, seen in time, the B-splines are at least 0.0192 [g]
wide, this BSN must be trained at a reference velocity that satisfies the
following condition:

0.00144 [m]

00192 [ = 0.075 [ms™| (5.14)

— Friction BSN. Because the friction characteristic is non-linear, we choose to

define 11 B-splines on the input domain, {—1 [msfl},l [msfl]} . Note that this

B-spline distribution is not dense enough to compensate for stiction.



136 Design & Applications

O\ 1
-1 0 1

7 [ms™]

Figure 5.16: B-spline distribution of the friction BSN

The width of the B-splines is 0.2 [ms1]. Therefore, this BSN must be

trained at a reference acceleration that satisfies:

0.2 [ms™] B Y

— Inertia BSN. This BSN has to learn a simple linear function, namely m, i .

This feed-forward signal can be generated using only 3 B-splines defined on

{—5 [msfz],'c') [ms%]] .

-5 0 2 D

Figure 5.17: B-spline distribution of the inertia BSN

Step 5: Choose the learning rate

In the experiments the learning rate is chosen relatively small, i.e. 0.1.

Step 6: Train the LFFC

Because the LFFC consists of multiple BSNs, a series of training experiments needs
to be chosen in which each BSN is trained separately. The reference motions must
be chosen such that the desired feed-forward signal of one of the untrained BSNs
(and thus one physical phenomenon) becomes dominant. In case of the LIMMS, the
first BSN that is trained is the cogging BSN. By choosing a reference motion that
has a low velocity and a low acceleration, the effects of viscous friction and the
inertia can be made small. For this reference motion, the dominant physical effects
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are cogging, Coulomb friction and stiction. Since two cogging BSNs exist, one for
positive and one for negative velocities, these are able to learn to compensate the
Coulomb friction as well.

0.015
7 [m] 0: 7 [ms™]
-0.15- 07
-0.3 ‘ -0.015 w
0 40 80 0 40 80

t [s] t [s]

0.04

7* [ms™] M

0 |

-0.04 ‘

0 40 80

t[s]

Figure 5.18: Training motion for the cogging BSNs

After applying the above training experiments, the following input-output
mappings of the separate BSNs results (figure 5.19) It can be clearly seen that
these contain an sine-shaped component, to compensate for cogging, and an offset,
to compensate for Coulomb friction. From the fact that the sine-shaped parts of
the feed-forward signals differ, we may conclude that the cogging characteristic
indeed depends on the motion direction.

0.15 0.15
Up Up
0+ 0+
-0.15 w w w -0.15 w w w
-0.3 -0.2 -0.1 0 0.05 -0.3 -0.2 -0.1 0 0.05
7 [m] 7 [m]

(a)

(b)

Figure 5.19: a) 10-mapping of the cogging BSN for positive velocities
b) I0-mapping of the cogging BSN for negative velocities

Next, the acceleration BSN it trained. Since cogging and Coulomb friction are
compensated by the cogging BSNs, the reference motion should be chosen such
that the effects of the viscous friction are small. This can be done by selecting a
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reference motion which consist of a rapid sequence of positive and negative
accelerations (see figure 5.20).

0 0.03
7 [10”m] 7 [ms™]
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Figure 5.20: Training motion for the inertia BSN

Figure 5.21, the IO-relation of the BSN that results is shown. It equals the input-
output relation that was to be expected, i.e. a linear function passing through the
origin.

0.1

Up

7 [ms2]
Figure 5.21: 10-mapping of the inertia BSN

Finally, the friction BSN is trained. Since all other phenomenons have been
compensated for any type of reference motion can be applied. In order to
accurately compensate friction, we choose to train the friction BSN in two stages.
The reference motion in the first experiment contains a wide range of velocities, see
figure 5.22.
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Figure 5.22: First training motion for the velocity BSN

In the above reference motion, the reference velocity only has a small velocity for a
short time. The LFFC may not have learned to accurately compensate friction at
low velocities. Therefore, a second reference motion is applied in which the
reference velocity is small.
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-0.15 0
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Figure 5.23: Training of the velocity BSN (2)

When looking at the input-output mapping of the friction BSN (figure 5.24a), it
can be seen that it did not learn to accurately compensate friction at high
velocities. In the intermediate velocities the viscous friction appears to be linear.
Figure 5.24b shows the input-output mapping of the inertia BSN.
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Figure 5.24: 10-mapping of the friction BSN

5.2.5 Evaluation Experiments

In this section, the performance of the parsimonious LFFC is evaluated. This is
done by presenting 3 reference motions, for which the parsimonious LFFC has not
been trained. We will compare the tracking performance of a parsimonious LFFC
with the tracking performance of the feedback controller and a time-indexed LFFC.

Experiment 5.6 (Evaluation motion I)

The first evaluation motion is a low-velocity motion (figure 5.25).

0.075
7 [m] 0: 7 [ms™]
0.1- 07
-0.2 ‘ -0.075 \
0 5 10 0 5 10
t [s] t [s]
1.5
i* [ms™?
0 |
-1.5 ‘
0 5 10
t [s]

Figure 5.25: Evaluation motion I: slow

This evaluation motion has been performed by a time-indexed LFFC in which the
width of B-splines equals 0.04 [s]. In figure 5.26 the tracking performance of the
controllers is presented (note the different scales).
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Figure 5.26: a) Tracking error of the feedback only
b) Tracking error of the parsimonious LFFC
¢) Tracking error of the time-indexed LFFC (d=0.04[s])

The parsimonious LFFC obtains a tracking error that is a factor 10 smaller than
the tracking error of the feedback controller. Figure 5.26b shows an offset in the
tracking error that has the same shape as the reference velocity. This is probably
caused by friction. Apparently, the friction BSN is unable to completely
compensate for friction. Furthermore, a sine shaped component appears in the
tracking error. It may be either so that the cogging BSN has not been trained
properly or that another phenomenon is present, probably errors in the
commutation, that causes a similar tracking error.

The time-indexed LFFC shows a much smaller tracking error than the
parsimonious LFFC. Because the feed-forward signal of the time-indexed LFFC has
converged, we assume that the phenomenons that are compensated for are
reproducible. We conclude that either the BSNs of the parsimonious LFFC have
not been trained accurately enough or that a phenomenon exists that cannot be
compensated by this set of BSNs. Because the tracking error that remained after
training the cogging BSN (a figure of this is not presented in this thesis) was much
smaller than the amplitude of the sine-shaped part of the tracking error, the latter
conclusion is most likely.

Experiment 5.7 (Evaluation motion IT)

The reference position, velocity and acceleration of the second reference motion are
given in figure 5.27.
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Figure 5.27: Evaluation motion II: intermediate

The resulting tracking errors are shown below.
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Figure 5.28: a) Tracking error of the feedback only
b) Tracking error of the parsimonious LFFC
¢) Tracking error of the time-indexed LEFC (d=0.04[s])

Again, the tracking error of the parsimonious LFFC is a factor 10 smaller than the
tracking error of the feedback controller. The conclusion that a phenomenon other
than cogging causes the ripple in the tracking error is confirmed by figure 5.28b.
The average amplitude of the ripple in the tracking error has increased, i.e. the
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disturbance depends on the velocity of the LiMMS. The smallest tracking error was
obtained by the time-indexed LFFC.

Experiment 5.8 (Evaluation motion III)

The last evaluation motion is presented in figure 5.29.
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Figure 5.29: FEvaluation motion I11: fast

Figure 5.30 presents the resulting tracking errors.
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Figure 5.30: a) Tracking error of the feedback only
b) Tracking error of the parsimonious LFFC
¢) Tracking error of the time-indexed LFFC (d=0.03/s])
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Figure 5.30b shows a relatively large tracking error at the points in time where the
reference velocity equals 0. We conclude that the parsimonious LFFC is unable to
compensate for stiction, which is to be expected on the basis of the input-output
relation of the velocity BSN (5.24). As before, the tracking of the time-indexed
LFFC is the smallest.

5.2.6 Discussion

Experiments using a time-indexed LFFC were performed to validate the stability
conditions derived in chapter 2. The results of the experiments are similar to the
results of simulations, i.e. the value of the d,, is accurate while the maximum
learning rate has a rather conservative value. In spite of the conservative value of
the maximum learning rate, learning converged in a limited number of runs
(typically 10 to 15).

