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1
Introduction

1.1 Liquids

Liquid is the state of matter with a fixed volume, but which canstill deform con-
tinuously under influence of a shear stress. A fluid is called Newtonian, when the
relation between the shear stressτ and the shear ratėγ is linear and passes through
the origin. The constant of proportionality is the coefficient of viscosityµ , which is
a liquid property that describes the resistance of the fluid to deformation.

A non-Newtonian fluid is a fluid whose flow properties differ inany way from
those of Newtonian fluids. Most commonly the viscosity of non-Newtonian flu-
ids is dependent on shear rate or shear rate history. However, there are some non-
Newtonian fluids with shear-independent viscosity, that nonetheless exhibit normal
stress-differences or other non-Newtonian behavior. Therefore, although the concept
of viscosity is commonly used in fluid mechanics to characterize the shear properties
of a fluid, it can be inadequate to fully describe non-Newtonian fluids.

1.1.1 Shear thinning and shear thickening

Conceptually, non-Newtonian fluids can be very roughly categorized into two groups,
the shear thinning and the shear thickening liquids. Shear thinning liquids show a
decrease in apparent viscosity with increasing shear rate,whereas shear thickening
liquids show the opposite, namely an increase in apparent viscosity with increasing
shear rate (see Fig. 1.1). An example of a shear thinning material is paint. When paint

1
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Figure 1.1: Schematic explanation of the difference between Newtonian and non-
Newtonian fluids. The horizontal axis shows the shear rate (s−1), which provides the
amount of shear deformation that is applied per second. The vertical axis shows the
liquid’s viscosity (Pa·s).

is applied the shear created by the brush or roller will allowthem to thin and cover a
surface nice and evenly, and it will thicken again afterwards, which avoids drips and
runs. Other examples of everyday shear thinning fluids are ketchup, whipped cream
and nail polish. Most shear thickening fluids are suspensions, which are the materials
that are the center of this thesis.

Non-Newtonian fluids have been studied through several other rheological prop-
erties which relate stress and strain rate under many different flow conditions, such
as oscillatory shear, or extensional flow which are measuredusing different devices
or rheometers.

1.1.2 Suspensions

Suspensions consist of a heterogeneous liquid, containingparticles that are larger
than 1µm. Smaller particles are able to move due to Brownian motion,whereas for
larger particles this will be negligible, and external forces will dominate. Suspensions
are of great practical interest because they occur frequently in everyday life. These
can have desirable properties in a natural or fabricated product (thickening of sauces)
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or undesirable ones (unwanted suspension during industrial processes). Some fa-
miliar suspensions include those in foods (puddings, sauces), pharmaceutics (cough
syrups, laxatives), household products (inks, paints, andwaxes), and the environment
(sediments, sewage). In spite of their significance, the flowof dense suspensions re-
mains far from understood.

Almost all suspensions are found to be shear thickening under the right circum-
stances [1]. These circumstances are a combination of liquid and particle properties,
as well as the dynamical history of the suspension. The stress-strain curve will in
general be not as simple as sketched in Fig. 1.1. Most suspensions will actually show
a slight shear thinning for low shear rates which will, at a critical shear rate, abruptly
change into a shear thickening regime [1–5]. When increasing the shear rate even fur-
ther, we may either observe another regime of shear thinning[4], stay at a constant
value of viscosity, or witness fracturing of the suspension[6].

The regions in which a suspension, or another particulate system, either flows or
jams have been investigated quite intensively, and the variables that control in which
state one will be are known as well [7]. The behavior of these materials, however, is
not completely understood at this point. Besides this, current models describing shear
thickening (and other non-Newtonian phenomena), usually do not take into account
the deformation history of the liquid.

Recently, dense suspensions were found to show remarkable behavior in less
traditional experiments, which can not be explained by results from rheometry alone,
and thus showing the shortcomings in our knowledge of these liquids. The main
purpose of this Thesis is to connect this remarkable behavior of dense suspensions to
the dynamics of the particle phase in it, which behaves as a granular system that may
jam or unjam while the suspension is flowing.

1.2 Vibrating liquids

One of the systems alluded to in the previous Section is a thinlayer of dense suspen-
sion which is vibrated vertically and then perturbed, leading to localized structures.
The free surface of a fluid at rest in a container is flat. When this flatness is dis-
turbed, a restoring flow will flatten out the surface again (aslong as there is no or
negligible yield stress in the fluid). When the container of fluid is vibrated, however,
a wide variety of interface phenomena can be observed. The most well-known of
these, is that a sinusoidal acceleration produces Faraday waves [8]. As the study and
understanding of such spatially extended patterns in out-of-equilibrium systems has
matured, attention has turned to localized structures. There are many examples of
such localized structures in the Faraday system: pattern defects, solitons, localized
jets, and oscillons. These structures usually are period-doubled, which means that
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Figure 1.2: Localized structure (fingerlike protrusion), surrounded by Faraday waves
in a vibrated cornstarch suspension.

their frequency is half that of the driving. Recently, a new class of localized struc-
tures, namely kinks and persistent holes [9, 10] was discovered in the Faraday system
with a particulate suspension as the working fluid. These structures need a manual
disturbance in the liquid to start, and are markedly different from the other localized
structures: They oscillate along with the driving frequency around an unstable state.
In Fig. 1.2, an example of such a localized structure in a Faraday system is shown.

The question that arises here is how the vibrations induce these structures in the
liquid. Other than that these phenomena are most likely to beconnected to the shear-
thickening properties of the suspension and a change from a liquid to a more solid-
like, jammed state, it is unknown what mechanism causes these shapes.

Research to jamming up to now has focussed on jamming in particulate systems
which are quasistatic. In the vibrated system, however, this is of course not the case.
This thesis will put the focus on such systems, far from rest.We will have a deeper
look in the phenomenology of vibrated suspension, with the objective of unravelling
in detail to how the properties of the particles in the suspension influence the behavior
of the suspension.

The vibrating system, however, is a complicated system in which driving and re-
sulting movement are in different directions. Besides, thedriving is not a constant,
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which also adds to the complexity of the problem. Therefore we also turn our atten-
tion to a simpler system in which there is movement in a singledirection only and
a constant driving force, namely an object settling under gravity in a deep bath of
liquid.

1.3 Impact on and settling in liquids

Upon impact on a liquid surface –depending on both object andliquid– a splash will
be created or the liquid will close around the object. The object will subsequently
continue to move downward. In the first case however, the object will also create an
air void behind itself, which will close due to hydrostatic pressure. When the liquid
pinches off in this air void, sometimes a strong jet will be created, shooting out of
the liquid bath. When the object travels through the liquid it will at a certain moment
find a balance in forces, usually consisting of a driving versus a drag force, and will
therefore reach a terminal velocity. When an object falls vertically, driving will be
gravity, and the terminal velocity will be kept until a new force comes into play, most
likely a full stop on the bottom of the liquid bath.

In some fluids, the object’s velocity is less straightforward, as forces that the
liquid project on the object are not constant [11–13], and thus lead to a velocity
which is not constant. We will perform this same experiment in a deep bath of various
suspensions, where we will show some very unexpected settling behavior. A complex
rheology and jamming will be shown to at least partly explainthis behavior, which,
however, will turn out to be very specific to only one kind of suspension, namely a
cornstarch suspension. The main question here is whether this system will give us
an insight into how an external force can lead to (local) changes in the suspension,
leading to the phenomena we observe.

1.4 Granulates

The term liquid bath that we used above, can actually be interpreted in a very broad
sense, as a granular system can also behave as a liquid, underthe right circumstances.
Granular materials consist of discrete macroscopic particles which interact mainly
through contact forces. In large quantities they can behavelike a solid, a liquid, or a
gas but often behave differently from what would be expectedof these phases [14].
A few every day examples are sand, pills and grains, but also the flow of icebergs in
the oceans and cars on the road can be seen as granular ‘materials’.

When in a very dilute state, a granular bed can behave remarkably similar to
a liquid bath; when an object is thrown in either of those two systems, a splash is
formed at impact and after a short time a jet shoots out of the bath. The physics
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Figure 1.3: Examples of a granular solid, liquid, and gas.

behind this granular jet has been studied extensively sinceits discovery [15–31], and
in this Thesis, the effect of the proximity of the container walls will be investigated.

Such a dilute granular bed is actually quite similar to a suspension, also consisting
of particles with a surrounding fluid, in this experiment air, and thus there are likely
to be parallels with the (jamming) behavior of suspensions.

1.5 Guide through the thesis

Through our experiments we aim at obtaining a better understanding of suspensions.
In our settling experiment we take a deep bath of suspension and let different objects
impact onto and settle inside the suspension. We observe several unexpected phe-
nomena during the settling of the objects, which are discussed and, where possible,
explained in chapters 2 and 3. In chapter 4 we will have a look in the more complex
system of a vertically vibrated layer of suspension. For various suspensions and shak-
ing parameters, we see a wide variety of phenomena beyond those reported in earlier
works [9, 10, 32]. Chapter 5 focuses more specifically on the dynamics of holes in
various vibrated liquid systems. In chapter 6, we will return to the impact/settling
experiment, but now in a very loose, granular medium. Where we observed no jets
for dense suspensions, we do see a granular jet in this case and describe its char-
acteristics. In addition we have a look at the trajectory of the impacting sphere for
different experimental parameters. In chapter 7 we will draw conclusions based upon
the work described in this thesis.
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2
Nonmonotonic settling of a sphere in a

cornstarch suspension ∗

Cornstarch suspensions exhibit remarkable behavior. In this chapter, we present two
unexpected observations for a sphere settling in such a suspension: In the bulk of the
liquid the velocity of the sphere oscillates around a terminal value, without damping.
Near the bottom the sphere comes to a full stop, but then accelerates again toward
a second stop. This stop-go cycle is repeated several times before the object reaches
the bottom. We show that common shear thickening or linear viscoelastic models
cannot account for the observed phenomena, and propose a minimal jamming model
to describe the behavior at the bottom.

∗Published as: Stefan von Kann, Jacco H. Snoeijer, Detlef Lohse, and Devaraj van der Meer, Non-
monotonic settling of a sphere in a cornstarch suspension, Phys. Rev. E.84, 060401(R) (2011).
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12 CHAPTER 2. NONMONOTONIC SETTLING

2.1 Introduction

Concentrated particulate suspensions consist of a homogeneous fluid containing par-
ticles, larger than 1µm. They can be found everywhere, and their flow is important
in nature, industry, and even health care [1]. In spite of their significance, many as-
pects of the flow of these dense suspensions remain poorly understood. In order to
study these materials, people have used methods inspired byclassical rheology, and
typically characterized them in terms of a constitutive relation of stress versus shear
rate [2–6]. A general result is that, when increasing the shear rate, dense suspensions
first tend to become less viscous (shear thinning) and subsequently shear thicken.

Probably the most conspicuous example of a dense suspensionis formed by a
high concentration of cornstarch in water. Recent rheological experiments in corn-
starch have revealed the existence of a mesoscopic length scale [6, 7], a shear thinning
regime that terminates in a sudden shear thickening [8], a dynamic jamming point [4],
and fracturing [9]. Merktet al.[10] observed in a vertically shaken, thin layer of corn-
starch suspension that, among other exotic phenomena, stable oscillating holes can
be formed at certain frequencies and amplitudes [10, 11], which were subsequently
described using a phenomenological model based on a hysteretic constitutive equa-
tion [12]. At present, however, we are still far from a detailed understanding of dense
suspensions.

In this chapter we subject a cornstarch suspension to a basicexperiment, in which
we observe and describe the settling of a spherical object ina deep bath of suspension.
This yields two interesting observations. In the bulk, we find that the object velocity is
oscillating in addition to going toward a terminal value. Near the bottom we observe
a second phenomenon: The object comes to a full stop before the bottom, but then
accelerates again, and this stop-go cycle can repeat up to seven times. We will show
that both bulk and bottom behavior are conceptually different from that observed in a
wide range of other fluids. We propose a jamming model for the stop-go cycles near
the bottom that specifically includes the liquid-grain interactions.

2.2 Setup

Our experimental setup is shown in Fig. 2.1(a). It consists of a 12× 12× 30 cm3

glass container containing a mixture of cornstarch and liquid. For the liquid we use
either demineralized water or an aqueous solution of CesiumChloride with a density
of 1.5 g/cm3, matching the density of the cornstarch particles. Experiments actually
showed negligible differences between the density-matched and the unmatched liq-
uid, except that for the unmatched liquid the suspension hasto be stirred well prior to
the experiment to counteract sedimentation. The cornstarch particles [Fig. 2.1(b)] are
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Figure 2.1: (a) Schematic view of the setup, consisting of the container filled with the
suspension, the settling sphere with tracers attached, anda high-speed camera. For
convenience the positive direction of the vertical coordinatex is chosen downward,
with x = 0 located at the bottom of the container. (b) Microscopic picture of the
cornstarch grains.

irregularly shaped and have a relatively flat size distribution of 5-20µm. Although
we have varied the packing fractionφ of the cornstarch, for the data presented here
we have fixed it to the high value ofφ = 0.44, for which the phenomena of interest
are particularly pronounced. All phenomena actually appear whenφ ≥ 0.38. In a
suspension of similarly sized spherical particles, we did not observe the phenomena
reported here.

The settling sphere is ad = 4 cm diameter pingpong ball, which is filled with
bronze beads to vary the buoyancy corrected mass,µ = msphere− ρSπd3/6, from 0
up to 137 g. Here,ρS is the density of the suspension. To measure the trajectory of
the object inside the suspension, we follow tracers on a thin, rigid metal wire that
is attached to the top of the ball (as in Ref. [13]) with a high-speed camera imaging
at 5000 frames per second. From the trajectories the velocity and acceleration are
determined at each timet using a local quadratic fit aroundt in a time interval of 12
ms, corresponding to 60 measurement points.

In Fig. 2.2(a) we plot the time evolution of the velocity for three different, buoyancy-
corrected massesµ . For the smallest mass (green curve), after some transient directly
following the impact (att = 0), there is an approximately exponential decay toward a
terminal velocity, as would be found in a Newtonian liquid. When we increaseµ , we
observe a much more abrupt decrease toward a terminal velocity, but in addition there
are oscillations around this terminal value. This is seen most clearly for the highest
mass in Fig. 2.2(a) (point 1). Second, instead of stopping ator very close to the bot-
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tom -as would happen in a Newtonian liquid- the object actually comes to a sudden,
full stop (point 3) at∼10 mm above the bottom for the highestµ [Fig. 2.2(a), inset]†.
Surprisingly, the object subsequently reaccelerates (4),only to come to another stop
slightly closer to the bottom. This process is repeated several times until the bottom is
reached. The observed phenomena are also present when we release the sphere from
rest, but to avoid the long acceleration trajectory for small µ we chose to impact the
spheres with non-zero initial velocities to maximize the time in which the bulk effect
is observable. To check that the bulk oscillations are not caused by interactions with
the side walls, we changed the ratio of container to ball size, qualitatively leading to
the same phenomena.

The motion of the settling sphere is described by

mẍ= µg+D, (2.1)

whereD is the drag the sphere experiences inside the suspension andm= msphere+
madded is the total inertial mass, including the added mass for which we will take the
standard resultmadded= 0.5ρSπd3/6. For a Newtonian fluid with a high dynamic
viscosity η we haveD = 3πηdẋ, leading to an exponential decay toward the ter-
minal velocity ẋT = µg/(3πηd). When we estimate the effective viscosity of our
cornstarch suspension by identifying the (average) plateau velocities in Fig. 2.2(a),
we find values betweenη = 0.87 and 3.96 Pa·s, which are of the same order as found
in Ref. [8], leading to Reynolds numbers on the order of Re= 10. This excludes that
we are dealing with path instabilities associated with wakeinstabilities at Re> 100
in Newtonian fluids (see, e.g., Ref. [14]). In addition, we can also rule out a dom-
inant influence from history forces arising from the build upof the boundary layer
for an accelerating object (e.g., the Basset force), as these are expected to be more
pronounced for the lighter objects, in contrast to our observations.

We use Eq. (2.1) to determine the dragD on the sphere as a function of its veloc-
ity [Fig. 2.2(b)]. From this plot it is clear that a given velocity in general corresponds
to more than one value of the drag. Since non-Newtonian fluidswith a monotonic
stress-strain curve -as, e.g., power-law models for shear thickening and thinning flu-
ids or yield stress fluid models- will lead to a single-valueddrag-velocity curve, we
necessarily need to turn to a model that includes some history dependence.

†Careful examination of the data even reveals a very small negative velocity, corresponding to a tiny
bounce upward, which can be interpreted as the elastic response of the jammed region of cornstarch
underneath the sphere.
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Figure 2.2: (a) Settling velocity ˙x(t) of the settling sphere for three different masses
µ = 10, 52, and 122 g. The inset shows the last part of the trajectory |x(t)| for
µ = 122 g. (b) DragD vs. velocityẋ of the heaviest sphere in (a) (µ = 122 g). Note
the different scales in the right and left half of the plot, which correspond to the bulk
oscillations and the stop-go cycles at the bottom, respectively. In the latter, the drag
force that causes the ball to come to an abrupt stop is up to tentimes as large as
gravity, and since it is limited by our fitting procedure, in reality it could be even
higher. The numbers correspond to those in (a).
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2.3 Bulk oscillations

The behavior in the bulk is reminiscent of that of an object sinking in viscoelastic
or stratified liquids for which oscillations are known to occur [15–17], albeit with
two major experimental differences: First, for viscoelastic fluids there is an elastic
rebound (oscillations in the position), whereas for our suspension the object continues
to sink, with oscillations in the velocity. Second, in viscoelastic fluids the oscillation
is observed to be strongly damped. From a modeling perspective, the damping term
in linear viscoelastic fluid models accounts for both the decay of the oscillations
and the approach of a terminal velocity‡. Clearly, such models fail to describe our
observations: The terminal velocity is reached very rapidly after impact, while the
oscillations persist without measurable damping.

Another approach is to consider a hysteretic model, such as the one proposed by
Deegan [12] to explain why the “persistent holes” in vertically shaken cornstarch [10]
do not collapse under hydrostatic pressure. We adapt this model by using a drag
force D in Eq. (2.1) which displays two states of damping with different effective
viscosities:D = −B1ẋ when |ẋ| falls below ẋ1 andD = −B2ẋ when |ẋ| rises above
ẋ2. Here,B1 < B2 andẋ1 < ẋ2, such that there exists a hysteresis loop. Such a model
is capable of at least qualitatively describing any of our measurement series, with
oscillations occurring when|B1ẋ|< µg< |B2ẋ|: After impact, the object decelerates
in the direction of a terminal velocityµg/B2 until it reaches ˙x1, after which a jump
to the lower drag force branch occurs. Then it starts to accelerate toward a second
terminal valueµg/B1, until ẋ2 is reached and the system jumps back to the higher
branch (D=−B2ẋ). This cycle repeats indefinitely, producing undamped oscillations
all the way up to the bottom.

An important drawback of the model, however, is that the experimental findings
can only be reproduced by adjusting ˙x1 andẋ2 for everyµ . This can be appreciated
from Fig. 2.3 where we plot the average (terminal) velocity and the equivalent oscil-
lation amplitude§ of the object in the bulk versusµ . We see that both the terminal
velocity, which should be identified with(ẋ1+ ẋ2)/2 in the model, and the equivalent
amplitude (≈ ẋ2 − ẋ1) increase with the buoyancy corrected mass. A similar trend
was observed in Deegan’s rheometer experiments [12]. This implies that the model
for the drag force cannot be interpreted as a constitutive model for the cornstarch
suspension, therewith greatly diminishing its predictivevalue.

‡We have used the Maxwell model and variations thereof with one spring and up to two dashpots.
§The equivalent oscillation amplitude is defined as

√
2 times the standard deviation of the velocity

signal, which would be equal to the amplitude for a sinusoidal signal.
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Figure 2.3: Bulk oscillations: Average (terminal) velocity, maximum and minimum
velocity (when discernible), and equivalent amplitude of the oscillations, all as a
function of the buoyancy-corrected sphere massµ . Oscillations are only discernible
for µ > 50 g. Clearly, the minimum and maximum velocities -which should be iden-
tified with ẋ1 andẋ2 in the model (see text), respectively- depend onµ .
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2.4 Stop-go cycles

Near the bottom we find a clear hysteresis between a situationwith a sudden, violent
deceleration [the large semicircular excursions of the drag force in the left-hand side
of Fig. 2.2(b)] and a reacceleration period with a small, Stokes-like drag forceD [the
almost horizontal parts in the same plot; also see the corresponding ẋ(t) curves in
Fig. 2.2(a)]. We interpret these stop-go cycles as follows:While the sphere is mov-
ing down, the cornstarch below it is slowly being compressedsuch that at a certain
moment a jammed network of particles forms between the object and the container
bottom. This jammed layer is responsible for the large forcethat brings the sphere to
a full stop. Stresses build up in the network and therefore also within the interstitial
fluid, which triggers a Darcy’s flow in the porous medium formed by the cornstarch
grains allowing the network to relax through (small) particle rearrangements. This
causes the jammed region to unjam and the object will start moving again. Such
hardening of a cornstarch suspension has also been reportedin Ref. [18], where a
ball was pushed toward the bottom, leaving an indent on a claylayer on the bottom.
This was attributed to forces being transmitted through a hardened layer beneath the
ball.

We model this process by coupling Eq. (2.1) to an equation foran order parameter
which indicates whether or not the cornstarch suspension layer between the sphere
and the bottom is jammed. We will take this to be the local particle volume fraction
φ . Whenφ exceeds a critical valueφcr, the layer is jammed and the drag forceD is
assumed to become infinitely large until the sphere comes to astandstill. This leads
to the following modification of Eq. (2.1):

{
mẍ = µg+D when φ < φcr

ẋ = 0 when φ ≥ φcr

}
, (2.2)

with D = −Bẋ. The equation for the time rate of change of the packing fraction φ
should contain a term that increasesφ proportional to the compression rate−ẋ/x of
the -cylindrical- layer of cornstarch below the sphere, which is the process by which
the layer jams. Second, there should be a term that decreasesφ through a relaxation
process toward its equilibrium, bulk valueφeq. This yields

φ̇ =−c
ẋ
x
−κ(φ −φeq), (2.3)

in which c and κ are the proportionality constants of the compression and relax-
ation processes, respectively. Note thatκ−1 constitutes a time scale for the relaxation
dynamics. The critical packing fractionφcr is the value at which the cornstarch sus-
pension dynamically jams. It must lie in between the static,sedimented (0.44) and
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the maximally compacted (0.57) value [19]. From creating the densest, still flow-
ing cornstarch suspension in our laboratory, we estimate that φcr = 0.46 at most.
As a result,φ only varies marginally during the process, in agreement with recent
research where during jamming of a cornstarch suspension ina Couette cell no den-
sity differences where measured within experimental accuracy (0.01) of the Magnetic
Resonance Imaging (MRI) device used [8].

In Fig. 2.4(a) we compare the above model to our experiments for three different
masses. We find that for a single value forκ = 40 s−1 andc= 0.025¶, the model pro-
vides a reasonably good description of the stop-go cycles for all masses. Moreover,
plotting the duration∆t of a stop-go cycle and the maximum velocity ˙xmax reached
after the first stop yields the correct trend [Fig. 2.4(b)]. The fact that the second and
higher stop-go cycles seem to be predicted too strong and fast by the model may be
partly explained from the one dimensionality of the model, which does not fully de-
scribe the geometry of the settling sphere. Indeed, the model matches even better to
preliminary experiments with a cylinder.

Finally, we connect the relaxation time scaleκ−1 from Eq. (2.3) to Darcy’s law
which, combined with continuity for an incompressible medium, leads to the porous
medium equation∂φ/∂ t = (k/ηw)∇2∆P (see Ref. [20]). Hereηw is the dynamic
viscosity of water,∆P the pressure, andk the permeability, which is estimated using
the Kozeny-Carman relationk = d2

g(1− φ)2/(150φ2), with dg the average grain di-
ameter andφ ≈ φeq. The left-hand side of the porous media equation is equal to the
relaxation term in Eq. (2.3), i.e.,κ∆φ . The Laplacian∇2∆P can be estimated as the
ratio of the pressure generated in the packing due to the buoyancy-corrected weight
of the sphere [∆P≈ 4µg/(πd2)] divided by the square of the typical length scaleL
over which the relaxation flow needs to take place to unjam thesuspension. Taking
the best-fit valueκ = 40 s−1 and∆φ = φcr −φeq= 0.02 yieldsL ≈ 100dg. This is of
the same order as the mesoscopic length scale found by Bonnoit et al.[7], dominating
the dynamics of highly concentrated cornstarch suspensions.

In conclusion, we presented experiments of objects settling into a bed of a corn-
starch suspension, which revealed pronounced non-Newtonian behavior: Instead of
reaching a terminal velocity and monotonously stopping at the bottom, the object’s
velocity oscillates within the bulk and goes through a series of stop-go cycles at the
bottom. Common shear thickening and linear viscoelastic models fail to account
for the observed phenomena, and we proposed a jamming model to describe the be-
havior at the bottom, which is in fair agreement with the experiment. A remaining
question is to what extent a similar model would be able to explain the oscillations

¶The valueB we found near the bottom was fixed at 10 kg/s. The best fit for theparametersB1 and
B2 lies at 5 and 15 kg/s if we look at the experiment with the highest mass, thus in the same order of
magnitude.
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Figure 2.4: (a) Stop-go cycles: Comparison of the experimental velocity (solid lines)
and that in the model (dashed blue lines) vs time for three different masses (µ = 17,
77, and 132 g from top to bottom). Note that the time axis has the same scale in
all three plots. (b) Stop-go cycles: Comparison of the reacceleration time∆t (blue
squares) and the maximum velocity ˙xmax (red crosses) reached after the first stop as
a function of the buoyancy corrected massµ , for both the experiment (symbols) and
model (lines).
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in the bulk. One could imagine that during the downward motion a layer of (nearly)
jammed cornstarch forms around the sphere, as also proposedrecently in Ref. [18],
which somewhat increases drag and slows it down. This lower velocity in turn would
allow the relaxation process to dissolve part of the jammed layer and the object would
start to accelerate again. These competing effects would thus induce the oscillatory
motion observed in the bulk. Clearly, more research is necessary to quantitatively
substantiate such a mechanism.
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3
Velocity oscillations and stop-go-cycles: The

trajectory of an object settling in a

cornstarch suspension ∗

We present results for objects settling in a cornstarch suspension. Two surprising
phenomena can be found in concentrated suspensions. First,the settling object does
not attain a terminal velocity but exhibits oscillations around a terminal velocity
when traveling through the bulk of the liquid. Second, closeto the bottom, the object
comes to a full stop, but then reaccelerates, before coming to another stop. This cycle
can be repeated up to 6 or 7 times before the object reaches thebottom to come to a
final stop. For the bulk, we show that shear-thickening models are insufficient to ac-
count for the observed oscillations, and that the history ofthe suspension needs to be
taken into account. A hysteretic model, that goes beyond thetraditional viscoelastic
ones, describes the experiments quite well, but still misses some details. The be-
havior at the bottom can be modeled with a minimal jamming model. This Chapter
provides a more extensive presentation and discussion of the phenomena that have
been introduced in the previous Chapter.

∗Submitted as: Stefan von Kann, Jacco H. Snoeijer, and Devaraj van der Meer, Velocity oscillations
and stop-go-cycles: The trajectory of an object settling ina cornstarch suspension, to Phys. Rev. E.
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3.1 Introduction

A suspension is a heterogeneous fluid that contains dispersed solid particles which
are large enough to sediment over time when undisturbed. They are literally found
all around us and the flow of dense suspensions is important innature (mud slides),
industry (paint), and even health care (blood flow) [1]. In spite of their significance,
the flow of these dense suspensions remains far from understood. In previous studies,
people have used methods inspired by classical rheology, and typically characterized
these materials in terms of a constitutive relation of stress versus shear rate [2–7]. A
general result is that, when increasing the shear rate, dense suspensions first tend to
become less viscous (shear thinning) and subsequently shear thicken.

Probably the most conspicuous example of a dense suspensionis formed by a
high concentration of cornstarch in water, also known as oobleck or ooze. In earlier
work, rheology experiments with cornstarch suspensions have revealed the existence
of a mesoscopic length scale [6, 8], a shear thinning regime that terminates in a sud-
den shear thickening [9], a dynamic jamming point [4], and fracturing [10]. In an ex-
periment that goes beyond the classical rheological ones, Merkt et al. [11] observed
that stable oscillating holes can be formed in a thin layer ofcornstarch suspension,
when shaken vertically at certain frequencies and amplitudes [11]. These holes were
subsequently described using a phenomenological model based on a hysteretic con-
stitutive equation [12]. In other dense suspensions, Ebataet al. found growing and
splitting holes [13, 14], where the first are contributed to aconvection-like flow and
the latter are still not understood. Another set of remarkable observations were made
for settling objects. These displayed non-monotonic settling [15] and jamming be-
tween the object and container bottom was found [15, 16]. At present we are thus
still far from a detailed understanding of dense suspensions, and why different sus-
pensions behave differently.

