
T
O

M
 B

R
O

E
N

S
D

Y
N

A
M

IC
 C

O
N

T
E

X
T

 B
IN

D
IN

G
S

Telematica Instituut
On top of technology.

This publication is a collaborative
result of CTIT (Centre for Telematics
and Information Technology) and the
Telematica Instituut. It is published as
part of the CTIT Ph.D.-Thesis Series and
the Telematica Instituut Fundamental
Research Series.

Part of the research presented in this
thesis was done in the context of the
AWARENESS (Context AWARE mobile
NEtwork and ServiceS) project, a BSIK
Freeband project, sponsored by the Dutch
government. AWARENESS focuses on an
infrastructure that enables rapid and easy

development of context-aware and
pro-active applications in a secure and
privacy-conscious manner.

CTIT (www.ctit.utwente.nl) of the
University of Twente is one of the
largest academic ICT research institutes
in Europe. It conducts research on the
design of complex ICT systems and their
application in a variety of domains. CTIT’s
unique multi-disciplinary approach makes
it an attractive partner. The institute
maintains an extensive international
network of contacts and working
relations with academia and industry. This
network includes ICT and manufacturing
companies, universities and research
institutes, health care organisations,
financial institutes, governmental
organisations, and logistics service
providers.

‘Telematica Instituut’ (www.telin.nl)
is a unique partnership between the
business community, research centres
and government to perform telematics
research for the public and private
sectors.

The emphas is i s on rap id ly
translating fundamental knowledge
into marked-oriented applications. The
institute’s objective is to strengthen
the competitiveness and innovative
strength of Dutch business, as well as
improving the quality of our society
through the proper application of
telematics. To achieve this, the institute
brings together leading researchers from
various institutions and disciplines. The
Dutch government supports ‘Telematica
Instituut’ under its ‘leading technological
institutes’ scheme.

www.telin.nl

U

IT
N

O
D

IG
IN

G

Hi
er

bi
j n

od
ig

 ik
 u

 u
it

vo
or

 h
et

 b
ijw

on
en

 v
an

de
 o

pe
nb

ar
e

ve
rd

ed
ig

in
g

va
n

m
ijn

 p
ro

ef
sc

hr
ift

D
Y

N
A

M
IC

 C
O

N
T

E
X

T
 B

IN
D

IN
G

S
:

IN
F
R

A
S
T

R
U

C
T

U
R

A
L
 S

U
P

P
O

R
T

 F
O

R

C
O

N
T

E
X

T
-A

W
A

R
E
 A

P
P

L
IC

A
T

IO
N

S

op
 v

rij
da

g
21

 n
ov

em
be

r 2
00

8
om

 1
5:

00
 u

ur

in
 za

al
 2

 v
an

 h
et

 g
eb

ou
w

Sp
ie

ge
l v

an
 d

e
Un

ive
rs

ite
it

Tw
en

te
.

Vo
or

af
ga

an
d

aa
n

de
 v

er
de

di
gi

ng
 za

l i
k

om
 1

4:
45

 u
ur

ee
n

to
el

ich
tin

g
ge

ve
n

op
 d

e
in

ho
ud

 v
an

 m
ijn

 p
ro

ef
sc

hr
ift

.

Na
 a

flo
op

 b
en

t u
 v

an
 h

ar
te

 w
el

ko
m

 o
p

de
 re

ce
pt

ie.

TO
M

 B
RO

EN
S

2e
 E

m
m

as
tra

at
 8

1

75
45

 M
P

En
sc

he
de

E-
m

ai
l: T

om
.B

ro
en

s@
te

lin
.n

l

Te
l.

05

3
78

91
60

8
(th

ui
s)

05

3
48

50
49

2
(w

er
k)

DYNAMIC CONTEXT BINDINGS
INFRASTRUCTURAL SUPPORT

FOR CONTEXT-AWARE APPLICATIONS

Tom Broens

Context-aware applications use context
information, offered by context sources, to
adapt to the situation at hand. The exchange
of context information requires an association
between the context consuming context-aware
applications and suitable context producing
context sources. We call these associations
‘context bindings’.

This thesis provides insights in the generic
characteristics of context-aware applications
and their development process. We propose
an abstraction, called the Context Binding
Transparency, to mask the complexities of
creating and maintaining context bindings for
the application developer.

In this way, we facilitate the development
process of context-aware applications. The
responsibility for creating and maintaining
context bindings is shifted from the application
developer to a context binding infrastructure.
This enables application developers to focus
on the development of the primary application
logic rather than the logic to create and maintain
context bindings.

We propose a realization of a context
binding infrastructure called the Context-
Aware Component Infrastructure (CACI).
This infrastructure realizes a context binding
transparency and is composed of a context
binding mechanism and a context discovery
interoperability mechanism. CACI is prototyped
using component middleware technology.

The feasibility and usefulness of the context
binding infrastructure is evaluated using a case
from the telemedicine domain.

About the author

Tom Broens has a master’s degree
in Telematics from the University of
Twente, the Netherlands.

In 2004, Tom was awarded the
KIVI/UT 2004 internship price for his
internship at Twente Medical Systems
International. Soon after that, he
joined the University of Twente as a
full-time researcher. From 2004 to
2008, he developed his Ph.D. work and
participated in the European Amigo
project and the Dutch AWARENESS
project.

He has authored several
international publications including
journal, conference and workshop
contributions.

Further, he has served as reviewer
for international conferences and
workshops. Since 2008, he works as
scientific researcher at the Telematica
Instituut, the Netherlands.

IS
B

N
 9

78
-9

0-
75

17
6-

47
-6

INFRASTRUCTURAL SUPPORT
FOR CONTEXT-AWARE
APPLICATIONS

DYNAMIC CONTEXT
BINDINGS

TOM BROENS

DYNAMIC CONTEXT BINDINGS:
INFRASTRUCTURAL SUPPORT FOR CONTEXT-AWARE APPLICATIONS

Telematica Instituut Fundamental Research Series

 001 G. Henri ter Hofte, Working Apart Together: Foundations for Component Groupware
 002 P. J.H. Hinssen, What Difference Does It Make? The Use of Groupware in Small Groups
 003 D.D. Velthausz, Cost Effective Network Based Multimedia Information Retrievel
 004 L. van de Wijngaert, Matching Media: Information Need and New Media Choice
 005 R.H.J. Demkes, COMET: A Comprehensive Methodology for Supporting Telematics Investment

Decisions
 006 O. Tettero, Intrinsic Information Security: Embedding Information Security in the Design Process

of Telematics Systems
 007 M. Hettinga, Understanding Evolutionary Use of Groupware
 008 A. van Halteren, Towards an Adaptable QoS Aware Middleware for Distributed Objects
 009 M. Wegdam, Dynamic Reconfiguration and Load Distribution in Component Middleware
 010 I. Mulder, Understanding Designers, Designing for Understanding
 011 R. Slagter, Dynamic Groupware Services – Modular Design of Tailorable Groupware
 012 N.K. Diakov, Monitoring Distributed Object and Component Communication
 013 C.N. Chong, Experiments in Rights Control: Expression and Enforcment
 014 C. Hesselman, Distribution of Multimedia Streams to Mobile Internet Users
 015 G. Guizzardi, Ontological Foundations for Structural Conceptual Models
 016 M. van Setten, Supporting People in Finding Information: Hybrid Recommender Systems and

Goal-Based Structuring
 017 R. Dijkman, Consistency in Multi-viewpoint Architectural Design
 018 J.P.A. Almeida, Model-Driven Design of Distributed Applications
 019 M.C.M. Biemans, Cognition in Context: The effect of information and communication support on

task performance of distributed professionals
 020 E.Fielt, Designing for Acceptance: Exchange Design for Electronic Intermediaries
 021 P.Dockhorn Costa, Architectural Support for Context-Aware Applciations: From Context Models

to Services Platforms

DYNAMIC CONTEXT
BINDINGS:
INFRASTRUCTURAL
SUPPORT FOR CONTEXT-
AWARE APPLICATIONS

Tom H.F. Broens

Enschede, The Netherlands, 2008

CTIT Ph.D.-Thesis Series, No. 08-125
Telematica Instituut Fundamental Research Series, No. 022 (TI/FRS/022)

joyce.egberink
CTIT

Cover Design: Studio Oude Vrielink, Losser and Jos Hendrix, Groningen
Cover Illustration: “Guide-dog metaphor” by Adrie Broens
Cover Effects: Gerhard de Groot
Book Design: Lidwien van de Wijngaert and Henri ter Hofte
Printing: Universal Press, Veenendaal, the Netherlands

Graduation commitee:
Chairman, secretary: prof.dr. P. J. J. M. van Loon (University of Twente)
Promotor: prof.dr.ir. L. J. M. Nieuwenhuis (University of Twente)
Assistant Promotor: dr.ir. M. J. van Sinderen (University of Twente)
Members: prof.dr. G. S. Blair (University of Lancaster)

prof.dr. V. H. Goebel (University of Oslo)
prof.dr. D. Konstantas (University of Geneva)

 prof.dr.ir. H. J. Hermens (University of Twente)
 prof.dr. J. van Hillegersberg (University of Twente)

dr.ir. D. A. C. Quartel (Telematica Instituut)

CTIT Ph.D.-Thesis Series, No. 08-125
ISSN 1381-3617; No. 08-125
Centre for Telematics and Information Technology, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

Telematica Instituut Fundamental Research Series, No. 022
ISSN 1388-1795; No. 022
ISBN 978-90-75176-47-6
Telematica Instituut, P.O. Box 589, 7500AN Enschede, The Netherlands

Copyright © 2008, Tom Broens, The Netherlands

All rights reserved. Subject to exceptions provided for by law, no part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior written permission of the copyright owner. No part of this publication
may be adapted in whole or in part without the prior written permission of the author.

DYNAMIC CONTEXT BINDINGS:
INFRASTRUCTURAL SUPPORT

FOR CONTEXT-AWARE
APPLICATIONS

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof.dr. W.H.M. Zijm,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op vrijdag 21 november 2008 om 15.00 uur

door
Tom Henri Ferdinand Broens

geboren op 29 juli 1981
te Enschede

Dit proefschrift is goedgekeurd door:
prof.dr.ir. L.J.M. Nieuwenhuis (promotor) en dr.ir. M.J. van Sinderen (assistent-promotor).

Abstract

The world is increasingly equipped with high-capacity, interconnected,
mobile and embedded computing devices. Context-awareness provides an
attractive approach to personalize applications such that they better suit the
user’s needs in this rich computing environment.

Context-aware applications use context information, offered by context
sources, to adapt their behavior to the situation at hand. The exchange of
context information requires an association between a context consuming
context-aware application and suitable context producing context sources.
We call these associations ‘context bindings’.

Developing context-aware applications is complex due to some intrinsic
characteristics of context sources. Firstly, context sources are distributed.
Consequently, creating a context binding requires some form of discovery
and selection of context sources. Secondly, context sources are arbitrary
available during the life-span of the application. This makes a binding hard
to maintain. Finally, context sources offer context information with a
fluctuating quality. This makes a binding possibly unsuitable for the
application. Currently, developers need to spend considerable effort to
develop application code to create and maintain required context bindings,
which can deal with these complexities.

This thesis provides insights in the generic characteristics of context-
aware applications and their development process. We propose an
abstraction, called the Context Binding Transparency. This transparency has
as goal to mask the complexities of creating and maintaining context
bindings for the application developer. In this way, we facilitate the
development process of context-aware applications. The responsibility for
creating and maintaining context bindings is relieved from the application
developer and is shifted to a context binding infrastructure. This enables
application developers to focus on the development of primary application
logic rather than the logic needed to create and maintain context bindings.

VIII ABSTRACT

The application developer interacts with the context binding
infrastructure using context retrieval and publishing services, and a context
requirement specification language. This language enables application
developers to specify their requirement at a high level of abstraction rather
than in programming code. In this thesis, we propose a realization of such a
context requirement specification language, coined the Context Binding
Description Language (CBDL). This language is developed to be generic for
a broad range of context-aware applications.

Additionally, we propose a realization of a context binding infrastructure
called the Context-Aware Component Infrastructure (CACI). This
infrastructure realizes a context binding transparency and is composed of a
context binding mechanism and a context discovery interoperability
mechanism.

The context binding mechanism uses CBDL documents, specified by
the application developers, to create and maintain context bindings on
behalf of the application. The process of creating a binding consists of
discovery of context sources at available context discovery mechanisms,
selection of suitable context sources, establishment of a binding of the
application to these context sources, and maintenance of this binding.
Maintenance of a context binding includes re-binding to other suitable
context sources in case of lost or (re-)appearing context sources and
fluctuating quality of context. This thesis gives an example of a possible re-
binding algorithm.

The context discovery interoperability mechanism enables context-
aware applications to interoperate transparently with different context
discovery mechanisms available in the application environment. The goal of
the interoperability mechanism is to hide the heterogeneity and fluctuating
availability of context discovery mechanisms for context-aware applications.
The context discovery interoperability mechanism is a supporting
mechanism for the context binding mechanism. It can also be used
independently by context-aware applications that do not leverage from the
context binding mechanism.

We have created a proof-of-concept prototype of CACI, using the OSGi
component framework. The prototype includes implementations of the
context binding mechanism and the context discovery interoperability
mechanism.

Evaluation of the proposed context binding transparency and
infrastructure consists of a user survey and a comparison on the
development effort and software quality of a Telemedicine case
implementation with and without CACI. The survey indicated a general
interest of possible users in the features of the context binding
transparency. The case implementations indicated a possible improvement

 ABSTRACT IX

in the development process of higher quality context-aware applications
when using a context binding infrastructure.

This research stresses that the availability of context information and the
quality of this information highly influences the development of context-
aware applications. By using a middleware infrastructure to support the
creation and maintenance of context bindings, the development of higher
quality context-aware applications can be simplified.

Acknowledgements

‘Makkelijk maakt lui’

Things and people are only meaningful in their context. For example, this
thesis consists of around 524.000 characters. These characters are
meaningless to a reader without their context. The reader should know the
notion of a ‘word’ as being a sequence of characters divided by spaces to
grasp its meaning. But often this is not enough; the meaning of a word
becomes clear(er) when considering its surrounding sentences, paragraphs
or maybe even chapters. This thesis consists of approximately 74.500
words. From the words in this thesis, ‘context’ is the most significantly
occurring one (3699x). The occurrence of the word ‘context’ is in the
majority of the cases in combination with other words like ‘information’,
‘binding’, ‘-aware application’, ‘source’, ‘discovery’, ‘-awareness’, etc.
Hence, the context of the word ‘context’ is very important to understand
this thesis.

Like the fact that words in a thesis only become meaningful in their
context, the author’s context is very important for the completion of a
thesis. In my view, the quality level of this thesis is highly influenced by the
people in my context. In the four years I spend at the University of Twente
in the ASNA and IS group, I had a lot of good times, some bad times and I
met a lot of nice and inspiring people. Without these people I could not
have completed this thesis. I am very grateful that they occupy my context.

Let me start by thanking my promoter Bart Nieuwenhuis and
supervisors Marten van Sinderen and Dick Quartel. After the ASNA
reorganisation, there was a probability of me falling in a supervision void.
However, they stood by my side and kept supporting me all the way. I am
very grateful for this. Furthermore, their inspiring thoughts and quality
remarks made the thesis as it is today. Thank you!

I want to thank the members of my promotion committee: professor
Blair, professor Goebel, professor Konstantas, professor Hermens,

XII ACKNOWLEDGEMENTS

professor van Hillegersberg and the people mentioned above, for their
input to this thesis.

Parts of this work are done in close collaboration with bachelor and
master students that I supervised. I want to thank Jasper Aarts, Jesper
Jeeninga, Martijn Eenennaam, Peter Hoekerd and Tania Tariq for their
contribution to this thesis. Additionally, I want to thank some people that
helped to complete particular parts of the thesis: Aart van Halteren for his
supervision in the beginning of my PhD, Klaas van den Berg for his help on
software evaluations, Toni Piirainen for the integration of SimuContext
with Vantagepoint, Ander de Keijzer for introducing me to Survay, and
Rianne Huis in’t Veld for helping me to get knowledgeable in the
Telemedicine domain.

During my PhD I worked in two major projects. I want to thank the
members of the AWARENESS and AMIGO project for the inspiring
discussions and for offering me the opportunity to ventilate my research
results and get valuable feedback. Especially, I want to thank my AMIGO
collaborators at the Telematica Instituut: Henk Eertink, Remco Poortinga
and Andrew Tokmakoff for the fun times and their quality feedback.

For me it is important that my working environment is besides
intellectual challenging also socially engaged. This combination I found in
the ASNA group and its surroundings. I want to thank the FASNA members
(Former ASNA) and people I associate with FASNA: Annelies, Marlous,
Maarten, Luis, Ricardo, Rodrigo, Luiz, Tiago, Lisandro, Eduardo, Laura,
Teduh, Hailiang, Pravin, Kamran, Fadli, Remco Dijkman, Remco van der
Meent, Giancarlo, Renata, Robert, Ing, Bert-Jan, Val, Bert, Richard, Kate.
Some of you I am happy to call my friend! You made life most enjoyable on
the fourth floor and later on the third and fifth floor. I had wonderful
discussions and small-talk during the (regular) coffee breaks or during the
‘appeltje’ sessions. Also the parties at Macandra will stay in my memories.
Additionally, I want to thank the members of the IS group for embracing
me in their group, although I could not become a formal member.
Especially, I want to thank Suse for her excellent support!

I also want to mention some special people. I want to thank my
‘paranimfen’ and best friends: Jeroen and Joris. Thank you for being my
friend and helping me during the defense. I want to thank my soccer friends
of the UT-kring for all the sportive highlights. Furthermore, I want to thank
my TRMC model-flying friends for joining me in our great hobby.
Especially, I want to thank Gerhard for his work on my cover. Although
everything that has happened, I also want to thank Miriam and her family
for their support and love. Things always happen unexpectedly, I want to
thank Gertie for making me feel again. I hope to enjoy your company for a
long time.

 ACKNOWLEDGEMENTS XIII

Finally, I want to thank my family which is the keystone of my life.
Although you didn’t always understood what I did, you had faith in the
good ending and supported me throughout with all your hearth. I want to
thank my sisters and their family for just being there: Marloes, Bas, Wouter,
Leonie, and Sandra, Bas and Marit. Ofcourse, I want to express my
gratitude, love and deepest respect for my parents: Adrie en Ria. Without
their support and effort to enable the best possible opportunities for me,
this result would not have been possible.

So … and now it is done. It is time to proceed. I always remember an
old saying from Twente ‘De geleardsten bint de wiesten nich’. This saying means
something like the most learned persons aren’t always the wisest persons. In
my view this touches a fundamental point. Not only studying but also
experience and the people you encounter determine how ‘wise’ you are.
After more than ten years of studying I want to explore and get wise(r). It
is time for me to further enrich my context.

Tom Broens

Enschede, November 2008

Contents

Chapter 1. Introduction 1
1.1 Background 1
1.2 Problem Analysis 5
1.3 Objective and Research Questions 11
1.4 Scope 12
1.5 Case Domain: Telemedicine 13
1.6 Approach 14
1.7 Structure 15

Chapter 2. Basic Concepts and Models 17
2.1 Systems and Services 17
2.2 Applications and Middleware 20
2.3 Context and Context Information 21
2.4 Context-Aware Applications 26
2.5 Design Aspects of Context-Aware Applications 31
2.6 Modelling Context-Aware Applications 39
2.7 Context Binding Process 43

Chapter 3. State-of-the-Art on Context Middleware 47
3.1 Middleware 47
3.2 Current Context Middleware Systems 52
3.3 Awareness Context Middleware 60
3.4 Conclusions 69

Chapter 4. Context Binding Transparency 73
4.1 Transparency 73
4.2 Context Binding Transparency 77
4.3 Context Retrieval and Publishing Services 82

XVI CONTENTS

4.4 The Context Binding Description Language 84
4.5 Discussion 92

Chapter 5. Context Binding in CACI 97
5.1 Overall Design of CACI 97
5.2 Design of the Context Binding Mechanism 104
5.3 Implementation of the Context Binding Mechanism 124
5.4 Related Work 142
5.5 Limitations and Future work 143

Chapter 6. Context Discovery and Simulation in CACI 145
6.1 Context Discovery Interoperability Mechanism 145
6.2 The SimuContext framework 164

Chapter 7. Telemedicine and Context-Awareness 177
7.1 Background on (Electronic) Healthcare 177
7.2 An Overview of the Telemedicine Domain 179
7.3 Determinants Influencing the Success of Telemedicine Systems 181
7.4 Analysis of Telemedicine Systems 188
7.5 Current Context-Aware Telemedicine applications 191
7.6 Usefulness of Context-Awareness for Telemedicine Applications 192

Chapter 8. Evaluation 195
8.1 Evaluation Approach 195
8.2 User Expectation Survey 199
8.3 Case-study using CACI 205
8.4 Comparing CACI and Non-CACI based Development 218
8.5 Discussion 227

Chapter 9. Conclusions 233
9.1 General Considerations 233
9.2 Research Contributions 235
9.3 Reflection on the Research Questions 237
9.4 Future Research 244

Appendix A User Expectation Survey 247

Appendix B CBDL Use Cases & Implementation 249

Appendix C ISO/IEC 9126 Standard 251

Appendix D Additional information on the development of the ESS case 255

 CONTENTS XVII

References 257

Samenvatting 269

Publications by the Author 273

Chapter 1

1. Introduction

This thesis proposes infrastructure-based mechanisms and abstractions to
facilitate the development of context-aware applications. These are software
applications that adapt their behaviour to the situation at hand. This
chapter presents the motivation for this research and outlines the objectives
and the adopted approach.

This chapter is organized as follows: Section 1.1 provides background
information that is relevant for this research. Section 1.2 gives a problem
description and analysis. Section 1.3 presents the objectives and research
questions. Section 1.4 gives the scope of this research. Section 1.5
introduces the telemedicine case domain that is used to evaluate this
research. Section 1.6 describes the adopted approach. Finally, Section 1.7
presents the structure of the remaining thesis.

1.1 Background

Humanity strives for constant innovation to improve the quality of life.
Increasingly, computer systems are used for this purpose. For example, we
observe that human users have increasingly access to, possibly multiple,
computer systems in their environment1. With the user’s environment, we
denote the physical space in which the user lives such as a home, office and
public spaces. Many users use a combination of computer systems, such as

1 The number of Personal Computers in the world increased from 130 million in 1991 to
775 million in 2004 (source: ITU, http://www.itu.int/ITU-D/ict/statistics/). Access of all
European households to a Personal Computer increased from 50% in 2002 to 64% in 2006
(source: EuroStat, http://ec.europa.eu/eurostat/). In the Netherlands this is even 84% of all
the households in 2006 (source: CBS, http://www.cbs.nl). Households also increasingly use
‘internet enabled’ mobile computer systems like mobile phones, laptops, PDA’s and
palmtops. In Europe, access to such systems has increased from 13% in 2002 to 28% in
2006 (source: EuroStat). In the Netherlands this is 35% in 2006 (source: CBS).

2 CHAPTER 1 INTRODUCTION

PCs, laptops, PDA’s, mobile phones, mp3 players, media-centres and
Personal Video Recorders (PVR) to perform their job or enjoy themselves.
Even, traditional non-computerized objects are currently equipped with
computer capabilities. Consider, for example, refrigerators that are
equipped with an integrated TV and internet connection. Hence, many
computer systems already reside in the user’s environment. However, the
majority does not cooperate to perform more useful functions for the user
(Davies and Gellersen 2002).

Technological Developments
We distinguish the following technological developments that stimulate the
integration of computer systems in the user’s environment:
– Increasing capacity with lower costs: Computer systems offer increasing

processing, memory, storage, communication bandwidth and battery
capacity. For example when considering processing capacity, a
commonly used estimation is ‘Moore’s law’. This law states that roughly
every 18 months the transistor capacity on integrated circuits doubles.
Similar trends are visible in memory and storage capacity. Currently, the
only aspect that stays behind is battery capacity. Additionally, the costs
of these high-capacity devices are decreasing.

– Miniaturization: Computer systems become increasingly smaller with
similar or increasing capabilities. Miniaturization has two effects on the
use of computer systems: (i) mobility and (ii) integration. The computer
systems’ size/capability ratio enables users to wear or carry useful
computer systems. Additionally, computer systems become small
enough to be ‘hidden’ in the user’s daily environment and still be able to
perform useful tasks (Bohn, Coroama et al. 2005).

– Improved connectivity: Computer systems become increasingly connected
to each other and to the ‘world’ using the Internet. Mobile
communication mechanisms like, amongst others, UMTS, Bluetooth
and WLAN, enable computer systems to exchange information
anywhere and at anytime. Consequently, the number of (mobile)
internet users increased significantly2.

– Changing computing paradigm: Users operate an increasing number of
different ‘personal’ computer systems. For example, mobile phones and
MP3 players. These computer systems are developed and configured
with the purpose of being used by individual users rather then being
generic for multiple users. Additionally, these computing systems are
less recognizable as traditional computing systems. For example,
internet-enabled wristwatches and refrigerators.

2 The number of internet users increased from 4.4 million in 1991 to 863 million in 2004
(source: ITU, http://www.itu.int/ITU-D/ict/statistics/)

 BACKGROUND 3

These developments lead to a growing awareness that human-computer
interaction in future computer systems should be user-centric rather then,
traditionally, technology-centric (Oulasvirta 2005). Rather that users are
being forced to adapt to the computing system, the computing system
should adapt to the users (Aarts and Marzano 2003). All these computing
systems offer functionality and information to users. A real problem of such
rich computing environments is that the user may be overloaded with
information, leading to annoyance of the user and even a decrease of the
user’s efficiency to perform a certain task.

Calm Technology
In the 1990’s, Weiser raises the need for technology to overcome the
saturation of the user’s attention, which he calls calm technology (Weiser
1991; Weiser and Brown 1998). He states that technology should both
‘encalm’ and inform. He therefore distinguishes the centre and periphery of
the user’s attention. The centre of attention is that what users explicitly
focusing on. The periphery of attention is that what users are aware of
without explicitly focussing on. For example, when driving a car, the road
ahead is in the centre of attention, while the speedometer is in the
periphery of attention.

Calm technology should overcome the saturation of the user’s attention,
making the daily life more enjoyable and effective (Ebling, Guerney et al.
2001). Weiser states this can be enabled in two ways, by: (i) technology that
moves easily, and at the right moment, between the centre and periphery of
attention and (ii) technology that enriches our peripheral reach. For
example, the speedometer could blink when a user is speeding. In this way,
the speedometer moves between the centre and periphery of attention of
the user. Additionally, the user could be informed how much the fine will
be when he is caught speeding. In this way, the user’s periphery of attention
is enriched.

Context-Aware Applications
The concept of calm technology has lead to developments enabling a future
world that is filled with interconnected and high capacity (mobile)
computing devices, which are integrated in the user’s environment. These
devices host applications that support users in their daily life. These
applications should support the user unobtrusively by adapting to the
situation at hand. For example, the user is listening to some music. While
moving, the sound follows the user through his house. When the phone
rings the music is turned to a low volume automatically. The music is
moving from the centre to the periphery of attention, such that the user can
speak to the person on the phone. In this way, the ‘radio listening

4 CHAPTER 1 INTRODUCTION

application’ adapts to the situation of the user such as his current physical
location and the fact that he receives an incoming phone call.

The information that characterizes the situation of an entity, for
example a human user, is called context information. Software
applications that use context information to adapt their behaviour are called
context-aware applications. We distinguish the following advantages of
using context information to adapt the behaviour of applications:
– Tailored human-computing interaction: Context information may be used to

filter or personalize information delivered to the user and may limit or
personalize the human-computer interaction between the user and
application. In this way, possible decrease of effectiveness due to huge
amount of available information, sometimes called ‘information
overload’ (Maes 1994), can be countered. For example, coping with the
available information coming available through the Internet3, is a
challenge that current users are facing. This information can be filtered
to a more comprehensible set of information by taking into account the
current user’s situation.

– Internal optimization: The availability of context information may provide
the application knowledge about its execution environment such as
available bandwidth and CPU load. Hence, the internal behaviour of
applications can be optimized by using this knowledge. For example, by
additionally taking into account the available bandwidth information a
context-aware application could optimize its transmission strategy. For
example, the application could enable/disable compression of outgoing
data.

– Novel applications: By using context information, novel types of
applications can be created that may provide novel commercial
opportunities. For example, in the Netherlands, multiple location-aware
applications are currently being deployed such as museum tour guides4,
person trackers5 or material trackers6.

We identify three main current directions that research context-awareness
to enable calm technology. These research directions are ubiquitous
computing, pervasive computing and ambient intelligence.
Ubiquitous computing is a concept, often used in the United States, to
indicate research that originates and builds directly on the ideas of calm
technology proposed by Weiser. Pervasive computing is a term more

3 Available web sites grew from approximately 10 million in the beginning of 2000 to 100
million in the beginning of 2007 (source: Netcraft, http://news.netcraft.com/)
4 N8 Museum gids, http://www.n8.nl/2006/mobiel http://www.zdnet.nl/news.cfm
?id=62145 (in Dutch)
5 Waarbenik, http://waarbenik.nl/ , http://www.telecomwereld.nl/n0000278.htm (in
Dutch)
6 NS tracking and tracing, http://www.computable.nl/artikel.jsp?id=1377888 (in Dutch)

 PROBLEM ANALYSIS 5

common in industry, which is proposed by IBM in the end of the 1990’s
(IBM 1999). Ambient intelligence originates from the European IST advice
group (ISTAG) at the end of the 19th and the beginning of 20th century. The
sketched directions have similar goals but slightly different focus.
Ubiquitous and pervasive computing are directions, which are more device-
oriented focussing on integrating and combining devices in the user’s
environment. Ambient intelligence combines this aspect with human-
computer interaction aspects such as multimodal interactions (Shadbolt
2003; Svahn 2003).

This thesis should be read in the light of the developments and trends
sketched in this section. The contribution that is presented in this thesis
focuses on supporting the development of context-aware applications.

1.2 Problem Analysis

By nature, humans are context-aware. Humans are capable of sensing their
environment and reacting correspondingly. For example, a human can
adapt its conversation to the body language of the receiving person and the
goal he wants to reach. However, for context-unaware computer
applications to adapt to changing circumstances, to provide personalized
and appropriate functionality to the user, is challenging. For example,
current personal music applications are not designed to deal with
interruptions such as an incoming phone call. The user has to manually
operate the music application to adapt to the changing circumstances of an
incoming phone call.

Limited availability of high capacity sensory devices stimulated
applications to operate in static execution environments (Schilit 1995) and
to be build context-independent (Lieberman and Selker 2000). Due to the
sketched improving device capabilities, a broad spectrum of sensors is
currently available. These sensors can sense all kind of context information,
which is becoming available to applications. Together with the before
mentioned trend of high capacity mobile devices integrated in the users
environment and the need for user-centric applications, this lead to
increasing interest in context-aware applications.

Context information and Context-Aware Applications
Context information is commonly defined as: “any information that can
be used to characterize the situation of an entity, in which an entity can be a
person, place, physical or computational object that is considered relevant
to the interaction between an entity and an application, including the
application and the user themselves” (Dey 2000). Examples of context
information are location, mood, number of read emails, weather conditions

6 CHAPTER 1 INTRODUCTION

etc. Context-awareness is commonly defined as: “A system is context-
aware if it uses context to provide relevant information and/or services to
the user, where relevancy depends on the user’s task.” (Dey 2000).

Context-Aware applications are particularly interesting for mobile and
wearable applications (Satyanarayanan 1996). These applications operate in
constant changing environments due to the movement of the user. For
example, one of the first mobile context-aware applications is the
Cyberguide application, which is a mobile tourist guide application that
offers tailored information on points of interest, based on location and
orientation of the tourist (Long, Kooper et al. 1996).

Context Consumers, Producers, and Context Bindings
Context-aware systems consist of software entities that can perform a
context producer and/or context consumer role. Context producers are
entities that acquire context from the physical environment and offer it to
context consumers. Examples of context producers are software-wrapped
sensors such as GPS, temperature sensor, ECG sensor or pure software
producers like a software-wrapped Outlook calendar. In this thesis,
software entities that perform solely a context producer role are called
context sources. Context consumers are entities that use provided
context information from context producers to adapt their behaviour. In
this thesis, software entities that perform at least a context consumer role
are called context-aware applications.

Summarizing, we model a comprehensive context-aware system as a
composition of associated context producers and consumers, which
exchange context information. The association between a context consumer
and a context producer that is required for exchanging context information,
is called a context binding. Transfer of context information consists of
three phases:
1. Creation of context bindings between context consumers and

producers.
2. Requesting and exchange of context information using an established

context binding.
3. Releasing of established context binding.
Figure 1-1 presents an example of context-aware system. It depicts three
context sources that produce context information and offer it to two
context consumers. For context information to be transferred from a
producer to a consumer, a context binding is required. The context
information always flows from a context producer to a context consumer. A
context-aware application adapts its behaviour based on received context
information and may produce context information, which it can provide to
other context consumers.

 PROBLEM ANALYSIS 7

Towards Third Generation Context-Aware Applications
We distinguish three generations of context-aware applications (see Table 1-
1). Developers of first generation context-aware applications do not
use middleware infrastructures in their development process (for examples
of first generation context-aware application see (Chen and Kotz 2000;
Korkea-aho 2000)). In these applications, context bindings are
predetermined and hard-coded, in an ad-hoc and tightly coupled fashion,
which is unique for their specific application (Dey 2000; Pascoe 2001).
These developers choose specific context producers such as GPS location
sensors, RFID sensors, and program the low-level interaction between the
specific context producer and their application. Thereby, they create a tight
coupling between their application and the used context producers. Reuse
of the created application is limited and future evolutions, for example due
to the upcoming of new technology, becomes difficult (Dey 2000; Ebling,
Guerney et al. 2001). Additionally, as ubiquitous computing environments
are highly dynamic in terms of availability and quality of context
information, a loose coupling between context consumers and context
producing entities offers clear advantages. A context-aware application
should be able to find (i.e. discover), bind and use context producers, as
they are available during the lifetime of the application (Davies and
Gellersen 2002).

Currently, there is a trend towards using middleware infrastructures for
facilitating the development of second generation context-aware
applications (Henricksen, Indulska et al. 2005). These infrastructures
offer solutions to recurring functions in the context-aware domain, like
context discovery, reasoning and security. By applying run-time discovery,
context producers and context consumers are increasingly decoupled and
can be bound at run-time.

Figure 1-1 Example of a
context-aware system
consisting of a
composition of context
producers and
consumers.

8 CHAPTER 1 INTRODUCTION

 1st Generation 2nd Generation 3rd Generation

Characterization Application that adapts
its behaviour to context
information from
predetermined and
fixed context sources

Application that adapts
its behaviour to context
information from fixed at
run-time discovered
context sources

Application that adapt its
behaviour to dynamically
available context
information with
fluctuating quality from
multiple context sources

Elements Application + Context
sources

Application + Context
middleware + Context
sources

Application +
Context Binding
Transparency / Context
Binding infrastructure +
Context sources

Binding time Design-time Run-time Run-time

Binding
management

Application managed Application managed Infrastructure managed

Binding type Static and
predetermined

Static, not-
predetermined

Dynamic, based on
availability and quality

Binding coding Programmed binding Programmed binding Configurable binding in
binding specification
language

However, really establishing and maintaining context bindings is not
supported by current context middleware infrastructures. Creation and
maintaining context bindings is not trivial and still needs extensive
programming effort (Banavar and Bernstein 2002). This originates from
inherent characteristics of context sources:
– Context sources are distributed and a-priori unknown, so they need to

be discovered before a context binding can be established. Furthermore,
multiple context sources may be available (i.e. discoverable) in the
environment, so selection is needed to bind to the most suitable context
source.

– Context sources have dynamic availability, hence the persistence of an
established context binding cannot be guaranteed.

– Context sources provide context information with different and
changing qualities. This influences both the selection of context sources
before the establishment of a context binding, and the decision to keep
an established context binding or to replace it by another (better) one.

Hence, developers that use current context middleware infrastructures still
need to create programming code to discover, select and bind to relevant
context producers for every context consuming entity in their application.
Furthermore, due to for instance the mobility of the user or possibly the
context producer, the availability of the context producer for the context
consumer is not guaranteed and reliable (Bellavista, Corradi et al. 2003).

Table 1-1 Comparison of
three generations of
context-aware
applications.

 PROBLEM ANALYSIS 9

Consequently, additional programming effort is needed to develop a flexible
and robust context-aware system that can handle this dynamicity. For
example when considering Figure 1-2, this figure depicts a user moving
through different domains that offer multiple and different types of context
information (e.g. presence, location, time). In domain A, certain context
information may be available, while when the user moves to domain B, this
context information becomes unavailable.

The hypothesis of this thesis is that the development process of third
generation context-aware applications can be improved by offering a
context binding infrastructure that realizes an abstraction, called the
context binding transparency. In the remainder of this thesis, we develop
the context binding transparency and infrastructure.

Context Binding Transparency and Context Binding Infrastructure
Hence, to facilitate the development process of third generation context-
aware applications, we propose a contribution that consists of (i) an
abstraction called the context binding transparency and (ii) a context
binding infrastructure that realizes this abstraction. Correspondingly,
our research consists of two perspectives:
– Developer perspective: this perspective refers to aspects concerning the

developers of context-aware applications that should benefit from using
the context binding infrastructure.

– System perspective: this perspective refers to aspects concerning the
internal working of the context binding infrastructure that realizes the
context binding transparency.

In general, we propose to shift the recurring problem of creating and
maintaining a context binding from the application to the context binding
infrastructure. The context binding transparency is realized by this

Figure 1-2 Context-
Aware applications
encounter different
context information in
different domains.

10 CHAPTER 1 INTRODUCTION

infrastructure in terms of a context retrieval and publishing service.
Application developers can use these services for easy exchange of context
information. By using these services, the developer of a context-aware
application becomes unaware of which context source is involved in
creating a context binding, how this binding is created, and how this
binding is maintained to overcome the dynamic availability and fluctuating
quality of context sources. Figure 1-3 represents the elements we propose to
realize a context binding transparency and infrastructure:
1. A context requirement specification language that enables developers to

specify their context requirement at an abstract level rather than directly
programming these requirements (i.e. developer perspective).

2. A context binding mechanism that, based on a context requirement
specification, creates and maintains context bindings, thereby hiding the
distribution, heterogeneity and especially the dynamic availability and
fluctuating quality of context producers for the application developer
(i.e. system perspective).

3. A context discovery interoperability mechanism, which hides the
heterogeneity and dynamic availability of context discovery mechanisms
(i.e. system perspective).

In the remainder of this thesis, we elaborate on the design and
implementation of these elements.

Figure 1-3 High-level
overview of the
proposed contributions.

 OBJECTIVE AND RESEARCH QUESTIONS 11

1.3 Objective and Research Questions

The generic goal of this thesis is to research infrastructure-based
mechanisms and abstractions that support developers in creating context-
aware applications. More specifically, the main objective of this research is:
Improve the development process of context-aware applications by applying a context
binding infrastructure, realizing a context binding transparency that:
– enables application developers to specify context requirements at an abstract level

rather than directly programming these requirements;
– hides, whenever possible, the dynamic availability and quality of context producers

for the application developers;
– interoperates with heterogeneous and dynamically available context discovery

mechanisms;
To reach this objective, we address the following research questions:
From the developer perspective, what does a context binding transparency look like for
the application developer?
1. How do context-aware applications differ from non-context-aware

applications and how does this influence the development process of
these applications? How does the proposed context binding
transparency influence the design of context producers and consumers?

2. What context requirements can application developers have? What
elements are needed in a context requirement specification language
such that applications developers are able to specify context
requirements suitable for their context-aware applications?

3. What operational interfaces should a context binding mechanism offer,
such that application developers can deploy and test their context-aware
applications?

4. How configurable should a context binding mechanism be to enable
application developers to develop flexible context-aware applications?

From the system perspective, what does the context binding infrastructure look like that
realizes the context binding transparency?
5. How can a context binding mechanism create a suitable context binding

based on a context requirement specification?
6. How can a context binding mechanism maintain a created context

binding in an environment where context producers can appear,
disappear, and have fluctuating quality?

7. How can a context discovery interoperability mechanism deal with
multiple heterogeneous and dynamically available context discovery
mechanisms offering context producers?

12 CHAPTER 1 INTRODUCTION

Evaluation of the context binding transparency and context binding infrastructure:
8. How can the telemedicine domain benefit from context-aware

applications? How can the context binding infrastructure be used for
developing context-aware telemedicine applications?

1.4 Scope

From the developer perspective, the context binding transparency and
infrastructure facilitate a subset of the phases in a comprehensive
development process of (context-aware) applications. If we consider the
common waterfall or linear development process model (Pressman 2000),
the starting point for using our context binding infrastructure is the
situation where there exist requirements for context-aware applications,
including requirements for context information. The scope of our context
binding infrastructure ends by using it for testing a developed context-
aware application. The defined scope, based on the waterfall model, is
visually represented in Figure 1-4. Hence, we consider requirements
engineering, deployment and maintenance activities out of the scope of this
research.

From the system perspective, we assume the availability of IP-based
communication mechanisms to invoke (remote) applications and services.
On top of this, we assume the availability of (multiple) context discovery
mechanisms that offers context discovery services. The development of
context discovery mechanisms is out of the scope of this research.

Additionally, we assume that the quality information of the context
information that is delivered by a particular context source is made
available, either by the context source itself or by the corresponding context
discovery mechanism. Determination of the actual quality values of context
information is out of the scope of this research.

Furthermore, there are some aspects of context-aware systems related
to context exchange, which we discuss briefly in the remainder of this
thesis, but which we do not detail. We consider them out of the scope of
this research:
– Semantic interoperability: The proposed context binding infrastructure tries

to match descriptions of offered context information by context sources
with requirements posed by the application developer. Both syntactic

Figure 1-4 Positioning
of the proposed
contribution in the
development process of
(context-aware)
applications.

 CASE DOMAIN: TELEMEDICINE 13

(i.e. syntax of the context request versus the syntax of the context
offering) and semantic interoperability (i.e. the meaning of the request
versus meaning of the context offering) influence the quality of this
matching process.

– Security issues: When exchanging context information, security aspects
such as enforcing the privacy of context consumers and producers, and
the establishment of a trust relation between these parties, is key to
successful operational context-aware system.

– Business aspects: Introducing context information provides opportunities
for novel and enhanced applications and services. However, this may
influence existing business processes or require novel and changed
business models.

1.5 Case Domain: Telemedicine

The research described in this thesis is part of the Freeband AWARENESS
project (Wegdam 2005). This project researches infrastructure-based
mechanisms to support mobile context-aware applications (Sinderen,
Halteren et al. 2006). The functions supported by these mechanisms
consist of privacy enforcement, service discovery, context discovery and
exchange, context modelling and context reasoning. The AWARENESS
infrastructure is validated by developing mobile context-aware healthcare
applications that use the AWARENESS infrastructure.

The research outlined in this thesis also uses healthcare as its case
domain. In more detail, we focus on Telemedicine applications. The goal
of telemedicine applications is to provide healthcare over distance using
ICT (Tachakra, Wang et al. 2003). For example, applications that monitor
and transfer vital signs of patients, who are living in their own home, to
caregivers in a remote care institution.

We consider the Telemedicine domain as a valid application domain,
because:
– Social-economical trends: Several social-economical trends such as aging

and the increasing number of patients with chronic diseases require the
future healthcare process to change to guarantee high quality healthcare.
Therefore, researching ways to simplify the development of context-
aware applications, which are envisioned to improve future healthcare
processes, are relevant.

– Specific requirements: Due to the ‘life-and-death’ nature of healthcare
applications, they have specific requirements that are more stringent
than requirements for the majority of non-healthcare applications.
Hence, especially for this type of applications, infrastructure

14 CHAPTER 1 INTRODUCTION

mechanisms to provide more reliable context information in terms of
availability and quality, are potentially of great benefit.

1.6 Approach

Figure 1-5 presents the approach adopted in this research. Grey rounded
rectangles depict phases in the research. White rectangles depict artefacts
resulting from activities in a certain phase. These artefacts are used in other
phases. The directed arrows present an input/result relation between the
phases and artefacts.

The approach applied in this research is divided into four phases. The
first phase consists of a literature study on the state-of-the art on:
– Context, context-awareness and (context) middleware. This results in (i) state-

of-the-art (SOTA) and problem analysis on current context-awareness
middleware approaches and (ii) a framework of basic concepts.

– Telemedicine domain. This results in the background information and
motivation for the case study used for the evaluation.

The second phase is the design of the context binding infrastructure that
realizes the context binding transparency. This includes the design of:
– Context binding description language that enables developers to specify their

context requirements at a high level of abstraction.
– Context binding mechanism that hides the complexities of creating context-

aware application that retrieve context information from dynamically
available context sources with fluctuating quality.

– Context discovery interoperability mechanism that enables discovery of context
sources from different domains that become available during the
lifetime of the context-aware application.

Literature
study Design Implementation Evaluation

SOTA &
Problem
analysis

Basic
concepts

Context
binding

transparency
&

infrastructure

Proof-of-
concept

User
expectation

survey

Telemedicine
domain analysis

& case study

Evalu-
ation

Figure 1-5 Research
approach.

 STRUCTURE 15

The third phase is the implementation of a proof-of-concept prototype based
on the designed context binding transparency and context binding
infrastructure. The final phase is an evaluation of the possible improvements
in the development process of context-aware applications when using our
context binding infrastructure. The evaluation is based on a:
– User expectation survey that determines the general interest of possible

users (i.e. developers of context-aware applications) in the features of a
context binding transparency and infrastructure.

– Implementation of a Telemedicine case study with our context binding
infrastructure that shows the feasibility of the developed context binding
transparency and infrastructure.

– Comparison of a telemedicine case implementation with and without our binding
infrastructure that qualitatively compares and estimates the possible
improvements in the development process of context-aware applications
by using our context binding infrastructure.

1.7 Structure

The structure of this thesis reflects the previously discussed approach. Figure
1-6 correlates the structure of this thesis with the adopted approach. The
remainder of this thesis is structured as follows:
– Chapter 2 discusses our framework of basic concepts, consisting of

definitions, concepts and models used throughout this thesis.
– Chapter 3 presents the state-of-the-art in context middleware and

further motivates our proposed context binding transparency and
context binding infrastructure with a problem analysis.

– Chapter 4 reflects on the design process of context-aware applications
from the perspective of the application developer (i.e. developer
perspective) and presents the design of the context binding
transparency.

– Chapter 5 presents the overall design of the context binding
infrastructure. Additionally, it discusses the design and proof-of-concept
implementation of the first part of the context binding infrastructure;
the context binding mechanism.

– Chapter 6 presents the design and prototype implementation of the
second part of the context binding infrastructure; the context discovery
interoperability mechanism. Furthermore, it discusses a context
simulation framework to facilitate testing of developed context-aware
applications.

– Chapter 7 introduces the Telemedicine case domain and indicates the
usefulness of applying context-awareness in this domain. Additionally, it

16 CHAPTER 1 INTRODUCTION

identifies key determinants influencing the success of telemedicine
applications.

– Chapter 8 presents the evaluation of the proposed context binding
transparency and infrastructure.

– Chapter 9 presents conclusions and future work.

Literature
study

Design Implementation Evaluation

SOTA &
Problem
analysis

Basic
concepts

Proof-of-
concept

User expectation
survey

Telemedicine
domain analysis

& case study

Chapter 2

Chapter 4

Chapter 3

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Evaluation

Context
Binding

Transparency

Context
binding

mechanism

Interoperability
/ Testing

mechanism

Figure 1-6 Correlation of
the adopted approach
and structure of the
thesis.

Chapter 2

2. Basic Concepts and Models

This chapter introduces basic definitions, concepts, and models needed to
describe and reason about the proposed context binding transparency and
infrastructure. Parts of this chapter are published in (Broens, Quartel et al.
2007).

The structure of this chapter is as follows: Section 2.1 presents the
concept of systems and services. Section 2.2 describes applications and
middleware. Section 2.3 elaborates on current definitions and
characteristics of context and context information. Furthermore, it
introduces our definitions of context and context information. Section 2.4
discusses current definitions and characteristics of context-aware
applications. Furthermore, it introduces our definition of context-aware
application. Section 2.5 describes design aspects of these applications.
Section 2.6 presents a basic model of context-aware applications. Finally,
Section 2.7 gives a generic discussion on the process of creating and
maintaining context bindings.

2.1 Systems and Services

There exist several definitions of a system. For example, Merriam-
Webster’s dictionary defines a system as “a regularly interacting or
interdependent group of items forming a unified whole”. The oxford
dictionary defines a system as “a complex whole; a set of things working
together as a mechanism or interconnecting network” and Chambers
technology dictionary defines a system as “anything formed of parts placed
together or adjusted into a regular or connected whole”. These definitions
indicate the main characteristics of a system: (i) a system consists of
collaborating parts and (ii) these collaborating parts form a unifying whole.
There are many types of systems: mechanical systems, ecological systems,
political systems, ICT systems etc. An example of a mechanical system is a

18 CHAPTER 2 BASIC CONCEPTS AND MODELS

car. A car consists of multiple parts such as an engine, gearbox, steering
wheel, tires etc. These parts work together to form a car system.

In this thesis, we restrict ourselves to ICT systems. ICT systems are
commonly used in everyday life. For example, persons can schedule
appointments in a digital calendar, send emails and instant messages to
other persons, and retrieve money from an ATM.

System perspectives, abstractions and services
In this thesis, we adopt the concepts proposed by (Vissers, Ferreira Pires et
al. 2002) for designing systems. Additionally, we adopt their method of
structured design of systems for the use of modelling context-aware
applications. Hence, we distinguish the following two perspectives on
systems:
– External perspective: considers the system as a “unified whole” or black-

box, and views it from the perspective of the system’s user that wants to
use it for some purpose. This user can be a human or another computer
system. This perspective shows “what” behaviour the system is capable
of offering.

– Internal perspective: considers the system as an “independent group of
items” or white-box. It reveals the internals of the system, showing
“how” the system is capable of offering certain behaviour.

The concept of system can be used recursively. The ‘items’ of which the
internal perspective of a system is composed can be again considered as
systems which have an internal and external perspective. For example, the
engine in a car system consists of valves, pistons, flywheel etc. These parts
work together to form a propulsion system for the car system.

Developing systems using these perspectives is advantageous. It offers
developers a way to develop systems in a step-wise manner using different
levels of abstraction. Abstraction is the process of addressing only
development aspects relevant at that particular point in time while ignored
other aspects, which are not (yet) relevant. In this way ‘complexities’, that
the developer is not (yet) interested in and that may distract him from his
current primary goal, are hidden. For example, a developer that is creating a
car system may first focus on designing the engine before designing the
gearbox. Hence, the developer considers the engine from an internal
perspective while considering the gearbox from an external perspective. At
a later point in time, the perspectives may be switched.

We define that from an external perspective a system provides one or
more services to users. The system that provides a service is called a service
provider. The user of a service is called a service user. A service is
defined as the external behaviour of a system that has some desired effect
for the service user. A service is defined in terms of interactions and the
relation between interactions. An interaction is the activity of two or more

 SYSTEMS AND SERVICES 19

cooperating systems in which a common result is established. For example,
a service user may invoke an information service from a system using simple
synchronous interactions, in which a request interaction is directly followed
by a response interaction.

Example: Epileptic Alarm System
To illustrate the concepts discussed in this section, we explain them with a
simplified example of an epileptic alarm system. Figure 2-1 presents the
epileptic alarm system from an external and internal perspective.

From an external perspective, the epileptic alarm system offers two services
to service users: (i) ‘alarm service’ that informs on the alarm status of
epileptic patients, and (ii) ‘health status service’ that informs on the health
status of epileptic patients. The alarm service consists of a set of
interactions that enable the service user to set a subscription to be notified
of upcoming epileptic seizures. The health status service consists of two sets
of interactions: (i) to request the status of individual patients that results in
a direct response with the health status of that patient, and (ii) to subscribe
to status changes of a patient which results in a notification of the health
status of a patient when it changes.

We can take an internal perspective of the epileptic alarm system and
further decompose it into several interacting sub-systems. For example, the
epileptic alarm system is composed from a coordinator system that deals
with the interaction with the user and delegates the responsibilities to other
systems. Another sub-system is the security system that offers services to
authenticate service users when they are trying to retrieve the health status
of the patient. Additionally, there is a vital sign analyser and alarm generator
system. The vital sign analyser offers services to collect vital signs from the
patient and stores them in a database. The alarm generator provides services

Figure 2-1 Example of
an epileptic alarm
system.

20 CHAPTER 2 BASIC CONCEPTS AND MODELS

to analyse the collected data and it tries to infer if an epileptic seizure is
likely to occur. If needed, the subsystems can be decomposed further.

2.2 Applications and Middleware

We define an application as a software system that offers a service to its
users. This is schematically shown in Figure 2-2. From an external
perspective, a user has interactions with an application. These interactions
consist of a composition of inputs and outputs. From an internal
perspective, an application has application behaviour that realizes the
service.

Application

Users

inputs

outputs

We distinguish two types of applications: (i) local applications and (ii)
distributed applications. Local applications reside on a single execution
environment. Distributed applications are applications that consist of
multiple interacting application parts, which are located on different
execution environments, connected by a communication platform
consisting of communication software and hardware. In this thesis, we
focus on distributed applications.

Developing distributed applications that consist of communicating
application parts via heterogeneous communication platforms is complex.
Middleware is introduced to limit these problems and to reduce
development costs (in terms of time, money etc.) of distributed applications
(Bernstein 1996; Alonso, Casati et al. 2004). Middleware is a software
layer that provides supporting services for developing distributed
applications. Figure 2-3 shows a non-middleware and middleware based
application. Middleware acts as an intermediary between the application
and the resources offered by operating systems such as the communication
platform. Middleware has two characteristics: (i) it hides the complexities
of the communication platform from the application in terms of so called
distribution transparencies (Blair and Stefani 1998) and (ii) it shifts
functions to deal with common complexities to the middleware layer.

Figure 2-2 Software
application.

 CONTEXT AND CONTEXT INFORMATION 21

Chapter 3 discusses (context) middleware in more detail and Chapter 4
discusses transparencies in more detail.

Advances in device and wireless communication technology have lead to
the development of mobile computing devices that can communicate
everywhere and at anytime. Consequently, applications running on these
devices also become mobile. Mobile applications reside and move with a
human user. For example, current mobile devices, such as Personal Digital
Assistants (PDA), have browser applications that enable the user to browse
web pages while on the move. We define a mobile application as a
distributed application of which one or more bearers of application parts
can physically move.

2.3 Context and Context Information

Many definitions of context have been proposed. However, creating a
complete definition of context that fully captures its principles is complex
(Bazire and Brezillon 2005). In this section, we discuss a small subset of
context definitions, followed by our interpretation of the concept context
and context information.

Definitions of Context
We observe that dictionaries define context from two perspectives: (i) the
language perspective and (ii) the environmental perspective. For example,
the Oxford dictionary defines context from the language perspective as “the
parts that immediately precede and follow a word or passage and clarify its

Figure 2-3 Distributed
applications and
middleware.

22 CHAPTER 2 BASIC CONCEPTS AND MODELS

meaning”. The essence of this type of definitions is that a part of a sentence
can be explained by its surrounding parts (for an example of research on
context from the language perspective see (Sowa 2003)). The Merriam-
Webster dictionary defines context from the environmental perspective as
“the interrelated conditions in which something exists or occurs”. The
essence of this type of definitions is that context describes a situation or
event in the environment of something or someone. In this thesis, we view
context from an environmental perspective and tailor it towards the
computer science domain and then especially towards the ubiquitous
computing domain.

Definitions of Context in the Ubiquitous Computing Domain
Context is defined in many different ways in the ubiquitous computing
domain. One category of context definitions is definitions by example,
often for the purpose of a particular application. For example, Schilit and
Theimer (Schilit and Theimer 1994) define context as “location, identities
of nearby people and objects, and changes to those objects”. This definition
is for the purpose of their location-based office application. Lamming and
Flynn (Lamming and Flynn 1994) describe context as any information
stored in a personal office-oriented “diary”. This definition serves as a basis
for their “forget-me-not” office application. Brown et al. (Brown, Bovey et
al. 1997) define context as location, identities of the people around the
user, the time of the day, season, temperature, as the basis for their stick-e
notes application. Da Costa et al. (da Costa, da Silva Strzykalski et al. 2005)
define context as a storage, network, power and memory parameters of the
user’s devices for the purpose of their supporting middleware for adaptive
mobile applications. From a database perspective, van Bunningen et al.
(Bunningen, Feng et al. 2005) define context as a “situation under which
user’s database access happens”.