A parsimonious LFFC has been designed for the LiMMS. To train the
parsimonious LFFC a number of training experiments were selected. Experiments
that are not discussed in this thesis show that this needs to be done carefully.
Selecting an unfit training motion causes the BSN to approximate the wrong feed-
forward signal. All BSNs that are trained subsequently also approximate an
erroneous feed-forward signal. After training, the input-output relation of the BSN
should be inspected to ensure that it has not approximated (parts of) a desired
feed-forward signal of another BSN in the parsimonious LFFC. The training
motions proposed in this chapter yielded a parsimonious LFFC that was able to
obtain a 10 times smaller tracking error than the feedback controller. The time-
indexed LFFC showed an even smaller tracking error than the parsimonious LFFC.
This is probably caused by a phenomenon other than the ones considered in the
selection of the BSN structure.

5.3 Control Loading System

5.3.1 Introduction

In this section, we will apply LFFC to a part of a flight simulator set-up. A flight
simulator is a cost-effective and safe way to train a pilot in handling an aircraft.
The simulator enables the pilot to experience all sorts of flight situations without
running into the risks involved when using a real aircraft. An important part of a
flight simulator is the so-called Control Loading System (CLS). This system
comprises the command stick of the simulator and the hard- and software
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connected to this stick that emulate the behaviour of an aircraft as experienced by
the pilot through the stick. Here, we consider a specific realisation of such a control
loading system. The plant part of the set-up is presented in figure 5.31.

Stick

0
Tachometer

Encoder

Frame
(Fixed World)

Potentiometer

Force .~
Sensor

\&\\\\\\\\ Ball-screw-spindle
$

Figure 5.31: Plant part of the set-up

It consists of the following components:

— The stick. The stick has one rotational degree of freedom. Its angular

position, 6, [rad], is measured by a potentiometer.

A spindle and a ball-screw. Together these form the transmission between
motor and stick. The transmission between the motor and the stick is
considered stiff. This means that the angular velocity of the stick,
0

. [rads™], depends on the angular velocity of the motor, 6, [rads™], in a

linear way:

6. =nd,

[rads™] (5.16)

In this set-up, the transmission coefficient n=0.004;

An electric motor. A tachometer and an encoder are mounted on the motor
to measure respectively the angular velocity and the angular position,

6. €10 rad, 27 rad].

— An electric power amplifier (not shown in figure 5.31).
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— A force sensor. The force sensor measures the force, F., [N], applied on the
stick by the pilot.

By controlling the plant appropriately, the ‘mechanical impedance’ the pilot
experiences at the stick can be controlled. This is done as shown in figure 5.32. The
motor is contained in a velocity loop with a Pl-controller that is incorporated in
the off-the-shelf amplifier. This loop is called the inner loop. The commanded

motor angular velocity, 6  [rad s'l] , for the inner loop is calculated by a model of

m,d [

the aircraft controls. Inputs to this model are the force, F,, [N], and the angular

ext

position of the simulator stick, g [rad]. This forms a secondary MISO loop, called

the outer loop.

outer loop

Foat ireraft 5 inner loop
.| aircra md 4
| controls 4’>O,—>.—>C .:P
| model 'I O . W

99

Figure 5.32: Control Loading System set-up

To make the simulation as realistic as possible, the impedance that one feels when
manipulating the stick, should be determined completely by the model of the
aircraft controls. To achieve this, the controller, C, in the inner loop has to
compensate for all dynamic properties of the plant, P; only some (small) rotational
inertia is acceptable, as any aircraft stick will feature this phenomenon. However,
in the set-up used in this research, the inner loop is unable to fully realise this.
When the user moves the stick, small irregularities can be felt. In the following, we
will discuss possible causes of these irregularities and examine whether LFFC can
overcome this problem.

5.3.2 Motivation for LFFC

The most important dynamic properties of the plant that the inner loop has to deal
with are:

— Cogging force. The cogging force is the magnetic force between the
permanent magnets and the iron in the motor. The magnitude of the cogging
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force depends on the angular position of the motor. It is known that there
are 32 poles in the motor and therefore we expect 32 cogging periods per 27
[rad] motor rotation.

— Friction in the motor and the ball-screw. It is assumed that the friction
characteristic can be approximated by a Stribeck curve [Armstrong-Helouvry
et al., 1994]. The Coulomb friction and the stiction cause the so-called
reversal bump. The reversal bump is the tracking error that occurs when the
motion direction changes; the feedback controller is unable to compensate for
the abruptly change in the Coulomb friction force and the stiction. When the
reversal bump is significant, the pilot looses the illusion of handling a real
system.

— Inertia of the motor, the transmission and the stick. Because of the small
transmission coefficient (n=0.004) this phenomenon is small compared to the
friction force.

— Measurement noise.

Of these phenomenons only measurement noise is stochastic in nature; all others
are reproducible and static, their momentary value is related to the momentary
state of the plant. Therefore, we propose to compensate the disturbances by an
LFFC [Velthuis et al., 1998; Vrielink, 1998; Bouwhuis, 1999]. In the following, the
separate design steps will be presented. Because in normal operation the control
loading system does not perform repetitive motions, only the design of a
parsimonious LFFC is considered.

5.3.3 Design Procedure for a Parsimonious LFFC

Step 1: Design the feedback controller

As a feedback controller we use the standard PI controller that was present in the
set-up (5.17).

Cs) = 0.005[1 + 0 L

.01s

] (5.17)

Step 2: Choose the inputs of the feed-forward part

In order to select the inputs of the feed-forward part, we will express the dynamics
in the form that was proposed in chapter 3. This results in the following state-
space description:
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o1 [0 e, 0 0

i1 lo =244, 1 =F(6,) = F,(6,)|F| 1|
J J J (5.18)
0

6, =[0 1| "
07”

With,
J: the inertia of the motor, the transmission and the stick;

d:  the viscous friction in the transmission;

c

F. (6,

F,(6,): the cogging force;
¢ :

the Coulomb friction and the stiction.

Next, we check whether the control loading system can be controlled by means of
LFFC.

— C may contain only one element, C]., that is unequal to zero. In (5.18),

C = [0 1] , which means that this condition is satisfied.

— C]. must be invertible. Since C, =1, it is invertible. This condition is also
satisfied.

— B, must be invertible. In B, = %, which is invertible if J > 0. Since J>0,

the last condition is also satisfied.

We can conclude that the control loading system can be controlled by means of
LFFC. The desired feed-forward signal is given by:

(émd) +Jb

ud = dem,d + FZ? (om,d) + Ff m,d (519)
+ F,

~ dém_’d +F, (em,d) f (9%(1)

With,
6,,: the reference motor angular position;

9m . the reference motor angular velocity.
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i

4 the reference motor angular acceleration.

Due to the small transmission coefficient, the term Jém is much smaller than the

d

rest of the terms and can be disregarded. This means that, in order to be able to

generate the desired feed-forward signal (5.19), 6

- and Gm should be selected as

d

inputs of the feed-forward part.

Step 3: Choose the structure of the feed-forward part

Because none of the terms in (5.19) depends on 6 as well as 9m ; » friction and

cogging can be compensated by separate BSNs. The LFFC that results is depicted
in figure 5.33.

».

0

m,d ]
— > BSN 1
v,
Lt
» BSN 2 >
t(A)—b C ——>O—>| P —>

Figure 5.33: LFFC structure for the CLS

Experiments showed that the LFFC was able to compensate the unknown friction
but not the cogging force. The fact that BSN 1 could not be trained properly can
be understood as follows. In the control loading system, the reference angular
velocity of the simulator stick is tracked accurately at the expense of errors in the
angular position. This was chosen because the pilot does not interpret small errors
in the angular position of the simulator stick as unrealistic. However, errors in the
angular velocity of the stick are interpreted as unrealistic. In order to prevent too
large errors in the angular position of the motor (and thus of the stick) these are
compensated by the outer loop (figure 5.34). The aircraft controls model consists of
a model of the plant that is to be simulated and a correction term for errors in the
angular position of the motor. Because a correct angular velocity of the stick is the
most important, K is chosen small.
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aircraft controls model
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Figure 5.84: Aircraft controls model

Motor angular position errors of approximately 0.21 [rad] occur frequently, while in
our set-up the period of the cogging force is 0.19 [rad]. So the error in the angular
position of the motor is of the same order of magnitude as the period of the cogging
force. Note that BSN 2, which compensates for friction forces, cannot prevent
positional errors. Firstly, it is unable to exactly compensate the friction force, such
that small errors in the angular velocity (and thus in the angular position) remain.
Furthermore, random disturbances cause errors in the angular velocity. Because K
is chosen small, and consequently errors in the angular position of the motor are
hardly compensated, the errors in the angular velocity may result in a large error
in the angular position of the motor.

