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Summary

During a design process, analysis and, when necessary, modification of the vibration
characteristics of a structure are important. Thanks to the developments in computer
technology and in numerical analysis methods, particularly the Finite Element
Method, a structure can be analyzed extensively in the computer environment long
before its first prototype is built. To improve its design and to find a globally optimal
configuration, in theory it is possible to directly couple a Finite Element (FE) model
with a global optimization method. However, in practice this may not be feasible
for complex structures due to the required number of the FE calculations and the
corresponding computational costs. Analysis time grows rapidly with the amount of
details in the FE model. If the vibration characteristics of a structure need to be
improved by modifying the design of the detailed sections, long running analyses are
a bottleneck in optimization.

The objective of this thesis is to develop an efficient strategy for optimizing the
dynamic behavior of complex structures. The strategy is required to be robust,
accurate and able to provide a solution which is as close to the global optimum
as possible.

In this research two optimization schemes were identified to find the global optimum:
Multi-Level Hybrid Optimization (MLHO) and Multi-Start Local Optimization
(MSLO). A stochastic derivative-free method, Genetic Algorithms (GAs), and a
gradient-based method, Sequential Quadratic Programming (SQP), were utilized
in these schemes. Based on the results of the numerical test problems, it was
concluded that finding the global optimum necessitates a tremendous number of
function evaluations, i.e. FE analyses. Therefore, FE models were decided to be
replaced with their fast-to-evaluate surrogate models in the optimization algorithms.
Three well-known methods, namely Polynomial approximation, Kriging and Neural
Networks were studied for surrogate modeling. The advantages and the disadvantages
of these methods were identified by numerical test problems. Defining accurate
surrogate models relies on the data generated from the FE model. However, the
number of the required data increases significantly with the number of the design
variables. Hence, using accurate as well as computationally efficient structural
analysis methods is still essential to develop effective optimization strategies.

A considerable part of the research was focused on the Component Mode Synthesis
(CMS) for dynamic analysis. Among the available CMS techniques special attention
was paid to the Craig-Bampton (CB) method which is highly regarded for its
simplicity and computational stability. The CB method was found to be very
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advantageous to be utilized in an optimization strategy. Some of its perceivable
benefits can be summarized as:

e A complex structure is divided into several substructures (components). The
analysis of these can be assigned to different computers or different design
groups. Hence, parallel processing is highly encouraged.

e FEach substructure model can be condensed significantly while preserving the
necessary information. Once these reduced models are coupled, the size of the
model of the entire structure is considerably smaller than that of the original
one. Accordingly, performing the dynamic analysis is significantly less time
consuming.

e Analysis of each component is independent. Therefore, repeated analyses are
required only for the modified substructures.

e In a complex structure with similar components in its geometry, one parametric
model can be employed for the similar parts. Hence, the structure does not
need to be modeled completely.

During optimization, a large number of repeated analyses of a structure might still be
required even when surrogate models are used. This in turn implies a large number of
recondensation operations of each modified component model. In order to reduce the
analysis time even further, reanalysis methods were considered under the framework
of CB. The Enriched CB method and a new Combined Approximations (CA) based
method were proposed to update the transformation matrix which is responsible for
the reduction of the substructures. With these methods, the computational efforts
for condensing the modified substructures were aimed to be decreased.

Finally, all these concepts were gathered and a Surrogate-Based Optimization (SBO)
strategy was defined where the modeling and the analysis opportunities of CB
were exploited. Academic problems were used to demonstrate the influence of the
introduced methods on the efficiency of the SBO method. It was concluded that taking
advantage of effective structural analysis and reanalysis techniques is as important as
utilizing efficient numerical techniques during optimization of complex structures.



Samenvatting

Tijdens een ontwerpproces zijn analyse en, indien nodig, wijziging van de
trillingskenmerken van een constructie belangrijk.  Dankzij de ontwikkelingen
in computertechnologie en in numerieke analysemethoden, met name de Eindige
Elementen Methode, kan een constructie uitgebreid worden geanalyseerd in de
computeromgeving, lang voordat het eerste prototype wordt gebouwd. Voor het
verbeteren van het ontwerp van een constructies, is het in theorie mogelijk om
een Eindig Elementen (EE) model direct aan een numerieke optimalisatiemethode
te koppelen voor het vinden van een globaal optimale ontwerpconfiguratie. Echter,
voor complexe constructies is dit in de praktijk niet mogelijk vanwege de vele EE-
berekeningen en de bijbehorende rekenkosten. De analysetijd groeit snel met het
aantal details in het EE-model. Als de dynamische eigenschappen van een constructie
moeten worden verbeterd door het ontwerp van de gedetailleerde onderdelen aan te
passen, vormen tijdrovende analyses een knelpunt in de optimalisatie.

Het doel van dit proefschrift is het ontwikkelen van een efficiénte strategie voor het
optimaliseren van het dynamische gedrag van complexe constructies. De strategie
moet robuust en nauwkeurig zijn en in staat zijn om een oplossing te leveren die zo
dicht mogelijk bij het globale optimum ligt.

In dit onderzoek zijn twee optimalisatiestrategieén gebruikt om het globale optimum
te vinden: Multi-Level Hybrid Optimization (MLHO) en Multi-Start Local
Optimization (MSLO). Een stochastisch afgeleide-vrije methode, Genetic Algorithms
(GAs), en een gradiéntgebaseerde methode, Sequential Quadratic Programming
(SQP), zijn in deze strategieén gebruikt. Gebaseerd op de resultaten van numerieke
testproblemen, is geconcludeerd dat voor het vinden van het globale optimum een
enorm aantal functie-evaluaties, dat wil zeggen EE-analyses noodzakelijk is. Derhalve
is er besloten de EE-modellen in de optimalisatiealgoritmen te vervangen door hun
snel te evalueren surrogaatmodellen.

Drie bekende methoden, namelijk Polynomial approximation, Kriging en Neural
Networks zijn bestudeerd voor surrogaatmodellering. De voor- en de nadelen van
deze methoden zijn geidentificeerd aan de hand van numerieke testproblemen. De
definitie van nauwkeurige surrogaatmodellen is gebaseerd op de gegevens die zijn
gegenereerd met het EE-model. Het aantal vereiste gegevens neemt echter aanzienlijk
toe met het aantal ontwerpvariabelen. Het gebruik van nauwkeurige en rekenefficiénte
structurele analysemethoden is nog steeds van essentieel belang voor het ontwikkelen
van effectieve optimalisatiestrategieén.

Een aanzienlijk deel van het onderzoek is gericht op de Component Mode Synthesis

vii
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(CMS) voor de dynamische analyse. Van de beschikbare CMS-technieken is speciaal
aandacht besteed aan de Craig-Bampton (CB) methode die wordt gewaardeerd van-
wege haar eenvoud en rekenstabiliteit. De CB-methode blijkt zeer effectief te kunnen
worden gebruikt in een optimalisatiestrategie. Enkele van de belangrijkste voordelen
kunnen als volgt worden samengevat:

e Een complexe constructie is onderverdeeld in verschillende substructuren
(componenten). De analyse van deze substructuren kan worden toegewezen aan
verschillende computers of verschillende ontwerpgroepen. Parallelle verwerking
wordt daardoor sterk bevorderd.

e Elk subconstructiemodel kan door condensatie aanzienlijk worden gereduceerd
met behoud van de nodige informatie. Wanneer deze gereduceerde modellen
worden gekoppeld, is de grootte van het model van de hele constructie
aanzienlijk kleiner dan die van het originele EE-model. Het uitvoeren van de
dynamische analyse wordt dan significant minder tijdrovend.

e De analyse van elke component is onafhankelijk. Analyses hoeven daarom alleen
herhaald te worden voor de gewijzigde substructuren.

e Voor een complexe constructie met vergelijkbare componenten in de geometrie,
kan één parametrisch model worden gebruikt voor de vergelijkbare onderdelen.
De constructie hoeft daarom niet volledig te worden gemodelleerd.

Tijdens de optimalisatie kan nog steeds een groot aantal herhaalde analyses van
een constructie noodzakelijk zijn, zelfs als surrogaatmodellen worden gebruikt. Dit
impliceert een groot aantal her-condensaties van elk gewijzigd componentmodel.
Om de analysetijd nog verder te reduceren, zijn her-analysemethoden onderzocht
in het kader van de CB-methode. De Enriched CB-methode en een nieuwe op
de Combined Approximations (CA) gebaseerde methode zijn voorgesteld om de
transformatiematrix te updaten die verantwoordelijk is voor de reductie van de
subconstructies. Met deze methoden is beoogd de rekentijd voor het condenseren
van de gewijzigde substructuren te reduceren.

Tenslotte zijn al deze concepten samengevoegd en is er een Surrogate-Based
Optimization (SBO) strategie gedefinieerd waarbinnen de modellerings- en de
analysemogelijkheden van de CB-methode zijn benut. Academische problemen zijn
gebruikt voor het demonstreren van de invloed van de geintroduceerde methoden op de
efficiéntie van de SBO-methode. Er is geconcludeerd dat het benutten van effectieve
structurele analyse- en heranalysetechnieken even belangrijk is als het gebruik van
efficiénte numerieke technieken tijdens de optimalisatie van complexe structuren.
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1

Introduction

Vibration is the oscillatory motion of a physical system. The motion may be harmonic,
periodic or a general motion in which the amplitude varies in time [120].

This universal phenomenon of nature and many of its aspects are a part of everyday
life from fundamental human activities such as speaking and hearing to skyscrapers
and bridges oscillating under the wind. The fact that “sounding bodies are in a state
of vibration” [112] is a simple clue indicating the importance of this subject.

Vibrating systems are generally utilized in close association with sound and
communications e.g. speaker systems and musical instruments. However, vibrations
can also be generated unintentionally due to external effects such as wind or
earthquakes, or internal effects such as unbalance in rotating machinery.

Excessive vibrations result in the generation of varying stress amplitudes which are
likely to induce fatigue in structures. In machines, they may lead to rapid wear and
tear of parts like bearings and gears. In many engineering systems human interaction
is unavoidable. In that case, transmission of vibrations on a human body may have
physical as well as psychological consequences. Blurred vision, loss of balance, hearing
loss, back pain etc. are some of the symptoms seen in people exposed to vibrations [57,
88]. Noise, unwanted sound, interferes with the comfort and peace of neighboring
inhabitants.

Suppression or elimination of unwanted vibrations as well as amplification of desired
ones are crucial to improve product quality, to increase process efficiency, to prolong
machinery life, to increase reliability and safety of systems, to improve the quality
of work and living environments, etc. For this purpose a thorough understanding of
vibration characteristics of physical systems is essential.

Until about a few decades ago vibration studies were performed using much simplified
models. These models are not sufficient to describe vibration characteristics of
continuous systems with complex geometries. Parallel developments in numerical
methods and computer technology enabled engineers to analyze complex mechanical
and structural systems with high accuracy. This progress led to performing what if
design scenarios on the shape, size and material properties of structures for modifying



their vibration characteristics in the computer environment. Consequently, it became
possible to perform extensive analyses before building the first prototypes. The next
natural step was to perform these modifications in a systematic way instead of using
trial-and-error methodologies.

Optimization is concerned with the analysis and the solution of problems so as to
achieve the best way of satisfying the original need within the available means [107].

Optimization is an ever-present concept of daily life. In essence, any decision-making
process such as traveling from one place to another, time management, investments,
etc. is based on solving optimization problems where the solver is the human
brain. More consciously, in fields including business, economics, natural sciences,
engineering, etc. optimization problems are solved with the aid of computers where
the problem formulations are based on mathematical abstractions of reality.

A mathematical optimization problem consists of [107]:

e A set of variables describing the design alternatives,

e An objective function expressed in terms of the design variables which defines
the original need to be maximized or minimized,

e Constraint functions expressed in terms of the design variables which are the
conditions that must be satisfied by any acceptable design.

Once the problem is defined, a solution is obtained using suitable numerical
optimization methods. These methods require the evaluation of the objective and
the constraint functions several times in order to find an optimal solution.

In engineering applications, designing and producing both economical and efficient
products are necessary in order to be able to withstand global competition in the
market. This is one of the main motivation of using optimization methods for many
manufacturing companies. Structural design optimization problems require reliable
analysis which is generally carried out by the Finite Element (FE) method. One of the
main difficulties is that optimization of complex structures may necessitate numerous
computationally demanding FE analyses.

1.1 About this Research

The research described in this thesis has been carried out in the framework of
the Artificial Intelligence for Industrial Applications (AI4IA) project (Contract no.
514510) of the European Marie-Curie FP6 research training program coordinated by
SKF-RDC. The goal of the project is to investigate, identify, demonstrate and promote
Artificial Intelligence (AI) techniques for industrial applications. The objective of this
thesis under the AI4IA project is to develop a strategy for the optimization of the
dynamic behavior of structures. The strategy is aimed to be suitable for complex
structures for which the global dynamic behavior is required to be modified via
local design parameters. Throughout the research, various numerical methods are
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utilized. Among these Genetic Algorithms and Artificial Neural Networks are the
two well-known AI techniques.

The research topics concerning this study can be divided into two main groups:
Structural Dynamics and Structural Optimization. The scope of this thesis is limited
to certain fields in these broad categories.

In the structural dynamics field, only the modal and the harmonic response analyses
are in focus. The analyses are based on the linear theory of vibration in which the
geometry and the material properties of the analyzed structures are assumed to be
not affected from the amplitude of vibration.

In structural optimization, only the sizing optimization problems are concerned in
which the design variables can be, for instance, the cross-section properties of the
beam elements and the thickness of the shell elements as well as the material properties
of an FE model. Hence, the shape and the topology of the structures are preserved
during the optimization procedure. Moreover, selected design variables are assumed
to be defined over a continuous domain where they can take any real value.

As emphasized earlier, analysis time is a major drawback for optimization of complex
structures. In order to be able to define an efficient optimization strategy, employing
accurate and computationally less demanding analysis methods plays a crucial role.
Moreover, the optimum solution, preferably the global optimum, should be obtained
with as small a number of calls to the FE model as possible.

Understanding the algorithms behind the numerical optimization methods is
important to define an effective strategy as well as to assess its limits. Thus, one
of the research topics of the thesis is to analyze the differences between the global
optimization and the local optimization methods. Algorithms that are developed for
finding the global optimum usually require much more function evaluations compared
to the local optimization algorithms whose concern is to calculate an optimum. In
structural optimization this means numerous executions of an FE model.

In order to develop a computationally efficient optimization strategy, another
important research subject of the thesis is surrogate modeling. The logic behind using
surrogate models is to generate a simple mathematical model (surrogate) based on the
data collected from an FE model for various values of the predefined design variables.
This model then replaces the FE model in the numerical optimization procedure. Once
generated, evaluation of surrogate models is many orders of magnitude faster than
the FE analyses. This makes them very effective to be used in a global optimization
algorithm.

Although using surrogate models minimizes the interaction between the global
optimization method and the FE model, structural analyses are still required to
generate data for surrogates. Thus, computational efficiency of the FE analyses is as
important as their accuracy during optimization. A considerable part of the research
is focused on studying the reduction and the sub-structuring methods for dynamic
analysis. With these methods detailed FE models can be reduced (condensed)
significantly while preserving a certain level of accuracy. Additionally, they provide
an opportunity to divide a complete structure into parts and perform independent
condensation.



During optimization, the repeated analyses (reanalysis) of even the reduced FE
models can be computationally infeasible. Therefore in the thesis, advantages of
using reanalysis methods in combination with reduction are studied as well. Thereby
the computational burden is tried to be decreased further.

1.2 Outline of the Thesis

This thesis consists of seven chapters and four appendices. The current chapter,
Chapter 1, describes the motivation and the objective of the research. The theoretical
basis about the structural analysis methods and the numerical methods utilized in
this study are given in Chapters 2, 3 and 4. The proposed optimization strategy is
presented in Chapter 5 which is the central part of the thesis. Chapter 6 involves
two academic test problems which are used to test the strategy in terms of efficiency,
accuracy and robustness. Finally, in Chapter 7, the main conclusions of the research
are summarized.

The chapters do not have to be read successively. One can start with Chapter 5 and
whenever required return to the previous chapters for detailed information about the
employed methods. Chapters 2, 3 and 4 include self-contained subjects which can be
read separately.

A brief summary of the contents of each chapter is as follows:

Chapter 2 discusses the reduction and the sub-structuring methods. Special
attention is paid to the Craig-Bampton (CB) method. Additionally, a new reanalysis
approach developed to be used within the CB method is presented.

Chapter 3 covers a brief introduction about the concepts of numerical optimization.
A stochastic derivative-free method, Genetic Algorithms, and a gradient-based
method, Sequential Quadratic Programming, are presented. Furthermore,
Multi-Start Local Optimization and Multi-Level Hybrid Optimization schemes are
introduced which are employed for the search of the global optimum. The effectiveness
of these schemes is discussed by numerical test problems.

Chapter 4 is about surrogate modeling. After defining the fundamental steps of
the approach, three well-known techniques, namely Polynomial models, Kriging and
Artificial Neural Networks are introduced. The advantages and the disadvantages of
these techniques are discussed using numerical test problems.

Chapter 5 is the heart of the thesis where the methods discussed in the previous
chapters are gathered to define the proposed optimization strategy. A brief
introduction about the concepts of structural optimization field and the corresponding
literature is also presented in this chapter.

Chapter 6 is the part where the proposed optimization strategy is demonstrated by
two academic test problems. In the problems, the harmonic response and the modal
properties of the structures are intended to be modified. The selected structures have
repeating patterns in their geometries in order to exhibit the analysis and the modeling
features of the CB method during optimization. The influence of the Kriging and the
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Neural Network surrogates on the final results of the proposed strategy is investigated.
Moreover, the contribution of the reanalysis methods on the computational efficiency
and the accuracy of the strategy is tested.

Chapter 7, the final chapter of this thesis, includes the summary, conclusions and
the future research areas concerning this study.






2

Reduction & Reanalysis
Methods

As introduced in Chapter 1, the objective of this research is to develop an optimization
strategy which can be used in the field of structural dynamics. To be able to do
this, first, a model of a structure is required which allows dynamic response analysis
to be performed. The Finite Element Method (FEM) is used to build this model
in the current study. In FEM, a geometrically complex structure is divided into a
finite number of simple domains (elements) and the solution is approximated using
interpolation functions defined over these elements. Generally, the accuracy of the
solution improves with the number of the elements in the model, but this also increases
the computation time. For the dynamic analysis problems, detailed models can be
condensed using appropriate reduction methods for decreasing the computational
costs while it is still possible to preserve the accuracy for certain frequency ranges.

In structural optimization, repeated analysis (reanalysis) of a structure is needed for
each modification in the design. This is a computationally demanding task if the
structure under study is complex, even when the reduced models are employed. In
order to decrease the computational effort more, reanalysis methods can be used.
They utilize the knowledge of the initial design to calculate the response of the
structure for the modified design values.

Consequently, reduction and reanalysis methods play a crucial role for efficient
optimization of structures. These methods are discussed briefly in this chapter.
Special attention is paid to the reduction method, Craig-Bampton (CB). Two
reanalysis methods that can be utilized in CB are presented. The introduced concepts
are demonstrated by an academic test problem.

Part of this chapter is based on the article “D. Akcay Perdahcioglu, M.H.M. Ellenbroek, H.J.M.
Geijselaers and A. de Boer. (2010) Updating the Craig-Bampton Reduction Basis for Efficient
Structural Reanalysis. International Journal for Numerical Methods in Engineering. Accepted.” [4].
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2.1 General Concepts in Dynamic Analysis

This section briefly highlights the derivation of the discrete form of the equations of
motion used in the FE context. Moreover, the general terminology of dynamic analysis
concerning this thesis is presented. The interested reader is referred to [33, 99, 113]
for further details.

2.1.1 Governing Equations, Weak Form and FE Formulation

The governing equations to describe the undamped motion of a flexible body given
in indicial notation are

%‘ZjJrBj—puj:o in Q2
Oij = 0ji inQ

n;o;; =t; onT (2.1)
uj = Uj onl',

where o;; is the stress tensor, &; = [z1, 2, x3] are the reference Cartesian coordinates,
u;(x,t) = [u1, ug, us] are the displacement field observed at any point resulting from
the dynamic deformation of the body. In the formulation, Bj are the applied body
forces, t; are the surface tractions imposed on the surface I';, @; are the prescribed
displacements on the surface I'y, €2 defines the domain occupied by the body and its
associated mass density p and, finally, n; are the outward normals to the surface I'y
of the body.

Using the weighted residual method, integration by parts and the divergence theorem,
the weak form of Equation (2.1) becomes

/aan O’Z]dQ /wjl_)jdﬂf/ ’LUJE]dF+/’LUJpU]dQ:0 (23)
Q ox Q Iy Q

where w; are the weighting functions.

When the linear elastic stress-strain relationship
Oi5 = Uijki€kl
and the linear strain-displacement relationship

1 Ouy ouy

€kl = 5(87;@ + 87:1%)

are inserted into Equation (2.3), the weak formulation becomes:

ow; 8uk ouy
Qaiaric”kl(ﬁ &Tk ydet = /wjb a0

(2.4)
—/ wjfde+/wjpude:0
T, Q
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where Cj1; is the tensor with the elasticity constants and e, is the strain tensor.

In FE formulations, generally instead of the indicial one, the matrix-vector notation
is utilized. Therefore, Equation (2.4) can be converted to the matrix-vector notation
as:

/VWTCede/wTBde wTEdr+/prﬁdQ:0. (2.5)
Q Q T Q

For defining the FE formulation of Equation (2.5), the current domain €2 is divided into
sub-domains (elements) €. and the solution is approximated in each element using
interpolation functions. Hence, the weak form, Equation (2.5), forms the basis of the
FE discretization. “With an assumed displacement field within an element that only
depends on the nodal displacements (degrees of freedom (d.o.f.)) from that element,
the integrals that appear in the weak form can be evaluated element by element” [133].
The d.o.f. of an element are represented by the vector d. which is a sub-vector of d.
The vector d involves the nodal d.o.f. of the complete structure.

The interpolation over an element is defined as
u = Nd, (2.6)

where N is the matrix of interpolation (shape) functions. By using Equation (2.6),
the linear strain-displacement relationship becomes

e=Bd, (2.7)

where B is a matrix containing the gradients of N.

With these definitions, the weak formulation at the element level is
K.d. +M.d. =F. (2.8)
where

K.= [ BT'™CBdJQ, M.= | pNTNdQ, fe:/ NTBdQ+/ NTtdr
Q. Q. Qe r.

are the element stiffness and mass matrices and the external force vector, respectively.
Within each element, the set of weighting functions is chosen equal to the set of
interpolation functions.

When all the element equations are assembled, the equations of motion in discrete
form are obtained as: o

Kd+Md=f. (2.9)
2.1.2 The Generalized Eigenvalue Problem

The generalized eigenvalue problem of an undamped discrete system is given by

(K —w?*M)d = (K — AM)d = 0. (2.10)
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In Equation (2.10), A = w? are the eigenvalues, indicating the square of the free
vibration frequencies while the corresponding displacement vectors d express the
eigenvectors or the natural mode shapes of the vibrating system.

The eigenvalues and the eigenvectors are often written in the matrix form of

w% ... 0
A= s §:[©17(I)2,...7(bn]

2
0 ... w;

where A, ® are called the spectral matriz and the modal matriz, respectively and n
is the total number of d.o.f. of the system.

The solution of the eigenvalue problem, for large structures having many d.o.f., is
often the most costly phase of the dynamic response analysis. The calculation of the
eigenvalues and the eigenvectors requires high computational effort.

2.2 Reduction Methods

For the analysis of structures having a large number of d.o.f., a large system of
equations must be solved. In most dynamic analysis problems, the lower natural
frequencies and the corresponding modes are more interesting than the higher ones.
This is because these modes tend to dominate the dynamic behavior of structures
and resonance effects are more severe at the lower natural frequencies [75]. In these
problems, the required number of d.o.f. to solve the system accurately is much
less than the number of the actual d.o.f. Therefore, condensing the FE models
of these structures before the dynamic response analysis is a very frequently used
strategy. Reduction is achieved by employing a few preselected basis vectors which
span the solution space of the approximation. This is known as the reduced basis
approach [81, 83].

In the context of large projects (e.g. an aircraft design), the tendency is to divide a
complex structure into several parts, generate the corresponding FE models, reduce
each model and then couple them to obtain the reduced model of the entire structure.
Dividing a large problem into subparts in order to simplify its analysis is called
substructuring. This technique is commonly preferred in industry because it allows
modeling of each substructure (component) by different design groups. On top of
that, if a modification is required in any specific component (e.g. the solid rocket
boosters of a space shuttle or the interstage of a launcher), only the system matrices
of that particular substructure are changed and coupled with the rest of the already
analyzed substructures. This saves valuable computation time. Some structures
involve repeating patterns in their geometry e.g. the fuselage panels of a plane,
one cyclic sector of an industrial blisk, a bladed disk, etc. Modeling one repeating
component and utilizing its system matrices for the remaining identical parts is
another advantage of substructuring.

The so-called Component Mode Synthesis (CMS) technique is both a reduction and
a sub-structuring method which has been utilized since the 1960s for the dynamic
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analysis of complex structures. CMS consists of breaking up a large structure into
several substructures, obtaining reduced order system matrices of each component
and then assembling these matrices to obtain the reduced order system matrices of
the entire structure. Technical details of CMS are summarized in Section 2.2.1.

Depending on the type of the boundary conditions applied on the component interface
nodes, CMS can be grouped into fized interface methods [36, 73|, free interface
methods [54, 92, 94, 116, 117] and loaded interface methods [13]. In this study,
Craig-Bampton (CB) [36], a fixed interface CMS method is considered which is highly
regarded for its simplicity and computational stability. A brief introduction about
CB is given in Section 2.2.2.

2.2.1 Component Mode Synthesis

Assume that an FE model of a structure is constructed on a domain 2 and is divided
into S non-overlapping substructures such that each component is defined on the
sub-domain ¢. Thus, excepting the nodes on the interface boundaries, each node
belongs to one and only one component. The linear dynamic behavior of an undamped
component, labeled ¢, is governed by the equations,

Mede + Ked® =f¢+g¢ ¢=1,2,...,8 (2.11)

where M€, K¢ and d¢ are the mass matrix, the stiffness matrix and the vector of
the local d.o.f. of the component, respectively. The vector f¢ represents the external
loads, and the vector g€ represents the interface loads between the component ¢ and
the neighboring components that ensure compatibility at the interfaces.

For reducing the size of the component matrices, K¢ and M€, a subspace spanned by
the columns of T¢ is built in such a way that the solution of Equation (2.11) can be
written in the form:

d° ~ T°q° (2.12)

where ¢ is a vector of generalized coordinates and dim(q®) < dim(d®). T¢ is
referred to as a reduction basis, a transformation matrix or a Ritz basis. The reduction
basis should be able to describe the deformations on a component as the component
undergoes a free vibration motion as a part of an entire structure [126].

After defining the reduction basis T¢, first, the right-hand side of Equation (2.12) is
substituted into Equation (2.11) and then, Equation (2.11) is pre-multiplied by T¢".
Hence, the reduced matrices of each component are defined by: K¢ = TCTKCTC,
M¢ = T*TMeT¢. The external loads and the interface loads are £¢ = T<Tf¢ and
gt =TTge, respectively.

The next step is the coupling (assembly) of all these matrices to obtain the reduced
model of the entire structure. Coupling is achieved by satisfying the compatibility
and the equilibrium conditions at the interfaces of the components.
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2.2.2 Craig-Bampton (CB) Method

In the Craig-Bampton method [36], the reduction basis is obtained by utilizing the
fized interface normal modes and the constraint modes. The first set of modes
describes the internal dynamic behavior of a substructure. The motion on the
substructure interfaces, the propagation of the forces between substructures and the
necessary information about the rigid body motions are defined by the constraint
modes.

