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Chapter 1

Introduction

1.1 Superhydrophobic surfaces

Many surfaces in nature, including various plant leafs [84, 44], bird feathers [14],
troughs on the elytra of desert beetles [91], and legs of water strider [36], are superhy-
drophobic. A drop of water deposited on such a surface adopts the shape of a nearly
perfect sphere that rolls off easily, leaving no trace of humidity behind. Thereby the
plant prevents fouling, the bird keeps its feathering light –maintaining its ability to
fly–, the beetle collects dew, and the water strider walks on the surface of a lake. Such

(a) (b) (c)

Figure 1.1: Rough hydrophobic surfaces. (a) Micro texture of a superhydropho-
bic surface (here tropaeolum majus). The figure shows a scanning electron micrograph
of a leaf at 60,000x magnification. (Courtesy of Sissi de Beer) (b-c) Drop states on
a superhydrophobic surface, (b) superhydrophobic state, (c) impregnated state.

superhydrophobicity is achieved by the combination of two parameters: an intrinsic
hydrophobicity of the material (wax and plastics are examples of hydrophobic materi-
als) and surface roughness, or micro texture. Figure 1.1(a) shows a scanning electron
micrograph of a superhydrophobic plant leaf (here tropaeolum majus). The surface is
covered with pillar-like objects with a characteristic size of about 500 nm. A water
drop that is deposited on such a rough hydrophobic surface, rests on the crests of the
texture, thereby entrapping air underneath, leading to a composite liquid-substrate
interface that consists partially of solid-liquid interfaces and partially of liquid-gas
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2 CHAPTER 1. INTRODUCTION

interfaces. This reduces the actual solid-liquid contact, promoting a spherical drop
shape with a large contact angle (Fig. 1.1(b)).

Next to this superhydrophobic state, a drop on a superhydrophobic surface is
known to exist also in an impregnated state, with liquid invading the texture as il-
lustrated in Fig. 1.1(c). Both states result in a rather differnet behavior of the drop.
While a drop in the superhydrophobic state will feature a high mobility, providing
repellency and self-cleaning, a drop in the impregnated state will be in the so-called
sticky drop state, characterized by a low mobility providing no liquid repellency and
self-cleaning. It is therefore highly desirable to unveal the mechanisms that determine
which state will be favored by a given liquid on a given surface.

Several models have been proposed to determine a critical condition for the transi-
tion between the two states, involving bending of the micromenisci [106], ’touch down’
of the liquid-gas interfaces at the floor of the texture [9, 106, 56], partial penetration
of the surface texture [80, 56], as well as dynamic mechanisms [109]. However, ex-
periments that aimed at distinguishing between the competing models have not been
conclusive. The problem poses the experimental challenge to observe micron sized ob-
jects that are buried at the interface between a bulk liquid and a bulk substrate with
nanometer resolution. A clever idea was to scale up the system to larger dimensions
and investigate the liquid-gas interfaces by optical microscopy [80]. However, at these
larger dimensions, interfaces became more fragile and experiments were hampered by
the limit of optical resolution. Atomic Force Microscopy provides sufficient spatial
resolution and allows for an in situ measurement [52]. However, the measured surface
forces require an interpretation, and the inherent tip-sample interaction influences
the interfaces [118]. A third smart approach employs an ex situ measurement of a
solidified and dissected drop [54]. A drop formed by a UV-curable polymer in the
superhydrophobic state is solidified, dissected together with the adherent substrate,
and studied by electron microscopy. This experiment unvealed details of the liquid-
substrate interface with extraordinary resolution. However, it is limited to special
liquids, and its destructive nature does not allow for an in situ measurement.

Figure 1.2: Diffraction of light by an artificial superhydrophobic surface.

Diffraction, on the other hand, is a phenomenon that is suitable to study identical
objects that are arranged in a periodic manner. In a diffraction measurement, the
wavelength of the radiation should be smaller but of the same order as the period
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between the objects. For a superhydrophobic surface with a micro texture, visible light
is suitable. Fig. 1.2 reproduces a photograph of a typical superhydrophobic surface,
showing that the micron scale periodic texture (here a square grid of cylindrical pillars)
diffracts white light into its beautiful colors.

In this thesis we employ diffraction from a superhydrophobic optical grating to
study the properties of the liquid-gas interfaces at superhydrophobic surfaces on the
microscopic scale (Chapter 3). By applying a hydrostatic pressure, we induce the
transition from the superhydrophobic to the impreganted state in a controlled manner,
and observe it in situ. We shall close the long standing debate on the transition
mechanism. We shall also give design criteria for surface profiles that provide the
largest stability of the superhydrophobic state. Furthermore, we shall evaluate the
prospects of using superhydrophobic surfaces for tunable diffractive optical elements.

The use of light as a probe opens up the possibility to study also the dynamic
behavior of the microscopic liquid gas interfaces. We shall study these aspects in
Chapter 6. We shall observe that the dynamics are characterized by ultrasonic os-
cillations. We shall show that the oscillating interfaces are subject to strong hydro-
dynamic interaction that induces a collective resonance behavior. We shall describe
those experiments through an unsteady Stokes flow model in Chapter 8.

The experiments call for the investigation of a single micromeniscus in the decou-
pled limit. Moreover, the sensitivity of the menisci to an applied ultrasound field sug-
gests their use for low noise ultrasound detection. Both aspects stimulate experiments
with a hydrophobic cavity fabricated on the end face of an optical fiber that serves
as a combined meniscus and optical micro-cavity, allowing for a fiber-interferometric
measurement of meniscus oscillations. We shall discuss those aspects in Chapter 7.
We shall also investigate alternative approaches towards low noise ultrasound sensing,
based on superhydrophobic photonic crystals (Appendix H) and confocal microscopy
(Appendix I).

With regard to the measurement of the static shape of the microscopic liquid-gas
interfaces through optical diffraction, ’solving’ the inverse scattering problem requires
a precise modeling of the diffraction process. This engages us in the study of opti-
cal grating diffraction and the development of a numerical code that is suitable to
compute the diffraction from general grating profiles. We shall model the diffrac-
tion process by computing exact numerical solutions to the Maxwell equations. We
shall use the so-called Rigorous Coupled Wave Analysis. These aspects shall be dis-
cussed in Appendix A (see also http://mrcwa.sourceforge.net/). We shall observe a
total internal reflection (TIR) process that determines the intensity diffracted from
a superhydrophobic optical grating. This observation shall guide us to investigate
commercial dielectric TIR gratings through numerical simulations. We shall consider
methods to increase the spectral bandwidth of dielectric optical gratings. In Chap-
ter 5 we shall devise dielectric optical gratings with a spectral bandwidth that is larger
than that of any grating known today. To give right to these purely optical aspects
we shall now review the development of optical diffraction gratings.

http://mrcwa.sourceforge.net
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1.2 Optical diffraction gratings

About a year after Newton had performed his prism experiments to support his
corpuscular theory of light, the Scottish physicist James Gregory (1638–1675) studied
bird feathers to find that a periodic object diffracts white light into its colors [124].
He had discovered the principles of optical grating diffraction, a phenomenon that
could not be explained by Newtons ’light particle’ theory. The phenomenon did not
gain much attention, until in 1814 Fraunhofer invented the spectrograph, and used a
grating to study the solar spectrum. He discovered dark lines in the solar spectrum
(today called Fraunhofer lines), which were explained only in 1895 by Bunsen and
Kirchhoff to be atomic absorption lines. The grating that he used consisted of fine
equidistant wires that he had stretched between two threaded rods, similar to the
first useful optical grating that was constructed before in 1785 by David Rittenhouse
(see also [42, 41]).

Though a remarkable resolution could be achieved with wire gratings, the diffracted
intensity –diffraction efficiency– was not always very high. The performance of op-
tical gratings improved dramatically with the construction of ruling machines, (e.g.
Rutherfurd (1816–1892) and Grayson (1856–1918)), that enabled around 500 lines per
mm to be ruled into a metal or glass plate with a diamond point. While wire gratings
were operated mainly in transmission (the diffracted light is collected on the trans-
mission side of the grating), metallic ruled gratings could be operated in reflection
and provided a greatly improved diffraction efficiency.

Today, diffraction gratings are an integral part of many modern optical systems,
with applications in lasers, telescopes, spectroscopy and telecommunication. Still,
about 150 years after their invention, metallic ruled (and holographic) gratings are
unsurpassed in their spectral bandwidth, paired with a peak efficiency that exceeds
90%, reserving them a key role as a diffractive optical component and making them
indispensable in spectroscopic applications. Fig. 1.3(a) shows schematically a modern
blazed grating. The use of a rectangular ruling tip results in right angled triangular
profile, characterized by a blaze angle α that determines the inclination of the long
face of the grating teeth with respect to the horizontal surface. Waves are diffracted
from the grating at angles

sinϑm = sinϑ0 +
mλ

T
, (1.1)

where m is the diffraction order, ϑ0 is the angle of the 0th diffraction order, λ is the
wavelength of the light, and T is the period of the grating. Angles are measured with
a positive sign in positive y-direction, and with a negative sign in negative y-direction.
The grating is operated in −1st order Littrow configuration, where the −1st diffraction
order is anti parallel to the incident beam. The blaze angle α is chosen such that the
long face of the teeth is perpendicular to the incident beam, α = ϑ0, suggesting
that light is ’reflected’ into the −1st order. This scattering geometry is met at a
specific wavelength λ0, called the design wavelength or blaze wavelength. For all other
wavelengths, the scattering angles deviate from the ideal geometry. It is a remarkable
property of metallic ruled gratings that the diffraction efficiency remains high, even
for large deviations from the ideal scattering geometry, resulting in an extraordinarily
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Figure 1.3: Modern optical diffraction gratings. (a) Blazed gold grating. (b)
Usable spectral range of a diffraction grating. (c) Dielectric transmission grating.
(d) Spectral characteristics of modern optical gratings (calculated). Red line: blazed
gold grating. Blue line: fused silica transmission grating.

large spectral bandwidth. The Usable spectral range of an optical grating follows from
the overlap of diffraction orders, as illustrated in Fig. 1.3(b). The longest wavelength –
red most light– diffracted by the grating is λc = T (1−sinϑ0). Blue light whose second
order overlaps with the first order on the red edge shall be excluded from the incident
light, requiring that light is restricted to an octave λc/2 < λ < λc. Figure 1.3(d)
shows a calculated spectral range of an ideal blazed gold grating (blazed for ϑ0 = 60◦

at λ0 = 1064). The diffraction efficiency remains high over a large part of the octave.
Two deficiencies of metallic diffraction gratings are known, related to the absorbing

nature of metals. The absorption of a metal is small (consider the absorption of a
silver mirror which is typically 1−3%), but much larger than that of a dielectric (e.g.
the absorption of a 1mm thick fused silica plate is typically 0.01 − 0.1%). (1) due
to the inherent absorption, the maximal achievable diffraction efficiency is limited to
about 90%. (2) generation of heat prohibits a large incident power.

The recent development of high power lasers has stimulated a demand for dielec-
tric optical gratings that have a large resistance to high power. Figure 1.3(c) shows
schematically a dielectric grating. It consists of rectangular grooves that are fabri-
cated into the backside of a glass body. The grating is illuminated from the glass
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side and the diffracted light is collected on the transmission side. In Fig. 1.3(d) the
spectral characteristics of a dielectric grating is compared to the gold grating. Since
the grating does not suffer from absorption losses, it reaches –at the design wave-
length λ0– a higher efficiency than the gold grating. Due to reflection losses, the
diffraction efficiency remains below 100%. However, more importantly, as the wave-
length deviates substantially from the design wavelength, the diffraction efficiency
drops rapidly to nearly zero, resulting in a small spectral bandwidth.

In this thesis we shall devise dielectric optical gratings with a large spectral band-
width –larger than that of a gold grating– and peak efficiency of 100% (Chapter 5).



Chapter 2

Theoretical background

In this chapter, our aim is to introduce established theoretical concepts as well as
known experimental facts about liquids on small scales, superhydrophobic surfaces,
dynamics of microscopic liquid-gas interfaces, and finally optical grating diffraction.

7



8 CHAPTER 2. THEORETICAL BACKGROUND

The chapter is organized as follows. In Sec. 2.1, we review relevant elements of
capillary theory that deals with the description of liquid-gas interfaces on small scales
(or generally, on scales where surface tension is important). In Sec. 2.2, we con-
sider superhydrophobic surfaces, and discuss the origin of their extraordinary liquid
repellency. In Sec. 2.3 we consider the fluid mechanics encountered at a superhy-
drophobic surface, more precisely we consider the (collective) hydrodynamics of one
or more microscopic liquid-gas interfaces formed at the openings of hydrophobic cav-
ities through unsteady Stokes flow theory. In Sec. 2.4 we outline the theory of optical
grating diffraction.

2.1 Capillary theory

When I empty a glass of water, most of the fluid leaves the glass, however a small
amount of liquid remains inside, forming small drops (typically about a millimeter
in size) that stay attached to the wall, resisting all gravitational pull that drags on
them. On small scales, surface tension dominates over the gravitational force, and
determines the behavior of fluids and objects in contact with them. Surface tension
determines the size of rain drops [117], makes a sand pile stable [112, 111], creates
the foam on top of a beer [69], and allows plants to transport liquid to their leaves
[13, 130]. Capillary forces typically become important on the millimeter scale, when
they start to dominate over gravity. They remain a dominant force until molecular
forces take over at scales below few tens of nanometers – in other words, the realm
of surface tension extends nearly over six orders of magnitude. In this section we
introduce basic theoretical concepts that are used to describe the behavior of liquid
interfaces on these scales. We will first illustrate the origin of surface tension. We
proceed in 2.1.2 with the introduction of Laplace’s law that relates the effect of surface
tension in a concise way to a pressure. Next, in 2.1.3 we consider a liquid-gas interface
that is brought in contact with a solid. Finally, in subsection 2.1.4, we illustrate how
external forces on liquid-gas interfaces can be incorporated through the concept of
’pressure paths’. We illustrate this concept using the problem of a meniscus at a
vertical plate as an example.

2.1.1 Surface tension

Liquid is condensed matter. Though more fluctuating than a solid, every atom (or
molecule) is in a bound state where it constantly experiences the attractive forces
of its neighbors (in contrast to a gas, where molecules spend most of the time far
away from each other, flying through empty space without experiencing attractive
or repulsive forces, and meeting only occasionally to collide and continue their flight
in another random direction). A molecule in the bulk liquid will experience forces
equally distributed in all spatial directions (Fig. 2.1). In contrast, at the surface
each molecule misses half of its neighbors, i.e. it misses half of its bonds. To bring a
molecule to the surface and create an amount of surface area corresponding roughly
to its cross section, we have to provide roughly the energy required to break half of its
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Figure 2.1: Molecular origin of surface tension. A molecule in the bulk liquid
experiences forces equally distributed in all spatial directions. In contrast, a molecule
at the surface misses half of its neighbors. To bring a molecule to the surface, an
amount of energy approximately equal to half its binding energy is required.

bonds. This energy (per unit area) required to create new liquid surface is the surface
energy or surface tension, typically denoted by σ. The liquid will seek to minimize
its surface area. Any curved surface will tend to flatten. This results in an inwards
oriented force. For the case of a spherical drop (with radius R) we can immediately
write down the force: to enlarge the radius of the sphere by δr, we have to provide
an amount of surface energy

δE = 8πRσ δR. (2.1)

Since δE = F δr, the inward directed force at any point of the sphere is 8πRσ. We
can express the force in terms of a pressure as

P =
F

S
=

8πRσ
4πR2

=
2σ
R

(2.2)

Thus, the surface tension results in an additional pressure inside the liquid, or more
precisely, if we cross the curved interface from outward to inwards, the pressure in-
creases by 2σ/R.

2.1.2 Laplace’s pressure

In 1805 a french mathematician and astronomer who is probably most known for his
contributions to potential theory and the development of the spherical harmonics,
Laplace, noticed that above result can be cast into a simple form also for surfaces
with an arbitrary shape [31]. He stated:

’Upon crossing a curved interface, the pressure changes by an amount
equal to the product of the surface tension and the curvature.’

(2.3)
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To define the curvature κ in a point p on a surface S, consider all curves Cα in S
passing through p. Every such Cα has an associated curvature κα taken at p. Of
those κα, at least one is characterized as maximal, κ1, and one as minimal, κ2, and
these two curvatures κ1 and κ2 are known as the principal curvatures. The curvature
at p in S is the sum of the principal curvatures

κ = κ1 + κ2. (2.4)

One shows in differential geometry that the principle curvatures can be constructed
by cutting two suitable planes through the surface that are perpendicular to each
other, and the straight line that is formed by their intersection contains the surface
normal vector. The intersection of each of the planes with the surface defines a curve
and an associated curvature in point p. The sum of these two curvatures is the
curvature of the surface, which is independent of the orientation of the planes, and
for a specific orientation of the two planes the two individual curvatures are the two
principle curvatures.

Specifically, in R3 the mean curvature is related to the unit normal vector n as

κ = ∇n. (2.5)

For the special case of a surface defined as a function of two coordinates ẑ = S(x, y),
above expression evaluates to

κ = ∇
(
∇(S − z)
|∇(S − z)|

)
= ∇

(
∇S√

1 + (∇S)2

)

=

(
1 +

(
∂S
∂x

)2) ∂2S
∂y2 − 2∂S∂x

∂S
∂y

∂2S
∂x∂y +

(
1 +

(
∂S
∂y

)2
)
∂2S
∂x2(

1 +
(
∂S
∂x

)2
+
(
∂S
∂y

)2
)3/2

(2.6)

All of the microscopic liquid systems considered in this work can –in principle– be
described by evaluating suitable constant-mean-curvature surfaces (or as we shall
see below, the curvature may also be a simple function of the height) under given
constraints (e.g. that the volume be constant) and with suitable boundary conditions.
In an unbounded medium, and with the absence of external forces, a given amount
of liquid (constant volume) will always take the shape of a sphere. It is the boundary
conditions that make things really interesting.

2.1.3 Young’s angle

What happens if we bring a liquid-gas interface in contact with a rigid (undeformable)
solid substrate (Fig. 2.2a)? In the vicinity of the line at which the liquid, gas, and solid
phases meet, the three-phase contact line, we encounter three surfaces that all have
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(a) (b)

Figure 2.2: Young’s contact angle. (a) For a liquid-gas interface in contact with
a solid. An infinitesimal translation of the contact line between the solid, liquid, and
gas phase results in the creation (and reduction) of liquid-gas, solid-liquid, and solid-
gas interfacial area. The associated surface energies determine the angle between the
interfaces. (b) For two immiscible liquids in contact with a gas phase, e.g. an oil
drop floating on water.

their individual surface energy: in addition to the liquid-gas interface with surface
energy σlg, there is the solid surface covered with liquid, with surface energy σsl, and
the solid surface in contact with gas, with surface energy σsg. Let us denote the angle
between the liquid-gas interface and the solid-liquid interface with ϑ. The system is
in its potential minimum when δE = 0. Upon a translation δx of the contact line on
the substrate, the surface energy changes by

δE = σsl δx− σsg δx+ σlg cosϑ δx. (2.7)

Thus
cosϑ =

σsg − σsl
σlg

. (2.8)

Hence, the surface energies determine the angle that the liquid-gas interface takes
with the substrate at its contact line. This angle, which is a material constant for a
given solid-liquid-gas combination, is known as Young’s contact angle, after the British
physicist and physician Thomas Young (1773–1829), who discovered this phenomenon
when studying the shape that a sessile drops adopts on a solid substrate [132]. Young’s
contact angle is frequently termed also Young angle or simply contact angle.

The concept can be extended to deformable substrates, as is the case e.g. with an
oil drop floating on water (Fig. 2.2b), where the angles of the oil-water and oil-air
interfaces can be expressed in a similar fashion, e.g. with respect to the water-air
interface as

σwa = σoa cosϑ+ σwo sinϑ. (2.9)

Young’s equation (Eq. (2.8)) can be evaluated as long as the right-hand-side takes
a value in the range −1 to 1. However, one frequently encounters the case that the
surface energy of the solid substrate, σsg, is rather high (e.g. with many metals), while
the surface energy of the liquid, σlg, is comparably low (e.g. most organic liquids),
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and on many occasions σsg is so dominant that still σsg − σsl is larger than σlg, and
the right-hand-side of Young’s equation would be larger than 1. This case is known
as total wetting (sometimes expressed as ’the contact angle is zero’), and corresponds
to the case when the surface energy of a dry substrate is larger than the total surface
energy of a substrate covered with liquid, which comprises both a solid-liquid and
a liquid-gas interface. In this case the liquid spreads completely over the substrate,
as is known e.g. with oil that ’wets’ a steel plate (a drop deposited on a steel plate
will flatten indefinitely, covering the plate with a thinner and thinner film governed
by viscosity). This leads e.g. to the description of the dynamics of thin films (e.g.
[116, 59]) and their instability and break up [121]. A spreading film will become
thinner and thinner, and ultimately molecular forces will rule its behavior. This
leads to concepts such as the disjoining pressure [32] and many types of short- and
long-range molecular forces that govern the interactions in a liquid.

In this thesis, we are concerned with the other case that is characterized by a non-
zero contact angle given by Young’s equation. This case is known as partial wetting.
It is encountered with a high energy liquid (e.g. water or mercury) and a low energy
substrate (e.g. many polymers). In this case a drop deposited on the substrate will
not spread indefinitely, rather it will halt and adopt the shape of a spherical cap with
Young’s angle at its contact line.

2.1.4 External forces

In many cases liquid-gas or liquid-liquid interfaces are subject to external forces. E.g.
a sessile drop that is flattened due to gravity, a falling rain drop that is deformed
by a surrounding air flow, and a bubble in a liquid that experiences lift forces, coun-
terbalanced by viscous drag. To evaluate the effect of external forces on a liquid-gas
interface, it is often useful to think in terms of ’pressure paths’. This concept is
illustrated in this section using the meniscus formed by a liquid-gas interface at a
vertical wall under the presence of gravity as an example. The system is illustrated
in Fig.2.3(a). Let us start at a point in the gas phase. Everywhere in the gas phase
the pressure is P0. As we cross the liquid-gas interface far away from the wall, the
pressure remains constant (there is no pressure change due to surface tension since
the interface is flat). Thus, just below the liquid-gas interface, inside the liquid, the
pressure is the ambient pressure P0. As we move downwards, the pressure increases
by the hydrostatic pressure Ph = −ρgz (note that the sign of the hydrostatic pressure
is negative, since moving downwards corresponds to negative z). Let us stop moving
downwards and instead move parallel to the meniscus. The pressure does not change.
Thus, at depth z just underneath the curved liquid-gas interface of the meniscus, the
pressure is P = P0 − ρgz. On the other hand, we may approach the same point
through the gas phase. The pressure in the gas phase is constant, even if we start
walking into the void space created by the meniscus. As we cross the curved liquid-gas
interface, the pressure increases by σκ (in virtue of Laplace’s law), thus P = P0 +σκ.
Thus, we have found two ways in expressing the same pressure, and we may write

P0 − ρgz = P0 + σκ. (2.10)
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Figure 2.3: Profile of a meniscus at a vertical plate. (a) Schematic of the liquid-
gas interface. Solutions to the meniscus profile (Eq. (2.19)) are plotted for several
Young angles with α = 1 (b), and for several α with Young angle ϑY = 120◦ (c).
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The P0’s cancel such that
− ρgz = σκ. (2.11)

This ’pressure balance’ governs the shape of the meniscus. Let us simplify it by
merging all constants into one: α = ρg/σ, such that

− αz = κ. (2.12)

The constant α is closely related to the so-called capillary length

λc =
√

σ

ρg
, (2.13)

which expresses the characteristic length scale below which surface tension dominates
over gravity. We have to specify yet the boundary conditions. We can chose the
coordinate system such that the liquid level approaches zero for x → ∞, and we
require that far away from the wall the interface is flat κ→ 0 for x→∞. In virtue of
Young’s law, we require that the angle between the liquid-gas interface at the vertical
plate be the Young angle ϑY . It remains to express κ in terms of the Cartesian
coordinates to cast Eq. (2.12) into a differential equation. We find an expression for
the curvature by replacing in Eq. (2.6) all derivatives to y by zero, and adding a
minus sign to account for the particular parametrization with z = z(x) as shown in
the figure, such that

κ = − z′′(
1 + z′2

)3/2 . (2.14)

Combining with 2.12 yields

αz =
z′′(

1 + z′2
)3/2 . (2.15)

Multiplying by z′ and integrating once yields

αz2

2
+ c = − 1(

1 + z′2
)1/2 . (2.16)

The integration constant c follows from the boundary condition κ → 0 for x → ∞,
which implies that z′ → 0 and z → 0 for x→ 0, such that c = −1, and thus

1− αz2

2
=

1(
1 + z′2

)1/2 . (2.17)

Using separation of variables we cast this into the form of an integral∫ z

z0

( √
αz√

4− αz2
− 2
√
αz
√

4− αz2

)
dz =

∫ x

x0

dx, (2.18)
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where we have settled the integration constant by letting the integration run from
the point (x0, z0) = (0,−h) onwards, corresponding to the point where the interface
is attached to the wall. The integral yields [95, 7, 104, 40]

√
4− αh2 −

√
4− αz2 + ln

(
h
(
2 +
√

4− αz2
)

z
(
2 +
√

4− αh2
)) =

√
αx. (2.19)

The expression cannot be solved analytically for z. We therefore proceed with a
description of the profile in terms of a parametrization x(z). To express the boundary
condition at the vertical plate we employ Young’s condition. The Young condition
determines the slope s0 at the plate as s0 = tan(ϑY − 90◦). Since the solution z(x)
and its derivative z′(x) are not known, the boundary condition cannot be evaluated
directly. Thus, we evaluate Eq. (2.17) at x = 0 to relate z′(0) = s0 to z(0) = z0 = −h,
to obtain

h2 =
2
α

(
1−

(
1 + s2

0

)−1/2
)
. (2.20)

Substituting this expression into the solution Eq. (2.19), yields the profile in terms of
the known parameters s0 and α. Figures 2.3(b-c) plot few such solutions for several
Young angles with α = 1 and for several α’s with Young angle ϑY = 120◦. This
finishes our treatment of a meniscus at a vertical plate. The treatment illustrates
how the concept of ’pressure paths’ can be used to describe the influence of external
forces on liquid-gas interfaces. It also illustrates some of the mathematical steps that
may used to evaluate constant-mean-curvature surfaces.

2.2 Superhydrophobic surfaces

The largest Young angle of water on any known material is about 120◦ [30]. Such
large intrinsic contact angle is achieved with the lowest energy surfaces known, such
as fluoropolymers (Teflon) or wax. By contrast, many surfaces in nature, including
various plant leafs [84, 44], legs of water strider [36], and geckos’ feet [5, 37], are
superhydrophobic, displaying apparent contact angles with water typically between
150◦ and 170◦ and low contact angle hysteresis. Such superhydrophobicity is achieved
by the combination of two key parameters, low intrinsic surface energy and surface
roughness [129, 20, 99]. Superhydrophobic surfaces display favorable properties that
are interesting to applications. Amongst, an enhanced liquid repellency [88], the
self cleaning effect [82] and drag reduction capabilities [28, 123]. This has recently
stimulated extensive research on the development of artificial superhydrophobic [81,
99] and more generally superoleophobic [126] or superlyophobic [2] surfaces.

In the following sections the current understanding of superhydrophobic surfaces
is reviewed. First, in Sec. 2.2.1 the phenomenology of superhydrophobic surfaces, the
’lotus effect’ is discussed in greater detail. In Sec. 2.2.1 and 2.2.1 basic models that
are frequently used to describe superhydrophobic surfaces, the Cassie-Baxter and the
Wenzel model are introduced. Those are discussed critically in Sec. 2.2.2, and opposed
to competing contact angle models. Finally in Sec. 2.2.3 practical aspects of artificial
superhydrophobic surfaces are reviewed.



16 CHAPTER 2. THEORETICAL BACKGROUND

(a) (b)

(c)

Figure 2.4: The lotus effect (here with tropaeolum majus). (a) Photograph of
a drop on a tropaeolum majus leaf. The silvery appearance of the drops footprint is
due to total internal reflection of light at microscopic liquid-gas interfaces, indicating
that the drop is in the ’Cassie-Baxter state’ (see text). (b) Schematic of a drop
on a superhydrophobic surface. (c) Scanning electron micrographs of a tropaeolum
majus leaf at increasing magnification (from left to right) 175x, 60,000x, 110,000x.
The photographs were obtained ’as dissected’ without the deposition of a conductive
coating. (Courtesy of Sissi de Beer).

2.2.1 The lotus effect

The best-known example of a natural superhydrophobic surface is the surface of the
lotus leaf. On a lotus leaf, a water drop adopts a contact angle typically larger
than 160◦. Fig. 2.4(a) shows a drop deposited on a superhydrophobic plant leaf (here
tropaeolum majus). Numerous studies have suggested that the superhydrophobic char-
acter of the lotus leaf is due to a combination of surface chemistry –an intrinsically
hydrophobic leaf (’waxy leaf’)– and surface roughness on multiple scales. Fig. 2.4(c)
shows scanning electron micrographs of a tropaeolum majus leaf at increasing magni-
fication. At the smallest scale, the surface is covered with pillar-like objects with a
characteristic size of about 500 nm. Two distinct models suggested independently by
Cassie and Baxter [20] and Wenzel [129] are commonly used to explain the effect of
surface roughness on the apparent macroscopic contact angle of liquid drops.

The Wenzel model

The Wenzel model recognizes that surface roughness increases the available surface
area of the solid. The roughness r of a surface is defined as the ratio of the actual
surface area A∗ over the apparent macroscopic surface area A (Fig. 2.5) (implying
r ≥ 1). The apparent contact angle ϑ∗ is defined by considering the energy variation
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Figure 2.5: The Wenzel model. The surface energy of the solid-liquid interface is
defined by considering the actual surface area A∗.

upon translation of the contact line on the rough surface as

δE = [r(σsl − σsg) + σlg cosϑ∗] δx, (2.21)

which modifies the surface contact angle according to

cosϑ∗ = r cosϑY , (2.22)

where ϑY is Young’s angle. Wenzel’s relation predicts two types of behavior. If the
surface is hydrophilic (ϑY < 90◦), the apparent contact angle is further decreased.
In contrast, if the surface is hydrophobic (ϑY > 90◦), the contact angle is increased.
Generally, Wenzel’s relation suggests that surface roughness enhances the intrinsic
wetting behavior of the surface. Wenzel’s relation also suggests the possibility of
wetting and drying surfaces. E.g., for surfaces with ϑY < 90◦, Wenzel’s relation
suggests the possibility of turning a partially wetting surface into a wetting surface
with ϑ∗ = 0. For a contact angle of 60◦ such behavior is easily obtained with r = 2.
In analogy, a hydrophobic surface with a contact angle of 120◦ would be turned into
an ideal superhydrophobic surface with ϑ∗ = 180◦ for r = 2. We will however see
below that Wenzel’s result is highly arguable.

The Cassie-Baxter model

The Cassie-Baxter model, on the other hand, postulates that the superhydrophobic
nature of a rough surface is caused by microscopic pockets of air entrapped below
the liquid droplet leading to a composite surface that consists partially of solid-liquid
interfaces and partially of liquid-gas interfaces (Fig. 2.6). For flat liquid-gas interfaces,
the energy variation δE associated with a variation δx of the contact line is considered
as

δE =
[
φSσsl + (1− φS)σlg − φSσsg + σlg cosϑ∗

]
δx, (2.23)

where φS is the solid-liquid surface fraction. The Cassie-Baxter result follows as

cosϑ∗ = −1 + φs(1 + cosϑ). (2.24)
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Figure 2.6: The Cassie-Baxter model. The liquid is assumed to ’float’ on top
of the texture forming microscopic air pockets, leading to a composite surface that
consist partially of solid-liquid interfaces, and partially of gas-liquid interfaces.

Eq. (2.24) implies a behavior that is very different from the one predicted by the
Wenzel equation. In contrast to the Wenzel relation, the Cassie-Baxter equation
allows for the possibility of ϑ∗ > 90◦ with ϑY < 90◦. On the other hand it suggests
that an ideal contact angle of 180◦ can be reached only in the limit φS → 0, but not
with a finite φS , as suggested by the Wenzel model. However, as we shall see below,
also the Cassie-Baxter model is highly arguable.

Competition between the Cassie-Baxter and Wenzel scenario

All the favorable properties of superhydrophobic surfaces, such as the self-cleaning
effect [82] and drag reduction capabilities [28, 123], rely on the ’superhydrophobic
state’, where the drop rests on top of the texture. In this state a drop is highly
mobile and can easily roll off from the surface, providing liquid-repellency as well as
self-cleaning. In contrast, a drop in the ’impregnated’ state is characterized by a low
mobility (’sticky drop’) providing no liquid-repellency and self-cleaning effect. It is
therefore of great interest to understand the mechanisms that determine which of the
two states will be adopt on a given surface with a given liquid.

Various thermodynamic arguments have been suggested to determine whether a
drop on a superhydrophobic surface resides in the superhydrophobic or in the impreg-
nated state [71, 86]. Frequently the total surface energies of both states are compared
[57, 106], suggesting a critical Young angle

cosϑc = −1− φS

r − φS
. (2.25)

The impregnated state is adopted if ϑY < ϑc, whereas the superhydrophobic state
is adopted if ϑY > ϑc. Because r > 1 > φS , the critical Young angle is necessarily
greater than 90◦. This prediction is in gross contrast to the recently discovered phe-
nomenon of superoleophobicity [126], where the superhydrophobic state is observed
with ϑY < 90◦.
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Figure 2.7: Touchdown scenario. The liquid-gas interfaces are assumed to collapses
when they touch the floor of the texture.

Figure 2.8: Depinning scenario. The interfaces are assumed to depin when their
angle with respect to the vertical wall exceeds Young’s angle.

Alternative arguments recognize the metastability [50, 119, 57, 106, 44, 92] of the
superhydrophobic state. For an irreversible transition from the superhydrophobic
state to the impregnated state due to a decrease of the drop size [106] or an increase
of the pressure inside the drop [57, 105, 18], a ’touchdown’ condition of the liquid-gas
interfaces at the floor of the texture was suggested [9, 106], as well as a depinning
condition at the ridge of the texture [106]. Both conditions recognize that the liquid-
gas interfaces spanning between adjacent ridges of the texture are curved. For a drop
that is smaller than the capillary length, the curvature of the liquid-gas interfaces is
equal to the global curvature of the sessile drop, giving right to Laplace’s law. For
a drop under the influence of an additional applied pressure, the curvature κ of the
liquid-gas interfaces is determined by evaluating Laplace’s law locally.

The ’touchdown’ scenario (Fig. 2.7) then suggests that liquid-gas interfaces col-
lapse when they touch the floor of the texture. The touchdown condition depends on
the particular geometry of the surface profile. For rectangular grooves of width w and
depth h, touchdown is expected at a pressure drop ∆P over the interface expressed
as

∆P =
2σh

h2 + (w/2)2
. (2.26)

Sufficiently deep grooves prevent touch down at the floor of the texture. In such
a case, collapse of the superhydrophobic state due to depinning of the microscopic
contact lines was suggested [106].

The ’depinning’ scenario assumes that the contact angle at the sharp edges of
the texture is limited by Young’s angle (Fig. 2.8). It postulates that the liquid-
gas interfaces can adopt any angle larger than the Young angle with respect to the
horizontal surface and smaller than the Young angle with respect to the vertical
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walls of the texture. A depinning condition is formulated by recognizing that the
liquid-gas interfaces translate downwards on the walls of the texture if the angle of
the interfaces with respect to the vertical walls exceeds Young’s angle. In case of
rectangular grooves, the collapse condition yields a critical pressure drop across the
liquid-gas interface

∆P =
σ cosϑ
w/2

. (2.27)

The competing models highlight the difficulties in evaluating a condition for the
transition between the superhydrophobic and the impregnated state, or more gener-
ally, in describing which state a drop will adopt on a given superhydrophobic surfaces.
Besides, experimental studies of the microscopic features of superhydrophobic surfaces
have remained elusive. Experiments have been limited by the resolution of optical
microscopy [80]. They have been invasive [52] (Atomic Force Microscopy), or even de-
structive [54] (cross sections through solidified polymer drops measured with electron
microscopy). Experimentally measured critical pressures and drop sizes fell short off
the predicted ones [57] or did not provide enough resolution to distinguish between
competing models [106].

We will present an experimental study of the transition from the superhydrophobic
to the impregnated state in Chapter 3.

2.2.2 Contact angle models on heterogeneous surfaces

In recent articles published in major journals [126, 35, 2], several deficiencies of the
Cassie-Baxter, Eq. (2.24), and the Wenzel model, Eq. (2.22), have been pointed out,
that add to the one pointed out above. Amongst, it was shown that an extension
of Cassie’s and Baxter’s approach to more complex surface patterns leads to a de-
pendence of the contact angle on the particular geometry of the surface pattern,
which was not observed in subsequent experiments [35]. Moreover –and maybe more
importantly–, a gross contradiction between contact angles predicted by the Cassie-
Baxter model and contact angles measured on superhydrophobic surfaces with low
surface energy liquids [126] was observed. Furthermore, measured contact angles of
water on superhydrophobic surfaces with a connected surface pattern fell behind the
prediction of the Cassie-Baxter model [2] (see Chapter 4). Those results cast severe
doubts on the Cassie-Baxter model.

In the present section we shall reconsider the Cassie-Baxter model, and point out
what is so unphysical about it. We shall analyze it both for superhydrophobic (pro-
filed) surfaces as well as for chemically heterogeneous surfaces, that is, for any surface
for which it ought to be valid. We shall argue that instead models that appreciate a
local contact angle should be used to describe the behavior of a liquid in contact with
a superhydrophobic surface. Though local contact angle models of wetting on het-
erogeneous surfaces are well known in the context of superhydrophobic surfaces, and
their fundamental concepts are well established [31, 132], a considerable fraction of
the members of that community are still relatively conservative and slow to embrace
those views. Many of them keep applying Cassie-Baxter’s model, blissfully unaware of
the advances of the theoretical understanding on wetting on heterogeneous surfaces.
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(a) (b) (c)

Figure 2.9: Contact angle models on heterogeneous surfaces. (a) Young’s
contact angle for a homogeneous surface. (b) Cassie-Baxter model favoring an average
surface energy. (c) Model favoring a local contact angle.

It is my hope that this section persuades them to give these rigorous approaches at
least some consideration. I will return to this subject matter in Chapter 4, where
I will outline qualitatively several solutions to such type of models for a drop on a
superhydrophobic surface.

It is important to stress that doubts are cast on the model of Cassie and Baxter,
not a priori on the equation, meaning that in many cases –e.g. for water on a common
superhydrophobic surface– a more realistic model may, and indeed should predict a
contact angle similar to the one obtained from the Cassie-Baxter equation to capture
numerous well established experimental results with high energy liquids on common
superhydrophobic surfaces.

For an amount of liquid with surface energy σlg in contact with a flat, homogeneous
solid substrate with solid-liquid surface energy σsl and solid-gas surface energy σsg,
minimization of the potential energy determines the angle that the liquid-gas interface
adapts with the solid substrate [132], as illustrated in Sec. 2.1.3. Fig. 2.9(a) illustrates
again the energy minimization leading to cosϑ = (σsg − σsl)/σlg.

For a heterogeneous surface, the Cassie-Baxter model assumes that the liquid ’sees’
an effective substrate-liquid and substrate-gas surface energy equal to the averaged
surface energy of the respective composite surface. In case of a chemically heteroge-
neous surface that comprises areas of different surface energies σAsl, σ

A
sg and σBsl , σ

B
sg,

with surface fraction φA, the mean surface energies of the liquid- and gas-covered
substrate are

〈σsx〉 = φAσAsx + (1− φA)σBsx, x = l, g. (2.28)

In case of a superhydrophobic surface in the superhydrophobic state with flat liquid-
gas interfaces, the mean surface energies are

〈σsl〉 = φSσsl + (1− φS)σlg,

〈σsg〉 = φSσsg,
(2.29)

where φS is the solid surface fraction. In terms of energy variations at the contact line,
this assumes that the translation of the contact line δx is larger than the characteristic
scale a of the heterogeneities, e.g., in case of a chemically heterogeneous surface
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with a pattern that is periodic in two dimensions with a period a, this assumes that
δx > a. Fig. 2.9(b) illustrates this requirement. In this case the energy variation
upon translation of the contact line is approximately

δE =
[
φAσAsl + (1− φA)σBsl − (φAσAsg + (1− φA)σBsg) + σlg cosϑ∗

]
δx, (2.30)

such that the derivation of the contact angle is analogue to the derivation of the
Young angle with effective surface energies as given by Eq. (2.28) or Eq. (2.29). In
contrast, if δx < a (Fig. 2.9(c)) the energy variation upon translation of the contact
line is (in the present case, where the contact line is located on a patch with surface
energy B)

δE =
[
σBsl − σBsg + σlg cosϑ

]
δx. (2.31)

Thus, the liquid-gas interface adopts the Young angle of surface B. The former
corresponds to the Cassie-Baxter model (Fig. 2.9(b)), favoring an effective surface
energy. The latter (Fig. 2.9(c)) corresponds to models as those suggested e.g. by
Joanny, de Gennes, Shanahan, Schwartz and Swain and Lipowsky [50, 115, 113, 119],
that appreciate a local Young angle.

In case of external perturbations, e.g., due to mechanical vibrations or a motion of
the liquid volume due to gravity, the magnitude of δx follows from the detailed nature
of the external forcing. We will return to such aspects in Chapter 4. In case of no
external perturbations, the magnitude of δx is determined by thermal fluctuations.
We consider first a typical microtextured surface and evaluate a lower boundary for
the energy ∆E that corresponds to a variation of the contact line over one unit cell
of the surface pattern. The energy required to cover one unit cell with liquid is of
the order σa2, where σ = σsl − σsg in case of a chemically heterogeneous surface and
σ = σlg in case of a profiled surface. For a typical patterned surface the period a
of the pattern is of the order 1µm. The liquid-gas and solid-liquid surface energies
of water are larger than 0.01N/m. Thus ∆E > 10−14J. Energy variations due to
thermal fluctuations are of the order kBT . At room temperature kBT ≈ 10−21J. Thus
∆E > 107kBT , such that δx� a. Reverting above argument we estimate the order of
magnitude of δx due to thermal fluctuations and find δx =

√
kBT/σ ≈ 10−10m. The

result corresponds to the typical scale of capillary waves or thermal wiggling of liquid
molecules as expected, confirming δx� a. Therefore the second model according to
Fig. 2.9 and Eq. (2.31) favoring a local contact angle applies to describe the behavior
of liquid in contact with the heterogeneous surface.

The first model, the Cassie-Baxter model, favoring an average surface energy, was
applicable if a� 10−10m. Such a surface does not exist in nature since the typical size
of atoms is larger than 10−10m. Furthermore, the behavior of a liquid on such scales
is governed by other phenomena and is described by microscopic models such as e.g.
Lattice-Boltzmann or Molecular Dynamics approaches. It follows that the concept of
an average surface energy, and thus the Cassie-Baxter model (and equivalently the
Wenzel model), is not physical for any realistic heterogeneous surface.

Instead, a local contact angle model similar to the models suggested in [50, 115,
113, 119] should be applied. In such an approach boundary conditions on the sub-
strate are formulated by requiring that the contact angle is locally the Young angle
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corresponding to the local surface energy of the substrate, or equivalently by specify-
ing areas of different solid-liquid surface energies, and requiring that δE is infinites-
imally small (small enough such that corresponding variations δx of the position of
the contact line are smaller than the characteristic scale of the heterogeneities).

Such a model has been formulated and addressed analytically for a drop without
gravity on a chemically heterogeneous surface with areas with two different contact
angles close to 90◦ and small perturbations of the contact line [50], as well as for
general perturbations for chemically heterogeneous and rough surfaces in the Wenzel
state [119]. The model has been treated analytically for liquid rise at a hydrophilic
vertical plate featuring periodic patterns of hydrophobic areas [113]. Additionally,
such a model has been addressed numerically for chemically heterogeneous surfaces
with stripes that are of the same scale as the drop size [17] and similar geometries
[114].