When this is the case, compensating the cogging force using a feed-forward
controller is not possible. This is illustrated in figure 5.35, where the magnitude of
the cogging force is shown as a function of the position of the stick.

Orm.a(t) 0.19 [rad]

A A A AN
IVRYRVEVArT"

D Hm( t) -

0.42 [rad]

Figure 5.85: Cogging force as a function of the motor angle

At a certain point in time, ¢, the reference angle is ¢ (). The expected cogging

force at 0  (t) is F, (9 (t)) However, due to fact that the reference angular
m,d c\"m,d
velocity is tracked instead of the reference angular position, the actual value of the

motor angle is 6,, (t) € [Hm‘d(t) -0.21,0 . (t)+ 0.21] [rad]. It can be seen that there
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is no direct relation between the actual cogging force, F,(6,, (t)), and the expected

cogging force, F, (Hm,d(t)).

In figure 5.36 an example of this is shown in the time-domain. The upper part of

the figure shows F, (Hm d(t)), whereas the lower part shows F, (9m (t)) . No relation

between F'C(Hm‘d(t)) and F, (6, (t)) exists.

F (O,a(1)

FN]
Y T
‘9m(t2 )_ '9m,d(t 1 )
EIN |
| \1‘12/ t [s]

Figure 5.36: Expected and actual cogging force.

This means that the cogging force cannot be compensated in feed-forward. To
overcome this, the measured angular position of the motor can be used as input of
the BSN instead of the reference angular position [Gomi and Kawato, 1993]. In
other words, as far as position-related effects are concerned, an inverse model is
contained in a feedback loop instead of a feed-forward path. This results in the
system shown in figure 5.37.

em,d

Figure 5.87: Learning feed-forward / feedback controller
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Step 4: Choose the B-Spline distribution

The distribution of the B-splines is chosen by rule of thumb, based on the
characteristics of the disturbances the BSNs have to compensate.

— For the BSN that has 9m as an input, we know that it has to compensate

d
the unknown friction, which can be approximated by the Stribeck curve. To
to be able to accurately compensate for friction (especially at low velocities)

we define 160 B-splines on the input domain of ém_ [—262, 262] [rads™'].

d

— Based on the configuration of the motor, we know that 32 cogging periods
exist per motor rotation. We choose to define 500 B-splines on the input

domain of ¢ . [0, 27| [rad]. This means that each cogging period is mapped

d

by approximately 15 B-splines.

Step 5: Choose the learning rate
The learning rate of both BSN’s is chosen equal to 0.1.

Step 6: Train the LFFC

As before, the two BSNs have to be trained separately. First the friction BSN is
trained and then the cogging BSN. This is motivated by the fact that due to
friction, the existing PI controller is unable to smoothly control the motor at low
velocities, which are the velocities that we wish to use for training the cogging
BSN. The reference motion that is used to train the friction BSN, contains a wide
range of reference velocities. The reference angular velocity and the reference
angular position are presented in figure 5.38 and 5.39.

— 130

-130
0
t [s]

Figure 5.38: Reference angular velocity used to train the friction BSN
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-0.175 | ‘
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Figure 5.39: Reference angular position used to train the friction BSN

In figure 5.40, the input-output mapping of the friction BSN after learning is
presented. The expected feed-forward signal consists of a linear component,
compensating the viscous friction and of a constant component, of which the
amplitude depends on the sign of the reference velocity, which compensates the
Coulomb friction. The actual feed-forward indeed resembles the desired one, except
for the parts where the velocity is high.

u, 003
0.02 |
0.01 -

0
-0.01 -

-0.02 -

-0.03 \
—109 0 . 109
0., [rads]

Figure 5.40: 10-mapping of the friction BSN

Next, the cogging BSN is trained. The is done by presenting a low-velocity

reference motion, ém =2.18 [rads™']. The input-output mapping of the cogging

d

BSN after learning has converged, is presented in figure 5.41.
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Figure 5.41: 10-mapping of the cogging BSN

Based on the configuration of the motor we expected 32 cogging periods per motor
rotation. Figure 5.41 shows that the sine-shaped part of the feed-forward signal
contains 32 periods, in accordance to what we expected.

5.3.4 Evaluation Experiments

To evaluate whether the parsimonious LFFC is able to compensate for friction and
cogging, we present reference motions for which the LFFC has not been trained.

Experiment 5.9 (Cogging validation, no LFFC)

The goal of the first experiment is to show that the feedback controller is unable to
compensate for cogging. The reference angular velocity and position of the motor
that are presented in figure 5.42 and 5.43.
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Figure 5.42: Reference angular velocity
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Figure 5.43: Reference angular position

To check whether the effects of cogging can be felt by the user, a frequency
analysis of the motor angular velocity is performed. Figure 5.44 shows the power
spectral density of ém. At 6 ~ 140[rads™] a peak exists. From the number of poles
of the electro-motor and the long period of constant angular velocity it can be
derived that this peak is caused by cogging forces. It is known that there are 32
cogging periods per 27 [rad] motor rotation. The reference angular velocity is equal

to ém_ — 4.36[rads™] , which should result in an frequency of the cogging force of

d
32-4.36[rads™] = 139[rads™]. This frequency corresponds to the angular velocity
of the peak in figure 5.44. Therefore, we conclude that the feedback controller is

unable to compensate for cogging.
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Figure 5.44: Power spectral density of e, PI-control
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Experiment 5.10 (Cogging validation, LFFC)

Next, the parsimonious LFFC is used to control the set-up. Again, a frequency
analysis of the resulting ,, is performed, see figure 5.45. From the absence of the

peak, we conclude that LEFFC has been able to properly compensate cogging.
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Figure 5.45: Power spectral density of e, learning control

Experiment 5.11 (Friction validation, feedback only)

To examine whether the LFFC is able to compensate friction, we compare its
tracking error to the tracking error of a feedback controller. This is done by
performing the following reference motion.

_ 25
0
&z ]
8,
< 0 \
-25 T
0 4.25 8.5

t [s]
Figure 5.46: Reference angular motor velocity to evaluate friction compensation

The error in the angular velocity of the motor, that results when using only the
feedback controller, is presented in figure 5.47. Friction causes large tracking errors
when the reference motion changes sign.
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Figure 5.47: Error in the angular velocity of the motor, feedback control only

Experiment 5.12 (Friction validation, LFFC)

Next, the parsimonious LFFC is used for control. Figure 5.48 shows that the
tracking error the LFFC is able to obtain. It can clearly be seen that the LFFC has
not been able to fully compensate for the friction. Still significant tracking errors
occur when the reference motion changes sign. Although, the magnitude of the
tracking error is only slightly smaller than the magnitude in the previous
experiment, the reduction of the peaks of a factor 0.6 gives already a much better
feeling.
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Figure 5.48: Error in the angular velocity of the motor, LEFC

5.3.5 Discussion

A parsimonious LFFC has been designed for the CLS. Experiments showed that
the cogging force could not be compensated in feed-forward. This was caused by
the fact that the positional tracking error is much larger than the period of the
cogging force. Therefore, it was proposed to use the BSN in a feedback loop instead
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of in feed-forward. The Learning FeedBack Controller (LFBC) was able to
compensate for cogging. The learning behaviour of the LFBC was such that
learning converged. However, more research is desirable to answer the following
questions:

— Is there a minimum width of the B-splines in LFBC?

— What is the maximum learning rate?

The friction was compensated by means of an LFFC. For the CLS it is important
that the error in the angular velocity is small when the motion direction changes.
This tracking error is called the reversal bump. Experiments showed that the
LFFC was able to obtain a somewhat smaller reversal bump than a feedback
controller. Apparently, the LFFC was unable to accurately compensate stiction.
However, in our opinion LFFC is an attractive option for friction compensation
and more research on this topic should be performed [Spreeuwers, 1999].



6 Discussion

6.1 Review

In chapter 1, we have introduced the concept of LFFC, being a Feedback-Error-
Learning (FEL) controller where the feed-forward part is a B-Spline Network
(BSN). It is important to design the feed-forward part of the LFFC in such way
that learning converges and that the problems that are associated with the curse of
dimensionality are kept to a minimum. These two subjects are the main concerns of
this work.

In chapter 2, we considered time-indexed LFFC, i.e., the case that the periodic
motion time is the only input of the BSN. In this case, LFFC is similar to Iterative
Learning Control (ILC) and Repetitive Control (RC). Therefore, we pursued the
idea to use the convergence results of ILC and RC in the setting of LFFC.