Another category of context definitions are definitions by example that
introduce specific aspects of context. For example, Ebling et al. (Ebling,
Hunt et al. 2001) define context as aspects of the physical world and
conditions in a virtual world. This definition introduces the environment of
the application in the scope of context. Similarly, Bradley and Dunlop
(Bradley and Dunlop 2003) define that the scope of context includes the
user and his applications. Wei et al. (Wei, Farkas et al. 2003) define
context as any information concerning user’s mobile device and its
capabilities, as well as the networks used and their characteristics. Gray and
Salber (Gray and Salber 2001) indicate that context is spatio-temporal
information concerning a user, to indicate the importance of time and
location for context. Similarly, Chalmers (Chalmers 2004) defines context
as information relevant to the user along a timescale. Hence, they identify

 CONTEXT AND CONTEXT INFORMATION 23

that context can be current as well as historic. Gloss (Gloss 2005) defines
context as network’s availability in space and time.

Definitions by example are difficult to apply to a broad range of
applications (Dey 2000). Therefore, general definitions of context are
proposed. For example, Schmidt and Beigl (Schmidt, Beigl et al. 1999)
define context as a “the situation and the environment a device or the user
is in”. Dey et al. (Dey, Salber et al. 2001) define context as “any
information that can be used to characterize the situation of an entity,
where the entity is a person, place, or object that is considered relevant to
the interaction between a user and an application, including the user and
application themselves”. Although there is no common consensus on the
definition of context, Dey’s definition is currently the most commonly
referred definition of context7.

The majority of current definitions mix, abstract from, or ignore the
difference between context and context information. Additionally, these
definitions ignore the perspective of the application that uses context
information. Hence in the next section, we propose our interpretation of
the concept context and context information.

Our Definition of Context and Context Information
We define context by adapting the definition of Schmidt et al. (Schmidt,
Beigl et al. 1999). We generalize their definition by abstracting from the
environment and generalize the concept of ‘device and user’ into entity.

Context is the set of situations an entity is in.

In the definition, situation denotes (based on (Dockhorn Costa 2007)) a
particular state of affairs that is of interest. The definition of context
describes that context is always related to an entity. Context does not exist
by itself (Dockhorn Costa, Guizzardi et al. 2006). This entity can be a
human, place, or physical/virtual object. The entity’s context can consists of
multiple situations. For example, a person (entity) can be in a room
(location context) reading his email (activity context).

However, the majority of an entity’s context cannot be used by
applications because there are no ways to transform this context into digital
information. Context sources may be deployed to acquire, for example by
sensing the entity’s environment, and interpret the context of an entity.
Figure 2-4 depicts a context source that aquires context information, which
they provide to other systems, such as context-aware applications. Hence,

7 (Dey, Salber et al. 2001) is cited more than 700 times according to Google scholar,
http://scholar.google.com, visited 3 September 2007

Definition 1 Context.

24 CHAPTER 2 BASIC CONCEPTS AND MODELS

context information is the representation of the real-world context of an
entity.

In our view, context information can be defined from two perspectives: (i)
the global perspective and (ii) the application perspective. The first
definition considers context information from an abstract viewpoint in
which the use of context information is not taken into account. The second
definition considers the use of context information by a context-aware
application as an important aspect of context information. From the global
perspective, we define context information as follows:

Context information is information that represents the context of an entity.

Figure 2-5 depicts that context information is related to the applications
universe of discourse. From the perspective of the context-aware
application, not all available global context information is relevant for the
functioning of the application. The goal of the context-aware application
determines the meaningfulness of the available global context information
for that application. Only the information used for adapting the behaviour
of a context-aware application to provide a higher quality service is what we
call context information for that application.

Furthermore, for an application, context information is not always
available (Dey 2000). Context sources can appear and disappear are
arbitrary times during the lifetime of the application. For example, due to
the movement of the application out of the range of a context source.
Context information is used by the application to provide a higher quality
service, which is tailored to the situation of the application or other relevant
entities. However, without context information, a context-aware
application should be able to function. In that case, it might offer a lower
quality service. Hence, we define context information from an
application perspective as:

Context information is information that represents the context of an entity, which
is optionally used by an application to adapt its behaviour to provide higher
quality service.

Figure 2-4 Context vs.
Context information.

Definition 2 Context
information from a
global perspective.

Definition 3 Context
information from an
application perspective.

 CONTEXT AND CONTEXT INFORMATION 25

Summarizing, the context of an entity consists of the set of all situations this
entity is in. Context can be acquired by context sources and transformed
into context information. Context information from a global perspective is
a subset of an entities’ context containing only the situations represented
and offered by context sources. Context sources can offer one or more
types of context information from one or more entities. Furthermore,
multiple context sources can provide information on the same context of an
entity. As can be seen from Figure 2-5, there exist context sources that
provide context information that is outside of the universe of discourse of
the application. Context information from an application perspective is a
subset of global context information consisting only of information relevant
for the application’s universe of discourse. Additionally, when global
context information is required for an application to function (i.e. when it
cannot be omitted), we call this information application data rather then
context information.

High-level model of Context Information
The context information that represents an entities’ context consists of
different levels of information. Figure 2-6, presents a high-level model of
context information (Broens, Halteren et al. 2006).

First, context information encapsulates information that describes an
entities’ context. This consists of an element that describes the context
type. For example, context information can describe the physical location
of a user. It consists of a value, for example 52.123/6.23123. Finally, it can
consist of a format in which the value is expressed, for example
‘Latitude/Longitude’.

Figure 2-5 Relation of
context, context
information, context
sources and the context-
aware application.

26 CHAPTER 2 BASIC CONCEPTS AND MODELS

Second, context information encapsulates information related to what it
describes, denoted as relation information. This information consists of the
entity (i.e. person, place, physical/virtual object) of which it is describing
its context. For example, context information can describe the context of
Person X, Table Y or Application Z.

Finally, on the meta-level, context information may contain information
that describes characteristics of the context it is representing. This meta-
information may consist of information on the quality of the context
information (called Quality of Context – QoC) or security information
(e.g., who is authorized to retrieve this context). Security and QoC related
to context-awareness are discussed in more detail in Section 2.5.

2.4 Context-Aware Applications

Similarly to context, there exist many definitions of context-awareness and
context-aware applications. In this section, we present a subset of these
definitions and present our interpretation of the concept context-awareness
and context-aware applications.

Definitions of Context-Awareness
Schilit et al. (Schilit, Adams et al. 1994) define context-awareness mainly as
applications that adapt to the user location. This is often also denoted as
location-awareness. Lamming and Flynn (Lamming and Flynn 1994) define

Figure 2-6 Overview of
the taxonomy of context
information.

 CONTEXT-AWARE APPLICATIONS 27

it as applications that are aware of user’s activities in an office environment.
Schmidt and Beigl (Schmidt, Beigl et al. 1999) propose a more abstract
definition of context-awareness - as an awareness of a “situation the user is
in”. Dey (Dey, Salber et al. 2001) provides a more generic definition of a
context-aware system as “the system (that) uses context to provide relevant
information and/or services to the user, where relevancy depends on the
user’s task”. Henricksen et al. (Henricksen, Indulska et al. 2005) define
context-aware applications as the applications that “adapt to changes in the
environment and user requirements”. Van Bunningen et al. (Bunningen,
Feng et al. 2005) define context-awareness as an awareness of a “situation
under which user’s database access happens”. Similarly, da Costa et al. (da
Costa, da Silva Strzykalski et al. 2005) define context-awareness as system
self-reflection in terms of as a storage, network, power and memory
parameters.

Our Definition of a Context-Aware Application
Dey’s definition offers a generic basis for our definition of context-aware
applications. However, in our view, it lacks expressing major characteristics
of context information relevant for defining context-aware applications.
First, context information should be treated as optional information. The
default behaviour of a context-aware application (i.e. context-unaware
behaviour) fulfils the basic user’s need. However, by adapting to context
information, the quality of the offered service improves. If inputted
information to the application cannot be treated as being optional, this
information is primary application data rather than context information.

Hence, we consider context-aware applications as an extension of non-
context-aware applications. Context-aware applications have a basic non-
context-aware behaviour, which is adapted when context is used. We
assume that a context-aware application can function without context but
can do its job better when considering context information.

Secondly, a context-aware application should react on fluctuating
availability of context information as context sources are dynamically
available during the lifetime of the application.

Finally, as described in Section 2.3, a context of an entity is transformed
into context information by context source. A context source can be limited
in its capabilities to transform context in context information or may
introduce interpretation errors. Hence, context information is inherently
imperfect (Dey, Mankoff et al. 2000; Henricksen and Indulska 2004) and
has a quality that describes how well it represents the real-world context. A
context-aware application should therefore react on the quality of the used
context information. Hence, we define a context-aware application as:

28 CHAPTER 2 BASIC CONCEPTS AND MODELS

An application that improves its offered service quality, by executing default
behaviour that can adapt, based on context information itself and the availability
and quality of this information.

Characteristics of Context-Aware Applications
Figure 2-7 shows a basic model of a context-aware application. When
compared to context-unaware applications (see Figure 2-2), context-aware
applications are characterized by the use of additional context inputs to
adapt their behaviour. Optionally, context-aware applications can produce
context information, which can be made available to other applications via
context outputs. Therefore, context-aware applications can also act as a
context source for other applications when they produce and provide
context information.

Context-Aware Application

Users

Context
source

Context
source

Context
source

input

output

Context input

Context output

A context-aware application can adapt to context information from three
types of entities: (i) information describing the context of the application
itself, (ii) context information describing the context of the application’s
users and (iii) information describing the context of other entities.

For example, a context-aware follow-me music application can adapt
music playback based on context information from all three types of
entities. This application adapts to the location where music is played by
taking into account the location of the application user (type ii), however
the music is paused when other persons are present in the same location as
the user (type iii). Additionally, the bit-rate of the played music can be
lowered/increased based on the available bandwidth for retrieving the music
stream (type i).

Definition 4 Context-
Aware Application.

Figure 2-7 Context-
Aware Application.

 CONTEXT-AWARE APPLICATIONS 29

Adapting the application behavior to context information can have
different forms, which can be combined in a context-aware application:
– Use context information to produce higher quality output. With higher

quality, we mean outputs that better suit the goal of the user. For
example in case of the follow-me music application, the presence of
other users in a room pauses the playback of music.

– Use context information to replace, minimize or tailor the user input.
For example, the follow-me music application uses the location of the
user to play music only in the rooms he is physically in. The user does
not have to switch the music on or off when he is moving between
rooms.

– Use context information to adapt the internal behavior of the
application. For example, to ensure the performance of the application.
The follow-me music application uses different playback bit-rates when
the available bandwidth fluctuates during the lifetime of the application.

Context offering, requirement and match
A context source offers context information in terms of context
offerings. Context offerings contain information on the context
information a context source is able to provide. This offering can consist of
all or a subset of information described in Figure 2-6, such as entity,
element and quality. Context-aware application requires context
information in terms of context requirements. Context requirements
specify similar information as a context offering, however then from the
application perspective. One actual instance of context information that is
exchanged between a context source and context-aware application is called
a context sample. Figure 2-8 visually represents these aspects.

For a context-aware application to be able to use context information (i.e.
consume context samples), a match has to be made between its context
requirements and available context offerings. Figure 2-9 visualizes the
process of matching the context offerings and context requirements.
Besides context requirements and offerings, the context owner may provide

Figure 2-8 Context
offerings, requests and
context samples.

30 CHAPTER 2 BASIC CONCEPTS AND MODELS

additional constraints on how and when its context is used. This is for
example to enforce the privacy of the user. Together these parameters form
the input on which a context match can be made between a context
source and a context-aware application. Creating a context match can be
the responsibility of the context-aware application or a third party such as a
mediator/broker.

Context
source

Context-aware
applicationMatchingofferings requirements

Context
owner

constraints

Example: Context-Aware Epileptic Alarm Application
To illustrate the concepts described in this section and to indicate the
difference between a context-unaware and a context-aware application, we
continue the example of a healthcare epileptic alarm application (Broens,
Halteren et al. 2007). This application offers an alarm service to its user
that notifies them of upcoming epileptic seizures. The user provides direct
application data inputs to the application via sensors on his body that
monitor vital signs such as heartrate and brain activity. Based on the vital
sign inputs, the application reasons on possible upcoming seizures. When a
seizure is detected by the application, it sends a notification output to the
patient (end-user) and to the application part running in the hospital (also a
user). Additionally it starts streaming the vital signs to the hospital.

By making this application context-aware, it uses context information to
better detect alarms and to improve the interaction with the users. This
context information is, for instance, the location of the patient and the
communication bandwidth available. This context information is acquired
from the context environment of the users. In this case, the location can be
retrieved via a GPS context source sensing the patient’s physical context
environment while the bandwidth is provided by a bandwidth monitoring
context source sensing the patient’s computation context environment. The
location is send together with the seizure notification to the hospital and is
used by the doctors to send help to the patient at the right location. The
bandwidth is used to tailor the vital signs to the capabilities of the
communication platform, such as increasing data compression or
decreasing sampling rates, to be able to guarantee the vital signs transfer to
the hospital.

Figure 2-9 Matching of
context offering with
context requirements.

 DESIGN ASPECTS OF CONTEXT-AWARE APPLICATIONS 31

2.5 Design Aspects of Context-Aware Applications

In this section, we discuss four key design aspects of context-aware
application: context-modelling, quality of context (QoC), context-
awareness and security, and context reasoning.

2.5.1 Context Modelling

By introducing context-awareness, applications become increasingly
complex and interconnected. This raises the need for context modelling. A
context model is an information model that represents context
information by describing context elements and their relationship. There
are several reasons for introducing context models (Dockhorn Costa,
Guizzardi et al. 2006):
– Characterize the application’s universe of discourse: When developing context-

aware applications, the used context information should be modelled in
a context model. For example, in the case of the epileptic alarm system
a nearby caregiver is send to the patient in need. The notion of ‘nearby’
should be captured in a context model to be able to develop high quality
application logic that can deal with this context information.

– Support common understanding, problem solving, and communication among the
stakeholders: Context information is exchanged between different
stakeholders such as the context owner and the application user. For
this exchange to be successful, all involved parties should have a
common understanding on the shared context information. For
example in (Broens, Pokraev et al. 2004), we discuss the need for such a
common understanding in the area of service discovery. Here we argue
that a high-quality service discovery result can only be achieved with a
common context and service model shared between the service provider
and service user.

– Represent context unambiguously: Context information can have multiple
representations. For example, the concept of ‘physical location’ can be
represented as ‘location’, ‘place’, ‘position’ etc. To be able to interpret
and reason on context information, a context model is needed to
capture concept unambiguously.

Current approaches for context modelling include, amongst others,
conceptual modelling (Dockhorn Costa, Guizzardi et al. 2006; Guizzardi
2006), ontological modelling (e.g. with the OWL language) (Wang, Gu et
al. 2004), meta-modelling (e.g. with UML) (Broens, Pokraev et al. 2004).
Researching approaches to model context information is out of the scope of
this thesis.

32 CHAPTER 2 BASIC CONCEPTS AND MODELS

2.5.2 Quality of Context (QoC)

As identified in Section 2.3 and 2.4, quality of context is an intrinsic
property of context and therefore influences the functioning of context-
aware applications. Quality of Context (QoC) is the measure that
indicates how well the offered context information represents the
corresponding real-world situation.

In this thesis, we adopt the notions of QoC developed by (Bucholz,
Kupper et al. 2003) and (Sheikh, Wegdam et al. 2007). They claim that
there are three reasons that motivate the notion of QoC:
– QoC-based application adaptation: due the inherent imperfectness of

context information (e.g. sensor inaccuracy, interpretation mistakes) the
quality of context highly influences how well the application can adapt
to context information. When taking an application specific viewpoint,
QoC is the measure that indicates how well the application can use
offered context information to adapt its behaviour. Therefore, besides
the actual context information, QoC should also be available to the
application to influence its behaviour.

– Middleware efficiency: multiple context sources can deliver similar context
information (e.g. multiple location context sources). Based on the QoC
the middleware can make selections on which context sources matches
best with the application context requirements.

– User’s privacy enforcement: artificially varying the QoC can be used to
preserve the privacy of the entity (user) (see Section 2.5.3). The entity
can specify constraints on the use of context. For example, the location
of the user can be determined on room-level precision (e.g. Tom is in
room 4126). To preserve the privacy of the user the QoC of the
provided context samples can be lowered to city-level precision (e.g.
Tom is in city Enschede).

Let’s reconsider Figure 2-9, which indicates that the use of context
information requires a match between the context offerings, requirements
and constraints. Part of the context requirements, offerings and constraints
can be related to QoC and can therefore be mapped onto quality of context
concept.

Figure 2-10 shows graph of the QoC of context information over time.
QoC can be specified in two ways: (i) specification related to context
samples, and (ii) specifications related to context offerings/requirements.
The first is what we denote as actual QoC. This measure specifies the
quality of a single instance of context information and therefore vary over
time. The second is what we call offered QoC and respectively required
QoC. These measures specify the potential quality range that can be offered
or respectively, the quality range that is required for the application to
function. These measures are semi-static and do not change often.

 DESIGN ASPECTS OF CONTEXT-AWARE APPLICATIONS 33

Hence, the context requirements of the application specify a lower limit
on the acceptable actual QoC of the offered context information. It does
not specify an upper limit because we assume that better QoC results in at
least the same but possibly better application behaviour. The context
offerings of a context source form a QoC range in which context can be
offered. The upper limit of the context offerings minus the constraints (i.e.
constraints limit the QoC) form the real upper limit on the offered QoC of
the context information. If the actual QoC of the offered context
information by a context source is between these limits this context is
useful for the application and can be consumed from the context source.
We call these limits the QoC Matching Area. Outside of these limits,
negotiations may take place to lower the requirements of the application or
to lower the constraints of the entity. This widens the matching area in
which the offered context is useful for the application.

To explain these concepts we present an example of a person locator
application, which indicates the route to a person inside a building based on
the location of the searched person and the location of the user. The
application specifies that the location has to be minimally precise on 50m.
The middleware finds a context source that can offer location with
minimum precision of 100m and a maximum precision of 1m. This results
in a matching area ranging from 1-50m precision. In the area between 50-
100m, negation may take place or the actual context may be rejected by the
application or the middleware may find another context source capable of
offering the required context.

We can further refine the presented QoC notion by introducing
application depended QoC levels as depicted in Figure 2-11. These levels
determine the type of behaviour of a context-aware application based on
the actual QoC. For example, the person locator application can provide a
directional arrow to the searched person when the precision is between 5-
50m. When the precision is higher than 5m, it can show a map with the
possible route to the searched person.

Figure 2-10 influence of
QoC on the matching
between a context-aware
application and a context
source.

34 CHAPTER 2 BASIC CONCEPTS AND MODELS

QoC

Time

QoC offerings
- constraints

Required
QoC

Application QoC level
Application QoC level

 = Middleware decision point
 = Application adaptation point

Actual QoC

QoC
Matching area

Offered
QoC

The abstract notion of QoC can be refined into the following QoC
indicators (Sheikh, Wegdam et al. 2007):
– Precision: “granularity with which context information describes the real

world situation.” For example, location of ‘Tom’ can be determined
with a precision of 10m.

– Freshness: “time that elapses between the determination of context
information and its delivery to a requestor.” For example, location of
‘Tom’ is determined 5 minutes ago.

– Temporal Resolution: “the period of time to which a single instance of
context in formation is applicable.” For example, the location of ‘Tom’
is valid for the coming half hour.

– Spatial Resolution: “the precision with which the physical area, to which
an instance of context information is applicable, is expressed.” For
example, Tom’s location is expressed on the room-level or Tom’s
location is expressed on the city-level.

– Probability of Correctness: “the probability that an instance of context
accurately represents the corresponding real world situation, as assessed
by the context source, at the time it was determined.” For example, the
probability of correctness of Tom’s location is at least 80%.

In this thesis, we mainly focus on the role of QoC for the application
adaptation and then specifically on how does the QoC influence the
matches between context sources and context-aware applications, and how
to facilitate applications to adapt to QoC. The application strategy to really
adapt its behaviour to QoC is out of the scope of this thesis.

Additionally, we recognize two main challenges in dealing with QoC,
however consider them out of scope for this thesis:
– Representation of QoC: to be able to use QoC measures, the application

needs to understand the QoC indicators and values specified by the
context source, and visa versa. This corresponds with the common
problem of semantic interoperability discussed earlier.

– Determining QoC measurements: determining actual QoC measures of
context information at run-time is challenging.

Figure 2-11 influence of
QoC on a context-aware
application.

 DESIGN ASPECTS OF CONTEXT-AWARE APPLICATIONS 35

2.5.3 Context-awareness and Security

In a context-aware system, multiple physical entities are involved. Figure 2-
12 shows the relationships of the different entities. First, there are the
entities that own the context information (context owner) that is
distributed to context-aware applications via context sources. Often this
context information specifies the situation of this owner, however also
other entities may own context information of other entities. Secondly,
there are the users of the context-aware application that, however
implicitly, use context information.

Both parties are subject to security risks. For example, the privacy of the
owner of the context information is at risk because of the possible malicious
use of their context information. Examples of privacy risks are unauthorized
tracking of the user’s location, profiling and identity theft of the user. On
the other hand, the user of the context-aware application is also at risk
because it can use a context-aware application that adapts to context
information from un-trusted context sources.

Hence, on the one hand, context-aware environments have the
opportunity to deliver users with higher quality services. However, on the
other hand, it is also recognized that using context information may
introduce a security risk for the users (Campbell, Al-Muhtadi et al. 2002;
Hong and Landay 2004; Robinson, Vogt et al. 2004; Brey 2005; Neisse,
Wegdam et al. 2007). In the remainder of this section, we discuss two main
security aspects in more detail: privacy and trust.

Context-Awareness and Privacy
The Oxford dictionary defines privacy as “a state in which one is not
observed or disturbed”. When transformed to the context-awareness
domain, privacy can be described as the state in which the context

Figure 2-12 Relating
context-awareness with
privacy and trust.

36 CHAPTER 2 BASIC CONCEPTS AND MODELS

information of an entity, which may be exploitable information, cannot be
disclosed unauthorized.

Therefore, in a privacy-based context-aware system, the owner of the
context information should be aware of how their context is being acquired
(access control) and how it is going to be used (context handling).
However, users should not be disrupted too much from using legitimate
and desirable context-aware systems. The challenge is to find a balance
between the controlled release of context information and the usability of
controlling the user’s privacy. For example, by enabling the user to set
privacy policies. Too much user privacy control may result in inflexible and
invasive context-aware systems, while too little privacy control may result in
loss of privacy (Wegdam, van Bemmel et al. 2006).

So, on the one hand, disclosure of context needs privacy enforcement
mechanisms but on the other hand context information can be used to
make the context privacy control less obtrusive (e.g. context-aware access
control (Hulsebosch, Salden et al. 2005)). Overcoming the privacy sensitive
nature of context information is out of the scope of this thesis.

Context-Awareness and Trust
Chamber’s dictionary defines trust as the “belief or confidence in, or
reliance on, the truth, goodness, character, power, ability, etc of someone
or something”. For a successful context-aware application, there has to be a
trust relation between the involved entities. A trust relation can be defined
as a subjective measure to represent the believe of a ‘trustor’ concerned
with a certain ‘trustees’ behaviour and focused on a certain trust aspect
(Abdul-Rahman and Hailes 2000). Trust aspect in context-awareness can
mainly be divided into three aspects (Neisse, Wegdam et al. 2007):
– Identity provisioning: trust of the trustor in the identity of the thrustee
– Context information provisioning: trust of the trustor in the quality of the

offered context information.
– Privacy enforcement: trust of the trustor in the quality of the privacy

enforcement by the trustee.
For example, a trust relation between Tom (trustor) and Ricardo (trustee,
context owner) may contain all the previously mentioned aspects. Tom may
trust that Ricardo is who he says he is (identity provisioning). Tom may also
trust Ricardo to provide high quality context information (context
information provisioning) while not using this context for malicious use
(privacy enforcement). Establishing trust relations for exchanging context
information is out of the scope of this thesis.

 DESIGN ASPECTS OF CONTEXT-AWARE APPLICATIONS 37

2.5.4 Context Reasoning

Another property of context information is that it can be used to deduce
other context. The process of deducing entailed context information from
different sources of context is called context reasoning (Benerecetti,
Bouquet et al. 2000; Kranenburg, Salden et al. 2005). There are two types
of context reasoning, which may be combined:
– Vertical reasoning: deduce higher-level context information from more

primitive context sources. For example, ‘speed’ can be deduced from
combining ‘travelled distance’ and ‘Elapsed time’.

– Horizontal reasoning: deduce higher-quality context information. For
example, improve the precision of ‘Location’ by reasoning (e.g.
averaging) on location information from multiple location sources.

The process of context reasoning is represented in the commonly adapted
layered model of a context-aware system (Ailisto, Alahuhta et al. 2002).
Figure 2-13 presents this layered model. The model consists of five layers:
physical, context data, semantic, inference and application layer. On the
physical layer context sensors produce raw context data. On the context
data layer this raw context data is processed into context information. On
the semantic level annotate the context information with semantic
information such it can be used for further reasoning. This includes storing
it for further use. On the inference level the semantic annotated data is used
to deduce entailed context information. On the application level this
deduced information can be used for tailoring the application behaviour.
We have to note that different application parts encompassing a context-
aware system may support different combination of layers from this model.
Furthermore, other variations (three/four layered models) of the presented
model exists, for example (Baldauf, Dustdar et al. 2004; Henricksen,
Indulska et al. 2005). Context reasoning is out of the scope of this thesis.

38 CHAPTER 2 BASIC CONCEPTS AND MODELS

We explain reasoning and the layered model with a healthcare example.
Figure 2-14 presents the reasoning process of this example. Consider a
system that measures heart activity. Electro Cardio Gram (ECG) sensors
measures physical signals and provide the system with the result in volts
(layer 1). The system can now, by aggregating this voltage and time (layer
2), construct an ECG diagram (layer 3). The next step could be to use this
diagram to infer the heartbeat in beats per minute (layer 4). For instance,
by combining the heartbeat, sweat production, and the activity the user is
doing (i.e., watching TV) it can be inferred if a patient is suffering from an
epileptic seizure, or it can even be predicted if a patient suffers from an
epileptic seizure (layer 4). The application can notify caregivers based on
this seizure context (layer 5).

Figure 2-13 Layered
model of a context-
aware system.

 MODELLING CONTEXT-AWARE APPLICATIONS 39

2.6 Modelling Context-Aware Applications

In this section, we present basic models of context-aware applications.
These models are further refined in the remainder of this thesis.

Context-Aware Applications
In this section we take a top-down approach. Figure 2-15 presents a high-
level black-box model of a context-aware application and its supporting
context middleware.

Figure 2-14 Reasoning
example in the
healthcare domain.

40 CHAPTER 2 BASIC CONCEPTS AND MODELS

A context-aware application uses context information to adapt its
behaviour. Furthermore, it can produce context information. The context
middleware facilitates these aspects by offering a context retrieval and
context publishing service. The context retrieval service facilitates the
context-aware application to retrieve context. The context publishing
service facilitates the context-aware application to publish its context to
the context environment. For example, other context-aware applications.

The context-aware application is further detailed in Figure 2-16. It
consists of two main functional elements: (i) application logic and (ii)
context logic. Application logic is the behaviour of the application that
fulfils the users need. This behaviour can adapt to context information it
consumes and possibly can produce context. Context logic is the
behaviour needed for the application logic to retrieve the required context
information or publish its offered context information.

Figure 2-15 Context-
aware application and its
supporting context
middleware.

Figure 2-16 Detailing
the context-aware
application.

 MODELLING CONTEXT-AWARE APPLICATIONS 41

Figure 2-17 details the context logic. The context logic consists of two
functional elements. First, the context consumer element consists of
behaviour to retrieve context required by the application logic. For an
application to be context-aware, it requires to have a context consumer
functional element. Secondly, the context logic can consist of a context
producer element. The context producer element is optional and consists
of behaviour to publish the offered context information of the application
logic. In this thesis, we also use the term context consumer and
producer role. With this we indicate that a context-aware application
consists of a context consumer and respectively context producer element,
or indicate a context source when it only has a context producer element.

Context
Consumer

Context Producer

Both the context retrieval service and the context publishing service are
provided by the context middleware. We denote the specific middleware
functionality that provides these services as context management.
Context middleware may also consist of other elements like communication
and security mechanisms. These are out of the scope of the model
presented in this chapter.

Context Sources and Context Binding
Figure 2-18 shows a model of a context source. Context information is
offered by context sources. We model these context sources similarly to
context-aware applications. It consists of specific application logic
responsible for sensing, acquiring and processing context information into
context offerings. The context logic has a mandatory context producer

Figure 2-17 Detailing
the context logic.

42 CHAPTER 2 BASIC CONCEPTS AND MODELS

element that is responsible to publish the offered context produced by the
application logic.

Context Producer

Context
Sensing

Context
Processing

Context
Aquisition

A context-aware application X can appear as a context source for context-
aware application Y that is using the context of context-aware application
X. However, there also exist non-context-aware applications that are
context sources. They have as sole purpose producing context. For
example, an application part that wraps a GPS to produce location
information.

Figure 2-19 shows the relationship of a context-aware application and a
context source. A context-aware application has context requirements that
are fulfilled by its context consumer functional element, using the context
retrieval service. A context source offers its created context via the context
publishing service to the context middleware. The middleware is
responsible for facilitating the association (i.e. determine a context match)
of a context consumer (context-aware application) with a suitable context
producer (context source). We define a context binding as:

A context binding is the required association between a context consumer and a
context producer, which is needed for context information exchange, resulting from
a context binding process.

Figure 2-18 Model of a
context source.

Definition 5 Context
Binding.

 CONTEXT BINDING PROCESS 43

2.7 Context Binding Process

Creation and maintenance of a context binding requires a comprehensive
binding process. First, we identify the phases in this binding process.
Additionally, we identify several challenges that influence the availability and
quality of a possible binding. We related the importance of the phases with
the identified challenges.

2.7.1 Phases in a binding process

We distinguish several phases in a generic binding process to create and
maintain context bindings. Figure 2-20 discusses the phases and artefacts in
this binding process. Grey rounded rectangles represent phases of the
binding process. White rectangles represent artefacts used by or resulting
from the functions execution in the phases.

Figure 2-19 Relation of
a context-aware
application with a
context source.

44 CHAPTER 2 BASIC CONCEPTS AND MODELS

ReleasingEstablishment MonitoringSelectionDiscovery

Context
Producer
changes

Context
Offerings

Context
Requirements

Context
Binding

Context Retrieval
Service boundary

The following phases and corresponding functions can be distinguished:
– Discovery: Functions that have as goal to find context producers that

match with the user’s context requirements. This includes:
– Processing context requirements from the user.
– Extract basic context requirements (e.g. Location of Tom) and

possible QoC criteria on the required context information (e.g.
precision > 2m).

– Find suitable context producers, advertised with their context
offerings, from available context producers in local, remote or
federated repositories.

– Selection: Functions that select suitable context producers. This includes:
– Rank the set of context producers resulting from the discovery

phase.
– Select one or more suitable context producers based on pre-defined

or user-based criteria.
– Establishment: Functions that create a context binding with a selected

context producer and makes this binding available to the user. This
includes:
– Create a context binding to the selected context producer. This may

include creating an intermediary proxy for controlling certain aspects
of the binding. For example, including functions to enforce privacy,
ensure QoS, context reasoning, or start of a rebinding process in
case of disappearing context producers.

– Make the created context binding available to the user. For example
by notifying the user.

– Monitoring: Functions that actively monitor a created binding (i) on
fluctuating availability and QoC and (ii) newly appearing context
producers. This includes:
– Monitor an established binding on disappearing of bound context

producers and possibly initiate another discovery phase.

Figure 2-20 Context
Binding process.

 CONTEXT BINDING PROCESS 45

– Monitor the availability of new context producers and possibly
initiate another selection phase to compare the old bound producer
and the newly available producer.

– Releasing: Functions that destroy an established binding. This can be
explicit releasing in case of a destroy request or implicit releasing when
the application of the user terminates.

In the model, we assume that the context offerings are already influenced
by possible context constraints (see Section 2.4). Consequently, the set of
context offerings available for discovery, excludes offerings of producers
that, due to constraints of the owner, cannot be used.

2.7.2 Characteristics of context bindings

A binding process that takes into account all the previous mentioned
functions is important, due to some inherent challenges for creation and
maintenance of context binding:
1. Variety of distributed context sources:

– The environment of the context-aware application may contain
multiple distributed context sources that are capable of offering the
required context information.

2. Heterogeneity of context sources:
– Context sources may offer (similar) context using different

representations (i.e. context models), and access mechanisms.
3. Dynamic availability of context sources:

– After establishing a binding between a context-aware application and
a context source, the mobility of the user and consequently of its
context-aware application may result in the unavailability of bound
context sources.

– After binding of a context-aware application with a context source,
the mobility of context sources may result in the unavailability of
bound context sources.

4. Dynamic availability of the context information a context source can
offer:
– Sensor failure may result in the unavailability of context information

a context source can provide.
– Effectuation of context-aware privacy access mechanism may result

in the unavailability of context information delivered by bound
context sources.

– Context-aware applications may require context information from
other entities than itself. Due to the mobility of these entities, bound
context sources may not be able to offer context related to these
entities.

5. Fluctuating quality of context sources:

46 CHAPTER 2 BASIC CONCEPTS AND MODELS

– Sensing and acquisition errors of raw context information, or
misinterpretation of the raw context information, yields imperfect
context information that has fluctuating QoC.

– Multiple context sources may provide similar context with different
offered quality of context.

– After binding, the quality of context samples a context source
provides may differ over time.

– After binding, new context sources may appear in the context
environment with possibly better quality of context.

Table 2-1 relates these challenges to the distinguished binding phases.
Discovery is required to enable applications to find a suitable context
source from the variety of available distributed context sources. This
includes a selection from a set of suitable context sources. A binding has to
be established between an application and one or more context sources.
Establishment of a binding has to ensure that these two can interoperate.

Overcoming dynamic availability and fluctuating QoC requires a
complete binding process. After establishment the binding has to be
monitored. In case of a failing binding, for example due to loss of a context
source or degrading QoC, a new source has to be found and hence a (re-
)binding process is stared. The final three challenges are the motivation for
this research. Aspects to deal with these challenges are elaborated further in
the remainder of this thesis.

 Binding
 phase
Binding
challenge

Discovery Selection Establishm
ent

Monitoring Releasing

Variety of distributed
context sources

● ● - - -

Heterogeneity of
context sources

- - ● - -

Dynamic availability of
context sources

● ● ● ● ●

Dynamic availability of
context information

● ● ● ● ●

Fluctuating quality of
context sources

● ● ● ● ●

Legend: ‘●’, ‘-‘ =‘important’, ‘not important’

Table 2-1 Rating the
importance of the
binding phases to
overcome binding
challenges.

Chapter 3

3. State-of-the-Art on Context
Middleware

This chapter discusses the state-of-the-art in context middleware. We focus
especially on middleware mechanisms that facilitate the creation and
maintenance of context bindings. With this we mean mechanisms that
(partially) support the discovery, selection, establishment, monitoring and
releasing of context bindings. Parts of this chapter are published in (Broens,
Halteren et al. 2006).

This chapter is organized as follows: Section 3.1 presents a general
overview of middleware, especially focussing on component-based
middleware. Section 3.2 discusses a relevant subset of currently available
context middleware systems. Section 3.3 gives a general overview of the
AWARENESS middleware architecture and discusses its four proposed
context discovery mechanisms. Finally, Section 3.4 gives conclusions on the
current capabilities of context middleware systems for the creation and
maintenance of context binding. Furthermore it discusses how we can
leverage from these capabilities and where extensions can be made.

3.1 Middleware

Distributed applications consist of application parts that are connected by
communication platforms. With communication platforms we denote
hardware and software that enable interactions amongst application parts.
Middleware is commonly referred to as a software layer between
applications and communication platforms with the general goal of
facilitating the development of distributed applications. This goal can be
divided in (Emmerich, Aoyama et al. 2007):
– Provide interoperability between distributed applications across

heterogeneous communication platforms;

48 CHAPTER 3 STATE-OF-THE-ART ON CONTEXT MIDDLEWARE

– Support programming abstractions that hide complexities of building
distributed applications.

– Offer common building blocks that relieve the application developer
from solving recurring problems.

Evolution of Middleware
Remote Procedure Call (RPC) can be seen as is the foundation of the
majority of current middleware technologies. RPC is introduced in the time
of imperative programming (1980’s) by Birell and Nelson (Birrel and
Nelson 1984). RPC hides for the developer the fact that an invoked
procedure call is handled by a remote party instead of a local party. They
propose a two-tier system that consists of a client, which is a program that
calls a remote procedure, and a server, which is a program that implements
the invoked remote procedure. Additionally, they introduce many concepts
used in current middleware technologies, like Interface Definition Language
(IDL), Name and Directory service, service interface and stub. A recent
example of pure RPC-based middleware is XML-RPC (Apache Webservices
project 2003). XML-RPC implements the transport of the remote
procedure call with HTTP and uses XML as the data format to encapsulate
a procedure call.

There are several enhancements to RPC-based middleware (Emmerich,
Aoyama et al. 2007). Traditional RPC based middleware supports only
synchronous communication. To support asynchronous communication,
Message Oriented Middleware (MOM) uses messages and message queues
to transfer RPC’s. Another enhancement is Transaction Processing
Monitors (TP-Monitors), which extend traditional RPC with transaction
capabilities.

With the evolution from the imperative programming paradigm to the
Object-Oriented programming (OO) paradigm (1990’s), RPC based
middleware is extended with the notion of objects. This type of middleware
is called Object-Oriented middleware. Although the goal of OO middleware
is similar to RPC middleware, the client does not invoke a procedure but a
method of an object that is possibly exposed with an interface. Due to the
characteristics of OO such as inheritance and polymorphism, the function
the server actually performs depends on the object that implements the
remote method. Well known examples of OO middleware are RMI (Sun
2003) and CORBA (OMG 2004). Currently, middleware is evolving into
component-based middleware, which we discuss in more detail in the next
section.

For a more thorough discussion on the evolution of middleware for
distributed systems, we refer to (Emmerich, Aoyama et al. 2007) and
(Alonso, Casati et al. 2004).

 MIDDLEWARE 49

Component-based Middleware
Component-based middleware views an application as a composition of
components. The main idea behind components is re-use and composition
of application code, which can be recognized in the Latin word ‘componere’
meaning “to put together”. A component is defined by Szyperski
(Szyperski 1998; Szyperski, Gruntz et al. 2002) as “a unit of composition
with contractually specified interfaces and explicit context dependencies
only. A software component can be deployed independently and is subject
to composition by third parties”.

When analyzing the presented definition, we distinguish the following
characteristics of a component (Wegdam 2003):
– Explicit context dependencies: specifies what the deployment environment

needs to provide to allow the component to function, including required
interfaces from other components. For example, an epileptic detection
component could specify that it needs a vital sign analyzing component
to function.

– Contract and interfaces: specifies functional and non-functional aspects of a
component. A contract is typically an interface that specifies operations
annotated with pre- and post-conditions and possibly invariants. For
instance, an epileptic detection component could specify an operation
“detectSeizure” which requires an integer ECG signal in the range of -
10 mV to 10mV.

– Unit of deployment: a component is an application part that is actually
deployed. This requires an environment including lifecycle management
functionality to (un)deploy components.

– Third party composition: a component can be composed by third parties.
For example, an epileptic detection component can be used in a patient
application but also in the application of a healthcare professional.

Figure 3-1 presents an overview of a generic component-based middleware
architecture. An application is a composition of components. These
components are encapsulated by containers that offer an execution
environment. Basic functions a container provides are lifecycle management
functions such as installing, starting and stopping of components. An
application can consist of multiple distributed components residing in
different containers.

Components are deployed in the container using a component
descriptor. The component descriptor indicates the capabilities the
component can offer (i.e. component interface) and the capabilities it
requires from the middleware or other components. The component
descriptor is used during the deployment of the components. Components
interact with the container using the container interface. The container
can offer certain middleware services such as the advertising and
discovery of component services. The container (and hence also

50 CHAPTER 3 STATE-OF-THE-ART ON CONTEXT MIDDLEWARE

components) interacts with clients using some type of communication
platform. Examples of currently available component-based middleware
technologies are Corba Components (OMG 2002), J2ME (Sun 2005),
J2EE (Sun 2005) and OSGi (OSGi Alliance 2004).

Figure 3-2 relates the component-based middleware paradigm with context-
awareness. If we consider an application as application behaviour that based
on user inputs creates user outputs, context-aware applications additionally
use context inputs offered by a context producer to provide higher quality
output. If we apply the component-based paradigm, a context-aware
application becomes a composition of context-unaware and context
consuming and/or context producing components that may have individual
context requirements and context offerings.

Figure 3-1 Generic
component-based
middleware architecture.

Figure 3-2 Component-
based context-aware
applications.

 MIDDLEWARE 51

Middleware for Context-Aware Applications
Middleware has the potential to overcome challenges that developers of
context-aware applications face:
– Context producers and context consumers are distributed on possible

heterogeneous communication platforms. Additionally, context
producer and consumers are heterogeneous in the way they offer and
transfer context information. Middleware infrastructures can facilitate
the exchange of context information by providing interoperability
between heterogeneous context producer, consumer and
communication platforms.

– There is a need for common abstractions that hide the complexity of
developing context-aware applications (e.g. binding, security, context
reasoning). These abstractions can be offered in the form of context
middleware.

– Recurring problems like context discovery, securing context
information, context-based adaptation and binding can be bundled into
generic middleware building blocks.

We define context middleware as an extension of the earlier presented
middleware definition:

Context middleware is an intermediary software layer, between context consumers
and producers, and communication platforms, which has as goal to reduce the
complexities of distributing context information to facilitate the development of
context-aware applications.

Current context-aware middleware infrastructures are mainly OO-based
solutions. We claim that a direction towards component-based middleware
approaches is beneficial for the easy development of context-aware
applications. The general advantages of component-based development of
applications also apply for the development of context-aware applications:
– Reusability of components: Components are well-defined encapsulated units

of programming that can be easily reused. Hence, context-aware
application development can benefit from this aspect.

– Third party composition: When developing a context-aware system, context
consumers and context producers are typically distributed and subject to
third party composition. Components are well suited for this third party
composition.

– Unit of deployment: components execute in a run-time environment this
means that on deploy-time this environment can execute certain
functionality. For context-aware applications this could for example
includes initializing context bindings and setting security policies. This
may results in a possible decreasing amount of explicit interactions of
the application with the middleware.

Definition 6 Context
middleware.

52 CHAPTER 3 STATE-OF-THE-ART ON CONTEXT MIDDLEWARE

3.2 Current Context Middleware Systems

There exist many context middleware systems that (partially) facilitate the
creation and maintenance of context bindings. For the interested reader, we
refer to the following papers for an extensive overview of current context
middleware systems (Chen and Kotz 2000; Henricksen, Indulska et al.
2005; Baldauf, Dustdar et al. 2007).

In this section, we discuss a small subset of context middleware systems,
which we consider representative for the spectrum of context middleware
systems. We discuss successively: the Context Toolkit (Dey, Salber et al.
2001), Solar (Chen and Kotz 2002), Pace, (Henricksen, Indulska et al.
2005), Java Context-Awareness Framework (JCAF)(Bardram 2005) and the
Context Management System (CMS) (Ramparany, Poortinga et al. 2007).

For every system, we provide a high-level architectural overview
followed by a discussion on their context binding capabilities. These
capabilities are identified using the binding phases as identified in Section
2.7.

3.2.1 Context Toolkit

The Context Toolkit (Dey 2000; Dey and Abowd 2000; Dey, Salber et al.
2001) has pioneered in providing generic support for the exchange of
context information. Main elements in the context toolkit architecture are:
context widgets, sensors, aggregators, interpreters and discoverers (see
Figure 3-3).

A context widget encapsulates a single physical sensor that produces
context information. It offers an abstraction to enable applications to
uniformly retrieve context information, independently from the specific
sensor technology. A context aggregator can be used to perform horizontal
reasoning by aggregating multiple context samples from different context
widgets. A context interpreter can be used to do vertical reasoning by
providing higher-level context information based on lower-level context
information provided by context widgets (e.g. speed, based on time and
distance). A discoverer can be used to locate a specific context
widget/aggregator or interpreter. Furthermore, it enables applications to be
notified of appearing and leaving context widgets.

 CURRENT CONTEXT MIDDLEWARE SYSTEMS 53

Discussion
In Table 3-1, we identify the context binding capabilities of the Context
Toolkit, based on the identified phases and functions in a generic context
binding process (see Section 2.7).

 Discovery Selection Establishment Monitoring Releasing

Context Toolkit ● x ● ● x

Legend: ‘●●’, ‘●’, ‘x’ =’comprehensively’, ‘partially’, ‘does not’ implement functions from this
phase

The context toolkit was one of the first middleware mechanisms to offer
support for context information exchange. It offers a basic discovery
mechanism to locate context widgets, without support for QoC criteria.
Selection of widgets is the responsibility of the application. Establishment of
a binding is performed by providing a reference of a widget to the
application. The context toolkit monitors for the availability of context
widgets. Applications can register for notifications of leaving (i.e.
unregistering) and appearing (registering) widgets. However, decisions (i.e.
re-binding) on how to react on these situations are the responsibility of the
applications. Statements on releasing of context bindings are not explicitly
mentioned.

Figure 3-3 Overview of
the of the Context Toolkit
architecture.

Table 3-1 Context
binding capabilities of
the Context Toolkit.

54 CHAPTER 3 STATE-OF-THE-ART ON CONTEXT MIDDLEWARE

3.2.2 Solar

Solar (Chen and Kotz 2002; Chen and Kotz 2003; Chen, Li et al. 2004) is a
mechanism for distribution of context information in large-scale peer-to-
peer sensor network. Elements in the Solar architecture are: sensors,
planets, operators, channels and directories (see Figure 3-4).

Sensors may connect to so-called planets to advertise their context
offerings. Planets form an execution environment for operators, which are
data processing blocks, which together form a peer-to-peer network.
Context-aware applications can also connect to planets to retrieve context
information. Exchange of context information between sensors, operators
and applications is done via channels. A planet offers generic services to its
connected sensors and applications. One of them is a directory service
which a context-aware application can use to locate operators that can
provide certain context information.

Discussion
In Table 3-2, we identify the context binding capabilities of Solar, based on
the identified phases and functions in a generic context binding process (see
Section 2.7).

 Discovery Selection Establishment Monitoring Releasing

Solar ● ● ● x x

Legend: ‘●●’, ‘●’, ‘x’ =’comprehensively’, ‘partially’, ‘does not’ implement functions from this
phase

Solar offers basic support for applications to discover operators that can
produce the required context information. The concept QoC is out of the
scope of Solar. When applications request context information, Solar
selects an operator path (i.e. composition of operators) that is suitable for

Figure 3-4 Overview of
the Solar architecture.

Table 3-2 Context
binding capabilities of
Solar.

 CURRENT CONTEXT MIDDLEWARE SYSTEMS 55

the context requirements of the application. Establishment of a context
binding is done by providing a reference to an operater that can traverse
context information from the determined operator path. Switching of
planets (i.e. operator paths) when planets disappear or new planets become
available is the responsibility of the application. Releasing of context
bindings are not explicitly mentioned.

3.2.3 Pace

The Pace middleware (Henricksen and Indulska 2004; Henricksen,
Indulska et al. 2005) offers supporting mechanisms and tools for the
development of context-aware applications. The Pace middleware consists
of (see Figure 3-5):
– Context management system: functions to aggregate and store context

information. Additionally, it provides functions to discover context
information. The context management system consists of multiple
distributed context repositories, which a context-aware application can
query or subscribe to. Usage of access control mechanism on the
repository can be configured.

– Preference management system: functions to store user preferences. Based
on these preferences and context information, stored in the context
management systems, it triggers certain actions.

– Programming toolkit: functions that enable application developers to easily
specify actions that should be triggered by the preference manager.

– Messaging framework: functions to facilitate the communication between
the different components of the middleware and context-aware
applications.

– Schema compiler toolset: tools that enable application developers to
generate code, based on application specifications, that eases the
interaction with the Pace middleware.

56 CHAPTER 3 STATE-OF-THE-ART ON CONTEXT MIDDLEWARE

Context-Aware Applications

Context
Management

CSCS
Context
sensors

Preference
management

Programming toolkit

Messaging framework

Schema
compiler

Discussion
In Table 3-3, we identify the context binding capabilities of Pace, based on
the identified phases and functions in a generic context binding process (see
Section 2.7).

 Discovery Selection Establishment Monitoring Releasing

Pace ●● ●● ● x x

Legend: ‘●●’, ‘●’, ‘x’ =’comprehensively’, ‘partially’, ‘does not’ implement functions from this
phase

The Pace middleware offers support for the discovery of context
information via the context management functions. The context model they
use to describe context information contains the notion of QoC. However,
it is unclear how this is used in the discovery and selection process.
Selection and establishment is implicitly performed by querying the
databases that are filled with context information. Appearing and
disappearing context producers are out of the scope of Pace. Releasing of
context bindings or not explicitly mentioned.

3.2.4 JCAF

The Java Context-Awareness Framework (JCAF) offers a light-weight
programming framework for the development of context-aware

Figure 3-5 Overview of
the Pace architecture.

Table 3-3 Context
binding capabilities of
Pace.

 CURRENT CONTEXT MIDDLEWARE SYSTEMS 57

applications. Elements in JCAF are (see Figure 3-6): sensors, entities,
context clients, context services, context monitor, entity repository and
transformer repositories.

There are two types of context clients: the first retrieves context
information (i.e. context-aware application) and the second produces
context information (i.e. sensor). The latter type wraps a sensor in a
software component, together with a context monitor that acquires context
information from the sensor. This context information is exposed to an
application as context service. Every context type is represented as an
‘entity’ and stored in the entity repository. Additionally, a context service
can consist of transformers that aggregate context information from
multiple entities or infer context information stored under a new entity.
Access control mechanisms can be implemented in a context service. The
context consuming context client can request context information with a
request/response mechanism or via a subscribe/notify mechanism.

Context Service

Transformer repository

Entity repository

Context Client

Sensor

Context monitor

Context Client

Event listener

Context-Aware
application

Context Service

Transformer repository

Entity repository

Context Client

Sensor

Context monitor

Subscribe to
context changes

Retrieve context
information

Discussion
In Table 3-4, we identify the context binding capabilities of JCAF, based on
the identified phases and functions in a generic context binding process (see
Section 2.7).

Figure 3-6 Overview of
the JCAF architecture.

58 CHAPTER 3 STATE-OF-THE-ART ON CONTEXT MIDDLEWARE

 Discovery Selection Establishment Monitoring Releasing

JCAF ● x ● x x

Legend: ‘●●’, ‘●’, ‘x’ =’comprehensively’, ‘partially’, ‘does not’ implement functions from this
phase

The JCAF middleware provides a generic programming framework for
handling context information. However, it does not provide a specific
discovery mechanism to discover context services. For this purpose it reuses
the Java RMI registry facility. In the discovery, QoC criteria are not dealt
with. Establishment of a context binding is done by providing a reference to
a context client. Additionally, fluctuating availability of context services and
the quality of context information is not taken into account. Explicit
statements on releasing a context binding are not made.

3.2.5 CMS

The Context Management System (CMS) (Ramparany, Poortinga et al.
2007) is an infrastructure for managing context information. Elements in
CMS are (see Figure 3-7): sensors, context wrappers, context broker,
context store, and context interpreter.

A context-aware application can request (i.e. request/response and
subscribe/notify) context information via the context broker. The context
broker stores the capabilities of sources of context that advertise their
offerings via a context wrapper. A context wrapper is a software component
that interacts with a sensor and that can transfer context information to a
context-aware application. Additionally, CMS supports the storage of
context information in the context store. This store can be queried to
retrieve context history or can be used as a basis for context interpretation
(i.e. context reasoning) by the context interpreter.

Table 3-4 Context
binding capabilities of
JCAF.

 CURRENT CONTEXT MIDDLEWARE SYSTEMS 59

Context-Aware Applications

Context Broker

Context
Interpreter

Context
Wrapper

Sensor

Context Store

Discussion
In Table 3-5, we identify the context binding capabilities of CMS, based on
the identified phases and functions in a generic context binding process (see
Section 2.7).

 Discovery Selection Establishment Monitoring Releasing

CMS ●● x ● x x

Legend: ‘●●’, ‘●’, ‘x’ =’comprehensively’, ‘partially’, ‘does not’ implement functions from this
phase

CMS offers discovery of context wrappers via the context broker. In the
discovery request there is basic support for QoC criteria. Selection of a
suitable wrapper is the responsibility of the application. Establishment of a
binding is performed by providing a reference to the wrapper. Fluctuating
availability and quality of wrappers is out of the scope of the CMS. Explicit
statements on releasing are not made.

3.2.6 Discussion

The discussed context middleware systems offer partial support for a
comprehensive context binding process. Their focus is mainly on the
discovery of context sources. Establishing a context binding and reacting on
possible fluctuating availability and quality of context information is left to
the developer of context-aware applications. Our research focuses on
tackling these issues as part of the AWARENESS project (see the next
section). However, AWARENESS also developed several other context

Figure 3-7 Overview of
the CMS architecture.

Table 3-5 Context
binding capabilities of
CMS.

60 CHAPTER 3 STATE-OF-THE-ART ON CONTEXT MIDDLEWARE

management mechanisms, which we discuss and incorporate in the
previously started comparison.

3.3 Awareness Context Middleware

The goal of the Awareness project (Sinderen, Halteren et al. 2006;
Wegdam, Sinderen et al. 2008) is to develop a middleware-based
infrastructure to facilitate the development of context-aware, mobile
applications. In this section, we first give an overview of the AWARENESS
architecture and position our work in this architecture. Additionally, we
discuss the four context management mechanisms developed in
AWARENESS, which we believe give a representative and innovative
overview of current context management solutions.

3.3.1 Overall AWARENESS Architecture

Figure 3-8 shows the basic layered architecture of the AWARENESS
infrastructure. Two layers can be distinguished: (i) the context-aware
mobile application layer (white), and (ii) the context infrastructure layer
that offers generic support functions (grey) to the application layer.

 AWARENESS CONTEXT MIDDLEWARE 61

re
q/

rs
p

su
b/

no
t

de
le

ga
te

d
ap

pl
ic

at
io

n
be

ha
vio

ur

The following infrastructure functions are identified:
– Context reasoning: The context reasoning functionality (Sinderen,

Verheijen et al. 2007) is responsible for combining context information
from different sources. In this way the quality of the context
information can be improved (horizontal reasoning), or ‘higher level’
context information from more primitive context information can be
derived (vertical reasoning).

– Context management: The context management functionality (Benz,
Hesselman et al. 2006) is responsible for discovering and exchanging
context information. It offers request-response and publish-subscribe
interaction patterns to the application layer to allow access to context
information. In addition, application developers can delegate parts of
the application behaviour by issuing application-specific behaviour rules
that are executed in the infrastructure.

– Privacy control: The privacy control functionality (Wegdam, Brok et al.
2007) enables end-users to control their privacy. It ensures that privacy
sensitive information that is trusted to the infrastructure can only be
accessed after the user has given consent for this. The context
information can be anonymized or obfuscated (i.e. reducing the Quality

Figure 3-8 Overall
awareness architecture
(Sinderen, Halteren et
al. 2006; Wegdam,
Sinderen et al. 2008).

62 CHAPTER 3 STATE-OF-THE-ART ON CONTEXT MIDDLEWARE

of Context) before providing it to the application layer. In addition, it
provides identity management, context-aware trust management and
adaptive security functions.

– Local application support: The local application support functions are co-
located with the application components, and provide a local container
to facilitate the development of context-aware application components.
Although the local application support is part of the application layer, it
is not application dependent. The mechanism proposed in this thesis are
part of the local application support functions. Another local application
support function that is researched is the dynamic reconfiguration of
health signal processing tasks on available processing nodes (Mei and
Widya 2007).

In the remainder of this section, we elaborate on the different context
management solutions developed in the Awareness project (Benz,
Hesselman et al. 2006). This includes the Context Management Framework
(CMF), the Cumular Context Server (CCS), the Context Distribution
Framework (CDF) and the JXTA based infrastructure (JEXCI).

3.3.2 CMF

The Context Management Framework (CMF) (Benz, Hesselman et al.
2006; Hesselman, Tokmakoff et al. 2006; Kranenburg, Bargh et al. 2006)
enables context-aware applications to discover context information of an
entity based on identities. An identity is a name that uniquely identifies an
entity in a pervasive environment (e.g. user@domain). This identity is
coupled to a context agent that aggregates all context information available
from the entity that is represented by the identity. The context agents are
the single point of access to context information for context-aware
applications.