Swain and Lipowsky [119] offer a general result for the macroscopic apparent
contact angle. Using the condition of a local contact angle (e.g. Eq. (4.5) in [119])

σsg(y) = σsl(y) + σlg cos[ϑ(y)], (2.32)

the apparent contact angle is approximated as

cosϑ∗ =
∫
∂Γ

cos[ϑ(y)] dy, (2.33)

where the integral extends over the contact line ∂Γ that encloses the area Γ where the
drop is in contact with the surface. Here σsg and σsl are the local surface tensions,
ϑ is the local contact angle and y is the Cartesian coordinate on the surface. For a
given contact line and surface pattern (expressed by the local contact angle ϑ(y), the
result allows to evaluate an approximate value for a macroscopic apparent contact
angle. However, the authors stress that the contact line ∂Γ is not a priori known and
is generally not described by a global energy minimization. They highlight the role of
metastable drop conformations for the macroscopic apparent contact angle. For the
case of chemically heterogeneous surfaces as well as for rough surfaces in the Wenzel
state, Swain and Lipowsky offer several possible alternatives for a choice of the contact
line. Amongst, they suppose to consider the evolution of the contact line during the
motion of a drop on a surface, as well as ’placing’ a drop on different positions of the
surface and evaluating a corresponding local minimum of the free energy that will
yield the contact line. They suggest to assign to each such contact line equal a priori
probability. However, the authors judge the latter approaches ’prohibitively difficult’.
A first approximation is provided by assuming that the contact line adopts all possible
orientations on the surface, and those orientations occur with equal probability. In
this case the macroscopic apparent contact angle is expressed as

cosϑ∗ =
∑
n

Ln cosϑn, (2.34)

where Ln is the fraction of the total perimeter of the drop in contact with the surface
composed of material n with contact angle ϑn. However, this assumptions cannot
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Figure 2.10: Fabrication method for artificial superhydrophobic surfaces.
A silicon wafer is structured using micro lithography and deep reactive ion etching.
Subsequently the structured surface is hydrophobized by vapor deposition of a self
assembled monolayer of an alkylsilane.

be justified. In principle one of the first two alternatives suggested by the authors
should be used to determine the actual position of the contact line. Those approaches
correspond to a more realistic averaging over drop configurations observed in practice.
Eq. (2.34) is mainly criticized because it does not account for metastable drop states
and pinning of the contact line, which is relevant on profiled surfaces. Those aspects
underline the difficulties in developing a realistic and physical contact angle model
for heterogeneous surfaces.

Chapter 4 is devoted to discussing qualitatively the main features of several pos-
sible drop conformations on different types of superhydrophobic surfaces. In that
chapter we will also pay more attention to the role of metastable drop states and
possible choices of drop states that could be suitable for an evaluation of an apparent
contact angle.

2.2.3 Artificial superhydrophobic surfaces

Since the first demonstration of an artificial superhydrophobic surface in the mid 90’s
[88], research groups around the globe have joined the quest for a cheap, durable,
transparent, and possibly flexible superhydrophobic surface that competes with the
remarkably successful superhydrophobic surfaces exemplified by nature.

Though artificial superhydrophobic surfaces arguable still lack behind the natural
ones, in particular with regard to durability –or more generally ’regenerability’– today,
superhydrophobic surface are routinely fabricated in research laboratories, and a large
variety of fabrication processes has been successfully implemented [99, 65]. Typically
one starts off by creating a structured surface, frequently through micro lithography,
laser milling [49], deposition of nano-particles such as carbon nano tubes [52], micro-
molding [96], etc.. Subsequently the structured surface is hydrophobized, typically
by grafting a self assembled monolayer of an alkylsilane (possibly fluorinated) that
binds covalently to the surface [72] (see also appendix C). Other commonly used
hydrophobization methods include thiol-on-gold monolayers [6] and dip coating with
amorphous Teflon. Alternative fabrication methods include the direct molding of
the texture into a polymer such as PDMS or photo resist. Another very successful
method has been to create ’fractal’ [88] or simply disordered [126] ’fiber-mat-like’
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Figure 2.11: Schematic of a single meniscus at the opening of a superhy-
drophobic cavity. The cavity has a cylindrical shape with radius R and depth H.
The gas pressure inside the cavity and above the liquid is the ambient pressure, such
that –in virtue of Laplace’s law– the rest curvature of the liquid-gas interface is given
by κ0 = Ph/σ.

surfaces from a suitable intrinsically hydrophobic material.
Throughout this work, silicon type superhydrophobic surfaces are used, that were

layed out with 365 nm (I-line) lithography and etched through different variants of
deep reactive ion etching (DRI), and hydrophobized by deposition of a self assembled
fluorinated alkylsilane from the vapor phase (Fig. 2.10) (see also appendix C). The
latter results in a molecular layer that is typically 1.5-1.6 nm thin (as determined
by ellipsometry assuming the bulk refractive index of the alkylsilane) and results in
advancing and receeding contact angles on the flat substrate in the range 110 to 120◦

respectively 100 to 106◦, depending on the level of cleanliness of the initial sample.

2.3 Stokesian dynamics of cavity-meniscus systems

We shall now consider the dynamics of a liquid-gas interface that is pinned at the
opening of a cylindrical gas-filled cavity. The system that we consider is shown
schematically in Fig. 2.11. It consists of a circular cavity of radius R and depth
H at the boundary between an unbounded flat solid and an unbounded liquid. The
cavity is filled with gas, and a liquid-gas interface spans across its opening. The gas
pressure inside the cavity and above the liquid is P0, such that, in virtue of Laplace’s
law Eq. (2.3), at rest the interface is curved downwards with a curvature κ0 = Ph/σ,
where Ph is the hydrostatic pressure and σ is the surface tension. Under the influence
of an applied ultrasound field the liquid-gas interface undergoes oscillations around it
rest position. We aim for determining the frequency response of the system. First we
evaluate in the following subsection a simple estimate for the resonance frequency of
the system. Subsequently, in subsection 2.3.2, we outline a description of the system
through unsteady Stokes flow theory.
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Figure 2.12: Qualitative model of a cavity-meniscus system. The vibrating
meniscus is considered as a harmonic oscillator with a mass of the order ρR3 and a
spring constant k = P0R

2/H + σ due to the isothermal compression of gas and the
restoring force of surface tension.

2.3.1 A simple model for the resonance behavior

Fig. 2.12 illustrates a simple model. We assume the interface performs small ampli-
tude oscillations around a rest position which we take as the flat interface z = 0.
Considering Laplace’s law, we assume that the curvature of the deflected interface is
constant, such that it takes the shape of a spherical cap. Hence, the deflection z and
the radius of curvature are related as

κ =
4z

z2 +R2
≈ 4z/R2 for z � R. (2.35)

We consider the potential energy and mass of the system. Considering isothermal
compression of the gas, we write the pressure change due to gas compression as

∆PG ≈
P0z

2H
. (2.36)

In virtue of Laplace’s law (Eq. (2.3)), we express the pressure change due to surface
tension as

∆PL = σκ ≈ 4σz
R2

. (2.37)

Considering the force on the interface in the form of a harmonic force with spring
constant K

F = Kz, (2.38)

and the relation between force and pressure F ≈ P/R2, we evaluate the spring con-
stant as

K =
P0

2H
+ 4σ. (2.39)
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Appreciating that flow fields are decayed on a scale R, we estimate the effective mass
of the system as

M = ρR3. (2.40)

The resonance frequency of the system follows as

f =
1

2π

√
K

M
=

1
2π

√
1
ρR3

(
P0z

H
+ 4σ

)
. (2.41)

This model is suitable to determine the order of magnitude of the resonance frequency.
Several aspects about the model can be refined.

(1) The effect of inertia can be described in a quantitative manner. To this end,
the hydrodynamic equations can be solved on different levels of approximation. We
will discuss this in detail in the next section. In the simplest approximation, potential
flow equations are considered, where one recognizes that the vorticity in the flow field
∇× v vanishes everywhere except in a thin boundary layer around the moving body.
Stressing ∇ × v = 0, one expresses the velocity field in as the gradient of a scalar
called velocity potential v = ∇φ. We shall demonstrate experimentally in Chapter 6
and 7 that potential flow theory is sufficient to capture inertial effects in the oscillating
cavity-meniscus system.

(2) One may consider dissipation in the system. Dissipation is absent in above
simple model. In potential flow theory, which considers ideal non-viscous fluids, dis-
sipation may be incorporated in terms of dissipation integrals [51] that evaluate the
bulk dissipation in an approximate manner from the flow fields calculated in the non-
viscous approximation. This approximation has been applied to describe e.g. the
viscous dissipation of oscillating bubbles. We will show experimentally in Chapter 7,
that for the oscillating cavity-meniscus system, dissipation is not captured by potential
flow in conjunction with dissipation integrals. The theoretical analysis presented in
Chapter 8 shows that dissipation is dominated by vorticity generation in the boundary
layer. Thus, to capture viscous dissipation in the fluid, the hydrodynamic equations
must be approximated on the level of the unsteady Stokes flow equations that account
for the viscosity of the fluid. Such a description is outlined in the subsequent section
and described in detail in Chapter 8.

It is shown experimentally in Chapter 6 and 7 that the oscillating cavity-meniscus
system is described accurately within the approximation of this unsteady Stokes flow
model. The following possible refinements of the model are beyond experimental
accuracy. We note them to provide a complete discussion.

(3) one may consider thermal dissipation inside the gas, which was shown to be
significant for bubbles in a certain parameter range in [21]. Here one may follow the
linear analysis suggested in [22].

(4) one may refine the description of the potential force. At high frequencies
one may consider an alternative compression behavior of the gas, such as adiabatic
compression.

(5) one may account for deviations of the liquid-gas interface from the spherical
cap shape and account for Laplace’s law locally. Such a model would account for
higher order deformation modes of the liquid-gas interface.
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Figure 2.13: Schematic of the theoretical model for a single cavity-meniscus
system Dimensional quantities such as the radius R∗ and depth H∗ of the cavity are
denoted with a ∗. The interface is pinned at the edge of the cavity, and undergoes
small amplitude parabolic deformations.

2.3.2 Stokes flow theory of an oscillating cavity-meniscus sys-
tem

We shall now outline an unsteady Stokes flow model for a cavity-meniscus system
(a detailed derivation is given in Chapter 8). Fig. 2.13 shows a schematic of the
theoretical model. Dimensional quantities such as the radius R∗ and depth H∗ of the
cavity are denoted with a ∗. The following approximations are introduced.

(1) we assume the meniscus is flat in equilibrium. This condition is satisfied when
the deflection at rest is much smaller than the deflection amplitude and the radius of
the cavity, |ζ∗0 | � R∗,∆ζ∗.

(2) we assume that the acoustic field is a function of time alone, expressed as
P ∗ = P ∗0 + ∆P ∗ exp(ω∗t∗), corresponding to a global pressure change. This requires
that the ultrasound wavelength Λ∗ is much larger than the system size R∗ � Λ∗.

(3) We assume that the interface is pinned at the edge of the cavity, and undergoes
small amplitude parabolic deformations

ζ∗(t∗)(1− r∗2/R∗2), (2.42)

where ζ∗(t∗) is the deflection of the interface on the axis r∗ = 0 and r∗ is the radial
coordinate. This assumption has been employed in [73]. In an experiment it requires
that |ζ∗| � R∗ and |ζ∗| � H∗. As shown below, the parabolic shape implies that the
curvature of the interface is approximately uniform, as far as |ζ∗| � R∗, giving right to
Laplace’s law. It should be noted that the ’imposed shape’ cannot be strictly verified.
In a more realistic case, the local deformation of the interface should be taken into
account, and Laplace’s law should be applied locally at every point of the interface.
Instead, we impose the shape of the interface. The parabolic shape implies that
the interface oscillates with its fundamental oscillation mode. This approximation
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should describe the behavior of the system for small ultrasound frequencies and up
to the fundamental resonance frequency. At much higher frequencies, the interface
may deform following other shapes, corresponding to higher order oscillation modes,
as known e.g. from oscillation modes of a circular plate. Such oscillations are not
included in the present model.

(4) We assume that far away from the meniscus the flow vanishes. We consider
three cases for the boundary conditions. (i) no-slip on both the liquid-gas interface
and the solid wall, (ii) free-slip on both the liquid-gas interface and the solid wall,
(iii) free-slip on the liquid-gas interface and no-slip on the solid wall

(5) Considering discussions in [60] we assume the system is described by the un-
steady Stokes flow equation

∇u = 0,

∂tu = − 1
ρL
∇p+ ν∇2u

(2.43)

For this approximation we consider the Navier–Stokes equation

∂tu + (u ·∇)u = −1
ρ
∇p+ ν∆u + (ζ/ρ+ ν/3)∇(∇ · u), (2.44)

where u is the velocity field, ρ is the liquid density, p is the pressure, ν = η/ρ is the
kinematic viscosity and ζ is the second viscosity. Assuming incompressible flow, we
have ∇ · u = 0, such that

∂tu + (u ·∇)u = −1
ρ
∇p+ ν∆u. (2.45)

We appreciate that the oscillating motion of a solid body in a liquid generates vorticity
in a layer of a characteristic thickness δ =

√
2ν/ω, while at larger distances the flow

decays to potential flow. Here ν is the kinematic viscosity and ω is the oscillation
frequency. Let l be the size of the body and a be the amplitude of the oscillations. If
l� δ and a� δ, the time derivative and (u ·∇)u term in the Navier-Stokes equation
are of the order |∂tu| ≈ uω ≈ aω2 and |(u ·∇)u| ≈ u2/l ≈ a2ω2/l, such that the
(u ·∇)u term can be neglected.

We non-dimensionalize all quantities using the radius of the groove R∗, the liquid
density ρ∗L, and the kinematic viscosity ν∗, i.e.,

H =
H∗

R∗
, r =

r∗

R∗
, z =

z∗

R∗
, ζ =

ζ∗

R∗
,

ω =
ω∗R∗2

ν∗
, p =

p∗R∗2

ρ∗Lν
∗ , ∆ =

∆∗R∗2

ρ∗Lν
∗ , u =

u∗R∗

ν∗
,

σ =
σ∗R∗

ρ∗Lν
∗2 , κ = κ∗R∗, (2.46)

Stressing the axial symmetry of the system, separation of variables and suitable
stream functions are used to cast the system into the form of a Helmholtz and Laplace
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equation (see Chapter 8 for details). Those equations are solved. The solutions allow
to determine the surface averaged normal stress on the liquid gas interface in terms
of transfer functions Φ, Ψ as

〈−p+ 2∂zuz〉 = (Φ(ω) + iΨ(ω))ζ, (2.47)

allowing to express the total normal stress of liquid on the interface as

PL = P0 + ∆ exp(iωt)− 〈−p+ 2∂zuz〉S exp(iωt). (2.48)

An evaluation of the transfer functions Φ and Ψ for the different combinations of
boundary conditions for the solid wall and the liquid-gas interface is given in Chap-
ter 8.

Assuming isothermal compression of the gas inside the cavity, the gas pressure is
written as

PG = P0 −
P0

2H
ζ exp(iωt) +O((ζ/H)2). (2.49)

Both pressures are linked through Laplace’s law (Eq. (2.3)) as

PG − PL = σκ. (2.50)

The imposed shape of the interface determines the curvature as (using Eq. (2.6))

κ = ∇ ·
(
∇(z − ζ(1− r2))
|∇(z − ζ(1− r2))|

)
= 4ζ +O(ζ3). (2.51)

Here it is shown that the curvature of the assumed parabolic shape is uniform as long
as ζ is small. Combining Eq. (2.48), (2.49), (2.50), and (2.51) we arrive at a relation
between the displacement and the driving amplitude

(−Φ(ω)− iΨ(ω) +K)ζ = −∆, (2.52)

that describes the frequency response of the system. Here K represents the rigidity
given by

K =
P0

2H
+ 4σ, (2.53)

which is equivalent to the spring constant of a spring-mass system as evaluated in the
preceding section (Eq. (2.39)). Eq. (2.52) is considered as the equation of motion of
a cavity-meniscus system.

2.3.3 Hydrodynamic interaction

A technique that is suitable to study experimentally the dynamics of a cavity-meniscus
system is optical diffraction (Chapter 6). In this case a large number of cavities
(typically > 1000) are fabricated on a periodic grid with a lattice spacing a that is
larger but not much larger than the cavity radius. Fig. 2.14(a) shows schematically
such a system. The sample is then illuminated with a laser beam under a grazing
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(a)
(b) (c)

Figure 2.14: Observation of meniscus oscillations through optical diffraction.
(a) Schematic of a typical experimental sample consisting of cylindrical cavities (R =
3µm) arranged on a 1 × 1mm hexagonal grid with lattice constant a = 15µm. (b)
Diffraction pattern of the sample obtained by illumination with laser light (wavelength
488 nm) under grazing angle (ϑ ≈ 70◦). (c) Interference phenomenon providing a
relation between meniscus deflection and diffraction intensity.

incident angle and the intensity of one diffraction order is measured. The intensity is
determined by the interference of waves scattered from the plain surface and waves
scattered from the menisci and depends sensitively on the meniscus deflection, as
illustrated in Fig. 2.14(c) (see Chapter 6 for details).

This measurement technique has several implications. First, since diffraction re-
quires identical objects, all menisci must be deflected collectively with the same am-
plitude (see also appendix B), implying that the ultrasound wavelength Λ must be
larger than the size l of the entire grid. Second, to obtain a good diffraction signal,
the distance between the cavities should not be much larger than their diameter.
This implies that the oscillating cavity-meniscus systems are no longer described as
isolated systems that are surrounded by an infinite solid surface, rather they interact.
Both conditions amplify each other: if the distance between the cavities is increased,
the resonance frequency of the system shifts to higher frequencies, implying a shorter
wavelength of the driving ultrasound. At the same time, the total system size is
increased. In this way Λ < l is quickly reached. In practice, the weak 1/r-decay of
the hydrodynamic interaction (see below) prohibits a measurement in the uncoupled
limit with typical arrays consisting of ≈ 1000 micron sized cavities.

It is shown experimentally in Chapter 6 that the hydrodynamic interaction has
a strong influence on the resonance behavior of the system. Fig. 2.15 illustrates the
mechanism. It is at first sight counter intuitive. Following the simple model for the
resonance behavior derived in Sec. 2.3.1, one may expect that the spring constant of
a corresponding collective harmonic oscillator is about Nk and its mass is Nm, where
k and m are the spring constant, respectively mass of an individual oscillator. This
holds true for the spring constant, which is indeed determined by the local forces on
each meniscus. However, the effective mass of the coupled system is not additive. In
terms of scaling arguments for the decay of the flow fields, we recognize that a global
flow field arises that extends over the entire meniscus system. The total mass M is
estimated as ρNR3 < M < ρl3, suggesting that the effective mass of an individual
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(a)

(b)

Figure 2.15: Collective oscillations of multiple cavity-meniscus systems. (a)
A model that describes the system as N oscillators with a total spring constant
K = Nk and mass M = Nm fails to capture the collective dynamics of the system.
(b) A collective oscillation gives rise to a global flow field that results in an increased
effective mass.

cavity meniscus system is increased, such that the resonance frequency is decreased.
Therefore, it becomes necessary to account for hydrodynamic interaction.

We shall now derive the interactive force among multiple menisci. We consider
two menisci labeled i and j and separated by a distance dij . Assuming dij � R, the
surface averaged normal stress on the j-th interface due to the i-th interfacial motion
is approximated as (see Chapter 8 for details)

〈−pi + 2∂zuzi〉Sj
=
ζiω

2

4dij
+ o(d−1

ij ). (2.54)

We thus extend the equation of motion of a single cavity-meniscus system, Eq. (2.52),
as

(−Φ(ω)− iΨ(ω) +K)ζi = −∆ +
∑
i 6=j

ω2ζj
4dij

, (2.55)

of which the second term on the right hand side accounts for the effect from the other
menisci. The interaction is monopole, which is similar to that for the spherical bubbles
suspended in liquid. Note that since this term contains ω2, it leads to the increase of
the virtual mass. For the multiple body problem, we write the simultaneous equations
Eq. (2.55) in a matrix form with complex numbers, and numerically solve them to
determine the deflections ζi. If the number of menisci is N , the size of the matrix to
be inverted is N ×N .

It is shown experimentally in Chapter 6 that Eq. (2.55) accurately describes the
resonance frequency of arrays of menisci. In some of the experiments the nearest
neighbor distance between the cavities is of the same order as the cavity diameter.
Those experiments correspond to a limiting case of the monopole approximation,
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where the validity of dij � R is not strict. Within the measurement accuracy, also
these systems are well described by the model.

Finally, it should be pointed out that for the multi-meniscus system, the exper-
imentally observed dissipation is not captured by the model (see peak heights in
Fig. 6.4). By contrast, Fig. 7.4 shows that the Stokes flow theory for a single cavity
captures dissipation correctly. Considering that above model for the hydrodynamic
interaction does not describe explicitly the global flow field, we suggest that it misses
a viscous dissipation in the global flow.

2.4 Optical diffraction gratings

Diffraction experiments are suitable to study identical objects that are arranged in
a periodic manner. The most well known example is the determination of crystallo-
graphic structures through x-ray diffraction. In this work we employ optical diffraction
from a superhydrophobic optical grating (see also Fig. 1.2) to study the microscopic
properties of superhydrophobic surfaces (Chapters 3 and 6). To extract accurate real
space information from the measured diffraction intensities, a precise modeling of the
diffraction process becomes necessary. In this section we introduce the required the-
ory of optical grating diffraction and formulate the numerical tools that are suitable
to model such gratings.

Later we use these numerical tools to devise optical gratings with a large spectral
bandwidth (Chapter 5). We will therefore also pay attention on the principles of
optical grating design.

The section is organized as follows. In the following subsection we introduce
elements of optical grating diffraction, and derive basic quantities that characterize a
diffraction process, such as the directions of the diffracted waves and the dispersion.
Subsequently, in subsection 2.4.2 we outline how the intensity of the diffracted waves
can be calculated through an exact numerical treatment of Maxwell’s equations.

2.4.1 Grating diffraction

Fig. 2.16 shows schematically an optical grating. It consist of a grating region G
characterized by a periodically varying refractive index nG(y, z) = nG(y + T, z) that
is located at the boundary between two infinite halfspaces, the reflection region R
and a transmission region T, that are characterized each by their refractive index nR,
respectively nT . Generally, all refractive indices may be complex, with the exception
of the reflection region, which must necessarily be transparent and characterized by
a real refractive index.

As the grating is illuminated with a plane wave, a number of plain waves are
scattered from the grating. Waves are scattered into the reflection region, and into
the transmission region. Associated with every scattered wave is an amplitude and
a wavevector. The wavevector expresses the direction of the wave, or, in case the
wavevector is complex, the penetration depth of the evanescent wave. The components
of the wavevectors in the periodic direction (here the y-components) are determined
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Figure 2.16: Diffraction of a plane wave by an optical grating. A number
of diffracted waves with wavevectors kSm, S = R, T are scattered into the reflection
and transmission region, characterized each by their refractive index nR and nT ,
respectively.

(a) (b)

Figure 2.17: Illustration of the Littrow configuration. (a) −1st order Littrow
configuration. The grating period and the incident angle are chosen such that the
−1st diffraction order is anti-parallel to the incident beam. The groove width and
depth are optimized such that nearly all of the diffracted intensity is scattered into the
−1st order. (b) Beam splitter configuration. The grating is illuminated perpendicular
to the surface. Due to symmetry equal intensity is scattered into the +1st and −1st

diffraction order.
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by Floquet’s theorem as
qm = q0 +mQ, (2.56)

where m = −∞, . . . ,+∞ is the diffraction order, Q = λ/T , and q0 = nR sinϑ0. Here
ϑ0 is the angle of the 0th diffraction order. Angles are measured with a positive sign
in positive y-direction, and with a negative sign in negative y-direction. We have
non-dimensionalized the spatial coordinate through r 7→ 2πr/λ. The z-components
of the wavevectors are determined through the wave equation as

kSm = (nS
2 − qSm

2
)1/2, (2.57)

where S = R, T denotes the reflection and transmission region, respectively. A real
k represents a propagating diffraction order, a complex k represents an evanescent
wave. The latter relations imply the grating equation

sinϑSm = sinϑS0 +
mλ

nST
, (2.58)

which expresses the angles of the scattered waves. The angular dispersion D follows
by differentiating the latter equation with respect to λ,

D =
∂ϑRm
∂λ

= − m

TnR cosϑRm
. (2.59)

Generally, the highest diffraction efficiency is achieved if the grating is mounted in
−1st order Littrow configuration, where the −1st diffraction order is anti parallel
to the incident wave, that is −q−1 = q0 (Fig. 2.17(a)). To see the benefit of this
consider the opposite case: Suppose a reflection type grating with rectangular profile
is illuminated at zero incident angle, that is, perpendicular to the surface. And
suppose the period is small enough, such that only the +1st and the −1st diffraction
order are present (Fig. 2.17(b)). It is possible to choose a suitable width and depth of
the grating grooves, such that the largest part of the diffracted intensity is scattered
into the 0th order, or, by choosing a different width and depth, most of the diffracted
intensity is scattered into the first order (see e.g. [23] and 5). However, due to
symmetry, the intensity of the +1st and the −1st diffraction order must be equal, such
that, at maximum 50% of the diffracted intensity is scattered into a single diffraction
order 1. In contrast, if the incident angle is chosen such that the −1st diffraction order
is anti parallel to the 0th order, only the 0th and the −1st order are present, and the
scattered intensity can be distributed at will among those two orders (by choosing
a suitable groove width and depth), thus (nearly) 100% diffraction efficiency can be
achieved. It should be noted that above argument holds rigorously only when the
grating profile is symmetric. In Chapter 5 we give an example of a non-symmetric
grating profile for which the Littrow configuration is indeed no longer the optimum
scattering geometry. For a grating with a symmetric profile, the Littrow configuration

1This configuration is of interest for special applications, and is also known as the ’beam splitter
configuration’.
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is however the configuration that provides the largest diffraction efficiency in a single
diffraction order, and this shall be the focus in this thesis.

The Littrow configuration settles the period of the grating as

T = mλ/(2nR sinϑR0 ). (2.60)

This settles as well the relation between the angular dispersion and the incident angle,
since the Littrow condition substituted in Eq. (2.59) yields

D = 2/λ tanϑ0. (2.61)

The dispersion is minimal at zero angle (perpendicular to the surface), and diverges
at grazing angles.

Above identities determine the period, dispersion and scattering geometry of the
grating. They are the starting point e.g. when aiming at the design of an optical
grating that provides a given dispersion in a given wavelength range. However, the
intensities of the diffracted waves must follow from a more elaborate treatment.

2.4.2 Rigorous Coupled Wave Analysis

Numerous methods have been developed over the past decades that solve Maxwell’s
equations in their time-dependent (e.g. Finite Difference Time Domain Method [120]),
integral (e.g. the Generalized Source Method [122]) or differential form (e.g. Fourier
Modal Method [64, 125]). One method that is well suited to compute the diffraction
from an optical grating, as in the present case, is the Rigorous Coupled Wave Analysis
(RCWA) [74, 75, 76, 39, 77, 93].

The RCWA was originally developed to characterize classical blazed gratings [77],
and has been employed successfully to design highest quality optical gratings, as di-
verse as UV gratings in space telescopes [27], and highly efficient dielectric transmis-
sion gratings for chirped pulse amplification [26]. Besides, more recently its usefulness
for solving the inverse diffraction problem of optical gratings has been demonstrated
[83]. The demand for novel wafer inspection technologies for fast in-line process con-
trol in semiconductor fabrication, has triggered extensive research that aims at using
the RCWA for the inversion of diffraction patterns in single shot, sub wavelength
resolution, optical wafer inspection [107]. In this thesis, we apply the RCWA in both
ways. In Chapter 3, we use it to solve an inverse diffraction type problem, and in
Chapter 5, we apply it to devise a new class of large bandwidth highly efficient optical
gratings.

The RCWA allows for calculating an exact solution to the Maxwell equations,
for the diffraction of a plane wave from an optical grating whose unit cell contains
arbitrary shapes and materials. In the following we will sketch the fundamentals of
the method. A complete treatment (for the case of isotropic media and non-conical
mount) and a sketch of the numerical implementation used in this work is given in
appendix A. To describe an arbitrary surface profile, a grating is sliced into layers
parallel to the surface. Fig.2.18 illustrates this process for a grating that features
curved liquid-gas interfaces on top of its groove as encountered in Chapter 3. The
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Figure 2.18: Multilayer Rigorous Coupled Wave Analysis. Space is divided
into three regions. The reflection side with refractive index nR, the transmission side
with refractive index nT , and the grating region. The grating itself is sliced into N
layers parallel to the surface. The curved interface is approximated by layers with a
thickness much smaller than the wavelength, such that in each layer, the refractive
index ni(y) = ni(y + T ) is a function of y alone.
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curved interface is approximated by layers with a thickness much smaller than the
wavelength, such that in each layer, the refractive index is a function of y alone.
The grating is thus represented by a stack of layers with periodic, generally complex
refractive index ni(y) = ni(y + T ), i = 1, . . . , N . The reflection and transmission
region are characterized by their refractive indices nR and nT in the same manner as
introduced above.

For the purpose of this outline, let us assume the incident light is s-polarized, and
all media are isotropic. Then only the x-component of the electric field vector needs
to be considered and the wave equation reduces to a scalar equation (the case of p-
polarization is considered in appendix A). In each region, the electric field is expressed
as a series of plane waves. In the reflection and transmission region, these are the
diffraction orders as introduced above. We proceed by evaluating the wavevectors
in all regions in space. We use the same normalization of the spatial coordinates as
introduced above. The y-components of the wavevectors are the same in all regions
in space, as determined above by Floquet’s theorem. They are given by Eq. (2.56).
The z-components of the wavevectors require an individual treatment in each region.
They generally follow from Maxwell’s equations through a suitable secular equation.
In the reflection and transmission region, this is the kernel of the wave equation in
free space, and the z-components of the wavevectors are those given by Eq. (2.57).
To accept only waves that travel in a physically meaningful direction, and evanescent
orders that do not diverge towards infinity, it is required that km > 0, respectively
Im(km) > 0. Then, the electric fields in the reflection and transmission region are

ER = ei(q0y+k0z) +
∑
m

Rme
i(qmy−kR

mz)

ET =
∑
m

Tme
i(qmy−kT

mz).
(2.62)

Rm and Tm are – so far unknown – reflection, respectively transmission coefficients.
They determine the intensities of the transmitted and reflected diffraction orders,
through the magnitude of the Poynting vector, as

IRm = |Rm|2kRm/kR0
ITm = |Tm|2kTm/kR0 .

(2.63)

In case no absorbing material is present, conservation of energy requires that∑
m

IRm + ITm = 1, (2.64)

which can serve as a test for the numerical accuracy of the calculation.
In the grating region, the determination of the propagation constants in z-direction

requires a more elaborate treatment. Each layer is now treated separately to arrive at
a secular equation. The dielectric constant εi = ni

2 is expanded into a Fourier series,

εi =
∑
m

εime
imQy, (2.65)
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and the electric field Ei is expanded into plane waves traveling in the y-direction,
while the z-dependence of the waves is – for the moment – kept in unknown expansion
coefficients, expressed as

Ei =
∑
m

Sim(z)eiqmy. (2.66)

This ansatz is substituted in the Maxwell equations, together with the Fourier ex-
pansion of the dielectric constant Eq. (2.65), yielding an (infinite) set of second order
ODE’s (with constant coefficients). This requires that the Sim(z) are themselves se-
ries of plane waves in z-direction, and associated with the ODE is a secular matrix,
that determines their propagation constants. This infinite matrix is truncated and
its eigenvalues are found numerically, e.g. by Schur decomposition or singular value
decomposition [97, 3].

With the knowledge of the propagation constants, the expansion of the electric field
into plane waves can be formulated in every grating slice. It remains to determine their
expansion coefficients, from which the diffraction intensities are eventually calculated
through Eq. (2.63). The expansion coefficients are found by matching the field at all
boundaries, and solving the resulting linear system.

This solution to the Maxwell equations is exact in the limit of an infinite number
of plain waves retained in the expansion in every layer. In practice the expansion
converges quickly, and typically less than 10 · T/λ orders are required to obtain ac-
curate results. A second numerical parameter is the thickness of the slices that are
used to approximate an arbitrary profile. Typically, the discretization is accurate if
the thickness is smaller than about 1/10 · λ/n. In practice the numerical accuracy
can be verified by increasing the number of diffraction orders and decreasing the slice
thickness until the variation of the computed diffraction intensity is much smaller
then the desired numerical accuracy. In a typical computational project, one may
begin with selecting a reference computation that represents one parameter choice of
a grating geometry that is to be analyzed, and performs an accuracy test with this
computation to determine suitable numerical parameters.

To make use of the Rigorous Coupled Wave Analysis, above scheme has to be
cast into an efficient computer code. These aspects are often overlooked, though
of paramount importance, if we are aiming for modeling tools that provide a high
numerical performance, paired with a flexible user interface that is easily maintained
and extended. For the purpose of this work, a coding philosophy was adopted that
aims at combining the unsurpassed numerical power of Fortran 90 with the flexibility
and abstraction provided by an object oriented programming approach. The computer
code developed in this work is made freely available [101] under the GPLv3 [1] (open
source). Its most important numerical schemes and principles of its user interface are
discussed in appendix A.
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Chapter 3

Microscopic properties of the
superhydrophobic state

In this chapter we study the properties of the microscopic liquid-gas interfaces that
span between adjacent ridges of a superhydrophobic texture, by analyzing the light
diffracted from a superhydrophobic optical grating. By applying a hydrostatic pressure,
we induce the transition from the superhydrophobic to the impreganted state in a
controlled manner, and observe it in situ. We determine the mechanism that governs
the transition and give design rules for superhydrophobic surfaces that provide the
largest resistance to impregnation. Prospects of superhydrophobic surfaces for tunable
diffractive optical elements are evaluated.

41
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3.1 Introduction

Surfaces with artificial periodic micorpatterns have been studied extensively in re-
cent years for their superhydrophobic - or more generally: superoleophobic - behavior
[99, 57, 82, 118, 28, 126, 92, 106, 56, 80, 110], which is of interest to various applications
such as self-cleaning surfaces [82] and drag reduction in microfluidic devices [118, 28].
All favorable properties of the superhydrophobic state rely on the presence of liquid-
gas interfaces, which span the gaps between adjacent ridges of the surface patterns
and thereby dramatically reduce the interaction between the liquid and the solid [99].
The exact shape of these micromenisci is crucial for our understanding of both the
stability of the superhydrophobic state [92, 106, 56, 80, 110] as well as its function, e.g.
drag reduction [118, 28]. Despite their central role, micromenisci have so far eluded
a quantitative characterization and thereby compromised our detailed understanding
of the superhydrophobic state. Here, we report nanometer-resolved measurements of
the deflection of micromenisci under the influence of an applied hydrostatic pressure
using optical diffraction. Below a threshold pressure, meniscus deformations are re-
versible, above it, the superhydrophobic state is destroyed irreversibly. We show that
the macroscopic collapse is triggered by depinning of the microscopic contact lines at
a threshold angle that is in close agreement with Young’s macroscopic contact angle.
It is therefore essential to employ the classical laws of Young [132] and Laplace [31]
on the microscopic scale to derive stability criteria for the design of optimal super-
hydrophobic (and superoleophobic) surfaces. Furthermore, our results point towards
novel applications of such surfaces as tunable optical gratings [25, 98, 78].

Despite great efforts, a fundamental understanding of the stability of the superhy-
drophobic state remains elusive. It was suggested to explain the transition from the
superhydrophobic to the impregnated state under the influence of pressure through a
minimization of the global energy [57], giving right to the two different wetting scenar-
ios, known as the Cassie-Baxter and the Wenzel state (see also Sec. 2.2.1). In contrast,
recently it was pointed out that the Cassie-Baxter and Wenzel models are unable to
describe even the static contact angle of more complex surface patterns [35]. This
suggested, that the local energy balance at the contact line determines the wetting
state. Moulinet and Bartolo pointed out, that the impregnation of an evaporating
drop on a superhydrophobic surface is accompanied by intermediate states charac-
terized by a partial impregnation of the texture [80]. This suggested that it must
ultimately be the microscopic force balance at the multifold of contact lines, that de-
termines the wetting scenario. This idea is supported by recent works of the groups at
MIT and Bell Labs, reporting about surfaces, that exhibit superhydrophobicity even
with liquids that feature a Young angle much smaller than 90◦ [126, 2]. The authors
point out, that the common macroscopic wetting models cannot explain the observed
superoleophobicity. An experimental characterization of the microscopic properties
of the superhydrophobic state is thus of great interest. This poses a great challenge.
Previous approaches have been limited by the resolution of optical microscopy [80].
They have been invasive [52], or even destructive [54].

Here, we report on an optical diffraction experiment that allows to determine the
shape of the liquid-gas interfaces in situ with nanometer resolution by measuring the
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intensity of coherent light diffracted from a superhydrophobic optical grating. We
determine the deflection ζ of the liquid-gas interfaces (see Fig.3.1c) for variable ap-
plied pressures by fitting the measured intensity of several diffraction orders to an
optical model based on numerical solutions to Maxwell’s equations. Upon increasing
the hydrostatic pressure, we find the liquid-gas interfaces to bend downwards, until a
critical pressure, that marks the transition from the superhydrophobic to the impreg-
nated state. We explain our results by assuming that at every moment, the curvature
is determined by a balance between the pressure drop across the interface and the
Laplace pressure. We find that the wetting transition occurs at the very moment,
when the angle of the microscopic interface with the cavity wall reaches the Young
angle. Our results suggest, that the microscopic properties of the superhydropho-
bic state can be explained in detail through two fundamental assumptions that are
known from macroscopic experience. (1) The pressure drop across the interface is the
product of the surface tension σ and the mean curvature κ (this represents Laplace’s
law in its most general form, as expressed by Eq. 2.3). (2) The contact angle at the
microscopic three-phase contact lines of the liquid-gas interfaces is the Young angle,
as described by Eq. 2.8. Though widely known, both laws are not frequently applied
to explain the microscopic properties of the superhydrophobic state, rather, in the
common approach suggested originally by Cassie and Baxter [20], microscopic details
are smeared out by evaluating a mean (’effective’) surface energy (see also Chapter 1).
These aspects are discussed in detail in Chapter 4. In the present chapter, we verify
experimentally that the laws of Young and Laplace are applicable in their most basic
form to describe the microscopic nature of superhydrophobic surfaces. Thereby, we
shall close a long standing debate on the mechanism that governs the stability of the
superhydrophobic state.

3.2 Experiments

The experimental setup is described in Fig.3.1. A sample (a,b) consists of four differ-
ent gratings with rectangular grooves with a depth d = 6µm and different periods T
and groove widths w on the micrometer scale (see Figure caption). Unless indicated
otherwise, the data presented refer to the grating with T = 8µm and w = 5µm. The
samples were fabricated by 365nm lithography and reactive ion etching of a silicon
wafer, and subsequently hydrophobized with a monolayer of a perfluoroalkylsilane
yielding advancing and receding contact angles on the flat substrate of 120◦ and
105◦, respectively as described in Appendix C. The sample is mounted on the axis of
a cylindrical glass container that is filled with demineralized water (d). The design
of the measurement cell is detailed in Appendix D. The hydrostatic pressure above
the sample is adjusted between -10kPa and +25kPa by controlling the liquid level
in a flexible tube. The sample is illuminated with the 488nm beam of an Ar-ion
laser under s-polarization (results obtained with p-polarization are qualitatively the
same). Diffraction orders are observed at angles ϑm determined by the real solutions
to the grating equation sinϑm = sinϑ+ mλ

nT , where m is the diffraction order, ϑ is the
angle of the 0th diffraction order with respect to the surface normal, λ is the vacuum
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(a) (b)

(c)

(d)

Figure 3.1: Optical diffraction experiment with a superhydrophobic optical
grating. a Photograph of a sample consisting of four gratings each with a total size
of 40x6 mm, and with periods (from top to bottom) 12, 8, 6, and 5µm, respectively
groove widths 9, 5, 3, and 2µm. b Bright field microscope cross section through the
grating with period 8µm. The silicon appears bright. c Schematic of a liquid-gas
interface on a groove. The deflection ζ in the apex of the liquid-gas interface is linked
to its curvature through geometry as ζ = 1/κ(1−

√
1−R2κ), where R = w/2 is half

the groove width. A downward bent interface corresponds to a positive deflection
and curvature. The angle α between the interface and the groove wall follows as
κR = cosα. d Experimental setup

wavelength of the light, and n is the refractive index of the adjacent medium water,
n = 1.33 in this case. The sample (including the glass container) and the photodiode
are mounted on separate rotation stages to allow for measuring independently the
diffracted intensities as a function of the incident angle. To characterize the diffrac-
tion, we measure the intensity of a number of bright diffraction orders including the
specular reflection, using a photodiode. To capture all diffracted intensity, the active
area of the photodiode is large compared to the beam diameter. Measured intensities
are normalized through the incident intensity. To take into account the reflection loss
of the glass container, the incident intensity before and after the container was mea-
sured with no sample mounted. The glass container and the photodiode are mounted
on independent rotation stages, such that the intensity of the diffracted beams can
be measured independently, and as a function of the incident angle.
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Figure 3.2: Analysis of the angle resolved diffraction data. (a) Intensity of the
−2nd to +1st diffraction order as a function of the incident angle. The intensity is
normalized by the incident intensity. Experimental data (open symbols) are compared
to theory (solid lines). The blue lines show the best fit corresponding to a downward
bent meniscus with curvature κ0 = 0.265R−1 (or equivalently a deflection ζ0 =
338 ± 7nm). The red line shows the theoretical data corresponding to an upward
bent meniscus (red dot in (b)) which fails to fit the experimental data, showing
that the fit is unique. (b) Inverse of the mean square deviation χ2 versus ζ and κ
(determined over the range 30◦ < ϑ < 90◦). The blue and red dot mark the primary
and secondary maximum corresponding to the curves in panel (a). (c) Illustration
of the dominant scattering mechanisms. At small angles the incident light is mainly
transmitted through the liquid-gas interfaces and undergoes absorption inside the
groove. At large angles, total internal reflection occurs at the liquid gas interface,
and the diffracted intensity is governed by the interference with light scattered from
the silicon surface, resulting in a versatile diffractive interference phenomenon. (d)
Photograph of a tropaeolum majus leaf immersed under water and viewed under a
grazing angle. Total internal reflection at the leaf’s superhydrophobic texture is at
the origin of the beautiful silvery appearance. At patches, the outermost skin of the
leaf has been dissected, thereby destroying its superhydrophobicity such that the area
appears dark. In this way the logo of the Physics of Complex Fluids group was written
into the leaf (courtesy of Sissi de Beer).
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Figure 3.2 shows typical measured diffraction intensities (obtained at an initial
hydrostatic pressure Ph = 7,500Pa). The curves show two regimes. For small angles
(near perpendicular incidence) the intensity is small and nearly constant. In contrast,
for large angles (towards grazing incidence) pronounced minima and maxima are
observed, emerging approximately at the angle of total internal reflection between
water and air, ϑT = 48.6◦. The data can be understood qualitatively through the
theory of Fraunhofer diffraction.