For defining the reduction basis of the CB method, the partitioned form of
Equation(2.11)

M, M.cha.c} [K K.cb]{d.c} {f}{o}
. c e ¢t c B e (=19 gc ¢t c 2.13
{ Mg, Mg, dg Ki Kiy dg f5 gy (2.13)

is used where “i” and “b” refer to interior and boundary, respectively.

The fixed interface normal modes are calculated by restraining all d.o.f. at the
interface and solving an undamped free vibration problem:

(Kfi—wJZMfi){fI)f}j =0 j=1,2,..., Nt (2.14)
where w;, {<I>1°}J are the jth natural frequency and the corresponding mode shape
respectively, and, Nt is the truncated number of the normal modes which is usually
a lot less than the actual number. Hence, the fixed interface normal modes of a
component ¢ are given by

{{%i}l {ag}, ... {@f}NT}: [@f]_ (215)

0, ... 0, 0

The constraint modes are calculated by statically imposing a unit displacement to
the interface d.o.f. one by one while keeping the displacement of the other interface
d.o.f. zero and assuming that there are no internal reaction forces, i.e.,

Ke K |[®5 ] [ o5
[Kai KﬁbHIﬁb =Ry |- (2.16)

In Equation (2.16), the columns of the matrix R{, are the unknown reaction forces
acting on the interface. The constraint mode matrix of a component c is

v, ~Kg'Kg,
= u 1 . 2.17
[ Ivb ] [ | INS (2.17)
Therefore, the Craig-Bampton transformation matriz Tgy for component c is defined
as,
c (I’lc ‘I’fb
g = [ 0 Iy ] . (2.18)

In the CB method, the assembly is done using the compatibility of the interface
d.o.f [116]. This implies matching FE meshes at the interfaces.
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2.3 Reanalysis Methods for the CB Method

When a substructure is reanalyzed with modified design parameters (e.g in an
optimization algorithm), the static and the dynamic properties of the component
are not the same as the initial ones anymore. Consequently, the reduction basis is
also different. One can either reuse the reduction basis of the initial component or
compute a new basis for the condensation of the matrices of the modified component.
The first option usually leads to inaccurate results. The second one requires solving
free vibration problems and performing static analysis which are computationally
demanding for the complex structures. Investigating alternative and fast methods
that can be used for the calculation of the CB reduction basis during the reanalysis
of the substructures is the main motivation of this section. In particular, the focus
is on identifying methods that can be employed within sizing optimization problems.
In these types, modifications are introduced via changing the thicknesses of the shell
elements, the cross-section properties of the beam elements and the corresponding
material properties. Hence, the FE mesh of the initial structure is preserved.

The fixed interface normal modes are utilized to define the internal dynamic behavior
of a component. They are calculated by solving free vibration problems which can
be demanding with an increasing number of d.o.f. in an FE model. In the literature,
there are some methods proposed for updating the normal (vibration) modes of a CMS
basis. In [23], these modes are updated using the Combined Approximations (CA)
approach [82] whereas the constraint modes are calculated all over again. Masson et
al. [96] propose to extend the fixed interface normal mode set of an initial substructure
with some additional basis vectors (Ritz vectors) and to use it as a new normal
mode set in the reanalysis of this substructure. These additional basis vectors are
gathered calculating the residual forces acting on the modified substructure. The
proposed method in [96] assumes that the constraint modes of a modified component
are correctly represented by that of the initial one. This method will be named as
the Enriched Craig-Bampton (ECB) method in the rest of the chapter.

The constraint modes are used for describing the motion of the interfaces of the
components. The rigid body motions of a structure are also defined using these modes.
Moreover, they contribute to define the interior flexibility of the reduced models.
In lower frequency ranges, these modes are very important to prescribe the global
dynamic behavior accurately. Therefore, they should be taken into account in the
reanalysis procedures. In this research, in order to reduce the calculation time of the
exact constraint modes, a reanalysis method based on the Combined Approximations
(CA) approach is proposed whose details are presented in Section 2.3.2. Furthermore,
it is combined with the ECB method for efficient, fast and accurate estimation
of the CB reduction bases of the modified component models. The ECB method
is introduced in Section 2.3.1. The proposed updating scheme is validated and
compared with the results of several other methods using an academic test problem
in Section 2.4.
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2.3.1 Updating the Fixed Interface Normal Modes

This section summarizes the ECB method, proposed by Masson et al. [96], used for
updating the initial fixed interface normal modes when a substructure is modified.

In the rest of the text only one component will be considered, although the introduced
method can be extended for multiple components as well. Hence, the superscript “c”
will be omitted in the formulations.

The fixed interface normal modes of a modified substructure are found by solving
[(Ki + AK;;) — wi(M;; + AM;){®i}, =0 j=1,2,..., Nt (2.19)

where AKj;, AMj; stand for the introduced modifications on Kj and Mj; and, wj,
{®;} ; are the jth natural frequency and the corresponding mode shape of a modified
substructure, respectively.

Rearranging Equation (2.19),
[Kii — W?Mii]{(bi}j = fA(OJj) (220)
is obtained where
fa(w;) = —[AK; — wJQ-AMiinl)i}j j=1,2,...,Np (2.21)

are the residual forces acting on the initial substructure due to the design
modifications. These forces can be used to define a correction to the displacement
field which can be employed to update the initial normal mode set. An approach
to do this might be assuming that the inertia forces are negligible compared to the
resisting elastic forces on the left-hand side of Equation (2.20). Thus, the residual
displacement matrix (corrections)

Rp = [rp(w1),rp(w2), ..., rD(WNy)]

is defined by calculating the static response of the substructure to the residual forces
such that
Rp =K 'Ry (2.22)

where
RL = [fA(w1)7 fA(w2), e ,fA(wNT)]
is the residual force matrix whose columns are the residual force vectors fa (w;).

The residual displacement matrix Rp can be utilized to update the fixed interface
normal mode set of the initial model as explained below:

There is no information about the eigenvectors ®; = {{®i};, j = 1,2,..., Nt} of
the modified component. Consequently, the residual forces fa (w;) in Equation (2.22)
cannot be calculated exactly. Instead, they can be approximated using the fixed
interface normal modes ®? = {{(b?}j, j= 1,2,...,NT} and the corresponding
eigenvalues A?j = {{w?}2, j=1,2,...,Nr} of the initial model. Hence,

fa(w;) ~ fa(wi)ys + fa(we) y2 + ... + fa(wnr) ynr (2.23)
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where ,
fa(w)) = —[AK; — {w)} AM;]{®7}, (2.24)
and y* = {y1,v2,...,Yn,} is a vector of unknown coefficients. The basis R.
Ry = [fA(Wl)»fA(WZ)v e ,f'A(UJNT)] (2.25)

spans the subspace that contains the approximations of the residual force vectors.
Equation (2.25) also defines the residual forces acting on the modified substructure
due to the substitution of the fixed interface normal modes and the corresponding
natural frequencies of the initial design into the new system of equations given in
Equation (2.19). The essential idea behind Equation (2.23) is: if the subspace
spanned by Ry, does not contain the exact residual force vectors with respect to
a specific design modification, it may at least contain a reasonable representation of
these vectors. Since all the residual forces in Ry, are generated by the vectors of RL,
Ry, can be utilized to replace Ry, in Equation (2.22). The basis Ry, is rarely of full
rank and it needs to be reconditioned before being used [96] for which Singular Value
Decomposition (SVD) can be employed [20].

The approximate residual displacement matrix is rewritten as
Rp = K; 'Ry, (2.26)

where RL consists of the reconditioned basis vectors of RL. The matrix RD is
employed to enrich the initial fixed interface normal mode set.

Hence, the extended mode set gets the form of

® = { ‘I(’)? sz } (2.27)

which can then be used in the CB transformation matrix for the condensation of the
modified component.

The ECB method is based on two main assumptions. The first one is neglecting
the inertia forces in Equation (2.20) for the computation of Rp. Although this can
be valid in low frequency range, it may cause problems for higher frequencies. The
second assumption is to define each fa (w;) as a linear combination of fa (w;) where
j=1,2,..., Nt (see Equation (2.23)). If this condition does not hold, the basis
vectors Rp may not be able to describe the dynamic behavior of a modified component
when it is added to the normal mode set of the initial substructure.

2.3.2 Updating the Constraint Modes

The constraint modes of a modified substructure are found by solving

. Oip

K + AK;  Ki, + AKjp i, + ATy, | (2.28)
R, + ARy '

Ky + AKyi Ky + AKyy | 1NN
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where AW¥;,, ARy, stand for the modifications in the initial constraint modes and
the reaction force matrix due to the introduced perturbations on the design variables,
respectively. Using the first line of Equation (2.28) and taking into account that
KiilIl?b + Kj, = 0, AWy, can be calculated solving

I+ K;'AK;) Ay, + K (AK P + AKj,) = 0. (2.29)

The matrix AW;, has a size N; x Ny where N; is the number of the internal d.o.f.
and Ny is the number of the constraint modes in a component. For structures which
have to be reanalyzed several times, the calculations of the exact residual constraint
modes AWy, might be computationally demanding. In order to reduce the overall
computational costs, the objective is to employ reanalysis methods to prevent solving
the complete set of equations. Local approximations can be used for the solution of
such systems. The binomial series expansion is one of the most common.

Binomial Series Expansion for Constraint Modes

Using the binomial series expansion of (I + K;'AK;)™! in Equation (2.29), AWy,
can be approximated as,

AV, ~(I-B+B?—...)Ar; = Ar; + Ary + Arz + ... (2.30)
where

B = K;'AK;, Ar; = K 'R,
R = —AK;¥) — AKj,, Arp = -BAr,_; k=2,3,...

The matrix Ary has a size of N;j x Ny. The tth column, {Arg}, of the matrix
corresponds to the kth term of the binomial series for the tth constraint mode.
Therefore, the tth residual constraint mode { AWy, }; is defined as

(AW}, ~ {Ar ) + {Ara )y + {Ars}e + ... (2.31)

In the expansion, the high-order binomial series terms can easily be computed with
forward and backward substitution. Since Kj; belongs to the initial substructure, its
inverse needs not to be calculated again.

As reported in [83], a sufficient criterion for the convergence of (I —B +B? —...) is
|IB|| <1 where ||.|| stands for the norm. On the other hand, for large changes in Kj;,
the elements of B get very large values and the series diverge from the actual solution
which causes inaccurate predictions of AW;y,.

To summarize, the binomial series expansion only uses the information of the initial
model and the accuracy of its results is highly based on the introduced perturbations
on the initial design variables. There exist several methods, such as the Jacobi
iteration, the block Gauss-Seidel iteration, the dynamic acceleration and scaling of
the initial design, to improve the convergence properties of the series [81].
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Combined Approximations Approach for Constraint Modes

In this research, the Combined Approximations (CA) approach is proposed for
updating the CB constraint modes [81, 82]. The idea behind the approach is:
conditioning the binomial series terms {Ary}; in Equation (2.31) for each residual
constraint mode so that these terms are banned to get high values. Accordingly, the
divergence of the series and the inaccuracies in the approximation of the residual
constraint modes are prevented.

The update procedure is as follows:

The tth residual constraint mode { AWy, }, is approximated in the space spanned by
the vectors of the basis Hy,

Ht = [{Arl}t,{AFQ}t,...,{AI‘Nb}t], t= 1,2,...,NS (232)
where
{Ar}; = K 'Ry, {Ar;} = —-B{Ary 1}y k=2,3,..., Ny,

R; is the tth column of R and NNy is the total number of the binomial series terms
used in the approximation. It is important to point out that each binomial series
term Arg, k=23,..., Ny is calculated using the knowledge of the previous one.
Hence, when a new term has to be added into the available basis, the last term of this
set is sufficient to compute the new one. This is a nice computational advantage. To
prevent numerical errors due to the large elements of AKj;, the basis H; should be
normalized. A simple way of doing that is dividing each column of H; by an arbitrary
reference entry of the corresponding column [83].

Having defined the basis H;, {AW¥;,}; can be approximated as

{A¥} = {Ar iy + {Ar b2 + ..o+ {ArN, by, = Heye (2.33)

where y§ = {y1.1,%1.2,---,Yt.n, } i a vector of unknown coefficients. Substituting
Equation (2.33) into Equation (2.29) and pre-multiplying the equation by H} gives
a linear system of IV}, equations

[} (Kii + AKi)Hely: = Hi (-AK;i {®3,} — {AKip}1) (2.34)

where NV, < N;.

When Equation (2.34) is solved for y; and the solution is inserted back
into Equation (2.33), the tth residual constraint mode {AW®¥;,}; is computed
approximately. When the above defined operations are performed for each residual
constraint mode, the CA approach of the residual constraint mode matrix AWy, is
defined as

AUy, = [{ATL}H, {AT o, {ATL N (2.35)

Hence, the approximate constraint mode matrix is given by

WN[@&+A%b}

2.36
L. (2.36)
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The above procedures do not change the number of the constraint modes which means
no extra basis elements are added to the CB transformation matrix as in the ECB
method. The advantage of the CA approach is that efficient local approximations
(series expansion) are combined with accurate global approximations (the reduced
basis method) for an effective solution procedure. The solutions of the CA approach
are exact when an included new basis vector is a linear combination of the previous
basis vectors [83, 86, 87].

The number of FLoating-point OPerations (FLOPs) required by the exact analysis
and the CA approach are roughly defined in Table 2.1. The symmetry and the sparsity
of the matrices are not taken into account during the FLOP count.

Table 2.1: Number of FLOPs in exact analysis and the CA approach.

‘ Exact Analysis CA Approach
2(N.)3 2 3
Matrix Factorization [Ez '(](\;‘.)29)] [?]:: ](:fgg\f;i”
Forward-Backward substitution []2351\.]5 (21\;%; 2 NS(]\[[];();_E;\?C})],\; 12241)\}] b—1)
. . - NyN{(Np — 1)(2N; — 1
Basis calculation . 2](\[[qu.1(2.)§)(2)}]\[ j\f
Reduction - sVb( [IE?; ()2(‘3:)'} i+ NVy)

Table 2.1 can be used to have a general idea about the computational costs assigned
to both the exact analysis and the CA approach. The number of FLOPs is governed
by three measures: The size V; of the full component stiffness matrix corresponding
to the internal nodes, the number of the constraint modes, Ny, and the number of the
binomial series terms (basis vectors), Np.

It is possible to identify the number of the basis vectors in H; which makes the
computation time of the CA approach equal to that of the exact analysis by the
formulas in Table 2.1. This relationship is shown in Figure 2.1 for large range of V;
values. The legends in the figure stand for various NV; values. As observed in the
figure, the correlation between N;/Ns and Ny, is linear. The dominating factor on the
computational efficiency is the ratio between the size of the internal stiffness matrix
and the number of the constraint modes. The higher this ratio gets, the more basis
vectors can be used in the CA approach. If the number of the binomial series terms,
which provides satisfactory approximation, is below the linear curve, the CA approach
is computationally more efficient than the exact analysis. If it is on the curve, the
computation time of the constraint modes by the exact analysis and the CA approach
are similar. It is important to emphasize again that the number of FLOPs strongly
depends on the type of the solver. Hence, Table 2.1 only gives an idea about the
computational requirements of these methods.

Generally, a few basis vectors are enough to give a good approximation of the
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Figure 2.1: Comparison of the computational efficiency of the exact analysis and
the CA approach. Relation between the size of the internal full stiffness matrix, the
number of the constraint modes and the number of the binomial series terms.

constraint modes. Therefore, for the applications in which the ratio N;/N; is high,
the computational efficiency of the CA approach is more pronounced.

Based on the selected application, only the constraint modes can be updated using the
CA approach as well as both the ECB and the CA methods can be employed at the
same time. In the latter case the transformation matrix of the modified substructure
gets the form of

o) Rp U + AT,

Tepcpeca = @ ¥ | = 0o 0o o

(2.37)

Evaluation of the Error & Automatizing the Reanalysis

The accuracy of the approximated constraint modes can be analyzed by inserting
Equation (2.35) into Equation (2.29). If AWy, is exact, it has to validate the
right-hand side of the equation and the residuals must be zero. If not, the residuals
are

eca = I+ K;'AKy) Ay, + K (AK 0, + AKyy) (2.38)

which define the errors due to the approximation.

It is possible to automatize the calculation of the constraint modes. To do that, first,
a value is assigned to the initial number of the basis vectors in the CA approach.
Next, the number of FLOPs is counted using Table 2.1. This number is compared
with the number of FLOPs of the exact analysis. The CA approach is used only
when it requires less FLOPs than the exact analysis. If it is computationally efficient
to employ, the residual constraint mode matrix AWy, is calculated using CA. The
accuracy of the approximation is verified by Equation (2.38). If the accuracy is not
satisfactory and the number of FLOPs of CA is still less than that of the exact analysis
when a new vector is added to the basis H;; H; is extended with this vector. The
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reanalysis is performed again. Otherwise, the constraint modes are computed with
the exact analysis.

2.4 Demonstration of the Concepts and Discussions

For the demonstration of the introduced concepts, an academic test problem shown
in Figure 2.2(b) is selected. The structure is composed of 8 identical components and
it is free at the boundaries. A component consists of a cylinder skin including a floor
panel, frames and stiffeners whose geometry is as illustrated in Figure 2.2(a).

Frame Stiffener

SN

NS
R
s

=N
W
Ny \\\\\\\
S
7] I? /

T
a8 fatl
il
b

Figure 2.2: Test problem. (a) Component model and its design variable,
(b) Structure model and the corresponding components C;, i = 1,2,...,8.

The reduced system matrices of the entire structure are obtained by only modeling one
component. The FE model of a component is generated in the commercial FE software
ANSYS. Its system matrices are calculated for the defined design variables and then
they are transferred to MATLAB. For obtaining the reduced system matrices of the
components, first of all, the transformation matrices are computed and afterwards,
condensation is performed. In the transformation matrices 18 fixed interface normal
modes are used. The number of the nodes on one interface of a component is 37.
After the reduced matrices of all the components are obtained, these matrices are
assembled and the reduced system matrices of the entire structure are gathered.

The skin, floor and frames are modeled using a 4-node shell element which has 6 d.o.f.
at each node and is suitable to analyze thin to moderately thick shell structures [7].
The stiffeners with I cross-section are modeled with a three dimensional beam element
which has 6 d.o.f. at each node. It allows different cross sections and permits the
end nodes to be offset from the centroidal axes of the beam [7]. The cross section
width and height of the stiffeners (hg) in the components (see Figure 2.2(a)) are
defined as the design variables and all the stiffeners of a component are assumed to
have the same design values. Therefore, there exist 8 design variables in total in the
overall structure. Each component has one design variable. For the initial design
hg,, 1 =1,2,...,8 are set to 0.05m. The design variables are modified with the same
amount of perturbation in the interval of [0.01 0.15].
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Since the structure is free at the boundaries, its first 6 modes are rigid body modes.
The 1st, 3rd and 4th dynamic modes are bending modes and the 2nd one is a torsion
mode which are shown in Figure 2.3.

(I)S CI)g @10

Figure 2.3: The first four flexible dynamic modes.

The highest rigid body frequency and the frequencies of the first 4 flexible dynamic
modes that correspond to several design configurations are presented in Table 2.2.
These results are computed by the full FE analysis.

Table 2.2: Frequencies corresponding to different design configurations.

hy(m),i=1,2,....8 | wsHz) wr(Hz) ws(Hz) wo(Hz) wio(Hz)

0.01 6.6910~*  16.40 26.49 29.42 38.836
0.05 (Initial Design) 6.2710~%  21.65 26.69 32.96 41.14

0.1 6.5710"*  25.01 28.21 35.73 43.36
0.15 6.10107*  27.49 30.67 37.85 44.98

2.4.1 Validation of the Update Scheme

The proposed reanalysis method is validated on the basis of the first four flexible
dynamic modes. Since rigid body modes are defined by the constraint modes, their
correct representation is also inspected.

The natural frequencies and the corresponding mode shapes are computed for different
values of the design variables using the methods:

e Full: The full FE analysis. All d.o.f. are considered in the analysis without any
reduction.

e CB: The Craig-Bampton method. The total number of d.o.f. of the modified
components are reduced using the CB reduction basis. The fixed interface
normal modes and the constraint modes are computed by the exact analysis.
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T¢y: The Craig-Bampton method. The total number of d.o.f. of the modified
components are reduced using the reduction basis of the initial ones.

ECB: The Craig-Bampton method. An approximate reduction basis is
employed for the modified components. The fixed interface normal modes
are approximated using the ECB method. The constraint modes of the initial
substructure are used as the constraint modes of the modified one.

ECB&CMEy.t: The Craig-Bampton method. An approximate reduction basis
is employed for the modified components. The fixed interface normal modes are
approximated using the ECB method. The constraint modes are computed
using the exact analysis.

ECB&BS: The Craig-Bampton method. An approximate reduction basis is
employed for the modified components. The fixed interface normal modes are
approximated using the ECB method. The constraint modes are approximated
using a three term binomial series expansion.

ECB&CA: The Craig-Bampton method. An approximate reduction basis is
employed for the modified components. The fixed interface normal modes are
approximated using the ECB method. The constraint modes are approximated
using the CA approach. For CA three cases; 3 binomial series terms (B3), 4
binomial series terms (B4) and 7 binomial series terms (B7); are taken into
account in the approximation.

The size of the system matrices of the components is summarized in Table 2.3.

Table 2.3: The size of the system matrices of the components.

H Component 1,8 Component 2,...,7

# of interface d.o.f. H 222 444
Full 1986 x 1986 1986 x 1986
CB, T2 240 x 240 462 x 462
ECB 258 x 258 480 x 480
ECB&CMEyact 258 x 258 480 x 480
ECB&BS 258 x 258 480 x 480
ECB&CA 258 x 258 480 x 480

When the number of FLOPs is counted using the equations given in Table 2.1, it is
observed that the selected structure is actually not suitable for demonstrating the
computational efficiency of the CA approach. FLOPs required in the exact analysis
are almost the same as those required in the CA approach with 3 binomial series
terms. Therefore, in this example only the accuracy of the CA approach will be
discussed.
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The accuracy of the results is compared on the basis of the relative frequency error
(ew) and the Modal Assurance Criterion (MAC).

For the calculation of ¢, the full FE results are compared with those of the rest of
the methods using
1 1
[Arun];;

where M is a generic abbreviation used for representing the methods defined above,
| - | is the absolute value and A;; is the jth diagonal entry of the spectral matrix A.

MAC is a scalar value between 0 and 1, and it represents the correlation number
between the two mode shapes. A MAC value close to 1 indicates a high degree of
correlation between two mode shapes. For its calculation, first the reduced model
solutions are expanded to their full forms and then these eigenvectors are compared
with the eigenvectors calculated by full FE analysis using

NPV (Y 239)

([®pun]; [Prun j)([@M]?[CI)M]j)

where [‘i)Fun] I [i)M} ; are the jth eigenvectors corresponding to the full FE analysis
and one of the above-mentioned methods, respectively.

The results of the test problem are presented in Figures 2.4 - 2.7. The highest
computed rigid body frequencies using the above defined methods, for varying design
values, are plotted in Figure 2.8.
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Figure 2.4: 1st flexible dynamic mode errors for varying designs. The dashed line
shows the location of the initial design value.

As observed from the results, the most accurate method is CB. This is expected
because the fixed interface normal modes and the constraint modes are computed by
exact analyses.
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Figure 2.5: 2nd flexible dynamic mode errors for varying designs. The dashed line
shows the location of the initial design value.
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Figure 2.6: 3rd flexible dynamic mode errors for varying designs. The dashed line
shows the location of the initial design value.

The difference between the relative error of CB and ECB&CMpgy.c is due to the
ECB approximation. As seen in the figures, the higher the perturbation on the
initial design gets, the less accurate the approximation becomes. This is because
of the assumptions made during the computation of the additional basis vectors
Rp (see Section 2.3.1 for details). As the constraint modes are exact in CB and
ECB&CMEyact, the rigid body displacements can be represented correctly by these
modes.

The accuracy of the natural frequencies computed by the ECB and the Ty methods
deteriorates with the amount of perturbation on the initial design values. In this
example, the geometry does not change hence rigid body modes remain accurate for
the entire perturbation range.
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Figure 2.7: 4th flexible dynamic mode errors for varying designs. The dashed line
shows the location of the initial design value.
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Figure 2.8: Maximum rigid body mode values for varying designs. The dashed line
shows the location of the initial design value.

For the considered test problem, updating the constraint modes has a significant effect
on the accuracy of the results. The fixed interface normal mode sets do not involve
any bending modes that may contribute to describe the global dynamic behavior. In
defining the bending modes of the structure, the influence of the constraint modes
is more dominant. The torsion mode is determined by the motion of interface nodes
which also requires knowledge of the constraint modes.

In the ECB&BS method, even though the constraint modes are updated, the
accuracy of the results gets inadequate with the amount of perturbation on the initial
model. This is because large changes in the initial stiffness matrix make the binomial
series expansion diverge from the actual result as addressed in Section 2.3.2. On the
other hand, the representation of rigid body modes are acceptable. This is related
with the geometry not being modified with the perturbations. In the ideal situation,
i.e. when there are no numerical errors, the calculation of rigid body modes is exact
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with BS (see Appendix A.1 for details).

The accuracy of the natural frequencies calculated by ECB&CA is satisfactory for
a wide range of perturbations. Unfortunately, it is not possible to make the same
statement for rigid body modes as seen in Figure 2.8. However, with an increasing
number of the basis vectors in CA, the representation of these modes as well as the
accuracy of the flexible dynamic modes gets better. Consequently, evaluation of the
error presented in Section 2.3.2 is very important for obtaining reliable results. As
explained in Appendix A.2, when this error converges to zero, the constraint modes
computed by the CA approximation converge to the exact ones. Hence, the rigid body
displacements can be computed accurately. This is investigated in Section 2.4.2.

2.4.2 Results of the Automated Update Scheme

Exact analysis of the constraint modes is computationally more efficient than the CA
approach for the selected structure. In order to still show the influence of the number
of the binomial series terms in CA on the accuracy of the results and to demonstrate
the automated decision of this number, the FLOP count option is ignored in the
automated update scheme (see Section 2.3.2 for details). The constraint modes are
computed only with the CA approach and the minimum number of the basis vectors is
set to 3. The accuracy of the modes is verified using Equation (2.38). If the accuracy
is not satisfactory, the set of the CA basis vectors is extended with a new vector and
the reanalysis step is repeated. The tolerance value for the maximum norm of €ca in
Equation (2.38) is set to 0.001 which is relative with respect to the maximum norm
of the displacements defined on the interface nodes.

The solutions corresponding to the automated update scheme are plotted in
Figures (2.9) - (2.10).

The number of the basis vectors utilized in CA ,utomated in order to reach the requested
tolerance is summarized in Table 2.4 for several designs. As observed from these
results, in the neighborhood of the initial design, the required number is small and it
increases with the magnitude of perturbation.

The highest accuracy that can be obtained using ECB&CA ,utomated can only be
as good as that of the ECB&CMEyact- As seen in the figures, the errors in these
methods are very close. This indicates that the constraint modes computed by the
CA approximation converge to the exact ones when the error eca in Equation (2.38)
is driven to zero. Hence, rigid body modes can be represented correctly by
ECB&CA L utomated as shown in Figure 2.10.

2.5 Summary and Conclusions

In this chapter, the Component Mode Synthesis (CMS) technique was introduced.
Special attention was paid to the Craig-Bampton (CB) method. Next, the reanalysis
methods that can be used under the framework of CB were discussed. The Enriched
CB (ECB) method was studied in order to update the fixed interface normal mode
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Table 2.4: The number of the basis vectors used in CA ,ytomateq for different designs.

hg,(m), i =1,2,...,8 ‘ Component 1,8 Component 2,...,7

0.01 22 11
0.026 8 7
0.041 3 3
0.057 3 3
0.072 6 5
0.088 9 8
0.103 12 11
0.119 15 13
0.134 20 15
0.15 29 17

set of the initial CB reduction basis. A new method based on the Combined
Approximations (CA) approach was proposed for approximating the constraint mode
set of the modified substructures. An academic test problem was utilized for the
demonstration of the presented concepts.