In this work we subject a cornstarch suspension to a basic experiment, in which
we observe and describe the settling of objects in a deep bathof suspension. The
settling dynamics exhibits two remarkable features that are not observed in other
types of liquids, but also not in other dense suspensions. Inthe bulk, we find that
the object velocity is oscillating in addition to going towards a terminal value. Near
the bottom we observe a second phenomenon: The object comes to a full stop before
the bottom, but then accelerates again, and this stop-go cycle can repeat up to seven
times. Although non-monotonic settling has been observed in various other systems,
like stratified [17] and (visco)elastic [18, 19] liquids, wewill show that both bulk
and bottom behavior in cornstarch are fundamentally different. We study a wide
range of experimental parameters and suspensions to get a detailed insight in these
phenomena, discuss several candidates for the (phenomenological) modeling of the
observed phenomena, and evaluate their appropriateness.
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This chapter is organized as follows. In Section 3.2 we discuss the experimental
setup and some data analysis tools. Subsequently, the main experimental observa-
tions are presented in Section 3.3, where the influence of various parameters such
as the concentration of the cornstarch suspension, the object mass, the object shape
and the container size are discussed. Section 3.4 focusses on the bulk oscillations by
presenting its particular experimental characteristics and by subsequently discussing
the validity of several modeling approaches. The stop-go cycles at the bottom obtain
a similar treatment in Section 3.5, a large part of which is devoted to the comparison
of a jamming model and the experiments, expanding the material presented in [15].
Finally, in Section 3.6 we briefly discuss the settling dynamics in other particulate
suspensions and Section 3.7 concludes the chapter.

3.2 Experimental setup

The experimental setup is shown in Fig. 3.1(a). Objects weredropped into either a
vertical perspex container of size 12x12x30 cm3 or a cylindrical glass container with
a diameter of 5.0 cm, containing a dense mixture of particles and liquid. Forthe
latter, we use either demineralized water or an aqueous solution of Cesium Chloride
(CsCl) with a density of∼1600 kg/m3, which matches the density of the cornstarch
particles. Experimental results actually showed negligible differences between the
density matched and the unmatched liquid, provided that thelatter has to be stirred
well prior to the experiment, to counteract sedimentation.The cornstarch particles
[Fig. 3.1(b)] are irregularly shaped and have an approximately flat size distribution
in the range of 5-20µm, i.e., small and large particles are present in approximately
equal numbers.

The settling objects that were used in this study are stainless steel balls (ρ = 8000
kg/m3), with diameters of 1.6 and 4.0 cm, a 4.0 cm pingpong ball, and a 1.5 cm
diameter hollow cylinder with a flat bottom, and a length, longer than the liquid
bad depth. The latter two can be filled with bronze beads to vary their mass: For the
pingpong ball, the buoyancy corrected mass (µ =msphere−ρSV of the objects, where
ρS is the suspension density, andV is the submersed volume) could be varied from
0 to 137 grams and the actual massm of the cylinder was varied from 40 (empty
cylinder) up to 120 grams. For the cylinder, the buoyancy corrected mass is not
constant over time: The buoyancy increases when the cylinder penetrates deeper into
the cornstarch, such thatµ decreases over time. The results for the cylinder will
therefore be given in terms of the actual mass.

To measure the trajectory of the objects inside the opaque suspension, we follow
tracers on a thin, rigid metal wire that is attached to the topof the object (as in [20])
with a high speed camera imaging at 5000 frames per second. The mass of the wire
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Figure 3.1: (a) Schematic view of the setup, with from left toright: A light source
and diffusing plate, the container filled with suspension, above that the object with
tracers attached, and a high-speed-camera. (b) Microscopic picture of the cornstarch,
used in the experiments.
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Figure 3.2: The velocity ˙x of the settling object versus timet, determined by two
different methods, namely (i) using a local quadratic fit and(ii) employing a first
order difference. The two methods are shown for different time intervals of the fitting
procedures, namely 4.0, 12, and 20 ms, to illustrate the trade-off when choosing
between higher spatial or temporal resolution.

and the resulting buoyancy of the immersed wire are negligible compared to the larger
object to which it is attached. Namely, the mass of the wire isless than 1 gram and the
immersed tail volume is smaller than 0.1 times the volume of the smallest object that
was used. The velocity and acceleration are determined fromthe trajectories at each
time t, using either (i) a local quadratic fit aroundt, or (ii) a direct first and second
order difference, both determined over a time interval of 12ms (corresponding to 60
measurement points). The difference between both methods and the influence of the
interval are illustrated in Fig. 3.2, where we show the results of both procedures for
the velocity of the object during a particularly sensitive part of the trajectory with
abrupt jumps in the velocity. Clearly, when an interval of 4.0 ms (corresponding to
20 measurement points is used, the signal suffers from pixelnoise due to the limited
spatial resolution of our camera. For an interval of 20 ms (100 points) we observe that
a lot of information is lost: The abrupt decreases in velocity flatten out, and also the
maximum and minimum velocities are resolved insufficiently. For the above reasons,
the time interval was fixed to 12 ms, as it showed the best trade-off when choosing
between losing pixel noise due to limits in spatial resolution and losing temporal
resolution. In addition, the local quadratic fit leads to a more accurate determination
of the acceleration than the method using the second order difference.
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3.3 Experimental observations

In this Section we will present the main experimental observations. We will start by
comparing the settling in a viscous Newtonian liquid to the settling in a cornstarch
suspension and show that the behavior of the latter is highlynon-Newtonian. This
will be followed by a discussion of the effects that various parameters have on the
experiment.

3.3.1 General observations

In Fig. 3.3 we plot the time-evolution of the velocity of a steel sphere for two differ-
ent impact experiments: one on glycerin and the other on a cornstarch suspension.
The sphere is released and accelerates up tot = 0, which is the moment of impact.
For glycerin (blue line), a Newtonian liquid, we find the expected behavior for such
a liquid: The sphere gradually decelerates and exponentially decays towards a ter-
minal velocity, which is determined by the object and the liquid properties. The
experiment ends when the object stops at the container bottom. When looking at the
dense cornstarch suspension (black line), we observe some remarkable phenomena:
Upon impact, we first see an abrupt decrease towards a lower velocity, which in re-
cent experiments by Waitukaitiset al. [21] was explained to be caused by jamming
of the suspension upon impact. Subsequently, instead of monotonously approach-
ing a terminal velocity, there appear velocity oscillations around this terminal value:
The object alternately goes through periods of acceleration and deceleration. The
oscillations show no sign of damping out in the time span thatis available to us ex-
perimentally. These extraordinary oscillations are quiteunlike oscillations that have
e.g. been observed in viscoelastic fluids, for which the amplitude rapidly decays. We
refer to the oscillations in our experiment as bulk oscillations, to distinguish them
from the second phenomenon: Instead of stopping at the bottom, the object actually
comes to a sudden, full stop at about 10 mm above the bottom. Surprisingly, instead
of just staying there, the object subsequently reaccelerates, only to come to another
stop a little closer to the bottom. This process repeats itself several times until the
bottom is reached. From here on, we will call these phenomenastop-go-cycles.

As the density matching of such a large bath requires a forbiddingly large amount
of salt, we repeated the experiment in an unmatched suspension. Although the corn-
starch particles are heavier than the liquid, the settling of particles is negligible for at
least several minutes, as we were able to ascertain by performing experiments after
different waiting times after stirring, which showed identical behavior. Most of the
experiments presented in the current chapter are thereforeperformed after stirring
well, but without density matching.

Before taking a more detailed look at the origin of both effects, we will first
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Figure 3.3: The settling velocities ˙x of a steel sphere with a diameter of 0.5 cm in
glycerine (blue line) and a steel sphere of diameter 1.6 cm ina cornstarch suspension
with φ = 0.41 (black line) as a function of timet. The inset shows the last part of the
actual trajectory, clearly showing the stop-go cycles nearthe bottom in cornstarch in
the position versus time curve.
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Figure 3.4: Settling velocity ˙x of a stainless steel sphere (diameter 1.6 cm) in a corn-
starch suspension as a function of timet and for different cornstarch packing fractions
φ varying from 0.35 to 0.41.

discuss how these bulk oscillations and stop-go cycles are influenced by changing
the experimental parameters of the liquid bath and the settling object. We only find
minor changes when varying the impact velocity and the bed depth.

3.3.2 Packing fraction

To determine the influence of the packing fraction, we focus on results of a 1.6 cm
stainless steel ball settling in suspensions of different packing fractions (φ ), whereφ
is the volume occupied by the particles over the total volumeof the suspension. The
velocity of the ball for different concentrations is plotted in Fig. 3.4 as a function of
time. In the plots,t = 0 coincides with the moment of impact on the suspension.

First of all we observe that the velocity of the sphere withinthe suspension has
none of the particular characteristics for cornstarch concentrations up to volume frac-
tions ofφ = 0.38. The behavior is similar to what is observed for a Newtonian liquid
and the only difference is the way the fluid responds upon impact, where we observe
a sudden decrease of the velocity. This may well be connectedto compaction upon
impact as discussed in [21]. While increasing the concentration of cornstarch we
see the velocity drop become more pronounced, which is an indication of a larger
jammed region created upon impact, consistent with the observations in [21]. An-
other observation is that the terminal velocity is smaller and appears to be reached at
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Figure 3.5: The settling velocity ˙x versus timet in a square container with a 12×12
cm2 and a cylindrical container with a diameter of 5.0 cm for a ball of 1.6 cm diameter
impacting with a velocity of 1.5 m/s on a cornstarch suspension with a concentration
of φ = 0.42. For comparison, also the result of a cylindrical disk settling in a quasi-
2D setup is added.

an earlier point in time for higherφ , which can be explained from an overall increase
of the apparent (or average) viscosity of the suspension.

When reachingφ = 0.39, we start to observe the non-monotonic settling behavior
that was discussed in the previous subsection: After impactwe first observe velocity
oscillations in the bulk and afterwards, when the sphere approaches the bottom, the
stop-go cycles. For increasing cornstarch concentration,we observe a significant in-
crease of the amplitude of the bulk oscillations on the one hand, and of the amplitude,
the duration and the number of stop-go cycles on the other. The frequency of the bulk
oscillations seems to be less affected byφ .

Clearly, both phenomena are most pronounced for highφ , which is why for the
remainder of this study we will will fix our bath concentration at the particularly high
valueφ = 0.44, unless specified differently.

3.3.3 Container size

We performed identical impact experiments with the 1.6 cm steel sphere in two differ-
ent containers (one with a circular cross section of 5 cm, andthe other with a square
cross section of 12x12 cm2) containing a single batch of suspension (φ = 0.42) and
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compared the results to see whether the proximity of the sidewalls influences, or
maybe even causes, the observed phenomena. The results are shown in Fig. 3.5.

Already immediately after impact the behavior deviates forthe different contain-
ers: The ball decelerates in both cases, but for the smaller container even comes to
an almost full stop. This is likely to be caused by jamming of the suspension in a
cone-shaped region below the sphere, as observed in [21]. Whereas this jammed re-
gion may move along with the sphere in the larger container, this region may extend
all the way up to the wall of the smaller container, such that the sphere is not able to
move down in that case.

After this initial velocity drop, both experiments reach a terminal velocity, that is
a bit lower for the smaller container. This can be attributedto the proximity of the
container wall as well, which will increase the drag in a similar way as it would in
a viscous Newtonian liquid. The bulk oscillations are discernible in both containers,
but are much less pronounced in the smaller one. This leads tothe important conclu-
sion that the bulk oscillations are truly a bulk effect, i.e., they areweakenedby the
proximity of the side walls rather than being reinforced.

By contrast, the stop-go cycles at the bottom are qualitatively the same, only the
maximum velocities that are reached during the re-acceleration phase differ slightly.
The smaller container again reaches somewhat lower velocities. This may, however,
well be connected to the fact that the terminal velocity is smaller for the small con-
tainer.

In addition to varying the container size, we repeated the experiment in a quasi
two-dimensional setup, in a rectangular container with a cross section of 100× 5
mm2 and a depth of 50 mm, using a cylindrical disk with a diameter of 1.5 cm and
a thickness of 4 mm as a settling object. In this experiment, we hoped to be able
to discern variations in suspension concentration below the settling object. What
we observed however, was that all effects actually fully disappeared due to the large
friction between the object and the lateral container walls. We added this quasi 2D
experiment to Fig. 3.5, where it can be appreciated that the (terminal) settling velocity
is only a few centimeters per second.

3.3.4 Object mass

Whereas in the previous subsections we discussed the influence of the bath proper-
ties on the observed phenomena, we now turn to the settling object itself. First, we
consider the effect of the buoyancy corrected mass (µ = msphere−4/3πr3ρS with ρS

the density of the suspension), by using a hollow pingpong ball, with a radiusr = 2.0
cm, that can be filled with bronze beads to a massmsphere. This allows us to vary the
difference in density between the impactor and the suspension while keeping all other
parameters constant. By completely filling the ball we can reach a maximum density
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Figure 3.6: Time evolution of the velocity ˙x of a hollow pingpong ball filled with
different masses settling in a cornstarch suspension withφ = 0.44. The buoyancy
corrected mass varies fromµ = 10 to µ = 132 gram. Also added is an experiment
with a steel sphere ofµ = 217 gram, with the same diameter (4.0 cm) as the pingpong
ball. The inset shows the frequency of the bulk oscillationsfor the pingpong ball.

of 5.4 ·103 kg/m3, which is around 3.5 times the suspension density, but lowerthan
the density of the steel sphere used before (ρsteel≈ 8.0 ·103 kg/m3). The resulting
velocity versus time curves for these measurements can be found in Fig. 3.6.

We observe no pronounced bulk oscillations (and even something that looks like
an exponential decay) for the experiments with lighter spheres (up to 90 grams, cor-
responding toµ = 47 g). When we keep increasing the object’s mass, the bulk oscil-
lations appear. These start out at very small amplitude, butincrease with increasing
mass. Another remarkable observation is that the oscillation period is only slightly
varying over the entire range of masses where the bulk oscillations are visible: While
the buoyancy corrected mass grows over a factor 2, the oscillation frequency only
shows a slight decrease of around 20 percent (Fig. 3.6, inset).

In contrast to the bulk oscillations, the stop-go cycles areobserved for all masses,
even for the smallest buoyancy corrected mass ofµ = 10 g which corresponds to
a density difference between object and suspension of only 23 %. The magnitude
of the stop-go cycles, i.e., both the maximum velocity and the number of cycles, is
found to increase with the mass of the object.

For comparison, we also used a massive steel sphere, withr = 2.0 cm, and
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µ = 217 g. Thus we obtain an even higher density contrast, but at the expense of
changing the surface of the object. During settling of this sphere, we observe the
same phenomena as for the pingpong ball. The increasing trend we found for the
amplitude of the bulk oscillations and the maximum velocityand number of stop-go
cycles is continued. The main difference is the fact that we measure a frequency
which is a factor 1.5 lower for the bulk oscillations. This may be connected to the
different structure of the surface of the object.

3.3.5 Object shape

Besides changing the mass of the object, we also varied its shape. We used a hol-
low cylinder with a diameter of 1.5 cm and a height that exceeds the depth of the
cornstarch bath. This changes two aspects: First, the object has a larger contact area
with the liquid, and second, we have a flat bottom rather than acurved one. The fact
that the cylinder is longer than the depth of the bad allows usto keep it aligned verti-
cally while it is settling towards the bottom. However, thisimplies that the buoyancy
corrected mass changes with the object’s position. Finally, due to the fact that the
cylinder is hollow, we can vary the mass in the same way as we have done for the
pingpong ball, namely by filling it with bronze particles.

All the phenomena observed for the sphere are also present for the settling cylin-
der (Fig. 3.7): We observe both the bulk oscillations and thestop-go cycles near the
bottom. A few differences are clearly visible as well: First, the bulk oscillations are
significantly larger in amplitude, which could be either dueto the increase in contact
surface or to the flatness of the bottom of the cylinder. The frequency is again in-
dependent of the mass of the object, however it is approximately a factor two lower
than that observed for the sphere. Although only a few oscillations are visible, they
appear undamped for the higher masses, but seem to be damped for the lowest mass.
This is most likely due to the change in the buoyancy corrected mass, which for this
lightest case decreases from 35 to 20 grams between impact and the first stop-go-
cycle. Second, we see that the number of consecutive stop-gocycles is larger than
for the sphere. We observe up to seven cycles, while for the sphere this was limited
to only two or three cycles. In addition, we observe that the first stop appears at
a larger distance from the bottom, namely several centimeters as compared to typi-
cally one centimeter for the sphere. Finally, the drop in maximum velocity between
consecutive stops is smaller for the cylinder.
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Figure 3.7: Time evolution of the velocity ˙x of a settling cylinder in a cornstarch
suspension (φ = 0.44) for different cylinder massesmcyl, varying from 40 to 120
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3.4 Bulk oscillations

When an object is settling in a fluid it can be described by the following equation:

mẍ = µg+D(x, ẋ, t), (3.1)

in which x(t) is the trajectory of the object, wherex= 0 has been chosen to coincide
with the bottom of the container andx increases in the downward direction. Fur-
thermore,g= 9.81 m/s2 is the acceleration of gravity,µ is the previously introduced
buoyancy corrected mass, andm= mob ject+madded is the sum of the mass of the
object and the added mass. For a sphere we use the traditionalresult for Newtonian
liquidsmadded= 0.5ρSVspherewith Vspherethe volume of the sphere andρS the density
of the suspension. Finally,D is the drag force which in general is a function of the
object’s velocity ˙x and positionx. The drag force could even be a functional ofx(t)
if the history of the objects trajectory is important (whichwill indeed be argued to be
the case). The aim of the next two Sections is to find an appropriate model for the
drag forceD.

In the present Section, we will start with the bulk oscillations. We will attempt
to describe this phenomenon using various models, and discuss their appropriate-
ness. As we are using a shear thickening suspension, we startoff with traditional
shear thickening models, that have a monotonic stress-strain curve. We then consider
several viscoelastic models, which are appropriate for thedescription of the position
oscillations that have been observed in viscoelastic liquids. Finally, we investigate a
hysteresis model based on a model proposed by Deegan [12] in the context of holes
in vibrated cornstarch layers [11].

3.4.1 Shear thickening model

As cornstarch is well-known for its shear thickening behavior, the most logical first
model to try is a shear thickening model, i.e., a model in which the viscosity increases
with increasing shear rate. Or, as an alternative one could think of a model that
combines a shear rate region where the viscosity is decreasing with a region where it
is increasing to model the shear-thinning to shear-thickening transition that has been
observed in rheometer experiments in both cornstarch and other suspensions [2–7].
All these models have in common that the stress increases monotonically with the
strain rate, which will lead to a monotonically increasing dragD as a function of the
magnitude of the objects settling velocity ˙x.

We use Eq. (3.1) to determine the drag force from the experimental trajectory, i.e.,
when we computeD≡ mẍ−µg for the measured acceleration ¨x and plot the result as
a function of the velocity ˙x we obtain Fig. 3.8. Clearly, during the bulk oscillations
the dragD is not a monotonic function of ˙x. Therefore, we can immediately discard



3.4. BULK OSCILLATIONS 37

0 0.2 0.4
−12

−10

−8

−6

−4

−2

0
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Figure 3.8: The dragD = mẍ−µg on a pingpong ball with buoyancy corrected mass
µ = 122 g versus its velocity ˙x, calculated from the object’s trajectoryx(t) during a
settling experiment in a cornstarch suspension withφ = 0.44.

shear thinning/shear thickening models where the drag (stress) is a monotonically
increasing function of the velocity (strain rate). We therefore necessarily need to turn
to a model in which the object’s history is important.

3.4.2 Viscoelastic model

One of the most conspicuous candidates to model the oscillatory behavior is to try
a (linear) viscoelastic model, not in the least because oscillations in the position of
settling objects have been observed in viscoelastic liquids [18] and modeled by such
models [19]. The simplest of such models is the Maxwell fluid,in which the total
deformation is decomposed into an elastic term in series with a viscous term. For
the elastic part, stress is proportional to strain and the proportionality constant is an
elastic modulus; or the viscous part stress is proportionalto strain rate with (dynamic)
viscosity as a proportionality constant. This translates into the following model for
the dragD in Eq. (3.1)

−ẋ=
Ḋ
E
+

D
η
, (3.2)

whereE corresponds to the elastic part of the drag term and has the dimensions
of a spring constant (elastic modulus times a length scale),andη corresponds to the
viscous part and has the dimensions of viscosity times length. The minus sign reflects
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the fact that the direction drag force will generally be opposite to the velocity of the
object. The above equation can be integrated to obtain an expression for the drag in
terms ofẋ(t)

D =−E
∫ t

t ′=0
exp

[
−E (t − t ′)

η

]
ẋ(t ′)dt′ . (3.3)

As is shown in Section 3.8, the equation we obtain when we insert this expression
into Eq. (3.1) can be solved exactly using Laplace transformations, leading to

ẋ(t) = uT + e−αt
[
v0cosωt +

(
µg
ωm

+
Ev0

2ωη

)
sinωt

]
, (3.4)

in which the damping rateα , angular frequencyω , the terminal velocityuT , andv0

are given by

α =
E
2η

; ω =
√

ω2
0 −α2 =

√
E
m
−
(

E
2η

)2

;

uT =
µg
η

; and v0 = ẋ(0)− µg
η

. (3.5)

Indeed, this solution displays oscillatory behavior as theobject approaches its ter-
minal velocity. However, the terminal velocity is directlycoupled to the damping fac-
tor α = E/(2η), which in turn is coupled to the (minimum) amplitudeµg/(ωm) .
µg/(ω0m) = µg/

√
mE≡ A which is obtained by settingv0 = 0 in Eq. (3.4). So when

we divide the amplitude over the terminal velocity we obtain

A
uT

=
µg√
mE

η
µg

= 1
2

2η/E√
E/m

= 1
2

ω0

α
= π

τ
T
, (3.6)

in whichτ = α−1 is the damping time andT = 2πω−1
0 is the period of the oscillation.

This implies that in order to have an amplitude (much) smaller than the terminal
velocity, τ/T needs to be (much) smaller than one, i.e., the damping time should
be smaller than the oscillation period. Vice versa, to obtain oscillations that do not
damp for several periods, one needs an amplitude which is several times larger than
the terminal velocity. Therefore we conclude that it is impossible to describe the bulk
oscillations observed in cornstarch within the context of aMaxwell fluid.

It is possible to extend the Maxwell fluid to more complicatedlinear viscoelastic
models, like the extended Maxwell fluid and the modified Kelvin-Voigt solid dis-
cussed in Section 3.8, that contain additional dissipativeelements in the hope that
this would decouple terminal velocity, damping constant, and oscillation amplitude.
However, as shown in Section 3.8 all of these models have a coupling similar to the
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one expressed in Eq. (3.6) which makes them unsuitable for the description of the ob-
served phenomena. The conclusion is that the bulk oscillations in cornstarch cannot
be described by a simple linear viscoelastic model like the ones we considered here.
Clearly, one could think of turning to complicated viscoelastic models with multiple
length and time scales. However, such an approach would not teach us much about
the system.

3.4.3 Hysteresis model

We therefore now turn to a model that has been proposed for thebehavior of a corn-
starch suspension in a different setting, namely a vertically shaken one. As mentioned
in the introduction, Merktet al. [11] have observed long-living stable holes in a ver-
tically shaken cornstarch suspension, which they attributed tentatively to the shear
thickening properties of cornstarch. In a later paper, Deegan proposed a model to
describe this behavior based on a hysteretic rheology [12].More specifically, he pro-
posed a coexistence of two branches in the stress versus strain rate diagram of the
cornstarch suspension, the existence of which was backed upby oscillatory shear
measurements in a cone-plate rheometer. This phenomenological model is able to
predict the existence of growing holes in a cornstarch suspension.

We now apply this idea for our experiment of an object settling in a deep bed of
cornstarch, using Eq. (3.1) with a hysteretic model for the drag force. More specifi-
cally

D(ẋ) = −B(ẋ)ẋ, (3.7)

where

B(ẋ) =

{
B1 whenẋ falls belowu1,

B2 whenẋ rises aboveu2.
(3.8)

Here,u1 andu2 (with u2 > u1) are the turnover velocities of the system and the drag
coefficientsB1 andB2 (with B2 > B1) are the slopes of the two branches, namely one
corresponding to a low viscosity (B1) and the other to a high one (B2). Betweenu1

andu2 the system can be in either of the two branches, as illustrated in Fig. 3.9(a).
How this model forD is able to produce oscillations in the context of Eq. (3.1) is

illustrated schematically in Fig. 3.9(b). After impact, the object will be in the higher
branch with drag coefficientB2 and will decelerate until it reaches the lower boundary
u1. There the system will switch to the lower branch and its dragcoefficient will
decrease toB1. As this results in a drag force smaller than the downwards acceleration
of gravity, the object will accelerate again towards the terminal velocityẋ1 = µg/B1,
which is the steady state of Eq. (3.1) when the system is in thelower branch, i.e.,
D = −B1ẋ. Before reaching ˙x1 however, the object will hit the velocityu2, where
the drag coefficient jumps toB2. Now the object will decelerate again towards a
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(a)

(b)

Figure 3.9: (a) Schematic of the drag forceD defined by Eq. (3.7) as a function of
the velocityẋ, with the hysteresis loop between ˙x= u1 andẋ= u2. (b) Schematic of
the oscillatory solution of Eq. (3.1) using the drag force of(a): For suitable values of
B1, B2, u1, andu2 the system alternately switches from the low to the high branch in
the hysteresis loop and back. In these schematics, all quantities are in arbitrary units.
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second terminal velocity ˙x2 = µg/B2 (corresponding to Eq. (3.1) in the higher branch
D=−B2ẋ), but before arriving there,u1 will be reached again. This restarts the cycle
that will now repeat over and over again.

To relateB1 andB2 to experimental observables, we solve equation 3.1 for ˙x in
each of the two branches, starting at an arbitrary timet = t0 at one of the boundaries
u1 or u2 of the hysteresis loop. This leads to

ẋ= ẋi +(ui − ẋi)exp

[−µBi

m
(t − t0)

]
, (3.9)

for i = 1,2. Here, ˙xi ≡ µg/Bi are the terminal velocities introduced above.
Now we linearize this equation int betweenu1 andu2. This leads to the following

expression forB1

B1 =

(−u2+u1

∆t1

m
µ
+g

)
1
u1

, (3.10)

and similarly forB2 with the indices 1 and 2 interchanged. Here,∆t1 and∆t2 are the
time intervals it takes for the object to accelerate or decelerate from the one switching
velocity to the other. By determining∆t1, ∆t2, u1, andu2 from our experiments we
can now calculateB1 andB2.

The next step is to compare the model to the experiments. First we assumed
that the drag coefficientsB1 andB2 are determined by fluid properties, i.e., that they
are independent of the object mass or velocity. We thus calculated the drag coeffi-
cients for the experiment with the highest mass and applied them to the other masses.
Here, we do have to adjust the turnover velocitiesu1 andu2, to obtain an oscillation
between the observed velocity boundaries. The result is shown as the solid lines in
Fig. 3.10(a). We apply the model after all impact related effects have disappeared, and
clear fluctuations around a terminal velocity are visible. For the four measurements
betweenµ = 62 andµ = 132 gram in Fig. 3.10(a), we see that the model fits nicely
for the heaviest balls, and quite well for the lighter balls,from which we conclude
that the assumption of constantB1 andB2 is reasonable. This can also be checked by
calculatingB1 andB2 for every experiment separately, the results of which are shown
in Fig. 3.11. We observe that bothB1 andB2 only vary very slightly for all masses.

For further comparison, we plot the hysteresis loop in a dragversus velocity plot
for both the experiment and the model in Fig. 3.10(b). It is clear that the modeled
loop is a very simplified representation of the actual loop, and that, especially for the
lower masses the variations in the observed accelerations are considerably smaller
than those of the model.

We compared the experiments with a spherical object to thosewith a cylinder
(discussed in Section 3.3.5). The cylinder diameter is 1.5 cm, which is smaller than
the ball, and also we now have a flat bottom instead of a round one. Due to the length
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Figure 3.10: Comparison of the experimental results to the hysteresis model. (a) In
the region where bulk oscillations are observed, the velocity of the sphere is plotted
versus time for four different buoyancy corrected masses (µ = 62, 82, 102, and 132
gram) for both the experiment (colored symbols) and the model (black lines), where
the values forB1 andB2 have been obtained from the experiment with the highest
mass. (b) The corresponding dragD = mẍ−µg versus velocity ˙x plots also for both
the experiment (colored symbols) and the model (black lines).
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Figure 3.11: The drag coefficientsB1 and B2 as a function of buoyancy corrected
massµ , now calculated from the experiment using Eq. (3.10) separately for each
value ofµ . Below µ = 62 g no bulk oscillations could be discerned. The different
symbols correspond to two different series of experiments.

of the cylinder we expect more interaction between the liquid and the object, but we
also have to keep in mind that we now have a buoyancy that increases during sedi-
mentation. Again, we calculateB1 andB2 from the measurements with the heaviest
mass, where the effect is most pronounced, and adjustu1 andu2 for each mass. The
results are shown in Fig. 3.12 where we see that (as expected)the fit is very nice for
the highest mass and that there are larger discrepancies forthe lower masses. The
used values forB1 andB2 for the cylinder are respectively approximately a factor 2
lower and higher compared to the values used for the sphere, 3and 35 for the cylinder
vs. 7 and 18 for the sphere.

