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Introduction

This dissertation, which is structured as a collection of self-contained papers, will

be concerned mainly with di�erences between item response models. The purpose

of item response theory (IRT) is estimation of a hypothesized latent variable, such

as, for example, intelligence or ability in geography. The latent variable will be

denoted as �. As latent variables cannot be directly observed, inferences about

them have to be made by indirect methods. To this end, the subject is presented

with a test, consisting of a number of items. Usually, the subject's response on

each test item is scored into an ordinal variable, called the item score, and the

investigator has a model which describes the relation that is assumed between

� and the item scores. This model de�nes �. Obviously, the observed responses

depend on item characteristics as well as on �, so these must be part of the model

as well. Items may, for example, di�er in their di�culty. The models considered

in this dissertation will be parametric models.

If the item characteristics were known, one could combine the model and the

observed scores to obtain an estimate of �. Very often, however, the item charac-

teristics are not known and have to be derived from the same responses that are

used to estimate �. The usual procedure is �rst to estimate the item characteris-

tics, and possibly some parameters of the distribution of �. These estimates are

then used in a second analysis in which an estimate for each subject's value on �

is obtained. For example, the estimate could be the expectation of the posterior

distribution of � given the score vector and the estimated item parameters. This

two-stage estimation of � increases the inaccuracy of the estimate. Relatively

little e�ort is spent, however, in devising procedures to estimate � directly from

the data.
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The present thesis does not focus on the estimation of �. Its main concern is

with di�erences between item response models, and the possibility to distinguish

between these models. However, because the primary purpose of IRT is the

estimation of �, one chapter is included in which a method for direct estimation

of � is studied. Item parameters in exponential family item response models, such

as the Rasch model (Rasch, 1960) or the partial credit model (Masters, 1982),

can be estimated directly through conditioning on su�cient statistics for �. This

method of estimation is known as conditional maximum likelihood estimation

(CML). Modern commercially available software allows CML estimation of up to

1000 item parameters, but usually there is no explicit option for CML estimation

of �. Verhelst, Glas and van der Sluis (1984) investigated the possibility of using

this method for the estimation of �. They solved the numerical problems, but

for large numbers of parameters the procedure remained slow. In 1992, Geyer

and Thompson proposed a Markov Chain Monte Carlo method to approximate

parameter estimates in exponential family models. In Chapter 5 of this thesis the

application of this method to the CML estimation of � is studied. The procedure

produces fairly accurate results, but it appears to be just as time-consuming as

exact calculation of these estimates.

The other chapters all deal with topics that come, in a sense, prior to any esti-

mation. They deal with the question which model to choose (Chapters 2 - 4), or,

given a model, which items to choose (Chapter 1), to obtain the best description

of the item response process, and the most reliable estimate of �. With the ex-

ception of the second part of Chapter 4, the item response models are studied on

a mathematical level, that is, they are considered as a set of known functions of

known parameters.

The item information function I(�), which is de�ned in Chapter 1, can be used to

construct an asymptotic con�dence interval around �̂, where �̂ is an estimate of �.

For accurate estimation of � it is desirable to have itemswith high values on I(�) in

the region of � which the test is intended to measure. Item information is related

to item di�culty: for example, persons of higher ability should get more di�cult

items than persons of lower ability. A good test has the di�culty of its items

in the range of the candidates' abilities. Furthermore, if an item is considered
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suitable for persons of a certain ability level, it should also discriminate between

subjects of this ability who do, and who do not have the knowledge required to

pass the test. The item information and discrimination functions can help in the

decision to include an item in the test or not.

With binary items, where the response is scored as 'correct' or 'incorrect', the

concepts of item di�culty and of item discrimination, although arbitrary, are

clearly de�ned, and the maximumvalue of these functions is usually easily found.

With polytomous items, where the response is scored as 0; 1; : : :M, the concept of

item di�culty is not clearly de�ned, nor is that of item discrimination. Moreover,

the information and discrimination functions may have several local maxima. In

Chapter 1 these functions are explored for trinary items under the partial credit

model (Masters, 1982). The conditions are obtained under which they are uni-

or bimodal, and the location and value of the maxima are derived.

The remainder of the dissertation, that is, Chapters 2 through 4, are devoted

to an investigation of features of several models for polytomous item respons-

es. In the literature, polytomous items are sometimes distinguished by certain

item features, and it is then suggested to describe these items by models that

re
ect their features. Mellenbergh (1995) argues that it is plausible that the type

of model used should be determined by features of the item and by the cogni-

tive processes involved in answering the item. Van Engelenburg (1997) assumes

that the process of solving a polytomous item consists of taking a number of

dichotomous steps, and he distinguishes task features, which determine the way

in which the dichotomous steps are linked up. Task features include the step

process, which can be either simultaneous or sequential; the continuation rule

(try-all or stop-if-fail), and the ordering mechanism (�xed or not �xed). In this

view item response models should re
ect the task features. Van Engelenburg's

task features are formal features, they are not related to item contents nor to

cognitive processes.

In the present thesis this reasoning is carried one step further. It is argued (a)

that the interest in IRT is more in scores than in items, (b) that polytomous

items should be distinguished by the scoring rule that is applied to the responses,
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and (c) that models should re
ect the scoring rule.

Three di�erent scoring rules are distinguished; there is a close resemblance to

Engelenburg's task features, but the emphasis is nevertheless di�erent. These

three scoring rules are labelled graded, parallel, and sequential scoring. With

graded scoring, the response given by the examinee is evaluated in one overall

judgement. With parallel scoring the judge refers to a collection of features, and

credit is given for each of these features that is displayed by the response. As an

example: in parallel scoring of an essay credit could possibly be obtained for each

of the following features: correspondence of the title with the contents, logical 
ow

of the argument, correct use of spelling, grammar and punctuation, the presence

of a clear conclusion. If the question were to name three European capitals, then

with parallel scoring credit would be given for each correctly mentioned capital.

With sequential scoring too, credit is given for each feature in a collection of

features that the response displays, but here the search for features is made in

a �xed order, and as soon as a feature is not displayed, a score is given and

further features are not considered. Sequential scoring may occur in the testing

of psycho-motor skills, where an action it tried until the �rst success, or repeated

until the �rst failure.

The distinction between tasks or items on the one hand and scoring rules on

the other hand may at present seem a little contrived, but examples will be

encountered of di�erent scoring rules that can be applied to the same item, leading

to possibly di�erent scores.

Several families of item response models can be used to describe the distribution of

the score vector obtained on a test. In this paper the following families of models

are considered: the family of partial credit models (Masters, 1982; Andrich, 1978;

Andersen, 1977), the family of graded response models (Samejima, 1969), and

the family of sequential models (Tutz 1990, 1997; Verhelst, Glas and de Vries,

1997). The question is whether a particular data set calls for a particular item

response model. This question can be approached from a theoretical, a practical,

and a statistical point of view:
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A From the theoretical point of view one can investigate the mathematical dif-

ferences that exist between the three families. Do the families have features

that make them especially useful for certain kinds of data? Is it possible,

for example, to connect models to scoring rules? What properties should

scoring rules have in order for a certain model to describe the scores?

B If it appears that certain models and scoring rules go together well, one could

study the question which model to choose from a practical point of view.

Practical questions are: how large is the in
uence of using a 'wrong' model

on the ability estimate? Is it possible to distinguish data sets that were

generated under di�erent families of models? If the in
uence of a wrong

model on the ability estimate were small, or if it were very di�cult to

distinguish data sets that were generated under di�erent families, then,

from a practical perspective, the question of the choice of a suitable family

of models might not be so important after all.

C Finally, if certain models and scoring rules go together well, and if the math-

ematical di�erences between the families do have practical consequences,

one could also approach the problem from a statistical point of view and

ask whether it is possible to derive statistical criteria for deciding which

family of models can best be used with a given empirical data set.

Chapters 2 and 3 of this thesis address Question A; the material presented in

Chapter 4 has to do with Questions B and C.

Concerning Question A, that is, the investigation of model properties, Samejima

(1972) already pointed out the possibility of models for sequential and graded

processes (see also Samejima, 1997). Molenaar (1983) examined the mathemat-

ical relation between on the one hand the Rasch (1960) model for binary items,

and on the other hand the partial credit model (PCM), the graded response

model (GRM), and the sequential model (SM) for polytomous items. Mellen-

bergh (1995) took Bock's (1972) nominal response model as a starting point and

then distinguished three di�erent order preserving mechanisms leading to three

di�erent types of models for ordinal polytomous data. Van Engelenburg (1997,

Chapter 2) investigated subtask features to determine the kind of model that
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suits a particular kind of items. The contributions mentioned above investigate

several models or several response features. More speci�c comparisons, focusing

on only one family of item response models, or on only one response feature, have

also been made. Jansen and Roskam (1986) concluded that only the GRM is a

natural model for rating scales. The SM quite naturally follows from the assump-

tion of a 1 parameter logistic curve for the conditional probability of taking the

'next step' in a sequence of binary tasks (Van Engelenburg, 1997; Mellenbergh,

1995; Molenaar, 1983). Furthermore, Huynh (1994) showed that, under some

conditions on the item parameters, the score probabilities under the PCM have

the same distribution as the total score on a set of independent binary Rasch

items. All these �ndings seem to point to the conclusion that the three families

of models considered in this dissertation could well be used to describe di�erent

kinds of data.

In Chapter 2 it will be demonstrated that under every model for polytomously

scored items, the distribution of the score is equal to the distribution of the

total score on a set of binary items that are maximally dependent given their

marginals. The response functions of these binary items can be derived from the

model for the polytomous item score as well. This does not imply, however, that

every model for polytomous items is suitable for modeling binary variables in a

sequential design: in Chapter 3 it will be shown that a speci�cation error is made

if the PCM or the GRM were applied to binary variables in a sequential design.

This holds for the application of the PCM or the GRM to sequentially scored

polytomous items as well. Using the SM, no such error is made.

The suitability of the SM for sequentially scored polytomous items should come

as no surprise, as the SM was explicitly derived to describe sequential scoring.

What is new is that it is demonstrated that the GRM and the PCM are mathe-

matically unsuited for dealing with sequentially scored items. Combining the two

approaches, it can be concluded that of the PCM, the GRM and the SM, only

the SM (or a model of identical structure, di�ering from the SM only in the form

assumed for the binary response functions) is suitable for use with sequential

scoring.
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Regarding Question B, there is literature suggesting that, notwithstanding the

theoretical di�erences between the models, it may be di�cult to distinguish them

in practice. It is sometimes found that several models �t the same empirical data

set reasonably well. Verhelst, Glas and de Vries (1997) found a comparable

�t when they applied the SM or the PCM to their data. Furthermore, using

an algorithm (De Vries, 1988) to �nd a set of PCM curves for a set of SM

curves, such that the area between the two sets of curves is minimized, Verhelst,

Glas and de Vries (1997) concluded that the response curves under these two

models can be very close, but that these models are not a reparameterization

of each other. Finally, there are simulation studies that seem to indicate that

data generated according to the speci�cations of one of the three models are not

always easily recognized as such (Maydeu-Olivares, Drasgow and Mead, 1994;

Van Engelenburg, 1997, Chapter 1).

In the �rst part of Chapter 4 the possibility of distinguishing between data gener-

ated under two di�erent families of item response models is further investigated.

The research reported on is a modi�ed replication of the simulation study per-

formed by Maydeu-Olivares et al. (1994; see also Levine et al., 1992). These

authors de�ned an ideal observer as an observer making statistically optimal de-

cisions. In their studies, an ideal observer was confronted with two completely

speci�ed item response models, and with two score vectors. Each score vector

had been simulated under one of the two models. The two models were either

members from the same family, or from di�erent families. Careful attention was

given to the selection of the models to be actually compared. The observer, whose

part was played by a computer, had to match each score vector to the model that

generated it. The combination decided on was the one whose likelihood was the

larger of the two. This decision rule can be reformulated as a likelihood ratio

test. The generation and classi�cation of the two response patterns was repeated

a large number of times, for the same model speci�cation, and the percentage of

correct classi�cations was interpreted as an index for the di�erence between the

two models. In Chapter 4 the rate of correct classi�cation in this decision exper-

iment is increased by classifying an entire data matrix instead of only a single

score vector. For those models that were selected for the actual investigation,

the results indicate that when two members of the same family are compared,
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the sample size needed for a 95 percent rate of correct classi�cation has to be

almost twice as large as when two members of di�erent families are compared.

This leads to the conclusion that the consequences of the model di�erences are

large enough to be of practical relevance.

Hence one arrives at question C: the development of statistical criteria for the

choice of a family of models. Several indices have been proposed in the literature

to aid in the choice of non-nested models. Among those are Akaikes AIC (Akaike,

1973, 1974) and Bozdogan's CAIC (Bozdogan, 1987). In a Bayesian context,

methods have been proposed by Schwarz (1978), and recently by Gelfand and

Ghosh (1998). See Haughton (1996) for an overview. Gelfand and Ghosh (1998)

show that most of these criteria are a combination of a goodness-of-�t measure

and a penalty for the number of parameters in the model. When the objective

is to choose between families of item response models, however, no such penalty

term is required, because the competing models will usually have an equal number

of parameters.

The procedure proposed in the second part of Chapter 4 is as follows. For each

family of models under consideration, that member is identi�ed that �ts the data

best. Then, using a zero/one loss function and a maximum likelihood decision

rule, the model having the largest likelihood is decided on. The power under

the alternatives and the size of the type I error are ascertained by means of

simulation. The results of applying the procedure to some simulated data sets

seem to indicate that it may be a useful tool in deciding upon an item response

model. When the procedure is subsequently applied to an empirical data set,

consisting of rating scale data, the GRM is decided on.

The dissertation ends with an epilogue, in which some consequences are discussed

of emphasizing, in the question of model choice, scoring rules rather than item

types.
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Chapter 1

Item information and discrimination
functions for trinary PCM items1

Abstract

For trinary partial credit items the shape of the item information and the item discrimination
function is examined in relation to the item parameters. In particular, it is shown that these
functions are unimodal if �2 � �1 < 4 ln2 and bimodal otherwise. The locations and values of
the maxima are derived. Furthermore, it is demonstrated that the value of the maximum is
decreasing in �2 � �1. Consequently, the maximum of a unimodal item information function is
always larger than the maximum of a bimodal one, and similarly for the item discrimination
function.

Key words: partial credit model, trinary items, item information function, item discrimina-
tion function, maximum item information.

1.1 Introduction and De�nitions

Let a graded item admit a score X in 0; 1 : : :M. A higher score indicates a better

performance. Examinee ability will be denoted by �. The category response

function (CRF) gives the probability of obtaining a score k, as a function of �.

1This paper has been written in cooperation with dr. E. Muraki fromETS, Princeton. It has
been published as: Akkermans, W. and E. Muraki (1997). Item information and discrimination
functions for trinary PCM items. Psychometrika, 62, 569-578.
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CRFs will be denoted by the symbol Pk(�):

Pk(�) = Pr(X = k; �); for k = 0; 1 : : :M:

In the partial credit model (PCM; Andrich, 1978; Masters, 1982) the CRFs are

given by

Pk(�) =
exp

Pk
p=0 (� � �p)PM

r=0 [exp
Pr
p=0 (� � �p)]

; (1.1)

with
P0
p=0 (� � �p) � 0. The parameters �p are the scale values at which two

consecutive CRFs intersect. The model for binary items formulated by Rasch

(1960) can be seen as a special case of the PCM: the binary Rasch item is a PCM

item with M = 1.

The expected response function (ERF) is de�ned as the (normalized) expected

score as a function of �:

ERF(�) =
1

M

MX
k=0

kPk(�):

The derivative of the ERF is known as the item discrimination function; in this

paper it will be denoted by the symbol G(�):

G(�) = @
@�
ERF(�):

Using the fact that in the PCM the derivatives of the CRFs are given by

@
@�
Pk(�) = Pk(�)[k �PM

r=0 rPr(�)]; (1.2)

in this model the derivative of the ERF is equal to

G(�) =
1

M

8<:
MX
k=0

k2Pk(�)�
"
MX
k=0

kPk(�)

#29=; :
Let L(�jX) be the likelihood function of � given the observed response X. Again

using (1.2), the item information function I(�) = E
h
� @2

@�2
ln L(�jX); �

i
follows as

I(�) =
MX
k=0

h
@
@�
Pk(�)

i2
=Pk(�)

=
MX
k=0

k2Pk(�)�
"
MX
k=0

kPk(�)

#2
: (1.3)
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Note that in the PCM the functions I(�) and G(�) are proportional. Let a

trinary item be a graded item with maximum score 2. Huynh (1994) shows

that �2 � �1 � 2 ln 2 is a necessary and su�cient condition for the likelihood of

the score on a trinary partial credit item to be fully equivalent to the likelihood

of the total score on a set of 2 independent binary Rasch items. Subsequently,

Huynh introduces the term "indecomposable" (Huynh, 1996) to refer to trinary

PCM items with �2 � �1 < 2 ln 2; and he proves that the likelihood of the score

on any PCM item is equivalent to the likelihood of the total score on a set of

independent binary and indecomposable trinary PCM items. Huynh also uses

the term trinary Rasch item for the trinary PCM item.

Binary Rasch items have been thoroughly investigated, their features are well

known. For example, the information function of a binary Rasch item is unimodal,

its maximum occurs at � = �, and the value of the maximum is equal to 1=4.

It is also well known that in the Rasch model the value of the derivative of the

ERF, evaluated at � = �, equals 1=4. Much less appears to be known about the

characteristics of trinary Rasch (PCM) items. Thus, as the PCM appears to be

built up of both binary and trinary Rasch items, there seems to be a need for

investigating the trinary Rasch item.

This paper will concentrate on the item information function I(�) and the item

discrimination function G(�) of the trinary PCM item. The conditions will be de-

rived under which these functions have either one or two modes, and the locations

and values of the maxima will be determined. Because of the proportionality of

I(�) and G(�) in this model, the calculations will be carried out for I(�) only.

1.2 Condition for Unimodality

Let Var(X; �) be the variance of X as a function of �. Because Var(X; �) =PM
k=0 k

2Pk(�) �
hPM

k=0 kPk(�)
i2
, it appears that for the PCM Var(X; �) is equal

to I(�), as given in (1.3). As it is well known that Var(X; �) approaches 0 for
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� ! �1, it follows that also

lim
�!1

I(�) = lim
�!�1

I(�) = 0: (1.4)

De�ning � = (�1 + �2)=2, it is easy to show that for a trinary PCM item,

I(�) is symmetric around � = �:

Starting from (1.3) and once more using (1.2), the derivative of the item infor-

mation function can be found; it is equal to

@
@�
I(�) =

MX
k=0

k3Pk(�)� 3

"
MX
k=0

kPk(�)

#
MX
k=0

k2Pk(�) + 2

"
MX
k=0

kPk(�)

#3
:

If we let � = exp(�); "1 = exp(��1); "2 = exp(��2) and substitute these into

the expressions for Pk(�), then after some algebra and rearranging this derivative

can be expressed as

@
@�
I(�) = �"1

(1� �2"1"2)[�
2"1"2 � �("1 � 8"2) + 1]

(1 + �"1 + �2"1"2)3
:

This function becomes or approaches zero in each of the following cases:

if � !1; i.e. if �!1; (1.5)

if � ! 0; i.e. if �! �1; (1.6)

if �2 = 1=("1"2); i.e. if � = �; (1.7)

if �2"1"2 � �("1 � 8"2) + 1 = 0: (1.8)

To start with, therefore, there always exist one �nite and two asymptotic solutions

to @
@�
I(�) = 0. The number of solutions to @

@�
I(�) = 0 furthermore depends upon

the discriminantD = ("1�8"2)2�4"1"2 of the quadratic in (1.8). This quadratic

has two real solutions if its discriminant is positive, that is, if

"1
"2
� 4 or

"1
"2
� 16: (1.9)

Let the real solutions to this quadratic, if they exist, be denoted by �1 and

�2. In order for these solutions to be valid they both have to be positive, as
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� = exp(�) > 0. A necessary and su�cient condition for two real numbers to be

both positive is that both their sum and their product be positive. The sum of

the two roots to the quadratic px2 + qx + r equals �q=p, and their product is

r=p; therefore we need ("1 � 8"2)="1"2 > 0 and 1="1"2 > 0. The latter condition

poses no problem; the former is ful�lled if "1="2 > 8. Hence, if there are two real

roots �1; �2 to the quadratic in (1.8), these can only both be positive if

"1
"2
> 8: (1.10)

Because of (1.10) only the second possibility in (1.9) is useful. Remembering that

"1="2 = exp(�2 � �1) it may be concluded that the quadratic in (1.8) has

no solutions if �2 � �1 < 4 ln 2;

two solutions if �2 � �1 � 4 ln 2:

In the �rst case, the information function will only have the one �nite and two

asymptotic extremes derived in (1.5) - (1.7) above, that is, at � = � and for

� ! �1; in the second case there are two more extremes in the information

function. These two cases will be examined separately below.

1.3 Unimodal Item Information Function

Using (1.5) - (1.7), the symmetry of I(�), Equation (1.4), and the fact that the

information function is always positive, it may be concluded that if there is only

one �nite extreme in the information function this function has to be unimodal

with a maximum occurring at � = �. In order to �nd the value of this single

maximum I(�) note that � � �1 = (�2 � �1)=2 and that exp(2� � �1 � �2) = 1, so

that, using (1.3) and (1.1), it can be veri�ed that

I(�) =
2

2 + exp[(�2 � �1)=2]
: (1.11)

From (1.11) it follows that

I(�) is decreasing in �2 � �1: (1.12)
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The maximum of the information at � = � therefore occurs if �2 � �1 ! �1,

that is, if �2 � �1; and the minimum of the information at � = � is reached if

�2� �1 !1, that is, when �2 � �1. However, for �2� �1 � 4 ln 2 the information

function is no longer single peaked: hence the minimumvalue of the maximum at

� = � for a single peaked information function occurs for �2 � �1 = 4 ln 2. Using

(1.11), values for the maximum at � = � may be easily obtained; some values for

the maximum of a unimodal information function are:

I(�) � 1 for �2 � �1; (1.13)

I(�) =
2

3
for �1 = �2; (1.14)

I(�) =
1

2
for �2 � �1 = 2 ln 2; (1.15)

I(�) =
1

3
for �2 � �1 = 4 ln 2: (1.16)

From (1.12) and the fact that for �2 � �1 � 4 ln 2 the item information function

is no longer unimodal, it follows that the value of the single maximum at � = �

is bounded by 1 and 1=3.

1.4 Bimodal Item Information Function

If the quadratic in (1.8) has two real roots, then because of the symmetry of

I(�) there must be maxima at these roots and a minimum in between, that

is, at � = �. Solving the quadratic it follows that the two maxima will occur

at �1;2 =
n
"1 � 8"2 � [("1 � 8"2)2 � 4"1"2]

1=2
o
=2"1"2. Remembering that � =

exp(�); "1 = exp(��1) and "2 = exp(��2), this can be rewritten as

�1;2 = � � ln

8<:"1 � 8"2 + [("1 � 8"2)2 � 4"1"2]
1=2

2("1"2)1=2

9=; : (1.17)

In the appendix it is shown that the value of these maxima is equal to

I(�1) = I(�2) =
1

4 f1 � 4 exp[�(�2� �1)]g: (1.18)
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Again,

I(�1) and I(�2) are decreasing in �2 � �1: (1.19)

For �2 � �1 = 4 ln 2, both maxima still are located at � = �, and their value is

1=3. For �2 � �1, the maxima will be located near �2 and �1, respectively, as can

be seen upon taking the limit of (1.17) for �2 � �1 ! 1, that is, for "2="1 ! 0.

In this case the exponential exp[�(�2 � �1)] will approach 0 and hence

I(�1) � I(�1) � 1

4
for �2 � �1; (1.20)

and similarly for the maximum located near �2. It may be concluded that the

values of the maxima of a bimodal information function are bounded by 1=3 and

1=4.

As an example of a trinary item, let (�1; �2) = (�2; 2). For this item the maxima

will be located at � = �1:8154, and their value is :270. An item with (�1; �2) =

(�3; 3) has its maxima at � = �2:9974, and their value is :252. Note that indeed

this value is nearly equal to 1=4.

1.5 Discrimination Function

With the appropriate modi�cations, all the above holds for the item discrimina-

tion function G(�) as well. In particular, G(�) will be bi- or unimodal under the

same conditions, and the maxima will have the same location. Their values are

obtained upon dividing (1.11) and (1.18) by M, which in this case is equal to 2.

If G(�) has one maximum, the second derivative of the expected response function

changes sign exactly once: the ERF then has one point of in
ection. A function

with only one point of in
ection is smooth. Hence the ERF of a PCM item with

�2 � �1 < 4 ln 2 will be smooth. In fact, its smoothness is comparable to the

smoothness of a Rasch function. If G(�) is bimodal, there will be a 'bump' in the

middle of the corresponding ERF.
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1.6 Some Comparisons

The maximum information of a single binary Rasch item equals 1=4. Therefore

the information obtainable with the total score on 2 independent binary Rasch

items can never exceed 1=2. Bearing this in mind, and also the values given in

(1.13) - (1.16) and (1.20), some remarks apply:

1. For trinary PCM items, the value of the maximum information is decreas-

ing in �2 � �1. This follows from the fact that these maxima are, �rst,

decreasing in �2� �1 for both unimodal and bimodal information functions

(see equations 1.12 and 1.19), and, second, equal for �2 � �1 = 4 ln 2.

2. Hence, for trinary PCM items the maximum of every unimodal information

function is larger than the maximumof every bimodal information function.

3. By a similar argument, the maximum information of every indecompos-

able trinary PCM item is larger than the maximum information of every

decomposable trinary PCM item.

4. Consequently, the maximum information of every indecomposable trinary

PCM item is larger than the maximum information obtainable with 2 inde-

pendent binary Rasch items. Therefore indecomposable trinary PCM items

are in a sense more e�cient than the total score on two independent binary

Rasch items can ever be.

5. For trinary PCM items with �2 � �1, the maximum information never

exceeds 2=3.

6. If �2 � �1, the maximum information obtainable with a trinary PCM item

is equal to the maximum information for just a single binary Rasch item.

PCM items with �2 � �1 are perhaps best understood upon examining their

expected score distributions. Assuming that �2 � �1 implies both � � �1

and �2 � �, then for � � � the probability of obtaining a score 2 is nearly

0, and for these values of � the PCM item behaves as a binary Rasch item

with parameter approximately equal to �1. For � � �, the probability of

obtaining a score 0 will be nearly 0, and for these values of � the PCM
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item behaves as a binary Rasch item with parameter approximately equal

to �2. For 'average' values of �, which may be quite a substantial part of

the �-axis if �2 really is much larger than �1, the probability of obtaining

a score 1 on the PCM item will be nearly equal to 1. So in the limit,

for �2 � �1, the decomposable trinary Rasch item is equivalent to two

independent binary Rasch items with parameters approximately equal to

�1 and �2. Its information function will resemble the information function

of the total score on two widely separated Rasch items, with information

approximately equal to zero for � in the neighborhood of �.

7. The other limit, that is, �2 � �1, is also interesting. Note that P1(�) reaches

its maximum at � = �. Now if �2 � �1, the maximumP1(�) � 0, and hence

P1(�) � 0 for all �. Consequently, in this case P0(�) + P2(�) � 1 for all

values of �; and because P0(�)=P2(�) = 1=f1+exp[2(���)]g, it follows that
P0(�) � 1=f1 + exp[2(� � �)]g and P2(�) � exp[2(� � �)]=f1 + exp[2(� �
�)]g. So for �2 � �1 the PCM item reduces to a 2 parameter logistic item

(Birnbaum, 1968) with location parameter � and discrimination equal to 2.

The maximum information for such an item is equal to 1 (see next section).

1.7 Discrimination Parameter

Under the generalized partial credit model (GPCM; see Muraki, 1992; Muraki,

1993), the category response functions are given by

Pk(�) =
exp[�

Pk
p=0 (� � �p)]PM

r=0 exp[�
Pr
p=0 (� � �p)]

;

again with
P0
p=0 (� � �p) � 0. In this model the discrimination parameter �

varies over items. If in this case we let � = exp(��); "1 = exp(���1) and

"2 = exp(���2), all derivations will be analogous to the ones given in the previ-

ous sections, resulting in unimodal item information and discrimination functions

if �(�2 � �1) < 4 ln 2 and bimodal functions otherwise. The values of the item in-

formation and discrimination are now equal to �2Var(X; �) and (�=M)Var(X; �),

respectively. The single maximum is also located at � = �; the location of the
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bimodal maximum can be adapted from (1.17):

�1;2 = � � 1

�
ln

8<:"1 � 8"2 + [("1 � 8"2)2 � 4"1"2]
1=2

2("1"2)1=2

9=; :
Furthermore, note that the number 4 ln 2 is invariant under linear transformation

of the �-scale: setting �� = k�+m and o�setting this in the usual way by �� = �=k

and �� = k� +m will yield

"�1
"�2

=
exp(�����1)
exp(�����2)

=
exp[��

k
(k�1 +m)]

exp[��
k
(k�2 +m)]

=
exp(���1)
exp(���2) =

"1
"2
:

Hence in any linearly transformedmetric ��, I(��) will be unimodal if ��(��2���1) <
4 ln 2, and bimodal otherwise.