With the CB method, the analysis time can be reduced considerably. Additionally,
it presents a number of interesting features that can be benefited in an optimization
strategy. These are summarized in the following:

e A complex structure is divided into several substructures. The analysis of
each component can be assigned to different groups and/or computers. Hence,
parallel processing opportunities are highly supported.

e The number of d.o.f. in a large FE model is reduced significantly while the
accuracy of the analysis is preserved within a low frequency range.

e Analyses of component models are independent from each other. When
modifications are required in a certain component, only reanalyzing this part is
sufficient to determine the modified matrices of the structure. The unmodified
substructures do not have to be analyzed again.

e It is possible to use one parametric FE model for all the similar substructures.
Thus, for structures which have repeating components in its geometry, the
complete model need not to be generated.

The assembly of the reduced component models in CB are based on the compatibility
of the interface nodes. Therefore, for the coupling of the substructures, it has to be
ensured that the models have matching meshes on the interface surface. This can be
considered as a drawback of the method.

The solution of the free vibration problem can be avoided for the modified
substructures using the ECB method. This saves computation time during repeated
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analysis of components. ECB adds extra basis vectors into the initial fixed interface
normal mode set. Accordingly, the number of the generalized d.o.f. in the modified
substructure is larger than that of the initial one. The assumptions that are made
during the calculation of the additional basis vectors may hinder the accuracy of
the ECB at higher frequencies and for large perturbations. There is no proposed
automated update scheme in the literature that switches ECB with the exact analysis
when the accuracy of the approximations are not satisfactory.

In many applications, the influence of the constraint modes is more dominant than
that of the fixed interface normal modes on identifying the global dynamic behavior of
a structure. As observed in the test problem, the reanalysis of only the fixed interface
normal modes is not sufficient in terms of accuracy. Updating the constraint modes
has a significant impact on the accuracy of the solutions.

The binomial series expansion leads to incorrect update of the constraint modes when
the introduced perturbations on a substructure are large.

The results of the proposed method based on the CA approach are satisfactory for a
wide range of perturbations. The method allows to calculate the residual errors due
to the approximation of the constraint modes. With an increasing number of the basis
vectors in CA, the method converges to the exact modes. The computational efficiency
of the method depends on the properties of the FE models of the components. More
specifically, the ratio between the size of the internal stiffness matrix and the number
of the constraint modes is the driving factor. As this ratio gets larger, the method
becomes more effective compared to the exact analysis. The presented automated
update scheme allows to switch CA with the exact analysis automatically when the
computational efficiency is lost.

Rigid body displacements of a structure are described by the constraint modes. For
modifications in which the FE mesh is preserved (e.g. sizing optimization problems),
the constraint modes of the initial substructures still represent rigid body modes of
the new design. Even when the constraint modes are not updated correctly in the
binomial series approximation, rigid body modes are still predicted accurately. In the
CA method, rigid body modes are captured when a sufficient number of basis vectors
are utilized. This implies that the calculated constraint modes have to be close to
their exact values.
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Numerical Optimization

In this chapter, first, the general formulation of the optimization problems concerned
in the research is given. Next, the conditions that have to be fulfilled by any optimum
corresponding to these problems are discussed. Afterwards, two numerical methods
are presented and the strategies for finding the global optimum are introduced.
Numerical test problems are used to demonstrate the concepts.

3.1 Optimization Problem Formulation

Maximization or minimization of a function subject to constraints on its variables is
considered under the field of numerical optimization. An optimization problem can
be written as

C; (X) =0 €&

min f(x) subject to{ G(x)<0 ieT

where xT = {x1,22,...,2,} is a vector of variables, Z and £ are sets of indices
and f(x) is the objective function that is to be minimized. The equality constraints
¢i(x), 1 € & and the inequality constraints ¢;(x), i € T are the functions that the
variables must satisfy. Both f(x) and ¢;(x) return a scalar value. The set of points x
satisfying all the constraints is called the feasible set, that is

F={x|ci(x)=0i€&c(x)<0icZ}
and all the points in this set are called the feasible points. For any x € F, an inequality
constraint ¢;(x), ¢ € Z is said to be active if ¢;(x) = 0 and inactive if ¢;(x) < 0 [104].
The active set A(x) at this point is defined as
Ax)=EU{ieT|c(x) =0}

which is the union of the indices of the equality constraints and the active inequality
constraints.

31
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A point x* is referred to as a local minimizer if there is a neighborhood N (x*,€) of
x* and in that neighborhood x* is a feasible point with the lowest objective function
value:

f(x*) < f(x) forall x e FNN(x*e).

This point is a global minimizer if it has the lowest objective function value in the
entire feasible set:
f(x™) < f(x) forall xeF.

An optimization problem which has multiple optimum solutions is called a
multi-modal problem.

In some optimization problems, the variables make sense only when they take discrete
values. Problems of this type are called discrete optimization problems. In contrast,
variables of continuous optimization problems take real values. There are also
problems which consist of both discrete and continuous valued variables. In this
thesis, only the continuous optimization problems are in focus. Detailed information
about other types of problems and the corresponding solution methods can be found
in [15, 105].

A general formulation of the continuous optimization problems can be given as

ci(x)=0 i€

G(x)<0 i€l (3.1)

min f(x) subject to{
xERn X1

where f(x) and c¢;(x) are all smooth (second order differentiable), real valued
functions. There are many special cases of Equation (3.1) varying from each other
by the selection of the type of the objective and the constraint functions. When at
least one of these is a nonlinear function of the design variables, the problem is in the
category of Non-Linear Programming (NLP). In this category, multi-modality often
arises due to the nonlinearity of the objective and/or the constraint functions. This
thesis concerns the solution of the NLP problems.

3.2 Necessary and Sufficient Conditions for
Optimality

Before presenting the methods employed for the solution of Equation (3.1), first,
necessary and sufficient conditions for optimality are briefly introduced. Necessary
conditions are utilized to check whether a point x is the optimum of a given problem
or not. Since an optimum can be a minimum, a maximum or a saddle point, sufficient
conditions are used to define the type of it.

To be able to state that a point x*, selected in a feasible set
F={xeR™|¢((x)=0i€& ci(x)<0icT}

is an optimum, the following conditions have to be fulfilled.

Let x* € F and suppose that the gradients of the active constraints at x*, that
is {Ve;(x*), i1 € A(x*)}, are linearly independent. This condition is called Linear
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Independence Constraint Qualification (LICQ). If x* is an optimum, there exists a
vector A* = {\}, i € £ UT} such that the following conditions are satisfied at (x*, A*)

Vi L(X,A%) = Vi f(x*) + D A Vxei(x*) =0, (3.2a)
iecuT

c(x*)=0, forallie& (3.2b)

ci(x*) <0, forallieZ (3.2¢)

Af >0, forallieZ (3.2d)

Ajci(x*) =0, forallie EUT (3.2¢)

where V,L(x, ) € R**! is the gradient of the Lagrange function

L(x,\) + ) Aailx (3:3)

1€EUT

of Equation (3.1) and A is a Lagrange multiplier vector.

The conditions defined in Equation (3.2) are known as the Karush-Kuhn-Tucker
(KKT) conditions [104] and provide a foundation for many algorithms [49, 58, 114].
Derivation of these conditions can be found in [104].

Equation (3.2a) with the LICQ condition state that A* is uniquely defined at x* and
the gradient of the Lagrange function is zero for this pair. The constraints have to be
fulfilled by x* which is given in Equations (3.2b) and (3.2¢). The fourth condition puts
restrictions on the Lagrange multipliers of the inequality constraints. It ensures that
there exists no feasible direction that can both reduce the objective function value
and satisfy the constraints. According to the last condition, if any of the constraints
are not active at x*, the corresponding Lagrange multiplier A} is zero. Hence, inactive
constraints are ignored in the Lagrange function formulation.

Geometric interpretation of the KKT conditions is illustrated in Figure 3.1 for the
case of three constraints. Let Ve¢; and Vo denote the gradients of the constraints
c1(x) and ca(x) which are perpendicular to the respective constraint surfaces at x*.
The gradient of the objective function at x* is represented by V f in the figure. In
order to obtain a point which reduces the objective function value better than x*
and does not violate any of the constraints, a feasible direction vector v needs to be
selected. This vector has to have an obtuse angle with Ve, and Ve, to stay in the
feasible region. It must have an acute angle with —V f for decreasing the value of the
objective function value even further. As clearly seen in the figure, there is no such
direction. Hence, x* is an optimum point. The signs of the Lagrange multipliers, Ay
and Ag, are important to have that conclusion which must be positive. Additionally,
since the constraint function cs(x) is not active at x*, it is not taken into account for
the decision of a feasible direction.

To summarize, if the KKT and the LICQ conditions hold at a point x*, any point
selected in the neighborhood of this point will either violate the constraints or increase
the value of the objective function.



34

Figure 3.1: Geometric interpretation of KKT conditions.

A point x* satisfying the KKT conditions is an optimum but does not necessarily
have to be a minimum. If sufficient conditions; stated next; hold, this point is then
a strict local minimum.

Suppose that for x* € F, there is a Lagrange multiplier vector A* such that the KKT
conditions are satisfied. Suppose also that

ATV, L(x*, A%)d > 0 (3.4)

for every vector d # 0 which satisfies V¢;(x*)Td = 0 for all i € A(x*) with \¥ > 0.
Then x* is a strict local minimum [104].

3.3 Solution Algorithms

Numerical methods utilized for solving optimization problems can be divided into
two categories, gradient-based and derivative-free [25]. Gradient-based methods are
reliable, fast and robust, and commonly employed for solving continuous optimization
problems [31, 104]. They can handle large numbers of variables and constraints.
The computed optimum is exact and at least a local one. They are called gradient-
based because the direction of the search is guided using the gradient information of
the objective and the constraint functions. Derivative-free methods, as their name
suggests, do not use gradient information during the search of an optimum. They are
particularly attractive for solving problems having discrete variables, discontinuous
or noisy function responses, or disconnected feasible domains. These further can
be divided into deterministic and stochastic methods. Derivative-free deterministic
methods always produce the same results given the same starting point [32].
Conversely, the stochastic ones use random numbers during their search [60] and
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hence might lead to different solutions of the same problem. They search the design
space globally, therefore they are also well-suited to solve multi-modal problems.

In the following sections, the Sequential Quadratic Programming (SQP) method
from the gradient-based class and Genetic Algorithms (GAs) from the stochastic
derivative-free class will be introduced briefly. The task of these methods during the
solution phase of the NLP problems will be clarified in Section 3.4.

3.3.1 Sequential Quadratic Programming

The essential idea behind the Sequential Quadratic Programming (SQP) method is to
model Equation (3.1) at the current iterate x(;) by a Quadratic Programming! (QP)
subproblem, and use the minimizer of this subproblem to define a new iterate x(,1)
and accordingly a new subproblem. By repeating these steps, a sequence of iterates
{x(r) }72, is obtained which is terminated when either no more progress is obtained
or a solution point has been approximated with sufficient accuracy.

To explain the theory behind the SQP method, first, the equality constrained problem

min f(x) subject to c(x) =0 (3.5)

XER” X1

is considered where c(z) = {¢;(x) =0, ¢ € £} is a vector function. This will be
extended for the general NLP problems next.

The simplest derivation of the SQP method can be realized as the application of
the Newton’s method to the KKT conditions given in Equation (3.2). An optimum
solution of Equation (3.5) has to fulfill the system of equations

V(%) + Ax)TA

F(x,A) = c(x)

-0 (3.6)

where A(x)T = {Vc¢;(x), i € £} is a matrix whose columns are the gradients of the
constraints ¢;(x). Equation (3.6) is simply the KKT conditions defined for the
problems with equality constraints where the Lagrange function is defined as

L(x,A) = f(x) +c(x)TA. (3.7)

In Equation (3.6), x and A are the unknowns that have to be solved. To find these
unknowns, Newton’s method linearizes F'(x,A) at (X(x), A(x)) using the first order
Taylor series approximation, i.e.,

F(X(k41), Ak+1)) = F(Xk) + Viry, Aw) + (r))

c(X(x)) A(x(x)) 0 )

'In Quadratic Programming, the constraints are the linear and the objective function is the
quadratic functions of the optimized variables.
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and finds (v(z), d(x)) that solves Equation (3.8). In the formulation Wy is either the
Hessian of the Lagrangian function with respect to x; that is W) = Vi L(X(r), Ar));
or an approximation of it. The next iteration point, then, is defined as

-] L)
A(k+1) Ak) O (k)

The solution of the successive linearized problems converges to the solution only when

the KKT matrix T
[ Wy Alxp) ]

is nonsingular.

Nonsingularity is a consequence of the following conditions [104]:

1. A(x(x)) has full row rank. This is the LICQ condition.

2. Wy, is positive definite on the null space of the gradients of the active
constraints. That is, d¥W ,)d > 0 for all d # 0 such that A(x))d = 0. This
condition holds when (x(), A(x)) is close to a minimum point (x*, X*).

There is an alternative way to reach Equation (3.8). Instead of linearizing
Equation (3.6) around a given iterate, in Equation (3.5) the constraints are replaced
by their linear first order Taylor series approximation and the objective function by its
second order Taylor series approximation augmented by a second order information
from the constraints at (x(), A(x)). Hence, a QP problem

1T T
min §V(k)w(k)"(k) + V(%)

Vik
Vi) (k)

(3.9)
subject to A(x(x)) V(r) + c(X(x)) =0

is obtained. If the above defined conditions are satisfied, Equation (3.9) has a unique
solution (v(x), (x) satisfying the KKT conditions

W iyVir) + V(X)) + Axpy) Ty =0

3.10
A(X(k)) V(k) + C(X(k)) =0. ( )

When Equation (3.10) is compared with Equation (3.8), it can be observed that
(V(k)> (k) can be identified from Equation (3.8) only by adding A(x()) T A to the
first line of Equation (3.8) which gives

oy 1L L] o

From the assumption of the nonsingularity of the KKT matrix, Equation (3.11)
has a unique solution which implies gy = Ag41)-  Thus, an optimum for
Equation (3.5) can also be found by sequentially minimizing the QP problem defined
in Equation (3.9).
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For the general constrained problems, the QP problem is defined as

.1

min {2"%“’(@%) + VI (xw) Ve
. VCi(X(k))T V(k) T Ci(X(k)) =0 €€

SUbJeCt tO{ VCi(X(k))T V(k) + Cl(X(k)) S 0 7€

where both of the constraint functions are the first order Taylor series approximations

of the original constraints at an iterate x,.

To summarize, the SQP method is in essence an extension of the Newton’s method
to the constrained optimization problems. Hence, one would expect that it shares the
characteristics of the Newton’s method such as rapid convergence when the iterates
are close to the solution but an erratic behavior when the iterates are far from a
solution [17, 110]. To establish a global convergence for the NLP problems from
remote starting points, a way of measuring progress towards a solution is needed.
For the SQP method, this is done by employing merit functions which quantifies the
balance between reducing the objective function value and satisfying the constraints.

The construction of the QP subproblems are the same for all SQP strategies. They
differ from each other by the selection of a QP solver and a merit function. In this
research, the considered SQP implementation [2] uses the method proposed by Gill et
al. [50] for solving the subproblems and utilizes the merit function defined in [2, 65].

SQP methods are proven to converge to an optimum solution for continuous and
smooth functions [104]. Its disadvantage is that depending on the selected initial
point it might be trapped in a local optimum.

3.3.2 Genetic Algorithms

Genetic Algorithms (GAs) are concerned with the solution of optimization problems
in the global sense by imitating the principles of natural evolution. The working
principle of the method can be summarized as follows: First, GA is initialized with
a random set of points (population or generation). Next, the value of the objective
function is calculated for each element of this set. Then GA selects some of these
points as candidates based on their objective function values and feasibility, and
creates a new set of points using them. It does this by keeping some of the candidate
points the same (elite), making random changes in some of them (mutation) and
combining the vector entries of randomly selected pairs (cross-over). Afterwards it
replaces the previous population with the new one (new generation) and follows the
same procedure until there is no improvement in the population. The best feasible
point (one with minimum objective function value for a minimization problem) of the
last population is defined as the optimum solution.

During its process, GA does not require any derivative information of the objective or
the constraint functions. A solution provided by it is likely to be close to the global
optimum. Unfortunately, unlike the gradient-based methods, there is no optimality
check for GA. A solution is declared as optimum when some predefined termination
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criteria are met. Hence, the solutions are based on estimations and might not be exact.
It is also important to mention that, compared to the gradient-based methods GAs
need many function evaluations. This is because of the lack of gradient information
during the search of an optimum.

The GA implementation considered in this research treats linear and bound
constraints different than the nonlinear ones [1]. Since a region restricted by the
bound and the linear constraints defines a convex set?, it is not difficult to generate
points in the feasible domain throughout the optimization process. This is generally
not an easy task for the nonlinear constraints, which is the reason why they are treated
separately. A brief introduction is as follows.

Bound and Linear Constraints

An optimization problem with the linear and the bound constraints can be written
in the form

Ax<b
min f(x) subject to Cx=d (3.12)
* 1<x<u

where the ith row of A, b, C and d corresponds to the coefficients of the ith inequality
and equality constraints, respectively. The vectors 1 and u define the lower and the
upper bounds on x. Among the many ways to handle these constraints in GA [26], the
one used in this research solves Equation (3.12) by generating a feasible population
at each of its generations using suitable cross-over and mutation operators.

Since the feasible region F restricted by the linear and the bound constraints defines
a convex set, the cross-over point xco is generated as

xco = Bxm + (1 - B)x,

where x,, and x, are a randomly selected pair from the set Sp. This set consists
of the candidate points of the previous population which are used for generating the
current population. The coefficient S is selected arbitrarily in the range [0,1]. The
illustration of a convex set and a cross-over point is shown in Figure 3.2. As seen
in the figure, any point that lies on the line, connecting the arbitrarily selected two
points, is still in the feasible set.

As mentioned before, a mutation point xp; is obtained by introducing a random
change to a randomly selected point x in Sp. There are two possibilities for the
location of x, either it lies strictly inside JF or it lies on the boundaries as illustrated
in Figure 3.2. If it is the first case, any direction selected in F with a sufficiently
small step size a produces a mutation point

XM =X+ av

where v is a feasible direction vector. However, for the second case, some of the
constraints are active for x. Consequently, only the directions tangent to them and

2A set S is called convex if for all X, Xp in S and all 8 in the interval [0,1], the point
BxXm + (1 — B)xp isin S.
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Linear constraint
Bound constraint

Feasible region

***** Xpy F,

Figure 3.2: (Left) Contours of a function restricted with linear and bound
constraints. (Middle) Generating cross-over point. (Right) Generating mutation
point.
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the ones that lie in the subspace positively spanned? by these directions can produce
feasible mutation points as shown in Figure 3.2. Details about defining a positive
spanning set and selecting a feasible direction vector can be found in [9, 90].

The same step size is used for generating all the mutation points in a population
which is updated for a new population based on the success of the previous one. If
the best point of the previous population has improved the objective function value,
the step size is increased, otherwise it is decreased. Therefore, the search process is
adapted to the progress of the generations for the sake of not missing any valuable
information about the location of an optimum [1, 9].

Example 3.3.1 For the demonstration of the GA algorithm, the following
problem is selected.

min |3(1 — 21)? exp (—27 — (22 + 1)) — 10 (%  — :z:S)

723’]1 — X9 § 0.5

1 2z —29 <3

2 2 2 2 . 1 2 <

exp (—x3 — a3) — 3 exp (—(xl +1)° — xQ)} subject to 05 <2 <2
—15<m <1

It has two variables, a nonlinear objective function, 2 linear inequality and 2
bound constraints. In the algorithm, the number of the points in a population
and the maximum number of the generations are set to 50. The first 20
points of the previous population are selected as candidates for generating
the current population. Among these points 2 of them are used as elite points
and the rest is used for generating the cross-over and the mutation points.

3A set V is called a positive spanning set for a space H, if positive linear combinations of its
elements are spanning H.
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Each population, excluding the elite ones, consists of 60% cross-over and 40%
mutation points. As seen in Figure 3.3, first a random feasible population is
selected. At each generation, the population is improved so that it evolves
towards the optimum point. Finally for the 19th population, the algorithm is
terminated due to the similarity of the points with each other. The objective
function value is found as —5.7586 for the best value of the last population, that
is xga = [0.495,—1.4909]. The exact optimum is at xg = [0.5, —1.5] with an
objective function value of —5.7616. The results clearly reveal that the solution
provided by GA is restricted by the performance of the populations calculated
at each generation and the total number of the generations. Furthermore, the
exact solution is never guaranteed.ll
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Figure 3.3: Populations 1, 3, 8 and 19
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Nonlinear Constraints

When Equation (3.12) is extended with nonlinear constraints, the problem becomes

Ax<b

Cx=d
min f(x) subject tod 1<x<wu (3.13)

x gi(x) <0 i=1,2,...,m
9i(x)=0 i=m+1,m+2,....M

where g(x) = [g1(x), g2(xX), ..., gn(x)] consists of the nonlinear inequality and
equality constraints. An important class of methods, used for the optimization of these
type of problems, seeks the solution by sequential minimization of subproblems [58,
104]. These subproblems are obtained by combining the objective function with the
constraints in an appropriate way.

In the utilized GA implementation [1], the Composite Lagrangian Barrier-Augmented
Lagrangian (CLB-AL) algorithm of Conn et al. [29, 30] provides a framework for
handling the nonlinear constraints. The solver uses the subproblem formulation

Ax<b
min ®(x, A, s, ) subject to¢ Cx=d . (3.14)
* 1<x<u
where the new objective function is
D(x, A, s, 1) = f(x) + fo(x, A, 8) + fan(x, A, 1)
m M L M
2
=fx)+ |- Z Aisin(si — gi(z))| + Z Aigi(x) + o Z l9: ()]
i=1 i=m—+1 i=m+1
(3.15)
the entries of the vector AT = {A1,A2..., Ap} are the Lagrange multiplier estimates,
the vector sT = {sy,52,...,5.,} involves the non-negative shifts and p is the penalty

parameter.

The nonlinear equality constraints are introduced into f(x) using the augmented
Lagrangian function far(x, A, p) in which the second term is used to penalize f(x)
when the constraints are violated. By driving p to zero, the constraint violations
are penalized with increasing severity. The first term of far,(x, A, p) prevents u from
getting very small values thereby, ill-conditioning and numerical problems that may
arise during the solution of the subproblem are avoided [104].

The nonlinear inequality constraints are introduced into f(x) by the shifted barrier
function fg(x,A,s). This function introduces a barrier along the constraint
boundaries so that the value of the subproblem approaches infinite as x converges
to the boundaries. The shift term s relaxes the barrier which is useful if some of g;(x)
are active at a minimum of Equation (3.13).

An optimum is sought by minimizing a sequence of the subproblems defined in
Equation (3.14) where the GA approach introduced in Section 3.3.2 is used for the
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minimization of the subproblems. First, the initial values x(g), A(0), S(0) and gy are
defined. The initial point x(g) has to be selected in the feasible region. Afterwards,
the subproblem is solved by GA. The first population of GA consists of the copies
of x(gy which is distributed into the feasible domain during the optimization of the
subproblem. When the subproblem is minimized to a required accuracy and satisfies
the feasibility conditions, the Lagrange multiplier estimate A is updated utilizing
the optimum point while keeping the penalty parameter fixed at its current value.
Otherwise the penalty parameter p is reduced by a positive factor while keeping A
fixed at its current value. The shift vector s is modified using A and u. All these
modifications lead to a new subproblem formulation and minimization. Until the
termination conditions are met these steps are repeated. Technical details of the
algorithm can be found in [1, 30].

Although the algorithm proposed by Conn et al. [30] aims to converge to a point
for which the KKT conditions are satisfied, it only formulates the subproblems and
adjusts the parameters A, s and p. The accurate update of the parameters depends
on the intermediate solutions provided by the subproblem solver GA. Consequently,
the robustness of the CLB-AL framework is strongly related with the progress of GA.

3.4 Multi-modality and Finding Global Optimum

As introduced earlier, if an optimization problem has multiple optimum solutions, it
is called multi-modal. Multi-modality causes difficulties for optimization methods in
terms of finding the global optimum. In order to increase the chance of getting the
global solution, two approaches can be considered; Multi-Level Hybrid Optimization
(MLHO) and Multi-Start Local Optimization (MSLO).

In the MLHO scheme, a sequence of different optimization methods is used. The
motivation is to utilize the strong features of the selected methods through different
stages of the optimization process. In this research, the global search technique
GA and the gradient based SQP method are considered for the hybrid optimization
scheme. The possibility of getting in the neighborhood of the global optimum is high
with GA, although it is a low-fidelity method. It never guarantees an exact optimum.
Thus, GA is used in the global search phase for finding a good starting point for
SQP. A high-fidelity method, SQP, is employed in the local search phase for finding
an exact solution.

In the MSLO scheme, a local search algorithm is run with different initial points. If
the locations of the multiple optima are approximately known, this knowledge can
be used to define the initial points. Otherwise these points are selected randomly in
the design space. The best calculated optimum is assigned as the global one. This
scheme does not guarantee the global optimum; however, the chance increases with
an increasing number of the initial points. In this study, the SQP method is also used
for finding the local solutions.
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3.5 Numerical Results and Discussions

MLHO and MSLO are demonstrated on multi-modal test problems which are taken
from [132]. Computational efficiency of the schemes and their progress in finding the
global optimum are evaluated based on the obtained results.

In the MSLO scheme, 500 initial points are used which are chosen by the Latin
Hypercube Sampling (LHS) (see Section 4.1.1 for details) within the variable range.
The number of the starting points is selected arbitrarily. The scheme is executed only
once for each example. The results, presented in tables, summarize the computed
optima by each SQP run corresponding to one starting point. However, there is only
one optimum found as the result of the scheme which is the lowest of the local optima.

MLHO is executed 10 times for each problem to test its robustness on finding the
global optimum. Non-robustness may arise due to the fact that random number
generators are involved in the scheme as well as the issues associated with the handling
of the nonlinear constraints.

MATLAB implementation of SQP method [2] is utilized with its default settings
for the local search. Derivatives are computed by the forward finite difference
approximation.

The algorithm defined in Section 3.3.2 belongs to the GA solver of MATLAB [1] which
is used with few changes in its default settings. The total number of the points in a
population is selected as 100 with the motivation of having a detailed search in the
feasible domain. This number could have been selected larger with the consequences
of more function evaluations. The maximum number of the generations is defined as
30. That means, if GA has not found a solution until this generation, it is terminated
with the best result of the last population. The algorithm is also stopped when the
best design values obtained in 7 subsequent generations are the same. The rest of the
stopping conditions are used in their default settings. It is important to note that
there is no predefined optimal settings for GA in the literature. Since in this study
GA is used at the global search phase of MLHO for finding a good starting point for
SQP, a point provided by it in the region of an optimum solution (hopefully in the
region of the global solution) is sufficient. With the defined termination settings of
GA, the computational efforts for searching the exact global optimum are prevented.



Example 3.5.1 The first test problem

4 12
min f(x) = min 2(5331 — 5x2) + Z(—xz) -3
i=1 i=5

21’1 + 21’2 + X109+ 211 S 10

2x1 + 2x3 + x10 + 12 < 10

229 4+ 223 + 211 + 212 < 10

—8x1 + 710 L0 (316)
—8xo+ 11 <0

—8x3 + 212 <0

—2x4— 25+ w10 <0
—2xg —x7+ 711 <0
—2x8 —T9g+ 212 <0
0<x; <3, 1=1,2,...

subject to

12

)

has 12 variables, a nonlinear objective function, 9 linear inequality and 12
bound constraints. The global optimum f(x*) = —104.25 is defined at
x* =1[2.5,2.5,2,5,3,3,3,3,3,3,0,0,0] and the first three constraints are active
at this point.