Figure 3-9 presents a general overview of the CMF architecture. An
application can, in three steps, obtain context information of an entity. First
it queries the CMF with the identity (e.g. Tom@UT) of the entity from
which it requires context information. The CMF returns a context agent
that has gathered all the context sources that offer context information
from that entity. Secondly, the application queries the context agent for the
context information that he requires (e.g. location) and optionally specifies
QoC requirements. The context agent creates a context proxy that acts as a
middleman between the application and the context source, which is
responsible for delivering the context information to the user and enforcing
privacy policies. Finally, the application can retrieve context information by
querying the context proxy.

 AWARENESS CONTEXT MIDDLEWARE 63

Context Agent
Context
Proxy

Context
Source

Query agent Query context
information

Retrieve context
information

Creates

Register /
Discovery

Retrieve context
Information

CSCS
Context
Sources

Discussion
In Table 3-6, we identify the context binding capabilities of the CMF, based
on the identified phases and functions in a generic context binding process
(see Section 2.7).

 Discovery Selection Establishment Monitoring Releasing

CMF ●● x ● x ●●

Legend: ‘●●’, ‘●’, ‘x’ =’comprehensively’, ‘partially’, ‘does not’ implement functions from this
phase

CMF offers discovery capabilities based on identities and context types.
Context sources can be registered to context agents but context agent can
also discovery context sources. The selection of a suitable context source is
the responsibility of the application. When a selection is made by the
application, the CMF associates the context source with the application via
a context proxy in which privacy enforcement is taken into account.
Monitoring of the availability and quality of context producers is also the
responsibility of the application. Additionally, detection of newly appearing
context sources is the responsibility of the application. Releasing of a
context binding is implicitly done when the context proxy is not used
anymore.

Figure 3-9 Overview of
the CMF architecture.

Table 3-6 Context
binding capabilities of
CMF.

64 CHAPTER 3 STATE-OF-THE-ART ON CONTEXT MIDDLEWARE

3.3.3 CCS

The goal of the Cumular Context Service (Benz, Hesselman et al. 2006;
Brok 2006) is to offer a scalable solution for context information collection
and reasoning. It offers a centralized solution targeted towards the mobile
phone operator domain, based on database technology. Elements in the
CCS architecture are the CCS core, context sources, and northbound and
southbound adapters (see Figure 3-10).

The CCS core consists of a database to store context information.
Northbound adapters are components that offer context-aware applications
access to the CCS core, to enable them to retrieve context information.
Southbound adapters are components that offer access to the CCS core, to
context sources, to enable them to publish context information. North and
southbound adapters are custom made components to be able to
communicate with specific applications and context sources.

The main functions that the CCS core supports are: (i) context
information storage, (ii) selection of a suitable context source based on
QoC requirements specified in the context information request, (iii) access
control based on privacy policies, (iv) notifications of context change, (v)
heuristic based reasoning and aggregation, and (vi) buddy management for
policy selection.

Context sources continuously fill the database of the CCS core with
context information (via the southbound adapters) independently from
context-aware applications. A context-aware application is coupled to an
application specific northbound adapter, which can be used the retrieve
context information (i.e. either with a request/response or subscribe/notify
interaction mechanism). The northbound adapter transforms the request of
the application towards SQL statements required for the CCS core. The
CCS core queries its context tables and returns the most suitable context
information (based on QoC requirements).

 AWARENESS CONTEXT MIDDLEWARE 65

CCS core

Southbound
adapter 1

Southbound
adapter 2

Southbound
adapter 3

Northbound
adapter 1

Northbound
adapter 2

CSCS
Context
Sources CSCS

Context
Sources CSCS

Context
Sources

Discussion
In Table 3-7, we identify the context binding capabilities of the CCS, based
on the identified phases and functions in a generic context binding process
(see Section 2.7).

 Discovery Selection Establishment Monitoring Releasing

CCS ●● ●● ● x ●●

Legend: ‘●●’, ‘●’, ‘x’ =’comprehensively’, ‘partially’, ‘does not’ implement functions from this
phase

The CCS enables context-aware applications to discover context
information based on entity, context type and optionally QoC
requirements. Based on the QoC requirements, it selects suitable context
information from the available context sources in the CCS core. The CCS
checks for access restrictions defined by the context owner. The CCS
considers statically connected context sources. Hence, appearing and

Figure 3-10 Overview of
the CCS architecture.

Table 3-7 Context
binding capabilities of
CCS.

66 CHAPTER 3 STATE-OF-THE-ART ON CONTEXT MIDDLEWARE

disappearing context sources (i.e. relevant in the monitoring phase) are out
of its scope. Explicit statements on releasing are not made.

3.3.4 CDF

The Context Distribution Framework (CDF) (Benz, Hesselman et al. 2006;
Pawar, Halteren et al. 2007) provides a framework for service oriented
context-aware applications that are hosted on mobile devices. Features this
framework offers are: (i) off-loading of resource intensive context
computations from the mobile device, (ii) selection of suitable context
sources based on QoC requirements and (ii) modelling of mobile context
sources as services. Elements in the CDF architecture are context sources,
context services, service directory and the context distribution service (see
Figure 3-11).

Context sources are represented in the CDF as context services. These
context services (de)register their context offerings to a service directory.
The context distribution framework, discovers and selects the most suitable
context source (ranking algorithm based on a Euclidian distance function
using the provided QoC parameters) on behalf of the user (i.e. the context-
aware application). Alternatively, a user can request a reference to a context
source, and then he is responsible for selecting from a ranked set of
sources. When a context source disappears, its reference is removed from
the registry. If the user requests context information, the CDS employs a
fail-safe mechanism. When the top ranked source is not available the CDS
returns context information from the second best context source, and so
on. In case of a request for a context source, handling disappearing context
sources is the responsibility of the user. When new context sources appear,
they are registered in the service registry and notified to the CDS, which
ranks them in the set of possible context sources.

 AWARENESS CONTEXT MIDDLEWARE 67

Context-Aware Applications

CDF

CSCS
Context
Sources

CSCS
Context
services

Service directory

Context Distribution Service

Discussion
In Table 3-8, we identify the context binding capabilities of the CDF, based
on the identified phases and functions in a generic context binding process
(see Section 2.7).

 Discovery Selection Establishment Monitoring Releasing

CDF ●● ●● ● ● ●●

Legend: ‘●●’, ‘●’, ‘x’ =’comprehensively’, ‘partially’, ‘does not’ implement functions from this
phase

CDF enables applications to discover context information based on entity,
type and optionally QoC requirements. The CDF deploys a ranking
algorithm to order context sources. The application can chose to do the
selection itself or let CDF select a suitable context source. CDF does not
create an intelligent establishment (i.e. access control, QoC monitoring)
between a context-aware application and context source. When the
application chooses to let CDF select a suitable context source,
disappearing of this context source is monitored and, based on the
previously established ranking, context from another context source is
returned. However, when selection is performed by the application also
monitoring of disappearing context sources becomes its responsibility.

Figure 3-11 Overview of
the CDF architecture.

Table 3-8 Context
binding capabilities of
CDF.

68 CHAPTER 3 STATE-OF-THE-ART ON CONTEXT MIDDLEWARE

Additionally, monitoring and rebinding in case of dropping QoC is out of
the scope of CDF.

3.3.5 Jexci

The JXTA based infrastructure (Benz, Hesselman et al. 2006) is an
infrastructure to facilitate the distribution of context information in ad-hoc
and peer-to-peer networks. Core technology used by this mechanism is the
JXTA framework8 that let nodes communicate in peer-to-peer networks.
Elements in the JEXCI architecture are context consumers, context
producers, context brokers and context channels (see Figure 3-12).Context
producers create a context broker which is registered as a service to the
JXTA network. A context consumer discovers context brokers by issuing a
JXTA discovery request to the JXTA network. The consumer can request a
single context information value or subscribe to context changes at the
context broker. For the transfer of context information, the context broker
creates a context channel between the context consumer and context
producer, if access control policies allow this.

Context Consumer
(i.e. context-Aware Application)

Context
Broker 1

Context Producer 1

Context channel Discovery context
producer

Context
Broker 2

Context Producer 2

Context channel Discovery context
producer

Retrieve
context

Retrieve
context

Create Create

Discussion
In Table 3-9, we identify the context binding capabilities of Jexci, based on
the identified phases and functions in a generic context binding process (see
Section 2.7).

8 http://www.sun.com/software/jxta/

Figure 3-12 Overview of
the Jexci architecture.

 CONCLUSIONS 69

 Discovery Selection Establishment Monitoring Releasing

Jexci ● X ● X ●●

Legend: ‘●●’, ‘●’, ‘x’ =’comprehensively’, ‘partially’, ‘does not’ implement functions from this
phase

Jexci enables applications to discover context information using entity and
type. However, QoC requirements cannot be specified. The selection of
suitable context producers is the responsibility of the context-aware
application. Jexci creates a context channel and broker as middleman
between a context consumer and producer, which performs access control.
Appearing and disappearing context producers are out of the scope of Jexci.

3.4 Conclusions

This section gives conclusions on the state-of-the-art analysis presented in
this chapter. We give a categorization of the analyzed context middleware
systems and compare them based on the identified phases in a context
binding process. Additionally, some final remarks are discussed in which we
identify capabilities of current context middleware systems. We reflect on
these capabilities to determine where these systems can be improved to
better facilitate the creation and maintenance of context bindings.

3.4.1 Categorization of Current Context Middleware Systems

Based on the analyzed context middleware systems, we observe two
dimensions along which context middleware systems can be categorized: (i)
type of context discovery mechanism and (ii) application scope. The first
dimension refers to the interaction of the context-aware application with
the context middleware system to find context sources. The second
dimension refers to the type of context-aware applications the context
middleware system supports.

The first dimension (context discovery mechanism) can be divided into
the following two categories: (i) information-based and (ii) proxy-based
context middleware systems. The first category consists of context
middleware systems that interact with the context-aware applications in
terms of a context information request, which results in direct retrieval of
context information (i.e. Pace, CCS, CDF). Often, these mechanisms
consist internally of (multiple distributed) databases which are filled with
context information, independently of the requirements of context-aware
applications. Major advantage of this approach is that histories of context
information can be easily collected. Additionally, discovery, selection and

Table 3-9 Context
binding capabilities of
Jexci.

70 CHAPTER 3 STATE-OF-THE-ART ON CONTEXT MIDDLEWARE

establishment of context sources are performed on behalf of the
application. Hence, the application is shielded from a major part of the
context binding process.

The second category (proxy-based) consists of context middleware
systems that interact with the context-aware application in terms of a
context information request, which results in retrieval of one or more
context source proxy objects (i.e. Context Toolkit, Solar, JCAF, CMS,
CMF, CDF, Jexci). The proxy object can be used to request or subscribe to
context information. This approach gives more control over the context
information exchange process to the application, compared to the
information-based context management systems. However, it is up to the
specific implementation of the context middleware what additional steps of
the context binding process are hidden from the application.

The second dimension (application scope) can be divided in the
following categories: (i) infrastructure-based and (ii) peer-to-peer context
management systems. Infrastructure-based context management systems
(e.g. Pace, CCS, CDF, Context Toolkit, JCAF, CMS, CMF) are build to
support applications that operate in a managed communication
environment (e.g. ethernet, WLAN). Peer-to-peer context middleware
sytems (e.g. Solar, Jexci) support applications in an ad-hoc communication
environment. Main difference between these categories of context
middleware systems is that infrastructure-based context middleware
systems have the availability of centralized repositories to register and
advertise the offering of context sources. In peer-to-peer context
middleware systems repositories are local at the peer nodes and advertised
to available neighbors. Hence, this makes the discovery process of both
types of context middleware systems fundamentally different.

In Table 3-10, we summarize the analyzed context management systems
according to the discussed dimensions and categories.

 Context
 Discovery
 Mechanism
Application
Scope

Information-based Proxy-based

Infrastructure-based Pace, CCS, CDF Context Toolkit, JCAF, CMS, CMF,
CDF

Peer-to-Peer - Solar, Jexci

Table 3-10
Categorizations of the
analyzed context-
management systems.

 CONCLUSIONS 71

3.4.2 Comparison of Current Context Middleware Systems

In Table 3-11, we summarize the context binding capabilities of the
discussed context middleware systems, based on the identified phases and
functions in a generic context binding process (see Section 2.7).

All discussed context middleware systems have basic mechanisms to
directly discover (i) context information (i.e. information-based) or (ii)
proxy objects (i.e. proxy-based) that can be used to retrieve context
information. The majority enables the application developer to specify QoC
criteria that influence the discovery and possibly the selection process.
Especially, the information-based context middleware systems offer
selection mechanism to select suitable context sources on behalf of the
application. The majority of the proxy-based mechanisms leave the
responsibility of context source selection to the application. The
responsibility of establishing a binding between a context-aware application
with a suitable context source is mainly left to the application. Although
many discussed discovery mechanisms acknowledge the importance of
dealing with appearing and disappearing context sources, active monitoring
of established bindings on disappearing and appearing context sources is left
a responsibility of the context-aware application. Additionally, fluctuating
QoC of retrieved context samples is not taken into account by the context
middleware systems.

 Discovery Selection Establishment Monitoring Releasing

Context Toolkit ● x ● ● x

Solar ● ● ● x x

Pace ●● ●● ● x x

JCAF ● x ● x x

CMS ●● x ● x x

CMF ●● x ● x ●●

CCS ●● ●● ● x ●●

CDF ●● ●● ● ● ●●

Jexci ●● x ● x ●●

Legend: ‘●●’, ‘●’, ‘x’ =’comprehensively’, ‘partially’, ‘does not’ implement functions from this
phase

Table 3-11 Comparing
binding capabilities.

72 CHAPTER 3 STATE-OF-THE-ART ON CONTEXT MIDDLEWARE

3.4.3 Final Remarks

From the previous analysis, we conclude that current context middleware
systems partially offer support for a complete context binding process.
Current systems focus primarily on the discovery phase of this process and
offer basic abstractions for the establishment of a context binding.
However, we claim that, the largely ignored, selection, monitoring and
releasing phases are equally important (see Section 2.7.2) to overcome the
dynamic availability of context sources and information, and the fluctuating
quality of context.

Hence, we see an opportunity for a comprehensive context binding
infrastructure that besides discovery also covers the selection,
establishment, monitoring and releasing phases of the context binding
process. However, the fact that retrieving context information encompasses
a comprehensive context binding process should ideally be hidden as much
as possible for the application developer. When the application developer is
enabled to specify his context requirements, we believe that the
responsibility of retrieval of this context information can be shifted to an
infrastructure-based context binding mechanism (see Chapter 5) and can
be made transparent for the developer (see Chapter 4).

The discussed context middleware systems provide generic solutions for
context discovery from which we can benefit. However, the majority of
these systems are infrastructure-based which means that they only offer
support for context-aware applications that operate in the scope of the
infrastructure. These context-aware applications can only use context
information available in that infrastructure. We believe that different
environments require different context middleware mechanisms to
exchange context information (Hesselman, Benz et al. 2008).
Consequently, during the life-span of, especially a mobile, context-aware
application, this application moves between different environments and may
encounter different context middleware systems from which it should be
able to retrieve context information. Hence, we see an opportunity for a
context discovery interoperability mechanism (see Chapter 6) that
facilitates context-aware applications to use different context middleware
systems, which they encounter, to retrieve context information.

Chapter 4

4. Context Binding Transparency

This chapter describes the Context Binding Transparency (CBT) and gives
an overview of the services and language that we propose to realize this
transparency. We discuss the context retrieval and publishing services which
expose the CBT to application developers. Additionally, we present the
context binding description language (CBDL), which can be used to specify
context requirements. Parts of this chapter are published in (Broens,
Quartel et al. 2007).

This chapter is structured as follows: Section 4.1 discusses the concept
of ‘transparency’. Section 4.2 gives a high level overview of the features that
CBT offers to developers of context-aware applications. Section 4.3
presents the context retrieval and publishing services. Section 4.4 presents
the Context Binding Description Language (CBDL). Finally, Section 4.5
discusses the development of context-aware applications using the
aforementioned mechanisms.

4.1 Transparency

Intuitively, transparency denotes that something is transparent, meaning
that it can be seen through. For example, transparency can be witnessed
when looking through a glass door, or by looking through an oven window
that shows the food that is being prepared.

Nevertheless, the semantics of the concept transparency is overloaded. It
has different meanings when viewed from different perspectives. For
example, from the optical perspective, transparency is defined by the
Oxford dictionary as “the condition of allowing light to pass through so that
objects behind can be distinctly seen”. From an organizational perspective,
a transparent organization denotes an organization in which its internal
products and process can be inspected. From a computer science
perspective transparency is defined by the Open Distributed Processing

74 CHAPTER 4 CONTEXT BINDING TRANSPARENCY

Reference Model (ODP-RM) as “the property of hiding from a particular
user the potential behaviour of some parts of a distributed system” (Blair
and Stefani 1998; Joaquin.net 2007).

When comparing these definitions, we distinguish a contradicting
interpretation of the concept transparency. On the one hand the concept
transparency focuses on revealing something (optics, organisational
perspective), while on the other hand transparency focuses on hiding
something (computer science perspective). Hence, the computer science
perspective on transparency can be perceived as counter intuitive and
requires some additional elaboration.

Transparency in Computer Science
As presented before, transparency in computer science is introduced in the
ODP-RM. The purpose of ODP-RM is to define standards for the design
and development of open distributed systems. ODP-RM considers
distributed objects that interact via heterogeneous communication
platforms. This raises all sorts of distribution-related development problems
for application developers such as locating objects, failure of objects and
consistency of objects.

These problems have to be dealt with such that distributed applications
can function properly. Dealing with these problems could be done purely at
the application level. However, some of the solutions for these problems are
not application-specific and apply for a range of applications. Consequently,
such functions may be shifted to generic infrastructures such as middleware
systems like the ones discussed in Chapter 3. Advantages of shifting
functionality to a generic infrastructure can be: decreasing development
complexity, time, costs and fault rate.

Infrastructures can realize transparencies for application developers.
When an infrastructure takes over the responsibility of dealing with a
particular development problem, this problem is (partially) hidden for the
application developer. Application developers can focus primarily on their
application-specific problems at hand. Their application becomes
‘transparent’ for the hidden development problem.

The ODP-RM defines eight distribution transparencies that have as a
goal to reduce development effort by hiding complexities of interacting
distributed objects (Blair and Stefani 1998):
– Access: “…mask differences in data representations or invocation

mechanisms to enable interworking between objects.”
– Location: “…masks the use of information about location in space when

identifying and binding to interfaces”.
– Failure: “…masks, from an object, the failure and possible recovery of

other objects (or itself), to enable fault tolerance.”

 TRANSPARENCY 75

– Migration: “…masks, from an object, the ability of a system to change
the location of that object. Migration is often used to achieve load
balancing and reduce latency.”

– Relocation: “… masks relocation of an interface from other interfaces
bound to it.”

– Replication: “… masks the use of a group of mutually behavioural
compatible objects to support an interface. Replication is often used to
enhance performance and availability.”

– Persistence: “… mask, from an object, the deactivation and reactivation of
other objects (or itself). Deactivation and reactivation are often used to
maintain the persistence of an object when a system is unable to provide
it with processing, storage and communication functions continuously.”

– Transaction: “…masks coordination of activities amongst a configuration
of objects to achieve consistency.”

An example of a system that realizes a location transparency is the Corba
naming service (OMG 2004). This service couples identifiers to the physical
location (e.g. IP-address) of distributed objects. An application that uses the
naming service can interact with objects by referring to them with this
identifier instead of the physical address. Hence, the application becomes
transparent for the physical location of the objects it interacts with.

Transparency and Abstraction
Abstraction is the act of ignoring certain development aspects to focus on
others which are (at that point in time) more important. For example,
when considering the systems and services concepts as introduced in
Chapter 2, a developer can design a system by recursively zooming into the
sub-systems that constitute the overall system. In the development of a
particular sub-system, he can treat other sub-systems from an external
perspective only considering the services they offer, thereby abstracting
from how they are realized.

We argue that transparency is a specific form of abstraction. A developer
uses services provided by a realized system (an infrastructure) that enable
him to abstract from certain development problems. How these problems
are solved by the infrastructure is ‘hidden’ for the developer.

Figure 4-1 presents the entities involved in a transparency: (i) the
transparency provider, which is the system that realizes a transparency
in terms of services, (ii) the transparency user, which is the application
that can abstract from the development problem when using the services
provided by the transparency provider.

76 CHAPTER 4 CONTEXT BINDING TRANSPARENCY

Transparency user

Transparency provider

Services

Transparency

Level of Transparency
Transparencies can be realized by different transparency providers in
different ways (e.g. the cobra naming service and the cobra trading service
offer both a form of location transparency (OMG 2004)). The services that
the transparency provider offers, determines the level of transparency for
the transparency user. The level of transparency denotes to what extend
the development problem is hidden for the transparency user.

An example of transparency providers that provide an increasing level of
transparency is visualized in Figure 4-2. This figure presents an application
that uses different transparency providers that offer an increasing level of
transparency. The more the transparency provider hides the development
problem for the transparency user (visualized as bigger), the more
transparent the application becomes for this development problem. Hence,
the implementation of the solution to overcome this problem inside the
application decreases (visualized as smaller).

A more concrete example, consider an information retrieval application that
needs to interact with information sources. Without a transparency
provider it has to directly connect to an information source using a fully

Figure 4-1 Entities
involved in a
Transparency.

Figure 4-2 Example of
systems with different
levels of transparency.

 CONTEXT BINDING TRANSPARENCY 77

qualified address (e.g. http://myservice.com:8080/myservice). Three
underlying transparency providers can offer three levels of location
transparency for the interaction between the application and information
sources. The first one offers the lowest level of location transparency by
offering a service that requires from the application a simplified address of
the information service (e.g. myservice@myservice.com). The transparency
provider determines the communication protocol and port number and
attaches this to the provided simplified address to connect to the
information with the fully qualified address. The second transparency
provider offers a service that requires a friendly name (e.g. myInfoService)
and transforms this into a fully qualified address by using a pre-determined
mapping of friendly names to addresses. Finally, the third transparency
provider has the highest level of transparency by offering a service that
returns information sources filtered on service capabilities provided by the
application (i.e. service discovery capability). The system returns a reference
to the most suitable information source to the application.

An aspect that influences the level of transparency a developer of a
transparency provider wants to offer is user-control. The developer of the
transparency provider is confronted with a trade-off between the amount of
hiding his system can perform and the possibility for control it still offers to
the application developer. Assumingly on the one hand, the more the
development problem is hidden for the application developer, the easier the
development process for the application developer becomes. However, on
the other hand, the more complex the transparency provider becomes, this
may introduce performance overhead, security risks or other unwanted
effects. Additionally, the application developer may still require a form of
control to fulfil its application specific needs, such that complete hiding of
the development problem is unwanted (Kon, Costa et al. 2002).

4.2 Context Binding Transparency

We define a context binding transparency as:

The property of masking the creation and maintenance of context bindings.

From the perspective of the application developer, a realization of a CBT
enables him to abstract in his application from how a binding is created,
with what context producer this binding is created, and how this binding is
maintained in case of appearing and disappearing context producers and
fluctuating QoC. Figure 4-3 shows the realization of the context binding
transparency from the developer perspective.

Definition 7 Context
Binding Transparency

78 CHAPTER 4 CONTEXT BINDING TRANSPARENCY

The developer of a context consuming application retrieves context
information by expressing context requirements to an infrastructure-based
‘context binder’. The developer can consider this context binder a black-
box that returns the required context information to his application. We
develop a language to facilitate the application developer to specify their
context requirements at an abstract level rather than directly programming
these requirements. This language is discussed in detail in Section 4.4.

The binder is responsible for creating a context binding to suitable
context producers by matching the context requirements of the consumer
with the context offerings of the producers. If during the life-span of the
context consumer the availability of the producer or the quality of the
provided context information decreases, the binder is responsible for
binding a new producer. If no suitable context producer is present this
situation is notified to the consumer.

Context
Binder

Context
Producer
Context

Producer
Context

Producer
Context

Producer
Context

Producer
Context

Consumer

Context Retrieval
(context requirements)

Context Publishing
(Context offerings)

Context Binding

Figure 4-4 depicts from a system perspective the entities involved in a CBT:
– Context Middleware: an infrastructure that implements the ‘context

binder‘. It acts as the transparency provider. Amongst others, the
context middleware consists of a context binding mechanism that
realizes a CBT by providing context retrieval and publishing services.
These services are discussed in more detail in Section 4.3. The design
and implementation of the context middleware and context binding
mechanism is discussed in Chapter 5 and 6.

– Context-aware application and context sources: users of the context retrieval
and publishing services. Transparency users that retrieve context
information using the context retrieval service or offer context
information by using the context publishing service.

Figure 4-3 The
realization of a context
binding transparency
from the perspective of
the application
developer.

Figure 4-4 Entities in a
CBT.

 CONTEXT BINDING TRANSPARENCY 79

In this way, the trend of offloading responsibilities of the context-aware
application to the context middleware, as discussed in Section 1.2 is
continued. Figure 4-5 visually presents this trend. First generation context-
aware applications contain all function needed to create (and maintain)
context binding inside their context logic. This includes context retrieval,
context source discovery and selection, and context binding establishment,
monitoring and releasing. With second generation context-aware
applications the responsibility of context source discovery, and sometimes
selection, is offloaded to a context middleware. The application still needs
to implement context logic for the context retrieval, context source
selection, context binding establishment, monitoring and releasing. With
mechanisms that offer a CBT, the responsibility for creating and
maintaining context bindings is also offloaded to the context middleware.
In this way, third generation context-aware applications are further relieved
from development problems not directly related to the development of
their application logic.

1st gen. Context-Aware
application

Application logic

Context retrieval,
discovery,
selection,

establishment,
monitoring,
realeasing

2nd gen. Context-Aware
application

Application logic

Context retrieval,
selection

establishment,
monitoring,
releasing

Context Middleware

Discovery,
(Selection)

3rd gen. Context-Aware
application

Application logic

Context retrieval

Context Middleware

Discovery
(Selection)

Context sourceContext sourceContext SourcesContext sourceContext sourceContext Sources Context sourceContext sourceContext Sources

Selection
establishment,

monitoring,
releasing

= functions implemented in context logic

Figure 4-5 Increased
offloading of context
logic functions towards
the context middleware.

80 CHAPTER 4 CONTEXT BINDING TRANSPARENCY

Key features of a context binding mechanisms that offers a CBT are:
• Initialization of a context binding: based on context requirements specified

by the context-aware application, the context binding mechanism
resolves a context binding by discovering using available underlying
discovery mechanisms, selecting and associating to one or more
suitable context producers.

• Maintenance of a context binding: based on specified criteria (e.g. costs and
QoC) the binding mechanism maintains bindings by:

o Re-binding at run-time to other suitable context producers
when already bound context producers disappear.

o Re-binding at run-time to other suitable context producers
when the QoC that is provided by the already bound context
producer may fall below a specified level.

o Re-binding to context sources with a ‘higher’ QoC when they
become available.

• Releasing of a context binding: when the application no longer needs
context information, the established bindings are released.

Although a CBT has as goal to hide as much of the creation and
maintenance process of context bindings, there are two situations in which
the application should be informed on the status of the binding in order to
adapt its behaviour to this new situation:
– A context binding fails, because:

– No suitable context match can be made at application initialization.
– No suitable new context match can be made after an already bound

context source disappears.
– No suitable new context match can be made when the actual QoC of

an already bound context source deteriorates below the required
minimal QoC level.

– The actual QoC of an already bound context source fluctuates between
application specified QoC levels.

Comparing a CBT with the ODP-RM Transparencies
The ODP-RM offers standards to deal with the communication between
distributed objects via heterogeneous communication platforms. In order to
interact there has to be a binding between the interfaces of the
communicating objects. In comparison, a CBT provider deals with the
communication between context consumers and producers. In order to
exchange context information there has to be a context binding between
these entities. Table 4-1 compares ODP and CBT concepts.

 CONTEXT BINDING TRANSPARENCY 81

ODP-RM CBT

Client/Server Object Context producer / consumer

Object binding Context binding

ODP-RM offers eight distribution transparencies, as discussed in Section
4.1. When comparing the features of CBT with the transparencies
proposed by the ODP-RM, a CBT can be considered as a compound
transparency consisting of the features of a combination of basic ODP
transparencies. Table 4-2 relates the ODP-RM transparencies with the
features of the CBT.

ODP-RM Transparency Featured

by CBT
Explanation

Access √ CBT hides data representations and invocation
mechanisms of different context producers, by
offering a uniform context retrieval service that binds
to suitable context producers, possibly offered by
different discovery mechanisms from different
administrative domains.

Location √ CBT hides the physical location of context producers
for context consumers by offering services that take
over the discovery, selection and binding of suitable
context producers, possibly offered by different
discovery mechanisms from different administrative
domains.

Failure √ CBT hides disappearing and re-appearing context
producers by offering services that perform
monitoring of their availability.

Relocation √ CBT hides the appearing of context producers with
higher QoC by offering services that perform
monitoring of appearing context producers and,
selection and associating of higher QoC producers.

Migration x -

Replication x -

Persistancy x -

Transaction x -

Hence, we consider a CBT as a specific form of distribution transparency in
which the features of multiple ODP-RM distribution transparencies are
combined, for usage in the particular domain of context-aware applications.

Table 4-1 Comparing
ODP-RM and CBT
concepts.

Table 4-2 Comparing
ODP-RM transparencies
and a CBT.

82 CHAPTER 4 CONTEXT BINDING TRANSPARENCY

4.3 Context Retrieval and Publishing Services

A CBT is exposed to application developers by the context middleware in
the form of a context retrieval and publishing service. The application
developer has to interact with the context middleware using these services
to retrieve or publish context information. In this section, we discuss the
abstract interactions offered by these services.

4.3.1 Context Retrieval Service

The context retrieval service facilitates the development and execution of
context consuming applications. The context retrieval service has as goal to
offer the ‘best possible’ context to the service user during the existence of a
context binding. With the capability to offer the ‘best possible’ context we
mean: (i) when possible, continuity of available context information and (ii)
delivery of context information that has the optimal possible quality (costs
/QoC).

Table 4-3 describes the abstract service primitives (SP) between the
Service User (SU, in our case a context consuming application) and the
Service Provider (SPr, in our case the context middleware). Additionally, it
describes the type of interaction (i.e. [S]ynchronous and [A]synchronous),
and the parameters and possible return parameters.

Direction S/A SP identifier Parameters ReturnParameters

SU SPr [A] createBinding BindingID,
Context_Requirements

-

SU SPr [S] destroyBinding BindingID Acknowledgement

SU SPr [S] getContext BindingID Context_Information
_Sample, QoCLevel

SU SPr [A] subscribetoContext BindingID Subscription_ID

SU SPr [S] unsubscribetoContext Subscription_ID Acknowledgement

SPr SU [A] notifyContextChange Subscription_ID,
Context_Information_Sample,
QoCLevel

-

SPr SU [A] notifyBindingEstablished BindingID, QoCLevel -

SPr SU [A] notifyBindingStatus BindingID, Status, QoCLevel -

Figure 4-6 presents the relation of the service primitives of the context
retrieval service in a time-sequence diagram. The context-aware application
starts by expressing its context requirements to the context middleware
(createBinding) such that the middleware can create a context binding.

Table 4-3 Service
primitives of the Context
retrieval service.

 CONTEXT RETRIEVAL AND PUBLISHING SERVICES 83

Context-Aware application Context middleware

createBinding

getContext

Context information

subscribetoContext

notifyContextChange

notifyBindingEstablished

destroyBinding

notifyBindingStatus

When a suitable binding is established this is notified to the context-aware
application (notifyBindingEstablished).The binding creation request and
notification of established bindings are both asynchronous interactions. This
is due to the independent execution of the application and the context
middleware. In this way the application can continue its execution when the
middleware is initializing a context binding. This corresponds with our
notion of a context-aware application, which has a basic context-unaware
behaviour that is augmented with context-aware behaviours in case
sufficient quality context information is available. For a more elaborate
discussion on this aspect of context-aware applications see Section 4.5.

From the moment of notification of an established binding, the context-
aware application can retrieve context information, either in a request-
response (getContext) or subscribe-notify manner
(subscribetoContext/notifyContextChange/unsubscribetoContext). The middleware
can notify the application on changes in the binding status
(notifyBindingStatus). Types of binding status can be: (i) the binding can be
used for retrieval of context information because a producer is bound, (ii)
the binding becomes invalid because no producer is bound, (iii) the binding
is temporarily invalid because the middleware is trying to rebind to a new
producer and (iv) the quality of the offered context information shifts to
another QoC level. Finally, a binding can be explicitly destroyed by the
context-aware application (destroyBinding) or implicitly by the middleware in
case the context-aware application undeploys.

Figure 4-6 Time-
sequence diagram of the
context retrieval service.

84 CHAPTER 4 CONTEXT BINDING TRANSPARENCY

In case a binding cannot be created this is notified to the application
(notifyBindingStatus). In this case, a notifyBindingEstablished will not be notified
to the application until a binding is established. Consequently, during this
period the application is not able to retrieve context information (getContext,
subscribetoContext).

4.3.2 Context Publishing Service

The context publishing service facilitates the development and execution of
context producing applications. It has as goal to advertise the context
offerings of the service user to available context discovery mechanisms
during the lifespan of the service user.

Table 4-4 describes the abstract service primitives (SP) between the
Service User (SU, in our case a context producing application) and the
Service Provider (SPr, in our case the context middleware). Additionally, it
describes the type of interaction (i.e. [S]ynchronous and [A]synchronous),
and the parameters and possible return parameters.

Direction S/A SP identifier Parameters ReturnParameters

SU SPr [S] registerContextOffering Context_offering, Context
producer reference

PublishingID

SU SPr [S] deregisterContextOffering PublishingID Acknowledgement

The context-aware application can register and deregister its context
offerings to the context middleware to enable the middleware to advertise
the offerings to available context discovery mechanisms
(registerContextOffering/deregisterContextOffering). Additionally, the application
has to provide a reference to itself such that a context consumer can
retrieve the context information offered by the context-aware application.

4.4 The Context Binding Description Language

As part of the CBT, the application developer has to specify its context
requirements when using the context retrieval service to retrieve context
information (i.e. createBinding service primitive, see Section 4.3.1). We
propose a language, coined the Context Binding Description Language (CBDL),
to enable application developers to specify their context requirements at a
high level of abstraction rather than in programming code. In this way, the
specification of context requirements and the implementation of these
requirements in context logic is separated from the development of the
actual application logic. For the prototype, as discussed in Chapter 5, we
took a pragmatic approach to adapt CBDL to specify context offerings.

Table 4-4 Service
primitives of the Context
publishing service.

 THE CONTEXT BINDING DESCRIPTION LANGUAGE 85

However, researching how to specify context offerings with CBDL is out
the scope of this thesis.

4.4.1 CBDL Requirement Analysis

Context requirement specifications, expressed in CBDL documents, are
used by a context binding mechanism to create and maintain context
bindings. Thereby, the context binding mechanism has to create a match
between the received context requirements and the context offerings
available via underlying context discovery mechanisms. This is visualized in
Figure 4-7.

To capture the functional requirements of CBDL, we take a two-step
approach, addressing both the side of the discovery mechanisms and the
application developer. First, we extend the state-of-the-art analysis as
presented in Chapter 3, of current context middleware mechanisms to
identify common capabilities currently offered. Secondly, we analyse
possible use-cases.

In addition, we consider the following general requirement in the design
of CBDL:
– Generality: specification of context requirements in CBDL should not be

restricted to specific application domains and hence CBDL should be
able to be applied to a broad range of context-aware applications.

– Usability: specification of context requirements in CBDL should be ‘easy’
and should not require a steep learning curve.

Analysis of Capabilities of Current Context Middleware Mechanisms
We consider current context discovery mechanisms because they
implement solutions that fulfil context requirements that application
developers may have and because our proposed context binding and
discovery interoperability mechanism (see Chapter 5 and 6) builds on top
of these solutions.

Figure 4-7 Matching the
context requirements
and context offerings.

86 CHAPTER 4 CONTEXT BINDING TRANSPARENCY

We review current context middleware mechanisms on the following
aspects:
– Interaction mechanism: What interaction mechanism do the analyzed

discovery mechanisms support?
– Interaction data: what type of information is expressed in the context

discovery request and response?
The result of our analysis is presented in Table 4-5. The following common
capabilities are provided by current context discovery mechanisms:
– All analyzed mechanisms support the request-response and subscribe-

notify interaction mechanism to retrieve context information.
– All mechanisms require information about the type of context

information and the entity to which the context relates, to be able to
discover context sources.

– The majority of the mechanisms have the notion of quality of context in
the request for context information. However, they may apply different
QoC parameters.

– Some mechanisms require a form of security token, such as identity
information on the entity that is requesting context information, to be
able to discover context sources.

Interaction mechansism
Frameworks Req-Resp Sub-Not Entity Type QoC Sec. info Format
Context Toolkit ● ● ● ● x ● XML
Solar ● ● ● ● x x n/a
Pace ● ● ● ● ● x Context Modelling Language
JCAF ● ● ● ● x x Java objects
CMS ● ● ● ● ● x RDF
CMF ● ● ● ● ● ● RDF
CCS ● ● ● ● ● ● SQL/PIDF
CDF ● ● ● ● ● x RDF/PIDF
Jexci ● ● ● ● x ● Negotiable (PIDF/java objects)

Interaction data

Legend: ●, x = 'support', 'not support'

Analysis of Use-cases
We analysed multiple use-cases to identify additional unfound requirements
relevant for future context-aware applications. In Appendix B, we present
two which we believe are representative for a broad range of context-aware
applications. From these use-cases, we derive the following characteristics
of context information and context-aware applications:
– Context information is defined by its context type. For example,

location, availability, bandwidth, meeting status.
– Context information is always related to a context entity. For example,

patient, doctor, voluntary caregiver, meeting participant.
– Context information can be offered in different context formats. For

example, lat/long, xyz, nmea, Boolean.

Table 4-5 Context
requirement analysis
result.

 THE CONTEXT BINDING DESCRIPTION LANGUAGE 87

– Relevancy of context information for applications can depend on
different QoC criteria. For example, precision, probability of
correctness. See also (Buchholz, Kupper et al. 2003; Sheikh, Wegdam et
al. 2007).

– Context information transfer might occur during the whole life-span of
the application or during a limited period. For example, during a
epileptic seizure.

– Delivery costs involved when using context information might pose
criteria for the suitability of context bindings. For example, when
retrieving context information the use of a certain communication
mechanism or the commercial cost of the context information may
differ between context producers.

Overall Conclusions and Identification of CBDL Requirements
Based on the analysis of current discovery mechanisms and use cases, we
identify the following requirements for CBDL:
– Basic context elements: Context type, entity and format are basic elements

needed to describe context requirements.
– QoC criteria: Applications have QoC requirements and may react

differently when these QoC are not met. Therefore, CBDL should
enable application developers to specify quality levels (i.e. minimal and
intermediate levels) on the required context information.

– Costs: Additionally to QoC, context delivery costs pose criteria on the
suitability of a context binding. Application developers should be able to
specify in CBDL cost criteria related to QoC criteria. For example, high
quality context information might only be relevant for a context-aware
application when its costs are not too high. In that case, lower quality
context information might be a better choice to use.

– Binding characteristics: Transfer of context information can be continuous
during the life span of the application or can be limited to a certain
period in the life span of the application. Context bindings are therefore
not always required. An application developer should be able to specify
in CBDL the characteristics of the required binding. This includes re-
binding strategy (in case of losing a bound context source) and scope of
the discovery. Furthermore, they should be able to specify if re-binding
is necessary in case a QoC level cannot be maintained or better quality
context sources may appear.

– Notification: Although our transparency strives for continuous availability
of high quality context information, this might not always be possible.
Application developers have to be able to specify in CBDL a notification
strategy in case a lost binding cannot be recovered or QoC level cannot
be maintained, such that the context-aware application can adapt its
behaviour to these situations.

88 CHAPTER 4 CONTEXT BINDING TRANSPARENCY

4.4.2 Design of the Context Binding Description Language

We distinguish three types of information in a CBDL document:
– Context specification: basic information on what context information the

context-aware application requires.
– Quality criteria: information on the quality levels which are acceptable for

the context-aware application.
– Binding options: configuration information required to control the

discovery, selection, association, and maintenance process of a context
binding.

Figure 4-8 represents the meta-model of the CBDL language, using a UML
class diagram.

Context Specification

Binding Options

Quality Criteria

+UserID : String
+ApplicationID : String

CBDLDocument

-ContextRequirementID : String
ContextRequirement

1

*

BindingOptions

1
0..*

-policy : String
Policy

-scope : String
Scope

Entity FormatElement

1

1

1

1

1

0..*

Only one instance of every subclass
allowed in a context requirement.

0..*
1

+Notify : Boolean
+Optional : Boolean

QualityLevel

+Criteria : String
QoCCriteria

Freshness Precision

SpatialResolution TemporalResolution

ProbCorrectness

+Criteria : String
CostsCriteria 10..1

1..*

1

-Notify : Integer
Notify

The root of the CBDL language is the CBDLDocument element, which
specifies which human user is requesting a context binding (UserID) and to
which application this binding belongs (ApplicationID). This information can
be used as security information, for example to retrieve a security token to
be able to invoke underlying context discovery mechanisms. However, this
is out of the scope of this thesis. Furthermore, a CBDL document
(CBDLDocument) enables application developers to specify multiple context
requirements (ContextRequirement). Context requirements have to be
uniquely identified by an ID (ContextRequirementID). This ID can be used to
retrieve a reference to the established binding. This reference can be used
to enable the context-aware application to retrieve context information
associated to the requirement.

Each context requirement (ContextRequirement) consists of mandatory
context specification information. This information specifies: (i) a single
type of context information that the application requires (Element), (ii) the

Figure 4-8 CBDL
language meta-model.

 THE CONTEXT BINDING DESCRIPTION LANGUAGE 89

entity to which the required context is related (Entity) and (iii) zero or more
data formats the required context may have (Format).

Optionally, an application developer can specify multiple quality levels
(QualityLevel). A quality level consists of one or more quality criteria coupled
with an optional cost criterion. Multiple quality criteria encapsulated in a
quality level are related with an “AND” relation. This means that all criteria
have to be fulfilled for the binding to be in this quality level. We distinguish
five possible types of QoC criteria based on (Buchholz, Kupper et al. 2003;
Sheikh, Wegdam et al. 2007). These are: (i) Precision: “granularity with
which context information describes a real world situation”, (ii) Freshness:
“the time that elapses between the determination of context information
and its delivery to a requester”, (iii) Temporal Resolution: “the period of
time to which a single instance of context information is applicable”, (iv)
Spatial Resolution: “the precision with which the physical area, to which an
instance of context information is applicable, is expressed” and (v)
Probability of Correctness: “the probability that an instance of context
accurately represents the corresponding real world situation, as assessed by
the context source, at the time it was determined” (Sheikh, Wegdam et al.
2007).

Additionally, the application developer may specify if the application
needs to be notified when the QoC/Costs of the delivered context
information comes into the range of the specified level or falls out of the
range (Notify, default= true). Furthermore, the application developer
specifies if the re-binding mechanism needs to be triggered when the QoC
of the delivered context information falls below the specified QoC level
(Optional, default=false). This transition is notified to the application
developer.

Furthermore, an application developer can optionally specify binding
options (BindingOptions) to control the binding process of the context
binding mechanisms. The following options can be specified:
– Notify: the application developer can specify the level of notification he

wants to receive on the binding process. The following levels are
identified:
– 0: no notifications.
– 1: notification when a binding is established.
– 2: notification when a binding is established or broken.
– 3: notification when a binding is being established, re-established or

broken (default).
– Policy: the application developer can specify what binding policy should

be taken:
– Static: when a binding is broken, no re-binding is necessary.
– Dynamic: when a binding is broken re-binding is necessary (default).

90 CHAPTER 4 CONTEXT BINDING TRANSPARENCY

– Scope: the application developer can specify if context sources should be
searched only inside the scope of the local infrastructure (i.e. producers
deployed inside the local application container) or also outside the local
infrastructure (e.g. in external context discovery mechanisms) (i.e.
local/global, default = global).

4.4.3 Implementation of the CBDL Language

We implement the CBDL language using XML, as it is currently the de-
facto standard for structured data. Tool support for creating and
manipulating XML documents are widely available, which simplifies the
creation process of CBDL documents for application developers.
Furthermore, XML enables easy validation of the correctness of CBDL
documents using XML Schema. The definition of this schema is presented
in Appendix B.

Example 4-1 presents an example of a simple partial CBDL document for
a healthcare centre application, which is used in the ESS use case explained
in Appendix B. This document describes a context requirement with ID
‘patient_location’ for location information of Patient Tim. This context
information should be formatted in lat/long format and should have a
precision of 5m or less (i.e. ‘<’).

4.4.4 Related Work

To the best of our knowledge, no other initiatives exist to develop a
language for the purpose of specifying context requirements. Although

Example 4-1 XML-based
CBDL document.

<?xml version="1.0" encoding="UTF-8"?>
<CBDLDocument xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CBDL-schema.xsd" UserID="Healthcarecentre"
ApplicationID="ESS_Healthcarecentre">
 <ContextRequirement BindingID="patient_location">
 <Element>Location</Element>
 <Entity>Patient.Tim</Entity>
 <Format>lat/long</Format>
 <QualityLevel>
 <QoCCriteria>
 <Precision>< 5m</Precision>
 </QoCCriteria>
 </QualityLevel>
 </ContextRequirement>
</CBDLDocument>

 THE CONTEXT BINDING DESCRIPTION LANGUAGE 91

Hong (Hong 2002) recognizes the need for such a language, coined the
context specification language (CSL), this language has not been detailed.

On the other hand, several types of languages have been proposed to
facilitate the development of context-aware applications in other ways. For
example, Chan et al. (Chan, Wong et al. 2004) define a mathematical rule-
based context request language. This language, implemented in XML,
enables developers to specify context reasoning rules, using predicate
calculus, interpreted by an infrastructure inference engine to retrieve
required context information. Yua et al. (Yua, Wang et al. 2002) define a
Situation-Aware object interface definition language (SA-IDL), which can
be used to generate base classes for a situation-aware objects. Etter et al.
(Etter, Dockhorn Costa et al. 2006) describe a rule-based approach to
specify context-aware behaviour in the ECA-DL language and to delegate
the execution of this behaviour to the infrastructure, using Event-
Condition-Action rules. Robinson et al. (Robinson and Henricksen 2007)
describe the Context Modelling Language (CML) which can be used to
capture context information requirements to be used in the design of
context-aware applications. Chen (Chen, Finin et al. 2005) discusses a
context ontology (SOUPA) that can be used to exchange context among
entities in a uniform manner.

4.4.5 Limitations and Future Work

We acknowledge some limitations of the CBDL language, which we
consider future work:
– Semantics: In this chapter we specified the syntax of the CBDL language,

which application developers can use to specify context requirements.
However, for a context binding mechanism to fully be able to match
context requirements also the semantics of the document expressed in
the CBDL language should be known.

– Context offerings: The CBDL language is currently focussed on specifying
context requirements of context consuming applications. However,
context producing applications could possibly be supported when
context offerings could be specified in CBDL. Although in this research
we provide a pragmatic solution for specifying context offerings in
CBDL (see Chapter 5), more research is needed.

– Privacy: Besides being able to specify context requirements, the CBDL
language could be extended with elements to specify privacy properties.
Especially, this provides opportunities for context producing
applications that want to restrict access to their context information.

– Conflicting QoC levels: An application developer could specify conflicting
QoC levels for a context requirement. More research is needed how to

92 CHAPTER 4 CONTEXT BINDING TRANSPARENCY

detect conflicting QoC levels and notify the application developer of
these conflicts.

– QoC level construction: The current version of the CBDL language assumes
that the QoC criteria encapsulated in a quality level are related with an
‘AND’ relation. However, also other types or relations could be of
interest.

4.5 Discussion

In this section, we discuss the development process of context-aware
applications with a CBT. We start with a general reflection on the
development process and the influence of availability and QoC on this
process. Additionally, we present guidelines for developing a context-aware
application with our implementation of the CBT.

4.5.1 Developing Context-Aware Applications with a CBT

As discussed in Chapter 2, a context-aware application consists of (i)
application logic and (ii) context logic. Application logic is behaviour which
adapts based on available context information. The required context
information is acquired by the context logic. A context middleware that
offers a CBT can facilitate the development of a context-aware application
by reducing the complexity of the context logic. Such a middleware takes
over the responsibility of the creation and maintenance of context bindings.
Hence, such a middleware enables application developers to spend less
effort in creating context logic and focus on the development of the
application logic. Furthermore, when bindings become unavailable the
middleware tries to re-establish the required context binding.

Although the context binding middleware makes an effort to maintain
context bindings, it is inevitable that context bindings sometimes fail. For
example, due to unavailability of context sources or unavailability of context
sources that can provide context with the required QoC. Hence, we claim
that also availability of context bindings and QoC should be parameters that
influence the development of the application logic. Application developers
should incorporate availability of context bindings and QoC levels as an
integral part in their development process, to:
– Be aware in the design process of context-aware applications of different

situation that can occur in a realistic operational environment;
– Create more robust context-aware applications.
We distinguish the following characteristics of context-aware applications:

 DISCUSSION 93

– A context-aware application should be able to function without context
information. Hence it has default behaviour, which is context-
independent and fulfils the basic user need.

– Additional to the default behaviour, a context-aware application has
context-aware behaviour that enhances the quality of the application.

– A context-aware application should be able to react on availability of
context information and fluctuating quality of its information.

When we assume that the availability of context bindings and QoC levels
corresponds to distinct context-aware behaviours, the application logic can
be seen as a composition of a default behaviour augmented with multiple
context-aware behaviours that execute based on the availability of context
bindings and QoC levels.

Figure 4-9 presents an abstract example of a context-aware application
showing these aspects. The context logic contains behaviour to retrieve
context information from the context middleware. The application logic
consists of default, context-aware (CA) and coordinating behaviour.
Coordinating behaviour is responsible for:
– Receiving binding status notifications of the context middleware;
– Composing the applications default behaviour with the context-aware

behaviours based on the binding status. This includes selecting and
enabling/disabling context-aware behaviours.

Consider for example an application that can display the location of the
user and the route to available buddies. This application requires context
information on the location of the user, location of the buddies and
availability of the buddies. The default behaviour of the context-aware
application is to show a map with the location of the user. When only
context information on the availability of the buddies is available (so no
location information is available), the application shows the buddy but
draws them outside the map. When also the location of buddies is available
the application can draw the buddies on the map with an availability icon
and draw routes from the user to that buddy. When the location of buddies
is available but the availability context information is not available, the
application can point the buddies on the map with an ‘availability unknown’
icon and does not draw routes. For a more elaborated example, we refer to
the case study in Chapter 8.

A possible option to facilitate the development of coordinator behaviour
is to deploy a Event-Condition-Action rule engine like proposed in
(Dockhorn Costa 2007). This would enable an application developer to
specify the composition of behaviours in a rule language (i.e. in terms of
conditions on binding status events). The ECA-enabled coordinator parses
this document and based on incoming status events from the context
middleware, can trigger composition of the default behaviour with specified
context-aware behaviours. Another option to implement coordinator

94 CHAPTER 4 CONTEXT BINDING TRANSPARENCY

behaviour is by applying the state design pattern (Gamma, Helm et al.
1995). In this approach, the developer identifies the states in which his
application can be and the transitions between these states. For example in
case of the buddy location application, there is a state ‘available location and
availability information’ which leads to a state ‘available location
information’ when availability information becomes unavailable. Being in a
state corresponds with a certain combination of default and CA behaviour.

Further research on how to develop context-aware applications is
needed. The realization of coordinator functionality is out of the scope of
this thesis. We consider this a promising extension of the work presented in
this thesis.

Context-Aware application

Context logic

Context middleware

Application logic

Default behavior

Coordinator

CA
behaviour 1

CA
behaviour 2

CA
behaviour 3

CA
behaviour 4

4.5.2 Guidelines for the Development of Context-Aware Applications
based on a CBT

In the remainder of this thesis, we discuss our realization of a context
middleware that offers a CBT. In this section, we present guidelines for the
development of a context-aware application with our context middleware.

Figure 4-10 presents the development trajectory of a context-aware
application using our proposed context middleware mechanisms, based on
the common waterfall or linear development process model (Pressman
2000). In Chapter 8, we present a case study following this development
trajectory.

Figure 4-9 Internal
perspective of
application and context
logic

 DISCUSSION 95

Design Implementation Deployment Testing

CBDL
document

Application
design

Context
logic

Application
logic

Operational
application

CA
Application

CACI SimuContext
CBDL

schema

Phase transition
Used in / Result of

Development phase
Artefact
Infrastructure mechanism

Successively, we present a checklist consisting of steps executed in the
phases of the proposed development trajectory. Thereby indicating, (i)
which infrastructure mechanisms (dark grey rectangles) are used in the
development phases (light grey rounded rectangle) and, (ii) which CBDL
language elements result from every step (i.e. between ‘[]’) and, (ii) which
artefact results from a development phase.

Design:
The design step results in an application design and a CBDL document
specifying context requirements. This step includes:
1. Based on application requirements, design the context-aware

application to be implemented:
a. Determine which types of context information is required

for this behaviour to execute [ContextRequirement],
[ContextRequirementID], [element]

b. Design the application behaviour in case the context
information is available but also the behaviour when the
context information becomes unavailable.

c. Determine the required binding behaviour [binding
options].

2. For every context type determine from which entities the required
context information should be retrieved [entity].

3. For every context type determine the formats the context
information should have [format].

4. For every context type determine the quality of context levels
which influence the application behaviour:

Figure 4-10
Development trajectory
of a context-aware
application using our
realization of a CBT.

96 CHAPTER 4 CONTEXT BINDING TRANSPARENCY

a. Optionally determine the minimal required QoC
[QoCLevel].

b. Determine intermediate QoC levels on which the
behaviour of the context-aware application changes
[QoCLevel].

c. Determine the application behaviour in case that QoC
shifts from one QoC level to another but also when the
QoC falls below the minimal required QoC.

d. Determine how the application should react on
unavailable QoC.

5. Based on the CBDL schema, transform the designed context
requirements into a CBDL document.

Implementation
The implementation step results in one or more application
components consisting of the context and application logic. This step
includes:
6. Implement the context logic:

a. Use OSGi interfaces and the ContextRequirementID’s
specified in the CBDL document to retrieve handles on
context bindings to retrieve context information.

b. Implement a notification callback where the context
middleware can provide information on the availability
and current QoC of the context information available
provided by context bindings.

7. Implement the application logic.
a. Connect the application logic with the context logic.
b. Implement a strategy for situations in which context

becomes unavailable (see 1b)
c. Implement a strategy for shifts in QoC levels (see 4c)

Deployment:
The implementation step results in a packaged and operational context-
aware application. This step includes:
8. Package the complete application together with the CBDL

document.
9. Install and run the CACI container
10. Deploy and run the packaged application inside the CACI

container.
Testing:
11. Use SimuContext (see Chapter 6) and the created CBDL

document to generate simulated context sources.
12. Test the deployed CA application by deploying the simulated

context sources and tweaking its properties.

Chapter 5

5. Context Binding in CACI

This chapter presents the Context-Aware Component Infrastructure
(CACI). This infrastructure consists of the context binding and context
discovery interoperability mechanism. In this chapter, we describe the
overall design of CACI and give a detailed description of the design and
prototype implementation of the context binding mechanism. The next
chapter discusses the context discovery interoperability mechanism. Parts of
this chapter are published in (Broens, Halteren et al. 2006; Broens,
Sinderen et al. 2007).

This chapter is structured as follows: Section 5.1 presents the overall
design of CACI. Section 5.2 presents the design of the context binding
mechanism. Section 5.3 presents the prototype implementation of the
context binding mechanism. Section 5.4 discusses related work. Finally,
Section 5.5 discusses limitations of the context binding mechanism and
indicates future work.

5.1 Overall Design of CACI

This section positions CACI and gives an overview of the mechanisms of
which CACI consists, by decomposing the models introduced in Chapter 2.
Additionally, it presents some development alternatives and motivates the
choices we made for the development of CACI.

Modelling and Positioning CACI
Figure 5-1, presents a high-level model of a context-aware application and a
context middleware. Context-aware applications and context sources use
context retrieval and publishing services to retrieve and publish context
information. These services are provided by a context middleware. We
distinguish a context management entity that realizes these services.
Context middleware might also provide other services like, services to

98 CHAPTER 5 CONTEXT BINDING IN CACI

support context reasoning and privacy enforcement. These other services
are, for clarity, omitted in the remainder of this section.