In ILC and RC the feed-forward part is implemented as a memory loop. Instead of
training the feed-forward part by the output of the feedback controller, the learning
signal is obtained by filtering the tracking error using a learning filter. The learning
filter is designed on the basis of a rough model of the controlled plant. A stability
analysis shows that unmodelled high frequency dynamics may cause the feed-
forward signal of the ILC and RC to diverge. Convergence can be obtained by
adapting the memory loop in such a way that the frequency contents for which the
model of the controlled plant (and thus the learning filter) is inaccurate are
removed.

Time-indexed LFFC can be considered as a type of ILC / RC, in which learning is
stabilised by replacing the memory loop by a BSN and in which the feedback
controller is used as a learning filter. The frequency contents of the input-output

159
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relation of a BSN depend on the width of the support of the B-splines. Choosing a
large width results in a low-frequency feed-forward signal, while a small width
yields a high-frequency feed-forward signal. Hence, the results from ILC and RC
tell us that learning can be stabilised by choosing the width of the support of the
B-splines in such way, that the BSN is unable to approximate the high-frequency
contents of the learning signal. Under rather restrictive assumptions (one of which
is that the plant is SISO LTI), we have been able to express this quantitatively; we
derived stability conditions for the minimum width of the support of the B-splines,
d,., and for the maximum learning rate. The stability criteria were validated by

miny

means of simulations. The time-indexed LFFC was applied to two plants:

— Mass-Spring-Mass (MSM) plant. The MSM plant satisfies the assumptions
that were made in the stability analysis. Simulations showed that the value
of d,,;, is accurate, while the maximum learning rate may be conservative.

— LiMMS. Because the LIMMS is a non-linear plant, it does not satisfy the
assumptions that were made in the stability analysis. In spite of this, the
results of the simulations are equivalent to the results of the simulations of
the MSM plant.

min

In case of random reference motions, time-indexed LFFC is not applicable. Then,
path-indexed LFFC can be applied, i.e., the reference signal and derivatives /
integrals thereof should be used as inputs for the feed-forward part. This type of
LFFC was considered in chapters 3 and 4.

We have not been able to derive convergence conditions for the design parameters
of a BSN in case of path-indexed LFFC. It was argued that in some cases (e.g.
when the reference velocity is constant), the stability conditions of the time-
indexed LFFC can be transformed into stability conditions of path-indexed LFFC,
basically by saying that the supports of the (multi-dimensional) B-splines have to
cover at least d,;, [s] of the reference motion. Designing a B-spline distribution that
satisfies this is difficult and may lead to very large B-spline widths, which is
unattractive.

Therefore, another approach was considered. We proposed to select a B-spline
distribution without regarding stability conditions and add a stabilising measure to
the LFFC to make learning converge. One option to do so would be to change the
cost-function that is minimised by the learning mechanism. This is a well-known
technique in neuro-fuzzy modelling and is called regularisation. However, it proved
to be difficult to select the parameters of the regularisation mechanism in such way
that learning in LFFC converges. Therefore, an alternative option was pursued,
again inspired by ILC. Regularisation is performed by filtering the learning signal
of the LFFC instead of changing the learning mechanism. The main idea is that
learning converges when the learning signal is such that all frequency contents
above d,,;, ' [Hz| is removed. This can, for example, be achieved by filtering with

min
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an appropriate time-indexed BSN. Simulations confirmed that by adding such a
filter, convergence of path-indexed LFFC is obtained. However, a formal analysis
that explains the observed results is still lacking.

Which specific inputs should be selected in case of path-indexed LFFC was
determined on the basis of a (structurally correct) state-space representation of the
plant dynamics. We showed that a plant can only be controlled by means of path-
indexed LFFC when the state space representation fulfils a number of conditions.
Hence, of the plants mentioned above, only the LIMMS can be controlled by means
of path-indexed LFFC.

When the inputs of the BSN are chosen straightforwardly on basis of the plant
model, a multi-dimensional BSN results. This confronts us with problems that are
associated with the curse of dimensionality. In neuro-fuzzy modelling, it has been
shown that these problems can be overcome by splitting the multi-dimensional
BSN into several BSNs that have a lower input-dimension. This is done on the
basis of the so-called analysis-of-variance (ANOVA) representation of a function.
The resulting collection of BSNs is known as a parsimonious network structure. In
line with this, a path-indexed LFFC is called parsimonious when it consists of
multiple feed-forward parts instead of one. A second (less effective) way to keep the
problems associated with the curse of dimensionality to a minimum, is to choose a
B-spline distribution with as few B-splines as possible. Several methods were
considered for designing a parsimonious LFFC.

Training a parsimonious LFFC is not straightforward. When all BSNs are trained
simultaneously, it is not guaranteed that each BSN learns the feed-forward signal it
is intended to learn. Therefore, we proposed to train such an LFFC successively,
i.e., by selecting a series of training motions by which the BSNs are trained
consecutively. However, this so-called strategic training approach is rather heuristic
in nature.

In chapter 5, design procedures for LFFC were formulated and applied in real
world experiments to two plants:

— LiMMS. The LiIMMS was controlled by a time-indexed LFFC as well as by
an LFFC. In the first series of experiments using the time-indexed LFFC,
the stability criteria were validated. The results of the experiments were
similar to the results of the simulations, i.e. the value of d,,, is accurate,

while the maximum learning rate is conservative. Next, the B-spline

distribution of the time-indexed LFFC was optimised. Finally, a

parsimonious LFFC was designed and evaluated. The feed-forward part

consisted of 3 BSNs, compensating respectively the inertia, the friction and
the cogging. After performing strategic training experiments, the
parsimonious LFFC obtained a small tracking error for a wide range of
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reference motions. However, for repetitive motions the time-indexed LFFC
still outperformed the LFFC.

Control Loading System (CLS). In the CLS, the LFFC has to compensate for
friction and cogging. Because the reference velocity is accurately tracked at
the expense of relatively large positional errors, cogging could not be
compensated by a feed-forward controller. Therefore, we compensated
cogging by means of a Learning FeedBack Controller (LFBC); friction was
compensated with a standard path-indexed feed-forward BSN. After
performing strategic training motions, the LFFC / LFBC showed to be able
to compensate for cogging and partly for friction.

6.2 Conclusions

The feed-forward part of the LFFC has been implemented as a BSN. Experiments
and simulations show that the BSN offers:

— Low computational costs. Calculating the output of a BSN and adapting the

weights are performed in a small number of calculations. In case of the
LiMMS, the LFFC was implemented on a DSP. The LFFC consisted of 3
BSNs that were trained during control. In spite of this, the control loop
could be calculated at a frequency of 1600 [Hz].

Fast convergence. Learning generally converges after performing the
reference motions less than 15 times.

Good generalising ability. Both the parsimonious LFFC for the LiIMMS and
the CLS (chapter 5) were able to obtain a high tracking accuracy for a range
of motions the LFFC was not trained for. The LFFC can thus be trained by
presenting a small number of training motions that are characteristic for the
reference motions which are to be tracked.

On the other hand the BSN has a number of disadvantages:

— Problems associated with the curse of dimensionality. The number of weights

in a BSN depends on the dimension of the input in an exponential way. A
large number of weights requires a large amount of computer memory and
causes a poor learning behaviour. It is therefore important to keep the input
dimension of the BSN(s) in an LFFC low.
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— Basis functions are placed in a lattice structure. Because multi-dimensional
B-splines are formed by the tensor product of 1-dimensional B-splines, the
density of the multi-dimensional splines is the same over the whole input
space. This implies that special measures are needed to guarantee
convergence of the learning process and at the same time avoid a sparse
lattice, which is unattractive from a function approximation perspective.

From the above we may conclude that BSNs are suited for real-time control when
the input dimensions are kept low.

The inputs of the feed-forward part depend on the type of reference motion that
has to be performed. In case of repetitive reference motions, the periodic motion
time should preferably be used as an input, i.e., time-indexed LFFC should be
applied. The time-indexed LFFC can be seen as a variant of ILC / RC, in which
the feedback controller is used as a learning filter and that is stabilised by replacing
the memory loop by a BSN. The frequency contents of the feed-forward signal that
is stored in the BSN, are determined by the width of the B-splines. A convergence
analysis of time-indexed LFFC applied to a SISO LTI plant shows that learning
converges if:

— The width of the support of the B-splines is larger than d,,,. The value of d,,,
is given by:

d . =lrads7}] (6.1)

in which w, is the frequency at which the phase ¢, of the negative

1
complementary sensitivity function, —7' | is as follows:

=7 ()l
¢, = arccos|—0.0147 - - (6.2)
min |-T(jw)|
{weR|cos(¢)<0}
— The learning rate satisfies:
2
VET (6.3)
=T (jw)

o

The above conditions do not require exact knowledge of the high frequency
dynamics of the controlled plant. Therefore, either a process model that describes
the low-frequency dynamics well or a measured frequency response is sufficient to
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design a stable time-indexed LFFC. The stability conditions were validated by
means of experiments and simulations, both yielding the same result: the value of
d,,, 18 accurate also for a non-linear plant, while the maximum learning rate is
conservative. However, the conservative value of the learning rate does not lead to
extensive training periods. Learning converges after performing a reference motion

a limited number of times (typically 10 to 15).