The results of the MSLO scheme are presented in Table 3.1. The SQP solver
converged to a large number of optima including the global one. The average
number of the function evaluations for one SQP execution is 58. This number
should be multiplied by the number of the initial points to calculate the total
number of the function evaluations in MSLO which is 29, 000.

Table 3.1: Computed optima for each individual SQP run within
the MSLO scheme.

Optimum value f(x*) # of times obtained

—104.25 213
—89.83 143
—89.75 13
—81.91 32
—81.70 13
—74.25 43
—59.83 25
—59.75 1

—53.48 3

—51.91 11
—51.70 3

The results of MLHO are as shown in Table 3.2. The scheme provided the
global optimum each time it is executed. The average number of the function
evaluations is 3150.H
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Table 3.2: Computed optima for each execution of the MLHO
scheme.

Optimum value f(x*) f of times obtained
—104.25 10

As realized from these results, using a global search scheme requires a high number
of function evaluations compared to a local search scheme SQP. When the nonlinear
constraints are involved in the problem formulations, the cost of computing the global
optimum may get more expensive. This is demonstrated in the following examples.

Example 3.5.2 The second example
min f(x) = min4(z; — 1.5)(x3 — 0.5) — (v2 — 1)® — 2(z4 — 1)?

—2x1 — 20 < —0.75 (3.17)
subject to —x32x4+1=0
OSI1S27 7::1’25374

has 4 variables, a nonlinear objective function, a linear inequality and a
nonlinear equality constraint. The global optimum is at x* = [0, 2,2,0.5] with
f(x*) = —10.5. There are two other local optimum solutions. One is at
x* =[0,0.75,2,0.5] with f(x*) = —9.56. The other one f(x*) = —3 can be
found by a unique selection of x5 and z} as 0.5 and 2, respectively, by setting
o as either 0 or 2 and leaving x; free to take any value as long as the inequality
constraint is satisfied [132].

The results of the MSLO scheme are summarized in Table 3.3. All three optima
are converged successfully. The average number of the function evaluations for
one SQP execution and for MSLO are 27 and 13, 500, respectively.

Table 3.3: Computed optima for each individual SQP run within
the MSLO scheme.

Optimum value f(x*) f of times obtained

—10.5 151
—9.56 173
-3 176

Table 3.4 shows the results of MLHO. The global optimum is obtained each
time the scheme is executed. The average number of the function evaluations
is 10,760.1
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In the example, MLHO requires a considerably high number of function evaluations
compared to one execution of SQP. This is because of the GA solver. As explained
Section 3.3.2, an optimum solution is approximated by solving a sequence of
subproblems when there are nonlinear constraints.
run multiple times in these types of problems unlike the ones with the linear and the

in

Table 3.4: Computed optima for each execution of the MLHO
scheme.

Optimum value f(x*) f of times obtained
—10.5 10

bound constraints.

So far the global optimum is obtained in all ten runs of the MLHO scheme. The next

example shows that this is not always true.

Example 3.5.3 The third test problem

1’I111’1 fx) = m1n Z

in(oy?) 4 )eg? — 1<0
(x§+o:9)111271<0
2
1

(22 + 252 )a7? + (w52 + 2ip)ar’ + (2} + 2dp)21) =3 <0
(x2 + 2, +x5)x1 —1—0

(Sm(xn) + x1y + @75 + 27y) Sm(%) —1=0

(03 + @ + 23)a3 + (23 + g + a5 +af)ez? —2=0
01<a; <5, i=1,2,... 14

subject to

(3.18)

has 14 variables, a nonlinear objective function, 4 nonlinear inequality,
3 nonlinear equality and 14 bound constraints. The global optimum is
f(x*) =17.56 and all the constraints are active at the optimum point

=[0.23,0.13, 3.26,2.78, 2.80, 3.06, 3.21, 2.25, 2.38,2.73, 3.27, 2.76, 3.29, 3.47].

Table 3.5 summarizes the results of MSLO where the initials “NC” stands
for No Convergence. The SQP solver converged to a large number of optima
including the global one. It also could not converge to a solution for 26 initial

points. The average number of the function evaluations for each execution of
SQP is 230. This number is 115,000 for MSLO.

MLHO experienced difficulties in identifying the global optimum which is found
only 2 times out of 10 executions as presented in Table 3.6. The average number
of the function evaluations of the scheme is 38,611.1

This means that GA has to be
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Table 3.5: Computed optima for each individual SQP run within
the MSLO scheme.

Optimum value f(x*) f of times obtained

17.56 54
17.75 73
17.89 48
18.54 36
19.00 78
19.46 43
20.52 32
25.58 1
26.04 1
26.47 1
26.76 1
27.31 1
30.57 103
34.15 1
35.05 1
NC 26

As observed from the test problems, pursuit of the global optimum requires a high
number of function evaluations. When the objective and/or the constraint functions
are based on long running simulations (e.g. FE simulations), execution of even a local
optimization method can be very challenging [121].

Concerning MLHO, the chance of obtaining the global optimum is highly correlated
with the progress of GA. As realized from the last example, the larger the number
of the nonlinear constraints gets, the lower the fidelity of the scheme is. The
CLB-AL framework, employed for the nonlinear constraint problems, is originally
meant for the gradient-based methods. In the framework, the convergence check
between the subproblems and the termination conditions are all based on the gradient
information. Since this is not used in GA, all these conditions are replaced by less
strict non-gradient termination conditions. This can cause inaccurate update of the
subproblem parameters which may then lead to convergence problems. Additionally,
in the framework, the solutions of the subproblems are supposed to converge to the
main global optimum in the limit. Finding a local optima instead of the global one
for some subproblems during the optimization process may have a negative influence
on the correct update of the parameters. This may then hinder the convergence of
the solution.

To summarize, the fidelity of the MLHO scheme on providing the global optimum
depends on the progress of GA. A promising point near the global optimum may not
be guaranteed especially for problems with a high number of nonlinear constraints.
When the number of the starting points is sufficient to explore the feasible domain,
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Table 3.6: Computed optima for each execution of the MLHO
scheme.

Optimum value f(x*) f of times obtained

17.56 2
17.75 1
17.89 1
19.00 2
30.57 4

the possibility of finding the global optimum is high with MSLO.

3.6 Summary and Conclusions

This study only considers continuous optimization problems. Therefore, in this
chapter, first, the general formulation of these problems were given. Next, the
necessary and the sufficient conditions for optimality were introduced. Afterwards,
the solution methods that can be used to solve the most general class of continuous
optimization problems; Non-Linear Programming (NLP); were explained briefly.
Attention was paid to the gradient based Sequential Quadratic Programming (SQP)
method and the stochastic derivative-free method Genetic Algorithms (GAs). Since
NLP problems are generally multi-modal, two optimization schemes were studied
to find the global optimum solution. Their performances were demonstrated by
numerical test problems.

The SQP method is fast and robust. It is suitable for solving any continuous
optimization problem. The computed optimum is exact. Unfortunately, it can be
a local one depending on the initial point.

The GA method searches the design space globally. Therefore, it is suitable to solve
multi-modal problems. Its convergence rate is low and it never guarantees finding
an exact optimum. When the nonlinear constraints exist in the problem formulation,
the fidelity of the method may get lower.

The objective of employing the Multi-Start Local Optimization (MSLO) and the
Multi-Level Hybrid Optimization (MLHO) schemes is to find the global optimum
of the multi-modal NLP problems. Both of these schemes require more function
evaluations than the gradient-based local search methods. Thus, they can only be used
when the objective and the constraint functions are not computationally expensive
to evaluate.

The chance of finding the global optimum gets high in MSLO with an increasing
number of the starting points.

The intention of studying MLHO was defining an initial point for the local search
method consciously instead of selecting arbitrary points from the domain. In that
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way the search of the global optimum would be independent from the number of the
initial points which is highly correlated with the multi-modality of the problem. The
results reveal that the selected GA algorithm may not always be reliable to provide a
point in the neighborhood of the global optimum especially for problems with a large
number of nonlinear constraints.






4
Surrogate Modeling

One of the main applications of surrogate modeling is to develop fast mathematical
approximations to the long running simulations. In engineering applications, they
are generally utilized to replace the Finite Element (FE) models. Once the surrogate
models are built, they are many orders of magnitude faster to evaluate than the FE
models and can effectively be used in the global optimization schemes.

To preserve the generality of the subject, the term ¢rue model will be used instead of
finite element model in the chapter.

The aim of surrogate modeling is to predict the trend of the true model f(x) with
n-design variables xT = {x1,z2,...,2,} by a limited amount of available data

{(X(l)’ y(l))’ (X(2)’ y(2)), s (X(Q)’ y(Q))}

generated from f(x). The pairs {(x(, y®) i=1,2,...,Q} stand for the values
assigned to x and the corresponding responses of f(x), respectively, i.e. y@ = f(x(®).

In this chapter first of all, the fundamental steps of surrogate modeling are introduced
briefly. Afterwards, three well-known techniques, namely Polynomial models, Kriging
and Artificial Neural Networks, are highlighted. Alternative approaches such as
Radial basis functions [22], Support Vector Regression [127], Multivariate Adaptive
Regression Splines [67], Genetic Programming [10, 44] etc. are not focused on in this
research.

The performance of a selected surrogate model is highly application dependent.
Hence, it is not an easy task to define a modeling technique that is superior to
the others. This chapter also discusses the advantages and the disadvantages of the
considered modeling techniques in order to gain an understanding on their feasibility
for different problem formulations.

4.1 The Fundamental Steps of Surrogate Modeling

In this section, the key steps in surrogate modeling are discussed which can be listed
as:

51
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1. Design of Experiments (DOE),
2. Numerical simulations,
3. Surrogate model selection,

4. Parameter estimation and model validation.

Furthermore, the pre-processing and the post-processing steps that can be applied
before and after obtaining a surrogate model are also discussed.

4.1.1 Design of Experiments

Design of Experiments (DOE) aims to identify the input points (samples)
{x(l),x@), . ,X(Q)} that may contain valuable information about the true model
f(x) while keeping the number of the samples, @, as small as possible.

The experimental design strategies can be grouped into Classical Design of
Ezperiments (CDOE) and Design of Computer Experiments (DOCE) [52, 98].

The first group involves sampling strategies developed for physical experiments. The
typical characteristics of these experiments are the existence of a random error due
to measurements. Furthermore, the investigated trend of the true model is usually
known. Therefore, samples are mainly selected near or on the boundaries of the design
space so as to minimize the influence of the random error in subsequent measurements.
Additionally, replicated samples are used in order to have a measure of the error.

The second group involves sampling strategies developed for deterministic computer
experiments which are not affected by a random error. That is, the repeated
experiments for identical samples will give exactly the same results. There is generally
limited knowledge on the investigated trend. Consequently, the strategies utilized for
the physical experiments do not perform efficiently for this group. As opposed to
CDOE, in DOCE the samples are selected such that they fill the design space in order
to extract as much information as possible about the true model. This approach is
referred to as space-filling and in this way, the bias' error is intended to be minimized.

In this research, since the true model is based on the FE simulations, the results of
the experiments are deterministic. Thus, the sampling plan of this study falls in the
category of DOCE. Among the methods that are available in the literature [52, 98,
106, 122, 140], this study considers one of the most commonly employed ones, the
Latin Hypercube Sampling (LHS) scheme.

Latin Hypercube Sampling

The objective of LHS is to generate sample points whose projections on the variable
axes (i.e. x1,xa,...,x,) are evenly distributed.

1 “Bias quantifies the extent to which the surrogate model outputs differ from the true values
calculated as an average over all possible data set” [111].
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In order to generate () samples in a design space of n variables: First, @™ hypercubes
(bins) are built. Next, the samples are randomly placed in the bins by making sure
that there is only one sample in all one dimensional projections of the bins.

The following example demonstrates how the samples are generated.

Example 4.1.1 An LHS plan, including 10 samples, of 3 design variables
is illustrated in Figure 4.1. In the figure, the location of the samples in a
three dimensional space and their projections on the two dimensional space
are plotted. There exists 10® hypercubes (bins) in total. Each row and the
columns of the bins contain only one sample.ll

L[]
° °
e —— @ ®
.
L]

e ~ .
) o ° S, ‘

® o ¢

| — L]
™ ° o : .
e : Hee .
€2 T x1
. .
. .
L] L]
L] L]
) [ ] o L]
& [ & L]
. .
L] L]
[ ] [ ]
L] L]
X1 X

Figure 4.1: Three variable LHS plan with ten samples.

It is important to note that the selection of the samples in the hypercubes is
not unique. The shown sampling plan presented in the example is one of many
possibilities.

An LHS with its simplest form yields a sampling plan whose projections on the axes
are uniform (evenly distributed) whereas it does not guarantee a space-filling design.
For instance, projections of the samples selected on the main diagonal of the design
space are also evenly distributed, although the space is covered poorly. Therefore, a
measure of uniformity is required to distinguish the quality of the LHS plans, which
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can then be used to select an optimal sampling plan. One of the widely used measures
is the mazimin metric, that is also the one employed in this research. The uniformity
of the sampling is assured by maximizing the minimal distance between the available
samples while minimizing the number of the sample pairs separated by the same
distance [101]. The details of the algorithm for selecting optimal space-filling samples
can be found in [46].

One positive feature of LHS is that the total number of the samples is not restricted
with specific multipliers or powers of the number of the design variables like in the
factorial designs [41].

4.1.2 Numerical Simulations

Having determined the sample points where data will be generated, the next step is
to execute the true model for each of these points and to obtain the corresponding
outputs {yM, y@ ... y@1}.

The pairs {(x™,yM), (x4, ... (x(@) 4@} are called the training data.

4.1.3 Surrogate Model Selection

After obtaining the training data, a suitable approximation method is required to
build a surrogate model. The approximation is built up with these data through
the learning process. The aim is to define a model whose predictions are reasonably
consistent with the data points. Most of the methods are successful in reproducing
the training data but this is not a sufficient indicator of the quality of the surrogate.
The model should also give acceptable predictions on the unseen data. This is referred
to as the generalization capability of the model.

4.1.4 Parameter Estimation and Model Validation

The selected surrogate model f (x,w) is based on a vector of parameters, w, which
determine its response.

For a given training data {(x(1),y(), (x®,y@), ... (x(@) y(@)}, one approach to
find w is solving the Least Squares Problem (LSP):

Q
min fp(w) = min | Sy - fxO,w)P? (4.1)
where fg(w) is the error function. In this approach, the parameter values that provide
the most accurate description of the data are sought.

It is an indication of over-fitting when a surrogate model exhibits serious oscillations
between the data points [16] as shown in Figure 4.2. An over-fitting model has poor
generalization capability, therefore it should not be employed as a surrogate model.
Two techniques that can be used to prevent over-fitting are cross-validation and
regqularization.
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O Data
—True Model
- - -Surrogate Model with over-fitting

Figure 4.2: An example for over-fitting.

Cross-validation

Cross-validation is carried out, first, by randomly splitting the data into &
approximately equal subsets. If a mapping ¢: {1,2,...,Q} — {1,2,...,k} is
utilized to describe the allocation of the ) data points into one of the k subsets,
Yy, J =1,2,...,k represent the jth subset. Next, each of these subsets are removed
from the data in turn. The parameters of the surrogate model are calculated using
the remaining k — 1 subsets. The response of the surrogate f‘“"m (x,w) is computed
for each point x in the removed set ¢(;). When this procedure is completed for all the
subsets, the predictions {7, 53, ..., 5@} of the observed data {y1), y?, ... (@}
are obtained. Finally, the cross-validation error is calculated as

Q
1 i ~ (1
€ov = QZ(y( =g @)2. (4.2)
1=1

This error gives an indication of the generalization quality of the selected surrogate
model. For obtaining €., the model parameters have to be calculated for k different
data sets. This means that the parameter estimation problem has to be solved k
times. Once it is decided that the selected surrogate model is suitable to predict the
data, the final model parameters are computed using all the available data points.
Generally, k is selected as either 5 or 10 [67].

Regularization

Another technique to control over-fitting is regularization. It is based on the idea of
adding a penalty to the error function fg(w) (see Equation (4.1)),

fe(w) = fe(w) + Afr(w) (4.3)

so that the unwanted oscillations in the model can be suppressed.
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The regularization coefficient A governs the relative importance of the regularization
function fr(w) over fg(w). Large values of A prevent the surrogate model from
becoming finely tuned to the data.

The choice of fr(w) and A are crucial for obtaining a surrogate model with a good
generalization capability. A summary of various proposed methods for this choice can
be found in [129].

4.1.5 Pre-processing and Post-processing Steps

Before estimating the parameters of the selected surrogate model, it is always useful
to scale the data, i.e. the pairs {(x(V),y(), (x®),y@)), ... (x(@, y(@)}, so that they
fall within a specified range (e.g. [-1 1], [0 1]).

After obtaining the parameters, if the model response is desired to be explored in
detail, linear regression analysis can be performed between the model predictions
y = {gM, 9@, ..., 4@} and the observed data y = {y™),y® ... y(@}. A linear
curve with a slope 1 and a y-intercept 0 indicates a perfect fit between ¥ and y.

A coefficient 72 can also be computed which is a measure of the strength of the
relationship between the observations and the predictions. It is calculated as

X Q 2
Cov(y,y)1? 1 1 ) w6
2 _ J - (1) _ (1) _
! [ 538y T |a-1 ;(y N —9)
where
1 & 1 &
Sy = 0-1 Z@(’) —9)%, sy = 0-1 Z(y(l) -9)?
=1 =1

are the sample standard deviation of y and y, respectively, Cov(-,-) stands for the

covariance and
150 LS~ )
gzi gz, y=—= yl
a2’ a2

are the mean value of ¥ and y, respectively [24]. The coefficient r? varies in the range
[0, 1] with 1 representing a perfect fit.

It is important to emphasize that, all these measures give an idea about the
correlations between the observations and the predictions. They do not supply any
information about the generalization quality of the surrogate model.

4.2 Polynomial Models

A polynomial model is the sum of the weighted basis functions where these
functions are selected from a set of all possible combinations of the design variables
{z1,za,...,2,}. The order of the basis functions is limited to the order of the
polynomial model.



Chapter 4 Surrogate Modeling 57

4.2.1 Modeling

A polynomial model

F) =3 wy 5 (1.4

fitted to a data set {(x(M,yM), (x@,4y@), ..., (x(@),4(@)} can be written as

ny,

y) = ij T (xD)+D i=1,2,...Q (4.5)

j=1

where ny, is the number of the basis functions and W¥;(x) is the jth basis
function. The vector x®" = {xgz),xg),...,ng)} is the ¢th sample, the vector
yT = {yW, y@ .. y@1 defines the observations collected at the input points
X = {xM x@ . x@} wT = {w,wy,...,w,} is a vector of the model
parameters (coefficients) and €T = {e ) ... @} is a vector of the prediction
errors. The basis functions ¥;(x), j = 1,2,...,ny are picked from a catalogue of all

possible combinations of the design variables of an order not larger than the order
of a polynomial approximation. For instance, for a third order polynomial with two
design variables xT = {z1, 22}, ¥;(x) € {1,21, 20, 2122, 2%, 23, 2322, ..., 23}

Equation (4.5) is represented in matrix form as
y=UYw-+e (4.6)

where the matrix ¥ € R@*m»

Ty (xV)  Ty(xD) ,,, (xV)

Ty (x) Wy(x?) W, (x2))
v = .

T (x(@) Uy (x@) .. v, (x(@)

is called the Vandermonde matrix. The unknown coefficients w in Equation (4.6) can
be determined using the least squares estimation defined in Equation (4.1) as:

min [(y — Tw)(y — Tw)]. (4.7)
Differentiating Equation (4.7) with respect to w and setting the results to zero gives
w=wly (4.8)
where W1 = (Tw) 1 w" is the Moore-Penrose pseudo inverse of .
Example 4.2.1 In order to gain insight on the logic of the polynomial

approximations, a model with one design variable of an order 3 is considered.
The set of the selected basis functions is {1, z, z2, 23}.
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Figure 4.3: A 3rd order polynomial model and its basis functions.

The variation of these functions for —1 < & < 1 is shown in Figure 4.3(a). They
are then weighted using the coefficients wT = [0.1, —0.4,0.6, 0.8] as plotted in
Figure 4.3(b) and summed up to form the complete polynomial approximation
as plotted in Figure 4.3(c).

As seen in the figures, multiplying the basis functions with weight terms only
shifts the responses on the y-axes and changes the direction of the functions
but the shape of the basis functions remain the same. It is not possible either
to move the locations of the curvatures (for higher order terms) or the width of
them. For increasing the nonlinearity, higher order basis functions should be
considered while making sure that the total number of the data is still larger
than the total number of the parameters. If this criterion is violated, infinitely
many polynomial models can be fitted to the data which will result in poor
generalization capability.ll



Chapter 4 Surrogate Modeling 59

4.2.2 Results and Discussion

The practical performance of the polynomial models is discussed on two numerical
test problems.

Example 4.2.2 In order to demonstrate the generalization capability of the
polynomial models, a single variable test function

f(z) = 2% + 52 — 6sin(8z — 5)
is selected. A data set of 20 samples is generated and the corresponding

responses of f(z) are evaluated. These responses are then modified with a
normally distributed noise. The generated data is as plotted in Figure 4.4.
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Figure 4.4: Results of the first test problem.

To obtain the best polynomial model that fits the data, different models with
an order of up to 15 are taken into account. The data set is divided into k =5
subsets for cross-validation.

It is found that a polynomial model of order 6 fits the data best with a cross-
validation error of 2.73. This is presented in Figure 4.4. The corresponding
model parameters w' = [7.56,—5.16, —14.16,6.91,6.39, —1.46, —0.79]
are obtained using the complete data set. As seen in the figure, the selected
model is successful in predicting the underlying behavior.

Increasing the number of the basis functions to tune the model to the data leads
to a model with a poor generalization capability as plotted in Figure 4.4.1

When the number of the design variables is small, finding the best order polynomial
is not an expensive task; although the appropriate model function, accordingly the
basis functions, have to be chosen in advance. Polynomial models can also be preferred
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when the complexity of the data and the interaction between the design variables are
approximately known. On the other hand, in most engineering design problems, the
available data come from the numerical simulations. These problems are generally
multi-dimensional and there is limited knowledge on the trend of the data. When a
polynomial approximation is utilized for these types of problems, finding the best
polynomial model can be expensive due to the rapidly increasing number of the
required data with the number of the design variables [78].

Polynomial models can also be used for the identification of the promising regions
in a design space which may find its application in the field of structural design
optimization [51]. This feature is demonstrated with the following example.

Example 4.2.3 As a second test problem, a two variable test function
af 2 4 2 4
f(x) = 3 +4dx] — 2.1x] + 20 — 4as + 425 (4.9)

is selected which is plotted in Figure 4.5.
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Figure 4.5: Numerical test problem. (a) True model, (b) 2nd order
polynomial approximation.

A data set including 20 samples and the corresponding responses of f(x) is
generated using Equation (4.9). For the identification of the general trend
of f(x), a second order polynomial is used which is plotted in Figure 4.5(b).
This order is selected in order to demonstrate how the low order polynomials
perform when the approximated underlying behavior is more complex.ll

As realized from Figure 4.5(b), the polynomial model provides information about the
general trend of the true function, although it is very inflexible to capture the details.
This feature can be used in design optimization problems to identify the promising
regions of the design space which can then be delved into details for finding an optimal
design. On the other hand, it is important to keep in mind that as the underlying
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behavior gets more nonlinear, low order polynomials lose their reliability in locating
promising regions.

Theoretically, the function defined in Equation (4.9) can be predicted exactly with
polynomial approximation. To be able to do that, all the basis functions up to 6th
order must be used which makes 28 basis functions, accordingly 28 parameters. In
this case, the available data is not sufficient to yield a unique solution for the model
parameters. On the other hand, if the basis functions {z;xq, %, 23, 21, 23,28} are
known beforehand the exact solution can be found.

To summarize, when a problem gets multidimensional, choosing the order of the best
polynomial model as well as deciding on the governing basis functions becomes more
difficult. Additionally, the data has to be sufficient to compute a unique solution.
Hence, the polynomial approximation turns into a cumbersome task as the number
of the design variables increases.

4.2.3 Conclusions

Polynomial models are suitable in cases where the trend of the true model is
approximately known or the number of the design variables are small. Low order
polynomial models can be preferred to identify the promising regions in a design
space, although they can be very inflexible to capture the local behavior of the true
model. A positive feature of polynomial models is their transparency; that is, they
are capable of illustrating explicit relationships between the input variables and the
corresponding responses. However, the basis functions have to be chosen in advance.

The majority of the engineering design problems are multidimensional and limited
information is available on the input-response relationship. Building a polynomial
approximation for these types of problems may have some drawbacks like the large
amount of required data and the unsatisfactory prediction capability. Consequently,
polynomial models are not frequently preferred as surrogate models for such problems.

4.3 Kriging

In surrogate modeling, the main idea is to represent a true model by linear
combinations of the weighted predefined basis functions. These functions can be
very simple, as used in the polynomial approximation, or more flexible as discussed
in the following.

Kriging involves a defined base function which is a very rough representation of the
trend in the data. In the model, this function is combined with the basis functions to
compute the exact predictions at the available sample points.

In this study, the exponential function

U(0,p,d) = [[ exn(—0; |d;|*), 0<p;<2 (4.10)

Jj=1
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is considered among the available Kriging basis (correlation) functions [118]. In
Equation (4.10), dT = {d;,ds,...,d,} is a vector of n input variables and | - |
denotes the absolute value. The entries of the vectors 8% = {61,02,...,6,} and
pt = {p1,p2,...,pn} determine the structure of the basis function ¥ (0, p,d).

In this chapter focus will be on the Ordinary Kriging. Detailed information about
the other Kriging approaches can be found in [8, 55, 77].

4.3.1 Modeling
An Ordinary Kriging model can be defined as
) =+ 2(x) (4.11)

where 1 is a constant term that needs to be determined and it describes the general
trend of the data roughly. The stochastic function Z(x) guarantees the interpolation
of the observations at the sampling points. Hence, the predictions of the Kriging
model at the sample points X = {x(l),x(z),...,x(Q)} are equal to the available
observations yT = {y), ¢y ... 4@}

The function Z(x) is defined by the normal distribution with mean p and variance
o2. For @ observation points yT = {y(l),y(2),...,y(Q)} which are assumed to
be correlated with each other, the function that defines the likelihood of these
observations is given by

1 (y — 1) " (y —1p)
Q s 202
(2702) 2 det(®)? .

L(p,0%,0,p) = . (4.12)

In Equation (4.12), ¥ e RE*Q is the correlation matrix which explains the
relationship between the observation points and det(-) denotes the determinant. In
this study, the correlation function defined in Equation (4.10) is used for computing
the matrix W which is symmetric with diagonal entries of 1. Each entry v; of ¥ is
calculated by

i = 0(0,p,xD —x1)

- i 4.13
:exp(—20j|x;)—:r§l)|pf) L,1=1,2,...,Q. (4.13)
j=1

The likelihood function L(u,0%,0,p) is based on the parameters u, o2, 6 and

p. Maximizing this function with respect to these parameters determines the
likelihood function that is most likely to produce the observations y. To simplify
the optimization, generally the logarithm of Equation (4.12), i.e.

In(L(p,0.0,p)) = — 2 In(2)~ L In(o?)

(y —1p)"¥ 'y — 1p) (4.14)
202 ’

- % In (det(¥)) —
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is maximized.