In the Fraunhofer limit, the diffracted intensity is governed by the interference of
the elementary waves scattered from the cell volume [15]. Here, two contributions are
important, the light that is scattered by the water-silicon interface, and the light that
is scattered by the water-air interface. At small angles, the light that impinges on
the water-air interface is mainly transmitted, it undergoes several reflections inside
the groove, and is mostly absorbed by the silicon. The diffracted intensity is thus
comparably low. Fig.3.2a) illustrates this scenario. In contrast, at large angles, the
light that impinges on the water-air interface, undergoes total internal reflection, and
the diffracted intensity is governed by the interference with the light scattered by
the water-silicon interface (Fig.3.2(b)). This total internal reflection is indeed at the
origin of the beautiful silvery shining appearance of drops on top of a superhydropho-
bic plant leaf, as is seen in Fig.3.2(d). The interference condition depends on the
incident angle, and a pronounced feature arises in the angular scan. Qualitatively,
as the meniscus is deflected – consider the position ζ of the apex of the meniscus –
the intensity of a diffraction order (with diffraction angle ≈ incident angle), changes
sinusoidally with an angular period ∆ϑ = λ/(2nζ sin(ϑ)). This simplified model de-
scribes the data qualitatively, and indeed, an angular period of ∆ϑ ≈ 25◦ is observed
in Fig.3.2. Substituted in the latter expression, it suggests ζ ≈ 200nm. This rough
estimate can serve as a rapid qualitative analysis of the experimental data, and allows
us to estimate the order of magnitude of the deflection. However, it does not allow
for a quantitative measurement of the shape of the liquid surface. Even worse, it does
not even allow to distinguish between upward and downward bent menisci. We thus
calculate the diffracted intensity numerically by means of Rigorous Coupled Wave
Analysis (RCWA) [77] (see also Appendix A). The obtained solution to the Maxwell
equations is exact in the limit of an infinite number of diffraction orders retained in the
underlying expansion into plain waves, and in the limit of sufficiently thin slices used
to approximate an arbitrary grating profile, the curved liquid-gas interface in our case
(see Sec.A.2.1 for a detailed discussion of the slicing procedure). Typically less than
10 · T/λ orders are required to obtain accurate results, and the discretization is accu-
rate if the thickness of the slices is smaller than 1/10 · λ/n. We carefully checked the
free numerical parameters. In particular, we increased the accuracy, until the variation
of the theoretical results was smaller than the error between theory and experiment.
It turned out that exquisite parameters are required. A final number of −128 · · ·+128
diffraction orders was retained. To achieve the highest resolution, the curved liqud-gas
interface was approximated with layers with a thickness of only 2 nm. Physical con-
stants that enter the calculation, are the refractive indices of water, n = 1.33 and Si
n+ ik = 4.367+ i0.079 [66]. All calculations presented in this chapter were performed
on a grid equipped with 2GHz Dual Core AMD OpteronTM processors, and took a
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total of about 2400 cpu hours. To determine the curvature of the liquid-gas interface,
we perform a least-square fit of the measured diffraction intensities against the theo-
retical optical model. In particular, we evaluate χ2 =

∑(
Iexpm (ϑi)− Itheom (ϑi, κ)

)2, on
a dense mesh of possible curvatures in the range κ ∈ [−R−1, R−1]. The sum extends
over the measured diffraction orders, m = −2, · · · + 2, and the measured angles, ϑi.
Fig.3.2(b) shows the inverse of the obtained χ2. The position and full width at half
maximum of the Lorentzian peak determine the curvature and its error (see appendix
E) as κ0 = 0.265R−1 respectively δκ = 0.0055R−1, corresponding to a deflection
ζ = 338 ± 7nm. The corresponding theoretical intensity is shown with blue lines in
Fig.3.2a). At large angles, the agreement between theory and experiment is truely
remarkable, in particular, taking into account, that the experimental intensities are
not rescaled to fit theory, rather, experimental and theoretical data are each normal-
ized individually by their incident intensity. At small angles the theory overestimates
the amplitude of the rapid angular oscillations, that are indeed also seen in experi-
ment. These rapid oscillations are only present at small angles, before the onset of
total internal reflection, when light transmits through the liquid-gas interface. They
correspond to an interference between waves scattered from the top grating surface
and waves scattered from the bottom of the grooves. This interference is weakened
in experiment, since (a) the groove wall possesses a finite roughness, as opposed to
theory, where a perfectly flat wall is assumed, and (b) more importantly, the depth
of the grooves varies by more than λ/2 over the hole sample –the etch rate decreases
towards the edge of the wafer–, such that an interference involving the bottoms of
the grooves, is averaged out. In contrast, at large angles, the incident light interacts
almost exclusively with the top grating surface and the liquid-gas interfaces. Both of
these surfaces are very well defined and homogeneous over the hole sample. The nm
smoothness, and nearly perfectly identical shape of the liquid-gas interfaces is at the
origin of the high optical quality of the sample, resulting in the excellent agreement
between experiment and theory in the total internal reflection regime. To give right
to this highly sensitive diffraction measurement, in the following only the data with
incident angle > 30◦ is used for the fit. A small secondary peak is observed in the
1/χ2-landscape at κ = −0.42R−1. This upward bent liquid-gas interface is identi-
fied with an equivalent interference condition corresponding to a positive deflection,
with a similar magnitude, and correspondingly a similar angular oscillation period
∆ϑ. The corresponding theoretical diffraction intensities are shown with a dashed
red line in Fig.3.2. It can be seen that this equivalent interference condition fits the
experimental data much worse, showing that the fit is unique – it reveals whether the
liquid-gas interfaces are bent upwards or downwards.

To explain the measured curvature we assume that the pressure drop PL across the
interface is the product of the curvature and the surface tension σ, following Laplace’s
law. The gas pressure in the groove is the ambient pressure, such that the pressure
drop across the interface is the hydrostatic pressure Ph. Pressure balance requires
that PL = Ph, resulting in a prediction for the curvature κ = Ph/σ. Inserting the
surface tension of water σ = 73mN/m, and the experimental value of Ph = 7500Pa
for the data shown in Fig. 3.2, we obtain κ = 0.256R−1, in good agreement with the
measured value.
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Figure 3.3: Reversible bending of the liquid-gas interfaces under an applied
hydrostatic pressure and wetting transition. (a) The curvature of the liquid-gas
interfaces is plotted in terms of the Laplace pressure PL = σκ against the applied hy-
drostatic pressure. The pressure is first increased (red circles), subsequently decreased
to negative pressures (blue circles), and returned to zero. The slope is determined as
unity. As the pressure is further increased (black symbols), the interfaces bend in-
creasingly downwards. At a threshold pressure Phc, the sample switches irreversibly
from the superhydrophobic to the impregnated state (red crosses). The transition is
characterized by a critical angle αc of the liquid-gas interface with the groove wall
of 125 ± 2◦, in close agreement with the Young angle (horizontal dashed line). (b)
Diffraction intensity of the −1st order for selected pressures. Fits to the optical
model (lines) are shown along with the experimental data (symbols). Green repre-
sent a moderate pressure (uppermost red circle in (a)). Black corresponds to the last
stable state (outermost black data point in (a)), characterized by a strongly curved
interface. Red corresponds to the filled state (red crosse in panel (a)). (c) Same as
in (a) for a sample with groove width 8µm. The critical angle αc = 122± 2, observed
at a correspondingly lower critical pressure is consistent with the one observed in (a).
(d) Photograph of the sample after inducing the wetting transition for the two upper
gratings (groove widths 8 and 4µm). The two upper gratings are in the filled state,
and appear dark, while the two lower gratings remain in the superhydrophobic state
and appear silvery.
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To establish this further, we vary the hydrostatic pressure step-wise, and deter-
mine at each pressure the curvature of the liquid-gas interfaces through an angular
diffraction measurement. Fig.3.3(b) shows how the characteristic minima and max-
ima in the angular scan change as the interfaces bend under the applied hydrostatic
pressure. The red and blue symbols in Fig.3.3(a) show the test of the pressure bal-
ance for a sequence of applied pressures. The curvature of the interfaces (outer right
axis) increases and decreases reversibly as the hydrostatic pressure is varied from zero
to 15kPa, to -10kPa, and finally back to zero. The corresponding Laplace pressure
is equal to the hydrostatic pressure, indicated by a slope of unity, confirming above
pressure balance.

We proceeded by increasing the hydrostatic pressure to larger and larger values
(black symbols with error bars in Fig.3.3a). Above a threshold, the distinct maxima
and minima in the diffraction curves disappear (red symbols in Fig.3.3b), accompanied
by a change of the visual appearance of the sample from silvery to dark (Fig.3.3c),
suggesting that the liquid-gas interfaces have vanished, and the sample has undergone
a transition from the superhydrophobic to the impregnated state. A fit to the optical
model shows that indeed, all diffraction curves for pressures above the critical pressure
are best described by diffraction data corresponding to grooves that are filled (red line
in Fig.3.3b). While the critical pressure to induce the transition is well-defined, the
transition itself typically takes a few minutes, which we attribute to the dissolution
of the previously entrapped air. Once the transition is complete, it is irreversible.
Increasing or decreasing the applied hydrostatic pressure below the critical pressure
(down to a minimum of −10kPa), does not recover the superhydrophobic state.

To infer the microscopic condition of the wetting transition, we examine the last
stable shape of the liquid-gas interfaces measured before the transition. The black
symbols in Fig.3.3(b) show the diffraction intensity corresponding to the last stable
state. The optics theory (black line) determines the curvature as κc = −0.57 ±
0.02R−1. Through geometry, this translates into an angle αc between the meniscus
and the groove wall of αc = 125± 2◦, in close agreement with the macroscopic Young
angle of the substrate. The inner right axis in Fig.3.3 denotes the angle α for all
data. It is seen, that indeed, the transition occurs at the Young angle. To probe this
further, we move on to a sample with larger groove width (w = 8µm). We expect that
the wetting transition occurs at the same angle α, but the latter being reached at a
higher pressure. Fig.3.3(c) shows the result, confirming the previous observations.

The present results show that the microscopic behavior of a generic superhy-
drophobic surface (including its wetting transition) can be described quantitatively
by invoking only two fundamental assumptions. (1) Laplace’s law (the pressure drop
across a curved interface is σκ), and (2) the Young condition (the angle at the three-
phase contact line is the Young angle). Following Gibbs [128], at a sharp edge, the
latter is expressed by requiring that the liquid-gas interface may adopt any angle larger
than the Young angle with respect to the adjacent horizontal surface, and smaller than
the Young angle with respect to the adjacent vertical surface (Fig.3.4a) 1. At small
hydrostatic pressure the interface is flat. The contact angle is well within the range

1Gibbs’ condition is equivalent to assuming that the sharp edge is curved on a scale much smaller
than the entire liquid-gas interface and the contact angle is always the Young angle (see also [87]).
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(a) (b)

(c) (d)

Figure 3.4: Microscopic model of the wetting transition. (a) For the present
surface profile with perpendicular walls. (b) For a reentrant surface profile. For a
drop on a superhydrophobic surface, Laplace’s law requires that liquid-gas interfaces
are bent downwards (corresponding to a pressure decrease upon crossing the interface
from the liquid to the gas phase). With a reentrant surface profile Young’s condition
is satisfied with downward bent interfaces even for liquids with a Young angle smaller
than 90◦.(c-d) Illustration of the ultimate stability limit, (c) for liquids with a Young
angle larger than 90◦. (d) for liquids with a Young angle smaller than 90◦.

of Gibbs’ condition. As the pressure is increased, the interface bends downwards,
thereby increasing its angle with respect to the groove wall. At larger and larger
bending, the angle exceeds Young’s angle and the interface must translate inwards,
with liquid invading the groove. Our results verify quantitatively that the wetting
transition is induced when the microscopic contact angle exceeds Young’s angle on the
vertical wall, demonstrating that the Gibbs condition provides the ultimate stability
limit of superhydrophobic surfaces. In analogy with the critical pressure for filling,
there is a critical negative pressure, at which the liquid-gas interface with the hori-
zontal surface reaches the Young angle, and the contact line must translate outwards
(top red line in Fig.3.4a). For large negative pressures, we find indeed that macro-
scopic bubbles grow out of the sample and merge to a continuous cushion, as expected
for depinning of the contact lines on the horizontal surface 2. The usefulness of this
microscopic mechanical model lies in the ease of describing general complex surface
profiles without the need of an involved energy minimization [119]. E.g. ’reentrant’
surfaces that provide liquid repellency for substances with a contact angle smaller
than 90◦ (’superoleophobicity’) [126, 2] can be described in analogy (Fig.3.4b).

An ultimate stability limit and corresponding optimal surface profile follows in a

2a quantitative confirmation of the critical condition was impeded by early bubble nucleation at
defect sites of the sample that interfered with the optical measurement.
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Figure 3.5: Setup for experiments under vapor condition. (a) Degassing of
the water. (b) Evacuation and flushing of the chamber. (c) Flooding of the chamber
and experiments with variable hydrostatic pressure.

similar fashion. In this case, the microscopic mechanism for the wetting transition is
slightly different. Let us consider first a liquid with a contact angle larger than 90◦,
say 120◦, and a reentrant surface profile (Fig. 3.4c). At large applied pressure, the
liquid-gas interface is suspended from below on the reentrant texture. Upon increasing
the hydrostatic pressure, the interface bends increasingly downwards (accompanied
by a small translation of the contact line in case the edge is curved), until the interface
forms a perfect half circle (dashed red line). From this moment on, a further growth
of the interface results in a decrease of the curvature, and thus in a decrease of
the pressure that the interface can sustain. Thus, upon a further increase of the
hydrostatic pressure, the interface expands vigorously, and the angle between the
interface and the ceiling immediately reaches the Young angle (outermost dashed
line), and the interface translates and collapses. Thus, for a liquid with a contact
angle larger than 90◦ reentrant type profiles represent already optimal profiles that
provides the largest possible resistance to impregnation, expressed by a critical angle
with respect to the vertical αc = 180◦. The corresponding critical pressure follows
from the particular geometry of the surface pattern in the lateral direction. A rather
high critical pressure could be achieved with cylindrical holes of radius R, that result
in Pc = 2σ/R. In analogy, for a liquid with a contact angle smaller than 90◦, say 30◦,
an inward circled edge (Fig. 3.4d) could further increase the stability limit, however
not above the same ultimate limit αc = 180◦.

To address the irreversibility [57, 9, 105, 18] of the wetting transition, we repeat
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Figure 3.6: Bending and wetting transition for a single constituent water-
vapor system. (a) For a sample with groove width 5µm. (b) For a sample with
groove width 3µm.

our experiments near the coexistence line of the water-vapor phase transition, that
is, we evacuate the chamber, thereby degassing the water, and admitting only vapor
inside the sample grooves. Fig.3.5 shows a schematic of an experimental setup that
allows to do so. Water is degassed overnight using a glass balloon, a magnetic stirrer,
and a membrane pump (a). The valve of the glass balloon is closed and the membrane
pump detached. The sample is mounted in the empty measurement cell, and the glass
balloon connected to the cell and a rotary pump through suitable mid range vacuum
stainless steel bellows and valves (b). The valve of the glass balloon remains closed.
The rotary pump is turned on. The valve to the rotary pump is opened, and the
chamber including the steel bellow is evacuated to the end pressure of the rotary pump
(≈ 1Pa). For several times, the chamber is flushed with water vapor, by opening the
valve of the glass balloon for few seconds and closing it again. At last, the chamber
is again evacuated to the end pressure of the rotary pump, the valve to the pump is
closed, and the pump disconnected from the system. The valve of the glass balloon is
opened, and the balloon is turned upside down and lifted to a level higher than the
measurement chamber. Water flows from the balloon to the measurement chamber,
entering the chamber through a flange in its bottom (c). Thereby the vapor volume in
the chamber condenses. The grooves of the sample are filled with vapor, and the liquid
level slowly rises above them, enclosing their vapor volume. Subsequently, the level of
the balloon is increased in steps. The hydrostatic pressure is determined by measuring
the height of the liquid level with a measuring tape. At each step, a full diffraction
measurement is recorded. The pressure inside the grooves and above the water level
is now the vapor pressure Pv = 2300Pa of water at the given temperature (≈ 20◦).
The pressure drop across the interface is thus exactly the hydrostatic pressure. As
in the case of the water-air system, upon increasing the hydrostatic pressure, the
interfaces bend downwards, and collapse as the angle between the liquid-gas interface
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and the groove wall reaches the Young angle. Fig.3.6 shows the result. While in case
of the water-air system, the translation of the liquid-gas interfaces into the groove
required few minutes time, determined by the dissolution of the air into the water,
here the transition is immediate, characterized by the instantaneous condensation
of all vapor inside the groove, and limited only by a viscous drag, that the liquid
experiences as it invades the groove. Remarkably, also for the water-vapor system,
the wetting transition is still irreversible. That is, upon decreasing the hydrostatic
pressure below the critical pressure that marks the transition, the system does not
return back into the superhydrophobic state, even though the pressure inside the
grooves is the smallest possible (the pressure inside the grooves is the vapor pressure
plus an inevitable, small, hydrostatic pressure). This result suggests that the quest
to superhydrophobic surfaces exhibiting a reversible wetting transition, may be most
successful by pursuing mechanisms of external forcing such as electric heating [55] or
photo chemistry [48].

Until here, the diffraction from a superhydrophobic surface served ’merely’ as a
tool to gain a detailed insight into the microscopic properties of the superhydrophobic
state. However, superhydrophobic surfaces could also be used to provide new opti-
cal functionality. In the following section we demonstrate, that a superhydrophobic
surface fabricated from glass (and immersed in water) could readily serve as an easy
and cost effective immersed dielectric grating [85, 24, 79, 25] that provides effectively
100% diffraction efficiency and is (through the mechanism of bending the interfaces)
additionally in situ tunable, at high switching speed [103].

3.3 Highly efficient, tunable transmission grating

The expected high smoothness and homogeneity of the liquid-gas interfaces of the
presented optical grating, intrigues the question, whether the concept of a superhy-
drophobic optical grating could serve as a simple and effective way of implementing
an immersed, or ’buried’, dielectric grating. Fig.3.7(a) shows a schematic of a buried
transmission grating. Rectangular grooves are fabricated into the backside of a glass
body. The grating is illuminated from the glass side. The transmission region is
provided by a dielectric material, that is index matched with the material on the in-
cident side – in contrast to an ordinary transmission grating, where the transmission
region is air. Thereby the effective reflectivities for the fundamental mode traveling
in the grating region, on the top and bottom grating surface are equalized, and a
scattering loss into the ordinary reflected order is suppressed. This mechanism of
reducing reflection losses was the topic of a recent paper [24], where the authors
showed, that, indeed, if the refractive index in the incident and transmission medium
are exactly equal, e.g., if the transmission medium is provided by a second glass body,
100% diffraction efficiency can be achieved. In our case, the refractive indices of the
glass and the water are not exactly identical, nevertheless, given the expected high
smoothness of the liquid-gas interfaces, paired with a potentially easy fabrication, it
is worth evaluating the diffraction characteristics of such a device. Though, a word of
prudence is in place. One important application of dielectric gratings, that has gained
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Figure 3.7: (a) Schematic of a superhydrophobic tunable transmission grating. (b)
Diffraction efficiency of the transmitted −1st diffraction order as a function of groove
width and depth, assuming a flat liquid-gas interface. The groove width and depth are
measured in units of the period T = 345nm. The white circle marks the choice of the
groove width and depth, that yields the highest diffraction efficiency (w = 0.66T and
d = 1.98T , respectively) (c) Spectral characteristics of the grating. The solid blue line
show the result obtained with optimum groove width and depth for a flat meniscus.
The dashed lines show the result obtained with optimum width (w = 0.66T ) but too
large depth (d = 0.21T ), for increasing meniscus deflection. The black dashed line
represents a slightly bent meniscus (ζ = −0.1R). The green dashed line represents a
maximally bent meniscus (ζ = −R). The red dashed line represents a medium bent
meniscus (ζ = −0.5R), that allows to recover the excellent diffraction characteristics
obtained with optimum groove width and depth.

much attention recently, is chirped pulse compression. Often chirped pulses have a
wavelength in the near infrared. The immersed grating based on a superhydrophobic
surface, that we introduce below, utilizes water on the transmission side. Water shows
a notable absorption in the infrared (the penetration depth, or attenuation to the 1/e
part, is of the order 2 cm at 1µm [43]). Therefore, we believe, that the device, cannot
be used in this form for infrared high power laser applications. It should however be
possible to find a sufficiently transparent liquid with the required large surface tension
to realize a superhydrophobic grating also for infrared wavelengths. However, more
importantly, water is truely transparent over the visible spectrum, and down to the
near UV. A large number of modern optical applications uses this spectral range. We
shall thus select 500nm as the design wavelength λ0 of the optical grating.

Generally, a high diffraction efficiency is achieved when the grating is arranged in
−1st order Littrow configuration, where the reflected −1st order is anti parallel to the
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incident beam, characterized by −q−1 = q0 (see Fig.3.7(a)). This also means, that
the diffraction orders on the transmission side are symmetric. In virtue of Eq. (2.58),
the Littrow configuration settles the period of the grating to

T = λ/(2nR sinϑ0), (3.1)

where ϑ0 is the angle of the 0th diffraction order. Here, we assume ϑ0 = 30◦, which
determines the period as T = 345nm. This determines also the angular dispersion

D = 2/λ tanϑ0, (3.2)

as found by differentiating Eq. (2.58) with respect to λ, and applying the Littrow
condition.

Generally, a binary (rectangular profile) optical grating, has a high diffraction
efficiency only for certain choices of the groove width and depth, determined by the
phase shift that the fundamental and the first mode in the grating region accumulate
as they travel in normal direction [23]. Therefore, to design a buried superhydrophobic
grating, we first calculate the diffraction efficiency as a function of groove width and
depth, assuming – for the moment – a flat liquid-gas interface. Fig.3.7(b) shows
the plot. The grating provides > 99% diffraction efficiency for a broad range of
widths and depths. Indeed, the regions of high efficiency are considerably broader as
compared to a classical transmission grating, and more importantly, the theoretical
peak efficiency reaches 99.3% as compared to 93% for a classical transmission grating
(e.g. [23]). Thus, an immersed superhydrophobic transmission grating represents
indeed a highly efficient buried grating, and can provide peak diffraction efficiencies
that are superior to classical transmission gratings. Moreover, the predicted high
efficiency is only slightly lower than the predicted 100% of an ideal buried grating
featuring glass on the transmission side. In practice, the efficiency is limited by
imperfections of the periodic profile, that inevitably result in scattering losses, and
by the finite extent of the illuminated area – or the finite number of grooves involved
in the scattering process – that results in a loss into a homogeneous background. It
is thus well possible that the predicted high efficiency already exceeds the maximum
efficiency achievable in practice, even with an ideal buried grating. Moreover, the
superhydrophobic optical grating allows to tune the geometry of the unit cell in situ.
In particular, by controlling the bending of the liquid-gas interface (through a suitable
hydrostatic pressure), the optical path inside the groove, and consequently the phase
shift between the two modes in the grating region, can be adjusted. In this way,
the grating can be tuned to maximum efficiency, and thereby a fabrication tolerance
– e.g. the etch depth – can be compensated, or the peak efficiency can be shifted
to another wavelength. Fig.3.7(c) shows the spectral characteristics of the immersed
superhydrophobic grating. The solid line reflects an optimal grating, with ideal groove
width and depth W = 0.66T , respectively D = 1.98T , as marked by the white circle in
(b). The dashed lines represent an imperfect grating, with the same groove width, but
slightly too large depth D = 0.21T . For a nearly flat liquid-gas interface (ζ = −0.1R,
black line), the peak diffraction efficiency is shifted towards larger wavelength by
about 10nm, and the diffraction efficiency at the design wavelength is decreased to
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Figure 3.8: (a) Schematic of a superhydrophobic tunable gold grating. The grating is
arranged in −6th order Littrow configuration. (b) Diffraction efficiency of the −6th

diffraction order as a function of groove width and meniscus deflection, for a grating
with groove depth D = T = 1.2µm. The groove width is measured in units of the
period, the deflection is measured in units of half the groove width. (c) Spectral
characteristics of a superhydrophobic gold grating for increasing meniscus deflection.
The upper and lower panel shows the −6th, respectively −5th diffration order.

about 96%. Likewise, for a strongly deflected meniscus (ζ = −R, blue line), the peak
efficiency is shifted towards shorter wavelength. However, by tuning the deflection to
ζ = −0.5R (red dashed line), the ideal diffraction characteristics featuring ¿99% peak
efficiency can be restored. This makes the superhydrophobic grating an interesting
component for applications were a high peak efficiency is required.

3.4 Tunable gold grating

The presented highly efficient, superhydrophobic transmission grating promises ex-
cellent diffraction characteristics, and its tunability should allow in practice to tweak
the peak efficiency towards the theoretical optimum. However, its tuning range is
rather limited. This stems from the maximum possible deflection of the liquid-gas
interfaces, that is limited through fundamental capillary theory to half the groove



3.5. SUMMARY AND CONCLUSIONS 57

width [30]. And since the groove width is considerably smaller than the wavelength,
a substantial change of the interference conditions of the modes in the grating region
cannot be achieved. In contrast, what one would like to achieve, is indeed a phase
shift as large as 2π, e.g., to be able to effectively switch on and off a part of the
spectrum, or to shift the peak efficiency to a desired wavelength, or – if the target
is a diffractive optical element offering a functionality comparable to a liquid crystal
cell – to gain full control of the optical phase.

To achieve this, we increase the period, and the width of the grooves, and to
this end, we turn back to a reflection type of grating, as studied initially. To allow
for a high reflectivity, we replace the silicon by gold. Such a grating could be made
hydrophobic in practice, by depositing a self assembled monolayer of an alkanethiol
[6]. Fig.3.8(a) shows a schematic of the superhydrophobic gold grating. To allow
for a large period, the grating is illuminated in a high order Littrow configuration.
Throughout this section, we assume the grating is arranged in −6th order Littorw
configuration, and the incident angle is 70◦ – larger than the angle of total reflection
between water and air, to allow for an interference phenomenon as observed before
with the silicon grating – which determines the period of the grating as T = 1.2µm.
For the refractive index of gold, we use the values tabulated in [90]. Fig3.8(b) shows
the diffraction efficiency of the −6th diffraction order as a function of groove width and
meniscus deflection, assuming a groove depth D = T . A large diffraction efficiency is
achieved at groove widths close to T . This large groove width allows for a comparably
large deflection of the liquid-gas interfaces. From now on we assume the groove width
is W = 0.9T . Fig3.8(b) shows the corresponding spectral characteristics of the −6th

and −5th diffraction order for increasing meniscus deflection. Analog to the angular
dependence of the diffracted intensity of the silicon grating, pronounced minima and
maxima appear, and as the menisci are deflected, the minima and maxima shift. In
particular, the peak diffraction efficiency of the −6th diffraction order can be shifted
by around 40nm, from about 460nm to 500nm. Thereby the diffraction intensity at
500nm and slightly above 460nm can be effectively turned on and off. Likewise, in
the −5th order, the diffraction intensity at around 530nm can be effectively turned
on and off, and spectra with rather different spectral distributions can be produced.
Whether or not such a spectral switching may find its way into an optics application –
be it just a fast spectral filter (the grating is switchable at Mhz speed [103]), or a more
sophistic grating application – is hard to foresee. Nevertheless, this demonstrates the
feasibility of modulating an optical spectrum, by actively controlling the shape of the
unit cell of a diffraction grating.

3.5 Summary and conclusions

We have introduced an optical diffraction measurement that allowed us to study the
microscopic properties of the liquid-gas interfaces that span between adjacent ridges of
the texture of a superhydrophobic surface, and we have observed the transition from
the superhydrophobic to the impregnated state in situ on the microscopic level. We
have shown that the macroscopic collapse is triggered by depinning of the microscopic
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contact lines at a threshold angle that is in close agreement with Young’s macroscopic
contact angle. Our results provide essentially a contact angle measurement on a sub
10µm scale, whereby the measurement accuracy is ≈ 2◦, comparable to the accuracy
of macroscopic contact angle measurements. The results confirm that the assumption
of a local contact angle that forms the basis of several models for contact angles on
heterogeneous surfaces [50, 115, 113, 119], is satisfied well below the micrometer scale.
The results are explained through a simple model that is based on the macroscopic
laws of Laplace [31] and Young [132]. It is therefore essential to employ the classical
laws of Laplace and Young on microscopic scales to formulate stability criteria for the
design of optimal superhydrophobic (and superoleophobic) surfaces.

A good agreement between experimental and theoretical diffraction intensities
was observed, suggesting that the liquid-gas interfaces are of high optical quality,
both in terms of smoothness and equality. This suggested that a transparent super-
hydrophobic optical grating could provide an excellent buried dielectric grating, that
is additionally cheap (easy to fabricate), and in situ tunable to its optimum diffraction
efficiency. Finally, a higher order superhydrophobic gold grating was considered, that,
in virtue of its large period and groove width, could provide a tuning range, that is
large enough to effectively switch on and off parts of the spectrum. The device opens
up perspectives for a superhydrophobic surface based optical phase array.



Chapter 4

Gedankenexperiments with
superhydrophobic surfaces

In this chapter we consider the role of metastable drop conformations for the contact
angle on superhydrophobic surfaces. We outline qualitatively several drop states and
consider the effect of ’open’ and ’connected’ surface patterns.

59
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(a) (b) (c)

Figure 4.1: Drop on a superhydrophobic surface in the absence of gravity.
Starting from an initially microscopic drop on one pillar (a), the drop volume is
increased (b-c). In the absence of external perturbations, the liquid-gas interface
remains attached to the initial pillar and grows to a near perfect sphere (c).

Figure 4.2: A ’drop expansion’ experiment on one pillar on macroscopic
scales. The denoted angle θ0 is the Young angle, which is in this case smaller than
90◦. θc measures the critical angle with respect to the flat surface. The critical
condition for downward translation on the wall is illustrated by the dashed line.
(From “Resistance to spreading of liquids by sharp edges” by J. F.‘Oliver, C. Huh,
and S. G. Mason. In Journal of Colloid and Interface Science 59, p.568 (1977) c©2008
Elsevier. Reprinted by permission.)

The chapter is organized as follows. We first illustrate in Sec. 4.1 the role of
metastable drop states. Subsequently we discuss in Sec. 4.2 the main features of drop
conformations encountered in typical laboratory experiments with superhydrophobic
surfaces. In Sec. 4.3 we review recent experimental data obtained with drops on
’connected’ surface patterns, and sketch the main features of corresponding drop
conformations. The chapter is concluded in Sec. 4.4. An outlook is given in Sec. 4.5.

4.1 Metastable states

Let us consider a superhydrophobic surface that is made up of cylindrical pillars.
At first, let us neglect gravity. If we place a microscopic drop on one of the pillars
(the drop shall be smaller than the width of the pillar), the drop adapts the usual
spherical cap shape with the Young angle at the contact line Fig.4.1(a). Let us
increase the liquid volume. The drop grows. To continuously satisfy the local Young
condition, the contact line translates on the horizontal surface, until it reaches the
edge of the pillar (Fig.4.1(b)). Upon further increase of the volume, the angle between
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(a) (b) (c)

Figure 4.3: A superhydrophobic surface under gravity turned up-side-down.
(a) The surface is approached from below with a sessile drop that has initially a
curvature κ0 > 0 in its tip. (b) Subsequently the volume of the drop is increased
(and the height of the support of the drop is lowered accordingly). (c) The drop
grows without the liquid-gas interface ever touching an adjacent pillar.

the horizontal surface and the liquid-gas interface increases. However, if the contact
angle on the wall of the pillar is larger than 90◦, the contact line does not slide
downwards on the vertical wall of the pillar. Furthermore, the energy corresponding
to a ’jump’ of the contact line to an adjacent pillar is larger than the energy provided
by thermal fluctuations (see also Sec. 2.2.2). Thus, the liquid-gas interface remains
pinned at the edge of the initial pillar. The latter experiment can be realized in
practice on the macroscopic scale. Fig.4.2 reprints a figure from [87], where the
authors illustrate a similar experiment that they perform on macroscopic scales. In
this case the experiment is performed under the influence of gravity (flattened drop),
and with a liquid that has a contact angle smaller than 90◦, and with an inclined side
wall such that the contact line will translate downwards when the liquid volume is
large enough. However, the crucial point concerning ’jumps’ of the contact line is well
understood. Under macroscopic conditions it is evident that the contact line will not
’jump’ spontaneously (i.e. thermally driven) to the adjacent pillar. This comparison
to the macroscopic scale can be helpful to understand the behavior of a liquid on
small scales. The behavior of liquid on a superhydrophobic surface is understood
easily by realizing that the microscopic liquid-gas interfaces behave essentially like
an equivalent macroscopic system. Let us return to our gedankenexperiment under
zero gravity conditions. We realize that however large we make the volume of the
drop, its surface will not touch the adjacent pillar. One stable conformation for a
drop on a superhydrophobic surface (under zero-gravity conditions) is thus a nearly
perfect sphere that is attached to a single pillar (Fig.4.1(c)). In this case the apparent
macroscopic contact angle is 180◦.

One may argue that, however intelligible above gedankenexperiment may be, the
zero-gravity condition represents nothing but an artificial, unrealistic case that has
little to do with a drop placed on a real superhydrophobic surface under laboratory
conditions. However, above gedankenexperiment is closer to a laboratory experiment
than it may seem. To allow for gravity, let us turn the system up-side down (we imag-
ine that we settle the drop on a suitable flat surface, e.g. on an ordinary hydrophobic
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(a) (b) (c)

Figure 4.4: Drop on a superhydrophobic surface under gravity. Upon slowly
turning on gravity the drop sags (a) and covers an increasing number of pillars (b),
however, at any time the liquid-gas interface remains in a condition just before touch-
ing the next pillar, such that the macroscopic contact angle remains 180◦ (c).

surface). Let us also skip the procedure of ’pumping up’ an initially microscopic drop
(such a procedure may indeed be difficult in practice due to evaporation), and instead
start right away with a macroscopic sessile drop (Fig.4.3a). In virtue of the Laplace
law, the curvature of the drop increases from some value κ0 in its apex to κ0 + Ph/σ
at its foot. If we don’t place a really large puddle, initially κ0 > 0. Rather than in-
creasing the volume of the drop, we now approach the drop with a superhydrophobic
surface from the top, until one pillar gets in contact with the apex (Fig.4.3b). Now
we can increase the volume and perform the same experiment as before. The result-
ing conformation of the drop is similar to the previous conformation, with one pillar
attached to the surface and an apparent macroscopic contact angle of 180◦ (Fig.4.3c).

When gravity is admitted to the spherical drop resting on a single pillar (Fig.4.1),
the drop will sag and its surface will get in contact with other pillars. One could spec-
ulate that such a conformation could be characterized by an apparent contact angle
smaller than 180◦, and maybe agree with contact angles observed experimentally on
superhydrophobic surfaces with pillar patterns, which are typically between 150◦ and
170◦. Let us therefore consider this case. The drop will sag as illustrated in Fig.4.4(b),
and its surface will get in contact with adjacent pillars. Such a conformation is il-
lustrated in Fig.4.4(c). As we increase the sagging of the drop (by further increasing
gravity), this process repeats, and the drop gets in contact with an increasing number
of pillars. However, at any time the drop surface is in a state ’just before touching
the next pillar’. Thus, the apparent macroscopic contact angle is again 180◦. This
illustrates that gravity alone is not enough to ’break’ a metastable drop conforma-
tion in such a way that the apparent contact angle becomes smaller than 180◦. One
mechanism that could provide a drop conformation with a contact angle smaller than
180◦ is external forcing. This is considered in the subsequent section.

4.2 Qualitative picture of a drop on a
superhydrophobic surface

Above gedankenexperiments illustrate that the shape of a liquid drop on a superhy-
drophobic surface is not simply described by a minimal energy problem. Since thermal
excitations are not large enough to perturb the contact line over heterogeneities, the
system does not seek a global energy minimum by itself, rather every state that agrees
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(a) (b) (c)

Figure 4.5: Detachment of a sagged drop. Gravity is slowly turned off. To satisfy
the global shape change, the surface lifts upwards at any but the central pillar (a-b).
To satisfy the curvature κ = κ0 + Ph/σ imposed by Laplace’s law, the surface forms
catenoid like protuberances at the pillars (c).

with the boundary conditions (local contact angle and volume constraint) is a stable
state. The ’sphere-on-a-pillar’ and the ’sagged-sphere’ state encountered above are
only two special cases. The question is then: which is the state that a drop adopts
in a typical laboratory experiment? This is discussed in the following. We analyze
qualitatively the main features of the three-dimensional shape of a sessile drop on a
superhydropdrophobic surface.

Under realistic conditions of a contact angle measurement (e.g. using the sessile
drop method), it is certainly impossible to maintain the fragile states described in
above gedankenexperiment. Through external perturbations such as thermal drift, air
flow, mechanical vibrations, or an uncompensated inclination of the substrate with
respect to the gravitational force, one will sooner or later –possibly in an unwanted
fashion– force the drop downwards or sidewards on the surface. This scenario suggests
to evaluate a receding contact angle.

To this end, let us return to the drop under gravity that is sagged and in contact
with many pillars. Let us consider the case where surface tension dominates over
gravity, such that anywhere on the drop the curvature is close to the curvature κ0 at
the top of the drop. Let us now slowly turn off gravity. Due to the global change
of the shape from a sag back towards a sphere, the surface will lift upwards at any
but the central pillar. Fig.4.5a-b) illustrates this process at the edge of the foot
region of the drop. Since κ ≈ κ0, the curvature of the liquid-gas interface changes
only by a small amount (both the radius of curvature and the distance by which the
surface is lifted are large compared to the pillar radius). To satisfy the condition
of approximately constant curvature, while maintaining contact to the pillars, the
surface must form catenoid-like protuberances (Fig.4.5c)). If the radius of a pillar is
much smaller than the distance between two adjacent pillars, the protuberance are
approximately independent. Since the characteristic scale of a protuberance is much
smaller than the global radius of curvature, the protuberance must effectively provide
zero curvature. Thus the surface is approximately a catenoid ’glued’ to a flat. Let us
evaluate how long a pillar stays attached to the surface.

The condition for the detachment is given by Young’s condition. The liquid-gas
interface detaches when the angle at the ridge of the pillar reaches the Young angle
with respect to the flat surface (Fig.4.6a)) (indeed, it is the same condition as the
critical condition for bubble expansion with an immersed superhydrophobic surface
demonstrated experimentally in the preceding chapter). An intuitive guess for the
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(a) (b) (c)

Figure 4.6: Schematic of the detachment process at a single pillar. (a) critical
condition for detachment. (b-c) Model for the detachment of a single pillar. A pillar
of radius R is retracted from a flat surface until, at a distance d, the liquid-gas interface
reaches Young’s angle with respect to the horizontal surface and detaches.

Figure 4.7: Characteristic scale of a catenary. The radius R of the pillar and the
critical condition for detachment with the Young angle ϑY = ϕ + 90◦ at the pillar’s
edge determine the scale a of the catenary.
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critical distance at which the pillar detaches would be the radius of the pillar. Let us
check this. Let us make a simple model with a flat surface, and one cylindrical pillar
that touches it, and let us retract the pillar until it detaches (while maintaining the
zero curvature of the initially flat surface) (Fig.4.6b-c)). The problem is somewhat
counter intuitive. In fact, an interface as sketched in the figure does not exist (or has
not been found to date). The only known surface with zero mean curvature in R3

without discontinuities –with exception of the plane and the rather special case of a
helicoid– is the catenoid. It is obtained by revoluting a catenary (Fig.4.7), given by

y =
a

2

(
ex/a + e−x/a

)
= a cosh(x/a). (4.1)

It is seen that the catenary grows indefinitely: though a catenoid has zero mean
curvature at any x, it never approaches a flat surface. Therefore, a catenoid cannot
be stitched seamlessly to a plane to yield another zero mean curvature surface. Indeed
no known surface describes our problem, or in other words, our problem is strictly
speaking ill posed. In nature, a small amount of gravity or the global curvature of the
drop that is actually not exactly zero, fixes the problem. Here, we fix the problem by
asking not for an x0, where the catenary approaches infinity (a pole), rather we ask
for the characteristic scale of the catenary above which it starts its rapid growth, i.e.,
we ask for the scale of the leading exponential term. Thus, we seek to determine a,
for a given Young angle ϑ and given radius R of the pillar. Let us denote the slope
corresponding to the Young angle with s = tanϕ = tan(ϑ− 90◦). We wish to solve

y′(x(R)) = s (4.2)

for a, where x(R) is the solution of the catenary equation to x. The latter is found
through an inverse identity for the cosh

cosh−1(z) = ln
(
z +

√
z2 − 1

)
. (4.3)

Inserting above expressions in the derivative of the catenary equation yields

2s =
R

a
+

√
R2

a2
− 1−

(
R

a
+

√
R2

a2
− 1

)−1

, (4.4)

which has an explicit solution to a, resulting in

a =
R√

1 + s2
. (4.5)

Thus, indeed, for moderate Young angles (as long as the Young angle is not close to
180◦), the distance between the base surface and the pillar at which the protuberance
detaches, is of the order R. One observation is worth noticing: the analogue result
for a contact angle smaller than 90◦ (as is encountered e.g. with a superoleophobic
surface) is not qualitatively different: we can imagine the pillar attached instead
on the left branch of the catenary at negative x. Finally, it is worth considering
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the detachment process itself: is the translation of the contact line on the face of
the pillar a reversible process that we can stop half way (by reducing the distance
between the pillar and the surface again), or is it an irreversible process, limited only
by viscosity, that kicks in as soon as the Young angle at the ridge of the pillar is
reached? Yes, it is irreversible. As the radius of the circular contact line on the face
of the pillar decreases, the distance to the flat surface that was required to allow for a
stable protuberance is only smaller (in virtue of Eq. (4.5)), such that the pulling force
gets only stronger, amplifying the detachment process. For our gedankenexperiment
with decreasing gravity or ’lifting’ a sagged drop, this implies that the drop will easily
detach from individual pillars. This agrees with the high mobility and low contact
angle hysteresis observed with drops on superhydrophobic surfaces.

We now draw the connection between above gedankenexperiment of ’turning off
gravity’ to the real-life deposition of a drop on a superhydrophobic surface. Suppose
we manage to place a drop on a superhydrophobic surface in the ideal ’sphere-on-a-
pillar’ or ’sagged-sphere’ state (Fig.4.1(c),Fig.4.4(c)). However, during the experiment
we introduce a perturbation, e.g., we apply for a short time a downward force on
the tip of the drop (e.g. by an air flow, or by inertia arising after the macroscopic
detachment of a syringe that we used to deposit the drop). In such a case, the
drop will touch down on the surface, getting attached to many pillars, and relax back
upwards, possibly detaching again from some of the pillars. Inertial effects aside, such
a process is arguably similar to the one encountered in above gedankenexperiment of
’slowly turning on and off gravity’. Alternatively, we may slightly incline the surface,
and roll the deposited drop back and forth. Arguably this results as well in a similar
state.

The metastability of possible drop states leaves it open to us to decide what is
our concept of a ’macroscopic apparent contact angle’. Evidently, whatever choice we
make, the contact angle will be a function of not only the size of the drop, it will also
depend on its history. Several possible choices are discussed in [119]. One possibility
is to ’deposit’ a drop on different locations of the surface and to evaluate for each
position the corresponding local minimum of the free energy. Subsequently equal
a priori probabilities are assigned to all such drop conformations and the apparent
contact angle is evaluated from the corresponding ensemble average. Alternatively,
an ensemble of drop conformations could be obtained by ’moving’ a drop over the
surface. Such ensemble averages are arguable because they cannot be rigorously
justified and moreover they are not necessarily physical. In any case, those suggestions
seem prohibitively difficult [119] and have remained ideas.

In contrast the ’marble-with-protuberances’ obtained after slowly turning on and
off gravity represents a drop conformation that is both well defined and conceptually
simple. And –most importantly– possibly resembles closely the drop conformations
encountered in a typical contact angle measurement. Thus, it could provide a feasible
and realistic drop conformation for the evaluation of a macroscopic apparent contact
angle. We are currently preparing corresponding numerical calculations.
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(a) (b)

Figure 4.8: Open and connected surface patterns. (a) honeycomb (b) nanonails
structure. Blue and red lines and annotations overlayed on the original figure denote
the width w, respectively head diameter d and period a of the structure. (From
“Nanonails: A simple geometrical approach to electrically tunable superlyophobic
surfaces” by A. Ahuja, J. A. Taylor, V. Lifton, A. A. Sidorenko, T. R. Salamon,
E. J. Lobaton, p. Kolodner, and T. N. Krupenkin. In Langmuir 22, p.9 (2008)
c©2008 ACS publications. Reprinted by permission.)

4.3 Connected surface patterns

Most common superhydrophobic surfaces feature an ’open’ surface pattern with un-
connected ridges. Periodic arrays of circular or square pillars and most natural super-
hydrophobic surfaces are good examples. Recently, superhydrophobic surfaces with a
’connected’ surface pattern where studied experimentally [2]. In this case the ridges
of the surface pattern form a connected grid. Fig.4.8 reprints a SEM image from [2].
It shows the type of honeycomb structures that were investigated in that work.

On such a structure water adopts an apparent macroscopic contact angle ϑ∗ =
137.3◦ with a contact angle on a planar substrate ϑY = 113.9◦ [2]. In this particular
case, the solid surface fraction is

φs =
2√
3 da
≈ 0.077, (4.6)

where a = 30µm and d = 2.1µm are the period of the surface pattern, respectively the
width of the ridges. For this case, the Cassie-Baxter equation predicts an apparent
macroscopic contact angle

ϑ∗ = 162.6◦, (4.7)

which is in contrast to the apparent contact angle found experimentally.
The relevance of the experimental data is underpinned by the simultaneous ob-

servation of a large apparent contact angle on an analogue superhydrophobic surface
with an ’open’ surface pattern. Fig. 4.8 shows the type of ’nanonail’ structure studied
in [2], providing an ’open’ surface pattern. It is important to stress that the ’nanon-
ail’ and the ’honeycomb’ samples were fabricated with the same protocol (including
a silanization step by vapor deposition providing hydrophobicity) suggesting that the
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Figure 4.9: Gedankenexperiment with a superhydrophobic surface featuring a con-
nected surface pattern. Blue lines mark the footprint of an initially microscopic drop
whose volume is slowly increased (viewed from the top). As the drop grows, unit cells
of the surface pattern are repeatedly embraced, thereby forming horizontal liquid-gas
interfaces (blue region in (d)).

Young angle on both samples is the same. For the nanonails with head diameter
d = 380nm and pitch a = 0.9µm, the solid surface fraction is

φs =
π(d/2)2

a2
≈ 0.14. (4.8)

On this surface, water adopts a contact angle of 155.1◦. This measured value is in
fair agreement with the Cassie-Baxter equation, which predicts ϑ∗ = 156.5◦.

It is important to stress that the honeycomb sample features a solid surface fraction
that is almost a factor of two smaller than that of the nanonail pattern. Thus, from
the point of view of a surface average, one would expect that the honeycomb pattern
provides the larger contact angle. Yet, the opposite is the case. This suggests that a
contact angle model that is based on an area weighted average cannot capture both
results simultaneously.