Concluding this Section, we found that traditional shear-thinning/shear-thickening
models are not able to describe the bulk oscillations due to the presence of history
dependence (hysteresis) in the experiments. In addition, we found that simple lin-
ear viscoelastic models fail to describe the observed oscillations due to an intrinsic
coupling between the terminal velocity and the oscillationamplitude in these models
that is inconsistent with the experiments. The best candidate is a description in terms
of a hysteretic drag term inspired by the work of Robert Deegan [12]. One could
say that the major drawback of the model is that it is entirelyphenomenological, i.e.,
a physical mechanism to relate its parameters to the physicsof the system, is still
lacking.

The experiments point to a physical mechanism where the origin of the oscil-
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Figure 3.12: Comparison of the experimental results to the hysteresis model for a
cylindrical object in the region where bulk oscillations are observed. The velocity of
the cylinder is plotted versus time for three different masses (mcyl = 40, 80, and 120
gram) for both the experiment (colored symbols) and the model (black lines), where
the values forB1 andB2 have been obtained from the experiment with the highest
mass.
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lations is a modulation on top of the terminal velocity, due to periodically changing
properties in the liquid. More specifically, one could imagine a jammed region around
the object which grows when it moves fast, through which the drag increases causing
the object to decelerate. The object would than obtain a lower velocity which would
allow relaxation and shrinking of the jammed layer, i.e., a decrease of the drag and
an acceleration of the object. For the bulk oscillations there are many open questions
to propose such a model, but for the stop-go cycles at the bottom the formulation of
such a model is feasible, as we will show in the next Section.

3.5 Stop-go cycles

As was shown in Section 3.3, we always observe stop-go-cycles near the bottom at
cornstarch concentrations higher thanφ = 0.38. Here, the object suddenly stops one
or a few centimeters above the bottom of the container. Then it accelerates again and
comes to another abrupt stop a little closer to the bottom. This cycle repeats itself
several times.

As explained in [15], we interpret these stop-go cycles as follows: While the ob-
ject is moving down, the cornstarch below it is slowly being compressed such that at
a certain moment a jammed network of particles forms betweenthe object and the
container bottom. This jammed layer is responsible for the large force that brings the
object to a full stop. Stresses build up in the network and therefore also within the
interstitial fluid, which triggers a Darcy’s flow in the porous medium formed by the
cornstarch grains allowing the network to relax through (small) particle rearrange-
ments. This causes the jammed region to unjam and the object will start moving
again. Such hardening of a cornstarch suspension has also been reported in [16],
where a ball was pushed towards the bottom, leaving an indenton a clay layer on
the bottom. This was attributed to forces being transmittedthrough a hardened layer
beneath the ball.

In Fig. 3.13 we compare the stop-go cycles for the settling pingpong ball (which
we previously presented in [15]) with those for the settlingcylinder, both for three
different values of the buoyancy corrected massµ . Clearly, for the cylinder there
are more stop-go cycles than there are for the pingpong ball.To further quantify the
stop-go cycles, we measure the distance from the bottom at which the object stops for
the first time (|x0|), Fig. 3.14(a), the maximum velocity it reaches after the first stop
(ẋmax), Fig. 3.14(b), and the time it needs to reach this velocity (tacc), Fig. 3.14(c),
for both the pingpong ball and the hollow cylinder. Althoughin general the cylinder
has a variable buoyancy-corrected mass during its trajectory, due to the proximity of
the bottom we could define a meaningful buoyancy corrected mass here. Namely, we
choose the cylinder mass minus the buoyancy the cylinder would experience when it
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Figure 3.13: Time evolution of the velocity during the stop-go cycles for the settling
pingpong ball for three different (buoyancy corrected) massesµ = 17, 77, and 132
g, and for the settling cylinder, also for three different buoyancy corrected masses
µ = 97, 57, and 17 g. The noisy lines represent the experimental results and the
dashed blue lines correspond to the model of Eq. (3.11).
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would be at the bottom.
We see that the cylinder stops several centimeters above thebottom, i.e., several

centimeters above the first stop of the pingpong ball. Furthermore, in comparison
with the ball it reaches higher velocities after the first jump, but requires approxi-
mately the same time to get there. The earlier stop can be explained by a relatively
larger jammed region due to the flat bottom of the cylinder, which might also give
a more confined region as compared to that below the curved surface of the ball.
The fact that the cylinder accelerates to a higher velocity is presumably due to the
first stop being at a larger distance from the bottom, such that it takes longer for the
material to jam again.

We model this process by coupling the equation of motion Eq. (3.1) to an equa-
tion for an order parameter which indicates whether the cornstarch suspension layer
between the object and the bottom is jammed or not. For this, we will use the local
particle volume fractionφ . More specifically, we assume that whenφ exceeds a criti-
cal valueφcr the layer is jammed and the drag forceD is assumed to become infinitely
large until the sphere comes to a standstill. This leads to the following modification
of the freefall equation:

{
mẍ = µg+D when φ < φcr

ẋ = 0 when φ ≥ φcr

}
. (3.11)

Due to the comparatively low velocities in this regime compared to those of the bulk-
oscillations regime, we can takeD = −Bẋ. Since the cornstarch layer below the
object jams through compression, the equation for the time rate of change of the
packing fractionφ should contain a term that increasesφ proportional to the com-
pression rate−ẋ/x of this layer. In addition, there should be a term that decreasesφ
through a relaxation process towards its equilibrium valueφeq, which is taken to be
equal to the value that it has in the quiescent cornstarch suspension. This yields

φ̇ =−c
ẋ
x
−κ(φ −φeq), (3.12)

in which c andκ are the proportionality constants of the compression and relaxation
processes respectively. Note thatc is dimensionless, whileκ is a relaxation time.

The critical packing fractionφcr is the value at which the cornstarch suspension
dynamically jams. It must lie in between the static, sedimented (0.44) and the max-
imally compacted (0.57) value [22]. In our lab we tried to create the densest, still
flowing cornstarch suspension from which we estimate thatφcr = 0.46 at most. As
a resultφ only varies marginally during the process, in agreement with recent re-
search where during jamming of a cornstarch suspension in a Couette cell no density
differences where measured within experimental accuracy (0.01) of the MRI device
used [9].
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Figure 3.14: Three quantities that characterize the first stop-go cycle as a function
of buoyancy-corrected mass for the cylinder (blue crosses)and pingpong ball (red
circles): (a) Distancex0 to the bottom at which the first stop takes place. (b) The
maximum velocity reached in the relaxation period after thefirst stop. (c) The time
needed to reach the maximum velocity after the first stop. Thesolid lines in (b) and
(c) represent the results obtained with the model of Eq. (3.11).
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To obtain the time-evolution ofx(t), ẋ(t), andφ(t) this set of equations needs
to be solved with the initial conditions the system has reached just after the first
stop:x(0) = −x0, the position the object at the first stop (withx0 > 0), ẋ(0) = 0 and
φ(0) = φcr. This immediately points to a convenient way of non-dimensionalizing
the equations, namely by usingx0 and

√
x0/g as the appropriate length and time

scales. With the non-dimensional variablesx̃≡ x/x0, t̃ ≡ t/
√

x0/g andδ ϕ̃ ≡ (φ(t)−
φeq)/(φcr −φeq), the set of equations becomes:

¨̃x = µ/m− B̃˙̃x whenδ ϕ̃ < 1
˙̃x = 0 whenδ ϕ̃ ≥ 1

δ ˙̃ϕ = −c̃
˙̃x
x̃
− κ̃δ ϕ̃, (3.13)

with initial conditionsx̃(0) =−1, ˙̃x(0) = 0, andδ ϕ̃(0) = 1. The dimensionless model
parameters are nowµ/m, B̃ ≡ (B/m)

√
x0/g, c̃ = c/(φcr − φeq), andκ̃ = κ

√
x0/g,

which is the ratio between the gravitational time scale and the relaxation time scale.
What can we say about the parameters in these equations with respect to our

experiments? First of all,µ/m is expected to be of order unity. Second, for most of
our experiments the acceleration phase in a cycle appears tobe dominated by gravity,
such that the second term in Eq. (3.11) is much smaller than the first, implying that
B̃≪ 1. Third, sincex and changes inx during a single cycle are of the same order, we
expect by neglecting the last term in the last equation for that δ ϕ̃ ∼ c̃. Since on the
other handδ ϕ̃ ≈ 1, because the compression is expected to changeφ from its bulk
valueφeq to the critical valueφcr, we expect̃c to be of order one.

If we fit our model to the experimental data of the pingpong ball we find a best
fit for c= 0.025, which withφcr −φeq≈ 0.02 implies that̃c≈ 1.3, in agreement with
our expectation.

Finally, for the last parameter of our model,κ , some more extensive analysis
is necessary. To this end, let us note that the last equation of Eq. (3.13) can be
immediately solved implicitly using the integrating factor method. We then find that
exp(κ̃t) is the integrating factor for this equation leading to:

δ ϕ̃ (̃t) = e−κ̃ t̃

[
1+ c̃

∫ t̃

t̃ ′=0

˙̃x(̃t ′)

x̃(̃t ′)
eκ̃ t̃ ′dt̃ ′

]
, (3.14)

where we have used the initial conditionδ ϕ̃(0) = 1. Of course, the solutioñx(̃t)
of the first equation still needs to be inserted in this equation. SinceB̃ ≪ 1, we
now neglect the second term in the first equation of Eq. (3.13)we simply find that
x̃(̃t) =−1+ 1

2(µ/m)̃t2. Using this approximation withµ/m= 1 and setting̃c= 1 in
Eq. (3.14), we can calculate the duration∆t̃ of and the travelled distance∆x̃ during
the cycle.
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Figure 3.15: The duration∆t̃ (blue curve) of and the travelled distance∆x̃ (red curve)
during a stop-go cycle as a function of the logarithm of the relaxation parameter̃κ .
Modeled with Eq. 3.14, using̃B≪ 1 andc= 1;

These quantities are plotted as a function of the relaxationparameter̃κ in Fig. 3.15.
For very small values of̃κ (< 0.1) we have very small durations and travelled dis-
tance. This happens because now the relaxation time scale ismuch larger than the
gravitational time scale, which implies that as soon as the jammed layer starts to re-
lax, the system quickly reaccelerates and jams again.δ φ̃ will never move far from
1, i.e., φ will always be close toφcr. Here the object effectively gets stuck inside
the cornstarch suspension (at the observable, gravitational time scales). On the other
hand, for very large values of̃κ (> 10) the opposite happens: we have a duration
close to

√
2 corresponding to a travelled distance of∆x̃≈ 1, which means that in this

single cycle the object moves all the way to the bottom and only jams when it very
quickly squeezes the very last thin layer of suspension. Here, the relaxation time
scale is much smaller than the gravitational time scale, which implies that the system
very quickly relaxes to the quiescent stateφ ≈ φeq and the gravitational acceleration
is not fast enough to jam the material. Here the object effectively never jams and
never goes into a stop-go cycle.

Now, when we fit our model to the experimental data of the pingpong ball we find
a best fit forκ ≈ 40 s−1, which corresponds to a relaxation time scale of 1/κ ≈ 0.025
s. Since forx0 ≈ 1 cm the gravitational timescale is

√
x0/g≈ 0.032 s, this leads to

κ̃ ≈ 1.3. In [15] we found the value ofκ ≈ 40 s−1 to be connected to a Darcy’s flow
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Figure 3.16: The maximum velocities reached during the stop-go-cycles in the ex-
periments (circles) and the model (lines) per jump, normalized by the mean bulk
velocity, positioned at cycle 0.

on a scale of 100 cornstarch particle diameters, which is consistent with mesoscopic
length scales that have been found in these suspensions [8].With this model we also
understand why we do not see the stop-go cycles for lower packing fractions, asκ
will be larger andc will be smaller. As a result, the effect will move closer to the
bottom, such that it is not measurable within our experimental resolution.

Above, and in [15] we observed that the model works quite wellfor the first
stop-go cycle of the spherical object, but fails for the subsequent cycles which we
attributed to the curved surface of the sphere. However, we expect the model to work
better for a cylinder, which has a flat bottom and therefore the jammed cornstarch
suspension layer is expected to be closer to the modeled cylindrical shape than for
the sphere. When we compare the model to the experiments, seeFig. 3.13, we indeed
see that now the second stop-go cycle also matches the experiment quite well, and
also the experimentally observed number of cycles comes closer to the number we
see in the model. Another important point to make is that we kept the same value for
κ = 40 s−1 as for modeling the pingpong ball, which indeed should be just dependent
on the suspension. We did increase the compression factor from 0.025 for the sphere
to 0.07 for the cylinder, which also stands to reason given the different geometry.

To quantify this difference between the ball and the cylinder we plot the maximal
velocities in the successive stop-go cycles in Fig. 3.16, normalized by the average
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Figure 3.17: Time evolution of the velocity of a steel spherewith a diameter of
1.6 cm in three different suspensions: quartz flower, polystyrene beads, glass beads,
and cornstarch. Clearly, both the bulk oscillations and thestop-go cycles are only
observable in the cornstarch suspension.

bulk velocity, for both the experiments and the model. Clearly, the experiments of the
ball and those of the cylinder follow two different paths: Inthe case of the pingpong
ball the cycles damp out very fast, whereas the cylinder has amore gradual decrease
in maximal velocities. The model follows both sets quite well, but overpredicts the
number of cycles for the ball to a larger extent than for the cylinder, consistent with
the above arguments.

3.6 Other suspensions

It is known that different suspensions can behave quite differently, which is presum-
ably connected to particle shape and size distribution. An example of this is their be-
havior when shaken vertically [11–14], where for comparable solid fractions one may
e.g. observe stable holes, growing or even splitting holes,or closing holes, depending
on the suspension that was used. We therefore repeated our settling experiments in
a variety of other suspensions. Although dense suspensionsof particles are all shear
thickening [2], both the bulk oscillations and the stop-go-cycles observed in corn-
starch are absent in the other suspensions we studied. This can be seen in Fig. 3.17,
where we present settling velocities for suspensions containing quartz flour, glass
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beads, polystyrene beads, and compare these with a cornstarch suspension.
More specifically, as alternatives to cornstarch, we used monodisperse spherical

particles made of polystyrene with a diameter of 20µm, polydisperse glass spheres
with diameters between 0 and 20µm, and quartz flour of 0-50µm, in which the
particles have edgy, irregular shapes.

For the glass and quartz flour particles, only thin layers were used without full
density matching and with a very high solid fraction. In these thin layers, we hoped
to encounter stop-go-cycles, but these were not observable. It is possible that the
absence of the stop-go-cycles is caused by the size distribution of these particles, be-
cause in both cases there is a large amount of small particlesthat can get between the
fewer larger ones. This causes that no sudden rearrangements of particles can happen,
which we believe to be the cause of the phenomena we see. For the monodisperse
spherical polystyrene beads (d = 20 µm, φ ∼ 0.6) we did use a deep bath of suspen-
sion. However, also in this case no bulk oscillations or stop-go-cycles were observed.
Another difference is that the instant velocity drop after impact on a cornstarch sus-
pension [21] is far less abrupt for the other suspensions we used, which suggests that
a much smaller jammed region is created below the impacting object compared to
cornstarch.

The remaining questions is what sets aside cornstarch to these particles. If the
origin is geometrical, it is most likely a combination of size, size distribution and
shape. It would be interesting if there would exist an alternative to cornstarch, i.e., a
rather monodisperse sample of edgy, cube-like particles with diameters of 20µm or
somewhat larger, that could be produced in large enough quantities to perform set-
tling experiments. To our knowledge such an alternative is not available.

3.7 Conclusions

In conclusion, we presented experiments of objects settling into a dense bed of a
cornstarch suspension, which revealed pronounced non-Newtonian behavior: Instead
of reaching a terminal velocity and monotonously stopping at the bottom, the ob-
ject’s velocity oscillates within the bulk and goes througha series of stop-go cycles
at the bottom. These effects are not observed in a wide range of other dense suspen-
sions, leading us to believe that cornstarch particles havesome unique property. We
were not able to pinpoint this property, but suggest that it may be connected to the
particular shape and size distribution of the particles.

We studied the influence of several parameters on the observed phenomena, and
found that both disappear if the solid fraction of cornstarch particles is belowφ ≈
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0.38. This suggests that contact forces must play an importantrole in creating the
observed behavior. If the density ratio between the object and the cornstarch suspen-
sion (which always is larger than 1) becomes low, the bulk oscillations disappear, but
the stop-go cycles are still clearly observable. Other parameters that were studied are
the object shape and the container size.

We discussed several models in the context of the bulk oscillations and concluded
that common shear thickening and linear viscoelastic models fail to account for the
observed phenomena. A hysteretic drag model captures the basic phenomenology in
the bulk. However, the model is entirely phenomenological,and a link between the
model parameters and the physical properties of the system still needs to be estab-
lished.

We proposed a jamming model that describes the stop-go cycles near the bottom,
and discuss its properties and its plausibility. The model is capable of describing both
our experiments with spheres and cylinders of variable mass, and works particularly
well for the experiments done with a cylinder. This stands toreason because the
geometry of the cylinder is closest to the geometry assumed in the model.

3.8 Appendix: Linear viscoelastic models

In this Appendix we will first discuss a model for the drag a sphere experiences based
on the Maxwell fluid rheology. Subsequently we will solve theequation of motion for
a settling sphere [Eq. (3.1)] in such a fluid using Laplace transformations, and finally
we will discuss extensions to the Maxwell fluid, namely the extended Maxwell model
and the modified Kelvin-Voigt solid, that contain additional dissipative elements.

Linear viscoelastic models for the drag forceD (just like the constitutive stress-
strain (rate) relations for a viscoelastic fluid) are equations composed of elastic and
viscous terms which provide a relation between drag and displacement for the first
and drag and velocity for the second, or

Ḋ =−Eẋ ; D =−η ẋ, (3.15)

in which we have taken the time derivative of the first relation for practical reasons.
The proportionality constantE has the dimensions of a spring constant andη has the
dimensions of viscosity times length.

A Maxwell fluid consists of an elastic and a viscous term in series (Fig. 3.18a),
such that ˙x is the sum of an elastic and a viscous part that both are subject to the same
force such that

−ẋ=
Ḋ
E
+

D
η
. (3.16)
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(a) (b) (c)

Figure 3.18: Schematics of the three linear viscoelastic models discussed in this Ap-
pendix: (a) Maxwell fluid, (b) extended Maxwell fluid, and (c)modified Kelvin-Voigt
solid.

Writing D =
∫ t

0 ψ(t − t ′)ẋ(t ′)dt′ and inserting this into Eq. (3.16) impliess thatψ(t)
should be the solution of that equation with ˙x= δ (t), the Dirac delta function. This
can be solved by first finding the solution to the homogeneous problem [inserting
ẋ ≡ 0 in Eq. (3.16)] and subsequently integrating the full equation (with ẋ = δ (t))
over a short interval aroundt = 0. This yields

ψ(t) =−Eexp

[
−E t

η

]
, (3.17)

leading to the drag of Eq. (3.3) and by insertion into the equation of motion Eq. (3.1)
we obtain

mẍ= µg−E
∫ t

t ′=0
exp

[
−E (t − t ′)

η

]
ẋ(t ′)dt′ . (3.18)

Introducing the Laplace transforms of the velocityu= ẋ and the functionψ , namely
ũ(s)≡

∫ ∞
0 exp(−st)ẋ(t)dt andψ̃(s)≡

∫ ∞
0 exp(−st)ψ(t)dt respectively, we obtain by

transforming Eq. (3.18) using standard Laplace techniques

ms̃u(s)−mu(0) =
µg
s

+ ψ̃(s) ũ(s) . (3.19)

Also, we obtain from Eq. (3.17) that̃ψ(s) =−E/(s+E/η) with which

(
ms+

E
s+E/η

)
ũ(s) =

µg
s

+mu(0) . (3.20)
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The limit t → ∞ corresponds to the limits↓ 0 of the Laplacetransform, which when
applied to Eq. (3.20) leads to lims↓0 ũ(s) = µg/(ηs) or limt→∞ u(t) = µg/η . There-
fore there is a terminal velocityuT = µg/η . Subtracting this terminal velocity by
introducing a new variablẽv= ũ−µg/(ηs) (or, equivalentlyv(t) = u(t)−µg/η) we
obtain after some algebraical manipulation of Eq. (3.20)

ṽ(s) = v0
s+α

(s+α)2+ω2 +

(
µg
ωm

+
Ev0

2ωη

)
ω

(s+α)2+ω2 , (3.21)

with α = E/(2η), ω =
√

E/m−α2, andv0 = u(0)−µg/η . The (standard) inverse
transform of this equation directly leads to Eq. (3.4)

ẋ(t) = uT + e−αt
[
v0cosωt +

(
µg
ωm

+
Ev0

2ωη

)
sinωt

]
. (3.22)

The slightly more complicated extended Maxwell fluid (Fig. 3.18b) and modified
Kelvin-Voigt solid (Fig. 3.18c) are defined by

D = DL +DR

−ẋ = ḊR/E+DR/η = DL/η∗ , (3.23)

for the extended Maxwell fluid, and

D = DL +DR

−ẋ = D/η +DR/η∗ = D/η + ḊL/E , (3.24)

for the modified Kelvin-Voigt solid. Along a similar path leading to Eq. (3.17), this
leads to the following equation for the extended Maxwell fluid (eM) kernelψeM(t)

ψeM(t) =− [Eexp(−(E/η)t)+η∗δ (t)] , (3.25)

which leads directly to its Laplace transform

ψ̃eM(s) =−
[

E
s+E/η

+η∗
]
. (3.26)

For the modified Kelvin-Voigt solid (mKV) the situation is slightly more complicated
because the analysis leads to an integral equation forD and ẋ that appears hard to
solve forD

∫ t
0 [(1+η∗/η)δ (t − t ′)+E/η ]D(t ′)dt′

=−∫ t
0 [E+η∗δ (t − t ′)] ẋ(t ′)dt′ , (3.27)
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however, we only are interested in the Laplace transformψ̃mKV(s) which is readily
obtained from the Laplace transform of the above equation realizing thatψ̃mKV(s)≡
D̃(s)/ũ(s)

ψ̃mKV(s) =− E/s+η∗

(1+η∗/η)+E/(ηs)
. (3.28)

Actually, both kernels are equivalent which can be seen by introducing a set of new
parameters, namely for eM:̄E ≡ E(1+η∗/η), η̄ ≡ η(1+η∗/η), andη̄∗ ≡ η∗ and
for mKV: Ē ≡ E/(1+η∗/η), η̄ ≡ η , and η̄∗ = η∗/(1+η∗/η). With this, both
kernels become:

ψ̃(s) =− Ē+ η̄∗s
s+ Ē/η̄

. (3.29)

Inserting thisψ(s) into the equation of motion Eq. (3.19) gives

(
ms+

Ē+ η̄∗s
s+ Ē/η̄

)
ũ(s) =

µg
s

+mu(0) . (3.30)

Again, the limit t → ∞ teaches us that there is a terminal velocityuT = µg/η̄ and
introducing a new variablẽv= ũ−µg/(η̄s) some algebraical manipulation leads to

ṽ(s) = v0
s+α

(s+α)2+ω2 + (3.31)
[
(1− η̄∗/η̄)

µg
ωm

+

(
Ē
η̄
− η̄∗

m

)
v0

2ω

]
ω

(s+α)2+ω2 ,

with α ≡ (Ē/η̄ + η̄∗/m)/2, ω =
√

Ē/m−α2, andv0 = u(0)− µg/η̄ . The above
equation can be instantly transformed back into the time domain leading to a similar
expression as Eq. (3.22). The particular casev0 = 0 of this inverse transform reads

ẋ(t) = uT + e−αt
[(

1− η̄∗

η̄

)
µg
ωm

]
sinωt . (3.32)

Note that now the oscillational term has its smallest amplitudeA. When we follow a
similar line of reasoning as we did in Section 3.4.2 and compute the ratio of amplitude
and terminal velocity we obtain

A
uT

=

(
1− η̄∗

η̄

)
µg
mω

η̄
µg

=
η̄ − η̄∗

mω
≈ η̄ − η̄∗

mω0
. (3.33)

This ratio can be small if̄η∗ ≈ η̄ , which equation for both eM and mKV lead to
η∗ ≈ η∗+η , which means thatη andη∗ both need to be small (compared tomω0).



58 REFERENCES

What does this imply for the ratio of the damping timeτ = 1/α and the oscillation
periodT = 2π/ω? We have

2π
τ
T

=
ω
α

=
2ω

(Ē/η̄ + η̄∗/m)
≈ 2ωη̄

Ē
=

2ωη̄
mω2

0

≈ 2η̄
mω0

, (3.34)

where for the first approximate equality we used thatη̄ and η̄∗ are both small and
for the second one thatω is of the same order asω0 =

√
Ē/m. Now, bothA/uT and

τ/T are of orderη̄/(mω0). So if A/uT is small (as it should be in order to have the
oscillations with amplitude smaller than drift velocity weobserve), then so should
τ/T. And if τ/T is small, this means that the oscillation will damp out well within a
single period, which contradicts the observations. Therefore, also the eM and mKV
models are not capable of describing the observed bulk oscillations.
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4
Phase diagram of vertically vibrated dense

suspensions ∗

When a hole is created in a layer of a dense, vertically vibrated suspension, phe-
nomena are known to occur that defy the natural tendency of gravity to close the
hole. Here, an overview is presented of the different patterns that we observed in
a variety of dense particulate suspensions. Subsequently,we relate the occurrence
of these patterns to the system parameters, namely the layerthickness, the particle
concentration, and the shaking parameters. Special attention is given to the geomet-
ric properties of the particles in the various suspensions such as shape and particle
distribution.

∗Stefan von Kann, Jacco H. Snoeijer, and Devaraj van der Meer,Phase diagram of vertically vibrated
dense suspensions, preprint (2012).
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4.1 Introduction

Concentrated particulate suspensions consist of a homogeneous fluid containing par-
ticles larger than one micrometer, so that Brownian motion is negligible. They can be
found in many places, and their flow is important in nature, industry and even health
care [1]. In spite of their significance, many aspects of the flow of dense suspen-
sions remain poorly understood. In order to study these materials people have used
methods inspired by classical rheology, and typically characterized them in terms of
a constitutive relation of stress versus shear rate [2–6]. Ageneral result is that, when
increasing the shear rate, dense suspensions first tend to become less viscous (shear
thinning) and subsequently shear thicken.

Probably the most conspicuous example of a dense suspensionis formed by a
high concentration of cornstarch in water. One could actually run over a bath filled
with a cornstarch suspension, but one would sink when standing still [7]. This is
caused by solidification, activated by impact [8].

Rheological experiments in cornstarch have revealed the existence of a large
shear-thinning regime that terminates in an extremely sudden shear thickening [9].
In other rheological experiments people found a mesoscopiclength scale [6, 10], a
dynamic jamming point [4], and fracturing [11].

Not only is the rheology of cornstarch suspensions very distinct, but unexpected
phenomena were also found in experiments beyond the classical rheological ones. In
experiments in which an object was left to sink into a cornstarch suspension, non-
monotonic settling was observed [12], together with the formation of a jammed re-
gion between the object and container bottom [12, 13]. Merktet al. [14] observed
in a vertically shaken, thin layer of cornstarch suspensionthat, amongst other exotic
phenomena, stable oscillating holes can be formed at certain frequencies and am-
plitudes [14]. These were subsequently described using a phenomenological model
based on a hysteretic constitutive equation [15]. In other suspensions similar stable
holes have not been reported, except for [14], where they were also found in glass
bead suspensions. In potato starch and glass bead suspensions, Ebataet al. found
growing and splitting holes, and a separated state respectively [16, 17]. They at-
tributed the first to a convection-like flow, but do not comment on the origin of the
latter phenomenon. Stable holes and kinks (which are markedly similar to the sepa-
rated state of [16, 17]) have recently also been observed in emulsions [18]. At present
we are still far from a quantitative understanding of why theabove phenomena occur,
and why different suspensions may behave differently.