1.8 Conclusion and Discussion

The necessary and su�cient conditions have been stated under which both the

item information and the item discrimination function of a trinary PCM item

are unimodal, and the location and value of these maxima were derived. It was

furthermore ascertained that for trinary PCM items the maximum of a unimodal

item information function is always larger than the maximum of a bimodal one;

and similarly for the item discrimination function. As a consequence, the ERF of

a trinary PCM item with a unimodal discrimination function is both steeper and

smoother than the ERF of a trinary PCM item with a bimodal discrimination

function. The smoothness of the former is comparable to that of a binary Rasch

item. Although the condition for bimodality of the item information function

seems rather strong (�2��1 > 4 ln 2 = 2:77), these items do occur in practice. For

example, in the 1994 survey of the National Assessment of Educational Progress

(NAEP), students of age 13 were administered 449 items covering Geometry,

History and Reading. Of these items, 86 were trinary PCM items, and 11 of

them had a bimodal information function. This is about 13 percent. At the time

of writing, the analyses of the 1994 NAEP data is still in progress; however, a

general overview of the scaling procedures used can be found in Mislevy, Johnson

and Muraki (1992).
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The results obtained in this paper may have some practical relevance. Matching

a target information function is a commonly used criterion in test design. This

may require, at some point in the test construction process, �nding an item

with a pre-speci�ed information at a certain theta level, say at �0. For binary

Rasch items this is easy: under the Rasch model item information functions di�er

only in their location, and hence the item located closest to �0 will have higher

information at �0 than all other items. For polytomous items, however, �nding

the best item is no trivial task. In order to avoid having to calculate I(�0) for

many items, knowledge of the location and value of the maximamight be helpful.

At least for trinary PCM items these are now available.

Another practical question is that of the optimal value of M. Assume an in�nite

item pool, and consider a situation in which an item with high information at

� = �0 is required. As an example, one might think of computerized adaptive

testing, where a provisional ability estimate �̂(t) = �0 is available. From an in�-

nite item pool it will be possible to select an indecomposable trinary PCM item,

with its maximum information located at � = �0. As has been demonstrated,

the maximum information of an indecomposable trinary PCM item is larger than

the maximum information obtainable with any two independent Rasch items.

Theoretically, therefore, (in�nite item pools do not exist), in this case adminis-

tration of a suitable, that is, indecomposable trinary item is more e�cient than

administration of two independent binary Rasch items can ever be. This does

not generalize to M > 2: the likelihood of every PCM item with M > 2 is equiv-

alent to the likelihood of the total score on a number of independent binary and

indecomposable trinary PCM items, and therefore the two information functions

will be equal. It follows that, even in an in�nite item pool, there exist no PCM

items with M > 2, having larger maximum information at � = �0, than would

be obtainable with the equivalent combination of independent binary and trinary

PCM items.

This may have implications for test construction and item banking. It could be

argued that the construction of more items with small M (i.e., M = 1 and M = 2)

might be more pro�table than the construction of less items, each of these with

large M. First, in the in�nite item pool, for every PCM itemwith M > 2 there will
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exist an equivalent combination of independent binary and trinary PCM items

having the same information function. Second, from a practical perspective, there

will be more items available to choose from. Third, the maximum information

for items with M � 2 can now be calculated and hence these items may become

more easily manageable in item banks than items with large M. It should be

remarked, however, that not all trinary items are equally e�cient: in particular,

those with �2 � �1 have approximately zero information for average values of �.

The value of the maximum information is decreasing in �2� �1. This would seem

to suggest that it is desirable to have items with �2 as small as possible, compared

to the value of �1. However, for rating scale items it might be inappropriate to

have �2 < �1 (Andrich, 1982). Furthermore, although, of all trinary PCM items,

the maximum information of items with �2 much larger than �1 is largest, it was

pointed out that these items do not really behave as trinary items: they are

equivalent to binary 2 parameter logistic items with � = 2.

Finally, in the context of multiple choice items there are several reasons for ar-

guing that the optimal number of choices be 3 (e.g. Lord, 1980). Some of these

reasons have to do with discrimination and reliability. It would be interesting

to examine whether there is any relationship with 3 seeming the most e�cient

number of categories for graded items, too.

Appendix
Calculation of the maxima for a bimodal information function

In this appendix three shorthand symbols will be used:

f(�) = exp(� � �1);

g(�) = exp(2� � �1 � �2);

y = exp(�2 � �1):
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Note that g(�) can be expressed in f(�) and y:

g(�) = [f(�)]2=y: (1.21)

Using (1.3) and the shorthand notations f(�) and g(�), for a trinary PCM item

I(�) = P1(�) + 4P2(�)� [P1(�) + 2P2(�)]2 can be written as

I(�) = P1(�)[1� P1(�)] + 4P2(�)[1� P2(�)]� 4P1(�)P2(�)

=
f(�)[1 + g(�)] + 4g(�)[1 + f(�)]� 4f(�)g(�)

[1 + f(�) + g(�)]2

=
f(�) + f(�)g(�) + 4g(�)

[1 + f(�) + g(�)]2
: (1.22)

Substituting (1.21) into (1.22) it is possible to express I(�) in f(�) and y only:

I(�) =
f(�) + f(�)[f(�)]2=y + 4[f(�)]2=y

f1 + f(�) + [f(�)]2=yg2

=
yf(�) fy + [f(�)]2 + 4f(�)g
fy + yf(�) + [f(�)]2g2 : (1.23)

For a bimodal information function the locations of the maxima, expressed in

� = exp(�) and "k = exp(��k), may be rewritten from the expression just above

(1.17):

�1;2 =
1

2"1

8<:"1"2 � 8�
"�
"1
"2
� 8

�2
� 4

"1
"2

#1=29=; :
Noting that "1="2 = exp(�2 � �1) = y, the locations of the maxima expressed in

� are given by

�1;2 = ln

(
1

2 exp(��1)
�
y � 8�

h
(y � 8)2 � 4y

i1=2�)
:

Concentrate for the moment on the maximum located at �1. Evaluating f(�) for

� = �1 will give, with f(�1) = exp(�1 � �1) :

f(�1) =
1

2

�
y � 8 +

h
(y � 8)2 � 4y

i1=2�
: (1.24)
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Instead of directly trying to evaluate I(�) at � = �1, note that with the help of

(1.24) it is possible to express [f(�1)]2 in f(�1) and y:

[f(�1)]
2 =

1

4

�
(y � 8)2 + 2(y � 8)

h
(y � 8)2 � 4y

i1=2
+ (y � 8)2 � 4y

�

=
1

2
(y � 8)

�
y � 8 +

h
(y � 8)2 � 4y

i1=2� � y
= (y � 8)f(�1)� y: (1.25)

Now in order to evaluate I(�) at � = �1, �rst, in (1.23), substitute [f(�1)]2 by the

expression derived in (1.25):

I(�1) =
yf(�1) [y + (y � 8)f(�1)� y + 4f(�1)]

[y + yf(�1) + (y � 8)f(�1)� y]2

=
yf(�1)[yf(�1)� 4f(�1)]

[2yf(�1)� 8f(�1)]2

=
y

4(y � 4)
:

For the maximum located at �2 the derivation is similar. Therefore the value

of the maximum of a bimodal information function follows upon replacing y by

exp(�2 � �1) in the above expression, yielding

I(�1) = I(�2) =
exp(��1)

4[exp(��1)� 4 exp(��2)] :
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Chapter 2

Polytomous item scores and Guttman
dependence1

Abstract

Some theoretical relations are established between the score on a polytomous item and the total
score on a set of Guttman dependent binary items. Conditions are derived under which these
two scores are identically distributed. Application of the theoretical results to three well-known
models for polytomous data yields, among others, that the score on a graded response item
(Samejima, 1969) is never distributed as the total score on a set of independent binary Rasch
items (Rasch, 1960).

Key words: Guttman dependence, graded response model, partial credit model, sequential
model.

2.1 Introduction

There are several models for polytomous items, between which it is sometimes

hard to decide. Breaking down polytomous items into dichotomous item steps,

as is for example done by Van Engelenburg (1997, chapter 2), may facilitate the

process of choosing an appropriate model for a particular set of polytomous items.

1This paper has been accepted by the British Journal of Mathematical and Statistical Psy-

chology; it is scheduled for the May 1999 issue.
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Bearing this in mind, the present paper aims at the establishment of some the-

oretical relations between item response models for polytomous, and models for

binary data. The interest in di�erences and similarities between item response

models has been growing during the last decade. Some papers focus on models

for polytomous items only, such as Andrich' (1996) recent reformulation of the

Likert scale (Likert, 1932) as an unfolding model, which clari�es its relation to

the Thurstone (1927) procedure. Many authors, however, are concerned with

relations between, on the one hand, models for binary, and on the other hand,

models for polytomous data. Molenaar (1983) for example explored the mathe-

matical relation of three di�erent models for polytomous items with the Rasch

model (Rasch, 1960). Jansen and Roskam (1986) investigated the possibility of

dichotomizing graded responses, under several di�erent models for polytomous

data. Mellenbergh (1995) takes Bock's nominal response model (Bock, 1972) as a

starting point and then distinguishes three di�erent order preserving mechanisms

leading to three di�erent types of models for ordinal polytomous data. Van Enge-

lenburg (1997) investigates formal subtask features in order to determine the kind

of model that is called for by a particular kind of item. In all these contributions

several models for polytomous items are considered. More speci�c comparisons

however, focusing on one particular model, are also made. The polytomous Rasch

model, one version of which has been thoroughly investigated by Fischer (1974),

has received particular interest. Huynh (1994) for example showed that, un-

der some conditions on the item parameters, the score on a partial credit item

(Andersen,1977;Andrich,1978;Masters,1982) is distributed as the total score on a

set of independent binary Rasch items; and subsequently he discovers that the

score on every partial credit item is distributed as to the total score on a set of

independent binary and trinary Rasch items (Huynh, 1996).

The focus in the present paper will be on the relation between response proba-

bilities for a polytomous item, and response probabilities for a set of Guttman

dependent binary variables (Guttman, 1950). In the context of item response

theory, it is possible to make a distinction between deterministic and stochastic

Guttman scales. In a deterministic Guttman scale, the response probability for
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the binary item j is given by

Pr(Yj = 1; �) =

(
0 for � < �j
1 for � � �j

;

where �j could be thought of as an item parameter. Deterministic Guttman

scales are very restrictive and therefore of little practical use. Three approach-

es have been taken to relax the severe restrictions in this model. The practical

approach is the construction of an index for the deviation of the empirical data

from the perfect Guttman pattern, and the formulation of a rule for the accept-

ability of this deviation. The literature about these scalability coe�cients has

been reviewed by e.g. Mokken (1970) and by Cli� (1983). A more fundamental

approach was taken by Mokken (1970). Mokken relaxed the assumption of the

deterministic response probabilities, and in doing so, his work formed the start-

ing point for a growing body of literature about nonparametric item response

theory (see e.g. Mokken and Lewis, 1982; Ellis and van den Wollenberg, 1993;

Sijtsma and Junker, 1996; Hemker et al., 1996, 1997). In these nonparametric

models however the maximal covariance property, which is an essential part of the

Guttman scale, is lost. Tutz (1990, 1997) and Verhelst, Glas and de Vries (1997)

could be considered as suggesting a third approach. These authors relaxed the

deterministic response probabilities, whilst at the same time retaining the prop-

erty of maximal covariances. This approach will be taken in the present paper as

well. The resulting stochastic Guttman scale of course is still restrictive in that

it admits of perfect response patterns only. However, the primary purpose in this

paper is not the derivation of a model that o�ers a realistic description of empiri-

cal data. The purpose will rather be to reveal, in Section 2.2, some mathematical

relations between the response probabilities for the score on a polytomous item

and a for the score on a set of stochastic Guttman dependent binary variables.

When these relations have been established, in Section 2.3 their implications for

several parametric models for polytomous responses will be investigated. The

interest will only be in relationships between the probability mass functions of

polytomous and of binary variables. No claims are made concerning relationships

between substantive item contents.

It will for example be shown that the score on a graded response item (Sameji-

ma,1969) is never distributed as to the total score on a set of independent binary
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Rasch items. Comparisons like these may contribute towards an understanding

of the kind of data to which models can be pro�tably applied.

2.1.1 Preliminaries: notation and de�nitions

Consider a set of M binary variables Y = (Y1 : : : Yj : : : YM), where each Yj takes

a value of either 0 or 1. Let � be a �xed latent ability. Then,

Pr(Y = y; �) = Pr(Y1 = y1; Y2 = y2; : : : ; YM = yM ; �)

will denote the simultaneous probability of observing a the vector Y = y as a

function of �.

The marginal probability of a certain response on one variable, say variable j, can

be obtained from the simultaneous probability by summing over the probabilities

of all other possible responses:

Pr(Yj = k; �) =
1X

y1=0

: : :
1X

yj�1=0

kX
yj=k

1X
yj+1=0

: : :
1X

yM=0

Pr(Y = y; �);

for k = 0; 1. When these marginal probabilities are considered as a function of

�, they will be called operating characteristics (OCs). This term, which is due to

Samejima (1969), is preferred here over the term 'item characteristic curve', to

stress the emphasis on variables rather than items. Next,

Pr(Yi = yi j Yj = yj; �)

will denote the conditional probability of the score on variable i, given the score

on variable j, evaluated as a function of �. The symbol T will be used for the

total score on the set of binary variables:

T =
MX
j=1

Yj ;

and the total score functions (TSFs) give the probability, considered as a function

of �, of obtaining a particular total score:

TSFt(�) = Pr(T = t; �); for t = 0; 1; : : : ;M:
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The ETSF, �nally, describes the expectation of the total score as a function of �:

ETSF(�) = E(T ; �):

De�nition 1 Let a set of M binary variables be indexed such that Pr(Yi = 1; �) �
Pr(Yj = 1; �) for all � and all i < j. This set of variables will be called Guttman

dependent if

Pr(Yi = 1 j Yj = 1; �) = 1

for j = 2; 3; : : : ;M and all i < j, and for all values of �.

As will be shown below, the OCs are nonintersecting. Furthermore, if Pr(Yk =

1; �) = Pr(Yr = 1; �) for some k and r and for all �, it is possible to use either

k = r � 1 or k = r + 1. In a set of Guttman dependent binary variables only

perfect response patterns occur: with the indexing convention from De�nition 1,

and noting that if Pr(Yk = 1; �) = Pr(Yk+1 = 1; �) then Pr(T = k; �) = 0, a total

score T = t on a set of Guttman dependent binary variables implies that the

�rst t variables are equal to 1 and the last M� t variables are equal to 0. From

this property it follows that, for a set of Guttman dependent binary variables,

Pr(Yj = 1; �) = Pr(T � j; �), for j = 1; 2; : : : ;M. Hence, the total score functions

(TSFs) for a set of Guttman dependent binary variables are given by:

Pr(T = t; �) = Pr(T � t; �)� Pr(T � t+ 1; �)

= Pr(Yt = 1; �)� Pr(Yt+1 = 1; �); for t = 0; 1; : : : ;M; (2.1)

where, for notational convenience, Pr(Y0 = 1; �) � 1 and Pr(YM+1 = 1; �) �
0. Consequently, the OCs are nonintersecting otherwise Pr(T = t; �) would be

negative for some �. It may be noted that a set of Guttman dependent binary

variables may, but need not, consist of variables with deterministic OCs.

A polytomous variable is de�ned as a variable with possible scores 0; 1; 2; : : : ;N.

Below, only one polytomous variable will be considered at a time, so that there is

no need here for a separate variable index. The index k can therefore be reserved

for the categories of and the score on a polytomous variable; he index j will be
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used to indicate variables from a set of binary variables. In order to be able to

distinguish scores on binary from scores on polytomous variables, from now on

the symbol X will be used to indicate the score on a polytomous variable; the

symbol Y will be continued for use with binary variables. The marginal response

probabilities on a polytomous variable, considered as a function of �, will be

called category response functions or CRFs:

CRFk(�) = Pr(X = k; �); for k = 0; 1; : : : ;N:

Cumulative category response functions (CCRFs) give the probability of obtain-

ing a score of k or higher on a polytomous variable, as a function of �:

CCRFk(�) = Pr(X � k; �) for k = 0; 1; : : : ;N:

The expected value of the score on a polytomous variable, as a function of �, will

be referred to as the expected-response function ERF:

ERF(�) = E(X; �):

The term 'response probability' will be used in the context both of binary and of

polytomous variables, to indicate the probability of obtaining a particular score.

In the sequel, F will be a set of OCs for M binary variables, and the separate

OCs in the set will be denoted as f1 : : : fj : : : fM , which are functions of �. For

notational purposes it will also be convenient to de�ne

f0(�) � 1 and fM+1(�) � 0;

for all �. Furthermore, G will be a set of N + 1 CRFs for a polytomous variable,

and the separate CRFs in the set will be denoted as g0 : : : gk : : :gN .

Assuming that the response probabilities on both the binary and the polytomous

variables are governed by the same trait �, this gives:

F = ff1 : : : fj : : : fMg ; where fj(�) = Pr(Yj = 1; �)

G = fg0 : : : gk : : :gNg ; where gk(�) = Pr(X = k; �):

Below, unless explicitly stated otherwise, the only assumptions which the curves

in sets F and G are required to meet are the following:
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1. 0 � fj(�) � 1 for all � and j = 1; : : : ;M;

2a. 0 � gk(�) � 1 for all � and k = 0; 1; : : : ;N;

2b.
PN
k=0 gk(�) = 1;

3. fj(�) nor gk(�) is equal to 0 for all �, for any j 2 1 : : :M or k 2 0 : : :N.

These assumptions will in the sequel be referred to as Assumptions 1 - 3.

Finally, the set of all possible F will be denoted as UF , the set of all possible G
as UG. In Section 2.2.3 a restriction will be placed on UF and UG, but until then
all sets F and G considered will just be elements of UF and UG.

De�nition 2 Two variables P and Q will be called identically distributed for

every value of � if

Pr(P = k; �) = Pr(Q = k; �) for all k and all �:

Hence, if X is the score on a polytomous variable and T the total score on a set

of binary variables, X and T are identically distributed if and only if the CRFs of

the polytomous variable are pairwise identical with the TSFs of the set of binary

variables. IfX and T are identically distributed then obviously, by Assumption 3,

M is equal to N. In the sequel, therefore, only polytomous variables with N = M

are considered. Furthermore, it will be convenient to have a term for the relation

between a polytomous variable and a set of binary variables, whose (total) scores

are identically distributed. In this case the polytomous variable and the set of

binary variables will be called distributionally identical.

It must be stressed at this point that the marginal distribution of T =
P
j Yj does

not, in general, reveal anything about the simultaneous probability distribution

Pr(Y = y; �). Therefore it is possible for the total score on several sets of

binary variables having di�erent OCs and di�erent covariance structures, to be

identically distributed. This is demonstrated by the following two examples,

where " is short for exp(��) and � for exp(�):
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Example A Let variables 1 and 2 have f1(�) = [("1 + "2)� + "1"2�
2]=D, and

f2(�) = "1"2�
2=D, where D = 1 + ("1 + "2)� + "1"2�

2. Assume the two

variables are Guttman dependent. Then, using (2.1), the TSFs for these

two variables are given by Pr(T = 1; �) = f1(�)� f2(�) = ("1 + "2)�=D, and

Pr(T = 2; �) = f2(�) = "1"2�
2=D. The probability of a zero score equals

1� Pr(T = 1; �) � Pr(T = 2; �).

Example B Consider two binary variables with scores Y 0

1 and Y 02, and assume

the scores on these variables are independent, given �. In this case let the

OCs be given by f01(�) and f02(�), respectively. Assume f01(�) = "1�=(1+ "1�)

and f02(�) = "2�=(1 + "2�), where "1 and "2 have the same value as in

example A. Using the independence assumption, this gives Pr(T 0 = 1; �) =

("1 + "2)�=D; and Pr(T 0 = 2; �) = "1"2�
2=D.

Clearly, the TSFs in Example A are equal to the ones in Example B, although

both the OCs and the covariance structures are di�erent.

A �nal de�nition concerns a relation between two sets of response curves F and G:

De�nition 3 Consider a set F 2 UF and a set G 2 UG, satisfying Assumptions

1 - 3. F is a set of M curves f1 : : : fj : : : fM , and G is a set of M + 1 curves

g0 : : : gk : : : gM ; and recall that f0 � 1 and fM+1 � 0. Between the sets F and G

there exists an additive relation (an AR-S) if

fj(�) =
MX
k=j

gk(�); for all � and for j = 1; : : : ;M; (2.2a)

which can also be written as

gk(�) = fk(�)� fk+1(�); for all � and for k = 0; 1; : : : ;M: (2.2b)

Two sets F and G related by an AR-S will be called 'additively related sets'.

Note the following: (a) the �nal S in AR-S indicates that the relation is between

two sets of curves; it is there to distinguish it from another additive relation which

will be de�ned below, and which will be denoted AR-F; (b) this de�nition is about

sets of curves only and therefore does not involve any covariance assumptions; (c)
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from formulation (2.2b) it follows that if an AR-S exists between two sets F and G,

the curves f1 : : : fM must be nonintersecting, otherwise the curves gk would become

negative; (d) from formulation (2.2a) it can be deduced that fi(�) � fj(�) for all

i < j; (e) �nally, note that an AR-S is impossible between two sets F and G having

M 6= N, as for example M < N would give gN(�) = fN (�)� fN+1(�) = 0 � 0 = 0

for all �, which does not obey Assumption 3.

2.2 Polytomous variables and Guttman dependence

Below some lemmas and theorems will be proved, concerning the relation of the

distribution of the score on a polytomous variable, and the distribution of the

total score on a set of binary variables, both considered as a function of �. The

emphasis in this section will be on the mathematical derivations; a substantive

interpretation of the results will be given in Section 2.3. The content of the �rst

lemma is not very surprising, but it will serve to structure the discussion in this

section.

Lemma 1 Consider

1. the score X on a polytomous variable with response curves g0 : : : gk : : : gM

forming a set G 2 UG; and

2. the total score T =
PM
j=1 Yj on a set of M binary variables with response

probabilities f1 : : : fj : : : fM forming a set F 2 UF .

Then the following implication holds:

(a): fj(�) =
PM
k=j gk(�) for j = 1 : : :M;

(b): Pr(Yi = 1jYj = 1; �) = 1 for all i < j:

)
) Pr(X = k; �) = Pr(T = k; �)

for k = 0 : : :M.

Proof. The implication can be easily veri�ed using (2.1) and De�nition 3.

2
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The lemma states that if the variables Y1 : : : YM are Guttman dependent and if

there is an AR-S between the sets F and G, then X and T will be identically

distributed. The reverse of this statement, i.e. the implication from right to left,

does not hold, as can be demonstrated by a counterexample: if X is distributed

as the total score in Example A from Section 2.1.1, then X is also distributed as

the total score in Example B, although in this latter situation the left hand side

properties (a) and (b) do not hold.

Each of the two left hand side conditions (a) and (b) of this lemma will now

in turn be considered not as a condition, but as an assumption, and it will be

demonstrated that in each case this changes the implication into an equivalence.

In Section 2.2.3 another assumption will be introduced, which will also change

the implication into an equivalence.

2.2.1 Unique OCs

Let X be the score on a polytomous variable, and T =
PM
j=1 Yj be the total score

on a set of Guttman dependent binary variables. Hence, the covariance structure

of this set of binary variables is known. No assumptions are made about the

OCs of the binary variables, except the ones stated in Assumptions 1 - 3. In this

situation it can be shown that an AR-S between sets F and G is a necessary and

su�cient condition for the distributions of the score X on a polytomous variable

and the total score and T on a set of Guttman dependent binary variables to be

identical:

Theorem 1 Consider X and T as de�ned in the preamble to Lemma 1, and as-

sume that Pr(Yi = 1jYj = 1; �) = 1 for all i < j. Then the following equivalence

holds:

Pr(X = k; �) = Pr(T = k; �)
for k = 0 : : :M

)
,

(
fj(�) =

PM
k=j gk(�)

for j = 1 : : :M

Proof. Right to left: using the Guttman dependence assumption, this proof is

equal to the proof of Lemma 1.
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Left to right. The OCs for variables 1; 2; : : : ;M are given by f1 : : : fM . Un-

der the assumed Guttman dependence property it holds, using (2.1), that

Pr(T = k; �) = fk(�)� fk+1(�), for k = 0 : : :M. The left hand side condition

Pr(X = k; �) = Pr(T = k; �) now gives

gk(�) = fk(�)� fk+1(�) for k = 0; 1; : : : ;M:

Because fM+1 � 0, it follows that fM = gM for all values of �. Substituting

this into gM�1 = fM�1� fM = will yield that fM�1 = gM�1+gM . Repeating

the argument all the way down to the requirement f1 =
PM
k=1 gk for all �

establishes the implication from left to right. Combining both parts of the

proof completes the proof of the theorem.

2

2.2.2 Unique covariance structure

In the previous theorem the Guttman dependence from Lemma 1 was made an

assumption; now a theorem will be stated in which, instead of the Guttman

dependence, the shape of the OCs is drawn into the assumptions. So it will be

shown that assuming an AR-S, X and T are identically distributed if and only if

the binary variables are Guttman dependent.

Theorem 2 Consider again X and T as de�ned in the preamble to Lemma 1,

and assume an AR-S between the sets F and G. Then the following equivalence

holds:

Pr(X = k; �) = Pr(T = k; �)
for k = 0; 1; : : : ;M

)
,
(

Pr(Yi = 1jYj = 1; �) = 1
for j = 2; : : : ;M and all i < j.

Proof. Right to left: using the AR-S assumption, this proof is equal to the proof

of Lemma 1.
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Left to right. First de�ne Bq, for q = 2; 3; : : : ;M, as

Bq =

Pr(Y1 = 0; : : : ; Yq�1 = 0; Yq+1 = 0; : : : ; YM = 0 j Yq = 0; �)

+
q�2X
r=1

Pr(Y1 = 1; : : : ; Yr = 1; Yr+1 = 0; : : : ; Yq�1 = 0;

Yq+1 = 0; : : : ; YM = 0 j Yq = 0; �)

+Pr(Y1 = 1; : : : ; Yq�1 = 1; Yq+1 = 0; : : : ; YM = 0 j Yq = 0; �): (2.3)

Next, consider a set of M binary variables in which only perfect response

patterns occur for T = 0; 1; : : : ; q � 1. In this situation the probability

Pr(T � q � 1; �) can be written using the quantity Bq:

Pr(T � q � 1; �) = Bq[Pr(Yq = 0; �)]

= Bq[1� fq(�)]; for q = 2; : : : ;M: (2.4)

The proof of the implication from left to right will now be given by means

of mathematical induction. First note that obviously for k = 0, where k

refers to the index in the left hand side of the theorem, the only pattern

possible is to have Yj = 0 for all j.

Proof for k = 1, where again k refers to the index in the left hand side of

the theorem.

Pr(T � 0; �) = Pr(Y1 = 0; : : : ; YM = 0; �)

= Pr(Y2 = 0; : : : ; YM = 0 j Y1 = 0; �) Pr(Y1 = 0; �)

= Pr(Y2 = 0; : : : ; YM = 0 j Y1 = 0; �)[1 � f1(�)]: (2.5)
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However, it also holds that

Pr(T � 0; �) = Pr(X � 0; �) (by the left hand side condition)

= 1� Pr(X > 1; �) = 1�
MX
r=1

gr(�)

= 1� f1(�) (by the AR-S) ; (2.6)

so that, from (2.5) and (2.6):

Pr(Y2 = 0; : : : ; YM = 0 j Y1 = 0) = 1:

Assuming the left hand side to hold, therefore, any response pattern having

the combination (Y1 = 0; T � 1) is impossible, which will be referred to as

Consequence 1 in the sequel. In particular, the combination (Y1 = 0; T = 1)

is impossible so that T = 1 implies Y1 = 1. This establishes the �rst result

in the induction chain: the only pattern possible for k = 1 is a Guttman

pattern.

Proof for k = q. By the induction assumption the Guttman property now

holds for k = 0; 1; : : : ; q � 1, so that it is possible to apply (2.4) and write

Pr(T � q � 1; �) = Bq[1� fq(�)]:

However, reasoning as in the proof for k = 1, it also holds that

Pr(T � q � 1; �) = Pr(X � q � 1; �) (by the left hand side condition)

= 1 � fq(�) (by the AR-S) ;

so that

Bq = 1:

Consequently, the response patterns implied in (2.3) are the only response

patterns with Yq = 0 and therefore the combination (Yq = 0; T � q) is

impossible (Consequence q). In particular, the combination (Yq = 0; T = q)

is impossible so that any pattern leading to T = q has to have Yq = 1.

However, Consequences 1; : : : ; q�1 taken together imply that (Yr = 0; T =
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q) is impossible for all r � q � 1 as well. It follows that the only pattern

for T = q can be the pattern with 1s on the �rst q positions, which is the

q'th pattern in a Guttman sequence.

The induction chain can be carried through as far as k = M � 1. Then

�nally the only pattern possible for T = M is (11 : : : 11), which completes

the proof from left to right.

2

2.2.3 Families of sets of response curves

Until now, the emphasis has been on sets F 2 UF and G 2 UG. In Section 2.3

however, several item response models will be considered. Most item response

models entail a restriction on the universe of sets of response curves. Let F � UF
and G � UG represent such restrictions, and consider, in this section, F 2 F � UF
and G 2 G � UG. The subsets F and G, which are sets of sets, will be called

families of sets of curves, or just short families. As an example, G could be the

family of sets of response curves obeying the graded response model (Samejima,

1969), or the partial credit model (Masters, 1982).

In the subsequent derivations it will be assumed that all F 2 F and G 2 G are

unique: there are no F1 and F2 in family F , nor G1 and G2 in family G, whose
curves completely coincide.

Assuming two families F and G to be de�ned, a relation between them can be

de�ned:

De�nition 4 Consider

1. a family F � UF of unique sets F, and

2. a family G � UG of unique sets G.
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There exists an additive relation between the families F and G (an AR-F) if both

- for every set of curves in family F , say the set F0, there exists a set of curves

in family G, say the set G0, and

- for every set of curves in family G, say the set G1, there exists a set of curves

in family F , say the set F1,

such that an AR-S exist between the sets F0 and G0, and the sets G1 and F1.

It was previously remarked that an AR-S is impossible between two sets F and

G having M 6= N. Similarly, an AR-F is only possible between two families F
and G consisting of the same numbers of sets with the same number of curves.

As an example, if family G consists of, say, 100 sets, of which 70 have N = 2 and

30 have N = 4, then, in order for the AR-F to be de�ned, family F will consist

of 100 sets of which 70 have M = 2 and 30 have M = 4 as well.