The maximum likelihood estimates 62 and fi

s2_ (= 1pT® T (y — 1j1) P 1"ty
Q ’ 17w 11

(4.15)

of the variance ¢ and the mean p of the predictions {Z(x(V)), Z(x®), ..., Z(x(@)}
are found by setting the partial derivative of In(L(u,0?,0,p)) with respect to o2
and p to zero. Equation (4.15) is then inserted back into Equation (4.14) and the
In-likelihood function now is maximized for @ and p. When the constant terms that
do not have any contribution on computing these parameters are removed, @ and p
are found by maximizing the concentrated In-likelihood function [47]

1
Igix L(8,p) = rgi)x —% In (6%) — 3 In(det(P))| . (4.16)

In the literature, the proposed lower and the upper bounds for 6; are 1072 and
102, respectively [46]. The problem defined in Equation (4.16) is a constrained
optimization problem which may have multiple local maxima [95]. In this research,
the MLHO scheme (see Section 3.4 for details) is utilized for its solution.

Once the parameters p and 6 are estimated, the prediction of the Kriging model g for
a new input point X, is calculated by maximizing the likelihood of the observations
y and the new prediction § [46]. The maximum likelihood estimate of § is

g=p+r"w(y —1p) (4.17)
where rT = {r() @ r(@1 s a vector containing the correlations between y and
19, that is,

\11(07p7xnew *X(l)) T(l)

\11(07 P» Xnew — X(2)) T(z)
r= , =

\11(07 p7 Xnew — X(Q)) T(Q)

As mentioned before, a Kriging model consists of a base function and a linear
combination of the weighted basis functions. The base function is the estimated
mean fi. In the model, each sample point is assigned to a basis function whose center
is aligned with the corresponding sample (see Figure 4.8(b)). The parameters 6 and
p of all these functions are the same. In Equation (4.17), the basis functions are
contained in r where each of its entries 7(?) defines the values of the basis functions
at Xpew. If U;(x) is assumed to be the basis function of the ith sample,

\Ili(xnew) = T(Z) = \I/(vavxnew - x(Z)) ) i = 17 2a ceey Q

The term \Il_l(y —1/1) can be considered as a weight term which defines the
contribution of each basis function to the prediction § at Xpew such that

W=y —1j).
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Having weighted each basis function, they are added to the mean base term [ to
obtain §. As a result, Equation (4.17) can be rewritten as

Q
§=p+> wi Ui(Xnew)
=1
where w is the ith term of the weight vector wb = {wy,ws, ..., wg}.

The Kriging model is built in such a way that it interpolates the data. For instance, for

a selected sample x() in X, rT® ! is a unit vector with 1 on its ith entry. Therefore,

the Kriging prediction at x( is § = ji+y — i = ) which is exactly the observation
(@)

y.

Example 4.3.1 In order to gain insight into the correlation function ¥ (8, p, d)
and to see the effects of the parameters p and 8 on ¥ (8, p,d), a Kriging model
with one design variable is considered.

The variation of ¥(1,p, x(®) fx(l)) for different values of p is plotted in
Figure 4.6.

20 _ 20

Figure 4.6: Correlations with varying p.

As observed in the figure, when the values of the design variable move
close to each other, ie. (z(?) —z®) = 0, the expected correlations of the
observations increase, i.e. W(1,p,x® —x®) 1. When they move apart,
ie. (2 —2W) — 0o, the correlations get weaker, ¥(1,p,x® —x®) — 0.

The exponent term p has an effect on the smoothness of the correlation
function. Figure 4.6 shows that, for p = 2, the correlation function is smooth
and differentiable whereas for smaller values of p (i.e p < 2), a sudden drop in
the correlations with varying separation and non-differentiability are observed.

The variation of W(#,2,x) — x®) for different values of 6 is plotted in
Figure 4.7.
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20 _ 2O

Figure 4.7: Correlations with varying 6.

It is clear from the figure that 6 has an effect on the width of the correlation
function and determines how far a sample point’s influence reaches. For small
values of 0, the correlations increase and the variance decreases. This means
that a variation in the corresponding design variable does not have a significant
effect on the response of the true function [46]. On the other hand, high values
of 0 indicate that the response of the true function is sensitive to the changes
in the design variable that 6 corresponds to.

A Kriging model with # = 0.1 and p = 2 is illustrated in Figure 4.8(a).

Figure 4.8: A Kriging model and its basis funtions.

The dashed line in Figure 4.8(a) represents the maximum likelihood estimate
[ of the mean. To interpolate the data, a basis function is assigned to each
sample point whose center is aligned with this point as shown in Figure 4.8(b).
When the basis functions are weighted and then added to the base term fi, the
Kriging model is obtained as plotted in Figure 4.8(a).l
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4.3.2 Improving Generalization

As mentioned before, an important expectation from a surrogate model is a
satisfactory generalization capability. When the observed data has a numerical noise,
finding an interpolating model may not always be a good option [18]. While the model
is tuned to these data, it may become highly nonlinear.

A Kriging model can be modified by adding a regression constant A\ to the leading
coefficient of the correlation matrix ¥, as ¥ + A1, so that control on the interpolation
feature of the model is obtained [69]. It is important to emphasize that interpolation
of the data is assured by the unit diagonal entries of ¥ as exemplified in Section 4.3.1.

The regression constant A is also added to the list of the parameters and they are
all determined by maximizing the likelihood function. The parameter estimation
problem is now defined as:

_ Q1 52y _ L
max In(L(0,p,N)) = max | = In (6%) 3 In(det(® + AI)) (4.18)

where ) )
o2 W IT@AADT (y — 1) -, IT(PHAD”y
Q ’ 1T(® + L) "1
In the literature [46], the lower and the upper bounds for A are proposed as 10~¢ and
1, respectively.

(4.19)

The regression constant, found at the end of the parameter estimation step, gives an
idea about the amount of smoothing used in the model. This parameter can also
reduce the risk of ill-conditioning in W¥.

4.3.3 Results and Discussion

To discuss the practical performance of the Kriging approximation, the
same numerical test problems and the same training data sets used in
Examples 4.2.2 and 4.2.3 are considered.

In the Kriging model, the Gaussian basis function is utilized for which p; = 2.

Example 4.3.2 To obtain the best model that fits the data, two approaches
are tested: The Ordinary Kriging (Kriging interpolation) and the Ordinary
Kriging with a regression constant A (Kriging regression). The results are
shown in Figure 4.9.

As observed from the figure, Kriging interpolation fits through all the data
points and exhibits a highly nonlinear behavior. On the other hand, when
the regression constant is introduced into the model, a good estimate of the
true model is obtained. The regression constant for this example is found as
A = 0.02. Since the lower bound for this term is defined as 10~°, the current
value assures that the model does not interpolate the data.ll



Chapter 4 Surrogate Modeling 67

10
Sr D
=Y
0,
O Data
— - - -Kriging interpolation ||
—Kriging regression

0 0.2 0.4 . 0.6 0.8 1

Figure 4.9: An interpolating Kriging model and a Kriging model
with a regression constant.

For many engineering design problems, it is not an easy task to determine whether
the available data have any fluctuations or not. Therefore, it is always safe to employ
the Kriging model with a regression constant. This will increase the number of the
parameters but makes Kriging more robust to be used with any kind of data.

Example 4.3.3 In this example the Ordinary Kriging model is used with a
regression constant and the results are shown in Figure 4.10.

As seen in the figures, a very close representation of the true function is obtained
with a rather limited amount of data.

The regression constant gets a value of A = 10~ which is on the lower bound
of the defined interval. This means that the predictions of the Kriging model
are close to the exact values at the sample points.

The model parameters are found as 6; = 0.4250 and 65 = 1.4715 which can
be interpreted as the variation of the model with respect to the second design
variable is more than its variation with respect to the first design variable. To
validate this, the cross sections of the Kriging model are plotted in Figure 4.11.
Comparing Figure 4.11(a) and 4.11(b), it is seen that the model is more
nonlinear in the xo-direction than the x;-direction.ll

It is important to emphasize again that Equation (4.18) is a nonlinear function of the
model parameters and it may have many local optima. As discussed in Chapter 3, the
global optimum is not guaranteed even when the global search schemes are utilized.
In this case, a Kriging model may get different model parameters each time it is
trained on the same data set. In other words, its representation is not unique.
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Figure 4.10: Numerical test problem. (a)-(¢) True model and its
contour plot, (b)-(d) Kriging model with regression constant and its
contour plot.

4.3.4 Conclusions

Kriging models are suitable to approximate any nonlinear differentiable function
thanks to the employed Gaussian basis functions. They do not need a predefined
appropriate model function as opposed to the polynomial models. The data is
interpolated and when a regression constant is introduced, the unnecessary oscillations
in the data are filtered out.

The procedure for the parameter estimation (training) is not as simple as in the
polynomial approximation. The concentrated In-likelihood function is nonlinear and
for each of its evaluation, the explicit estimates of the mean and the variance, as well
as the determinant of the correlation matrix have to be calculated. With an increasing
number of the design variables or an extending data set, this estimation process may
become computationally expensive.
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(a) (b)

Figure 4.11: Kriging model: Cross sections with respect to the
design variables.

4.4 Artificial Neural Networks

Prediction, classification and data processing are the categories where most of the
Neural Network (NN) applications fall into. Each category requires its own NN
structure. Neurons, connections and basis functions are the permanent concepts in
different NN architectures where the learning rules and the network topology are the
main discrepancies between these architectures [6, 38, 64]. A brief discussion about
these concepts is given in Section 4.4.1

In this research, NNs are employed for surrogate modeling which falls in the category
of prediction. Two layer Feedforward Backpropagation NNs (FBNNs) are utilized
for this purpose which will be the subject of the following sections. As in the case
of Kriging, the employed basis function is also exponential and parametric. Before
clarifying all these technical details, first the building blocks of NNs are introduced.

4.4.1 Building Blocks of Neural Networks
A Neuron Model

It is convenient to start explaining NNs with a single variable neuron model.
Figure 4.12(a) shows the architecture of this type.

A neuron model consists of a weight w, a bias b and an output a terms and, a basis
function ¥(d). The input for ¥(d) is d = wax + b and its output a = ¥(d) is also the
output of the neuron.

Generally, a neuron has a vector of design variables as shown in Figure 4.12(b). Each
term in the vector xT = {z1,29,...,2,} is weighted by the terms of the vector
w?l = {wy,ws,...,w,} and summed up to yield a scalar value. A bias term, b, is

added to this value and sent to the basis function ¥(d). Finally the neuron output is
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Figure 4.12: Single input neuron and Multiple input neuron.

obtained as
a=V(d), d=w'x+b.

The terms w;, ¢ = 1,2,...,n and b are the model parameters.

A Layer of Neurons

A single neuron is usually not sufficient to approximate the true function. Therefore,
in network architectures multiple neurons are employed in parallel, which is called a
layer.

A single layer of S neurons with n design variables x* = {xy,29,...,2,} is
illustrated in Figure 4.13(a). The corresponding abbreviated notation is as shown
in Figure 4.13(b).

Input Layer of Neurons
al
T
1 ) Input Layer of Neurons

Wy, bs 7
(N
a=v(Wx+b) a=¥(Wx+b)
(a) A layer of S neurons. (b) Abbreviated notation for a layer.

Figure 4.13: One layer network.

A layer includes a weight matrix W € RS*" a bias vector b™ = {by, by, ..., bg}, basis
functions and an output vector aT = {a1,as,...,as}. The entries of W and b are
the model parameters. Each design variable x; is connected to the jth neuron with
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the weight term w;;, which represents the contribution of the 7th design variable to
the jth neuron. In a layer, the number of the design variables is independent from
the number of the model parameters as opposed to the Kriging model. Additionally,
the basis functions connected to the neurons do not have to be the same in a layer.

The output of the jth neuron is:

a; = W;(dy), dj=) wyzi+b (4.20)

i=1

where W;(d;) is the corresponding basis function.

Basis Functions

The basis functions used in NNs are chosen according to the types of the problems to
be solved. There are different sorts of basis functions, however, only two of them are
utilized in this study. These are the tangent sigmoid and the linear basis functions.

The tangent sigmoid basis function \II(I)(d) can take any arbitrary input value d € R
and suppresses the output into the range (—1,1) by

2
()= —————— — 1.
(d) 1+ exp(—2d)

The output of the linear basis function ¥(?)(d) is equal to its input, that is,

T2 (d) = d.

These basis functions are preferred because of their differentiability which will become
clear when the parameter estimation step is explained.

4.4.2 Modeling

It is stated in [71] that a two layer Feed Forward NN (FFNN) model, including the
tangent sigmoid basis functions and a sufficient number of the neurons in the first
layer and the linear basis function in the second layer, can be trained to approximate
any nonlinear function.

A two layer FFNN architecture with a single output is illustrated in Figure 4.14. This
architecture is called feed forward because defined paths proceed forward and there
are no feedback loops in or between the layers.

The layer whose output is also the output of the network is called the Output Layer
(OL). The other one whose output is the input of the next layer is called the Hidden
Layer (HL).

The formulation of this type of NN is given as:

flx) = 0@ (@OF) = d°F,  dOF = aTwO +pO" (4.21)
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Figure 4.14: A two layer NN architecture with a single network output.

where the vector aT = {a;,as,...,as}

ajzlllg-l)(d?L, dHL ZwHLxZ—FbHL i=12,...,8

is the output of the hidden layer, ¥(?)(d) is the linear basis function and \If;l) (d) is the
tangent sigmoid basis function of the jth hidden layer neuron. In Equation (4.21),
bOL is the bias term of the output layer, {wOr}T = {wPt wQl ... w§"} is a vector
with the output layer weights and {bHL}T = {pHL pfL ' pHLY is a vector with the
hidden layer biases. In essence, Equation (4.21) is the linear combination of the

weighted tangent sigmoid basis functions.

The basis functions \Ilg-l)(d) allow the NN model to learn the linear or the

nonlinear relationship between the sample points X = {x(l), x@ . ,X(Q)} and the
observations yT = {y(l), y@, ... ,y(Q)}. Since the output values of the sigmoid basis
functions are defined in the interval of (—1,1), the output layer with a linear basis
function W(?)(d) allows the NN model to produce values outside this interval.

The unknown model parameters in Equation (4.21) can be estimated using the least
squares estimation

IIllIl fe(z HllIl Z [y z)] . mzmki1 [E(k)(z)} ’ ) (4.22)

In Equation (4.22),

2T = {wilk pHL 4

OL OL S
jZ?] , W ,b |Z*132

ono o j=12...,8={z1,20,...,26}

is a  vector including all  the NN model parameters and
T = {eM(z),e?)(z),...,e@(z)} is a vector of the errors defined as the difference
between the observations and the NN predictions.

The problem defined in Equation (4.22) is an unconstrained optimization problem
and can be solved using any suitable gradient-based iterative algorithm or a global
search technique [66]. In this research, it is solved using the Levenberg-Marquardt
(LM) iterative method (see Appendix B). The initial values for the model parameters
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are selected using the Nguyen-Widrow initialization rule [103]. This rule generates
the initial weight and the initial bias values of the hidden layer parameters so that
the active regions (linear parts) of the tangent sigmoid basis functions are distributed
evenly over the input space (see Figure 4.15(a) for the illustration of \I/E.l)(d)), The
output layer parameters are initialized with small random values over the interval
[—0.5,0.5] [125].

As most of the traditional numerical algorithms, the LM method also requires the
gradient to be known. Hence, for the solution of Equation (4.22), the partial
derivatives of f (x,z) with respect to the network parameters z are needed. These are
calculated using the chain rule of calculus (see Appendix C). The continuity and the
differentiability of f (x,z) with respect to z are the requirements for the computation
of the partial derivatives which is guaranteed by the utilized basis functions \I/(l)(d)
and ¥ (q).

Example 4.4.1 In order to gain insight into the basis functions ¥ (d),
¥?)(d) and to understand the effects of the hidden and the output layer
parameters on the response of the model, an NN with one design variable
is considered.

The variation of the tangent sigmoid basis function ¥()(d) for different values
of w is demonstrated in Figure 4.15(a) where —3 < < 3. As observed from
the illustrations, W(1)(d) is linear in a certain interval and it saturates to —1
or 1 as = becomes large in magnitude. The weight term w has an effect on
the interval size of the linear part of (1) (d). The larger the absolute value of
this term gets, the smaller the interval size yields. The location of this interval
is controlled by the bias term b as shown in Figure 4.15(b). The sign of w
determines the direction of ™) (d).

(a)

Figure 4.15: Effect of the changes in the hidden layer model
parameters w and b on the basis function () (d).

To demonstrate the working principles of the NN approximation,
an NN model with one design variable including 4 neurons in its
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hidden layer is considered. The model parameters are selected as:
bOt =10, {b"}T =1{0.2,-0.5,0.8,0.6}, {wHil}T ={-0.5,1.2,0.4,-0.38},
{wOL}T = {2236, —3,15}. The hidden layer outputs without any bias terms
are plotted in Figure 4.16(a). As seen in the figure, the smaller the absolute
value of the weight term gets, the wider the active region of the sigmoid function
becomes. It is important to note that the center of these regions coincide. In
Figure 4.16(b), the hidden layer outputs including the bias terms are shown
where the center of the linear regions is shifted due to the bias terms. The
dominance of the hidden layer outputs are defined by the output layer weights
as illustrated in Figure 4.16(c). The term b°T shifts the response of the NN
model on the y-axis as demonstrated in Figure 4.16(d).H
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Figure 4.16: Demonstration of a 4 layer, single input NN model.

4.4.3 Improving Generalization

Increasing the number of the hidden layer neurons in an NN model leads to a highly
nonlinear model with a poor generalization capability.
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As in the case of Kriging, it is possible to prevent unwanted oscillations without
predefining an appropriate model function. This is achieved by employing
regularization for which the model error fg(z) defined in Equation (4.22) is extended
with a regularization term fp(z) so that the new least squares problem becomes

min fg (z) = min [6fi(2) + afp(2)]. (4.23)

One possible choice for fp(z) stems from the observation that an over-fitted function
with regions of large curvature has large model parameters. If these parameters are
penalized then it is possible to obtain a smooth network response [16]. Therefore,
fp(z) can be selected as the mean of the sum of squares of the network weights and
the biases.

The coefficients 5 and « are the objective function parameters and their relative size
determines the training process. When o < (3, the model error is minimized, when
a > (8, the NN model is smoothed.

In this research, the algorithm defined in [45] is used for the solution of
Equation (4.23). In [45], the Bayesian framework developed by MacKay [93] is utilized
to find the optimal settings for the objective function parameters. The algorithm is
based on the LM iterative method where the optimum values for a and 3 are also
calculated iteratively. The nice property of MacKay’s formulation is that it provides
the number of the parameters actively used in the NN model after training. Although
the number of the model parameters may highly exceed the number of the data points,
the upper bound for the active number of the parameters is always restricted with
the total number of the data points.

4.4.4 Results and Discussion

To discuss the practical performance of the NN models, the same numerical test
problems and the same training data sets employed in the previous sections are
considered. In both of the examples, an FFNN model with 20 neurons in the hidden
layer is used.

Example 4.4.2 To obtain the best model that fits the data shown in
Figure 4.17, two approaches are tested:

First, the NN model is trained using the LM method. Since there are 20
neurons in the hidden layer, the total number of the model parameters is 61,
which is much higher than the total number of the data points. Hence, there
are infinitely many NN models that fit the data with very poor generalization
capability. One of these models is illustrated in Figure 4.17 with a dashed line.

Second, the NN model is trained using the LM method with Bayesian
regularization. The obtained NN model is plotted in Figure 4.17. Thanks
to the utilized regularization during the training process, the generalization
capability of the NN model is significantly improved. The number of the active
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Figure 4.17: An interpolating NN model and a NN model with
regularization.

model parameters is found as 9 which makes approximately 3 neurons in the
hidden layer. This means that for this example an NN with 3 hidden layer
neurons is sufficient to obtain a good approximation. Hl

In the NN models, the nonlinearity of the model is controlled by the number of the
neurons in the hidden layer. Unfortunately, it is not possible to know the effective
number of the neurons beforehand. Finding this number by trial and error can be
very time consuming. On the other hand, employing the Bayesian regularization
method during the training process improves the generalization capability of NN.
Furthermore, the number of the model parameters is allowed to be higher than the
number of the data points. This feature makes the NN approximation very suitable
to be used on any data without concern about the number of the parameters.

Example 4.4.3 The NN approximation of the function shown in
Figures 4.18(a) and 4.18(c) is presented in Figures 4.18(b) and 4.18(d).

The number of the active model parameters is found to be 18 whereas the total
number of the parameters is 81. It can be observed from the results that the
approximation is satisfactory. l

The nonlinear basis functions in the hidden layer introduce many local minima into
Equation (4.23). The Levenberg-Marquardt method with Bayesian regularization,
utilized for minimizing this function is gradient based. Therefore, depending on
the initial point, the network solution can be trapped in one of the local minima.
Accordingly, the NN model may get different parameter values each time it is trained
on the same data set. Hence, its representation is not unique. Employing a global
search technique may have an impact on the quality of the solution although it
increases the training time significantly. It is important to mention that even the
global search techniques do not guarantee the global parameter values.
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Figure 4.18: Numerical test problem. (a)-(¢) True model and its
contour plot, (b)-(d) NN model with regularization and its contour
plot.

4.4.5 Conclusions

Two-layer FFNNs are capable of approximating any nonlinear differentiable function
when a sufficient number of neurons is provided in the hidden layer with the tangent
sigmoid basis functions and the linear basis functions in the output layer. NNs do
not require any preliminary assumption on the shape of the surrogate model. This is
automatically achieved by the utilized basis functions and the number of the hidden
layer neurons in the network structure. The Levenberg-Marquardt method provides
a rapid convergence to the solution. Over-fitting issues, that might be caused by the
improper hidden layer neuron number selection, can be prevented using the Bayesian
regularization. On the other hand, increasing the number of the neurons in the hidden
layer amplifies the number of the model parameters which slows down the training
process.
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4.5 Summary and Conclusions

In this chapter, first, the fundamental steps for building surrogate models were
presented. Next, three well-known techniques, namely Polynomial, Kriging and
Neural Networks (NNs), were introduced and their positive and negative features
were discussed on numerical test problems.

The prediction capability of a surrogate model is highly correlated with the complexity
of the trend investigated, the number of the design variables, the quality of the
available data and the effectiveness of the approaches used for the approximation
and the generalization.

When the number of design variables is small, the approximations obtained by the
Polynomial, the Kriging and the NN models are all satisfactory.

The majority of engineering design problems are multidimensional and there is
generally not sufficient information about the relationship between the selected
design variables and the response investigated. For these problems polynomial
approximation may become impractical due to the difficulty in the decision of the
order of the polynomial and the employed basis functions, as well as the large amount
of required data. The Kriging and the NN approximations on the other hand, are
much more flexible and hence more appealing for use in these problems.

Kriging and NN are similar approaches in the sense that they both use parametric
exponential functions which enable them to approximate highly nonlinear data.
Generally, these models require a smaller amount of data compared to the polynomial
models which makes them attractive to use as surrogates for computationally
expensive models. It is hard to conclude whether one of these models is superior
to the other.

The flexibility of the NN approximation is that an arbitrary number of neurons
can be used in the hidden layer for a good prediction capability while the
generalization capability of the model can still be guaranteed by the employed
Bayesian regularization. This means that the initial number of the model parameters
is allowed to exceed the number of the data points. Although this is a very nice
property, increasing the number of the neurons increases the number of parameters.
Consequently, more time is required for solving the nonlinear least squares problem.
This is why the gradient-based methods are more preferable than the global
optimization methods for calculating these parameters. Since the gradient-based
methods do not guarantee the global optimum and the Nguyen-Widrow initialization
rule involves random number generators, an NN model may get different parameter
values each time it is trained on the same data set. This leads to different model
representations.

In the Kriging approximation, the nonlinearity of the model is correlated with the
number of data points and their distribution in the design space. Hence, a more evenly
distributed and a large number of data will lead to a more accurate surrogate. On
the other hand, increasing the number of data points and the design variables slows
down the training of the model. The concentrated In-likelihood function of Kriging is
nonlinear and it may have many local optima. The global parameters may not still be
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assured even when a global optimization scheme is utilized. This means that different
model parameters can be found each time the model is trained on the same data set.






5
Optimization Strategy

The subjects discussed in the previous chapters can be treated independently for
different research purposes. In this chapter, these subjects are gathered in order to
propose a strategy for optimizing the dynamic behavior of structures. Before that,
first, the literature is reviewed briefly for structural optimization and the borders of
the strategy are clarified.

5.1 General Concepts in Structural Optimization

Structural optimization concerns the application of numerical optimization techniques
(see Chapter 3 for details) to the design of structures. A structural optimization
problem can be formulated as

ci(x)=0 €&

¢i(x)<0 el (5.1)

mxin f(x) subject to{
for which the evaluation of the objective function f(x) and/or the constraints
c(x) = {ci(x), i € EUT} requires the use of structural analysis methods (generally,
the Finite Element(FE) method). In the problem formulation; weight, displacements,
stresses, vibration frequencies, buckling loads or any combination of these entities
can be used either as an objective function or as constraints [63]. A structural
optimization problem can also be defined with multiple objective functions which
is then referred to as Multiple Criteria Optimization. Detailed information about
this class of optimization problems and the proposed solution methods can be found
in [39]. In this research only problems with a single objective function are addressed.

The proposed changes in the computational model under the given constraints are
achieved through a vector of variables xT = {z1,xa,...,2,}, called design variables.
Design variables can be element sizes such as cross-sectional dimensions as well
as parameters controlling the geometry of a structure, its material properties, etc.
Although x may take continuous or discrete values, or the mixture of both; this study
only considers continuous variations in the design variables.

81
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Numerous structural optimization problems use the same formulation defined in
Equation (5.1); however, they can be classified into three main categories: sizing,
shape and topology optimization. These categories are determined by the definition
of the design variables.

In sizing optimization, generally the cross-section properties of the beam elements,
the thicknesses of the truss and the shell elements, and the material properties such
as density, elastic modulus, etc. are defined as the design variables and optimized
without modifying the available mesh, as illustrated in Figure 5.1.

Initial design Final design

l F F
Figure 5.1: Schematic illustration of sizing optimization. Maximizing the stiffness

for a given weight where the cross-sectional areas of the trusses are used as design
variables. (Left) Initial design, (Right) Final design [12].

In shape optimization, the shape of a structure (e.g. the length of a beam or a
boundary of a shell) is modified so that the FE mesh is varied with the design changes.
On the other hand, new holes or connections that are not present in the initial design
domain cannot be introduced during the optimization process. Thus the topology
remains the same as shown in Figure 5.2.

Initial design Final design

X I D,

Figure 5.2: Schematic illustration of shape optimization. Maximizing the stiffness
for a given weight where the dimensions of the holes and the parameters controlling
the boundary of the domain are used as the design variables. (Left) Initial design,
(Right) Final design [12].

In topology optimization, the topology of a structure is optimized so that the shape
and the connectivity of a design domain are altered. Therefore, holes can be placed
into the initial design as illustrated in Figure 5.3.

Topology optimization is preferred for conceptual design due to the amount of freedom
in representing a product geometry and the difficulties in representing a detailed
one. Shape optimization can both be effective for conceptual and detailed design
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Initial design Final design

1 20,

Figure 5.3: Schematic illustration of topology optimization. Maximizing the stiffness
for a given weight. (Left) Initial design, (Right) Final design [12].

whereas sizing optimization is more suitable for the detailed design phase [119, 124].
The application of the introduced optimization concepts on the design of aircraft
components starting from finding the conceptual design to manufacturing the
prototype, and a discussion about the difficulties during optimization can be found
in [89]. All three of these optimization concepts are essential to achieve more efficient
designs, although this research is restricted to sizing optimization.

5.2 Challenges in Practice and Proposed Solutions

Optimization is an iterative process. The followed steps in an optimization algorithm
can be summarized as illustrated in Figure 5.4. Beginning at a given initial design,
an optimization algorithm generates a sequence of new designs. Each design in the
sequence is a step forward to an optimal solution for which the objective and the
constraint functions need to be evaluated many times. This sequence is terminated
when either no more progress can be obtained in the designs or the last design in the
sequence satisfies the desired accuracy.