We now describe qualitatively the conformation of a drop on a connected surface
pattern. As an example we consider a square grid as shown in (Fig.4.9a)). Let us
repeat the very first gedankenexperiment of increasing an initially microscopic drop
with this surface. We can start by depositing a drop on the crossing of two ridges.
As we increase the volume of the drop, the its contact line translates smoothly on
the surface. Soon the contact line starts translating along the ridges in all four direc-
tions. At an early stage, the contact area between the drop and the surface takes the
shape of a cross (Fig.4.9a)). The corresponding three-dimensional shape is a complex
constant-mean-curvature surface (beautiful examples of such surfaces can be found in
[17]). However, here let us merely look at the footprint of the drop. Let us further
increase the volume. Soon, at each of the four ridges, the contact line approaches
an adjacent crossing (Fig.4.9b)). How does the contact line translate further as the
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drop volume is further increased? If it translated only outwards, the resulting finger
would have a strong positive curvature that would be incompatible with the constant
mean curvature of the the drop. In contrast, if the contact line translates along the
perpendicular ridge, the global shape of the drop can relax more and more towards a
spherical cap shape. Thus, the contact line translates mainly along the perpendicular
ridge (Fig.4.9c)). This results in two contact lines approaching simultaneously the
corner of a unit cell. As they meet, they merge, thereby embracing the unit cell,
and forming a horizontal liquid-gas interface across its opening. Fig.4.9d) shows the
corresponding footprint of the drop. As the drop volume is further increased, this
process repeats. Fig.4.9e) shows the footprint of the drop at a later stage. Enclosed
unit cells are painted blue. The corresponding global shape of the drop differs from
a spherical cap shape only by small deformations in the vicinity of the macroscopic
contact line. In this case advancing and receding macroscopic contact angles are well
defined. The advancing contact angle is necessarily smaller than 180◦, in contrast to
the gedankenexperiment with an equivalent open surface pattern. An intuitive guess
for the receding contact angle could be that it is close to the Young angle. As for the
advancing contact angle, one may speculate that it is possibly considerably smaller
than the contact angle of an equivalent surface with an open surface pattern.

4.4 Summary and Conclusions

Several stable conformations of a drop on a superhydrophobic surface were discussed
qualitatively for ’open’ as well as for ’connected’ surface patterns. The effect of gravity
and external forcing was considered, and its role in ’breaking’ the metastability of
high energy drop conformations analyzed. Experimental data for contact angles on
connected surface patterns was reviewed, and a local contact angle model was outlined
that may explain the ’lesser hydrophobicity’ of such surfaces.

The considerations highlight the challenges in developing a complete model of
superhydrophobic surfaces that describes experimentally observed contact angles on
both open and connected surface patterns [2], and captures at the same time the
behavior of low surface tension liquids on reentrant surface profiles [126]. A promising
approach could be a local contact angle model similar to models suggested e.g. in
[50, 115, 113, 119].

4.5 Outlook

The need for a detailed explanation of recent contact angle measurements on con-
nected surface patterns as well as reentrant profiles [2, 126] may stimulate renewed
theoretical efforts in describing superhydrophobic surfaces by means of local contact
angle models. It is the hope that this may eventually lead to a detailed understanding
of the complex shapes adopted by liquid drops on superhydrophobic surfaces.

From the point of view of experiments, a detailed characterization of contact angles
on connected surface patterns promises further insight. It is of interest to investigate
systematically the dependence of the apparent contact angle on the surface fraction
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and pattern geometry. A similar systematic study with low surface energy liquids on
reentrant surfaces is desired. Finally, it could be interesting to directly demonstrate
the macroscopic nature of the superhydrophobic state, and actually show the local
deformations at the contact line. To this end, it could be interesting to study a
’drop’ formed with two density matched immiscible liquids on a superhydrophobic
surface with a ’macroscopic’ surface texture. Such a system could allow to study
directly metastable conformations of a drop. E.g. it could allow to actually prepare
a ’sphere-on-a-pillar’ state in the laboratory.



Chapter 5

Large bandwidth, highly
efficient optical gratings
through high index materials

In this chapter we consider methods to increase the spectral bandwidth of dielectric
optical gratings. Grating geometries are considered (i) in transmission, (ii) ’buried’
grating between two glass bodies, (iii) TIR grating geometry. The effect of a high
refractive index grating layer as well as slanted grating lamella is analyzed through
numerical simulations. It is shown that a suitable high refractive index grating layer
can improve the spectral bandwidth. Dielectric optical gratings with octave spanning
-1dB bandwidth are devised, providing a spectral bandwidth that is larger than that of
a gold grating.

71
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(a) (b) (c)

Figure 5.1: Transformation of a superhydrophobic surface into a TIR grat-
ing. (a) Superhydrophobic silicon grating. (b) Fictive TIR grating consisting of
water. (c) Dielectric TIR grating.

5.1 Introduction

The interference phenomenon that arises when illuminating a superhydrophobic op-
tical grating under a grazing incident angle (3.2), and that was understood as a
’total internal reflection’ like process, poses the intriguing question, whether this phe-
nomenon could be used to devise a highly efficient optical grating. To address this
question we ’transform’ the superhydrophobic grating as illustrated in Fig. 5.1. We
are guided by the idea that we want to provide interference between two totally re-
flected waves – rather than a TIR and an ordinary reflected wave as is the case with
the silicon superhydrophobic surface. We therefore replace the silicon entirely by air
(b). The resulting ’water structure’ is a rather fictive object. We thus replace the wa-
ter by glass, and end up with the structure as shown in (c). To provide total internal
reflection, we chose an incident angle larger than the angle of total reflection between
glass and air. Considering general design rules for efficient optical gratings, we re-
quire the period to be small enough such that only one diffraction order is present,
and we chose the scattering geometry according to the −1st order Littrow configura-
tion (see also Sec. 2.4.1), resulting in a scattering geometry as shown schematically
in Fig. 5.2(a). We leave the Fraunhofer picture and instead consider coupled waves.
Considering Eq. (2.56) and Eq. (2.57), it follows that all wavevectors in the transmis-
sion region are complex, suggesting that no transmitted wave is present. Thus, the
only modes that are present are the 0th and −1st mode on the reflection side. This
grating is called dielectric TIR grating.

It is indeed remarkable, given the more than 350 year long history of diffraction
gratings [124] (see also 1), that this type of grating was discovered only recently
[70, 67, 68]. The TIR grating geometry offers great benefits. Most importantly, a
reflection type scattering geometry is achieved without the need of a metallic coating.
The low absorption loss of the dielectric material results generally in a large diffraction
efficiency, paired with a large resistance against laser induced damage [70, 67, 68].
Moreover, the grating does not suffer from the typical reflection losses of dielectric
transmission gratings (see also Chapter 1). However, as is the case with all dielectric
gratings, TIR gratings suffer from a small spectral bandwidth. As we shall show
below, in case of the TIR grating the spectral bandwidth is particularly small. This
renders the TIR grating unuseful for many applications, such as spectroscopy and
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(a)

(b)

(c)

(d)

Figure 5.2: (a)–(c) Schematics of the investigated types of dielectric gratings, (a)
TIR grating, (b) immersed grating, (c) classical transmission grating. (d) Scattering
geometry of an optical grating.

astronomic application.
It is thus the question whether TIR gratings can be improved to provide a much

larger spectral bandwidth. In this chapter we shall consider methods to increase the
spectral bandwidth of a TIR grating. We will show that a suitable high refractive
index grating layer can improve the spectral bandwidth. Allowing additionally for
slanted grating lamella, we shall devise dielectric optical gratings with octave spanning
-1dB bandwidth, providing a spectral bandwidth that is larger than that of a gold
grating. Subsequently we will apply the concept of a high refractive index layer to
increase also the spectral bandwidth of ’buried’ dielectric gratings, as well as classical
dielectric transmission gratings.

The chapter is organized as follows. In the remainder of this introduction, we shall
walk through the principles of optical gratings, and optical grating design, using the
fused silica dielectric TIR grating as an example. In Sec.5.2, we introduce the use
of high index materials to dielectric TIR gratings, and present our numerical results
for the diffraction characteristics of the devised designs of dielectric TIR gratings. In
Sec.5.4, we extend the use of high index materials to immersed dielectric gratings. We
start by analyzing qualitatively the challenge of designing an immersed grating with
high dispersion, and subsequently present our numerical results on immersed gratings
featuring a high index material. Finally, in Sec.5.5, the use of high index materials
is extended to classical dielectric transmission gratings. The chapter is concluded in
Sec.5.6.

Fig. 5.2(a) shows the schematic of a dielectric TIR grating. Similar to an ordinary
transmission grating, rectangular grooves are fabricated into the backside of a glass
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body, and the grating is illuminated from the glass side. However, in contrast to an
ordinary transmission grating, the grating is illuminated under an incident angle that
is larger than the angle of total internal reflection between glass and air (ϑT ≈ 43.6◦),
such that the zero-order transmitted beam is evanescent. Furthermore, the period T
of the grating is chosen sufficiently small, such that all other diffraction orders on the
transmission side are evanescent as well. This is achieved by stressing the scattering
geometry of the grating.

Fig.5.2(d) illustrates the scattering geometry. Generally, as an optical grating is
illuminated with a plane wave, a number of plain waves are scattered from the grating.
Waves are scattered into the reflection region R , and into the transmission region T,
that are characterized each by their refractive index nR, respectively nT . Associated
with every scattered wave is an amplitude and a wavevector. The wavevector expresses
the direction of the wave – or, in case the wavevector is complex, the penetration
depth of the evanescent wave. The components of the wavevectors in the periodic
direction (here the y-components, see Fig.5.2) are determined by the Bloch condition
as qm = q0 + mQ, where m = −∞, . . . ,+∞ is the diffraction order, Q = λ/T , and
q0 = nR sinϑ0. Here ϑ0 is the incident angle. We have non-dimensionalized the
spatial coordinate through r 7→ 2πr/λ. The z-components of the wavevectors are
determined through the wave equation as kSm = (nS2 − qSm

2)1/2. S = R, T denotes
the reflection and transmission region, respectively. A real k represents a propagating
diffraction order, a complex k represents an evanescent wave. The latter relations
imply the grating equation

sinϑSm = sinϑS0 +
mλ

nST
, (5.1)

which expresses the angles of the scattered waves. Angles are measured with a positive
sign in positive y-direction, and with a negative sign in negative y-direction. The
angular dispersion D follows by differentiating the latter equation with respect to λ,

D =
∂ϑRm
∂λ

= − m

TnR cosϑRm
. (5.2)

The TIR grating is then arrived at, by requiring

|qm| > nT . (5.3)

This determines a range, where the period of the grating is sufficiently small.
Generally, the highest diffraction efficiency is achieved if the grating is mounted in

−1st order Littrow configuration, where the −1st diffraction order is anti parallel to
the incident wave, that is −q−1 = q0. To see the benefit of this, consider the opposite
case: Suppose a binary (rectangular profile) reflection grating is illuminated at zero
incident angle, that is, perpendicular to the surface. And suppose the period is small
enough, such that only the +1st and the −1st diffraction order are present. It is
possible to choose a suitable width and depth of the grating grooves, such that the
largest part of the diffracted intensity is scattered into the 0th order, or, by choosing a
different width and depth, all of the diffracted intensity is scattered into the first order.
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However, due to symmetry, the intensity of the +1st and the −1st diffraction order
must be equal, such that, at maximum 50% of the diffracted intensity is scattered
into a single diffraction order. In contrast, if the incident angle is chosen such that
the −1st diffraction order is anti parallel to the 0th order, only the 0th and the
−1st order are present, and the scattered intensity can be distributed at will among
those two orders (by choosing a suitable groove width and depth), thus (nearly) 100%
diffraction efficiency can be achieved. Remarkably, near 100% diffraction efficiency can
be achieved also with higher order Littrow configurations, characterized by −qm =
q0, and even more surprising, this holds true even for higher order TIR gratings,
where no longer all transmitted orders are forbidden. We will discuss this in detail in
Sec. 5.3. This implies indeed, that the TIR grating condition can be relaxed. Rather
than requiring that all diffraction orders on the transmission side be evanescent (as
suggested originally in Ref.[70], and represented by Eq. (5.3)), it is sufficient to require
that the 0th transmitted order is evanescent, i.e., the ordinary condition for total
internal reflection is satisfied, expressed as |q0| > nT . Independent of that, in most
cases, one will design a grating for −1st order Littrow configuration, because here, the
overlap between higher diffraction orders is minimal – the angular range per diffraction
order is largest – such that the largest spectral bandwidth can be achieved.

The Littrow configuration settles the period of the grating as

T = mλ/(2nR sinϑR0 ). (5.4)

From now on, we assume the wavelength is 1064nm, the refractive index of the glass is
1.45, and the incident angle is 60◦. Thus, the period of the grating is T = 423.66nm
in our case. This settles also the angular dispersion, since the Littrow condition
substituted in Eq. (5.2) yields

D = 2/λ tanϑ0. (5.5)

The dispersion is minimal at zero angle (perpendicular to the surface), and diverges
at grazing angles. With the above parameters, the dispersion is D = 0.187◦/nm. A
comparably large dispersion is inherent to TIR gratings, because of the necessarily
large incident angle.

To arrive at a highly efficient TIR grating, one varies the width w and depth d
of the grating grooves, and evaluates the resulting intensity of the −1st diffraction
order with a suitable numerical method. A number of efficient numerical methods
have been developed over the past decades, that allow to do so. Here, we use the
multilayer rigorous coupled wave analysis, as devised in Ref.[77]. The numerical code
used in this work [101], is written in FORTRAN 90 and Python [34], and is made
freely available under the GPLv3. In this work, all calculations were performed on a
grid equipped with 2GHz Dual Core AMD OpteronTM processors, and took only few
hundred cpu hours.

The upper panel of Fig.5.3(a) shows the calculated diffraction intensity of the −1st

diffraction order as a function of groove width and depth, for s-polarized light (results
for p-polarization and averaged s and p are included in the supplemental material).
Broad regions appear, where the diffracted intensity is close to unity. This behavior
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Figure 5.3: Diffraction efficiency of dielectric TIR gratings as a function of the groove
width and depth. (a) silica TIR grating. (b) TIR grating based on a high index
material (n=2.4). (c) TIR grating based on a high index material featuring slanted
lamella (α = 40◦). (d) silica TIR grating featuring slanted lamella (α = 30◦). The
upper panels show the diffraction efficiency at the design wavelength λ0 = 1064nm.
The middle panels show the mean diffraction efficiency, averaged over the theoretically
accessible spectral band, as determined by the condition of non-overlapping diffraction
orders, λcut/2 < λ < λcut, where λcut = nRT (1 + sinϑ0). The lower panel shows the
−1dB spectral bandwidth. The open white symbols mark optimal choices of the
parameters w and d for each type of grating, and represent those values, for which
the spectral characteristics is plotted in Fig.5.4. All results shown correspond to
s-polarized light.



5.1. INTRODUCTION 77

can be understood by considering the propagation constants in normal direction, of
the modes that are excited inside the grating region [23]. As the grating is arranged
in −1st order Littrow configuration, only the fundamental and the first mode in
the grating region carry a notable amount of energy. They propagate at different
velocities, determined by their propagation constants. Thus, as they propagate, they
accumulate a phase shift. The phase shift that the waves have accumulated as they
couple out of the grating region, determines whether they are scattered into the
ordinary reflected beam or into the −1st order. In this way, by choosing the depth
of the grooves, the intensity can be distributed at will among the 0th and the −1st

order. The propagation constants of the modes are determined by their effective
refractive indices. Those depend on the filling fraction of the grating, that is, the
groove width. Consequently, depending on the groove width, a different depth is
required to achieve the desired phase difference. The fringes in Fig.5.3(a) correspond
to integer multiples of the interference condition. It should be noted, that, along a
line in the center of each fringe, the intensity is truly unity. This is in contrast to
classical transmission gratings, where the maximum theoretical intensity is limited
by the effective reflectivity of the grating, which inevitably results in a scattering
loss into the 0th order, such that 100% diffraction efficiency cannot be reached (e.g.
[24], and the discussion in Sec.5.4, and Fig.5.8(a)). The latter elevates the TIR
grating as a unique component for applications where highest diffraction efficiencies
are required. The width-depth-map suggests a number of possible choices for the
width and depth, that result in a highly efficient TIR grating. To devise a TIR grating
that is easily fabricated in practice, one may chose an intermediate width and a small
depth, corresponding to a small aspect ratio. The white circle in the upper panel
of Fig.5.3(a) represents one possible choice, with w = 0.35T and d = 1.1T . To find
the spectral characteristics of the corresponding grating, one varies the wavelength
of the incident light, and evaluates the resulting diffraction efficiency. The latter
may be done in two ways. (1) The incident angle is held fixed, while the wavelength
is varied – this case is encountered, e.g., with gratings that are used for dispersion
control in femtosecond laser applications, or with spectrometers that are equipped
with a line CCD and operate without movable parts. (2) As the wavelength is varied,
the incident angle is adapted, such that the grating continues to satisfy the Littrow
condition for every wavelength – this case is encountered, e.g., in a classical scanning
monochromator. Here, we consider the first case, motivated by the application of the
dielectric TIR grating for pulse compression, and furthermore, because the range of
possible incident angles for the TIR grating is not particularly large.

The blue line in Fig.5.4 shows the spectral characteristics of the dielectric TIR
grating, with width 0.35T and depth 1.1T , in comparison to a best blazed gold grat-
ing (in air), with period T = 614nm, that has the same dispersion and incident angle
as the TIR grating. The blaze angle of the gold grating was optimized to yield the
largest possible bandwidth and peak efficiency in the given wavelength range, found
as 33◦. The dielectric TIR grating shows excellent properties in a 50-100nm band
around its design wavelength. In particular, it reaches 100% diffraction efficiency at
its design wavelength, and provides scattering losses smaller than -1dB (95% diffrac-
tion efficiency) over a bandwidth of 84nm. Here, it provides unsurpassed diffraction



78 CHAPTER 5. LARGE BANDWIDTH DIELECTRIC GRATINGS

500 600 700 800 900 1000 1100 1200�
 [nm]

0.0

0.2

0.4

0.6

0.8

1.0

in
te

n
si

ty

�
01/2

�
cut

�
cut

0 -10 -20 -30 -40 -50 -60 -70 -90

� [�]

0.0

0.2

0.4

0.6

0.8

1.0
�T

Figure 5.4: Spectral characteristics of dielectric TIR gratings (s-polarized light), as
compared to a best blazed gold grating with blaze angle 33◦ (p-polarized light). The
blue line shows the result for a silica TIR grating with groove width 0.35T and depth
1.1T , corresponding to maximum peak efficiency and spectral bandwidth (white circle
in Fig.5.3(a)). The green line shows the spectral characteristics of a dielectric TIR
grating featuring a high index material (n = 2.4) in the grating region (w = 0.6T ,
d = 0.25T , as marked by the white square in Fig.5.3(b)). The black line shows
the spectral characteristics of a dielectric TIR grating with a high index material
and slanted lamella (α = 40◦), groove width 0.7T , depth 0.5T , corresponding to an
optimal choice for large mean diffraction efficiency and simultaneously a comparably
smooth spectrum, (white diamond in Fig.5.3(c)). The cyan line shows the result for
a silica TIR grating with slanted lamella (α = 30◦), groove width 0.3T , depth 1.6T ,
optimized for high short wavelengths efficiency.
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efficiency. Indeed, these high diffraction efficiencies cannot be reached with metallic
gratings, whose inherent absorption inevitably results in losses [94]. However, as the
wavelength is altered substantially from the design wavelength, the diffraction effi-
ciency quickly drops to zero. In particular, as the angle of the −1st diffraction order
reaches the angle of total internal reflection between glass and air, the diffraction
intensity drops to a sharp minimum, and for shorter wavelengths – corresponding to
angles smaller than the angle of total internal reflection – the diffraction intensity
does not recover its initially large value. These diffraction angles correspond to the
case, when the −1st diffraction order on the transmission side is no longer evanescent.
However, a large diffraction intensity of the reflected −1st order is not strictly for-
bidden at these scattering angles, as can be seen by the small but nonzero intensity
value. This low diffraction efficiency over the largest part of the spectrum renders the
TIR grating unusable for a large number of applications, including broadband pulse
compression and most spectroscopic applications.

It is desirable, to resolve this issue, and to increase the spectral bandwidth of
the TIR grating towards values that are comparable with metallic reflection gratings
and dielectric transmission gratings, while maintaining the extraordinarily large peak
diffraction efficiency, and the high resistance to laser induced damage. This is the
first objective of this paper.

5.2 Large bandwidth dielectric TIR grating

The described phenomenon of a suppressed diffraction intensity at smaller angles, is
remarkably robust. A first approach to increase the spectral bandwidth would be, to
explore the landscape of possible combinations of the width and the depth, and to
evaluate how this effects the spectral characteristics. However, the spectral bandwidth
is only decreased. The lower panel of Fig.5.3(a) shows the −1dB spectral bandwidth
as a function of the grove width and depth. It is seen, that the previous choice (with
w = 0.35T and d = 1.1T ) corresponds already to the largest possible bandwidth, and
for larger depths, the reflectivity and the bandwidth decrease in an oscillatory fashion.
This behavior is understood qualitatively by referring to the theory of Kogelnik, who
gave an estimate for the bandwidth ∆λ (full width at half maximum) of dielectric
transmission gratings in the limit of deep grooves as

∆λ
λ

=
T

d
cotϑ0. (5.6)

It is seen, that indeed, the bandwidth is largest at small d.
This qualitative insight suggests already a way to improve the spectral characteris-

tics of the grating. As an increase of the groove depth reduces the spectral bandwidth
of the grating, one should try the opposite, one should decrease the groove depth. To
do so, the difference of the propagation constants of the two modes in the grating
region has to be enlarged, that is, the refractive index contrast has to be increased.
Thus, in the grating region, we replace the glass by a material that has a larger re-
fractive index. Suitable high index optical materials that are routinely available in
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the form of high quality thin films – through optical coating applications – are, e.g.,
Sapphire, diamond, TiO2, etc.. The latter two materials offer the largest refractive
index, around 2.4, in the wavelength range considered here [90]. From now on, we
assume the refractive index of the high index material is 2.4. It should be noted, that
the glass in the reflection region is kept. This is indeed important. If the material
in the reflection region was changed together with the groove material, the grating
period needed to be decreased accordingly. As a result, the entire computational
problem was rescaled, such that no improvement was achieved.

The upper panel of Fig.5.3(b) shows the diffraction efficiency as a function of
groove width and depth for the high index TIR grating. It is seen, that indeed, the first
fringe is shifted towards shallower grooves. The smallest possible depth is achieved at
around w = 0.6T and d = 0.25T (white square in Fig.5.3(b)). And indeed, here, the
spectral bandwidth reaches its maximum (lower panel of Fig.5.3(b)). The green line in
Fig.5.4 shows the corresponding spectral characteristics. The diffraction efficiency is
increased over the entire spectrum as compared to the TIR grating based on glass. In
particular, the −1dB bandwidth around the design wavelength, is increased to 180nm,
and is more than doubled as compared to the all-in-glass equivalent. Additionally,
towards smaller wavelengths, in the range where the diffraction angle is larger than
the angle of total internal reflection between glass and air, the diffraction efficiency
is greater than 40%. This is a useful value for many spectroscopic applications. In
addition, the moderate aspect ratio of the grating grooves (≈ 0.5), suggests that such
a grating could be fabricated rather easily. Furthermore, the different nature of the
grating and substrate material will probably help to fabricate structures with a very
well defined depth, determined only by the thickness of the layer that is deposited prior
to the etching process. The thickness of deposited layers can typically be controlled
very accurately. Nevertheless, the natural question arises, whether this grating design
can be further improved.

We have so far considered only the most simple of all grating profiles – rectan-
gular grooves. It is well known that the diffraction efficiency of a gold grating – in
particular its spectral characteristics – can be greatly improved, by choosing an ap-
propriate blaze angle [94]. The blaze angle is chosen such that the incident beam and
the diffracted beam are nearly perpendicular to the long face of the grating tooth
(over the range of incident angles determined by the desired spectral range). Could
the spectral characteristics of the TIR grating be further improved by using an equiv-
alent geometry? As we will show below, the answer is yes, however, it is not sufficient
to introduce a blaze, which becomes clear by considering the depth of the grooves
necessary to accumulate the required phase shift in the grating region. As the ge-
ometry is more complex, the propagation constants of the waves vary in z-direction
over the grating region, nevertheless, the mechanism for achieving maximum diffrac-
tion efficiency through the constructive interference of the fundamental and the first
mode, is still qualitatively the same. And indeed, near 100% diffraction efficiency can
be achieved with a large variety of groove geometries, such as symmetric triangles,
asymmetric triangles, bow-ties, etc., by choosing a suitable width and depth. How-
ever, as is the case with rectangular grooves, generally a relatively large total depth
is required, since the difference of the effective index of the propagation constants
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is never very large. E.g, in the case of symmetric triangles, a height of several T is
required to achieve near 100% diffraction efficiency. In contrast, the blazed geometry
is characterized by a small aspect ratio. In particular, the aspect ratio is smaller than
T/2 (the blazed geometry is characterized by a triangle that features a right angle in
its tip, related to the original ruling process that uses an inclined rectangular cutter).
Because of this small aspect ratio, the blazed geometry cannot provide a high diffrac-
tion efficiency, for the type of dielectric gratings discussed here. However, a geometry
that provides inclined faces, without sacrificing the possibility of a large groove depth,
is the slanted geometry, characterized by rectangular lamella that are sheared along
the periodic direction with a slant angle α. The slant angle is defined as the angle
by which the groove wall is rotated as compared to the normal direction. Clockwise
rotation corresponds to positive angles. Indeed, the slanted geometry has much in
common with the geometry of volume phase holographic gratings, where, in the gen-
eral case, the crests of the holographically imprinted refractive index modulation are
allowed to be slanted with respect to the grating normal (e.g. [8]).

To evaluate the diffraction characteristics of a slanted TIR grating, we compute the
diffraction efficiency as a function of groove width, depth and wavelength for all slant
angles −90◦ < α < 90◦, and for each slant angle, we evaluate the spectral bandwidth.
The optimum slant angle is found as α = 40◦. Fig.5.3(c) shows the plot (a movie
sequence showing the plots for all α, is included in the supplemental material). The
−1dB bandwidth exceeds 300nm in a region around w = 0.8T , d = 0.7T . The black
line in Fig.5.4 shows the corresponding spectral characteristics. This grating has a
diffraction efficiency larger than 90% over nearly the full octave, and outperforms the
best blazed gold grating over the largest part of the spectrum. In particular, two broad
peaks of high diffraction efficiency appear, at around 30◦, and at the design angle,
60◦. These broad peaks overlap, and provide very high diffraction efficiency over the
hole spectrum. Around each of the peaks, the spectrum is smooth. A shallow kink
remains at the wavelength that corresponds to a diffraction angle equal to the angle
of total internal reflection. This kink is at the origin of the jump that is observed
in the width-depth map of the bandwidth, at the boundary of the region of large
bandwidth. As the kink reaches above the −1dB limit, the bandwidth jumps from
a value characterized by the width of the right peak, to a value characterized by the
width of both peaks together. It should be noted, that a combination of width and
depth can be chosen, such that the kink between the two peaks at the angle of total
internal reflection, disappears, and the spectrum becomes completely smooth over the
full spectral range. However, in this case the spectral bandwidth is slightly smaller.
Similarly, a width and depth can be chosen such that the right peak maintains 100%
diffraction efficiency at the design wavelength, while the left peak is still higher than
80%. However, in this case, the kink becomes more pronounced. The result plotted
here, represents a compromise between largest possible bandwidth and smoothness of
the kink. Independent of that, it may also be interesting to operate this grating only
with scattering angles smaller than the angle of total internal reflection, that is, the
incident light enters the grating under a large angle, and the scattered light returns
under angles smaller than the angle of total internal reflection. Thereby, only the left
part of the spectrum was used. The design could then be optimized to yield highest
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efficiency specifically across the left peak.
The great improvement of the spectral characteristics provided by slanted lamella

raises the question whether slanted lamella would also improve a single component
TIR grating fabricated entirely from glass. As we will show now, the answer is yes,
and it turns out that this is only achieved by optimizing the design in the way just
described above, that is, by utilizing the left peak of the spectrum, while the right
peak, at the design wavelength, remains small. This is indeed peculiar, because it
means, that the grating does not feature high efficiency when the wavelength satisfies
the Littrow condition, but at another wavelength, which also means, that one over-
looks a highly efficient design, if one optimizes the grating parameters in the usual
way at the design wavelength (because there the intensity is small). This is indeed
remarkable. Recall the intuitive arguments that we put forward to explain why the
Littrow configuration leads to a high efficiency. We considered the opposite case,
when the incident wave is perpendicular to the surface, and the +1st and the −1st

diffraction order are aligned symmetrically around the surface normal. We argued,
that, in this case, due to symmetry, the intensity of the orders must be equal, such
that at maximum 50% diffraction efficiency can be achieved, and in contrast, if the
grating is arranged in Littrow configuration, (near) 100% diffraction efficiency can be
achieved. However, with the slanted geometry, the mirror symmetry of the grating
around the surface normal is broken, and these arguments are no longer rigorously
valid. It turns out that, for the slanted TIR grating in silica, this is indeed strongly
violated, and the Littrow configuration is no longer the universal optimum scattering
geometry, rather, the optimum is achieved when the white light enters under a large
angle, and the arc of diffracted beams leaves under small angles. To the best of our
knowledge, an efficient grating with this type of scattering geometry has not been
reported before.

Fig.5.3(d) shows the diffraction efficiency as a function of groove width and depth
for the slanted silica TIR grating. As with the slanted high index TIR grating, we
have evaluated the dependence of the diffraction characteristics on the slant angle
(see second movie in the supplemental material), and present here the optimum,
found with α = 30◦. The largest bandwidth is found with width w = 0.3T and depth
d = 1.6T . The corresponding spectral characteristics are shown with a cyan line in
Fig.5.4. The grating has excellent spectral characteristics for wavelength correspond-
ing to diffraction angles below the angle of total internal reflection. For larger angles,
the intensity falls off quickly, and at the design wavelength, it has already dropped
below the −1dB limit. This remarkable scattering geometry provides an unsurpassed
diffraction efficiency over an almost 500nm band towards the short wavelength side
of the spectrum. To the best of our knowledge, this represents again, the largest
bandwidth highest efficiency reflection type optical grating devised so far.

5.3 Intermezzo: 2nd order TIR grating

It may under certain circumstances be interesting to design a TIR grating in higher
order Littrow configuration, for instance when high dispersion is required, however,
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Figure 5.5: 2nd order TIR grating. The intensities of the propagating diffraction
orders of a silica dielectric TIR grating in 2nd order Littrow configuration (incident
angle 60◦), s-polarized light, as a function of groove width and depth is shown. The
upper panels show the reflected orders from −2 to +1 (left to right), the lower panel
shows the −1st transmitted order. It is seen, that near 100% diffraction efficiency in
the Littrow order is achieved, despite the fact that a real (non-evanescent) transmitted
order is present.

technologies to fabricate the corresponding small periods are not available. In virtue
of Eq. (5.4), when we double the order m (say from -1 to -2), we should double the
period, while the dispersion (Eq. (5.5)) remains the same. This has usually two effects.
(1) diffraction orders overlap such that the usable spectral bandwidth is smaller. (2)
part of the diffracted intensity is lost into the other orders, such that the diffraction
efficiency is somewhat lower. Nevertheless, for metallic reflection gratings or dielectric
transmission gratings, typically reasonable diffraction efficiencies can still be achieved
at moderately large Littrow orders. However, how about dielectric TIR gratings? Here
the situation is different. When we increase the grating period (while maintaining the
Littrow condition), with reflection or transmission gratings ’new’ diffraction orders
appear ’next’ to the littrow order, in contrast with the TIR grating, if we increase the
Littrow order from −1 to −2, a new diffraction order appears on the transmission side
(see Fig. 5.5), where there had previously been no order at all, and one may expect
that now the diffracted intensity ends up in this order, just as with an ordinary
transmission grating where none of the reflected orders carries a notable share of the
diffracted intensity (rather, nearly all intensity ends up on the transmission side) and
thus the reflecting character of the TIR grating is lost. And indeed, this is what
was suggested originally in Ref. [70], where the TIR grating geometry was introduced
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requiring that all orders on the transmission side are evanescent. However, as we will
now show, this is not the case. The TIR grating geometry works very well also in
higher order Littrow configuration, when transmitted orders are present. Probably
because of some momentum conservation, or symmetry condition, the intensity of the
transmitted orders reduces effectively to zero.

Fig.5.5 shows the diffracted intensity (as a function of groove width and depth)
for a −2nd order TIR grating. It is seen, that the diffracted intensity is distributed
predominantly between the −2nd and 0th reflected order. For many choices of the
groove width and depth, the intensity of the Littrow order reaches near 100%. The
intensity of the −1st transmitted order ’magically’ reduces to zero. We can therefore
relax the TIR grating condition to requiring solely that the ordinary transmitted
wave is evanescent, that is, to requiring just the ordinary condition of total internal
reflection.

5.4 Large bandwidth immersed grating

The described dramatic improvement of the spectral bandwidth of a dielectric TIR
grating through a high index material, is more general. In particular, the introduc-
tion of a high index material improves dramatically also the performance of immersed
dielectric gratings [85] at large incident angles. This is important, since, by virtue
of Eq. (5.5), large angles correspond to large dispersion. In addition, the immersed
dielectric grating has been suggested previously, for providing a device that is easily
cleaned, and usable in a rough (dirty) environment. Fig.5.2(b) shows the schematic
of an immersed dielectric grating. The system is identical to the TIR grating, ex-
cept that the air on the transmission side is replaced by a glass body. Besides the
practical advantages related to cleaning, immersed dielectric gratings have another
particular advantage over ordinary transmission gratings. In contrast to the latter,
they can provide theoretically 100% diffraction efficiency. The latter is the topic of a
recent paper [24], where the authors show, that 100% diffraction efficiency is linked
to equal effective reflectivity of the top and bottom boundary of the grating region.
If the incident and transmission halfspaces have a different refractive index – as is
the case for an ordinary transmission grating, where the transmission region is air
– the reflectivities of the top and bottom grating boundary are different, such that,
even if a suitable interference condition is met for the two modes that travel in the
grating region, a finite intensity remains, that results in an inevitable reflection loss
into the ordinary reflected order. Thus, the diffraction efficiency is at best one minus
an effective reflectivity of the optical grating. The latter can be substantial, espe-
cially when highest efficiencies are required, as is the case in many laser applications,
and especially with large angles, where the grating provides its largest dispersion. In
contrast, the immersed dielectric grating does not suffer this deficiency, and it can
theoretically provide 100% diffraction efficiency – analog to the TIR grating.

However, as was the case with the TIR grating, the spectral bandwidth is limited,
and, more importantly, if operated with large incident angles – corresponding to large
dispersion –, the immersed grating starts to loose its extraordinarily good character-
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Figure 5.6: (a) diffraction efficiency for an immersed dielectric grating, illuminated
under a large incident angle (ϑ0 = 60◦). The upper panels show the reflected orders,
the lower panels show the transmitted orders. The left and right panels show the
−1st and 0th order, respectively. (b) same as in (a), for a grating featuring a high
index material (n = 2.4) in the grating region.

istics. The four left panels of Fig.5.6 show the diffraction efficiency (s-polarization)
as a function of groove width and depth, for an immersed dielectric grating, illumi-
nated under a large incident angle (throughout this section, we consider the same
incident angle, ϑ0 = 60◦, and period, T = 423.66nm, as before, linked to the −1st

order Littrow condition, and providing the same dispersion). Four regimes appear.
(1) At small groove depth, the ordinary transmitted intensity is large – the grating is
negligible. (2) At large groove depth and large groove width, the ordinary reflected
intensity is large – the grating region is increasingly similar to a large air gap, and
total internal reflection occurs at the top grating surface. (3) Towards smaller groove
widths, a region exists, where nearly all of the scattered intensity is scattered into
the transmitted −1st order – the grating resembles an efficient transmission grating.
(4) Towards larger groove widths, a region exists, where a large part of the scat-
tered intensity is scattered into the reflected −1st order – the grating resembles a
TIR grating. Thus, when illuminated with a large incident angle, depending on the
groove width and depth, the immersed dielectric grating can be either more akin to
a TIR grating or more akin to a transmission grating or somewhere in between. As
a consequence of that, the regions of optimal choice of width and depth shrink to
narrow domains, and, generally, a high diffraction efficiency is achieved only at rather
large depths, corresponding to aspect ratios that are not easily fabricated in practice.
Qualitatively, the four regimes described above, are a consequence, of the effective
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Figure 5.7: Spectral characteristics for an immersed dielectric grating featuring a
high index material in the grating region (blue lines), as compared to its all-in-glass
equivalent (red line). The solid blue line represents a design that is optimized for
highest peak efficiency, corresponding to w = 0.43T and d = 1.3T , as shown by the
white square in Fig.5.6(b)). The dashed blue line represents a design that is optimized
for maximum bandwidth, corresponding to w = 0.6T and d = 0.7T , as shown by the
white diamond in Fig.5.6(b).

refractive index experienced by the fundamental mode in the grating region, and the
resulting reflectivities at the top and bottom interface. The effective refractive index
of the fundamental mode is determined by the mean refractive index. For large groove
width, the effective index is near to unity. Thus, as the incident angle is large, the
fundamental mode in the grating region becomes evanescent. Therefore, a notable
amount of light can traverse the grating region only if the thickness of the grating
is of the same order as the penetration depth of the evanescent wave. This small
thickness conflicts with the interference condition for the two modes in the grating
region, that requires a sufficiently large thickness to accumulate the necessary phase
difference between the fundamental and the first mode. Thus, for those groove widths,
for which the fundamental grating mode is evanescent, a high diffraction efficiency
cannot be achieved. As the incident angle is large, most of the reasonable choices for
the width and depth fall into this regime. This makes the design of a high dispersion
immersed grating a hard task. It is remarkable, that also here, the introduction of a
high index material provides a solution, though, through a rather different mechanism
then observed previously with the TIR grating. While, in case of the TIR grating, the
high index material paved the way to a grating with shallow grooves, by providing
a high refractive index contrast, here the high index material serves to increase the
average refractive index in the grating region – potentially above the refractive index
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of glass – to render the grating truly transparent for any incident angle (for most of
the possible filling factors).

The four right panels of Fig.5.6 shows the diffraction efficiency of an immersed
transmission grating using a high index material in the grating region (as before,
we assume the refractive index of the high index material is n = 2.4). A region is
opened up in the range w < 0.6T , where the grating becomes transparent. Near
100% diffraction efficiency is achieved with a number of possible choices of the width
and depth. Fig.5.7 shows the corresponding spectral characteristics for two possible
choices of the groove width and depth, as compared to the equivalent immersed grating
fabricated entirely from glass. The solid blue line corresponds to w = 0.43T and
d = 1.3T , as shown by the white square in Fig.5.6(b), and represents a design that is
optimized for highest peak efficiency in a narrow band around the design wavelength.
The dashed blue line corresponds to w = 0.6T and d = 0.7T , as shown by the
white diamond in Fig.5.6(b), and represents a design that is optimized for maximum
bandwidth (around 80% diffraction efficiency over nearly the full octave). To the best
of our knowledge, the latter represents the largest bandwidth transmission grating
(with the large dispersion considered here), devised so far.

5.5 Classical transmission grating with large band-
width and 100% peak efficiency

The successful improvement of the spectral and dispersive characteristics of a dielec-
tric TIR, as well as dielectric immersed gratings, described in the preceding sections,
intrigues the question, whether a high index material can also contribute to improve
transmission gratings of the classical design.

Fig.5.2(c) shows the schematics of a classical transmission grating. As in the case of
the dielectric TIR grating, light is diffracted at the back side of a glass body. However,
here the incident angle is smaller than the angle of total internal reflection, such that
the light is mainly scattered into transmitted diffraction orders. This grating geometry
has a number of great advantages. (1) Due to refraction, the transmitted orders leave
the grating under a large angle, which, in virtue of Eq. (5.5) corresponds to large
dispersion. Because of this, dielectric transmission gratings are usually superior over
classical reflection gratings in the large dispersion regime (2) This is achieved without
the need of a particularly small period, since, in virtue of Eq. (5.4), the period is
determined by the incident angle, and the latter is – again, due to the refraction –
comparably small. This facilitates fabrication in practice (though, the period is not
smaller than that of a gold grating with equal dispersion – it is the same). (3) The
diffracted wave lives in air, saving the necessity to couple out the arc of diffracted rays
through a flat or suitably curved glass-air interface (in certain applications, such as
e.g. grism applications, the coupling out through the glass-air interface, as faced e.g.
in case of the TIR grating, may however also be used to a benefit, e.g., its dispersive
nature may be specifically used to compensate for higher order dispersion [38]).

Because of these great advantages, the backside diffraction geometry is to date
the primary choice for most dielectric grating applications.
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Figure 5.8: (a) diffraction efficiency of a classical dielectric transmission grating. (b)
diffraction efficiency of a two-layer grating featuring a buried high index layer, with
thickness ratio r = 0.5. White diamonds mark those values of the groove width and
depth, for which the spectral characteristics are plotted in Fig.5.9.
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Figure 5.9: Spectral characteristics of a dielectric transmission grating featuring a
buried high index layer (blue line), as compared to a classical transmission grating (red
line). The groove width an depth are w = 0.7T , d = 1.1T , respectively w = 0.57T ,
d = 2.07T , as shown by the diamond and circle in Fig.5.8.
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Fig.5.8(a) shows the diffraction efficiency as a function of groove width and depth,
for a classical dielectric transmission grating. The grating period is T = 423.66nm,
as before, and the incident angle is chosen such that the diffraction angle of the
transmitted −1st order is 60◦, such that both the diffraction angle and the angular
dispersion are the same as before. Maximum diffraction efficiency is achieved for
width w = 0.57T and depth d = 2.07T , corresponding to the center of the first fringe
(white circle). The effective reflectivity of the top and bottom surface of the grating
region are not equal, such that a reflection loss into the ordinary reflected order is
encountered, and the diffraction efficiency remains smaller than 100%. The maximum
diffraction efficiency is found as 93.5% with w = 0.57T and d = 2.07T . The red line
in Fig.5.9 shows the corresponding spectral characteristics.

The qualitative understanding of the reflection loss suggests that a low loss into
the fundamental reflected order could be achievable, if the effective refractive index in
the grating region for the fundamental mode is close to

√
nR, and the thickness of the

grating region is close to an integer multiple of λ/(4nR), as is the principle of single
layer anti-reflection coatings. In contrast, a large reflection loss into the fundamental
order was expected, if the effective refractive index of the fundamental mode in the
grating region is high. A substitution of the glass in the grating region by a high
index material is therefore not promising. However it turns out, that a simple two-
layer grating is already enough. To ensure a low reflectivity at the bottom grating
surface, the high index grating layer is buried underneath the glass layer, as shown
in Fig.5.8(b). To find the optimum thickness of both grating layers, we evaluated the
diffraction efficiency as a function of width, depth and ratio r = dh/dg of the thickness
dh and dg of the high index layer, respectively the glass layer (third supplemental
movie). Fig.5.8(b) shows the optimum choice corresponding to r = 0.5. The optimum
width and depth is found as w = 0.7T and d = 1.1T . Remarkably, the grating
reaches effectively 100% diffraction efficiency. Thus, the TIR grating featuring a
buried high index layer is indeed a complementary approach to a transmission grating
featuring 100% diffraction efficiency, and an alternative to the immersed dielectric
grating devised in [24]. Additionally, the spectral characteristics are greatly improved.
The blue line in Fig.5.9 shows the spectral characteristics. The grating surpasses a
classical transmission grating over the entire spectrum. To the best of our knowledge,
this represents the largest bandwidth, high efficiency transmission grating devised to
date.

5.6 Summary and conclusions

We have analyzed the diffraction characteristics of dielectric gratings that feature a
high index grating layer, and shown parameter choices that are superior in terms of
bandwidth and efficiency. A qualitative understanding is supplied in combination with
rigorous calculations. The common grating types were considered, including reflection
gratings, immersed transmission gratings and classical transmission gratings. Several
profile types were explored, including novel structures, that comprise a combination of
enhanced material and enhanced geometry. The suggested devices are within current
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manufacturing capabilities. The gratings are compared to existing technology and
applications are pointed out. We expect these types of gratings to become a useful
addition to the existing range of grating geometries.