Any two sets F and G between which an AR-S holds, were called 'additively

related sets' in De�nition 3. Because all sets F 2 F and G 2 G are unique, it

can be deduced from the �rst formulation in De�nition 3 that if the set F0 is

additively related to the set G0, there is no other set in F that can be additively

related to G0. From the second formulation in De�nition 3 it can be similarly

concluded that if set G0 is additively related to F0, no other set in G can be

additively related to F0. Hence the AR-F relation is a bijection.

Compare De�nition 4 to De�nition 3, which describes a relation between two

single sets of curves. The present de�nition describes a relation between two

families of sets of curves, where for every member of one family there exists a

member of the other family such that between these two members the AR-S from

De�nition 3 holds.

Next, the property of unique correspondence will be de�ned. This concept was

de�ned by Chang and Mazzeo (1994). In the present paper, it will be used in two

di�erent contexts, therefore its de�nition consists of two parts. Recall that the
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ERF of a polytomous variable is the expectation function E(X; �), and that the

ETSF of a set of binary variables is the expectation function of the total score

E(T ; �).

De�nition 5 A. There is a unique correspondence between the expected-response

functions ERF and the sets of category response functions CRF in family G, if,
in this family, each ERF can be the result of one and only one set G of CRFs.

B. There is a unique correspondence between the expectation functions for the

total score ETSF and the sets of operating characteristics OC in family F , if, in
this family, each ETSF can be the result of one and only one set of OCs.

As E(T ; �) =
PM
t=0 tPr(T = t), one might expect a covariance structure in the

second part of the de�nition. However, there is no need for that, as E(T ; �)

can also be written as E(�Yj ; �) = �[E(Yj; �)], which is independent of the

covariances. Furthermore, it may be noted that the size of the sets (i.e. their

number of curves) is not included in the de�nition: if the unique correspondence

property holds in a family consisting of sets of di�ering size, then still each ERF

(or ETSF) is the result of one and only one set of CRFs (or OCs).

It may be noted that neither the AR-F nor the unique correspondence property

require that N (or M) be equal for di�erent sets in the family.

The probability of obtaining a score k on a polytomous variable following the

response curves in a particular set G from family G will from now on be written

as Pr(X = k; �;G) = gk(�; G). Likewise, the probability of a correct response on

variable j from a set F in family F can be written as Pr(Yj = 1; �;F) = fj(�; F).

Using De�nitions 4 and 5, another lemma can be proved. Prior to stating the

lemma, note that 'a set of CCRFs' is meant as the entire set of curves
PN
k=r gk,

for r = 0; 1; : : : ;N.

Lemma 2 Consider families F and G as de�ned in the preamble to De�nition 4
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and assume an additive relation AR-F between these two families. Then the

following equivalence holds:

A unique correspondence between
ERF and CRFs
in family G

9>=>;,
8><>:

A unique correspondence between
ETSF and OCs
in family F :

Proof. Before demonstrating the two implications, three preliminary remarks will

be made.

Remark 1. If there is a unique correspondence between ERF and CRFs in

family G, then in this family there also is a unique correspondence between

ERF and CCRFs, and vice versa.

Remark 2. For any two additively related sets F0 and G0, it holds that

E(X; �;G0) = E(T ; �;F0); (2.7)

i.e. the ERF for set G0 exactly coincides with the ETSF for set F0 and

vice versa. Therefore, if there is an AR-F between the families F and G,
any two ERFs in F are distinct if and only if the ETSFs in the additively

related sets are distinct.

Remark 3. Consider two additively related sets F0 and G0, and deduce

from the de�nition of the AR-S that the CCRFs of G0 exactly coincide

with the OCs of F0, and vice versa. Therefore, if there is an AR-F (which

is a bijection) between the families F and G, then since all sets F 2 F and

G 2 G are unique, every set of CCRFs in G coincides with exactly one set

of OCs in F , and vice versa.

Using these three preliminary observations, the implication from left to

right is shown as follows. By the left hand side condition there is a unique

correspondence between ERF and CRFs in family G, and hence there also is
a unique correspondence between ERF and CCRFs in family G (remark 1).

Furthermore, every distinct ETSF E(T ; �;F) in family F coincides with

a distinct ERF in family G (remark 2), and every distinct set of OCs in

family F coincides with a distinct set of CCRFs in family G (remark 3).

Consequently there must be a unique correspondence between ETSF and

OCs in family F .
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The proof of the implication from right to left is more or less analogous:

every distinct ERF in family G coincides with a distinct ETSF in family

F (remark 2), and every distinct set of CCRFs in family G coincides with

a distinct set of OCs in family F (remark 3). By the right hand side

condition there is only one set of OCs that can possibly lead to a certain

ETSF E(T ; �;F) in family F , and therefore there is also only one set of

CCRFs that can lead to the additively related ERF in family G. Because of
remark 1, �nally, there is a unique correspondence between ERF and CRFs

in family G.

2

Below a theorem will be stated, in which an additional assumption renders the

implication from Lemma 1 into a full equivalence. One �nal preliminary lemma

will facilitate the proof in this theorem.

Lemma 3 Consider a family F � UF and a family G � UG. In both families

the unique correspondence property is assumed to hold. Furthermore, assume an

additive relation AR-F between the families F and G, and

1. let X be the score on a polytomous variable with response curves G, and

2. let T =
PM
j=1 Yj be the total score on a set of M binary variables with response

curves F.

Then for all F 2 F and all G 2 G it holds that

Pr(X = k; �;G) = Pr(T = k; �;F)
for k = 0 : : :M

)
)

(
fj(�;F) =

PM
k=j gk(�;G)

for j = 1 : : :M.

Proof. Let the set G on the left hand side be the set G0, and let F0 be the set

that is additively related to G0. If the set F on the left hand side is the set

F0, the right hand side follows trivially. Now suppose, however, that there
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is another set in F , say the set F1, for which Pr(X = k; �;G0) = Pr(T =

k; �;F1). Then the left hand side condition implies

E(X; �;G0) = E(T ; �;F1):

However, from the assumed AR-F it follows, using Equation 2.7, that also

E(X; �;G0) = E(T ; �;F0);

so that

E(T ; �;F1) = E(T ; �;F0): (2.8)

Because of the assumed unique correspondence property, in (2.8), the set

of OCs leading to E(T ; �;F1) is the same set of OCs as the one leading to

E(T ; �;F0). Consequently, fj(�; F1) = fj(�; F0) for all j so that F1 must be

equal to F0, which establishes the AR-S between the sets G and F.

2

This lemma states the following. In general, ifX and T are identically distributed,

this does not, without additional assumptions, imply anything about the OCs or

the covariance structure of the binary variables Y1; : : : ; YM , as was demonstrated

in Examples A and B and Lemma 1. However, if the unique correspondence

property holds in either one of two additively related families F and G, then
distributional identity of X and T implies that the OCs in F are equal to the

CCRFs in G.

Corollary 1 Consider X;F;F ;UF ; T;G;G and UG as in the preamble to Lem-

ma 3. Then for all F 2 F and G 2 G it holds that

E(X; �;G) = E(T ; �;F) ) fj(�;F) =
MX
k=j

gk(�;G); for j = 1 : : :M.

Proof. Equal to the proof of Lemma 3, because of the unique correspondence.

2
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It is now possible to proceed with the last theorem.

Theorem 3 Consider F ;G;X and T as in the preamble to Lemma 3 and again

assume a unique correspondence in F and G, and an AR-F between F and G.
Then for all F 2 F and G 2 G the following equivalence holds:

Pr(X = k; �;G) = Pr(T = k; �;F)
for k = 0 : : :M

)
,

(
(a) fj(�;F) =

PM
k=j gk(�;G) for j = 1 : : :M;

(b) Pr(Yi = 1jYj = 1; �;F) = 1 for j = 2 : : :M and all i < j:

Proof. Right to left: equal to the proof of Lemma 1.

Left to right: right hand side consequence (a) was established in Lem-

ma 3. Using this result, and the left hand side condition Pr(X = k; �;G) =

Pr(T = k; �;F), Theorem 2 can be applied, and it may be inferred that

Pr(Yi = 1jYj = 1; �;F) must be equal to 1 for all i < j, which concludes the

proof of the implication from left to right, because this is right hand side

consequence (b).

Combining both parts of the proof completes the proof of the theorem.

2

Consequently, if two families F and G both de�ned by the unique correspondence

property are AR-F related, the implication sign from Lemma 1 becomes a full

equivalence.

The explanation for the fact that the equivalence obtained in Theorem 3 would

not hold in Lemma 1, may be clari�ed as follows. In general, for a given set of

TSFs, or an ETSF, the OCs are not uniquely determined (see Examples A and

B). In Theorem 3 however, the TSFs belong to a family F de�ned by the unique

correspondence property between ETSF and OCs. Therefore, in this family, any

ETSF is uniquely tied to only a single set of OCs. Because of the AR-F and
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the left hand side condition, which implies E(X; �;G) = E(T ; �;F), this is the

set having an AR-S with G (see Corollary 1), so that we are now really in the

conditions and assumptions not of Lemma 1 but of Theorem 2, in which also a full

equivalence was obtained. So although, in the situation of Theorem 3, there are

still no implication arrows between OCs and TSFs, there are other assumptions

in this theorem which make it possible to infer something about the OCs from a

condition on the TSFs.

2.3 Applications

The results obtained will now be investigated with respect to their consequences

for three well-known parametric models for polytomous data: the graded response

model, the sequential model and the partial credit model. Before starting this

investigation, de�ne a set F of M one parameter logistic (1-PL) functions as

hj(�;�) =
exp(� � �j)

1 + exp(� � �j) ; for j = 1; : : : ;M. (2.9)

In this formula � = (�1; : : : ; �M ) denotes the parameter for an entire set of M

1-PL curves. It may be noted that two 1-PL curves with di�erent parameter

values are nonintersecting. Again it will be assumed, for notational convenience,

that h0(�;�) � 1 and hM+1(�;�) � 0.

2.3.1 Graded Response Model

The graded response model (GRM) developed by Samejima (1969) is a parametric

model for responses on polytomous variables. The GRM parameter for a variable

with maximum score M will be denoted by 
 = (
1 : : : 
k : : : 
M ). The elements

of the parameter vector are ordered such that 
1 < 
2 < : : : < 
M . In the GRM

the CRFs are given by

Pr(X = k; �;
) = hk(�;
)� hk+1(�;
) for k = 0; : : : ;M; (2.10)
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where hk is the 1-PL function de�ned in (2.9). A variable whose distribution

follows the GRM will be called a GRM variable, and similarly for the PCM and

the SM below. If the score on a GRM variable is distributed as the total score on

a set of Guttman dependent binary variables, then by Theorem 1 these binary

variables have the following unique OCs:

Pr(Yj = 1; �;
) =
MX
k=j

Pr(X = k; �;
)

=
MX
k=j

[hk(�;
)� hk+1(�;
)]

= hj(�;
); for j = 1 : : :M;

which is a set of 1-PL OCs having � = 
. On the other hand, if the score on a

GRM variable with parameter vector 
 is distributed as the total score on a set

of 1-PL binary variables with parameter vector � = 
, this set of binary variables

must be Guttman dependent by Theorem 2.

Now let G be the family of sets of response curves for the GRM, each set G 2 G
having a di�erent parameter 
, and let F be the family of sets of 1-PL OCs, each

with a di�erent parameter vector �. It may then be inferred from (2.10) that there

exists an AR-S (De�nition 3) between the sets G with parameter vector 
 and F

with parameter vector � = 
. Furthermore, note, �rst, that all sets of curves in

families F and G are unique, and second, that it is possible to �nd an additively

related set G 2 G for every set F 2 F , and vice versa. It then follows that there

exists an AR-F (De�nition 4) between the families F and G. Chang and Mazzeo

(1994) proved that in the GRM there is a unique correspondence between CRFs

and ERF. Consequently, by Lemma 2 there also is a unique correspondence in

familyF . Finally, therefore, applying Theorem 3, any set of binary 1-PL variables

distributionally identical to a GRM variable with parameter vector 
, has to be

Guttman dependent and has to be additively related to it with parameter vector

� = 
. It is impossible for a GRM variable to be distributionally identical to

a set of binary 1-PL variables with any other parameter vector, or with any

other dependence structure. In particular, no set of independent binary 1-PL
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variables (i.e. no set of Rasch variables) can be distributionally identical to a

GRM variable. Huynh (1994) derived a condition under which PCM variables

are distributed as the total score on a set of independent binary 1-PL variables.

It follows that no PCM variable satisfying Huynh's condition, is distributionally

identical to a GRM variable.

2.3.2 Partial Credit Model

In the partial credit model (PCM) (Andrich, 1978; Masters, 1982) the response

probabilities on a variable with maximum score M are given by

Pr(X = k; �; �) / 1

DM

"
exp

 
k� �

kX
s=1

�s

!#
; k = 0; 1; : : : ;M;

with the proportionality constant DM being given by
PM
k=0[exp(k� �

Pk
s=1 �s)],

and
P0
s=1(��s) � 0.

The marginal response probabilities for a set of Guttman dependent binary vari-

ables distributionally identical to a PCM variable are found upon application of

Theorem 1:

Pr(Yj = 1; �; �) =
MX
k=j

Pr(X = k; �; �)

=
1

DM

MX
k=j

"
exp

 
k� �

kX
s=1

�s

!#
; j = 1; 2; : : : ;M: (2.11)

As an example for M = 4, and using � = exp(�) and "k = exp(��k), this gives:

Pr(Y1 = 1; �; �) = (�"1 + �2"1"2 + �3"1"2"3 + �4"1"2"3"4)=D4;
Pr(Y2 = 1; �; �) = (�2"1"2 + �3"1"2"3 + �4"1"2"3"4)=D4;
Pr(Y3 = 1; �; �) = (�3"1"2"3 + �4"1"2"3"4)=D4;
Pr(Y4 = 1; �; �) = (�4"1"2"3"4)=D4:

Next, any set of binary variables with OCs as in (2.11) and distributionally

identical to a PCM variable with the same parameter vector has to be Guttman

dependent by Theorem 2. Finally, because of the unique correspondence between
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ERF and CRFs in the PCM, which was proved by Chang and Mazzeo (1994),

again let G be the family of sets of CRFs in the PCM, and let F be the family

of sets of OCs de�ned in (2.11). Applying Lemma 2 and Theorem 3, it can

be concluded that no set of binary variables with OCs as in (2.11) other than a

Guttman dependent set with parameter vector equal to �, can be distributionally

identical to a PCM variable with parameter vector �.

It is interesting to note here that up to a certain point an early derivation of the

PCM (Andrich, 1978) was along these same lines of thought. Andrich assumes 1-

PL functions for the OCs of the two binary variables distributionally identical to

a trinary rating scale variable, and starts from an 'imagined' local independence

on these two binary variables. He then observes that logically a response pattern

01 on the two ordered binary variables should have zero probability and resolves

this con
ict by reweighing the probabilities of the other three response patterns

such that they sum up to 1. Molenaar (1983) calls this 'post hoc conditioning on

the Guttman property'. The parameter vector in this model will be denoted as

� = (�1; : : : ; �M). As an example, for M = 2, before the post hoc conditioning,

i.e. still assuming local independence, the simultaneous response probabilities

are given by

Pr(Y1 = 0; Y2 = 0; �;�) = 1=D
Pr(Y1 = 1; Y2 = 0; �;�) = exp (� � �1)=D
Pr(Y1 = 0; Y2 = 1; �;�) = exp (� � �2)=D
Pr(Y1 = 1; Y2 = 1; �;�) = exp (2� � �1 � �2)=D

in which D = 1 + exp (� � �1) + exp (� � �2) + exp (2� � �1 � �2). After the

conditioning they become

Pr�(Y1 = 0; Y2 = 0; �;�) = 1=D�

Pr�(Y1 = 1; Y2 = 0; �;�) = exp (� � �1)=D
�

Pr�(Y1 = 1; Y2 = 1; �;�) = exp (2� � �1 � �2)=D�
(2.12)

with D� = 1+exp (� � �1)+exp (2� � �1 � �2). A similar reasoning is applied to

polytomous rating scale variables with M > 2. As a result, only perfect response

patterns will appear. Using the starred probabilities as response probabilities for

a polytomous variable, essentially the CRFs of the partial credit model (Masters,

1982) have been obtained, although Andrich applies a notation more suited to the

needs of a rating scale model. Note however that because of the conditioning the
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(starred) response probabilities of the PCM variable with parameters (�1; �2),

given in (2.12) do not coincide with the TSFs of a set of Guttman dependent

binary 1-PL variables with parameters (�1; �2), nor do they coincide with the

TSFs of a set of independent binary Rasch variables with parameters (�1; �2).

They may, however, coincide with the TSFs of a set of two independent binary

1-PL variables with parameters other than (�1; �2) (see Huynh, 1994).

2.3.3 Sequential Model

Molenaar (1983) has pointed out the possibility of a so-called conditional model

for polytomous responses. This model has subsequently become known as the

sequential model (SM) and it has been worked out by Tutz (1990, 1997) and by

Verhelst, Glas and de Vries (1997). Let the parameter vector for the polytomous

variable with maximal score M in the SM be � = (�1 : : : �k : : : �M ). The �k's

need not be ordered. The response probabilities in this model are given by

Pr(X = k; �;�) =
kY
r=1

hr(�;�)�
k+1Y
r=1

hr(�;�) for k = 0 : : :M, (2.13)

where again hk is the 1-PL function and for notational convenience
Q0
r=1 hr(�;�) �

1 and
QM+1
r=1 hr(�;�) � 0.

Consider the score on an SM variable with parameter vector �. If this score is

distributed as the total score on a set of Guttman dependent binary variables,

then by Theorem 1, the OCs of these binary variables are given by

Pr(Yj = 1; �;�) =
MX
k=j

Pr(X = k; �;�)

=
MX
k=j

"
kY
r=1

hr(�;�)�
k+1Y
r=1

hr(�;�)

#

=
jY
r=1

hr(�;�); for j = 1; 2; : : : ;M: (2.14)
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On the other hand, if the total score on a set of binary variables with OCs as

in (2.14) is distributed as the score on a polytomous SM variable with the same

parameter vector, then by Theorem 2, these binary variables must be Guttman

dependent. Finally, let G be the family of sets G of CRFs for the SM, and let

F be the family of sets F of OCs as in (2.14). Note that there is an AR-F

relation between the families F and G. If it can be shown that in the SM there

is a unique correspondence between ERF and CRFs, Lemma 2 and Theorem 3

can be applied, and it may be inferred that any set of binary variables having

OCs as in (2.14) and distributionally identical to a polytomous SM variable with

parameter vector �, has to be a Guttman dependent set, with parameter vector

equal to � as well. The proof of unique correspondence is given in appendix 2.4;

it is modeled after the proofs given by Chang and Mazzeo (1994).

The sequential model was expressly formulated to deal with Guttman dependent

binary 'subtasks' or 'steps'. It might be argued that, for modeling Guttman

dependent item steps, the conditional probabilities Pr(Yj = 1 j Yj�1 = 1; �) are

more relevant than the marginal probabilities Pr(Yj = 1; �). In the SM these

conditional probabilities have a particularly simple form:

Pr(Yj = 1 j Yj�1 = 1; �;�) =
Pr(Yj = 1 and Yj�1 = 1; �;�)

Pr(Yj�1 = 1; �;�)

=
Pr(Yj = 1; �;�)

Pr(Yj�1 = 1; �;�)

= hj(�;�); (2.15)

which only depends on �j. The second line is a direct consequence of the assumed

Guttman property. In both the GRM and the PCM these conditional probabil-

ities are much more complex, and in these models each conditional probability

depends on several parameters. Therefore, although theoretically for every polyt-

omous variable the distribution of its score is identical to the distribution of the

total score on a set of Guttman dependent binary variables, the SM probably �ts

the Guttman assumption best.
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2.3.4 Generalization

Samejima (1969) and Muraki (1992) present generalized versions of the GRM and

the PCM, respectively. In these generalized models every polytomous variable

j has an item discrimination parameter �j. A similar generalization can be

formulated for the SM. The proofs of unique correspondence between ERF and

CRFs for the GRM and PCM, given by Chang and Mazzeo (1994), and for the

SM, given in appendix 2.4 of this paper, extend to this case. Hence all results

obtained in Section 2.3 can be extended to the generalized forms of PCM, GRM

and SM.

As an example, let G� be the family of sets of CRFs for the generalized GRM,

with parameter vector 
� = (�; 
1; : : : 
k; : : : ; 
N ), and let F� be the family of sets

of 1-PL curves with a common discrimination parameter per set, with parameter

vector �� = (�; �1; : : : ; �j; : : : ; �M). Note that F� is not the family of sets of two

parameter logistic or 2PL items (Birnbaum, 1968). Then the only set of OCs

from family F� that can coincide with a set of CRFs from family G� will be a

Guttman dependent set having �� = 
�.

2.4 Conclusion and discussion

The score on a polytomous item is sometimes assumed to come about by means

of a process of solving a number of binary subtasks. In that case, the score on the

polytomous item is equal to the total score obtained on the binary subtasks. This

perspective points to two interesting routes of investigation. On the one hand, if

this perspective is taken, it may be possible to �nd a suitable model for the score

on the polytomous item from the assumptions made on the subtasks. This is done

by Van Engelenburg (1997). On the other hand, starting from this perspective

it is also possible to examine whether there are mathematical relations between

models for binary and models for polytomous variables, that either permit or

forbid such an interpretation.
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It was shown in Theorem 1 that for every polytomous item a set of OCs can be

found, such that if T is the total score on a set of Guttman dependent binary

variables (subtasks) having these OCs, then the score on the polytomous item

and T are identically distributed. Therefore the score on any polytomous item is

distributionally identical to the total score on a set of Guttman dependent binary

variables (subtasks).

However, this does not mean that there is a substantive equivalence between the

polytomous item and an empirical set of Guttman dependent binary items or

subtasks: the bare fact that two sets of curves coincide, does not, in general,

imply anything about the cognitive processes involved in getting at a particular

polytomous response. This is clearly demonstrated by the fact that, although all

polytomous items are distributionally identical to a set of Guttman dependent

binary variables, some of these items are also distributionally identical to a set of

independent binary variables, as can be seen in examples A and B in Section 2.1.1

and in the work of Huynh (1994). It would be interesting to investigate this

matter further, and in particular to �nd out whether any relationships can be

established with substantive item contents (Wilson, 1988; Rosenbaum, 1988).

It was observed that the score on a GRM item is never distributed as the total

score on a set of independent binary 1-PL or Rasch variables. This contrasts the

GRM with the PCM (see Huynh, 1994). It is also interesting to compare this

result with Jansen and Roskam (1986), who note that when the score on a GRM

variable is dichotomized, the GRM for M = 1 results, which is the Rasch model.

A �nal question which presents itself is the following. Suppose one has a set of

Guttman dependent binary variables, for example the scores obtained on a set

of binary items under a sequential design. Let T be the total score on this set of

binary variables. Furthermore, let X be a polytomous item response. As it has

been shown that all X are distributionally identical to the total score on a set of

Guttman dependent binary variables, one might feel tempted to apply just any

model for polytomous item responses to T . However, this conclusion may not be

justi�ed. There might be other requirements, besides distributional identity, that

should be satis�ed if one wants to apply a model for polytomous item responses to
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T . This question can probably best be investigated upon a closer inspection not

of the marginal probabilities Pr(Yj = 1; �), but of the conditional probabilities

Pr(Yj = 1 j Yj�1 = 1; �). As was already noted in Equation 2.15, the SM is well

suited to model maximal covariances. For the GRM and the PCM this question

will be addressed in a separate paper.

Appendix
Proof of unique correspondence in the SM

The proof will be given for a generalized sequential model, i.e. for a model having

a discrimination parameter �j for each polytomous variable j.

Let there be two SM variables. The �rst variable has maximum score M, and

parameter vector � = (�; �1; : : : ; �M); the second variable has maximum score

N, and parameter vector � = (�; �1; : : : ; �N). Here � and � are discrimina-

tion parameters which are constant within each SM variable, but may vary over

variables. Let, in this appendix, h(�;�; �) denote the 2PL function exp[�(� �
�)]= f1 + exp[�(� � �)]g.

From (2.13) it can be derived that the ERF of an SM variable with parameter

vector � = (�; �1; : : : ; �M) is given by

E(X; �;�) =
MX
k=1

kY
r=1

h(�;�; �r):

Hence there is equality of ERFs for the two variables if

MX
k=1

kY
r=1

h(�;�; �r): =
NX
j=1

jY
p=1

h(�;�; �p): (2.16)

If we let x� = exp(��), x� = exp(��), sr = exp(���r) and tp = exp(���p), it is
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possible to write

MX
k=1

kY
r=1

h(�;�; �r)

=
s1x�

1 + s1x�
+

s1s2x2�

(1 + s1x�)(1 + s2x�)
+ : : :+

s1s2 : : : sMxM�

(1 + s1x�) : : : (1 + sMx�)

=
1

(1 + s1x�)(1 + s2x�) : : : (1 + sMx�)
fs1x� [(1 + s2x

�)(1 + s3x
�) : : : (1 + sMx

�)]

+s1s2x
2� [(1 + s3x

�) : : : (1 + sMx�)] + : : : + s1s2 : : : sMx
M�
o

=
1

1 + c1x� + c2x2� + : : :+ cMxM�

n
s1x

�[1 + c11x
� + c21x

2� + : : :+ cM�1;1x
(M�1)�]

+s1s2x
2�[1 + c12x

� + : : :+ cM�2;2x
(M�2)�] + : : : + s1s2 : : : sMxM�[cM�M;M ]

o
:

In this last expression c1 : : : cM are elementary symmetric functions of the vector

s = (s1; : : : ; sM ), and crk is the rth symmetric function of (sk+1; sk+2; : : : ; sM).

The ERF can be rewritten as

MX
k=1

kY
r=1

h(�;�; �r) =
C1x� + C2x2� + : : :+ CMxM�

1 + c1x� + c2x2� + : : :+ cMxM�
; (2.17)

where
C1 = s1
C2 = s1c11 + s1s2
C3 = s1c21 + s1s2c12 + s1s2s3
C4 = s1c31 + s1s2c22 + s1s2s3c13 + s1s2s3s4
...
CM = s1cM�1;1 + s1s2cM�2;2 + : : :+ s1s2 : : : sM ;

or, alternatively,

Ck =
kX
r=1

" 
rY

v=1

sv

!
(ck�r;r)

#
;

where c0r � 1. It may be veri�ed that Ck > 0 for all k, and in particular for

k = 1, as C1 = s1 = exp(���1) > 0. Similarly, with d1 : : :dN being the elemen-

tary symmetric functions of t = (t1; : : : ; tN ), dpj the pth symmetric function of
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(tj+1; tj+2; : : : ; tN), and

Dj =
jX

p=1

" pY
w=1

tw

!
(dj�p;p)

#
;

the ERF of the second variable can be written as

NX
j=1

jY
p=1

h(�;�; �p) =
D1x� +D2x2� + : : :+DNxN�

1 + d1x� + d2x2� + : : :+ dNxN�
: (2.18)

Because of the equality of the ERFs, the expressions in equations (2.17) and

(2.18) are equal. Hence

C1x� + C2x2� + : : :+ CMxM�

1 + c1x� + c2x2� + : : :+ cMxM�
=

D1x� +D2x2� + : : :+DNxN�

1 + d1x� + d2x2� + : : :+ dNxN�
;

and therefore, multiplying the numerators with the denominators,

C1x
� + C1d1x

�+� + C1d2x
�+2� + : : :+ C1dNx

�+N�

+C2x
2� + C2d1x

2�+� + : : :+ C2dNx
2�+N� +

...

+CMx
M� + CMd1x

M�+� : : :+ CMdNx
M�+N�

= D1x
� +D1c1x

�+� +D1c2x
�+2� + : : :+D1cMx�+M�

+D2x
2� +D2c1x

2�+� + : : :+D2cMx
2�+M� +

...

+DNx
N� +DNc1x

N�+� : : :+DNcMx
N�+M�: (2.19)

Assuming that � < �, of all these terms C1x� is the one with the smallest

exponent. In order for the equality to hold for all x, therefore, C1 should be 0

because all x > 0. This however would contradict C1 = s1 = exp(���1) > 0.
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Hence it must be concluded that it is impossible to have � < �. By a similar

reasoning it can be demonstrated that it is impossible to have � > � as well, and

hence � has to be equal to �. The equality from (2.19) can now be rewritten as

C1x
� + C1d1x

2� + C1d2x
3� + : : :+ C1dNx

(1+N)�

+C2x
2� + C2d1x

3� + : : :+ C2dNx
(2+N)� +

...

+CMxM� + CMd1x
(M+1)� : : :+ CMdNx

(M+N)�

= D1x
� +D1c1x

2� +D1c2x
3� + : : :+D1cMx

(1+M)�

+D2x
2� +D2c1x

3� + : : :+D2cMx
(2+M)� +

...

+DNx
N� +DNc1x

(N+1)� : : :+DNcMx(N+M)�: (2.20)

In order for this equality to hold, (C1�D1)x� has to be equal to 0 for all x, which

is only achieved if C1 = D1, or alternatively if s1 = t1, and hence if �1 = �1, as it

was already shown that � = �. Now however both �1 = �1 and � = �, whence

h(�;�; �1) = h(�;�; �1) for all �. Dividing both sides of (2.16) by this common

factor will yield another equation to solve:

1 +
MX
k=2

kY
r=2

h(�;�; �r) = 1 +
NX
j=2

jY
p=2

h(�;�; �p):

Similarly as before, it will be found that �2 = �2; by mathematical induction this

then holds for all other values of the two parameter vectors as well; in the end

yielding M = N; � = � and �k = �k for all k.
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Chapter 3

Modeling sequentially scored item
responses

Abstract

The sequential model was developed for describing the score resulting from a sequential process.
In this paper the appropriateness of the partial credit model and the graded response model
for sequential scoring is investigated. Mathematical reasons are given for the inapplicability of
these models to sequentially scored variables.