The purpose of this work is to make an extensive inventory of the different phe-
nomena that can occur in various vertically shaken dense particulate suspensions and
in what sense cornstarch suspensions occupy a unique position amongst them. We
will do this by subjecting several suspensions, including several of the suspensions



4.2. EXPERIMENTAL SETUP AND PROCEDURE 63

mentioned before, to vertical vibrations. We then observe,describe and, whenever
possible, explain the different phenomena. For cornstarchwe present a wider range of
variables, including layer depth and packing fraction, which actually leads to the ob-
servation of some hitherto unreported phenomena. From the experiments with other
particles we find a dependence of particle properties on the observed phenomena.

This chapter is organized as follows: In Section 4.2 the experimental setup and
working procedure are introduced, after which we present the various phenomena we
observe in a variety of vibrated suspensions in Section 4.3.After that, in Section 4.4,
we will turn to the suspensions we have examined and quantifyhow these phenomena
depend on the concentration, layer depth, and shaking parameters. In doing so we
will use cornstarch as our “benchmark” material and relate the properties of the other
particles used in suspension to those of cornstarch. Section 4.5 will conclude the
chapter.

4.2 Experimental setup and procedure

4.2.1 Setup

The experimental setup is shown in Fig. 4.1. The core consists of a cylindrical con-
tainer with a diameterD = 11.0 cm and a heightH of 8.0 cm. This container is
vertically vibrated by a shaker (TiraVib 50301) with frequencies f between 20 and
200 Hz and a dimensionless accelerationΓ from 0 up to 60. Here,Γ = a(2π f )2/g,
wherea is the shaking amplitude andg the gravitational acceleration. Like any elec-
tromagnetic shaker, the parameter range attainable by the TiraVib 50301 is limited in
amplitude (< 12.8 mm), velocity (< 1.5 m/s) and acceleration (< 110g). The con-
tainer is filled up to a variable heighth between 0.4 and 2 cm with a suspension of
varying composition. The suspension layer in the containeris recorded with a high
speed camera at various frame rates, given in frames per second (fps), and is either
imaged from the side or from the top.

4.2.2 Procedure

Suspensions consist of a suspending liquid and particles. However, mixing two arbi-
trary constituents of these types does not always lead to a useful and stable suspen-
sion. First of all, when particles are hydrophylic water canbe used as a suspending
liquid, but for hydrophobic particles we have to turn to other suspending liquids. Sec-
ondly, even when a suitable suspending liquid has been found, particles denser than
the liquid are likely to sediment, such that a density matching agent needs to be used.
We used a variety of particles to create our suspensions, each with their own proper-
ties, an overview of which is presented in table 4.1. A more detailed description of
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Figure 4.1: A schematic view of the used setup. At the lower end we have the shaker,
on top of which the container with the suspension is mounted,which is subsequently
vibrated vertically. Above that is the high speed camera, inthis case recording the
suspension from above.
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each suspension can be found in the experimental part where their properties will be
discussed in relation to the experimental results.

For the hydrophylic particles we used demineralized water as the suspending
liquid, but the particles are typically more dense than water. When this density
contrast is large (e.g. glass in water) density matching of the liquid is required.
To this end we used two different salts: Cesium Chloride (CsCl) for densities up
to 1.8 · 103 kg/m3 and Sodium Polytungstate (Na6[H2W12O40]) for densities up to
2.5 ·103 kg/m3. Some of our particles are hydrophobic, making water unsuitable as
the suspending liquid. For suspending these particles we used sunflower oil. An im-
portant parameter for our suspensions is the concentration, which we express as the
volume fractionφ that is occupied by the solid phase in the suspension. In thiswork
we will concentrate on dense suspensions, and it should be kept in mind that all of
the described phenomena will disappear when the suspensionis sufficiently diluted.

For the suspensions and (quite viscous) Newtonian liquids we have used in our
container and the shaking amplitudes and frequencies used in this study, the vibrated
fluid is typically at rest. The liquid surface is typically smooth, on top of which,
if the shaking conditions are favorable we may observe Faraday waves [19] of very
small wavelength. The phenomena we report in this work occuronly after a manual
disturbance has been made in the liquid. This was either doneby puffing air into the
layer using a straw, or by poking a hole into the fluid with a stick.

4.3 Phenomenology

In this Section we will describe the several possible statesand phenomena we observe
after the initial perturbation has been created in the liquid.

4.3.1 Newtonian liquid

Let us first briefly discuss what happens when a very viscous Newtonian liquid is
vibrating vertically, and a perturbation is created in the form of a hole. To this end,
we put a layer of honey with a thicknessh= 0.6 cm and a dynamic viscosityµ ≈ 6.3
Pa·s in our setup. Without vibration, the hole will collapse under the influence of
hydrostatic pressure. The same happens when the layer is vibrated and a hole is
created, only now we observe that the edges of the hole oscillate along with the
driving frequency. In Fig. 4.2 we plot the time evolution of the diameter of the hole
and we observe that the diameter actually decreases approximately linearly in time.
On top of this decrease, we observe an oscillation at the samefrequency as that of the
shaker.
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Particles Size and distribution Density Shape Liquid used

cornstarch 5-20µm flat 1.7·103 kg/m3 edgy demineralized water
glitter 50 or 100µm monodisperse 1.5·103 kg/m3 flat quadrangles sunflower oil

polystyrene beads 20 µm monodisperse 1.05·103 kg/m3 spheres demineralized water
glass beads 0-20µm* 2.5·103 kg/m3 spheres demineralized water
quartz flour 0-70µm* 2.5·103 kg/m3 edgy demineralized water

Table 4.1: Schematic overview of the particles and their properties, used in this study. A flat size distribution stands for
an equal amount of particles for every size. The * indicates avery inhomogeneous size distribution, consisting mainly of
smaller particles and a strongly decreasing amount of particles when going bigger in size.
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Figure 4.2: Comparison of the time evolution of the diameterof a hole created in a
layer of honey of thicknessh= 6 mm which is vibrated at a frequencyf = 50 Hz and
a dimensionless accelerationΓ = 30, recorded at 250 fps, and that of a hole created
in a layer of cornstarch suspension (h= 7 mm) at f = 100 Hz andΓ = 20, recorded
at 500 fps. The inset shows a few cycles from the experiment inhoney (at 500 fps),
clearly showing the oscillations of the edge with the driving frequency.

4.3.2 Cornstarch suspensions

Contrary to Newtonian fluids, in suspensions hydrostatic pressure can be dynami-
cally overcome due to the imposed vibration. The hole will not (fully) close, and a
rich variety of phenomena can be observed. The richest phenomenology is found in
cornstarch suspensions, where upon varying our experimental parameters we found
four different phenomena. In accordance with the existing literature we named stable
holes, and fingers [14]. We also found two unreported phenomena which we will call
rivers, and jumping liquid. From each of these states, a snapshot can be found in
Fig 4.3. We will now discuss the characteristics of these phenomena in detail.

Stable holes

When an initial perturbation either grows or shrinks to a circular hole of constant
average diameter, we speak of a stable hole [see Fig. 4.3(a)]. In the vertical direc-
tion such a hole typically extends to the bottom of the container, and the hole edge
oscillates along with the driving frequency.
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(a) (b)

(c) (d)

Figure 4.3: Snapshots of the four different phenomena that can be observed in a
vertically vibrated layer of cornstarch suspension. From left to right: (a) Holes in a
suspension layer of thicknessh= 6 mm and with a concentrationφ = 0.4, shaken at
f = 80 Hz andΓ=20. (b) River in aφ = 0.38 suspension withh= 6 mm, shaken at
f = 140 Hz,Γ = 40. (c) Fingers in aφ = 0.4 suspension withh= 6 mm, shaken at
f = 80 Hz with Γ = 30. (d) Jumping liquid, just after its release from the vibrated
layer, in aφ = 0.4 suspension withh= 6 mm, shaken atf = 40 Hz,Γ = 40.
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Merkt et al. [14] attributed the stable holes in the cornstarch suspension to shear
thickening. They found that typical shear rates in the shaking experiments were
around the same value for which a sudden shear thickening wasobserved in rheome-
ter experiments. Deegan [15] proposed a one-dimensional hysteretic model to explain
why these holes do not collapse due to hydrostatic pressure.In this model he pro-
posed a coexistence of two stable branches in the stress versus strain rate diagram.
Based on this, it was argued that the edge of the hole will moveinward only slightly
during the first half of the cycle (large shear stress), but will then jump to the lower
branch such that during the outward motion the suspension experiences a smaller
shear stress, resulting in a larger outward displacement. In the one-dimensional
model this actually lead to opening holes, but one could imagine that a stable equi-
librium radius would be found for the two-dimensional, radially symmetric problem
that corresponds to the experiment.

In more recent experiments by Falcónet al. [18] the stability of holes in a vibrated
emulsions was connected to the normal stress caused by a convection roll in the rim
that surrounds the hole. We verified that such a roll is also visible in the rim around
the holes in our cornstarch suspensions by putting tracer particles in the hole, which
came out along the rim of the hole.

Rivers

In cornstarch suspensions with lower concentrationsφ , we observe the formation
of an elongated structure [Fig. 4.3(b)], which has not been reported before. Due
to its shape we denote these from here on as rivers. Also the rivers start from a
single perturbation in the suspension, but now the originalhole tends to slowly stretch
out or “walk” through the suspension. When the river reachesthe container wall, it
leaves an entire line-shaped structure (or even multiple lines) behind that penetrates
the suspension layer all the way to the bottom of the container. The directionality
appears to be random. As soon as this river touches the container edges it stabilizes
and, just like the stable holes it has a very long lifetime: the structure easily outlives
the duration of the experiment, which was typically in the order of 105−106 cycles.

Fingers

Fingers [see Fig. 4.3(c)] are formed at higher shaking strengths. In this regime, the
small rim on the edge of the hole increases in size and “lifts off” from the surface.
Eventually, the fingers fall down and form new holes, which again grow new fingers.
These fingerlike protrusions were also reported by Merktet al. [14].
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Jumping liquid

The fingers described in the previous paragraph grow larger when, at constantΓ, the
amplitude is increased. For sufficiently large amplitude, while the finger is growing,
the connection to the surface may break and a “blob” of suspension will start jumping
around in the container [see Fig. 4.3(d)]. Eventually it will form into a spherical
shape, and with every bounce on the suspension surface, it slowly shrinks in size over
a timespan of minutes. Below a certain size this sphere will coalesce with the surface,
a process which either causes a new hole-shaped disturbanceto form –eventually
leading to the growth of a new amount of jumping liquid– or thesphere is simply
absorbed after which the process stops. In order to investigate the packing fraction
of the detached balls, we have caught several of these blobs of suspension in flight.
It was found that the concentration varied by a few percent, but with an average that
was equal to the bulk packing fraction.

4.3.3 Other suspensions

Starting from the hypothesis that it is the geometrical shape of the cornstarch parti-
cles in the suspension that is responsible for the large variety of phenomena that can
be observed in vertically vibrated cornstarch suspensions, we examined a variety of
other dense particulate suspensions, with varying geometrical parameters. We how-
ever, did not succeed in creating a suspension that presented the similar phenomena
as cornstarch. The other suspensions we studied have an interesting phenomenology
as well, but it is markedly different from that of cornstarch: Steady states like the
stable holes and rivers are absent; instead we find much more dynamic phenomena
like the growing and splitting holes we will describe below.

Splitting holes

After creating an initial disturbance in a suspensions containing polydisperse parti-
cles, we observe a hole that immediately starts to grow and quickly departs from the
circular shape: The hole tends to stretch out and eventuallysplits up into two circular
holes. These in turn again grow and become non-circular, leading to another splitting
up. This way new holes are formed very rapidly, and as soon as the system is full of
holes they are also observed to collide and merge or to fully close. The timescale of
the dynamics of splitting and colliding depends strongly onparticle type and shaking
parameters, and can range from a few seconds up to several minutes. This eventually
leads to a very chaotic dynamics. A snapshot of a container with several of these
holes can be found in Fig. 4.4.
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Figure 4.4: Splitting holes in a vibrated polydisperse glass bead suspension with an
average diameter of 10µm ( f = 100 Hz,Γ = 25, andh= 7 mm.)
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Growing holes and kinks

In monodisperse particle suspensions the phenomenology turned out to be very dif-
ferent again. After creating the initial disturbance, a circular hole is formed. Depend-
ing on the shaking strength and amplitude we find either of twophenomena: At the
lower end we observe a hole that grows until a maximum size is reached. After this it
rapidly collapses to a very small size and a growth phase setsin again. When shaking
harder, the hole will grow until it hits the container wall. In this case the hole will
open up and form a large dry area at the container bottom, thuscreating a system that
is partly covered with a thick layer of suspension, partly dry and an abrupt transition
between them which is called a kink [18]. Snapshots of such a series of events can
be found in Fig. 4.5. The distinction between the two states is not always very clear,
since in some cases the hole size will saturate, the entire hole will keep on moving
slowly inside the container, and eventually come in contactwith an edge, which then
leads to the formation of a kink. The time span for this to happen however, can be
minutes whereas the kink formation described above may happen within seconds.

4.4 Quantitative results

Which of the above mentioned phenomena we observe depends onthe composition
of the suspension, its packing fractionφ , the depth of the layerh, as well as the
shaking parameters frequencyf and shaking strengthΓ. In this Section, we present
the results of the experiments done with the various suspensions, and discuss them
for every suspension by means of phase diagrams of the shaking parametersΓ and f .

4.4.1 Cornstarch

As cornstarch has proven to have the richest phenomenology,we will start with the
discussion of our experiments in cornstarch suspensions. Previously, these type of
shaken suspensions have been considered by Merktet al. [14]. Their report, however,
was limited to a single set of experiments with a fixed depth and packing fraction, in
which only the shaking parameters were varied. Our objective is here is to map out
a larger part of the parameter space by in addition varying the layer depth and con-
centration. More specifically, we want to determine how the phenomena described
in [14] (holes and fingers) are influenced by these other parameters, and how the
newly described rivers and jumping liquid fit into the phase diagrams.

We use either demineralized water or an aqueous solution of Cesium Chloride
(CsCl) with a density of≈ 1.7 ·103 kg/m3, matching the cornstarch particle density
(based on sedimentation experiments: Atρ = 1.7·103 kg/m3 cornstarch particles do
not settle to the bottom for several days). Experiments actually showed negligible
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Figure 4.5: Four snapshots of the development of a hole towards a kink in a suspen-
sion of glitter particles. The frames go from top left to bottom right and are att = 1,
60, 73 and 92 seconds after the creation of the initial hole (f = 80 Hz,Γ = 30, and
h= 7 mm.)
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Figure 4.6: Microscopic pictures of the various particles that were used in this study:
(a) cornstarch (particle diameterσ = 5−20 µm); (b) polydisperse glass beads (σ =
0− 20 µm); (c) quartz flourσ = 0− 70 µm; (d) monodisperse polystyrene beads
(σ ≈ 40 µm); (e) a mixture of glitter particles (dimensions 50× 50 µm2, 50× 75
µm2, and 50×100µm2 respectively, each with a thickness of 20µm).
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differences between results in the density-matched and theunmatched liquid, pre-
sumably due to the relative violent shaking. In the unmatched suspension only some
stirring is required just before the start of a new experiment, to counteract sedimen-
tation. Viewing the cornstarch particles under a microscope, see Fig. 4.6, reveals
that they are irregularly shaped and have an approximately flat size distribution in the
range of 5-20µm.

The first parameter we studied is the packing fractionφ at a fixed layer depth of
h = 0.6 cm. For packing fractions up to and includingφ ≈ 0.35, we find that any
perturbation closes due to hydrostatic pressure, as would happen in a Newtonian liq-
uid. At the slightly higher valueφ = 0.38 we observe closing holes for low shaking
strengths (up toΓ = 25), indicated by the plus symbols and the white background
in the phase diagram of Fig. 4.7(a). At relatively high accelerations (Γ = 40) and
low frequencies (80 Hz) we observe fingerlike shapes emerging from the rim of the
disturbance, indicated by the dots and the light grey background. These fingerlike
shapes were also reported by Merktet al. [14] for high shaking strengths. At higher
frequencies we observe that the created holes are not stablebut tend to stretch out
and form riverlike structures [the diamonds and dark grey background in Fig. 4.7(a)].
These rivers spread out over the entire width of the container and then become sta-
ble. When increasingΓ at constantf , the edge of the rivers rise up and again form
fingerlike structures.

In the phase diagram at intermediate volume fraction,φ = 0.40, we find that the
onset of the fingers and rivers regimes shifts to lower shaking strengths [Fig. 4.7(b)].
Below this onset, there now exists an additional narrow window in which stable holes
form (represented by circles and medium grey background). That is, increasing the
accelerationΓ for frequencies around 80 Hz we first observe the formation ofstable
holes which then give way to fingerlike structures at higherΓ. When we increase
Γ at higher frequencies (around 130 Hz), stable holes first turn into rivers which
subsequently will produce fingers that will eventually cover the entire surface for the
highest values ofΓ.

When increasing the packing fraction even further, toφ = 0.42, the onset of the
stable holes regime continues to shift to lower shaking strengths [Fig. 4.7(c)]. In
addition, rivers are no longer encountered in the phase diagram: The stable holes
always give rise to finger formation whenΓ is increased. Besides the holes and
fingers, there is one additional phenomenon: In the finger regime, when we decrease
the frequency at a fixed, high shaking acceleration –i.e., when the amplitude of the
shaker is increased– the fingers tend to rise up higher and at acertain point they
actually break loose of the surface and form jumping shapes that can live for several
thousands of cycles of the driving. This jumping liquid regime is represented by
triangles and a dark grey background in the phase diagram.
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Figure 4.7: Phase diagrams in the plane spanned by the shaking parameters frequency
f and dimensionless accelerationΓ for three different cornstarch suspension concen-
trationsφ . From left to right: (a)φ = 0.38; (b) φ = 0.40; and (c)φ = 0.42. In all
three diagrams we used a fixed layer depth ofh = 0.6 cm. The colored areas are
added as a guide to the eye and roughly indicate the various regimes in which the
phenomena are visible.
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Figure 4.8: Phase diagrams for three different cornstarch layer thicknesses. From left
to right: (a)h= 0.4 cm, (b)h= 1.0 cm, and (c)h= 1.4 cm, all at a concentration of
φ = 0.41. The colored areas are added as a guide to the eye and roughly indicate the
various regimes in which the phenomena are visible.
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The second parameter whose influence we will study in detail is the layer depth
h. To this end we choose a fixed high packing fraction ofφ = 0.41, for which the
phase diagrams are particularly rich. Since Merktet al. [14] used a fixed layer depth
of 0.5 cm, we start at the slightly lower value ofh= 0.4 cm, and increase the depth
to h = 1.0 andh = 1.4 cm (with the intermediate value ofh = 0.6 cm covered in
Fig. 4.7(b,c) for slightly different values of the concentrationφ ). The resulting phase
diagrams are presented in Fig. 4.8.

In this Figure we see that the types of observed phenomena do not vary with the
layer depth, but that the regions in parameters space in which they occur do vary
in size and position. First we find that the onset of the phenomena moves down
in accelerationΓ with increasing layer depth. Secondly we observe that the region
in which stable holes are encountered both decreases in sizeand moves to higher
shaking frequencies. In even deeper layers than the ones presented in Fig. 4.8 no
stable holes are formed at all. This is most likely due to the fact that hydrostatic
pressure becomes more important as the layer depth increases. A stable equilibrium
between the effect of the shaking and hydrostatic pressure is then either not possible
or happens at such high frequency/acceleration combinations that the regime is not
attainable with our experimental setup. The regimes in which fingers and jumping
liquid are found increase with layer depth, mainly due to a shift of the onset towards
smallerΓ for largerh. For very large layer depth sometimes it appears that fingers
can form while the empty space between the fingers does not reach the bottom.

Finally, we will discuss how the size of the holes in the stable hole regime de-
pends on the various parameters of the system. Note that thistask is complicated
by the fact that the shape and contours of the stable hole regime depend on these
parameters in a rather non-trivial manner (cf. Figs. 4.7 and4.8). Turning first to the
dependence of the time-averaged diameter〈d〉 of the hole on the frequency of the
driving (Fig. 4.9), we observe a slight decrease in hole sizewith increasingf . This
is actually in contradiction with the observations of Merktet al., who observed an
increase in hole size with increasing frequency at a fixed shaking acceleration. The
dependence onf however is only small compared to other dependences: The average
hole diameter strongly depends on the shaking acceleration(see Fig. 4.10), where a
larger acceleration leads to larger holes, when all other parameters are held constant.
The increase is such that with an increase of 10g the hole can almost double in diam-
eter. In addition, the hole size also strongly depends on thelayer depth. In Fig. 4.11
we see that the layer depthh clearly sets the average hole diameter〈d〉 as both quan-
tities appear to be proportional to one another. This proportionality is however hard
to establish experimentally as a single value for the parameter pair f andΓ for which
stable holes develop could not be found. We therefore had to use slightly varying
parameters (f = 140 Hz andΓ = 30 for theh= 0.4 cm experiment,f = 120 Hz and
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Γ = 20 for both theh = 0.7 and theh = 1.0 cm experiments, andf = 160 Hz and
Γ = 24 for theh= 1.4 cm experiment). This slight variation in shaking parameters
might explain why the points do not fall onto a single line through the origin.

Finally, the concentration does not appear to influence the hole size. It should,
however, be stated that the range in which we can vary the packing fractionφ and
observe stable holes is not very large compared to the variation we can apply in the
other parameters (cf. Fig. 4.7).

Cornstarch consist of edgy particles, i.e., they more resemble polygons than
spheres, that have an aspect ratio close to one and a flat size distribution with diame-
ters between 5 and 20µm, with which we mean that particles of different sizes come
in roughly equal numbers. Unfortunately, apart from cornstarch and other similar
starches, it is hard to find particles made of a different material and roughly the same
geometrical properties. In the remainder of this Section wetherefore study the be-
havior of several other particle suspensions, the particles of which all differ in certain
aspects from cornstarch, and compare it to the behavior of cornstarch suspensions.
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4.4.2 Polydisperse glass beads

The first alternative suspension we turned to are polydisperse glass beads in various
size distributions. The beads are spherical and have a density of 2.5·103 kg/m3. Due
to the large density contrast with water, density matching with sodiumpolytungstate
is required. Initially, we used beads in the same size range as cornstarch, 0-20µm,
of which a microscopic picture can be found in Fig. 4.6(b). From this picture it
becomes immediately clear that there are much more small particles than large ones,
and therefore the distribution is not flat like that of cornstarch, but the smaller sizes
heavily dominate in numbers.

When performing the shaking experiment we observe that after creating an initial
disturbance, the hole immediately starts splitting up and colliding with other holes.
This splitting and colliding cycle repeats itself every fewseconds, leading to a very
chaotic dynamics of which a snapshot was shown in the previous Section (Fig. 4.4).
Next to the closing holes, this is found to be the only observable phenomenon in this
type of suspension. The speed with which the holes split and collide depends on
the shaking acceleration and the onset varies with the shaking frequency. A phase
diagram of the behavior of the polydisperse glass beads suspension as a function of
shaking accelerationΓ and frequencyf is provided in Fig. 4.12.

Polydisperse glass beads of other size distributions, namely 0−50 µm and 40−
70 µm qualitatively have the same behavior. Varying the layer depth and the packing
fraction also do not lead to different behavior or differentphenomena.

As an alternative to the overwhelmingly large number of small particles present
in the above samples, we used a sample with a more moderate polydispersity con-
sisting of spherical glass beads with sizes between 20−30 µm and a more flat size
distribution. Again, only splitting and closing holes are observed. The big difference
with the previous samples is that it now takes up to a minute for a hole to start split-
ting. This is a lot longer than for the more polydisperse particles for which this only
takes seconds.

4.4.3 Quartz flour

The second alternative to cornstarch is quartz flour, which consist of crushed quartz
crystals and of which a microscopic picture can be found in Fig. 4.6(c) The size dis-
tribution, which ranges from 0−70 µm, is similar to that of the polydisperse beads
mentioned above, i.e., non-flat with a very large number fraction of small particles.
However, the edgy particle shape is more comparable to that of the cornstarch par-
ticles. Its density is≈ 2.5 ·103 kg/m3 and the liquid used to create a suspension is
again water, density matched with sodiumpolytungstate.

The phase diagram of a vertically vibrated quartz flower suspension (not shown)
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Figure 4.12: Phase diagram in the (f ,Γ)-plane for polydisperse glass beads with a
non-flat size distribution from 0 to 20µm. The concentration wasφ = 0.6 and the
layer depth was fixed toh= 0.7 cm. The grey area is added as a guide to the eye and
indicates the region where holes grow and duplicate, movingto a disordered state.

is very similar to that of polydisperse glass beads: We find two possible states, namely
closing holes for low shaking accelerations and splitting holes at high values ofΓ.

For both polydisperse particles, quartz flower and glass beads, filtering was at-
tempted to reduce the surplus of small particles. We attempted several rounds of
filtering, either by sieving or selective sedimentation, but it was not possible to re-
move the small particles to a satisfying extent, and the experimental results did not
qualitatively change.

4.4.4 Monodisperse beads

In the previous subsection it became clear that the chaotic behavior of the polydis-
perse glass beads in the splitting hole state could be tempered by reducing the polydis-
persity of the material. It is therefore interesting to study monodisperse glass beads,
which unfortunately are hard to obtain in the necessary quantities. We therefore used
polystyrene beads of 20, 40 or 80± 5 µm (MicroBeads, TS 20-40-80), of which a
microscopic picture can be found in Fig. 4.6(d). The particles have a density of 1050
kg/m3 and are mixed with water to create a suspension. Due to the small density
difference density matching was not necessary.

Again, for low values ofΓ we find closing holes for all examined values off .
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Beyond a frequency-dependent onset acceleration, we observe that the initial pertur-
bation turns into a circular hole which grows in time withoutlosing its circular shape.
Subsequently, depending on the suspension details and the shaking parameters, the
hole will either collapse due to the formation of a rising rimwhich grows in size while
the hole is growing, or will continue to grow until it reachesthe container wall and
form a kink. The intricate dynamics of the hole growth will betreated in a separate
chapter.

4.4.5 Glitter

To combine monodispersity with a certain edginess of the particles, we finally em-
ploy glitter particles (Sigmund-Lindner, SiliGlit, Polyester Glitter, GradeII). These
particles predominantly consist of polyethylene, which are edgy, and have a density
of 1.38·103 kg/m3. These particles –which incidentally are obtained by cutting of
sheet material and mainly intended for use in the cosmetic industry– are available
in squares, rectangles, and octagons and are relatively thin (20 µm) compared to
the other dimensions (50−100 µm) and quite monodisperse. The particles are hy-
drophobic, so an apolar liquid needs to be used to create a suspension for which we
took sunflower oil. A microscopic picture of a mixture of someof the glitter particles
can be found in Fig. 4.6(e).

We have produced various different suspensions, either with a single size of par-
ticles, or a mixture of particles and in different concentrations, and the results were
found to be qualitatively the same: A disturbance grows and eventually form a large
kink covering part of the container surface. Snapshots of such a series of events had
been provided in Fig. 4.5 and a typical phase diagram with thecrossover between
closing and growing holes can be found in Fig. 4.13. A phase diagram for earlier
mentioned monodisperse particles would qualitatively show the same results.

The edge of the kink clearly shows a convection roll, which can be observed
without adding tracer particles. The size of the roll and thesurface area covered
by the kink respectively grow and shrink with increasing shaking acceleration. It
appears that a higher kink is held in place by a larger convection roll, consistent with
the findings of Falcónet al. [18].

Very similar phenomena to the ones described here for the monodisperse polysty-
rene and the glitter particles have been observed in other suspensions of monodisperse
beads [16] and even in vibrated emulsions [18]. In the latter, also stable holes and a
delocalized state were found, like in cornstarch suspensions.
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4.5 Discussion and conclusions

In the previous Sections we have mostly focused on the differences between the vari-
ous particulate suspensions we have studied. We therefore want to start this conclud-
ing Section by recapitalizing the similarities of which there are quite a few:

• Like every other liquid, suspensions that are vertically vibrated in a container
will develop a pattern of surface waves above a certain threshold, the famous
Faraday waves [19]. The details of this pattern depend on thefrequency and
amplitude of the shaking. We have observed these patterns onall suspensions,
with the expected period doubling corresponding to half thedriving frequency.
We also established that the presence of Faraday waves did not significantly
interfere with the phenomena discussed in this article.

• Besides the Faraday waves, all presented phenomena requirean initial pertur-
bation to be ‘initiated’.

• All presented phenomena overcome hydrostatic pressure: When a hole is cre-
ated in a Newtonian liquid, gravity will push the liquid backand close the
opening. Since in all presented experiments, the holes remain visible for very
long times or even grow, the interplay of the suspension properties and the
(symmetric) driving works against gravity.

• In all cases particularly dense suspensions are needed. Suspensions with lower
particle concentrations behave similar to Newtonian liquids and only present
closing holes.

• For all patterns that are described in this study, the edges in the suspension
(e.g., the rim of the holes) oscillate with the same frequency as that of the
driving, with a phase shift. The same is true for a Newtonian liquid, where the
rim of the hole, while closing, is also oscillating.