START Initial Design Find direction for
- improvement

A
Update Design

STOP Convergence?

Figure 5.4: The followed steps in an optimization method.

In structural design optimization, evaluation of at least one of the constraints or
the objective function is based on analysis methods, in particular the FE method.
Generally, high computational costs are associated with the analysis of complex
structures. Accordingly, optimization of these structures is a challenging task. For
instance, analysis of a car body structure for the dynamics and nonlinearities of a
crash event may require weeks for one particular design if executed on a state-of
the-art single processor computer [128]. Optimization which needs such an analysis is
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computationally very demanding and not feasible. Fortunately, increasing availability
of computers with many processors makes the impossible of the past possible today.
Although this is very comforting, careful analysis of a posed problem and awareness
of the available analytical and numerical methods have a crucial role for obtaining
reliable results in a shorter time.

Analysis time is a major drawback for optimization of many structural designs. For
speeding up the optimization process, one may think of reducing the number of calls
to an analysis method. It is shown in Chapter 3 that pursuit of the global optimum
needs a high number of function evaluations compared to the local gradient-based
optimization methods. Direct coupling of an analysis method with neither a global
optimization scheme nor a derivative free method is efficient due to the number of the
required function evaluations and the computationally demanding analysis. Hence, if
it is feasible to calculate the derivatives, the gradient-based methods should be used
in direct coupling. Selection of a suitable and an efficient gradient-based method is
important in order to reduce the number of calls to the analysis method. This is
discussed further in Section 5.2.1.

The algorithms developed for problems having a small number of design variables may
not be suitable and efficient for the ones having a large number of design variables.
The proposed solutions in the literature for these type of problems are introduced
briefly in Section 5.2.2.

Another option for speeding up the optimization process is to employ accurate and
computationally efficient analysis and reanalysis methods. Section 5.2.3 involves a
discussion on these topics.

5.2.1 Gradient-based Algorithms

It is possible to find many gradient-based algorithms in the literature. Selecting a
suitable and an efficient one for the considered problem has a big impact on the total
number of the FE analysis calls during optimization.

A characteristic of a large class of early methods is the translation of a constrained
problem to an unconstrained one by introducing the constraints (near or beyond
the constraint boundary) to the objective function with the penalty methods. In this
way, a constrained problem is solved using a sequence of parameterized unconstrained
problems. These methods are now considered to be relatively inefficient and have been
replaced by Sequential Approzimate Optimization (SAO) methods [2, 63, 74].

The essential idea behind the SAO methods is solving an optimization problem by
generating a series of subproblems in which the objective and the constraint functions
are the approximations of the original ones and are easier to solve. The SAO methods
can be grouped into local and midrange concepts [11].

In local approximations, subproblems are based on function values and derivative
values with respect to the design variables computed in a single point of the
design space. For instance, in Sequential Linear Programming (SLP), a Nonlinear
Programming (NLP) problem (see Chapter 3 for details) is approximated at the
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current design point x(;) by a Linear Programming (LP) subproblem in which the
objective function and the constraints are replaced with their first order Taylor series
approximations at x(;). The minimum of this subproblem is used to define a new
design point x(z41) and accordingly a new subproblem. By repeating these steps, a
sequence of these design points {xz) }ZOZO approaches the optimum design point in the
limit [63]. Another local approximation method, the Method of Moving Asymptotes
(MMA) [130], solves NLP problems by generating convex and separable subproblems.
The parameters (asymptotes) that control the convex curvatures are changed in each
subproblem formulation.

In midrange approximations, multiple points of the design space are utilized to
generate the subproblems. They can be further grouped into single-point-path and
multi-point-path methods [42].

In single-point-path methods, subproblems are built using the function values and
the derivative values computed in the current design point and also in the previous
ones. Employing BFGS method [104] for accurate calculation of the approximate
second order derivatives, Sequential Quadratic Programming (SQP) (see Chapter 3
for details) is a single-point-path midrange approximation method. It is stated in [61]
that utilizing the second order approximations in an optimization algorithm reduces
the total number of the iterations by about 10 to 50 percent compared to the first
order approximations.

In a multi-point-path method, the objective and/or the constraint functions of
each subproblem are replaced with their approximations (for instance, polynomial
functions - see also Section 5.3) which are defined using a set of data generated within
a given search subregion. For each subproblem, a new search subregion is selected
to ensure the convergence of the method. This is done on the basis of a move limit
strategy [135]. These methods are effective especially when the derivatives can not be
computed accurately. The multi-point-path method proposed by Toropov et al. [131]
uses linear combinations of predefined basis functions to approximate the objective
and the constraint functions of the subproblems. Another multi-point-path method
has been presented by Etman which is utilized for optimizing multi-body systems [42].

It is always desirable to converge to a solution from a remote starting point in the
gradient-based SAO methods. This is referred to as global convergence and some of
the proposed strategies for it can be found in [59, 104].

In the gradient-based optimization methods, the derivatives of the objective function
and the constraints with respect to the design variables are required for each design
change. These derivatives predict the changes in the structure response for each design
modification and are used to select search directions in the optimization process.
Therefore efficient and accurate calculation of the derivatives are very important.
There are various ways for their computation such as: finite difference approximations,
analytical methods and semi-analytical methods [62, 80, 134].

The simplest and the easiest method to implement is the finite difference
approximation. Unfortunately, its calculation involves numerous repeated analysis
and high computational costs particularly during the optimization of the large
structural systems with many design variables. Additionally, accuracy problems can
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be encountered due to the approximations and the step size selection [84].

Analytical methods provide exact solutions and reduce the number of the analysis
calls drastically in optimization processes; however, they cannot be easily obtained
for many complex problems [97]. Moreover, access to the source code of the FE
software is required for their implementation.

To summarize, selecting a suitable optimization algorithm as well as having methods
for efficient and accurate calculation of the derivatives are essential especially for
optimization of structures involving expensive analysis and many design variables.

5.2.2 Large-scale Optimization

Optimization problems having a large number of design variables are treated under
the concept of large-scale optimization.

By referring to [28, 56], the notion large depends on computer resources, problem
definition and also the structure of the problem. Generally, an NLP problem with the
order of hundred thousand variables and a similar number of constraints is considered
as large, while an NLP problem up to fifty design variables is categorized as small-
scale.

Small-scale gradient-based optimization methods are not directly applicable on the
large-scale optimization problems because the approximation for the Hessian or its
inverse is usually dense in these methods [104]. Storage requirements grow with a
rate more than linear with the increasing number of the design variables and become
excessive [63].

Small-scale optimization methods can be improved in several ways in order to
be utilized for large-scale problems. One way is using simple and compact
approximations for the Hessian matrices. Thus, only a few vectors that represent
the Hessian are saved instead of keeping the full matrices [56, 104]. Accordingly,
storage requirements can be reduced to a high extent. Another way is decomposing a
large optimization problem into a series of small-scale subproblems [27, 132]. For the
solution, a two stage process is carried out: first, decomposed small-scale problems are
solved individually. Then, they are coordinated so as to optimize the entire problem.
The coordination level is usually referred to as the top level. Subproblems are selected
in a way that they are connected through a small number of design variables to
the top level. Decomposed problems may correspond to either the physical systems
(components of a structure) or the disciplines. The optimization process based on
decomposition is also referred to as Multi-level optimization in the literature [63].

5.2.3 Reduction and Reanalysis Methods:
Focus on FE models

In an FE model, the number of degrees of freedom (d.o.f.) grows rapidly with the
amount of detail and accuracy investigated from the analysis. As stated in [62],
computation time increases almost quadratically with the number of d.o.f. Therefore
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a good compromise between the demanded level of accuracy from an analysis and the
permissible computation time is important.

A simple approach can be either using simple geometries instead of complex ones or
having a complex geometry with a coarse mesh. Analyses based on such approaches
may give a rough idea about the modeled physical behavior. Their fidelity is
low in general. Methods discussed under the field of multi-fidelity approximations
concern the adaptive use of high-fidelity expensive-to-evaluate analysis models with
low-fidelity fast-to-evaluate ones in optimization algorithms in order to increase the
computational efficiency while preserving a certain accuracy. A detailed review on
this subject can be found in [123].

For certain analysis, accuracy is the essential priority. For instance, in automobile
designs dynamic analysis is a useful method for accurate prediction of dynamic stresses
on the chassis during many types of maneuvers [79]. For such an analysis, the full
FE model of the automobile is used. The model is often made very large in order to
capture local stresses accurately. Generally, investigation of the structural behavior
for static analysis requires fine meshes. Contrarily, investigations on the dynamic
properties of the same structure usually include calculating a few deformation modes.
These modes can easily be captured using much less d.o.f. Hence, the number of
d.o.f. in an FE model can be reduced by employing suitable reduction methods
without changing the mesh.

As discussed in Chapter 2, Component Mode Synthesis (CMS) is a frequently
used reduction and sub-structuring method in the dynamic analysis which usually
meets high standards of computational efficiency and accuracy in the low frequency
range [21, 34, 35]. CMS decreases the analysis time, accordingly it reduces the overall
optimization time significantly [37, 40, 102].

There are different applications of CMS in the optimization literature. In [68], it is
used for developing methodologies for the calculation of the eigenvalue and eigenvector
derivatives. In [72], a design optimization method is proposed where the idea behind
CMS is integrated into a two-level design optimization scheme. The subproblems are
defined on the component models. The modes defining the component transformation
matrices are considered as the top level (intermediate) design variables. At the
subsystem (component) level, the element properties of the components are the
primary design variables. The intermediate design variables of each component
are defined as the functions of the primary design variables of that component.
Coordination of the sub-optimization problems with the main optimization problem
is already defined in the CMS technique. An optimization problem based on that two-
level scheme could be stated as maximizing the first global eigenvalue with a minimal
change in the intermediate design variables at the top level. At the subsystem level,
the objective of the subproblems can be: minimizing the error between the target and
the current intermediate design variables by changing the primary design variables
under a mass constraint [72]. In this scheme, in addition to the issues concerning
the accuracy of the results as already reported in [72], the detrimental effect of the
number of the intermediate design variables on the efficiency of the method is another
concern. The number of d.o.f. of the components increases with the complexity of the
modeled structure. Thus, the number of the intermediate design variables may easily
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exceed the total number of the component design variables which is contradictory to
the purpose of decomposition.

For reducing the analysis time during optimization, employing reanalysis methods
can also be very useful. The objective of these methods is to evaluate the structural
response due to the modifications in the design variables using knowledge of the
initial model, thereby, solving a complete set of new equations is avoided. More
information on the developed reanalysis methods for the eigenvalue problems can be
found in [83, 85]. A discussion about the integration of the reanalysis methods into
CMS and the proposed reanalysis method can be found in Chapter 2.

5.3 Surrogate-Based Optimization

As discussed in the previous section, direct coupling of a local or a single-path
gradient-based algorithm with an analysis method still does not have any other
alternatives on the optimization of large scale, non-separable problems. On the other
hand, efficient and accurate calculation of the derivatives are remaining issues in
their application. Moreover, the analysis of a structure may fail when some of the
design values are not feasible. For instance, direct coupling of a Branch and Bound
type mixed integer NLP algorithm with FEM might be problematic when non-integer
values are assigned to some of the design variables.

The motivation of Surrogate-Based Optimization (SBO) is: replacing expensive-
to-evaluate FE models with their fast-to-evaluate approximations in optimization
problems. These approximations are known as meta-models, response surfaces or
surrogate models in the literature. When they are defined on the overall design
domain, they are also called global approzimations. Meta-models are built to predict
the trends in the data collected from an FE model. These data consist of a set of
values for the selected design variables and the response of the structure for these
design values. Therefore, surrogate models can be considered as highly simplified
versions of FE models. Details about surrogate model selection and a discussion
about the commonly employed methods, namely polynomial, Kriging and Neural
Network (NN) approximations, can be found in Chapter 4.

In order to generate the training data for surrogate models, sample points are selected
from a feasible domain that is constrained by the upper and the lower bounds of the
design variables. This ensures that with carefully selected points, failure of the FE
model is prevented. Data generation is still the challenging step of meta-modeling.
For obtaining certain accuracy, the total number of the data should be sufficient.
On the other hand, with an increasing number of the design variables, the required
number of data grows rapidly. As discussed in Chapter 4, this number can be very high
for polynomial approximations. Kriging and NN approximations, on the other hand,
are more flexible so that they demand relatively less data for accurate representation
of the complex underlying behaviors. The definition of “sufficient number of data
points” is highly correlated with the complexity of the approximated behavior. To
the author’s knowledge there is no rule in the literature that defines this number.
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In this research it is kept around ten times the number of the design variables as
recommended in [91].

Once a surrogate model is built, it is many orders of magnitude faster to evaluate
than an FE model. Therefore, it can be effectively employed in global optimization
schemes. The number of function evaluations in an optimization algorithm is not a
big issue due to the simplicity of the surrogate models.

Analytical derivatives of FE models are not required for building the surrogates.
Additionally, analytical derivatives of surrogates are not essential during optimization.
Derivatives of these can accurately be calculated by the finite difference
approximation.

When an optimization algorithm is directly coupled with an FE model, evaluation of
the model is done sequentially during the search of an optimum. On the contrary,
an FE model is only required for generating data for meta-modeling in SBO. Hence,
these data can be gathered all at once by parallel processing.

The application of the SBO schemes is still restricted to the small-scale optimization
problems due to computationally demanding analyses and the amount of the required
data for training surrogates. On the other hand, when combined with decomposition
methods, using SBO for large-scale optimization problems seems very promising.

In SBO schemes where the approximations are defined on the overall design domain,
the followed steps for finding an optimal solution are similar and can be summarized
as shown in Figure 5.5.

Surrogate Modeling

Problem definition + Optimization setup| | [ . _._______.
| ' |DOE|

> ! —»| Data Set
‘| Analysis|.

Optimizaton¢— | [~
Validation i

Optimum Design Generate Surrogate Model

. Model Selection
. Parameter Estimation
i . Generalization

Extend Data Set

Figure 5.5: Schematic illustration of a general SBO method.

The solution process starts with the problem analysis which involves, first,
understanding the problem under consideration. Then, selection of the design
variables and parameterization of the computational model are carried out. Finally
the objective function and the constraints are defined.

The second step is to generate the surrogate model. Here, firstly a set of sample
points is selected from the design space which is called Design of Experiments (DOE)
(see Section 4.1.1 for details). Afterwards, for each sample point the FE model is
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run and data is gathered for training the surrogate. Then, a suitable meta-modeling
approach (Polynomial, Kriging, NN, etc.) is selected and the unknown parameters
of the chosen meta-model are determined using the available data (see Chapter 4 for
details).

Having generated the surrogate model, the next step is the optimization which is
carried out employing suitable numerical optimization methods.

Since the calculated optimum is not directly related with the FE model but the
surrogate model, the results need to be validated. In order to do that, the response
of the FE model is obtained by the computed optimum design values. This is then
compared with the response of the surrogate model for the same design values. If the
accuracy is acceptable, the scheme is stopped. Otherwise, the data set is extended
with the optimum design values and the corresponding response of the FE model.
When parallel processing is possible, one may also add multiple data into the set
calculated at the other promising regions of the design space. New parameters for
the selected surrogate model are computed using the extended data set and the
optimization step is repeated. This procedure is iterated until the validation results
are acceptable.

The SBO methods differ from each other by the followed approaches during the
generation of the surrogate model and the utilized algorithms at the optimization
step [111]. For instance, in [76], a method based on the Kriging approximation at
the surrogate modeling phase and the Branch and Bound (a mixed integer nonlinear
programming) algorithm for optimization is introduced. Berke et al. [14] used the
NN approximations for surrogate modeling and the gradient-based algorithms for
optimization. Another SBO method is the one proposed by Booker et al. [19] in
which the Kriging approximations are utilized for meta-modeling and the pattern
search (a derivative free optimization) method is employed during the search of an
optimum.

Wind et al. [139] presented a two-level SBO method for optimizing the dynamic
behavior of structures. In the scheme, both the analysis and the optimization problem
are decomposed using CMS. Optimization is performed only at the component
level where NN approximations are utilized with Genetic Algorithms (GAs). In
the decomposition strategy, each subproblem is the same as the main optimization
problem except that the design variables that do not correspond to the component of
the interest are fixed at constant values. Therefore, the complications that might be
encountered due to the coordination of the subproblems are prevented by eliminating
the intermediate design variables. In the method, the top level is only used for the
distribution of the component level solutions to each subproblem. The drawback of
this strategy is the possibility of convergence problems especially when the response
of one component depends on the design variables of other components [138].

5.4 The Proposed Strategy

As stated in Chapter 1, the objective of this research is to develop an effective strategy
for optimizing the dynamic behavior of structures. The proposed strategy is based
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on a “Surrogate-Based Optimization” (SBO) method that is introduced in Section 5.3
in which global approximations are utilized as surrogates. In the analysis phase of
the method, a CMS technique, Craig-Bampton (CB), is used for offering solutions to
one of the major difficulties, the analysis time, in structural optimization. Moreover,
reanalysis methods are employed in CB to reduce the analysis time even further.

The benefits of employing an SBO scheme for structural optimization problems have

already been discussed in the previous section. Using a CMS technique in combination
with SBO has the following additional computational advantages:

e Reduction in the total number of d.o.f. leads to fast analysis of the complete
structure.

e Independent condensation of each substructure encourages parallel processing
even further.

e Preventing unnecessary calculations for the unmodified substructures, only the
modified components can be analyzed and coupled with the already computed
ones.

e For structures having repeated components (e.g. one cyclic sector of an
industrial blisk), modeling of one component is sufficient.

All these discussed items have a significant effect on the reduction of the analysis
time. Moreover, when reanalysis methods are utilized, analysis of the modified
substructures are performed without solving the complete set of new equations. This
brings supplementary benefits for saving computation time.

The steps in an SBO method are:
e DOE
e Analysis
e Surrogate Model generation
e Optimization

e Validation

as also shown in Figure 5.5. These steps are treated exclusively for introducing the
details of the proposed strategy.

Design of Experiments

In the research, the data set required for generating a surrogate model is obtained
from FE analyses. Therefore, Design of Experiments (DOE) is based on a space-
filling strategy for which the Latin Hypercube Sampling (LHS) scheme is utilized (see
Section 4.1.1 for details). The number of the sample points is selected around ten
times the total number of the design variables. These points are generated in the
overall domain restricted by the upper and the lower bounds of the design variables.
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Analysis

At the analysis step of the proposed SBO method, the Craig-Bampton (CB) method
is used as a CMS technique. Furthermore, reanalysis methods are considered for
efficient calculation of the CB transformation matrices of the modified components.
Details of the employed methods can be found in Chapter 2.

The followed steps at the analysis phase are shown schematically in Figure 5.6.
For the dynamic analysis of a structure, first, the complete structure is divided
into components. Then the parameterized FE model of each component is built.
If there are similar components, only one of them is modeled. Afterwards, the
design values of the complete structure are distributed to components based on the
design variables captured in the component models. An FE model standing for
similar components may get multiple configurations for its design variables. The
next step is the calculation of the reduced system matrices of each component for
the assigned design values. In the proposed scheme, libraries are used to store the
information about the already analyzed components. Hence, unnecessary analyses are
prevented. Before generating the system matrices of a given component design, first,
the corresponding library is checked. If the requested information is not there, it is
computed and stored in the library. In the computation, first of all, the transformation
matrix, consisting of the normal and the constraint modes, is calculated. The normal
modes can be computed either using the exact analysis methods or using the Enriched
Craig-Bampton (ECB) method. Unfortunately, there is no automated switch from
ECB to the exact methods based on the accuracy and/or the computational efficiency
of ECB. On the other hand, calculation of the constraint modes, either by the exact
or the approximate methods, can be automated as introduced in Section 2.3.2. The
approximate constraint modes are calculated using a method based on the Combined
Approximations (CA) approach. Details about ECB and the CA-based approach can
be found in Chapter 2. After the transformation matrix is determined, the reduced
component matrices are computed. The given component design, its transformation
and the reduced matrices are saved in the component library. This procedure is
repeated for each component and the corresponding configurations. This ensures
that all the necessary information to generate the reduced system matrices of the
complete structure is readily available in the libraries for further use. Thereafter, the
stored reduced matrices are gathered from the libraries for the given structure design
and assembled to obtain the reduced matrices of the entire structure. Finally, the
dynamic analysis of the structure is performed.

Generate Surrogate Model

In the scheme, the Kriging and the Neural Network (NN) surrogate modeling
approaches are used. A detailed discussion about these approaches is given in
Chapter 4.
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Figure 5.6: Schematic illustration of the analysis step of the proposed SBO method.

Optimization

At the optimization step, the global optimum can be searched using either the Multi-
Level Hybrid Optimization (MLHO) or the Multi-Start Local Optimization (MSLO)
schemes (see Section 3.4 for details). It is also possible to run these schemes together
for increasing the chance of finding the global optimum even more.

For the MSLO scheme, designs in the DOE set are utilized as multiple starting points
and a gradient-based method, Sequential Quadratic Programming (SQP) is used as a
solver. In the MLHO scheme, a stochastic derivative-free global optimization method,
the Genetic Algorithm (GA), is employed to locate the global optimum and SQP is
initialized with the solution of GA to find an exact optimum solution. Details about
these optimization algorithms and a discussion about their performance can be found
in Chapter 3.
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Validation

For the wvalidation of the optimization results, the FE analysis is run for the calculated
optimum design. If the responses of the FE model do not agree with the responses
of the surrogates, the data set is extended with the optimum design values and the
corresponding responses obtained from the analysis.

5.5 Discussions about the Strategy

In structural design optimization, the number of design variables is one of the main
factors affecting the efficiency of the process. In some cases the actual response of
the structure is not affected significantly by some of the design variables. Then it
becomes reasonable to reduce the number of the design variables before solving the
optimization problem. In order to assess the impact of each variable on the response,
data need to be generated from the FE model for varying values of these design
variables. This is usually referred to as sensitivity analysis and it is a very critical
process. If not done correctly, “important” design variables may be eliminated due to
the lack of data. This research does not cover the methods used for the identification
of important design variables whereas some relevant research about this subject can
be found in [70, 137].

As mentioned earlier in the chapter, the proposed method is restricted to sizing
optimization problems. This is partly due to the analysis and the reanalysis methods
utilized at the analysis step. The assembly phase of the CB method is based on the
compatibility of the interface nodes. That is, if there is a mismatch between the
interface nodes of the neighboring components, analysis with the CB method leads to
inaccurate results. In sizing optimization, since the mesh does not change, the position
of the interface nodes are always protected. Thus, the CB method and the reanalysis
methods can safely be employed. When the analysis phase of the proposed method is
extended with methods taking into account the non-matching interfaces [43, 108, 115],
the SBO scheme can also be used for the shape optimization problems. On the other
hand, the reanalysis methods have to be reconsidered again. Substantial changes in
the geometry of components may result in completely different mode shapes which
cannot be approximated accurately with the current reanalysis methods.

In the method, the ECB approach is used for the reanalysis of the fixed interface
normal modes of the modified components. Unfortunately, there is no automated rule
in the method that switches to the exact calculations when the accuracy and/or the
computational efficiency of ECB is not satisfactory. Considering alternative update
methods for the normal modes may help to automate the computation of these modes.

At the surrogate modeling step, a single meta-modeling approach is used to generate
the surrogates. On the other hand, once the data set is gathered, finding the
parameters of a selected surrogate is relatively cheap. This is very encouraging
for utilizing multiple meta-models in an optimization scheme, although it is not
studied in this research. Employing multiple surrogate models will bring the following
advantages:
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e When one approach fails to find an acceptable representation of the underlying
behavior, the other one may compensate for the gap.

e Since different approaches may identify distinct parts of the design space better
than the other, using several ones synchronously may lead to more accurate
approximations of the trend investigated.

The challenge in “multiple surrogate” based optimization is to define a strategy which
can evaluate multiple meta-models simultaneously and combine them so the generated
model gives much better predictions than any of the individual meta-models. The
related studies on this subject focus on using cross-validation error for the evaluation
of the surrogates [53, 136, 141]. Hence, the meta-modeling approaches which use
regularization methods are completely missed out in these evaluation schemes. Many
questions have to be answered on this subject, which makes it very interesting for
future research.

At the validation step, when a desired accuracy is not obtained, the data set is
extended only with the calculated optimum design values and the corresponding FE
model response. There are other strategies in the literature which are based on
estimating the error due to the meta-model approximation and positioning the new
data at the points of maximum estimated error. A detailed discussion about these
strategies can be found in [46, 47].

5.6 Summary and Conclusions

Topics covered under the concept of structural optimization were introduced briefly,
the proposed optimization method was presented and future research topics were
discussed.

Two approaches in structural optimization were emphasized. The first approach is
the direct coupling of an FE model with numerical optimization algorithms, which is
inevitable for large-scale, strongly coupled optimization problems. For this case, the
gradient-based algorithms are the most suitable methods because they require less
function evaluations than the derivative-free algorithms. The second approach is the
Surrogate-Based Optimization (SBO) scheme in which FE models are replaced with
their fast-to-evaluate surrogates in the optimization problems. This scheme is very
promising for multi-level and small-scale optimization problems. The search for the
global optimum is affordable in SBO as opposed to the direct coupling methods. In
direct coupling, evaluation of an FE model is done sequentially during the search of an
optimum whereas in SBO, an FE model is utilized to generate data for meta-models.
Since sequential evaluation of an FE model is not necessary, data can be generated
all at once by parallel processing.

The proposed method is based on an SBO scheme where the employed approximations
are defined on the overall design domain. In the method, the Craig-Bampton (CB)
method is used at the analysis step which has the advantages of:

e parallel processing due to independent component analysis,
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e shorter analysis time,

e freedom on not evaluating the unmodified substructures all over again during
optimization,

e opportunity to generate one model that can be used for similar substructures.

Moreover, the CB method is combined with reanalysis methods to give even more
reduction in the analysis and hence in the optimization time.

Kriging and Neural Networks (NNs) are the meta-modeling techniques used in the
SBO method. The search for the global optimum can be done by two different
schemes: The Multi-Level Hybrid Optimization (MLHO) and the Multi-Start Local
Optimization (MSLO). Genetic Algorithms and Sequential Quadratic Programming
are the numerical optimization methods employed in these schemes.

In the next chapter, the proposed method will be demonstrated on some academic
problems and the corresponding results will be discussed in details.
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Demonstration of the
Strategy

The proposed Surrogate-Based Optimization (SBO) strategy is demonstrated using
two academic test problems. In both of the problems, the selected structures have
repeating patterns in their geometries. These special geometries are selected so that
the modeling and the analysis opportunities of the Craig-Bampton (CB) method are
fully exploited during optimization. In the problems, the harmonic response and the
modal properties of the structures are intended to be modified.

6.1 Optimization of Structures with Repetitive
Component Patterns

In the first test problem focus is on investigating the advantages of using the CB
method in the proposed SBO scheme. In order to analyze the effectiveness of the
method only, the fixed interface normal modes and the constraint modes of the CB
transformation matrix are computed exactly. That is, the reanalysis methods are
not considered in this problem. Furthermore, this example is used to investigate the
effects of the chosen surrogate model on the final results of the SBO method.

The optimization problem involves the objective of reducing the total mass of the
structure. Meanwhile, one of the natural frequencies is constrained to have a certain
value where this value is chosen to be different than that of the initial design. Another
constraint is to preserve the initial mode shape of the corresponding natural frequency.

Parts of this chapter are based on:
“D. Akcay Perdahcioglu, M.H.M. Ellenbroek, P.J.M. Hoogt van der and A. de Boer. An
optimization method for dynamics of structures with repetitive component patterns. Structural and
Multidisciplinary Optimization, 39(6):557-567, 2009” [5],
“D. Akgay Perdahcioglu, M.H.M. Ellenbroek and A. de Boer. A hybrid design optimization method
using enriched Craig-Bampton approach. In 16th International Congress on Sound and Vibration,
ICSV, 2009” [3].