Key words: Sequential scoring, sequential model, partial credit model, graded response model.

3.1 Introduction

The number of successes before the occurrence of the �rst failure in a sequence of

M Bernoulli trials, X, follows a truncated geometric distribution with parameters

� and M:

Pr(X = k;�;M) =

(
�k(1� �) for k = 0; 1; : : : ;M� 1;
�M for k = M:

The random experiment considered in this paper consists of two generalizations

of the above: the parameter � is allowed to vary over trials, and each �j is

itself a function of a variable �, so that the experiment has parameter vector
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�(�) = [�1(�); : : : ; �j(�); : : : ; �M(�)] instead of parameter �. X then follows a

generalized truncated geometric distribution:

Pr[X = k;�(�);M] =

8><>:
hQk

j=1 �j(�)
i
[1� �k+1(�)] for k = 0; 1; : : : ;M� 1;QM

j=1 �j(�) for k = M:

De�nition 1 Counting, in a sequence of M Bernoulli trials, the number of suc-

cesses until the occurrence of the �rst failure, will be called sequential scoring.

The trials are assumed to be performed in a �xed order.

The substantive �eld to which this framework will be applied is that of item

response theory (IRT). In this �eld (a) the trials are trials to solve a binary

item, (b) the trials are sometimes referred to as steps, (c) the result of a trial is

called a response, (d) � is a latent ability, (e) the functions �j(�) are called item

characteristic curves (ICCs), (f) the variable X is known as the score, and (g)

the functions Pr(X = k;�(�);M) are commonly written as Pr(X = k; �). In this

paper the functions Pr(X = k; �) will be called score functions. Furthermore, the

binary variables Y1 : : : Yj : : : YM are used for the results on the trials, where a 1

denotes success, and a 0 failure.

In accordance with common usage in IRT the ICCs will be denoted as fj(�)

instead of �j(�), so that

fj(�) � �j(�) = PrB(Yj = 1; �); (3.1)

where the subscript B is meant to indicate that, for each �xed value of �, the

function fj(�) is considered as the parameter in a Bernoulli trial. The need for

the subscript B will become clear in Section 3.2.

Throughout it will be assumed, for notational convenience, that f0(�) � 1 and

fM+1(�) � 0. With this convention it is possible to reformulate the expression for

the distribution of the number correct score in a process of sequential scoring:

Pr(X = k; �) =

24 kY
j=0

fj(�)

35 [1� fk+1(�)] for k = 0; 1; : : : ;M: (3.2)
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If trial k results in a failure, the results of all trials k + j, for j � 1, remain

unobserved. Consequently there is dependence in the observed scores.

Sequential scoring in IRT may occur in two situations:

1 In the �rst situation a set of binary items is involved. These items are tried in

a �xed order, and the score X is the number of correct responses until the

�rst failure. It is immaterial whether all items are tried by the examinee, or

whether a stop-if-fail presentation procedure is followed. It is the scoring

rule (count the number of correct responses until the �rst failure) which

makes the process sequential. This kind of sequential scoring might be

encountered in the testing of psycho-motor skills.

2 In the second situation a more or less complex problem is presented as a polyt-

omous item consisting of a number of subtasks. These subtasks are called

steps, or item steps. A judge evaluates the result of each step, in a �xed

order. The score X consists of the number of correct responses on the sub-

tasks until the occurrence of the �rst failure. The position is taken here

that in this second situation too, it is the scoring rule, and not substantive

item contents or some mental or cognitive process, that makes the process

sequential.

In both situations, therefore, a set of binary variables is subjected to sequential

scoring. The two situations will be treated as equivalent. In Section 3.4 the

reason for the distinction will become clear.

The prominence of the scoring rule, in the second situation, is demonstrated in

the following example, which is originally due to Masters (1982):q
7:5=0:3 � 16 =?

In order to gain full credit for this item, three calculations have to be performed:

�rst 7:5=0:3 = 25 has to be calculated, then 25� 16 = 9 should be found, and �-

nally
p
9 = 3 has to be obtained. If the item is scored sequentially, 1 point would

be earned by �nding 25, another by �nding both 25 and 9, and the maximum
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score of 3 is gained only if also the last step is carried out correctly. Now suppose,

however, that the �rst fraction were incorrectly calculated as 7:5=0:3 = 20; but

starting from this incorrect number the next two steps are carried through cor-

rectly, i.e. both 20� 16 = 4 and
p
4 = 2 are obtained. If sequential scoring were

in e�ect, a score of 0 would be obtained. On the other hand, it would also be

possible to give a credit of 2 points for the 2 steps that have been correctly per-

formed, given the failure on the �rst step. This however would not be sequential

scoring, and the score on the very same polytomous item, scored in this di�erent

way, would not be the result of a sequential process. Hence, the scoring rule is

the decisive factor in declaring a process to be sequential.

The interest in this paper is in one sequentially scored polytomous item, or in one

set of sequentially scored binary items only. The obvious way to model sequential

scoring in IRT would be to assume a suitable function for the ICCs and then to

derive the functional form for the distribution of the score. Samejima (1972) and

Molenaar (1983) have pointed out the possibility of a 1-parameter logistic curve

for the ICCs in this situation. This model has been worked out by Tutz (1990;

1997), and it has become known as the sequential model (SM). The estimation

of the parameters in this model has been studied by Verhelst, Glas and de Vries

(1997). One might wonder, however, whether other models for polytomous item

responses, such as the graded response model (GRM; Samejima,1969) or the

partial credit model (PCM: Masters, 1982; Andrich, 1978; Andersen, 1977), could

not be used equally well with sequential scoring. It can for example be shown

(see Section 3.2) that for each polytomous item response model a set of functions

can be derived such that, if these functions were ICCs in a sequential process, the

score probabilities would be described by the original model. Furthermore, both

the PCM and the GRM have been presented as models for sequential processes

(Masters, 1982; Samejima, 1972, 1995 ).

De Vries (1988) developed an algorithm to �nd a set of PCM curves, given a set

of SM curves, such that the area between the two sets of curves is minimized.

The results of a study with this algorithm showed that response curves under

these two models can be very close. Furthermore, Verhelst, Glas and de Vries

(1997) found a comparable �t when they applied either the SM or the PCM to
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the same data set. This might lead one to the conclusion that using the PCM

with sequential scoring would not necessarily lead to severe problems. On the

other hand, Molenaar (1983) already noted conceptual di�culties with the PCM

as a model for sequential scoring. Considering the probability of observing a score

k rather than k + 1, i.e. the probability Pr(X = k j X = k or X = k + 1; �),

Molenaar observed that, although under this model these odds depend on only

one parameter, the ICCs for step k must depend on several additional parame-

ters. The relation between these parameters and the ICCs will be established in

Section 3.4. Andrich (1995) too argues that the PCM is conceptually unsuited

for sequential scoring, because under this model each probability of obtaining a

particular score depends on all parameters.

A possible argument against the use of the GRM with sequential scoring is that

this model describes a di�erent process: the GRM emerges upon assuming a 1-

parameter logistic curve for the process of giving one overall judgement or grade

(see e.g. Molenaar, 1983; Mellenbergh, 1995; Van Engelenburg, 1997). This will

be called a graded scoring. However, Tutz (1997) observed that if the extreme

value distribution function with parameter value �j is chosen for the ICCs in a

sequential process, that is, if the ICCs are given by

fj(�) = expf� exp[�(� � �j)]g; (3.3)

then the generalized truncated geometric distribution induced by this choice is

given by

Pr(X = k; �) =

24 kY
j=0

fj(�)

35 [1� fk+1(�)]

=

24 kY
j=0

fj(�)

35�
24k+1Y
j=0

fj(�)

35

= f
0

k(�)� f
0

k+1(�); for k = 0; : : : ;M; (3.4)

where the functions f
0

k(�) are again extreme value functions but with parameter

values �
0

k = ln[
Pk
j=1 exp(�j)]. Equation 3.4 however is an expression for the

GRM with the usual logistic or normal ogive functions replaced by extreme value

59



functions. This model will henceforth be referred to as extreme value GRM, to

distinguish it from the GRM with logistic functions, which will be called the

logistic GRM. If there is any danger of confusion, the SM will also be given a

su�x of logistic or extreme value, to identify the nature of the ICC employed. The

extreme value GRM, or, equivalently, the extreme value SM, would be suitable

for sequential and for graded scoring. So before a model is declared unsuitable

to describe a particular kind of process, a careful examination seems justi�ed.

The purpose of the present paper is to investigate what happens if either the PCM

or the (logistic) GRM is applied to data which are known to have been generated

by a sequential process. It will be shown that the use of these models leads to

fundamental problems. The investigation will be carried out by considering the

consequences of inserting or removing trials into or from the sequence of Bernoulli

trials, without changing any of the other trials.

With polytomous items, it is impossible to remove or insert a trial (step or

subtask) somewhere in the middle of the item, without also changing other item

steps. Changing
q
(7:5=0:3 � 16) into

q
(7:5=0:3 � 16)� 4 would not only add

a new step between the second and the third ones, but it would also change

the last step from
p
9 into

p
36. Consequently, if the sequential process under

consideration is the sequential scoring of a polytomous item, and if the existing

item steps should remain unchanged, subtasks can only be removed from or added

to the beginning or the end of the polytomous item. For example, if the item

mentioned above were changed intos
32 � 1:5

0:3
� 16 and then to

s
(1 + 2)2 � 1:5

0:3
� 16:

two steps would have been added in front, but the new steps 3,4 and 5 are still

the same ones as the original steps 1,2, and 3.

Removing a particular item or item step should not be confused with the joining of

categories, which was studied by Jansen and Roskam (1986) and Andrich (1995).

In this paper, no categories are joined, but an item or item step is altogether

removed. However, there is a great similarity between the objective of this study

and the objective of Jansen and Roskam. These authors specify a criterion which
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models for rating scales should satisfy, and they investigate models with respect

to their criterion. In the present paper a criterion will be formulated which

models for sequential scoring should satisfy, and several models are investigated

with respect to this criterion.

The outline of the paper is as follows. First, in Section 3.2, some equalities

are derived which will be of great help later on. In Section 3.3 a mathematical

requirement for models describing sequential scoring is formulated. The question

whether this requirement is satis�ed under the SM, the GRM and the PCM is

investigated in Section 3.4.

3.2 Preliminaries

In this section some equalities are derived which will facilitate the exposition in

Section 3.4. Recall that the variables Yj, j = 1 : : :M, are used for the results

on the Bernoulli trials. These variables will be collected in the vector Y =

(Y1 : : : YM ). As an example, for M = 4 the variable Y can have the following

values: 0ccc; 10cc; 110c; 1110; 1111, where c is a symbol to denote 'unobserved'.

It can be easily veri�ed that the distribution of Y is given by

Pr(Y = y; �) = Pr[X = t(Y ); �];

where t(Y ) is the number of correct responses in score pattern Y . The marginal

probability of Yj in a sequential process is obtained through the distribution of

Y :

Prm(Yj = 1; �) =
X

Y :Yj=1

Pr(Y = y; �)

=
MX
k=j

Pr(X = k; �):

The second equality follows from the sequential scoring rule. The subscript m

serves to explicitly distinguish this marginal probability from the ICC, which is
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also a probability of a correct response on item j, but which has been given the

subscript B for Bernoulli in Equation 3.1.

The following two equations are obviously equivalent:

Prm(Yj = 1; �) =
MX
k=j

Pr(X = k; �); j = 1 : : :M; (3.5a)

Pr(X = k; �) = Prm(Yk = 1; �)� Prm(Yk+1 = 1; �); k = 0 : : :M; (3.5b)

with Y0 � 1 and YM+1 � 0. With a sequential scoring rule, if Yj = 1, then Yj�1

is equal to 1 as well, so that Prm(Yj = 1 and Yj�1 = 1; �) = Prm(Yj = 1; �). For

Pr(Yj�1 = 1; �) 6= 0, two more equivalent equations are therefore given by

Pr(Yj = 1 j Yj�1 = 1; �) =
Prm(Yj = 1; �)

Prm(Yj�1 = 1; �)
; (3.6a)

Prm(Yj = 1; �) =
jY

r=1

Pr(Yr = 1 j Yr�1 = 1; �); (3.6b)

both for j = 1 : : :M, and again with Y0 � 1 for notational convenience. Equation

(3.6b) follows from (3.6a) �rst for j = 2; then by mathematical induction for

j = 3 and further.

A very useful expression for the conditional probability Pr(Yj = 1 j Yj�1 = 1; �)

is obtained as follows:

Pr(Yj = 1 j Yj�1 = 1; �) =
Prm(Yj = 1; �)

Prm(Yj�1 = 1; �)
(by Eq. 3.6a)

=

PM
k=j Pr(X = k; �)PM

k=j�1 Pr(X = k; �)
(by Eq. 3.5a)

=

PM
k=j

nhQk
r=0 fr(�)

i
[1 � fk+1(�)]

o
PM
k=j�1

nhQk
r=0 fr(�)

i
[1� fk+1(�)]

o (by Eq. 3.2)
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=

Qj
r=0 fr(�)Qj�1
r=0 fr(�)

= fj(�): (3.7)

The transition to the one but last line can be veri�ed upon expanding both

numerator and denominator. For example, for j = 2 and M = 4 the numerator

would be f1f2[1� f3] + f1f2f3[1� f4] + f1f2f3f4 = f1f2.

If, instead of sequential scoring, a complete design with local independence and

response functions fj(�) were considered, the marginal probability of obtaining

Yj = 1 would be equal to the ICC. Under the sequential scoring rule, however, it

is the conditional probability Pr(Yj = 1 j Yj�1 = 1; �) which is equal to the ICC.

The equality of Prm(Yj = 1) in a complete design and Pr(Yj = 1 j Yj�1 =

1; �) under a sequential scoring rule can also be established using Rubin's (1976)

ignorability principle. Let Z = (Z1 : : : ZM ) be a design vector, i.e. Zj = 1

indicates that Yj is observed, and Zj = 0 indicates that Yj is not observed. With

sequential scoring Zj = 1 i� Yj�1 = 1, therefore Yj�1 is the design variable for Yj.

As the design does not depend upon the value of the unobserved data, it follows

that these data are missing at random, whence the design can be ignored (Rubin,

1976). The ignorability principle states that if the design can be ignored, then

Pr(Yj = yj j Zj = 1; �) = Pr(Yj = 1; �;no design):

Rephrasing this into terms of a sequential scoring rule gives

Pr(Yj = 1 j Yj�1 = 1; �) = PrB(Yj = 1; �);

which is Equation 3.7.

Finally, because with sequential scoring fj(�) = Pr(Yj = 1 j Yj�1 = 1; �), Equa-

tions 3.6a and 3.6b can also be written as

fj(�) =
Prm(Yj = 1; �)

Prm(Yj�1 = 1; �)
; (3.8a)

Prm(Yj = 1; �) =
jY

r=1

fr(�); (3.8b)
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revealing that, with sequential scoring, the division of two consecutive marginal

probabilities results in the ICCs. This explains why ICCs in a sequential process

are also known as continuation ratios.

It may be noted that any model for sequential scoring is fully de�ned by the

speci�cation of either the ICCs or conditional probabilities Pr(Yj = 1jYj�1 = 1; �),

or the marginal probabilities Prm(Yj = 1; �), or the score probabilities Pr(X =

k; �). Equations (3.5a) - (3.6b) su�ce to derive any one of these probabilities

from any other.

If a model for polytomous item responses is used to describe the variable resulting

from a sequential scoring rule, several requirements have to be ful�lled. A �rst

requirement is that the score probabilities under the model comply with a set of

ICCs and the particular covariance structure resulting from sequential scoring.

Using Equations 3.5a through 3.6b, it can be shown that this �rst condition is

always met: consider any model for Pr(X = k; �), say model A. Now assume

that this model is used with sequential scoring. Applying Equation 3.5a will

lead to formulae for Prm(Yj = 1; �); and using Equation 3.6a the formulae for

Pr(Yj = 1 j Yj�1 = 1; �) are obtained. If these ICCs are assumed, then the

distribution of the number of successes upon applying a sequential scoring rule

will be exactly equal to the distribution of X under model A, as can be easily

veri�ed.

In Section 3.4 several item response models are presented by their score proba-

bilities Pr(X = k; �), and the above manipulations will be performed to derive

the ICCs that would, under a sequential scoring rule, return the original score

probabilities. Then the ICCs thus derived will be investigated with respect to

a second requirement. This second requirement is formulated in Section 3.3. It

will appear that the second requirement is not met by all models.
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3.3 A requirement for models describing sequential scoring

Consider two sequential processes, say processes A and B. Let the trials in process

B be the same as those in process A, except for one trial, say trial q, which is not

included in process B. Let process A consist of sequentially scoring the responses

on a set of binary items 1; : : : ;M, and process B of sequentially scoring the

responses on the binary items 1; : : : ; q� 1; q + 1; : : : ;M. These sets of items will

also be denoted as sets A and B. The index j actually identi�es the items, that

is, if set A consists of items 1; 2; 3; 4; 5 and set B of items 1; 2; 4; 5, then the item

labelled 040 is meant to be the same item in both sets (and it is not meant to

indicate the 4th item). To further avoid confusion, an asterisk will be added to

the variables arising in the context of process B: Y �j is the score on item j when

this item is tried in process B, and Yj is the score on the same item j when it is

tried in process A.

If a sequential process is modi�ed by leaving out one of the trials, and if the

resulting set of trials is again subjected to a sequential rule, then, using the

ignorability principle, the parameters (ICCs) of the trials that �gure in both

sequences are equal. Similarly, if a sequence of Bernoulli trials is modi�ed by

inserting a new trial between two of the existing trials, and if both sets of trials

are subjected to sequential scoring, the parameters (ICCs) of the trials that �gure

in both sequences are equal as well.

This implication of the ignorability principle will be called ICC-invariance for

sequential scoring, or, short, ICC invariance. As ICC-invariance is an essential

property of sequential scoring, any model for sequential scoring must be able

to accommodate it. That is, any model for sequential scoring must be able to

describe the score probabilities for processes A and B, allowing the ICCs for

corresponding binary items (trials) to remain unchanged.

Recalling Equation 3.7, it holds both in set A and in set B that

Pr(Yj = 1 j Yj�1 = 1; �) � fj(�);
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for all j in the set. In particular for j = q + 1 this means that

in set A: Pr(Yq+1 = 1 j Yq = 1; �) � fq+1(�);

and in set B: Pr(Y �q+1 = 1 j Y �

q�1 = 1; �) � fq+1(�):

The two right hand sides are equal. Therefore the two left hand sides must also

be equal. Consequently, for any two sequentially scored item response processes

A and B, where the items in set B are the same ones as in set A, except for item

q, which is not in set B, it holds that

Pr(Yq+1 = 1 j Yq = 1; �) = Pr(Y �q+1 = 1 j Y �q�1 = 1; �)
in set A in set B

: (3.9)

Any model for sequential scoring must be able to accommodate this equality.

This second requirement can be used to investigate the suitability of a model for

sequential scoring.

3.4 Suitability of several models for sequential scoring

In this section the possibility of the SM, the GRM, and the PCM for accom-

modating the equality in Equation 3.9 is investigated. The emphasis will be on

removing a binary item, but the reasoning for inserting an item is analogous.

Consider the two sets A and B described in Section 3.3 and assume, for ease of

presentation, that M = 6 and q = 3. That is, set A consists of items 1; 2; : : : ; 6,

which are tried in the order 123456, and set B consists of the same items except

for item 3. The items in set B are tried in the order 12456.

In all models the parameter vector will be denoted as � = (�1 : : : �M), although

of course the interpretation of the parameters di�ers between models.
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3.4.1 Sequential Model

As was noted in Section 3.1, the sequential model (Molenaar, 1983; Tutz, 1990;

Tutz, 1997; Verhelst, Glas and de Vries, 1997) has been explicitly developed to

model the score in a sequential process. The logistic SM is de�ned by assuming

a 1-PL curve h(�; �) for the ICCs. This curve is given by

h(�; �) =
exp(� � �)

1 + exp(� � �) : (3.10)

Let the parameter vector for a single polytomous SM item with maximal score

M, or alternatively, for a set of M sequentially scored binary items, be � =

(�1 : : : �j : : : �M), where the �j's need not be ordered. Then

Pr(Yj = 1jYj�1 = 1; �; �) = h(�; �j); for j = 1; : : : ;M; (3.11)

with, for notational convenience, Y0 � 1. This model can be used for sequential

scoring without any problems. The extreme value SM too, whose ICCs are given

by the extreme value function from Equation 3.3, is appropriate for sequential

scoring.

3.4.2 Graded Response Model

Under the logistic graded response model (GRM) developed by Samejima (1969)

the score probabilities are given by

Pr(X = k; �; �) = hk(�)� hk+1(�); for k = 0; 1; : : : ;M; (3.12)

where hk(�) = h(�; �k) is the 1-parameter logistic function de�ned in (3.10). The

elements of the parameter vector � are ordered such that �1 � �2 � : : : � �M .

The marginal probabilities for the binary variables in a sequential process which

would be described by the GRM are found applying (3.5a) and (3.12):

Prm(Yj = 1; �; �) =
MX
k=j

Pr(X = k; �; �)

= hj(�); for j = 1 : : :M: (3.13)
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The ICCs are given by the conditional probabilities of succeeding on the next

trial. For the GRM this gives, applying (3.6a) and (3.13):

fj(�) = Pr(Yj = 1jYj�1 = 1; �; �) =
Prm(Yj = 1; �; �)

Prm(Yj�1 = 1; �; �)

=
hj(�)

hj�1(�)
: (3.14)

Having established the functional forms for the ICCs and the marginal probabil-

ities, the possibility of accommodating the equality Pr(Yq+1 = 1 j Yq = 1; �) =

Pr(Y �q+1 = 1 j Y �q�1 = 1; �) will now be investigated.

Assume that, under the logistic GRM, the third item is removed from a set of

binary items with M = 6. As h0(�) = h(�; �0) � 1, the �rst line of Equation 3.14

implies that the model must allow

Prm(Y �1 = 1; �) = Prm(Y1 = 1; �; �): (3.15)

Similarly, the model must allow Pr(Y �2 = 1jY �1 = 1; �) = Pr(Y2 = 1jY1 = 1; �; �).

Again applying (3.14) gives:

Prm(Y �2 = 1; �)

Prm(Y �1 = 1; �)
=

Prm(Y2 = 1; �; �)

Prm(Y1 = 1; �; �)
;

which, by virtue of (3.15), yields

Prm(Y �2 = 1; �) = Prm(Y2 = 1; �; �): (3.16)

Until now there are no problems. Item 3 is not in set B, so it is not necessary

to demand anything for item 3. For item 4 however, the model must allow

Pr(Y �4 = 1jY �2 = 1; �) = Pr(Y4 = 1jY3 = 1; �; �), which is equivalent to demanding

Prm(Y �4 = 1; �)

Prm(Y �2 = 1; �)
=

Prm(Y4 = 1; �; �)

Prm(Y3 = 1; �; �)
:

Substituting (3.16) into this expression and rewriting it gives

Prm(Y �4 = 1; �) =
Prm(Y2 = 1; �; �)

Prm(Y3 = 1; �; �)
Prm(Y4 = 1; �; �);
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which is not a 1-PL curve. Consequently Pr(X� = 2; �), which by (3.5b) is

equal to Prm(Y �2 = 1; �) � Prm(Y �4 = 1; �), is not the di�erence between two

1-PL functions which it should be because of (3.12). Hence, for X� � 2 the

logistic GRM cannot, in set B, at the same time accommodate (a) ICCs equal

to corresponding ICCs in set A, and (b) the function in (3.12) for the score

probabilities. And therefore the logistic GRM is not suited for modeling the

probabilities in a sequential scoring process.

It may be noted that the logistic GRM does allow removal of the last item. If it

would also allow removal of the �rst item, it could still be useful for sequential

processes of the second kind distinguished in the Introduction; but removing the

�rst item will lead to similar problems as removing a third item.

For the extreme value GRM, the logistic curves have to be replaced by extreme

value curves. Using the reparameterization mentioned in the Introduction, it can

be shown that it is no problem to apply the extreme value GRM to sequential

scoring.

3.4.3 Partial Credit Model

Under the PCM (Masters, 1982; Andrich, 1978) the probability of obtaining a

score X = k is given by

Pr(X = k; �; �) =
1

DM

"
exp

 
k� �

kX
r=1

�r

!#
; for k = 0; 1; : : : ;M; (3.17)

with
P0
r=1(��r) � 0 and DM = 1+exp(���1)+exp(2���1��2)+: : :+exp(M��

�1 � �2 � : : :� �M).

Under the PCM as a model for sequential scoring, the marginal probabilities for

j = 1 : : :M are found applying (3.5a):

Prm(Yj = 1; �; �) =
MX
k=j

Pr(X = k; �; �)
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=
1

DM

MX
k=j

"
exp

 
k� �

kX
r=1

�r

!#
; (3.18)

with DM as above. As an example, for M = 4, and using � = exp(�) and

"k = exp(��k), the marginal probabilities are given by:

Prm(Y1 = 1; �; �) = (�"1 + �2"1"2 + �3"1"2"3 + �4"1"2"3"4)=D4;
Prm(Y2 = 1; �; �) = (�2"1"2 + �3"1"2"3 + �4"1"2"3"4)=D4;
Prm(Y3 = 1; �; �) = (�3"1"2"3 + �4"1"2"3"4)=D4;
Prm(Y4 = 1; �; �) = (�4"1"2"3"4)=D4:

(3.19)

The ICCs, or, alternatively, the conditional probabilities, are found from (3.6a)

and (3.18):

fj(�) = Pr(Yj = 1jYj�1 = 1; �; �)

=

PM
k=j exp

�
k� �Pk

r=1 �r
�

PM
k=j�1 exp

�
k� �Pk

r=1 �r
�

=

PM
k=j exp

h
(k � j + 1)� �Pk

r=j �r
i

1 +
PM
k=j exp

h
(k � j + 1)� �Pk

r=j �r
i : (3.20)

Writing this out, again as an example for M = 4, gives:

f1(�) = Pr(Y1 = 1jY0 = 1; �; �) =
�"1 + �2"1"2 + �3"1"2"3 + �4"1"2"3"4

1 + �"1 + �2"1"2 + �3"1"2"3 + �4"1"2"3"4
;

f2(�) = Pr(Y2 = 1jY1 = 1; �; �) =
�"2 + �2"2"3 + �3"2"3"4

1 + �"2 + �2"2"3 + �3"2"3"4
;

f3(�) = Pr(Y3 = 1jY2 = 1; �; �) =
�"3 + �2"3"4

1 + �"3 + �2"3"4
;

f4(�) = Pr(Y4 = 1jY3 = 1; �; �) =
�"4

1 + �"4
:

Apparently, if the next trial is trial j, the probability of succeeding on that next

trial under the PCM is equal to the probability of succeeding, under the PCM,
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on the �rst trial in a 'smaller' sequential process with M0 = M � (j � 1) and

parameters (�j : : : �M).

To simplify the notation, let, in the previous example,

G1 = �"1 + �2"1"2 + �3"1"2"3 + �4"1"2"3"4;
G2 = �"2 + �2"2"3 + �3"2"3"4;
G3 = �"3 + �2"3"4;
G4 = �"4;

(3.21)

and note that it is possible to de�ne the PCM by the following two equations,

where GM+1 � 0 for notational convenience:

8><>:
Gj = �"j(1 + Gj+1) for j = M : : : 1;

Pr(Yj = 1jYj�1 = 1; �) = Gj=(1 + Gj); for j = 1 : : :M:
(3.22)

The necessary preliminaries having been established, the PCM can now be inves-

tigated as a model for a sequential scoring. Removing an item other than the �rst

one, will cause trouble. Combining Equation 3.9 and the second line of (3.22), it

is necessary, if for example item 3 is deleted, that:

Pr(Y �

1 = 1jY �0 = 1; �) = Pr(Y1 = 1jY0 = 1; �; �) = G1=(1 + G1);

Pr(Y �

2 = 1jY �1 = 1; �) = Pr(Y2 = 1jY1 = 1; �; �) = G2=(1 + G2);

Pr(Y �

4 = 1jY �2 = 1; �) = Pr(Y4 = 1jY3 = 1; �; �) = G4=(1 + G4):

In this sequence G2 will in general not be equal to �"2(1 + G4). Therefore the

above is not a sequence of PCM probabilities, as the �rst line of (3.22) is not

satis�ed.

It must be concluded that under the PCM as a model for sequential scoring, it

is impossible to satisfy both ICC invariance and the de�nition of the PCM as it

was formulated in (3.22): a speci�cation error is made if the PCM were applied

to a sequential process.
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Only if the �rst item were deleted, the new sequence of conditional probabilities

G2=(1 +G2); : : : ;GM=(1 +GM) would still comply with the assumption of equal

ICCs in both processes; the resulting new PCM item would have parameters

�� = (�2; : : : ; �M). However, removal of the last item is again problematic so

that the PCM is unsuited for sequential processes of both the kinds that were

distinguished in the Introduction.

3.5 Discussion

The results obtained in this paper can be used when a model has to be chosen for

describing the variable resulting from the application of a sequential scoring rule.

As the SM was developed for modeling sequential processes, it is not surprising

that this model does a good job on the criterion investigated. However, until

now it was not known whether the mistakes made by applying a di�erent model

were of a practical or of a fundamental nature. It has been demonstrated that

the application of the PCM or the logistic GRM to a variable resulting from

sequential scoring, amounts to making a speci�cation error.

Tutz (1997) pointed out that the extreme value SM and the extreme value GRM

are the same models. Using this equivalence, another very practical warning can

be formulated: it is not necessary to believe that a model that is formulated to

describe one kind of random experiment, is therefore unsuited to describe another

random experiment.