In case of random reference motions, path-indexed LFFC should be applied, i.e.,
the reference signal and derivatives / integrals thereof should be selected as inputs
for the feed-forward part. Whether or not a plant is controllable by means of LFFC
can be determined by expressing the plant dynamics in a state space representation
of the form:

0 I
A( )= )
v A @ A @A, (T
T
B@=[0 - 0B, @)|, (6.4)
C:[Cl .. C,

A plant can be controlled by means of LFFC, when C and B, (z) fulfil the

following conditions:

1. C may contain only one submatrix, C i that is unequal to zero.
2. C]. must be invertible.
3. B, () must be invertible.

Which derivatives / integrals should be chosen, can be determined on the basis of
the above state space representation of the plant dynamics and the disturbances.
For the state space representation, (qualitative) structural knowledge of the plant
and the disturbances suffices; no numerical values of parameters are required.

We propose to stabilise path-indexed LFFC by filtering the learning signal in such
way that signals that have a frequency content larger than d,,, ' [Hz] are removed.
The filter can be implemented as a time-indexed BSN that has B-splines of which
the support is 2d,,, [s]. Simulations show that learning converges when this type of
regularisation is added to a BSN that has a B-spline distribution that otherwise
causes learning to diverge.
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The feed-forward part of a path-indexed LFFC should be implemented as multiple,
additive BSNs that each have a low input dimension. This implementation is
known as a parsimonious LFFC and keeps the problems associated with the curse
of dimensionality to a minimum. The feed-forward parts and the B-spline
distributions of a parsimonious LFFC can be determined in the following ways:

— Using prior knowledge of the plant dynamics and the disturbances. By writing
the plant dynamics and the disturbances in a state space form, the feed-
forward parts and their inputs follow in a straightforward way. The B-spline
distribution follows from the expected shape of the terms in the state space
model.

— [Iterative wuse of empirical modelling techniques. Empirical modelling
techniques are able to construct a model of a plant, on the basis of observed
input-output data, without utilising any prior knowledge of the dynamics of
the plant. A problem is that the “correct” input-output data is not
immediately available in LFFC. However, it can be approximated as the
total steering signal (i.e., feed-forward plus feedback) of a trained LFFC.
Hence, by iteratively applying empirical modelling techniques, the
appropriate LFFC can be designed. In this research, two empirical modelling
techniques are considered for this purpose:

— ASMOD, which can be used to determine the feed-forward parts as well
as the B-spline distributions.

— Fuzzy clustering, which is able to determine the B-spline distributions.

Both ASMOD and fuzzy clustering are computationally intensive, but can in
principle be used to obtain a parsimonious LFFC. Therefore, empirical
modelling techniques should only be used when the manual selection of the
parsimonious LFFC does not give the desired result.

— Mized way. If the designer has partial knowledge of the plant dynamics and
the disturbances, this knowledge can be wused to create an initial
parsimonious LFFC, which is subsequently improved by iteratively applying
empirical modelling techniques.

For a parsimonious LFFC, a series of well-chosen training motions should be
selected. In each training motion, only one BSN is trained, while the weights of the
other BSNs are kept constant. The training motions should be selected in such way
that they make the desired feed-forward signal of one of the wuntrained BSNs
dominant. In this way, one can achieve that each BSN indeed approximates the
function for which it was included in the LFFC. No more systematic approach to
the selection of the training motions is yet available.
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It is important to verify whether the above training procedure has resulted in an
appropriate LFFC. When one BSN approximates an incorrect feed-forward signal,
all BSNs that are trained next will also approximate an erroneous function. An
LFFC with a poor generalising ability will result. Such an LFFC is able to
accurately perform the training motions, but causes large tracking errors for all
other reference motions. Hence, a trained path-indexed LFFC needs to be validated
with a set of test reference motions.

An LFFC for a well-conditioned plant can be designed as follows.

1.

Design a feedback controller. The feedback controller compensates for
random disturbances and generates a learning signal for the feed-forward
part. Since —7 depends on the feedback controller, this design step
determines the value of d,,;, (see above). When the value d,,, is too large,
redesigning the feedback controller offers a solution.

Select the inputs of the feed-forward part. In case of repetitive motions, the
periodic motion time should preferably be used as the input of the feed-
forward part. For random motions, the inputs should consist of the reference
position and eventually derivatives/integrals thereof. The inputs can be
selected on the basis of a structurally correct state-space description of the
plant (see above).

Choose the structure of the feed-forward part. To prevent problems
associated with the curse of dimensionality, the path-indexed LFFC should
be implemented in a parsimonious way, i.e. by means of multiple low-
dimensional BSNs instead of one high-dimensional BSN. The parsimonious
LFFC can be designed on the basis of prior knowledge of the plant dynamics
and the disturbances, or in an automated way by using empirical modelling
techniques (see above).

Determine the B-spline distribution. Knowledge of the desired feed-forward
signal(s) of the BSN(s) in the LFFC, can be used to determine the B-spline
distribution.

Set the learning rate. The learning rate should be chosen small (close to 0)
when the plant is subject to considerable noise. Otherwise, a larger learning
rate can be chosen.

Specify training motions (parsimonious LFFC only). The reference motions
should be chosen such that the desired feed-forward signal of one of the
untrained BSNs becomes dominant. Only the corresponding BSN is trained,
the weights of the other BSNs are kept constant by setting the learning rate
of these networks to zero.

Hence, the LFFC can largely be designed on the basis of qualitative knowledge of
the plant and the disturbances. Only for convergence guarantees, a quantitative
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model of the low-frequency dynamics of the controlled plant is needed, which may
be obtained by means of identification.

An overall result of this work is that LFFC appears to be an attractive approach
for controlling electromechanical motion systems that are subject to reproducible
static input disturbances.
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A Neural Networks & Fuzzy Logic

A.1 Multi Layer Perceptron Neural Network

A.1.1 Neurons

The basic element of the Multi Layer Perceptron (MLP) neural network, is the
artificial neuron. An artificial neuron, referred to as neuron, is a unit that performs
a simple mathematical operation on its inputs. In figure A.1, the neuron is
graphically presented.
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Figure A.1: Artificial neuron

,-..,x, and a so called bias

The input, «, of the neuron consists of the variables =z v

1
term, which is equal to 1:
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Each of the input values is multiplied by a weight, w,, after which the results are
added. On the result, a simple mathematical function, f(-), is performed. The
calculations the neuron performs are thus given by (A.2):

N

E :%“’7 +w,

i=1

y=1 (A2)

Numerous choices for the functions f() exist. Frequently used implementations
are the Sigmoid function (A.3) (figure A.2a)

faw =

(A.3)

14+e™

the hyperbolic tangent, flu)=tanh(u) (figure A.2b) and the linear function, flu)=u.
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Figure A.2: a) Sigmoid function
b) Hyperbolic tangent function

A.1.2 MLP Network

The MLP neural network, in the following referred to as MLP, consists of a
number of neurons ordered in layers. In figure A.3 an MLP is shown that consists
of 3 layers of neurons (for sake of simplicity, the bias terms and the weights are not
shown).
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Figure A.3: Multi Layer Perceptron Network

Note that a neuron in layer n has connections to each neuron in layer n+1. The
neurons in layer 1 simply pass on the inputs of the MLP to all the neurons in the
second layer.

Y =1, (A.4)

The neurons in the second layer, the so called hidden layer, perform a function,

f(-), which is of the Sigmoid or the hyperbolic tangent type:

N
2 = f[z s (a5

n=1

Where, w,,, is the weight of the connections between neuron n in the first layer
and neuron m in the second. Finally, the neurons in the third layer perform a

function, ¢(-), which is usually of the linear type:

M
2 2 2
b =9 [Z WY+ Wy

m=1

(A.6)

Where, wfnk ,
and neuron k in the third. Substituting (A.4) and (A.5) in (A.6) yields the
following output of the MLP (for g(-) linear):

is weight of the connections between the neuron j in the second layer

+w), (A7)

m=1 n=1

M N
2 1 1 1
yk = : :wmkf : :wnmxn + w(]m
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More hidden layers can be added to the MLP. However, it has been shown that an
MLP with one hidden layer can approximate any continuous function [Hornik et
al., 1989].