Figure 5-2 presents a decomposition of the context management entity. The
context management entity consists of CACI and multiple context discovery
mechanisms. CACI realizes the context retrieval and publishing service.
CACI is responsible for creating and maintaining context bindings on behalf
of context-aware applications. Amongst others, this includes discovering
suitable context sources. For this purpose, CACI uses discovery services
offered by available context discovery mechanisms. Context discovery
mechanisms are used to register offerings of context sources and discover
registered context sources. Hence, CACI assumes the availability of one or
more context discovery mechanisms as an underlying support mechanism.

Figure 5-3 presents a decomposition of CACI. CACI consists of two
mechanisms: (i) the context binding mechanism and (ii) the context
discovery interoperability mechanism. The context binding mechanism

Figure 5-1 High-level
overview of a context-
aware application and
context middleware.

Figure 5-2
Decomposition of the
context management
entity.

 OVERALL DESIGN OF CACI 99

realizes the context retrieval and publishing service and is responsible for
creating and maintaining context bindings based on the context
requirements and offerings of context-aware applications and context
sources. In the remainder of this chapter, we discuss the design and
implementation of the context binding mechanism in detail.

The context binding mechanism requires discovery services to find
suitable context sources. However, the environment of an application may
consist of multiple heterogeneous context discovery mechanisms.
Furthermore, a mobile application can travel through multiple
environments and can hence encounter multiple dynamically (dis)appearing
context discovery mechanisms during its lifespan.

The context discovery interoperability mechanism is responsible for
supporting the context binding mechanism in finding suitable context
sources using these dynamically available and heterogeneous context
discovery mechanisms. The context discovery interoperability mechanism
offers a uniform context discovery and advertisement service that takes care
of finding and registering context sources from and to encountered context
discovery mechanisms. In Chapter 6, we discuss the design and
implementation of the context discovery interoperability mechanism in
detail.

Context-Aware Applications /
Context sources

Context Middleware

Context Management

Context Retrieval
& Publishing service

Context Discovery
Mechanisms

Context Discovery
Interoperability mechanism

Context Discovery &
Registration service

Context Discovery &
Advertisement services

Figure 5-3
Decomposition of the
CACI block.

100 CHAPTER 5 CONTEXT BINDING IN CACI

Development Alternatives
The goal of CACI is to offer mechanisms that support the development of
mobile context-aware applications. Support mechanisms can be classified
along several dimensions. We distinguish the following dimensions:
– Local versus remote support mechanisms: Local support mechanisms execute

on the host that is also executing the application that the mechanism is
supporting. Instead, remote support mechanisms execute on a remote
host reachable from the application host. Here, we see a trade-off
between available processing capacity and introduced communication
overhead. In case of a remote support mechanism, a remote host
performs (part of) the processing required to support the application.
This offloads the local host of (part of) this processing responsibility.
However, the request for processing and the results of the processing
needs to be transferred via a communication platform from and to the
application and the remote support mechanism. This introduces
communication overhead. This also implies that the application has to
be interoperable with the remote support mechanism by conforming to
the used communication platform (i.e. communication protocol,
interfaces). In case of a local support mechanism, the processing is
performed locally and no remote communication is required. However,
the capacity of the local host, for example processing power and battery
power, should be sufficient to perform this processing.

– Private versus shared support mechanisms: The services of a private support
mechanism can only be used by a single application. Instead, the services
of a shared support mechanism can be used by multiple applications.
Hence, a private support mechanism is tightly coupled to a specific
application and does not expose its services to other applications.
Sharing functionality can reduce redundancy and costs. However, it may
also introduce security risks.

– Specific versus generic support mechanisms: Specific support mechanisms are
developed for a specific type of application. Instead, generic support
mechanisms are developed for a range of different applications. Generic
support mechanisms provide solutions for recurring problems faced by a
range of applications. Middleware-based mechanisms, as discussed in
Chapter 2, are typically generic support mechanisms.

We observe that some combinations of these dimensions are more
commonly applied in support mechanisms than others. For example,
remote, shared and generic support mechanisms are common for current
context middleware that support context discovery. For example, Pace,
CCS, CDF, Context toolkit, JCAF, CMS and CDF (see Chapter 3) offer
generic, shared and remote support mechanisms. However, other
combinations are also feasible.

 OVERALL DESIGN OF CACI 101

Motivating the Support Mechanism offered by CACI
CACI offers a generic, shared and local support mechanism. A major
difference between current context middleware and CACI is that the
functions offered by CACI’s support mechanisms are executed locally. Both
the context binding mechanism and the context discovery interoperability
mechanism are co-located with the application and execute on the
application host. These mechanisms interact with remote counter parts,
such as context discovery mechanisms for context producer discovery and
remote context sources for actual context information transfer. Figure 5-4
shows the execution location of the involved entities in a CACI-enabled
system.

Offering local support mechanisms has several advantages:
– Application specific support: CACI is tightly coupled with the application it

has to support. Consequently, CACI can more easily access local
application knowledge, like (un)deployment of application parts which
offers the opportunity for enhanced context binding functionality such
as automated creation and destruction of context bindings.
Furthermore, CACI ‘travels’ with the mobile application from domain
to domain (see Figure 5-5). Therefore, it has (or can get) knowledge of
the domain it is in, like availability of domain specific context discovery
mechanisms.

Figure 5-4 Support
mechanisms offered by
CACI.

102 CHAPTER 5 CONTEXT BINDING IN CACI

– Configurability: Remote support mechanisms are commonly shared and
generic for a multitude of applications. Individual configuration of these
mechanisms for specific applications is therefore complex and mostly
not feasible. A feature of CACI is that it can be configured locally by
application/infrastructure developers. For example, developers could
create and configure application specific adapters for context producer
selection and rebinding algorithms.

– Robustness: As CACI ‘travels’ with the application, it can cope with loss of
infrastructure. It could for instance use ad-hoc context discovery
mechanisms to discover context sources or when entering another
domain it could transparently switch to the available context discovery
mechanism offered by that infrastructure.

– Performance: Context-aware applications are very promising to deploy on
mobile devices, as they operate in constant changing environments.
Therefore, we target these mobile devices as the main underlying
resource platform for CACI. Adding support functions to the
application host increases the resource requirements on the client’s
hardware resources. For example, CPU, memory and network capacity.
Furthermore, mobile devices are resource limited and therefore the
feasibility, in terms of performance, of locally executing CACI has to be
addressed (see Section 5.3). Nevertheless, we envision that the number
of required context bindings for a context-aware application is limited.
Additionally, with the increasing capabilities of mobile devices, we
expect that creating and maintaining a limited amount of bindings is
feasible.

Figure 5-5 CACI ‘travels’
with the mobile device
of the user.

 OVERALL DESIGN OF CACI 103

Overall Design
CACI adopts a component-based development approach for context-aware
applications. We refer to Chapter 3 for more background information on
component-based middleware. Hence, CACI considers a context-aware
application as a composition of context-aware components (see Figure 5-6).
These components are deployed in a component environment called a
container. Generally, a container offers support mechanisms to components
such as component life-cycle management and inter-component
communication. Specifically, the CACI container contains the context binding
mechanism and the context discovery interoperability mechanism. The context
binding mechanism offers the context retrieval and publishing service to context-
aware components. These services have been specified in Section 4.3.

The capabilities of components are described in component descriptors.
Amongst others, a component descriptor describes the required and offered
interfaces of a component. The descriptions are used at deploy-time of the
component to configure the container. For example when considering a
component A, the configuration of the container may include finding and
connecting to a component B that can offer the required interface specified
in the component descriptor of component A.

In our solution, we also use the component descriptor to describe the
context requirements of a component. These descriptions are expressed in
the CBDL language (see Section 4.4). The context binding mechanism
handles on deploy-time the context requirements specified in the
component descriptor. Actions that the context binding mechanism takes
are the initialization and maintenance of context bindings. These
configuration actions are discussed in detail in the next section. After
deployment of the component, the context-aware component can exchange
context information via the context retrieval and publishing service.

104 CHAPTER 5 CONTEXT BINDING IN CACI

5.2 Design of the Context Binding Mechanism

In this section, we present the design of the context binding mechanism by
describing the design of the context retrieval and publishing services. As
part of the design of the context retrieval service, we discuss a possible
rebinding algorithm. Finally, we combine the two designs in an integrated
design of the context binding mechanism.

5.2.1 Context retrieval service

This section starts with a high-level overview of the part of the context
binding mechanism that realizes the context retrieval service. Consecutively,
we present the functional decomposition and behaviour of the context
binding mechanism that realizes this service.

High-level Overview
Figure 5-7 presents a further decomposition of a context consuming
application and the context binding mechanism. A context-aware
application with its specific application logic, formulates context
requirements (including a unique requirement identifier). These are sent to
the binding mechanisms in one or more binding creation requests to the
context retrieval service by the context logic. Such requests can consist of

Figure 5-6 Overview of
the CACI design.

 DESIGN OF THE CONTEXT BINDING MECHANISM 105

three parts: (i) context information specification, (ii) optional QoC criteria
and (iii) optional binding options.

When a binding creation request is invoked by the context-aware
application, the context binding mechanism creates a context producer
proxy (CP’) which acts as the single point of access to context information
used by the application.

The context binding mechanism discovers suitable context sources (CS)
by using the discovery services of available context discovery mechanisms.
These mechanisms are used to store the offerings of context sources.
Additionally, a reference to the context source is stored, which can be used
to access its context information (CP*). The context binding mechanism
selects a suitable context source from the discovery results based on the
offerings of the source and the requirements of application. The CP’ is
bound to the selected CP*. From this moment the proxy (CP’) can deliver
context to the context-aware application. The context-aware application
can retrieve the proxy from the context retrieval service using its specified
requirement ID.

Figure 5-7
Decomposition of the
context binding
mechanism.

106 CHAPTER 5 CONTEXT BINDING IN CACI

Decisions to rebind in case of (dis)appearing context sources and degrading
QoC are dealt with by a rebinding algorithm. The rebinding algorithm can
react on two types of situations: (i) explicit registration or deregistration of
context source received from the context discovery mechanism and (ii)
context retrieval errors intercepted by the proxy. A possible rebinding
algorithm is discussed in the next section.

The context binding mechanism applies the proxy pattern (Buschmann,
Meunier et al. 1996) for the internal representation of bound context
sources (see Figure 5-8). This proxy shields the context consuming
application from the dynamic aspects of a bound context source. The use of
a context producer proxy has the following advantages:
– Transparency: by shielding the application for direct interaction with

context sources, the application can be made unaware of the dynamic
availability and offered QoC of the bound context source. The proxy
acts as a middleman that can instruct the context binding mechanism to
initiate a re-binding process in case of unavailability of the bound
context source or degrading QoC.

– Optimization: the proxy enables one to have different context acquisition
strategies between the context consuming application and the proxy,
and the proxy and the context source. This acquisition strategy can be
optimized dynamically based on the context producer or underlying
network technology. For example, by caching or buffering context
information samples. This direction is not further explored in this
thesis, we consider this future work.

Functional Decomposition
Figure 5-9 presents the functional decomposition of the context binding
mechanism. In the figure, we define the functions required to realize the
context retrieval service. These functions are:
– Deployer & Parser: The deployer is responsible for intercepting deploying

components. The deployer determines if the context-aware component
is a CACI-enabled component and instructs the parser to parse the

Figure 5-8 Appliance of
the proxy pattern for
representing a bound
context source.

 DESIGN OF THE CONTEXT BINDING MECHANISM 107

CBDL description. A CBDL enabled component is a component that
has a CBDL component. The parser distils the binding requests from
the CBDL document.

– Binder: The binder has a coordinating role in the context binding
mechanism. It coordinates the process of creating and maintaining
context bindings for a deploying context consuming component. The
created context producer proxy might notify the binder of context
retrieval errors. This triggers the rebinding algorithm.

– Discovery manager: The discovery manager is responsible for issuing
discovery requests to the available context discovery mechanisms via the
context discovery interoperability mechanism. Furthermore, it collects
all the discovery results.

– Selector: The selector is responsible for selecting a suitable context
producer for the context binding. This selection is based on the
offerings of a set of producers, which are the result of the discovery
phase, and the distilled context requirements of the deployed
component.

– Monitor: The monitor is responsible for monitoring the availability of
context producers. It receives notifications of changes in the availability
of context producers from the discovery mechanisms. Two types of
notifications can be received (i) producer de-register events and (ii)
new-producer register events. This triggers the rebinding algorithm.

– Decider: The decider is responsible for executing the rebinding
algorithm.

– Proxy manager: The proxy manager is responsible for the encapsulation of
the selected context producer into a context producer proxy and
making this proxy available to the deployed context consuming
component. The proxy manager exposes the context retrieval service to
the context-aware component.

– CACI_database: The CACI database stores the administration of the
context binding mechanism. This includes, amongst others, which
CACI-enabled components are installed and which context
requirements they have.

– GUI: The GUI is a graphical representation of the CACI database that is
used for testing and debugging purposes.

108 CHAPTER 5 CONTEXT BINDING IN CACI

Context Discovery MechanismsContext Discovery Mechanisms

Deployer

BinderDecider

Context-Aware Component

CBDL
description

Proxy
manager

Discovery
Manager

Context Retrieval
service

getContextProducer

Deploy

bindReq

discoveryRequest

discoverProducers

discoveryResult

Producer
selection

createProxy

CACI
database

GUI

producerChange

Parser
parse

Monitor

Deploy

producerChange

contextError

Context Discovery Mechanisms

Context Discovery Interoperability Mechanism

Context Discovery services

Selector
select

rebind

Figure 5-10 shows a high-level diagram of the states in which a context
binding can be. When a component is deployed, the binding initiates in the
unbound state. A binding is established by creating a proxy and connecting
this proxy to a physical context source. When this process fails, the
component is either not deployed, or it is deployed but the unbound state
is notified to the component. When there is successful binding the binding
makes a transition to the bound state. When the binding fails, in case of

Figure 5-9 Funtional
decomposition of the
context binding
mechanism.

 DESIGN OF THE CONTEXT BINDING MECHANISM 109

disappearing of currently bound context sources, appearing context sources
or degrading QoC, a re-binding process is initiated. The binding makes a
transition to the re-binding state. In case of a disappearing bound context
source, the rebinding process can fail. If no suitable context sources are
available. The binding returns to the unbound state and a notification is
send to the application.

Re-bind
decision

Unbound Bound

Re-binding

success

failure

successfailure

deploy

Internal Behaviour
Figure 5-11 presents an activity diagram that represents the internal
behaviour of the context binding mechanism. After initializing, the context
binding mechanism waits for changes in the container. These are notified to
the mechanism by ‘deployevents’ which can be of two types: (i) deployment
of a new component and (ii) un-deployment of an already deployed
component. In both cases, the mechanism checks if a CBDL document is
available, which means that the component is CACI-enabled. If this is the
case CACI continues to handle the component, else the event is ignored
and CACI stops handling the component. In case of un-deployment of a
CACI-enabled component, the context binding mechanism cleans-up the
administration and releases the established bindings. In case of a deploying
CACI enabled component, the process of initializing the required context
bindings is started.

This process starts by parsing the CBDL and extracting context binding
requests. For every context retrieval request, a discovery session is initiated
in which discovery requests are issued (using the information encapsulated
in the context retrieval request) to the available discovery mechanisms.
From the results, a suitable context producer is selected and a binding is
created by connecting a proxy to this producer. The deploying component
is informed of the status of the binding.

Subsequently, the binding is monitored for the availability of the bound
context source and the quality of the context information it offers. This
consists of monitoring the binding for:

Figure 5-10 Binding
states.

110 CHAPTER 5 CONTEXT BINDING IN CACI

– Producer Change Events: These events are explicitly received from the
underlying context discovery mechanisms. There are two types of
possible events: (i) de-registration of the bound context source and (ii) a
new context source becomes available.

– Binding Errors: These errors are determined by the context producer
proxy. There are three types of possible errors: (i) a request for context
information results in an error, (ii) the QoC of the bound producer
degrades below the minimal required QoC level and (iii) in case of a
subscription, no context information is received for a certain period of
time, which raises the suspicion that the bound context source is
unavailable.

These situations may lead to a decision to start a rebinding process,
visualized by the rebinding activity. We discuss a possible rebinding
algorithm in the next section.

 DESIGN OF THE CONTEXT BINDING MECHANISM 111

Init

ParseCBDL

deployEvent

deploy

hasCBDL

hasNoCBDL undeploy

hasNoCBDL

Release
hasCBDL

undeployDone

Discover

retreivalRequest

Select

Establish

Monitor

discoveryResult

producerSelection

producerProxy

producerChangeEvent |
bindingError

Inform component

deRegister
rebind

newProducer
RebindbindingState

contextRetrievalError rebind|
degradedQoC rebind|

suspectedUnavailable rebind Rebinding

bindingState

No
rebinding

No
rebinding

5.2.2 Rebinding Algorithm

In this section, we zoom into the rebinding activity. The proposed
rebinding algorithm is merely an example of how to deal with binding
errors and change event. More research is needed to define optimal
rebinding algorithms. Figure 5-12 shows an overview of the rebinding
activity.

The first step in the rebinding algorithm is to check if the developer has
specified in the CBDL component descriptor the option for dynamic
rebinding. This is specified in the ‘Policy’ field of the CBDL document.
When the component requires dynamic rebinding (i.e. ‘Policy =

Figure 5-11 Activity
diagram of the behaviour
of the context binding
mechanism.

112 CHAPTER 5 CONTEXT BINDING IN CACI

Dynamic’) a rebinding decision has to be made. We zoom into the
rebinding decision activity for the different producer change events and
binding errors in the following sections.

When the component does not require dynamic rebinding (i.e. ‘Policy
= Static’) the rebinding process is aborted and the component is informed
of a failed binding. Additionally, in the case the rebinding process is
triggered by a ‘newProducer event’ the binding mechanism continues
monitoring, as the current binding is still valid. Additionally, when the
rebinding process is triggered by the “suspectedUnavailability event’, first
the suspected unavailability of the bound producer is checked. We discuss
how this can be done in more detail when discussing the ‘suspected
producer unavailability algorithm’ in the next sections.

In the following sections, we successively zoom into the rebinding decision
activity for the various producer change events and binding errors.

New Context Producer Algorithm
Figure 5-13 shows the rebinding decision activity when considering an
incoming ‘newProducerEvent’.

Figure 5-12 Overview of
the Rebinding activity

Figure 5-13 Rebinding
decision in case of a
new context producer.
event.

 DESIGN OF THE CONTEXT BINDING MECHANISM 113

When a new producer event is received from an underlying context
discovery mechanism, a new selection set is made. This set consists of the
context offerings of the already bound context producer and the context
offerings of the new context producer. This selection set is input to the
select activity that selects the most suitable context producer from this set.
If the selected context producer is different from the already bound context
producer a new context binding is created.

Deregistering Context Source Algorithm
Figure 5-14 shows the rebinding decision activity when considering an
incoming ‘deRegisterEvent.

In case a de-registration of the bound context producer is received from a
context discovery mechanism, the decision is made to rebind after a certain
wait period (possibly specified in the CBDL). Hence, new discovery,
selection, establishment and monitoring phases are started. Otherwise,
when the same producer re-registers, the binding is still valid and the
binding mechanism returns to the monitoring activity.

Context Retrieval Error Algorithm
Figure 5-15 shows the rebinding decision activity when considering an
incoming ‘contextRetrievalError’.

Figure 5-14 Rebinding
decision in case of a
deregistration event.

114 CHAPTER 5 CONTEXT BINDING IN CACI

Discovery

contexRetrievalError

InspectBinding

retriesFailedDone/
contextRetrievalErrorRebind

retrySuccess/
No_rebind

Monitor

When a context retrieval error is received from the context producer proxy,
the binding mechanism inspects the binding by doing multiple attempts to
retrieve context information. The number of retries can be specified by the
application developer. If all retries fail, the binding is considered unusable
and a new discovery, selection, establishment and monitoring phase is
started. If one of the retries succeeds (i.e. does not result in an error) the
retry counter is reset. If all retries succeed the binding is found to be still
useful and the binding is returning to the monitoring activity. Otherwise,
the retry counter is reset again until it reaches a number of allowed
successes to fail transitions. In Example 5-1, we describe, in pseudo Java
code, the previously discussed algorithm of the ‘InspectBinding’ activity.
Again, this is merely an example on how to implement a rebinding
algorithm.

Figure 5-15 Rebinding
decision in case of a
contextRetrievalError
event.

Example 5-1 Inspect
binding algorithm in
pseudo Java code.

successcntr = 0; // the number of successive successful context retrievals
failurecntr = 0; // the number of successive failed context retrievals
fails = 0; // the number of times context retrieval failed

for(int i=0; (i<#retries | fails < #fails) ; i++){
 Try{

 binding.getContext(); // try to get context information
 successcntr++; // context retrieval success
 // Transition from failure to success
 if(failurecntr > 0){ i = 0; failurecntr = 0;}
}catch (Exception e){ // context retrieval failed
 failurecntr++;
 //Transition from success to failure
 if(successcntr > 0){ i = 0; successcntr = 0; fails++;}
}

}
If(successcntr >0){Monitor.continueMonitor()} // Success, no rebind
else{Binder.rebindDiscovery()} // Failure, rebind

 DESIGN OF THE CONTEXT BINDING MECHANISM 115

Degrading QoC Algorithm
Figure 5-16 shows the rebinding decision activity when considering an
incoming ‘degradedQoCError’.

When a notification of the degraded QoC of a bound context producer is
received from the context producer proxy, the binding is inspected on the
QoC it can offer. In a number of context information retrieval retries, the
binding mechanism determines if the QoC remains below the minimal
required level. If this is the case, a new discovery, selection, association
phase is started. Else, the decision to not rebind is made and the binding
mechanism returns to the monitor activity. This can be done in a similar
way as the ‘inspectBinding’ algorithm.

Suspected Producer Unavailable Algorithm
Figure 5-17 shows the rebinding decision activity when considering an
incoming ‘suspectedUnavailabilityError’ event. In this case the context
binding mechanisms inspects the binding to determine if it is broken. The
‘InspectBinding’ actity is explained previously.

Figure 5-16 Rebinding
decision in case of a
degradedQoCerror
event.

Figure 5-17 Rebinding
decision in case of a
suspectedUnavailability
event.

116 CHAPTER 5 CONTEXT BINDING IN CACI

Concurrent occurrence of context producer events and binding errors
The previous sections discuss the rebinding behaviour for individual context
producer events and binding errors. However, these errors/events can occur
concurrently. For example, when dealing with a new producer event,
another new producer event can be received or the QoC of the current
bound producer can degrade.

When considering all possible combinations of producer change events
and binding errors, this results in an unmanageable set of possible situations
to be dealt with in the context binding algorithm. For example, when
considering all combinations of concurrent occurrence of the five possible
situations, already 120 (5!) possible situations can be distinguished.
Consequently, we assign priorities to events/errors that determine to pre-
empt the handling of lower priority events or errors. This means that when
the binding mechanism is handling a certain event or error and it receives
an event or error with a higher priority, the handling of the current event is
pre-empted and the higher priority event or error is dealt with. Table 5-1
shows the distinguished priorities.

One type of possible events and errors deals with the status of the bound
context source. These are deregisterEvent, contextRetrievalError,
degradedQoC and suspectedUnavailabilityEvent. When the discovery
mechanism explicitly notifies CACI of the deregistration of the bound
producer this has the highest handling priority. Occurrence of the other
situations in this category are then caused by the disappearing of the bound
producer. Similarly for contextRetrievalErrors and suspectedUnavailability,
when the bound producer disappears without notification by the discovery
mechanism, degrading QoC is caused by the disappeared producer. Hence,
the degradedQoCError has the lowest priority.

Event / Error Priority (highest = 1… lowest =4)

deregisterEvent 1

contextRetrievalError 2

suspectedUnavailabilityError 3

degradedQoCError 4

A second type of events deals with the new sources becoming available. This
type of event can occur concurrently with the events/errors from the first
category. Hence, the space of possible combination consists of the
combinations of the events/errors from the first type with the event from
the second type, and the combination of all the events/errors with
themselves. Table 5-2, identifies the possible concurrent combinations and

Table 5-1 Priority of
events/errors that deal
with the status of the
bound producer.

 DESIGN OF THE CONTEXT BINDING MECHANISM 117

corresponding rebinding actions. As can be seen, several actions are equal
or very similar.

Triggering event/error Concurrent event/error Action

deregisterEvent deregisterEvent Faulty behaviour, continue the started
rebinding decision behaviour.

 newProducerEvent If the earlier deregistered producer
reregisters, keep the binding and return
to the monitor state. Else, create a
selection set that only contains the new
producer offerings and start a new
selection phase.

newProducerEvent newProducerEvent Add the new producer to the selection
set and continue the started rebinding
decision behaviour.

 deregisterEvent Remove the old producer from the
selection set and continue the started
rebinding decision behaviour.

 contextRetrievalError Create a new selection set and select the
most suitable producer. When the result
of this selection is the old producer,
inspect the binding. Else rebind to the
new producer.

 degradedQoCError Create a new selection set and select the
most suitable producer. When the result
of this selection is the old producer,
inspect the QoC that can be offered by
the bound producer (see the algorithm
for handling a degradedQoCError). Else
rebind to the new producer.

 suspectedUnavailability
Error

Create a new selection set and select the
most suitable producer. When the result
of this selection is the old producer,
inspect the binding (see the algorithm
for handling a contextRetrievalError).
Else rebind to the new producer.

contextRetrievalError contextRetrievalError Continue the started rebinding decision
behaviour.

 newProducerEvent Create a new selection set and select the
most suitable producer. When the result
of this selection is the old producer,
inspect the binding (see the algorithm
for handling a contextRetrievalError).
Else rebind to the new producer.

Table 5-2 Combinations
of concurrent
events/errors.

118 CHAPTER 5 CONTEXT BINDING IN CACI

degradedQoCError degradedQoCError Continue the started rebinding decision
behaviour.

 newProducerEvent Create a new selection set and select the
most suitable producer. When the result
of this selection is the old producer,
inspect the binding (see the algorithm
for handling a contextRetrievalError).
Else rebind to the new producer.

suspectedUnavailability
Error

suspectedUnavailability
Error

Continue the started rebinding decision
behaviour.

 newProducerEvent Create a new selection set and select the
most suitable producer. When the result
of this selection is the old producer,
inspect the binding (see the algorithm
for handling a contextRetrievalError).
Else rebind to the new producer.

5.2.3 Context Publishing Service

This section starts with a high-level overview of the part of the context
binding mechanism that realizes the context publishing service.
Subsequently, we present the functional decomposition and behaviour of
the context binding mechanism that realizes this service.

High-level Overview
Figure 5-18 presents a decomposition of a context producing application
and the context binding mechanism. A context producing application (i.e.
context-aware application or context source) has application logic that
produces context information. The context producing capabilities are
specified in a context offering. This offering is sent to the context
middleware using the context producer logic. The context offering is
advertised via the context binding mechanism to one or more available
context discovery mechanisms using their context advertising services.
Additionally, a reference to the context logic (CP’) is advertised to the
available context discovery mechanisms. This reference is internally stored
in the discovery mechanism (CP*). Other context-aware applications can
retrieve this reference to obtain its context information.

 DESIGN OF THE CONTEXT BINDING MECHANISM 119

Functional decomposition
Figure 5-19 presents the functional decomposition of the context binding
mechanism. In the figure, we define the functions required to realize the
context publishing service. These functions are:
– Deployer & Parser: The deployer is responsible for intercepting deploying

components. The deployer determines if the context-aware component
is a CACI-enabled component and instructs the parser to parse the
CBDL description. The parser distils publishing requests from the
CBDL document.

– Binder: The binder has a coordinating role in the context binding
mechanism. It starts the process for the advertisement of the offering of
a deploying context producing component to available context discovery
mechanisms.

– Proxy manager: The proxy manager is responsible for creating a proxy that
encapsulates the reference to the context producing application.

– Publisher: The publisher is responsible for advertising the offering of a
deploying context producing component to available context discovery

Figure 5-18
Decomposition of the
context binding
mechanism.

120 CHAPTER 5 CONTEXT BINDING IN CACI

mechanisms. This includes registering the proxy to available discovery
mechanisms.

– CACI_database: The CACI database stores the administration of the
context binding mechanism. Additionally, it stores the offerings of a
context producing component and the reference to the context
producing application. The CACI database exposes the context
publishing service to context producing components.

– GUI: The GUI is a graphical representation of the CACI database that is
used for testing and debugging purposes.

 DESIGN OF THE CONTEXT BINDING MECHANISM 121

Context Discovery MechanismsContext Discovery Mechanisms

Deployer

Binder

Context-Aware Component

CBDL
description

Proxy
manager

Deploy

bindReq

proxy

CACI
database

GUI

Parser
parse

Deploy
Context Publishing

service

publishContextProducer

Publisher

advertiseProducers

publishRequest

Context Discovery Mechanisms

Context Discovery Interoperability Mechanism

Context Discovery services

Internal Behaviour
Figure 5-20 presents an activity diagram that represents the internal
behaviour of the context binding mechanism. The process starts by
determining if a deploying component is a CACI-enabled component. If
this is the case, the CBDL document is parsed. From the document
publishing requests are distilled. The context offerings specified in these

Figure 5-19 Functional
decomposition of the
context binding
mechanism.

122 CHAPTER 5 CONTEXT BINDING IN CACI

requests and the reference to the context publishing application are
published to the available context discovery mechanisms. We do not
decompose the publishing activity further, as this is not the core of this
research.

Init

ParseCBDL

hasNoCBDL undeploy
Release

hasCBDL

Publish

publishDone

publishRequests

hasCBDL

bindingRequest

undeployDone

5.2.4 Integrated Design

Partially the previously discussed functions of the design of the context
retrieval and publishing service, overlap. For example, detecting deploying
components, parsing of the CBDL document and creating context producer
proxies is part of the behaviour of both services. In this section, we
combine the two designs and present an integrated design, including a
functional decomposition and internal behaviour description of the context
binding mechanism. This integrated design is implemented in the prototype
discussed in the next section.

For the integration, the parser, deployed, CACI database, GUI, proxy
manager and binder are combined to offer both functions to support the
context publishing and retrieval service. The decider, selector, monitor and
discovery manager are unique for the realization of the context retrieval
service. The publisher is unique for the realization of the context publishing
service.

Figure 5-21 presents an integrated functional decomposition of the
complete context binding mechanism. Figure 5-22 presents an activity

Figure 5-20 Activity
diagram of the behaviour
of the context binding
mechanism.

 DESIGN OF THE CONTEXT BINDING MECHANISM 123

diagram of the integrated internal behaviour of the overall context binding
mechanism. For a discussion on the individual functions and the internal
behaviour, we refer to the previous sections.

Context Discovery MechanismsContext Discovery Mechanisms

Deployer

BinderDecider

Context-Aware Component

CBDL
description

Proxy
manager

Discovery
Manager

Context Retrieval
service

getContextProducer

Deploy

bindReq

discoveryRequest

discoverProducers

discoveryResult

Producer
selection

createProxy

CACI
database

GUI

producerChange

Parser
parse

Monitor

Deploy

producerChange

contextError

Context Publishing
service

publishContextProducer

Publisher

advertiseProducers

publishRequest

Context Discovery Mechanisms

Context Discovery Interoperability Mechanism

Context Discovery services

Selector
select

rebind

Figure 5-21 Integrated
functional
decomposition of the
context binding
mechanism.

124 CHAPTER 5 CONTEXT BINDING IN CACI

Init

ParseCBDL

deployEvent

deploy

hasCBDL

hasNoCBDL undeploy

hasNoCBDL

Release
hasCBDL

undeployDone

bindingRequest

DiscoverPublish

publishRequests retreivalRequest

publishDone

Select

Establish

Monitor

discoveryResult

producerSelection

producerProxy

producerChangeEvent |
bindingError

Inform component

deRegister
rebind

newProducer
RebindbindingState

contextRetreivalError rebind|
degradedQoC rebind|

producerUnavailable rebind Rebinding

bindingState

No
rebinding

No
rebinding

5.3 Implementation of the Context Binding Mechanism

In this section, we discuss the prototype implementation of CACI. As a
foundation of the prototype, we use a light-weight component framework
based on the Open Services Gateway Initiative (OSGi) specification. We
leverage from the life-cycle and service capabilities of an existing OSGi
container and deploy a virtual CACI container that intercepts CACI-
enabled context-aware components. Additionally, we use some existing

Figure 5-22 Integrated
activity diagram of the
behaviour of the context
binding mechanism.

 IMPLEMENTATION OF THE CONTEXT BINDING MECHANISM 125

technology such as kXML to parse CBDL documents and Log4J for logging.
Additionally, we use SimuContext for simulating context sources for testing
purposes. This mechanism is created by us and discussed in detail in
Chapter 6. This section starts with an overview of the used technology
followed by a discussion on the implementation of the CACI prototype.
This section ends with a high-level analysis on the performance, scalability
and stability of the prototype.

5.3.1 Used Technology

For the implementation of CACI, we used the following existing
technologies: (i) Open Services Gateway Initiative (OSGi), (ii) kXML and
(iii) Log4J.

Open Services Gateway Initiative (OSGi)
As the foundation for CACI, we chose a component framework based on
the OSGi specification (OSGi Alliance 2004; OSGi Alliance 2005). OSGi
defines a specification of a light-weight, extendible and easy to use
component framework. Currently, the specification of OSGi is at release 4
(OSGi Alliance 2005).

Figure 5-23 presents the abstract architecture of an OSGi-based
component framework. An OSGi framework facilitates the deployment and
execution of Java-based components into an OSGi container. A component
is called a bundle in terms of OSGi. The container itself can be deployed on
top of a Java-based execution environment. The modules layer handles class
loading policies of bundles. A feature of OSGi is that it supports class
loading on multiple class loaders. Amongst others, this enables class sharing
by loading bundles that require sharing of functionality on the same class
loader. The lifecycle layer enables dynamic installing, starting, stopping,
updating and uninstalling of bundles. The service registry layer enables
bundles to register services which can be used by other components.
Hence, OSGi supports two ways of inter-component communication:
– Class sharing: Bundles can indicate in their component descriptor if they

want to export packages or require packages. The class sharing
mechanism matches import statements and export statements and
places these bundles on the same class loader. Consequently, standard
Java invocations can be used to execute functionality from one bundle
by another.

– Service invocations: A bundle can use the service registry to discover
services that are registered by other bundles. It can retrieve a reference
to a discovered service and use this reference to invoke service requests.

126 CHAPTER 5 CONTEXT BINDING IN CACI

A typical usage scenario of OSGi consists of a developer who creates
application bundles and installs/starts these bundles using the life-cycle
manager. This life-cycle manager uses the module layer for class loading and
possible resolving of required shared classes. Furthermore, the developed
bundles can discover and use services from other bundles using the service
registry.

A bundle is packaged as a standard JAR file with an extended manifest
that contains deployment information. This manifest acts as the component
descriptor. Example 5-2 gives an example of a manifest. Information that
can be specified in the manifest is for instance; the bundle name, a
description, the vendor, and the update location. Furthermore, it can
contain information on the packages that should be shared with other
bundles (export package) and the packages that the deploying bundle
requires to function (import package). The activator property indicates the
class that should be started when the component, which incorporates this
activator class and possible other classes, is deployed.

Registering services to the OSGi container and using registered services is
done by simply invoking OSGi API’s that are offered by the service registry.
Example 5-3 gives a code segment in which ‘MyService’ is registered and
retrieved from the service registry.

Figure 5-23 OSGi
architecture.

Example 5-2 Bundle
manifest of the CACI
bundle.

Bundle-Name = CACI
Bundle-Description = Context-Aware Component Infrastructure.
Bundle-Vendor = Tom Broens
Bundle-Version = 2.5.2
Bundle-UpdateLocation = http://ewi554.ewi.utwente.nl/obr/caci.jar
Bundle-Activator =nl.utwente.CACI.Bundle.CACIActivator
Import-Package = org.ungoverned.osgi.service.shell, org.apache.log4j, org.kxml,
org.kxml.io, org.kxml.parser, nl.utwente.SimuContext, nl.utwente.SimuContext.Repository,
nl.utwente.SimuContext.Configurator
Export-Package = nl.utwente.CACI.Common, nl.utwente.CACI.Common.Interfaces,
nl.utwente.CACI.PerformanceMonitor,nl.utwente.CACI.DiscoveryManager.DiscoveryAdapter,
nl.utwente.CACI.Monitor, nl.utwente.CACI.DiscoveryManager

 IMPLEMENTATION OF THE CONTEXT BINDING MECHANISM 127

OSGi only provides the specification of a component framework. Specific
implementations of this specification exist. Amongst others, the following
initiatives offer open-source OSGi implementations:
– Oscar (Oscar.org 2005): Research initiative, currently offering a light-

weight implementation of the OSGi release 3 specification. Oscar is
tested and fully functional on a pocket pc running the IBM J9 virtual
machine. Transition of Oscar to release 4 of the OSGi specification is
done in the Felix project (Apache Felix Project 2006).

– Knopflerfish (Knoplerfish.org 2005): OSGi project maintained by
Gatespace Telematics, currently offering an implementation of the OSGi
release 4 specification.

– Equinox (Equinox 2006): OSGi project originating from the eclipse
project. They offer an implementation of the OSGi release 4
specification.

– Osxa (Osxa 2006): Research project offering currently a fairly limited
implementation of the OSGi release 4 specification.

For more insights on open source OSGi implementations we refer to
Campanelli (Campanelli 2007). Due to the standard specification of an
OSGi implementation, CACI should be able to function on all the
aforementioned OSGi implementations. We tested the CACI prototype on
top of the Oscar and Knopflerfish frameworks.

kXML
For representing CBDL descriptions, we use XML as the de-facto standard
for representing structured data. For parsing the CBDL descriptions, we
use the kXML 1.21 pull parser (kXML project 2006). This is a lightweight
XML parser developed to operate on mobile devices. Example 5-4 gives a
code segment with an example on how to use kXML to parse an XML
document.

Example 5-3 Registering
of a OSGi service.

// Point of access to the OSGi framework
BundleContext bc;

// Registering a Service
Hashtable props = new Hashtable();
props.put("description", "Service description.");
IMyService myservice = new MyService();
bc.registerService(IMyService.class.getName(), myservice, props);

// Retrieving of a Service
ServiceReference ref = bc_.getServiceReference(IMyService.class.getName());
IMyService my_retrieved_service =
(IMyService) bc.getService(ref);

128 CHAPTER 5 CONTEXT BINDING IN CACI

First the parser is created using a pointer to the XML file. The XML file is
read sequentially and XML events are collected. These events can for
instance be ‘start document’, ‘end document’, ‘start tag’, ‘end tag’ etc. Until
the document has ended, events have to be handled. Depending on the tags
and the actions to be taken, application code has to be added to handle the
event.

Log4J
For logging purposes, we use the Apache Log4j libraries (Apache Log4J
project 2006). Log4j enables developers to specify their logging
requirements in a logging configuration file. Hence, changing logging
behaviour does not affect the application code. Furthermore, the output
pattern, which defines the information you want to log and how it is
formatted, and the log location (e.g. file, console, remote server) can be
changed at run-time. Example 5-5 gives an example indicating how to log
with Log4j using a configuration file and log statements.

Example 5-4 Parsing of
a XML document using
kXML.

XmlParser xmlparser = new XmlParser(reader);
ParseEvent pe = xmlparser.read();
while (pe.getType() != Xml.END_DOCUMENT) {
 if(pe.getType() == Xml.START_TAG){
 if (pe.getName().equals("tag_name")){
 // Handle tag ‘tag_name’
 }
 // Handle other tags
 }
// Handle other tag types like close tags etc.
pe = xmlparser.read(); // Read the following event.
}

 IMPLEMENTATION OF THE CONTEXT BINDING MECHANISM 129

First the logging framework has to be configured for the specific needs of
the application using a configuration file. For every class that needs logging,
a logger has to be retrieved. Log statements can be made using this logger.
These statement can have different levels of severity:
– FATAL: The FATAL level designates very severe error events that

presumably lead the application to abort.
– ERROR: The ERROR level designates error events that might still allow

the application to continue running.
– WARN: The WARN level designates potentially harmful situations.
– DEBUG: The DEBUG Level designates fine-grained informational events

that are most useful to debug an application.
– INFO: The INFO level designates informational messages that highlight

the progress of the application at coarse-grained level.
The configuration file describes what to log and where to log it. A
rootLogger is defined which specifies the level of logging. For example,
INFO level shows all log statements, while ERROR level only shows
ERROR and FATAL log statements. Additionally, the configuration file
specifies the output mechanism(s). In the case of the example, console
output is generated following a certain pattern as specified by the
‘ConversionPattern’.

5.3.2 Prototype Implementation

In this section, we discuss the implementation of the CACI prototype. It
starts with the overall implementation architecture of the prototype.

Example 5-5
Configuration and usage
of Log4J

// Configure Log4J (done once)
PropertyConfigurator.configure(System.getProperty("l.utwente.CACI.logfilecfg","log4j.cfg"));

// Create a logger (done for every class)
private Logger logger = Logger.getLogger(MyClass.class);

// Log statements
logger.info(“This is a information log statement.”);
logger.debug(“This is a debug log statement.”);
logger.error(“This is a error log statement.”);

// ***************
// Log4J.cfg configuration file
log4j.rootLogger=info, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=[%d][%p] %m - %p %C{1}:%L%n

130 CHAPTER 5 CONTEXT BINDING IN CACI

Subsequently, it discusses the extensibility of the prototype using
application specific adapters. Finally, it describes a test scenario showing the
usage of CACI.

Overall Implementation
The foundation of CACI is the CACI container. The CACI container, which
contains the context binding mechanism, is implemented in Java as a
standard OSGi bundle. The package structure of the CACI implementation
corresponds with the identified functional blocks from the design as
presented in Figure 5-21. The CACI bundle contains approximately 3500
lines of code and has a size of approximately 70kb. We tested CACI on a
laptop PC and a windows mobile PDA. A total installation of CACI,
including the OSGi environment and the J9 virtual machine, requires
3,5MB.

Figure 5-24 presents the implementation architecture of the prototype.
The CACI container implements a virtual container inside the OSGi
container. The CACI container intercepts deploying CACI-enabled
components such that the context binding mechanism can create the
required context bindings, which are specified in the component
descriptor. Additionally, the context binding mechanism offers the context
retrieval and publishing services to the context-aware application to retrieve
or publish context information.

CACI container

Context-Aware
Component

Context-Aware
Component

OSGi container

Context-Aware
Components

kXML SimuContextLog4J

Context Binding Mechanism

Context retrieval &
publishing service

Life-cycle management
& Service discovery

Besides these services, a context-aware component can use the life-cycle
and service discovery services offered by the underlying OSGi container.
Internally, the context binding mechanism uses kXML, Log4J and
SimuContext functionality. These functions are packaged in separate
bundles and deployed in the OSGi container. The context binding

Figure 5-24
Implementation
architecture.

 IMPLEMENTATION OF THE CONTEXT BINDING MECHANISM 131

mechanism can use their capabilities via the services capabilities of the
OSGi container. Consequently, context-aware components can also use
these bundles independently from CACI.

Besides the bundle containing the CACI container, we have created a
context consumer generator for testing and debugging purposes. This
generator contains a graphical user interface to automatically generate
context consuming components. We discuss this generator more in the
next section. Figure 5-25 shows the installed components in an Oscar based
OSGi container. Here you can see the kXML, Log4J,
SimuContextRepository, CACI and ContextConsumerGenerator bundles.

Application Specific Adapters
We implemented the prototype in a modular fashion such that it can be
extended by application developers to suit their application specific needs.
Application developers can develop and configure the following application
specific adapters:
– Parser adapters: to support different types of context requirement

specification languages.
– Deployer adapters: to support different types of underlying component

middleware frameworks.
– Selector adapters: to support different context source selection algorithms.
– Decider adapters: to support different decision algorithms to determine, in

case of a ‘failing’ context binding, if a rebinding process should be
started.

CACI can be configured by specifying the classpath of the application
specific adapters using system properties (successively,

Figure 5-25 Graphical
representation of the
installed components in
a Oscar OSGi container.

132 CHAPTER 5 CONTEXT BINDING IN CACI

‘nl.utwente.CACI.ParserAdapter’, ‘nl.utwente.CACI.DeployerAdapter’,
‘nl.utwente.CACI.SelectorAdapter’ and ‘nl.utwente.CACI.
DeciderAdapter’). Based on the specified classpath of the adapters, a
specific adapter is instantiated at run-time using Java reflection. Example 5-6
shows the code for instantiating a parser adapter, which is similar for the
other types of adapters.

For all the adapter types, we have created interfaces (see Figure 5-26 to 5-
29) that have to be implemented by the specific plug-in adapters. These
interfaces define one method that CACI uses to set a callback object
(‘setCallback’). On initialization of the adapter this ‘setCallback‘ is invoked
by CACI to set a callback object. This callback object should be used by the
adapter to interact with CACI to pass its results. The only requirement on
the classes that implement the adapter is that they should be available on
the classpath of CACI. This can be done by using the class sharing
capabilities of the OSGi framework.

Figure 5-26 depicts the interfaces relevant for a parser adapter. A parser
adapter has to implement the ‘IParserAdapter’ interface. This includes
implementing a ‘setCallback’ and ‘parse’ method. The ‘parse’ method is
called by CACI on deployment of a new CACI enabled component. This
method should parse the component descriptor of this component using
the passed input stream. Additionally, it should notify identified retrieval
and publishing request to CACI via the ‘IParserAdapterCallback’ callback

Example 5-6 Using Java
reflection to instantiate a
parser adapter.

IParserAdapter parser;

public Parser() {
 // Retrieve the system property specified by the application developer.

String parsername = System.getProperty("nl.utwente.CACI.ParserAdapter",
 "nl.utwente.CACI.Parser.ParserAdapter.CBDLParser");
 try {
 // Instantiate the adapter and set the callback object
 parser = (IParserAdapter) Class.forName(parsername).newInstance();
 parser.setCallback(deployer);
 } catch (InstantiationException e) {
 logger.error("Cannot instantiate parser adapter.");
 } catch (IllegalAccessException e) {
 logger.error("No permission to instantiate parser adapter.");
 } catch (ClassNotFoundException e) {
 logger.error("Cannot find class to instantiate parser adapter.");
 }
}

 IMPLEMENTATION OF THE CONTEXT BINDING MECHANISM 133

object. For the prototype, we created a CBDL parser adapter to parse
CBDL-based component descriptors.

Figure 5-27 depicts the interfaces relevant for a deployer adapter. A
deployer adapter has to implement the ‘IDeployerAdapter’ interface. This
includes implementing a ‘start’, ‘stop’ and ‘setCallback’ method. The
‘start/stop’ methods are called by CACI to start or stop the deployer
adapter from detecting (un)deploying components in the underlying
component container. When the adapter is started it should indicate
deploying or undeploying components to CACI via the
‘notifyComponentInstall’ and ‘notifyComponentUnistall’ methods via the
callback object. For the prototype, we have implemented an OSGi deployer
adapter to detect deploying OSGi bundles.

Figure 5-28 depicts the interfaces relevant for a selector adapter. A selector
adapter has to implement the ‘ISelectorAdapter’ interface. This includes
implementing a ‘select’ and ‘setCallback’ method. The ‘select’ method is
called by CACI in two cases: (i) after CACI receives discovery results and
(ii) after CACI receives a notification of a new context source becoming
available. In the second case, CACI creates a producer set consisting of the
new producer and the old producer to be able to compare both. The
implementation of the select methods ranks the vector of passed
‘ContextProducers’ and selects the most suitable context producer. This
can be done based on the element, entity, format and QoC offerings of the
producer. QoC offerings consisting of minimal and maximal QoC limits
this producer can offer (see Chapter 2 for possible QoC parameters). This
selected producer is passed to CACI via the “notifySelection” method of the
callback object. For the prototype we have implemented a simple selector
that selects the first producer from the list of discovered context producers.

Figure 5-26 Interfaces to
develop parser adapters.

Figure 5-27 Interfaces to
develop deployer
adapters

134 CHAPTER 5 CONTEXT BINDING IN CACI

Figure 5-29 depicts the interfaces relevant for a decider adapter. A decider
adapter has to implement the ‘IDeciderAdapter’ interface. This includes
implementing a ‘notifyDeregisterProducer’, ‘notifyNewProducer’,
‘notifyDegradedQoC’, ‘notifyContextRetrievalError’,
‘notifyBindingInspection’ and ‘setCallback’ method. The decider has to
decide to commence rebinding when the notify methods are called by CACI
in the following cases:
– notifyDeregisterProducer: The bound producer deregisters (i.e. dissapears)

from its discovery mechanism.
– notifyNewProducer: A new and possibly better (i.e. indicated by the

selector) context producer becomes available.
– notifyDegradedQoC: The QoC of retrieved context samples from the

bound context producer is below the minimal required QoC level.
– notifyContextRetrievalError: After an explicit request for context

information by the application, an exception occurs (i.e. catched by the
context producer proxy).

– notifyBindingInspection: In case of a subscription by the application, no
new context information is received for a certain period.

When the decider decides to start the rebinding process, it invokes the
notify methods of the callback object. In case of a rebinding due to new
context producers becoming available, an establishment phase is started
(notifyDirectRebind). In the other cases, a new discovery, selection and
establishment phase is started (notifyDiscoveryRebind). For the prototype
we implemented a decider based on the rebinding algorithm discussed in
Section 5.2.2.

Figure 5-28 Interfaces to
develop selector
adapters.

 IMPLEMENTATION OF THE CONTEXT BINDING MECHANISM 135

Testing & Debugging
For testing and debugging purposes on a Desktop PC, we created graphical
user interfaces to (i) automatically generate and deploy context consuming
components, (ii) monitor the state of the context binding mechanism and
(iii) monitor incoming context information at the generated context
consuming component. We used these testing instruments to perform
feasibility test in which we run common use case scenarios that should be
supported by CACI.

The context consumer generator can be used to generate a context
consuming component by specifying the component name and its context
requirements in the CBDL language. Figure 5-30 presents the GUI of the
context consumer generator. This GUI can be used to specify that the
component to be generated should have the name ‘MyContextConsumer’
and has three context requirements: (i) Location of Tom in lat/long format,
(ii) Time of Henk in hh:mm format, and (iii) Temperature of room
ZL4034 in degrees Celsius.

By pressing the deploy button a consumer component is generated. This
is done by specializing a pre-defined template component according to the
specified name and CBDL document. This transformation is done using an
ANT script. The generated code is compiled and packaged in a JAR file
together with the CBDL document. The packaged component is
automatically deployed in the OSGi/CACI container.

Figure 5-29 Interfaces to
develop decider
adapters.

136 CHAPTER 5 CONTEXT BINDING IN CACI

The result of the deployment of the ‘MyContextConsumer’ component can
be seen in the CACI Administrator GUI, which is presented in Figure 5-31.
On the left, the ‘MyContextConsumer’ component is added to the list of
installed components. The CBDL document of the component is parsed
and the ID’s of the context requirements are added to the list of binding
requests that are known to CACI.

In general, the CACI Administrator GUI gives an overview of the state
of the context binding mechanism. When a (generated) component is
deployed, the component and its binding requests are registered.
Additionally, the GUI shows possible context publishing requests from
context producing components. Furthermore, it shows the registered
context discovery adapters, which are discussed in more detail in Chapter 6.

Figure 5-30 GUI of the
context consumer
generator.

 IMPLEMENTATION OF THE CONTEXT BINDING MECHANISM 137

Figure 5-32 shows the generated GUI of the ‘MyContextConsumer’
component. This GUI shows the CBDL specification and context
requirements, called binding requests, of the component. Additionally, it
shows incoming context events such as incoming context samples. Context
samples are received as the result of an explicit request to the bound
context source or via a notification from the bound context source in case
of a subscription.

Binding status notifications received from CACI are visualized by
colouring the context binding request label. A green label indicates the
‘bound’ state of a context binding, an orange label indicates the ‘(re)binding
state’ of this binding while a white label indicates an ‘unbound’ state of this
binding. Hence, in the figure, the context requirement ‘Temperature of
room ZL4034’ can be fulfilled and context information is delivered to the
application. No context information is available anymore to fulfil the other
context requirements.

As the counter part of context consuming components, context
producing components can also be automatically generated and deployed in
CACI using the SimuContext Configurator. This is discussed in more detail
in Chapter 6.

Figure 5-33 shows a running instance of CACI on a windows mobile
PDA. It shows the logging messages inside the console of the IBM J9 virtual
machine, which is used as the underlying execution platform. For testing
and debugging on this platform we used command line statement.

Figure 5-31 CACI
Administrator GUI that
can be used to monitor
the state of the context
binding mechanism.

138 CHAPTER 5 CONTEXT BINDING IN CACI

Figure 5-32 GUI of the
generated context
consumer component.

Figure 5-33 Running
instance of CACI on a
windows mobile PDA.

 IMPLEMENTATION OF THE CONTEXT BINDING MECHANISM 139

5.3.3 Performance, Scalability and Stability

In this section, we discuss performance, scalability and stability aspects of
the CACI prototype.

Performance
We executed some performance tests to get an impression on the efficiency
of CACI and the context binding mechanism. Figure 5-34 depicts the used
test set-up. We generated a context consumer using the context consumer
generator. This consumer is deployed in the CACI container. As part of the
binding process, CACI discovers simulated context producers from a local
SimuContext producer repository. In this repository, we register simulated
context sources that fulfil the context requirements of the context
consumer.

Using this set-up, we performed four types of tests that measure the
time spend to: (i) start-up CACI, (ii) establish a new binding to a context
source registered in the SimuContext repository, (iii) rebinding to a new
SimuContext source when the already bound context source disappears and
(iv) rebinding to an appearing SimuContext source.

To get an overall impression on the time spend by CACI to create and
maintain a context binding on behalf of a context-aware application, all the
measurements, except the start-up time of CACI, are performed at the
generated context consumer. The generated context consumer measures
the time to create a binding and rebind based on context binding status
notifications it receives from CACI. CACI’s start-up time is measured
inside CACI.

The results of these tests are depicted in Table 5-3. The tests are performed
with the test setup running on a laptop pc and a windows mobile PDA. The
tests are repeated 250 times. The results show the lowest, average and
highest time spend for the corresponding test.

Figure 5-34 Test set-up

140 CHAPTER 5 CONTEXT BINDING IN CACI

Test Time spend on
a laptop pc

Time spend on
a PDA

i) Start-up of the CACI infrastructure Low: 0ms
Avg: 15ms
High: 47ms

Low: 23ms
Avg: 26ms
High: 636ms

ii) Establish a new binding Low: 0ms
Avg: 7ms
High: 94ms

Low: 13ms
Avg: 120ms
High: 967ms

iii) Re-bind to new context source due to disappearing of
bound context source

Low: 0ms
Avg: 5ms
High: 16ms

Low: 10ms
Avg: 88ms
High: 263ms

iv) Re-binding to an appearing context source (e.g. higher
QoC)

Low: 0ms
Avg: 3ms
High 16ms

Low: 10ms
Avg: 73ms
High: 255ms

When compared to the time-frame of a typical context-aware application,
we consider the overhead introduced by CACI, which is in the range of
milliseconds, marginal. Some initial overhead is witnessed when starting the
CACI infrastructure. However, the CACI infrastructure and applications
can be started independently. Hence, CACI can already be pre-loaded such
that it does not influence the start-up of the application. Establishing a new
context binding takes, as expected, the most time. This includes parsing the
CBDL document, discovery and selection of context sources, and
establishment of the context binding by creating a new proxy. In case of the
rebinding tests (i.e. tests iii and iv), parsing of the CBDL document and
creation of the proxy are not necessary and hence these operations are less
costly. Re-binding to a new context source in case of a failing context
binding is a little bit more costly compared to re-binding in case of an
appearing context source. This is as expected because the first also includes
a discovery process to find a replacement for the context source while in
the second case this replacement context source is already provided.

In the test, we purposely used a local discovery mechanism (i.e. the
SimuContext repository) to minimize the time spend on discovery. In this
way the results of the test give a representative impression on the efficiency
of CACI. However, in a real-world deployment of CACI the used discovery
mechanisms are often remote. Consequently, we estimate that the overhead
introduced by CACI is less or can even be neglected compared to the delay
for discovery of context producers at a remote context discovery
mechanism. For example due to introduced communication delay to a
remote context discovery mechanism. Furthermore, without CACI, an

Table 5-3 Performance
test results.

 IMPLEMENTATION OF THE CONTEXT BINDING MECHANISM 141

application still has to perform (remote) discovery. Consequently remote
discovery does not impose extra overhead when using CACI.