A topic for future research would be to further explore the similarity in structures

of the SM and the GRM. In (3.14) the ICC for the GRM was shown to be equal

to the ratio of two 1-PL curves; the formula for the 1-PL curve will now be

substituted into this equation:

Pr(Yj = 1jYj�1 = 1; �; �) =
Pr(Yj = 1; �; �)

Pr(Yj�1 = 1; �; �)
=

h(�; �j)

h(�; �j�1)

=
exp(� � �j)

1 + exp(� � �j)

1 + exp(� � �j�1)

exp(� � �j�1)
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= exp(�j�1 � �k)
1 + exp(� � �j�1)

1 + exp(� � �j)

=
exp(�j�1 � �j) + exp(� � �j)

1 + exp(� � �j)

=
exp(� � �j)

1 + exp(� � �j)
+

exp(�j�1 � �j)

1 + exp(� � �j)

= h(�; �j) + exp(�j�1 � �j)[1� h(�; �j)]: (3.23)

Apparently, under the GRM the ICC Pr(Yj = 1jYj�1 = 1; �; �) follows a three

parameter logistic (3PL) curve (Birnbaum, 1968) with discrimination parame-

ter equal to 1, location parameter equal to �j and guessing parameter equal to

exp(�j�1� �j) for j = 2; 3; : : : ;M. The guessing parameter for the �rst item is 0,

as Pr(Y0 = 1; �) � 1. So assuming for the ICCs in the SM a 3PL function with

the constraint �j = exp(�j�1 � �j) for j = 2; : : : ;M and �1 = 0, will result in the

GRM. This too reveals a similarity in structures of the GRM and the SM.

As a �nal remark: it can be shown that every 3-PL curve with discrimination

parameter �, guessing parameter 
, and location parameter �, can be written as a

ratio of two 2-PL curves, both with discrimination parameter equal to �, and with

location parameters given by � and � + ln(
), respectively. The formula for each

3-PL curve can therefore be rewritten as a formula containing one discrimination

parameter, and two location parameters. It would be an interesting question

whether this could be overparameterization, and hence might contribute towards

the di�culties that are commonly encountered in estimating the parameters in

the 3PL model.
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Chapter 4

Distinguishing between models for
polytomous item responses1

Abstract

This paper reports on two studies concerning the possibility of empirically distinguishing be-
tween item response models. The �rst study is a modi�ed replication of an experiment per-
formed by Maydeu-Olivares et al. (1994). First, a procedure is described for selecting the
models that will be actually compared. An observer is then is presented with two data sets
and two completely speci�ed item response models. Each data set has been generated by one
of the models. The observer has to decide which model generated which data set. The item
parameters are treated as known, and they are used in the decision. When a most powerful test
is used for the decision, the percentage of correct classi�cations is known as the ideal observer
index (IOI). The IOI can be used as an indicator for the di�erence between two models. In
the present paper a criterion based on the IOI is investigated: it is suggested to evaluate the
di�erence between two models by the sample size that is needed to have the IOI exceed :95.
For those models that were selected for the investigation, it is found that, when the two models
being compared are from the same family, this sample size has to be about twice as large as
when the models being compared are from di�erent families.
In the second part of the paper one data set and several families of item response models are
considered. The question is which of these families can best be used to describe the data. The
parameters are assumed to be unknown: they have to be estimated from the data. A decision
theoretic approach is employed and that model is decided on that has the largest likelihood.
The procedure performs well, in the sense that with simulated data the correct model was
always recognized, and the type I error and the power under the alternatives are satisfactory.
The procedure is also applied to an empirical data set. The type I error is larger here, but this
is a consequence of the smaller sample size. The power under the alternatives is again high.

Key words: Response pattern classi�cation, ideal observer index, model choice, bootstrap,
partial credit model, graded response model, sequential model.

1The author wishes to thank dr. H. Vorst and dr. B. van Engelenburg for kindly providing
her with the data used in Sections 4.3 and 4.4.
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4.1 Introduction

This paper is concerned with the question which item response model, or which

family of models, can best be used to describe a data set. The models considered

are the partial credit model (Masters, 1982; Andrich, 1978; Andersen, 1977), the

graded response model (Samejima, 1969), and the sequential model (Tutz 1990,

1997; Verhelst, Glas and de Vries, 1997). These models are de�ned in Section 4.2.

The paper consists of two main parts, which deal with some practical and sta-

tistical aspects of model choice in item response theory (IRT), respectively. The

�rst part of the paper, Section 4.3, focuses on the possibility of distinguishing

between data generated under the three item response models mentioned above.

If it appears to be di�cult to distinguish data generated under di�erent models,

the practical consequences of using a 'wrong' model may not be very large. In the

second part of the paper, a decision theoretic approach to deciding on a family

of models is proposed and examined.

To investigate the �rst question, a method used by Maydeu-Olivares et al. (1994),

and proposed by Levine et al. (1992), is employed. Basically, this method is an

application of the two-alternative forced choice experiment, which is itself an

extension of the yes/no experiment in signal detection theory (Green and Swets,

1966). In the two-alternative forced choice experiment there are two sources, say

sources A and B, both emitting a signal. An observer knowing all the relevant

characteristics of the two sources is presented with the two signals in a random

order; in 50 percent of the presentations the signal from source A is presented

�rst. The observer has to decide which signal comes from source A, and which

signal comes from source B. The procedure is repeated a large number of times.

By chance alone, there would be a probability of :50 of correctly classifying the

two signals. If the two sources emit very similar signals, it will be di�cult to

distinguish between them and the observer will not be able to perform much

better than by chance alone. If the sources emit rather di�erent signals, the

classi�cation task will be easier and the result can be more often expected to be

correct. The rate of correct classi�cation is known as the ideal observer index

(IOI). It can be used as an index for the similarity of the signals emitted by
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the two sources. Maydeu-Olivares et al. (1994) used this method to compare

item response models. The procedure for selecting the models to be compared

will be described in detail in Section 4.3.2. Response patterns generated under

di�erent models from the PCM and the GRM families were treated as signals.

In all cases, the IOI for the comparison of two models from a single family was

found to be signi�cantly higher than the IOI for the comparison of two models

from di�erent families. However, in value the di�erences between these IOIs were

small. In the present paper an alternative criterion for the di�erence between two

models is investigated. This alternative criterion is derived from the IOI: it is the

sample size needed to obtain an IOI larger than :95. Furthermore, the comparison

includes the SM as well as the PCM and the GRM. The results are very clear:

it is found that for the comparison of two models from di�erent families, this

sample size has to be about twice as large as for the comparison of two models

from a single family. These results pertain to the models that were selected for

the comparison; it is not claimed that they hold in general.

In the above experiment, the parameter values used to generate the data are

used in the classi�cation decision. That is, in the IOI study the true parameter

values are used. The second part of the paper deals with a situation which

is more realistic, in that the parameter values are not assumed to be a priori

known. The problem here is to decide upon the best model for the data at

hand. Most of the literature concerning statistical tests for model choice deals

with situations where the choice is restricted to models from one family, such

as for example the number of factors in a factor analysis, or the predictors in

a regression analysis. In such cases, a likelihood ratio statistic can be used,

or an information criterion, such as e.g. Akaikes AIC (Akaike, 1973; Akaike,

1974) or Schwarz' BIC (Schwarz, 1978). Gelfand and Ghosh (1998) showed that

many criteria can be rewritten as a combination of a goodness-of-�t term and

a penalty term for the number of parameters. In Section 4.4 the possibility of

deciding between models from di�erent families is investigated. It is assumed

that the numbers of parameters under each family are equal. Therefore, criteria

with a penalty term for the number of parameters are not really called for. The

procedure proposed is as follows. First, for each of the three families of item

response models under consideration, that member is identi�ed that best �ts the
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data. Then a zero/one loss function and a maximum likelihood decision rule are

applied in order to decide upon a model. The size of the type I error of this

procedure will be investigated, and also the power under the alternatives. The

procedure is applied both to simulated and to empirical data. The results appear

to be satisfactory.

4.2 Preliminaries: de�nitions and notation

The variable Xj = k, for k = 0; : : : ;M, will denote the score on a polytomous

item j, for j = 1 : : :L. Note that the symbol M refers to the maximum score,

and L is used for the test length. Furthermore, � will represent a latent variable

which is measured by the items. Let g(�) be the density function of �; this density

is assumed to be standard normal. The subjects are supposed to be randomly

sampled from g(�). Given �, under the partial credit model (PCM) (Masters,

1982; Andrich, 1978; Andersen, 1977), the probability of obtaining a score k on

item j, with parameters � and �j = (�1j : : : �kj : : : �Mj), as a function of �, is

assumed to be given by

Pr(Xj = k; �; �; �j) =
exp [�(k� �Pk

p=1 �pj)]PM
r=0 exp [�(r� �

Pr
p=1 �pj)]

; j = 1 : : :L; k = 0 : : :M;

with
P0
p=1 �pj � 0. The parameter � is a scale parameter; it is constant over all

items within a test, and it enters into the model if the variance for � is �xed. In

this paper, the probabilities of interest are the marginal probabilities integrated

over the range of �. Letting X be the vector (X1; : : : ;XL), then for a test of

length L, and assuming that scores on di�erent items are independent given �,

these marginal probabilities are given by

Pr(X = x;�; �1 : : :�L) =
Z
�
Pr(X = x; �; �; �1 : : :�L)g(�)d�

=
Z
�

LY
j=1

Pr(Xj = xj; �; �; �j)g(�)d�: (4.1)

The graded response model (GRM) (Samejima, 1969) has parameters � and
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j = (
1j : : : 
kj : : : 
Mj) for item j, where � is again a scale parameter. The

elements of the parameter vector are ordered such that 
1j � 
2j � : : : � 
Mj.

Given �, in this model the score probabilities are assumed to be

Pr(Xj = k; �; �;
j) = hk(�;�;
j)� hk+1(�;�;
j); j = 1 : : :L; k = 0 : : :M;

where hk is given by

hk(�;�;
j) =
exp[�(�� 
kj)]

1 + exp[�(�� 
kj)] ; k = 1; : : : ;M: (4.2)

For notational convenience, h0(�;�;
j) � 1 and hM+1(�;�;
j) � 0. For constant

�, the function in (4.2) is the item characteristic curve for a binary item in the

well-known Rasch model (Rasch, 1960). Again assuming independence between

scores on di�erent items, the marginal probability of the score vector follows as

Pr(X = x;�;
1 : : :
L) =
Z
�

LY
j=1

Pr(Xj = xj; �; �;
j)g(�)d�: (4.3)

Again the scale parameter � has to be estimated if the density of � is assumed

to be standard normal.

In the sequential model or SM (Tutz 1990, 1997; Verhelst, Glas and de Vries,

1997) the parameter vector for item j is �j = (�1j : : : �kj : : : �Mj), and the scale

parameter will be denoted as � . The �kj's need not be ordered. The score

probabilities in this model are given by

Pr(Xj = k; �; �;�j) =
kY
r=1

hr(�; �;�j)�
k+1Y
r=1

hr(�; �;�j) j = 1 : : :L; k = 0 : : :M;

where the functions hr are de�ned as in (4.2), and here
Q0
r=1 hr(�; �;�j) � 1 andQM+1

r=1 hr(�; �;�j) � 0. The marginal probabilities of the score patterns are given

by

Pr(X = x; �;�1 : : :�L) =
Z
�

LY
j=1

Pr(Xj = xj; �; �;�j)g(�)d�: (4.4)
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4.3 Deciding between models when the parameter values

are known: the ideal observer index

In this section the sample size needed for the IOI to exceed :95 is examined.

Basically, the experiment described here is a modi�ed replication of the Maydeu-

Olivares et al. (1994) experiment (see also Levine et al., 1992). The di�erence is

in the use of an alternative criterion variable. Below, �rst the IOI will be de�ned.

Two topics associated with the use of the IOI are addressed in Section 4.3.2. In

Section 4.3.3 a short overview is given of results previously obtained with the

IOI. Section 4.3.4 focuses on the alternative criterion variable. The design of

the present study is summarized in Section 4.3.5, and Section 4.3.6 contains the

results.

4.3.1 The Ideal Observer Index

Levine et al. (1992) describe how the IOI can be used to distinguish between

item response models. In their application, item response models act as sources

and a score pattern is the equivalent of a signal. The part of the observer can be

played by a computer, into which the decision rule has been programmed. The

observer is presented with two simulated score patterns, say patterns u1 and u2,

and has to decide whether pattern u1 was generated under model A (and hence

pattern u2 under model B), or vice versa. The observer knows the models and the

parameter values that were used to generate the score pattern under each model.

The only thing the observer does not know is which pattern was generated under

which model.

The observer is supposed to be an 'ideal observer', that is, an observer making

statistically optimal decisions. A statistically optimal decision in this classi�ca-

tion task would be a most powerful test of the hypothesis

H1: u1 was generated under model A and u2 under model B: the order is AB;

H2: u1 was generated under model B and u2 under model A: the order is BA.
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Because the value of the parameter vectors is known, the probability mass func-

tions under both H1 and H2 are completely speci�ed. Consequently, for any given

signi�cance level � and sample size n, a most powerful test of the hypothesis H1

versus H2 can be obtained as follows: let L1 = L(u1 from A and u2 from B), and

L2 = L(u1 from B and u2 from A). Then, using

� =
L1

L2
; (4.5)

the decision rule is formulated as:

if � > k, for some k, decide that the order is AB; if � < k, decide that the order

is BA; randomize if � = k.

The quantity � is a simple likelihood ratio statistic, and it can be shown by

the Neyman Pearson Lemma (Kendall and Stuart, 1979; Lehmann, 1959) that

this decision rule is a most powerful test of the simple hypothesis H1 versus the

simple hypothesis H2. In this experiment there are no clear null and alternative

hypothesis, so there is no reason to favor either H1 or H2. Therefore k is taken to

be 1, so that the procedure reads: if L1 > L2 decide AB; if L1 < L2 decide BA;

otherwise randomize. The percentage of correct classi�cations obtained through

this rule is called the ideal observer index (IOI).

Let LA(u1) be the likelihood of u1 under model A. The quantities LB(u1), LA(u2)

and LB(u2) are analogously de�ned. If independence can be assumed between u1

and u2, the likelihoods can be written out as follows: L1(u1;u2) = LA(u1)LB(u2)

and L2(u1;u2) = LB(u1)LA(u2). This gives

L1 > L2 , LA(u1)LB(u2) > LB(u1)LA(u2)

, LA(u1)

LB(u1)
>
LA(u2)

LB(u2)
;

so letting

�1 =
LA(u1)

LB(u1)
; and �2 =

LA(u2)

LB(u2)
; (4.6)

the decision rule for independent u1 and u2 can also be written as: if �1 > �2,

decide AB; if �1 < �2, decide BA; otherwise randomize.
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4.3.2 Use of the IOI in IRT

Each parametric item response model in fact constitutes an entire family of mod-

els. Every value of the parameter vector corresponds with a di�erent member of

the family; and each member of the family is itself a distinct model. To select

the models to be used in the comparison, Maydeu-Olivares et al. (1994) and

Levine et al. (1992) started from an empirical data set,and for each family under

consideration they identi�ed the member �tting best to these data.

However, these two best-�tting models were not directly compared to each other,

because when members from di�erent families are compared, there may be need

for a baseline value. Suppose that an IOI of, say, :75 were found for the di�erence

between the two best-�tting members. Then what would this number actually

mean? A baseline value might help facilitate the interpretation of the observed

value of the IOI. Maydeu-Olivares et al. adopt the following procedure for the

purpose of establishing a baseline IOI.

The �rst part in the baseline procedure consists of obtaining an empirical data

set and identifying the best-�tting member from one of the families to it, say

from family A. The actual member of family A that has been �tted to the data

will be denoted as model A. An arti�cial data set is then simulated from model

A. Therefore model A will be called the simulation model. To this arti�cial data

set both families A and B are �tted, resulting in two �tted members that are

denoted as A0 and B0. Models A0 and B0 will be called the estimated models.

Now two di�erent IOIs can be calculated, to establish (a) the degree to which it is

possible to distinguish between models A and A0, and (b) the degree to which it is

possible to distinguish between models A and B0. The former IOI will be denoted

as IOIAA0 , the latter as IOIAB0. In this procedure there is no direct comparison of

models A0 and B0. However, this procedure does allow the comparison of IOIAB0

with IOIAA0 , where IOIAA0 acts as the baseline for the interpretation of IOIAB0.

As an example, suppose that IOIAB0 = :75 and IOIAA0 = :73. Then one would

conclude that the models A and A' from family A can di�er just as much from

each other as model A di�ers from model B0. If, on the other hand, IOIAB0 = :75
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and IOIAA0 = :52, the conclusion would be that the di�erence between models A

and B' is much larger than the di�erence between the two models from familyA.

The second part of the baseline procedure consists in repeating the above with

family B in the role of familyA. This baseline procedure will be employed in the

present paper as well.

4.3.3 Previous results obtained with the IOI

Maydeu-Olivares et al. (1994) compared the GRM and the PCM with the pro-

cedure described above. In their experiment the sample size N took values of

250; 500; 1000 and 3000, and the number of items L varied from 5 through 10

to 25. Therefore there were 4 (N's) � 3 (L's) � 2 (simulation models) � 2

(estimated models) = 48 IOIs reported. These ranged in value from :527 to :714,

with an average of :608. Maydeu-Olivares et al. performed a regression analysis

with log[IOI=(1� IOI)] as the dependent variable, and L;N and L�N as predic-

tors. They found (a) that the IOI increased with the number of items L; (b) that

there was a negative regression coe�cient for the interaction term L�N; (c) that

there was no signi�cant e�ect of the sample size N; and (d) that for both families

investigated (GRM and PCM), the IOIAB0 was slightly higher than IOIAA0 .

Van Engelenburg (1997, Chapter 1) investigated di�erences between PCM, GRM

and SM. He used N = 300 and L = 8 throughout. On the whole, his results were

comparable to those of Maydeu-Olivares et al. His maximum IOI was equal to

:620. He furthermore investigated the e�ects of a rating scale restriction and an

equality restriction on the discrimination parameter. In all cases models without

restriction were more easily distinguished than models with restriction.

4.3.4 A criterion derived from the IOI

In the Maydeu-Olivares et al. experiment the variable N is the sample size of the

data sets simulated frommodel A. Using this simulated data set, models A0 and B0
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are estimated. Once the parameters of A0 and B0 have been estimated, Maydeu-

Olivares et al. proceed to simulate N samples of size 1 both from A0 and B0, and

to classify these simulated score vectors. The percentage of correct classi�cations

of these N score vectors constitutes their IOI. Recall from Section 4.3.3 that there

proved to be no marked e�ect of N on this IOI.

It is, however, also possible to calculate IOIs on the basis of a sample size larger

than 1, that is, to calculate the likelihood ratio statistic � for two score matrices

instead of for two score vectors. It is then possible to distinguish two di�erent

sample sizes, which will be denoted here as N and n: N is the size of the sample

simulated from A, and used to estimate the parameters of A0 or B0; and n is the

size of the samples simulated from A0 and B0, and used to calculate the IOIs.

It can be shown that the power under the likelihood ratio test for a simple null

and alternative hypothesis increases with n (see e.g. Ser
ing, 1980, Section 4.4.3).

The sample size n needed to obtain an IOI of :95 is proposed here as an alternative

criterion for assessing the di�erence between two models.

The following justi�cation can be given for this alternative criterion. In design-

ing a statistical test, usually a null hypothesis is formulated and a signi�cance

level � is determined. If the critical value k were given, one could select the

sample size n such that Pr(� � k j n; H0) = �, where � is the test statis-

tic and � refers to the type I error, i.e. � = Pr(incorrect decision j H0). In

the investigation at hand, however, there is no compelling reason for select-

ing either H1 or H2 as a null hypothesis. That is, there is no clear argument

for choosing either � = Pr(incorrect decision j the presentation order is AB), or

� = Pr(incorrect decision j the presentation order is BA). This symmetry was

also the reason for selecting the critical value k = 1.

As a way out of this dilemma, it is proposed to replace � by the quantity " which

is de�ned here as the unconditional probability of an incorrect decision:

" = Pr(incorrect decision)

= Pr(reject H1 j H1) Pr(H1) + Pr(reject H2 j H2) Pr(H2); (4.7)
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where Pr(H1) should be read as Pr(H1 true), and, analogously, Pr(H2) as

Pr(H2 true). The quantity " can be used for designing a test in exactly the

same way as � was used above: determine a 'signi�cance level' ", say " = :05,

and let the test statistic be �. In the experiment at hand, the prior probabilities

Pr(H1) and Pr(H2) are both equal to :5. As the critical value k is given, a search

can be undertaken for that value of n, for which Pr[� � k j n;Pr(H1) = :5] = ".

If, in (4.7), Pr(H0 true) = 1, then " = �. Furthermore, in the experiment at hand,

where Pr(H1) = Pr(H2) = :5, it follows from (4.7) that " = :5(� + �), where �

and � are the type I and type II errors, respectively. As the IOI represents the

probability of a correct decision, and " represents the probability of an incorrect

decision, the sample size needed for " = :05 is the same sample size that is needed

for an IOI of :95.

Below, it will be investigated whether the sample size n1, needed to get an IOIAA0

of :95, would be larger than the sample size n2 needed to get an IOIAB0 of :95.

These sample sizes are not analytically derived; they will be inferred by means

of linear interpolation of the outcomes of several simulations.

4.3.5 Procedure

The sample size N is �xed and equal to 1000. The sample size n will be varying

between 1 and 500. The IOI will be calculated for two test lengths (L = 4 and L =

8) and nine sample sizes (n = 1; 10; 25; 50; 100; 150; 200; 250 and 500).

Algorithmically the design of the entire simulation study is given by:

1. Collect an empirical data set.

2. Consider the PCM as family P, and �t a member of this family to the data.

The �tted member of P will be denoted as model P and it will be called

the simulation model.

3. Simulate a sample of size N = 1000 from model P.
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4. Fit the PCM (P), the GRM (G) and the SM (S) to the simulated data.

The �tted models will be denoted as models P0, G0 and S0, respectively.

They will be referred to as the estimated models.

5. Let L = 4.

6. Let n = 1.

7. Simulate a sample of size (n = 1;L = 4) from all 4 models P, P0, G0 and

S0. Classify each pair of signals PP0, PG0 and PS0 according to the method

described in Section 4.3.1.

8. Repeat Step 7 100 times; the percentages of correct classi�cations are point

estimates of the three IOIs.

9. Repeat Steps 7�8 10 times and calculate the means and standard deviations

of the three resulting sets of point estimates.

10. Repeat Steps 6 - 9 for the other eight values of n (i.e. n = 10, 25 through

to 500).

11. Repeat Steps 5 - 10 for L = 8.

12. Perform Steps 3 - 11 once again and compare the two results.

13. Repeat Steps 2 - 12 with the GRM in the role of the PCM.

14. Repeat Steps 2 - 12 with the SM in the role of the PCM.

The results obtained in Step 11 depend heavily on the estimated models P0, G0

and S0, obtained in Step 4, which are based on the data simulated in Step 3.

Step 12 is performed to get an indication of the robustness of the results with

respect to the sampling of the data in Step 3. In total, 324 IOIs will be calculated:

2 (L's)� 9 (n's)� 3(simulation models)� 3(estimated models)� 2(repetitions).

The use of an empirical data set in Step 1 is to ensure the use of realistic parameter

values in the simulation to follow. The data set used in this paper consists of the

answers of 362 psychology students to 8 items of the Dominance scale of a Dutch
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revised version (Van der Ark, 1994) of the Personality Research Form-E (Jackson,

1984). The revised version is a rating scale and has 5 response categories

The items used in the test of length 4 were randomly selected from the 8 items

constituting the original test: they were items 1,2,4 and 7.

The model estimations in Steps 2 and 4 are done by marginal maximumlikelihood

estimation (Bock and Aitkin, 1981), using a standard normal ability distribution.

The GRM and the PCM were estimated with the MULTILOG program, version

5.1 (Thissen, 1988). The estimates for the SM were calculated using BILOG-

MG (Zimowski et al., 1996). In order to estimate the SM with BILOG-MG each

score on a polytomous item was �rst expanded as follows: scores 0; 1; 2; 3 and 4

became 0ccc; 10cc; 110c; 1110 and 1111, respectively, where the symbol c indicates

a missing observation. BILOG-MG allows for missing observations. It can be

easily veri�ed that �tting the Rasch model (Rasch, 1960), which was de�ned in

Equation 4.2, to the 40 binary variables thus constructed, will yield the proper

SM estimates. In the simulations in Steps 3 and 7 a standard normal ability

distribution was used as well. The likelihoods necessary in the evaluation of the

statistics �1 and �2 in Step 7 are also marginal likelihoods (see Equation 4.6); here

too the density of � is taken to be standard normal. The integrals are evaluated

using Gauss-Hermite quadrature with 9 quadrature points (Press, Teukolsky,

Vetterling and Flannery, 1992). Finally, all random numbers were generated

with the generator developed by Wichmann and Hill (1982).

4.3.6 Results

The average IOIs and their standard errors obtained from the 10 replications

performed in Step 9, are reported in Table 4.1. From this table the following can

be concluded: (a) the IOI increases with L; (b) the IOI increases with n; (c) the

standard errors decrease with n, which is probably due to both a ceiling e�ect

and the increasing sample size.

Starting with a general look at the table, it seems that it is easiest to distin-
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Table 4.1: Average and standard deviation of the IOI over 10 replica-
tions of 100 classi�cation trials ( �100).

Simulation model PCM GRM SM

Estimated model P' G' S' P' G' S' P' G' S'

L=4 n=1 54 54 55 55 56 55 54 56 53
7 4 5 6 4 4 2 5 5

10 56 61 65 67 62 65 68 69 63
6 8 6 3 6 6 6 2 5

25 60 70 74 72 65 71 75 73 63
6 4 5 6 4 6 7 6 6

50 64 75 80 83 75 77 84 80 75
5 5 4 3 4 4 4 3 4

100 68 84 87 88 82 89 93 86 82
3 3 3 2 3 3 3 4 2

150 71 90 93 93 86 91 96 92 88
4 3 2 2 2 2 2 3 2

200 75 91 95 95 86 94 97 94 90
3 3 2 1 4 2 1 3 3

250 77 94 97 96 92 95 98 96 92
3 3 2 2 3 2 2 2 2

500 84 98 100 99 98 99 100 99 98
5 2 1 1 1 1 1 1 2

L=8 n=1 55 58 57 57 55 58 59 58 53
6 4 5 4 6 6 5 4 4

10 68 71 75 70 64 71 75 70 65
6 5 4 3 4 3 4 4 6

25 71 79 85 83 72 81 89 84 75
3 6 4 3 4 4 4 4 3

50 80 90 93 89 78 89 95 91 82
2 2 2 3 3 3 2 2 3

100 88 96 98 96 86 96 99 98 91
3 2 1 2 3 2 1 1 3

150 92 99 100 98 91 98 100 99 94
3 1 1 2 3 1 1 1 2

200 94 99 100 99 94 100 100 100 97
2 2 1 1 3 1 .3 1 2

250 98 100 100 100 96 100 100 100 98
1 0 0 1 2 .3 .3 1 2

500 99 100 100 100 99 100 100 100 100
1 0 0 0 1 0 0 0 .4

P', G', S': Fitted members from the PCM, the GRM and the SM, respectively.

L=test length. n=sample size. Numbers in each second row are standard deviations
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Table 4.2: Sample size needed for the IOI to exceed :95 (interpolated
values)

Simulation model: PCM GRM SM

Estimated model: P' G' S' P' G' S' P' G' S'

Replication 1
L=4 > 500 313 200 200 375 250 134 225 375
L=8 213 92 70 93 225 93 50 79 167

Replication 2
L=8 250 92 70 92 249 99 49 84 167

P', G', S': Fitted members from the PCM, the GRM, and the SM, respectively.

guish between the SM and the PCM. The columns pertaining to this comparison

(Columns 3 and 7) nearly always have the highest IOIs in any single row. Fur-

thermore, Columns 4 and 6 contain virtually the same values, indicating that it

is about equally di�cult to distinguish the GRM from the PCM as it is to distin-

guish the GRM from the SM. However, the values in Column 8 are consistently

a little higher than those in Column 2. It may also be noted that Columns 1,5

and 9 contain the lowest values for each simulation model, so that it seems more

di�cult to distinguish between two members from the same family than between

two members from di�erent families. With respect to Columns 1,5 and 9, it fur-

thermore appears that Column 9 is usually the highest of these three, indicating

that it is easier to distinguish the SM from its own than it is to distinguish the

GRM or the PCM from its own.

Using linear interpolation, the values of n needed for the IOI to exceed :95 have

been calculated from the numbers in Table 4.1. These values are reported in the

�rst two rows of Table 4.2. It can be seen there that, for L = 8, IOIPG0 and IOIPS0

become higher than :95 for n = 92 and n = 70, respectively. The IOIPP 0 , on the

other hand, will only become higher than :95 for n = 213. Exactly the same

pattern holds in the second three columns where the GRM acts as the simulation

model: IOIGP 0 and IOIGS0 both become larger than :95 for n = 93; whereas IOIGG0

becomes larger than :95 at n = 225 only. In the last three columns, when the SM

is the simulation model, the situation is again similar, although all sample sizes

are smaller here: IOISP 0 becomes higher than :95 at n = 50; IOISG0 reaches this

signi�cance level at n = 79, and IOISS0 at n = 167. For L = 4 the patterns are
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similar, although of course the values for n are higher there.

For the results obtained in Step 12 (the robustness replication), no IOI values are

presented as these are very similar to the values in Table 4.1. The sample sizes

needed for the IOI to exceed :95 are also very similar in this replication; they are

reported, for L = 8 only, in the bottom line of Table 4.2. It is concluded that

the results seem to be rather robust with respect to the simulations performed

in Step 3.

Apparently, for the 8 item tests investigated, the sample size needed to have the

IOI exceed :95 is almost twice as large if the models compared are from the same

family, as it is when the models are from a di�erent family.