97
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The selected problem formulation is generic in the sense that it is possible to enhance
the formulation with multiple frequencies and the corresponding mode shapes.

Potential application areas of such problem definitions can be various, for instance,
avoiding resonance conditions. A structure is said to be in resonance when one of
its natural frequencies coincides with the frequency of a dynamic excitation force.
The amplitude of vibration under resonance conditions becomes excessive. To ensure
safety and efficiency, the natural frequency of a structure has to be separated from the
frequency range of the excitation force. The proposed optimization method provides
a robust algorithm to solve this sort of problem.

6.1.1 Problem Definition

The selected structure, as seen in Figure 6.1, resembles a fan inlet case and it consists
of 24 components (substructures). The thicknesses of the strut, tsyut, the inner ring,
tinner and the outer ring, touter, of each component are selected as design variables.
The substructures which have n3, n = 0,. .., 3 rotational distance between each other
are imposed to have the same design variables which are shown by a unique color in
Figure 6.1. This is done in order to ensure that the substructure design repeats
itself in every quarter. Accordingly, there are 6 different components with 3 design
variables in the overall structure which are identified with numbers in Figure 6.1.
This makes 18 design variables in total. The structure is free-free i.e. there are no
defined boundary conditions on the structure.

e

inner

outer

Figure 6.1: Test problem. (Left) Selected structure and its repeating component,
(Middle) The three design variables of a component, (Right) The repeating geometry.
Matching colors represent the components with the same design variables.

It is clear that all the substructures are identical in the local coordinates when assigned
with the same design values. Accordingly, the stiffness and the mass matrices of each
substructure are all the same in the local frame. This makes sure that the reduced FE
model of the entire structure can be obtained using the parametric FE model of one
component and rotating the computed matrices for each substructure to its global
coordinate system.
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In this example, the reduced system matrices of different component configurations
are generated using the commercial FE software ANSYS. Assigning these matrices
to the rest of the substructures by multiplying them with the corresponding rotation
matrices, assembling the substructure system matrices for each structure design and
solving the eigenvalue problem are performed in MATLAB.

In the FE model, a 4 node shell element is used which is known to be suitable for
analyzing thin to moderately thick shell structures [7]. The element has 6 d.o.f.
at each node which are the translations and the rotations about the z-, y-, z-axes.
The in-plane vibrations of the ring structure are the only concern for this problem.
Therefore, the rotations about the x-, y-axes and the translations in the z-direction
are suppressed in the element.

Each component has 65 d.o.f. after reduction and there are 1560 d.o.f in the reduced
model of the structure. The total number of the fixed interface normal modes and
the nodes on the interfaces of a component are 5 and 20, respectively. The full FE
model of the structure without reduction has 6840 d.o.f. Employing the CB method
therefore results in 77% reduction in the total number of d.o.f.

The selected material properties are as follows: Young’s modulus (E) is 116 GPa.,
Poisson’s ratio (v) is 0.3 and the density (p) is 4500 kg/m?>.

In the initial design, the components have an inner ring thickness, ¢! . of 2 mm,
a strut thickness, %, ,, of 3 mm and an outer ring thickness, ¢ .., of 2 mm where
i=1,2,...,6 stands for the component number. The total mass of the initial model
is 0.4936 kg and the 5th natural frequency (2nd bending frequency) is 702.23 Hz with
a mode shape illustrated in Figure 6.5(a). Since this is a free-free structure in the
zy-plane, the first three modes are rigid body modes. The 4th natural frequency is

identical with the 5th one due to the symmetry.

In the optimization problem, the total mass of the entire structure is to be minimized
by adjusting the thicknesses within the specified ranges (see Equation (6.1)). In the
meantime, the 5th natural frequency has to be increased from 702.23 Hz to 750 Hz
while preserving the 5th mode shape of the initial design.

The optimization problem is formulated as follows:

f5(t) = 750
MACGC;(t) > 0.9
mtin [pV(t)] subject toq 1< tfnner <5 (6.1)

1<t <5

strut
1<ti,. <5 i=12...6.
In Equation (6.1), V(t) represents the volume of the entire structure which is a
linear function of the thicknesses t = {#,, ors totruts touter |2 = 1,2, ...,6}. In order
to preserve the 5th mode shape of the initial design, the Modal Assurance Criterion

(MAC) is used (see Section 2.4.1 for details).

The structure under consideration has a rotational symmetry in its geometry. It
may have an eigenvalue with multiple eigenvectors. These eigenvectors are linearly
independent and any linear combination of these eigenvectors also has the same
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eigenvalue [48]. Therefore, instead of using the mode shape of the 5th natural
frequency directly in the MAC formulation (see Equation (2.39) for the MAC formula),
first, the uniqueness of the frequency is inspected. This is achieved by comparing the
5th natural frequency with the 4th and the 6th. If it is found to be unique, the
corresponding eigenvector is used in Equation (2.39). If multiple eigenvectors are
associated with this frequency, then these are gathered and orthogonalized in order
to obtain an orthogonal basis. Afterwards, the most complying vector with the 5th
eigenvector of the initial design is sought in a subspace spanned by this basis. This
latter vector is applied in the MAC constraint of Equation (2.39).

Details of the formulation on finding the most complying eigenvector and the
computation of the MAC value are presented in Appendix D.

6.1.2 Surrogate Modeling

In the optimization problem, 2 surrogate models are used. They stand for f5(t) and
MAC5(t) constraint functions given in Equation (6.1). To analyze the effects of the
chosen meta-modeling approach on the performance of the SBO method, surrogates
are generated by both the Kriging and the NN approaches. In the NN model, 25
hidden layer neurons are utilized. In the Kriging model, the Multi-Level Hybrid
Optimization (MLHO) scheme (see Section 3.4 for details) is used to compute the
model parameters 8. The entries p;, j =1,2,...,18 of the exponent vector p are
selected as 2.

The training data for the meta-models are generated by the parametric FE model
of one component only. First, a Design of Experiment (DOE) set, D¢, with 180
designs is generated for the component using the Latin Hypercube Sampling (LHS)
scheme. Each configuration in D¢ defines a new substructure design. The reduced
substructure stiffness and mass matrices are calculated for each design in D¢ and
stored in the library. Each configuration in the DOE set, D, of the entire structure
is defined by randomly selecting 6 component designs from D¢. In this example,
180 structure designs are chosen in total for Dp. Next, the reduced system matrices
of the entire structure for each design in Dt are gathered. The related component
system matrices are called from the library, multiplied by the rotation matrices to
transfer the components to the global coordinates and assembled. Dynamic analysis
is performed on these assembled matrices to compute a set of 5th natural frequencies
and the corresponding mode shapes. Dt and the frequency set are utilized to train
the surrogate model which replaces f5(t) in Equation (6.1). The MAC values are
computed using the mode shape information and afterwards, Dt and the MAC set
are employed to train the surrogate model that will take the place of MAC5(t) in the
posed problem.

6.1.3 Optimization and Validation

The parameters of both the Kriging and the NN models are computed using methods
which involve random number generators. Therefore, the calculated surrogate models
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may not be unique. For investigating the effects of the surrogate modeling approaches
on the robustness of the SBO strategy, the optimization problem is solved 10 times
in total. 5 of the solutions are obtained using NN as the surrogate models and the
remaining 5 are obtained using Kriging. The performance of the strategy is discussed
based on the obtained results.

At the optimization step, the Multi-Level Hybrid Optimization (MLHO) scheme is
utilized for finding the global optimum.

The search for optimum is repeated until the relative errors between the responses
of the FE model and that of the surrogates are smaller than 0.005 for the computed
optimum design values. The relative errors are computed with respect to the FE
analysis results.

Before calculating the reduced system matrices of the components for the computed
optimum design values, first the library is checked for similar component designs.
These designs are sought with a relative error tolerance of 1073. The relative error is
calculated with respect to the investigated optimum design.

6.1.4 Results and Discussions

The results of the first 5 executions are shown in Figure 6.2. These are obtained
by utilizing the NN surrogate modeling approach within the SBO method. In the
figure, the results of each execution are represented with a different marker type. The
figures show the calculated final weights and the values assigned to the design variables
giving these weights. The inner ring, the outer ring and the strut thicknesses of the
components and the corresponding design values are presented in separate figures for
making the interpretation of the results clear.

All the solutions of the first 5 executions are feasible. The average number
of iterations in the SBO method is 235. The best configuration leading to
the maximum reduction in the total mass is: tipner = [4.1,2.9,2.3,2.4,3.7,4.5],
tstras = [1,1,2.8,1,1,1], touter = [1,1,1,1,1,1]. The total weight of the structure for
this configuration is 0.287 kg which is 42% less than the initial weight. The values,
tinner = [3.4,5,2.8,1.8,3.7,5], tstrus = [1,1,3,1,1, 1], touter = [1,1,1,1,1,1], lead to a
design which has the maximum weight, 0.2985 kg, among the computed designs. As
observed from Figure 6.2, the strut and the outer ring thicknesses have almost the
same values after each execution. However, there is a variation in the inner ring
thickness values of the components.

The results obtained when the Kriging surrogate modeling approach utilized
within the SBO method are shown in Figure 6.3. All the solutions are
feasible. The average number of required iterations in the SBO method is 86.
The best configuration leading to the maximum reduction in the initial weight
it tinmer = [3.1,2.1,3.4,2.5,3.1,2.5], toprue = [1,1,4.4,1,1,1], touger = [1,1,1,1,1,1]
which leads to 39% reduction. The total weight of the structure is 0.3025
kg for these design wvalues. The maximum computed weight, 0.3759 kg,
corresponds to the configuration, tipner = [2.2,5,5,5,5,1], tstrus = [1,1,4.6,1,1,1],
touter = [1,1,5,1,1,1].
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Figure 6.2: Results of the first 5 executions. The NN meta-modeling approach is
used within the SBO method. For each solution, a different marker type is used.

The solutions obtained in the last 5 executions are very different from each other.
The calculated weights are not gathered around a particular value as opposed to
those obtained when the NN approach is utilized in the SBO method. Accordingly,
the interval of the computed design values is large. Moreover, the weights are all
larger than the ones computed in the first 5 executions. On the other hand, the
average number of iterations is considerably less than the ones required in the SBO
method with NN.

The results show that, in this example, the solutions of the SBO method with NN
are more consistent and promising. On the other hand, the computational efficiency
of the SBO method with Kriging is a lot better.

When the number of the sample points is small and the corresponding responses are
evenly distributed around a mean with low standard deviation, a NN model may
fail to capture the response accurately. This is because the regularization method
(see Section 4.4.3 for details) used for increasing the generalization capability of
an NN model may filter out the valuable information. Moreover, if there are any
outliers, they are neglected. As a result, the generated NN model cannot capture
the approximated response even in the neighborhood of the data and gives very poor
predictions. Extending the data set during optimization and accordingly training the
NN model with more data increases the quality of the predictions of the surrogate
model. Consequently, the chance of capturing a global and a robust solution gets
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Figure 6.3: Results of the last 5 executions. The Kriging meta-modeling approach
is used within the SBO method. For each solution, a different marker type is used.

higher with increasing data points.

The regression constant (see Section 4.3.2 for details) used in the main diagonal of the
correlation matrix does not have serious effects on the quality of the Kriging model
compared to the regularization method used in the NN approximation. It becomes
effective only when some of the data points start to accumulate in a region of the
design space. The regression constant can be realized as a term utilized for preventing
ill-conditioned correlation matrix. The data set and the values in the neighborhood
of the data are approximated with high accuracy by Kriging. If a design, computed
at the optimization step, is in the vicinity of one of the designs in the DOE set, there
is a big chance that the FE model confirms the results of the Kriging model for this
design. Hence, the SBO method is terminated with this solution. It is important to
note that the predictions of the Kriging model may not be accurate for the design
values which are not in the neighborhood of the available data points. If a better
feasible solution lies in the domain including these design values, the SBO method
with Kriging may never reach the solution due to the early termination.

As seen in Figures 6.2 and 6.3, none of the executions of the SBO method with
either NN or Kriging gives the same design values. This is most likely due to the
parameter estimation step of the surrogate modeling approaches (see Chapter 4).
The parameters of an NN model are calculated by solving a nonlinear unconstrained
optimization problem defined in Equation (4.22). This problem is solved by a
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gradient-based algorithm. The initial point for the algorithm is calculated based on
the Nguyen-Widrow initialization rule [103] which uses a random number generator.
Therefore, the generated initial point can be different for each call of the initialization
rule. Accordingly, an NN model trained on a particular data set may not get the
same model parameters when it is trained again on the same data set. The above
discussion also applies for Kriging. The parameters of a Kriging model are obtained
by maximizing the concentrated In-likelihood function given in Equation (4.18). This
is a highly nonlinear function and finding the global solution of the function is never
guaranteed even when a global search scheme is utilized. Hence, two Kriging models
trained on the same data can also be different.
To summarize, there is a high possibility of not generating the same meta-models in
each execution of the SBO method. Consequently, computing different design values
is an expected situation. Another reason for having different results in each execution
can be due to the employed search technique, the MLHO scheme. Computing a local
optimum instead of the global one at an iteration of the SBO method may change
the results of the next iteration. This will have consequences on the final solution.

The initial design and the best computed design are illustrated in Figure 6.4. The
corresponding 5th mode shapes are as shown in Figure 6.5.

@
(e) Part 5 (f) Part 6

(d) Part 4

Figure 6.4: The initial and the final designs of the components where the gray color
corresponds to the final design. The shown final design is obtained with the NN

meta-modeling approach used within the SBO method.

Although the calculated design values are not the same, they point out a similar final
design. The strut and the outer ring thicknesses have their minimum permissible
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values excluding the strut thickness of the 3rd substructure. This is because these
variables have a primary effect on the total mass. The objective of minimizing the
total mass is achieved by assigning small values to the thicknesses of the outer ring and
the strut of the components. Increasing the 5th natural frequency while preserving its
mode shape is assured by modifying the inner ring thicknesses and the strut thickness
of the 3rd component. The inner ring thicknesses have a dominant effect on the
stiffness of the structure whereas their contribution to the total mass is relatively
minor.

(a) Initial design (b) Final design

Figure 6.5: The initial and the final designs and the corresponding 5th mode shapes.

The DOE set of the complete structure is defined using the available designs of one
component. Since the reduced system matrices of each component configuration
are already saved in the library, it is possible to generate many different structure
designs and accordingly to gather their reduced matrices without performing any
extra condensation. Generating structure designs out of the available component
configurations is a nice feature, especially for applications which rely on expensive
analysis. On the other hand, the total number of the iterations to get an optimum
solution is strongly related to the sampling strategy as well as the number of the data
points. Therefore, the space-filling quality of such a sampling strategy needs to be
studied further.

Another advantage of using libraries is: If a component design and the corresponding
reduced matrices are already in the library, similar designs do not have to be computed
again. In the test problem, on average 415 and 221 structure configurations are created
at the end of the optimization procedure including the designs in Dt when NN and
Kriging are used within the SBO method, respectively. The libraries of SBO with NN
and SBO with Kriging involve subsequently, 1048 and 462 component configurations.
If no libraries had been used, 2490 and 1326 component analysis would have had to be
performed. As observed from these results, using component libraries has a significant
role on the computational efficiency of the SBO method.
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6.2 Updating the Craig-Bampton Transformation
Matrix for Efficient Structural Optimization

The objective of the second test problem is to analyze the influence of the proposed
reanalysis approach on the SBO strategy. The strategy is executed both with and
without the reanalysis approach. Its accuracy and computational efficiency is reviewed
based on the obtained results. The NN approximations are preferred for surrogate
modeling regarding the observations of the previous application.

In the test problem, the amplitude of the displacement responses is minimized by
modifying the structure design under the constraints of preserving the frequency and
the corresponding mode shape of the initial design. Potential application areas of
such problem definitions can be for structures where large response amplifications are
known to contribute to material damage which eventually led to failure [109].

6.2.1 Problem Definition

The same structure used in Section 2.4 is selected for the second test problem. The
details about the design of the structure and gathering its reduced system matrices
for the dynamic analysis can be found in that section.

In this problem, there is an harmonic force acting on the structure. The applied load
has an amplitude of 100 kN and is in the y-direction. It is applied on the top interface
node of the 4th component C4 and the 5th component Cs as shown in Figure 6.6. For
the harmonic response analysis, structural damping with an energy dissipation of 3%
is assumed which is imposed directly on the reduced stiffness matrix of the structure.
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Figure 6.6: Test problem. (Left) Component model, (Middle) Selected structure
under applied force, (Right) First bending mode of the initial design.

The cross-section width and height of the stiffeners, h = {hy, |i = 1,2,...,8}, in the
components are the design variables. All the stiffeners of a component are assumed
to have the same design values. Hence, there are 8 design variables in the structure
which have a value of all 0.05 m in the initial design.

For the harmonic response analysis, focus is on the frequency range of 10—30 Hz. This
interval involves the first bending frequency of the initial design. Figure 6.6 shows
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the mode shape of this frequency. The objective is to reduce the amplitude of the
displacement response in this frequency range, thereby decreasing the displacement
response of the structure for the first bending mode. The nodes that lie on the
top and the bottom interface of the components are selected to prescribe the
objective function. Figure 6.6 illustrates the nodes corresponding to the interface
of a component. The selected nodes are identified with squares around them. The
displacement magnitudes in the y-direction are computed for these nodes in the
frequency range of 10—30 Hz and then summed up. The response curve that represents
the “frequency-displacement magnitude” relationship of the initial design is plotted
in Figure 6.7. The results displayed in the figure are obtained by the full FE analysis
performed in ANSYS.

The objective function of the problem is defined as minimizing the total area beneath
the response curve, shown in Figure 6.7. The area beneath the response curve is
0.95 m.Hz for the initial design.

0.2

\—Initial Design — ANSYS Full
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Figure 6.7: Frequency-Displacement Magnitude curve of the initial design.

The constraints of the problem are as follows:

e Keeping the first bending frequency around 22 Hz. This constraint is defined as
22 —e< fr(h) <22+«

where € = 0.02.

e Keeping the total final mass of the stiffeners less than the total initial mass of
the stiffeners. This is given as,

8

> [pVi(h,)] < 23

=1

where V;(hs,) is the total volume of the stiffeners in component C; and p is the
density of the stiffeners.
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e Preserving the mode shape of the first bending frequency. This is assured by
the MAC criterion (see Equation (2.39) for MAC formula).

MAC;(h) > 0.9.

e Having a symmetric final configuration!. This constraint is prescribed by forcing
the design variables of the component pairs; C;-Cg, Co-C7, C3-Cg, Cy4-Cs to
have similar values. This is imposed by:

hs, —h
h,

—4

s =10
4 .
S(g_j)_thglo 5 321,27...,4.

e The upper and the lower bounds for the design variables are selected as

001 <hy, <01, i=1,2,...,8.

Casting above constraints in the formulation of the optimization problem gives,

22 —e< fr7(h) <22 +¢

S5 o Vilhs,)] <23

MAC7(h) > 0.9

hy, —hg, , <107*

h hsj<10 4 5=1,2,...,4

S(9—4) =

0.01 <hg, <0.1, 1=1,2,...,8

mhin [A(h)] subject to (6.2)

where A(h) stands for the total area beneath the “frequency-displacement magnitude”
curve corresponding to the frequency range of 10 — 30 Hz.

6.2.2 Surrogate Modeling

In the optimization problem, 3 surrogate models are used. These surrogates stand for
A(h), fz(h) and MAC7(h) given in Equation (6.2).

The DOE set Dt of the whole structure has 81 designs which is generated using the
LHS scheme. Each design in D defines a new structure configuration.

At the analysis step of the SBO method, the transformation matrix of each modified
component is computed using one of the following methods:

e Exact: The fixed interface normal modes and the constraint modes of the Craig-
Bampton (CB) transformation matrix are computed by exact analysis methods
all over again.

'n practice, this choice may not be logical and efficient. In this academic example, by such a
choice, the strategy is aimed to be tested with more design variables and constraints.
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e ECB+CA: The initial fixed interface normal mode set is extended using the
Enriched Craig-Bampton (ECB) method.

The constraint modes are approximated by the Combined Approximations (CA)
approach. The minimum number of the basis vectors are set to 3. The accuracy
of the modes are verified by Equation (2.38). If the accuracy is not satisfactory,
the set of the CA basis vectors is extended with a new vector and the reanalysis
step is repeated.

e ECB+CA Automated: The initial fixed interface normal mode set is
extended using the Enriched Craig-Bampton (ECB) method.

For the calculation of the constraint modes, the automated update scheme
defined in Section 2.3.2 is used. The minimum number of the basis vectors are set
to 3 in the CA approach. The number of FLoating point OPerations (FLOPs) is
computed to control the switch between the exact and the approximate analysis
of the constraint modes. The equations given in Table 2.1 are used for estimating
the number of FLOPs. The CA approach is employed only when it requires less
number of FLOPs than the exact analysis. The accuracy of the approximated
modes are verified by Equation (2.38). If the accuracy is not satisfactory and
the computational efficiency of the CA approach is still better than the exact
analysis, the set of the CA basis vectors is extended with a new vector and the
reanalysis step is repeated. Otherwise, the constraint modes are computed with
the exact analysis.

After the transformation matrix of a component is calculated using one of the above
methods, condensation of the component matrices are performed.

The responses, A(h), fz(h) and MAC7(h), of the structure for each configuration in
D are calculated using the assembled reduced component system matrices and the
training data sets are gathered for meta-modeling.

3 separate libraries are used for storing the transformation, the reduced stiffness
and the reduced mass matrices of each new component design. The first library is for
component Cq, the second one is for components Co, Cs, ..., C; and the third one is for
Cs. The constraint and the fixed interface normal modes of components Cs, Cg, ..., Cy
are different than the modes of components C; and Cg. Therefore, the reduced system
matrices of these components are not equal in the local coordinates for the same
design values. Hence, the component library of Cs,Cs,...,Cy; is different than the
libraries of C; and Cg. Although 2 separate libraries are defined for the components
C; and Cg, it is also possible to utilize a single library. Since the system matrices
of these components are the same in the local coordinates, multiplying the reduced
system matrices of one of the components with a proper rotation matrix gives the
reduced system matrices of the other component in the global coordinates. Another
alternative would be utilizing a single library for all the substructures where the
transformation matrices are computed by assuming that the d.o.f. on the boundaries
of every component belong to an interface. This choice may have consequences on
the accuracy of the analyses. Additionally, the size of the reduced system matrices
of the structure is much bigger. On the other hand, it can be computationally more
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efficient because of avoiding extra calculations when the substructure designs of C;
and/or Cg are the same as one of the components Co, Cs, ..., Cs.

6.2.3 Optimization and Validation

The following cases are considered in this test problem.

e Case 1: The optimization problem is solved twice. First, the Exact approach
is used for the calculation of the transformation matrices during the analysis
step of the SBO method. In the second solution, instead of the Exact approach,
the ECB4+CA Automated approach is used. The performance of the SBO
method is evaluated regarding the accuracy of the results and the computation
time. In short, in Case 1, the computational efficiency and the accuracy of the
proposed reanalysis methods are tested.

The NN meta-modeling approach is employed for defining the surrogates. In
the NN model, 25 hidden layer neurons are employed.

It is important to emphasize that the number of FLOPs for the exact analysis
of the constraint modes is smaller than that of the CA approach in the selected
structure. Accordingly, in the CA Automated approach, the constraint modes
are always computed by the exact analysis.

e Case 2: As mentioned in Case 1, the constraint modes are always computed by
the exact methods in the CA Automated approach. In order to examine the
accuracy of the CA method, the ECB+CA approach is used in the analysis
step of the SBO method. The final design configuration and the corresponding
analysis results are compared with the solutions found in Case 1.

The NN meta-modeling approach is employed for defining the surrogates. In
the NN model, 25 hidden layer neurons are employed.

e Case 3: The solutions of the SBO method are found to be sensitive to
the selected surrogate modeling approach in the first test problem studied in
Section 6.1. To explore the performance of the SBO method on the current
test problem, the problem is solved once again using the Exact approach
but this time the Kriging meta-modeling approach is used. In the Kriging
approximation, the MLHO scheme is used to find the model parameters 8. The
entries p;, j = 1,2,...,8 of the exponent vector p are selected as 2.

In all the test cases, the MLHO optimization scheme is used in SBO for finding the
global optimum. During the calculation of the approximate residual constraint modes,
the tolerance value for the maximum norm of eca (see Equation (2.38) is set to 0.001.

The search for optimum is repeated until the relative errors between the responses
of the FE model and that of the surrogates are smaller than 0.005 for the computed
optimum design values. The relative error is computed with respect to the FE analysis
results.
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Before calculating the reduced system matrices of the components for the optimum
design values, first the libraries are checked for similar component designs. These
designs are sought with a relative error tolerance of 1072. The relative error is
calculated with respect to the investigated optimum design.

6.2.4 Results and Discussions
Case 1

The results of Case 1 are summarized in Table 6.1.

Table 6.1: Summary of Case 1 results.

H Exact & NN ECB+CA Automated
Final Design (m) 0.01,0.01,0.058,0.1,  [0.01,0.01,0.063,0.1,
& 0.1,0.058,0.01,0.01] 0.1,0.063,0.01,0.01]
Final Total Area (m.Hz) 0.8238 0.8161
Final Mass (kg) 21.7 22.5
Total # of iterations 4 4
Computation time 5h06min 3h34min

The “frequency-displacement magnitude” curves that correspond to the final
configurations are shown in Figure 6.8. To validate the results, the response of the
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Figure 6.8: Results of Case 1. (Left) The CB transformation matrices are computed

by the Exact approach in the SBO method, (Right) The CB transformation matrices

are computed by the ECB+CA Automated approach in the SBO method.

structure is calculated in ANSYS using the full FE analysis for the final design values.
These solutions are also presented in Figure 6.8.

Both of the final configurations are feasible. These configurations have almost the
same design values. The optimal configuration is stiffest in the middle while the



112

stiffness decreases towards the free ends of the structure. The total area beneath
the “frequency-displacement magnitude” curve is reduced by almost 14% in both
Exact & NN and ECB+CA Automated.

The total required time for the optimization process decreases around 30% when the
ECB+CA Automated approach is utilized in the SBO method.

As observed from the results, the total number of the iterations required in the SBO
method are very low even though the NN approximation is used for defining the
surrogates.

The accuracy and the computational efficiency of the SBO method with
ECB+CA Automated approach is very satisfactory for the selected problem.

Case 2

The results of the SBO method with the ECB4+CA approach are summarized in
Table 6.2.

Table 6.2: Summary of Case 2 results.

H ECB+CA
Final Design (m H [0.01,0.01,0.059,0.1,0.1,0.059,0.01,0.01]
Final Total Area (m.Hz) 0.8215
Final Mass (kg) 219
Total # of iterations 6

The “frequency-displacement magnitude” curve that corresponds to the final
configuration is plotted in Figure 6.9.
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Figure 6.9: Results of Case 2. The CB transformation matrices are computed by
the ECB+CA approach in the SBO method.
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The final design is very similar to those obtained in Case 1 and it fulfills all the
constraints. The total area beneath the “frequency-displacement magnitude” curve
is reduced by almost 14%.

As seen in Figure 6.9, the accuracy of ECB+4CA is satisfactory compared to the full
FE analysis results for the final design values.

Case 3

The results of the SBO method with Kriging meta-models are summarized in
Table 6.3.

Table 6.3: Summary of Case 3 results.

H Exact & Kriging

Final Design (m H [0.01,0.01,0.061,0.1,0.1,0.061,0.01,0.01]
Final Total Area (m.Hz) 0.8197

Final Mass (kg) 22.1

Total # of iterations 2

The “frequency-displacement magnitude” curve that corresponds to the final
configuration is plotted in Figure 6.10.
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Figure 6.10: Results of Case 3. The CB transformation matrices are computed
by the Exact approach. Kriging surrogate modeling approach is used in the SBO
method.