• Many of the suspensions we used appear to be very viscous whenat rest, and
to flow more easily when shaken. This presumably is a signature of the shear
thinning properties that many dense suspensions are reported to have at mod-
erate shear rates [2–6].

In conclusion, in this chapter we have been extensively studying the behavior of
various vertically vibrating dense suspensions with different particle sizes, shapes,
compositions, and distributions. All of these suspensionshave in common that there
are Faraday waves above a certain threshold and that when a perturbation is created
at low shaking strengths and/or low particle concentrations we observe the formation
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of a closing hole with oscillating edges, just like what would happen in a viscous
Newtonian liquid. However, after an initial perturbation is created in a dense sus-
pension at high shaking strengths we observe a rich variety of phenomena that all
overcome hydrostatic pressure. Of all suspensions examined, the cornstarch suspen-
sions present the largest number of different phenomena, which include stable holes,
rivers, fingers, and jumping liquid. Moreover, all of these turn out to be unique to
cornstarch, since –at least in this study– they have not beenobserved in the other
suspensions.

The other suspensions studied –polydisperse glass beads, polydisperse quartz
flower, monodisperse spherical particles, and monodisperse glitter particles– pre-
sented two types of patterns, namely growing holes, which ultimately develop into
kinks, and splitting holes, which split, collide, and mergein a chaotic dynamics. The
pattern that is selected is found to be connected to the distribution of particle sizes:
Suspensions of monodisperse particle lead to growing holes, whereas suspensions
containing a polydisperse particle distribution lead to splitting holes.

It is particularly intriguing that cornstarch suspensionsbehave so differently com-
pared to the other suspensions. This either suggests that this behavior is typical for
monodisperse, edgy particles of the size of cornstarch (≈ 20 µm) –for which no al-
ternative made of a different, preferably inorganic, material had been found so far–
or that some other undisclosed property of cornstarch is at play. Finally, all of the ob-
served phenomena are worthy of a thorough theoretical investigation of their origin,
but such an endeavor goes beyond the scope of the current work.
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5
Hole dynamics in vertically vibrated

suspensions ∗

We study the dynamics of holes, created in vertically vibrated dense suspensions and
viscous Newtonian liquids. We find that all the holes oscillate with the driving fre-
quency, with a phase shift ofπ/2. In Newtonian liquids holes always close, while in
suspensions holes may grow in time. We present a lubricationmodel for the closure
of holes which is in good agreement with the experiments in Newtonian liquids. The
growth rate of growing holes in suspensions is found to scalewith the particle di-
ameter over the suspending liquid viscosity. Comparing closing holes in Newtonian
liquids to growing holes in dense suspensions we find a sinusoidal, linear response
in the first, and a highly non-linear one in the latter. Moreover, the symmetry of the
oscillation is broken and is shown to provide an explanationfor the observation that
holes in dense suspensions can grow.

∗Stefan von Kann, Matthias van de Raa, and Devaraj van der Meer, Hole dynamics in vertically
vibrated suspensions, preprint (2012).
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5.1 Introduction

When a hole is created in a horizontal layer of a (viscous) liquid at rest, the hydro-
static pressure will cause the hole to close. In spite of its more complicated rheology,
the same thing is expected to happen in a non-Newtonian liquid. Recently however,
the reverse has been shown to occur in experiments where layers of various particu-
late suspensions and emulsions were subjected to vertical vibrations: Holes created
in these vibrated liquids do not necessarily close, but may stabilize [1, 2], grow [3], or
lead to chaotic dynamics [4, 5]. Although phenomenologicalmodels are suggested
in the literature [3, 6] our understanding of this behavior is far from complete. In
this chapter we will shed light onto this dynamics by investigating the analogies and
differences between vertically vibrated viscous Newtonian fluids and a suspension of
monodisperse particles in liquids with the viscosity of water and higher.

A concentrated particulate suspension consists of a mixture of a homogeneous
liquid and particles that are large enough (> 1µm) such that their Brownian motion
is negligible. They can be found in many places, ranging fromquicksand, through
freshly mixed cement and paints to the inside of flexible armor suits. Their flow is im-
portant in nature, industry and even health care [7]. In spite of their common presence
and significance, many aspects of the flow of these dense suspensions remain poorly
understood. In order to study these materials people have used methods inspired by
classical rheology, and typically characterized them in terms of a constitutive rela-
tion of stress versus shear rate [8–13]. A general result is that, when increasing the
shear rate, dense suspensions first tend to become less viscous (shear thinning) and
subsequently shear thicken. In recent experiments people found mesoscopic length
scales [12, 14], fracturing [15], and a dynamic jamming point [10] to be important in
such suspensions. Connected to the above, normal stress divergence in the approach
to a wall [16], and non-monotonic settling [17] have been reported for objects moving
through dense cornstarch suspensions.

Turning to vertically vibrated suspensions, Merktet al. [1] observed in a verti-
cally shaken, thin layer of cornstarch suspension that –amongst other quite exotic
phenomena– stable oscillating holes can be formed for certain values of the shaking
parameters. These stable holes were subsequently described using a phenomenolog-
ical model based on a hysteretic constitutive equation [6].In other particulate sus-
pensions, Ebataet al. found growing and splitting holes and a separated state [3, 4],
where the latter is attributed to a convective flow in the rim and the first are still not
understood. Stable holes and kinks (which appear to be similar to or even identical
to the separated state mentioned above) have also been reported in emulsions [2]. At
present we are still far from a detailed understanding of dense suspensions, and why
different suspension behave differently.

Here, we will investigate the dynamics of opening holes in a layer of vibrated
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suspension of monodisperse particles of various sizes suspended in a glycerol-water
mixture. We will investigate how this dynamics depends on particle size and viscosity
and compare it to the dynamics of closing holes in a layer of vertically shaken viscous
liquids, for which we will present a model within the lubrication approximation. We
will then shed light upon how the differences arise and in what manner these can
explain the observation that the holes in the suspension do not close as a result of
hydrostatic pressure.

The chapter is organized as follows: We will start with a short description of
our setup in Section 5.2. After this we will present experiments for the dynamics
of closing holes in a (vibrated) layer of a viscous Newtonianliquid (Section 5.3.1),
followed by the introduction and discussion of a lubrication model for this system
(Section 5.3.2). Subsequently, in Section 5.4 we turn to thedynamics of opening
holes in vibrated particle suspensions and discuss the similarities and differences
with the closing holes. The chapter will be concluded in Section 5.5.

5.2 Experimental setup

The experimental setup is shown in Fig. 5.1. Its core consists of a cylindrical con-
tainer with a diameterD = 11.0 cm and a heightH of 8.0 cm. This container is
vertically vibrated by a shaker (TiraVib 50301) with frequencies f between 20 and
200 Hz and a dimensionless accelerationΓ from 0 up to 60. Here,Γ = a(2π f )2/g,
wherea is the shaking amplitude andg the gravitational acceleration. The container
is filled up to a heighth0 = 6±1 mm with a viscous liquid or a suspension of varying
composition. The dynamics of the fluid layer in the containeris recorded with a high
speed camera at various frame rates, given in frames per second (fps), and is imaged
from the top. The bottom of the container was covered with tape for improved con-
trast between liquid and container bottom. When using transparent liquids, a small
amount of powdered milk was added to whiten the liquid. Of course it was checked
that adding tape or milk powder did not influence the dynamicsof the system.

5.3 Viscous Newtonian liquids

Before turning to the –anomalous– opening holes in dense suspensions consisting of
monodisperse particles in a mixture of glycerine and water,we will first study the
regular case of holes closing in a viscous Newtonian liquid.We will both discuss the
case where the holes close purely due to the hydrostatic pressure in the liquid and the
case in which a periodic forcing is added by vibrating the system vertically. In the
second subsection we will subsequently present a model to describe both cases.
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Figure 5.1: A schematic view of the used setup. At the lower end we have the shaker,
on top of which the container with the suspension is mounted,which is subsequently
vibrated vertically. Above that is the high speed camera, recording the suspension
from above.
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Figure 5.2: The diameter of a closing hole in a layer of honey (µ = 6.4 Pa·s) with a
thickness ofh0 = 6±1 mm as a function of time, while the layer is vertically vibrated
at f = 50 Hz,Γ = 30 and recorded at a framerate of 250 fps (blue line). The black
line is the result of a calculation using the lubrication model. The inset is from an
experiment using the same shaking parameters, but twice therecording speed (500
fps).

5.3.1 Experiment

We prepare a layer with a thickness ofh0 = 6± 1 mm of a viscous liquid in the
container as described in the previous Section. Subsequently, a disturbance is created
into the layer by blowing air from the top until a more or less circular hole with
a diameter of a few centimeters is formed. To vary the viscosity of the liquid we
choose honey, with a dynamic viscosity ofµ = 6.4 Pa·s, and several glycerine-water
mixtures with viscosities ofµ = 1.3, 1.1, 0.45, and 0.15 Pa·s. Viscosities below the
last value lead to holes that close extremely fast; in particular they were found to
close within a single cycle of the lowest driving frequency we have used in our study
( f = 20 Hz). Moreover, for these low viscosities inertial effects will start to become
important and therefore such fluids were not considered here.

Fig. 5.2 provides a typical experimental result for ah0 = 6 mm thick layer of
honey, vibrated atf = 50 Hz,Γ = 30. After creating a circular hole in the layer, we
follow the dynamics of its closing and plot the hole diameteras a function of time.
Over the course of several seconds the hole closes almost linearly. At the same time
the hole oscillates at the same frequency as the driving, which is shown in the inset
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Figure 5.3: Time evolution of the hole diameter in a vertically vibrated layer of glyc-
erine (µ = 1.3 Pa·s andh0 = 6 mm): (a) For a constant shaking frequencyf = 50 Hz
and different values of the shaking accelerationΓ = 0 (no shaking, blue line),Γ = 10
(red line),Γ = 20 (magenta line), andΓ = 30 (black line). (b) The same, but now for
varying frequencies:f = 0 Hz, Γ = 0 [no shaking, blue line, as in (a)];f = 20 Hz,
Γ = 5 (black line); f = 50 Hz,Γ = 10 [red line, as in (a)]; andf = 200 Hz,Γ = 40
(magenta line).

where part of the signal has been magnified in time.

When changing the shaking parametersf andΓ, it becomes clear that the closing
time is to a large extent independent off andΓ, as is shown in Fig. 5.3 where we
show results obtained in glycerine. In particular, when we do not shake at all and just
create a hole in the container at rest and observe its closingdue to gravity, we find
that its time evolution follows the very same trend. The amplitude of the oscillation
increases more or less linearly with the shaking acceleration Γ and is in fact of the
same order as the shaking amplitudea = Γg/(2π f )2. The latter observation also
explains why the amplitude of the oscillation decreases so much when the frequency
is raised tof = 200 Hz, which causes the shaking amplitude to go down by a factor
16. Moreover, the amplitude of the oscillations of the edge of the hole appear to be
independent of the hole size, i.e., the amplitude remains largely constant while the
hole diameter shrinks down to zero.

In Fig. 5.4 we compare results for the different liquid viscosities, shaken atf =
50 Hz andΓ = 10. For the lowest viscosity (µ = 0.15 Pa·s) we observe that the
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Figure 5.4: Time evolution of the hole diameter in ah0 = 6 mm thick layer of liquid
of varying viscosityµ , vibrated atf = 50 Hz andΓ = 10. The solid (not oscillating)
lines denote the time evolution according to the model discussed in Section 5.3.2.

holes closes in less than a tenth of a second, i.e., within a few cycles of the driving.
When we increase the viscosity the closing time increases rapidly, and for the highest
viscosity (that of honey,µ = 6.4 Pa·s) the closing time is over six seconds.

In the same Figure we observe that there is a significant span of time in which
the average closure velocity appears to be linear. This allows us to correct the signal
by subtracting this linear behavior and afterwards compareit to the vertical position
of the container. This is done in Fig. 5.5, where we zoom in on afew cycles only.
There is a clear phase shift between the driving and the hole,which is measured to
be approximately a quarter of a period, as shown in the inset of Fig. 5.5. The fact
that the horizontal oscillation of the hole lags behind∆ψ = π/2 with the vertical
container position implies that the oscillating velocity of the hole is in phase with
the latter. This in turn implies that the velocity with whichthe hole oscillates is in
antiphase with the shaking acceleration. Note that this implies that the acceleration
of the liquid layer is in phase with the velocity of the hole, i.e., the hole closes for
downward and opens for upward acceleration of the layer.

To quantitatively compute the average velocity profile in a cycle we start from
the corrected signal and shift all cycles on top of each other, as seen in Fig. 5.6(a).
We then compute the average diameter and the average velocity [Fig. 5.6(b)]. We
conclude that both are nicely sinusoidal. Most importantlythe positive and negative
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Figure 5.6: (a) Superposition of several cycles of the corrected trajectory of the di-
ameter of a closing hole shifted over an integer number of periods of the driving.
The black plus symbols indicate the average position and theblue line is a sinusoidal
fit to the average. (b) The instantaneous velocity of the closing hole averaged over
all cycles. The solid line shows the derivative of the sine fitof (a). Taken from an
experiment with glycerine (µ = 1.3 Pa·s,h0 = 6 mm, f = 50 Hz,Γ = 20).

half of each cycle are close to each others mirror images and follow the shape of the
driving signal very well.

Now what is happening physically? First one should realize that the magnitude
of the shaking acceleration that we subject our liquid layers to is many times that of
gravity. This means that the liquid layer is alternately subjected to a large downwards
acceleration, that is forcing the hole to close –as gravity does– in one half of the
driving period, and an almost equally large upwards acceleration in the other half.
Clearly, in this stage the liquid strives to move upward withrespect to the container,
and therewith opens the hole again. It is the small unbalancebetween the upward and
the downward acceleration caused by gravity that makes the hole close in the long
run†.

†Of course, when the direction of the acceleration is upward,the fluid surface becomes potentially
unstable, which one could call a Rayleigh-Taylor, Richtmyer-Meshkov, or Faraday instability, depend-
ing on the perspective and the specific timescale one is looking at. This instability is counteracted by
surface tension (which stabilizes the smaller wavelengths) and liquid viscosity. From the experiment
we infer that for the liquids in this study this leads to stable standing wave patterns (the Faraday waves)
in the worst case.
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5.3.2 Modeling

To model the dynamics of closing holes in a viscous Newtonianliquid we use ax-
isymmetric lubrication theory. In absence of the driving, the equation of motion for
the liquid profileh(r, t) can be derived from continuity and a lubrication ansatz for
the velocity profile within the layer (See Section 5.6‡).

∂h
∂ t

=
ρg
3µr

∂
∂ r

[
rh3 ∂h

∂ r

]
, (5.1)

wherer is the radial coordinate,g the acceleration of gravity,ρ the density, andµ the
dynamic viscosity of the liquid. Using lubrication theory implies neglecting inertial
effects. In particular this means that the scaling behaviorof the closing velocity can
be derived from an (instantaneous) balance of the gravitational force which drives the
closing and the viscous forces that counteract it, i.e.

ρg∼ µ
ḋ

h2
0

⇒ ḋ ∼ ρgh2
0

µ
, (5.2)

in which ḋ denotes the time derivative of the hole diameter and we have estimated the
viscous forces in the layer,µ (∂ 2u/∂z2) as the velocity of the rimḋ/2 divided by the
squared initial layer thicknessh0. From this simple balance it follows that the closing
velocity should scale as 1/µ . If we check this for our experimental results by plotting
the closing velocityḋ (determined from the linear regime of plots as in Fig. 5.4) as
a function of viscosityµ Fig. 5.7 we find a very good agreement. Remarkable is
that the plot does not only contain data without driving, butalso with various driving
strengths.

When we assume an infinite layer of liquid, we can derive a semi-analytical self-
similar solution to the closing hole problem which leads to ahole diameter of the
form

d(t) = 2η0

√
ρgh3

0

3µ
(tc− t) , (5.3)

whereη0 is a numerical constant andtc is the time the hole needs to close. In our case
these can be thought of as fixed by the initial hole size together with the boundary
conditions at the sidewalls of our container. This self-similar solution goes to zero
with a square-root dependence on time which is however –maybe with the exception
of the very end– not observable in our experiments (Figs. 5.2, 5.3 and 5.4). This
is presumably connected to the proximity of the side walls. We therefore decided

‡Some technical details in the derivation of several resultspresented in this Section can be found in
Section 5.6.
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Figure 5.7: Average closing velocity as a function of viscosity in a double logarith-
mic plot, for three different values for the driving (no shaking; f = 50 Hz andΓ = 10;
and f = 50 Hz andΓ = 20. The blue solid line iṡdclose= 0.05/µ , making the pro-
portionality constant in Eq. (5.2) equal to 0.12.

to numerically solve Eq. (5.1), supplemented with
∫ D/2

0 h(r, t)rdr = constant, which
expresses the conservation of liquid in our system.

In Figs. 5.2 and 5.4 we compare our model results to the experiments and find
that behavior is well captured by the model.

We can use Eq. (5.1) to model the modulation due to the acceleration of the shaker
as well, by simply substitutingg(1+Γsinωt) for g, leading to

∂h
∂ t

= (1+Γsinωt)
ρg
3µr

∂
∂ r

[
rh3 ∂h

∂ r

]
(5.4)

The result is (at least in first order) the same as for the purely gravitational case,
with a continuous oscillation on top of the gravitational result, just like we see in our
experiments. More details can be found in Section 5.6.
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5.4 Non-Newtonian liquids

Whereas disturbances created in a layer of a Newtonian liquid always close, indepen-
dent of whether the layer is being vibrated or not, for non-Newtonian liquids things
are observed to be different. More specifically, for the particulate suspensions stud-
ied here§, holes close when the suspensions are at rest, but may eitheropen or close
when vertically vibrated.

5.4.1 Experiment

As discussed in Section 5.1, several types of non-closing holes were found in vari-
ous vibrated suspensions and emulsions, including stable holes, splitting holes, and
growing holes [1–6]. It is this last type, the growing holes,which will be the focus of
this Section. Growing holes are typically found in suspensions containing monodis-
perse particles¶ [1, 2], and splitting holes occur in suspensions of particles with a
substantial poydispersity [5]. We therefore use monodisperse, spherical polystyrene
particles with a diameter (σ ) of 20, 40, and 80± 5 µm, and a density of 1050 kg/m3

(MicroBeads, TS 20-40-80). As the suspending liquid we usedvarious glycerine-
water mixtures, with varying viscosities and densities. Because the suspending liq-
uid may be either denser or less dense than the particles, we do not attempt to density
match the liquid. In all cases the time scale at which the suspension separates is much
larger than the time scales of the experiment. In some cases we have checked that
our results did not depend on whether the liquid density would be larger or smaller
than that of the particles by adding Cesium Chloride to the suspending liquid. Much
care has been taken to ensure that the packing fractionφ –the volume occupied by
the solid phase in the suspension divided by the total volume– was kept at a constant
value of 0.52.

In Fig. 5.8 we show the typical time evolution of the hole diameter for a growing
hole, here in a suspension consisting of theσ = 40 µm particles and glycerol-water
mixtures of three different viscosities. We observe that a lower viscosity causes holes
to open faster. This appears to be comparable to the Newtonian liquids, where holes
also close faster for lower viscosity, but one needs to be careful in making this com-
parison: First of all, the viscosity of the suspending liquid is generally not comparable
to the (non-constant) viscosity of the suspension as a whole, since there is a usually
non-negligible or even dominant contribution from the particle phase. Secondly, we
are now looking at the rate at which the hole growsagainst bothgravity and the sus-

§As a yield stress has been reported in some very dense suspensions, it is conceivable that gravity is
not capable of overcoming this yield strength when such a material is at rest. In the suspensions studied
here, this is not the case.

¶Stable holes have been observed in cornstarch suspensions and some emulsions
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Figure 5.8: Time evolution of the diameterd of a growing hole in a suspension of
40 µm polystyrene particles in glycerine-water mixtures of three different viscosi-
ties, namelyµ = 0.14 Pa·s (red line),µ = 0.22 Pa·s (black line), andµ = 0.52 Pa·s
(blue line) versus time for three opening holes in a 52% volume fraction suspensions,
shaken atΓ = 28 andf = 45Hz.

pension viscosity, whereas for the closing holes in a Newtonian liquid gravity was
the driving force of the closure.

The trend mentioned above holds for all experiments we performed. Noteworthy
is that for the higher suspending liquid viscosities and larger particles we typically
observe growth of the hole until it develops a kink (where part of the system, includ-
ing part of the wall, falls dry separated by a kink from the suspension) whereas for
small values of the suspending liquid viscosity and large particles we also observed
holes that would go through many consecutive cycles of growth followed by a rapid
collapse to an almost zero radius.

To further quantify the dependence of the growth rate on the suspending liquid
viscosity, we determined the average growth∆d of the hole diameter per cycle and
plotted it against the suspending liquid viscosityµ in Fig. 5.9(a) for all three bead
sizes. We observe that all three data sets show a clear decrease of∆d with increasing
µ , confirming our observation that the growth rate decreases with increasing sus-
pending liquid viscosity. The data however does not collapse onto a single curve.
Therefore, in Fig. 5.9(b) we plot the same data as a function of µ/σ which leads to a
reasonable collapse of the data for the two larger sizes, thesignificance of which will
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Figure 5.9: (a) The average growth∆d per cycle of a growing hole as a function of
the suspending liquid viscosityµ . The experiments were done for suspensions of all
three bead diameters,σ = 20 µm (green circles),σ = 40 µm (red diamonds), and
σ = 80 µm (blue pluses) and a packing fraction ofφ = 0.52. The driving parameters
are f = 45 Hz andΓ = 28. (b) The same data as in (a) but now plotted as a function
of µ/σ , the suspending liquid viscosity over the particle diameter.
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Figure 5.10: (a) Overlay of many cycles of a growing hole experiment with 40µm
beads suspended in a glycerine-water mixture of viscosityµ = 0.52 Pa·s, all shifted
to start att = 0 and the initial diameter shifted tod = 0. The plus symbols indicate
the cycle-averaged hole diameter.The black line is a sine fitthrough the average (thus
neglecting the actual growth of the hole). (b) The instantaneous velocity of the grow-
ing hole averaged over all cycles. The solid line is the derivative of the sine fit of (a).
The experimental parameters are,h0 = 6 mm, f = 45 Hz,Γ = 28, andφ = 0.52.

be discussed further down.
Just like we have done for the Newtonian liquids (cf. Fig. 5.6), we can overlay

many single cycles and compute the cycle-averaged diameterand velocity, the result
of which is plotted in Fig. 5.10. This reveals several prominent features: The first is
that –quite unlike for the closing holes in the Newtonian liquids– the signal deviates
significantly from a sinusoidal shape. This is especially clear when comparing the
cycle-averaged velocity to the derivative of the sine fit [Fig. 5.10(b)]. In this plot
we find a second remarkable feature: The magnitude of the mostnegative velocity
(ḋ ≈−0.9 m/s) is larger than that of the most positive velocity (≈ 0.7 m/s), which is
surprising since the hole on average must be growing, i.e., the time average〈ḋ〉> 0.
When determining the duration of the opening and closing parts of the cycle, we find
that they are very close to one another, implying that large closing velocities occur
in a narrow time interval, whereas large opening velocitiesare found in a broader
period of time. In Fig. 5.10(b) we observe that the closing half of the cycle is sharply
peaked, compared to a wider, more sinusoidal, shape during the opening half.
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Figure 5.11: (a) The difference∆V ≡ max(ḋ)+min(ḋ) in the maximum opening and
closing velocities in the growing hole state, averaged overall cycles as a function of
the suspending liquid viscosityµ , again for suspensions of all three bead diameters,
σ = 20µm (green circles),σ = 40 µm (red diamonds), andσ = 80 µm (blue pluses)
and a packing fraction ofφ = 0.52. As before, the driving parameters aref = 45 Hz
andΓ = 28. (b) The same data as in (a) but now plotted as a function ofµ/σ .
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Figure 5.12: The phase difference∆ψ between the vertical position of the container
(vibrated atf = 45 Hz andΓ = 28) and the diameter of a growing hole, averaged over
all cycles. This quantity is plotted as a function of the suspending liquid viscosity
over the particle diameterµ/σ , again for suspensions of all three bead diameters,
σ = 20 µm (green circles),σ = 40µm (red diamonds), andσ = 80 µm (blue pluses)
and a packing fraction ofφ = 0.52.

This asymmetry is visible in all of our experiments, as can beseen in Fig. 5.11,
where we plot the difference between the magnitudes of the largest opening and clos-
ing velocities∆V ≡ max(ḋ)+min(ḋ). The fact that∆V is always negative expresses
that the magnitude of the most negative velocity is larger than that of the most pos-
itive. Just like the average growth∆d per cycle increased with decreasing viscosity,
so does the magnitude of the velocity difference∆V, which becomes more negative
asµ becomes smaller. In addition we find that the data for the different hole sizes are
rather scattered in the∆V versusµ plot, but appear to collapse when plotted against
µ/σ .

Finally, we can determine the phase shift∆ψ between the driving and the hole
although this is slightly more difficult than in the Newtonian liquid case because of
the deviations from the sinusoidal shape. The results are plotted as a function of
µ/σ in Fig. 5.12: Again the horizontal oscillation of the hole lags behind the vertical
container position but now by a phase shift that is slightly larger thanπ/2 and that
increases somewhat when the viscosity of the suspending liquid becomes smaller or
the particle size becomes larger. So again the velocity withwhich the hole oscillates
is in antiphase with the container acceleration, and as a consequence the hole velocity
is in phase with the acceleration of the suspension layer.
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5.4.2 Interpretation

It is now time to make an inventory of what we believe happens when we create a
hole-shaped disturbance in a liquid layer in a container which is oscillated vertically:

• For “highly viscous” fluids (even if not Newtonian), the velocity of the hole
walls is in phase with the acceleration the liquid layer experiences.

• A viscous Newtonian liquid follows the acceleration perfectly, i.e., for a sinu-
soidal acceleration also the velocity is sinusoidal. This stands to reason since
for a viscous fluid forcing (acceleration) and the response of the liquid (the ve-
locity profile in the layer) are proportional at all times, with viscosityµ as the
proportionality constant.

• Consequently, if the liquid is non-Newtonian the proportionality factor itself
depends on the forcing and therefore the response of the liquid to a sinusoidal
acceleration is a deformed signal. However, if stress depends monotonously on
strain rate (like, e.g., in a power-law fluid) the deformation will be symmetric,
i.e., sinusoidal with a superposition of only odd higher harmonics.

• For our vertically vibrated suspension layers we find a non-symmetric veloc-
ity cycle. The negative velocity part is strongly deformed,whereas the positive
velocity half is close to sinusoidal [Fig. 5.10(b)]. It appears that during the clos-
ing half of the cycle the suspension behaves strongly non-Newtonian‖ whereas
during the opening half it responds more or less like a Newtonian fluid.

The behavior in this last point can be summarized by saying that the behavior of
the liquid is highly hysteretic. This is in agreement with the phenomenological model
proposed by Deegan [6], who argued that a hysteretic rheology would be necessary to
explain the existence of stable or growing holes in a vertically vibrated liquid layer.

Now, let us speculate about what could cause the suspension to respond in this
manner. In the first half of the driving the suspension layer experiences a downward
acceleration and, consequently, the suspension layer willbe pushed against the bot-
tom of the container and when set in motion by the presence of the hole it will do
so with the typical non-Newtonian (shear-thinning) behavior that characterizes sus-
pensions. In the second half of the driving, inertia actually creates a low pressure
between the layer and the container bottom. Now suppose thatthis pressure gradient
would be able to displace the liquid slightly with respect tothe particle phase such
that a thin layer of liquid –with a thickness comparable to the particle diameterσ–
forms between the bottom and the suspension. Such a layer could act as a lubrication

‖In fact, from the shape of the curve in Fig. 5.10(b) one can deduce that it behaves like a shear-
thinning fluid
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layer, i.e., during the second half the layer would move on top of this layer and the
entire velocity gradient would be in this thin layer of Newtonian liquid, i.e., it would
be a shear band.

This in turn would explain why the suspension layer in the second half behaves
like a Newtonian fluid, namely because this thin liquid layeris a Newtonian fluid.
More specifically, if we balance the gravitational energy ofthe suspension layer and
the dissipation in the lubrication layer we obtain

ρsgh∼ µ
ḋ
σ

⇒ ḋ ∼ ρgh
σ
µ
, (5.5)

i.e., the velocityḋ in the second half of the driving would scale as(µ/σ)−1. This is
consistent with the fact that many of the observables (∆V and∆d) that characterize
the growth of the hole, show a better collapse when plotted againstµ/σ rather than
µ itself. Conversely, one could state that dependence onµ/σ indicates the existence
of a shear layer of suspending liquid (with viscosityµ) and thickness∼ σ .