4.4 Deciding between models when the parameter values

are unknown

In the previous section, the parameter values were assumed to be known. In

the present section it is investigated whether it is possible to distinguish between

item response models in a more realistic situation where parameter estimates

have to be computed from the data at hand. Consider an N � L matrix X of

scores on polytomous items. The symbol X is used to distinguish this matrix

from the score vector X. The question is which family of models in a collection

of families can best be used to describe these data. The families considered are

again the marginal versions of the PCM, GRM, and SM, de�ned in Section 4.2,

with parameters �;
 and �, and scale factors �; � and � respectively. For each

family under consideration, that member is identi�ed that best �ts the data.

Let these best �tting members be denoted as P̂; Ĝ, and Ŝ, respectively. These

three best-�tting members are the models that will be actually compared. The

likelihoods under each of these three models are given by:
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LP̂ = L(�̂; �̂ j X;PCM) = Pr(X j �̂; �̂;PCM);

LĜ = L(
̂; �̂ j X;GRM) = Pr(X j 
̂; �̂;GRM);

LŜ = L(�̂; �̂ j X;SM) = Pr(X j �̂; �̂ ;SM);

where �̂; 
̂; �̂; �̂; �̂ and �̂ are maximum likelihood estimates of �;
;�; �; � and � .

4.4.1 Procedure

To decide between the three best-�tting models, a zero/one loss function and a

maximum likelihood decision strategy are employed. As can be easily veri�ed,

this will result in deciding on the model with the largest likelihood.

The size of the type I error and the power under the alternatives are investigated

as follows. Let L be the vector (LP̂ ; LĜ; LŜ). Furthermore, R(L) will be used for

the vector [r(LP̂ ); r(LĜ); r(LŜ)], where r(LP̂ ) is the rank of the likelihood under

model P̂, and similarly for r(LĜ) and r(LŜ). Note that the ranks in R(L) are

in the order (PCM, GRM, SM). A value R(L) = (1; 3; 2) therefore means that

the GRM has the highest likelihood, and the PCM the smallest. Now suppose,

for the sake of presentation, that r(LĜ) = 3, so that Ĝ, and hence the GRM,

is decided on. Then Pr[r(LĜ) 6= 3 j Ĝ] gives the size of the type I error, and

Pr[r(LP̂ ) = 3 j P̂] and Pr[r(LŜ) = 3 j Ŝ] give the power under the alternatives P̂
and Ŝ against Ĝ, respectively. As the distributions of these ranks are unknown,

they will be approximated by means of simulation.

The algorithm for the entire procedure is as follows:

1. Specify a type I error size �.

2. Collect an initial sample X of size N.

3. For each of the three families of models under consideration, identify the
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member �tting best to the data. Denote the estimated members of the

PCM, the GRM, and the SM, as P̂; Ĝ, and Ŝ, respectively.

4. Calculate the three likelihoods LP̂ ; LĜ, and LŜ.

5. Identify the estimated model having the largest likelihood. Decide that this

model best describes the data. For the sake of presentation, assume this

is model Ĝ. The changes necessary below if either P̂ of Ŝ has the largest

likelihood, are obvious.

6. Simulate a random sample X� of size N from Ĝ.

7. Fit PCM, GRM and SM to the simulated sample X�, and calculate the

three likelihoods L�
P̂
; L�

Ĝ
, and L�

Ŝ
.

8. If r(L�
Ĝ
) = 3, let Q� = 0. Otherwise Q� = 1.

9. Repeat Steps 6 through 8 B times, where B is some large number.

10. If
PB
b=1Q

�

b > B�, conclude that the type I error of the procedure is appar-

ently larger than �.

11. Simulate a random sample X� of size N from one of the alternatives, say

from P̂.

12. Fit PCM, GRM and SM to the simulated sample X�, and calculate the

three likelihoods L�
P̂
; L�

Ĝ
, and L�

Ŝ
.

13. If r(L�
P̂
) = 3, let Z� = 1. Otherwise Z� = 0.

14. Repeat Steps 11 through 13 B times.

15. Interpret
hPB

b=1 Z
�

b

i
=B as the power under alternative P̂.

16. Repeat steps 11 through 15 for the other alternative model, Ŝ.

The models �tted in Steps 3, 7, and 12, are the marginal models de�ned in

Section 4.2, and a standard normal ability distribution is assumed. The same

estimation programs are used that were mentioned in Section 4.3.5. In the calcu-

lation of the likelihoods in Steps 4, 7, and 12, the standard normal distribution
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Table 4.3: Decision procedure: type I error and power. B=100.

Type I error Power

Initial sample R(L) Dec.
P

b
Q�

b

B
Alt.

P
b
Z�
b

B
Alt.

P
b
Z�
b

B

Arti�cial data

PCM (3,2,1) P̂ 0 Ĝ .99 Ŝ 1.00

GRM (1,3,2) Ĝ 0 P̂ 1.00 Ŝ 1.00

SM (1,2,3) Ŝ 0 P̂ 1.00 Ĝ 1.00

Empirical data (1,3,2) Ĝ .11 P̂ .98 Ŝ .97
Dec.: model decided on. Alt.: alternative model. R(L): vector with ranks of (L

P̂
; L

Ĝ
; L

Ŝ
).

P̂ ; Ĝ; Ŝ: those members of the PCM, GRM, and SM, �tting best to the initial data.

Q� = 0 if the model from which X� was drawn, has rank 3; Q� = 1 otherwise.

Z� = 1 if the model from which X� was drawn, has rank 3; Z� = 0 otherwise

is also assumed. The likelihoods are evaluated using Gauss-Hermite quadrature

with 21 quadrature points. The number B is taken to be 100. Finally, it may be

noted that the data simulated in Step 6 constitute in fact a parametric bootstrap

sample (Efron, 1982).

4.4.2 Results

The procedure was applied to the empirical data on the Dominance scale (see

Section 4.3.5). To study the performance of the procedure, it was also applied

to some arti�cial data sets. These arti�cial data again were generated from the

models that were �tted to the empirical Dominance data. All arti�cial data sets

have N = 1000. The Dominance data have N = 362.

Table 4.3 contains the results. In the �rst column of this table, the initial samples

are labelled. In the second column, the vector R(L) containing the ranks of the

three likelihoods for the initial sample is reported. With arti�cial data, the

likelihood for the correct model was always largest. The third column mentions
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the model decided on. Column 4 contains the fraction of bootstrap samples

having Q� = 1. For all three arti�cial data sets, the type I error appeared to be

very small.

The bottom line in the table contains the results of applying the procedure to the

Dominance data. These data were classi�ed as GRM data, which corresponds

nicely with their being rating scale data. Because of the smaller value for N, the

type I error was larger here.

In the last four columns of the table the results of the power investigation are

reported. The power under the alternatives was found to be large, both for the

arti�cial data sets and for the empirical data, even though the latter had only

N = 362.

Table 4.4: Relative frequencies of R(L�) for the type I error and power
investigations. B=100.

Type I error Power

Initial data Dec. R(L�) Freq. Alt. R(L�) Freq. Alt. R(L�) Freq.
Arti�cial

PCM P̂ (1,2,3): 1.00 Ĝ (3,2,1): .01 Ŝ (1,2,3): 1.00
(1,3,2): .48
(2,3,1): .51

GRM Ĝ (1,3,2): .61 P̂ (3,2,1): 1.00 Ŝ (1,2,3): 1.00
(2,3,1): .39

SM Ŝ (1,2,3): 1.00 P̂ (3,2,1): 1.00 Ĝ (1,3,2): .50
(2,3,1): .50

Empirical Ĝ (1,2,3): .04 P̂ (1,2,3): .01 Ŝ (1,2,3): .90
(1,3,2): .54 (2,3,1): .01 (1,3,2): .01
(2,3,1): .35 (3,1,2): .08 (2,1,3): .07
(3,2,1): .07 (3,2,1): .90 (2,3,1): .01

(3,2,1): .01
Dec.: model decided on. Alt.: alternative model. R(L): vector with ranks of (L

P̂
; L

Ĝ
; L

Ŝ
).

P̂ ; Ĝ; Ŝ: those members of the PCM, GRM, and SM, �tting best to the initial data.
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The fractions [
P
bQ

�

b] =B and [
P
b Z

�

b ] =B, reported in Table 4.3, have been derived

from the frequency distributions of R(L�). A closer look at these frequency

distributions may be instructive. They are reported in Table 4.4. Concentrate

on the arti�cial samples �rst. Although, with arti�cial initial data, the likelihood

for the 'correct' model nearly always had rank 3, the ranks for the other two

models were more variable. In particular, if the data X� were drawn from the

GRM, then in about half of these simulated samples L�
P̂
> L�

Ŝ
, and in the other

half L�
P̂
< L�

Ŝ
. This holds for both the type I error investigation and for the

power investigation. For data X� drawn from the PCM or the SM, the value of

R(L�) displayed no variation at all.

For the empirical Dominance data the same e�ect is present, although, as a

consequence of the smaller N, to a somewhat lesser extent.

Surprisingly, it seems that if the PCM and the SM are �tted to data generated

from the GRM, their likelihoods are, on average, approximately equal. This is

con�rmed by an inspection of the average likelihoods, which are reported in Ta-

ble 4.5. The numbers reported here are averages for the loglikelihoods calculated

in Steps 7 and 12. They are reported in the order PCM, GRM, SM. In the table

it can be seen that indeed, when X� is generated from the GRM, the averages of

log(LP̂ ) and log(LŜ) are very close.

4.5 Conclusion and discussion

In the �rst part of this paper a method from signal detection theory has been used

to investigate the di�erences between data generated by di�erent item response

models. The criterion variable was the sample size needed for a 95 percent prob-

ability of correctly distinguishing between data generated by two models. This

sample size was calculated for two models belonging to the same family, and also

for two models belonging to di�erent families. For the models investigated, the

former sample size came out about twice as large as the latter one. The yield of

the present study therefore is that it can be concluded that the small but signif-
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Table 4.5: Means and standard deviations of the loglikelihoods for the
models �tted to X�. B = 100.

Type I error Power

Initial data Dec. Mean (Sd) Alt. Mean (Sd) Alt. Mean (Sd)
Arti�cial

PCM P̂ _P -9841 (62) Ĝ _P -9911 (65) Ŝ _P -9909 (63)
_G -9858 (62) _G -9893 (64) _G -9890 (63)
_S -9873 (63) _S -9911 (64) _S -9874 (62)

GRM Ĝ _P -9798 (53) P̂ _P -9789 (58) Ŝ _P -9804 (63)
_G -9776 (53) _G -9809 (59) _G -9786 (62)
_S -9796 (53) _S -9825 (59) _S -9769 (62)

SM Ŝ _P -9841 (62) P̂ _P -9820 (56) Ĝ _P -9825 (69)
_G -9821 (62) _G -9838 (57) _G -9806 (70)
_S -9805 (61) _S -9852 (58) _S -9825 (71)

Empirical Ĝ _P -3540 (36) P̂ _P -3558 (35) Ŝ _P -3547 (36)
_G -3532 (37) _G -3564 (34) _G -3539 (36)
_S -3539 (37) _S -3569 (35) _S -3534 (36)

Dec.: model decided on. Alt.: alternative model. P̂; Ĝ; Ŝ: models �tted to the initial samples.

_P ; _G; _S : models �tted to the simulated samples X�.

icant di�erences found by Maydeu-Olivares et al. (1994), are large enough to be

of practical relevance.

The models selected for the comparison were those members from each family

under consideration that �tted best to an initial data set. A baseline procedure

was used to interpret the values of the observed IOIs. It would of course be

possible to select models for the comparison by means of another procedure. For

instance, one might start with a member from one of the families, and then select

members from the other families by means of minimizing the area between the

two sets of curves (see e.g. De Vries, 1988). In this case no baseline procedure

could be used.

In the second part of the paper a procedure was investigated for deciding upon a
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family of item response models, when the parameters still have to be estimated

from the data. At �rst sight, the procedure seems to perform well, but it should

certainly be examined in some more detail before de�nite conclusions are drawn.

It would be wise to investigate what happens with altogether di�erent test spec-

i�cations, that is, with other arti�cial data sets, and with other empirical data

as well. The e�ects of test length and of sample size could be investigated, and

also the e�ect of including a discrimination parameter in the models.

A drawback of the procedure is that it is implicitly assumed that the 'correct'

family of models is among the families considered. An example may clarify this.

Suppose the 'correct' model for a data set is the SM, but, not knowing this,

one wants to decide between the PCM and the GRM. Then certainly one of

the two likelihoods will be larger, and upon investigating the type I error and

the power, one may well be led to have faith in the decision. Even though the

decision is wrong. So it would be interesting to try and construct a statistical

test for model choice. Suppose one hypothesizes that the GRM would be most

suited for a certain data set. This hypothesis might be testable against e.g. the

PCM or the SM by means of a likelihood ratio statistic. The function of the

null and alternative hypothesis in this context, however, would call for a careful

consideration. But if these problems were solved, one would have a much more

versatile procedure than the crude method proposed in this chapter. When the

'correct' model is not included in the investigation, a likelihood ratio test might

well be better at detecting that something is wrong than the decision procedure

investigated in this chapter.

Finally, it was found that for data generated according to the GRM, the likeli-

hoods under the best-�tting members of the PCM and the SM were, on average,

approximately equal. It would be interesting to �nd out whether this phenomenon

occurs with other GRM data as well, and if so, to �nd an explanation for it.
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Chapter 5

Monte Carlo estimation of the
conditional Rasch model1

Abstract

In order to obtain conditional maximum likelihood estimates, the conditioning constants are
needed. Geyer and Thompson (1992) proposed a Markov chain Monte Carlo method that can
be used to approximate these constants when they are di�cult to calculate exactly. In the
present paper, their method is applied to the conditional estimation of person parameters in
the Rasch model. The results obtained with the Monte Carlo method can be very accurate,
but in that case the method is rather slow. However, for only slightly less precise results the
Monte Carlo method can be faster than the exact calculations. For the estimation of the ability
parameters in a 5 item test taken by 1000 persons the Monte Carlo method took about half
the time needed for the exact calculations; and still the di�erence between two corresponding
estimates was less than 1 percent of the associated standard error in all cases.

Key words: Conditional maximum likelihood estimation, Markov chain Monte Carlo meth-
ods, Rasch model, item response theory.

1This paper has been published inComputational Statistics, 13, 1998, p.185-211. The author
wishes to thank dr. Alun Thomas from the University of Bath (presently at Myriad Genetics
Inc., Salt Lake City) for his stimulating comments and advice. Financial support for this paper
was granted by the Netherlands Organization for Scienti�c Research (NWO) and by the Dr.
Catharina van Tussenbroekfonds.
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5.1 Introduction

In this paper, an estimation method developed by Geyer and Thompson (1992) is

applied to the Rasch model (Rasch, 1960). This method provides a Monte Carlo

alternative to exact calculation of the normalizing denominators in a likelihood.

Geyer and Thompson showed that in the exponential family a quantity which is

proportional to the normalizing denominator can be expressed as an expectation

with respect to a certain distribution. Upon simulating from this distribution,

the observed sample mean can serve as an estimate of the proportional quantity.

Inserting this estimate into the likelihood then allows one to maximize the ap-

proximate likelihood, as the proportionality constant does not depend upon the

parameters to be estimated. The method will be described in detail in the next

section.

This procedure can be directly applied to conditional likelihoods as well. In fact,

Geyer and Thompson observe an interesting parallel betweenmaximumlikelihood

and computation of posterior likelihoods: they note that "almost any Bayesian

computation can be carried out via Gibbs sampling, and almost any maximum

likelihood computation can be done by some Markov chain Monte Carlo scheme",

such as will be described in section 5.2. In this paper their scheme will be applied

to the conditional estimation of person parameters in the Rasch model (Rasch,

1960), which is a probabilistic model for intelligence and attainment tests. The

purpose of administering a test is to infer something about the test-taker's value

or location on some latent trait, such as intelligence. Let the latent trait of

interest be denoted by the symbol �; it will be referred to as ability. Assume the

test is taken by N persons, and it consists of M dichotomous items, scored 1 if

answered correctly and 0 otherwise.

In the Rasch model the probability of a correct response of person i with ability

�i on an item with di�culty level � is assumed to be given by

Pr(Xi = 1; �i; �) =
exp(�i � �)

1 + exp(�i � �)
; (5.1)

where � is an item parameter expressing the item's location on the same scale as

�i, and the variable Xi = xi, is used to indicate the response of the i'th person.
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Evidently the probability of a correct response is assumed to increase with ability.

Note that the model is not identi�ed without a restriction on the parameters: if

�� = � + k and ��i = �i + k for all i, then Pr(Xi = 1; ��i ; �
�) = Pr(Xi = 1; �i; �).

Usually one of the parameters, or their average, is constrained to be 0.

Under the Rasch model there are two sets of parameters: the person abilities

and the item di�culties. These two sets of parameters cannot be simultaneously

estimated. Usually �rst the deltas are estimated, and these are then inserted into

the likelihood and treated as known in order to obtain maximum likelihood (ML)

estimates of the thetas. One way of estimating the item parameters is marginal

maximum likelihood estimation or MML (see e.g. Bock and Aitkin, 1981). Here

� = (�1 : : : �N ) is considered as a random variable, and it is integrated out of the

likelihood. This will result in a likelihood which is independent of �, and which

can therefore be maximized w.r.t. the �'s. The alternative method is CML or

conditional maximum likelihood estimation: let Ti be the total score
PM
j=1Xji,

where the index j refers to the M items in the test. Then Ti is su�cient for �i,

and conditioning on the Ti's will also result in a likelihood which is independent

of the abilities. Andersen (1970; 1972) proved that the CML estimator is consis-

tent. Again the estimated �'s are then treated as known in order to obtain ML

estimates of �.

When there is an interest in obtaining estimates of the �'s (e.g. for future use

of the test items) this is a reasonable way of proceeding. However, when the

ultimate goal is to estimate �, the current practice seems rather like a detour:

in this case really the �'s should be considered as nuisance parameters instead

of �, and preferably the likelihood should be maximized w.r.t. � in the �rst

place. Two more topics can be raised in this context. First, the consequences

of substituting �̂ for � in the ML procedure are not exactly known. It is con-

ceivable that there could be at least an in
uence on the (asymptotic) variance

of �̂. The terms �̂-based MLE and �-based MLE will be used to refer to the

maximum likelihood estimators of �, using estimated and true values of the item

parameters, respectively. The second point to be mentioned is that although the

�-based MLE of � is consistent, for �nite M it is known to be biased away from

0 (Lord, 1983; Warm, 1989). If �̂ is biased this might possibly propagate extra
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bias into �̂. These topics will not be extensively pursued in the present paper,

but they are raised in order to underline the need for an estimation procedure

that is independent of � and �̂.

Although the Rasch model is symmetric with respect to � and �, it is not easy

just to reverse the marginal or conditional estimation procedures and maximize

the likelihood directly with respect to �. Integrating out item di�culty would

more or less imply that the item parameters are considered as random. This

is an assumption few researchers are willing to make (see, however, Rigdon and

Tsutakawa, 1986). On the other hand, the item total S =
PN
i=1Xi is su�cient

for �. So at least theoretically it is possible to conditionally estimate the �'s.

However, in practice N >> M, that is, usually there are far more persons than

items. It may then become time-consuming to calculate the denominators of the

conditional likelihood.

In the present paper, a Monte Carlo method for the calculation of the denomi-

nators will be investigated. The mathematical form of these denominators in the

conditional Rasch model will be presented in section 5.1.1. Several algorithms for

their calculation will be described in section 5.1.2. All of these algorithms employ

recursive relations. Applied to large numbers of parameters, they may therefore

become either time-consuming or inaccurate. So it will be interesting to apply

the Geyer and Thompson method to the CML estimation of person parameters

in the Rasch model, and to compare the results to some of the algorithms for

exact estimation. Section 5.2 gives a description of the Monte Carlo processes

operating in the Geyer and Thompson procedure. The estimation equations will

be examined more closely in section 5.3. Section 5.4 contains the results of some

tests on the performance of the Monte Carlo method. In section 5.5 some pa-

rameter estimates will be presented and these will be compared to exact CML

estimates, both with respect to accuracy and speed of the calculations.
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5.1.1 The Conditional Rasch Model

The derivations in this section are for the conditional estimation of the person

parameters in the Rasch model; making the appropriate changes, the formulae for

the conditional estimation of the item parameters can be analogously obtained.

Consider a test consisting of M items, taken by N persons, the objective being

the estimation of the person parameters. The data matrix then is of size M�N,

i.e. it is wider than long. We will be interested in the vector-valued variable

X = x, where X = (X1 : : :Xi : : :XN ) is the N-vector of the responses of all

persons on a single item. The variable X will be denoted as the item score

pattern. Then Xi = xi, with xi = 0; 1 is the variable denoting the response given

by person i, and the item total S was de�ned as
PN
i Xi. Furthermore, � is the

vector of abilities (�1 : : : �i : : : �N ), and the parameter � indicates the unknown

item di�culty.

Assuming independence between responses given by di�erent persons, in the

Rasch model the probability of observing a vector X is a function of the item

di�culty �; it can be derived from (5.1) as

Pr(X = x; �;�) =
NY
i=1

[exp(�i � �)]Xi

1 + exp(�i � �)

=
exp(

PN
i=1 �iXi � S�)QN

i=1[1 + exp(�i � �)]
: (5.2)

The probability of observing an item total S = s is equal to

Pr(S = s; �;�) =
X

X:S(X)=s

Pr(X = x; �;�)

=
X

X:S(X)=s

exp(
PN
i=1Xi�i � S�)QN

i=1[1 + exp(�i � �)]
; (5.3)

where the summation is over all item score patterns leading to the same total

S = s. The conditional probability of one score pattern X given S is therefore

equal to the division of (5.2) by (5.3):

Pr(X j S; �;�) = exp (
PN
i=1Xi�i)P

X:S(X)=sexp (
PN
i=1Xi�i)

: (5.4)
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Note that indeed this likelihood is independent of � and can therefore be written

as Pr(X j S;�). The denominators in (5.4), there is one for each value of S,

are the well-known elementary symmetric functions and in item response theory

these are usually denoted by 
s(�):


s(�)
d
=

X
X:S(X)=s

exp (
PN
i=1Xi�i): (5.5)

With this notation the conditional probability in (5.4) can be rewritten as

Pr(X j S;�) = exp (
PN
i=1Xi�i)


s(�)
; (5.6)

and the corresponding conditional log likelihood is then given by

logL(� j S;X) =
PN
i=1Xi�i � log 
s(�):

Let Ms be the number of items in the sample having the value s on the statistic

S, and note that all items with the same total score have the same value for


s(�). Also, given �i, independence of responses on di�erent items is assumed;

therefore the log-likelihood for the whole sample becomes

logL(� j S;X) =
MX
j=1

NX
i=1

�iXji �
X
s

Ms log 
s(�)

=
PN
i=1 �iTi �

X
s

Ms log 
s(�); (5.7)

where the index j refers to the M items in the sample, Ti is the total scorePM
j=1Xji, S is a column vector of observed item totals and X denotes the entire

data matrix. The symbol X is used to distinguish this matrix from the score

vector X. Note that (5.7) still depends on the data through Ti. Zeroing the

partial derivatives of (5.7) with respect to � will yield the CML solution equations.

These partial derivatives are given by

@logL(� j S;X)
@�k

= Tk �
X
s

Ms


(k)
s�1(�) exp (�k)


s(�)
; (5.8)

in which the numerator is equal to @
s(�)=@�k, with 

(k)
s�1(�) a symmetric function

for the set of persons not containing person k. For example, if there were 3
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persons, some of the gamma functions would be


2(�) = exp (�1 + �2) + exp (�1 + �3) + exp (�2 + �3);



(3)
1 (�) = exp (�1) + exp (�2);

so that indeed @
2(�)=@�3 = 

(3)
1 (�) exp (�3).

5.1.2 Algorithms for the exact calculation of 
s(�)

In order to be able to compare the Monte Carlo algorithm to the algorithms for

exact calculation, some of these latter algorithms will now be described. For an

e�cient description let, in this section only,

�i = exp(�i) for i = 1; 2; : : :N:

From (5.5) the gamma functions can be adapted to the transformed metric:


s(�) =
X

X:S(X)=s

Y
i

�Xi

i ;

where � = (�1 : : : �i : : : �N ). The order of the gamma function 
s(�) is de�ned as

the length of the vector �.

The sum and the di�erence algorithms are clearly described in Fischer (1974).

The sum algorithm starts from 
0(�1; �2; : : : ; �k) = 1 for all k, and 
1(�1) = �1;

after that it uses


r(�1 : : : �p) = �p
r�1(�1 : : : �p�1) + 
r(�1 : : : �p�1) (5.9)

for p = 2; 3; : : : ;N and r = 1; 2; : : : ; p, to build up the set of gamma functions

of order N via all the sets of order 2; 3; : : : ;N � 1. Let Smax be the maximum

value observed for S; then of course, if Smax < N, there is no need to build up the

gamma function in (5.9) for p > Smax. The sum algorithm is numerically accurate

and stable, and it can be used for the estimation of �, but it is time-consuming.

Presently calculating a gamma function of order 700 will take about 1 or 2 seconds

on a Dos Pentium machine. This may seem little, but note that in order to
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evaluate (5.8), also the gamma functions 

(k)
s�1(�) are needed k = 1; 2; : : : ;N;

in practice however (see also Section 5.3.3) only N0 of these functions needed,

where N0 is the number of di�erent values in T , not counting 0 and M. As

an example, for a test consisting of 5 items there are 4 di�erent values possible

for Ti, so in all, with the sum algorithm, 5 sets of gamma functions have to

be evaluated, irrespective of the value of N. These 5 sets of gamma functions

have to be evaluated in each iteration of the maximization routine. Supposing

some 7 iterations are necessary and each evaluation takes 1:5 seconds, the entire

estimation process will take about 50 seconds. So indeed a reduction of this time

would be interesting.

The di�erence algorithm is faster than the sum algorithm. However, Verhelst

et al. (1984) showed that this algorithm is not accurate enough for the conditional

estimation of � and therefore it will not be further examined in the present

paper. These latter authors proved a 'union property', which is fully exploited in

an extended algorithm proposed by Liou (1994). The extended algorithm is an

extension of the di�erence algorithm and it computes 
s(�) via the sum algorithm;

the functions 

(k)
s�1(�) however are then obtained from 
s(�) upon starting from



(k)
0 (�) = 1 and using


(k)r (�) = 
r(�)� �k

(k)
r�1(�)

for r = 1; 2; : : : ;N � 1 and k = 1; 2; : : : ;N. Again, in practice only N0 instead

of N functions 
(k)r (�) will have to be calculated. In order to minimize rounding

errors, a 'backward' equation, starting from 
N (�) can be used in the second

half of the calculations. Details can be found in Liou (1994), who investigated

the accuracy of the extended algorithm for tests consisting of up to 60 items.

For tests of this length it proved accurate, and about M times faster than the

sum algorithm, where M is the number of parameters to be estimated. Hence,

for CML estimation of the item parameters in tests of this length the extended

algorithm is undoubtedly the best choice. However, the behavior of this algorithm

in the case of estimating �, i.e. in estimating a large number of parameters, has

not yet been investigated. Some results for this case will be presented below in

Section 5.5.2.

106



5.2 The Monte Carlo estimation method

Applying the theory developed by Geyer and Thompson (1992), it will in this

section be shown that Markov chain Monte Carlo (MCMC) methods can be used

to approximate a quantity that is proportional to the gamma functions. Let the

probability density function for one observation in the conditional formulation

of the Rasch model be known as fs(X;�); then the corresponding conditional

likelihood of � as a function of X can be written as fs(�;X). In this notation

the conditioning variable S has moved from behind the bar to a subscript on f.

We therefore have

fs(�;X)
d
= L(� j S;X) =

exp (
PN
i=1Xi�i)


s(�)
:

If  were another set of parameters, then trivially, using the de�nition of 
s(�)

given in (5.5),


s(�) =
X

X:S(X)=s

exp (
PN
i=1Xi�i)


s( )

exp (
P
iXi i)

fs( ;X):

This is the formula for importance sampling (see e.g. Ripley, 1987); however,

the purpose is not to estimate 
s(�) but the parameters �, i.e. to maximize the

loglikelihood function given in (5.7). Theoretically, one could do this by obtain-

ing an estimate 
s(�̂) of 
s(�) by means of importance sampling, inserting the

estimate into the loglikelihood function (5.7), and then maximizing that function.

In that case, however, one would still have to calculate 
s( ) which is exactly

what we are trying to avoid. It will therefore prove fruitful to move 
s( ) to the

left hand side and obtain


s(�)


s( )
=

X
X:S(X)=s

n
exp

hPN
i=1Xi(�i �  i)

io
fs( ;X)

= E ;S=s

n
exp

hPN
i=1Xi(�i �  i)

io
:

In other words, if

qs(�)
d
=


s(�)


s( )
; for s = 0; 1; : : : ;M;
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then, upon simulating a random sample of size B from fs( ;X) = fs(X; ), all

qs(�)'s could be estimated by the sample means:

cqs(�) = 1

B

BX
b=1

exp
hPN

i=1Xsbi(�i �  i)
i

(5.10)

for any value of �. Note that the �rst subscript on X, the s, is there to indicate

that every simulated item score vector X belongs to a set having common total

S = s. De�ning logL� to be

logL�(� j S;X; ) d
=

PN
i=1 �iTi �

X
s

Ms log qs(�) (5.11)

=
PN
i=1 �iTi �

X
s

Ms log 
s(�) +
X
s

Ms log 
s( )

= logL(� j S;X) +X
s

Ms log 
s( );

note that logL�(� j S;X; ) attains its maximum for the same value of � as does

logL(� j S;X). So it is now possible to substitute cqs(�) for qs(�) in (5.11) and

maximize the resulting expression

logL�(� j S;X; ) � PN
i=1 �iTi �

X
s

Ms logcqs(�)

=
PN
i=1 �iTi �

X
s

Ms log
n

1

B
PB
b=1 exp

hPN
i=1Xsbi(�i �  i)

io
(5.12)

with respect to � to get an approximate solution to the original likelihood equa-

tions. The partial derivatives of this function are given by

@ logL�

@�k
� Tk �PsMs

P
bXsbk exp [

P
iXsbi(�i �  i)]P

b exp [
P
iXsbi(�i �  i)]

: (5.13)

Recapitulating: the purpose is to estimate the parameters �. Therefore, the

conditional loglikelihood function in (5.7) has to be maximized, but the gamma

functions �guring in its derivative are di�cult to calculate. In (5.11) another

function has been found that attains its maximum for the same value of � as

does (5.7), so instead of maximizing (5.7), one could maximize (5.11). In (5.11),
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the incalculable quantity 
s(�) has been replaced by the quantity qs(�), which

may be obtained by means of simulation (see equation 5.10).