Scalability
Scalability of CACI and the context binding mechanism is determined by
the number of application components and the number of binding requests
it can handle concurrently. As CACI is co-located with the applications on
the application hosts, we assume the number of components, and hence
binding requests, are fairly limited.

We tested the scalability of the CACI prototype by deploying 10 CACI
enabled components with in total 100 binding requests. The time spend to
create a new binding or to rebind to new context sources showed similar
overhead as in the performance tests presented in the previous section. This
is as expected because every binding request is handled sequentially.

Sequential handling of binding requests also has a disadvantage: some
binding requests are handled later than other binding requests depending
on the time they are sent to the context binding mechanism. For example,
on average this means that the time between the deployment of a
component with multiple binding requests and the time a proxy is available,
is a multitude of 7,3ms (i.e. average time spend to establish a new context
binding). Similar reasoning applies to the time spent for rebinding in case
of disappearing or newly available context sources. Nevertheless, for a small
number of context bindings the overhead (i.e. which is in the order of
milliseconds) introduced by CACI is relatively small.

Concurrent handling of context binding requests may reduce the time
spend on creating and rebinding of context bindings. For example, this
could be useful to use the waiting time introduced by a remote discovery
request more efficiently. We consider concurrent handling of binding
requests as future work.

Stability
The rebinding behaviour of the context binding mechanisms may become
instable such that the availability of context information becomes
interrupted. For example, a situation could occur in which the context
binding mechanism, on behalf of one or more context bindings, binds
between appearing and disappearing context sources. During the switching,
no context information is available to the application. Also such a situation
could appear if the QoC of a bound context source fluctuates heavily in and
out of the acceptable quality range specified by the application.

Selection and rebinding algorithms should be developed to overcome
those situations. For example, a waiting time before switching to a new
context source could be applied such that it is more certain that this new
context source stays available. Or, in case of fluctuating QoC, an algorithm

142 CHAPTER 5 CONTEXT BINDING IN CACI

that takes into account QoC averages over a period of time instead of
considering the QoC values of every individual context sample. However,
we consider extending the context binding mechanism with such algorithms
as future work.

Another danger of providing rebinding capabilities are ‘denial of service’
(DoS) attacks. A malicious context source could, by specifying a fake
context offering with a very high QoC, let the context binding mechanism
create bindings only to this source. Additionally, by rapidly appearing and
disappearing, it could cripple the context binding mechanism, which in that
case is constantly trying to rebind from and to this source. This could for
example be countered by introducing certificates that ensure the
trustworthiness of the context source. We refer to (Anderson, Roscoe et al.
2004) for a general discussion on certificates and DoS in internet-based
applications. However, this aspect needs further research.

5.4 Related Work

In general, current middleware binding mechanisms have two related goals:
(i) shift parts of the binding process to the infrastructure to make the
binding more implicit for the developer (explicit vs. implicit bindings (Blair
and Stefani 1998)) and (ii) only create the binding when needed (at run-
time), incorporating the situation at hand (early vs. late binding). Examples
of middleware binding mechanisms are the CORBA Naming Service (OMG
2004), the CORBA Trader (OMG 2004), CORBA Dynamic Invocation
Interface (DII) (OMG 2004), Web service UDDI and the Web Service
Invocation Framework (WSIF) (Apache WSIF project 2006). However,
dynamic behaviour of the binding, like appearing and disappearing binding
ends are not incorporated in these mechanisms. Coping with this issue is
still the responsibility of the application developer.

Several mechanisms, such as Context-sensitive bindings (Sen and
Roman 2003), Service-oriented network sockets (Saif and Palusak 2003)
and OSGi (Extended) Service Binder (Cervantas and Hall 2004; Bottaro
and Gerodolle 2006), recognize the need for extending binding
mechanisms in which the dynamic availability of services is incorporated.
Compared to CACI, they have a similar goal but are not tailored to the
novel type of context-aware applications. Although, context producers and
consumers could be considered generic distributed entities, they have
distinct characteristics (e.g. limited scope and interface, QoC) that have to
be incorporated in the binding mechanism to be able to fully support the
application developer. For example, context binding mechanisms should be
based on a model of context and the notion of quality of context (QoC)
should be incorporated in the mechanisms.

 LIMITATIONS AND FUTURE WORK 143

When zooming into binding mechanisms specific for context-aware
systems, several context-aware middleware infrastructures (Kummerfeld,
Quigley et al. 2003; Bardram 2005; Henricksen, Indulska et al. 2005;
Kranenburg and Eertink 2005) shift parts of the context specific binding
mechanism to the infrastructure. Generally, this functionality enables
context consumers to discover and bind to context producers using
programming statements. However, often dynamic monitoring capabilities
are not available and when context producers become (un)available the
decision to re-bind and the choice to which context source to bind has to
be taken by the application rather than the infrastructure. CACI tries to
leverage from the capabilities of current context-aware middleware
infrastructures and extend them with binding maintenance that copes with
the dynamic availability and quality of context producers. Additionally, we
take a different approach, compared to most context management systems,
by offering developers ways to specify their context requirements in high
level descriptions. These descriptions are interpreted and dealt with by
CACI instead of developers having to program technology specific binding
statements. In this way, we further facilitate developers in rapidly creating
context-aware applications.

5.5 Limitations and Future work

We acknowledge that the current design and prototype has certain
limitations and can be extended:
– Prototype optimization: the current implementation of the prototype

assumes certain time-out values (e.g. discovery session time) which
could be tuned to optimize performance. Additionally, concurrent
handling of binding requests could be researched to improve
performance and scalability.

– Context producer support: the implementation of the support function for
context producers is limited to advertisements in the local repository.
Full support for context producers also includes advertisement of the
context offerings to available context discovery mechanisms and
deregistering in case of un-deployment of the component. Additionally,
research has to be done on how-to de-register the context offerings in a
certain context discovery mechanism in case of disappearance of the
context producer.

– Dynamic QoC re-binding: the current implementation of the context
binding mechanism only considers re-binding on static QoC
parameters. It matches the offered QoC of an appearing context source
with the required QoC specified by the application developer. However,
the actual QoC of the incoming context samples is not dealt with.

144 CHAPTER 5 CONTEXT BINDING IN CACI

Further research is needed to extend the context binding mechanism
with this aspect.

– Stability: more research has to be done to decision algorithms to
overcome possible instable situations of context bindings. Both
oscillating behaviour due to rapidly fluctuating QoC and availability of
context sources have to be taken into account.

– Reasoning: in case certain context requirements cannot be matched with
context offerings of context sources a context reasoning mechanism
could be deployed to infer this required type of context. Both horizontal
and vertical reasoning techniques could be used. The first to maintain
the required QoC, the second to derive required context information
from available context sources.

– Privacy: especially for context producing components the CACI container
could function as a privacy enforcement point. Future research is
necessary to extend the CBDL language with privacy parameters. These
parameters can be used by an extended context binding mechanism to
enforce the privacy of the owner of the context information provided by
the context producing component.

Chapter 6

6. Context Discovery and Simulation
in CACI

This chapter presents the design and prototype implementation of: (i) a
mechanism that enables context-aware applications to interoperate with
different dynamically available context discovery mechanisms and (ii) a
mechanism to simulate context sources (coined SimuContext). Parts of this
chapter are published in (Aarts 2006; Broens and Halteren 2006; Broens,
Poortinga et al. 2007; Hesselman, Benz et al. 2008).

This chapter is structured as follows: Section 6.1 discusses the design
and prototype implementation of the context discovery interoperability
mechanism. Section 6.2 presents the design and prototype implementation
of the SimuContext framework.

6.1 Context Discovery Interoperability Mechanism

This section discusses the context discovery interoperability mechanism.
This mechanism supports the context binding mechanism (discussed in
Chapter 5), to discover context sources. This section starts with a problem
analysis, followed by a description of the design and prototype
implementation. Subsequently, it discusses the integration of this
mechanism in CACI. Finally, it presents related work and, limitations and
future work.

6.1.1 Problem Analysis

A major enabler for the development of second and third generation
context-aware applications are context discovery mechanisms. These
mechanisms can be used to find context sources that can deliver context
information suitable for the application. As discussed in Chapter 3,
currently, a vast amount of context discovery mechanisms exist, which have

146 CHAPTER 6 CONTEXT DISCOVERY AND SIMULATION IN CACI

different capabilities and scope (Dey and Abowd 2000; Bardram 2005;
Henricksen, Indulska et al. 2005; Benz, Hesselman et al. Freeband
AWARENESS Dn2.1, 2006).

An important characteristic of current context discovery mechanisms is
that they are often developed for specific application environments. For
example, some discovery mechanisms are specifically geared towards home
environments (Lehmann, Bauer et al. 2004), whereas others are dedicated
to large-scale mobile environments (Lehmann, Bauer et al. 2004; Roussaki,
Strimpakou et al. 2006), or to small ad-hoc networks (Perich, Avancha et
al. 2002). For context-aware applications, it is complex to interoperate
with these different types of discovery mechanisms. For instance, because
these mechanisms have different operational interfaces, use different
discovery protocols, different naming schemes for their users, or different
context information models. This means that context-aware applications
are generally limited to their ‘native’ context discovery mechanism.

We believe it is unlikely that there will be one commonly adopted
context discovery mechanism in the future. As implied by the diversity of
currently available context discovery mechanisms, different application
environments may require different mechanisms to exchange context
information. Consequently, context-aware applications have the possibility
to use a range of context discovery mechanism to find context sources.

Additionally, the range of a context discovery mechanism is often
limited to a certain domain. For example, a certain discovery mechanism is
only reachable if the application is in the same network domain. These
domains are also often physically limited. For example, a discovery
mechanism is only reachable via the wireless network, deployed in an office
building. Hence, this discovery mechanism becomes unavailable when an
application moves out of the range of this network. A mobile context-aware
application is likely to travel between domains. Hence, during its lifespan, it
may encounter multiple heterogeneous context discovery mechanisms.

Figure 6-1 illustrates a mobile user with a context-aware application.
This user travels from domain to domain, encountering multiple
heterogeneous context discovery mechanisms.

 CONTEXT DISCOVERY INTEROPERABILITY MECHANISM 147

Context Discovery
Mechanism A

Context Discovery
Mechanism B

Context Discovery
Mechanism C

 = Travelling user with a context-
aware application

Without supporting mechanisms to cope with the previously sketched
situation, developers of a context-aware application have to consider diverse
discovery mechanisms in their application. Additionally, they may have to
develop code to detect and monitor the availability of these context
discovery mechanisms. Besides the required, substantial, programming
effort, this also distracts from the primary task of developing context-aware
applications. Hence, we propose to shift the responsibility of interoperating
context-aware applications with heterogeneous and dynamically available
context discovery mechanisms to an infrastructure-based context discovery
interoperability mechanism. For example, such a mechanism enables the
following scenario of a buddy navigation application (see Example 6-1).

In our view, there are three approaches to enable context-aware
applications to interoperate with context discovery mechanisms:

Figure 6-1 Travelling
user encountering
multiple heterogeneous
context discovery
mechanisms.

Example 6-1 Scenario
showing the use of
different context
discovery mechanisms
during the lifespan of a
“buddy navigation”
application.

Dennis is a young adult, always wanting to be in contact with his friends. He has a mobile device
running the ‘buddy navigation application’. This application is able to navigate to available
buddies by using location and availability context information of him and his friends. Dennis
notices that Monica is in the mall and available for a cup of coffee. He decides to visit her. He
instructs the ‘buddy navigation application’ to help him find her.

Inside Dennis’ home, an RFID based location context source, found by his home context
discovery mechanism, provides an accurate location of Dennis. From Monica, no precise
location source is available in Denis’s home, it is only known that she is somewhere in the mall.
The ‘buddy navigation application’ instructs Dennis to take the car to the mall. When Dennis
leaves his home, to go on his way to Monica, his home discovery mechanism becomes
unavailable. The application switches to a cell based location context source found by the context
discovery mechanism of his telecommunication provider.

On entering the mall in which Monica is in, accurate context information on Monica’s
location becomes available, offered by a Bluetooth beacon context source found by the context
discovery mechanisms of the mall. The buddy navigation application pops up a map of the mall,
to instruct Dennis how to walk to the book store where Monica is currently shopping.

148 CHAPTER 6 CONTEXT DISCOVERY AND SIMULATION IN CACI

– Standardization: every environment provides one or more standardized
context discovery mechanisms. These mechanisms can be found and
accessed in a standardized manner when an application enters the
domain. However, as already indicated, due to the heterogeneity and
different requirements of the application environments, we do not
believe this approach is feasible or likely.

– Bridging: In a bridging approach, every environment provides different
types of discovery mechanisms which are internally bridged to other
discovery mechanisms by bridging code. The application interacts with
one or a limited set of context discovery mechanisms. Context sources,
registered in other bridged context discovery mechanisms, are
discovered via these context discovery mechanisms. Figure 6-2 illustrates
this approach. For more information on an implementation of the
bridging approach to interoperate context-aware applications with
context discovery mechanisms see (Hesselman, Benz et al. 2008).

– Homogenizing: In a homogenizing approach different context discovery
mechanisms are homogenized by a generic homogenizing mechanism.
The application interacts with this mechanism to discover context
sources from available context discovery mechanisms. The
homogenizing mechanism is responsible for detecting available discovery
mechanisms and executing the discovery on behalf of the application.
This homogenizing mechanism can travel with the application.
Dynamically downloaded adapters enable the homogenizing mechanism
to interoperate with the specific context discovery mechanisms. Figure
6-3 illustrates this approach.

Figure 6-2 The use of
bridges to interoperate
context discovery
mechanisms.

 CONTEXT DISCOVERY INTEROPERABILITY MECHANISM 149

In Table 6-1, we compare some (dis)advantages of the bridging and
homogenizing approach.

Bridging Homogenizing

- Every combination of context discovery
mechanisms requires separate bridges.

+ Every discovery mechanism requires only one
adapter.

- Developers of a bridge require extensive
knowledge on the (two) discovery
mechanisms they are bridging.

+ Developers of an adapter require only
knowledge on the discovery mechanism for which
they are providing an adapter.

- The application needs to have knowledge of
at least one context discovery mechanism.

+ The application only requires to have
knowledge on the homogenizing mechanism to
potentially access multiple context discovery
mechanisms.

+ Suitable to interoperate context discovery
mechanisms that reside in different domains.

- Not suitable to interoperate context discovery
mechanisms residing in different domains.

+ Bridges can consider specific capabilities
of the context discovery mechanisms it
bridges and can offer these capabilities to the
application.

- Adapters can offer capabilities that are
supported by the homogenizing mechanism to
the application.

We acknowledge that a bridging and homogenizing approach have their
particular uses, and could even be combined. In this section, we explore the
homogenizing approach. This approach corresponds with the local type of
support mechanisms CACI offers. Additionally, a homogenizing approach
offers the opportunity to dynamically use available context discovery
mechanisms to create and maintain context bindings. Hence, we develop a
homogenizing context discovery interoperability mechanism that enables the

Figure 6-3 The use of
adapters to homogenise
the access to
dynamically available
context discovery
mechanisms .

Table 6-1 Comparing the
bridging and
homogenizing approach.

150 CHAPTER 6 CONTEXT DISCOVERY AND SIMULATION IN CACI

context binding mechanism to transparently interoperate with dynamically
available context discovery mechanisms.

6.1.2 Design

Figure 6-4 presents the position of the context discovery interoperability
mechanism in CACI. The context binding mechanism (see Chapter 5)
transforms the context requirement of a context-aware application into a
discovery request. It invokes this discovery request by using the context
discovery service of the context discovery interoperability mechanism. The
context discovery interoperability mechanism is responsible for detecting
available context discovery mechanisms, issuing discovery requests to the
available discovery mechanisms on behalf of the application, and collect the
results. The results are forwarded to the context binding mechanism that
uses them to create and maintain context bindings.

In the remainder of this section, we start with a high level overview of
the context discovery interoperability mechanism. Subsequently, we present
a functional decomposition.

Figure 6-4 Position of
the context discovery
interoperability
mechanism in CACI..

 CONTEXT DISCOVERY INTEROPERABILITY MECHANISM 151

High-level Overview
The problems the interoperability mechanism has to solve are the following:
– (Un)availability of context discovery mechanisms during the life-span of

the application. We propose to detect the availability of context
discovery mechanisms and continuously monitor their availability.

– Heterogeneous interaction behaviour and communication mechanisms
of context discovery mechanisms. We propose to introduce an adapter
as a middleman between a discovery mechanism and the context binding
mechanism to overcome this heterogeneity. These adapters are
dynamically downloaded when the application enters a network domain
and a context discovery mechanism is detected.

– Heterogeneous syntax of the applied information models of context
discovery mechanisms. We propose to use the adapter as a middleman
between a discovery mechanism and the context binding mechanism to
overcome this heterogeneity.

In the remainder of this section, we discuss how the context discovery
interoperability mechanism solves these problems in more detail. We
acknowledge that it is important to tackle, besides its syntax, also the
semantics of the information models of context discovery mechanisms.
However, we consider this out of the scope of this work.

Figure 6-5 presents a further decomposition of the context discovery
interoperability mechanism in relation with a context discovery mechanism.
Involved entities are:
– Context discovery interoperability mechanism: offers a standard and generic

discovery service to the context binding mechanisms. The
interoperability mechanism performs a discovery to detect available
context discovery mechanisms. For a detected context discovery
mechanism an adapter is available.

– Adapter supplier: offers an adapter supplier service to the context
discovery interoperability mechanism. This service can be used to detect
context discovery mechanisms and retrieve corresponding adapters. An
adapter can be used to perform a discovery on a specific context
discovery mechanism.

– Context discovery mechanism: offers a specific context discovery service that
can be used to find context sources.

152 CHAPTER 6 CONTEXT DISCOVERY AND SIMULATION IN CACI

Hence, besides the context discovery mechanism itself, an adapter has to be
provided to enable CACI to discover context sources. Additionally, when
CACI wants to dynamically detect the context discovery mechanism once it
enters its domain, an adapter supplier has to be running in this domain. An
adapter supplier has the responsibility of providing adapters for the specific
context discovery mechanisms within its domain. Multiple adapter suppliers
can co-exist (e.g. multiple suppliers servicing multiple application
environments). Their location is not prescribed (i.e. a supplier is not
restricted to be co-located on the same host running the context discovery
mechanism).

Table 6-2 presents the abstract service primitives of the discovery service
offered by the context discovery interoperability mechanism. It describes
the service primitives (SP) between the Service User (SU, in this case the
context binding mechanism) and the Service Provider (SPr, in this case the
context discovery interoperability mechanism). Additionally, it describes the
type of interaction (i.e. synchronous and asynchronous), and the input
parameters and possible return parameters.

This service consists of a way to start a discovery for context sources
based on a discovery request (discoveryProducers). A discovery request
consists of a context specification and possible QoC criteria. The service
user provides a callback which is called to transfer the corresponding
discovery results.

Direction S/A SP identifier Parameters ReturnParameters

SU-SPr A discoverProducers discoveryRequest, callback -
SPr-SU A notifyDiscoveryResult - discoveryResult

Figure 6-5 Refinement
of the context discovery
interoperability
mechanism and context
discovery mechanisms.

Table 6-2 Discovery
service.

 CONTEXT DISCOVERY INTEROPERABILITY MECHANISM 153

Table 6-3 discusses the abstract service primitives of the adapter supplier
service. This service can be used to retrieve a list of available adapters, get a
download URL of an adapter, and send a heartbeat signal to check the
availability of the adapter supplier.

Direction S/A SP identifier Parameters ReturnParameters

SU-SPr S listAdapters - AdapterIDs

SU-SPr S getAdapterURL AdapterID AdapterURL

SU-SPr S heartbeat - Acknowledgement

Functional Decomposition
Figure 6-6 presents a functional decomposition of the context discovery
interoperability mechanism. The mechanism consists of the following
functions:
– Adapter: an adapter ‘translates’ the generic context discovery request

provided by the context binding mechanism to a specific context
discovery request to specific context discovery mechanisms (and visa
versa for the discovery result). This includes translating between the
possibly different information models and using the right
communication technologies to invoke the discovery request. For
integration with the discovery coordinator, it offers the same discovery
service as the overall context discovery interoperability mechanism.

– Monitor: a monitor, continuously checks the availability of a specific
context discovery mechanism. In case of detected unavailability of a
context discovery mechanism, it notifies the discovery coordinator.

– Discovery Coordinator: the coordinator downloads corresponding
adapter/monitor combinations for the detected discovery mechanisms
and load/unloads them when the mechanisms are available or
unavailable, respectively. Additionally, it implements the discovery
service offered to the context binding mechanism. Hence, it is
responsible for dispatching the received discovery requests, via the
loaded adapters, to the context discovery mechanisms.

Table 6-3 Adapter
supplier service.

154 CHAPTER 6 CONTEXT DISCOVERY AND SIMULATION IN CACI

Adapter SupplierAdapter Supplier

Context Discovery Interoperability Mechanism

Adapter Monitor

Context Discovery MechanismContext Discovery Mechanism

Context Binding Mechanism

Context Discovery Mechanisms

Adapter

Specific Discovery
Service

Discovery service

Monitor

Discovery Coordinator

Adapter Supplier

Adapter supplier
service

retrieve adapters
monitor availability

(De)activate &
(Un)Load

Discover
context sources

Monitor
availability

Discovery service

Discover context sources

Discover context sources

A typical behaviour of the discovery interoperability mechanism is
represented in a time-sequence diagram in Figure 6-7. On start-up of the
application, the Discovery Coordinator initiates the discovery of available
adapter suppliers (1); this is done continuously during the life-span of the
discovery coordinator. When a supplier is found its registered
adapter/monitor combinations are downloaded (2). The monitor is started
(3) to check the availability of the discovery mechanism (4). If it is indeed
available, the corresponding adapter is registered to the Discovery
Coordinator. When the application then performs a discovery request, the
coordinator will use the downloaded adapters to discover context sources
(5 & 6). The monitor is continuously keeping track of the availability of the
discovery mechanism it supports (7). If discovery mechanisms become
unavailable, their adapters are made inactive by the coordinator (8). Also
the adapter supplier is monitored for its availability (9). In case a supplier
disappears, its inactive adapters/monitors are unloaded from the system.

Figure 6-6 Architecture
of the Context Discovery
Interoperability
mechanism.

 CONTEXT DISCOVERY INTEROPERABILITY MECHANISM 155

Discovery
Coordinator Monitor

Context
Discovery
Adapter

Adapter
Supplier

Context
Discovery

Mechanism

(1) Supplier Discovery

(2) Adapter Retrieving
(3) Load monitor

(4) Check availability

(3) Load adapter

Application

(5) Context
Source Discovery

(5) Context Source Discovery

 (9) Monitor availability

(7) Monitor availability
(8) de-activate

adapter

(6) Context Source Discovery

The figures represent only one monitor and adapter, multiple monitors and
adapters can co-exist at the same time and can become active or inactive
during the lifespan of the application.

6.1.3 Implementation

This section discusses the prototype implementation of the context
discovery interoperability mechanism. It discusses the used technology,
usage scenario, performance tests and a reference implementation of an
adapter/monitor.

Used Technology
We created a Java based prototype using the OSGi component framework.
The functional components depicted in the design are implemented as
separate OSGi bundles (e.g. coordinator, adapter bundles). The prototype
(excluding discovery adapters and monitors) consists of approximately 1000
lines of code and the OSGi bundles have a size of around 30kB. We tested
the prototype both on a laptop PC and a windows mobile PDA. Context
discovery adapter and monitor components are implemented for the CCS,
CMS, (Benz, Hesselman et al. Freeband AWARENESS Dn2.1, 2006), and
SimuContext (Broens and van Halteren 2006).

For the discovery of adapter suppliers, we used the middleware
developed in the IST Amigo project (http://www.amigo-project.org). This
middleware offers, amongst others, functions for easy Web Service
communication and Web Services Dynamic Discovery (WS-Discovery).

Figure 6-7 Time-
sequence diagram of the
behaviour of the context
discovery
interoperability
mechanism.

156 CHAPTER 6 CONTEXT DISCOVERY AND SIMULATION IN CACI

WS-Discovery uses multicast to discover web services in a network.
Consequently, we used WS-Discovery as the ‘standard’ discovery
mechanism for finding adapter suppliers.

Usage Scenario
In order to be discoverable by a discovery coordinator, an adapter supplier
registers its adapter supplier Web Service with a scope of ‘urn:CDIM’ and a
service type of ‘IAdapterSupplier’ (i.e. interface specifying the Adapter
Supplier Service, see Table 6-3). The adapter supplier is configured with the
information on which adapters/monitors it can offer and the adapter URLs.

After an adapter supplier is discovered, the Discovery Coordinator
retrieves the list of components provided by the adapter supplier, consisting
of one or more combinations of registered context discovery adapters and
monitors. Figure 6-8 presents the GUI of the adapter supplier, showing the
registered CMS and SimuContext adapter/monitor combinations and
download URL’s.

The discovery coordinator downloads (using OSGi’s component
downloading capabilities via http or the file system) the adapters/monitors
registered at the Adapter Supplier. It starts the monitor which checks the
availability of the discovery mechanism. If the monitor successfully detects
the context discovery mechanism, the coordinator loads and starts the
adapter component and indicates the availability of the context discovery
mechanism to the Discovery Coordinator. Figure 6-9 presents the GUI of
the discovery coordinator, which shows the detected and active
SimuContext discovery adapter.

The monitor keeps checking the availability of its context discovery
mechanism. If they become unavailable, the monitor will inform the
discovery coordinator which stops and unloads the relevant adapters (i.e.

Figure 6-8 GUI of an
adapter supplier offering
two context discovery
adapters/monitors.

Figure 6-9 GUI of the
discovery coordinator.

 CONTEXT DISCOVERY INTEROPERABILITY MECHANISM 157

using OSGi lifecycle capabilities). Next to the monitor, the discovery
coordinator will continuously check for the availability of the adapter
Supplier via a straightforward heartbeat mechanism that sends a periodic
heartbeat signal and waits for an acknowledgment. If the supplier becomes
unavailable (i.e. no acknowledgement is recieved), the coordinator will
respond by stopping the inactive adapters/monitor belonging to the supplier
that disappeared.

Performance Tests
Table 6-5 presents the results of some performance tests. These tests are
done to get an impression of the time spent for the (i) discovery of adapter
suppliers, (ii) retrieval of the list of available discovery adapters and,
downloading and registration of a discovery adapter, and (iii) the overall
process of a new adapter becoming available. The test includes a sequence
of 250 iterations in a situation where (i) an adapter supplier, offering the
SimuContext adapter, is locally available on the host that runs the
interoperability mechanism and (ii) an adapter supplier, offering the
SimuContext adapter, is remotely available somewhere in the network of
the host that runs the interoperability mechanism.

Description Local supplier Remote supplier

i) Discovery of an adapter supplier Low: 1,0s
Avg: 3,1s
High: 5,1s

Low: 1,0s
Avg: 3,2s
High, 5,0s

ii) Retrieving a list of available adapters and , downloading
and registering of an adapter

Low: 0,5s
Avg: 0,5s
High: 0,8s

Low: 0,6s
Avg: 0,7s
High: 2,1s

iii) Overall process Low:1,6s
Avg: 3,7s
High: 5,7s

Low: 1,7s
Avg: 3,9s
High: 5,9s

The average time spend to discover an available local/remote discovery
adapter supplier is respectively 3,1s and 3,2s. The size of this measure
consists of multiple parts. First, the discovery coordinator is configured to
check for new adapter suppliers every 4 seconds. Hence, on average, the
expected waiting time for detection of a newly available adapter supplier is
2 seconds. Secondly, the discovery of new suppliers is done using the WS
discovery mechanism, which is configured to execute a discovery session for
exactly 1 second. Hence, the minimum for discovery of an adapter supplier
is 1sec while the average lies around 3 sec. The time spent to retrieve a list
of adapters and downloading/registering adapters is approximately between
0,5 and 2 seconds.

Table 6-4 Performance
measures.

158 CHAPTER 6 CONTEXT DISCOVERY AND SIMULATION IN CACI

The average time for both measurements is about 3,7 seconds for a local
supplier, and 3,9 seconds for a remote supplier Hence, on average, an
application using the discovery interoperability mechanism should be able
to use a newly available context discovery mechanism within 4 seconds
upon accessing the network of an adapter supplier.

Especially, for the discovery of adapter suppliers, some configuration
values have been estimated, such as the supplier discovery repetition rate
(i.e. discovery every 4 seconds) and the discovery time (i.e. 1 seconds).
These values have not been optimized and future research could be done to
possibly decrease the overhead of the discovery of adapter suppliers.

6.1.4 Implementing a SimuContext Discovery Adapter

To enable context discovery mechanisms to be used by the context
discovery interoperability mechanism, a monitor and adapter have to be
developed. Additionally, this adapter and monitor have to be registered at a
deployed adapter supplier.

Since a large part of the functionality of the monitor is equal for every
type of context discovery mechanism, a new one can be implemented by
deriving from a reference monitor component and adapting some parts for
the specific needs of the targeted context discovery mechanism. The
specific context discovery adapters are less generic than the monitor, and
should at least implement the IDiscoveryAdapter interface. The discovery
coordinator and adapter supplier are generic and do not have to be (re-)
implemented for new context discovery mechanisms. However, the adapter
supplier has to be configured with the appropriate information for the
context discovery mechanism it supplies adapters (i.e. Unique ID and
URLs of the monitor and adapter).

In this section, we discuss how-to create a discovery adapter and
monitor. We do this by explaining the development of the SimuContext
discovery adapter (i.e. consists of adapter and monitor capabilities) that can
interact with the SimuContext framework (see Section 6.2 for more details
on the SimuContext framework). We believe this implementation can act as
a reference implementation for other adapters/monitors.

Implementing a discovery adapter/monitor requires the creation of a
separate component (i.e. bundle in OSGi terms) that implements bundling,
adapter and monitoring functionality. This is schematically shown in Figure
6-10. This component has to support the IDiscoveryAdapter interface by
exposing it as an OSGi service. The ID and location (i.e. URL) of the
packaged component can be registered to an adapter supplier, which in
turn can advertise it to requesting context discovery interoperability
mechanisms.

 CONTEXT DISCOVERY INTEROPERABILITY MECHANISM 159

The bundling functionality of a discovery adapter contains behaviour that is
triggered by the OSGi container on start-up of the adapter component. On
start-up, the bundling behaviour starts the monitor, which continuously
checks the availability of the supported discovery mechanism. In case of
SimuContext, this is done by checking if there is a component registered
that exposes the SimuContextSource Retrieval service (see Section 6.2).
When the discovery mechanism is available, the adapter functionality is
started and the discovery adapter service, this adapter offers, is registered to
the OSGi container.

The adapter functionality is responsible for transforming a generic
discovery request to a discovery request suitable for the specific context
discovery mechanism. This transformed request is send to the discovery
mechanism on behalf of the application. The returned discovery result (i.e.
references to context sources) is packaged in a proxy object (i.e.
implementing the IContextProducer interface) which an application can use
to retrieve context information. This proxy object translates the proposed
generic context information data model to the specific context information
data model of the underlying context discovery mechanism Example 6-2
gives an example of such a transformation for a SimuContext adapter.

Figure 6-10 Structure of
the SimuContext
Discovery Adapter

160 CHAPTER 6 CONTEXT DISCOVERY AND SIMULATION IN CACI

We implemented the SimuContext Discovery adapter as a Java-based OSGi
component which contains about 270 lines of code. The size of the adapter
component is approximately 11kB.

6.1.5 Integration of the Context Discovery Interoperability
Mechanism in CACI

The context discovery interoperability mechanism is an integral part of the
CACI infrastructure. It is used by the binding mechanism (see Chapter 5)
to discover context sources from which a suitable one is selected to create a
context binding. Hence, part of the discovery coordinator functionality is
integrated with the context binding discovery manager which is part of the
context binding mechanism. The discovery manager implements a listener
for incoming discovery services offered by the adapter. Example 6-3 gives an
example of such a listener.

On registration of a discovery adapter service to the OSGi environment
(i.e. OSGi triggers the serviceChanged() method in the listener) the
reference to this service is added to the list of usable discovery adapters.
The discovery interoperability mechanism is still responsible for detecting
discovery adapter suppliers, downloading discovery adapters and registering
their discovery adapter service to the OSGi environment.

Example 6-2
implementation of the
getContext() method in
the SimuContext Proxy.

SimuContextSource cs;

/** @see IContextProducer
public ContextInfo getContext() {

// Contextinfo is the generic datamodel of context information
ContextInfo ci = new ContextInfo();

// Translate the datamodels
ci.setElement(cs.getName());
ci.setEntity(cs.getEntity());
ci.setFormat(cs.getFormat());
ci.setContextSample(cs.getContext().getValue());

return ci;

}

 CONTEXT DISCOVERY INTEROPERABILITY MECHANISM 161

By putting part of the discovery coordinator functions inside the context
binding mechanism. The remaining functions of the discovery coordinator
can be optionally omitted (i.e. detection of adapter suppliers and
downloading/registration of adapters). In this way also the adapter
functionality can be used manually by deploying an adapter, which exposes
discovery adapter service, inside an OSGi environment running CACI. The
discovery adapter listener triggers on a registration event and adds the
manually added adapter to the set of available discovery adapters. Figure 6-
11 presents the GUI of the CACI administrator where the available
discovery adapters are listed.

Additionally, the context discovery mechanism can be used
independently from the CACI infrastructure. Context-aware application can
issue discovery request using the discovery service offered by the discovery
coordinator.

Example 6-3 listener for
incoming discovery
adapter services.

DiscoveryManager manager;

public void serviceChanged(ServiceEvent arg0) {

String[] objCl = (String[]) arg0.getServiceReference().
getProperty(org.osgi.framework.Constants.OBJECTCLASS);

// A received event can be for a registering and unregistering discovery adapter
if(arg0.getType() == ServiceEvent.REGISTERED){
 if(objCl.length>0&&objCl[0]==IDiscoveryAdapter.class.getName()){
 IDiscoveryAdapter adp = (IDiscoveryAdapter)

bc.getService(arg0.getServiceReference());
 // add new discovery adapter to the usable set of discovery adapters
 manager.addDiscoveryAdapter(adp);
 }
}else if(arg0.getType() == ServiceEvent.UNREGISTERING){

 if(objCl.length>0&&objCl[0]==IDiscoveryAdapter.class.getName()){
 IDiscoveryAdapter adp = (IDiscoveryAdapter)

bc.getService(arg0.getServiceReference());
 // remove new discovery adapter to usable set of discovery adapters
 manager.removeDiscoveryAdapter(adp);
 }
}

}

162 CHAPTER 6 CONTEXT DISCOVERY AND SIMULATION IN CACI

6.1.6 Related Work

Several initiatives exist to let context discovery mechanisms collaborate.
First, there are mechanisms that federate multiple instances of one type of
context discovery mechanism. For example context discovery mechanisms
used in the mobile operators domain (Roussaki, Strimpakou et al. 2006),
context discovery mechanism used for small to mid-sized environments
(Hesselman, Eertink et al. 2007), or a combination thereof (José, Meneses
et al. 2005). In this type of approaches, the interoperability function
consists mainly of coordination rather then homogenizing or bridging
heterogeneous context discovery mechanisms.

When focussing on interoperating heterogeneous context discovery
mechanisms, several approaches exist that homogenize context information
by proposing a homogenizing interoperability layer that uses a common
context model (e.g. ontology) to uniformly exchange context information.
For example, the ITransIT system (Meier, Harrington et al. 2006; Lee and
Meier 2007) is built to integrate advanced transportation systems that use
spatial context information (e.g. location, driving status). They propose the
ITransIT tier, which offers a homogenizing layer that handles spatial context
information coming from legacy systems. Hence, they propose a common
spatial data model (PCM) and an ontology (PCOnt) to specify the spatial
context information. (Blackstock, Lea et al. 2006) propose a common
ubiquitous environment model and a homogenizing layer called the

Figure 6-11 CACI
administrator gui
showing two registered
discovery adapters.

 CONTEXT DISCOVERY INTEROPERABILITY MECHANISM 163

Ubicomp Integration Framework (UIF).UIF is implemented using
semantic web technology to adapt existing ubiquitous computing systems to
this common model. Adapters are deployed to map legacy systems to their
proposed common context information model.

When considering bridging approaches, (Lehmann, Bauer et al. 2004)
integrate a context discovery mechanism for home environments (the
Aware Home Spatial Service) with a context discovery mechanism for
mobile operators. They focus mainly on integrating the data models used by
the two types of context discovery mechanism. Contrary, (Hesselman, Benz
et al. 2008) focuses on the functionality required for interoperating context
discovery mechanism.

The discussed approaches focus mainly on (i) so-called semantic
interoperability by proposing common context information models or (ii)
on the functionality required to interoperate statically available context
discovery mechanisms. Our discovery interoperability approach can be
considered complementary with respect to semantic interoperability. We
consider this future work and hence we could benefit from their insights.
With respect to the second point, we take context discovery interoperability
one step further by taking into account the dynamic availability of different
context discovery mechanism.

6.1.7 Limitations and Future Work

We acknowledge some aspects that are not covered by the proposed
context discovery interoperability mechanism and which we consider future
research:
– Security: downloading ‘unknown’ code (i.e. adapters/monitors) is

considered a security risk. However, mechanisms exist to overcome this
issue, such as code signing and firewalling (Rubin and Geer 1998).
However, more research is required to assess the security threats of
deploying a context discovery interoperability mechanism.

– Semantic interoperability: the proposed mechanism focuses on functional
and syntactic interoperability. However, interoperating different
information models used by context discovery mechanisms is similarly
important. Mechanisms exist to get semantic interoperability, which
could be used to extend the current mechanism (e.g. shared ontologies
(Blackstock, Lea et al. 2006)).

– Performance optimization: in the prototype, some configuration values have
been estimated. Further measurements are required to optimize these
values to decrease the overhead introduced by the discovery
interoperability mechanism.

164 CHAPTER 6 CONTEXT DISCOVERY AND SIMULATION IN CACI

6.2 The SimuContext Framework

This section discusses the SimuContext framework. This is a framework to
simulate context sources. It starts with a problem analysis, followed by a
description on the design and prototype implementation. Consecutively, it
discusses the usage of this mechanism in CACI, related work and,
limitations and future work.

6.2.1 Problem Analysis

Developing context-aware applications includes creating application logic
and context logic. CACI simplifies the creation of context logic.
Nevertheless, for testing and demonstration of the application logic, context
sources that can deliver the needed context information, are required.
However, testing and demonstrating context-aware applications in a
controllable and reproducible way with real context sources may prove
extremely difficult. By nature, context information is highly dynamic (i.e.
dynamic in value and quality). Therefore, retrieving the same context in
similar situations is hard. For example, when using a GPS, standing in the
same location can result in different context values over time due to
changing accuracy. Also practically, it is hard to use life context information
during tests or demonstrations. For example, GPS does not work inside
buildings, which means that tests and demonstrations have to take place
outside.

Additionally, in the testing environment of the context-aware
application the context sources that have to be used are often not available.
Hence, testing and demonstration of context-aware applications may
include a significant extra amount of development effort to implement
substituting testing/demonstration context sources or installation of the real
context sources.

Ideally, application developers want to abstract from the internals of
context sources and treat them as a black box. Their effort should be spend
in the development of the application logic rather then in creating context
sources. Hence, we propose to simulate context sources for rapid testing
and demonstration of context-aware applications. For this we develop a
generic context source simulation framework called SimuContext.
Simulation in general provides many benefits for software development like,
cost reduction, improve reliability and shorten development time (Christie
1999). The SimuContext framework facilitates application developers in
testing and demonstrating context-aware applications by enabling them to
specify the behaviour of context sources and using simulated context
sources (i.e. that expose the specified behaviour) as inputs to their Context-
aware application.

 THE SIMUCONTEXT FRAMEWORK 165

Bylund (Bylund and Espinoza 2002) distinguishes two types of context
source simulation tools: (i) simulation programming suites and (ii) semi-
realistic simulation environments. With the first type, application
developers specify and/or program a simulated context source which
produces the simulated context information to the context-aware
application. With the second type, context-aware applications retrieve
context information from a virtual reality world in which the application
developer virtually moves the application/user (e.g. location information of
a moving user in a 3D world). However, both types of tools can also be
combined.

The SimuContext framework has the characteristics of a simulation
programming suite and offers a generic simulation facility which can
provide a configurable set of context sources that can be tailored to a
specific context-aware application scenario.

6.2.2 Design

This section discusses the design of the SimuContext framework. It
presents the requirements, a high-level overview and a functional
decomposition of the SimuContext framework.

Requirements
The proposed context source simulation framework should support the
following generic non-functional requirements:
– Generality: the framework should be generic enough to simulate a broad

range of context sources. Furthermore, the framework should not pose
severe constraints on the target application, and therefore it should be
reusable for multiple applications.

– Extensibility: it should be easy to extend the framework to support
specific context sources for specific context-aware application scenarios.

To create an accurate and realistic simulation framework for context
sources, we have used our basic taxonomy of context information as
presented in Figure 2-6. We distinguish that context consists of information
on several levels of abstraction. First, context has meta-information on its
quality, which is called quality of context (QoC). Second, context
encapsulates information related to what it describes (relation information).
This indicates that context is always related to an entity. An entity can be a
human, physical, or computational object. Finally, context information
encapsulates the real information. This consists of an element, describing
the context identifier (e.g. Location). Then it has a value, for example
52.123/6.23123. Finally, it has a format that describes the value, for
example Lat/Long. Taking these aspects together, this leads to the following
functional requirement:

166 CHAPTER 6 CONTEXT DISCOVERY AND SIMULATION IN CACI

– The SimuContext framework should support the aspects that are
encapsulated by the defined context information taxonomy. This
includes QoC, the entity to which it is related and the elements that
describe the contextual information (i.e. element, value, format).

Additionally, context information provisioning has some other
characteristics (Broens 2004; Bunningen, Feng et al. 2005): (i) Context
information is temporal and changes over time, (ii) context is spatial and
changes when the entity is moving, (iii) context is imperfect, and (iv)
context sources are often distributed. These characteristics trigger the
following requirements for our framework to realistically simulate context
sources:
– Due to its temporal and spatial nature, context information is subject to

continual changes. Therefore, the simulated context source should be
able to have changing values specified in an application specific,
pluggable value model. Hence this value model should be extendible and
easy to plug into the framework.

– Furthermore, to facilitate the user to simulate realistic context sources,
our framework should support the two common types of invocation
mechanisms: (i) Request – Response and (ii) Subscribe-Notify.

– To provide the Subscribe-Notify mechanism, our framework should
support an event model that specifies when context change events
should be generated. This event model should be extendible and easy to
plug into the framework.

– Due to the imperfect nature of context information, it inherently has
quality properties. Our framework should be able to express this in a
QoC model. The realization of the QoC model depends on the target
application therefore the QoC model should be plugable and extendible.

– The quality values of context are related to the provided context
information. As this is subject to change the quality values are also
subject to change. Our framework should support changing QoC values
correlating with the values from the value model.

High-level Overview
Context-aware applications developers can use the SimuContext framework
in two ways: (i) as a class library that is tightly coupled with the application,
and (ii) as a service-oriented run-time middleware mechanism. We discuss
the architecture of SimuContext from the second perspective, as this is the
manner SimuContext is used in the CACI infrastructure. However, using
SimuContext as a class library mainly involves direct method invocation of
the (service) interfaces. Figure 6-12 presents a high-level overview of the
SimuContext framework.

 THE SIMUCONTEXT FRAMEWORK 167

A context-aware application (i.e. service user) can interact with the
SimuContext framework (i.e. service provider) using two services:
– SimuContextSource configuration & registration service: this service can be used

to configure context sources and register them to the SimuContext
repository. Additionally, it can be used to register application specific
value, event and QoC models. Table 6-6 gives the service primitives of
this service.

– SimuContextSource retrieval service: an application can use this service to
retrieve a configured context source, or discover a suitable SimuContext
context source from the repository. Additionally, it can register
SimuContext sources in the repository that are already configured using
SimuContext as a class library. Table 6-7 gives the service primitives of
this service.

Direction S/A SP identifier Parameters ReturnParameters

SU-SPr S configSimuContextSource SimuContextSource
specification

ID

SU-SPr S registerValueModel ValueModel -

SU-SPr S registerEentModel EventModel -

SU-SPr S registerQoCModel QoCModel -

Direction S/A SP identifier Parameters ReturnParameters

SU-SPr S getSimuContextSource ID SimuContextSource

SU-SPr S discoverySimuContextSou
rces

SimuDiscoveryRequest SimuContextSources

SU-SPr S registerContextSource SimuContextSource ID

SU-SPr S deregisterContextSource ID -

Figure 6-12 High level
architecture of the
SimuContext
architecture.

Table 6-5 Service
primitives of the
SimuContextSource
configuration &
registration service.

Table 6-6 Service
primitives of the
SimuContextSource
retrieval serv ice.

168 CHAPTER 6 CONTEXT DISCOVERY AND SIMULATION IN CACI

Functional Decomposition
Figure 6-13 depicts a functional decomposition of the SimuContext
framework. In the configuration phase, an application developer specifies a
context source it wants to simulate. The configurator parses the SimuContext
source specification and instantiates a new SimuContext source. This
includes that the configurator retrieves and instantiates the required event,
value and QoC models from the model repository. The instantiated source
is registered to the SimuContextSource repository. When an application
developer registers an event, value or QoC model, this model is stored in
the model repository.

In the operational phase, a context-aware application can retrieve
simulated context sources (i.e. SimuContextSources) stored in the
SimuContextSource repository via the discovery manager. When a context source is
registered, the discovery manager stores this source in the repository and
makes it available for discovery.

A user can use a retrieved SimuContext source by invoking methods from
the ISimuContextSource interface. This interface exposes the required two
interaction mechanism: request-response (i.e. getContext()) and subscribe-
notify (i.e. subscribe(), notify()). For the subscribe-notify mechanism, the
user is required to provide, on registration, a callback object consistent with
the ISubCallback interface. Figure 6-14 gives a class diagram of these
interfaces.

Context information is exchanged using Context objects. These objects
contain the information as specified in our context taxonomy (see Figure 2-
6). Additionally, it provides simulated QoC values for the QoC parameters
identified by (Sheikh, Wegdam et al. 2007).

Figure 6-13 Detailed
architecture of the
SimuContext framework.

 THE SIMUCONTEXT FRAMEWORK 169

The internal structure of a SimuContextSource consists of several function
blocks. Figure 6-15 presents the internal structure of a SimuContext source.
The ServiceModel implements the ISimuContextSource interface and is
responsible for the interaction with the user. The ValueModel implements
the value generator that produces the values of the context samples. The
EventModel implements the event generator that produces the events when
the subscribed user to this context source should be notified. The QoCModel
generates the quality values of the delivered context sample. Both the
ValueModel and the EventModel can be extended with application specific
models. For example, we implemented a “RandomValueModel” that
generates random values when context information is requested, or a
“PeriodicEventModel” that generates every user-specified period an event
to subscribers.

Figure 6-14
ISimuContextSource and
ISubCallback interface
and related data objects.

Figure 6-15 Internal
architecture of a
SimuContext source.

170 CHAPTER 6 CONTEXT DISCOVERY AND SIMULATION IN CACI

6.2.3 Implementation

The prototype of the SimuContext framework is implemented in Java and
bundled as an OSGi bundle. The framework consists of approximately 2500
lines of code and the bundle has a size of approximately 75kB. The
SimuContext framework is tested both on a laptop PC and a windows
mobile PDA.

A user of the framework creates a SimuContext source by providing
configuration information to the framework. Example 6-4 gives an example
of configuration information for a ‘speed’ context source. For pragmatic
reasons the configuration file is a standard property file (i.e. ‘property’ =
‘value’). This configuration file contains the basic information of the
simulated context source like element, entity and format. Additionally, it
contains id’s of the specialized value, event and QoC models that should be
used when instantiating the SimuContextSource. After the ‘:’ possible
parameters required for these models can be specified.

Some pre-defined event and value models, ready to be used by the user,
have been created. The following event models have been created:
– RandomEventmodel: triggers notification events randomly during a

specified interval.
– PeriodicEventModel: triggers a notification event every specified interval.
– GUIEventModel: triggers a notification event when a user pushes the

notification button.
The following value models have been created:
– RandomValueModel: returns a random value between a specified min-max

range.
– CounterValueModel: returns an incremental value between a specified min-

max range.
– GUIValueModel: returns the value a user has inputted.
For testing purposes, we created two graphical interfaces (GUI):
– SimuContext Configurator: GUI (see Figure 6-15) to easily configure and

test a SimuContextSource and save configuration files. Additionally, it
can be used to configure a SimuContext source and automatically create
a simulated context producer component that is deployed in the CACI
infrastructure.

Example 6-4
SimuContext
configuration file of a
simulated ‘Speed’
context source.

id = CS1
name = Speed
format = km/hr
entity = Tom
valuemodel = nl.utwente.SimuContext.ValueModels.RandomValueModel:140
eventmodel = nl.utwente.SimuContext.EventModels.RandomEventModel:2
qocmodel = nl.utwente.SimuContext.QoCModels.MyQoCModel

 THE SIMUCONTEXT FRAMEWORK 171

– SimuContext Repository: GUI (see Figure 6-16) to get an overview of the
SimuContext sources registered in the repository and to add or remove
SimuContext sources based on configuration files. Additionally,
SimuContext sources can be enabled/disabled to simulate appearing and
disappearing of context sources.

Figure 6-16
SimuContext
Configurator GUI

Figure 6-17
SimuContext Repository
GUI

172 CHAPTER 6 CONTEXT DISCOVERY AND SIMULATION IN CACI

6.2.4 CACI and the SimuContext framework

In Section 4.5.2, we present the envisioned development trajectory of
context-aware applications that benefit from the proposed CACI
infrastructure and the SimuContext framework. SimuContext interacts with
CACI in two ways:
– SimuContext is used as an underlying context discovery mechanism to

discover context sources that can deliver the required context
information. The SimuContext repository offers context information
discovery capabilities to users. In the case of CACI, this means a
discovery adapter is created to plug-into the context discovery
interoperability mechanism (see Section 6.1).

– SimuContext is used to generate and automatically deploy simulated
context source components (i.e. context producers) based on the CBDL
specification of a context-aware application (i.e. context consumer). We
discuss this type of use of SimuContext in some more detail in the next
section.

Context Producer Generation
To enable application developers to test their application logic, we use
SimuContext to automatically deploy simulated context sources that match
with the context requirements of the application (i.e. specified in their
CBDL description). Hence, we enable application developers to annotate
their CBDL description with SimuContext information. Example 6-5
presents an annotated CBDL document for a ‘speed’ context information
requirement.

Example 6-5 Extending
CBDL with SimuContext
configuration
information.

<CBDLDocument UserID="UserTom" ApplicationID="TomApp">
<ContextRequirement ContextRequirementID="TestBundle-Location">

<Element>Speed</Element>
<Entity>Tom</Entity>
<Format>km/hr</Format>
<SimuContext>
 <Valuemodel>
 nl.utwente.SimuContext.ValueModels.RandomValueModel:140
 </Valuemodel>
 <Eventmodel>
 nl.utwente.SimuContext.EventModels.RandomEventModel:2
 </Eventmodel>
</SimuContext>

</ContextRequirement>
</CBDLDocument>

 THE SIMUCONTEXT FRAMEWORK 173

Information that is required to be added to a CBDL document to enable
the deployment of simulated context sources is which value and event
model (i.e. including the required parameters) the simulated context source
should have. As part of the deployment phase of the context-aware
application, the parser parses the CBDL document and also extracts the
provided SimuContext information. When SimuContext information is
available, the deployer retrieves a reference to the
ISimuContextConfigurator service and invokes the
configSimuContextSource() method with the information from the context
requirement and added SimuContext information. Consequently, the
SimuContext framework creates a matching SimuContextSource that is
added to the SimuContext repository. This new context source event is
notified to the binding mechanism that creates a new context producer
proxy to bind the deploying application with the generated context source.

6.2.5 Related Work

Several initiatives aim to facilitate application developers in coping with real
context sources (also see Chapter 3), like the Context Toolkit (Dey and
Abowd 2000), JCAF (Bardram 2005) and PACE (Henricksen, Indulska et
al. 2005). However, there also exist several simulation tools. Following
Bylund’s (Bylund and Espinoza 2002) categorization, several semi-realistic
simulation environments exist of which we will give some examples in this
section. However, to our knowledge, no other context simulation suites
exist.

Bylund (Bylund and Espinoza 2002) discusses a tool that interactively
simulates context information in real-time. Their tool, called QuakeSim,
uses the popular game engine of Quake III Arena to simulate a 3D
environment. In this environment virtual persons can move and interact
with other persons or the environment itself. The game engine provides the
context information of these virtual persons which can be used as simulated
information for context-aware applications.

UbiWise (Barton and V. 2002) uses similar technology as QuakeSim. It
simulates a 3D environment to simulate ubiquitous environments which
include prototyping of new devices and protocols. The simulator focuses
mainly on computation and communication devices.

3DSim (Shirehjini and Klar 2005) provides a tool for rapid prototyping
Ambient Intelligent applications. It uses a 3D based virtual environment to
represent ambient devices. Context events are passed to the system with a
TCP-based eventing interface.

Morla (Morla and Davies 2004) discusses a simulation environment for
location-based systems. They focus on component interaction, networking

174 CHAPTER 6 CONTEXT DISCOVERY AND SIMULATION IN CACI

and location changes. Their environment supports the distribution of
context events generated by distributed simulators using Web Services.

In contrast to the previous initiatives, SimuContext is a context
simulation suite that enables the user to specify the behavior of context
sources instead of simulating an environment where the context is inferred
from. In simulation environments, context changes are produced by
interaction of a user with the environment (e.g. movement). SimuContext
can be less attractive for live demonstrations (i.e. not a 3D GUI), however
the simulated context is better controllable and reproducible. Additionally,
testing and validation in an automated manner is more convenient.
Furthermore, SimuContext is a context-centric approach while some of the
related approaches focus on pervasive device and network aspects and
use/provide context as a side-effect. SimuContext offers a generic light-
weight approach that focuses on context simulation which is based on a
robust context model.

6.2.6 Limitations and Future Work

We acknowledge some aspects that are not covered by the proposed
SimuContext framework, which we consider future research:
– Integration with semi-realistic simulation environments: integration of the

SimuContext simulation programming suite with a semi-realistic
simulation environment could be beneficial. Semi-realistic simulation
environments are useful for attractive application demonstrations while
programming suites are suited for controlled testing of applications.
First steps in this direction have been taken to integrate SimuContext
with Vantagepoint. Vantagepoint (Niskanen, Kalaoja et al. 2007) is a 3D
environment which can be used to graphically create a semantic
description of home environments. SimuContext sources (i.e. hovering
globes) can be added and configured using the SimuContext
Administrator. Vantagepoint exports the SimuContext retrieval service
to applications. Hence, application developers can create a semantic
description of the environment in which their application is going to
function additional to specifying available context sources and really
simulating them. Figure 6-18 presents the GUI’s of Vantagepoint and
SimuContext. The orbs in the ‘home’ represent SimuContext sources.

 THE SIMUCONTEXT FRAMEWORK 175

– Simulating QoC: the design of the SimuContext framework consists of
SimuContext sources that have a value, event and QoC model. The value
and event model are implemented in the prototype. The prototype
contains a framework for the QoC model and is hence prepared for
simulating QoC parameters. However, the prototype should be
extended with an implementation of the QoC model to actually simulate
QoC samples.

Figure 6-18 Integration
of SimuContext with
Vantagepoint

Chapter 7

7. Telemedicine and Context-
Awareness

This chapter gives an overview of the (electronic) healthcare domain,
especially focussing on the telemedicine sub-domain. Additionally, it
discusses determinants that influence the success of telemedicine
applications. Finally, it discusses how context information can potentially be
beneficial for telemedicine applications. Parts of this chapter are published
in (Broens 2005; Broens, Huis in't Veld et al. 2007).

This chapter is structured as follows: Section 7.1 presents the
background of (electronic) healthcare and discusses the increasing influence
of ICT. Section 7.2 gives an overview of the telemedicine domain and the
social-economical trends stimulating the development of telemedicine
applications. Section 7.3 presents determinants that influence the success of
telemedicine applications. Section 7.4 discusses the nature and structure of
telemedicine applications. Section 7.5 discusses some current context-
aware telemedicine applications. Finally, Section 7.6 reflects on how
context-awareness may improve the quality of telemedicine applications.