A.1.3 Training the MLP Neural Network

Training the MLP network is performed by adapting the weights of the connections
according to the back propagation mechanism [Rumelhart et al., 1986; Haykin,
1994]. The weights are adapted in such way that a cost function, J, is minimised. A
common choice for Jis the sum of the squared approximation error over all data:

J = %Z Z (y;fi] - ylw‘)Q (A-8)

K
j k=1

Where y/i«l.j is the desired output of neuron £, for the input z;, and y, ; is the actual

output of the MLLP. For small adaptations of the weights we may assume that

2 ~ A (A.9)
ow  Aw
Which means that,
AT~ Aw (A.10)
ow

The cost function will decrease, when we choose the adaptation of the weights

according to (A.11),

aJ
Aw = 78w
1 £ d 2
g 522(%] yk])
= J k= (A.11)
ow
K Ay




A.1 Multi Layer Perceptron Neural Network 173

where <y is the learning rate. This can be verified as follows:

AJ 0JA 6J[ 7&]]:_ [8J
ow ow

] <0 (A.12)
ow ow

The adaptation of the weight of a connection between the neuron a in the hidden

layer and output b, wjb , is given by:

2
+w,,

X Zwmkf[anma:n —i—w
INTI 72]: ; (v, = v, ) ————— e

(A.13)

[Z wnaxn + w

= ’YZ (y:/ - yb,z’) n=l awg

j ab

The adaptation of the weights of the connections between the input and the hidden

layer, is more complicated. For weight w the adaptation is given by:

2

K Z mkf[zwnmxn + wOm + Wi
- ;;(y“_yk == o

K 3wdkf[z wndmn + w
- 722(3//?, N y’w) B
Jok=t cd

E wndccn + w
E w'! dx" +w

n=1

E wndxﬂ + w

n=1

E wndxn + w

i
chd

(yZJ Yk )w?k

]~

e
Il

1

]
Mw

(yk i Yk )wdkf

J k=1
(A.14)
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A.2 B-spline Network

A.2.1 B-splines

A B-Spline Network (BSN) uses basis functions, known as B-splines, for
approximation. An n-th order 1-dimensional B-spline consists of piece-wise
polynomial functions of order n-1 (figure A.4). The height of a B-spline is known as

the membership and is denoted as p € [0,1].

S| |
0.75 0.75
0.5 0.5
0.25 0.25
0+ \ 0 -
0 1 2 3 4 5 0 1 2 3 4 5
input knots input knots
(a) (b)
|
0.75
0.5
0.25
0+ ‘ ‘ \ \ \

o 1 2 3 4 5
input knots

()

Figure A.J a): 1" order B-splines
b): 2" order B-splines
c): 3" order B-splines

The shape and the position of the B-splines is such that at each point in the input
space, the sum of the membership of the B-splines equals 1. The position of the B-
splines on the input domain is determined by a so-called knot vector:

)\:[)\ A

N,
) Xy Ay |€RY (A.15)

k
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The membership of the kth B-spline of order n is given by:

n( ) m_Aifn nfl( )+ Ai_m nfl( ) (A 16)
Hi NS SN
i—1 i—n i 1—n+1
. 1L A, <z<A
, = Al
pi (0 0 otherwise (A17)

In this research, we only consider 2" order B-splines. The membership of the i-th
2" order B-spline will be denoted by p; (). A B-spline has a membership that is
larger than zero only on a compact part of the input space. This part of the input
space is known as the support of a B-spline. Multi-dimensional B-splines are

constructed by the tensor product of 1-dimensional B-splines (figure A.5).

(A.18)

Figure A.5: 2-dimensional B-spline

The supports of the B-splines form a grid (figure A.6a).

4
N\ ‘\\
OSSN
SO O NNS
<> RO

N
N
N S Se S e\ TSN
‘\‘%\\‘\\\\\\\

Xy

Figure A.6: a) 2-dimensional B-splines
b) Grid formed by the supports of the B-splines
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A.2.2 B-spline Network

The output of a BSN is a weighted sum of the B-spline evaluations. In figure A.7
this is shown in a form similar to the MLP.

Y
oy
B -P

Figure A.7: MLP representation of a BSN

In the 1-dimensional case the output of the BSN is given by:

where,

z:  the input, x € R;
y:  the output of the network;
N,:  number of B-splines;
p;(z):  membership of the i-th B-spline;
network weight of the i-th B-spline;

An example of an input-output mapping is given in figure A.8. Please observe that
the BSN can also be regarded as an adaptive fuzzy logic controller. It is equal to a
Mamdani type fuzzy logic controller [Lee, 1990] which has fuzzy singletons as
consequence sets. Another way to look at the BSN, is as a look-up table with an
interpolation mechanism.
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Figure A.8: 2" order B-spline network mapping

A.2.3 Training the BSN

The network is trained by adapting weights, not the basis functions. This can
either be done after each sampling interval, which is known as on-line learning, or
after a motion has been completed, known as off-line learning. In the on-line case,
the cost function, J, that is minimised is the squared approximation error (A.20):

J :%(yd —y)? (A.20)

Where g, is the desired output of the BSN. Applying the back propagation rule
(A.11) yields,

0J Jy
Aw, = —y——= —y)—= A.21
YT G V(Y —Y) ou (A.21)
Substituting (A.19) in (A.21) gives:
N,
82 () w,
Aw, =17(y, fy)‘j:l— (A.22)

ow.

1

= (Y, —Y) 1 ()

with, Aw; the adaptation of the weight of the -th B-spline;
v the learning rate, 0< vy <I;
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In the off-line case the cost function is given by:
J = L 2 A.23
—52(9«1,1_91) (A.23)
j

Where y,, is the desired output for input x; and y; is the output of the BSN.
Performing the same calculations as above gives the following adaptation of the
weights:

Aw; =7 (1, =) (=) (A24)

In order to prevent large weight adaptations, we propose to normalise (A.24):

Z(ydvj —y)m (@)
Zu?(mj)

Aw, = v (A.25)

Learning rule (A.25) implies that in LFFC the weights are updated after a
reference motion has been completed. Since (in theory) the reference motion may
have infinite time length, implementing the off-line learning rule as (A.25) is
undesired. Therefore, we propose to implement the off-line learning mechanism in
the following way:

Algorithm A.1 (Off-line learning mechanism)
1. Present inputs z; and a learning signal Yo, — Y, to the BSN (j=1,2,....).

While the membership of B-spline i for input z; p, (:c].)>0, calculate the

adaptation of w; according to (A.25).

2. At the point in time where (iI:J) =0, w; is adapted, w, = w, + Aw, .

In figure A.9 an example is given. For z; ;, the memberships of B-spline 1 and 2 are
unequal to 0. At a3, the membership of B-spline 1 equals 0, which means that it no
longer contributes to the output of the BSN. Therefore, we choose to update the
weight of B-spline 1.
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i1
0 E ‘
I T Ty Ty T % Tr Ty Ty Ty xn

update w, update w,
update w,

Figure A.9: Implementation of the off-line learning mechanism

A.3 Fuzzy Logic

A.3.1 Introduction

In the classical set theory, an object is either a member of a set or a non-member.
For some types of objects, classification problems may occur. This can be easily
shown by the classification of people in the sets “bald” and “not bald”. A person
with 100.000 hairs on his head is classified in the set “not bald”. If one hair is torn
out, the person will still be classified in the set “not bald”. A person does not
become “bald” if he loses just one of his hairs. This process can be repeated until
the man has just one hair left. If the last hair is torn out the man suddenly
becomes “bald”. This way of classification does not correspond to the human
intuition. In normal life a man with 10 hairs on his head is considered bald.

The reason for the second classification to fail, is that the sets “bald” and “not
bald” do not have sharp boundaries. A person does not become bald after he has
lost one of his hairs, but gradually becomes bald after he looses more and more
hairs. To be able to describe this kind of phenomenons, Zadeh invented the fuzzy
set theory [Zadeh, 1973; Lee, 1990]. In the fuzzy set theory an object can partially
belong to a set. A man with 5000 hairs on his head could, for example, be a
member of the set “bald” for 50% and a member of the set “not bald” for another
50%.