Chapter 6

Collective dynamics of
ultrasound driven
micromenisci

We study the dynamics of periodic arrays of micrometer-sized liquid-gas menisci
formed at superhydrophobic surfaces immersed into water. By measuring the intensity
of optical diffraction peaks in real time we are able to resolve nanometer scale oscil-
lations of the menisci with sub-microsecond time resolution. Upon driving the system
with an ultrasound field at variable frequency we observe a pronounced resonance at
a few hundred kHz, depending on the exact geometry. Modeling the system using the
unsteady Stokes equation, we find that this low resonance frequency is caused by a
collective mode of the acoustically coupled oscillating menisci.

91
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(a) (b)

Figure 6.1: Schematic of the experimental system. (a) Schematic figure of a
single micromeniscus. (b) Pattern of an array of micromenisci. Arrows denote the
primitive translations and nearest neighbor distance a.

We have hitherto discussed the static behavior of the liquid-gas interfaces at a
superhydrophobic surface. However, a diffraction type measurement as introduced
in Chapter 3 allows to study also the dynamics of the liquid-gas interfaces 1. This
is an important problem, since in the real life of a superhydrophobic surface, the
liquid-gas interfaces are frequently subject to vigorous dynamics (e.g., when a drop
impacts on a superhydrophobic plant leaf). Any practical superhydrophobic surface
must provide resistance to impregnation due to drop impact. In many cases, e.g. with
a superhydrophobic wind shield, drop impact can be of high speed. The dynamics of
the liquid-gas interfaces is therefore of great interest.

6.1 Introduction

In this chapter we will characterize the fluid mechanics of the liquid-gas interfaces and
introduce an optical diffraction measurement that reveals their nanoscale motion. In
particular, we measure in real time the optical diffraction intensity from a periodic
array of micromenisci. Driving the system with an ultrasound field at variable fre-
quency, we measure its frequency response and we identify a well-defined resonance
peak with a center frequency well below the expectations for a single micromeniscus.
Modeling the system using the unsteady Stokes equation and monopole interaction,
we show that this frequency reduction is due to acoustic coupling between the menisci.

6.2 Experiments

Fig.6.1 shows the geometry of our system. It consists of 1 × 1mm2 wide hexago-
nal and square arrays of micrometer-sized cylindrical holes (radii R = 2µm or 3µm,
depth H = 15µm, nearest neighbor distance a = 15µm or 25µm). The samples
were fabricated from Si (110) using standard micro lithography. Subsequently, the

1The detection speed is limited only by the bandwidth of the photodiode, which easily extends
into the GHz range.
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Figure 6.2: Experiment. (a) Schematic of the experimental setup. (b) Photograph
of the diffraction pattern for ϑ ≈ 60◦ as observed on a white screen (The originally
black photograph with green laser spots has been color inverted.). Numbers indicate
Miller indices of diffraction orders. (c) AC component of the light intensity measured
in the (1,0) diffraction order at the beginning of an ultrasound wavetrain.

surfaces were hydrophobized by vapor deposition of a monolayer of 1H,1H,2H,2H-
Perfluorodecyltrichlorosilane, following [72]. The advancing and receding contact an-
gles on an unstructured surface are γa = 116◦ and γr = 104◦. Upon immersing the
samples into demineralized water, ambient air is entrapped in every hole, leaving a
water-air meniscus behind that is pinned at the ridge of the hole. Owing to the hydro-
static pressure, the menisci are bent inwards with equilibrium curvature κ0 = ρgh/σ
(as we have also checked by independent measurement), where g is the acceleration of
gravity, σ is the water surface tension, and h ≈ 0.1m is the distance between the sam-
ple and the free water surface. This implies that the system is in diffusion equilibrium
and the gas pressure in the hole is the ambient pressure.

An Ar-ion laser (λ = 488nm, s-polarized) is used to illuminate the sample under
an angle typically between 60◦ to 70◦ with respect to normal incidence (see Fig.6.2).
The laser’s beam waist measures 1.5mm such that the intensity varies by less than
a few percent over the sample area. The diffracted intensity is measured with a
photodiode positioned at a selected diffraction peak, typically chosen in the vicinity
of the specular reflected beam. A broadband piezoelectric ultrasound transducer is
placed at its focal distance from the sample. The ultrasound transducer is excited
to emit finite wavetrains 2 using an arbitrary function generator. The ultrasound
pressure at the sample is of the order 102 to 103 Pa, which is small compared to a
critical static pressure above which filling occurs Pc = 2σ cos(γa)/R ≈ 2.1 · 104Pa.

2Finite wavetrains are preferred to continuous waves to avoid standing waves inside the container.
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Figure 6.3: Determination of the deflection amplitude. (a) Time-resolved
intensity of the (1, 0) diffraction order, corresponding to small ultrasound pressure
(∆P ≈ 400Pa), solid line, and large ultrasound pressure (∆P ≈ 800Pa), dashed line.
(b) Calculated intensity of the first diffraction order as a function of meniscus deflec-
tion for a rectangular surface profile with groove width w = 2R (ϑ = 66◦). The data is
displayed simultaneously in terms of the displacement ζ and the non-dimensionalized
curvature κR. Both are related geometrically by ζ = 2/κ(1 −

√
1−R2κ2/4). The

equilibrium curvature κ0R = 0.04 corresponds to ζ0 = 30nm.

To check the dynamic stability of the menisci, we increased the ultrasound pressure
to much larger values and observed how the intensity oscillations disappeared at a
defined threshold. The ultrasound pressure is kept constant during a frequency sweep
by controlling the driving voltage according to the transducers frequency response.
Fig.6.2c shows typical raw data corresponding to the beginning of a wavetrain. After
a transient lasting for a few oscillation cycles, the signal becomes sinusoidal with a
constant amplitude. This amplitude is extracted from the raw data by calculating
the root mean square.

6.3 Deflection amplitude

The diffracted intensity depends in a highly nonlinear way on the deflection of the
menisci. To assure a linear relation between the actual deflection and the measured
intensity, the menisci oscillations have to be small. This can be seen in Fig.6.3a.
While the diffracted intensity follows the sinusoidal driving pressure at low driving
amplitudes (solid line), it is distorted at larger driving amplitudes (dashed line).
Prior to an experiment, we reduce the ultrasound pressure until the undistorted sinus
is observed.

To find the magnitude of the corresponding meniscus deflections, we consider the
optical diffraction of the sample. In the Fraunhofer limit, the diffracted intensity is
proportional to the intensity scattered by a single unit cell, and for each unit cell, the
scattered intensity is governed by the interference of the elementary waves emitted
from the cell volume [15]. In our case the incident angle is large and no light reaches



6.4. FREQUENCY RESPONSE 95

the bottom of the holes such that the interference takes place between the waves
emitted from the plane silicon surface and the waves emitted from the meniscus.
Qualitatively, as the meniscus is deflected – consider the position ζ of the apex of
the meniscus – the intensity of a diffraction order (with diffraction angle ≈ incident
angle) changes sinusoidally with a period T = λ/(2n cos(ϑ)), where n = 1.33 is the
refractive index of water. To analyze these simple observations in detail, we performed
a diffractive optics calculation using the multilayer rigorous coupled wave analysis in
the formulation of [77]. This method allows for calculating an exact solution to
the Maxwell equations for the optical response of arbitrary periodic surface profiles.
In Fig.6.3b we show the resulting diffraction intensity as a function of the meniscus
deflection. The typical distance between two adjacent peaks corresponds to the period
evaluated from the simple Fraunhofer arguments above. The result shows that the
diffracted intensity is indeed linear in the meniscus deflection in a range [−ζl.. + ζl]
around the meniscus equilibrium position ζ0 and we find ζl ≈ 90nm. Note that the
extent of the linear range depends on the incident angle ϑ. It is larger for larger
incident angles, as can be seen readily from the simple expression for T . Thus, the
large angles that are used in experiment allow for large meniscus oscillations. For
incident angles above the angle of total reflection between water and air 48.6◦, in
addition the relative contribution of the menisci to the scattered intensity is large.

The theoretical result for the linear range is the key to convert the measured in-
tensity variations into absolute meniscus deflections. Since we have to assure linearity
between intensity and meniscus deflection at all ultrasound frequencies, the peak of
the resonance curve shown in the following has the height ζl. The slope of the linear
range together with the relative noise of the photodiode determines the resolution of
the deflection measurement. It is of the order 1nm under given conditions.

6.4 Frequency response

Fig.6.4 shows a typical measured frequency response. The sample displays a single
resonance at fr = 153±5kHz. Similar curves were obtained for all samples. Table 6.1
shows that the observed resonance frequency increases both with increasing nearest
neighbor distance and with decreasing hole size.

6.5 Theory of a single cavity-meniscus system

To understand the observations quantitatively, we consider first the response of a
single meniscus under the influence of the pressure field P (t) = P0 + ∆Pei2πft, where
f is the ultrasound frequency, P0 is the ambient pressure and ∆P is the amplitude of
the ultrasound pressure. Since ζ0 � ∆ζ,R, as follows with the values evaluated above,
we approximate the meniscus as flat in equilibrium and its deflections as parabolic
ζ(r) = ζ(1 − r2/R2). The parabolic shape implies that the curvature is uniform
up to O(ζ3) giving right to the Laplace law. As described in [60], the smallness
of the deflections ∆ζ � R, and the high frequency f � ν/R2 of the oscillations
(ν kinematic viscosity), allow us to omit the non-linear term in the Navier-Stokes
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Figure 6.4: Frequency response The plot shows the frequency response of an array
of micromenisci with hexagonal pattern, a = 15µm and R = 3µm. Experimental data
(crosses) is compared to theory (lines). The dash-dotted line shows the theory for
a single meniscus. Theoretical data for the array is displayed in terms of the mean
(solid line) and the root mean square deflection (dashed line).

R[µm] a[µm] pattern N M fs[kHz] fc[kHz] fr[kHz]

3 15 H 66 76 805 159 153±5

3 15 S 67 67 805 170 177±5

3 25 H 40 46 805 258 230±20

3 25 S 41 41 805 275 240±20

2 15 H 66 76 1433 346 285±20

2 15 S 67 67 1433 368 290±20

2 25 H 40 46 1433 549 400±20

2 25 S 41 41 1433 584 410±20

Table 6.1: Resonance frequencies of the lowest collective mode fc as a function of lat-
tice constant, pattern geometry and menisci radius. ’H’ and ’S’ denote hexagonal and
square pattern, respectively. fs denotes the resonance frequency of a corresponding
single meniscus, fr the experimental result.
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equation and hence the dynamics of the system is governed by the unsteady Stokes
equation. The system can then be described as a harmonic oscillator

{Φ(ω∗) + iΨ(ω∗) +K}∆ζ∗ = −∆P ∗. (6.1)

The transfer functions Φ and Ψ account for the inertia and the viscous damping due
to the oscillatory flow fields. All quantities are non-dimenionalized ω∗ = 2πfR2/ν,
∆ζ∗ = ζ/R and ∆P ∗ = ∆PR2/(ρν). Since polytropic and thermal dissipative effects
[22] can be neglected, the potential term reduces to a dimensionless spring constant
K = R/(ρν2)

(
P0R

2/(2H) + 4σ
)
. The first term with the ambient pressure is due

to the isothermal compression of the gas and is negligible throughout this work, and
the second term with the surface tension σ is due to the surface energy of the liquid-
gas interface. The computation of Φ and Ψ is performed by solving the unsteady
Stokes equation in cylindrical coordinates with classical no-slip and free slip boundary
conditions at the solid-liquid and the liquid-gas interface, respectively. A detailed
account of the calculations will be given elsewhere [102]. While analytical expressions
can be found both for the high and for the low frequency limit, Φ and Ψ have to be
computed numerically in the intermediate frequency range 100 < ω∗ < 102, which
is relevant for the present experiments. The dash-dotted line in Fig.6.4 shows the
solution for a R = 3µm hole with physical parameters of water ρ = 103kg/m3, ν =
10−6m2/s, σ = 73 · 10−3N/m and ultrasound pressure ∆P = 390Pa as used in the
respective experiment. The obtained resonance frequency is approximately five times
larger than the one observed experimentally. Clearly, the single meniscus theory fails
to describe the dynamics of the system.

6.6 Hydrodynamic interaction

To resolve the discrepancy, we consider the dynamic coupling between the menisci. As
the menisci oscillate in the external pressure field, they emit pressure waves that affect
the other menisci. Denoting the non-dimensionalized distance between the i-th and
the j-th meniscus by d∗ij = dij/R, the additional force acting on the i-th meniscus can
be expressed in terms of a multipole expansion −∆ζ∗j ω

∗2/(4d∗ij) + O(d∗ij
−2), where

∆ζj∗ is the deflection amplitude of the j-th meniscus (see e.g., [62], [16]). In this
expression, we assume that the distance between the i-th and the j-th meniscus is
much larger than R and we neglected the finite propagation speed of the pressure
wave. To analyze the dynamics of the entire meniscus array, we extend the equation
of motion of the single meniscus, Eq. (6.1), by the additional forces generated by all
other menisci keeping only the monopole term. We arrive at the coupled equations
of motion

{Φ(ω∗) + iΨ(ω∗) +K}∆ζ∗i = −∆P ∗ +
N ·M∑
i 6=j

ω∗2

4d∗ij
∆ζj∗. (6.2)

The coupling term gives rise to an additional effective mass, which reduces the reso-
nance frequency, as required. We solve Eq. (6.2) for the individual deflection ampli-
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tudes ∆ζi∗ by numerical matrix inversion. From the result we evaluate the mean

〈∆ζ∗〉 = |
NM∑
i=1

∆ζi∗|/NM (6.3)

and the root mean square

〈∆ζ∗2〉1/2 = (
NM∑
i=1

|∆ζi∗|2)1/2/NM (6.4)

deflection amplitude (see discussion below). The results are shown in Fig.6.4 with
the solid and dashed line, respectively. For the moment note that both curves are
nearly identical up to frequencies well above the lowest resonance. The theoretically
obtained resonance frequency fc = 159kHz is in excellent agreement with the experi-
mental data, showing that collective effects are crucial for the dynamics of the system.
Moreover, the good agreement shows that monopole interaction is effective beyond
its obvious range of applicability where a� R.

6.7 Correct averaging

As can be seen in the inset of Fig.6.4, the theory overestimates the amplitude of the
resonance which is presumably due to the neglectance of the bulk dissipation that
arises in the collective flow field. Second, and more interestingly, the theoretical data
for the root mean square displays a second resonance at 290kHz which is absent in the
experimental data. To understand the latter effect we plot the calculated amplitude
and phase for the two lowest resonances as a function of the meniscus position within
the array in Fig.6.5. For the lowest resonance all menisci oscillate essentially in phase,
whereas at the second resonance, the menisci in the center of the array and the ones
along the edge oscillate 180◦ out of phase and the amplitude displays a node at the
ring shaped boundary between the two regions. To evaluate the diffraction intensity
for such arrays of non-identical scatterers, we note that the variation of the meniscus
deflection gives rise to phase differences between the waves emitted from different unit
cells that are much smaller than 2π – owing to the particular experimental condition
assuring that the diffracted intensity is linear in the meniscus displacement. Extending
the above Fraunhofer picture, we show in appendix B that the diffraction intensity
is linear in the individual menisci deflections, and thus the experiment measures
the mean deflection. Thus, we have to compare the experiment to the theoretical
mean deflection, where the second resonance is indeed nearly invisible. Note that the
expression for the mean as given above accounts for the phase since the deflection
amplitudes ∆ζ∗i are complex.

The reduction of the resonance frequency predicted by the theory is confirmed for
all surface patterns investigated in experiment (see Table 6.1). Since the coupling
between the menisci is inversely proportional to the distance, the frequency reduction
is more pronounced for smaller lattice constants. Similarly, it is more pronounced for
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Figure 6.5: Amplitude and phase maps. The plots show the amplitude and phase
over an array of micromenisci with hexagonal pattern, a = 15µm and R = 3µm (a)
at the fundamental collective mode (159kHz), and (b) at the second collective mode
(290kHz). Note that the color scale for the phase is narrower in (a) as compared to
(b).

the hexagonal lattices than for the square ones, owing to the larger number of nearest
neighbors. At this moment we have no clear explanation for the slight overestimation
of the resonance frequency for the samples with smaller radius.

6.8 Summary and conclusions

We have studied the collective dynamics of microscopic liquid-gas interfaces formed
at the openings of hydrophobic micro-cavities, under the influence of a driving ul-
trasound field, through a time resolved optical diffraction experiment. We described
measured resonance curves through a model that evaluates the unsteady Stokes flow
equations for a single cavity-meniscus system and accounts for hydrodynamic inter-
action in terms of a monopole approximation. We find that the dynamics of arrays
of cavity-meniscus systems are determined by collective oscillation modes with reso-
nance frequencies that are much smaller than the resonance frequency expected for
a single isolated cavity-meniscus system. In terms of interface dynamics at a typical
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superhydrophobic surface, those surfaces that provide a particularly small solid sur-
face fraction, i.e. large contact angles and large slip length, are expected to show the
lowest resonance frequencies. Optical diffraction has proven an accurate tool to study
superhydrophobic surfaces and their nanoscopic hydrodynamics. It remains a chal-
lenge to develop a technique for detecting the oscillations of a single micromeniscus,
and to confirm the unsteady Stokes flow theory for a single cavity-meniscus system,
in particular to confirm the predicted height of the resonance peak, and the related
prediction that viscous dissipation is dominated by vorticity generation inside the
boundary layer. One suitable approach could be a confocal type detection scheme.
The successful realization of such a measurement is demonstrated in appendix I. Fur-
thermore, the present system shows a great sensitivity to ultrasound. This suggests
that one or more cavity-meniscus systems could potentially be used to detect ultra-
sound. A readily integrated device could be based on a superhydrophobic photonic
crystal. Such an approach along with first preliminary results is discussed in ap-
pendix H. In the following chapter we will demonstrate the successful measurement
of a single cavity-meniscus system through a fiber optical micro interferometer and
confirm the related unsteady Stokes flow theory. At the same time, the device could
readily serve as a next generation ultra sensitive ultrasound sensor.



Chapter 7

Dynamics of a single
cavity-meniscus system

We study the ultrasound-induced dynamics of the surface of a gas bubble trapped inside
an optical microcavity that was fabricated at the end face of a hydrophobized optical
fiber. Using an optical fiber interferometer, we determine the deflection of this air-
water interface with nanometer resolution. The frequency-dependent response agrees
well with a previously developed hydrodynamic model and demonstrates the potential
for low noise level ultrasound sensing.
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7.1 Introduction

Due to the low compressibility of condensed matter, the characteristic displacements
caused by the propagation of an acoustic wave through a solid or liquid are typically
below the nanometer scale. This makes the measurement of weak ultrasound signals
a formidable task [4, 47, 58, 10]. In the traditional detection scheme a piezo-electric
crystal is used to convert the ultrasound induced displacement directly into an elec-
trical signal. Recently a number of new technologies have emerged to satisfy the ever
increasing need for high ultrasound bandwidth (spatial resolution) and low noise de-
tection (e.g. imaging depth in medical ultrasound diagnostics), including capacitive
sensing of the displacement of micro machined membranes (so called cMUTs) [89],
optical detection of a micromechanical cantilever [100], and a variety of optical tech-
niques based on an interferometric detection of the ultrasound induced displacement
[19, 11, 47, 58, 4]. All techniques ultimately rely on an efficient conversion of the
ultrasound pressure into a mechanical displacement.

Here we introduce the use of a microscopic liquid-gas interface for acoustic detec-
tion to provide a novel approach to a sensitive pressure-to-displacement conversion.
The interface is created by milling a microscopic hole into the end face of an opti-
cal fiber and subsequently hydrophobizing it. After immersing the fiber in water, a
microscopic liquid-gas interface spans the opening of the hole. The restoring force
acting on the interface is governed by surface tension alone, such that the inter-
face acts like an extremely soft spring (as compared to a bulk detection medium or
solid membrane). Nanometer scale detection of the microscopic liquid-gas interface
is achieved through fiber optical interferometry. Our measurements also confirm a
previously suggested model for the microscopic hydrodynamics of a meniscus-cavity
system based on unsteady Stokes flow theory [103].

7.2 Experiments

Fig. 7.1 shows our device. A cylindrical hole is milled into the cleaved end of a 633
nm single mode optical fiber (core diameter 4.1µm) using a focused ion beam (FIB)
(in this chapter, results are presented for three different samples with radii 3.25, 2.2,
and 1.25 µm, and depths 6.15, 5.0, respectively 3.9 µm, as determined by SEM). Prior
to the FIB process, the fiber is coated with a 5 nm conductive Pd-Au coating, which
is stripped afterwards by dipping the sample in aqua regis. Subsequently the sample
is hydrophobized by vapor deposition of a self assembled monolayer of an alkylsilane
(1H,1H,2H,2H-Perfluorodecyltrichlorosilane), following [72]. This process results in a
hydrophobic layer that is typically 1.5−1.6 nm thick 1, and has a contact angle against
water of about 115◦. This large angle characterizes the hydrophobicity of the sample,
and ensures that it will be in the superhydrophobic state, where a liquid-gas interface
spans the opening of the cavity and the three-phase contact line is pinned at the ridge
of the hole [57]. The zoom view in Fig.7.1(c) shows a microscope image of the device

1as determined by ellipsometry on a flat Si-wafer, assuming the bulk dielectric constant for the
alkylsilane
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(a) (b)

(c)

Figure 7.1: Device and setup for experimental characterization. (a) schematic
and (b) SEM image of the device. (c) Schematic of the experimental setup. The
zoom view shows a bright field microscope image of the device after immersion in
water. The water-air interface appears as a bright circle in the center of the image.

after immersion in water. The water-air interface appears as a bright reflection in
the center of the image. At rest, the interface is curved downwards, with a curvature
κ0 = Ph/σ determined by a balance between the Laplace pressure PL = σκ0 and the
hydrostatic pressure Ph = ρgh. Here, σ is the surface tension, ρ is the density of
the liquid, g is the acceleration of gravity, and h is the depth of immersion below the
water surface. The deflection d in the apex of the liquid-gas interface is related to
its curvature by geometry (spherical cap) through d = 2/κ

(
1−
√

1− 4R2κ2
)
, where

R is the hole radius. For small curvature, the latter reduces to d ≈ κR2/4. Upon
exposing the meniscus to an ultrasound field, it performs nm-scale oscillations around
its rest curvature. Its dynamics are described by unsteady Stokes flow theory [103]
resulting in an effective harmonic oscillator model characterized by a spring constant
K = P0R

2/(2RH) + 4σ/R. For small cavities (as in the present experiments), the
second term due to surface tension dominates over the first term that accounts for
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isothermal gas compression inside the cavity.
Upon exposing the meniscus to an ultrasound field, it performs nm-scale oscil-

lations around its rest curvature. In our characterization measurements, we place
an ultrasound transducer parallel to and at few cm distance from the end face of
the fiber. The ultrasound transducer is excited to emit finite wavetrains (length
100µs, repetition rate 10ms). We ensure that the ultrasound pressure is constant over
the investigated frequency range, by adapting the driving voltage at the ultrasound
transducer (Panametrics V309 and Olympus C308 in the range 0.1-2MHz respectively
1-5MHz) according to a calibration that was recorded previously using a hydrophone
(precision acoustics HP 1.0mm). To detect nm-scale oscillations of the liquid-gas in-
terface, we measure the interference of the two guided optical waves reflected from the
meniscus-cavity system. Fig. 7.2 shows the expected electric field intensity inside the
fiber optical micro interferometer, calculated by means of a fully vectorial mode solver
and coupled wave formalism as provided by the CAMFR package [12]. All modes in
the cavity region are leaky modes (non-guiding), their effective propagation constant
is close to the free space propagation constant such that the period of the standing
wave inside the interferometer is close to the free space wavelength (in contrast to
the guiding region of the fiber where the period is smaller). To measure the guided
waves reflected from the interferometer, we essentially have to perform a reflection
loss measurement of the fiber end face. Fig.7.1(c) shows an optical setup that allows
to do this. A 10 mW He-Ne laser (linear polarized) is coupled into a single mode fiber
splitter with a splitting ratio 50/50. Optical feedback into the laser is suppressed by
an optical isolator. The light leaves the fiber splitter trough two arms. One of them
is connected to the microstructured fiber, the other is left open. To avoid a reflection
from the open arm that would interfere with the actual signal wave, the open end
face is immersed into an index matching liquid. The two waves reflected from the
meniscus-cavity system travel back into the fiber splitter. Half of the reflected wave
is detected with a photodiode, and the other half is dumped onto the optical isolator.

7.3 Deflection amplitude

Fig. 7.3 shows current traces measured at the photodiode with increasing ultrasound
pressure. At low pressure, the signal is sinusoidal and proportional to the driving
ultrasound pressure. At larger pressures, the signal is increasingly distorted. The
minima and maxima of the sine appear flipped. This nonlinear behavior is the key to
an absolute measurement of the deflection amplitude.

The reflected intensity is approximately a two-beam interference, thus, as the
meniscus oscillates, the interference intensity changes with time as

I = ∆I (sin[∆ϕ sin[2πft+ α] + ϕ0]) + I0 (7.1)

∆I is an intensity amplitude, I0 is the DC intensity, f is the ultrasound frequency,
α is an arbitrary phase delay of the ultrasound, ϕ0 is an optical phase offset, deter-
mined by the rest position of the meniscus, and ∆ϕ is the amplitude of the meniscus
oscillations in terms of optical phase, in the following termed phase amplitude, and
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Figure 7.2: Field distribution. The plot shows the field intensity inside the fiber
optical interferometer as calculated assuming a flat meniscus and cavity of aspect ratio
one with a diameter D = 4.1 equal to the diameter of the fiber core. The end face of
the fiber with the cavity and the liquid-gas interface are shown by solid and dashed
white lines, respectively. In this calculation the refractive index of the cladding and
core were taken as nl = 1.45, respectively nc = 1.451, and a step wise increase of the
refractive index was assumed. The refractive index of water was taken as n = 1.33.
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Figure 7.3: Measurement of the deflection amplitude. (a) Current traces mea-
sured at the photodiode with increasing ultrasound pressure. The current is nor-
malized by subtracting its mean, and dividing through

√
2 times the rms. The red

lines are fits to a modulated sine, as expected for two-beam interference (Eq. (7.1)).
(b) Evolution of the fit parameters with increasing ultrasound pressure. The top
panel show the phase amplitude ∆ϕ. The red line displays a linear fit. The dashed
line marks the onset of nonlinear current traces at about π/4. The middle panel
shows that the phase offset due to the meniscus rest position has successfully been
adjusted to approximately zero. The bottom panel plots the evolution of the intensity
amplitude, revealing a negligible drift.

related to the mechanical deflection amplitude ∆d by ∆ϕ = 4π∆d/λ. To perform
an absolute measurement of the deflection amplitude ∆d, we determine the phase
amplitude ∆ϕ. Let us assume for the moment, that the phase offset ϕ0 is zero. Then,
a phase amplitude ∆ϕ = π/2 corresponds to a current trace with flattened minima
and maxima, just before the onset of flipping. Likewise, a phase amplitude ∆ϕ = π
corresponds to a current trace that features minima and maxima that are flipped one
time, reaching back to the zero line. And so forth. Thus, to determine the phase
amplitude, we drive the menisci at large amplitude, and fit the resulting current trace
to Eq. (7.1), determining ∆ϕ. In practice, this is a formidable task. The high corre-
lation between the fit parameters paired with the presence of multiple deep adjacent
minima in the χ2-landscape renders the problem unsuitable for Levenberg-Marquardt
(LM), as well as simulated annealing [97]. We thus fit the truncated Fourier series of
the current trace to the Fourier expansion of the target function. The latter is doable
through LM. The red lines in the left panel of Fig.7.3 show such fits. A full calibration
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measurement consist of a series of current traces with increasing ultrasound pressure,
obtained at a frequency close to the resonance frequency of the meniscus. For each
trace, the phase amplitude is determined. The upper right panel of Fig.7.3 shows the
evolution of the phase amplitude with the driving ultrasound pressure. The ampli-
tude is to a very good approximation linear in the driving pressure. The small kink
observed around the center of the plot is a consequence of the inevitable correlation
of the fit parameters, as is seen directly by the correlated kink in the phase offset
(middle panel), and is not a concern. At small deflection amplitude ∆ϕ, Eq. (7.1) is
linear in the meniscus deflection. The proportionality constant is determined by ϕ0,
and is maximal on the flank between a minimum and maximum, where ϕ0 = 0. This
is an optimal setting for the measurement of the frequency response. Thus, to mea-
sure the frequency response, we adjust the hydrostatic pressure such that ϕ0 ≈ 0, and
decrease the ultrasound pressure such that the phase amplitude is smaller than about
π/4. The current trace is then sinusoidal, and its amplitude is found by evaluating
the rms current of the raw data. Through the previous calibration measurement the
corresponding phase amplitude is known. The frequency response is then obtained,
by sweeping the ultrasound frequency, and extracting the amplitude of every recorded
current trace.

7.4 Frequency response

Fig. 7.4 shows the measured frequency response of the fabricated cavity-meniscus
systems (dots). The experimental data is well described by unsteady Stokes flow
theory (lines), thus confirms the theoretical model for a single isolated cavity-meniscus
system as developed in Sec. 2.3. In contrast to previous experimental data obtained
with arrays of hydrodynamically coupled menisci, the theory accounts for the height
and width of the resonance peaks, i.e., it captures the relevant dissipation mechanisms.
We thus conclude, that the reason for the previous disagreement lied indeed in the
neglection of the dissipation arising in the global flow field that was present above
the arrays of menisci, as speculated previously. Moreover, and more importantly, the
good agreement observed here opposes potential flow theory, that accounts for viscous
dissipation in terms of bulk dissipation integrals and does not capture dissipation
correctly (inset of Fig.7.4). The comparison, and the experimental confirmation of
the unsteady Stokes flow theory reveals that viscous dissipation in this system is
dominated by vorticity generation at the solid boundary. This behavior is in gross
contrast to free bubbles in an unbounded medium [61], and is a unique consequence
of the proximity of the system to a solid wall.

7.5 Pressure-to-displacement conversion

We finally evaluate the prospects of the device for low noise level ultrasound detection.
To do so, we compare the device to the state of the art, defined by a recently developed
fiber optical hydrophone [10]. Like the device presented here, the latter hydrophone is
based on a microscopic optical interferometer fabricated on the end face of an optical
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Figure 7.4: Frequency response. The plot shows the ultrasound frequency response
of single cavity-meniscus systems with decreasing radius. Experimental data (dots)
are compared to unsteady Stokes flow theory (solid lines). The Color codes blue,
green, and red, correspond to cavity radii 3.25, 2.2, and 1.25 µm, respectively. To fa-
cilitate comparison between the different sample geometries, the amplitude is plotted
in its dimensionless form, normalized through the hole radius and ultrasound pressure
∆P , and scaled by the systems spring constant K = P0R

2/(2RH) + 4σ/R. The data
for the larger radii were obtained at small ultrasound pressure, in the linear regime
(150Pa and 700Pa, respectively), by evaluating the rms of the underlying current
traces, as described in the text. To cope with low signal level at small interferometer
radius, the data for the smallest cavity was obtained at larger ultrasound pressure
(20kPa), by directly fitting each underlying current trace to Eq. (7.1). The inset
compares unsteady Stokes flow theory (solid lines) and potential flow theory (dashed
lines).
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fiber, though, in contrast to the present device, a polymer provides the pressure-
to-displacement conversion. However, the subsequent interferometric measurement
of the displacement, and conversion into an electrical signal (limited ultimately by
shot noise), is the same in both devices, such that we can directly benchmark the
present device by comparing its pressure-to-displacement conversion. The pressure-
to-displacement conversion follows from the balance of the Laplace pressure and the
ultrasound pressure, together with the geometric relation between the curvature and
the deflection as ∆d/∆P = R2/(4σ) (see appendix F for details). The resonance
frequency of the cavity-meniscus system is approximately fR = 1/π(2σ/(ρR3))1/2

[103]. Thus, a device with 10MHz ultrasound bandwidth requires a cavity radius
of about 500 nm, and the pressure-to-displacement conversion is about 10−12m/Pa.
In comparison, above cited device features a pressure-to-displacement conversion of
about 4 ·10−15m/Pa. Thus, the device presented here offers great prospects for future
ultra sensitive ultrasound detection. It allows us to hear with a bubble.

7.6 Summary and conclusions

We have realized a single cavity-meniscus system on a micro structured superhy-
drophobic optical fiber. Ultrasound induced nanometer scale oscillations of the sus-
pended liquid-gas interface were detected through optical micro interferometry. The
device opens new perspectives for low noise ultrasound detection. Determining the
frequency response of the system, we confirmed an unsteady Stokes flow model of
a single isolated cavity-meniscus system (Chapter 8). The experiment offers unique
perspectives for studying the dynamics of capillaries and bubble-like objects on the
micro-scale, in real time, with nanometer resolution. When driving the menisci with
large pressure far above their fundamental resonance frequency, we could see the sig-
natures of higher order modes appear in the current traces, i.e., we are beginning to
see the modes of a micrometer sized liquid drum.
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Chapter 8

Stokes flow theory of
oscillating menisci

During my PhD, I had the honor to collaborate with Kazuyasu Sugiyama (now at
Tokyo University) who was at that time a postdoc in Detlef Lohse’s group, on a prob-
lem that seemed initially entirely academic, however later even led to the filing of a
patent. It concerns the (collective) dynamics of one or more microscopic liquid-gas
interfaces as they are found at the texture of a superhydrophobic surface (Chapter 6
and 6). In a sense, it was the first time, that somebody had looked at the ultrasonic
hydrodynamics of a superhydrophobic surface. Consequently, the theory had to be
developed ’from scratch’. This section is due to the ingenuity of Kaz, who formulated
that theory.
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Figure 8.1: Schematic of the theoretical model for a single cavity-meniscus
system Dimensional quantities such as the radius R∗ and depth H∗ of the cavity are
denoted with a ∗. The interface is pinned at the edge of the cavity, and undergoes
small amplitude parabolic deformations.

We address the resonance frequency in a multi-meniscus system. First, we derive
a transfer function accounting for a relation between a deflection of a single meniscus
and the external forcing. Second, using the obtained transfer function, we consider
the collective effect.

8.1 Single cavity-meniscus system

We shall now derive an unsteady Stokes flow model for a single cavity-meniscus sys-
tem. Fig. 8.1 shows a schematic of the theoretical model. Dimensional quantities
such as the radius R∗ and depth H∗ of the cavity are denoted with a ∗. The following
approximations are introduced.

(1) we assume the meniscus is flat in equilibrium. This condition is satisfied when
the deflection at rest is much smaller than the deflection amplitude and the radius of
the cavity, |ζ∗0 | � R∗,∆ζ∗.

(2) we assume that the acoustic field is a function of the time alone, expressed as
P ∗ = P ∗0 + ∆P ∗ exp(ω∗t∗), corresponding to a ’global’ pressure change. This requires
that the ultrasound wavelength λ∗ is much larger than the system size R∗ � λ∗.

(3) We assume that the interface is pinned at the edge of the cavity, and undergoes
small amplitude parabolic deformations

ζ∗(t∗)(1− r∗2/R∗2), (8.1)

where ζ∗(t∗) is the deflection of the interface on the axis r∗ = 0 and r∗ is the radial
coordinate. This assumption has been employed by [73]. In an experiment it requires
that |ζ∗| � R∗ and |ζ∗| � H∗. As shown below, the parabolic shape implies that
the curvature of the interface is approximately uniform for a given ζ∗, as far as
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|ζ∗| � R∗, giving right to Laplace’s law. It should be noted that the ’imposed shape’
cannot be strictly verified. In a more realistic case, the local deformation of the
interface should be taken into account, and Laplace’s law should be applied locally
at every point of the interface. Instead, we impose the shape of the interface. The
parabolic shape implies that the interface oscillates with its fundamental oscillation
mode. This approximation should describe the behavior of the system for small
ultrasound frequencies and up to the fundamental resonance frequency. At much
higher frequencies, the interface may deform following other shapes, corresponding
to higher order oscillation modes, as known e.g. from oscillation modes of a circular
plate. Such oscillations are not included in the present model.

(4) We assume that far away from the meniscus the flow vanishes. We consider
three cases for the boundary conditions. (i) no-slip on both the liquid-gas interface
and the solid wall, (ii) free-slip on both the liquid-gas interface and the solid wall,
(iii) free-slip on the liquid-gas interface and no-slip on the solid wall

(5) Considering discussions in [60] we appreciate that the oscillating motion of
a solid body in a liquid generates vorticity in a layer of a characteristic thickness
δ =

√
2ν/ω, while at larger distances the flow decays to potential flow. Here ν is the

kinematic viscosity and ω is the oscillation frequency. Let l be the size of the body
and a be the amplitude of the oscillations. If l � δ and a � δ, the time derivative
and (v ·∇)v term in the Navier-Stokes equation are of the order ∂tv ≈ vω ≈ aω2 and
(v ·∇)v ≈ v2/l ≈ a2ω2/l, such that the (v ·∇)v term can be neglected.

8.1.1 Inertia and damping

To evaluate the inertia and damping, we deal with a harmonic oscillation of the
interface in accordance with temporally periodic motions of liquid, and then evaluate
the normal stress averaged over the interface. Here, we assume unsteady creeping
flows.

Governing equations and non-dimensionalization

The flow is governed by the continuity and unsteady Stokes equations written as

∇∗ · u∗ = 0 (8.2)

∂t∗u
∗ = −∇

∗p∗

ρ∗L
+ ν∗∇∗2u∗, (8.3)

where u, ρL, p and ν denote the velocity vector, the liquid density, the dynamic
pressure and the kinematic viscosity, respectively. We introduce an acoustic field as
the driving pressure PD given by

P ∗D = P ∗0 + ∆∗ exp(iω∗t∗), (8.4)

where ω denotes the angular frequency and ∆ the pressure amplitude. In virtue of the
axial symmetry, we introduce a separation of variables for the velocity components,
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the pressure, and the deflections in the following form

u∗r(r
∗, z∗, t∗) = û∗r(r

∗, z∗) exp(iω∗t∗),
u∗z(r

∗, z∗, t∗) = û∗z(r
∗, z∗) exp(iω∗t∗),

p∗(r∗, z∗, t∗) = p̂∗(r∗, z∗) exp(iω∗t∗) + P ∗D (t∗),

ζ∗(t∗) = ζ̂∗ exp(iω∗t∗).

(8.5)

For ease in solving the unsteady Stokes equation, all quantities are non-dimensionalized
by using the radius of the groove R∗, the liquid density ρ∗L, and the kinematic viscosity
ν∗, i.e.,

H =
H∗

R∗
, r =

r∗

R∗
, z =

z∗

R∗
, ζ =

ζ∗

R∗
,

ω =
ω∗R∗2

ν∗
, p =

p∗R∗2

ρ∗Lν
∗ , ∆ =

∆∗R∗2

ρ∗Lν
∗ , u =

u∗R∗

ν∗
,

σ =
σ∗R∗

ρ∗Lν
∗2 , κ = κ∗r∗, (8.6)

where σ and κ denote the surface tension and curvature of the interface, respectively.
In this way, we obtain dimensionless governing equations

D∗ûr + ∂zûz = 0, (8.7)

iωûr =− ∂rp̂+ (DD∗ + ∂2
z )ûr,

iωûz =− ∂z p̂+ (D∗D + ∂2
z )ûz,

(8.8)

where D = ∂r and D∗ = ∂r + 1/r. We now introduce a Stokes stream function ψ and
provide the velocity components as

ûr =
i

ω
∂rp̂−

1
r
∂zψ, ûz =

i

ω
∂z p̂+

1
r
∂rψ, (8.9)

to identically satisfy Eq. (8.7). We replace the Stokes equation Eq. (8.8) with the
Helmholtz equation (

DD∗ + ∂2
z − iω

) ψ
r

= 0, (8.10)

and the Laplace equation (
D∗D + ∂2

z

)
p̂ = 0. (8.11)

To determine the velocity components and the pressure, we analytically solve Eq. (8.10)
and (8.11).

Boundary conditions

On the interface and wall (z = 0) as shown in Fig. 2.13, we write the kinetic condition
as

ûz =
{
iωζ̂(1− r2) for r ≤ 1,
0 for r > 1.

(8.12)
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The condition at the large distance from the interface implies

ûr → 0, ûz → 0 as z →∞. (8.13)

No-Slip (NS) condition is expressed as

ûr = 0 at z = 0, (8.14)

while Free-Slip (FS) one as

∂zûr = 0 at z = 0. (8.15)

We will consider three cases shown below:

(i) : NS interface and NS wall
(ii) : FS interface and FS wall
(iii) : FS interface and NS wall

Our primary concern is laid on the mixed boundary problem (case (iii)) to be com-
pared with the experiment. We analyze the non-mixed boundary problems, i.e., cases
(i) and (ii), which are more easily and rigorously solved than case (iii), to compara-
tively investigate the effect of the vorticity generation of the wall on the inertia and
damping.

Integral expressions of solution

With the aid of Hankel’s transforms such as

F (λ) =
∫ ∞

0

dr̄ f(r̄)r̄J0(λr̄), f(r) =
∫ ∞

0

dλ F (λ)λJ0(λr),

where Jn denotes a Bessel function of the first kind and with the consideration of

∂r(rJ1(λr)) = λrJ0(λr), ∂rJ0(λr) = −λJ1(λr),∫ 1

0

dr rJ0(λr) =
J1(λ)
λ

,

∫ 1

0

dr (1− r2)rJ0(λr) = −2J0(λ)
λ2

+
4J1(λ)
λ3

,

we determine the solutions of Eq. (8.10) and (8.11)

p̂ =iω
∫ ∞

0

dλ F (λ)J0(λr) exp(−λz), (8.16)

ψ =r
∫ ∞

0

dλ G(λ)J1(λr) exp(−
√
λ2 + iωz), (8.17)

where we choose the sign inside the exponential function to be consistent with Eq. (8.13).
From Eq. (8.9), we determine the velocity components in the explicit form

ûz =
∫ ∞

0

dλ F (λ)λJ0(λr) exp(−λz) +
∫ ∞

0

dλ G(λ)λJ0(λr) exp(−
√
λ2 + iωz),

ûr =
∫ ∞

0

dλ F (λ)λJ1(λr) exp(−λz) +
∫ ∞

0

dλ G(λ)
√
λ2 + iωJ1(λr) exp(−

√
λ2 + iωz).

(8.18)
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Eq. (8.12) is satisfied provided

F +G =
∫ ∞

0

dr̄ ûz|z=0r̄J0(λr̄) = iωζ̂

{
−2J0(λ)

λ2
+

4J1(λ)
λ3

}
. (8.19)

Considering the following relations

ûr|z=0 =
∫ ∞

0

dλ
(
λF (λ) +

√
λ2 + iωG(λ)

)
J1(λr),

∂zûr|z=0 = −
∫ ∞

0

dλ
(
λ2F (λ) + (λ2 + iω)G(λ)

)
J1(λr),

∂rûz|z=0 = −2r = −
∫ ∞

0

dλ λ2 (F (λ) +G(λ)) J1(λr),

we determine F and G for the NS interface and NS wall ( ûr|z=0 = 0)

F =ζ̂
(
−2J0(λ)

λ2
+

4J1(λ)
λ3

)(
λ2 + iω + λ

√
λ2 + iω

)
,

G =ζ̂
(
−2J0(λ)

λ2
+

4J1(λ)
λ3

)(
−λ2 − λ

√
λ2 + iω

)
,

(8.20)

while those for the FS interface and FS wall ((∂zûr + ∂rûz)z=0 = 0)

F =ζ̂
(
−2J0(λ)

λ2
+

4J1(λ)
λ3

)(
2λ2 + iω

)
,

G =ζ̂
(
−2J0(λ)

λ2
+

4J1(λ)
λ3

)(
−2λ2

)
.

(8.21)

For the potential flow, since the irrotational velocity field is achieved by setting ψ = 0,
we determine F and G

F =iωζ̂
{
−2J0(λ)

λ2
+

4J1(λ)
λ3

}
,

G =0.
(8.22)

For the mixed boundary problem (case (iii)), it is difficult to determine F and G
by use of the Hankel transform. Instead of using the integral expression, we solve
the governing equations (8.7) and (8.8) by means of the direct numerical simulation.
To discretize the governing equations, we employ the second-order finite difference
scheme.

Surface averaged normal stress

For the stokes flow, we write a normal stress due to the deflection ζ̂ on the interface
in a general form

(−p̂+ 2∂zûz)z=0 = −
∫ ∞

0

dλ (2λ2 + iω)F (λ)J0(λr)− 2
∫ ∞

0

dλ λ
√
λ2 + iωG(λ)J0(λr).