However, the simulations needed in order to obtain an estimate of qs(�) have

to be drawn from fs(X; ). The denominator of this function is 
s( ), which

is another gamma function. Now theoretically, one is at liberty to choose a

convenient value for  . Hence one might choose it such that 
s( ) were easy to

calculate. Unfortunately, in practice this liberty is but limited; this topic will be

taken up in sections 5.3.1 and 5.4.3. It will therefore be assumed that 
s( ) is

just as di�cult to evaluate as is 
s(�); and hence, that it is di�cult to simulate

from fs(X; ) directly. Below the Metropolis (1953) algorithm will be described,

which can be used to obtain the simulations in an indirect way.

5.2.1 Simulation of response patterns

A Markov chain is a sequence of realizations of a random variable Z with the

property that

Pr(Zk = zk j Z1 = z1; : : : ; Zk�1 = zk�1) = Pr(Zk = zk j Zk�1 = zk�1);

where the subscript k denotes the ordering of the sequence in time, and Z may be

vector valued. The probabilities of going from one state to another in a Markov

chain can be represented in a matrix P, having as entries pij = Pr(Zk = i j Zk�1 =
j). The Markov chain is irreducible if it is possible to get from any state to any

other state in a �nite number of transitions. The states of irreducible Markov

chains on �nite sets of values follow a unique limiting or ergodic distribution;

denoting this (discrete) distribution by �, it is given as the solution to

�P = �:

(see e.g. Proth and Hillion, 1990). In words: if the transitions are made according

to P, then for large N, Pr(Zk+N = i j Zk = j) � �i, independent of the value of

Zk.

In order to simulate from �, one could select a Markov chain with transition

matrix P satisfying �P = � and run the chain until it appears to have reached its
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equilibrium. If this Markov chain Monte Carlo sampling scheme is used to esti-

mate the expectation of a function g of Z, say I = Eg(Z), then Î is asymptotically

normally distributed and approaches I in mean square as the number of Monte

Carlo samples B ! 1 (Hastings, 1970). Of course, the problem is to �nd a P

satisfying �P = �. Metropolis et al. (1953) found a way to sample from � without

actually knowing P. Let Z be the present state of the sequence, and Z 0 an alter-

native state. Then the Metropolis algorithm is as follows: (a) de�ne a convenient,

irreducible, symmetric transition matrix Q; (b) propose a new state, say Z 0, for

the variable Z, according to the probabilities in the relevant row of Q; and (c)

accept the proposed state with probability �(Z 0; Z) = minf1; �(Z 0)=�(Z)g. The
algorithm can be proved to work by the detailed balance lemma (see e.g. Ripley,

1987). There may be need for a 'burn-in' period in the very beginning, in order

to allow the algorithm to move away from a possibly badly chosen starting value

Z. In the present case, Z would be the item score pattern X, and �(Z) would

be fs(X; ). The cleverness of the algorithm lies in the fact that in calculating

�(Z 0)=�(Z) there is no need to calculate the denominators 
s( ), as these will

cancel.

If Z is vector valued, and if many elements of Z are independent of each other,

another computational simpli�cation is achieved by proposing a new state Z 0

not in one draw, but stepwise. If only a single element of Z is updated at a

time, many additional factors in �(Z 0)=�(Z) may cancel. In this case one new

simulated vector Z is obtained upon having consecutively considered a new state

for every single element of Z in turn.

The vectors simulated in this way will not be independent. The autocorrelation

could be reduced by inserting 2 or more scans between successive Monte Carlo

simulations. However, its only in
uence will be on the variance of cqs(�); therefore
it is equally well possible to use all generated response vectors and to go on

generating them until the variance has become acceptable.

In the conditional Rasch model the simulations are from a distribution conditional

on total score. Hence it is impossible to change the value of only one variable

Xi at a time: a new proposal state X 0 has to be obtained by interchanging
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the position of two di�erent values in the item score vector. Under the Rasch

model it is easy to obtain a good starting con�guration: the most likely response

vector is the one with Xi = 1 for the s cleverest persons, i.e. the ones with the

highest scores Ti. Therefore there is hardly any need for a burn-in period. Having

obtained a fairly large number, say B, of simulated vectors it is possible to start

estimating the parameters �, that is, equation (5.12) can then be maximized by

equating to zero its partial derivatives given in (5.13). In the next section these

estimation equations will be investigated more closely.

5.3 Estimation equations

Several aspects of the estimation equations will now be commented upon. In

particular the equations for the Monte Carlo CML estimation will be compared

to those for exact CML estimation.

5.3.1 Starting values

In theory there is no need for iterating the MCMC procedure, and therefore

the easiest choice for  would undoubtedly be  i = c for all i, where c would be

some constant, for example c = 0. In that case the function fs(X; ) would assign

equal probability to all (Ns ) item score patterns. However, from the theory of

importance sampling it may be inferred that the approximation of log L(� j S;X)
by log L�(� j S;X; ) will be good in the neighborhood of � =  , but at � far

from  the approximation may be bad. Therefore Geyer and Thompson suggest,

�rstly, that it may be wise to use a few small initial Monte Carlo cycles in order to

make sure that one has arrived in the neighborhood of the �nal �̂. Then a truly

large sample can used for the actual estimation. And, second, for the same reason

they consider it useful to employ a restriction on the maximum step length per

Monte Carlo cycle. So although one could use  = 0 in the �rst cycle, if better

starting values are available one might as well use these from the beginning. In

the present paper the well known Gustafsson starting values (Gustafsson, 1979;
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Martin-L�of, 1973) will be adapted for use with �:

 
(0)
i =

Ti � �TiPN�1
s=1 Ms

s(N�s)
N(N�1)

;

in which N is the number of persons in the sample, Ms the number of items with

total score equal to s, and �Ti =
PN
i Ti=N.

5.3.2 Identi�ability

Recall from the introduction that the constraint �1 = 0 or
P
i �i = 0 has to be

imposed to make the model identi�ed. Next, it is well known (Ford, 1957) that

in order for a solution to the exact CML equations to exist, all persons and all

items with perfect scores (S = 0 or S = N, and Ti = 0 or Ti = M) have to be

deleted from the sample. Meaningful estimates for such persons and items cannot

be obtained using maximum likelihood, and deleting them will not in
uence the

estimation of the remaining parameters in exact CML estimation.

For the present estimation procedure however this latter assertion remains yet

to be investigated. First the in
uence of perfect items on person parameter

estimation will be considered. Repeating (5.12), we have

logL� �PN
i=1 �iTi �

P
sMs log

n
1

B
PB
b=1 exp [

P
iXsbi(�i �  i)]

o
:

It is evident that the term with S = 0 does not contribute to the value of log L�,

as all the Xsbi's are equal to zero, so log(1=B � B) = 0 too. Likewise, the term

with S = N would have no contribution: let there be k items with total score

S = N, then if these items were deleted the approximated logL� would become

equal to

X
i

�i(Ti � k)�X
s

Ms log

"
1

B

BX
b=1

exp

(X
i

Xsbi(�i �  i)

)#
+ k

X
i

(�i �  i):

The terms with k
P
i �i cancel, and although the resulting formula is not equal to

the approximated logL� itself, the di�erence does not depend on the parameters

to be estimated, so the resulting estimates will be the same. For these reasons,
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items with perfect score patterns can be safely omitted from the estimation of

person parameters.

Next, the in
uence of perfect persons on the estimation of other person parame-

ters will be examined. It seems plausible to use  i !�1 or  i !1 for persons

with Ti = 0 or Ti = M respectively. Thus they will generate only perfect response

patterns. It is easy to show that deleting those persons from the approximate

loglikelihood will not in
uence the estimation equations for the other persons.

5.3.3 Rank of the system of equations

One topic clearly needs some more attention. As Ti is su�cient for �i, in the

context of exact CML there will only be as many estimation equations as there

are di�erent values observed for Ti. The situation is di�erent for Monte Carlo

CML estimation. Here, remembering (5.13),

@ logL�

@�k
� Tk �PsMs

P
bXsbk exp [

P
iXsbi(�i �  i)]P

b exp [
P
iXsbi(�i �  i)]

;

and because of the Monte Carlo processes there is no guarantee that if Tk = Tl,

then also Xsbk will be equal to Xsbl, not even if  k were chosen equal to  l. So

without taking precautions one would in this case end up with di�erent estimates

for persons with the same value of the su�cient statistic. This is undesirable.

One way out, retaining only one of the persons with equal values on T in the

analysis, would cause problems for the conditional Monte Carlo sampling scheme.

Instead, therefore, it was decided to average the estimation equations for persons

with equal values on T . This has implications for the way the equations can be

written. If Tk = Tl, then �̂k will have to be equal to �̂l. To begin with, therefore,

take  k =  l. Now, with Tk = Tl, at the maximum of the approximate logL� it

holds that

Tk =
P
sMs

P
bXsbk exp [

P
iXsbi(�i �  i)]P

b exp [
P
iXsbi(�i �  i)]

;

and

Tl =
P
sMs

P
bXsbl exp [

P
iXsbi(�i �  i)]P

b exp [
P
iXsbi(�i �  i)]

;

so that Tk + Tl is equal to
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X
s

Ms

P
b(Xsbk +Xsbl) exp

h
Xsbk(�k �  k) +Xsbl(�l �  l) +

P
i6=k;lXsbi(�i �  i)

i
P

b exp
h
Xsbk(�k �  k) +Xsbl(�l �  l) +

P
i;i6=k;i6=lXsbi(�i �  i)

i :

If  k =  l, and if we let X�

sbh represent Xsbk+Xsbl, the above equation simpli�es

considerably. The same can be done for all sets of persons with equal values on

Ti, so that a di�erent vector is obtained, say X� = (X�

1 : : :X
�

r : : :X
�

N 0), where

N0 � N, and even N0 � M, is the number of di�erent values actually appearing

in T , and each X�

r is equal to a sum over several (possibly only 1) Xi's. In the

same way, let T � = (T �1 : : : T
�

r : : : T
�

N 0) be a vector containing only the di�erent

values occurring in T , and let �� = (��1 : : : �
�

r : : : �
�

N 0) be a vector containing the

N0 di�erent �'s corresponding to the N0 di�erent values in T �; and similarly for

 �. Then X�

sbr can be found from

X�

sbr =
X

i:Ti=t�r

Xsbi; r = 1; 2; : : : ;N0: (5.14)

This will give the following set of alternative estimation equations:

T �hNh =
X
s

Ms

P
bX

�

sbh exp
hPN 0

r=1X
�

sbr(�
�

r �  �r)
i

P
b exp

hPN 0

r=1X
�

sbr(�
�

r �  �r )
i ; h = 1 : : :N0;

where Nh is the number of persons with total score equal to T �h . The above

is particularly relevant in the case of estimating abilities, because usually the

number of persons will be much larger than the number of items. As only M� 1

di�erent nonperfect values are possible for T , maximally M � 1 equations will

then result instead of N.

5.4 Testing the algorithm

This section gives some results obtained in testing the algorithm used for the

Monte Carlo method. All pseudo-random numbers were obtained using the gen-

erator proposed by Wichmann and Hill (1982).
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5.4.1 The data

In order to empirically test the algorithm some realistic values for  were needed.

It was decided to use the starting values for some data sets provided by Thissen

(1982). Thissen reports the results of CML estimation on a 10 item memory test.

This test was taken by 40 persons, 5 of which had a zero score, so 35 of them

were left for estimation. In addition Thissen reanalyses two 5-item sections of

the Law School Admissions Test. These two subtests, which will be denoted as

LSAT6 and LSAT7, were analyzed earlier by Andersen and Madsen (1977) and

by Bock and Lieberman (1970). The data represent responses of 1000 subjects

drawn from a larger sample of students applying for admission to law schools

at various universities in the United States. After omitting persons with perfect

scores, 699 and 680 respectively remained for analysis.

5.4.2 Generation of score patterns

In the �rst test all possible score patterns will be considered, so preferably there

should not be too many of them. Therefore it was decided to put this test not to

the generation of item score patterns, which are of length N, but to the generation

of person response patterns, which are only of length M. Person response patterns

�gure in the conditional estimation of item parameters in the same way as item

score patterns �gure in the conditional estimation of the person parameters. For

the CML estimation of item parameters the data matrix is transposed so that

it is of size N �M instead of M � N; the conditional distribution of the person

response patterns given the total score T = t can be denoted by ft(X;�), where

� = ('1 : : : 'M) is the analog of  = ( 1 : : :  N). Data were generated for

M = 5, and � was taken equal to the starting values of the item parameters

in the LSAT6 data. For all 4 non-perfect values of the total score 500 response

vectors were generated from ft(X;�) using the Metropolis algorithm described

in Section 5.2.1. The number of di�erent response patterns is quite small in

this case (25 � 2 = 30). Therefore it was possible to calculate the theoretical

conditional probabilities, i.e. the value of ft(X;�) = exp(
PM
j=1Xj'j)=
t('), for
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Table 5.1: Chi-square goodness of �t values for the distribution of gen-
erated score patterns.

�2 values for
T df B=500 B=1000 B=2000
1 4 7.8 1.8 2.4
2 9 5.2 9.7 13.9
3 9 4.8 8.5 5.3
4 4 3.2 1.6 3.1

T=total score; df=degrees of freedom.

B=number of generated score patterns.

each pattern and to compare these to the observed frequencies for the generated

score patterns. Next, a chi-square statistic was calculated for each conditional

distribution ft(X;�), for t = 1; : : : ; 4. This process was repeated with Monte

Carlo sample sizes B equal to 1000 and 2000. The results are given in Table 5.1.

None of the values in this table is signi�cant, but two remarks apply. First, it

is probably not really justi�able to perform a �2 goodness of �t test, because

the generated score patterns are not independent, being subsequent realizations

under the Metropolis algorithm. So these values should be interpreted with some

care. And second, as a result of the randomness in the data simulation process,

the generation of tables like Table 5.1 is in this case itself a random process.

Therefore, the process of generating simulated data and calculating �2 was re-

peated several times, and largely the pattern was as above. Unfortunately, no

such test could be done for testing the generation of item score vectors for the

estimation of � in a large sample. The, say, 2699�2 possible score patterns simply

are too many. For the time being therefore the conclusion will be that the score

pattern generator works to satisfaction.

5.4.3 Empirical convergence of cqs(�) to qs(�)

Next the performance of the estimator cqs(�) was examined. Note that the focus

is now again on the estimation of � instead of �. In this section its convergence
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to qs(�) will be empirically investigated; in the next section its accuracy will be

considered.

There are several factors that will in
uence cqs(�)(b), which is the value for cqs(�)
as calculated from the �rst b (out of B) Monte Carlo simulations. To start with

there is the number of simulations b upon which it is based. Hopefully, with

increasing b, the estimate will become stable, i.e. converge to a certain value.

In other words, cqs(�)(b+j) � cqs(�)(b) should go to zero for large b and any value

of j. Next, it seems likely that the convergence will be in
uenced by the shape

of the distribution fs(X; ), as the empirical pmf of a sample from a regularly

shaped distribution in general will more closely resemble the shape of its parent

than a sample of the same size from an irregularly shaped distribution. Third,

recall that cqs(�) estimates 
s(�)=
s( ), and that the estimate will probably be

better for � close to  than for � a large distance from  . So the distance from

� to  is a third factor that might in
uence the goodness of the estimate.

In view of this last point, all subsequent investigations were performed for several

distances � �  . In the following, d will denote a normed Euclidean distance,

i.e. a 'distance per parameter' such that the distance between � and  will

be ascertained by having
PN 0

r (��r �  �r)
2 = N0d2, for a particular value of d;

with N0 the number of �'s to be estimated, i.e. the number of di�erent values

appearing in T . For the LSAT data a large distance will then be one where

d = :15, an intermediate distance will have d = 0:10 and a small distance will

mean d = :05. Finally a very small distance will have d = :01. These numbers

may seem small, but note the following. In the LSAT6 data 4 person parameters

have to be estimated so N0d2 for the large distance would be :09; and in practice

the Gustafsson starting values appeared to be well within this range of the �nal

estimates. Furthermore, N0d2 for the small distance would be :01; and in all

estimation runs it was observed that the �nal estimates were well within this

distance of the previous ones. Actually, in the �nal run the square of the normed

Euclidean distance usually was about :0001, which is the reason why also the

very small distance of d = :01 will be investigated. So these distances do seem

realistic. For other data sets, however, realistic distances might be di�erent.
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Figure 5.1: LSAT6 data: Sequential estimates cqs(�)(b) for B = 2000 and some
values of S and d, where d2 =

PN 0

i (�i �  i)
2=N0.

In order to study the empirical convergence, plots were constructed depicting the

relationship between cqs(�)(b) and b. Having generated Monte Carlo data at  

and having found an arbitrary value for � at the required distance, the sequential

estimates cqs(�)(b) were then calculated for b ranging from 1 to 2000.

Unfortunately, the plots arising in the context of estimating � from a 5 item test

for N = 699 are not very regular for the larger distances. Figure 5.1 displays an

average result. The sequential means of cqs(�) are depicted for S = 411 and for

S = 572, for distances d = :15; :10 and :05. The values S = 411 and 572 were

actually observed in the LSAT6 data; and again the starting values for these data

were used to obtain  . In both cases the plot for d = :15 is rather jagged, and

it does not seem to have settled down even after 2000 replications. The plot for

d = :10 seems less jagged; and the plot for d = :05 is markedly smoother. The

plots for d = :01 (not presented) are still more regular than the ones with :05.
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So the distance � � indeed does seem to play a critical role in the behavior ofcqs(�). For � far from  the estimate cqs(�) may be unreliable, even after B as

large as 2000.

In order to investigate this matter further, sequential plots were also constructed

for the estimation of the item parameters in the 5 item LSAT test. These plots

came out very smooth indeed; it seems a safe conclusion to say, without presenting

the plots, that the equilibrium is reached after 1000 or even 500 replications. Even

for a distance as large as d = :50 the plots are still smooth in this case. For the

estimation of the item parameters in a 10 item test, using as � the starting values

for the memory test, the plots are only slightly more irregular than for a 5 item

test.

A closer inspection revealed that the unexpected bad results for cqs(�), as com-

pared to bqt(�), can happen because in the values of exp[
P
iXsbi(�i �  i)] ex-

treme di�erences may occur. In calculating cqs(�)(b) two processes are involved:

each new score pattern is �rst generated from fs(X; ), and then it is added

to
P
b exp [

P
iXsbi(�i �  i)]; this means each score pattern has a probability

of occurring, depending only on fs(X; ), and it has a particular value forP
iXsbi(�i �  i), depending on both the values Xsbi and on the di�erences �i �

 i. Now problems may occur if there is a (or a few) score patterns with a

very small probability of occurrence, and at the same time a comparatively

large value for exp [
P
iXsbi(�i �  i)]; large, that is, compared to the value of

exp [
P
iXsbi(�i �  i)] for other X.

Recall from (5.14) that
P
iXsbi(�i �  i) can be written as

PN 0

r=1X
�

sbr(�
�

r �  �r),

with X�

sbr =
P
i:Ti=tr�Xsbi, for r = 1 : : :N0 and N0 the number of di�erent values

that have to be estimated for �, which in the case of the LSAT6 data is equal

to 4. In estimating � the variables X�

tbr will usually be equal to either 0 or 1,

as there will not be many items with the same item total. In estimating � the

situation is di�erent. Still considering the LSAT6 example it may be noted �rst

that the possibility of a rare score pattern is larger here, there being for example

( 699255) di�erent patterns leading to an item total S = 255. Second, there are

699 persons and only 4 di�erent total scores to be obtained. Therefore the 255
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correct responses are to be split up over only 4 di�erent X�-values. These X�-

values will then be combined with 4 di�erent di�erences ��r �  �r . Because of the
exponentiation here is a possibility for serious trouble. The only thing one could

do to avoid this, is to make sure one has good starting values. This then �nally

is an empirical reason prohibiting the use of starting values  = 0 in estimating

�. In practice,  = 0 even caused the estimation procedure to break down. On

the other hand, in estimating � the use of � = 0 posed no problems at all.

So the conclusion might be that when the ratio of the number of persons to

the number of items, i.e. the ratio of the number of structural to the number

of incidental parameters, is large, this may cause irregularity in the sequential

plots for large distances � �  . For smaller values of that ratio the plots may

well be smoother. Having understood a possible source of erratic behavior of

the sequential plots, the question becomes: is there need to worry about it? To

answer this question a simulation study was conducted which will be described

in the next section.

5.4.4 Accuracy of cqs(�)
Sequential plots, as drawn in the previous section, can be enlightening and in-

structive, especially when one happens to come across one that displays unex-

pected or unwanted behavior. But for �nding out something about the average

behavior of the estimator alternative means are needed. A simulation study was

conducted which is algorithmically given by:

1. Take a speci�c value for  

2. Specify a distance, say d = :15

3. Choose a value for � at the required distance from  

4. Calculate cqs(�) for B = 50

5. Repeat step 4 1000 times and calculate the average and standard deviation

for cqs(�). Compare this with the expected value
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6. Repeat steps 3 - 5 for B = 200; B = 800 and B = 2000

7. Repeat steps 2 - 6 for distances of :10; :05 and :01.

Of course, the trends that are so nicely visible in the sequential plots will not

appear here: looking only at cqs(�) for B = 50 one sees a �xed point in the plot

only. Moreover, calculating the mean and variance of cqs(�) for 1000 replications

might not be very instructive in itself, as the values of cqs(�) should in the �rst

place be compared to 
s(�)=
s( ), which are di�erent in each of the 1000 repli-

cations because they each have a di�erent value for �. Therefore, for each of the

1000 replications, the relative di�erence fcqs(�) � qs(�)g=qs(�) was calculated.
This relative di�erence was the variable of interest in the present investigation;

its mean and standard deviation are displayed in Table 5.2 for B = 50; 200; 800

and 2000, and for distances :01; :05; :10 and :15.

Again, the values for S are the ones observed in the LSAT6 data; and the Gustafs-

son starting values for this data set were used to obtain a realistic point  . Turn-

ing to the bottom part of the table �rst, it can be seen that for d = :15, even

with B = 2000 the estimates will on average be about 2 to 3 percent wrong; for

d = :10 and d = :05 they become increasingly better, and for d = :01 they are

very good, that is, here they all are within less than :1 percent of the correct

value, on average. The standard errors are also very acceptable for this distance.

The numbers for B = 800 and B = 200 display the same pattern, and the averages

are only slightly farther away form 0 here. The main di�erence is in the standard

deviations: these are larger for smaller B. But note that even with B = 200 the

standard deviation for d = :01 is still less than :01 in all cases.

So in the �nal Monte Carlo cycle good values for  are necessary; and in this

respect the values in the top part of the table are reassuring. Suppose one starts

with starting values having d � :15 and a preliminary Monte Carlo sample size of

B = 50. Then, although occasionally one might be way o�, on average one could

expect to come to within some 10 or 11 percent of the correct value qs(�). A

couple of preliminary cycles with B = 50 would therefore almost certainly bring

one to within a distance of :05 or :01 of the true �, and a �nal Monte Carlo cycle

with larger B can then be performed. B = 2000 would certainly be large enough,
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Table 5.2: Relative accuracy of the estimator cqs(�).
Values of fcqs(�)� qs(�)g=qs(�) for 1000 replications.

B S mean sd mean sd mean sd mean sd
d=:01 d=:05 d=:10 d=:15

50 255 .0001 .013 -.0073 .024 -.0938 .127 .1182 .351
411 -.0009 .015 .0014 .030 -.0563 .127 -.1195 .151
465 .0000 .008 .0167 .103 -.0622 .118 -.1081 .164
572 .0001 .008 .0075 .034 .0368 .109 .0354 .215
626 .0004 .012 -.0061 .045 .0161 .107 -.0411 .122

200 255 .0002 .007 .0108 .021 -.0179 .029 .0530 .159
411 -.0001 .004 .0013 .035 -.0193 .040 .1208 .238
465 .0002 .005 .0180 .034 -.0266 .075 .0503 .155
572 -.0000 .006 .0026 .028 .0198 .031 -.0012 .072
626 -.0000 .003 -.0055 .014 -.0015 .073 .0269 .081

800 255 .0002 .003 .0050 .012 .0187 .028 .0128 .081
411 .0000 .004 -.0044 .013 .0151 .020 -.0105 .069
465 .0002 .002 -.0024 .007 -.0131 .045 -.0581 .057
572 -.0001 .002 -.0006 .014 .0043 .045 -.0340 .062
626 -.0000 .001 .0011 .005 -.0137 .017 -.0080 .054

2000 255 -.0001 .002 -.0016 .002 .0114 .031 -.0334 .079
411 -.0000 .002 .0026 .014 .0129 .032 .0265 .074
465 -.0002 .001 .0001 .008 .0086 .021 .0140 .055
572 .0000 .002 .0013 .002 -.0096 .026 -.0121 .032
626 -.0000 .001 -.0019 .006 -.0083 .014 .0214 .026

B:Number of simulations; S=item total.

d: distance from  to �; a distance of d means
PN 0

r
(��r �  

�

r )
2 = N0d2

mean and sd: average and standard error of the relative error of bqs(�).
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but in a very close neighborhood of � also a Monte Carlo sample size of B = 200

could be adequate.

5.5 Results

In this section results will be presented for the Monte Carlo estimation of ability

parameters for the LSAT and memory data. The results will be compared to

exact estimates with respect to both accuracy and necessary computing times.

5.5.1 Parameter estimates

Table 5.3 contains the ability estimates for the memory test. This is a 10 item

test, so there are 9 nonperfect values for T , and hence maximally 9 di�erent

estimates for � are possible. The estimates reported in this table were obtained

using an initial Monte Carlo sample size of B = 500 and a �nal one of B = 2000.

In column 3 the Monte Carlo CML estimates are reported; column 4 contains the

exact CML estimates. Recall from the introduction that in practice exact CML

estimates for � are never calculated: usually the item parameters are estimated

�rst, and the abilities are then obtained by ordinary ML, treating the di�culties

as known. These ML estimates of � are reported in column 5. It may be noted

that there were no subjects with total scores larger than 7. Therefore both MC

and exact CML estimates for � were obtained only for T = 1 up to T = 7. This

is in contrast to the results in column 5: if it is assumed that the item parameters

are known, it is no problem to calculate ML estimates for ability for any value

of T , whether this value actually appears in the data or not. In order to be able

to perform a proper comparison, the ML estimates have been rescaled to a mean

of 0 for the �rst 7 estimates. The di�erences between the Monte Carlo and the

exact CML estimates are small; they are reported in the column labelled 'di�1'.

The last column contains the di�erences between the ML and the exact CML

estimates. It would be tempting to compare di�1 with di�2. However, although
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Table 5.3: Ability estimates for the memory data.

T Nt MC Exact ML se di�1 di�2
1 1 -2.203 -2.187 -2.123 1.157 -.016 .064
2 9 -1.129 -1.133 -1.109 .896 .004 .024
3 9 -.399 -.406 -.412 .785 .007 -.006
4 9 .180 .175 .156 .728 .005 -.019
5 4 .696 .689 .664 .702 .007 -.025
6 2 1.184 1.179 1.155 .704 .005 -.024
7 1 1.670 1.683 1.672 .739 -.013 -.011
8 0 - - 2.276 .829 - -
9 0 - - 3.147 1.081 - -

T: total score; Nt: number of persons with total score T = t.

MC: Monte Carlo CML estimate; Exact: Exact CML estimate

ML and se: estimate and standard error obtained treating � as known.

di�1: MC - Exact; di�2: ML - Exact.

both the MLE and the CMLE are consistent estimators of �, there is no reason

why their small-sample estimates should be equal, or even similar; not even when

the MLE would be based on the true � instead of on �̂.

Table 5.4 contains the estimates for the two LSAT data sets. In both data sets

there were nearly 700 persons with a nonperfect total score. As there are 5

items, 4 di�erent nonperfect total scores could be obtained and hence 4 di�erent

estimates result. In order to give an impression of the di�erence in accuracy

resulting from di�erent Monte Carlo sample sizes, the estimates reported for the

LSAT6 data have been obtained with initial and �nal Monte Carlo sample sizes

of B = 50 and 200, respectively; and the estimates for the LSAT7 data have been

obtained with B = 500 and B = 2000. These latter estimates are more accurate,

di�1 being smaller for the LSAT7 than for the LSAT6 data, but for the LSAT6

data too, i.e. with B = 50=200, the di�erences occurred in the third decimal

place only.

It may be remarked here that one initial Monte Carlo cycle with B = 500 always

resulted in estimates very close to the �nal ones; with an initial Monte Carlo
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Table 5.4: Ability estimates for the LSAT data.

T Nt MC Exact ML se di�1 di�2
LSAT6 1 20 -1.721 -1.717 -1.602 1.181 -.004 .115

B=50/200 2 85 -.512 -.519 -.474 .990 .007 .045
3 237 .513 .516 .481 .987 -.003 -.035
4 357 1.719 1.720 1.600 1.177 -.001 -.120

LSAT7 1 40 -1.535 -1.539 -1.486 1.144 .004 .053
B=500/2000 2 114 -.463 -.463 -.443 .948 .000 .020

3 205 .453 .455 .436 .950 -.002 -.019
4 321 1.545 1.547 1.487 1.149 -.002 -.060

T: total score; Nt: number of persons with total score T = t.