A.3.2 Fuzzy Sets

To deal with fuzziness the grade of membership of membership was introduced.
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Definition A.1 (Grade of membership) The grade of membership is the relative

degree to which an element x is a member of set I and is denoted as p, € [0,1].

The domain on which fuzzy sets are defined is called the universe of discourse.

Definition A.2 (Universe of discourse) The universe of discourse X, is the collection
of all objects x, suitable for classification.

Using definition A.1 and A.2 we are now able to give a definition of a fuzzy set.

Definition A.3 (Fuzzy set) A fuzzy set F on X is a collection over all z€ X of x and
fp (@) -

F= fX jp(@) /() in which (@) € [0,1] (A.26)

In (A.26), fX must be interpreted as the collection over X and p,(z)/(z) as a

pair (m, Ky (x)) . In figure A.10 an example of a trapezoidal fuzzy set is presented. A

special type of fuzzy set, is the so called fuzzy singleton.

Definition A.4 (Fuzzy singleton) A fuzzy singleton is a fuzzy set that has only one

member with i, = 0.

F= fX 8(a— 1) /(x) (A.27)

In which é is the Dirac function.

HE 1 HrE 1 P
0.5 F 0.5
0 ! T T 0 T T T
X a4 X

(a) (b)

Figure A.10:a) Trapezoidal fuzzy set F
b) Fuzzy singleton F
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A.3.3 Operations on Fuzzy Sets

Several operations on fuzzy sets have been defined, which can be roughly be
divided in the following classes. The class of T-norm operations , denoted by *, is
characterised by the fact that the resulting fuzzy set is generally smaller than or
equal to each of the operands. Examples of the T-norm are the fuzzy intersection
and the algebraic product, respectively:

oy () # py () = min 1, (), oy (7)) (A.28)

The T-conorm operations, denoted by -+, yield a fuzzy set that is generally larger
than or equal to each of the operands. Examples of the T-conorm are fuzzy union

and the bounded sum respectively:
1y (@) + py (@) = max (p, (2), 1, (2)) (A.30)

14 (0) F 11 () = min (L0 (0) + gy ) (A31)

Finally, we would like to define the sup-* composition. When C and D are fuzzy
sets in respectively X and XXY, the sup-#* composition of C' and D, denoted as
C oD, is a fuzzy set in Y, with the following membership function:

lgop(¥) = supy, v 1o (2) % iy (2,9) (A.32)

A.3.4 Mamdani Fuzzy Controller

Fuzzy logic controllers operate in an environment, in which the variables have a
real, non fuzzy, value. This means that, to be able to apply a fuzzy logic controller,
the values of the inputs need to be transformed to fuzzy sets. This process is known
as fuzzification. Fuzzification is often performed by constructing a fuzzy singleton
given by:

A= fxé(x—a)/(m) (A.33)

where,
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a:  the value of the input variable, z.
A’ the fuzzy input set, representing the value of input variable

In the Mamdani fuzzy controller, the input-output behaviour is specified by a
number of IF-THEN rules:

IF zis A, THEN yis B, (A.34)
In which,
A; the fuzzy antecedent set, representing input values of the
controller
B;:  the fuzzy consequence set, representing the actions that should

be taken when these inputs occur

The reasoning mechanism, according to which the output of the fuzzy logic
controller is calculated, can be described by the generalised modus ponens (A.35).

premise: zis A’
implication: IF z is A, THEN y is B, (A.35)
consequence: yis B'

In which,

y:  the output variable;
B’: fuzzy output set, representing the value of the output variable.

The implication “IF z is A; THEN y is B” can be defined as a relation between
fuzzy set A, and B, This relation is referred to as the fuzzy implication. A fuzzy
implication is a special kind of fuzzy relation.

Definition A.5 (fuzzy relation) Let X and Y be two universes of discourse. A fuzzy
relation R is a fuzzy set in the product space XXY with membership function

g (2,y) . where z€X and yeY.

Definition A.6 (fuzzy implication) Let A; be a fuzzy set in X and B, be a fuzzy set in
Y. The fuzzy implication, denoted as A,—DB,, is a fuzzy relation in XxXY with the
following membership functions:

Ha g (@9) = 1y (2) % 1 () (A.36)
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In the following we will denote A,—B,; as R,. In figure A.11 an example of fuzzy
implication (A.36), using the min-operator, is given.

Figure A.11: Fuzzy implication, min-operator

The fuzzy output set B/ is calculated from A' and the fuzzy implication R, This
calculation is performed by the fuzzy inference engine.

Definition A.7 (fuzzy inference) Let A’ be a fuzzy input set in X and R; be a fuzzy
implication in XxXY. The fuzzy inference calculates fuzzy output set B,' on the basis
of A" and R,. The membership function of B;” is given by:

B.'= AR, (A.37)

which is,

B = [ by (@) iy @125 00}/ ) (A.38)

The fuzzy inference engine is illustrated in figure A.12 (* is implemented as the

min-operator).

Figure A.12: Fuzzy inference engine

So far fuzzy IF-THEN rules had one fuzzy input set. In case of fuzzy IF-THEN
rules with more than one fuzzy antecedent set, e.g..:

IF (1‘1 is ALz‘) AND (x2 is AM THEN y is B, (A.39)
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the AND connective is used. A fuzzy implication with fuzzy antecedent sets A4, ; in

X, and A,; in X, and fuzzy consequence set B;in Y is expressed as:

E; :( ¢ AND A?z) — B (A.40)

Hp (17173327 y) = MAL, (1’1) *A (1’2) * MBJ (y) (A.41)

i i

The calculation of B,” using the AND operator and fuzzy input sets A,” and A,’ can
be expressed as follows:

B;'=(4," AND 4,")o R, (A.42)

which gives

Bz‘ = fy SupVxleXmezGXl MAl '(xl) *MAz '($2) * 'UAM (:1:1) * MA-z.,1 (:1:2) i 'uBz (y)/(y)

(A.43)

Each of the rules gives one fuzzy output set. In order to calculate the output of the
fuzzy controller, all separate output sets, B,’, have to be combined in one output
set, B’. This is done by the ALSO operator, which is implemented as a T-conorm:

B'=B '+ B,'+..B,"' (A.44)
Where n is the number of fuzzy relations. Since the fuzzy logic controller operates
in a real-valued environment, the fuzzy output set B’ has to be transformed in a

single value, b. This process is known as defuzzification. The most frequently used
method is the Centre Of Area (COA) defuzzification, which is given by:

fyuB.(y)y dy
[ S

fyuB.(y) dy

In figure A.13, an example is shown where the fuzzy output set B', which is the
combination of two fuzzy output sets B,' and B,', is converted into a single value, b.

(A.45)
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Figure A.13: Fuzzy output sets

For special choices of the fuzzy premise and the fuzzy consequence sets, the fuzzy
controller is equivalent to a 2" order BSN. These choices are:

— The fuzzy antecedent sets are triangular. The positions of the fuzzy
antecedent sets is such that for each input value, the sum of the
memberships equals 1.

— The fuzzy consequence sets are fuzzy singletons.

— The *-operator is implemented as a product.

— The + operator is implemented as a bounded sum.

In figure A.14 an example of such a fuzzy controller is shown.

Figure A.14: Fuzzy controller that is equivalent to a BSN

The output of a fuzzy controller is calculated as follows. The fuzzy relations are
given by:

R = y (@ 6y =) /(z.9) (A.46)
XxY

The fuzzy output sets are determined given,

B'=A°R (A.AT)
(3 K3
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B = [ supy, e (8o - oy @ -1))/ ) (A.48)

Bi'=| u,(a)s(y—b;)/() (A.49)
y 4
Combining the separate output sets B,” to one output set, B’, yields:
B'= [ min(Lp @8y~ )+t sy @)/ (A50)

Since the sum of the memberships of the fuzzy antecedent sets equals 1 for each a,
(A.50) can be written as:

= [y @8y =b) ety @00 =0) /@) (A51)
Defuzzification yields:
f(uAl(a) (5 =b) oo g (@0 =)y dy
b= (A.52)
1y @5 =b) + o+ 11 (@ —b,) dy

As before, the fact that the sum of the memberships of the fuzzy antecedent sets
equals 1 for each a, can be used to simplify (A.52):

foo (1, (@80 = B) o sty (@0 —bu)) dy = oy (@) 4-biry (@)

=1

This gives the following output of the fuzzy controller:

bzf(u4<a> (1=b) e 11 (@6 =)y dy (A.54)
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b— qul(a)bl—&-...—kqu(a)bn dy (A.55)

When comparing the output of the fuzzy controller (A.55) to the output of the
BSN (A.19), it can be seen that these are equivalent. The fuzzy consequence sets
fulfil the role of the weights in the BSN. The BSN can thus be regarded as an
adaptive fuzzy controller, of which the fuzzy consequence sets are adapted.