(8.23)
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Further we take the surface average over the interface to obtain

〈−p̂+ 2∂zûz〉S =2
∫ 1

0

dr r (−p̂+ 2∂zûz)z=0

=− 2
∫ ∞

0

dλ
(2λ2 + iω)F (λ)J1(λ)

λ
− 4

∫ ∞
0

dλ
√
λ2 + iωG(λ)J1(λ)

= (Φ(ω) + iΨ(ω)) ζ̂,
(8.24)

where Φ and Ψ denote transfer functions, which indicate the ratio of the normal stress
to the amplitude of the deflection. The total normal stress of liquid on the interface
is written as

PL = P0 + ∆ exp(iωt)− 〈−p̂+ 2∂zûz〉S exp(iωt). (8.25)

In the next section, we obtain the transfer functions.

Transfer functions

Here, we numerically evaluate the transfer functions.
NS interface and NS wall (case i)

For the NS interface and NS wall the normal stress is given by

(−p̂+ 2∂zûz)z=0 =iωζ̂
∫ ∞

0

dλ
(
λ2 + iω + λ

√
λ2 + iω

)(2J0(λ)
λ2

− 4J1(λ)
λ3

)
J0(λr),

(8.26)

and the surface averaged stress is

〈−p̂+ 2∂zûz〉S =ζ̂
∫ ∞

0

dλ iω(λ2 + iω + λ
√
λ2 + iω)H(λ), (8.27)

where

H(λ) =
(

4J0(λ)
λ3

− 8J1(λ)
λ4

)
J1(λ). (8.28)

The transfer functions are written as

Φ(ω) =
∫ ∞

0

dλ

−ω2 − ωλ

√
−λ2 +

√
λ4 + ω2

2

H(λ),

Ψ(ω) =
∫ ∞

0

dλ

ωλ2 + ωλ

√
λ2 +

√
λ4 + ω2

2

H(λ).

(8.29)

We take the numerical integrals by means of the trapezoidal rule. To ensure the
numerical convergence, we take care of the resolution and the integral range. We set
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the sufficiently small sampling interval of ∆λ = 3 ·10−5. Instead of half-infinite range
λ ∈ [0,∞), we take the integral within the truncated domain λ ∈ [0,Λ] based on

Φ =
∫ Λ

0

dλ

−ω2 − ωλ

√
−λ2 +

√
λ4 + ω2

2

H(λ) +O(Λ−4),

Ψ =
∫ Λ

0

dλ

ωλ2 + ωλ

√
λ2 +

√
λ4 + ω2

2

H(λ) +
2ω
πΛ2

(4 cos Λ sin Λ− 3) +O(Λ−3),

(8.30)

in which the last terms corresponds to the decaying behavior of the truncated error.
To make the the truncated error sufficiently small, we set Λ = 3000. In evaluating
the Bessel functions, we use the subroutines of ‘Numerical Recipes in Fortran’. As
deduced from the numerical tests, in which the resolution, the integral domain and
the parameter ω are varied, the accuracy of the transfer functions is more than six
significant digits. For validation of the numerical integrals, we make comparison with
the analytical behaviors of transfer functions both for ω � 1 and for ω � 1. The
parts of the integral kernels for ω � 1 asymptotically behave

−ω2 − ωλ

√
−λ2 +

√
λ4 + ω2

2
→ −3

2
ω2, ωλ2 + ωλ

√
λ2 +

√
λ4 + ω2

2
→ 2λ2ω,

while those for ω � 1 behave

−ω2−ωλ

√
−λ2 +

√
λ4 + ω2

2
→ −ω2−

√
2

2
ω3/2λ ωλ2+ωλ

√
λ2 +

√
λ4 + ω2

2
→
√

2
2
ω3/2λ+ωλ2.

We obtain the asymptotic solutions for ω � 1,

Φ =
32

15π
ω2 + . . . , Ψ = − 16

3π
ω + . . . , (8.31)

while those for ω � 1,

Φ =
64

45π
ω2 +

√
2

4
ω3/2 + . . . , Ψ = −

√
2

4
ω3/2 − 8

3π
ω + dots (8.32)

The transfer functions for the no-slip interface and wall are shown in Fig. 8.2. The
agreements with the asymptotic solutions both for ω � 1 and ω � 1 may validate
the present numerical determinations.

FS interface and FS wall (case ii)

For the FS interface and FS wall, we obtain

(−p̂+ 2∂zûz)z=0 =ζ̂
∫ ∞

0

dλ
(

4λ4 + 4iωλ2 − ω2 − 4λ3
√
λ2 + iω

)(2J0(λ)
λ2

− 4J1(λ)
λ3

)
J0(λr),

(8.33)
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Figure 8.2: Transfer functions Φ and Ψ versus the angular frequency ω for the no-slip
interface and wall. The solid line shows the numerical evaluation. The symbol shows
the finite difference solution. The dashed and alternatively dashed and dotted lines
show the asymptotic solutions.

〈−p̂+ 2∂zûz〉S =ζ̂
∫ ∞

0

dλ
(

4λ4 + 4iωλ2 − ω2 − 4λ3
√
λ2 + iω

)
H(λ). (8.34)

The transfer functions are written as

Φ(ω) =
∫ ∞

0

dλ
(

4λ4 − ω2 − 2λ3

√
2(λ2 +

√
λ4 + ω2)

)
H(λ),

Ψ(ω) =
∫ ∞

0

dλ
(

4ωλ2 − 2λ3

√
2(−λ2 +

√
λ4 + ω2)

)
H(λ).

(8.35)

Taking the integral within the truncated domain λ ∈ [0,Λ], we can estimate the
truncated error from

Φ(ω) =
∫ Λ

0

dλ
(

4λ4 − ω2 − 2λ3

√
2(λ2 +

√
λ4 + ω2)

)
H(λ) +O(Λ−4),

Ψ(ω) =
∫ Λ

0

dλ
(

4ωλ2 − 2λ3

√
2(−λ2 +

√
λ4 + ω2)

)
H(λ) +

2ω
πΛ2

(4 cos Λ sin Λ− 3) +O(Λ−3).

(8.36)

Since the decaying behavior of the truncated error with respect to Λ is similar to
Eq. (8.30), we employ the same numerical procedure to evaluate the transfer functions
as that for the NS interface and NS wall. Asymptotic behaviors of the integral kernels
are summarized below:

4λ4 − ω2 − 3λ3

√
2(λ2 +

√
λ4 + ω2)→

{
−3

2
ω2 (ω → 0)

−ω2 − 2
√

2λ3ω1/2 (ω →∞)
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4ωλ2 − 2λ3

√
2(−λ2 +

√
λ4 + ω2)→

{
2λ2ω (ω → 0)
4λ2ω − 2

√
2λ3ω1/2 (ω →∞)

We obtain the asymptotic solutions for ω � 1,

Φ =
32

15π
ω2 + . . . , Ψ = − 16

3π
ω + . . . , (8.37)

while those for ω � 1,

Φ =
64

45π
ω2 + 4

√
2ω1/2 + . . . , Ψ = − 32

3π
ω + 4

√
2ω1/2 + . . . (8.38)

With respect to ω, the leading exponent of Ψ as ω → ∞ is 1 which is different from
3/2 for the no-slip interface and wall. We interpret that the difference stems from the
different generation mechanism of the kinetic energy dissipation. For the NS wall,
the vorticity is generated at the wall due to the shearing motion of the fluid and
then diffuses in the vertical direction. As a consequence, the bulk region contains
the significant energy dissipation rate, which is necessarily maintained by the kinetic
energy production by way of the interface oscillation. In contrast, such an additional
energy production is not present for the FS wall since the vorticity is not generated
at the wall. The behaviors of Ψ as ω → 0 and the leading term of Φ as ω → ∞ are
same as those for the no-slip interface and wall.

The transfer functions for the free-slip interface and wall are shown in Fig. 8.3.
The agreements with the asymptotic solutions both for ω � 1 and ω � 1 may validate
the present numerical evaluation.

FS interface and NS wall (case iii)

By means of the direct numerical simulation, we solve the governing equations (8.7)
and (8.8) with the boundary conditions (8.12) and (8.15) to determine the transfer
functions Φ and Ψ. We employ the finite difference scheme. On the staggered grid,
the space derivatives are approximated by the second-order central difference scheme.
Introducing the pseudo-time τ , we integrate the following equation in time by using
the first-order implicit Euler scheme until the convergence of the steady solution.

∂û

∂τ
= −∇p+ (∇2 − iω)û.

We choose the time step ∆τ = 0.5ω−1. The solenoidal condition of the velocity vector
is satisfied by solving a Poisson equation for the pressure. We employ a simplified-
marker-and-cell procedure and solve the pressure equation in an iterative way by
means of the tridiagonal matrix algorithm and the successive over relaxation method.
The number of the grid point for the interface (0 ≤ r ≤ 1 and z = 0) is taken NI = 50.
The extent of the simulation domain is rmax × zmax = 741 × 1000 which is divided
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Figure 8.3: Transfer functions Φ and Ψ versus the angular frequency ω for the free-
slip interface and wall. The solid line shows the numerical evaluation. The symbol
shows the finite difference solution. The dashed and alternatively dashed and dotted
lines show the asymptotic solutions.

into Nr ×Nz = 300× 300. The grid width is written in a geometric series form, i.e.,

∆rj = αr∆rj−1 ≤ j ≤ NI/2
∆rj = ∆rj−1 j = NI/2 + 1
∆rj = α−1

r ∆rj−1 NI/2 + 1 ≤ j ≤ NI/2
∆rj = αr∆rj−1 NI + 1 ≤ j
∆zj = αz∆zj−1 ∀j,

where αr = 1.03 and αz = 1.04. The boundary condition (8.13) at the large distance
from the interface is replaced by the free-slip condition uz = ∂zur = 0 at z = zmax.

The finite difference evaluations for the NS interface and wall (case i) and FS
interface and wall (case ii) are shown as the circle symbols, respectively, in figure 8.2
and figure 8.3. The both simulation results show good agreement with the solid lines,
corresponding to the high-accurate numerical evaluations written in the integral forms
Eq. (8.30) and (8.36). For the NS interface and wall, the relative errors of Φ and Ψ are
less than 0.035% and 1.2%, respectively, while for the FS interface and wall, those are
less than 0.080% and 1.0%. In particular, the simulation results are accurate enough
within a range of 100 ≤ ω ≤ 102, in which all the experimental conditions lie, namely,
the relative errors of Φ and Ψ are less than 0.028% and 0.026%, respectively, while
for the FS interface and wall, those are less than 0.038% and 0.098%. The transfer
functions for the FS interface and NS wall are shown in figure 8.4. To numerically
evaluate them, we use the same simulation code for the symbols shown in figure 8.2
and figure 8.3. Thus, we expect the comparable accuracies to the above-mentioned
ones. As deduced from figure 8.4, the asymptotic solutions for ω � 1 may be written
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Figure 8.4: Transfer functions Φ and Ψ versus the angular frequency ω for various
boundary conditions.

as

Φ =
32

15π
ω2 + . . . , Ψ = − 16

3π
ω + . . . . (8.39)

For ω � 1, Φ may approach to

Φ =
64

45π
ω2 + . . . . (8.40)

and −Ψ ∝ ω3/2. The profiles of the transfer functions for the FS interface and NS
wall are globally nearer to those for the NS interface and wall than those for the
FS interface and wall. This tendency indicates that the NS wall, which generates the
considerable bulk energy dissipation rate, is more significant for the transfer functions
than the FS interface.

8.1.2 Potential

Considering the compressibility of gas, we now evaluate the potential force. Here, we
use the same non-dimensionalization using the kinematic viscosity as that in Sec. 8.1.1.
We should take care of this dimensionless treatment for the gas pressure, which is usu-
ally normalized by using the stationary pressure, in estimating the resonance char-
acteristics in the dimensional form. Supposing that a speed of sound is high enough
compared with the velocity of the interface, we recognize that the gas pressure PG
is spatially homogeneous inside the groove. In the stationary state, the gas pressure
balances with the liquid one, i.e., PG0 = P0. When assuming the isothermal volume
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change of gas, we determine the gas pressure in accordance with the deflection ζ,

PG =
HP0

H + 2ζ
∫ 1

0

dr (1− r2)r
, (8.41)

which would be approximated with the condition ζ/H � 1 by

PG = P0 −
P0

2H
ζ̂ exp(iωt) +O((ζ̂/H)2). (8.42)

We can additionally introduce the thermal damping effect to this expression. We
assume that the temperature on the groove walls and the gas-liquid interface is fixed
at the undisturbed temperature T0 because of the large heat capacity of solid and
liquid. According to the linear analysis for the cylindrical groove, performed by Chen
& Prosperetti (1998, J. Acoust. Soc. Am., 104, 1389), we write the gas pressure as

PG = P0−
γP0

2H

{
1 + 4(γ − 1)

∞∑
n=1

(
1
k2
n

+
2iω tanh(knH/2)

Hk3
nα

2
nD

)} ζ̂ exp(iωt)+O((ζ̂/H)2),

(8.43)
where

kn =

√
α2
n +

iω

D
=

√
α2
n

2
+

1
2

√
α4
n +

ω2

D2
+ i

√
−α

2
n

2
+

1
2

√
α4
n +

ω2

D2
, (8.44)

αn denotes the nth zero of J0(αn) and D represents the gas thermal diffusivity.

8.1.3 Relation between the deflection and driving pressure
amplitudes

We now consider the Laplace law

PG − PL = σκ, (8.45)

where the curvature κ is given by

κ = ∇ ·
(
∇(z − ζ(1− r2))
|∇(z − ζ(1− r2))|

)
= 4ζ +O(ζ3), (8.46)

which indicates the curvature can be recognized uniform for given ζ as far as the
deflection ζ is small enough. Substituting Eq. (8.25) and (8.42) into (8.45), we arrive
at a relation between the deflection and the driving pressure amplitude

L(ω,K)ζ̂ = −∆, (8.47)

where L is expressed as
L = −Φ(ω)− iΨ(ω) +K,
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and K represents the rigidity, which is equivalent to the spring constant in the spring-
mass system. K is dependent on the the angular frequency ω

K(ω) =
γP0

2H

{
1 + 4(γ − 1)

∞∑
n=1

(
1
k2
n

+
2iω tanh(knH/2)

Hk3
nα

2
nD

)} + 4σ. (8.48)

8.2 Hydrodynamic interaction

We now derive the interactive force among multiple menisci. Here, we consider two
menisci labeled i and j. We take two cylindrical coordinates (ri, θi, z) and (rj , θj , z)
from the origins at the the centroids of the i-th and j-th interfaces. The surface
averaged normal stress on the j-th interface due to the i-th interfacial motion is
written as

〈−p̂i + 2∂zûzi〉Sj =
1
π

∫ 2π

0

dθ
∫ 1

0

drj rj(−p̂i + 2∂zûzi)z=0

=−
∫ ∞

0

dλ〈J0(λri)〉Sj

{
(2λ2 + iω)F (λ) + 2λ

√
λ2 + iωG(λ)

}
,

(8.49)

where

〈J0(λri)〉Sj
=

1
π

∫ 2π

0

dθ
∫ 1

0

drj rjJ0(λri). (8.50)

Let dij be a distance between the i-th and j-th centroids, we rewrite 〈J0(λri)〉Sj
as

〈J0(λri)〉Sj
=
∫ 1

0

drj
rj
π

∫ 2π

0

dθ J0(λ
√
r2
j − 2rjdij cos θj + d2

ij)

=
∫ 1

0

drj
∞∑
n=0

(−1)nλ2nJ0(λdij)r2n+1
i

22n−1(n!)2

=
∞∑
n=0

(
∂2
dij

+ d−1
ij ∂dij

)n
J0(λdij)

4n(n+ 1)(n!)2
,

(8.51)

in which the higher-order contribution is negligible, i.e., 〈J0(λri)〉Sj
≈ J0(λdij), if

dij � 1 and ω � 1, In this case, the averaged stress is well approximated by

〈−p̂i + 2∂zûzi〉Sj
=
ζ̂iω

2

4dij
+ o(d−1

ij ). (8.52)

Hence, for a multi-meniscus system, the i-th displacement ζ̂i is governed by

L(ω,K)ζ̂i = −∆ +
∑
i 6=j

ω2ζ̂j
4dij

, (8.53)
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of which the second term in the r.h.s accounts for the effect from other menisci mo-
tions. The interaction is monopole, which is similar to that for the spherical bubbles
suspended in liquid. Note that since this term contains ω2, it leads to the increase
of the virtual mass. For the multiple body problem, we write the simultaneous equa-
tions (8.53) in a matrix form with complex numbers, and numerically solve them to
determine the deflection ζ̂i. If the number of menisci is N , the size of the matrix to
be inverted is N ×N .
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Appendix A

Multilayer Rigorous Coupled
Wave Analysis

We aim to calculate exactly the intensity of the light diffracted from an optical grating
with arbitrary profile, made of an arbitrary number of isotropic (n scalar), dielectric
(n real) or absorbing (n complex) materials. A method that allows to do so, is
the Rigorous Coupled Wave Analysis (RCWA), that was pioneered in the 1980-90
[74, 75, 76, 39, 77, 93]. In this chapter, we will review this method, and present the
steps that are necessary to write an efficient numerical implementation. At the end
of the chapter, we will pay attention on the choice of the programming language(s)
and the coding philosophy that was adopted in this work. These aspects are often
overlooked, though of paramount importance, if we are aiming for modeling tools
that provide a high numerical performance, paired with a flexible user interface, that
is easily maintained and extended. It is the aim of those sections to unveil some of
the benefits that are provided by recent generations of programming languages to
scientific computing.

A.1 Analytic formulation

To be able to write an efficient implementation of the RCWA, we have to go through
its derivation, and we have to understand its numerical tricks and tweaks. So let’s do
it.

A.1.1 Single layer grating

We start by considering a single layer diffraction grating, that is, the dielectric con-
stant in the grating region is a function of y alone. Fig. A.1 shows a schematics
of such a grating. The grating has a period T and thickness d. Space is divided
into three regions. The reflection region R, characterized by a real dielectric con-
stant εR, the grating region G with periodic (generally complex) dielectric constant

127
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Figure A.1: Waves involved in the diffraction at an optical grating.

εG(y) = εG(y + T ), and the transmission region T, with a (generally complex) di-
electric constant εT . The grating is illuminated from the reflection region under an
incident angle ϑ0.

Generally, as an optical grating is illuminated with a plane wave, a number of
plane waves are scattered from the grating. Associated with every wave is a wave
vector and an amplitude. It is convenient to express the spatial coordinate in units
of 2π/λ, i.e. r 7→ 2πr/λ. Then the square of every wave vector in the reflection and
transmission region is εR, respectively εT . We denote y-components of wave vectors
by q’s and z-components by k’s. We denote the wave vector of the incident wave by
k0 and q0. All other wave vectors obtain superscripts denoting the region, such as
kR0 . The y-components of the wavevectors follow from Floquet’s theorem, as

qn = q0 + nQ, (A.1)

where n = −∞· · ·+∞ is the diffraction order, Q = λ/T and q0 =
√
εR sinϑ. The z-

components of the wave vectors require an individual treatment in each region. They
generally follow from the Maxwell equations through a suitable secular equation. In
the reflection and transmission region, this is the kernel of the wave equation in free
space, and the z-components of the wave vectors follow as

k0 = (εR − q2
0)1/2

kRn = (εR − q2
n)1/2

kTn = (εT − q2
n)1/2.

(A.2)

A real k represents a visible diffraction order, a complex k represents an evanescent
order. To accept only waves that travel in a physically meaningful direction, and
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evanescent orders that do not diverge towards infinity, we require that k0 > 0, kRm < 0,
kTm > 0 respectively Im(kR

m) ≤ 0, Im(kT
m) ≥ 0.

In the grating region, the z-components of the wavevectors require a more elab-
orate treatment. From here on the two polarization directions s and p need to be
distinguished. We consider first the technically less involved case of s-polarization.
The derivation for p-polarization is presented thereafter.

Secular equation

With an s-polarized wave, the electric field vector is perpendicular to the scattering
plane (s stands for the German word ’senkrecht’ meaning perpendicular), such that
only its x-component is non-zero, and we need to deal only with a scalar wave equation

∆E + εE = 0 (A.3)

We expand the electric field into plane waves,

E =
∑
n

Sn(z)eiqny, (A.4)

and the dielectric constant into a Fourier series,

ε =
∑
m

εme
imQy. (A.5)

This goes into Eq. (A.3). We evaluate the operators

∆E =
∑
n

(
−q2

nSn + S′′n
)
eiqny (A.6)

εE =
∑
m

εme
imQy

∑
n

Sne
inQyeiq0y

=
∑
n

∑
m

εn−mSme
inQyeiq0y

=
∑
n

∑
m

εn−mSme
iqny.

(A.7)

Here we have made use of a discrete analog of the convolution theorem of the Fourier
transformation. Now we use the fact that the plane waves form an orthogonal basis
of the space of functions with period T , to say ’if two infinite sums over plane waves
are equal, every single summand must be equal’, and we write the equation for the
nth summand

− qnSn + S′′n +
∑
m

εn−mSm = 0 (A.8)

This is a coupled second order ODE with constant coefficients. In principle these
are infinitely many equations, however, in practice the system can be truncated and
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solved. For the later numerical implementation, a representation in matrix form is
useful

S′′ −AS = 0, (A.9)

with

A =



(q2
−N−ε0) −ε−1 . . . −ε−2N

−ε1 (q2
−N+1−ε0)

...
. . .

... (q2
N−1−ε0) −ε−1

−ε2N . . . −ε1 (q2
N−ε0)


(A.10)

Eq. (A.9) has the well known solution

S =
∑
m

vm

(
c+me

√
λmz + c−me

−
√
λmz

)
, (A.11)

where vm and λm are the eigenvectors and eigenvalues of the matrix A, respectively,
and c+m and c−m are unknown coefficients.

Electric fields

With the knowledge of the wave vectors, the expansion of the electric fields into
plain waves can be formulated in all regions. We consider first s-polarization. The
expansion in the incident region contains the coefficients of the back-scattered waves
Rn, that we eventually wish to calculate

ERn = ei(q0+k0z)δn0 +Rne
i(qny+kR

n z), (A.12)

where δ is the Kronecker delta. The expansion in the transmission region contains
equivalent transmission coefficients. We introduce already here a shift of the spacial
coordinate to the boundary at z = 0, that will later be important in the multilayer
method below, to avoid a loss of numerical precision in the exponential

ETn = Tne
i(qny+kT

n z) = T̃ne
i(qny+kT

n (z−d)). (A.13)

For the field in the grating region, we introduce a similar shift of the spatial coordinate

EGn =
∑
m

vnm

(
c+me

√
λmz + c−me

−
√
λmz

)
eiqny

=
∑
m

vnm

(
c̃+me

√
λm(z−d) + c̃−me

−
√
λmz

)
eiqny

(A.14)

The expansion coefficients determine the intensities of the diffracted waves through
the Poynting vector as

IRn = RnR
∗
n

kRn
k0

ITn = TnT
∗
n

kTn
k0

(A.15)
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for s-polarization, and

IRn = RnR
∗
n

kRn
k0

ITn = TnT
∗
n

kTn ε
R

εT k0

(A.16)

for p-polarization. In case all materials are transparent, energy conservation requires
that ∑

n

IRn + ITn = 1, (A.17)

which can serve to test the numerical accuracy of the calculation.

Field matching

From the Maxwell equations in integral form, one derives continuity conditions for
the electric and magnetic fields at a boundary, using Gauß’ theorem (by shrinking the
integration volume in a suitable manner). In the case of s-polarized waves, considered
here, these reduce to requiring that E and ∂zE be continuous. We evaluate the
derivatives in each region.

∂zE
R
n = ik0e

i(q0+k0z)δn0 + ikRnRne
i(qny+kR

n z)

∂zE
G
n =

∑
m

√
λmvnm

(
c̃+me

√
λm(z−d) − c̃−me−

√
λmz

)
eiqny

∂zE
T
n = kTn T̃ne

i(qny+kT
n (z−d))

(A.18)

We substitute the boundaries into E and ∂zE. At z = 0, we have

δn0 +Rn =
∑
m

vnm

(
c̃+me

−
√
λmd + c̃−m

)
ik0δn0 + ikRnRn =

∑
m

√
λmvnm

(
c̃+me

−
√
λmd − c̃−m

)
,

(A.19)

and at z = d ∑
m

vnm

(
c̃+m + c̃−me

−
√
λmd

)
= T̃n∑

m

√
λmvnm

(
c̃+m − c̃−me−

√
λmd

)
= ikTn T̃n

(A.20)

This is a 4N × 4N linear system, where N = −M + P + 1 is the total number of
diffraction order retained in the expansion (M and P , being the positive and negative
cut off). Written in matrix form, it reads

R c̃+ c̃− T̃
−I V X V
−iKR V ΛX −V Λ

−V −V X I
−V Λ V ΛX iKT

=

δ
ik0δ

0
0

, (A.21)
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where R, c̃+, c̃−, and T̃ are coefficient lists identifying the columns of the matrix, V is
a matrix containing the eigenvectors vnm, Λ is a diagonal matrix containing the roots
of the eigenvalues

√
λm, and X is diagonal matrix containing the exponents e−

√
λmd.

KR and KT are diagonal matrices containing the z-components of the wave vectors in
the reflection and transmission region. By solving above linear system, the coefficients
for the expansion into plain waves are found in all region in space, and a complete
solution to the Maxwell equations is obtained. The solution can in principle be made
arbitrarily accurate, by retaining a sufficiently large number of diffraction orders in
the expansion. However, so far we have only considered a single layer grating, and
the real strength in the RCWA lies in its ability to describe gratings with an arbitrary
profile as a stack of sufficiently thin layers. We will thus not pursue the solution of
above linear system in further detail, and postpone the final step of linear algebra
to Sec. A.1.2, where we treat at once the multilayer system. Before we turn to the
multilayer system, we shall however repeat our calculation for the p-polarization case.

p-polarization

We consider both Maxwell equations.

∇×H =
1
c
∂tεE

∇× E = −1
c
∂tεH

(A.22)

Substituting plain waves, we have

∇×H = − iω
c
εE

∇× E =
iω

c
εH

(A.23)

Thus

∂zHx = − iω
c
εEy

∂yEz − ∂zEy =
iω

c
Hx

∂yHx =
iω

c
εEz

(A.24)

We expand the fields

HG
x =

∑
n

Une
iqny

EGy =
ic

ω

∑
n

Sne
iqny

EGz =
ic

ω

∑
n

Pne
iqny

(A.25)
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and the dielectric constant
ε =

∑
m

εme
imQy. (A.26)

Substitution yields
U ′n =

∑
m

εn−mSm

ic

ω
iqnPn −

ic

ω
S′n =

iω

c
Un

iqnUn =
∑
m

εn−mPm

(A.27)

We introduce the matrix εnm = εn−m. The first line reads

Un =
∑
m

εnmSm, (A.28)

the second line is rearranged to

− qnPn − iS′n = i
ω2

c2
Un (A.29)

And the third line is inverted∑
m

qmε
−1
nmiqmUm = −qnPn (A.30)

The second and third line yield together∑
m

qmε
−1
nmiqmUm − iS′n = i

ω2

c2
Un (A.31)

The first line yields ∑
m

ε−1
nmU

′′
m = S′n, (A.32)

thus ∑
m

qnε
−1
nmiqmUm − i

∑
m

ε−1
nmU

′′
m = i

ω2

c2
Un, (A.33)

which, after some rearrangement yields

U ′′n −
∑
k,m

εnk
(
qk − ε−1

kmqm − δkm
)
Um = 0 (A.34)

The boundary conditions are a potential pitfall. They are really that Ex, Ey, Hx, Hy

be continuous, and not generally any of the derivatives such as ∂zHx. In this case the
Hx one and the Ey one are those to be considered. Substitution of plane waves in
the Maxwell equation, yields

− iω

c
εEy = ∂zHx, (A.35)
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thus, in the incident and transmission region, we have

− iω

c
εEy = ∂zHx, (A.36)

however, in the grating region we have

− iω

c
εEy =

∑
n

Sne
iqny =

∑
m,n

ε−1
nm∂zUme

iqny = εεε−1HG
x , (A.37)

where εεε−1 is the inverse epsilon matrix. Thus, the nth order of the field and derivative
in each region in space reads

HR
n = δn0e

i(q0y+kR
0 z) +Rne

i(qny+kR
n z)

1
εR
∂zH

R
n =

ik0

εR
δnn0 +

ikRn
εR

Rne
i(qny+kR

n z)

HG
n =

∑
m

vnm

(
c̃+me

√
λm(z−d) + c̃−me

−
√
λmz

)
eiqny

εεε−1∂zH
G
n =

∑
k

ε−1
nk

∑
m

√
λmvkm

(
c̃+me

√
λm(z−d) − c̃−me−

√
λmz

)
eiqny

HT
n = T̃ne

i(qny+kT
n (z−d))

1
εT
∂zH

T
n =

ikTn
εT

T̃ne
i(qny+kT

n (z−d))

(A.38)

We evaluate the boundaries. At z = 0 we have

δn0 +Rn =
∑
m

vnm

(
c̃+me

−
√
λmd + c̃−m

)
ik0

εR
δn0 +

ikRn
εR

Rn =
∑
k,m

ε−1
nk vkm

√
λm

(
c̃+me

−
√
λmd − c̃−m

) (A.39)

and at z = d ∑
m

vnm

(
c̃+m + c̃−me

−
√
λmd

)
= T̃n

∑
k,m

ε−1
nk vkm

√
λm

(
c̃+m − c̃−me−

√
λmd

)
=
ikTn
εT

T̃n

(A.40)

In matrix form,

R c̃+ c̃− T̃
−I V X V

− i
εR
KR εεε−1V ΛX −εεε−1V Λ

−V −V X I
−εεε−1V Λ εεε−1V ΛX i

εT
KT

=

δ

i k0
εR
δ

0
0

, (A.41)

, This is in large analogy to the s-polarization case, which is great, because it means
we will be able to reuse a large amount of the numerical code.
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Figure A.2: Description of a grating with arbitrary surface profile through Rigorous
Coupled Wave Analysis.

A.1.2 Multilayer grating

In the previous section we considered a single layer grating, characterized by a dielec-
tric constant in the grating region that is a function of y alone. Most gratings met
in real life, such as blazed gold gratings, and in particular also the superhydrophobic
grating with the curved liquid-gas interfaces on top of its grooves studied in this work,
do however not satisfy this assumption. The real strength in the RCWA lies in its
ability to describe also these types of gratings, and generally gratings with arbitrary
surface profile, with in principle arbitrary accuracy, as a stack of sufficiently thin grat-
ing layers. In this section we will go through the steps that are required to extend
the rigorous coupled wave analysis to these types of gratings.

Fig. A.2 shows the schematics of a general grating. To describe an arbitrary
surface profile –in this case the curved liquid-gas interface–, the grating is sliced
into layers parallel to the surface. The curved interface is approximated by layers
with a thickness much smaller than the wavelength, such that in each layer, the
dielectric constant is again a function of y alone. The grating is thus represented by a
stack of layers with periodic, generally complex dielectric constant εl(y) = εl(y + T ),
l = 1, . . . , L. Each layer is now treated separately to arrive at a secular equation,
and subsequently the boundary conditions of the electric fields are evaluated at the
boundary between each two layers. This results in L+ 1 matrix equation analogue to
Eq. (A.21). It is tempting to go ahead and solve this system by successively inverting
the equation for each boundary, and substituting the result in the next one. This
works well analytically (forgetting for the moment, that the matrices are in principle
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infinitely large, and we do not have a rigorous way of determining the regularity of the
truncated matrices), however, numerically this fails horribly, since the matrix to be
inverted, though regular, may have arbitrarily small diagonal elements, and inversion
means division, such that we divide by something close to zero, and due to the finite
number space of the computer the numerical error becomes arbitrarily large. And
indeed, one of the most important maxims of numerical linear algebra is, that on
usually does not invert a matrix, instead, one aims for finding one (or more) solutions
to a linear system in an iterative manner. Therefore, one way –the safe way– to solve
the L+1 matrix equations, is to write them as ’big’ linear system and solve it at once
(by means of one of the suitable algorithms, such as LU decomposition or singular
value decomposition). It is appropriate to consider this method first.

Full solution

We consider first the case of s-polarization. From equations such as Eq. (A.21), the
global linear system follows as

[R] [c̃+1 ] [c̃−1 ] [c̃+2 ] [c̃−2 ] · · · [c̃+L−1] [c̃−L−1] [c̃+L ] [c̃−L ] [T̃ ]
−I V 1X1 V 1

−iKR V 1Λ1X1 −V 1Λ1

−V 1 −V 1X1 V 2X2 V 2

−V 1Λ1 V 1Λ1X1 V 2Λ2X2 −V 2Λ2

. . .
−V L−1 −V L−1XL−1 V LXL V L

−V L−1ΛL−1 V L−1ΛL−1XL−1 V LΛLXL −V LΛL

−V L −V LXL I
−V LΛL V LΛLXL iKT

=

δ

i k0
εR
δ

0

...

0

(A.42)

Note that symbols in square brackets are column designators. The solution to this
2N(l + 1) × 2N(l + 1) system provides the expansion coefficients of the fields in
all regions in space. The result for p-polarization is obtained by inserting 1/ε’s,
respectively εεε−1

l ’s at the appropriate places. This is the easiest way of obtaining the
expansion coefficients, and indeed, it is the best way if all coefficients are needed,
e.g., if one wishes to calculate the field distribution inside the grating. And, it is
also feasible, when the number of grating layers is small. However, when a large
number of grating layers is required, and the grating period is large, such that a large
number of diffraction orders need to be retained in the expansion, the linear system
quickly blows up and exceeds the capabilities of current computer technology, both in
terms of computational power and memory. E.g., for the superhydrophobic surfaces
with 12µm period, studied in this paper about ±128 diffraction orders are required
to obtain accurate results (generally about 10ṅT/λ order are required). The large
dimensions require additionally a large number of slices. Generally the discretization
is accurate, when the thickness of the layers is smaller than about 1/10λ/n. With a
meniscus that is curved downwards by 3µm, about 100 slices are required. We thus
end up with a 50 000× 50 000 matrix. Assuming 4 byte floating point representation
(single precision), and taking into account that the storage of a complex number
requires double the amount, we find, that no less than 20Gbyte of memory would
be required only to store the matrix. Additionally matrix inversion scales with N3,
and it is unlikely that we would obtain results within a reasonable computation time.
Thus, a smarter way for solving the global linear system is required. A clever scheme
was suggested in [77]. It is based on iteratively solving the individual equation at
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each boundary without performing numerically ill conditioned matrix inversions. The
equation is cast into a form that allows to separate the well-conditioned part of the
matrix from the ill-conditioned one, and perform inversion only on the former. In the
end, one obtains only the reflected waves (or only the transmitted waves), while all
information about the expansion coefficients of the waves in the grating layers is lost.
In most cases, this is however not a concern, since one is indeed only interested of the
reflected or transmitted waves. This scheme is invaluable for the type of calculations
performed in this work. The following section is devoted to its analytic formulation.

Partial solution

We consider first the conceptually easier case for the reflected waves. The derivation
for the transmitted waves is presented thereafter. As before, the form of the equations
is identical for s- and p-polarization, only the numerical values of the matrices differ
by additional 1/ε’s and εεε−1

l ’s. We present here the case for s-polarization. We start
by rewriting the equation at the last boundary. We denote this the L+ 1th boundary.
According to Eq. A.21 we have at the last boundary (as before, symbols in square
brackets are column designators)

[c̃+L ] [c̃−L ]
V L V LXL

V LΛL −V LΛLXL
=

[T̃ ]
fL+1

gL+1
, (A.43)

where fL+1 = I, and gL+1 = iKT . The trouble in inverting above equation is cause
by the column containing the X’s, since those contain phase factors, and those can
be zero. We thus rearrange the columns in the following way

[c̃−L ]
V LXL

−V LΛLXL
=

[c̃+L ] [T̃ ]
−V L fL+1

−V LΛL gL+1
, (A.44)

and we invert the latter, obtaining(
−V L fL+1

−V LΛL gL+1

)−1(
V LXL

−V LΛLXL

)[
c̃−L
]

=
[
c̃+L
T̃

]
(A.45)

From this equation we extract the upper row, that links the c̃L’s. We write it as

aLc̃−L = c̃+L . (A.46)

This identity is used to substitute the c̃+L in the right-hand-side of the equation for
the next lower boundary, here the Lth boundary. We thus obtain

[c̃+L−1] [c̃−L−1]
V L−1 V L−1XL−1

V L−1ΛL−1 −V L−1ΛL−1XL−1
=

[c̃−L ]
aLV LXL + V L

aLV LΛLXL − V LΛL
=:

[c̃−L ]
fL

gL
, (A.47)
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such that we end up with an equation that has the same form as considered previously.
We go on like this until we reach the first boundary, where we face

[R]
I δ

iKR ik0δ
=

[c̃−1 ]
f1

g1
, (A.48)

which we rewrite as
[R] [c̃−1 ]
−I f1

−iKR g1
= δ

ik0δ
. (A.49)

This is a regular 2N × 2N system that can be solved in a straight forward manner.
Under the line, we have converted the inversion of one 2N(L + 1) × 2N(L + 1) sys-
tem into L+1 successive inversions of a 2N × 2N system. Thus we have essentially
transformed the computational problem from an N9 problem to an N7 problem. This
provides us a great gain in computational speed and memory efficiency.

It remains to go through the fast scheme for the transmitted waves. We begin by
considering the equation at the first boundary.

[R]
f0

g0

+ a0

b0

=
[c̃+1 ] [c̃−1 ]
V 1X1 V 1

V 1Λ1X1 −V 1Λ1
, (A.50)

where f0 = I, g0 = iKR, and a0 = δ, b0 = ik0δ. Thus

[R] [c̃−1 ]
f0 −V 1

g0 V 1Λ1
=

[c̃+1 ]
V 1X1

V 1Λ1X1
− a0

b0

. (A.51)

Thus[
R
c̃−

]
=
(
f0 −V 1

g0 V 1Λ1

)−1(
V 1X1

V 1Λ1X1

)[
c̃+1
]
−
(
f0 −V 1

g0 V 1Λ1

)−1(
a0

b0

)
.

(A.52)
From this equation we extract the lower row and write it as

c̃−1 = m1c̃+1 − s1 (A.53)

Substitution in the equation for the second boundary yields

[c̃+1 ]
V 1 + V 1X1m1

V 1Λ1 − V 1Λ1X1m1
+ −V 1X1s1

V 1Λ1X1s1
=

[c̃+2 ] [c̃−2 ]
V 2X2 V 2

V 2Λ2X2 −V 2Λ2
(A.54)

thus
[R]
f0

g0

+ a0

b0

=
[c̃+2 ] [c̃−2 ]
V 2X2 V 2

V 2Λ2X2 −V 2Λ2
, (A.55)
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At the last boundary we face

[c̃+]
fL
gL

+ aL
bL

=
[T̃ ]
I

iKT
, (A.56)

which we rewrite as
[T̃ ] [c̃+]
I −fL

iKT −gL
= aL

bL

, (A.57)

arriving at a final 2N × 2N system that can be solved in a straight forward manner.
This finishes our analytic treatment of the Rigorous Coupled Wave Analysis. Hav-

ing come this far, one may be inclined to ask ’What is next?’. For us the next steps
will be a practical numerical implementation of the latter analytical treatment. On
the analytical level, the next step would be to consider the case when light impinges
on the grating in an incident plane that is not perpendicular to the grating grooves,
known as the conical mount, and moreover, to give up the separation into s- and p-
polarization, which led to scalar wave equations, and to consider instead anisotropic
materials, such as birefringent and ferromagnetic materials, that are described by a
dielectric tensor with generally nine independent elements, that makes it necessary to
consider the full vectorial wave equation. An implementation of the latter is described
in [39]. This is however beyond the scope of this work. And indeed, this situation is
rarely met in practice, the only notable exception being diffractive x-ray optics, where
many of the commonly used materials are birefringent. Noteworthy is also the work
of Lifeng Li [64], who defined the state of the art by providing an efficient numerical
method for crossed gratings, that is applicable to gratings with a two-dimensional
profile.

A.2 Numerical formulation

The presented analytical formulation of the Rigorous Coupled Wave Analysis de-
scribes how to obtain –in theory– a solution to the Maxwell equations for the prob-
lem of diffraction of a plain wave from an optical grating. This is however really only
half of the work. In practice, the analytic equations have to be cast into the form
of an efficient computer code, that employs a set of delicate numerical algorithms.
Choices have to be made, which computer language should be used, and how the
code should be structured. These aspects are often overlooked. Nevertheless, they
are of paramount importance, if we want to provide a code that is at the same time
fast, flexible, and easy to use and maintain. This section is devoted to describe the
numerical code written for this work, and the paradigms that stand behind it. A
coding philosophy was adopted that aims at combining the unsurpassed numerical
power of traditional procedural programming languages such as FORTRAN90, with
the ability to combine functions and data to well structured entities provided by
modern dynamic object oriented (OO) programming languages. We will refrain from
justifying this approach (an excellent motivation can be found in [12]). We will rather
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Figure A.3: Schematic of a rectangular profile dielectric transmission grating.

use the following subsections to explain the code and its user interface in greater de-
tail. The user level code is described in the following subsection. The numerical core
routines are briefly discussed in the subsection thereafter.

A.2.1 User level code

The definition of a grating geometry that is to be analyzed by RCWA can naturally be
done on two rather different levels. On the one hand, the user may provide directly one
or more grating layers, each characterized by its thickness and its dielectric function
in y-direction – the latter possibly being supplied in form of a series of discrete values.
On the other hand, the user may request: ’Calculate me the diffraction from a grating
whose unit cell is described by a gold triangle with blaze angle 30◦!’, that is he or she
may want to give the description of the unit cell in terms of a set of geometrical objects
with certain properties. To give right to these rather different user interactions, the
present code provides two levels of abstraction. In the following subsections we will
describe both of them using a binary (rectangular profile) grating, respectively a
grating with a curved meniscus on top of the groove as an example. We aim to
illustrate thereby the power of abstraction provided through the OO approach, and
introduce some of the features of the particular computer language that was chosen
here, namely Python.

Binary grating

Suppose we want to describe a binary (rectangular profile) transmission grating as
described in Fig. A.3. The grating consists of two halfspaces (the reflection and the
transmission region) and one slice. We can simplify this even further and say, the
grating consists of three slice (where two of them are infinitely thick and have a
constant dielectric function in y–direction). The present code allows us to describe
this stack simply by

[ reflection, binary, transmission ]

The brackets represent a list in Python, which may be thought of as an ordered
sequence of arbitrary objects (the order really matters; if we do list[0] with a list
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called list, we get back the first object, and not anything else). In this case, the
three objects are the reflection, grating, and transmission slices. It is important to
realize, that, though we could put arbitrary objects in our list (Python allows us to do
so; we could write [ 71.9, binary, ’hello’ ], where 71.9 is just a floating point
number, and ’hello’ is a string containing the word ’hello’), in our case the objects
are all ’slice objects’. So how do we get these objects? To create a slice, we write

binary = slice( 1271, [ [350, air], [614, glass] ] )

The slice has a thickness of 1, and comprises two steps. Starting from 0, until 350,
the material is air, and until 614 the material is Si. What are the units of these
numbers? It does not matter. It only matters that the same unit is used through-
out the computation, in particular, the wavelength should be specified in the same
unit. For the purpose of this example, let us assume, these are micrometers. Above
slice represents then the grating layer of a highly efficient high dispersion fused silica
transmission grating as described in Chapter 5. Note, that the refractive index steps
are again provided as a list. Generally, there can be an arbitrary number of steps,
each consisting of a coordinate and a material. We are nearly done! The last thing
that remains, is to specify what the materials air and glass really are. Here, we
meet the full power of modern OO computer languages, in particular, we get involved
with a feature called polymorphism. In the most simple case, we can write

air = material(1.0)
glass = material(1.45)

And this does really what one would expect it does, it makes air a material with
refractive index 1.0, and glass a material with refractive index 1.45. On many
occasions we may however want to take into account that the refractive index of the
material depends on the wavelength of the light. E.g., we may want to specify a
series of tuples (λi, ni), that describe the dielectric function over a certain wavelength
range (possibly along with a directive how the code should interpolate between those
numbers), or we may even go further and provide an arbitrary function that describes
the wavelength dependency of the refractive index. It is important to stress that we
want to specify this only here, at the moment when we define the material. At a
later stage in the computation, we don’t want to worry about such details any more,
instead, we want to deal with a material by refering only to its name. The present
code allows to do all this. E.g., we may write

gold = material( [ [ 0.4000, (1.658 + 1.956j) ],
[ 0.4592, (1.426 + 1.846j) ],
[ 0.4769, (1.242 + 1.796j) ],
[ 0.4959, (0.916 + 1.84j) ],
[ 0.5166, (0.608 + 2.12j) ],
[ 0.5391, (0.402 + 2.54j) ],
[ 0.5636, (0.306 + 2.88j) ],
[ 0.5904, (0.180 + 2.84j) ],
[ 0.6199, (0.130 + 3.16j) ],
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[ 0.6526, (0.166 + 3.15j) ],
[ 0.6888, (0.160 + 3.8j) ] ] )

to describe the dispersion of gold through linear interpolation between tabulated ex-
perimental values. Or we may provide the dispersion of diamond through a Herzberger-
type formula [45], as suggested in [90] by writing

def n(l):
A = 2.37837
B = 1.18897e-2
C = -1.0083e-4
D = -2.3676e-5
E = 3.24263e-8
L = 1/(l**2-0.0028)

return A + B*L + C*L**2 + D*l**2 + E*l**4

diamond = material( n )

This provides an enormous amount of flexibility. The mechanism behind this is poly-
morphism, meaning that the objects, though providing the same functionality, are
rather different (poly morph). E.g., in the case of the simplest material with wave-
length independent refractive index, only one number needs to be stored along with
the object, while in case of a tabulated refractive index, a sequence of tuples needs
to be stored, along with code that is capable to perform interpolation between the
values. But back to our example. We have provided a top-down description of the
code necessary to define an optical grating (typically this is also the approach during
programming; one starts with the ’big’ global objects, and breaks them down into
smaller and smaller pieces, until one ends up on the level of the actual code). Never-
theless, like most other programming languages, Python will complain if we refer to
objects that are not yet known. Let us thus first summarize the lines of code in the
correct order.

air = material(1.0)
glass = material(1.45)

incident = slice( inf, [ [614, glass] ] )
binary = slice( 1271, [ [350, air], [614, glass] ] )
transmission = slice( inf, [ [614, air] ] )

To embed the list of slices into a full computational task, it remains to write

grating = stack( [ incident, binary, transmission ] )

The resulting object, here named grating, comprises a full computational task. To
adapt it to our needs, we may specify the incident angle and wavelength and polar-
ization of the light, by writing



A.2. NUMERICAL FORMULATION 143

grating.theta = 36.67
grating.l = 1064
grating.pol = ’TE’

It remains to set the single computational parameter that enters the computation,
namely the number of positive and negative orders retained in the plain wave expan-
sion

grating.order = (-12, 12)

Through the ’.’ syntax, we have accessed particular data entities (designated by
their name theta pol, etc. ) that belong to the grating object. Generally, in OO
programming, objects can not only have data entities attached to them. They can
also contain functions (’methods’ in OO parlance). This allows us to execute the at
last the RCWA computation simply by writing

grating.compute()

This will return the diffraction intensities of the reflected and transmitted waves as
represented by Eq. (2.63). The empty brackets of the call to the .compute() method
represent a situation that is frequently encountered in OO programming. Generally,
the method could take arbitrary arguments (since it is just a function as any other),
however, in many cases, and as is also the case here, the method will operate on
the object itself (that is the reason why it is stored together with the object), and
all the data on which the method is supposed to operate are as well stored with
the object, and the method knows where to find it. For this reason we don’t need
to specify anything further in the call of the compute() method. Looking back, we
have described the computation of a custom dielectric transmission grating in just
ten lines of very readable and intuitive code (in fact, we could do with six lines, if
we combine the last five lines to stack( [ incident, binary, transmission ],
theta=60, pol=’TE’, order=(-12,12) ).compute()).