Incidentally, the presence of such a thin shear layer can also account for the con-
vection rolls that have been observed in the rim of these structures [2, 3]: In the first
half of the driving the suspension responds with a flow profilein the layer in with the
largest velocity on top and zero velocity at the bottom. In the second half, the layer
slides back as a whole, on top of the thin shear layer. Consequently, the displacement
per cycle of a fluid particle near the bottom is different fromthat near the top, giving
rise to a convection roll.

5.5 Conclusions

We have comparatively studied the dynamics of holes in a vertically vibrated layer
of viscous Newtonian liquids on the one hand and of dense particle suspensions on
the other. We find that all the holes oscillate with a phase shift of ∆ψ = π/2 with
respect to the driving signal, such that the velocity of the hole is in phase with the
vertical acceleration experienced by the fluid layer in the frame of reference of the
container. In the Newtonian liquids we observe that holes always close, while in the
suspensions holes may grow in time, depending on the drivingparameters.

For the Newtonian liquids we find that the closing velocity isinversely propor-
tional to the liquid viscosity, which is explained from a simple balance of gravita-
tional and viscous forces. The presence of the driving is seen to hardly influence the
closing: Independent of frequency and acceleration of the driving we find that the
cycle-averaged closing rate of the holes is the same as for a closure that is driven by
gravity only. We present a lubrication model for the closureof holes which is in good
agreement with the experiments.
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For the suspensions we focus on the growing holes regime and find that the
growth rate of these growing holes is proportional to the ratio of the particle diame-
ter and the suspending liquid viscosity. Comparing the growing holes to the closing
ones in Newtonian liquids, we observe that in suspensions the response is highly
non-linear. In addition, the symmetry of the oscillation isbroken, with larger inward
velocities than outward ones, which is surprising since thehole is growing. The rea-
son is that large outward velocities only occur in a small time interval, whereas the
inward ones are spread over the whole half-period. We tentatively explain this asym-
metry from the formation of a thin lubricating layer of suspending liquid between the
suspension and the bottom in the half-period in which the hole is opening.

5.6 Appendix: Modeling of hole closure in a viscous layer

A lubrication model of a horizontal axisymmetric viscous layer h(r, t) starts with
the axisymmetric Stokes’ equation in the thin layer limit, with pressure given by the
hydrostatic pressure in the layerp= ρg[h(r, t)−z]. Neglecting gradients in the radial
direction in comparison to those in the vertical direction,we then integrate

∂ 2ur

∂z2 =
∂ p
∂ r

⇒ ur =
ρg
2µ

∂h
∂ r

z(z−2h) , (5.6)

where we have used the no-slip boundary condition at the bottom (ur(0) = 0) and the
free-slip condition at the free surface (∂ur/∂z(h) = 0). Continuity, integrated over
the layer height gives

∂h
∂ t

=−1
r

∂
∂ r

[
r
∫ h

0
ur(z, t)dz

]
, (5.7)

which with Eq. (5.6) immediately leads to Eq. (5.1)

∂h
∂ t

=
ρg
3µr

∂
∂ r

[
rh3 ∂h

∂ r

]
. (5.8)

If we look to compute the closure of a hole of initial diameterd0 (at t = 0 s) in
an infinite horizontal layer of liquid of thicknessh0, we can find a similarity solution
to Eq. (5.8). To do so, we first nondimensionalizeh, r, andt with the length and time
scale in the problem, namelyh0 andt0 ≡ 3µ/(ρgh0) respectively. If we now use a
selfsimilar ansatz̃h= t̃αH(r̃/t̃β ) in Eq. (5.8), we find a solution provided thatα = 0,
β = 1/2

h(r, t) = h0 H

(√
3µr2

ρgh3
0(tc− t)

)
, (5.9)
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wheretc is the time at which the hole closes andH(η) is a solution of

d2H4

dη2 +
1
η

dH4

dη
=−2η

dH4

dη
H(∞) = 1 ; H(η0) = 0 . (5.10)

The fact thatη0 needs to be a constant implies that the rim diameterd(t) should scale
as

d(t) = d0

√
(tc− t)

tc
= 2η0

√
ρgh3

0(tc− t)

3µ
. (5.11)

Note that the problem is not uniquely determined by providing d0, and that in addition
the closure timetc needs to be supplied to obtain a full solution to the problem.
Then,η0 can be determined asη0 = [3µd2

0/(4ρgh3
0tc)]

1/2 and Eq. (5.10) has a unique
solution. Note, that in this case the initial profile is also fixed by the self-similar
solution. Alternatively, one could therefore also start from the initial profile, match
it to the solution of Eq. (5.10) for a certainη0 which then fixestc. (This can be done
provided that the initial profile is compatible with the equations.)

To obtain solutions of Eq. (5.8) that are more realistic given the experimental
setup that we use, we turn to numerical simulations. Here, wereplace the actual
boundary conditions at the side wall (zero radial velocity and no-slip) –which are im-
possible to incorporate into the lubrication model– with the following integral state-
ment of mass conservation in the system

∫ D/2

r=0
h(r, t)rdr = constant, (5.12)

whereD is the diameter of the container, or equivalently, taking the time derivative
of Eq. (5.12) and using Eq. (5.8)

1
2D

[
h3 ∂h

∂ r

]

r=D/2
= 0 ⇒ ∂h

∂ r

∣∣∣∣
r=D/2

= 0 , (5.13)

where it was used thath(D/2, t) > 0. Eq. (5.8) is of a type that is known as a non-
linear diffusion equation, which is of a very stable type that renders them easy to solve
numerically. The equations are therefore solved with a simple forward integration
scheme which lead to results that compare well to the experiments (see Section 5.3.2).

Actually it is conceptually straightforward to incorporate the driving into the
equations, as the only thing one needs to do is to substitute the gravitational ac-
celerationg with g+ a(t) wherea(t) is the instantaneous acceleration of the liquid
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layer, a(t) = aω2 sinωt = Γgsinωt (with ω = 2π f ). This however has enormous
implications for the numerical solvability of the equations, since forΓ > 1 there ex-
ists a time interval in each cycle for whichg+ a(t) < 0. In this interval Eq. (5.8)
becomes a non-linear diffusion equation with a negative diffusion coefficient, which
is terribly unstable and consequently extremely difficult to solve numerically. For
the current problem there exists a workaround however, for which we need some
additional understanding of the equations first.

To this end let us first examine a modified Eq. (5.8) without gravity

∂h
∂ t

= Γsin(ωt)
ρg
3µr

∂
∂ r

[
rh3 ∂h

∂ r

]
. (5.14)

Clearly, a solution to Eq. (5.14) must have the same periodicity as the driving, i.e.,
h(r, t+T)= h(r, t). Now, the simplest form that such a solution could have ish(r, t) =
hs(r)+A(r)exp[iωt +ϕ(r)], which corresponds to neglecting non-linear effects (i.e.,
higher harmonics) in Eq. (5.14). Nowhs(r) can be any profile that satisfies the non-
driven Eq. (5.14), i.e.,∂hs/∂ t = 0, which is satisfied by any well-behaved function
of r. Inserting this form into Eq. (5.14) and linearizing leads to

ωA(r)ei(ωt+ϕ(r)+π/2) = Γ
ρg
3µr

∂
∂ r

[
rh3

s
∂hs

∂ r

]
eiωt ,

which needs to hold for anyt, leading to

A(r) =
Γ
ω

ρg
3µr

∂
∂ r

[
rh3

s
∂hs

∂ r

]
,

ϕ(r) = −π
2
. (5.15)

with which

h(r, t) = hs(r) +
Γ
ω

ρg
3µr

∂
∂ r

[
rh3

s
∂hs

∂ r

]
exp[i(ωt −π/2)] . (5.16)

The full equation, including both the driving and gravity, is equal to

∂h
∂ t

= (Γsin(ωt)+1)
ρg
3µr

∂
∂ r

[
rh3 ∂h

∂ r

]
. (5.17)

Note that, since we are dealing withΓ ≫ 1, gravity is only a small perturbation to
Eq. (5.14). This implies that the gravitational timescale at which the profile decays
(tg ∼ 3µ/(ρgh0)) is typically much larger than that of the driving. I.e., ifhg(r, t) is
a solution to Eq. (5.8), on the timescale of a single period itdoes not significantly
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change and may hardly interfere with the oscillation. In analogy to Eq. (5.16), this
suggests a solution to the full problem of the form

h(r, t) = hg(r, t) +
Γ
ω

∂hg

∂ t
exp[i(ωt −π/2)] , (5.18)

where we have used thathg(r, t) is a solution to Eq. (5.8) to simplify the expression
for the amplitude of the oscillation.

This line of reasoning comes to the rescue when numerically solving Eqs. (5.14)
and (5.17). A first useful trick is to realize that we can numerically integrate Eq. (5.14)
from t = 0 toT/2 since in this interval the coefficient of the right hand sideis always
positive. By going to a new time variableτ = −t we obtain a minus sign on the left
hand side which exactly compensates for the minus sign of thecoefficient in the in-
terval [−T/2,0]. Consequently we can integrate Eq. (5.14) backwards in timefrom
t = 0 to −T/2, such that we obtain the solution on[−T/2,T/2], i.e., a full cycle.
Since the sought-for solution is periodic in time, this concludes our calculation.

For Eq. (5.17) we can proceed in a similar way and, by integrating both back-
wards and forwards fromt = −(T/2π) arcsin(1/Γ) ≡ −tc (where the coefficient
changes sign), obtain a numerical solution on[−T/2+ tc,T/2+ tc], i.e., also on a
full period of the driving. And, of course, it is impossible to extend this interval be-
cause it is bounded by an interval where the coefficient is positive on the negative side
–such that backwards integration is not possible– and similarly by an interval where
the coefficient is negative on the positive side. We can however, take the solution (cq.
initial condition)h(r,−tc) and integrate it using Eq. (5.8), i.e., the equation that only
contains gravity, from−tc to T − tc. The solutionhg(r,T − tc) is now subsequently
used as an initial condition for the full problem Eq. (5.17) which we then integrate on
the interval[T/2+ tc,3T/2+ tc]. If there is any truth in the analytical approximation
Eq. (5.18) the two solutions should match at the point where the two intervals meet,
i.e., in t = T/2+ tc. This procedure can be iterated until the solution is obtained on
the full time interval [see the inset of Fig. 5.13(a)].

In Fig. 5.13(a) we plot the result of this procedure for a layer of liquid with vis-
cosityµ = 1.23 Pa·s and a thickness ofh0 = 6 mm, which is vibrated at a frequency
of 50 Hz and a dimensionless accelerationΓ = 20. The solid line is the solution of
Eq. (5.8) starting from the same initial solution and the dotted line is the solution
of that same equation that is used in the integration procedure. Clearly the inte-
gration procedure appears to work well. To quantify how goodit actually works,
in Fig. 5.13(b) we plot the difference between directly integrating fromt = −tc to
t = T/2+ tc and indirectly by using the gravitational solution to reacht = T − tc and
integrating Eq. (5.17) backwards in time tot = T/2+ tc. The difference, normalized
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Figure 5.13: (a) Time evolution of the hole diameter in a layer of a liquid of vis-
cosity µ = 1.23 Pa·s, densityρ = 1.26·103 kg/m3 and thicknessh0 = 6 mm, driven
at f = 50 Hz andΓ = 20, obtained by numerically integrating Eq. (5.17) using the
procedure described in the text (blue solid line). The blacklines are solutions of the
corresponding gravitational closure problem Eq. (5.8), one starting from the same
initial condition as the blue line (solid) and the other is the one that is used in the in-
tegration procedure of the blue curve. The inset illustrates the integration procedure.
(b) Difference between the profile att =T/2+tc obtained starting fromt =−tc by di-
rect integration of Eq. (5.17) and by integrating Eq. (5.8) to t = T− tc and integrating
Eq. (5.17) backwards in time tot = T/2+ tc. The inset illustrates this procedure.
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by the initial layer thickness is never larger than 10−6, illustrating the accuracy of the
procedure.
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6
The effect of finite container size on granular

jet formation ∗

When an object is dropped into a bed of fine, loosely packed sand, a surprisingly
energetic jet shoots out of the bed. In this chapter we study the effect that boundaries
have on the granular jet formation. We did this by (i) decreasing the depth of the sand
bed and (ii) reducing the container diameter to only a few ball diameters. These con-
finements change the behavior of the ball inside the bed, the void collapse, and the
resulting jet height and shape. We map the parameter space ofimpact with Froude
number, ambient pressure, and container dimensions as parameters. From these re-
sults we propose a new explanation for the thick-thin structure of the jet reported by
several groups.

∗Published as: Stefan von Kann, Sylvain Joubaud, Gabriel A. Caballero-Robledo, Detlef Lohse, and
Devaraj van der Meer, The effect of finite container size on granular jet formation, Phys. Rev. E.81,
041306 (2010).
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6.1 Introduction

Granular materials consist of discrete particles which interact mainly through contact
forces. In large quantities they can behave like a solid, a liquid, or a gas but often
behave differently from what would be expected of these phases [1]. A marked ex-
ample is the impact of an object on a bed of sand. When dry air isblown through
such a bed all contact forces between the individual particles are broken and after
slowly turning off the air flow, the bed settles into an extremely loosely packed solid-
like state. When a ball is dropped in such a bed, one observes asplash and a jet,
strikingly similar to the ones that are seen when the same object is dropped into a
liquid.

Research interest in this granular jet started when S.T. Thoroddsen and A.Q. Shen
first reported this phenomenon in 2001 [2], in a study with theobjective to gain
insight into the importance of surface tension on jetting ingeneral and the properties
of flowing granular materials. Since these results, severalaspects of the formation
of the granular jet have been studied. The influence of the impact velocity onto the
jet height for impacts on a bed of very loose sand was investigated in [3]. Using
a pseudo two-dimensional setup, numerical simulations andcomparisons to water
impact experiments, a model for the jet formation was proposed that is based on
cavity collapse: The impacting ball creates a cavity in the sand bed which collapses
due to the hydrostatic pressure in the sand and leads to two vertical jets. One jet is
observable above the bed and the other one is going down into the bed [3]. The series
of events is concluded by a “granular eruption” at the surface of the sand which was
attributed to the surfacing of an air bubble that is entrapped during the collapse.

The influence of the ambient pressure on the formation of a granular jet was first
studied by Royeret al. [4]. They observed that at lower ambient pressures the jet
reaches less high and also reported a puzzling thick-thin structure at lower pressures.
Using X-ray radiographic measurements, they were able to look inside the bed and
then proposed the following mechanism to explain this structure: the thick jet is
caused by the compressed air in the cavity pushing up bed material, forming the
thick part of the jet [4–6]. The thin jet was attributed to thehydrostatic collapse
as formulated in [3]. Subsequently, the thick-thin structure was also observed by
increasing the ball size in the same container, which suggests –in contrast to the
earlier explanation– that the structure may be a boundary effect [7]. Marstonet al.
also found a thick-thin structure by decreasing the packingfraction, and they too
found that this effect is more pronounced for a larger ball [8]. It is the exploration of
the formation of this thick-thin structure that constitutes the main motivation for the
work described in this chapter.

In parallel to the research concerning the formation of the granular jet, quite some
effort was made to understand the motion of an object moving through a granular
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medium. Different drag force laws were proposed [9–15], culminating in a model
containing a hydrostatic term that linearly depends on the depth inside the bed and a
dynamic term which is proportional to the square of the velocity of the object [14, 15].
The influence of the ambient air pressure on this trajectory was investigated in [5, 7]
where it was shown that the drag force reduces at high ambientpressure. Another
important issue is the interaction between the impacting ball and the container bound-
aries. Nelsonet al. found that “the presence of sidewall causes less penetration and
an effective repulsion” [16, 17].

In this chapter, we present experiments in which the size of the container has
been systematically reduced. We did this by (i) decreasing the depth of the sand bed
(section 6.4) and (ii) reducing the container diameter to only a few ball diameters
(section 6.5). We explore how these confinements change the behavior of the ball
inside the bed, the void collapse, the resulting jet height and shape, and the presence
of a granular eruption, which was only observed in part of theparameter space cov-
ered in this study. All of the observed phenomena are explained within the context
of a simple hydrostatic collapse model [3] together with a drag law for the trajectory
of the ball inside the sand [15]. Finally, we propose an explanation for the presence
of an eruption and a new mechanism for the thick-thin structure reported by several
groups mentioned above.

The chapter is organized as follows: In Section 6.2 we start with the introduc-
tion of the drag law and the hydrostatic collapse model that lie at the heart of the
analysis of this work. Subsequently we discuss our experimental setup in Section 6.3
after which we present our results for impacts in confined settings. In Section 6.4 we
discuss the influence of the proximity of the bottom, after which we turn to the influ-
ence of the side walls in Section 6.5. Finally, in Section 6.6we discuss the thick-thin
structure and end with conclusions in Section 6.7.

6.2 Drag law and hydrostatic collapse model

In this Section we review the drag law and the Rayleigh-type collapse model that
constitute the ingredients of the hydrostatic collapse model first introduced in [3] and
form the theoretical backbone against which the experiments will be analyzed.

Before doing so let us briefly recall the succession of eventsobservable after an
impact of a sphere on a bed of fine, loose grains. These events are schematically
represented in Fig. 6.1 and involve the introduction of several time and length scales
that are crucial to the analysis in the following Sections. At a timet = 0, the sphere
impacts on the granular medium with a velocityv0. A splash is created and the
ball penetrates into the sand bed. The void created by the ball collapses in a time
tc (closure time) and a jet shoots out of the sand at the positionof the impact. The
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Figure 6.1: Schematic representation of the impact of a ballinto a sand bed, indi-
cating the time and length scales that play an important rolein the analysis of the
experimental work in this chapter, as described in the main text.

closure depth –also known as the pinch-off point– is denotedaszc and the position
of the ball inside the sand at that time asz(tc). Meanwhile, the ball moves downward
inside the sand bed. After a timets, the ball reaches its final depthzf and stops.
Finally, a granular eruption is seen at the surface att = terup, which, after comparison
to 2D experiments, has been attributed to an entrapped air bubble which slowly rises
inside the sand bed and reaches the surface [18].

We now turn to the hydrostatic collapse model we use to explain the observed
phenomena. Its first ingredient concerns the motion of the ball with diameter d
through the sand bed. To describe the trajectory of the ball (z(t) is the depth of
the ball at a timet), we use the law introduced by Tsimring [14] and Katsuragi [15].
The drag force is decomposed into two terms: The first one, thehydrostatic term,
involves Coulomb friction as well as the force needed to displace material against
the hydrostatic pressure and is proportional to the depth and was introduced in this
context in [11]. We here writeFhydrostatic= κz whereκ is a constant. The second
term is an quadratic drag independent of the depth,Fdynamic= αv2, interpreted as the
quadratic force required for the projectile to mobilize a volume of granular media
with densityρg proportional to the volume of the ball†. Adding gravity, this leads to

†Note that the quadratic drag is called “inertial drag” andα ≡ m/d0 wherem is the mass of the
sphere andd0 is the constant introduced in [15].
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the equation of motion:
mz̈= mg−κz−α v2 , (6.1)

with initial conditionsz(0) = 0 andż(0) = v0.
The second ingredient regards the dynamics of the hydrostatic collapse of the

void that is formed by the ball. The radius of the void at a timet and a depthz,
R(z, t), evolves from the two-dimensional Rayleigh-type equation, in which, for each
depthz, the collapse is driven by the hydrostatic pressureρggzat that depth [3]

(RR̈+ Ṙ2) log
R

R∞
+

1
2

Ṙ2 = gz, (6.2)

whereṘ denotes the time derivative andR∞ is a constant of the order of the system
size. Under the assumption that the cavity that is created isapproximately cylindri-
cal, i.e., with the same diameter (d) as the impacting ball, the initial conditions are
R(0) = d/2 andṘ(0) = 0. By rescaling lengths with the ball radiusd/2 and time

with d/(2
√

gz) (i.e., R̃≡ 2R/d, ˙̃R≡ Ṙ/
√

gz, etc., where the dot on a dimensionless
variable denotes a derivative with respect to dimensionless time), Eq. (6.2) can be
written in dimensionless form

(R̃¨̃R+ ˙̃R
2
) log

R̃

R̃∞
+

1
2

˙̃R
2
= 1, (6.3)

together with initial conditions̃R(0) = 1 and ˙̃R(0) = 0. With these initial conditions
this equation has a unique solutionR̃(̃t), from which we obtain a constant dimension-
less collapse timẽtcoll. It now follows immediately that the (dimensional) collapse
time tcoll [= t̃colld/(2

√
gz)] scales as∼ d/(2

√
gz).

We can combine the above two ingredients to determine the position and the time
of closure. The total time that elapses from the impact to thecollapse of the cavity at
any depthz is given by:

ttot(z) = tpass(z)+ tcoll(z) . (6.4)

wheretpassis the amount of time the ball takes to reach depthz(obtained from solving
the drag law) andtcoll is the time needed for the collapse at a depthz. The closure
depthzc is the depth which minimizes equation 6.4. The closure time corresponds to
the total time at the closure depth (tc ≡ ttot(zc)).

Finally, as argued in [7] within the context of the hydrostatic collapse model, the
jet heighth jet is expected to be proportional the closure depthzc. This is because
the pressure that drives the collapse must be proportional to the pressure that builds
up after collapse along the vertical axis, which pushes out the jet. Consequently, the
initial jet velocity v jet is expected to scale as the square root of the closure depth
v jet =C

√
gzc.
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6.3 Experimental setup

In the previous section, we have introduced the theoreticalframework for the analy-
sis of the phenomenon. We now turn to the description of the experimental setup,
which is sketched in Fig. 6.2. It consists of a container witha height of 1 m and a
square cross section of 14× 14 cm2, which is filled with sand grains, nonspherical
and slightly polydisperse in size (between 20 and 60µm); the density of the granular
medium is 2.21 g/cm3 and its angle of repose 26◦. As described in [7], before each ex-
periment, the sand is fluidized by blowing pressurized dry air through a sintered plate
at the container bottom. After slowly turning off the air flow, the bed reproducibly
settles into a static, loose, weakened state (volume fraction 41 %). The airtight sys-
tem can be slowly evacuated to perform experiments at lower ambient pressuresp
(the pump speed is low enough not to irreversibly alter the packing fraction). Then a
steel ball of diameterd = 1.6 cm and massm= 16.5 g is dropped into the sand from
different heightsH which controls the impact velocityv0 =

√
2gH, whereg is the

acceleration of gravity. Thus, the impactor is characterized by a single dimensionless
number, the Froude number (Fr), defined as Fr= 2v2

0/(gd) = 4H/d.
The impact is recorded with a high-speed camera (Photron Ultima APX-RS) at

1500 frames per second. For the measurements a uniform lighting from behind is
needed to obtain better movies with higher contrast betweenthe objects and the back-
ground. This is realized by positioning two light sources and a diffusing plate behind
the container.

In order to obtain the trajectory of the sphere inside the sand, we attach a wire
with markers which remain above the sand during impact and are imaged with the
high-speed camera. This procedure is explained in greater detail in Section 6.5-A.

We use two ways to confine the impact and jet formation experiment. First of
all, we study the influence of the bottom of the container by reducing the height at
which the container is filled with sand down to a few ball diameters (Section 6.4).
Second, to investigate the influence of the closeness of the side walls, we insert PVC
cylinders of varying diameters into the sand, such that the cylinder axis coincides
with the trajectory of the ball inside the sand. In this procedure sufficient care was
taken that the presence of the cylinder did not disturb the fluidization and settling
process of the sand bed (Section 6.5).

Time and position of collapse

When traveling through the sand bed, the ball creates a cavity. The shape of the cavity
is obtained using a profilometer similar to the one describedin [19] (see Fig. 6.3). A
diode laser sheet with wavelength of 680 nm strikes the granular media at an angleθ ,
fixed arbitrarily at 55◦. Using a mirror and a high-speed camera, we can measure the
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Figure 6.2: Setup: (a) perspex container, 14×14×100 cm3, (b) pneumatic release
mechanism, (c) Photron Ultima APX-RS, (d) two light sourceswith diffusing plate,
(e) pressurized, dry air source, (f) computer and (g) vacuumpump with pressure
gauges.
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Figure 6.3: (I) Laser profilometer. A diode laser sheet (a) isdirected onto the surface
at an angleθ . Using a mirror (b) and a high-speed camera (c), images of thesurface
are recorded. (II) Schematic view of the resulting surface.The dashed line represents
the laser sheet when the surface is flat and the continuous line the laser sheet when the
surface is perturbed. The local deviationδx= x(y)−xl of the laser sheet is related to
the vertical coordinateδz= z(y) of the surface. (d) is the center of the cavity, from
which the cavity radiusR(z) can be deduced.

horizontal projection of the points where the laser sheet touches the sand from above.
When the surface is flat, this projection is a straight line parallel to they-direction;
the coordinate of a point on this straight line is (xl , y). When the surface is perturbed,
the projection appears to be a curved line. For any point on this line with coordinate
(x(y), y)) the depth of the surface can be deducted –as a function of y–from xl and
x(y)

z(y) = (x(y)−xl ) tan(θ) . (6.5)

If we assume rotational symmetry of the cavity around the center of the ball [denoted
as (xc,yc)] we can in addition deduce the radius of the cavity at all these depthsz(y)

R(z(y)) =
√

(x(y)−xc)2+(y−yc)2 . (6.6)

By analyzing each of the high speed imaging recordings in this way, we can obtain
the cavity profileR(z, t) as a function of both depthz and timet (up to a certain
maximum depth that is set by the laser sheet angleθ ).
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6.4 Influence of the bottom: A shallow bed

Now that we have introduced the experimental setup, we will continue with the dis-
cussion of our results: In this Section we start with what is observed in a less-filled
container (i.e., a shallow sand bed) and in the next Section proceed with the discus-
sion of what happens when the diameter of the system is decreased.

Before turning to the case in which the proximity of the container bottom be-
comes important, let us first recall in table 6.1 the results obtained in the usual un-
confined case, here at Fr= 70 and ambient pressure: the container is large enough
(D = 14 cm≫ d) to avoid any effect of the surrounding walls and deep enough(the
height of the sand bed,hbed is around 30 cm, that is 18.75d) such that the bottom has
no influence.

Final depthzf Stopping timetstop collapse timetc
11d 110 ms 51 ms

closure depthzc jet heighthjet eruption timeterup

2d 18.5d 510 ms

Table 6.1: Results obtained at Fr= 70 andp = 1 bar in the usual unconfined case,
i.e., in a deep bed withhbed= 18.8d. These values will be used as reference values
in the discussion of the experimental results.

We modified the height of the sand bed,hbed by simply adjusting the amount of
sand in the container. The first and most conspicuous effect is that below a certain
depth of the sand bed the impacting sphere is stopped abruptly by its collision with
the container bottom, rather than slowly being stopped by drag as happens in the
unconfined case. In this way, decreasing the depth of the sandbed allows us to look
at the influence of the final depth of the ball,zf , and the cavity size on the jet and the
eruption.

6.4.1 Influence on the jet

In Fig. 6.4, we show four images from the jet formed when the ball is dropped into the
sand bed for Fr= 70 and ambient pressure. While reducinghbed, there is no change
in the jet shape or height down to a certain threshold. Below this threshold, the jet
reaches less high and becomes broader, most notably at the top. The maximum height
of the jet,hjet, is obtained by measuring the initial jet velocityvjet as soon as it appears
above the surface of the sand (using energetic arguments,hjet ∝ v2

jet). The initial jet
velocity vjet is plotted as a function ofhbed in Fig. 6.5: Forhbed higher than 3d, vjet
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Figure 6.4: Influence of the height of the sand bedhbedon the shape and height of the
jet for Fr= 70 andp= 1 bar: Images of the jet, taken at 0.12 s after the ball impact
for four different bed heights, decreasing from left to right. Below a threshold there
is a clear change in height and width of the jet.
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Figure 6.5: Initial velocity of the jet,vjet as a function of the height of the sand bed,
hbed for Fr ∼ 70 andp = 1000 mbar (+) and p = 100 mbar (◦). There is a sharp
threshold below which the initial jet velocity rapidly decreases. The dashed lines
represent the undisturbed values ofvjet, measured in a deep bed (hbed= 18.8d).

saturates to its undisturbed value of approximately 3.2 m/s. Reducinghbedbelow 3d,
vjet decreases rapidly. When we reduce the ambient pressure top = 100 mbar, we
find the same behavior (see Fig. 6.5) although the crossover takes place at a slightly
higher value ofhbed. Remarkably, in both cases this decrease does not happen at the
depth at which the ball is stopped by the bottom (which would be aroundhbed = 11d
andhbed = 6d for p = 1000 mbar andp = 100 mbar respectively) but at a much
lower depth ofhbed ≈ 3d.