A.3.5 Takagi-Sugeno Fuzzy Controller
The TS fuzzy model consists of a collection of rules that have the following form:

¥ (xl is Au) AND - AND (‘T'” is A"‘i)
THEN y = a, 2, +- +a, 2, +1,

1,17 M

Rule (A.56)

Where, z, ... z,; the input variables, z, ... z,€R;
v the output variable, yeR;
Ay A, fuzzy sets defined on the inputs of the model, also known as
fuzzy antecedent sets

First we evaluation IF (a:l isAU) AND --- AND (mm is Am:)’ which yields a support

variable, [3;:

8 = SUDy, eX .. va, €X,, uAl,(acl) ety () * P (z) % iy (2,) (ALBT)

m,i

Next, the output of the fuzzy controller is calculated according to:

Zﬁi (al,iml toeta, T, + bi)
y = (A.58)

9

An example of a 1-dimensional TS fuzzy model is shown in figure A.15. In the
lower part, the fuzzy antecedent sets are shown. In the upper part, the resulting
input-output mapping is presented. It can be seen that the mapping consists of
locally linear functions with smooth transitions.
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A 4 A

Figure A.15: Takagi-Sugeno fuzzy model
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Summary

Learning Feed-Forward Control (LFFC) is a form of Feedback-Error-Learning
(FEL) control, i.e. the control system consists of a feedback controller, which
compensates for random disturbances, and a feed-forward part that is implemented
as a function approximator, which compensates the plant dynamics and the
reproducible disturbances. In LFFC, a B-Spline Network (BSN) is chosen for the
feed-forward part. During control, the input-output mapping of the BSN is adapted
such that the tracking error decreases. It is important to design the feed-forward
part of the LFFC in such way that learning converges and that the problems that
are associated with the curse of dimensionality are kept to a minimum. These two
subjects are the main concerns of this work.

When the plant has to perform repetitive motions, time-indexed LFFC should be
considered, i.e. the case that the periodic motion time is the only input to the feed-
forward part. In this case, LFFC is similar to Iterative Learning Control (ILC) and
Repetitive Control (RC). Based on the convergence results of ILC and RC, a
stability analysis of time-indexed LFFC has been performed. We have derived
conservative stability conditions for the B-spline distribution and for the learning
rate. The stability criteria were validated by means of simulations and experiments.

In case of random reference motions, path-indexed LFFC should be applied, i.e. the
reference signal and derivatives / integrals thereof should be selected as inputs for
the feed-forward part. Which specific inputs should be selected can be determined
on the basis of a (structurally correct) state-space representation of the plant
dynamics. We showed that a plant can only be controlled by means of path-
indexed LFFC when the state space representation meets a number of conditions.

Designing a B-spline distribution for which the path-indexed LFFC is stable may

lead to a low-frequency feed-forward signal, which is unattractive. To allow for
more dense B-spline distributions, we proposed to add a stabilising measure to the
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LFFC, known as regularisation. Regularisation is performed by filtering the
learning signal with a time-indexed BSN. Simulations showed that this form of
regularisation yielded accurate and stable learning.

When the inputs of the BSN are chosen straightforwardly on basis of the plant
model, a multi-dimensional BSN results. This confronts us with problems that are
associated with the curse of dimensionality. Splitting the multi-dimensional BSN
into several BSNs that have a lower input-dimension offers a solution. The
obtained LFFC is known as a parsimonious LFFC. Training a parsimonious LFFC
is not straightforward. When all BSNs are trained simultaneously, it is not
guaranteed that each BSN learns the feed-forward signal it is intended to learn.
Therefore, it is proposed to train such an LFFC successively, i.e., by selecting a
series of training motions by which the individual BSNs are trained consecutively.

A design procedure for LFFC has been formulated. The LFFC can largely be
designed on the basis of qualitative knowledge of the plant and the disturbances.
Only for convergence guarantees, a quantitative model of the low-frequency
dynamics of the controlled plant is needed, which may be obtained by means of
frequency domain identification.

An overall result of this work is that LFFC appears to be an attractive approach
for controlling electromechanical motion systems that are subject to reproducible
static input disturbances.



Samenvatting

Learning Feed-Forward Control (LFFC) is een vorm van Feedback-Error-Learning
(FEL) control. Het regelsysteem bestaat uit een feedback regelaar en een feed-
forward regelaar, die germplementeerd is als een functie-approximator. De feed-
forward regelaar dient na een leerperiode de dynamica van het proces en de
reproduceerbare verstoringen te compenseren, de feedback regelaar compenseert de
stochastische verstoringen. Het type functie-approximator dat gebruikt wordt in
LFFC is het B-Spline Netwerk (BSN). Tijdens het regelen wordt de ingang-uitgang
relatie van het BSN aan de hand van de uitgang van de feedback regelaar op
zodanige wijze aangepast dat de volgfout afneemt. Het is belangrijk het feed-
forward gedeelte van de LFFC zo te ontwerpen dat het leermechanisme convergeert
en dat de problemen die veroorzaakt worden door de zogenaamde 'curse of
dimensionality' tot een minimum beperkt blijven. Deze twee onderwerpen vormen
het hoofdbestanddeel van dit proefschrift.

Wanneer het re regelen proces zich herhalende bewegingen uitvoert, is het voordelig
de tijd als ingang van het feed-forward gedeelte te kiezen. Deze vorm van LFFC
heet tijdgeindexeerde LFFC en is nauw verwant aan Iterative Learning Control
(ILC) en Repetitive Control (RC). Op basis van convergentiecriteria van ILC en
RC is een convergentieanalyse van tijdgeindexeerde LFFC uitgevoerd.
Convergentiecriteria voor de breedte van de B-spline basisfuncties van het BSN en
de leerfactor zijn afgeleid. Deze criteria zijn gevalideerd door middel van simulaties
en experimenten.

Om willekeurige bewegingen te kunnen uitvoeren, dient de ingang van het BSN te
bestaan uit het referentiesignaal en eventueel afgeleiden / geintegreerden daarvan.
Er is sprake van een padgeindexeerde LFFC. Een (structureel correcte)
toestandsbeschrijving van het proces geeft aan welke ingangen men dient te kiezen.
Aangetoond is dat een proces alleen door middel van LFFC geregeld kan worden
wanneer de toestandsbeschrijving aan een aantal voorwaarden voldoet.
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Het ontwerpen van een B-spline verdeling zodanig dat de padgeindexeerde LFFC
stabiel is, kan resulteren in een laagfrequent feed-forward signaal, hetgeen niet
gewenst is. Om een kleinere breedte van de B-splines toe te staan, is voorgesteld
een stabiliserend mechanisme, genaamd regularisatie, aan de LFFC toe te voegen.
Het regularisatiemechanisme filtert het leersignaal met een tijdgeindexeerd BSN
dat voldoet aan de bovengenoemde convergentiecriteria. Simulaties laten zien dat
het regularisatiemechanisme nauwkeurig en stabiel leren mogelijk maakt.

In het algemeen zal het BSN in de een padgeindexeerde LFFC meerdere ingangen
hebben. Dit kan tot problemen leiden die worden veroorzaakt door de 'curse of
dimensionality'. Het splitsen van het multi-dimensionale BSN in meerdere BSN-en
beperkt deze problemen tot een minimum. Deze vorm van LFFC heet parsimonious
(spaarzaam) LFFC. Het trainen van een parsimonious LFFC is niet triviaal.
Wanneer alle BSN-en tegelijkertijd worden getraind, is het niet gegarandeerd dat
elk BSN het juiste feed-forward signaal leert. Daarom is voorgesteld de BSN-en
afzonderlijk te trainen.

Er is een ontwerpprocedure voor LFFC geformuleerd. Het ontwerp van een LFFC
is grotendeels gebaseerd op kwalitatieve kennis van het proces en de verstoringen.
Alleen het convergentiecriterium vereist een kwantitatief model van de
laagfrequente dynamica van het geregelde systeem. Dit model kan zonodig
verkregen worden door middel van identificatie.

Het belangrijkste resultaat van dit werk is dat LFFC een aantrekkelijke methode
lijkt voor het regelen van elektromechanische processen die onderhevig zijn aan
reproduceerbare ingangverstoringen.