To optimize a specific optical grating to provide peak performance in a certain
wavelength range, one often needs to compute the diffraction characteristics of the
grating for a large number of parameter choices, e.g., for the silica grating considered
in this example, one typically varies the width and the depth of the grating grooves,
and evaluates which combination provides the highest diffraction efficiency. In the
remainder of this subsection we will show how this can be implemented in a straight
forward manner, by embedding the previous code snippets into few lines of pure
Python code

T = 614
air = material(1.0)
glass = material(1.45)

incident = slice( inf, [ [T, glass] ] )
binary = slice( 1271, [ [0.5*T, air], [T, glass] ] )
transmission = slice( inf, [ [T, air] ] )
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grating = stack( [ incident, binary, transmission ] )
grating.theta = 36.67
grating.l = 1064
grating.pol = ’TE’
grating.order = (-12, 12)

depth = arange(0.1, 1, 0.1)
width = arange(0.1, 1, 0.1)

result = []
for d in depth:

binary.d = d * T
for w in width:

binary.steps[0][0] = w * T
result += [ grating.compute() ]

Inside the loops, the relevant geometric properties of the binary layer (that is, its
thickness, and the width of the air step, that defines the width of the groove) are
repeatedly modified, and for each setting the diffraction intensities are computed.
The results are accumulated in a list. At the end of the run the result may be further
processed, e.g., we may save them by exporting the result variable to a file, or do
some interactive plotting. This functionality is provided by existing Python modules
that are readily available. The latter code is indeed all that is required to obtain the
data that underlies Fig. 5.8.

Complex geometries

Above approach is useful to describe rather simple grating geometries, i.e., those that
contain only of few grating layers. However, if the grating profile involves complicated
shapes, it may be not straight forward to express it in terms of a series of grating
layers. Thus, a simpler geometric approach is needed to define the geometry, and the
process of deriving suitable slices is to be left to the computational routines. Suppose
we want to describe the geometry of an optical grating that features a curved liquid-
gas interface on top of its groove, as shown in Fig. A.4(a). Generally, a reasonably
arbitrary two-dimensional geometry may be constructed by piling on top of each other
a number of geometric objects, such as rectangles, circles, triangles, etc., that may
overlap and partially cover each other, and consider the resulting ’image’ as the final
geometric object, just as one often does when preparing graphic illustrations for a
presentation. In this case it would be natural to define first a box, that describes the
extension of the unit cell, and then place geometric objects inside. ’inside’ should not
be taken too serious. Possibly one will allow the geometric objects to extend over the
boundary of the box, i.e., the box may be thought of merely as a frame that is put
on top of the pile of objects. Fig. A.4(b) illustrates this approach. How could this
process look like in OO programming? Possibly one would start by creating a box.
In the present case the box has a width of 8µm (that will later be the period T of the
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Figure A.4: (a) Schematic of a superhydrophobic grating featuring a curved liquid-
gas interfaced on top of its groove. (b) Description of the grating geometry by piling
partially overlapping geometric objects on top of each other. The illustration displays
the same objects, in the same order as in (a), however all objects have a transparency
of 50%.

grating, and some height H. Generally we don’t know a priori how high the box needs
to be to fit all objects inside, so we would like to make it rather large, say 10µm. For
reasons that are dictated by the coding logic, it is necessary to specify a background
material of the box that is to be used if an area is not covered by any object (if we
would not do so, the code would have to invent a background, and to this end it would
create certain objects that could interfere with user activity; alternatively we could
refrain from making the code invent a background, but then the risk is high that the
user may forget to specify the background himself). In the present case we use water
as the background. The box is created simply by writing

T = 8
H = 10
water = material(1.33, ’blue’)

box = cell(T,H,water)

Here, we get involved with an additional feature of Python, namely optional argu-
ments. When creating a material instance, a color specification may be passed (if
we don’t pass anything, the default color ’white’ is attributed to the material). The
specified color will be used later to represent the material when we request a fake
color image of the unit cell. As we write this, a first object (the lowest lying object)
will already be included in the box, namely its background object. We may now go
ahead and pile other objects on top of it. To make this easier, we may want to define
a coordinate origin (or ’anchor’) for the objects that we are planning to add. In this
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case we choose the top grating surface, in the middle of the groove as an anchor, as
shown in Fig. A.4(b). This is done through

domain.anchor = (2,8)

Behind the scenes, this operation unleashes the power of OO programming. The
symbol domain may be understood as a unification of all types of objects that we
may want to put into the box (a domain can be understood as an arbitrary domain
in R2). In OO programming this is called a ’class’. In fact, here, it is a ’base
class’ that serves as a template for defining more specific classes such as a circle
class, a halfspace class, etc.. Through above operation, we modify one of the data
items attributed to the base class, namely its anchor. The anchor is known to all
derived classes, such that all geometric objects are aware of this change (generally a
derived class knows all items of it parent class). This mechanism is called ’inheritance’.
Above code line contains, yet another language feature of Python, namely its dynamic
character, meaning that many things can be modified at run time. While we have
previously manipulated only objects, here we manipulate a class (the symbol domain
represents the class definition). Thus, with Python even the definition of a class can be
changed during execution. Dynamic OO programming is a rather new development,
that distinguishes recent generations of computer languages from original static OO
languages, such as C++. Let us however return from this excursion about classes
to the example of the superhydrophobic grating. To describe the geometry, we place
first a silicon halfspace into the box. We can do this through

box + halfspace(-inf,0,SiO2)

Here, we have made use of another powerful feature of OO programming, namely,
the ability to define operators and relations between abstract objects allowing to use
them in an intuitive manner. The present code assigns to the ’+’ operator the function
that it should ’add’ the specified object to the pile of known objects stored with the
box. Behind this lies a complicated operation. However, the user does not need to
be concerned about that. For him or her it is sufficient to deal with a simple +. We
complete the grating geometry by

box + halfspace(-inf,0,SiO2)
box + rectangle(W, H, air, (0, -0.5*H) )
box + circle(R, water, (.0,L))

box + rectangle()

It remains to call the slice() method to obtain a sequence of slices representing the
unit cell. This sequence of slices is readily a list of slice objects as required for the
creation of a stack object as described above, i.e., we may use it directly to create a
full computational task and write

grating = stack( box.slice() )

To visualize the result, we may invoke the stack’s paint() method



A.2. NUMERICAL FORMULATION 147

grating.paint().save(’grating.jpg’)

Here we have directly saved the resulting image object to a file. It remains to define
the computational parameters of the grating object and run the computation as
described in the previous section.

We close this section by taking a deeper look at the coding logic of the slice()
method. How is the ’piling of overlapping objects and considering the final image’
cast into a computer code? To know what we ’see’ at an arbitrary point inside the
box, we walk through the pile of domain objects starting from the uppermost one,
and for each domain, we ask: ’are we inside?’. If so, the material of this domain is the
one ’seen’ at this point. To facilitate this operation, each domain has an inside(r)
method attributed to it, that returns for a given r true or false, depending on whether
or not the point lies inside. This makes clear what the domain class really is on the
coding level: it represents the class of objects that are equipped with a position (their
own coordinate), and an inside(r) method. To obtain grating slices suitable for
the creation of a stack, the ’inside-check’ is done on a two-dimensional mesh that
spans the entire box. Subsequently, in each cut along the x-direction, adjacent steps
that feature the same material, are merged. Likewise, thereafter identical slices in
y-direction are merged. A thorough merging is of uttermost importance to avoid an
unnecessary increase of the number of slices, that can otherwise result in a dramatic
increase of the computational time.

Above example illustrates the flexibility that is enabled through an OO program-
ming approach. The precise delineation of what functionality and data should be
provided by different entities of the code, makes it extremely easy to extend existing
programs and implement flavors of objects and novel algorithms in ways that were
not even envisaged originally. This facilitates the combination of previously unrelated
code packages, and typically results in a great reusage of existing code, such that com-
plex computational tasks can be coded in a short amount of time. Here lies its great
significance for scientific computing. OO programming really allows to encode a large
class of numerical tasks, that otherwise (through a traditional procedural approach)
could not be implemented within a reasonable amount of programming time.

It should however not be forgotten, that, at the heart of every scientific computa-
tion lies a numerical algorithm that spawns a vast amount of floating point operations
to the cpu, and frequently manipulates large amounts of memory. However useful an
OO approach may be for providing a flexible and well structured user interface, in
practice only a negligible amount of run time will be spend on things such as interpret-
ing the user input and setting up the computational cell. By far the largest amount
of time will be spend in the low level computational routines. The performance of the
computation depends thus ultimately on a rigorous and efficient implementation of
the underlying numerical algorithms. The following section is devoted to such aspects.

A.2.2 Numerical core routines

The presented analytical scheme requires a number of non-elementary numerical op-
erations, that can be put into two groups. The first one is Fourier transformation, or
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Figure A.5: Fourier expansion of a step function (blue line). The red line displays
the expansion based on the exact evaluation of the Fourier coefficients. The green
line displays the FFT result sampled on 100 points over the period. Expansions are
evaluated up to the 24th harmonic. The FFT result is shifted as compared to the
exact result due to bandwidth limitation.

more precisely Fourier series expansion (to compute the representation of the dielec-
tric function in each grating layer), the second is linear algebra, including eigenvalue
problems (the secular equation in each grating layer), matrix inversion (for the partial
solution schemes), and solution of regular linear systems. The following two subsec-
tions briefly discuss the prior respectively the latter.

Fourier expansion

One may be inclined to say that the numerical calculation of a Fourier series rep-
resentation of a grating layer is straight forward, one only needs to employ the well
known FFT algorithm [97]. However, most gratings that we want to compute here,
are represented by layers that consist of only few discrete steps, representing large dis-
continuities. Fig. A.5 illustrates a structure consisting of only one step. The Fourier
transform of such a structure requires a large number of harmonics. The FFT algo-
rithm computes all harmonics, (with frequencies 1/T . . .N/T , where N is the number
of samples) at the same time. On the one hand this is great (this is what makes
the algorithm so fast), on the other hand it means that any effect caused by high
harmonic cut off, such as aliasing or leakage of spectral density, can contaminate the
hole result. Thus, if a numerically accurate representation of a generally rather dis-
continuous function is required, great care has to be taken about proper sampling.
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Depending on the function, the required sampling density may differ. Indeed, there
is no fundamental numerical criterion that tells us what sampling density is required
for a particular function. Only the opposite is possible. The sampling theorem, or
Nyquist theorem tells us that, if a function is truely bandwidth limited, meaning that
it has exactly zero spectral density above a certain frequency, then the FFT gives
us indeed the exact result. On the other hand, it states that, if the function is not
bandwidth limited, all missed spectral density is spuriously moved into the range used
in the computation. Thus, FFT may not be the safest choice for the calculation of
the Fourier representation of the grating slices considered here. On the other hand, in
the present case of piecewise constant functions (the representation of the dielectric
function in terms of steps is exactly this), the Fourier series representation can be
calculated very easily by directly evaluating the analytical expression. In this case, in
contrast to the FFT, every Fourier coefficient is evaluated independently, and a con-
tamination of the result due to bandwidth limitation is not encountered. Moreover,
with the mostly small number of steps, only very few floating point operations are
required. In contrast, to compute the Fourier representation of a few step function
(that is represented by only few numbers), one would first need to resampled the
function on a dense mesh, and then pass a large number of floating point values to
the routine. That seems indeed not very efficient. Thus, we use a direct numerical
representation of the analytic expression

ck =
∫ T

0

f(x) exp(−i2πkx/T )dx

=
i

2πk

[
fN − f1 +

N−1∑
n=1

(fn − fn+1) exp(−i2πkxn/T )

]
,

(A.58)

where f(x) is a periodic function on the interval T , and piece wise constant with value
fn on the interval (xn−1, xn].

Linear algebra

The presented careful evaluation of the Fourier expansion of the dielectric function
in the grating slices is undoubtedly important for a successful initialization of the
numerical routines, however, the largest amount of numerical operations is performed
by the linear algebra routines that provide eigenvalues of the secular equation, and
solutions to the linear systems that represent the field matching at the boundaries of
the grating layers. It is here, where highly efficient numerical code can really make
a difference. A number of delicate numerical algorithms have been devised over the
past decades, that can perform such tasks. Which algorithm is most suitable for a
specific computational problem depends on the shape of the matrix, e.g., whether
it represent a regular, over-determined or under-determined system, whether it is
symmetric or triangular, etc., and on its condition, that is, whether it has many
elements close to zero, whether it is densely or sparsely populated, etc.. The linear
systems that are encountered with above analytical formulation, are all regular, and,
when following the presented solution scheme, rather well conditioned. A popular
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algorithm that is suitable for solving such systems is the LU factorization, where
the matrix is first factorized into a lower ’L’, and upper ’U ’ triangular part, and the
solution is afterwards obtained by a computationally inexpensive substitution process.
This is the default solution method adopted in the present code. The solution of a
linear system is however the less sophisticated linear algebraic problem that has to be
tackled. A harder nut to crack is the eigenvalue problem represented by the secular
equation for the propagation constants. By its very nature, an eigenvalue problem
is a much less predictable computational task as is the solution of a linear system.
Most modern eigenvalue routines grind the matrix to diagonal form by applying in an
iterative manner a sequence of similarity transformations. Typically a combination
of factorization methods and atomic transformation results in the most successful
approach. A reference implementation of above mentioned schemes is provided in the
linear algebra code package LAPACK, which was conceived in the early 1980’s as a
successor of the LINPACK library, originally intended for the use on supercomputers.
Both code packages are written in FORTRAN77, and rely heavily on the BLAS (Basic
Linear Algebra Subprograms) routines. It is indeed remarkable that this code, written
in the 1970’s is still used today in its original form, to provide the basis of nearly
all scientific computing (the reader is encouraged to browse into the ’\bin\win32’
subfolder of a MATLABTM installation to spot a file named ’lapack.dll’, or to type
’lapack’ into the search bar of the MATLABTM help browser). Possibly the fastest
embodyment of the LAPACK library available to date for intelTM IA-32, EM64 and
AMD64TM architectures is the intelTMMath Kernel Library, available for free for
non-commercial use under Linux. The binaries include highly optimized code that is
capable of employing the newest features of recent processor generations such as SSE
instructions and the like for its needs. Indeed, this code typically runs 2-3 times faster
than code derived with free compilers. Whenever possible, it is highly recommended
to use such vendor supplied libraries.
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On the effect of
inhomogeneous meniscus
displacement

We consider the light diffracted by N micromenisci. The problem is well described
by Fraunhofer diffraction since λ � a,R. Following [15] Eq.8.5.23 on pp.445, the
intensity I at a point far away from the grating is

I =

∣∣∣∣∣∑
n

eiφnzn

∣∣∣∣∣
2

, (B.1)

where φn is the phase and zn the integral of the disturbance over the unit cell for
the n-th meniscus. Owing to the simple picture that the intensity diffracted from the
unit cell is governed by the interference between two waves, namely the light emitted
from the Si-surface and the light emitted from the water-air interface, we realize that

zn = eiα + ei(α+α0+δαn). (B.2)

In the homogeneous case δα1 = δα1 = · · · = δαN =: δα, i.e, z1 = z2 = · · · = zN =: z
the diffracted intensity reduces to the known separable expression

I =

∣∣∣∣∣∑
n

eiφn

∣∣∣∣∣
2

|z|2 . (B.3)

In a diffraction order, the incident and observation angle are such that the phases φn
are the same for all unit cells, i.e. φ1 = φ2 = · · · = φN =: φ and indeed

I =

∣∣∣∣∣∑
n

eiφn

∣∣∣∣∣
2 ∣∣eiα∣∣2 ∣∣∣1 + ei(α0+δα)

∣∣∣2 = N2 [2 + 2 cos(α0 + δα)] . (B.4)
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In the inhomogeneous case

I =

∣∣∣∣∣∑
n

eiφneiα
(

1 + ei(α0+δαn)
)∣∣∣∣∣

2

(B.5)

and in a diffraction order

=
∣∣eiφ∣∣2 ∣∣eiα∣∣2∑

n

(
1 + ei(α0+δαn)

)∑
m

(
1 + e−i(α0+δαm)

)
= N2 +N

∑
n

[
ei(α0+δαn) + e−i(α0+δαn)

]
+
∑
n,m

ei(δαn−δαm).
(B.6)

We can chose α0 such that
∑
n δαn = 0, and since δαn � α0, 2π, the second term

reduces to
N
∑
n

2 cos(α0 + δαn). (B.7)

Observing that the hole expression is real, we realize that the result is unchanged if
we replace the third term by its real part∑

n,m

cos(δαn − δαm). (B.8)

Thus,
I = N2 +N

∑
n

2 cos(α0 + δαn) +
∑
n,m

cos(δαn − δαm) (B.9)

Owing to the fact that the meniscus equilibrium position is in the center of a linear
range with positive slope, we realize that α0 ≈ −π/2. The sinus function has a relative
error from the straight less than 20% in the interval [-1,1], thus the linear range
extends approximately over 1/3 of the full period thus the deflection at resonance ζr
corresponds to a phase of approximately 2π/6, thus

αn =
2π
6ζr

ζn − π/2, (B.10)

where ζn is the deflection of the n-th meniscus. Substituting 2π/(6ζr) =: c and
expanding the trigonometric functions, we obtain

I =N2 + 2N
∑
n

[
cζn −

1
3!

(cζn)3 + . . .

]
+
∑
n,m

[
1− 1

2!
(c(ζn − ζm))2 + . . .

]
=2N2 + 2N

∑
n

[
cζn −

1
3!

(cζn)3 + . . .

]
+
∑
n,m

[
− 1

2!
c2(ζn − ζm)2 + . . .

] (B.11)

keeping terms up to second order, we have

I = 2N2 + 2Nc
∑
n

ζn −
c2

2

∑
n,m

(ζn − ζm)2. (B.12)
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Owing to the experimental test of the homogeneity that confirmed

I = I0 + δI(rζ1, . . . , rζN ) = I0 + rδI(ζ1, . . . , ζN ), (B.13)

for r ∈ R, r � 2π, we conclude that

I = 2N2 + 2Nc
∑
n

ζn, (B.14)

thus,
I = N2[2 + 2c〈ζn〉]. (B.15)

Expressing the homogeneous case in terms of the deflection results in

I = N2[2 + 2cζ0], (B.16)

thus, the intensity of N menisci with inhomogeneous deflections ζ1, . . . , ζn is indeed
the same as the intensity of N menisci with homogeneous deflections ζ1 = · · · = ζN =
〈ζn〉n equal to the mean.
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Appendix C

A setup for vapor deposition
of self assembled silane
monolayers

This appendix describes the development of a vapor deposition setup that provides
hydrophobic self assembled monolayers of an alkylsilane (typically 1H,1H,2H,2H-
Perfluorodecyltrichlorosilane), in a highly reproducible manner, following [72]. The
layers are typically 1.5 to 1.6nm thin (as determined by ellipsometry assuming the
bulk dielectric constant of the alkylsilane), and the advancing an receding contact an-
gles on a plane substrate are ϑa = 116±2 respectively ϑr = 104±2. Vapor deposition
of alkylsilanes was initially performed following a commonly used technique that is
performed under ambient conditions. Though wide spread, this technique provided
however highly unreproducible, often unexceptable results. E.g., in one case, the
sample consisted of an array of cylindrical holes with 3µm radius, etched into silicon.
When inspecting the coated and cleaned sample under an optical microscope, some
of the holes were filled, only few were empty, and cylindrical pieces of material where
observed on the sample. This ruled out the traditional vapor deposition method for
this work. And indeed, this method admits the silane reagent to the object that is
to be coated, in an unpredictable thermodynamic state, as we will describe in the
following section. This suggested however, that the method should be easily fixed,
and converted into a well controlled setup for hydrophobic coating production, as is
described in the subsequent section.

C.1 Traditional vapor deposition technique

In the traditional vapor deposition technique, a small amount of the liquid silane is
extracted from the stock bottle using a syringe or pipette. This is done either inside a
glove box providing a dry environment, or under a stream of dry nitrogen. The syringe
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is then quickly brought to a desiccator, and a drop of silane is placed on the bottom
of the vessel. The sample is quickly placed inside the vessel, the vessel is closed and
evacuated using a membrane pump. Subsequently the valve between the vessel and
the pump is closed, and the silane is admitted to react with the sample surface for
some time. The desiccator is vented, and the sample is removed and cleaned, typically
with one or more organic solvents and water, possibly in an ultrasonic bath.

The underlying chemical process is the following. Generally, the reactive group of
the silane is a silicon atom that is linked to the functional part of the molecule through
a single covalent bond. The three remaining bonds are terminated by chloride atoms.
The covalent binding of the silane to a silicon / silicon oxide surface occurs through
the formation of Si–O–Si bonds. This requires the removal of the three chloride atoms.
Generally this is provided by water. The hydrogen atoms gained from the water react
with the chloride to form HCl, and the oxygen atom provides the link in the Si–O–Si
bond. The stochiometry of the reaction is satisfied, by requiring that a fraction of
the reactions takes its oxygen from the SiO2 surface.

The problem of above traditional technique is, that an undefined mixture of silane
and water is admitted to the sample, that results in an uncontrolled polymerization
reaction. In particular, the highly reactive silane begins to polymerize already in
the vapor phase, before adsorbing to the sample surface, and the polymerization
reaction continues beyond the formation of a monolayer. To provide a controlled
polymerization reaction, the following approach is adopted.

C.2 Controlled vapor depostion

Fig. C.1 shows a schematic of the vapor deposition setup. Two reservoirs containing
the silane, respectively water, are connected to a reaction chamber through valves.
A rotary pump, is connected to the chamber through a buffer compartment, that
is equipped with a vacuum gage and separated from the chamber and the pump by
an additional valve. The chamber and reagent reservoirs, including all valves, are
made of glass. All valves are silicone smeared glass valves. The silane reservoir has
been filled under dry conditions inside a glove box. Initially, the valves between the
reservoirs and the chamber are closed. The initial setup scheme start by evacuating
the chamber. Subsequently the water is degassed by opening the valve between the
water reservoir and the chamber for few minutes, while continuing to pump. Before
degassing the silane, the valve between the water reservoir and the chamber is closed,
and the chamber is evacuated again to the end pressure of the rotary pump. The
silane is degassed, by opening the valve between the silane reservoir and the chamber
for a few minutes. The valve between the chamber and the silane reservoir closed, the
pump turned off, and the chamber vented. This finalizes the initial setup scheme.

To perform a vapor deposition of a self assembled silane coating, the sample is
placed in the reaction chamber. The chamber is closed and evacuated to the end
pressure of the rotary pump. The pressure reached in this way (typically about
5 ·10−2mbar), is below the vapor pressure of the silane (≈ 0.4mbar). Subsequently all
valves of the buffer compartment are closed, and the pump is turned off. Subsequently
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(a)

(b)

Figure C.1: Schematic (a) and photograph (b) of the setup for controlled vapor
deposition of an alkylsilane.
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the valve between the silane reservoir and the chamber is opened for a short time
(typically 5 min). This results in silane gas at the vapor pressure filling the reaction
chamber, and a layer of silane molecules adsorbing to the sample surface. The valve
between the silane reservoir and the chamber is closed, and the valve between the
water reservoir and the chamber is opened for few seconds. This results in a pressure
increase in the chamber to the vapor pressure of water, and water vapor filling the
chamber. The reagents are allowed to react for some time (in this work, the waiting
time was typically 30min, but probably a much shorter time works equally well).
Subsequently the chamber is vented through the following procedure. First the valve
between the buffer compartment and the chamber is opened. This results in a gas
flow from the chamber to the buffer compartment. Subsequently the venting valve of
the buffer compartment is opened, such that the entire system is vented. The latter
venting procedure is of uttermost importance for the successful completion of a clean
coating process, and becomes necessary due to the grease smeared glass valves used
at the reaction chamber. In an earlier design of the setup, the buffer compartment
was not implemented, and the chamber was vented directly through a glass valve.
As a result, the sample was often contaminated by fine drops of grease, that were
dragged from the valve by the vigorous initial air flow arising in the first moment
when opening the valve. In contrast, the outermost valve of the buffer compartment
is not smeared, such that no grease drops are produced, and the gas flow through
the grease smeared valve between the buffer compartment and the chamber is not a
concern when the valve is fully opened, and the flow is slow. For this reason, the buffer
compartment is of uttermost importance for the production of a clean coating. This
raises the question whether it would not be simpler to replace the grease smeared
valves by unsmeared ones. And indeed it would, however, it is at the same time
necessary to keep the chamber and all its valves entirely in glass (and possibly some
polymer). To the best of our knowledge no unsmeared glass valves are available, that
can provide a sufficiently low leakage rate. The all-in-glass design is necessary because
of the aggressive reaction product HCl. Indeed, a first version of the chamber, made
of stainless steel, was highly corroded (all chamber surface was covered with fine rust
particles) after few weeks of operation. For this reason we believe that the all in glass
design is the only reliable layout, that can provide high quality coating fabrication
over long terms. The grease smeared valves caused however another problem. Namely,
repeatedly, after several weeks of operation, the valve between the silane reservoir and
the chamber got stuck, resulting in a fatal failure of the system. The valve could only
be recovered by heating valve and reservoir to 400◦ in an oven (after wrapping it in a
large amount of aluminum foil to prevent damage of the device and the oven during
the vigorous separation). For this reason, at the time of writing the traditional type
glass valve is replaced by an (also grease smeared) glass valve featuring a Teflon screw
and a rubber gasket.



Appendix D

Design of a chamber for
diffraction measurements in
pressure controlled liquid
environment

We now estimate the angle between two diffraction orders. Fig. D.1 shows wavevectors
in optical grating diffraction. We have

dk ≈ |dk|

for not too flat angles, and

|dk| = |kkk| dϕ,

Figure D.1: Wave vectors in optical grating diffraction.
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thus
dϕ ≈ dk

|kkk|
.

We have
k0k0k0 =

2πn
λ
,

k0 =
2πn
λ

sin(ϑ),

K =
2π
T

and
km = k0 +mK,

where n is the refractive index of the medium of incident and diffracted beams, λ is
the wavelength of the light, m is the diffraction order and T is the grating period.
Thus

dk = K

and
dϕ =

λ

T
.

We have λ = 488nm, T = 16µm, thus,

dϕ ≈ 1
32
.

On the other hand we have
dϕ >

dl

R
,

where dl is the separation between two beams at radius R, where the photodiode
is located. We require a diameter d of the laser beam that is large enough such
that it hits many lines of the grating, say (1000 lines), thus d ≈ 10mm. To ensure
measurement of the total intensity of exactly one diffraction order we require a size
w of the active area of the photodiode of w ≈ d. We require some separation between
the beams and some freedom for the alignment of the photodiode, thus we choose
dl = 20mm. Thus

1
32

=
20mm
R

(D.1)

We now turn to the lens effect of the cylindrical glass container filled with water.
If we had no container, we could always satisfy Eq. (D.1) by increasing R. However,
a container acts like a cylindrical lens that causes the diffracted beams to diverge
such that beams of different order overlap for large enough R. As can be seen in
Fig. D.2(a), indeed for any container radius R0 and angular separation dϕ there is a
radius R at which the beams overlap. We have from Fig. D.2(a)

R = R0 + 2f, (D.2)
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(a) (b)

Figure D.2: Lens effect of a water-filled glass container. (a) Refraction at the
container wall causes the diffracted beams first to converge and later to diverge again.
(b) A cylindrical wall acts as two thin plan-convex lenses.

where f is the focal length of the container.
We now evaluate a focal length of a glass container filled with water. We can

describe the lens effect of the container as a compound lens consisting of two thin
plan-convex lenses, see Fig. D.2(b). We have a lens-maker equation, for the focal
length f of a thin lens with radii r1 and r2 and refractive index nl of the lens material
and refractive index nm of the surrounding medium

1
f

=
(
nl
nm
− 1
)(

1
r1
− 1
r2

)
. (D.3)

The radius r1 corresponds to the surface near to the light source. Positive radius
corresponds to origin of radius on the side of the outgoing beam. A radius is ∞ if
a surface is planar. We have no refraction at the planar surface of a plan-convex
lens, thus the medium at the planar side is arbitrary, thus we can use Eq. (D.3) for
our case with a water lens surrounded by glass with focal length f1 and a glass lens
surrounded by air with focal length f2. The focal length of two thin lenses with a
distance between each other that is small compared to both individual focal lengths
is

1
f

=
1
f1

+
1
f2
,

thus
1
f

=
(
nw
ng
− 1
)

1
R0

+
(
ng
na
− 1
)

1
R0 + ∆R0

,

where nw is the refractive index of water, ng is the refractive index of glass and na is
the refractive index of air. We have nw ≈ 1.33, ng ≈ 1.48, na ≈ 1, thus

1
f
≈
(

1.33
1.48

− 1
)

1
R0

+ (1.48− 1)
1

R0 + ∆R0
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f = R0
1

0.48 1

1+
∆R0
R0

− 0.1
.

For ∆R0 � R0

f ≈ 2.6R0

Substituting in Eq. (D.2), we have

R ≈ 6R0.

Together with Eq. (D.1), we have

R0 = 20mm
32
6
≈ 10cm,

which is close to our previous estimation, R0 ≈ 15cm, based on f ≈ R0 and R ≈ R0+f
to be on the save side. The result is consistent with the approximation of thin lenses
and ∆R0 � R0. With R0 = 150mm, we have

f ≈ 390mm.

For a diffraction measurement under water-vapor as well as under ambient condi-
tions, a setup is designed as shown in Fig. D.3. The sample is illuminated with the
488nm line of an Ar-ion laser (coherent, Innova 90c). To chose s- or p-polarization of
the incident light, The number and orientation of mirrors in the illuminating beam
path is chosen accordingly. The optical beam reaches the sample at last via two mir-
rors. The farther of the two directs the beam vertically upwards, the closer (last)
mirror directs the beam parallel to the optical table onto the sample. A tilt of the
closer mirror changes primarily the angle of the laser beam, while a tilt of the farther
mirror changes primarily its position. The mirrors are always used in this way to
change independently the position and angle of the laser beam.

We now describe how the sample is aligned, the rotation axis of the detector stage
is aligned collinear to the rotation axis of the cell stage, and the laser beam is brought
into perpendicular incidence on the center of the sample. The tolerances of all parts
that determine the position of the sample holder (such as the mounting holes of the
plate that connects the cell rotation stage and the bottom flange of the cell, the blind
holes that determine the position of the sample tripod, etc.) are ≈ 0.1mm, such
that, after placing the sample holder (with a mounted sample), the axis of the cell
rotation stage lies on the vertical middle line of the sample surface with an error of
typically less than 1mm. This will result in the worst case in a ’drift’ of the laser spot
on the photodiode during an angular scan of less than 1mm. Given the diameter of
the active area of the photodiode of about 1cm, and a width of the laser spot on the
diode of few mm (depending on the diffraction angle and order) this is just acceptable.
Next, the axis of the cell rotation stage is nearly perpendicular to the optical table,
such that the inclination of the sample surface can be adjusted by bringing the laser
beam into a plane parallel to the optical table (by measuring the beam height with a
ruler), and adjusting the sample tripod such that the reflected beam is collinear to the
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(a)

(b) (c)

Figure D.3: Setup for angle resolved diffraction measurements under pres-
sure controlled conditions under vapor as well as ambient atmosphere. (a)
Vacuum- and high pressure measurement cell (cross section). (b-c) Setup for angle
resolved diffraction measurements. (b) side view (c) top view.
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incident beam (after having rotated the sample to zero incident angle). The sample
is rotated and it is ensured that all diffracted beams are in the same plane parallel to
the optical table. At last, the laser beam is brought in perpendicular incidence on the
vertical center line of the sample by using the center line markers on the sample to
find the position, and the reflection from the sample to find the perpendicular angle.
Thereafter the illuminating beam is not changed any more. This position is defined
as the zero position of the cell rotation stage. Next, the detector rotation axis is
brought onto the cell rotation axis. To achieve this (1) the sample is rotated to 2◦,
the detector is brought onto the reflected beam, the position of the detector is defined
as 4◦. (2) the sample is rotated to 86◦, the detector to 172◦, the translation stages
of the detector tripod are used to correct half of the misalignment. The remaining
misalignment is corrected by manually rotating the detector arm (while the position
encoder remains at 172◦). (3) the sample is rotated to 45◦, the detector to 90◦, the
translation stages are moved to correct the misalignment. (4) the micrometer screws
of the detector tripod are used to align the tilt of the detector rotation plane. (5)
the z-position and rotation of the photodiode is adjusted. (6) the latter steps are
repeated until satisfactory alignment is reached.



Appendix E

On the estimation of the
error in χ2 fitting

In statistical analysis one defines [97]

χ2 =
∑(

yi − y(α, xi)
σi

)2

, (E.1)

where (xi, yi), i = 1, . . . , N are the measured data points, σi are their individual stan-
dard deviations, and y(x) = y(x;α1, . . . , αM is the functional relationship between
the measured variables with M adjustable parameters αj , j = 1, . . . ,M .

If the individual errors σi are normal distributed, the confidence interval δα is

δα = ±
√
V
√

∆χ2
µ, (E.2)

where V is the variance and related to the second derivative with respect to the
parameter of χ2 by

1/V =
1
2
∂2χ2

∂α2
|α0 , (E.3)

and ∆χ2
µ is a constant determined by the confidence level p and the number of fitting

parameters µ considered simultaneously in the confidence analysis. If one is interested
in the confidence interval of every fitting parameter individually, then µ = 1. One is
often interested in the 68.3% confidence interval. In this case ∆χ2

1 = 1, and therefore

δα =
√
V (E.4)

Reasonably, this is called the confidence interval for ±1σ confidence level.
Near a minimum α0, χ2 can be approximated with a parabola

χ2 ≈ χ2(α0) +
1
2
∂2

∂α2
χ2|α0(α− α0)2. (E.5)
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With the short notation χ2(α0) =: χ2
0, we have

χ2 = χ2
0 +

1
V

(α− α0)2. (E.6)

The inverse is a Lorentzian

1
χ2

=
1

1
V (α− α0)2 + χ2

0

=
√
V√
χ2

0

√
V χ2

0

(α− α0)2 + V χ2
0

(E.7)

The HWHM γ is

γ =
√
V
√
χ2

0. (E.8)

In a typical fit one has χ2
0 ≈ ν, where ν = N −M is called the degree of freedom,

thus
γ ≈
√
V
√
ν. (E.9)

If the individual errors σi are not known, the best guess is

σ2
i =

1
ν

∑
(yi − y(xi, α0))2

. (E.10)

Plugging this back into the χ2, we have

χ2
0 ≡ ν. (E.11)

In this case
γ ≡
√
V
√
ν. (E.12)

In conclusion, in case of ’real’ statistical analysis (σi are known), the HWHM can
be used – together with the obtained chi-square at the minimum – to determine the
confidence interval δα

δα = γ

√
∆χ2

µ√
χ2

0

. (E.13)

Here χ2
0 is typically about ν and one often asks for the 1σ-confidence interval, where√

∆χ2
µ = 1, such that

δα ≈ γ√
ν
. (E.14)

In the case of ’formal’ statistical analysis (σi are unknown), the HWHM can be used
to determine the ’formal standard error’

√
V ≡ γ√

ν
. (E.15)

Fig. E.1 illustrates above results for a randomized set of data fitted to a parabola

y = αx2, (E.16)
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Figure E.1: Fit of 200 noisy data to a parabola y = αx2, where α = 1 and the yi are
normal distributed with σi = 0.1. The table compares the resulting fit parameters
and errors for the Levenberg-Marquardt and ’1/χ2-approach’.

where ν = 199 (i.e., ∆x = 0.01), α = 1, and the yi are normal distributed with
σi = 0.1. The solid lines show curves at the boundary of the confidence interval
for the standard error ±δα, and the error ±γ. The table in Fig. E.1 compares the
underlying statistical analysis using Levenberg-Marquardt and ’Lorentzian fit’. Even
for this fairly poor statistics with only 200 data points, both methods agree nearly to
machine precision.

In physics one often encounters the case (nearly always) that the model is ’wrong’
or ’not perfect’. If the random error of the measured data is much larger than the
imperfections of the model, this is not a problem, and δα remains a well defined
measure for the error. If however the random error is smaller than the imperfections of
the model, the statistical analysis as described in the preceding looses its foundation.
In this book, this case is encountered e.g. in Fig. 3.2. How to assess the ’quality of
the fit’ in such a case? It turns out that γ is a safe measure for the error of the fit.
It is like evaluating the standard error but omitting the division by

√
ν. This makes

sense, because in such a case, acquiring more experimental data points should not
reduce the error, in contrast δα would decrease. Fig. E.1(a) illustrates these aspects.
Evidently, if one was not sure that the error of the experimental data was perfectly
Gaussian, one would consider γ as a safer choice for an error estimate than α.
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Appendix F

Noise equivalent pressure for
ultrasound detection using a
meniscus on a fiber

F.1 Interference signal

The reflected intensity is approximately a two beam interference

E =
√
rgaE1e

iωt +
√
rawE2e

iωt+ϕ, (F.1)

where rga and raw are the reflection coefficients of the glass-air and air-water interface,
respectively, and ϕ = 4πζ/λ is the phase shift (ζ meniscus deflection and λ wavelength
of the light). We have rga ≈ raw =: r ≈ 0.01, thus

J = 2J0r(1 + cosϕ), (F.2)

where J is the intensity at the detector and J0 is the incident intensity. Thus, the
intensity on the detector is of the order

Jd = 2J0r (F.3)

and the signal intensity is of the order

Js = 2J0rϕ (F.4)

F.2 Optical shot noise

We have
Iτ =

e

N
, (F.5)
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where I is the current, e is the electron charge, τ is a time interval and N is the
number of electrons. I and N are random variables, thus

〈I〉 =
e

τ
〈N〉, (F.6)

and
〈I2〉 =

( e
τ

)2

〈N2〉. (F.7)

Since N is Poisson distributed, its variance is equal to the mean

〈N − 〈N〉〉2 = 〈N〉. (F.8)

We have an identity for the variance that holds for any random variable X

〈X − 〈X〉〉2 = 〈X2〉 − 〈X〉2, (F.9)

thus,

〈∆I2〉 = 〈I2〉 − 〈I〉2 =
( e
τ

)2 (
〈N2〉 − 〈N〉2

)
=
( e
τ

)2

〈N〉 =
e

τ
〈I〉. (F.10)

There is factor of two missing, because we actually don’t ask for the probability of
having a ’click’ given that there was a ’click’ at t0, rather the beginning of the interval
is arbitrary, i.e., actually

〈∆I2〉 = 2eI∆f, (F.11)

where ∆f is the bandwidth. The photocurrent is

I =
eηJ

hν
, (F.12)

where η is the quantum efficiency of the detector, h is Planck’s constant and ν is the
frequency of the light. Thus, the shot noise is

δIsn/
√

∆f =

√
2e2ηJ

hν
, (F.13)

With J = 2J0r = 2 · 10−4, η = 0.5 and λ = 600nm, we have

δIsn/
√

∆f = 4 · 10−12A/
√

Hz. (F.14)

F.3 Pressure to displacement conversion

We have
ζ =

2
κ

(
1−

√
1−R2κ2/4

)
≈ R2κ/4 (F.15)

and
P = σκ, (F.16)

where κ is the curvature, P is the pressure, R is the radius of the cylindrical hole and
σ is the surface tension, thus

ζ =
R2P

4σ
. (F.17)



F.4. NOISE EQUIVALENT PRESSURE 171

F.4 Noise equivalent pressure

We have

ϕ =
πR2

σλ
P, (F.18)

Js =
2πJ0rR

2

σλ
P, (F.19)

and

Is =
2πJ0rR

2eη

σhc
P. (F.20)

We compare the signal current to the shot noise

δIsn ≤ Is (F.21)

√
2e2η2J0rλ

hc

√
∆f ≤ 2π2J0R

2

σhc
P (F.22)

√
hcλ

J0rη

σ

πR2

√
∆f ≤ P. (F.23)

The resonance frequency of a meniscus is about

f =
1
5

√
4σ
ρR3

, (F.24)

where ρ is the density of the liquid. Thus,

R ≈
(

σ

6ρf2

)1/3

. (F.25)

Thus, for water, a resonance frequency of 35MHz corresponds to R = 200nm. With
R = 200nm, P0 = 10mW, r = 0.0001, λ = 600nm, ∆f = 30 · 106, σ = 73 · 10−3, we
have a noise equivalent pressure

Pne = 1500Pa. (F.26)

A resonance frequency of 1MHz corresponds to 2.3µm. With R = 2.3µm, r = 0.01,
∆f = 1MHz, we have a noise equivalent pressure

Pne = 0.2Pa. (F.27)

The reason why it is much worse at higher frequencies is the small radius R, which
enters quadratically and at the same time results in a much smaller reflectivity r.
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Figure F.1: Light detection based on a photodiode. (a) Schematics of an
electrical circuit using thorlabs fga04 and OPA656 with 10kΩ transimpedance gain.
(b) Measured frequency response. The detector has a slight gain peaking at around
38MHz.
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F.5 Detector performance

Fig. F.1(a) shows the schematics of the detector. A thorlabs fga04 PIN diode converts
the incident light into a photocurrent. The current is amplified and converted into
a voltage using an OPA656 with a 10kΩ feedback resistor. The capacitance of the
photodiode is reduced by applying a reverse bias. All voltage sources are buffered by
suitable capacitors to satisfy fast current drains. The measured frequency response
is shown in Fig. F.1(b). The device shows a slight gain peaking at around 38MHz,
before it rolls off at around 40MHz.

thermal noise

The thermal noise in the transimpedance OpAmp is

δIjn/
√

∆f =
√

4kBT/R, (F.28)

where kB is the Boltzmann constant, T is the temperature and R is the resistance of
feedback resistor. With R = 104 and T = 300, we have

δIjn/
√

∆f = 1.3 · 10−12A/
√

Hz. (F.29)

input noise

The OPA656 has an input current noise

δIcn/
√

∆f = 1.3 · 10−12A/
√

Hz, (F.30)

and an input voltage noise δVvn/
√

∆f = 7 · 10−9V /
√

Hz. With the 104 resistor, the
latter translates into a current noise

δIvn/
√

∆f = 7 · 10−13A/
√

Hz. (F.31)

total noise

The total noise is the rms of the individual noise contributions. Thus we have an
output voltage noise

δVout/
√

∆f = 1.5 · 10−8V/
√

Hz. (F.32)

With the 40MHz BW of the detector, we have

δVout = 0.09mV. (F.33)

Fig. F.1 shows the dark output of the detector as measured with an oscilloscope.
Oscillations with a characteristic frequency of around 38MHz are observed correspond-
ing to the gain peaking. The optical shot noise, Eq. (F.14), (10mW optical power
incident on the meniscus-cavity system and a reflectivity of the meniscus r = 0.01)
translates into a voltage noise δV = 0.2mV. Due to the additional noise associated
with gain peaking, the detector noise remains slightly above the optical shot noise
limit.