This can be explained as follows: The closure depth,zc, remains unaltered by
the presence of the bottom (which belowhbed= 11d only makes the ball stop earlier
and less deep) until the bed depth becomes less than the sum between the position of
the unconfined collapse (2d, see table 6.1) and the diameter of the ball. Below this
value, the collapse happens on top of the ball leading to a less directional top of the
jet which has a more or less spherical shape; moreover the closure depth decreases
when the bed becomes smaller and so does the initial jet velocity.
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Figure 6.6: The timeterup when the granular eruption at the surface starts is plotted
as a function of the height of the sand bedhbed, for Fr= 70 andp = 1 bar (black
open circles). Measurement points withterup= 0 correspond to those cases where
no eruption was observed. The experimental regimes with andwithout eruption are
separated by the vertical black lines. The grey region represents the region where
no air bubble is entrapped. The thin black and red lines represent the different time
scales that are involved in the problemt1 is the time the air bubble needs to reach the
surface (black thin line) andt2 is the time the air bubble needs to diffuse within the
sand bed (red thin line). Whent1 is smaller thant2, an eruption is expected; this is
depicted by the continuous thick blue line. The different regions obtained from the
timescale argument qualitatively correspond to the experimental results. More details
about the way in whicht1 andt2 are estimated are provided in the main text.
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6.4.2 Influence on the eruption

Providing that the void collapse does not happen directly atthe ball, an air bubble is
entrapped. The volume of this bubble can be estimated as:

Vbubble∝ h2
rad(z(tc)−zc) ∼ d2(z(tc)−zc) , (6.7)

wherez(tc) is the position of the ball at closure andhrad is the radial length scale
of the bubble, which can be approximated by the diameter of the ball. The bubble
slowly rises through the sand and can lead to a violent granular eruption. However,
this eruption is not always observed. To study when and why this is the case, in
Fig. 6.6 we plot the time between impact and eruption,terup, as function of the height
of the sand bed,hbed. (Note that measurement points withterup= 0 correspond to
those cases where no eruption was observed.) Up to a certain threshold, which is
around 4.8d, no eruptions can be observed. This can be attributed to the fact that,
while rising, small air bubbles just dissolve into the sand bed before reaching the
surface. When the bed gets deeper, the air bubble reaches a certain critical volume
V∗, above which a granular eruption can be seen. From the experimental results, this
size found to be aroundV∗ ∼ d2(z(tc)−zc) ∼ 3.8d3. Then remarkably, above 9d the
eruptions disappear again and reappears only whenhbed> 14d.

This peculiar behavior can be understood, at least qualitatively, from the com-
petition of the two time scales corresponding to the two mechanisms the air in the
bubble has to escape from the bed:

• The bubble needs a timet1 to reach the surface. First of all, forhbed< 3d, the
collapse happens on top of the ball, and no air bubble is entrapped. Between
3d and 5.5d, the position of the ball at closure,z(tc), increases and so does
the volume of the air bubble; in this region,t1 decreases. While increasing the
sand depth even further, the volume of the air bubble remainsconstant, but the
initial position of the bubble is deeper since the entrappedbubble will follow
the ball until it stops. Thereforet1 will increase untilhbed is equal to 11d which
is the final depth of the ball in the unconfined case. Above thisvalue, there is
no change on the final depth andt1 becomes independent of the depth of the
sand bed. This is depicted by the thin black line in Fig. 6.6.

• The air in the bubble trapped by the collapse escapes –in the dissolution time
t2– through pressure driven flow through the porous bed. Factors that affect
this process are the size of the bubble (which determines theamount of air
that needs to escape), the pressure of the air (which approximately equals the
hydrostatic pressure in the surrounding sand), and the length of the path the
air needs to travel. For this last quantity we need to consider that air can both
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escape through the top and through the bottom of the bed, the latter due to the
presence of the sintered plate. These factors combine into Darcy’s law: Q ∝
∆P/H, where the flow rateQ depends on the pressure difference∆P driving
the flow and the path lengthH. Turning to Fig. 6.6 again, forhbed< 3d, no
air bubble is entrapped. Between 3d and 5.5d, z(tc) –and therefore the bubble
size– increases, leading to a steep increase of the dissolution time t2. Upon
increasing the sand depth beyond 5.5d the bubble size remains constant but
the pressure inside the bubble increases. From Darcy’s law we thus find that
t2 decreases. This continues untilhbed is equal to 11d beyond which the ball
does not reach the bottom of the plate anymore. Note that until this point the
shortest (and therefore chosen) path for the bubble to dissolve is towards the
bottom of the container. If we now increasehbed beyond 11d this shortest path
starts to grow, and with the path, using Darcy’s law, also thedissolution time.
This is captured by the thin red line in Fig. 6.6.

As a result, an eruption can be only seen if the timet2 becomes larger thant1 ‡.
This is expressed by the continuous thick blue line, in qualitative agreement with the
experimental behavior.

‡Starting from the collapse timetc, the rise time of the bubble has been estimated as that of
similarly sized bubble in a liquid experiencing Stokes drag, assuming that it rises in a straight path

with its terminal velocity immediately, i.e., from the balance φρgVbubbleg ∝ ηV1/3
bubblevrise (with the

packing fractionφ and the dynamic viscosityη assumed to be constant) we havevrise ∝ V2/3
bubbleg

with Vbubble ∝ (z(tc)− zc)d2. Now, we estimating the initial position of the top of the bubble as
zf − (z(tc)− zc). This leads tot1 = (zf + zc − z(tc))/vrise ∝ (zf + zc − z(tc))(z(tc)− zc)

−2/3d−4/3g−1.
The proportionality constant was fitted to give the correct large depth behavior.

Regarding the dissolution time up tohbed ≈ 11d we can estimate the pressure difference by the
hydrostatic pressure in the center of the bubble at the moment the ball has stopped,i.e. ∆P≈ φρgg(zf −
(1/2)(z(tc)− zc)) (wherez(tc) equalshbed−d for hbed≤ 5.5d), the volume of entrapped air again as
Vbubble∝ (z(tc)−zc)d2, and, since ball reaches the bottom, the shortest path is around the ball through
the sintered plate, i.e.,H ≈ d. Using Darcy’s law we havet2 ≈Vbubble/Q ∝ VbubbleH/∆P. Inserting the
above quantities we obtaint2 ∝ (z(tc)−zc)d3/(φρgg(zf −(1/2)(z(tc)−zc)). Abovehbed= 11d only the
path length changes toH ∝ hbed−zf such thatt2 ∝ (z(tc)−zc)(hbed−zf )d2/(φρgg(zf − (1/2)(z(tc)−
zc)). Again, the proportionality constant was used as a fitting parameter.
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6.5 Influence of the side walls

In the previous section, we discussed the influence of the bottom of the cavity on the
process of object penetration and jet formation and found that, if the sand depth is
fixed at 30 cm, there is no effect of the bottom on the jet formation process. Fixing
this bed depth, we now turn to study the effects of the side walls of the container on
the complete series of events leading to the jet. For this, some cylinders of different
diametersD are placed inside the sand during the fluidization process: we choose
D = 4.2 cm, 6 cm, 8.5 cm, 10 cm and 12.5 cm. In this way we change the aspect
ratio D/d from 2.6 to 7.8.

6.5.1 Ball trajectory

The first thing that happens upon impact of the ball onto the surface is that it pene-
trates and creates a void inside the sand bed. The question weask in the next subsec-
tion concerns the influence of the container diameter on the drag force experienced
by the ball during its motion through the bed. To monitor the trajectory of the ball, a
wire with a tracer is attached to the ball. Using a high-speedcamera (1500 frames per
second) and image analysis, we obtain the trajectory of the tracer and therefore the
trajectory of the ballz(t). To keep the wire tense an extra friction device and a light
counterweight are used, which have the effect that the ball experiences a downward
acceleration due to gravity which is approximately 10 % smaller thang. The actual
acceleration is measured during the “free fall” part of the trajectory, and the results
presented here have been corrected for this effect.

In the top two plots of Fig. 6.7, we compare the trajectories of the ball at ambient
pressure for an impact with Fr= 25 and for two diameters of the confining cylinder
(D = 6.0 and 10.0 cm). We can fit the experimental trajectories using the model in-
troduced in Section 6.2 (Eq. 6.1) usingα andκ as fitting parameters. The agreement
between the model and the experiments is very good (see Fig. 6.7).

Decreasing the diameter of the container surprisingly increases both the final
depth of the ball,zf and the time to reach the final depth,ts. In Fig. 6.8a, we re-
port the final depthzf as a function of the container diameter at different pressures
for Fr= 25. There is a clear dependence: The final position of the ballis deeper for
a smaller container. Also, the influence of the boundaries for this Froude number is
less pronounced at small pressures. We conclude that for Fr= 25 the drag force the
ball experiences becomes smaller for small containers.

But what happens at higher Froude numbers? In Fig. 6.8b, we report the final
depth,zf as a function of the container diameter for Fr= 75. At first glance the
behavior now seems completely opposite to what we observe atsmall Froude number,
as the final depth now decreases with decreasing container diameter: To be more
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Figure 6.7:(top) Depth of the ballz(t) (a) and its velocityv(t) (b) as a function of
time after impact for Fr= 25, p= 1000 mbar,D = 10 cm (◦) andD = 6 cm (�). The
lines correspond to a fit using equation 6.1 withκ = 4.525 N/m andα = 0.132 kg/m
for D = 10 cm andκ = 1.695 N/m andα = 0.118 kg/m forD = 6 cm. (bottom)
Depth of the ballz(t) (c) and its velocityv(t) (d) as a function of time after impact
t for Fr= 75, p= 50 mbarD = 4.2 cm (◦) andD = 12.5 cm (2). Again, the lines
correspond to a fit using equation 6.1 withκ = 14 N/m andα = 0.281 kg/m for
D = 4.2 cm and withκ = 13.5 N/m andα = 0.111 kg/m forD = 12.5 cm. Within
the smallest container, and only at low pressure, we observeanomalous behavior:
The ball reaches a plateau in which the velocity remains constant before going to
zero again at larger times. Clearly, the model fails to describe the data in this case.
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Figure 6.8: Final depthzf as a function of the container diameterD, at different
pressures, for a) Fr= 25 and b) Fr= 75. The final depth is divided by the final depth
for the unconfined case in order to emphasize the deviations due to the proximity
of the boundaries. The dashed lines are a guide to the eye to separate the different
pressures.
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precise, at atmospheric pressure the final depth stays more or less constant and at
lower pressures there is a decrease inzf with decreasing container diameter. So now
the drag force seems to be larger for small container diameters.

To understand this difference, we have to separately look atthe behavior of the
hydrostatic and quadratic drag force: After all, for small Froude numbers we expect
that the hydrostatic drag−κz will dominate the behavior of the ball, whereas for
higher impact velocities it is expected that the quadratic dragαv2 will start to become
increasingly more important during the motion of the ball. To this end, in Fig. 6.9
we plot κ and α as a function of container diameter for three different pressures.
Each value represents the average parameters obtained fromfits to the trajectory data
analogous to the ones of Fig. 6.7 over a range of Froude numbers from 25 to 100§. As
shown by Caballero [7], the hydrostatic force depends on theambient air pressure:κ
decreases withp roughly asp−1/2. Our findings are consistent with this observation,
also for smaller container diameters (not shown). Next to this we find thatκ increases
quite steeply withD, which is consistent with the lower drag experienced by the
impacting ball at smaller container diameters at low Froudenumbers. Physically, the
behavior of the hydrostatic drag force can be understood using a similar argument
as [7]: When the ball passes through the sand, an air flow is created around it which
fluidizes the sand bed and reduces the drag force. This effectis expected not only to
be more important at higher pressure but also when the container diameter becomes
smaller: Near the wall, the velocity of the interstitial airis required to be zero and,
since the same amount of air needs to be displaced, the flow will be more important if
the aspect ratioD/d is small. Consequently, the hydrostatic drag force will be lower.

Figure 6.9b contains the coefficientα of the quadratic drag termαv2. Clearly,
α becomes larger for smaller container diameters but the difference is hardly as pro-
nounced as was the case forκ . This accounts for the observation that at some point,
for larger Froude number, the drag does become larger when the container diameter
is decreased.

Finally, in Figs. 6.9a and b there is one exceptional value: For the smallest con-
tainer diameter (D/d = 2.6) and the lowest pressure (50 mbar) the fitted values of
κ andα turn out to strongly depend on the Froude number. The bottom two plots
in Fig. 6.7, which contain two trajectories at 50 mbar for thelargest and the small-
est container diameter, reveal the reason why: Whereas for the biggest container
(D = 12.5 cm), the behavior is similar to the behavior described for Fr = 25, for
the smallest one (D = 4.2 cm) it is qualitatively different. Whereas the agreement
between the experimental and the computed trajectory sill seems to be reasonable

§The (small) differences in the fitting parametersκ andα found for the various Froude numbers
were consistent with the measurement error, except for the smallest container diameter at the smallest
pressure, as explained in the text.
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Figure 6.9: a)κ and b)α as a function of cylinder diameterD for different pres-
suresp. For almost all values ofD and p variations of bothκ and α are within
the measurement error and each point is obtained from an average over a range of
Froude numbers from 25 to 100. Only for the smallest container (D/d = 2.6) and the
lowest pressure (50 mbar), there is a strong dependence ofκ andα on the Froude
number; the model is not valid in this situation. Plot b) reveals that for large Fr the
quadratic drag takes over for small cylinder diameters leading to less intrusion of the
ball (Fig. 6.8b).
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(Fig. 6.7c), the velocity of the ball (Fig. 6.7d) presents large discrepancies: The mea-
sured ball velocity doesn’t decrease to zero gradually, butfirst slows down until it
reaches a plateau at constant velocity where it stays for a while before slowing down
until it stops. This behavior is identical to the one observed in the X-ray experiments
of Royeret al. [6], in which the container needed to be kept small. The fact that the
velocity plateau is only present for small container diameters, clearly indicates that it
is a boundary effect.

We believe that the origin of the plateau lies in an additional force acting on
the sphere that originates from the side walls and is mediated by the sand grains¶.
In order to produce a constant velocity during some time interval, this force must
be depth-independent, dominant over the hydrostatic drag force and must, together
with the quadratic drag force, balance gravity at the plateau velocity. The constant
velocity regime ends when, at a certain depth, the Coulomb drag force takes over
again, slowing the ball down to zero. The verification of thisassertion goes beyond
the technical possibilities of our set-up and asks for further study.

6.5.2 Collapse of the cavity

The second issue that we want to address in this Section is theinfluence of the con-
tainer diameter on the collapse of the cavity. We study the dynamics of the collapse
of the cavity at closure depth using the profilometric methoddescribed in detail in
Section 6.3. In Fig. 6.10, the radius of the cavity is plottedas a function of time
t − tpass for two different diameters at atmospheric pressure wheretpass is the time
needed for the ball to reach the closure depthzc. We can clearly distinguish a slight
expansion of the cavity followed by a strong contraction. The collapse accelerates to-
wards the pinch-off. Due to experimental limitations we do not have enough spatial
resolution to obtain data points close to the pinch-off. Thevoid dynamics is in qual-
itative agreement with the behavior predicted by the 2D Rayleigh-Plesset equation
described in section 6.2 (Eq. 6.2). Whereas the expansion turns out to be weak and
more or less independent of the container diameter, the contraction and the closure
strongly depend on it. A plausible explanation would be that, for small containers,
less sand is involved in the collapse. Therefore, the hydrostatic pressure which drives
the collapse is not as sustained as for a larger container, explaining why the collapse
takes longer for a smaller container (Fig. 6.10).

In Fig. 6.11 we plot the closure depthzc and the closure timetc. We find thattc
increases andzc decreases when decreasing the container diameter. This decrease of
the closure depth is generic: Also for small Fr, wherezf actually increases, we find a
decrease ofzc. The fact that a decrease of the closure depthzc implies an increase of

¶In our view, as the ball penetrates into the bed it pushes sandagainst the side walls such that a
jammed region (or force network) is formed between the sphere and the walls that mediates this force.
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Figure 6.10: Dynamics of the cavity collapse at closure depth for two container di-
ametersD = 4.2 cm (2) andD = 10 cm (◦). Here, Fr= 70 andp= 1 bar. The time
has been rescaled by multiplying with a factor 2

√
gzc/d in order to show the results

in a single plot. The continuous line correspond to a fit usingthe 2D Rayleigh-Plesset
equation (Eq. 6.2).
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the collapse timetcoll can be understood from a reduction of driving pressure (∝ gzc)
and the availability of less sand for smaller container diameters (as explained above).

6.5.3 Jet Height

Now that we studied how the process of the formation and subsequent collapse of the
cavity are influenced by the proximity of the side walls, we continue with the influ-
ence of the diameter of the containerD on the jet and, in particular, on the maximum
height reached by the jet. In Fig. 6.12, the jet heighthjet is plotted as a function of
the diameter for two Froude numbers (Fr= 25 and Fr= 50) at different values of
the ambient pressure. Since it was already discussed extensively in [7] that the jet
becomes smaller at reduced ambient pressure, we now dividehjet by the jet height
in the unconfined situation. We observe that, while decreasing the container diame-
ter, the jet reaches less high. This behavior is the combinedresult of the reduction
of the closure depth and the increase of the closure time withdecreasing container
diameter as was described in the previous subsection: The reduction ofzc reduces
the hydrostatic pressure that drives the collapse and the increase of the closure time
is connected to the fact that –because of the reduced container diameter– there is less
sand available during the collapse, making the driving pressure less sustained. Both
factors contribute to a decrease of the jet height. The rescaling by the unconfined jet
height also reveals that the influence of the boundaries is similar for all pressures and
even for these two different Froude numbers. The unconfined behavior is obtained
when the diameter of the container is seven times higher thanthe diameter of the ball.

At high Froude number (Fr = 100), the results can only be obtained for small
containers, because, when the diameter is large, the jet collides with the splash which
is being sucked into the cavity behind the ball at high ambient pressures. This is
similar to the surface seal that has been observed for impacts on a liquid [20, 21]. For
this high Froude number the results are less conclusive, as can be seen in Fig. 6.13.
This is possibly due to the increased importance of the air flow caused by the ball
when it is restricted to a smaller container diameter at these high impact velocities.

6.5.4 Granular eruption

Finally, we turn to the granular eruption that terminates the series of events. Since
the container diameter has an influence on both the final depthand the closure depth,
it is expected that the granular eruption will depend on the container diameterD. In
Fig. 6.14a we report, for Fr= 100, the phase diagram indicating the presence of an
eruption in(p,D)-space.‖ There is a marked dependence on the container diameter

‖To obtain Fig. 6.14 the closure depthszc for the diameter ofD = 8.5 cm (which were not measured
directly) are obtained by interpolation from Fig. 6.11a.
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Figure 6.11: (a) Closure depthzc as a function of the container diameterD for dif-
ferent pressures. (b) Closure timetc as a function of the container diameterD for
different pressures. For all measurements Fr= 70.
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Figure 6.12: The jet height,hjet as a function of the container diameterD for Fr= 25
(a) and Fr= 50 (b) at different ambient pressures. The jet height is divided by the jet
height in the unconfined case in order to see the deviations due to the proximity of
the boundaries. For all pressures and Froude numbers the jetheight increases with
increasing container diameter. The dashed lines are a guideto the eye to separate the
measurement series at different pressures.
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Figure 6.13: The jet heighthjet as a function of the container diameterD for Froude
= 100 and different ambient pressures. Again, there is a clear change in jet height as
function of container diameter. Measurements at the highest Froude numbers are not
possible due to the surface seal (see text). The dashed linesare a guide to the eye to
separate the measurement series at different pressures.
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Figure 6.14: (a) Phase diagram for the granular eruption at Fr = 100 as a function of
the pressurep and the container diameterD. In both plots red open circles indicate
parameter values where an eruption was absent, whereas blueplus signs stand for
parameter values with an eruption. (b) The same phase diagram, now as a function
of the volume of the entrapped air bubble ((z(tc)−zc)/d) and the container diameter
D. The latter plot clearly indicates that the presence of the eruption is a function of
the entrapped air bubble size only.
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D: More eruptions are observed in a small container than in a large container.
This behavior can be explained using the influence of the sidewalls on the tra-

jectory of the ball and on the collapse time together with theclosure depth: For the
same pressure, the closure time is larger, which leads to a deeper position of the ball
at closurez(tc), and at the same time the closure depth is smaller, increasing the size
of the entrapped air bubble for small container diameters. If we replace the pressure
in Fig. 6.14a by the quantity(z(tc)−zc)/d which is proportional to the volume of the
entrapped air bubble [remember that it was argued thatVbubble∼ d2(z(tc)− zc), see
Eq. (6.7), which is subsequently divided byd3], we remove the dependence onD: In
Fig. 6.14b the phase diagram is separated into two parts using a horizontal line repre-
senting a critical volumeV∗ ∼ 3.8d3. This means that, independently of the diameter
of the container, the bubble volume upon its formation has tobe big enough to lead
to an eruption. As was explained in Section 6.4 this is because the air bubble must
have sufficient time to reach the surface before it has completely dissolved into the
sand bed. Incidentally, the value for the critical volume determined from the phase
diagram corresponds well to the value found in Section 6.4.

6.6 Jet shape and thick-thin structure

The proximity of the side walls and the bottom does not only affect the height of the
jet but also its shape. One of the most prominent features is the thick-thin structure
first described by Royeret al. [4, 6] who studied the dependence of this structure
on ambient pressure and Froude number. In the same work Royeret al. proposed a
formation mechanism for the thick part of the jet based on thepressurized air bubble
pushing sand into the thin jet originating from the pinch-off at the closure depth.

In this Section we report, in addition to the Froude and pressure dependence, a
pronounced dependence of the thick-thin structure on the proximity of the container
boundaries. We propose an alternative model for the formation of the structure which
semi-quantitatively accounts for the observed behavior ofthe phenomenon for the
entire parameter space.

6.6.1 Observations

In our experiments we can distinguish three different jet shapes, two of which exhibit
a thick-thin structure:

(1) a ‘normal’ jet, in which the width of the jet gradually decreases from bottom to
top,

(2) a thick-thin structure with a sharp shoulder, where the thick lower part abruptly
changes into a thin upper part,
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Figure 6.15: Typical snapshots of the three distinct jet shapes observed in experiment:
1) Normal jet (forD = 10 cm, Fr= 100 andp= 1000 mbar); 2) Thick-thin structure
with sharp shoulder (forD = 8.5 cm, Fr= 100 andp = 100 mbar); 3) Thick-thin
structure with a transition (forD = 10 cm, Fr= 50 andp= 50 mbar). All snapshots
show the fully developed shape of the jet at its maximum height. The snapshots are
not on the same scale.
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(3) a thick-thin structure with a transition, characterized by a transient region in
which the thick lower part gradually passes into the thin upper part.

An example of each of the three jet shapes is shown in Fig. 6.15.
First, we briefly look at the influence of the bed depth on thesestructures for a

moderate Froude number (Fr= 70). At atmospheric pressure we observe a ‘normal’
jet for all values of the bed depthhbed (Fig. 6.4). To observe a thick-thin structure
we need to go to lower ambient pressures: At 100 mbar, a thick-thin structure with
sharp shoulders can be observed in the unconfined case, i.e.,for largehbed (Fig. 6.15).
Below a certain threshold (hbed≤ 4d), the thick-thin structure gradually disappears
(Fig. 6.16). This disappearance coincides with the disappearance of the entrapped air
bubble below 3d in which case the collapse happens more or less on top of the ball.

The effect of the proximity of the side walls (within a sufficiently deep bed) is
reported in the three phase diagrams of Fig. 6.17, where the jet shapes are classified
as a function of container diameter and pressure, for three different Froude numbers.
For the lowest Froude number (Fr= 25), a thick-thin structure with a transition is
found only for the smallest pressure at intermediate container diameter. Thick-thin
structures with a sharp shoulder are not found for this Froude number. When we
increase the Froude number, the thick-thin-structure region is found to grow. Within
the region containing the transition variety of the thick-thin structure we observe the
formation and growth of a region containing the sharp-shoulder variety. Although the
thick-thin-structure region grows to include the largest container diameters that we
have used in our experiment∗∗, thick-thin structures are never found in the smallest
container diameter for the parameter space explored in thisstudy.

Remarkably, in our experiments a granular eruption (almost) never coincides with
a thick-thin structure (one can, e.g., compare Figs. 6.14a and 6.17c). Combined with
the fact that a granular eruption only takes place for large entrapped air bubbles (as
explained in Section 6.5.4), this implies that thick-thin structures are only formed
for smaller entrained air bubbles. This in turn seems to be incontradiction with a
mechanism in which the pressurized air bubble pushes up bed material that forms the
thick part of the jet [6], since such a mechanism is likely to be stronger for a larger
entrapped air bubble. In addition, for varying container diameter, we observe both
thick-thin structures and normal jets for the same amount ofentrapped air.

We will therefore in the next subsections propose an alternative mechanism for
the formation of the thick-thin structures. At this point itshould be stressed that there
is no direct experimental evidence for the proposed mechanism as this would require
the ability of imaging the events inside the sand, which until now is possible only in
a small setup [6]. This issue needs to be settled in future research.

∗∗Note that the largest container size (the one without an inserted cylinder) has not been included
because of its square cross section, which is found to have a marked influence on the jet shape.
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Figure 6.16: Three snapshots of the shape of the jet at different values of the height
hbedof the sand bed, taken 120 ms after the ball impact forp= 100 mbar and Fr= 70.
For hbed= 4.1d there is a clear thick-thin structure (with a transition region), which
gradually disappears when the bed height is decreased to 3.4d and 2.6d.



6.6. JET SHAPE AND THICK-THIN STRUCTURE 145

Figure 6.17: Phase diagram of the observed jet shapes as a function of the ambient
pressurep and the container diameterD for three different Froude numbers: (a) Fr=
25; (b) Fr= 50; and (c) Fr= 100. The dashed lines are a guide to the eye to separate
the different regions in the phase diagrams.
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6.6.2 Hypothesis

We propose an alternative model for the formation of the thick-thin structures based
on the hypothesis that there is a second collapse that takes place on top of the ball
forming a second jet. Such a second collapse can be motivatedfrom experiments
in a quasi-twodimensional setup [18] and from X-ray measurements [4, 6], where
multiple collapses have also been observed. The idea is as follows: Since the ball is
still moving when the first collapse occurs (section 6.5a), the second collapse happens
at a later point in time and therefore the first jet is already well on its way in the
formation process when the second one is being formed. We nowspeculate that, if
the second jet can catch up with the first fast enough, it will hit its base and produce
a thick-thin structure. When the time span between the two jets is too long however,
the first jet will have (almost) fully formed and the collision of the second jet with its
base will not disturb its shape†† and hence not create a thick-thin structure.

In order to test the above hypothesis, we need to estimate from our experimental
data the time interval between the moment that the first jet isformed at the closure
depthzc and the moment that the hypothetical second jet reacheszc. This will be
done in the next subsection. If the hypothesis is correct, wewill find that thick-thin
structures are only formed below a certain threshold value of this time interval.

This alternative model is not in contradiction with the experimental observation
that a granular eruption almost never coincides with a thick-thin structure: If an erup-
tion is observed, this means that a relatively large air bubble must have been en-
trapped. This concurs with a large distance between the firstand the second collapse
point, which makes it unlikely that a thick-thin structure will be formed. Conversely,
if a thick-thin structure is observed, this means that a (relatively small) air bubble
must have been pierced by the second jet, which will facilitate its dissolution in the
sand.

The proposed mechanism can at least qualitatively incorporate previous experi-
ments done in [5, 6]. They observed that the height of the thick jet decreases when
the diameter of the ball or the ambient pressure decreases. Decreasing one of these
parameters decreases the final depth of the ball and therefore the position of the sec-
ond collapse. As the height of the jet depends on the positionof the second collapse,
a lower depth will result into a less high jet.

††At this point it is good to note that such a mechanism explainswhy the occurrence of a thick-thin
structure never seems to interfere with the jet height: The height is determined by the free flight of the
thin part which is being formed at the first closurezc, i.e., before the formation of the thick part can
become of influence.
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Figure 6.18: Schematic drawing of the proposed mechanism leading to the thick-thin
structure. In case (a), the second collapse happens before acertain threshold time,
such that the thickness of the layer of sand from the first collapse still is thin enough
to be pushed up by the second jet and a thick-thin structure emerges. In case (b) we
are above the threshold: The second jet collides with a thicklayer of sand and is
unable to disturb the formation of the first jet.
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6.6.3 Estimating the time interval

In order to test our hypothesis, we now proceed with the estimation of the interval
between the time that the first jet is formed at the closure depth zc and the moment
that the second jet reacheszc. This time interval consists of the difference between
the two closure times(tc,2− tc) (wheretc,2 is the closure time of the lower collapse),
summed with the time the second jet needs to reachzc, i.e., (zf − zc)/v2 with v2 the
velocity of the second jet. If this time interval is shorter than some threshold valueT,
we obtain a thick-thin structure, as visualized in Fig. 6.18. This leads to:

zf −zc

v2
+(tc,2− tc)< T (6.8)

Before continuing our estimate, let us first illustrate the workings of this mecha-
nism in an example: For Fr= 75 andp= 50 mbar we start from the largest container
size where a thick-thin structure is visible. When decreasing the size of the container,
the closure depthzc and the final depthzf decrease following approximately the same
behavior, such that the distance between the two collapses is more or less constant.
Becausezf decreases, the hydrostatic pressure and therefore the velocity of the sec-
ond jet decrease as well, such that the first term in Eq. (6.8) increases. The same
holds for the second term, because the closure time is found to increase with decreas-
ing container diameter (cf. Fig 6.11b). Thus, the left hand side of Eq. (6.8) increase
with decreasing the container diameter, explaining why below a certain diameter the
thick-thin structure disappears.