7.1 Background on (Electronic) Healthcare

Healthcare (also called medicine) is intrinsic to human existence. Humanity
has always been in need of solutions to various health related issues, such as
childbirth and cure for diseases. Merriam-Webster’s dictionary defines
healthcare as “efforts made to maintain or restore health especially by
trained and licensed professionals”. Aspects tackled in healthcare are,
amongst others, surgery, psychology and dietetics.

In early history, diseases were accounted to gods, demons and spirits.
Therefore, healthcare was, at that time, a spiritual occupation performed by
priests or witch doctors. In the time of Homer and Hippocrates, healthcare

178 CHAPTER 7 TELEMEDICINE AND CONTEXT-AWARENESS

increasingly became a science. In the medieval and renaissance period, a
combination of spirituality and science dominated healthcare. Because of
the lack of knowledge about the human anatomy, healthcare focused on
diets and hygiene, instead on surgery and medicines. ‘Modern’ healthcare is
mostly based on science. The knowledge on the human anatomy has
expanded exponentially, resulting in higher quality healthcare. This is
shown in an enormous increase of the life expectancy9. Currently,
healthcare is moving towards a more holistic approach in which a complete
treatment of the patient is preferred over just treating the physical
symptoms of the disease. Therefore, current healthcare is a complex
domain in which surgery, medicine, psychology, dietetics etc., and a
combination of them, play an important role (Margotta 2001).

ICT in Healthcare
In the last couple of years, Information and Communication Technology
(ICT) plays an increasingly important role in healthcare. The introduction
of ICT in this domain, was recognized as a valuable development to improve
and enhance the healthcare provisioning process (Berg 1999; Pattichis,
Kyriacou et al. 2002; Philips Medical Systems 2003). Generally, applying
ICT in the healthcare process is envisioned to improve the quality and
productivity of this process with similar or lower costs. More specifically,
envisioned improvements of applying ICT in the healthcare process
compared to traditional healthcare are:
– Efficiency: healthcare processes can be automated in such a way that

information is processed, transferred and made available more easily to
multiple domains. This can improve the efficiency of the healthcare
process. For example, using electronic transfer forms for transferring of
patients to different health institutions.

– Precision: information is stored and processed by computers which are
less prone to errors by bad handwriting or misinterpretations. For
example, by using an electronic patient record to administer patient
information.

– Cost savings: ICT solutions can take over expensive human processes. For
instance, ICT application can be used to decrease administrative
overhead or the number of unnecessary house calls etc.

The majority of traditional healthcare disciplines use ICT in their healthcare
provisioning process. This aspect of healthcare is denoted as electronic
healthcare (E-health) (Oh, Rizo et al. 2005). For example, disciplines like
surgery, psychology and dietetics use e-health technology such as electronic

9 The life expectancy of US citizens in 1900 was 47 which increased to 77 in 2002 (source:
National Centre for Health Statistics). Life expectancy of Dutch citizens increased from
70,24 in 1950 to 79,06 in 2006 (source: CBS, http://www.cbs.nl).

 AN OVERVIEW OF THE TELEMEDICINE DOMAIN 179

patient records (EPD), hospital information systems (HIS) and
telemedicine to facilitate their healthcare provisioning process. For
example, when a patient with a cardiac arrest is admitted to the hospital, his
patient data (e.g. name, blood type, allergies) is stored in the HIS using an
EPD. During his treatment in the hospital, his vital signs are monitored and
his EPD in the HIS is updated accordingly. In the aftercare phase, his EPD
is electronically transferred to the dietetics ward where the care continues.
Possibly, when the patient returned home, his vital signs are send to the
hospital using a telemedicine system to be monitored.

7.2 An Overview of the Telemedicine Domain

Telemedicine is defined as providing healthcare and sharing of medical
knowledge over distance using telecommunication means (Pattichis,
Kyriacou et al. 2002). A common type of current telemedicine systems are
systems that deploy assistive technology for aiding the elderly (Miskelly
2001). For example, the elderly alarm button system. This system enables
an elderly person, when in trouble, to push the alarm button and to contact
a call centre. The operator at this centre can then help the person in need.

Early telemedicine initiatives date back to the beginning of the 19th
century, where Einthoven transferred ECG signals via telephone lines. In
Norway and Sweden in the 1920’s, telemedicine was applied to aid
troubled seamen from the shore (using radio to give advice). In 1935, the
International Radio-Medical Centre was founded which provides advice and
assistance to seaman during medical emergencies. In 1955 the Nebraska
Psychiatric Institute used closed-circuit television to provide care from the
university medical centre to a state hospital over distance. A new boost to
telemedicine was given by NASA in 1960’s and 70’s. They measured
psychological parameters from the spacecraft and space suits during
missions (Doarn, Ferguson et al. 1996). Digital transmission and
compression (1980’s) introduced a new generation of telemedicine, mostly
based on point-to-point videoconferencing. Currently, due to improved
technological capabilities, real-time 24/7 monitoring and treatment of
patients over distance is feasible.

Telemedicine is often used to cure sick patient but may also be used to
care for healthy persons (Meystre 2005). For example, telemedicine can
improve training results of athletes, astronauts can be assisted in harsh
environment, overweighed persons can be stimulated to reduce weight (i.e.
improve wellness) and persons that regularly use computers can be notified
of overuse to prevent RSI.

Although, telemedicine is recognized as a valuable improvement of the
healthcare process, only recently technology has advanced in such a way that

180 CHAPTER 7 TELEMEDICINE AND CONTEXT-AWARENESS

feasible advanced telemedicine systems can be developed (Meystre 2005).
On the one hand we see the rise of high bandwidth mobile communication
mechanisms (e.g., GPRS, UMTS) and on the other hand we see the
miniaturization of high power mobile devices which offer increasing
processing power, memory and storage capacity (e.g. PDAs, smartphones,
laptops, smart clothes) (Marsh 2002). These trends enable the development
of (near) real-time, high quality 24/7 mobile telemedicine systems with
relative low costs.

Stimuli and Barriers for Introducing Telemedicine in Healthcare
As discussed, telemedicine has the potential for improving the healthcare
process. Additionally, introduction of telemedicine application is stimulated
by major social-economic developments (Dean 2004; The Telemedicine
Alliance 2004):
– Patient-centric healthcare: For a long time, healthcare was government

controlled. Now that patients become better informed, organized and
educated, healthcare is shifting from offer- to demand-driven process.
This requires flexibility in the healthcare provisioning process.

– Cost savings and efficiency: western society is aging. Currently, in Europe
16 to 18% of the population is over the age of 65. Estimations indicate
that this rises to 25% in 2010 (The Telemedicine Alliance 2004). This
increasing number of elderly results in an increasing number of potential
healthcare consumers with a decreasing number of healthcare
professionals. Furthermore, due to the standard of life in the western
world there is an increasing amount of people suffering from chronic
‘luxury diseases’ like diabetics, vascular diseases and RSI. This result in
increasing healthcare spending which can be already seen today. This is
shown in Figure 7-1.

Expenses in healthcare (the Netherlands)

0

10000

20000

30000

40000

50000

60000

Year

m
ln

 E
U

R

Expenses

Expenses 36897 39446 42319 46995 52560 56983

1998 1999 2000 2001 2002 2003

– Cross-domain integration: To provide more efficient and cost effective
patient-centric healthcare, it is recognized that healthcare must be
organized as a value-chain that integrates multiple domains in healthcare

Figure 7-1 Healthcare
spending in the
Netherlands (source:
CBS).

 DETERMINANTS INFLUENCING THE SUCCESS OF TELEMEDICINE SYSTEMS 181

(e.g. hospital – care institution – general practitioner). This requires a
form of transparency between domains and mechanisms to effectively
integrate them.

An example that supports the previous discussed developments is the
current trend of increased extra-mural care compared to institutional care
(Ross 2004). Patients are treated as long as possible in their home
environment rather then in care institutions. When they are hospitalized,
the period of stay in the institution is minimized and there is a longer
process of post-care at home. This is both to save costs of hospitalization
and to improve the patient’s wellbeing by offering him care in his own
environment.

Although the previously sketched developments, we also distinguish
some high-level barriers in the healthcare domain that limit the acceptance
of innovative telemedicine systems:
– Conventional area: healthcare is a conventional area where, traditionally,

changes are not accepted quickly. For example, policy and legislation is
not tailored to this novel type of applications.

– Limited budget: at this moment already cost and efficiency play an
important role in healthcare. Therefore, there is a limited budget for
introducing costly innovations.

– Non-transparent domain: currently, health organisations have a rather
closed and individual nature. This makes the introduction of
crosscutting inter-organisational systems hard.

Therefore, developing and introducing telemedicine systems is complex and
challenging. In the next section, we elaborate more on aspects that
influence the success of telemedicine systems.

7.3 Determinants Influencing the Success of Telemedicine
Systems

Despite the previously discussed promising effects of telemedicine on future
healthcare, many telemedicine systems do not survive the research phase or
become a failure in daily practice (Tanriverdi and Iacono 1998). Berg (Berg
1999) shows that more than 75% of the developed telemedicine systems
fail during the operational phase. In (Broens, Huis in't Veld et al. 2007), we
analyze current telemedicine systems and identify determinants that
influence the success of telemedicine systems.

We perform a qualitative literature study on 45 telemedicine articles
published in the supplement of the Journal of Telemedicine and TeleCare
(Wootton 2005). We consider this sample representative for telemedicine
research in Europe. Two reviewers read all studies independently. The

182 CHAPTER 7 TELEMEDICINE AND CONTEXT-AWARENESS

reviewed studies are qualitatively analysed on determinants that influence
the implementation of the reviewed system, which may influence future
implementation of these telemedicine systems. To generalize and classify
the identified determinants, we employ the knowledge barriers
categorization of Tanriverdi and Iacono (Tanriverdi and Iacono 1998).
They identify the following knowledge barrier categories:
– Technical: technical expertise on how to develop, deploy, and use

telemedicine systems.
– Behavioural: attitude of the involved stakeholders (e.g. patients, doctors)

towards telemedicine systems.
– Economical: economical arrangements required for deploying a

telemedicine system.
– Organizational: changes in medical practice and workflow due to usage of

telemedicine systems.

Identified Determinants
Based on the theoretical model of Tanriverdi and Iacono (Tanriverdi and
Iacono 1998), our study results in a more detailed classification of
determinants that influence the success of telemedicine systems. Our
classification consists of a top-level category that consists of determinants
(see Table 7-1). Additionally, compared to Tanriverdi and Iacono, we
introduced a top-level category on ‘policy and legislation’ and
corresponding determinants.

Tanriverdi and Iacono (Tanriverdi and
Iacono 1998)

Broens et al. (Broens, Huis in't Veld et al.
2007)

Technical Technology
- Support
- Training
- Usability
- Quality

Behavioural Acceptance
- Attitude and usability
- Evidence based medicine
- Diffusion and dissemination

Economical Financial
- Provider and structure

Organizational Organizational
- Intramural and extramural work practices

Table 7-1 Comparison of
determinant
categorization.

 DETERMINANTS INFLUENCING THE SUCCESS OF TELEMEDICINE SYSTEMS 183

 Policy and Legislation
- Legislation and policy
- Standardization
- Security

We identify the following determinants in the following categories (for the
literature justification see (Broens, Huis in't Veld et al. 2007)):
– Technology:

– Support: The analysis shows that a major issue for technological
acceptance of telemedicine systems is the availability of support to its
users. This includes support for the deployment phase as well as the
support throughout the operational phase. Support should be
offered on the technical level on how to install and sustain the system
but also on how to deal with errors and problem situations. Without
support, problem situations during the use of the system lead to de-
motivation and a high probability of abandoning the system.

– Training: Training was also seen as an important requirement for the
usage of telemedicine systems. Generally, users are not familiar with
these new types of systems, which often include the use of difficult
equipment. The analysed articles indicated that there is a need for
training of users on how to use these novel types of systems. Such
training is needed on all layers of the system: from the managers who
interpret data, to doctors who view vital signs to nurses that have to
administer the practical parts of the telemedicine system.

– Usability: The analysis indicated that usability of the system is a major
factor for success. Patients should be comfortable wearing novel
kinds of (mobile) monitoring and treatment devices, which do not
hinder them in their daily life. Supporting staff and doctors should
be able to operate the devices and should have flexible access to
services offered by the telemedicine system. Currently the
information and the used modality are not tailored to the situation
and skills of the patient and medical personnel.

– Quality: Technical problems showed as being a major barrier for
successful implementation of telemedicine systems. Technical
problems consisted of non-connecting or malfunctioning devices,
power loss, cable breakings etc. There is a need for robust systems
and their supporting infrastructures, which can scale from the pilot
phase to a real-life operational situation. Poor technical feasibility
often results in distrust of end-users and low levels of satisfaction.

– Acceptance:
– Attitude and usability: Results of the analysis show that technology

acceptance of both patients and professionals are influenced

184 CHAPTER 7 TELEMEDICINE AND CONTEXT-AWARENESS

considerably by the patient’s and professional’s attitude towards
telemedicine technology. In more detail, involvement of patients and
professionals in the requirements analysis and the design process is
crucial in order to understand how to fit telemedicine into their
daily work practices. Feelings of ownership, enjoyment, self-efficacy,
and feelings of pride could be augmented by involving end-users in
the early stages of the developmental process. Another frequently
reported aspect in relation to acceptance is to communicate
meaningful (correct, relevant and up to date) information and ideally
personalize this information, especially for professionals. They
should be able to possess the right patient information at the right
time. Previous experience of patients and professionals with
computers and associated computer skills should be taken into
account in developing a telemedicine service as well as level of
education and age.

– Evidence Based Medicine: Among several studies, evidence-based
medicine is regarded to be a requirement for acceptation of a new
drug or treatment. It is recommended to apply the methodology
with the highest quality, which is considered to be the randomized
controlled trial (RCT). Results of the present analysis show that
alternative designs are needed to evaluate the efficacy of telemedicine
systems and to convince professionals, policy makers, and insurance
companies of the usefulness of telemedicine systems.

– Diffusion and dissemination: Deployment of telemedicine systems is
easier when telemedicine implementations are generic, i.e.,
applicable to other (unexpected) patient populations. Another
condition necessary for the diffusion and dissemination of
telemedicine initiatives is to create familiarity of the system among
the stakeholders/interested parties. The stimulating role of leading
champions who are willing and motivated to experiment with the
new technology are essential in the process of creating familiarity and
enthusiasm. As becomes clear from the literature, different stages
exist in the introduction of telemedicine interventions, which might
affect the process of diffusion. In general, two phases of usage of the
telemedicine technology are common. Initially, there is enthusiasm
but thereafter the consideration phase begins, which effects the end-
users motivation of working with the telemedicine intervention
either positively or negatively.

– Financing:
– Provider and structure: Costs associated with telemedicine

implementation are related to (i) investments, (ii) maintenance and
(iii) operational costs of the new system. In the research stages of
telemedicine, these costs are funded. However, as soon as the

 DETERMINANTS INFLUENCING THE SUCCESS OF TELEMEDICINE SYSTEMS 185

research projects are ended, there is a lack of continuing funding due
to a lack of, or unsuitable financing structure. Due to the novel
approach of telemedicine, most third party financers do not have
standard tariffs. Furthermore, it is often unclear who take the cost
and benefits of introducing and running a telemedicine
implementation. Sometimes the cost and benefits are taken by
different parties. Additionally several studies state that
comprehensive cost-effectiveness studies are essential in developing
future financing structures.

– Organization:
– Intramural and extramural work practices: As becomes clear from the

analysis, telemedicine implementation is hampered by the fact that
working protocols for telemedicine implementations are lacking. In
addition, the introduction of telemedicine often influences the
structure of the individual organization (intramural) combined with
extended collaborations with other health care organizations
(extramural). For instance, telemedicine might require changes in
collaboration and (team) roles, rights and responsibilities.
Furthermore, the novel working practices introduced by
telemedicine do not always fit with existing traditional working
protocols in health care.

– Policy and Legislation:
– Legislation and policy: Legislation and policy forms a prerequisite for

telemedicine implementations. The analysis indicates that legislation
and policy for certain aspects of telemedicine implementations are
not available. Furthermore, legislation and policy in its current form
seems not suitable for all aspects of novel telemedicine
implementations. The analysis indicates that deployment of wide-
scale telemedicine implementations is hard without suiting
legislation and policy. Additionally, conforming to legislation and
policy implies additional development effort which increases time-
to-market and costs compared to domains less influenced by
legislation and policy.

– Standardization: Standards form a mechanism to ensure quality and
uniform practice. Standards are required for effective cooperation
between partners in the value chain and to be able to scale-up
implementations from the pilot phase. The analysis shows that
standards are not yet available for all aspects of telemedicine
implementations. Interoperability between telemedicine
implementations is important to support the current trend of
extramural work practices and is not guaranteed without globally
accepted standards.

186 CHAPTER 7 TELEMEDICINE AND CONTEXT-AWARENESS

– Security: The analysis shows that security is important in two ways: (i)
patient physical safety and (ii) patient information security. For
acceptance of telemedicine implementations adequate security
mechanisms have to be taken into account. These security
mechanisms should support the crucial trust relation between
healthcare providers and patients. Results show that there is also
need for secure information transfer and, authentication and
authorization mechanisms.

Discussion
Figure 7-2 shows that different stakeholders from different domains are
influenced by the identified determinants. Healthcare customers (e.g.
patients) and healthcare professionals require to accept a telemedicine
system. Regulation bodies (e.g. government) may impose policy and
legislation on the deployment and use of a telemedicine system. Third party
financers (e.g. insurance companies) provide the financial framework for
usage of a telemedicine system. Technology providers need to develop
technology to create a telemedicine system. Finally, healthcare organizations
(e.g. hospital) need to tailor their organization structure to comply with the
work practices required for deploying a telemedicine system. Hence,
developing, deploying and using telemedicine systems in an operational
setting is a multidisciplinary activity.

Telemedicine system

Regulation
body

Healthcare
organizations

Healthcare
customer

Healthcare
professionals

Technology
provider

Third party
financers

Figure 7-2 Identified
determinants and the
stakeholders that are
influenced by them.

 DETERMINANTS INFLUENCING THE SUCCESS OF TELEMEDICINE SYSTEMS 187

Therefore, it is necessary to collect domain-specific knowledge on the
different determinants by involving domain-specific stakeholders. However,
the main challenge for telemedicine implementation is not only to address
the domain specific issues but also to integrate the different related
domains by inter-organizational collaboration (e.g. business, government
and health care). This collaboration is different from market collaboration
as in telemedicine most often the participants remain relatively autonomous
and must be convinced to act even though mutual interests (e.g. business
versus quality of care) and a legitimate authority is lacking.

In order to cope with the multidisciplinary complexity, we propose a
layered implementation model in which throughout the development life
cycle of the telemedicine implementation, the primary focus on individual
determinants change. Different determinants should gain focus during the
maturity of the telemedicine implementation (see Figure 7-3). However, the
other determinants should not be ignored to be able to anticipate on future
stages in the development life cycle. In the prototyping phase, the
evaluation deals mainly with the technological feasibility like the availability,
quality and support of the used technology. In the small-scale pilot phase,
users need to work with the system, which shifts the focus to acceptance.
When small-scale telemedicine pilots move to a larger scope, financing and
organization become increasingly important. When the systems become an
operational product, policy issues already must have been tackled. This does
not mean that when the scale of telemedicine implementations increases,
determinant categories in lower layers are not of interest in higher layers,
only the focus shifts to specific determinant in that layer.

188 CHAPTER 7 TELEMEDICINE AND CONTEXT-AWARENESS

Operational product
(Policy & Legislation)

Large-scale pilots
(Financing, Organization)

Small-scale pilots
(Acceptance)

Prototype
(Technology)

Scale

Concluding, telemedicine implementations imply a visionary approach,
which goes beyond tackling specific issues in a particular development
phase. Parallel efforts towards the next phases of the telemedicine life cycle
can increase the probability of success: “start small, think big”. When
gaining maturity (i.e. scaling) the determinants shift from being specific to
an individual implementation to more generic problems common in the
telemedicine domain. Therefore, efforts to solve these determinants should
not be solely restricted to the individual implementations but can also
benefit from interaction with other initiatives. As stakeholders come to
share a vision of the implementation problem and see themselves,
collectively, as part of the solution it might produce mutual agreement upon
directions and boundaries which then become more permanent structures
surviving even after the project (funding) has ended.

7.4 Analysis of Telemedicine Systems

From the system perspective, we distinguish four primary stakeholders
involved in telemedicine systems (see Figure 7-4). There are the healthcare
customers, which represent the actors that are in need of healthcare. This
can be patients that have one or more diseases (i.e hospitalized or living at
home), or non-diseased persons that require healthcare
counselling/guidance in their daily life (i.e. wellness). Consumers can
communicate with other consumers (consulting), for instance with chat or

Figure 7-3 Layered
implementation model.

 ANALYSIS OF TELEMEDICINE SYSTEMS 189

forums. Healthcare is provided by healthcare professionals. This
stakeholder group represents the actors that are responsible for the primary
healthcare provisioning process. Examples are general practitioners,
physicians, surgeons, dentists and diabetic consultants. Generally, they are
paid for their service. Healthcare professionals can have mutual consulting,
for instance by videoconferencing. Additionally, healthcare is provided by
voluntary caregivers. These are often relatives of the healthcare
customers that provide simple healthcare (i.e. first aid) until a healthcare
professional, when needed, can take over. In general, they are not paid for
their services. We denote the combined group of healthcare professionals
and voluntary as caregivers. Finally, the healthcare provisioning process is
controlled (secondary healthcare process) by healthcare providers. The
stakeholder group consists of the management of the care institution of the
caregivers. This group provides requirements and objectives for the
healthcare provisioning process. Furthermore, the healthcare managers are
responsible for accounting of the provided healthcare to the healthcare
customer or other parties and to reflect general healthcare spending to the
healthcare customer. Additionally, other parties like the government and
insurance companies influence the telemedicine healthcare process.
However for simplicity they are omitted from the stakeholder model.

Several concrete types of telemedicine systems exist like tele-surgery, tele-
psychiatry, tele-dermatology, tele-oncology etc. In general, we distinguish
three categories of systems in telemedicine:

Figure 7-4 Stakeholders
in the telemedicine
healthcare process.

190 CHAPTER 7 TELEMEDICINE AND CONTEXT-AWARENESS

– Tele-monitoring: systems that transfer vital signs from a patient to the
healthcare professional. Typically, this is unidirectional communication.
This knowledge is analyzed by the healthcare professionals who can
make a medical diagnosis.

– Tele-treatment: system that transfers vital signs and feedback information
between patient and healthcare professionals. Typically, this is a
bidirectional communication. First the patient’s vital signs are
transferred to the healthcare specialist who can make a diagnosis. Based
on this diagnosis feedback is given to the patient to improve his
healthcare situation.

– Tele-consulting: systems that focus on healthcare related human
interaction using ICT.

Another possible dimension to categorize telemedicine systems is a division
based on involved stakeholders:
– Patient – Patient systems: systems that focus on information exchange

between healthcare customers (i.e. patients).
– Patient – Professional systems: systems which are aimed at information and

communication exchange between a healthcare professional and
customer.

– Professional – Professional systems: systems that focus on information
exchange between healthcare professionals.

In Table 7-2 we give examples of the different categories of telemedicine
systems.

 Patient-Patient Patient-Professional Professional - Professional

Tele-monitoring n/a Vital sign monitoring Tele-surgery

Tele-treatment n/a Chronic pain feedback n/a

Figure 7-5 shows a high-level (telemedicine) healthcare process. In case of a
healthcare request of a healthcare customer (e.g. emergency, visit to a
general practitioner), a diagnosis phase is started. In this phase the
healthcare professional performs anamnesis to collect patient information
such as subjective problem description, healthcare history of the patient
(e.g. earlier treated diseases, known allergies), and current family situation.
Furthermore, the healthcare professional observes the patient (e.g. manual
measurement of blood pressure and temperature). If a diagnosis cannot be
made directly the patient can be equipped with a tele-monitoring
application to further observe the patients during a certain period of time
(e.g. vital signs, movement data).

Manual observations, tele-monitored data and the patient information
are used to make diagnosis and to decide on the plans for treatment of the
patient. These plans include a treatment plan (i.e. when to give what
feedback) and monitoring plan (i.e. what vital signs are important to

Table 7-2 Examples of
telemedicine systems.

 CURRENT CONTEXT-AWARE TELEMEDICINE APPLICATIONS 191

monitor to be able to give the right feedback). The patient is equipped with
a tele-treatment application (i.e. including tele-monitoring). Based on the
tele-monitored data and possible intervention of the healthcare
professional, feedback is given to the patient. Reviewed tele-monitored data
by the healthcare professional can lead to a re-evaluation diagnosis and
possibly of adaption of the treatment and monitoring plans.

7.5 Current Context-Aware Telemedicine applications

Currently, there exist several (research) context-aware telemedicine
applications. In this section, we give an overview by discussing a small
subset of examples.

Many telemedicine applications use location information to adapt their
behaviour (so-called location-aware application). Boulos (Boulos 2003)
proposes a location-aware system that adapts the presented information to
the user location. In this way, they overcome the overload of the user with
unnecessary information, to improve the decision-making process. User
location is determined by mapping the users IP address onto a physical
location. Helal et al. (Helal, Winkler et al. 2003) proposes a location-aware
telemedicine application. This application has as goal to promote an
independent lifestyle for elderly. Therefore, they define a smart home that
proactively reacts on location changes of the elderly person. They determine
the indoor location of persons by using ultrasound technology. Liska et al.
(Liszka, Mackin et al. 2004) discusses a remote arrhythmia montoring
application developed at NASA. This system collects real-time ECG signals
from a patient combining them with user-location context information (i.e.
GPS based). These signals are transmitted to a remote station for
monitoring and decision-making. Lee (Lee, Lim et al. 2005) proposes a
baby-care system that detects possible dangerous situation and then notifies

Figure 7-5 Visualization
of a Telemedicine
healthcare process.

192 CHAPTER 7 TELEMEDICINE AND CONTEXT-AWARENESS

nearby caregivers with the location of the baby such that they may prevent
this situations.

There also exist applications that use a combination of location and
other context information. Stanford (Standford 2002) proposes a context-
aware elderly care application. This application has as goal to provide the
elderly person with high quality care without losing his autonomy. Context
information used in this system is user location (i.e. using locator badges),
weight (i.e. weight sensor embedded in the person’s bed), activity (i.e.
inference on sleep/non-sleep periods using pressure sensors in the person’s
bed). Bardram (Bardram 2004) discusses the usefulness of context-
awareness in hospitals. They present an application that uses the location
and identity of the patient, caregiver, and objects in the surrounding of
both, to personalize the information provisioning at the bed of the patient.

Finally, there are initiatives to capture recurring development problems
of context-aware telemedicine system in an infrastructure. Zhang et al.
(Zhang, Yu et al. 2004) proposes an infrastructure for delivery,
management and deployment of context-aware personalized healthcare
services. This infrastructure offers support functions related to device
access, service interoperability, and context management. Hence, it
provides generic support for a broad range of context information. Jones et
al. (Jones, Mei et al. 2007) discusses a generic context-aware telemedicine
infrastructure developed in the Dutch AWARENESS project. The patient
wears a so-called Body Area Network (BAN), which collects vital signs of a
mobile patient that are sent to a remote location for monitoring. Several
neurology applications are being developed. One aspect discussed in (Jones,
Mei et al. 2007) is power management of the mobile devices worn by the
patient, based on device capacity context information.

7.6 Usefulness of Context-Awareness for Telemedicine
Applications

When considering the general social-economical healthcare trends
discussed in Section 7.2, introducing context-awareness may be beneficial
to cope with some of the consequences of these trends. For example,
increased patient-centric healthcare can be achieved by providing
telemedicine applications that adapt to the context of the patient and
caregivers. Additionally, when considering the trend of cost savings and
efficiency improvements, adapting to the context of the patient becomes
increasingly important when patients are treated as long as possible in their
home environment (i.e. extramural care).

 USEFULNESS OF CONTEXT-AWARENESS FOR TELEMEDICINE APPLICATIONS 193

In Section 7.3, we present key determinants that influence the success
of telemedicine applications. As context-awareness is a technical solution
for personalized application behaviour, it mainly influences the first two
phases of a telemedicine development initiative. Both in the technology and
acceptance category, availability of the right information, at the right time,
using the right modality, was identified as a factor that influences the
success of telemedicine applications. As stated in Section 2.4, context
information can be used in applications to (i) producing higher quality
outputs, (ii) replace, minimize or tailor the user inputs (iii) internal
adaptation. Hence, using context information in telemedicine application
has the potential to provide the personalized behaviour as identified in the
determinant analysis.

Finally, when considering the telemedicine workflow discussed in
Section 7.4, we identify possible examples of applying context-aware
application in the phases of this workflow (see Table 7-3). In the presented
table ‘n/a’ denotes not applicable (i.e. no applications are used in this
phase), ‘-’ denotes no foreseen influence of context information, ‘√’
denotes foreseen influence of context information. One row in the table
should be read as follows: “an application used during the {X} phase by
stakeholder {Y} {could | could not} be influenced by context information
to provide {higher quality outputs | replaced, minimized, tailored inputs |
internal adaptation}, for example by {example}”.

 Higher quality

outputs
Replace, minimize,
tailored inputs

Internal adaptation

Observation n/a n/a n/a

Anamnesis
(caregiver)

√
e.g. filtered anamnesis
report based on patient

identification

√
e.g. automatic patient

identification and
selection of patient

records

-

Decision-making
(caregiver)

√
e.g. filtered anamnesis,

observation and
monitoring report

√
e.g. automatic selection

of patient data

-

Feedback
(patient)

√
e.g. adapted timing

and output modality of
feedback based on

patient activity

√
e.g. adapted input
modality based on

location and availability
of input devices

-

Table 7-3 Examples of
the usage of context-
aware applications in the
telemedicine workflow.

194 CHAPTER 7 TELEMEDICINE AND CONTEXT-AWARENESS

Tele-monitoring
(caregiver/patient)

√
e.g. annotated

monitored data with
context information

√
e.g. automatic inclusion
of context information in

the monitored data

√
e.g. optimized transfer of
monitoring data based on

bandwidth context

Context-Aware Telemedicine Applications in Emergency Situations
To give an example of the usefulness of context-awareness for telemedicine
applications, we want to especially mention the potential of context-aware
telemedicine applications in emergency situations, where there is a ‘life-or-
death’ situation for patients. A common concept applicable in these
situations is the ‘golden hour’ (Jones, Bults et al. 2001; Lerner and Moscati
2002). The golden hour is the first sixty minutes after an emergency occurs.
It is believed that the care provided in this hour highly influences the
survival and recovery of the patient. Hence, it is important to use this hour
as effectively as possible.

Key aspects that influence the efficiency of the golden hour are: (i) the
time between occurrence of the emergency and the treatment of the
patient, and (ii) the availability of relevant treatment information (e.g.
patient history, vital signs). Incorporating context information in emergency
telemedicine applications may reduce travelling time and offer more
relevant treatment information.

Considering the first aspect, actions that consume precious time are
finding available caregivers and locating and travelling to the patient(s) (e.g.
by an ambulance (Peters and Hall 1999)). In case of a known and equipped
patient population (e.g. pregnant, high blood pressure patients, equipped
with a telemedicine system) the physical location context information of the
patient can be transferred together with the vital signs to possible
caregivers. This information can be used to better locate the patients and
hence decrease travelling overhead (e.g. using smart-signs (Lijding, Benz et
al. 2006)). Furthermore, activity context information of the caregiver can
be incorporated in the caregiver dispatching decision to quicker dispatch
available caregivers and to decrease false dispatching of unavailable
caregivers. When considering the second aspect, filtering unnecessary
information is time consuming and may decrease treatment quality.
Context-depended information provisioning may therefore improve the
treatment process. For example, when bandwidth conditions decrease, the
throughput of the complete set of vital signs is limited. Such a situation may
result in the loss of vital sign measurements or delay of transfer. Hence, it
might be better to incorporate bandwidth context information to decide to
reduce the sampling frequency or omit certain (less relevant) data to still
provide relevant information to the caregivers.

Chapter 8

8. Evaluation

The main objective of this thesis is to develop infrastructure-based
mechanisms to improve the development process of context-aware applications. This
chapter evaluates possible improvements when using the proposed context
binding infrastructure. Parts of this chapter are published in (Broens,
Sinderen et al. 2007).

This chapter is structured as follows: Section 8.1 describes and
motivates the applied evaluation approach. Section 8.2 describes the results
of a conducted user expectation survey. Section 8.3 discusses a
telemedicine case and discusses how to implement the corresponding
application with CACI, based on the development guidelines proposed in
Chapter 4. Section 8.4 compares the development process of the
telemedicine application when developed with CACI and with a different
context middleware. Finally, Section 8.5 contains a general discussion on
the performed evaluations.

8.1 Evaluation Approach

This section discusses and motivates the evaluation approach. It starts with
an overview of evaluation approaches and gives our general evaluation
direction. Subsequently, it discusses evaluation criteria and finally the
adopted approach.

General Approach
Evaluation of a development process of a system can be divided into
evaluating (i) the process to realize this system and (ii) the quality of the
resulting system.

We start the discussion from the perspective of evaluating the resulting
system. In computer science there are generally three approaches to
evaluate the development of a proposed system (Dodig-Crnkovic 2002;

196 CHAPTER 8 EVALUATION

Gokturk 2007): (i) analytical modelling, (ii) simulations and (iii)
experiments. In the first approach a mathematical model of the system is
created and this model is used to formally reason about the system’s
capabilities. In the second approach the proposed system is modelled and
executed in a simulation environment to estimate the system’s capabilities
in a controlled environment. In the third approach a prototype of the
system itself is created and experiments are done to acquire measurements
on its capabilities. These approaches have their own particular advantages
and drawbacks (Skadron, Martonosi et al. 2003).

In practice, an evaluation can consist of a combination of these
approaches. For example, the system on which experiments are performed
is typically a partial implementation of the full system and is complemented
with simulated parts. This kind of evaluation is called emulation (Gokturk
2007).

In this thesis, we perform an emulation approach. We use a
combination of simulation and experiments to evaluate applications created
with the context binding infrastructure. We use the created prototype of
the context binding infrastructure in combination with simulated context
sources to perform experiments.

From the perspective of evaluating the process to develop a system,
ideally, the evaluation should involve multiple third-party development
teams that create multiple realistic 3rd generation context-aware
applications, with and without the proposed context binding infrastructure.
The development process of these teams and the quality of the developed
applications, with and without the use of the context binding infrastructure,
should then be compared. However, there are several reasons why this is
not feasible:
– The envisioned world in which context sources are widely available is

not yet realized. Currently, context sources are specifically chosen and
deployed for individual context-aware applications. Hence, 3rd
generation context-aware applications, which benefit the most from our
proposed context binding mechanism, are not yet being developed.

– To avoid unwanted interference in the evaluation, a sufficiently mature
(feature complete and bug-free) context binding infrastructure is
required. This requires development effort not feasible in the timeframe
of this thesis.

– The business value for third party developers of an evaluation of the
proposed context binding infrastructure is limited.

For these reasons and due to timing and resource constraints of this
research, we took a pragmatic approach, in which the author acts as the
experimenter (this approach is called assertion), combined with limited
field studies with possible users (Zelkowitz and Wallace 1997). In our case
users are (context-aware) application developers.

 EVALUATION APPROACH 197

Evaluation Criteria
The goal of the present evaluation is to measure the capabilities of the
context binding infrastructure to facilitate the development of context-
aware applications. We do this by ‘measuring’ if improvement in the
development process of context-aware applications can be realized.
However what does ‘improvement’ mean?

When taking the software engineering perspective, measurements can be
done on three subjects (i) processes: software related activities that take
place over time, (ii) products: artefacts which arise out of the processes and
(iii) resources: artefacts which are inputs to processes (Fenton 1994). These
measurements that can be done on: (i) internal attributes and (ii) external
attributes. Internal attributes can be measured purely in terms of the
product, process or resource itself, while external attributes are also related
to other entities in the environment. For example, ‘lines of code’ of an
application are considered an internal attribute because it only depends on
the software product itself. Contrarily, time spent to develop an application
is considered an external attribute as it not only depends on the
development process but also on, amongst others, the knowledge level of
the application developer. In general, external attributes are harder to
measure and interpret than internal attributes.

We believe ‘improvement of the development process of context-aware
applications’ can be evaluated by a set of evaluation criteria. We are
interested in: (i) usefulness of the context binding infrastructure (i.e.
resource), (ii) the development effort of creating a context-aware
application (i.e. process) and (iii) the software quality of the resulting
context-aware application (i.e. product). All are external attributes that not
only depend on the product and process itself but also on the application
developer who is using the context binding infrastructure.

For reasons mentioned earlier, we are limited in doing full fledged
measurements with a target audience of application developers. However,
to still get an insight in the usefulness of the context binding infrastructure
and the development effort of creating a context-aware application with the
context binding infrastructure, for possible users, we perform a user survey.
Additionally, to estimate the development effort and software quality of
context-aware applications using our context binding infrastructure, we
implement an application as part of a case study, which we evaluate using
the de-facto software quality standard ISO/IEC 9126.

Adopted Approach
The adopted approach is visually represented in Figure 8-1. Rounded
rectangles present evaluation steps, while rectangles present artefacts used
in the evaluation steps. Grey coloured figures indicate steps and artefacts

198 CHAPTER 8 EVALUATION

developed in the scope of this thesis, while white figures indicate in
literature available artefacts. Arrows indicate a “used by” relation.

In our approach we evaluate the development process using the
proposed context binding infrastructure in three steps:
1. User expectation survey: this experiment provides ratings of application

developers on their expectations on the usefulness of the proposed
transparency and context binding infrastructure. Additionally, it
identifies evaluation criteria, which are rated as important by the
possible users.

2. Case-study with CACI: this experiment provides a feasibility study on how
to use CACI to implement a context-aware application. As part of this
case study, context sources are simulated. The results of this experiment
form the basis for a comparison of the development effort and software
quality with a case-study without CACI.

3. Case-study without CACI: this experiment describes the development
process of a context-aware application with a currently available context
middleware. These results are compared with the case study when using
CACI.

Finally, these results are evaluated using the criteria identified by the user
expectation survey and the criteria proposed by the de-facto software
quality standard ISO/IEC9126.

Evaluation

Case-study
without CACI

Case study
with CACI

ISO/IEC9126
Software Quality

Standard

User expectation
survey

Survey

Evaluation
results

Telemedicine
Case

Usefullness rating
Evaluation criteria

Evaluation criteria
Development effort &

software quality comparison

Feasibility
study

Figure 8-1 Visual
representation of the
evaluation approach.

 USER EXPECTATION SURVEY 199

8.2 User Expectation Survey

We conduct a user expectation survey to get insight in the expectation of
possible users concerning the usefulness of the proposed context binding
infrastructure. We start with discussing the applied method, followed by the
results of the survey and finally a discussion.

8.2.1 Method

A survey is a quantitative approach to collect data from a large target
audience. This data is analyzed using statistical methods to be able to
provide generic statements (Gable 1994).

The target audience of the user expectation survey are developers of
(context-aware) applications both originating from research and industry.
To reach a broad range of application developers, we chose to perform an
anonymous questionnaire to solicited and non-solicited respondents. The
approached industrial target audience ranges from large international
companies, such as Philips, Alcatel-Lucent, Microsoft, Océ, Thales, Appear
networks, ETHZ and VTT, to smaller national firms, such as Topicus,
Trimm and TSi solutions. A subset of the approached research target
audience consists of: several groups of the University of Twente, research
partners in the AMIGO and AWARENESS project, TU Vienna, University
of Quebec and Trinity College.

The questionnaire was provided in a paper-based and web-based
version. The web-based questionnaire was published on an electronic survey
system called Sirvay10. The paper-based questionnaire was offered to the
visitors of the EUNICE’0711 and ACT4SOC’0712 conferences, after
presentations of the context binding infrastructure by the author. The
results of the paper-based questionnaire are as-is submitted to the Sirvay
system, to enable convenient data processing. The web-based questionnaire
was open to the visitors of the website of the author. Additionally, the social
network of the author is approached with a request to complete the web-
based questionnaire and to forward it to possible interested other
audiences. The web-based questionnaire contains a short explanation of the
proposed context binding transparency and binding infrastructure, and
links to further readings. The web-based questionnaire was available to
respondents in the period July 2007 to December 2007.

The questionnaire itself is presented in Appendix A. It consists of 11
multiple-choice and open questions. The multiple choice questions are
mainly used to (i) determine the characteristics of the target audience and

10 http://www.sirvay.nl/, http://www.dkss.nl/
11 http://www.ctit.utwente.nl/conferences/eunice2007/
12 http://www.icsoft.org/ICSOFT2007/ACT4SOC.htm

200 CHAPTER 8 EVALUATION

(ii) to grade the expected usefulness of the proposed context binding
transparency and context binding infrastructure. The open questions are
mainly used to (i) retrieve opinions on limiting factors of the proposed
transparency and context binding infrastructure and (ii) to retrieve other
remarks.

8.2.2 Results

We estimate the total size of the (solicited) target audience on 300 persons.
In total the web-based questionnaire received 201 visits. From these visits,
72 respondents completed the questionnaire. This is a response rate of
approximately 36% compared to the visits. When taking into account the
total target audience, this is a response rate of 24%.

We estimate that approximately 55% of the respondents originate from
research while 30% originate from industry. The origin of 15% of the
respondents could not be determined.

Respondents Characteristics
The first part of the questionnaire, question 1 to 5, is used to determine the
characteristics of the respondent. From the results of this part of the
questionnaire, we distinguish the following overall characteristics of the
respondents:
– Table 8-1 presents the results of question 1. One respondent did not

answer question 1. Approximately 69,4% of the respondents do
research on Context-Awareness.

Abs. Perc. (%)
Yes 50 69.4
No 21 29.2

Totals 71 98.6

Q1: Do you perform research in the area of context-awareness or related areas
(e.g. ubiquitous, pervasive computing, ambient intelligence)?

– Table 8-2 presents the results of question 2, in which we aggregate the
mentioned research aspects with a count on how often this aspect is
mentioned. The research areas of the respondents are diverse. However,
many respondents indicate research areas directly related to context-
awareness and/or middleware.

Table 8-1 Results
question 1.

 USER EXPECTATION SURVEY 201

Research Area Abs.
Context Middleware 17
None-Context Middleware 5
Context-Awareness 5
Mobile Computing 4
(Ambient) in-home systems 4
Mobile health applications 3
Security and Privacy 2
Information Systems 2
Management of Optical Networks 1
Databases 1
Lighting Scenarios 1
Multimedia Services 1
Human monitoring 1
Service composition 1
Quality of Service 1
Service discovery 1

Q2: In what area do you perform research?

– Table 8-3 presents the results of question 3. Approximately 44,4% of
the respondents developed context-aware applications before. 20,8%
has not developed (context-aware) applications before but is planning
to.

Abs. Perc. (%)
Yes, I developed context-aware applications. 32 44.4
Yes, I developed non-context-aware appplications. 11 15.3
No but I am planning to. 15 20.8
No and I am not planning to. 14 19.4

Totals 72 100

Q3: Have you ever developed a (context-aware) software application?

– Table 8-4 presents the results of question 4. One respondend did not
answer this question. Approximately 47,2 % of the respondents have
used some form of middleware to develop applications.

Abs. Perc.(%)
Yes 34 47.2
No 37 51.4

Totals 71 98.6

Q4: Have you ever used middleware (e.g. context discovery) to develop (context-
aware) applications?

– Table 8-5 presents the result of question 5, in which we aggregate the
mentioned used middleware technologies with a count on how often
these technologies are mentioned. The respondents use a wide variety of

Table 8-2 Results
question 2.

Table 8-3 Results
question 3.

Table 8-4 Results
question 4.

202 CHAPTER 8 EVALUATION

middleware to develop applications. Context management systems are
widely used by the respondents.

Used Middleware Abs.
Web Services 40
Context management 21
Jini 19
Corba 17
Service discovery 12
Java RMI 5
OSGi 4
DCOM 2
UPnP 2
J2EE 2
.NET 1
XML-RPC 1
Multimedia frameworks 1

Q5: What specific type of middleware have you used before?

Ratings and Comments
The second part of the questionnaire, question 6 to 11, is used to rate the
usefulness of the context binding transparency and the proposed context
binding infrastructure. Ratings are requested for the usefulness of the
overall context binding transparency and the three elements: CBDL,
context binding mechanism, and context discovery interoperability
mechanism, that we propose to realize the CBT.

From the results of this part of the questionnaire, we distinguish the
following ratings:
– Table 8-6 presents the results of question 6. The majority of the

respondents (~68%) estimate that the proposed context binding
transparency highly improves (rating > 3) the development process of
context-aware applications. On average the rating is 4.04 with a
standard deviation of 0.73.

Abs. Perc. (%)
1 0 0.0
2 3 4.2
3 5 6.9
4 36 50.0
5 13 18.1
Don't know. 14 19.4

Totals 71 98.6

Q6: Do you think the proposed context binding transparency can simplify the
development of context-aware applications (1 = not at all, 5 = very much)?

Table 8-5 Results
question 5.

Table 8-6 Results
question 6.

 USER EXPECTATION SURVEY 203

– Table 8-7 presents the results of question 7. The majority of the
respondents (~72%) estimate that the CBDL language is highly useful
(rating >3) for the development of context-aware applications. On
average the rating is 4.11 with a standard deviation of 0.81.

Abs. Perc. (%)
1 0 0.0
2 3 4.2
3 8 11.1
4 31 43.1
5 21 29.2
Don't know. 9 12.5

Totals 72 100.0

Q7: How useful is the specification of context requirements in a specification
language and resolving of the requirements in the binding middleware, rather
than programming this in the application (1 = not at all, 5 = very much)?

– Table 8-8 presents the results of question 8. The majority of the
respondents (~68%) estimate that a binding mechanism that maintains
context bindings, highly useful (rating > 3). On average the rating is
4.18 with a standard deviation of 0.87.

Abs. Perc. (%)
1 1 1.4
2 1 1.4
3 9 12.5
4 24 33.3
5 25 34.7
Don't know. 12 16.7

Totals 72 100.0

Q8: How useful is the automatic adaptation to the availability and quality of
context sources by the binding middleware (1 = not at all, 5 = very much)?

– Table 8-9 presents the results of question 9. The majority of the
respondents (~69) estimate the usefulness of a context discovery
interoperability mechanisms as highly useful (rating > 3). On average
the rating is 4.20 with a standard deviation of 0.98.

Table 8-7 Results
question 7.

Table 8-8 Results
question 8.

204 CHAPTER 8 EVALUATION

Abs. Perc. (%)
1 2 2.8
2 2 2.8
3 5 6.9
4 23 31.9
5 27 37.5
Don't know. 12 16.7

71 98.6

Q9: How useful is the automatic interoperability between context discovery
mechanisms by the binding middleware (1 = not at all, 5 = very much)?

– Table 8-10 presents the results of question 10, in which we aggregate the
mentioned aspects with a count on how often this aspect is mentioned.
The respondents indicated a multitude of aspects that might influence
the usefulness of the Context Binding Transparency. The top three of
mentioned aspects are: (i) usability, (ii) learning curve and (iii)
performance.

Aspects Abs.
Usability 16
Learning curve 15
Performance (on mobile systems) 14
Standardization and business value 6
General applicability 4
Security, Privacy and Trust 4
Availability of context-aware applications, context sources 3
Integration with other sollutions 3
Expresiveness of context requirement language 2
Scalability 2
Perceived control 1
Determining offered QoC 1
Making QoC understandable to all parties 1
Adaptability 1
Context modelling 1
Stability 1

Q10: What aspects do you think will influence the success of the Context Binding Transparency?

8.2.3 Discussion

From the results, we conclude that the respondents, total amount of 72,
provide a suitable target audience to evaluating the usefulness of the context
binding transparency. Firstly, the respondents originate both from research
and industry. Secondly, the majority of respondents are knowledgeable on
the area of context-awareness and middleware. Finally, almost half of them
has built context-aware applications and therefore can be expected to have

Table 8-9 Results
question 9.

Table 8-10 Results
question 10.

 CASE-STUDY USING CACI 205

experienced some of the complexities of developing context-aware
applications. Hence, the group of respondents is a mixture of largely
knowledgeable and some non-knowledgeable persons, originating from
both research and industry.

In Table 8-11, we summarize the average ratings and standard deviations
on the overall concept of CBT and the three elements that we propose to
realize a CBT.

Usefulness off… Average rating Standard deviation

Context Binding Transparency 4.04 0.73

Context requirement specification language (CBDL) 4.11 0.81

Context binding maintenance (Context binding
mechanism)

4.18 0.87

Context discovery interoperability (Context Discovery
interoperability mechanism)

4.20 0.98

Legend rating: 1= not useful … 5 very much useful

We conclude that the proposed context binding transparency is appreciated
by possible users. The overall CBT and all individual aspects are rated as
possibly highly useful for the development of context-aware applications.
Additionally, the respondents have indicated factors, such as usability,
learning curve, performance and business value, which might limit the
usefulness of the CBT. These factors are used as evaluation criteria in the
evaluations in the remainder of this chapter.

Limitations of this user expectation survey are the limited size of the
target audience. Furthermore, the respondents rate the usefulness of the
CBT based on theoretical knowledge rather than practical experience.
Consequently, their knowledge on the CBT is limited. Hence, the results of
this analysis are purely indicative and should not be considered
independently of other evaluations.

8.3 Case-study using CACI

In this section, we demonstrate the feasibility of a CACI-based development
of a context-aware application by discussing the development of a
telemedicine case system. In this section, we discuss how this system can be
implemented using the CACI infrastructure. This discussion is based on the
proposed development guidelines as presented in Section 4.5.

Table 8-11 Summary of
the survey’s rating
results.

206 CHAPTER 8 EVALUATION

8.3.1 Case Description: the Epilepsy Safety System

The Epilepsy Safety System (ESS) is a system that supports epilepsy patients
in their daily life. Epilepsy is a neurological disorder in which nerve cells of
the brain occasionally release abnormal electric pulses, so called seizures.
Due to the unexpected nature of these seizures, epileptic patients have a
strong feeling of insecurity and are therefore seriously limited in their daily
life. For example, in their mobility and social contacts. The ESS offers
seizure detection and notifies caregivers which can offer first-aid. This
enables an epilepsy patient to have a more active participation in society and
have a higher quality of life.

The ESS deploys a sensor system on the patient’s body, called a Body
Area Network (BAN), which collects and transfers vital signs when a seizure
is detected. This data is stored and analyzed in a healthcare centre for
diagnosis, first-aid and treatment.

Context can play a major role in improving the healthcare process of the
ESS by (i) tailoring of ESS functionality and (ii) tailoring of the ESS
information. Amongst others, possible beneficial context types in the ESS
are: patient and caregiver location, caregiver availability and patient BAN
bandwidth usage.

Location information helps to decrease travelling time to the patient in
case of emergencies. First, because the precise location of the patient
(destination) is known and second because a nearby caregiver can be
dispatched to the patient. Availability information of caregivers helps to
decrease false dispatches of unavailable caregivers. Bandwidth usage
information assists to tailor the transferred vital sign data to decrease costs
in case of a non-emergency situation, while this information also assists to
prevent congestion and failing transfer of vital sign data in case of
emergency situations.

Consider we create the context-aware ESS first-aid system that helps
patients in emergency situations. Figure 8-2 schematically shows such a
system. This requires application parts to be located at the patients,
caregivers and healthcare centre. The parts need context bindings to several
context sources. The patient application needs bandwidth information to
decide which vital signs to send with which sampling frequency. The
caregiver application needs the location of itself and the location of the
patient having an emergency to determine the route to the patient in need.
The healthcare-centre needs the location of the patient and caregiver, and
availability of caregivers to dispatch the right caregiver to the patient. This
context information can be provided by multiple and changing context
sources. For example. location can be provided by RFID sensors or GPS,
availability can be provided by a context source that reasons on the

 CASE-STUDY USING CACI 207

appointments in an Outlook calendar. The physical context sources that
create/acquire context information are out of the scope of this case study.

Patient

Caregiver

Healthcare center
GPS

sensors

RFID
sensors

Callender

Phone
On/Off

Bandwidth
sensor

Location

Bandwidth

Location/
Availability

8.3.2 Developing the ESS using CACI

We discuss the development of the ESS with CACI, according to the
development guidelines as proposed in Sections 4.5. We start from the
situation in which application requirements for the ESS are available.

Design
In the design phase, the application developer creates the design for the
application logic of the ESS application parts and determines their context
requirements. In summary, the developer creates a design for the
application logic of (i) the patient application to detect seizures and notify
possible seizure alarms to the health-care centre and send the patients vital
signs, (ii) the health-care centre application to receive alarm notifications and
the patients vital signs and search nearby and available caregivers and send
notifications to the selected caregiver, and (iii) the caregiver application to
receive alarm notifications and, location and route information to the
patient.

Determining the context requirements consists of a couple of steps.
First the developer determines what type of context information is required
for the context-aware application to execute (Step 1a). Table 8-12 presents
our choice of required context types for the ESS.

Figure 8-2 ESS
application parts and
required context
information.

208 CHAPTER 8 EVALUATION

Application part Context Requirement Context type

Healthcare centre HC-PL
HC-CL
HC-CA

Patient location (PL)
Caregivers location (CL)
Caregivers availability (CA)

Patient PA-AB Available bandwidth (AB)

Caregiver CG-CL Caregiver location (CL)

In Step 1b from the guidelines, the developer adapts the application design
to incorporate situations in which the required context is unavailable. This
results in n^2 behaviors, where n is the number of required context types.
Possible application behaviors in case of unavailable context information for
the healthcare centre, are presented in Table 8-13. For the caregiver and
patient applications similar tables (i.e. however with less rows because for
both only one type of context information is required) can be made (see
Appendix D).

Healthcare centre application

HC-
PL

HC-
CL

HC-
CA

Application logic behaviour,
[HC-CAB#] are behaviours adapted from the default behaviour [HC-DB].

x x x [HC-DB]: The healthcare centre application’s default behaviour. Emergency
notifications are received by the healthcare centre application, the application
shows the vital signs to the dispatcher which can manually dispatch caregivers
stored in the caregiver database by sending a notification to their caregiver
application.

v x x [HC-CAB1]: The application now additionally shows the patient locations on a
map and the dispatcher can manually dispatch a caregiver. Additionally the
application can forward the patient location to the selected caregiver
application.

x v x [HC-CAB2]: The application now additionally shows the caregiver locations on
a map and the dispatcher can manually dispatch a caregiver.

x x v [HC-CAB3]: The application now additionally shows the availability of
caregivers using availability icons and the dispatcher can manually dispatch a
caregiver.

v v x [HC-CAB4]: The application shows both the patient and caregiver location on a
map. The application ranks the caregiver on distance to the patients. The
application asks the dispatcher if the closest caregiver should be dispatched to
the location of the patient. Patient location and route information are forwarded
to the selected caregiver.

Table 8-12 Required
context types in the ESS.

Table 8-13 Application
logic behaviours in case
of unavailability of
context information for
the healthcare centre
application.

 CASE-STUDY USING CACI 209

v x v [HC-CAB5]: The application shows the location of the patient and the
availability of the caregivers. The caregivers are ranked on availability. The
dispatcher can manually choose an available caregiver to dispatch and forward
location information of the patient.

x v v [HC-CAB6]: The application shows the location and availability of the
caregiver. The caregivers are ranked according to closeness to the patient and
availability. The closest available caregiver is automatically put into contact
with the dispatcher and possibly the patient to retrieve location and route
information.

v v v [HC-CAB7]: The application shows the location of the patient and caregivers
on a map. The caregivers are ranked according to closeness to the patient and
availability. The closest available caregiver is automatically notified of the
patient’s emergency and location and route information is send to his
application.

Legend: ‘x’ = context information is unavailable ‘v’ = context information is available, […] =
id of the behaviour.

In Step 1c, the developer has to determine the required binding behaviour.
This includes indicating the level of notification, binding policy and
discovery scope for every identified context requirement. In this case, we
choose to have the highest level of notification (level 3), a dynamic re-
binding policy and a global discovery scope. These are the default options
requiring no CBDL entries.

In Step 2 and 3, for every context requirement the application developer
has to determine the entity of the required context type and the supported
context format(s). This is summarized in Table 8-14. The entities for the
healthcare centre’s context requirements consist of the set of patients and
caregivers known to the system, represented with {(Patient|Caregiver).*}.
The entity of the patient context requirements consists of the device that is
hosting the patient application. The entity of the caregiver’s context
requirements consists of the caregiver itself. The supported formats consist
of Lat/Long coordinates for location, Boolean for availability and kb/s,
expressed in a Long value, for the available bandwidth.