MC: Monte Carlo CML estimate; Exact: Exact CML estimate

ML and se: estimate and standard error obtained treating � as known.

di�1: MC - Exact; di�2: ML - Exact.

sample size of B = 50 two initial cycles were always su�cient and often even only

one would have done the job.

The values of di�2 are larger here than in the previous table, which seems to

suggest that indeed the (�̂-based) MLE and the CMLE become closer with in-

creasing sample size, i.e. with increasing value of the number of items M. This

suggestion was con�rmed by some analyses on a simulated data set with N = 500

and M = 30, where the largest value of di�2, occurring at �̂ = 3:114, was equal

to �:035.

5.5.2 Comparison to algorithms for exact calculation

In this section the performance of the Monte Carlo method will be compared

to the algorithms for exact computation. The sum algorithm never caused any

problems. The extended algorithm, however, proved to be too inaccurate for

the present problem. To investigate the behavior of the extended algorithm,

it was used to calculate the gamma functions 
(1)s�1(�), for � being the vector of
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Gustafsson starting values for the LSAT6 data. As an example, 

(1)
410(�) was equal

to 3:774E + 325 when calculated with the extended algorithm, whereas with the

sum algorithm it was calculated as 5:699E+229. Furthermore, with the extended

algorithm there also come a point where 

(k)
s�1(�) would become negative; in the

above example the extended algorithm calculated 

(1)
411 as �3:160E+324, whereas

the sum algorithm calculated it as 3:930E + 229. Hence the extended algorithm

is not accurate enough for the conditional estimation of person parameters, and

the speed of the Monte Carlo algorithm will therefore be compared to the speed

of the sum algorithm only.

Using the sum algorithm, the CML estimation of the person parameters for the

LSAT6 data took 63 seconds; for the LSAT7 data this was accomplished in 53

seconds. The function maximization for the exact algorithms was carried out

with a quasi-Newton routine, using 9 and 8 iterations to converge respectively,

starting from the Gustafsson starting values. This means 9 or 8 evaluations

of the gamma functions were necessary, and hence each iteration took about 7

seconds. Considering the fact that there are 4 parameters per problem, it may

be recalled from section 5.1.2 that there are therefore 5 sets of gamma functions

to be evaluated. As 7=5 � 1:5, this nicely coincides with the earlier observation

that the calculation of one set of gamma functions would cost 1 or 2 seconds.

Recall that for the Monte Carlo CML estimation of the person parameters Monte

Carlo sample sizes of 50 and 200 appeared to be adequate. One cycle with

B = 200 took about 25 seconds. Most of this time (i.e. about 22 seconds) was

spent in generating the score patterns. The score pattern generation takes this

long time because each simulated vector is of length N, i.e. nearly 700; and

200 vectors have to be simulated for all observed values of S. The remaining

time was spent in the maximization of the loglikelihood function. The Monte

Carlo equations were maximized using the Fletcher-Reeves algorithm (Fletcher

and Reeves, 1964), in a a slightly modi�ed form proposed by Polak and Ribiere,

details of which can be found in Press et al. (1992). The results were slightly

more accurate with this routine than with the quasi-Newton one, but it needed

more function evaluations which made it less suitable for use with the exact

algorithms.
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The entire Monte Carlo estimation procedure using B = 50 and B = 200 took 26

to 33 seconds, depending on whether 1 or 2 preliminary cycles with B = 50 were

necessary. With initial and �nal Monte Carlo sample sizes of B = 200 and 800

the entire estimation procedure would take 122 seconds; with B = 500 and 2000

the time needed was 319 seconds.

5.6 Conclusion and Discussion

The Monte Carlo estimation method proposed by Geyer and Thompson (1992)

has been compared to two algorithms for exact calculation of the person param-

eter estimates in the conditional Rasch model. It was remarked in the introduc-

tion that for small numbers of parameters, say up to 60, the extended algorithm

formulated by Liou (1994) is at present the best choice. For large numbers of

parameters however, say 700, the Monte Carlo method is de�nitely superior to

the extended algorithm. The divisions and subtractions necessary in the latter

algorithm would cause the rounding errors to accumulate to such an extent that

some of the functions 
(k)s�1(�) would take on negative values. Which they should

not, being sums of products of exponentials.

As to the sum algorithm, the conclusion is less unambiguous. Summarizing the

results from section 5.5 it can be stated that if one wants to be absolutely sure

to have very accurate estimates, the Monte Carlo method is slower than exact

estimation. However, if one is willing to accept results such as the top part of

Table 5.4, where the di�erences occur in the third decimal place only, the Monte

Carlo method is faster than the sum algorithm. The gain in speed however is

not enormous and someone insisting on CML estimates may well be prepared to

wait the additional 30 seconds for exact values.

As to the Monte Carlo method itself, many topics could still be further investi-

gated. First, in estimating � the method is much slower than the sum algorithm;

in estimating � it seems to be of about the same speed. Therefore the method

appears to become more interesting with increasing number of parameters. On

127



the other hand, it seems that also an increasing precision is then required in the

starting values. Recall that for estimating � starting values � = 0 posed no

problem; whereas in estimating � these values were useless. So there might come

a point, i.e. a number of parameters, where the starting values would have to be

so accurate that they could serve as proper and acceptable estimates themselves.

Next, recall that the estimates presented in Tables 5.3 and 5.4 were for one Monte

Carlo run only. The estimation procedure could be reproduced a large number

of times in order to get some additional insight into the average and variance of

the Monte Carlo estimates.

Also note that, using Monte Carlo estimation methods, the covariance matrix of

the parameter estimates usually is not a by-product of the estimation procedure.

If it is needed, it will have to be obtained by means of another procedure. One

idea might be to approximate the Hessian by the same methods as the derivative

of the loglikelihood. However, this would increase the CPU time needed. Another

possibility could be to numerically di�erentiate the derivatives of the loglikelihood

(Meilijson, 1989).

The variance of the estimator cqs(�)(B) needs some more attention too. According

to Hastings (1970) this variance is equal to

�2

B

B�1X
j=�B+1

 
1 � j j j

B

!
�j

where �j is the autocorrelation for lag j. As pointed out before, the autocor-

relation cannot a priori be assumed to be zero. Two methods for investigating

this are, �rst, similar sequential plots for the estimated variance of cqs(�)(b) as the
ones for cqs(�)(b) itself. The second method would be to calculate the variance ofcqs(�)(B) for di�erent numbers of scans between two successive simulations; this

should obviously reduce the autocorrelation.

The conditions under which the estimators cqs(�) and bqt(�) perform well could

be examined more closely. Especially the in
uence of the distance from � to  

(see section 5.4.3), or from � to �, might be investigated further.

128



Next, the storage required for the Monte Carlo estimation procedure is consider-

able, especially if B = 2000 is needed. A tensor of approximately size M�M�B

has to be stored, in which B is the number of Monte Carlo samples, and M is

the number of items. Storage is necessary because the maximization of every ap-

proximate logL� needs several iterations, in each of which the Monte Carlo data

appear, together with di�erent values for the parameters (see equation 5.12).

The �nal remark concerns not the Monte Carlo approximation of the CMLE of

�, but this latter estimator itself. The small sample �-based MLE of � is known

to be biased outward (Lord, 1983; Warm, 1989), i.e. its expectation is smaller

than the true value for negative � and larger than the true value for positive �.

In Tables 5.3 and 5.4 however it appears that, for negative �, the exact CML

estimate is smaller than the �̂-based ML estimate, and for positive � it is larger.

Hence, it would be interesting to investigate (a) whether the �̂-based MLE has

bias comparable to the �-based MLE; and (b) whether the CMLE has larger small

sample bias than either the �-based or the �̂-based MLE.
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Epilogue

With the exception of Chapter 5, this thesis has dealt with models for polytomous

item responses. Chapter 5 was concerned with an estimation method for person

parameters in the Rasch model for binary items. In particular, the performance of

a Monte Carlo Markov chain method for CML estimation of � was investigated.

For large numbers of parameters the speed of this procedure appeared to be

comparable to the speed of exact calculation, and the estimates produced were

fairly accurate. The method therefore seems promising for situations in which

exact calculation of the estimates is impossible. An example that comes to mind

is CML estimation of the item parameters in models for continuous responses

(M�uller, 1987; Verhelst, 1995).

As regards polytomous items, in Chapter 1 the item information function for

trinary PCM items was investigated, that is, for PCM items with maximum

score M = 2. The condition for this function to be either bi- or unimodal was

established, and the location and value of the maxima were derived. The item

information function depends on the item parameters �; �1, and �2, and it is

unimodal if �(�2 � �1) � 4 ln 2. A practical conclusion in this chapter was that

in item banking, the construction of more items with M = 1 and M = 2 might

be preferable to the construction of less items with larger M.

In Chapter 2 the relation between polytomously scored item responses and Gutt-

man dependence was thoroughly investigated. One of the conclusions was that

a variable satisfying the GRM can never be distributed as the total score on a

set of independent binary 1-PL items. Consequently, it is also impossible for the

response curves of a GRM item to coincide with those of a PCM item satisfying
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Huynh's (1994) condition.

In Chapter 3 it was demonstrated that the GRM and the PCM are mathemat-

ically unsuited for use with sequential scoring. An interesting topic for further

research would now be the investigation of the applicability of the PCM, the GR-

M, and the SM, to parallel scoring. Since it has been shown that, of the PCM,

the GRM, and the SM, only the GRM is suitable for graded scoring (Jansen and

Roskam, 1986), and that only the SM is suitable for sequential scoring (Chap-

ter 3), it would be interesting to �nd out whether perhaps only the PCM would

be useful for parallel scoring. Although it was demonstrated in Chapter 2 that

the GRM cannot model parallel processes in which 1-PL curves are assumed for

the binary subtasks, still there is the possibility that these models can describe

parallel processes with other ICCs. It remains to be shown that the GRM and

the SM are unsuited for parallel processes, for any functional form of the ICCs.

Chapter 4, �nally, investigated the possibility of distinguishing between responses

generated under the PCM, the GRM, and the SM. It appeared that these models

could be well distinguished, both in a forced-choice experiment and in a decision

procedure.

Throughout this dissertation, the importance of the scoring rule has been stressed

on several occasions. This topic will now be pursued in some more detail. First,

a distinction is made between rating scales and educational tests. Many item

response models require as input numbers of at least an ordinal nature. With

rating scales, the responses themselves are of an ordinal nature. With education-

al test items however the response in general does not consist of a number. Here

the response can be, for example, a short essay, or a mathematical derivation, or

an enumeration of certain facts, or a written answer to a question. The process

of transforming these responses into numbers is known as scoring. Three di�er-

ent types of scoring were distinguished: graded scoring, sequential scoring and

parallel scoring. It was argued in Chapter 3 that the very same response on the

very same test item may be scored in several ways, resulting in possibly di�erent

scores. An example was given of an item that could be subjected both to par-

allel and to sequential scoring; another example is an essay question, which can
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be subjected either to graded scoring (one overall judgement given by an expert

in the �eld), or to parallel scoring (one credit given for each feature in a list of

features which the essay does exhibit).

Because of this ambiguity in the relation between response and item score, mod-

eling item responses is in fact a two-stage process. First the response has to be

scored. Then the score has to be modeled. Ideally, the scoring rule will follow the

solution strategy, and the model will follow the scoring rule. If the scoring rule

is modi�ed, the model has to change as well. This connection between scoring

rule and model has also been noted by Samejima (1997), who o�ers a detailed

example of the possible steps that can be taken in producing a mathematical

proof for a2 = b2 + c2 � 2ab cosA. But, as she remarks, ".. any grading system

is arbitrary. If our experimental setting is improved and allows observation of

the examinee's performance in more �nely graded steps, then mi will be larger".

The symbol mi denotes the maximum score. When the same response is graded

in two di�erent ways, one of these resulting in, say, a dichotomous score and the

other in a polytomous score, two di�erent models will be needed to describe these

scores. Hence this is another example of the relation between scoring rule and

model.

If one of the three above-mentioned scoring rules is applied, and if one has to

choose between the PCM, the GRM, and the SM, this task seems to be an easy

one. Indeed, the logistic GRM is eminently suited for graded scoring, and the

logistic SM for sequential scoring. With these models applied to these scoring

rules, the interpretation of the parameters is straightforward. The PCM, however,

needs some further consideration.

The PCM allows �k to be larger that �k+1, but no satisfactory substantive in-

terpretation has been found for this phenomenon. Furthermore, the PCM is

unsuited for sequential scoring, as was demonstrated in Chapter 3; and it is also

unsuited for graded scoring, including rating scales (Jansen and Roskam, 1986).

This holds for the rating scale version of the PCM as well. But with the PCM as a

model for parallel scoring, the interpretation of the parameters remains problem-

atic. First, it is once more repeated that the score on a PCM item is distributed
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as the total score on a set of independent binary 1-PL items only under a condi-

tion on the item parameters. This condition takes the form of a critical distance

that has to be exceeded. This condition was also derived by Andrich (1985), who

presented a table of lower bounds for � (the half-distance between consecutive pa-

rameters), being half the size of Huynh's critical distances. The condition entails

a constraint on the PCM family: many of its members do not satisfy it. Those

members of the PCM that do not satisfy the condition, are unsuited for parallel

scoring. But, second, even for those members that do satisfy the condition, the

parameters have no obvious relation to the process that is being modeled: the �'s

in Equation 1.1 in Chapter 1 do not re
ect the di�culties of independent binary

subtasks.

In order for the PCM parameters to re
ect the di�culty of the independent

subtasks, a reparameterization must be carried out. This reparameterization

has been proposed by Verhelst and Verstralen (1991), and is only de�ned for

those members of the PCM that satisfy the above-mentioned condition. Let

� = (�1 : : : �M) represent the usual parameterization, and let � = (�1 : : : �M )

be the parameters in the reparameterized model. Only one item is considered,

so there is no need for an item subscript j. The score probabilities in the re-

parameterized model are given by Pr(X = k; �;�) / exp(k�)
k(�), where 
k(�)

are the elementary symmetric functions of the vector �, which were de�ned in

Equation 5.5. The subset of the family of PCM models for which the reparame-

terization is de�ned, could be called a constrained partial credit model (CPCM).

The parameters � in the CPCM are the di�culty parameters of a set of indepen-

dent binary 1-PL subtasks.

The reparameterized CPCM is completely symmetric in its parameters. As an

example, for a polytomous item with M = 2, the parameter vector � = (:5; :8)

will yield exactly the same response curves as the parameter vector (:8; :5). Using

this model, it is therefore impossible to decide which parameter value corresponds

to which subtask. However, if a parallel scoring rule is used, the subtask scores

must be known. And if the subtask scores are known, application of the binary

Rasch model to the subtask scores would do exactly the same job as the CPCM.

In fact, it would even do the job better, because with the RM it is possible to
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connect (estimated) parameter values back to subtasks.

The above is not meant to completely discourage the use of the PCM. The PCM

can, for example, be pro�tably applied in the detection of violations of the local

independence assumption in a set of binary items. The critical distance has be be

satis�ed if this model is to describe the total score on a set of independent binary

1-PL items. Andrich (1985) argues that, if the PCM is applied to a set of binary

items, smaller estimated values of �2� �1 may be indicative of local dependence.

Wilson (1988) used this idea to investigate whether the assumption of local in-

dependence was tenable within several substantively related subtests of a larger

test. Furthermore, the PCM has several very desirable properties. It can be

derived from fundamental measurement theoretic requirements (Fischer, 1995).

And, being an exponential family model, it is mathematically tractable. How-

ever, the fact remains that there is no guarantee that exponential family models

actually describe an empirical process and have interpretable parameters. On the

other hand, models that may be more realistic can perhaps not be adequately

estimated, as is exempli�ed by the discussion concerning the estimation of the

parameters in the 3-PL model (Thissen and Wainer, 1982). The problems with

the PCM therefore are a striking illustration of the dilemma between requiring a

model to be mathematically tractable, and at the same time realistic.
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Samenvatting (Summary in Dutch)

In dit proefschrift wordt ingegaan op enkele modellen uit de item respons theo-

rie. Item respons modellen worden gebruikt om het verband te beschrijven tussen

enerzijds iemands vaardigheid op een bepaald terrein, en anderzijds de respon-

sen van deze persoon op een aantal items die op dat terrein betrekking hebben.

De term vaardigheid kan zeer breed worden opgevat: bij vaardigheid kan wor-

den gedacht aan een intellectuele of cognitieve vaardigheid zoals algemene ont-

wikkeling, topogra�sche kennis of luistervaardigheid in een vreemde taal, maar

ook aan psychologische constructen als bijvoorbeeld dominantie, depressiviteit of

zelfvertrouwen. Items zijn dan examenopgaven of de vragen in een psychologische

test. Responsen zijn de antwoorden op de items.

Al de bovengenoemde 'vaardigheden' hebben gemeen dat zij latent zijn, dat wil

zeggen zij zijn niet direct observeerbaar. Een kenmerk als lengte is niet latent

want van twee personen is direct duidelijk wie langer is. Wie daarentegen beter is

in hoofdrekenen, is niet direct duidelijk. Om verschillen tussen personen op het

latente kenmerk 'vaardigheid in hoofdrekenen' zichtbaar te maken, is het eerst no-

dig deze personen een aantal hoofdrekensommen te laten maken. Om verschillen

in dominantie zichtbaar te maken is het nodig om ofwel deze personen enige

tijd te observeren in hun contacten met anderen (de responsen zijn dan scores

in observatiecategorie�en), ofwel hen een psychologische test over dominantie te

laten invullen (en dan te hopen dat de antwoorden waarheidsgetrouw zijn).

Omdat de beschouwde vaardigheden latent zijn, wordt item respons theorie ook

wel latente trek theorie genoemd (in het Engels: latent trait theory). De latente

vaardigheid wordt vaak aangeduid met het symbool �. De antwoorden (respon-
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sen) op testvragen (items) zijn wel observeerbaar. In een item respons model

worden de geobserveerde responsen in verband gebracht met de ongeobserveerde

latente trek. De moeilijkheid van de items dient ook in het model verdiscon-

teerd te worden. Over het verband tussen itemmoeilijkheid, vaardigheid en geob-

serveerde responsen kunnen verschillende aannames gemaakt worden. Wanneer

een gegeven antwoord slechts goed of fout kan zijn, zal men bijvoorbeeld aan-

nemen dat personen met een heel lage vaardigheid maar een kleine kans hebben

om de vraag goed te beantwoorden, en personen met een hoge vaardigheid een

grote kans. Daar tussenin, neemt men aan, zal de kans op een goed antwoord

geleidelijk toenemen met de vaardigheid. Het verband tussen vaardigheid en de

kans op het geven van het goede antwoord beschrijft men dan met behulp van

een wiskundige formule.

Behalve modellen voor goed/fout responsen (dit worden ook wel dichotome res-

ponsen genoemd) zijn er ook modellen voor polytoom gescoorde responsen. Een

polytoom gescoorde respons neemt een van de waarden 0; 1; : : : ;M aan. Als M

bijvoorbeeld gelijk is aan 3, dan betekent een score 0 dat het gegeven antwoord

helemaal fout was, een score 3 dat het antwoord helemaal goed was, en de scores

1 en 2 duiden erop dat het antwoord gedeeltelijk juist was. Een ander onderscheid

tussen modellen is of zij rekening houden met de mogelijkheid van gokken, zoals

bij multiple choice opgaven.

Als het model geformuleerd is, dan dienen de onbekende grootheden in het model

te worden geschat. Deze onbekende grootheden worden parameters genoemd. In

item respons modellen zijn er in het algemeen twee soorten parameters: item-

parameters (bijvoorbeeld de moeilijkheid van de vragen) en persoonsparameters

(de vaardigheid op �e�en of meerdere dimensies). Deze parameters zijn onbekend

en zij dienen uit de geobserveerde responsen te worden geschat. Voor dit pro-

bleem zijn verschillende oplossingen bedacht. De meeste oplossingen komen erop

neer dat men probeert eerst de itemparameters te schatten, en daarna, in een

tweede stap, de persoonsparameters. Bij het schatten van de persoonsparameters

beschouwt men dan de geschatte itemparameters als bekend. Deze tweetrapspro-

cedure introduceert echter extra onnauwkeurigheid in de vaardigheidsschattingen.

In sommige gevallen is directe schatting van de vaardigheid � mogelijk met be-
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hulp van zogenaamde conditionele maximum likelihood (CML) schatters. Voor

grote aantallen personen is CML schatting van � echter nogal tijdrovend. In

hoofdstuk 5 van het proefschrift wordt daarom een methode onderzocht om de

exacte CML schatters voor � te vervangen door een benadering. De onderzochte

werkwijze is voorgesteld door Geyer and Thompson (1992); het is een Markov

chain Monte Carlo methode. Deze methode wordt in dit proefschrift toegepast

op het conditionele Raschmodel voor dichotome data (Rasch, 1960). Het blijkt

dat de methode redelijk nauwkeurig is, maar evenals de exacte berekeningswijze

veel rekentijd kost.

De hoofdstukken 1 tot en met 4 van het proefschrift gaan niet over het schatten

van � maar over de vraag welk model en welke items in een bepaalde situatie het

beste kunnen worden gebruikt. In hoofdstuk 1 wordt de iteminformatiefunctie,

I(�), onderzocht voor trinaire items in het partial credit model (Masters, 1982).

Het partial credit model (PCM) is een model voor polytoom gescoorde items;

trinaire items hebben als mogelijke score 0; 1 of 2. Voor elk afzonderlijk item in

een toets kan uit het aangenomen model een informatiefunctie worden afgeleid.

Deze functie geeft, voor elke waarde van �, de hoeveelheid 'informatie' die een

antwoord op dit item levert over de waarde van �. Als iemand drie items krijgt

voorgelegd die alle drie veel te moeilijk zijn, dan zijn hoogstwaarschijnlijk alle

drie de gegeven antwoorden fout en weet de onderzoeker nog steeds niet of de

onderzochte persoon net onder het niveau van de items zit, of ver daaronder. Het

is beter om items aan te bieden die enerzijds niet al te moeilijk en anderzijds

ook weer niet veel te makkelijk zijn. Dan is er een gerede kans dat sommige

items goed zullen worden beantwoord en andere fout, zodat de foutenmarge bij

het schatten van � binnen de perken blijft. De eigenschappen van de itemin-

formatiefunctie voor dichotome items, dat wil zeggen voor items met mogelijke

scores 0 en 1, zijn goed bekend: het is eenvoudig af te leiden waar het maxi-

mum van deze functie ligt en voor welk vaardigheidsniveau het item derhalve

geschikt is. De eigenschappen van informatiefuncties voor polytoom gescoorde

items zijn minder goed bekend. In hoofdstuk 1 wordt aangetoond dat de item-

informatiefunctie voor trinaire items onder het PCM �e�en- of tweetoppig is. De

voorwaarde waaronder de functie eentoppig is wordt afgeleid. Bovendien wordt

de locatie en waarde van het maximum bepaald. Het maximum voor eentop-
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pige functies blijkt hoger dan dat voor tweetoppige functies. Dit resultaat kan

worden gebruikt bij zogenaamde computergestuurde adaptieve testafname: hier

wordt de test per computer afgenomen, na elk antwoord wordt een voorlopige

vaardigheidsschatting gemaakt, en het volgende item dat (door de computer)

wordt aangeboden is het item met de hoogste informatiewaarde in het gebied

van de voorlopige schatting voor �. Kennis van de waarde en locatie van dat

maximum kan de keuze van een geschikt item vergemakkelijken.

De hoofdstukken 2 tot en met 4 gaan over relaties tussen drie families van item

respons modellen voor polytome responsen. De beschouwde modellen zijn steeds

het PCM, het graded respons model (GRM; Samejima, 1969) en het sequenti�ele

model (SM; Tutz, 1990). Deze modellen worden wiskundig gede�nieerd in de

betre�ende hoofdstukken. Zij verschillen in de wiskundige functie die ze aan-

nemen voor de kans op een itemscore. De verschillen tussen de drie modellen zijn

echter vaak klein, dat wil zeggen, het is vaak zo dat, gegeven de vaardigheid �, de

kansverdelingen voor de score op een item elkaar niet zo veel ontlopen. Dan dient

zich de vraag aan of de drie modellen niet inwisselbaar zijn, of dat misschien met

�e�en model kan worden volstaan. Op deze vraag hebben de hoofdstukken 2 tot en

met 4 betrekking.

In de hoofdstukken 2 en 3 staat het begrip Guttmanschaal centraal. Een Guttman-

schaal is een verzameling dichotome items met de volgende eigenschap: als de

items zijn gesorteerd op volgorde van opklimmende moeilijkheid, dan heeft ie-

mand die item k goed beantwoordt, ook alle voorgaande items goed. De antwoor-

den op de items in een Guttmanschaal zijn dus afhankelijk: als iemand 4 items

uit een Guttmanschaal goed heeft beantwoord, dan zijn dat de 4 gemakkelijkste

items. Het is duidelijk dat een Guttmanschaal in veel gevallen geen realistisch

beeld van de werkelijkheid geeft. Niettemin kan worden aangetoond (zie hoofd-

stuk 2) dat elk item respons model voor een polytoom gescoord item kan worden

geschreven in de wiskundige vorm van de somscore op een Guttmanschaal. Dit

resultaat wordt vervolgens gebruikt om aan te tonen dat de score op een 'graded

respons item' nooit kan worden geschreven als de somscore op een verzameling

onafhankelijke dichotome Rasch items (Rasch, 1960).
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Het eerste van de twee bovengenoemde resultaten betekent niet dat alle item res-

pons modellen nu zonder meer geschikt zijn om Guttman schalen te beschrijven.

Dit wordt duidelijk in hoofdstuk 3, waarin onderzocht wordt of het PCM, GRM en

SM geschikt zijn voor gebruik bij sequentieel gescoorde responsen. Bij sequentieel

scoren wordt steeds �e�en onderdeel van het gegeven antwoord bekeken. Is dit

onderdeel van het antwoord onjuist dan wordt er geen punt voor toegekend, en

bovendien stopt dan ook het scoringsproces. Is het onderdeel juist beantwoord,

dan wordt een punt toegekend en wordt het volgende onderdeel bekeken. Een

voorbeeld: om de vraag [(7�8)�4]�3 goed te beantwoorden moet eerst 7�8 = 56

worden berekend, daarna 56 � 4 = 52, en tenslotte 52 � 3 = 156. Stel nu dat

iemand opschrijft 7 � 8 = 72, en vervolgens 72 � 4 = 68, en 68 � 3 = 204. Bij

sequentieel scoren worden dan 0 punten toegekend. Het zou ook mogelijk zijn

om 2 punten toe te kennen voor de antwoorden die goed zijn, gegeven de eerste

fout, maar dat is geen sequentieel scoren. In dat geval spreekt men van parallel

scoren.

Aangezien bij sequentieel scoren het scoringsproces wordt be�eindigd na de eerste

fout, is er een grote overeenkomst tussen een sequentieel gescoord polytoom item

en de scores op een Guttmanschaal: in beide gevallen zijn bij een score k de eerste

k items of onderdelen juist beantwoord. Het SM is speciaal geconstrueerd voor

sequentieel scoren. In hoofdstuk 3 wordt aangetoond dat men bij het toepassen

van het PCM of het GRM op sequentieel gescoorde responsen een speci�catiefout

maakt, d.w.z. deze modellen bezitten niet alle eigenschappen die nodig zijn om

sequentieel gescoorde responsen adequaat te beschrijven. Het praktische belang

hiervan is dat nu bekend is dat voor sequenti�ele responsen, van deze drie model-

len alleen het SM geschikt is. Jansen and Roskam (1986) hebben reeds aange-

toond dat voor ratingschalen van deze drie modellen alleen het GRM geschikt is.

Wanneer nu nog wordt aangetoond dat voor, bijvoorbeeld, parallel gescoorde res-

ponsen alleen het PCM geschikt is, dan hebben alle drie de modellen theoretisch

bestaansrecht.

In hoofdstuk 4 wordt voor responsen die met behulp van een computer kunstmatig

zijn gegenereerd onder een van de drie bovengenoemde families van modellen

(PCM, GRM en SM), onderzocht of het mogelijk is het model te herkennen
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volgens welk zij zijn gegenereerd. Voor dit onderzoek wordt een methode uit de

signaaldetectietheorie gebruikt. Bij deze methode worden steeds twee 'signalen'

(responsen) gegenereerd die afkomstig zijn uit verschillende modellen. In de helft

van de gevallen behoren de twee modellen in de simulatiestudie tot dezelfde fami-

lie, in de andere gevallen niet. Voor de manier waarop de onderzochte modellen

zijn geselecteerd wordt verwezen naar hoofdstuk 4. Bij eerdere toepassingen van

deze methode (Maydeu-Olivares et al., 1994; Van Engelenburg, 1997) bleek het

moeilijk de twee gegenereerde responspatronen correct te classi�ceren. In deze

eerdere onderzoeken werd steeds geprobeerd �e�en responsvector te classi�ceren,

dat wil zeggen de gesimuleerde responsen van �e�en persoon op een hele test. In

het huidige onderzoek worden niet de responsen van �e�en persoon maar de ge-

simuleerde responsen van n personen geclassi�ceerd. Het blijkt dan dat twee

modellen afkomstig uit eenzelfde familie moeilijker van elkaar te onderscheiden

zijn dan twee modellen afkomstig uit verschillende families. Dit leidt tot de

conclusie dat de drie onderzochte families van modellen behalve theoretisch, ook

praktisch gezien bestaansrecht hebben.

In de epiloog tenslotte wordt het belang van de scoringsregel voor de modelkeuze

aangestipt. Voorts wordt daar geconstateerd dat er voorlopig een spanning blijft

bestaan tussen het verlangen naar een model dat enerzijds de werkelijkheid goed

beschrijft, en anderzijds wiskundig eenvoudig te hanteren is.
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