174 APPENDIX F. NOISE EQUIVALENT PRESSURE

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

t [µs]

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

V
ou
t [

m
V

]

Figure F.2: Detector dark signal. The detector’s gain peaking at around 38MHz
results in an amplification of the corresponding noise component.



Appendix G

Electric driving of
micromenisci

In this appendix we present experimental results on collectively oscillating micromenisci
that are excited using electric forces rather than ultrasound. This seemed initially
a rather academic problem. However, from a later perspective this problem seems
indeed practically relevant. A large number of ultrasound application (e.g. all send-
receive type measurements) rely not only on the efficient measurement of ultrasound
rather also on its efficient generation. Driving a meniscus electrically could enable
ultrasound generation with a meniscus-cavity system and complete a missing piece
e.g. to make an optical fiber based ultrasound device that is capable is a complete
ultrasound diagnosis device. We will follow a ’bottom up’ approach, and start by
asking whether it is actually possible to drive menisci electrically, and what are the
requirements on the superhydrophobic surface, the driving voltage, conductivity of
the liquid, etc., and end with presenting results along with an neat nonlinear mathe-
matical problem.

G.1 Feasibility

Two electric driving scenarios

We now estimate what voltages are required to drive a cavity-meniscus system as
described in Chapter 6 and 7 through electric forces. Fig. G.1 shows schematically
two possible designs. The conducting liquid is separated from the conducting bulk
substrate through an insulating layer, which may be thick compare to the size of the
texture (a) or thin compared to the size of the texture (b). A voltage is applied
between the liquid and the conducting part of the substrate. In (a) the liquid-gas
interface mainly experiences an electrical force that pulls in downward direction, while
in (b) it experiences forces pulling in different directions on different surface elements,
and additionally the contact angle changes due to the so-called electrowetting effect.
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(a) (b)

Figure G.1: Two possible electrical geometries. (a) Insulator thickness larger
than texture size. (b) Insulator thickness smaller than texture size.

We consider first the effect of a contact angle change. We assume the sharp edge
is curved on a scale much smaller than the entire meniscus. With no voltage applied,
the contact line adopts a position in the center of the curved rim, determined by the
Young angle and the curvature of the interface imposed by Laplace’s law. As the
Young angle is decreased through the electrowetting effect, the contact line moves to
continuously satisfy Young’s condition. As long as the Young angle remains smaller
than 90◦ the translation is infinitesimal (at maximum as large as the radius of cur-
vature of the edge). In this case, negligible forcing is provided by the contact angle
change. If however, the contact angle is changed below 90◦ the meniscus will translate
downwards. This corresponds to a strong forcing. In a typical electrowetting system
the contact angle of a previously hydrophobic surface with a contact angle consid-
erably larger than 90◦ is easily decreased well below 90◦. We thus conclude, that,
through the electrowetting effect, it should easily be possible to drive the meniscus
to strong oscillations. This type of forcing is however rather different from a forcing
through an ultrasound pressure as performed in Chapters 6 and 7. In particular,
the shape of the interface does not necessarily change, i.e., there is not the type of
’surface tension spring’ as encountered before. Instead two other oscillation scenarios
could be encountered: (1) Oscillations are slow (below resonance) and gas compres-
sion contributes a large enough restoring force. The interface could indeed not deform
at all, and only move downwards and upwards like a piston. (2) Oscillations are fast.
Inertia, viscous dissipation and surface tension will counteract and cause local defor-
mations of the liquid gas interfaces and the interface could vibrate forming complex
surface modes. In both scenarios the interface additionally experiences electrostatic
forces that differ depending on the position on the interface. In conclusion, the ’thin-
insulator-geometry’ could lead to very complicated interface motion. It may thus be
beneficial to look first at a simpler system, and to search address the realization of
electrically driven micromenisci on an easier route.
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Dielectric strength

Let us thus consider the ’thick-insulator-geometry’. In this case, no electrowetting
effect is present, and we deal only with electrostatic forces acting on the interface.
Let us make a simple model. Let us assume the interface is flat in equilibrium and
undergoes small spherical-cap-like deformations. In this case the deflection ζ in the
apex of the interface is linked to its curvature κ through

ζ =
R2κ

4
, (G.1)

where R is the cavity radius. Let us assume for simplicity that the dielectric constant
ε of the insulator is the same as the one of the gas inside the cavity. In this case the
force per unit area acting on the interface is approximately

F

A
=

1
2
ε

U2

(d− ζ)2
, (G.2)

where U is the applied voltage and d is the distance between the bottom electrode and
the flat water surface. The force is balanced by the Laplace pressure of the curved
interface thus

σκ =
1
2
ε

U2

(d− ζ)2
. (G.3)

Substituting Eq. (G.1) yields

ζ =
εR2

8σ
U2

(d− ζ)2
. (G.4)

Let us approximate d− ζ ≈ d, and let us assume R = d. Then

U =

√
8σζ
ε
, (G.5)

and we find for 100nm deflection we need around 80V. This is quite a bit, since (1)
we are planning to establish such a system on micron scales, and we must provide a
sufficiently strong insulating layer and (2) we want to provide such a voltage at up
to MHz frequencies. Let us check the numbers. The dielectric breakdown strength
of SiO2 is about 10-100V/µm (when obtained through dry or wet oxidization of sili-
con). Thus, working with micron size cavities we are indeed rather close to dielectric
breakdown. In resonance, less force will be needed to achieve the same amplitude.
From the experiments with ultrasound, we know that the amplitude at resonance is
about 10 times higher than in the quasistatic case. On the other hand we also really
want to measure off resonance to capture the full resonance curve, so in the end we
will really need to work near the dielectric breakdown limit. But it could have been
worse. In principle, we should at least be able to apply a voltage that is large enough
to see something. So let us check whether we can actually apply such a voltage – at
the required frequency.
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RC frequency cut off

The electrical bandwidth of the liquid-insulator-electrode system has an RC constant
which may not be so small, since the liquid resistance may generally be rather large.
Let us thus estimate the RC frequency cut off for a typical sample. In the experiments
performed in Chapter 6, the sample consists of a 2×5mm large piece of a silicon wafer.
We suppose that a reasonable diffraction experiment can still be achieved if we place
a flat electrode with the same area at 1cm distance from the surface.

The capacitance C of the insulating layer of the sample is

C = ε
A

d
, (G.6)

where A is the total sample area and d is the insulator thickness. The liquid between
the sample surface and the electrode acts as an electrical resistor with resistance

R = ρ
l

A
, (G.7)

where ρ is the resistivity of the water and l is the distance between the sample surface
and the electrode. The system’s RC frequency cut off occurs at frequency

f =
1

2πRC
, (G.8)

thus
f =

d

2πρεl
. (G.9)

We note that the cut off frequency depends on the ratio d/l but not on the area A.
The resistivity of saturated NaCl-in-water solution is about ρ = 5 · 10−2Ω/m, and we
find with an insulator thickness d = 6µm (corresponding to the cavity diameter of
the largest samples used in Chapter 6)

f ≈ 200MHz. (G.10)

For 20g/l NaCl solution the resistivity increases to ρ = 2 · 102Ω/m. In this case we
have

f ≈ 50kHz. (G.11)

In practice we may introduce additional capacitances (e.g., at the back side of the
sample) that decrease the bandwidth further. Thus, we better put half a kilo of salt
on the liter (saturation) than only 20g. Moreover, it is a good idea to check the
bandwidth of our system in practice before we go ahead an try to excite meniscus
oscillations with a precious ’real’ sample. To measure the bandwidth of an RC system
one usually measures the voltage ’before’ and ’after’ the resistor with an oscilloscope
with a calibrated voltage probe. However, this is not possible in our case, evidently
since we cannot measure ’before’ and ’after’ the resistor. Thus we introduce another
resistor that is smaller than the ’water resistor’, and measure the current through
this one – by measuring the voltage drop across it. In this way, it was verified that
the bandwidth of a dummy sample is in practice larger than 10MHz, which was the
bandwidth of the voltage source used in the measurement.
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Figure G.2: Resonance behavior of electrically driven collectively oscillating
micromenisci. An electrically driven system (open blue symbols) is compared to
an equivalent pressure driven system (green ’+’s). A slight increase of the resonance
frequency is possibly due to a slight decrease of the diameter of the cavities due to
the silicon oxidization process.

G.2 Experiment

To obtain a system suitable for electrically driven meniscus oscillation, the samples as
used in Chapter 6 are modified by converting the outermost layer of the readily texture
silicon surface into SiO2 through wet oxidization. In this way an approximately 6µm
thin isolating SiO2 surface layer could be achieved. After the oxidization process, the
sample is hydrophobized in the usual way. A point on the backside of the sample is
scratched to remove the insulating layer and the sample is glued with conducting glue
onto the signal line of a BNC cable. Subsequently, exposed conducting glue is carefully
isolated again by applying a thick layer of isolating epoxy. Note that gluing of the
hydrophobized sample is highly non-trivial due to the liquid repellency of the sample
surface. Thereafter the BNC cable with the sample is immersed in saturated NaCl
solution, the counter electrode (a mm thick copper wire) is brought in close proximity
(≈ 5mm) to the sample surface and its other end is connected to the shielding of the
BNC cable. An AC voltage of variable frequency and amplitude (home built high
voltage amplifier based on an APEX PA98) is applied across the sample.

Fig. G.2 shows a typical measured frequency response of a sample with radius
R = 3µm, period d = 15µm, and hexagonal pattern obtained by applying several
tens of volt, as compared to the ultrasound frequency response of the same sample
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as measured in Chapter 6. The slight increase of the resonance frequency is probably
due to a slight decrease of the hole radius due to the oxidization process (material ex-
pansion). The results demonstrates that electrically driven meniscus oscillation with
an amplitude of the order several tens of nm can indeed be achieved. Moreover, the
observed resonance frequency is truly remarkable. One would expect that the reso-
nance occurs at half the frequency as compared to the case of pressure driven meniscus
oscillations, since the force excerpted by the oscillating voltage is proportional to U2,
and

U2 = U2
0 sin2(

ω

2
t) =

1
2
− 1

2
cos(ωt). (G.12)

However, this is not the case. Meniscus oscillations of a frequency ω are excited
efficiently by an AC voltage with the same frequency ω, and in contrast driving with
half the frequency does not efficiently excite oscillations. This is indeed astonishing
and I cannot explain these results quantitatively. Let me however point out two
aspects that may be at the origin of this. (1) The positive and negative half cycle of the
AC voltage are not equivalent, e.g. due to different ionic mobilities of the positive and
negative charges. This would result in an asymmetry – similar to rectification – and
in this way provide a contribution to the force with the same frequency as the driving.
(2) The force on the meniscus is larger when it is bent downwards and smaller when
it is bent upwards due to the different respective electric field strength. This results
in a non-linearity in the equation of motion of a meniscus. In particular, following
the simple model for the dynamics of a single meniscus as illustrated in subsection
2.3.1, we write the equation of motion of a cavity-meniscus system including electric
driving as

mζ̈ + 8σζ =
1
2
ε
πR2U2

0 sin2(ωt)
(d− ζ)2

, (G.13)

where ζ is the meniscus deflection and m = ρR3, as before. Thus

mζ̈(d− ζ)2 + 8σζ(d− ζ)2 =
1
2
επR2U2

0 sin2(ωt). (G.14)

The observed resonance behavior may be hidden in the solutions to such type of
nonlinear differential equation.

G.3 Conclusions

We have demonstrated the possibility of electric driving of micromenisci, and shown
that the resonance behavior is very similar to the equivalent system under ultrasound
excitation. The system could enable ultrasound generation through a cavity-meniscus
system. The observed resonance frequency suggests that nonlinear contributions in
the equation of motion of the system may be important to model the system.



Appendix H

Superhydrophobic photonic
crystals

The observed great sensitivity of the diffraction from a superhydrophobic optical
grating on the deflection of the liquid-gas interfaces as discussed in Chapter 3 and
6, intrigues the question whether a photononic crystal (one-dimensional or two-
dimensional) could be used in a similar way to serve readily as an integrated ultra
sensitive ultrasound sensor, potentially coupled to an optical fiber. A photonic crys-
tal is characterized by a band gap, a range of wavelength in which the device reflects
incident light rather than transmitting it. The exact position of the band gap would
depend on the deflection of the liquid-gas interfaces. Thus, a collective oscillation of
the liquid-gas interfaces could be detected as an oscillatory change of the position of
the band gap. In other words, one would tune the wavelength of a laser to the center
of the steeply falling edge of the band gap, and detect the transmitted or reflected in-
tensity (Fig. H.1). Without going into greater detail, we will present in this appendix
first preliminary results that were obtained with such a system. We will restrict our-
selves to describe in the following sections briefly the photonic crystal devices and
the optical setup that was used to perform such experiments, and thereafter present
first measurements of the photonic band gap of the system in the superhydrophobic
as well as in the impregnated state. The appendix is conclude in Sec. H.2

H.1 Experiment

A schematic of the present device, which was modeled in [29] and characterized earlier
in [46] is shown in Fig. H.2. The device consists of a ridge type waveguide with a
d = 212 nm thick Si3N4 guiding layer (refractive index ng = 2.01), grown on top of a
l = 9µm thick SiO2 buffer layer (refractive index nc = 1.46) on a silicon substrate.
A shallow, c = 2 nm high and w = 2µm wide ridge forming a single mode waveguide
at λ > 450 nm, is etched into the Si3N4 layer using conventional photolithography
and wet chemical etching. 401 grooves with a period Λ = 190 nm, groove width
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Figure H.1: Principle of ultrasound detection using a photonic crystal. A
deflection of the liquid-gas interfaces shifts the position of the band gap (dashed blue
lines). A laser is tuned to the center of the steeply falling edge of the band gap
(vertical line). At this wavelength a shift of the bandgap results in a pronounced
change of the transmitted intensity.
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Figure H.2: Photonic crystal waveguide grating. (a) cross section (b) side view.
A Si3N4 ridge type waveguide of thickness d = 212nm, width w = 2µm, and ridge
height c = 2nm forming a single mode waveguide at λ > 450 nm, is fabricated on top
of an l = 9µm thick SiO2 buffer layer that is grown on silicon. The grating consists of
401 grooves with a period Λ = 190 nm, groove width g = 0.6Λ and depth h = 20 nm.
The length of the grooves is 80µm.
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Figure H.3: Setup for the characterization of superhydrophobic photonic
crystals under water, under the influence of ultrasound. The sample and
optical fibers are mounted on high precision x-y-z-stages which are located underneath
a transparent container that is sealed and flooded with liquid.
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g = 0.6Λ and depth h = 20 nm form a one-dimensional photonic waveguide grating
with a total length of 76.19µm. To ensure full overlap with the evanescent field
tails in the slab region, the length of the grooves was chosen 80µm. The grooves
were fabricated by direct e-beam writing and reactive ion etching. Subsequently
the sample is hydrophobized through vapor deposition of a self assembled monolayer
of an alkylsilane as described in appendix C. Light is coupled in and out from the
waveguide using two optical fibers whose end faces are brought in close contact with
the open ends of the waveguide (’butt-coupling’) 1. Fig. H.3 show our optical setup.
The sample and optical fibers are mounted on high precision x-y-z-stages to allow for
precise positioning of the fibers at the waveguide’s end faces. The stages are located
below a transparent container that can be flooded with liquid through a flexible
tube connected to its bottom. After flooding the container, an ultrasound immersion
transducer is placed above the sample in such a way that the sample is located in
the focus of the transducer. The intensity of the transmitted light is measured over
a wavelength range in the visible part of the spectrum using a tunable dye laser that
is pumped with a 488nm Ar-ion laser.

Fig. H.4 shows measured wavelength scans before (green symbols) and after (red
symbols) strong ultrasound excitation and after drying and immersing the sample
again (blue symbols). It is seen that the sample is first in the superhydrophobic
state, then a transition to the impregnated state is induced by the strong applied ul-
trasound field resulting in a shift of the photonic band gap towards larger wavelengths
(red symbols), and after drying and immersing the device again, the superhydropho-
bic state is recovered and the position of the band gap shifts back (blue symbols).
The recovery of the previous position of the band gap is not perfect, possibly due
to contamination during the drying process or even partial destruction of the struc-
ture due to the strong ultrasound (e.g. pieces may have chipped off from the grating
lamella as observed earlier with micron size superhydrophobic gratings after having
cleaned them in an ultrasonic bath). The measurement demonstrates the successful
realization of a superhydrophobic state on a photonic crystal. It further demon-
strates the successful destruction of the superhydrophobic state through ultrasound
and observation of the corresponding impregnated state. It remains to tune the laser
wavelength to one of the edges of the band gap –the lower edge is expected to provide
greater sensitivity, since in this case the electric field is predominantly located in the
air gaps– and to measure ultrasound induced oscillations of the interfaces as an os-
cillatory variation of the transmitted intensity. We tried to observe such oscillations,
however we were not successful. Observations were impeded primarily by a poor noise
level of the optical measurement (or too low optical power), and further because the
expected resonance frequency of the menisci is poorly known 2, which may simply

1Butt coupling is preferred over optical coupling through a microscope objective, since part of
the setup will later be flooded with water, which in case of a lens resulted in a change of the focal
length, making it necessary to readjust the optical alignment after flooding. In case of butt-coupling
no realignment is needed

2the elongated character of the grooves leads to logarithmic corrections of the resonance frequency
as compared to the well understood cylindrical holes investigated in Chapter 6 and 7, and moreover
the large number of closely spaced grooves are expected to show strong hydrodynamic coupling that
is –due to the close distance– beyond the scope of the theory presented in Sec. 2.3
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Figure H.4: Ultrasound induced wetting transition. The bandgap is determined
before (green) and after (red) strong ultrasound excitation and after drying and re-
immersing the sample (blue). The sample is first in the superhydrophobic state (green
data; bandgap at shorter wavelength), undergoes an ultrasound induced transition to
the impregnated state (red data; bandgap at larger wavelength) and is finally returned
to the superhydrophobic state (blue data; bandgap at shorter wavelegth)
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put the resonance frequency outside the frequency range of the ultrasound equipment
available in experiment, and finally because the light is possibly concentrated in the
center of the waveguide, such that only a tail of the electromagnetic field interacts
with the liquid-gas interfaces. It was indeed the latter aspect that triggered the idea
of the optical fiber based micro interferometer presented in Chapter 7, where the light
interacts ’head on’ with the liquid-gas interface.

H.2 Conclusions

We have demonstrated the possibility of creating a superhydrophobic photonic crystal
that could serve as an ultrasound sensor – or vice versa, also as a photonic crystal with
a tunable band gap (along the line of e.g. [63, 33]). To enable a successful detection
of micromenisci oscillation, the design of a photonic crystal could be modified such
that the overlap of the guided mode with the liquid-gas interfaces would be dramat-
ically increased. Another approach could be to use a 2-dimensional photonic crystal
consisting of cylindrical holes. Potentially all holes except one could be filled with
a suitable solid material or encapsulated with a cover layer, and a photonic crystal
microcavity could be formed. Such cavities can be routinely designed with a very
large Q, and the device could be extremely sensitive to motions of a micromeniscus
on the opening of one or more holes that are strongly coupled to the photonic crystal
cavity.



Appendix I

Confocal detection of
meniscus oscillations

It is well known that the diffraction pattern observed in the back focal plane of an op-
tical tweezers provides sub-wavelength information about the position of an entrapped
particle (e.g. [108, 53]). This poses the natural question whether the deflection of a
micromeniscus could be determined in a similar way. In this appendix we demonstrate
–without going into greater detail– the measurement of nanometer scale ultrasound
induced micromeniscus oscillations through such a confocal detection scheme. We
show that the practically achievable signal-to-noise ratio is comparable to that of a
fiber optical micro interferometer as introduced in Chapter 7. We further show that
the accuracy of the measurement is however primarily determined by drift: while
in case of an optical tweezers the trapped particle remains close to the focus of the
objective (and the diffraction pattern is used to determine the relative position of the
bead with respect to the focus), in case of micromenisci formed at a superhydropho-
bic surface the object of interest remains at a fixed position in space. This makes it
necessary to keep the absolute distance between the cavity-meniscus system and the
objective fixed to a cm distance (the focal length of the objective) with nm accuracy.
This is a formidable task, and for this reason the confocal detection cannot compete
with the optical fiber based device presented in Chapter 7. However, the approach has
unique advantages, e.g., an individual cavity-meniscus system that is part of a larger
array could be addressed, and thereby the theory about hydrodynamic interaction
and higher order modes of an array as presented in Sec. 2.3 could be investigated.

I.1 Experiment

Fig. I.1 shows our optical setup. An additional beam splitter is introduced in a
bright field microscope between the objective and the projection lens. The parallel
beam of a 488nm Ar-ion laser is coupled into the beam path over this beam splitter
and is used to illuminate homogeneously the back aperture of the objective lens.
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Figure I.1: Optical setup for confocal detection of micromeniscus oscilla-
tions. A bright field microscope is equipped with an additional beam splitter that is
used to couple in parallel laser light. The laser light homogeneously illuminates the
back aperture of the objective lens, resulting in a diffraction pattern in the vicinity
of the focus.
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(a) (b) (c)

Figure I.2: Diffraction pattern in the vicinity of the focus of a high N.A. lens.
(a) The laser beam is brought into the vicinity to the cylindrical cavity (dark circle).
The sample is slightly defocused (the opening of the cavity appears blurred), such
that the sample surface cuts a horizontal cross section through the laser diffraction
pattern corresponding to z 6= 0. Several Airy type rings of comparable intensity are
observed. (b) The laser beam is focused onto the sample surface (the opening of the
cavity appears sharp). The laser diffraction pattern consists of an Airy disc (bright
spot) and Airy rings of decreasing intensity (Airy rings are poorly captured by the
ccd due to the device’s limited dynamic range; the rings are easily seen by eye, due
to the logarithmic intensity scale of the human eye). (c) The focus of the laser is
brought onto the cavity-meniscus system.

The laser light converges to the focus where it generates a characteristic diffraction
pattern. This light interacts with the cavity-meniscus system. The collected light
is directed towards an eye piece for visual inspection and / or towards a second
projection port. The second port is equipped either with a CCD camera or with
a photodiode. To control the laser intensity, a series of neutral density filters can
be inserted into the illuminating beam path before the microscope. A rectangular
container W × D × H ≈ 20 × 10 × 5 cm is mounted on the microscope stage. The
container is filled with water immersing the objective lens.

The sample consist of 9 cylindrical holes with radius R = 3µm and depth H =
16µm, arranged with a period d = 300µm on a 1 × 1mm array. The samples were
etched into a silicon wafer and subsequently hydrophobized as described in Chapter 6.
For this large period and small total number of cavity-meniscus systems hydrodynamic
coupling is expected to be negligible.

The sample is immersed in water and placed in the vicinity of the focus of the
objective lens. First the laser beam is strongly attenuated and the bright field mode
of the optical microscope is used to locate a cavity. The sample is moved such that
a cavity is located in the focus of the laser beam. Fig. I.2 shows snapshots of this
procedure. The laser beam generates the typical diffraction pattern obtained when
illuminating the back aperture of a well corrected high N.A. lens uniformly with
parallel light. The bright spot in the center (Airy disk) is surrounded by rings of
decreasing intensity (Airy rings). More generally the intensity in the vicinity of the
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focus is given by [15] 12

I(u, v) =
(

2
u

)2

[U2
1 (u, v) + U2

2 (u, v)]I0, (I.1)

where u and v are dimensionless optical coordinates
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λ
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)
r.

(I.2)

Here z and r are the coordinate in the direction of the optical axis and the radial
coordinate, respectively, a and f are the aperture radius respectively the focal length
of the lens and I0 is the incident intensity. Un are Lommel functions given by

Un(u, v) =
∞∑
s=0

(−1)s
(u
v

)n+2s

Jn+2s(v), (I.3)

and Jn are Bessel functions. On the optical axis, the latter reduces to

I(u, 0) =
(

sin(u/4)
u/4

)2

I0, (I.4)

which is the well known expression from which the depth discrimination of a confocal
microscope is derived (e.g., [131]). Eq. (I.4) is plotted in Fig. I.3 for a/f = 0.5
(N.A.= 1). The period of the characteristic minima and maxima is determined by
the numerical aperture and the wavelength of the light. The intensity is unity in the
focus and the envelope of the maxima decreases with 1/z2 for large z.

In the experiments presented here, we are interested only in the wing of the central
maximum. In particular, we adjust the position of the sample in z-direction such that
the liquid-gas interface is located approximately at the center of the wing between
the central maximum and the first minimum (red line) in Fig. I.3. In this case a small
(few nm) deflection of the interface in z-direction will result in an approximately linear
increase (or decrease) of the intensity that is incident on the interface, such that a
sinusoidal oscillation of the interface position will result in a sinusoidal change of the
reflected intensity.

I.2 Ultrasound induced oscillations

To excite the liquid-gas interface to nanometer scale oscillations, we immerse an ul-
trasound transducer into the liquid at few cm distance of the sample. To achieve a

1The intensity pattern in the vicinity of the focus of a high N.A. lens is indeed shown on the front
cover of the latter book

2This treatment draws on the Fraunhofer approximation. For a more detailed treatment beyond
the Fraunhofer approximation, giving right to the vector nature of light and taking into account the
effect of the lens on the polarization state of the light, see e.g. [127].
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Figure I.3: Intensity near the focus of a high N.A. lens on the optical axis.
The period of the characteristic minima and maxima is given by the numerical aper-
ture and the wavelength of the light. The intensity is unity in the focus and the
envelope of the maxima decreases as 1/z2 towards larger z. The red line marks the
rest position of the liquid-gas interface on the wing of the central intensity peak for
the detection of ultrasound induced meniscus oscillations.
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Figure I.4: Current trace corresponding to meniscus oscillations. The sinu-
soidal signal is slightly distorted (flattened maxima) indicating that the meniscus rest
position is not aligned exactly on the center of the wing. In this case, the ultrasound
driving frequency was 650kHz.

constant driving pressure over a large range of ultrasound frequencies we employ a
piezoelectric hydrophone (GRAS10CH) as a transducer, and drive it with constant
amplitude in a range were it provides a nearly flat frequency response.

To measure the change of the reflected intensity, we direct all collected light into
the second projection port of the microscope and place a photodiode in the focus of
the corresponding projection lens. We remove the attenuators from the illuminating
laser beam, turn off the bright field illumination, and switch on the ultrasound. The
rest position of the liquid-gas interface is brought onto the center of the wing of
the central peak by driving the liquid-gas interface with a rather large amplitude and
observing the shape of the oscillation signal while aligning the z-position of the sample
(the interface is located at the center of the wing when the oscillations are sinusoidal
and their amplitude is maximal; see also Chapter 7).

Fig. I.4 shows a typical timetrace of micromeniscus oscillations observed in this
way. The signal-to-noise ratio of the raw data competes with that of meniscus oscilla-
tions detected through a fiber optical micro interferometer as introduced in Chapter 7.
However, the working point of the displacement-to-intensity conversion (meniscus rest
position) rapidly drifts away from the optimum at the wing of the central intensity
peak to an arbitrary point in the diffraction pattern. E.g. the current trace shown
here is one out of many traces with increasing frequency that make up a frequency
sweep (for the determination of the frequency response of the system). This trace was
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Figure I.5: Frequency response of an individual cavity-meniscus system.
Individual frequency sweeps are shown with different colors. The data is modulated
by strong periodic oscillations due to ultrasound standing waves.

acquired approximately after half of the sweep was completed. It is seen that already
at this time the raw signal is slightly distorted (flattened maxima), indicating that the
working point is no longer in the middle between the central maximum and the first
minimum of the diffraction pattern. This drift makes the measurement of meniscus
oscillations based on the diffraction pattern of an objective lens a formidable task.

I.3 Frequency response

Nevertheless, when the system is sufficiently equilibrated, and by reducing the number
of data points in a frequency sweep, we successfully recorded the frequency response
of the system. Fig. I.5 shows several measured frequency sweeps. The data indicates
that the resonance frequency of the system is around 800kHz, in good agreement with
the theoretical prediction f = 805kHz for a single cavity-meniscus system given in
Tab. 6.1. The quality of the data is obscured by another effect that is difficult to avoid
with the confocal detection scheme, namely ultrasound standing waves. The distance
between the sample and objective lens is only slightly larger than the ultrasound
wavelength. Therefore ultrasound wavetrains cannot be chosen short enough to allow
for an undisturbed measurement during a single wavetrain, rather reflections from
the objective lens arrive before the sample has finished its own transient response.
These nearfield interactions depend strongly on the ultrasound wavelength. Waves
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reflected from the objective, the sample, the container bottom and water surface may
interfere constructively or destructively depending on the wavelength, resulting in
strong periodic modulations on top of a frequency scan (see Fig. I.5). Nevertheless,
having understood such effects, the present data can be considered as a confirmation
of the theoretically predicted resonance frequency of a single cavity-meniscus system.

I.4 Conclusions

To conclude. We have demonstrated successfully the measurement of nanometer scale
meniscus oscillations using an ’optical-tweezers-like’ detection scheme. To this end
we have studied the interaction of a micromeniscus with the intensity pattern of a
high N.A. lens. The steep decrease of the illuminating intensity in vertical direction
was used to convert the meniscus deflection into an intensity variation. By sweeping
the ultrasound frequency we measured the frequency response of an individual cavity-
meniscus system. The result confirmed the theoretical prediction for a single isolated
cavity proposed in section 2.3 and Chapter 6.
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[95] S.D. Poisson. Nouvelle théorie de l’action capillaire. Bachelier père et fils, 1831.
http://books.google.com/books?id=8N4EAAAAYAAJ&output=html.

http://books.google.com/books?id=8N4EAAAAYAAJ&output=html


202 BIBLIOGRAPHY

[96] A. Pozzato, S.D. Zilio, G. Fois, D. Vendramin, G. Mistura, M. Belotti, Y. Chen,
and M. Natali. Superhydrophobic surfaces fabricated by nanoimprint lithogra-
phy. Microelec. Eng., 83(4-9):884–888, 2006.

[97] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetter-
ling. Numerical Recipes in FORTRAN 77 – The Art of Scientific Computing.
Cambridge University Press, 2 edition, 1992.

[98] Demetri Psaltis, Stephen R. Quake, and Changhuei Yang. Developing optoflu-
idic technology through the fusion of microfluidics and optics. Nature, 442:381–
386, 2006.
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Summary and outlook

Summary

In this thesis optical diffraction was used to study the static and dynamic properties
of microscopic liquid-gas interfaces that span between adjacent ridges of a superhy-
drophobic surface. An observed interference phenomenon at grazing incident angle
led to the development of optical gratings with a large spectral bandwidth, and an
observed sensitive response of the liquid-gas interfaces to ultrasound led to the devel-
opment of a superhydrophobic fiber optical micro cavity that enables interferometric
detection of the motion of a single microscopic meniscus.

In Chapter 3 angle resolved diffraction from superhydrophobic optical gratings was
used to measure the shape of the microscopic liquid-gas interfaces with nanometer res-
olution, under an applied hydrostatic pressure, under ambient as well as water-vapor
conditions. A transition from the superhydrophobic to the impregnated state was
observed in situ on the microscopic level. It was shown that the macroscopic collapse
is triggered by depinning of the microscopic contact lines at a threshold angle that
is in close agreement with Young’s macroscopic contact angle. The results confirmed
experimentally that the assumption of a local contact angle, that forms the basis of
several more recent contact angle models, is satisfied well below the micrometer scale.
The experimental results are explained with a simple model that is based on the
macroscopic laws of Laplace and Young, allowing the formulation of stability criteria
for the design of optimal superhydrophobic and superoleophobic surfaces. Prospects
of superhydrophobic surfaces for switchable and tunable diffractive optical elements
were evaluated through numerical simulations. It was shown that a superhydropho-
bic optical grating fabricated from glass could provide an immersed grating with near
100% diffraction efficiency and a metallic grating with a larger grating period could
provide a spectrally tunable grating with an on-off ratio close to one.

In Chapter 4 possible conformation of a drop on a superhydrophobic surface were
considered. Competing definitions of a macroscopic apparent contact angle were re-
viewed and the role of metastable drop states and external forcing was illustrated.
Recent experimental data was reviewed, that shows a deficiency of the Cassie-Baxter
model to describe measured contact angles on connected surface patterns. The con-
siderations underline the need for solving more recent ’local contact angle’ models
for drops on superhydrophobic surfaces, that appreciate the smallness of thermal
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fluctuations and the consequent local validity of Young’s condition and associated
metastability of drop states. Further, they express the need for selecting from the set
of allowed metastable states a suitable ensemble that provides a realistic and physical
definition of a macroscopic apparent contact angle.

In Chapter 5 dielectric optical gratings were studied through numerical simula-
tions, with focus on the achievable spectral bandwidth. Grating geometries were
considered (i) in transmission, (ii) ’buried’ grating between two glass bodies, (iii) TIR
grating geometry. The effect of a high refractive index grating layer as well as slanted
grating lamella was analyzed. It was shown that a suitable high refractive index grat-
ing layer dramatically improves the spectral bandwidth. Dielectric optical gratings
with octave spanning -1dB bandwidth were devised, providing a larger spectral band-
width than any grating known to date. Dielectric transmission gratings with 100%
peak efficiency were devised by introducing a double layer grating. Slanted fused sil-
ica TIR gratings were studied. It was shown that these devices provide their largest
efficiency not when operated in Littrow configuration but in a substantially different
scattering geometry. Today, all grating designs are optimized for Littrow configura-
tion. The observation recalls the theoretical foundation of the Littrow configuration
and highlights that it is rigorously applicable only to symmetric grating profiles.

In Chapter 6, the collective dynamics of arrays of microscopic liquid-gas inter-
faces formed at the openings of cylindrical hydrophobic micro-cavities were studied
through time resolved optical diffraction. Their resonance behavior was described
in Chapter 8 with a model that solves the unsteady Stokes flow equations for a
single cavity-meniscus system and accounts for hydrodynamic interaction through a
monopole approximation. It was shown that the collective dynamics are governed
by hydrodynamic interaction, that results in a pronounced decrease of the resonance
frequency of an array of micromenisci as compared to a single micromeniscus.

The resonance behavior of a single cavity-meniscus system was studied experi-
mentally in Chapter 7 through a hydrophobic optical micro-cavity fabricated on the
end face of an optical fiber. The results confirmed quantitatively the unsteady Stokes
flow model for a single cavity-meniscus system. By contrast, potential flow theory
including dissipation integrals overestimated the heights of the resonance curves, i.e.
underestimated dissipation, showing that viscous dissipation is dominated by vortic-
ity generation inside the boundary layer. The experiments showed prospects for low
noise ultrasound detection based on a single cavity-meniscus system on an optical
fiber.

Outlook

It was the goal of this thesis to uncloak the information that is contained in the color-
ful light that is diffracted from a superhydrophobic surface. In retrospect, the amount
of information that we found appears overwhelming. We found the static shape of
the liquid-gas interfaces, found a confirmation of the locality of the contact angle, an
explanation for the superhydrophobic-to-impregnated transition, design criteria for
most stable superhydrophobic surfaces, prospects for efficient immersed gratings as



well as tunable optical gratings and other diffractive optical elements, large bandwidth
dielectric gratings, collective microscopic ultrasonic oscillations of the liquid-gas in-
terfaces, and a low noise ultrasound sensor based on a fiber-optical superhydrophobic
micro-cavity.

The diffraction experient presented in Chapter 3 will allow in the future to in-
vestigate further properties of superhydrophobic surfaces in microscopic detail. For
example, the mechanism of stability and collapse for reentrant surface profiles sug-
gested in Chapter 3 may be probed. Further, the behavior of the microscopic liquid-
gas interfaces under the influence of other external forces, such as electric forces, as
encountered e.g. in electrowetting experiments with superhydrophobic surfaces, may
be investigated. The prospects of superhydrophobic surfaces as highly efficient and
tunable optical gratings may find a way into new technological applications of super-
hydrophobic surfaces.

The possibility of having dielectric optical gratings with a large spectral bandwidth
(through introduction of a high refractive index grating layer, or through slanted
lamella) as suggested in Chapter 5, will in the future enable large bandwidth dielec-
tric gratings for many wavelength ranges, and based on many other suitable high
index materials. Large bandwidth dielectric gratings will improve the performance of
many modern optical applications, including lasers, astronomic telescopes and spec-
trographs. From a general perspective, they have the potential to replace current
metallic grating technology. Certain is, that several of the gratings devised in Chap-
ter 5, will be realized in practice and used for the generation of the shortest high
power femtosecond laserpulses (chirped pulse amplification scheme). Through their
large spectral bandwidth and simultaneous high dispersion, the gratings will enable
pulse durations that have not previously been possible at high power. Thereby they
will provide new insight into the ultrafast phenomena associated with the interaction
of light and matter. Also certain is, that the suggested concepts (high refractive index
material and slanted grating layers) are only the top of the iceberg. Today, virtually
all dielectric gratings are based on rectangular grooves fabricated in fused silica. The
results of Chapter 5 recall that the number of possible grating designs is countless,
both with regard to material combinations and profile geometry. This is a largely
unexplored territory. Today numerical tools and computer power are available that
allow to evaluate rapidly possible grating designs. It is expected that many more
new grating designs will be found, that will offer peak performance with respect to
other key parameters, such as flatness of the spectral characteristics, polarization
independence, etc..

With regard to a detailed understanding of superhydrophobic surfaces, Chapter 4
has pointed out that current models are far from being complete. It is the hope that
full solutions of local contact angle models for drops on superhydrophobic surfaces
will be found in the near future, through analytic treatments, or through numerical
simulations.

The Chapters 6-8 provide an exhaustive experimental and theoretical treatment
of the ultrasound induced dynamics of single and multiple cavity-meniscus systems.
The work enables the future use of microscopic liquid-gas interfaces for low noise
ultrasound detection, and it provides a detailed theory that can be used to predict



the performance of such a device. In the future practical aspects will be adressed, such
as packaging of the device and long term stability, as well as other possible liquids
such as mercury, that will improve the finesse of the optical cavity. It will be evaluated
whether capacitive detection of the meniscus deflection is possible, and whether an
electric excitation of the menisci can as well be used for ultrasound generation.



Samenvatting

Superhydrophobe oppervlakken: vanaf mechanica van
vloeistoffen tot optica

In dit proefschrift word optische breking toegepasst voor het bestuderen van de statis-
che en dynamische egenschappen van microscopische vloeistof-gas grensvlakken, die
aan de textuur van superhydrophobe oppervlakken sitten. En interferentie fenomeen,
dat bij en vlak invall van de licht wordt waargenomen, leidt tot het ontwikkeling
van optische roosters med en groote spektrale breede. De gevoelige reactie van de
vloeistof-gas grensvlakken tegen ultrasone klang leidt tot het ontwikkeling van super-
hydrophobe optische micro-cavities op glasvezels, die en interferometrische opsporing
van de beweging van en enkele microscopische meniscus maaken mogelijk.

In hoofdstuk 3 wordt hoek opgelosste optische breking gebruikt om de form van
de microscopische vloeistof-gas grensvlakken med nanometer precisie te meten, under
en hydrostatische druk, under gewoone condities en under vloeistof-stoom condities.
En overgang van de superhydrophobe tot de impregerte toestand wordt op de mi-
croscopische niveau waargenomen. Het is gelaten zien dat de macroscopische collaps
van de depinning van de miscroscopische contact lijnen aangestoten is, bij en hoek
die dicht med de macroscopische Young hoek overeenkomt. De resultaate bevestigen
experimenteel dat de aanneming van en lokaale contact hoek, die ook vormt de basis
voor enige contact hoek modelen, is wel goed gekeurt op de microscopische schaal.
De experimentele resultaten worden med en enekele model verklaart, dat is gebasert
op de macroscopische wetten van Laplace en Young. Dat makt dat formuleren van
stabiliteits kriterien mogelijk, die teogepasst kunnen worden voor het design van op-
timaale superhydrophobe en superoleophobe oppervlakken. De mogelijkheid van het
toepassen van superhydrophobe oppervlakken voor schakelbare brekende optische el-
ementen wordt door numerische berekningen underzoekt. Het was laten zien dat en
superhydrophobe optische rooster als en begraven optische rooster med bijna 100%
efficiëncie kan toegepasst worden en en metallische rooster med en groote periode is
en spctral schakelbrae rooster med en on-off proportie dichtbij een.

In hoofdstuk 4 de vorm van druppels op superhydrophobe oppervlakken wordt
geonderzoekt. Concurrerende definities van en macroscopische contact heok worden
besproken en de rol van metastabiele druppel vormtjes en extrene krachten wordt
illustreert. Nieuwe experiementeele gegevens worden besproken die laaten zien dat
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de Cassie-Baxter model niet toegepasst is om de contact hoek van verbondene op-
pervlakken monsters te berekenen. De discussie wijzt aan dat het belangrijk is locale
contact hoek modelen voor druppel op superhydrophobe oppervlakken optelossen.
Deze modelen waardeeren de kleine omvang van thermische schommelingen en de
voortvloeiende locale geldigheid van Youngs voorwaarde en de metastabieliteit van
druppels toestanden. Zij drukken ook uit dat het belangrijk is uit de verzameling van
mogelijke metastabiele druppels toestanden en geschikt ensemble uit te zoeken, dat
een realistische definitie van en macroscopische contact hoek geeft.

In hoofdstuk 2.58 worden dielectrische optische roosters door numerieke simu-
laties geonderzoekt, med nadruk op de mogelijke spectrale breede. Roosters worden
geonderzoekt (i) in transmissie, (ii) ’begraven’ rooster ussen twee glas stuckjes, (iii)
rooster baserend op totale reflectie. De effect van en laag med hoge brekingsindex en
ook scheefe lamellen worden geanalyseerd. Het wordt laten zien dat en geschikte laag
med en hoge brekingsindex de spectrale breede stark vergroot. Dielectrische optis-
che roosters worden voorgestellt, die en -1dB spectrale breede hebben, die bijna een
octav overspannt. Dielectrische transmisssie roosters worden voorgestellt die 100%
peak efficiencie hebben. Deze worden mogelijk door en twee laag rooster. Scheefe
fused silica roosters worden geonderzoekt. Het was laten zien, dat deze roosters de
hoogste efficiencie niet in de Littrow configuratie hebben, mar in en andere stark
verschillenen configuratie. Vandag worden bijna alle roosters voor de Littrow config-
uratie geoptimaliseerd. Deze observatie herinnert aan de theoretische grondlag van de
Littrow configuratie en onderstrekt dat die slechts voor symmetrische rooster profilen
toepasselijk is.

In hoofdstuk 6 wordt de collectiefe dynamica van arrays van microscopische vloeistof-
gas grensvlakken aan cilindrische hydrophobe micro-cavities door tijd opgelosste op-
tische brekning geonderzoekt. Het resonantie gedrag wordt in hoofdstuk 8 med en
model verklaard dat de onvaste Stokes vergelijking vor een enkele cavity-meniscus
system losst en hydrodynamische interactie door en monopole benadering beschri-
jft. Het was laten zien dat de collectiefe dynamica van hydrodynamische interactie
bestemmt is, die in een verlaging van de resonantie frequentie resulteert.

De resonantie bedraging van en ekele cavity-meniscus system wordt in hoofdstuk 7
experimenteel onderzoekt med hulp van en hydrophobe optische micro-cavity die op
de end van en optische vezel vervaardigd wordt. De resultaaten bevestigen kwanti-
tatief de onvaste Stokes stroom model voor en enkele cavity-meniscus system. Niet
zo potentielle stroom theorie, die de dissipatie door zogenaamd dissipatie integrals
beschrieft, en de hoogte van de resonantie curven overschatzt. Dat wijzt op, dat
viscose dissipatie door vorticitie generatie in de dun laag van vleostof dichtbij de
oppervlak wordt domineert. De experimenten verspreken en toepassing van enkele
cavity-meniscus systemen op optische vezels als gevoelige ultrasone detectoren.
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