Application part Context Type Entity Format

Healthcare centre Patient location (PL)
Caregivers location (CL)
Caregivers availability (CA)

{Patient.*}
{Caregiver.*}
{Caregiver.*}

Lat/long
Lat/long
Boolean

Patient Available bandwidth (AB) Device.Patient.X Long (kb/s)

Caregiver Caregiver location (CL) Caregiver.X Lat/long

Table 8-14 Required
context information.

210 CHAPTER 8 EVALUATION

Step 4a and b consists of determining possible quality levels that influence
the application behaviour of the application parts. First, the minimum QoC
criteria are determined followed by possible additional QoC levels. When
taking the QoC criteria as proposed in the CBDL use cases (see Chapter 4),
this results in the following QoC levels, with default notification and re-
binding options. Table 8-15 identifies QoC levels for the different context
types.

Application part Context Type QoC level

Healthcare centre Patient location (PL)

Caregivers location (CL)

Caregivers availability (CA)

HC-PL.min: HC-Pl.precision < 5m
HC-PL.level0: HC-PL.precision > 5m
HC-PL.level1: 1m< HC-PL.precision <5m
HC-PL.level2: HC-PL.precision < 1m

HC-CL.min: HC-CL.precision < 100m
HC-CL.level0: HC-CL.precision > 100m
HC-CL.level1: 1m < HC-CL.precision <
100m
HC-CL.level2. HC-CL.precision < 1m

-

Patient Available bandwidth (AB) -

Caregiver Caregiver location (CL) -

These quality levels influence the application behaviours in the case that the
corresponding context types are available. Hence, in these cases, the
number of possible behaviours increases to incorporate the identified QoC
levels (Step 4c). Table 8-16 presents the relationship of QoC levels to
application behaviours. For the patient and caregiver applications the
number of behaviours do not change as there are no requirements on the
QoC levels specified. Additionally, the application designer has to
determine what happens in case the QoC of the retrieved context
information is not available (Step 4d). Here he has three options: (i)
consider the QoC to be at the lowest level, (ii) consider the QoC to be at
the highest level or (iii) consider the QoC to be at a specified intermediate
level. Here, we choose to apply situation one, which is the default setting.

Table 8-15 Identified
QoC levels for the
context types.

 CASE-STUDY USING CACI 211

Healthcare centre application

HC-
PL

HC-
CL

HC-
CA

Application logic behaviour,
 [HC-CAB#-*] are behaviours adapted from behaviours [HC-CAB#]

v x x HC-PL.level0 [HC-DB]
HC-PL.level1 [HC-CAB1]
HC-PL.level2 [HC-CAB1-1]: The application shows besides the patient
location on the map also an estimated street name.

x v x HC-CL.level0 [HC-DB]
HC-CL.level1 [HC-CAB2]
HC-CL.level2 [HC-CAB2-1]: The application shows besides the caregiver
location on the map also an estimated street name.

v v x HC-PL.level0 + HC-CL.level0 [HC-DB]
HC-PL.level0 + HC-CL.level1 [HC-CAB2]
HC-PL.level0 + HC-CL.level2 [HC-CAB2-1]
HC-PL.level1 + HC-CL.level0 [HC-CAB1]
HC-PL.level1 + HC-CL.level1 [HC-CAB4]
HC-PL.level1 + HC-CL.level2 [HC-CAB4-1]: The application shows
besides the patient and caregiver location on the map also an estimate of the
street name of the caregiver.
HC-PL.level2 + HC-CL.level0 [HC-CAB1-1]
HC-PL.level2 + HC-CL.level1 [HC-CAB4-2]: The application shows
besides the patient and caregiver location on the map also an estimate of the
street name of the patient.
HC-PL.level2 + HC-CL.level2 [HC-CAB4-3]: The application shows
besides the patient and caregiver location on the map also an estimate of the
street name of the caregiver and patient.

v x v HC-PL.level0 [HC-DB]
HC-PL.level1 [HC-CAB5]
HC-PL.level2 [HC-CAB5-1]: The application shows besides the patient
location on the map also an estimated street name.

x v v HC-CL.level0 [HC-DB]
HC-CL.level1 [HC-CAB6]
HC-CL.level2 [HC-CAB6-1]: The application shows besides the caregiver
location on the map also an estimated street name.

Table 8-16 Relationships
of context-aware
behaviours with QoC
levels.

212 CHAPTER 8 EVALUATION

v v v HC-PL.level0 + HC-CL.level0 [HC-DB]
HC-PL.level0 + HC-CL.level1 [HC-CAB6]
HC-PL.level0 + HC-CL.level2 [HC-CAB6-1]
HC-PL.level1 + HC-CL.level0 [HC-CAB5]
HC-PL.level1 + HC-CL.level1 [HC-CAB7]
HC-PL.level1 + HC-CL.level2 [HC-CAB7-1]: The application shows
besides the patient and caregiver location on the map also an estimate of the
street name of the caregiver.
HC-PL.level2 + HC-CL.level0 [HC-CAB5-1]
HC-PL.level2 + HC-CL.level1 [HC-CAB7-2]: The application shows
besides the patient and caregiver location on the map also an estimate of the
street name of the patient.
HC-PL.level2 + HC-CL.level2 [HC-CAB7-3]: The application shows
besides the patient and caregiver location on the map also an estimate of the
street name of the caregiver and patient. Estimated time of arrival of the
caregiver at the location of the patient is calculated and send to the patient.

Legend: x = context information is unavailable v = context information is available, […] id of
the behaviour.

Finally, in Step 5 the collected information on the context requirements is
transformed in CBDL documents. Example 8-1 shows the XML-based
CBDL document of the healthcare centre application, which can be created
using the CBDL XML Schema. In this document, we present one
requirement for a patient Tim and a caregiver John. Requirements have to
be made, in a similar fashion, for the other patients and caregivers required
in the system. This could be automated by taking information from a
patient/caregiver repository. Appendix D presents the CBDL documents of
the patient and caregiver applications.

 CASE-STUDY USING CACI 213

Example 8-1 CBDL
document of the
Healthcare centre
application.

<?xml version="1.0" encoding="UTF-8"?>
<CBDLDocument xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CBDL-schema.xsd" UserID="Healthcarecentre"
ApplicationID="ESS_Healthcarecentre">
 <ContextRequirement BindingID="HC-PL">
 <Element>Location</Element>
 <Entity>Patient.Tim</Entity>
 <Format>lat/long</Format>
 <QualityLevel id=”HC-PL.level0”>
 <QoCCriteria><Precision>> 5m</Precision></QoCCriteria>
 </QualityLevel>
 <QualityLevel id=”HC-PL.level1”>
 <QoCCriteria>

 <Precision>> 1m & < 5m</Precision>
 </QoCCriteria>
 </QualityLevel>
 <QualityLevel id=”HC-PL.level2”>
 <QoCCriteria><Precision>< 1m</Precision></QoCCriteria>
 </QualityLevel>
 </ContextRequirement>
 <ContextRequirement BindingID=”HC-CL” >
 <Element>Location</Element>
 <Entity>Caregiver.John</Entity>
 <Format>lat/long</Format>
 <QualityLevel id=”HC-PL.level0”>
 <QoCCriteria><Precision>> 100m</Precision></QoCCriteria>
 </QualityLevel>
 <QualityLevel id=”HC-PL.level1”>
 <QoCCriteria>
 <Precision>> 1m & < 100m</Precision>

 </QoCCriteria>
 </QualityLevel>
 <QualityLevel id=”HC-PL.level2”>
 <QoCCriteria><Precision>< 1m</Precision></QoCCriteria>
 </QualityLevel>
 </ContextRequirement>
 <ContextRequirement BindingID="HC-CA">
 <Element>Availability</Element>
 <Entity>Caregiver.John</Entity>
 <Format>boolean</Format>
 </ContextRequirement>
</CBDLDocument>

214 CHAPTER 8 EVALUATION

The result of the design phase is: (i) CBDL documents describing the
context requirements of the application parts and (ii) design of the
application parts. Figure 8-3 shows a possible high-level design of the
healthcare centre application.

Healthcare centre application

Application logic

Context logic

CACI

HC-DB

Coordinator

HC-
CAB1 -

{1}

Context retriever

HC-
CAB2 -

{1}

HC-
CAB3

HC-
CAB4 -
{1,2,3}

HC-
CAB5 -

{1}

HC-
CAB6 -

{1}

HC-
CAB7 -
{1,2,3}

HC-PL HC-CL HC-CA

PL CL CA PL, CL PL, CA CL, CA PL, CL, CA

Binding status
notifications

Binding status

The application logic of the healthcare centre application consists of a
default behaviour in case no context information is available. This basic
behaviour is augmented with additional behaviours when the specific
context information is available. For example, when only ‘patient location’
is available HC-CAB1 is enabled. In this way a hierarchy of application
behaviours can be distinguished. This is represented in Figure 8-4. The
context logic is responsible for two things: (i) retrieve the required context
information and (ii) forwarding binding status information to coordinating
behaviour that controls the execution of context-aware behaviours.

Figure 8-3 High level
layered design of the
healthcare centre
application.

Figure 8-4 Tree of
application behaviours
of the healthcare centre
application.

 CASE-STUDY USING CACI 215

Implementation
The implementation of the healthcare centre application consists of
implementing: (i) the context-aware application behaviours, (ii) the
coordinator behaviour and (iii) the context retriever behaviour. We
consider the first and second out of the scope of this case (i.e. Step 7 of the
proposed guidelines). We focus here on the implementation of the context
retriever behaviour to interact with CACI to retrieve context information
and binding status notifications.

Following Step 6a, the developer uses OSGi capabilities to retrieve a
handle to the context retrieval service. Example 8-2 shows the required Java
code for retrieving this handle. This handle can be used to retrieve all the
required context information. Hence, retrieving this handle is done only
once during the life-span of the application.

The handle to the context retrieval service and the specified binding ID’s
can be used to subscribe a callback object to CACI, for notification of a
context binding proxy object that can be used to retrieve context
information. Example 8-3 shows the Java code to subscribe a callback object
to CACI. Again, this subscription has to be done once in the lifetime of the
application.

Example 8-2 Discovery
and retrieval of a handle
to the context retrieval
service.

// Handle to the OSGi container provided by OSGi on deployment of the component.
BundleContext bc;

// Discovery of the ‘context retrieval OSGi service’ based on the context retrieval
// interface signature.
ServiceReference ref = bc.getServiceReference(IContextRetrievalService.class.getName());

// Retrieval of a handle to the context retrieval service.
IContextRetrievalService retriever = (IContextRetrievalService) bc.getService(ref);

Example 8-3
Subscription to CACI to
be notified of available
context producer proxy
objects.

// Callback to-be created by the application developer.
IContextProducerCallback cb;

try{
 // Use the context retrieval service to subscribe a callback to CACI for notification of context
 // binding proxy objects using the binding ID’s specified in the CBDL document.
 retriever.subscribe("HC-PL", cb);
 retriever.subscribe("HC-CL ", cb);
 retriever.subscribe("HC-CA", cb);
}catch(ConsumerSubscribeException e){
 System.out.println("Wrong binding ID.");
}

216 CHAPTER 8 EVALUATION

The application developer has to create an application specific callback to
receive notifications of available producer proxies and updates of the
binding status. This callback has to implement the
‘IContextProducerCallback’ interface. Example 8-4 shows the Java code of
such a callback object.

As part of the ‘notify()’ and ‘notifyStatus()’ method, the developer has to
develop code, which connects the application logic with the context logic
(Step 7). In this way the application logic can retrieve the required context
information for its execution. However this is out of the scope of this case.

Deployment
In the deployment phase the developer has to package: (i) the developed
code from the implementation phase and (ii) the CBDL document from the
design phase in a CACI-enabled component. This consists of creating a JAR
file of the code and CBDL document, including adding a manifest
specifying Java, OSGi and CACI properties (Step 8). Example 8-5 shows the
manifest of the healthcare centre application component.

We refer to the OSGi standard (OSGi Alliance 2005) for the description
of the OSGi properties. The ‘context-requirement-spec’ property enables
application developers to specify the filename of the CBDL document that

Example 8-4 Callback
which receives
notifications of CACI of
available context
producer proxy

// Specific callback interface to-be implemented by the application developer.
public class SpecificCallback implements IContextProducerCallback {

 // Notification of an available context producer proxy.
 public void notify(String bindingID, IContextProducer prod) {
 IContextProducer producer = prod;

 // Example of retrieving context information in a request-response manner.
 ContextInfo contextinfosample = prod.getContext();
 // Example of retrieving context information in a subscribe-notify manner.
 ISubCallback callback;
 prod.subscribe(callback);
 }

 // Notification of changes in the binding to a context producer.
 public void notifyStatus(String bindingID, int status) {
 // These states can be:
 // IContextProducerCallback.UNBOUND
 // IContextProducerCallback.BOUND
 // IContextProducerCallback.REBINDING
 }
}

 CASE-STUDY USING CACI 217

describes the context requirements of the corresponding component. This
CBDL document has to be incorporated in the application JAR file.

Installing the CACI container encompasses installing a Java virtual machine
and a Java-based OSGi environment. The OSGi container lifecycle
functions are used to deploy and run the CACI component that instantiates
the virtual CACI container (Step 9). The healthcare centre application
component can be deployed and run by using the OSGi container lifecycle
functions. The CACI container intercepts the deploying CACI-enabled
component and starts the binding process.

Testing
If the application developer wants to test the developed application and
context logic, he can decide to simulate context sources using the
SimuContext framework (Step 11 & 12). For this he has to: (i) deploy and
run the SimuContext bundle in the OSGi container and (ii) extend the
already created CBDL document with simulation specifications, or use the
run-time SimuContext services. Example 8-6 shows an extended context
requirement as part of the healthcare centre application CBDL document.

Example 8-5 Jar
manifest of the
healthcare centre
application.

// Java standard manifest properties
Manifest-Version: 1.0
Created-By: 1.6.0 (Sun Microsystems Inc.)

// OSGi manifest properties
Bundle-Name = ESS_HC_Component
Bundle-Description =Healthcare centre application part of the ESS system
Bundle-Vendor = Tom Broens
Bundle-Version = 1.0
Bundle-UpdateLocation = http://ewi554.ewi.utwente.nl/obr/ESS_HC.jar
Bundle-Activator =nl.utwente.ESS.ESS_HC.Activator
Import-Package = nl.utwente.CACI.Common, nl.utwente.CACI.Common.Interfaces

// CACI manifest property, specifying the file name of the CBDL document corresponding to this
// component.
Context-requirement-spec = ESS_HC_CBDL.xml

218 CHAPTER 8 EVALUATION

8.4 Comparing CACI and Non-CACI based Development

In this section, we discuss the development of a context-aware application
with a currently available and representative context discovery middleware,
namely the Context Management System (CMS) (Ramparany, Poortinga et
al. 2007). Additionally, we qualitatively compare the development effort
and software quality of the CMS-based ESS with the previously discussed
CACI-based ESS.

8.4.1 Using the CMS for Context Discovery in the ESS

This section discusses the implementation of the ESS using the Context
Management System (CMS). Section 3.2.5 elaborates more on the CMS
itself. The CMS is part of the middleware developed in the AMIGO
project13. Our discussion starts from a situation in which there is a running
instance of the CMS, in which multiple context sources are registered.
Code development is based on the CMS tutorial14.

The application developer of the ESS has to develop the application and
context logic of the application parts. As part of the context logic, the
application developer has to program code to interact with the CMS. This
consists of the following steps:
1. Find a CMS context broker.

13 http://www.hitech-projects.com/euprojects/amigo/
14 http://www.hitech-projects.com/euprojects/amigo/tutorials.htm

Example 8-6 CBDL code
to simulate a location
context source using
SimuContext.

…
<ContextRequirement BindingID="HC-PL">
 <Element>Location</Element>
 <Entity>Patient.Tim</Entity>
 <Format>lat/long</Format>

 …. QoC levels …
 <SimuContext>

 <Valuemodel>
 nl.utwente.SimuContext.ValueModels.FileValueModel:values.log
 </Valuemodel>
 <Eventmodel>
 nl.utwente.SimuContext.EventModels.RandomEventModel:2
 </Eventmodel>
 </SimuContext>
</ContextRequirement>
…

 COMPARING CACI AND NON-CACI BASED DEVELOPMENT 219

2. Ask the context broker for registered context sources that match the
specified context requirements.

3. Subscribe to a context source, selected from a set of suitable context
sources returned by the context broker.

4. React on context change notifications received from the context source.
The first three steps are reflected in Example 8-7. The example code
presents the starting point of the application for the discovery of context
sources and retrieval of context information. It contains code statements to
find a CMS context broker (findContextBroker), discover context sources
(findContextSource) and subscribe to a selected context source
(subscribeCS). The latter two have to be repeated for every required
context type. Hence in this case, these statements have to be repeated for
the patient location, caregiver location and caregiver availability. In the
remainder of this section, we discuss a possible implementation of these
methods in more detail.

Example 8-7 Initialize a
context source discovery
and subscription to
context information.

// Context requirements for the patient location, caregiver location and availability, which
// should be specified in RDF.
String HC_PL_req;
String HC_CL_req;
String HC_CA_req;

public void init() {

 /* 1. try to find a CMS context broker */
 AmigoService broker = findContextBroker();

 /* 2. ask the context broker for a reference to suitable context sources */
 AmigoService HC_PL_CS = findContextSource(broker, HC_PL_req);
 AmigoService HC_CL_CS = findContextSource(broker, HC_CL_req);
 AmigoService HC_CA_CS = findContextSource(broker, HC_CA_req);

 /* 3. subscribe to the found context sources */
 if (source != null){
 subscribeCS(HC_PL_CS);
 subscribeCS(HC_CL_CS);
 subscribeCS(HC_CA_CS);
 // now the context-aware application is ready to be notified by the context sources
 // of changes in the context information.
 }

}

220 CHAPTER 8 EVALUATION

The context requirements of the application are expressed in strings in the
RDF15 format. Such a RDF string is used to specify the type of context
information the application requires. Example 8-8 shows the RDF string for
the context requirement of the ‘patient location’ (HC_PL_req). Similar
RDF strings have to be specified for the other types of context
requirements (caregiver location and availability). The information model
used by CMS is specified in a context ontology (i.e.
http://amigo.gforge.inria.fr/owl/Context.owl) in the OWL16 format. The
concepts used in the RDF strings have to be specified in the Amigo context
ontology to guarantee correct working of the CMS.

Finding a CMS Context Broker
Before being able to discover context sources, the application has to find a
CMS context broker. Example 8-9 shows an implementation of the
‘findContextBroker’ method. This consists of a web service look-up of the
‘ContextBroker’ service using the Amigo middleware. Additionally, some
exception handling is needed in case of an error or when no broker can be
found. The process of finding a context broker has to be done only once
per application part. A context broker can be reused for finding multiple
context sources.

15 http://www.w3.org/RDF/
16 http://www.w3.org/2004/OWL/

Example 8-8 Patient
location context
requirement
specification in RDF.

 private static String HC_PL_req = ""+
 "<?xml version=\"1.0\"?>"+
 "<rdf:RDF"+
 " xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\""+
 " xmlns:rdfs=\"http://www.w3.org/2000/01/rdf-schema#\""+
 " xmlns:owl=\"http://www.w3.org/2002/07/owl#\""+
 " xmlns:j.0=\"http://amigo.gforge.inria.fr/owl/AmigoICCS.owl#\""+
 " xmlns:j.1=\"http://amigo.gforge.inria.fr/owl/Domotics.owl#\""+
 " xmlns:daml=\"http://www.daml.org/2001/03/daml+oil#\""+
 " xmlns:j.2=\"http://amigo.gforge.inria.fr/owl/Context.owl#\">"+
 " <j.2:ContextSourceRegistration>"+
 " <j.2:contextType>PatientLocation</j.2:contextType>"+
 " </j.2:ContextSourceRegistration>"+
 "</rdf:RDF>";

 COMPARING CACI AND NON-CACI BASED DEVELOPMENT 221

Finding Suitable Context Sources
The application has to invoke a discovery request on the found
ContextBroker service to retrieve suitable context sources that can deliver
the required context information. Example 8-11 shows an implementation
on the ‘findContextSource’ method. This includes invoking the
‘discoverContextSource’ method of the ContextBroker web service. A
parameter of this method is the earlier specified context requirement.

This method returns a list of references to the network location of the
discovered context sources, in a proprietary XML format. Example 8-10
shows an example of such a list, containing references to three location
context sources. This list has to be parsed and a selection of a suitable
context source has to be made. In the example, the first one is selected
from the list. Subsequently, a reference to the service of the selected
context source has to be made.

Example 8-9
Implementation of the
findContextBroker()
method.

private AmigoService findContextBroker() {
AmigoService broker = null;
try {
 // Web service lookup of a ‘ContextBroker’ service
 broker = lookup.lookupFirstService("urn:amigo","ContextBroker");

 if (broker == null) {
 logger.debug("No ContextBroker discovered");

 }
 } catch (AmigoException e) {
 e.printStackTrace();
 }
 return broker;
}

Example 8-10 Returned
string of references to
discovered context
sources.

< ?xml version=’1.0’ encoding=’UTF-8’ ?>
<listref>
 <ref> http://130.89.11.57:8080/ksoap2/LocationContextSource1<\ref>
 <ref> http://130.89.11.57:8080/ksoap2/LocationContextSource2<\ref>
 <ref> http://130.89.11.57:8080/ksoap2/LocationContextSource3<\ref>
<\listref>

222 CHAPTER 8 EVALUATION

Subscribing to a Context Source
The selected context source can then be used to subscribe to changes in the
context information acquired by this source. Example 8-12 shows an
implementation of the ‘subscribeCS’ method. This includes invoking the
‘subscribe’ method of the context source web service. Parameters of this
method are a query string and a notification key. The query string can be
used to ask for specific context information from a context source. This
string should be formatted in the SPARQL17 format. Example 8-13 gives a
query string that asks for the location of patient Tim and the timestamp of
the context information. The notification key is used to identify from which

17 http://www.w3.org/TR/rdf-sparql-query/

Example 8-11
Implementation of the
findContextSource
method

private AmigoService findContextSource(AmigoService broker, String context_req) {
 AmigoService contextSource = null;
 try {
 // Invoke the discoveryContextSource method
 String result = (String) broker.getGenericStub().invoke("discoverContextSource",
 new String[]{"contextInfoDesc"},
 new Object[]{context_req});
 // Parsing of the first reference (selection of a context source)
 String csRef = null;
 int index_start = result.indexOf("<ref>");
 if (index_start != -1) {
 int index_end = result.indexOf("</ref>", index_start);
 if (index_end != -1) {
 csRef = result.substring(index_start+"<ref>".length(), index_end);
 }
 }
 if (csRef != null) {
 // Creating a reference to the selected context source service
 contextSource = AmigoImportedService.createService(new

AmigoReference(AmigoReference.SOAP, csRef));
 }else{
 logger.warn("No suitable Context Source found!");
 contextSource = null;
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 return contextSource;

}

 COMPARING CACI AND NON-CACI BASED DEVELOPMENT 223

subscription a notification is received. Besides the subscription, a
notification callback object has to be registered to the context source.

Reacting on Context Information Changes
Finally, the application developer has to implement a callback object. This
object receives notification of changes in the context information that is
acquired by the selected context source. Example 8-14 shows an
implementation of the ‘notify’ method, which is called by the subscribed
context source. The changed context information is a parameter of the
notification method. The context information is formatted as a SPARQL
result string. A SPARQL helper class can be used to parse and interpret the
received context information. When the context information is parsed it
can be passed to the application logic.

Example 8-12 Subscribe
to the selected context
source.

private void subscribeCS(AmigoService source){
 try{
 // Subscribe to the found context source with a specific query.
 String eventID = (String)source.getGenericStub().invoke("subscribe",
 new String[]{"contextSubscriptionCharacterisation",

"contextSubscriptionReference"},
 new Object[]{queryString,notificationKey});
 // Register a notification callback object
 source.getSubscriptionManager().subscribe(callbackobject,eventID);
 }catch(Exception ex){
 ex.printStackTrace();
 }

}

Example 8-13 SPARQL
query.

final private String queryString = ""+
"PREFIX amigo: <http://amigo.gforge.inria.fr/owl/AmigoICCS.owl#> "+
"PREFIX context: <http://amigo.gforge.inria.fr/owl/ContextTransport.owl#>" +
"PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> "+
"SELECT ?location ?time WHERE { "+
 "?id rdf:type context: PatientLocation "+
 "?id context:location ?location . "+
 "?location context:identifier ‘Patient.Tim’ . "+
 "?id context:timestamp ?time ." +
 "}";

224 CHAPTER 8 EVALUATION

8.4.2 Comparison

Figure 8-5 presents, from an application developer perspective, a visual
representation of a development process of a context-aware application
when using (i) current context discovery mechanisms, and (ii) CACI. In
both cases, the application requirements have to be transformed in
application logic. Also, in both cases, context logic has to be developed to
retrieve the required context information. The context logic uses
capabilities offered by the context discovery middleware or CACI,
respectively. For a CACI-based application part of the context logic consists
of a CBDL specification. For a non CACI-based application, part of the
context logic may consist of creating (multiple) specific specifications which
are specific per discovery mechanism. In this section, we qualitatively
compare the development effort (process) and software quality (product) of
the CMS-based ESS with the developed CACI-based ESS.

Our hypothesis is that the context logic required for a CACI-based
application is smaller than when using a currently available context

Example 8-14
Implementation of the
‘notify’ method.

public void notify(NotificationData data) {
//use the notificationKey used earlier for the subscription, to retrieve the context information
String result = (String) data.get(notificationKey);
// now create a SparqlResultHelper to process the SPARQL result
SparqlResultHelper srh = new SparqlResultHelper();
Results rslts = srh.process(result);

/*
 * Examine the SPARQL Results for new temperature information by searching for
 * "room", "temp" and "time" in the result (these where the variables we defined in
 * the SPARQL Query)
 */
String patient_location = null;
for (int i=0;i<rslts.size();i++) {
 for (int j=0;j<((Result)rslts.get(i)).size();j++) {
 Binding b = (Binding) ((Result)rslts.get(i)).get(j);
 if (b.getName().equals("location")){
 patient_location = b.getValue();
 }
 }

 }
// Use the received context information in the application logic of the ESS.
ESS_carecentre.notify(patient_location);

}

 COMPARING CACI AND NON-CACI BASED DEVELOPMENT 225

discovery middleware. Additionally, we estimate that the quality of the
application improves due to the features it inherits from CACI.

Development Effort
In both implementations of the ESS, the application developer has to
implement the application logic. In both cases, this application logic should
consist of the same behaviour that fulfils the application requirements.
However, CACI provides development guidelines that enable developers to
create the application logic in a structured manner. Additionally, these
guidelines make the developer explicitly aware of the possibility of
(un)availabile context sources and fluctuating QoC of the provided context
information. The CMS does not provide guidelines for the design of the
context-aware applications. We believe such guidelines positively influence
the development of structured and realistic 3rd generation context-aware
applications.

More explicit differences can be seen in the implementations of the
context logic. Table 8-17 shows the lines-of-code (LOC) that are required
for implementing the context logic of the healthcare centre application part
when using the CMS and when using CACI.

Type of code LOC CMS LOC CACI

Specifications (RDF,SPARQL, CBDL documents) 72 40

Java code 50 10

Total 122 50

The LOC of the context logic of the healthcare centre application part of
the ESS, is for the CMS-based implementation approximately 72 lines of

Figure 8-5 Comparing a
CACI and non-CACI
based development
process of context-
aware applications.

Table 8-17 Comparing
required LOC for the
context logic of the
healthcare centre
application part.

226 CHAPTER 8 EVALUATION

specification and 50 lines of Java code. For the CACI-based healthcare
centre application part this is 40 lines of specification and 10 lines of Java
code. Hence, when using CACI, the implementation of the context logic of
the ESS requires less effort than when using the CMS. Although for this
simple example, the absolute required LOC for the CMS-based ESS is not
that high, relatively, it is more than one times more compared to a CACI-
based ESS.

Table 8-18 shows the technologies that a developer has to know before
he can use the capabilities of CMS or CACI. For both, this includes gaining
knowledge of the middleware specific API’s. Additionally, knowledge has to
be gained on how-to specify context and/or context requirements. For the
CMS this includes learning the Amigo context ontology, while for CACI this
includes learning the CBDL XML Schema. For the CMS, several supporting
technologies have to be learned like XML, RDF, OWL and SPARQL. For
CACI only XML, as the foundation of CBDL, has to be learned. Finally, the
underlying deployment middleware has to be learned. For CMS this is the
proprietary Amigo middleware based on OSGi. For CACI, this includes
learning OSGi. We estimate the learning curve of CACI to be less steep
compared to that of CMS. First, because the number of technologies to be
learned is less and secondly, the technologies used by CACI are more
common. For example, we estimate the possibility that a developer has
basic knowledge of XML is higher than the possibility that a developer
knows SPARQL.

Types CMS-based application CACI-based application

API’s CMS API’s CACI API’s

Context (requirement) specification Amigo ontology CBDL XML Schema

Supporting technology XML, RDF, OWL, SPARQL XML

Deployment middleware Amigo middleware, OSGi OSGi

Software Quality
Table 8-19 compares the features of the CMS and CACI-based ESS
applications. As discussed before, CACI offers a structured development
process for the application logic. Furthermore, both CMS and CACI offer
ways for an application to discover context sources that can deliver the
required context information. However, CACI additionally enables the
application to discover context sources from multiple dynamically available
context discovery mechanisms. CACI performs the selection of a suitable
context source on behalf of the application based on a default or
application-specific selection algorithm. In case of a failing binding, CACI

Table 8-18 Background
knowledge required for
using CMS and CACI.

 DISCUSSION 227

tries to re-establish the binding to enable continued availability of context
information to the application. Finally, contrary to CACI, CMS offers a
context ontology to uniformly specify context concepts and semantics.

Features CMS-based application CACI-based application

Structured application logic
according to guidelines

- ●

Discovery of context sources ● ●

Discovery of context source from
different context discovery
mechanisms

- ●

Automatic selection of a suitable
context source

- ●

Rebinding in case of a failing
binding

- ●

Uniform context concepts and
semantics specified in a context
ontology

● -

Legend: ‘●’ = offers, ‘-’ = does not offer

Summarizing this section, we estimate that when a developer uses CACI to
create its context-aware application, the application is more structured,
costs less development effort to create, and has a higher quality compared
to a CMS-based application. An important feature that CMS offers to a
context-aware application is a context ontology to uniformly specify context
concepts and semantics. However, we consider this an orthogonal aspect
that can be added to CACI. However, this requires further research.

8.5 Discussion

In this chapter we have evaluated the possible improvement of the
development process of context-aware applications when using CACI. First,
we showed the general interest of application developers in a context
binding transparency and a context binding infrastructure. Secondly, we
showed the feasibility of creating a context-aware application using CACI,
by implementing a telemedicine case based on the CACI development
guidelines and prototype. Thirdly, we presented the implementation of the
same case with a currently available context discovery middleware and
compared the development effort and software quality of both case studies.
This comparison showed that for the given case, CACI provides an

Table 8-19 Groupware
categories and roughly
equivalent names.

228 CHAPTER 8 EVALUATION

infrastructure to create more structured and higher quality applications,
which cost less development effort to create.

In the remainder of this section, we abstract from the cases and reflect
in general on possible improvements of the development process of
context-aware applications.

General Reflection
By using CACI the application developer is relieved from the responsibility
of developing software for creating and maintaining context bindings to
retrieve context information. Application developers can focus on their
primary task of creating application logic needed for their application.

Additionally, application developers become more aware of the
situations in which their applications possibly function. When using the
proposed guidelines in the development process, developers take situations
into account in which context information is not available or certain quality
criteria are not met. This results in a set of application behaviours
corresponding to these situations. CACI indicates the application of
transitions between these situations. For example, CACI notifies the
application of a failed binding or QoC level transitions. It is the
responsibility of the application developer to implement these behaviours
and coordinate changes in behaviour based on the indicated situation
changes.

Although the number of possible behaviours, which an application
developer has to take into account, can become large depending on the
number of required context types and quality levels, the application design
becomes more realistic. Furthermore, not all possible behaviours are
unique and may overlap with other behaviours, depending on the
application requirements. For example, the number of possible behaviours
for the healthcare centre application is 38, from which after design 18
behaviours remain. Additionally, these behaviours are not independent and
are extensions of each other. Further research is required to determine the
best way to design and implement these behaviours and to create a
coordinator that facilitates the enabling of these behaviours.

For specifying the context requirements of a context-aware application,
CACI offers a simple descriptive language expressed in XML. The patient
and caregiver side application each need approximately 7 lines of simple
CBDL XML description while for the healthcare centre-side application 40
lines of XML code are needed. Additionally, all three sides need between 5-
10 lines of Java code to basically embed CACI in their application and
retrieve the context information. In total this results in 74 lines of code to
create and maintain context bindings of the three application parts which
make up the ESS system (see Table 8-20).

 DISCUSSION 229

To estimate the code a developer has to produce for similar context
binding functionality without CACI, we use an Eclipse Metrics plug-in18 to
determine the lines of code of CACI’s Binder, Discover Manager, Monitor
and Decider functional blocks. Together these blocks consist of
approximately 497 lines of code which have to be replicated and specialized
for the three different parts. In total this would result in approximately
1497 lines of code. Hence, a possible large code reduction can be achieved
when using CACI.

 LOC
Application
part

CBDL Context logic CACI

Healthcare centre 40 10 497

Patient 7 5 497

Caregiver 7 5 497

Totals 54 20 1491

Developing a CACI-based context-aware application, the developer has to
learn how-to use CACI. We do not think this presents a serious drawback,
for two reasons. First, CACI provides simple interfaces and XML schemas
to ease this process. Possible future extensions could include developing a
GUI that enable developers to graphically generate CBDL descriptions and
generate CACI integration code as part of the context retriever. Second,
context-aware application development without CACI also requires similar
or more learning effort to cope with underlying discovery mechanism.

Summary based on ISO/IEC 9126
Finally, we end this discussion with a general summary on the potential
improvement of the development process of context-aware applications,
using the ISO/IEC 9126 standard. Table 8-21 presents this summary.
Appendix C gives an overview of the definitions of the different ISO/IEC
9126 characteristics.

Characteristics Improved Explanation

Functionality

-- Suitability ● CACI relieves the application developer from
developing code for creating and maintaining context
bindings, hence he can focus on his primary task of
creating application logic.

18 http://metrics.sourceforge.net/

Table 8-20 Lines of code
of the different ESS
application parts.

Table 8-21 expected
improvement of the
development process of
context-aware
applications.

230 CHAPTER 8 EVALUATION

-- Accurateness ● By using the guidelines as presented in Chapter 4, the
application developer becomes more aware in his
design, of the situations in which his context-aware
application operates (i.e. availability of context and
QoC levels). Hence his application can become more
‘accurate’ to the real world situations.

-- Interoperability ● The discovery interoperability mechanism enables the
application to transparently retrieve context
information from domains that offer heterogeneous
context discovery mechanisms.

-- Compliance □ The CACI prototype complies with the OSGi
specification. The used OSGi component framework
offers a component-based approach of creating
context-aware applications.

-- Security - Interoperating with different context discovery systems
from different domains by downloading domain
specific discovery adapters forms a security risk.
Further research is needed to limit/overcome this risk.

Reliability

-- Maturity ● Incorporating in the design and implementation of the
context-aware application that context information can
become unavailable and quality criteria cannot be
met, results in a more mature application.

-- Fault Tolerance ● Unavailability of context sources leads to a rebinding
process by CACI.

-- Recoverability ● One of the main features of CACI is to re-bind to other
context sources in case of them disappearing or
decreasing QoC of the context information they offer.

Usability

-- Understandability n/a CACI does not directly influence the understandability
of the resulting context-aware application.

-- Learnability n/a CACI does not directly influence the learnability of the
resulting context-aware application.

-- Operability n/a CACI does not directly influence the operability of the
resulting context-aware application.

Efficiency

-- Time behaviour - Adding CACI introduces a level of indirection that
creates performance overhead. However, as discussed
in Chapter 5 and 6 this overhead is limited.

-- Resource behaviour - Adding CACI introduces a level of indirection that
creates resource overhead. However, as discussed in
Chapter 5 and 6 this overhead is limited.

 DISCUSSION 231

Maintainability

-- Analyzability ● By using CACI, the context logic of the application
decreases. Hence the overall application becomes
less comprehensive and possibly better
understandable for the application developer.

-- Changeability ● By separating the application from the context
requirements using the CBDL language, the
application developer can easily change his context
requirements without changing the application code.

-- Stability - More research is needed to estimate the risk of
oscillating behaviour due to the re-binding process
and ways to overcome this behaviour.

-- Testability ● The Simucontext framework can be used to test the
application against simulated context sources.

Portability

-- Adaptability ● The discovery interoperability mechanism enables the
application to transparently retrieve context
information from domains the application moves
through.

-- Installabilitty ● By using a standard component framework as the
foundation of CACI, the component framework
lifecycle capabilities can be used to easily install and
update applications.

-- Conformance □ OSGi is a Java based technology suitable on multiple
hardware platforms such as laptop’s and pda’s.

-- Replaceability n/a -

Legend: expected improvement of the development process of the context-aware application,
‘●’, improves, ‘□’ similar ,’-‘ worsened, n/a not applicable

Chapter 9

9. Conclusions

This chapter presents the conclusions of this thesis and identifies topics that
we believe are relevant for future research. This chapter is structured as
follows: Section 9.1 presents general considerations on our research in
relation to the context-awareness domain. Section 9.2 discusses the main
research contributions. Section 9.3 discusses the extent to which we have
answered our initial research questions. Finally, Section 9.4 presents
directions for future research.

9.1 General Considerations

The world is increasingly equipped with high-capacity, interconnected,
mobile and embedded computing devices. Context-awareness provides an
attractive approach to personalize applications such that they better suit the
user’s needs in such a ubiquitous computing environment.

Context-awareness is a comprehensive and challenging research area. In
(Wac, Broens et al. 2008) we map the context-awareness research domain
by identifying and categorizing relevant research topics. We distinguish a
multitude of research topics related to context-awareness, such as
theoretical foundations, context management, security, context reasoning,
etc. The AWARENESS project deals with a subset of these topics and
focuses on an infrastructure that enables rapid and easy development of
context-aware applications in a secure and privacy-conscious manner.
Based on this research, we discuss general lessons learned on developing
context-aware mobile applications (Wegdam, Broens et al. 2008). These
lessons include, amongst others, that different application environments
require different context management solutions, the importance and
influence of Quality of Context on the functioning of context-aware
applications, use of statistical and rule-based methods for context reasoning

234 CHAPTER 9 CONCLUSIONS

to provide more or better context information , and how to deal with the
trade-off between the user privacy and context-awareness.

This thesis focuses on an important aspect related to the development of
context-aware applications. We researched ways to facilitate the exchange
of context information required for the execution of context-aware
applications. The exchange of context information requires a context
binding between a context consuming context-aware application and
suitable context producing context sources.

In this thesis, we have argued that developing context-aware applications
is a challenging task. Especially, developing mechanisms for creating and
maintaining context bindings is complex. This justifies the development of
abstractions and infrastructure-based mechanisms to support developers of
context-aware applications in creating and maintaining context bindings.
Hence, we have developed: (i) an abstraction, coined the Context Binding
Transparency, which hides the complexities of creating and maintaining
context bindings for the application developer, and (ii) a context binding
infrastructure, coined CACI, that realizes this transparency. We developed a
proof-of-concept prototype of CACI.

Additionally, we argue that the way context-aware applications should
use context information to adapt, and how they should deal with varying
quality and (un)availability of context information, remains mainly a
responsibility of the application developer. However, we claim that a
context binding infrastructure can support the application developer to deal
with these development aspects. When using a context binding
infrastructure the application developer can better focus on his core task:
developing the application logic of its application.

We used the CACI prototype for evaluating possible improvements
regarding the development process of context-aware applications. This
evaluation made plausible that the development process of context-aware
applications can indeed be improved by using our context binding
infrastructure. First, we showed, based on the results of a survey, the
general interest of application developers in a context binding transparency
and a context binding infrastructure. Secondly, we showed the feasibility of
creating a context-aware application using CACI, by implementing a
telemedicine case based on the CACI development guidelines and
prototype. Thirdly, we presented the implementation of the same case
using an existing context discovery middleware and we qualitatively
compared the development effort and software quality of both case studies.
This comparison showed that for the given case, CACI provides an
infrastructure to develop more structured and higher quality applications,
which requires less development effort. Finally, we made an overall analysis
of the capabilities of CACI and the impact of CACI on the development of
context-aware applications. This analysis showed that it is reasonable to

 RESEARCH CONTRIBUTIONS 235

expect that the use of CACI results in less development effort per
application and higher quality applications. Additionally, it showed that
CACI can provide improvements with respect to the majority of software
quality characteristics specified in the ISO/IEC 9126 standard.

9.2 Research Contributions

The research presented in this thesis addresses the design and
implementation of context-aware applications using infrastructure-based
support mechanisms. Our main contributions are:
– definitions, concepts and models;
– a context binding transparency;
– a context binding infrastructure;
– an analysis of the Telemedicine domain.

Definitions, Concepts and Models
In this thesis several definitions, concepts and models are developed, which
give general insights in context-awareness and (context) middleware.

In Chapter 2 and 3, we present basic concepts, terminology and models,
and the state-of-the-art on context middleware. Specifically, the following
contributions are made:
– Definitions of context, context information and context-awareness.

These definitions stress the importance and implications of some
underexposed inherent characteristics of context information: context
information is offered by context sources which can become
(un)available and that context information is offered with a certain QoC.

– A generic architectural model of context-aware applications, which
distinguishes the basic functions encompassed in context-aware
applications. Additionally, we identify the role and architectural position
of a context binding infrastructure that supports context-aware
applications to create and maintain context bindings.

– Model of a context binding process. We identify the phases and
capabilities in a comprehensive context binding process, which are
required for creating and maintaining context bindings. Additionally, we
categorize current context middleware in terms of the context binding
capabilities required to support this process.

Context Binding Transparency
In Chapter 4, we discuss transparencies and describe the context binding
transparency. This transparency proposes an implementation independent
specification of infrastructure-based context binding functions that mask
the complexities of creating and maintaining context bindings for

236 CHAPTER 9 CONCLUSIONS

developers of context-aware applications. Specifically, the following
contributions are made:
– Discussion of the concepts ‘transparency’ and ‘context binding

transparency’, which results in general insights on applying
transparencies in the development process of context-aware
applications. In addition, the relation of the context binding
transparency with the distribution transparencies as defined in the ODP
reference model is explained.

– Specification of the context binding transparency in terms of context
retrieval and publishing services. These services can be used by
application developers to retrieve required context information for their
application without being aware of the creation and maintenance
process of the required context bindings.

– Definition of a context requirement specification language, coined
Context Binding Description Language (CBDL) that enables application
developers to specify their context requirements at a high-level of
abstraction rather then in programming code.

– Development guidelines that application developers can use to develop a
context-aware application, which is based on a context binding
infrastructure that realizes a context binding transparency. In addition, a
generic discussion is given on the development process of context-aware
applications. This discussion stresses the importance of distinguishing
situations in the application design in which no or low quality context
information is available.

Context Binding Infrastructure
In Chapter 5 and 6, we discuss the design and implementation of the
context binding infrastructure. This infrastructure realizes the Context
Binding Transparency. Specifically, the following contributions are made:
– Overview of the generic structure of our context binding infrastructure,

coined Context-Aware Component Infrastructure (CACI), which is
based on the component-based middleware paradigm.

– Design and prototype implementation of a mechanism to support
developers in retrieving context information based on CBDL
specifications, coined the context binding mechanism.

– Design and prototype implementation of a mechanism to enable the
context binding mechanism, or individual applications, to transparently
interoperate with available context discovery mechanisms, coined the
context discovery interoperability mechanism.

– Design and prototype implementation of a context simulation
programming framework, coined SimuContext, which enables
developers to configure/program simulated context sources. Integration
of the SimuContext framework with the CBDL language and CACI

 REFLECTION ON THE RESEARCH QUESTIONS 237

infrastructure to extend the support for a complete development life-
cycle of a context-aware application.

In Chapter 8, we determine if the development process of context-aware
applications is facilitated by using the proposed context binding
infrastructure. Specifically, the following contributions are made:
– A user expectation survey, which rates the expected usefulness of a

context binding infrastructure by potential application developers.
– Implementation of an elaborated telemedicine case study using CACI, to

illustrate the feasibility of the proposed context binding infrastructure.
– Implementation of the same telemedicine case study using a current

context discovery mechanism. This is done to compare the development
effort of the development processes and the software quality of the
resulting applications with/without using CACI.

– Overall analysis on the capabilities of CACI and the impact of CACI on
the development of context-aware applications.

Telemedicine Domain Analysis
In Chapter 7, we give an extensive overview of the telemedicine domain.
Specifically, the following contributions are made:
– A model that identifies determinants, which influence the success of

telemedicine applications. Additionally, these determinants are related
to the life-cycle of these applications.

– Discussion on the relevance and possible usefulness of context-
awareness for telemedicine applications. This analysis showed that using
context information to provide the right medical information at the
right time can be beneficial for the quality of a telemedicine application.
Especially, for applications used in emergency situations this potentially
offers benefits.

9.3 Reflection on the Research Questions

In this section, we reflect on the research questions, as introduced in
Chapter 1.

1. How do context-aware applications differ from non-context-aware applications and
how does this influence the development process of these applications? How does the
proposed context binding transparency influence the design of context producers and
consumers?

Context-aware applications use context information to adapt their
behaviour to offer a higher quality service to their users. The application
logic of a context-aware application reacts on context inputs additional to

238 CHAPTER 9 CONCLUSIONS

application inputs. Context input differs from application inputs because
they deal with context information rather than application data. Context
information is not required for the application to function while application
data is. When context information is available to the application, the
application can use it to offer a higher quality service. Else it offers default
behaviour. Furthermore, context information describes the situation of an
entity. How well it describes this real-world situation is captured in its
Quality of Context (QoC). Context information is typically offered by third
party context sources while application data can also be provided by the
application users. Due to the dynamic nature of these context sources,
context information is arbitrarily available. Both the dynamic availability and
fluctuating quality influences in what way the context-aware application can
tailor its behaviour to the situation of the user.

Hence, context-aware applications consist of, besides application logic,
context logic to acquire and process context information coming from
context sources (see Chapter 2). We argue that the application logic of a
context-aware application exhibits a default behaviour that adapts based on
context information itself, but should also adapt based on the availability
and quality of this context information.

Although, we develop a transparency and infrastructure mechanism to
improve the continued availability of high quality context information, there
may still be situations in which such context information is not available.
Hence, application developers should develop a context-aware application
considering also the unavailability of context information by developing a
basic context-unaware behaviour that is extended with context-aware
behaviour in case of available context information (see Chapter 4).

The context binding transparency hides for application developers some
of the complexities of creating and maintaining context bindings. We claim
that context bindings do not have to be programmed by application
developers but can be generated based on their context requirements.
Hence, the proposed context requirement language (i.e. CBDL, see
Chapter 4) enables application developers to focus on their primary task of
developing application logic. The proposed context binding mechanism
uses the context requirement specification to create and maintain context
bindings. The development guidelines presented in Chapter 4 illustrate the
process of using the CBT and the context binding mechanism to create a
context-aware application.

2. What context requirements can application developers have? What elements are
needed in a context requirement specification language such that application developers
are able to specify context requirements suitable for their context-aware applications?

 REFLECTION ON THE RESEARCH QUESTIONS 239

As part of the context binding transparency, the application developer has
to specify his context requirements when using the context retrieval service
to retrieve context information. We proposed a language, coined the Context
Binding Description Language (CBDL), to enable application developers to
specify their context requirements at a high level of abstraction rather than
in programming code. In this way, the specification of context
requirements and the implementation of these requirements in context
logic is separated from the development of the actual application logic.

Based on an analysis of current context middleware infrastructures and
case studies (see Chapter 3), we analyzed the type of context requirements
an application developer of a context-aware application can have. This
analysis has led to the development of the CBDL language meta-model (see
Chapter 4).

A CBDL document consists of three types of information: (i) context
specification, (ii) quality criteria and (iii) binding options. Context
specifications consist of the basic information required by a context-aware
application such as context type, the entity from which the context
information describes a situation, and the required format. The quality
criteria specifications consist of a combination of maximal cost criteria and
the (minimal) required quality level of the required context information.
These quality levels are specified by QoC parameters adopted from
literature, such as freshness, precision, probability of correctness, spatial
resolution and temporal resolution. Finally, the binding options consist of
binding preferences used to configure the context binding process.

The CACI prototype can handle XML-based CBDL documents (see
Chapter 5). The language is used in the evaluation to express the context
requirements of the different application parts from the telemedicine case
study (see Chapter 8). This showed that CBDL is capable of expressing the
context requirements of a semi-realistic application and that the document
can be used to create and maintain context bindings.

3. What operational interfaces should a context binding mechanism offer, such that
application developers can deploy and test their context-aware applications?

In Chapter 4, we model the operational interfaces of the context binding
infrastructure in terms of the context retrieval and publishing services.
These services realize the context binding transparency. The developer of
the context binding infrastructure is confronted with a trade-off between
the amount of hiding his system can perform and the possibility for control
it still offers to the application developer. Assuming on the one hand, the
more the problem of creating and maintaining context bindings is hidden
for the application developer, the easier the development process for the
application developer becomes. However, on the other hand, the more

240 CHAPTER 9 CONCLUSIONS

complex the infrastructure becomes, this may introduce performance
overhead, security risks or other unwanted effects. Additionally, the
application developer may still require a form of control to fulfil its
application specific needs, such that complete hiding of the problem of
creating and maintaining context bindings is unwanted.

The primitives of the context retrieval and publishing services can
roughly be categorized in primitives that can be used to: (i) create and
destroy bindings, (ii) retrieve and publish context information, in a request-
response or subscribe-notify manner, and (iii) notify the status of the
binding.

Internally, the proposed context binding infrastructure adopts a
component-based middleware approach (see Chapter 5). Besides the
modular development of application components and potential improved
reuse of these components, it also enables initialization of context bindings
at deploy time. At deploy-time of an application component, the
incorporated CBDL document is used to create an initial context binding.
Hence, the create binding primitives of the context retrieval and publishing
services are implicitly invoked by the application developer when deploying
the context-aware application components. The destroy binding primitives
are implicitly invoked when un-deploying the component. Context
information retrieval and publishing has to be performed explicitly in the
application logic of the components by invoking the middleware services of
the context binding mechanism.

Testing of the context-aware application can be performed in two ways
by using the context binding infrastructure: (i) debugging the notification
mechanisms of the context binding mechanisms and (ii) using the
developed context simulation framework (see Chapter 6) to test the
application logic against simulated context sources. For the latter, we
developed an extension to the CBDL language to specify configuration
parameters of the context sources to be simulated. At deploy-time the
context binding mechanism automatically generates simulated context
sources that can be bound to the context-aware application. Additionally,
the simulation framework offers a simulated context source configuration,
registration and retrieval service such that it can be used independently
from the context binding mechanism.

4. How configurable should a context binding mechanism be to enable application
developers to develop flexible context-aware applications?

Although creating and maintaining context bindings can be handled in a
generic manner by an infrastructure-based context binding mechanism, it
may still require certain application specific configuration. To enable the
context binding mechanism to be tailored to application specific

 REFLECTION ON THE RESEARCH QUESTIONS 241

requirements, the context binding mechanism has been developed in a
modular fashion using a component-based middleware approach (see
Chapter 5). The binding mechanism can be tailored by enabling the
addition of application specific plug-ins. The following types of plug-ins are
supported: (i) deployment interceptors which intercept the deployment of
incoming components in specific component frameworks, (ii) parsers,
which parse different types of context specification languages, (iii) selectors,
which select suitable context sources using application specific selection
algorithms and (iv) deciders, which decide when to re-bind. Configuration
of the infrastructure is done at start-up based on configuration parameters
specified by the application developer.

In the prototype, we used the OSGi framework as the underlying
component framework and implemented specific deployment interceptors
for this framework. Additionally, we developed a parser for the CBDL
language, created a simple syntactic selector and developed a simple re-
binding algorithm.

5. How can a context binding mechanism create a suitable context binding based on
a context requirement specification?

The structure and behaviour of the context binding mechanism is explained
in Chapter 5. The design facilitates a complete binding process, as
explained in Chapter 2, ranging from discovery, selection and association to
monitoring and releasing.

The context requirement specification is bundled together with the
application component. The deployment of the component has to be
intercepted by the specific deployment interceptor. The specification is
extracted from the component and parsed by the specific parser. A context
requirement specification can consist of multiple context requirements,
which have to be distilled. There are two types of context requirements: (i)
context retrieval requirements for context consuming components, and (ii)
context publishing requirements for context producing components.

Every context publishing requirement results in advertisement of the
context offerings of the component in a local context source repository.

Every context retrieval requirement results in a context discovery
request to the available context discovery mechanisms. The results retrieved
from the context discovery mechanisms are collected and a selection of a
suitable context source is made by the specific selector. A corresponding
context producer proxy is generated, which acts as a middleman between
the application component and the selected context source. This proxy is
monitored for changing availability of the context source and the quality of
the context information.

242 CHAPTER 9 CONCLUSIONS

6. How can a context binding mechanism maintain a created context binding in an
environment where context producers can appear, disappear, and have fluctuating
quality?

Based on analysis of context-aware applications, we distinguish four
situations in which an established context binding becomes less valid for the
context-aware application (see Chapter 5): (i) the bound context source
becomes unavailable due to a de-registration of the context source at the
context discovery mechanism, (ii) a new context source appears with a
higher QoC offering due to a registration at the context discovery
mechanism, (iii) on retrieval of context information by the context-aware
application there is a retrieval exception and (iv) the actual QoC of the
retrieved context information degrades below the required QoC.

These situations should be recognized by a context binding mechanism
and a re-binding decision process should be started. When a context source
becomes unavailable (i.e. situation i, iii, iv) possibly a complete new context
binding process (see Chapter 2) should be started, beginning from a new
context source discovery phase. When a new context source becomes
available (i.e. situation ii) the context binding process can be shortened by
starting from the selection phase in which the new source is compared to
the already bound context source.

In the present research we focussed on the first three situations.
Context discovery mechanisms can notify the context binding mechanism
of (de-)registration events (situation i and ii) by using the notify primitives
offered by the context retrieval and publishing services. Successively, a
discovery and/or selection process is started inside the context binding
mechanism. When a context retrieval error occurs (situation iii) this is
hidden for the application component by the context producer proxy.
According to a re-binding decision algorithm, the proxy notifies the context
binding mechanism to trigger a new context binding process, starting from
the discovery phase. Optimizing the algorithm to decide if and when to start
the re-binding process is out of the scope of this research and needs more
research. Also degrading actual QoC (situation iv) could be recognized by
the context producer proxy. However more research has to be done on this
aspect.

7. How can a context discovery interoperability mechanism deal with multiple
heterogeneous and dynamically available context discovery mechanisms offering context
producers?

A context-aware application of a mobile user encounters different
administrative environments in its life-span. These environments might
provide different heterogeneous context discovery mechanisms. Hence, to

 REFLECTION ON THE RESEARCH QUESTIONS 243

get context information, the applications need to interoperate with
different dynamically available context discovery mechanisms.

By taking a client-side approach for the context binding infrastructure,
we enable a homogenizing approach for interoperating context-aware
application with context discovery mechanisms (see Chapter 5). This
approach proposes a context discovery interoperability mechanism that acts
as a single point of access for context source discovery to the context-aware
application (see Chapter 6). The mechanism coordinates the discovery
process between the context-aware application and dynamically available
context discovery mechanisms. Hence, it offers a common context
discovery interface to the context-aware application. It offers a context
discovery adapter interface to the context discovery mechanisms.
Infrastructure developers create specific adapters for their discovery
mechanism conforming to the adapter interface. By running a discovery
adapter supplier in the network of the specific discovery mechanism, the
discovery interoperability mechanism can dynamically download and plug-
in the specific discovery adapters. These adapters are responsible for
translating the specific discovery request and results to ones which can be
handled passed to the application.

8. How can the telemedicine domain benefit from context-aware applications? How
can the context binding infrastructure be used for developing context-aware
telemedicine applications?

Several social-economical trends stimulate the increasing use of ICT in
healthcare. Amongst others, telemedicine applications, which are
applications that have as goal to provide healthcare and sharing of health
data over distance using ICT, are promising to enhance the future
healthcare. In Chapter 7, we give a domain analysis of the telemedicine
domain. One trend in healthcare is the drive for patient-centric healthcare.
Context-awareness provides an opportunity to tailor the provided
healthcare to the situation of the user and make them more patient-centric.
Furthermore, due to efficiency and cost reasons, there is an increasing
trend of extramural care. By adapting applications to the patient’s home
situation, a feeling of comfort and safety can be created which could
improve patient treatment and recovery.