The final configuration is feasible and it leads to the same conclusion for the optimal
design as in Case 1 and Case 2. The reduction in the total area beneath the
“frequency-displacement magnitude” curve is 14%.



114

The solutions of the SBO method with NN have already been presented in Case 1.
As realized from these results, variations in the final design values are very low and
the total number of the iterations in the SBO method are small for each employed
surrogate modeling approach.

Consequently, the conclusions of the first test problem on the surrogate modeling
approaches are certainly not valid for the current test problem. This may have several
reasons: Firstly, the number of the design variables are a lot fewer than the previous
problem. It is more likely to obtain a space-filling design with less design variables
when the number of the training data is selected based on ten times the number
of the design wvariables rule. Another reason can be the sampling scheme. In the
first problem, LHS is only utilized to generate the component configurations. The
structure designs are defined out of these configurations. On the other hand, in the
current problem, the structure designs are defined by the LHS scheme. The total
number of the component configurations is important to maintain a certain diversity
among the structure designs and accordingly to get a space-filling design.

6.3 Summary and Conclusions

The proposed optimization strategy was demonstrated on two theoretical test
problems in which the selected structures have repeating patterns in their geometries.
In the first problem, the modeling and the analysis features of the Craig-Bampton
(CB) method were exhibited. These features were exploited during the generation of
the Design of Experiment (DOE) set of the whole structure and the computation of the
reduced system matrices. The first problem was also used to analyze the performance
of the strategy where the Neural Network (NN) and the Kriging meta-models were
used as surrogates. The main objective of the second test problem was to examine
the efficiency of the SBO strategy when it is executed with the proposed reanalysis
methods.

It was shown that when a structure can be decomposed into repeating components,
it is possible and efficient to model one component and utilize its parameterized FE
model for the rest of the same components using the CB method.

Each component model is independent from each other in the CB method. This
means, every component model has its own design variables. This attribute is very
favorable during the selection of the DOE set of the complete structure. After
generating various designs for each component and calculating the corresponding
reduced matrices, it is possible to define different structure configurations out of these
available component designs. The reduced system matrices of the whole structure
are gathered by the assembly of the already computed reduced component matrices.
Although this is a very promising and computationally efficient strategy, the validity
and the applicability of the strategy still needs to be clarified.

The reduced matrices of each computed component configuration are kept in the
libraries. When similar components need to be analyzed again, the corresponding
reduced matrices are called from the library. Hence, unnecessary static and
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dynamic analysis required for the calculation of the CB transformation matrix
are prevented. Libraries especially become important at the later stages of the
optimization procedure when some of the component designs are assigned with their
final configurations.

It is hard to compare the influence of using the Kriging and the NN meta-modeling
approaches on the performance of the SBO strategy. The influence is strongly
application dependent. The large number of the iterations due to using the NN
models and the non-robust solutions due to using the Kriging models are potential
pitfalls that may hinder the efficiency of the strategy for certain applications.

The Enriched CB (ECB) method and the Combined Approximations (CA) approach
are used for approximate computation of the fixed interface and the constraint modes
of the CB transformation matrix, respectively. The automated computation of the
constraint modes is a very attractive feature in which the exact or the approximate
calculation of the modes are automatically decided using the number of FLOPs. The
computational efficiency of the SBO method improves when the proposed reanalysis
methods are used for the calculation of the CB transformation matrix at the analysis
step. Moreover, the accuracy of the provided solutions are preserved.
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Conclusions and
Recommendations

The goal of this research was to develop a strategy for the optimization of the dynamic
behavior of structures. The strategy was required to be robust, accurate and able to
provide a solution which is as close to the global optimum as possible. Moreover,
it should be suitable for optimizing complex structures whose analyses are based on
computationally demanding Finite Element (FE) simulations.

In order to fulfill these demands, several research subjects have been identified.
Reduction and reanalysis methods have been studied for speeding up the structural
analyses during optimization. Numerical Optimization methods have been examined
to find out an effective strategy that may lead to the global optimum. It was realized
that any effort on finding the global optimum requires a tremendous number of
function evaluations, i.e. FE analyses. Therefore, FE models were decided to be
replaced with their surrogates whose evaluations are very fast, once generated. This
necessitated a thorough understanding of the surrogate modeling approach which was
also one of the research topics in the thesis. Finally, based on the knowledge gained,
an optimization strategy was proposed.

This chapter presents the conclusions drawn from these studies and the
recommendations for further research.

7.1 Reduction and Reanalysis Methods

One of the main difficulties in structural optimization is the analysis time. Therefore
it is essential to consider efficiency as well as accuracy in dynamic analysis when using
it in combination with an optimization method.

The Craig-Bampton (CB) method was found to be very advantageous to utilize in
the optimization algorithm. The main advantages are observed to be the following.
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e It enables parallel processing which can be thought in two different ways:
Distribution of the analysis over different computers or to different groups of
people who specialize in different categories.

e It reduces the total d.o.f. to a great extent which then leads to a significant
reduction in the computation time. Meanwhile, the accuracy of the solutions is
preserved in the low frequency range.

e It is possible to efficiently test the influence of different substructure
configurations on the global dynamic behavior.

e One parametric model can be used for similar substructures in the analysis of
a complete structure.

One drawback of the CB method is that the assembly of the reduced component
models are based on the compatibility of the interface nodes. It is recommended to
study suitable coupling methods which can be used for non-matching interfaces to
eliminate the effort needed to have a compatible mesh on the neighboring interfaces.

It is known that when a substructure is modified, the solution of the initial model does
not conform to the new system equations which causes residual forces and residual
displacements to appear. This information can be used to update the solution, thereby
avoiding the need to solve the complete set of new equations which include dynamic
as well as static analysis. Two methods for this purpose were employed: The Enriched
CB (ECB) method and a new reanalysis method.

The ECB method extends the fixed interface normal mode set by including the effects
of the residual forces acting on the modified substructure. Thus, modal analysis
can be avoided while preserving the accuracy to a certain extent. However, there
is no proposed automated update scheme in the literature that switches the ECB
method with the exact analysis when the accuracy and computational efficiency are
not balanced. It is recommended to consider alternative update methods for the
normal modes which enable this attribute.

For updating the constraint modes in the CB analysis, a new reanalysis method based
on the Combined Approximations (CA) approach was presented. In the method, the
residual displacements are approximated in a smaller space and added to the initial
constraint modes. The test problem showed that while the accuracy of the method is
satisfactory for a wide range of perturbations, the computational efficiency depends
on the properties of the component model. Although this makes the method not
applicable for every problem, an automated approach was proposed to select either
the exact or the approximate analysis depending on an estimated computational cost.

7.2 Numerical Optimization

In structural optimization, the ultimate goal is to find the exact global optimum with
the least number of function evaluations. Trying to achieve this goal was found to be
far from trivial.
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Non-Linear Programming (NLP) is the most general class of continuous optimization
framework.  In this research, two algorithms, namely Sequential Quadratic
Programming (SQP) and Genetic Algorithms (GAs), have been analyzed in solving
NLP problems.

SQP is a fast and robust gradient-based method. Although the computed optimum
is exact and can be obtained with a relatively small number of function evaluations,
finding the global optimum is never ensured for multi-modal problems.

GAs are stochastic derivative-free methods which explore the design space globally
without using any gradient information. This makes them suitable to search for the
global optimum. However, their convergence rate is very slow compared to SQP and
they do not guarantee an exact optimum.

In order to increase the chance of finding the exact global optimum for multi-modal
problems, two optimization schemes, the Multi-Start Local Optimization (MSLO) and
the Multi-Level Hybrid Optimization (MLHO), have been considered. The numerical
test problems showed that the chance of obtaining the global optimum with the MSLO
scheme is correlated with the number of the randomly selected initial designs. On
the other hand, the progress of the MLHO scheme is dominated by the employed GA
method.

It was observed that pursuit of the global optimum requires a large number of function
evaluations and unfortunately, the global optimum may still not be assured.

Because of the prohibitive number of FE analyses, direct coupling of the structural
analysis methods is not recommended either with a global optimization method or
with a global optimization scheme.

7.3 Surrogate Modeling

The prediction capability of a surrogate model is strongly influenced by the number
of the design variables, the complexity of the approximated trend, the quality of
the training data, the effectiveness of the utilized meta-model and the generalization
approach.

When the investigated trend is known to be governed by a low order function or
the number of the design variables are small, the polynomial models can provide
satisfactory predictions. These models may also be preferred in order to identify the
promising regions in the design space. Their transparency makes them favorable in
certain applications.

The majority of the engineering design problems are multi-dimensional and usually
limited knowledge is available on the approximated trend. In these cases the Kriging
and the Neural Network (NN) approximations are superior to the polynomial models
due to their flexibility in generating surrogate models. It was observed that with these
approaches satisfactory models can be obtained with a limited amount of training
data.
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Both Kriging and NNs make use of the parametric exponential functions which enable
them to approximate any nonlinear differentiable function.

The prediction capability of NNs gets better with the increasing number of the
neurons used in the hidden layer. Although the number of the model parameters
may exceed the number of the data, the generalization capability of the model is
still assured by employing the regularization method. In order to find the model
parameters, a non-linear least squares problem must be solved which may have
many local minima. This is the parameter estimation step, also known as training,
where an optimization algorithm is required. Generally the gradient-based methods
are preferred over derivative-free stochastic methods for computational efficiency in
models with a large number of parameters. Due to the random number generators
involved in the initialization of the gradient-based methods, a different set of model
parameters can be found for the same training data in successive computations. This
reduces the robustness of the NN surrogate modeling approach, however it was found
that for the demonstrated test problems the results are satisfactory.

In Kriging approximations, the nonlinearity of the model is correlated with the
number of the data points and their distribution in the design space. A Kriging
model can interpolate the data as well as it can filter out the fluctuations in the data
if its correlation matrix is modified with a regression constant. At the parameter
estimation step, a concentrated log-likelihood function needs to be maximized which
is nonlinear in nature. For each evaluation of this function, the explicit estimates
of the mean and the variance of the observations, as well as the determinant of the
correlation matrix are required. Although it might be feasible to employ a global
search scheme for finding the global Kriging parameters, different Kriging models may
still be obtained each time the model is trained on the same data. It was observed in
some test problems that the difference in the results can be significant.

7.4 Optimization Strategy

The studied structural analysis and numerical optimization methods were merged to
define the Surrogate-Based Optimization (SBO) scheme where global approximations
are utilized as surrogates. The proposed hybrid scheme consists of the CB method and
the reanalysis methods for dynamic analysis, Latin Hypercube Sampling (LHS) for
design of experiments, the Kriging and the NN approximations for surrogate modeling
and finally the MLHO and the MSLO schemes for global optimization.

The SBO scheme is suitable for small-scale optimization problems. It does not
require sequential evaluations of an FE model thanks to the employed surrogate
models. Furthermore, utilizing surrogate models promotes parallelization since the
training data can be generated by independent FE calculations. Parallel processing is
further supported by the CB method which even allows modeling and analysis of each
component independently. Utilizing the CB method further enables shorter analysis
time, freedom of not evaluating the unmodified substructures during optimization,
ease in modeling of structures having repeating components and effective bookkeeping
of the already analyzed component configurations via libraries.
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It was shown that for structures having repeating geometries, it is feasible and efficient
to utilize one parametric model for all similar substructures during optimization.

Another advantage of utilizing CMS in optimization is the possibility of generating a
large DOE set using the combinations of the available component configurations.
Although it has not been covered in this research, tests on the validity and
applicability of this feature are important to define more efficient strategies.

Results obtained from the test problems revealed that the proposed reanalysis
methods improve the computational efficiency of the SBO method while keeping the
accuracy of the solutions to a significant extent.

The influence of the Kriging and the NN approximations on the efficiency of the SBO
method was found to be application dependent. It was observed that a large number
of iterations might be required when the NN surrogates are used in the proposed
optimization scheme. A potential drawback of employing the Kriging surrogates is
the non-robustness of the solutions.

The proposed optimization strategy is very promising to be applied for design
problems where the global dynamic behavior of complex structures is desired to be
changed by local modifications.

In order to have an objective analysis of the effectiveness of the proposed SBO scheme
on a real design problem, the CB and the reanalysis methods must be implemented
directly in an FE software. The current implementation suffers from the fact that
these computations are conducted at a higher level compared to the FE analysis.

7.5 Further Recommendations

As mentioned earlier, the efficiency of the optimization strategies is affected
significantly by the number of the design variables. In order to reduce this number,
reliable and computationally efficient screening methods are essential. These methods
should be able to screen out the most important design variables by a minimal number
of data. Further research on this subject will be very helpful and valuable in the
structural optimization field.

The current version of the proposed SBO method can only be used for sizing
optimization problems. This is due to the coupling procedure used in the CB method
which requires compatibility of the interface nodes. Further research on the coupling
methods for non-matching interfaces will make the optimization strategy suitable
for shape optimization problems as well. However, reanalysis methods have to be
reconsidered. Major geometrical modifications may lead to completely different mode
shapes which cannot be represented accurately using the system matrices of the initial
design.

The performance of different surrogate modeling approaches are application
dependent and it is usually not known which method will be the most suitable for
a certain analysis. It is even possible that different models identify distinct aspects
of the investigated trend better than the other. Therefore, it is recommended to



122

develop strategies that consider multiple surrogate models simultaneously, evaluate
them and generate a combined model whose predictions are much better than any
of the individual meta-models. Hopefully this will eliminate concerns about which

surrogate modeling approach to use.
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Representation of Rigid Body
Modes

Let dg) be a vector of the jth rigid body displacement of a substructure. It can be
written as a linear combination of the constraint modes such that

, 0 .
a¥ = | Yo |y@ j=12... 6 (A1)
| IN%

where {y@W)}T = {y%j), yéj), . ,y%)} is a vector of coefficients.

If any modification in a substructure does not change the mesh of the Finite Element
(FE) model, the rigid body displacements of the initial model also hold for the
modified one. Accordingly,

[ éiﬁgb gbziﬁﬁfb ] [ }1;% }y(” = [ 0 ] . (A.2)
Equation (A.2) gives
(K% + Kipn)y?) + (AK; P + AKy)yY) =0
[(Kpi + AKp) T + (Kpp, + AKpy)] vy —0

1

(A.3)

for which the first term of the first equation cancels out due to Kii\Il?b + K;, = 0.
Hence, the equalities

(AK; P9 + AK;,)y?) =0 (A4)
[(Kbi + AKp) ¥ + (Kb, + AKpy) |y =0 .

are satisfied for every modified component.

Now suppose that the constraint modes of a component are recomputed for the new
design. If these modes are able to represent the rigid body displacements, the equality

Kii+ AK;i K, + AKjp T+ AT, | _[o (A5)
Ky + AKyi Ky, + AKyy | INS Y 0 '
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has to hold where {y()}T = {gjgj), Qéj), e Aj(\j,)} is a vector of coefficients for the jth
rigid body mode. Equation (A.5) gives

(K@), + Kip| 79 + [AK ], + AKyp | vV + [(Ki + AKy) ATy, ] y0) =0
[(Kbi —+ AKbi)‘I’iOb —+ (Kbb —+ AKbb)] S’(J) + [(Kbi -+ AKbi)A‘I’jb} y(]) =0.
(A.6)

Since the geometry has not changed, the rigid body displacements of the modified
component can still be represented by the same combination of unit displacements
on the interface. Hence, when yU) is selected as equal to y/) and Equation (A.4) is
taken into account, Equation (A.6) becomes

[(Kii + AKy) A¥y)yY) =0

) A7
[(Kpi + AKpi) A®;,]y9) =0 (A7)

If the equality
A‘I’iby(j) =0 (A8)

is proven to be fulfilled by an approximation method utilized for updating the
constraint modes, the representation of rigid body modes is assured.

A.1 Binomial Series Expansion

In the Binomial Series (BS) approximation,

AUy, ~(I-B+B?—..)Ar; = Ar; + Ary +...

A9
~ [-K; ' (AKi T + AKp)| + B [K; ' (AK; O, + AKyp)| + ... (4.9)

where B = K;lAKii. When both sides of Equation (A.9) is multiplied by the
coefficient vector y() and Equation (A.4) is taken into account,

A‘I’iby(j) =0.

Consequently, Equation (A.8) is satisfied for the binomial series approximation. That
is, rigid body modes are always represented by BS if the FE mesh remains the same
after the modifications.

A.2 Combined Approximations Approach

In the Combined Approximations (CA) approach, the column entries of each Ary,
k=1,2,..., Ny are conditioned (see Equation (2.33)). Therefore AW¥;,y) = 0 may
not be satisfied when the number of the selected binomial series terms, k, is not
sufficient.
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The rigid body displacements are guaranteed when eca in Equation (2.38) is driven
to zero, i.e.

eca = ([I+K;'AK;) AT, + [Ki ' (AK ¥, + AK;p,)]) — 0. (A.10)

When both sides of Equation (A.10) are multiplied by the coefficient vector y) and
Equation (A.4) is taken into account, the equation becomes

ecay?) = [(Ky + AK;) AT, yY) — 0. (A.11)

CA converges to the exact solution with an increasing number of the binomial series
terms. An exact solution is obtained in cases where a newly created term becomes
a linear combination of the previous terms [83]. Accordingly, AW,y — 0 and
Equation (A.8) is fulfilled.
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The Levenberg-Marquardt
Method

The unknown NN model parameters

HL ;HL
—{wz 7b] )

OL,bOL | i=1,2,....,n j=1,2,...,8}={21,22,...,20}

can be estimated using the least squares estimation

mlnfE = mlnz [ (k) _ f(x®), } = i [ (®)( } (B.1)

where X = {x(1) x®) ... x(@1 is a set of sample points, yT = {y1) y@ ... ¢(@}
is a vector of the corresponding observations, @ is the total number of the data,
f(x,2) stands for the NN model and H = nS + 25 +1 is the total number of the NN
model parameters.

For the estimation of an optimum z by an iterative method, first an initial guess z(g)
is selected. Then, this guess is updated at each iteration m by

Z(m+1) = Z(m) T P(m)

where the vector p includes information about the search direction and a scalar
learning rate indicating how far to go in the selected search direction.

In the Levenberg-Marquardt (LM) method, p(,,) is defined as

Py = — 137 (2(m)) I (Z(m)) + 1) 1T (20m) ) E€(Z(m)) (B.2)

where J(z) is the Jacobian matrix with entries

9e®) (z)

th(z) - 82’}

k=1,2,....,Q h=1,2,..., H.
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(see Appendix C for details), €(z)" = {1V (z), ¢ (z),...,e@(2)}, T is an identity
matrix and g, is a scalar learning rate for the mth iteration.

In Eq. (B.2), H(2 () = 3" (2(n))I (2(m)) is an approximation to the Hessian of fg(z)
and V fg(z(m)) = J" (2(m))€(Z(m)) is the gradient of fg(z). If this knowledge is used
to rewrite Eq. (B.2),

P(m) = —[H(Zzm)) + m) 1] 'V fe(2(m)) (B.3)

is obtained.

The learning rate p has several effects on the LM method

1. For all y > 0, the matrix H(z(,,)) is positive definite and this ensures that p is
a descent direction.

2. For large values of 1, p defines a short step in the steepest descent direction

P(m) = )1V fr(Z(m))
which is a good step if the current iterate m is far from an optimum.

3. If p is very small, the LM method behaves like a Gauss-Newton method. That
is,

P(m) = ~H ' (2m) V fo(2(m))
which is a good step in the neighborhood of the solution.

Consequently, the LM method begins with a small learning rate p for instance
oy = 0.01. If a step produces a large value, i.e. fg(Z(m+1)) > fE(Z(m)), this indicates
that the current iteration point is not in the neighborhood of the optimum. The
learning rate p is multiplied by a factor v; > 1 (e.g. v; = 10) and a step in the
direction of steepest descent is taken. If y produces a small value, then it is divided
by a factor vo > 1 (e.g. v = 10) and a step towards the Gauss-Newton direction
is obtained. In that way, a faster convergence is obtained to the minimum. Hence,
the speed of the Newton’s method and the guaranteed convergence of the steepest
descent are merged in a nice way.

The disadvantage of the algorithm is the storage requirement of the Jacobian. When
the number of the NN parameters and the number of the data increase, the method
becomes inefficient [100].



C

Chain Rule for Calculating
the Partial Derivatives

The partial derivatives

menamW@8MW@amwm

dwlil 7 B T guO T guOr

i:LZ“”nj:LZ“wS}

of the NN model f(x(k), z) with respect to the model parameters

wP O | i=1,2,...n j=1,2,...,5}

T HL ;HL
z {ﬂ b

Y ] J

are required for solving the unconstrained optimization problem

Q

min fi(z) = min 3" [y — fx®),2)] = mi iﬂ“} (C.1)

k=1

with any gradient-based numerical algorithm.

If the vector of the hidden layer outputs is represented by d't = {dil gHL ... UL},
the NN model is

F(x™®) z) = ¥@)(OL) = ¢OL = ZwOL \I, ) dHL) 4 pOL

where
n
HL __ HL (k) HL
d; —E wi; T + by
i=1

and the scalar term d°" is the response of the model.
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The partial derivatives with respect to the NN model parameters are calculated
employing the chain rule as:

af(x(k),z) _ af(x(k),z) ({9d§{L B 8f(x(k),z) (k)

owil  — HgHL  GHL T pgHL T;
Ju J Ju 3

8]?(}{%)7 z) af(x(k)’ z) adeL af(X(k), z)

OB T ad G T ad 2
(9fA(x(k), z) 8f(x(k)’ z) HdOL af(x(k)’ z) (), L

8ijL = Hdot aijL = T HqoL \3 (dj )
af(x(k),z) 6f(x(k), z) 9dOv af(x(k)’ 2)

OOL T~ T 9dOL  §OL 9oL

) 57 (50
In Equation (C.2), the derivatives of é’;HL’z) and & g;oﬁz) still need to be calculated.
J

The derivative of f(x(k), z) with respect to dO% is

8f(x(k),z) 9 2) ( JOL 9 OL
ddoL ~ 9doT (‘I’( ' )) = gaor (47) =1

The derivative of f (X(k),z) with respect to dJHL require another application of the

chain rule which is

— w]

R R s
6f(x(k),z) _ 6f(x(k),z) HJOL _ 0 Z OL \Il(.l)(dHL) + pOL
oI 0o 9dll — 9di | r

i=

owiM (i)
J odit
J

= w

Finally the partial derivatives are found as:

0f(xMz) o W)

gwit  ~ " Togm
Jt J
0fxM.2) _ o 0w; (@)
HL - j HL
ob; ’ 0d; (C.3)
0fxM.2) _ oy
~opor = ¥ (4
J
af (x®), z)

bOL
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Most complying eigenvector
and the MAC value:

Let us represent the kth eigenvector of the initial design by ®9. Assume that
{CIJ‘,il, @%2, ey @%m} are the m orthogonalized eigenvectors of the current design “d*
which correspond to the kth eigenvalue wy and span the subspace V.

The most complying eigenvector ®¢ in the subspace V with ®) and their MAC value
are calculated using the formulas:

(I)d T(I>O
di{ k:l} k(I)d1+...+

{(I)(l:clm}T(I)(lg d
el

1o, 2
MAC(®), &) = MAC(®), &) + ... + MAC(DY, ®5.,.).

The derivation of the formulas is as follows:

The Degeneracy Theorem [48] states that any vector contained in the subspace V
also belongs to the same eigenvector wy.

Let (I)(,i = cﬁb‘,il +CQ¢%2 —i—...—l—cm(I)‘,:m be a vector that lies in V where c;,
i1=1,2,...,m are scalars. The distance between @% and ®? can be defined using

the Euclidean distance as:
195 — @1% = |1 @y + 2®fiy + - + @, — Y
= |05 |1° + SN PRl + -+ Dl (D.1)
— 20 {08100 — =2, {0 1 09 + {09} 20

km

Minimizing the distance between @% and @2 with respect to the coefficients ¢;, gives
the vector fbg. That is,

8<I>d7<1>02 T
ArEEl = 2aleh P -2(eh ey = 0
: : : (D.2)
o er—29|° T
ATCHE = gy, |0f, |2 - 2{,,} 790 = 0.
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Using Eq. (D.2); ¢y, ca,. . .,cn are calculated as follows:

o — Loh1Te = (P22
Teg, = > o T e T

Hence, in the subspace V the vector @g;

J_(00)TR L, (e, )T
CT e e, F

has a high correlation with the vector ®{ where the correlation is calculated using
Eq.(2.39) as:

2
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Nomenclature

The general notation used in the thesis is as follows: The matrices are shown in bold
face upper-case letters, e.g. X, the vectors in bold face lower-case letters, e.g. x,
and, the components of matrices and vectors as well as scalars are in italic lower-case
letters, e.g. x. The superscripts and the subscripts written in italic letters represent
indices, e.g. x; where ¢ may take any defined value. When normal letters are used as

superscripts or subscripts, it stands for an abbreviation of a name, e.g. x; where “i

[15%2

stands for “internal”.

Roman symbols

=25

g

active set

bias vector

vector of physical degrees of freedom
index set for the equality constraints
residual force vector

a basis vector in the subspace that contains the approximations of the
residual force vectors

error function

regularization function

feasible set

the basis of the subspace that spans the tth residual constraint mode
index set for the inequality constraints
identity matrix

stiffness matrix

reduced stiffness matrix

residual stiffness matrix

Lagrange function

likelihood function

mass matrix

reduced mass matrix

residual mass matrix

the number of the binomial series terms
the number of the internal d.o.f.

the number of the constraint modes
truncated number of normal modes
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D RO T =

<MK E g A

N <>

number of design variables

Kriging model parameter

generalized degrees of freedom

the number of data points

reaction forces acting on the interface

residual reaction forces acting on the interface

residual displacement matrix

the vectors that are going to be employed to enrich the initial fixed
interface normal mode set

residual displacement vector

kth binomial series term for the ¢th residual constraint mode

residual force matrix

the basis of the subspace that contains the approximations of the residual
force vectors

transformation matrix

weight matrix (in Chapter 4)

weight vector

design variables

a matrix including the sample points

unknown coefficients (in Chapter 2), a vector including the output values
(in Chapter 4)

a vector including the predictions of y

NN model parameters

Greek symbols

v

\1;(1)(.)
\1/(2)(.)
AW

e

SIS~ )
[\

constraint mode matrix (in Chapter 2), correlation matrix (in
Section 4.3)

tangent sigmoid basis function

linear basis function

residual constraint mode matrix

normal mode matrix

Lagrange multiplier vector (in Chapter 3)
regression constant (in Chapter 4)
natural frequency

spectral matrix

vector of errors

index set for the equality constraints
Kriging model parameter

mean (in Section 4.3)

variance (in Section 4.3)
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Operators
dim(-) dimension
det(+) determinant
()T transpose
()1 inverse
-1 norm
[ absolute value
V() gradient
Vx(+) gradient with respect to x
Vix(*) Hessian matrix with respect to x
Abbreviations
BS Binomial Series
CA Combined Approximations
CB Craig-Bampton
CMS Component Mode Synthesis
DOCE Design of Computer Experiments
DOE Design of Experiments
d.o.f. degrees of freedom
ECB Enriched Craig-Bampton
FE Finite Element
FLOPs FLoating-point OPerations
GAs Genetic Algorithms
KKT Karush-Kuhn-Tucker
LHS Latin Hypercube Sampling
LM Levenberg-Marquardt
MAC Modal Assurance Criterion
MLHO Multi-Level Hybrid Optimization
MSLO Multi-Start Local Optimization
NLP Non-Linear Programming
NNs Neural Networks
SBO Surrogate-Based Optimization
SQP Sequential Quadratic Programming

General superscripts and subscripts

cth component
b boundary part
interior part

C

[

Py

)
)
)
)
)
)
)

initial quantity
HL quantity corresponding to Hidden Layer
OL quantity corresponding to Output Layer
(®) ith sample
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