Additionally, based on an extensive literature study, we present a model
containing generic determinants that influence the success of telemedicine
application. These determinants are categorized in the following categories:
technology, acceptance, organization, financing and, policy and legislation.
Additionally, context-awareness can play a role for improving the
technology and user acceptance aspects of telemedicine applications.
Literature indicated that it is important for the success of telemedicine

244 CHAPTER 9 CONCLUSIONS

applications that the right information is available, at the right time using
the right communication modality, where ‘right’ refers to the user’s need.
We present multiple examples of the use of context in a generic
telemedicine process.

Finally, we identified that especially for emergency situations, the
context of a patient is particularly important. By having context
information, such as location of the patient and availability of caregivers, the
time between the occurrence of the emergency and treatment of the patient
might become shorter and the availability of the right information can
become better. Hence, the ‘golden hour’, which is the first hour of a
patient after an emergency that highly influences the recovery of the patient,
could be used more efficiently.

9.4 Future Research

Throughout this thesis, we give specific directions for future work
concerning: the CBDL language (Chapter 4), the CACI infrastructure
(Chapter 5), the context binding mechanism (Chapter 5), the context
discovery interoperability mechanism (Chapter 6) and the SimuContext
framework (Chapter 6). Below, we summarize these directions and we
present some more general issues in context-awareness:
– Reasoning: The current context binding infrastructure can only create a

context binding in case there is a precise match between the
requirements of a context-aware application and the offering of a
context source. However, when the required context information
cannot be offered by any single context source, no context binding can
be established. We propose to investigate reasoning techniques to
improve upon this situation. For example, the context binding
mechanism could be extended with vertical context reasoning
techniques that can infer the required context information, by
combining information originating from multiple different context
sources. Additionally, horizontal context reasoning techniques could be
used to maintain the quality level of context information.

– Privacy: The use of context information violates a user’s privacy when it
this is done for unwanted purposes. It is important for users to be able
to control, who, when and how their context information is used.
Hence, we propose to investigate how to enable users to specify and
control their privacy policies. Furthermore, future research is how the
context binding infrastructure could be enhanced with privacy
enforcement functions that enforce the specified policies. For
developers, a possible way to specify privacy policies is by extending the
CBDL language to include privacy constructs. The binding mechanism

 FUTURE RESEARCH 245

could be extended to enforce these CBDL-based policies. However, this
requires more research.

– Re-binding decision algorithm: Besides the static QoC offering of a context
source, the actual QoC of the provided context information determines
the usefulness of that context information for the context-aware
application. Additionally, context retrieval may fail due to unavailability
or a failure state of the bound context sources. Both situations could be
transitory and unconditional rebinding might result in undesirable or
inefficient behaviour. Both situations require a re-binding decision
algorithm to determine the optimal time to start re-binding. We
propose to investigate such re-binding algorithms. In this thesis, we
present a simple re-binding algorithm, which is merely an example of
such an algorithm.

– Semantic interoperability: The current context binding mechanism
syntactically matches context offerings of context sources with context
requirements posed by the application developer. Besides syntactic
interoperability, the extent to which semantic interoperability is realized
influences the quality of this matching process. We propose to research
mechanisms to semantically specify and match context offerings and
context requirements.

– Development of context sources: The vision of a ubiquitous environment in
which a rich spectrum of context sources is embedded in the
environment and available to context-aware applications, is not yet
realized. Before deploying context-aware applications, a considerable
development effort has to be put into the challenging task of
encapsulating common-of-the-shelf sensors into more generic context
sources or transforming information sources into context sources. The
majority of these sources/sensors have proprietary ways to retrieve
(context) information. More research is needed on standardized ways to
retrieve (context) information. This might include researching a
standardized context model and retrieval API’s.

– Business models: Context-awareness offers opportunities for a novel type
of commercial applications. On the one hand this creates possible
business opportunities, on the other hand current business models
might have to be adapted to accommodate this new type of application.
We estimate a more complex value chain with the introduction of third
party context providers. Research has to be performed on who can
benefit from context-aware applications, business models that facilitate
this value chain and technical solutions to support these business
models.

Appendix A

User Expectation Survey

This appendix contains the questionnaire, which is used both as a paper and
web-based version, used in the user expectation survey. The results of this
questionnaire are discussed in Chapter 8.

Questionnaire

Towards a Context Binding Transparency
User Expectation Survey
1. Do you perform research in the area of context-awareness or related
areas (e.g. ubiquitous, pervasive computing, ambient intelligence)?

Yes No

2. In what area do you perform this research?

3. Have you ever developed a (context-aware) software application?

 Yes, I developed context-aware applications.
 Yes, I developed non-context-aware applications.
 No, but I am planning to.
 No and I am not planning to.

4. Have you ever used middleware (e.g. context discovery) to develop
(context-aware) applications?

Yes No

5. What specific type of middleware have you used before (e.g. corba, web
services, context management, service discovery)?

248 APPENDIX A USER EXPECTATION SURVEY

6. Do you think the proposed context binding transparency can simplify the
development of context-aware applications (1 = not at all, 5 = very
much)?

Don’t know 1 2 3 4 5

7. How useful is the specification of context requirements in a specification
language and resolving of the requirements in the binding middleware,
rather than programming this in the application (1 = not at all, 5 = very
much)?

Don’t know 1 2 3 4 5

8. How useful is the automatic adaptation to the availability and quality of
context sources by the binding middleware (1 = not at all, 5 = very
much)?

Don’t know 1 2 3 4 5

9. How useful is the automatic interoperability between context discovery
mechanisms by the binding middleware (1 = not at all, 5 = very much)?

Don’t know 1 2 3 4 5

10. What aspects do you think will influence the success of the context
binding transparency (e.g. learning curve, performance)?

11. Other remarks:

Appendix B

CBDL Use Cases & Implementation

This appendix describes some of the use cases that are used for the
requirement analysis of the CBDL language. Additionally, it provides details
on the realization of CBDL using a XML Schema.

B.1 Use-cases

(i) Healthcare use-case: Epilepsy Safety System (ESS)
The ESS monitors vital signs of epilepsy patients and determines upcoming
epileptic seizures. When a likely seizure is detected, the system notifies
nearby and available caregivers with instructions on the location (e.g. in
lat/long context format) of the patient and route information to the patient.
The application uses context information on the location of the patient and
the caregiver and context information on availability of the caregivers to
provide this functionality. The quality of the location data of the patient
should have a minimal precision of 5m (i.e. the specified location of the
patient may differ 5m from the actual location) to be able to dispatch
caregivers to the right location. The location data of caregivers only has to
be minimally 100m precise to be able to determine which one is nearby.

Additionally, the vital signs of the patient are transferred to the
healthcare centre where care professionals monitor the patient’s state and
stays in contact with the dispatched caregiver. Context information on the
available bandwidth (e.g. in kb/s) of the patient’s device is used to tailor the
granularity of transferred vital signs (e.g. increase or decrease sample
frequency) and the amount of vital signs (e.g. decrease the number of send
channels) to ensure transfer of vital signs to the healthcare centre.

(ii) Office use-case: My idea recorder (MIR)
During meetings, users can use their camera phones to take high-resolution
pictures of whiteboard sketches to capture their ideas for future use. The

250 APPENDIX B CBDL USE CASES & IMPLEMENTATION

MIR system distributes copies of these pictures to meeting participants.
The phone automatically determines the persons that are currently in the
meeting based on meeting information (e.g. in Boolean context format)
from user’s calendars and nearby Bluetooth devices. When the meeting
information is not at least 75% correct (i.e. probability of 75% that the
participant is actually in/out a meeting), the application asks the participant
if he is in the meeting. The system delays the data transfer until an adequate
network becomes available (i.e. GPRS, UMTS, WLAN or Bluetooth) taking
into account the cost and bandwidth characteristics of each network type
and the battery status of her phone.

B.2 CBDL XML Schema
We implement the CBDL language using XML. Hence, we define a XML
Schema to specify the structure of the CBDL language. Figure B-1 gives a
graphical overview of the XML schema derived from the CBDL meta-model
(see Chapter 4). All the classes in the meta-model map to xml elements in
the schema definition. The attributes in the meta-model map to xml
attributes of the corresponding xml elements (however not visible in the
figure). The granularity of the relationships between classes in the meta-
model are mapped to occurrences (min/max) in the schema definition. For
association relationships in the meta-model, sequences are used in the
schema definition. For inheritance relationships in the meta-model, choices
in the schema definition are used.

Figure 9B-1 XML
Schema of the CBDL
language

Legend:

= complex element = literal element

 = element that can occur zero or more times

 = sequence = choice

Appendix C

ISO/IEC 9126 Standard

This appendix discusses software quality characteristics as proposed by the
ISO/IEC 9126 standard. This standard has as goal to provide a framework
for the evaluation of software quality. Table C-1 presents the software quality
characteristics (and corresponding sub-characteristics) and their definition.
These definitions are reproduced from the ISO/IEC 9126-1 standard
(ISO/IEC 2001) based on 19 and 20.

Characteristics Definition

Functionality “A set of attributes that bear on the existence of a set of functions and
their specified properties. The functions are those that satisfy stated
or implied needs.”

-- Suitability “Attributes of software that bear on the presence and appropriateness
of a set of functions for specified tasks.”

-- Accurateness “Attributes of software that bear on the provision of right or agreed
results or effects.”

-- Interoperability “Attributes of software that bear on its ability to interact with specified
systems.”

-- Compliance “Attributes of software that make the software adhere to application
related standards or conventions or regulations in laws and similar
prescriptions.”

-- Security “Attributes of software that make the software adhere to application
related standards or conventions or regulations in laws and similar
prescriptions.”

Reliability “A set of attributes that bear on the capability of software to maintain
its level of performance under stated conditions for a stated period of
time.”

19 http://www.cse.dcu.ie/essiscope/sm2/9126ref.html
20 http://en.wikipedia.org/wiki/ISO_9126

Table C-1 ISO 9126
software quality
characteristics

252 APPENDIX C ISO/IEC 9126 STANDARD

-- Maturity Attributes of software that bear on the frequency of failure by faults in
the software.

-- Fault Tolerance “Attributes of software that bear on its ability to maintain a specified
level of performance in case of software faults or of infringement of its
specified interface.”

-- Recoverability “Attributes of software that bear on the capability to re-establish its
level of performance and recover the data directly affected in case of a
failure and on the time and effort needed for it.”

Usability “A set of attributes that bear on the effort needed for use, and on the
individual assessment of such use by a stated or implied set of
users.”

-- Understandability “Attributes of software that bear on the users’ effort for recognizing
the logical concept and its applicability.”

-- Learnability “Attributes of software that bear on the users’ effort for learning its
application.”

-- Operability “Attributes of software that bear on the users’ effort for operation and
operation control.”

Efficiency “A set of attributes that bear on the relationship between the level of
performance of the software and the amount of resources used, under
stated conditions.”

-- Time behaviour “Attributes of software that bear on response and processing times
and on throughput rates in performances its function.”

-- Resource behaviour “Attributes of software that bear on the amount of resource used and
the duration of such use in performing its function.”

Maintainability “A set of attributes that bear on the effort needed to make specified
modified modifications.”

-- Analyzability “Attributes of software that bear on the effort needed for diagnosis of
deficiencies or causes of failures, or for identification of parts to be
modified.”

-- Changeability “Attributes of software that bear on the effort needed for modification,
fault removal or for environmental change.”

-- Stability “Attributes of software that bear on the risk of unexpected effect of
modifications.”

-- Testability “Attributes of software that bear on the effort needed for validating the
modified software.”

Portability “A set of attributes that bear on the ability of software to be transferred
from on environment to another.”

-- Adaptability “Attributes of software that bear on the opportunity for its adaptation
to different specified environments without applying other actions or
means than those provided for this purpose for the software
considered.”

 ISO/IEC 9126 STANDARD 253

-- Installabilitty “Attributes of software that bear on the effort needed to install the
software in a specified environment.”

-- Conformance “Attributes of software that make the software adhere to standards or
conventions relating to portability.”

-- Replaceability “Attributes of software that bear on opportunity and effort using it in
the place of specified other software in the environment of that
software.”

Appendix D

Additional information on the
development of the ESS case

This appendix presents additional information on the development of the
ESS case, as presented in Chapter 8.

D.1 Context information unavailability tables
Here we present the descriptions of application logic behaviours of the two
additional application parts; the patient application and caregiver
application.

Patient application

PA-
AB

Application logic behaviour,
[PA-CAB#] are behaviours adapted from the default behaviour [PA-DB].

x [PA-DB]: In case of a detected epileptic seizure, a notification is send to the healthcare
centre and the minimal required set of vital signs, measured on the lowest required
frequency, is transmitted to the healthcare centre.

v [PA-CAB1]: In case of a detected seizure, depending on the available bandwidth, the
transmitted set of vital signs and the sample frequency is increased.

Legend: x = context information is unavailable v = context information is available, […] id of
the behaviour.

Caregiver application

CG-L Application logic behaviour,
[CG-CAB#] are behaviours adapted from the default behaviour [CG-DB].

x [PA-DB]: In case of a received notification, a connection is made with the healthcare
centre and possibly the patient. When possible a map is shown with the location of the
patient.

Table D-1 Application
behaviours in case of
unavailability of context
information for the
patient application.

Table D-2 Application
behaviours in case of
unavailability of context
information for the
caregiver application.

256 APPENDIX D INFORMATION ON THE DEVELOPMENT OF THE ESS CASE

v [PA-CAB1]: A map with route information from the location of the caregiver to the
location of the patient is shown.

Legend: x = context information is unavailable v = context information is available, […] id of
the behaviour.

D.2 CBDL documents of the patient and caregiver applications
Below the CBDL document of a patient and caregiver application are
presented. For every patient and caregiver in the ESS system these
documents need to be replicated and customized.

Example D-1 CBDL
document of a patient
application of patient
Tim

<?xml version="1.0" encoding="UTF-8"?>
<CBDLDocument xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CBDL-schema.xsd" UserID="Patient.Tim"
ApplicationID="ESS_PatientTim">
 <ContextRequirement BindingID="PA-AB">
 <Element>Bandwidth</Element>
 <Entity>Device.Patient.Tim</Entity>
 <Format>kb/s</Format>
</CBDLDocument>

Example D-2 CBDL
document of a caregiver
application of caregiver
John

<?xml version="1.0" encoding="UTF-8"?>
<CBDLDocument xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CBDL-schema.xsd" UserID="Caregiver.John"
ApplicationID="ESS_CaregiverJohn">
 <ContextRequirement BindingID="CG-CL">
 <Element>Location</Element>
 <Entity> Caregiver.John</Entity>
 <Format>lat/long</Format>
</CBDLDocument>

References
Aarts, E. and S. Marzano (2003). The New Everyday: View on Ambient

Intelligence. Rotterdam, 010 Publishers.
Aarts, J. (2006). Towards a Context Discovery Interoperability Mechanism:

Achieving interoperability between dynamically available context
discovery mechanisms through a homogenising middleware layer.
Enschede, University of Twente. MSc.

Abdul-Rahman, A. and S. Hailes (2000). Supporting trust in virtual
communities. 33rd Hawaii Internation Conference on System Science
(HICSS33). Hawaii.

Ailisto, H., P. Alahuhta, et al. (2002). Structuring Context Aware Applications:
Five-Layer Model and Example Case. Workshop in Ubicomp,
Gothenburg, Sweden.

Alonso, G., F. Casati, et al. (2004). Web Services: Concepts, Architectures and
Applications, Springer.

Anderson, T., T. Roscoe, et al. (2004). "Preventing Internet denial-of-service
with capabilities." ACM SIGCOMM Computer Communication
Review 34(1): 39-44.

Apache Felix Project. (2006). "Apache Felix Project website." from
http://cwiki.apache.org/FELIX/index.html.

Apache Log4J project. (2006). "Log4j Logging Service." from
http://logging.apache.org/log4j/docs/.

Apache Webservices project. (2003). "XML-RPC specification." from
http://www.xmlrpc.com/spec#update3.

Apache WSIF project. (2006). "Web Service Invocation Framework."
http://ws.apache.org/wsif/, from http://ws.apache.org/wsif/.

Baldauf, M., S. Dustdar, et al. (2004). "A survey on context-aware systems."
International Journal of Ad Hoc and Ubiquitous Computing.

Baldauf, M., S. Dustdar, et al. (2007). "A survey on context-aware systems."
International Journal of Ad Hoc and Ubiquitous Computing 2(4).

Banavar, G. and A. Bernstein (2002). "Software infrastructure and design
challenges for ubiquitous computing applications." Communications
of the ACM 45(12): 92-96.

258 REFERENCES

Bardram, J. (2004). Applications of Context-Aware Computing in Hospital
Work - Examples and Design Principles. ACM Symposium on
Applied Computing, Cyprus.

Bardram, J. (2005). The Java Context Awareness Framework (JCAF) - A
Service Infrastructure and Programming Framework for Context-
Aware Applications. Pervasive Computing. Munchen, Germany.

Barton, J. and V. V. (2002). UBIWISE, A Ubiquitous Wireless Infrastructure
Simulation Environment. HP Labratory Technical Report HPL-2002-
303.

Bazire, M. and P. Brezillon (2005). Understanding Context Before Using It.
5th International and Interdisciplinary Conference CONTEXT 2005.
Paris, France.

Bellavista, P., A. Corradi, et al. (2003). "Dynamic Binding in Mobile
Applications." IEEE Internet Computing March-April: 34-42.

Benerecetti, M., P. Bouquet, et al. (2000). "Contextual Reasoning Distilled."
Journal of Expirimental Artificial Intelligence 12(3): 41-67.

Benz, H., C. Hesselman, et al. (2006). Context Discovery and Exchange.
Freeband AWARENESS Dn2.1. P. Pawar and J. Brok.

Benz, H., C. Hesselman, et al. (Freeband AWARENESS Dn2.1, 2006).
Context Discovery and Exchange. Freeband AWARENESS Dn2.1. P.
Pawar and J. Brok.

Berg, M. (1999). "Patient care information systems and health care work: a
socialtechnical approach." International Journal of Medical
Informatics 55: 87-101.

Bernstein, P. (1996). "Middleware: A Model for Distributed System Services."
Communications of the ACM 39(2): 86-98.

Birrel, A. and B. Nelson (1984). "Implementing Remote Procedure Calls."
ACM Transactions on Computer Science 2(1): 39-59.

Blackstock, M., R. Lea, et al. (2006). Towards Wide Area Interaction with
Ubiquitous Computing Environments. 1st European Conference on
Smart Sensing and Context (EuroSSc'06), Enschede, the Netherlands.

Blair, G. and J. Stefani (1998). Open Distributed Processing and Multimedia,
Addison-Wesley.

Bohn, J., V. Coroama, et al. (2005). Social, Economic, and Ethical Implications
of Ambient Intelligence and Ubiquitous Computing, Springer.

Bottaro, A. and A. Gerodolle (2006). Extended Service Binder: Dynamic
Service Availability Management in Ambient Intelligence.
International Workshop on Future Research Challenges for Software
and Services (FRCSS'06). Vienna, Austria.

Boulos, M. (2003). "Location-based health information services: a new
paradigm in personalised information delivery." International Journal
of Health Geographics 2(2).

Bradley, N. and M. Dunlop (2003). Towards a multidisciplinary user-centric
design framework for context-aware applications. 1st UK-UbiNet
Workshop, London, UK.

 REFERENCES 259

Brey, P. (2005). "Freedom and Privacy in Ambient Intelligence." Ethics and
Information Technology 7(3): 157-166.

Broens, T. (2004). Context-aware, Ontology based, Semantic Service
Discovery. Enschede, University of Twente. MSc.

Broens, T. (2005). Supporting the developers of context-aware mobile
telemedicine applications. On the Move to Meaningful Internet
Systems 2005: OTM Workshops, Ph.D. Student Symposium, Agia
Napa, Cyprus, Springer Berlin / Heidelberg, LNCS 3762.

Broens, T. and A. Halteren (2006). SimuContext: Simply Simulate Context.
International Conference on Autonomic and Autonomous Systems
(ICAS'06). Silicon Valley, USA.

Broens, T., A. Halteren, et al. (2006). Infrastructural Support for Dynamic
Context Bindings. 1st European Conference on Smart Sensing and
Context (EuroSSc'06), Enschede, the Netherlands, Springer LNCS
4272.

Broens, T., A. v. Halteren, et al. (2007). "Towards an application framework
for context-aware m-health applications." International Journal of
Internet Protocol Technology (IJIPT) 2(2): 109-116.

Broens, T., R. Huis in't Veld, et al. (2007). "Determinants for successful
telemedicine implementations: a literature study." Journal of
Telemedicine and Telecare 13(6): 303-309.

Broens, T., S. Pokraev, et al. (2004). Context-aware, ontology-based service
discovery. 2nd European Symposium on Ambient Intelligence
(EUSAI'04). Eindhoven, the Netherlands, Springer Lecture Notes
3295.

Broens, T., R. Poortinga, et al. (2007). Interoperating Context Discovery
Mechanisms. 1st Workshop on Architectures, Concepts and
Technologies for Service Oriented Computing (ACT4SOC'07),
Barcelona, Spain.

Broens, T., D. Quartel, et al. (2007). Capturing Context Requirements.
EuroSSC'07. Kendall, England.

Broens, T., D. Quartel, et al. (2007). Towards a Context Binding
Transparency. 13th EUNICE Open European Summer School,
Enschede, the Netherlands, Springer LNCS 4606.

Broens, T., M. v. Sinderen, et al. (2007). Dynamic Context Bindings in
Pervasive Middleware. Middleware Support for Pervasive Computing
Workshop (PerWare'07). White Plains, USA.

Broens, T. and A. van Halteren (2006). SimuContext: simulating context
sources for context-aware applications. Intl. Conference on
Networking and Services (ICNS06), Silicon Valley, USA.

Brok, J. (2006). Cumular Context Sollutions. Freeband AWARENESS Dn2.5.
Brown, P., J. Bovey, et al. (1997). "Context-Aware Applications: From the

Laboratory to the Marketplace." IEEE Personal Communications
4(5): 58-64.

260 REFERENCES

Buchholz, T., A. Kupper, et al. (2003). Quality of Context: What it is and why
we need it. 10th Workshop of the HP OpenView University
Association (HPOVUA03), Geneva, Switzerland.

Bucholz, T., A. Kupper, et al. (2003). Quality of Context: What It Is And Why
We Need It. Workshop of the HP OpenView University Association
2003 (HPOVUA 2003). Geneva.

Bunningen, A. v., L. Feng, et al. (2005). Context for Ubiquitous Data
Management. International Workshop on Ubiquitous Data
Management (UDM'05), Tokyo.

Buschmann, F., R. Meunier, et al. (1996). Patter-oriented software
architecture: a system of patterns, Wiley.

Bylund, M. and F. Espinoza (2002). "Testing and Demonstrating Context-
Aware Services with Quake III Arena." Communications of the ACM
45(1): 46-48.

Campanelli, P. (2007). "Status of open source OSGi containers." from
http://reader.feedshow.com/show_items-
feed=e6f4497e0dd7abcc62619492a82ae3e0.

Campbell, R., J. Al-Muhtadi, et al. (2002). Towards Security and Privacy for
Pervasive Computing. Theories and Systems, Mext-NSF-JSPS
International Symposium (ISSS'02), Tokyo, Japan, Springer.

Cervantas, H. and R. Hall (2004). Autonomous Adaptation to Dynamic
Availability Using a Service-Oriented Component Model. 26st
International Conference on Software Engineering. Edinburgh,
Scotland.

Chalmers, M. (2004). "A historical view of context." Computer Supported
Cooperative Work (CSCW) 13(3-4): 223-247.

Chan, A., P. Wong, et al. (2004). CRL: A Context-Aware Request Language for
Mobile Computing. International Symposium on Parallel and
Distributed Processing and Applications (ISPA'04). Hong Kong,
China.

Chen, G. and D. Kotz (2000). A survey of context-aware mobile computing
research. Technical Report TR2000-381, Dept. of Computer Science,
Darthmouth College.

Chen, G. and D. Kotz (2002). Solar: An open platform for context-aware
mobile applications. International Conference on Pervasive
Computing, Zurich, Zwitserland.

Chen, G. and D. Kotz (2003). Context Sensitive Resource Discovery. First
IEEE International Conference on Pervasive Computing and
Communications (PerCom 2003). Forth Worth, USA.

Chen, G., M. Li, et al. (2004). Design and Implementation of a Large-Scale
Context Fusion Network. First Annual International Conference on
Mobile and Ubiquitous Systems: Networking and Services
(MobiQuitous 2004). Boston, USA.

Chen, H., T. Finin, et al. (2005). The SOUPA Ontology for Pervasive
Computing.

 REFERENCES 261

Christie, A. (1999). "Simulation: An Enabling Technology in Software
Engineering." CROSSTALK Journal of Defense Software Engineering.

da Costa, C. M., M. da Silva Strzykalski, et al. (2005). A reflective middleware
architecture to support adaptive mobile applications. ACM
symposium on Applied computing Santa Fe, New Mexico, ACM
Press.

Davies, N. and H. Gellersen (2002). "Beyond Prototypes: Challenges in
Deploying Ubiquitous Systems." Pervasive Computing 1(1): 26-35.

Dean, K. (2004). Connected Health: essays from health innovators, Cisco
though Leaders series.

Dey, A. (2000). Providing Architectural Support for Context-Aware
applications, Georgia Institute of Technology. PhD.

Dey, A. and G. Abowd (2000). The Context Toolkit: Aiding the Development
of Context-Aware Applications. Workshop on Software Engineering
for Wearable and Pervasive Computing. Limerick, Ireland.

Dey, A., J. Mankoff, et al. (2000). Distributed Mediation of Imperfectly Sensed
Context in Aware Environments. GVU Technical Report;GIT-GVU-
00-14, Georgia Institute of Technology.

Dey, A., D. Salber, et al. (2001). "A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications."
Human Computer Interaction Journal 16(2-4): 97-166.

Doarn, C., E. Ferguson, et al. (1996). Telemedicine and Telescience in the US
Space Program. 20th International Symposium on Space Technology
and Science, Gifu, Japan.

Dockhorn Costa, P. (2007). Archtictural Support for Context-Aware
Applications: From Context Models to Services Platforms. Enschede,
University of Twente. PhD.

Dockhorn Costa, P., G. Guizzardi, et al. (2006). Situations in Conceptual
Modeling of Context. Workshop on Vocabularies, Ontologies, and
Rules for the Enterprise (VORTE 2006) at IEEE EDOC 2006. Hong
Kong.

Dodig-Crnkovic, G. (2002). Scientific Methods in Computer Science.
Conference for the Promotion of Research in IT Skovde, Sweden.

Ebling, M., D. Guerney, et al. (2001). Issues for Context Services for Pervasive
Computing. Workshop on Middleware for Mobile Computing.
Heidelberg, Germany.

Ebling, M., G. Hunt, et al. (2001). Issues for Context Services for Pervasive
Computing. Advanced Topic Workshop Middleware for Mobile
Computing at the IFIP/ACM Middleware Conference, Heidelberg,
Germany.

Emmerich, W., M. Aoyama, et al. (2007). "The impact of research on
middleware technology." ACM SIGOPS Operating Systems Review
41(89-112).

Equinox, E. (2006). "Equinox website." from http://www.eclipse.org/equinox/.

262 REFERENCES

Etter, R., P. Dockhorn Costa, et al. (2006). A Rule-Based Approach Towards
Context-Aware User Notification Services. International Conference
on Pervasive Services (ICPS'06). Lyon, France.

Fenton, N. (1994). "Software Meaurement: A Necessary Scientific Basis." IEEE
Transactions On Software Engineering 20(3): 199-206.

Gable, G. (1994). "Integrated case study and survey research methods: an
example in information systems." European Journal of Information
Systems 3(2): 112-126.

Gamma, E., R. Helm, et al. (1995). Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley.

Gloss, B. (2005). System Architecture of a Mobile Message Transport System.
11th Open European Summer School - Networked Applications
(EUNICE05), Madrid, Spain.

Gokturk, E. (2007). A Minimalistic, Component-Based Approach to
Realization of Network Simulators and Emulators. Faculty of
Mathematics and Natural Sciences. Oslo, University of Oslo.

Gray, P. and D. Salber (2001). Modelling and Using Sensed Context
Information in the Design of Interactive Applications. Engineering for
Human-Computer Interaction: 8th IFIP International Conference,
EHCI 2001. Toronto, Canada.

Guizzardi, G. (2006). Ontological Foundations for Structural Conceptual
Models. EWI. Enschede, University of Twente. PhD.

Helal, S., B. Winkler, et al. (2003). Enabling location-aware pervasive
computing applications for the elderly. Pervasive Computing
(Percom'03). Dallas, Texas.

Henricksen, K. and J. Indulska (2004). Modelling and Using Imperfect
Context Information. Second IEEE Annual Conference on Pervasive
Computing and Communications, Workshop on Context Modelling
and Reasoning (CoMoRea'04).

Henricksen, K., J. Indulska, et al. (2005). Middleware for Distributed Context-
Aware Systems. DOA 2005. Agia Napa, Cyprus, Springer Verlag.

Hesselman, C., H. Benz, et al. (2008). Bridging Context Management Systems
for Different Types of Pervasive Computing Environments. First
International Conference on MOBILe Wireless MiddleWARE.
Innsbruck, Austria.

Hesselman, C., H. Eertink, et al. (2007). Privacy-aware Context Discovery for
Next Generation Mobile Services. 3rd SAINT2007 Workshop on
Next Generation Service Platforms for Future Mobile Systems (SPMS
2007). Hiroshima, Japan.

Hesselman, C., A. Tokmakoff, et al. (2006). Discovery and Composition of
Services for Context-Aware Systems. 1st European Conference on
Smart Sensing and Context (EuroSSc'06), Enschede.

Hong, J. (2002). The Context Fabric: An Infrastructure for Context-Aware
Computing. Doctoral Workshop, Human Factors in Computing
Systems (CHI'02). Minneapolis, USA.

 REFERENCES 263

Hong, J. and J. Landay (2004). An Architecture for Privacy-Sensitive
Ubiquitous Computing. Proceedings of the 2nd international
conference on Mobile systems, applications, and services. Boston,
USA.

Hulsebosch, R., A. Salden, et al. (2005). Context Sensitive Access Control.
SACMAT'05. Stockholm, Sweden.

IBM (1999). "Pervasive Computing." IBM System Journal 38(4).
ISO/IEC (2001). Software engineering -- Product quality -- Part 1: Quality

model. ISO/IEC 9126-1:2001.
Joaquin.net. (2007). "Open Distributed Processing Reference Model." from

http://www.joaquin.net/ODP/.
Jones, V., R. Bults, et al. (2001). Healthcare PANs: Personal Area Networks for

trauma care and home care. Fourth International Symposium on
Wireless Personal Multimedia Communications (WPMC'01).
Aalborg.

Jones, V., H. Mei, et al. (2007). Context Aware Body Area Networks for
Telemedicine. Pacific-Rim Conference on Multimedia (PCM'07).
Hong Kong.

José, R., F. Meneses, et al. (2005). Integrated Context Management for Multi-
domain Pervasive Environments. First International Workshop on
Managing Context Information in Mobile and Pervasive Environments
(MCMP-05). Ayia Napa, Cyprus.

Knoplerfish.org. (2005). "Knoplerfish OSGi website." from
http://www.knopflerfish.org/index.html.

Kon, F., F. Costa, et al. (2002). "The Case for Reflective Middleware."
Communications of the ACM 45(6): 33-38.

Korkea-aho, M. (2000). "Context-Aware Applications Survey." from
http://users.tkk.fi/~mkorkeaa/doc/context-aware.html.

Kranenburg, H. and H. Eertink (2005). Processing Heterogeneous Context
Information. Next Generation IP-based Service Platforms for Future
Mobile Systems workshop. Trento, Italy.

Kranenburg, H. v., M. Bargh, et al. (2006). "A Context Management
Framework for Supporting Context-Aware Distributed Applications."
IEEE Communications Magazine 44(8): 67-74.

Kranenburg, H. v., A. Salden, et al. (2005). Grounded Contextual Reasoning
enabling Innovative Mobile Services. 5th Workshop on Applications
and Services in Wireless Networks (ASWN'05). Grenoble, France.

Kummerfeld, B., C. Quigley, et al. (2003). Merino:Towards an intelligent
environment architecture for multi-granularity context description.
workshop on User Modelling for Ubiquitous Computing.

kXML project. (2006). "kXML website." from http://kxml.sourceforge.net/.
Lamming, M. and M. Flynn (1994). "Forget-me-not" - Intimate Computing in

Support of Human Memory. Int. Symp. on Next Generation Human
Interface.

Lee, D. and R. Meier (2007). Primary-Context Model and Ontology: A
Combined Approach for Pervasive Transportation Services. Fifth

264 REFERENCES

Annual IEEE International Conference on Pervasive Computing and
Communications Workshops (PerComW'07). New York, USA.

Lee, H., S. Lim, et al. (2005). Design and implementation of baby-care service
based on context-awareness for digital home. The 7th International
Conference on Advanced Communication Technology (ICACT 2005)

Lehmann, O., M. Bauer, et al. (2004). From home to world - supporting
context-aware applications through world models. 2nd IEEE Annual
Conference on Pervasive Computing and Communications
(PERCOM’04). Orlando, Floriday, USA.

Lerner, E. and R. Moscati (2002). "The Golden Hour: Scientific Fact or
Medical "Urban Legend"?" Academic Emergency Medicine 8(7): 758-
760.

Lieberman, H. and T. Selker (2000). "Out of context." IBM System Journal
39(3): 617-632.

Lijding, M., H. Benz, et al. (2006). Smart Signs: Showing the way in Smart
Surroundings. TR-CTIT-06-20. Enschede, Centre for Telematics and
Information Technology, University of Twente.

Liszka, K., M. Mackin, et al. (2004). "Keeping a Beat on the Hearth." Pervasive
Computing 3(4): 42-49.

Long, S., R. Kooper, et al. (1996). Rapid Prototyping of Mobile Context-
Aware Applications: The Cyberguide Case Study. 2nd ACM
International Conference on Mobile Computing and Networking
(MobiCom'96), New York, USA.

Maes, P. (1994). "Agents that reduce work and information overload."
Communications of the ACM 37(7): 30-40.

Margotta, R. (2001). History of Medicine, Chancellor Press.
Marsh, A. (2002). 3G Medicine - The Integration of Technologies. ICCS'02.
Mei, H. and I. Widya (2007). A framework for smart processing of health

signals. Freeband AWARENESS D4.25.
Meier, R., A. Harrington, et al. (2006). Spatial Programming Model for Real

Global Smart Space Applications. 6th IFIP International Conference
on Distributed Applications and Interoperable Systems (DAIS 06).
Bologna, Italy.

Meystre, S. (2005). "The Current State of Telemonitoring: A Comment on the
Literature." Telemedicine Journal and e-Health 11(1): 63-69.

Miskelly, F. (2001). "Assitive technology in elderly care." Age and Ageing
30(6): 455-458.

Morla, R. and N. Davies (2004). "Modeling and Simulation of Context-Aware
Mobile Systems." IEEE Pervasive computing: 48-56.

Neisse, R., M. Wegdam, et al. (2007). Trust Management Model and
Architecture for Context-Aware Service Platforms. The 2nd
International Symposium on Information Security (IS'07). Vilamoura,
Portugal.

Niskanen, I., J. Kalaoja, et al. (2007). "An Interactive Ontology Visualization
Approach for the Networked Home Environment." International
Journal of Computer and Information Science and Engineering 1(4).

 REFERENCES 265

Oh, H., C. Rizo, et al. (2005). "What is eHealth (3): A Systematic Review of
Published Definitions." Journal of Medical Internet Research 7(1).

OMG. (2002). "Corba Component Model version 3.0." from
http://www.omg.org/technology/documents/formal/components.htm.

OMG. (2004). "Common Object Request Broker Architecture: Core
Specification." http://www.omg.org/docs/formal/04-03-01.pdf, from
http://www.omg.org/docs/formal/04-03-01.pdf.

Oscar.org. (2005). "Oscar - An OSGi framework implementation." from
http://oscar.objectweb.org/.

OSGi Alliance. (2004). "About the OSGi Service Platform, whitepaper." from
http://osgi.org/documents/osgi_technology/osgi-sp-overview.pdf.

OSGi Alliance. (2005). "The OSGi Service Platform - Dynamic services for
networked devices." from http://osgi.org.

OSGi Alliance (2005). OSGi Service Platform Core Specification: Release 4.
Osxa. (2006). "Osxa -- the OSGi Framework that boldly goes where others

can't." from http://www.osxa.org/wiki.
Oulasvirta, A. (2005). "Grounding the innovation of future technology."

Human Technology 1(1): 58-75.
Pascoe, J. (2001). Context-aware software. Canterbury, University of Kent.

PhD.
Pattichis, C., E. Kyriacou, et al. (2002). "Wireless Telemedicine Systems: An

overview." IEEE Antenna 's and Propagation Magazine 44(2): 143-
153.

Pawar, P., A. v. Halteren, et al. (2007). Enabling Context-Aware Computing
for the Nomadic Mobile User: A Service Oriented and Quality Driven
Approach. IEEE Wireless Communications & Networking Conference
(WCNC 2007). Hong Kong.

Perich, F., S. Avancha, et al. (2002). Profile Driven Data Management for
Pervasive Environments. 13th International Conference on Database
and Expert Systems Applications (DEXA 2002). Aix-en-Provence,
France.

Peters, J. and G. Hall (1999). "Assessment of ambulance response performance
using a geographic information system." Social Science & Medicine
49(11): 1551-1566.

Philips Medical Systems (2003). TEN-HMS Study Demonstrates Clinical and
Financial Efficacy of Home Telemonitoring. whitepaper.

Pressman, R. (2000). Software Engineering: A Practitioner's Approach.
Berkshire, McGraw-Hill.

Ramparany, F., R. Poortinga, et al. (2007). An Open Context Management
Information Management Infrastructure. Intelligent Environments
(IE'07), Ulm, Germany.

Robinson, P., H. Vogt, et al. (2004). Some research challenges in Pervasive
Computing. Workshop on Security and Privacy at the Pervasive 2004
Conference. Munchen, Germany.

266 REFERENCES

Robinson, R. and K. Henricksen (2007). XCML: A runtime representation for
the Context Modelling Language. Pervasive Computing (PerCom'07).
White Plains, USA.

Ross, P. (2004). "Managing Care through the Air." IEEE Spectrum: 26-31.
Roussaki, I., M. Strimpakou, et al. (2006). Privacy-Aware Modelling and

Distribution of Context Information in Pervasive Service Provision.
IEEE International Conference on Pervasive Services (ICPS 2006).
Lyon, France.

Rubin, A. D. and D. E. Geer, Jr. (1998). "Mobile Code Security." IEEE
Internet Computing 2(6): 30-34.

Saif, U. and M. Palusak (2003). Service-oriented Network Sockets.
International conference on mobile systems, applications and services
(MobiSys'03), San Francisco, USA.

Satyanarayanan, M. (1996). Fundamental Challenges in Mobile Computing.
Fifteenth ACM Symposium on Principles of Distributed Computing.
Philadelphia, USA.

Schilit, B., N. Adams, et al. (1994). Context-Aware Computing Applications.
IEEE Workshop on Mobile Computing Systems and Applications.
Santa Cruz, CA, USA.

Schilit, B. and N. Theimer (1994). "Disseminating Active Map Information to
Mobile Hosts." IEEE Network 8(5): 22-32.

Schilit, N. (1995). A System Architecture for Context-Aware Mobile
Computing, Colombia University. PhD.

Schmidt, A., M. Beigl, et al. (1999). "There is more to context than location."
Computer Graphics 23(6): 893-901.

Sen, R. and G. Roman (2003). Context-Sensitive Binding, Flexible
Programming Using Transparant Context Maintenance. Technical
Report WUCSE-2003-72, Technical Report WUCSE-2003-72,
Washington University.

Shadbolt, N. (2003). "Ambient Intelligence." IEEE Intelligenct Systems 18(4):
2-3.

Sheikh, K., M. Wegdam, et al. (2007). Middleware Support for Quality of
Context in Pervasive Context-Aware Systems. IEEE International
Workshop on Middleware Support for Pervasive Computing
(PerWare'07), New York, USA.

Shirehjini, A. and F. Klar (2005). 3DSim: Rapid Prototyping Ambient
Intelligence. sOc - EUSAI. Grenoble, France.

Sinderen, M. v., A. Halteren, et al. (2006). "Supporting Context-aware Mobile
Applications: an Infrastructure Approach." IEEE Communications
Magazine 44(9): 96-104.

Sinderen, M. v., M. Verheijen, et al. (2007). Context Modelling and Reasoning
in a Context-aware Infrastructure. Freeband Awareness D1.1v2.

Skadron, K., M. Martonosi, et al. (2003). "Challenges in Computer
Architecture Evaluation." IEEE Computer(August).

Sowa, J. (2003). Laws, facts, and contexts: Foundations for multimodal
reasoning. Dordrecht, Kluwer Academic Publishers.

 REFERENCES 267

Standford, V. (2002). "Using Pervasive Computing to Elder Care." IEEE
Pervasive computing 1(1).

Sun. (2003). "Java Remote Method Invocation Specification." from
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html.

Sun. (2005). "Java 2 Platform Micro edition (J2ME) datasheet." from
http://java.sun.com/j2me/index.jsp.

Sun. (2005). "JAVA 2 Platform, Enterprise Edition (J2EE) specification 5.0."
from http://java.sun.com/j2ee/5.0/index.jsp.

Svahn, F. (2003). "Ubiquitous Computing?! Does it apply to my Navigation
System?" from
http://www.viktoria.se/~fresva/documents/UC_essay.pdf.

Szyperski, C. (1998). Component Software, Addison-Wesley.
Szyperski, C., D. Gruntz, et al. (2002). Component Software: Beyond Object-

Oriented Programming, Addison-Wesley.
Tachakra, S., X. Wang, et al. (2003). "Mobile e-Health: the Unwired Evolution

of Telemedicine." Telemedicine Journal and e-Health 9(3): 247-257.
Tanriverdi, H. and C. Iacono (1998). Knowledge Barriers to Diffusion of

Telemedicine. International Conference on Information Systems.
Helsinki, Finland.

The Telemedicine Alliance (2004). Telemedicine 2010: Visions for a Personal
Medical Network.

Vissers, C., L. Ferreira Pires, et al. (2002). The Archtitectural Design of
Distributed Systems, Lecture notes. Enschede, University of Twente.

Wac, K., T. Broens, et al. (2008). "Survey: Understanding the context-
awareness domain", in preparation.

Wang, X., T. Gu, et al. (2004). Ontology Based Context Modeling and
Reasoning using OWL. Proceedings of the Second IEEE Annual
Conference on Pervasive Computing and Communications.
Singapore.

Wegdam, M. (2003). Dynamic Reconfiguration and Load Distribution in
Component Middleware. Enschede, University of Twente. PhD: 241.

Wegdam, M. (2005). AWARENESS: A project on Context AWARE mobile
NEtworks and ServiceS. 14th Mobile & Wireless Communication
Summit. Dresden, Germany.

Wegdam, M., T. Broens, et al. (2008). "Lessons learned on context awareness
in mobile applications", in preparation.

Wegdam, M., J. Brok, et al. (2007). An Architecture for Privacy and Trust in
Context AWARENESS Infrastructures. Freeband AWARENESS
Dn3.11.

Wegdam, M., M. v. Sinderen, et al. (2008). Overall Awareness Architecture.
Freeband Awareness D0.3v4. M. Wegdam. Enschede.

Wegdam, M., J. van Bemmel, et al. (2006). AWARENESS Trust and Privacy
Architecture. Freeband AWARENESS Dn3.1. B. Hulsebosch.
Enschede.

268 REFERENCES

Wei, Q., K. Farkas, et al. (2003). Context-aware Handover Based on Active
Network Technology. Active Networks, IFIP TC6 5th International
Workshop (IWAN03), Kyoto, Japan, Springer-Verlag.

Weiser, M. (1991). "The Computer for the Twenty-First Century." Scientific
American September: 94-110.

Weiser, M. and J. Brown (1998). The Coming Age of Calm Technology.
Beyond Calculations: The Next Fifty Years of Computing. P. Denning,
R. Metcalfe and J. Burke, Springer.

Wootton, R. (2005). "TeleMed and eHealth 2004: Citizen-centred care."
Journal of Telemedicine and eHealth 11(supplement 1).

Yua, S., Y. Wang, et al. (2002). Development of Situation-Aware Application
Software for Ubiquitous Computing Environments. International
Software and Applications Conference (COMPSAC'02). Oxford,
England.

Zelkowitz, M. and D. Wallace (1997). "Expirimental validation in software
engineering." Information and Software Technology(39): 735-743.

Zhang, D., Z. Yu, et al. (2004). Context-Aware Infrastructure for Personalized
Healthcare. International Workshop on Personalized Health. Belfast,
Northern Ireland.

Samenvatting

De wereld wordt in toenemende mate uitgerust met hoge capaciteit,
verbonden, mobiele en ingebedde computer systemen. Context-awareness
biedt een attractieve manier om gepersonalizeerde applicaties te realiseren,
die beter aansluiten bij de behoeften van de gebruiker in zulke rijke
computer omgevingen.

Context-aware applicaties gebruiken de door context bronnen geleverde
context informatie om hun gedrag aan te passen aan de zich voordoende
situatie. De uitwisseling van context informatie benodigd een associatie
tussen een context consumerende applicatie en een geschikte context
producerende bron. Wij noemen een dergelijke associatie een ‘context
binding’.

Het maken van context-aware applicaties is door enkele intrinsieke
karakteristieken van context bronnen erg complex. Ten eerste, context
bronnen zijn gedistribueerd. Aldus is voor het creëren van een context
binding een vorm van discovery en selectie nodig. Ten tweede, context
bronnen zijn willekeurig beschikbaar tijdens de levensloop van de applicatie.
Dit maakt het onderhouden van een context binding moeilijk. Ten slotte,
context bronnen leveren context informatie met fluctuerende kwaliteit. Dit
maakt een binding mogelijk ongeschikt voor gebruik door een applicatie.
Op dit moment moeten ontwikkelaars aanzienlijke capaciteit steken in het
maken van applicatie code, die met deze moeilijkheden om kan gaan, met
als resultaat om context bindingen te creëren en te onderhouden.

Dit proefschrift geeft inzichten in de algemene karakteristieken van
context-aware applicaties en hun ontwikkelingsproces. Wij stellen een
abstractie voor die de Context Binding Transparantie wordt genoemd. Deze
transparantie heeft als doel om de complexiteit van het creëren en
onderhouden van context bindingen voor de applicatie ontwikkelaars te
maskeren. Op deze manier faciliteren we het ontwikkelingsproces van
context-aware applicaties. De verantwoordelijkheid voor het creëren en
onderhouden van context bindingen wordt ontnomen van de applicatie
ontwikkelaar en verschoven naar een context binding infrastructuur. Dit
maakt het voor de applicatie ontwikkelaar mogelijk om zich primair te
concentreren op de ontwikkeling van de applicatie logica in plaats van op de
logica die nodig is om context bindingen te creëren en te onderhouden.

270 SAMENVATTING

De ontwikkelaar interacteert met de context binding infrastructuur door
gebruik te maken van context retrieval en publishing diensten, en een
context requirement specificatie taal. Deze taal maakt het mogelijk voor de
ontwikkelaar om zijn context eisen op een hoog niveau te specificeren in
plaats van in programmeer code. In dit proefschrift stellen we een realisatie
van een dergelijke taal voor, genaamd de Context Binding Description
Language (CBDL). Deze taal is ontwikkeld om toepasbaar te zijn voor een
breed spectrum aan context-aware applicaties.

We stellen ook een realisatie van de context binding infrastructuur voor,
genaamd de Context-Aware Component Infrastructure (CACI). Deze
infrastructuur realiseert een context binding transparantie en is opgebouwd
uit een context binding mechanisme en een context discovery
interoperabiliteits mechanisme.

Het context binding mechanisme gebruikt een door de applicatie
ontwikkelaar gespecificeerde CBDL document om context bindingen te
creëren en te onderhouden, ten behoeve van de context-aware applicatie.
Het proces om een context binding te creëren bestaat uit discovery van
context bronnen bij beschikbare context discovery mechanismen, selectie
van geschikte context bronnen, maken van een binding tussen de applicatie
en de geselecteerde context bron, en onderhoud van deze binding. Het
onderhouden van een context binding bestaat uit het mogelijk re-binden
naar andere geschikte context bronnen in het geval dat de gebonden bron
verdwijnt of dat de geleverde kwaliteit van de context informatie fluctueert.
Dit proefschrift geeft een voorbeeld van een mogelijk re-binding algoritme.

Het context discovery interoperabiliteits mechanisme maakt het voor
een context-aware applicatie mogelijk om transparant gebruik te maken van
verschillende context discovery mechanismen die beschikbaar zijn in de
applicatie omgeving. Het doel van het interoperabiliteit mechanisme is om
de heterogeniteit en de fluctuerende beschikbaarheid van context discovery
mechanismen te verbergen voor de context-aware applicatie. Het context
discovery interoperabiliteits mechanisme is een ondersteunend
mechanisme. Het kan ook onafhankelijk door context-aware applicaties
gebruikt worden die niet gebruik maken van een context binding
mechanisme.

We hebben een prototype van CACI gecreëerd door gebruik te maken
van het OSGi componenten raamwerk. Dit prototype bestaat uit
implementaties van het context binding mechanisme en het context
discovery interoperabiliteits mechanisme.

De evaluatie van de voorgestelde context binding transparantie en
infrastructuur bestaat uit een gebruikers enquête en een vergelijking van de
ontwikkelingsinspanning en software kwaliteit van een implementatie van
een telemedicine case met en zonder CACI. De resultaten van de enquête
gaf een algemene interesse van mogelijke gebruikers weer in de

 SAMENVATTING 271

eigenschappen van de context binding infrastructuur. De implementatie van
de case gaf een mogelijke verbetering weer van het ontwikkelproces van
hogere kwaliteit context-aware applicaties door gebruik te maken van een
context binding infrastructuur.

Dit onderzoek wil benadrukken dat de beschikbaarheid van context
informatie en de kwaliteit van deze informatie de ontwikkeling van context-
aware applicaties zeer beïnvloed. Door een middleware-infrastructuur te
gebruiken die de creatie en onderhoud van context bindingen ondersteund
kan het makkelijker worden om hogere kwaliteit context-aware applicaties
te ontwikkelen.

Publications by the Author

During the development of this thesis, the author has published various
parts of this work in the following papers (listed in reverse chronological
order):
– Hesselman, C., Benz, H., Pawar, P., Liu, F., Wegdam, M., Wibbels, M.,

Broens, T., Brok, J., Bridging Context Management Systems for
Different Types of Pervasive Computing Environments, International
Conference on MOBILe Wireless MiddleWARE, Operating Systems,
and Applications (MOBILWARE’08), Innsbruck, Austria, February
2008

– Broens, T., Quartel, D., Sinderen, M. van, Capturing Context
Requirements, European European Conference on Smart Sensing and
Context (EuroSSC’07), LNCS 4793, Kendal, England, 2007

– Broens, T., Poortinga, R., Aarts, J., Interoperating Context Discovery
Mechanisms, Architecture, Concepts and Technologies for Service
Oriented Computing workshop (ACT4SOFT ’07), Barcelona, Spain,
2007

– Broens, T., Quartel, D., Sinderen, M. van, Towards a Context Binding
Transparency, EUNICE Open European Summer School 2007
(EUNICE’07), LNCS 4606, Enschede, the Netherlands, 2007

– Broens, T., Huis in't Veld, R., Vollenbroek-Hutten, M., Hermens, H.,
Halteren, A. van, Nieuwenhuis, B., Determinants for successful
telemedicine implementations: a literature study, Journal for
Telemedicine and Telecare, 13(6), p303-309, 2007

– Broens, T., Sinderen, M. van, Halteren, A. van, Quartel, D.,Dynamic
Context Bindings in Pervasive Middleware, IEEE Middleware for
Pervasive Computing Workshop (PerWare'07), White Plains, USA,
2007

– Broens, T., Halteren, A. van, Wac, K., Towards an application
framework for context-aware m-health applications, International
Journal of Internet Protocol Technology, 2(2), 2007

– Eertink, H., Poortinga, R., Broens, T., Tobies, S., Tokmakoff, A.,
Halteren, A. van, Sharing Intelligent Services between Homes, European
conference on Ambient Intelligence workshop (AMI'07), Darmstadt,
2007

274 PUBLICATIONS BY THE AUTHOR

– Jones, V. Mei, H., Broens, T., Widya, I, Peuscher, J., Context Aware
Body Area Networks for Telemedicine, Pacific Rim Conference on
Multimedia (PCM'07), Hong, Kong, 2007

– Mei, H., Widya, I, Broens, T., van Halteren, A., Shishkov, B., van
Sinderen, M., A framework for smart distribution of bio-signal
processing units in m-health, International Conference on Software and
Data Technology (ICSOFT’07), Spain, 2007

– Olavo Bonino da Silva Santos, L., Ramparany, F., Dockhorn Costa, P.,
Vink, P., Etter, R., Broens T., A Service Architecture for Context
Awareness and Reaction Provisioning, Modeling, Design, and Analysis
for Service-oriented Architecture Workshop (mda4soa'06), Chicago,
2007

– Wac, K., Halteren van, A., Broens T., Context-aware QoS provisioning
for an M-health service platform, International Journal of Internet
Protocol Technology, 2(2), 2007

– Broens, T., Halteren, A. van, Sinderen, M. van, Infrastructural support
for dynamic context bindings, European Conference on Smart Sensing
and Context 2006 (EuroSSC'06), LNCS 4272, Enschede, the
Netherlands, 2006

– Broens, T., Halteren, A. van, SimuContext: Simply Simulating Context,
Proceedings of the IEEE International Conference on Autonomous
Systems 2006 (ICAS'06), Santa Clara, USA, 2006

– Dockhorn Costa, P., Pires, L., Sinderen, M., Broens, T., Controlling
Service in a Mobile Context-Aware Infrastructure, Context-Aware Pro-
active Systems workshop 2006 (CAPS'06), Kassel, Germany, 2006

– Etter, R., Dockhorn Costa, P., Broens, T., A Rule-Based Approach
Towards Context-Aware User Notification Services, IEEE Conference
on Pervasive Services 2006 (ICPS'06), Lyon, France

– Ramparany, F., Euzenat, J., Broens, T., Bottaro, A., Poortinga, R.,
Context Management and Semantic Modelling for Ambient Intelligence,
Future Research Challenges for Software and Services workshop
(FRCSS'06), Vienna, Austria, 2006

– Broens, T., Supporting the developers of context-aware mobile
telemedicine applications, On The Move conference 2005, LNCS
3762/2005, PhD Symposium, October, Napa, Cyprus, 2005

– Broens, T., Halteren, A. van, Wac, K., Towards an application
framework for context-aware m-health applications, EUNICE Open
European Summer School 2005 “Networked Applications”
(EUNICE’05), Colmenarejo, Spain, 2005

– Wac, K., Halteren van, A., Broens T., Context-aware QoS provisioning
for an M-health service platform, EUNICE Open European Summer
School 2005 “Networked Applications” (EUNICE’05), Colmenarejo,
Spain, 2005

 PUBLICATIONS BY THE AUTHOR 275

– Kranenburg, H., Salden, A., Broens, T., Koolwaaij, j.,Grounded
Contextual Reasoning enabling Innovative Mobile Services, Applications
and Services in Wireless Networks workshop 2005 (ASWN'05), Paris,
France, 2005

– Pokraev, S., Koolwaaij, J., Setten, M. van, Broens T., Dockhorn Costa,
P., Wibbels, M., Ebben, P., Strating, P., Service Platform for Rapid
Development and Deployment of Context-Aware, Mobile Applications,
IEEE International Conference on Webservices (ICWS'05), Industry
track, Orlando, Florida, USA, 2005

– Broens, T., Pokraev, S., Sinderen, M. van, Koolwaaij, J., Dockhorn
Costa, P., Context-Aware, ontology based, service discovery, European
Symposium on Ambient Intelligence 2004 (EUSAI'04), LNCS 3295,
Eindhoven, the Netherlands, 2004

– Wegdam, M., Broens, T., Hulsebosch, B., Hesselman, C., Sinderen, M.
van, Tönis, T., Lessons learned on context awareness in mobile
applications, in preparation

– Wac, K., Broens, T., Pawar, P., Understanding the context-awareness
research domain, in preparation

Notes