We now approximate the several terms in Eq. (6.8) with experimentally known
quantities. Because there is no direct experimental evidence for the second collapse,
this involves some speculation in which we suppose that the model of section 6.2 can
be extended to describe the second collapse. Doing so, in thefirst term of Eq. (6.8)
the velocity of the second jet,v2, is proportional to the square root of the driving
hydrostatic pressure at depthzf , i.e.,v2 =C

√
gzf , withC constant. Because, similarly,

for the velocity of the first jet we havevjet =C
√

gzc, we findv2 ≈
√

zf/zcvjet which
is inserted into the first term of Eq. (6.8). In turn,vjet can be deduced from the jet
heighthjet asvjet =

√
2ghjet.

In the second term, the unknown quantity is the second closure timetc,2 –i.e., of
the cavity just above the ball– which consists of the sum of the timets the ball needs
to come to a standstill and the timetcoll,2 the cavity needs to collapse at that point.
Since according to the Rayleigh model discussed in Section 6.2 the collapse times
should scale astcoll,2 = C′d/(2

√
gzf) and tcoll = C′d/(2

√
gzc) respectively (withC′

constant), we havetcoll,2 ≈
√

zc/zf tcoll. Inserting all of the above in Eq. (6.8) we
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Figure 6.19: Phase diagram with on the vertical axis the lefthand side of Eq. (6.9) and
on the horizontal axis the container diameterD. The plot contains all measurements
from Fig. 6.17. Short, green dashes indicate normal jets, intermediate, blue dashes
the thick-thin structure with a transition, and long, red dashes thick-thin structures
with a shoulder.

obtain [
zf −zc√

2ghjet
+ tcoll

]√
zc

zf
+(ts− tc)< T . (6.9)

In Fig. 6.19 we find a phase diagram in which all measurements from Fig. 6.17
are plotted again, but now with the left hand side of Eq. (6.9)on the vertical axis.
Clearly, all thick-thin structures (intermediate and large dashes) lie below some time-
threshold, in agreement with the formation mechanism discussed above. The smallest
container diameter forms an exception, in the sense that here thick-thin structures are
also not found for time scales where they could have been expected (i.e., that lie
clearly below the thresholdT). This behavior may be due to the fact that lack of
material to sustain the collapse leads to an underestimation of the actual times in
Eq. (6.9). But in general the estimate seems to work fairly well.
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6.7 Conclusions

In conclusion, we have studied the influence of the boundaries on the various phe-
nomena that can be observed after impact of a ball on a looselypacked sand bed:
The penetration of the ball into the bed, the formation of a void, its collapse and the
creation of a granular jet, the shape of the granular jet, andthe presence of a gran-
ular eruption. We have shown that the observed behavior of the ball inside the sand
bed and the formation and collapse of the cavity created by the ball is generally well
captured by the drag law and hydrostatic collapse model of Section 6.2.

In more detail, we have shown in the first part of this study that the proximity of
the bottom changes these phenomena, starting with the obvious modification of the
final position of the ball, which below a certain depth just hits the bottom. The height
of the jet is affected, when the void closure is constrained to happen on top of the
ball. A granular eruption at the surface only happens if the volume of the entrapped
air bubble is large enough, and can be fully suppressed by decreasing the height of
the sand bed.

In the second part we have investigated the influence of nearby side walls. Here
we find a strong influence on the drag force that the sand bed exerts on the ball when
it moves through the sand bed: We find that the hydrostatic drag force component
becomes less important, whereas the quadratic (velocity-dependent) component be-
comes more important. The latter can be traced back to the increased importance of
the air flow in the container due to the confinement. Apart fromthe question why and
how the coefficients depend on ambient pressure and container diameter, the drag
model of Section 6.2 provides a quite accurate description of the observations for
most of the parameter space. Only the results for the smallest container at low ambi-
ent pressure cannot be explained using this framework, due to the constant velocity
plateau that is observed during the motion.

The formation and subsequent collapse of the cavity is not only influenced by the
modification of the trajectory of the ball; also a smaller amount of sand is involved
in its collapse which therefore takes longer for decreased container size. Apart from
this, the simple hydrostatic collapse model of a cylindrical cavity presented in Sec-
tion 6.2 accounts well for most of the observations. In this way, the modification of
the closure time, and closure depth observed in our experiments, can be understood.

As a result of both the changes in the ball’s trajectory and the smaller amount of
sand that is involved in the collapse, the jet height is affected by the proximity of the
wall. In the parameter range of our experiments the unconfined behavior is retrieved
when the diameter of the container is larger than 7d; this value however does seem to
depend on the Froude number, and is larger when the Froude number is larger. The
occurrence of a granular eruption was shown to be correlatedwith the size of the air
bubble entrapped inside the sand bed.
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Finally, this chapter culminates in the proposal of a new mechanism for the for-
mation of the thick-thin structure, based upon a second collapse that occurs on top of
the ball when it has come to a standstill. To obtain a thick part in the jet, the second
jet coming from this secondary collapse needs to be formed fast enough to penetrate
the rapidly growing layer of sand that is being created around the point where the
first jet had originated.
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7
Conclusions and Outlook

The response of dense suspensions to an external force was investigated in two special
experiments. Although all dense suspensions show qualitatively the same behavior in
basic rheological experiments, namely slight shear thinning followed by more sudden
shear thickening with increasing shear rate, in these experiments, the behavior of the
suspensions was found to be very different.

In our first experiment we let objects settle in a deep bath of various suspensions
(chapters 2 and 3). In every suspension but one, we observed similar behavior as
in Newtonian liquids: The velocity accelerates (cq. decelerates) towards a terminal
value, and the object simply stops at the bottom. Only in dense (φ > 0.38) cornstarch
suspensions we saw completely new phenomena, which suggestthat contact forces
must play an important role. First, instead of exponentially moving towards a termi-
nal velocity, the velocity of the object actually starts oscillating between two values.
In contrast to earlier work, e.g., that describing oscillations in viscoelastic liquids,
these oscillations do not damp out, at least not within our experimental conditions.
We found that modeling such behavior is challenging: We argue that shear thickening
and viscoelastic models fail to describe the observed behavior. The most promising
candidate is a hysteretic drag model, in which the system alternates between two
branches of the drag force and thus between two different terminal velocities. Before
either of those velocities is reached, there is a change in drag, and thus a switch to ac-
celeration or deceleration. Details of this hysteretic drag model are still missing, such
as the fact that crossover velocities have to be varied manually for different masses
of the settling object, whereas it would be more logical thatthose would be liquid
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properties. We show that the bulk oscillations are not caused by interactions with the
wall, as the proximity of the walls actually damps out the oscillations. The second
phenomenon is seen when the object approaches the bottom of the container, where
it comes to a full stop at a short distance from the bottom. We believe this effect is
caused by a layer of jammed particles between the object and the bottom. After the
jamming, due to a small difference in pressure between the jammed and surrounding
region, there is a flow back into the jammed layer. This layer subsequently unjams
and the object reaccelerates. As only a slight decrease fromjamming was needed
to reaccelerate, the layer can get jammed again easily, restarting the process. This
can occur several more times before actually reaching the bottom. This jamming and
unjamming was modeled and we were able to reproduce the behavior very accurately
for a settling cylinder, and reproduce the first cycle for a settling sphere.

Although a wide variety of parameters has been studied, and we obtained a good
understanding of the effect at the bottom, a more complete understanding of the bulk
oscillations is still lacking. Rheology experiments that would focus on the hysteresis
may give more insight in this phenomenon. It would also be interesting to examine
whether the phenomena would be visible when we would have a suspension flowing
through a pipe or around an obstacle, which would be more directly applicable to
industry.

In our second experiment, we exerted vertical vibrations toa thin layer of dense
suspensions (chapters 4 and 5). For almost every different suspension we used, we
observed a different phenomonology when vibrated. Again, adense cornstarch sus-
pension (φ > 0.37) was found to have the richest of phenomenologies of all used
suspensions: Depending on the packing fraction and the shaking parameters, we ob-
served stable holes, rivers, jumping liquid and fingerlike protrusions. Other suspen-
sions actually showed none of these phenomena: Polydisperse particle suspensions
give holes that continuously split, collide, and merge overthe entire surface of the
layer. In monodisperse particle suspensions holes were found to grow over time and,
depending on shaking and suspensions parameters, this holecan either grow to form
a separated state (or kink) in which half of the container contains suspension, and the
other half is dry. The similarity between all these phenomena is that a convection roll
was observed on the edge of the liquid.

In the same experiment, we studied the dynamics of these growing holes in more
detail, and compared it to collapsing holes in Newtonian liquids. We found that
the closing of the hole in a Newtonian liquid is largely independent of the shaking
parameters and inversely proportional to the viscosity of the liquid. When shaken,
a hole was found to close on average at the same rate as it wouldwhen the liquid
would be at rest. The hole size is found to oscillate around this average at the same
frequency as driving. For a dense suspension containing monodisperse particles, in
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the regime where the hole is found to grow, we investigated the effect of particle
size and the viscosity of the liquid. We found that for lower viscosities the hole
opens faster, but also the hole edge becomes less stable and is more likely to fall into
the hole and close it again. The most remarkable phenomenon is that, although the
hole opens, the velocity during the closing half of the cycleis actually larger than
during opening. This is where the difference with the Newtonian liquid is found:
Whereas the hole in the Newtonian liquid oscillates along with the driving, following
an almost perfect sinusoidal pattern, the hole in the suspension oscillates in a far
from symmetric manner. Not only are the peak velocities different, with a larger
inward velocity, also the width of the halves are very different. The closing half is
very peaked, where the opening half is more sinusoidal in shape. It was found that
the results for these experiments scaled very nicely withµ/σ , leading us to believe
that due to the vertical vibrations a difference in volume fraction is created over the
height of the suspension, resulting in a thin lubrication layer of suspending liquid
during the opening half of the cycle. This last statement needs to be confirmed in
future experiments.

The biggest question that remains after these two experiments is: What makes
a cornstarch suspension so special? Their physical properties –their edgy shape and
relatively flat size distribution– are unique, and were not found in other commonly
available –and neither in even quite exotic– particles. Butwhether it is truly the geo-
metrical properties of the cornstarch particles that sets them apart from other particle
suspensions remains to be investigated thoroughly.

In chapter 6 we performed experiments in a different ‘suspension’, namely in
sand (silica) particles surrounded by air. We studied the impact and settling dynamics
of an object in a loosely packed sand bed of restricted dimensions. After impact, a
splash is observed, which is in contrast to impact on a dense suspension. The object
then penetrates further into the bed, creating a void, whichwill collapse under the
influence of hydrostatic pressure. This collapse leads to a jet, which shoots out of the
bed (which was also not observed for a dense suspension).

In this work we varied the proximity of the boundaries, namely container width
and bed depth. In this experiment, we observed that the boundaries can influence the
experimental results in four ways: First, by changing the object’s trajectory, which in
turn influences the collapse of the formed cavity. This in turn influences the resulting
jet height and shape and finally there will be an effect on the time and strength of
the eruption at the very end, the surfacing bubble. The influence of the bottom on
trajectory, cavity, and jet could be deduced in a straightforward manner. When the
layer is shallow enough, the ball will stop on the bottom, changing the height of the
collapse and thus the velocity of the jet. The influence of theside walls is more
complicated. Due to the confinement, air flow caused by the object itself becomes a
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more dominant factor. The object’s trajectory was found to be well described by a
drag law, containing a hydrostatic pressure and a quadraticdrag. Only when the side
walls are very close to the impact the model fails and the object reaches a temporarily
constant, “terminal” velocity, before slowing down to zero.

The cavity formation and collapse is thus changed by the modification of the tra-
jectory of the ball. But, in addition, also the amount of sandinvolved in the collapse
changes the dynamics and therefore the resulting jet height. When the object pene-
trates very far into the bed, a second collapse will happen, much deeper in the bed.
When this second jet overtakes the first jet, which can happendue to a more violent
collapse, a very remarkable jet structure can be formed, in which there is a broad
shoulder separating a thin jet from a very broad jet. We created a model that predicts
when this second jet will influence the shape of the jet we observe above the bed
surface.

The eruption, which is caused by an entrapped air bubble after pinch off rising to
the surface, was found to depend on the size of the bubble, andthe dissolving time.
This causes the eruption to alternately be not visible and visible two times, when
increasing the sand depth.

In the settling experiments in our two “suspensions”, cornstarch in water and sand
in air, we can find similarities and differences. Both experiments lead to behavior
different from that in a Newtonian liquid, but the observed behavior is very different
in the two materials. Whereas, there is a sort of constant velocity in cornstarch, there
is a continuous decrease in velocity for the granular case.

A similarity is that in both systems, the objects eventuallystops because of jam-
ming. In both baths, the movement of the object causes a change in packing fraction
in front of it until jamming is reached. The difference is that for the granular bed, this
happens somewhere in the bulk, whereas this only happens close to the bottom for
the cornstarch suspension. The reason for this is the difference in surrounding liquid.
Water is strong enough to counteract this increase in packing fraction, whereas air
is not. This also explains why this behavior only happens close to the bottom for
cornstarch, and why unjamming takes place after the object comes to a stop.

Research on the granular jet now turns to the observation of what happens in-
side the sand bed, using X-ray technology and pressure measurements. With these
techniques we can get a better view of the processes inside the bed, which was not
possible in the experiments that were done for this thesis.



Summary

In this thesis, we studied the response of dense suspensionsto an external force in
two different experimental situations.

In our first experiment we let objects settle in a deep bath of adense cornstarch
suspension. Here, we observed two unexpected phenomena: First, instead of expo-
nentially moving towards a terminal velocity, like in a Newtonian fluid, the velocity
of the object actually starts oscillating between two values. In contrast to earlier
work, e.g., that describes oscillations in viscoelastic liquids, these oscillations do not
damp out, at least not within our experimental conditions. We found that modeling
such behavior is challenging: We argue that shear thickening and viscoelastic mod-
els fail to describe the observed behavior. A hysteretic drag model proved to come
closest to our experimental results. In this model the system alternates between two
branches of the drag force and thus alternatively moves towards two different termi-
nal velocities. Before either of those velocities is reached, there is a change in drag,
and thus a switch to acceleration or deceleration.

The second phenomenon is encountered when the object approaches the bottom
of the container, where it comes to a full stop at a short distance from the bottom. We
believe this effect is caused by a layer of jammed particles between the object and
the bottom. We argue that after the jamming, due to a small difference in pressure
between the jammed and the surrounding region, there is a flowback into the jammed
layer. The layer subsequently unjams and the object reaccelerates. As only a slight
decrease in packing fraction from the jammed state was needed to reaccelerate, the
layer easily gets jammed again, restarting the process. This cycle can repeat several
more times before actually reaching the bottom. This jamming and unjamming cycle
was modeled, and we were able to reproduce the behavior quiteaccurately.

In our second experiment, we exerted vertical vibrations toa thin layer of dense
suspensions. In testing various particle suspensions, a dense cornstarch suspension
was found to have the richest of phenomenologies of all used suspensions. Depend-
ing on the suspension type and the shaking parameters, we observed stable holes,
rivers, jumping liquid, fingerlike protrusions, splittingand colliding holes, and grow-
ing holes and kinks. The similarity between all these phenomena is that a convection
roll was observed on the edge of the liquid.
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We studied the dynamics of the growing holes in more detail, and compared it
to collapsing holes in viscous Newtonian liquids. We found that the gravity-driven
closing of the hole in a Newtonian liquid is largely independent of the shaking pa-
rameters and inversely proportional to the viscosity of theliquid. When shaken, a
hole was found to close at the same rate as it would when the liquid would be at rest,
with an additional oscillation of the hole edge at the driving frequency. This behav-
ior, including both the closing and the oscillations, was modeled with a lubrication
model.

For a dense suspension containing monodisperse particles,we investigated the
effect of particle size and the viscosity of the liquid, in the regime where the hole
is found to grow. We found that for lower viscosities of the suspending liquid the
hole opens faster, but also the hole edge becomes less stableand is more likely to fall
into the hole and close it again. The most remarkable phenomenon is that, although
the hole opens, the maximum velocity during the closing halfof the cycle is actually
larger than during opening. The hole in the suspension oscillates in a far from sym-
metric manner, which is markedly different from the Newtonian case. Not only the
peak velocities are different, also the shape of the two halves differ significantly. The
closing half is very peaked, whereas the opening half is moresinusoidal in shape. It
was found that the results for these experiments scaled verynicely with µ/σ , lead-
ing us to believe that due to the vertical vibrations a difference in volume fraction
is created over the height of the suspension, resulting in a thin lubrication layer of
suspending liquid during the opening half of the cycle.

We also performed experiments in a granular material that isrelated to a suspen-
sion, namely in very fine, loosely packed sand (silica) particles surrounded by air.
When an object impacts on such a sand bed, a cavity is known to be formed, which
subsequently collapses, leading to the formation of a jet. We studied the impact and
settling dynamics of an object in a sand bed of restricted dimensions.

We observed that the boundaries can influence the experimental results in four
ways: First, by changing the object’s trajectory, which in turn influences the collapse
of the cavity that is formed after impact. This in turn influences the resulting jet
height and shape and finally there will be an effect on the timeand strength of the
eruption at the very end, caused by a surfacing air bubble.

The influence of the bottom on trajectory, cavity, and jet could be deduced in a
straightforward manner. When the layer is shallow enough, the ball will stop on the
bottom, changing the height of the collapse and thus the velocity of the jet.

The influence of the side walls is more complicated. Due to theconfinement, air
flow caused by the object itself becomes a more dominant factor. The object’s trajec-
tory was found to be well described by a drag law, that contains a hydrostatic pressure
and a quadratic drag term. Only when the side walls are very close to the impact the
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model fails and the object reaches a temporarily constant, “terminal” velocity, before
slowing down to zero.

The cavity formation and collapse is thus changed by the modification of the tra-
jectory of the ball, and in addition, also the amount of sand involved in the collapse
changes the dynamics and therefore the resulting jet height. When the object pene-
trates very far into the bed, we argue that a second collapse will happen, much deeper
in the bed. When this second jet overtakes the first jet, a veryremarkable structure
can be formed, in which there is a broad shoulder separating athin jet on top of a
very broad jet at the bottom. We presented a quantitative argument to predict when
this second jet will influence the shape of the jet we observe above the surface of the
bed.

The eruption, which is caused by an entrapped air bubble after pinch off rising to
the surface, was found to depend on the size of the bubble, andthe dissolving time.
This causes the emergence of alternating regimes with and without eruptions, while
increasing the depth of the sand bed.
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Samenvatting

In dit werk hebben we gekeken naar het gedrag van geconcentreerde suspensies
wanneer er een externe kracht op wordt uitgeoefend. Alle geconcentreerde suspen-
sies vertonen kwalitatief hetzelfde gedrag in standaard rheologische experimenten,
namelijk een afname van de viscositeit (shear thinning), gevolgd door een meer
abrupte toename van de viscositeit (shear thickening) wanneer de afschuifsnelheid op
de vloeistof toeneemt. In onze experimenten bleek dat het gedrag van verschillende
suspensies ook zeer verschillend uitpakte. Wij hebben onderzocht hoe in hoeverre de
dynamica van de deeltjes in de suspensies dit gedrag kan verklaren.

In ons eerste experiment lieten we objecten zinken in een diep bad van een sus-
pensie onder invloed van zwaartekracht (hoofdstukken 2 en 3). In elke suspensie, be-
halve één, zagen we hetzelfde gedrag wat we ook zien in Newtoniaanse vloeistoffen,
namelijk een snelheid, die naar een terminale snelheid convergeert. Deze snelheid zal
aangehouden worden tot de bodem wordt bereikt. Alleen in geconcentreerde (φ >
0.38) suspensies van maı̈zena observeerden we een aantal nieuwe fenomenen. Het
eerste fenomeen is dat het object geen terminale snelheid bereikt, maar dat de snel-
heid afwisselend toe- en afneemt, en daarbij tussen twee waarden heen en weer blijft
schommelen. In andere complexe vloeistoffen zijn ook oscillaties waargenomen,
maar deze dempten echter snel uit, terwijl de oscillaties die wij waarnemen als eigen-
schap hebben dat ze niet noemenswaardig uitdempen in ons experiment. Dit gedrag
bleek zeer moeilijk te modelleren. We tonen aan dat shear thickening en viscoelas-
ticiteit dit gedrag niet kunnen beschrijven, aangezien deze respectievelijk leiden tot
een enkele curve die de weerstand beschrijft en gedempte oscillaties, beide in tegen-
spraak met onze experimenten. Het dichtste bij het modelleren van deze experi-
menten komen we door een model te gebruiken met een hysteretische weerstand. In
dit model wordt aangenomen dat de suspensie twee verschillende weerstanden kan
aannemen, afhankelijk van de snelheid en de geschiedenis van de snelheid. Door-
dat er twee snelheden zijn waarbij er tussen deze twee weerstanden wordt gewisseld
komen we inderdaad uit bij een oscillerende snelheid. Het nadeel van dit model is
echter dat we voor elk experiment deze snelheden moeten herdefiniëren, waar we
eigenlijk verwachten dat deze alleen afhankelijk van de suspensie zouden zijn.

Het tweede fenomeen nemen we waar wanneer het object de bodemnadert. Het
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object stopt al enkele centimeters voor het bereiken van de bodem, doordat er zich
een vaste laag van deeltjes bevindt tussen het object en de bodem (jamming). Na deze
stop stroomt er echter vloeistof terug in dit gejamde gebiedwaardoor het object weer
kan accelereren. Doordat het object verder zinkt vormt er zich opnieuw een gejamde
laag tussen object en bodem waardoor dit proces zich nog enkele malen zal herhalen
totdat de bodem wordt bereikt. Dit proces hebben we gemodelleerd en de resultaten
kwamen zeer goed overeen voor een experiment met een cilinder, en kwamen voor
een bal in elk geval goed overeen voor de eerste cyclus.

Ondanks dat we een grote hoeveelheid parameters hebben gevarieerd, is het os-
cilleren van de snelheid in de bulk van de suspensie nog niet geheel begrepen. Waar-
schijnlijk kunnen rheologische experimenten die zich concentreren op hysterese meer
inzicht geven in deze oscillaties. Daarnaast zou het interessant zijn om te zien of het-
zelfde fenomeen optreedt wanneer we een soortgelijk experiment zouden herhalen,
maar dan door suspensies door een pijp te laten stromen, of bij stroming van suspen-
sies rondom een object, zeker aangezien deze experimenten dichterbij toepassingen
in de industrie zullen staan.

In ons tweede experiment, hebben we dunne lagen van geconcentreerde suspen-
sies verticaal laten trillen (hoofdstukken 4 en 5). Wanneerje in een vloeistof in
rust een gat maakt zal dit snel weer dichtgaan. Dit is echter niet het geval in sus-
pensies, wanneer deze verticaal trillen. Voor bijna elke suspensie die we gebruikt
hebben, vinden we verschillend gedrag in dit experiment. Opnieuw zien we dat een
geconcentreerde suspensie van maı̈zena (φ > 0.37) de rijkste fenomenologie ver-
toont. Afhankelijk van de eigenschappen van de maı̈zena suspensie en de frequentie
en amplitude van de aandrijving, zien we stabiele gaten, rivieren, rondspringende
klodders en vingervormige groeisels. Andere suspensies daarentegen vertonen deze
fenomenen niet, maar laten weer andere opmerkelijke gedragingen zien. Wanneer
een suspensie polydisperse deeltjes bevat zien we gaten diezich in de loop van
de tijd continu blijven delen, maar ondertussen ook botsen met elkaar en daardoor
samensmelten of dichtvallen. In suspensies met monodisperse deeltjes zien we dat
gaten groeien tijdens het experiment. Wanneer dan de rand van de container wordt
bereikt opent dit gat zich, waarna de ene helft van de container droog valt en de an-
dere helft alle suspensie bevat. De overeenkomst tussen al deze fenomenen is dat op
de overgang van een droog deel naar de suspensie zich altijd een convectierol bevindt.

In ditzelfde experiment hebben we ook specifiek gekeken naarde dynamica van
deze groeiende gaten in suspensies en naar sluitende gaten in Newtonse vloeistoffen.
Het dichtvallen van een gat in een Newtonse vloeistof blijktalleen af te hangen van
de viscositeit van de vloeistof; het maakt daarbij niets uitof de vloeistof ondertussen
trilt of niet. Wanneer er getrild wordt, zien we wel dat de rand van de vloeistof met
dezelfde frequentie en sinusvorm oscilleert als waarmee degehele vloeistof getrild



163

wordt. De trilling van de rand van de vloeistof loopt wel een kwart periode achter
op de trilling van het systeem. Dit systeem hebben we ook kunnen modelleren met
behulp van lubricatie theorie en de resultaten hiervan komen zeer goed overeen met
de experimenten.

Voor een sterk vibrerende, geconcentreerde suspensie met monodisperse deeltjes
groeit een gat gedurende de tijd. We hebben in dit regime de invloed van de grootte
van deeltjes en de viscositeit van de vloeistof onderzocht.Ook in deze experimenten
trilt de rand van de vloeistof weer met dezelfde frequentie als waarmee we het sys-
teem aandrijven en het faseverschil was voor alle experimenten ook hier weer een
kwart periode. Een lagere viscositeit leidt tot een snellergroeiend gat, maar maakt
deze ook minder stabiel. Dit komt doordat de rand van het gat verder boven het op-
pervlak uitsteekt en daardoor een grotere kans heeft om in het gat te vallen en deze
daardoor te doen sluiten. Het meest opmerkelijke in dit experiment is dat, ondanks
dat het gat opent, de snelheid tijdens het naar binnen bewegen hoger is dan tijdens
het naar buiten bewegen. Dat het gat toch groeit, komt doordat de vorm van het
snelheidsprofiel zeer gepiekt is gedurende het sluiten, en de sluitsnelheid daardoor
gemiddeld toch lager uitvalt dan de gemiddelde openingssnelheid. De resultaten van
het openen van de gaten en de snelheid waarmee dit gebeurt, vallen voor al onze ex-
perimenten, met verschillen viscositeiten en deeltjesgroottes heel goed over elkaar als
we de viscositeit schalen met de deeltjesgrootte. Dit betekent volgens ons dat er een
verschil in deeltjesconcentratie zit over de hoogte van de suspensie. Deze aanname
zal in toekomstige experimenten nog moeten worden bevestigd.

De grootste vraag die overblijft is waarom maı̈zena in watereen zo speciale
suspensie vormt. Zowel bij het vibreren als bij het zinken vonden we hier de rijk-
ste fenomenologie. Het kan zijn dat de unieke geometrische eigenschappen van de
maı̈zenadeeltjes, hoekige vormen en de grootteverdeling,niet eenvoudig te vinden
zijn in andere deeltjes.

We hebben onze zinkexperimenten herhaald in een granulair materiaal dat over-
eenkomsten vertoont met een suspensie, namelijk een los gestapeld bed van fijne
zandkorrels in lucht. In dit experiment hebben we het inslaan en zinken van een bal
in een bad van dergelijk droog drijfzand beschreven (hoofdstuk 6). Na inslag op het
zand zinkt de bal in het bed en laat hierbij een cilindervormige opening achter. Deze
valt dicht door de hydrostatische druk en leidt tot de vorming van een jet die uit het
bed omhoog schiet.

In dit werk hebben we gekeken naar de invloed van de containerwanden en de
bodem op de vorm en hoogte van deze jet en het zinkgedrag van deinslaande bal. We
observeren dat de wanden onze experimenten op vier manierenkunnen beı̈nvloeden.
Als eerste zal het traject van de bal veranderen, wat op zijn beurt invloed heeft op het
dichtvallen van de opening in het zand die in het zog van de balachterblijft. Hierdoor
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zal de jet niet allen in hoogte, maar ook van vorm veranderen.Tot slot is er nog
invloed op de eruptie die plaatsvindt wanneer de achtergebleven lucht in het bed het
oppervlak bereikt.

De invloed van de aanwezigheid van de bodem was redelijk eenvoudig te verkla-
ren. Doordat de bal stopt op de bodem zal er een kleinere opening worden gemaakt
in het zand waardoor ook de jet minder hoog reikt. De invloed van de zijwanden
is complexer. Door de kleinere container wordt de invloed van de luchtstroom,
gecreëerd door de bal zelf, een zeer belangrijke factor in het resulterende traject.
Het traject blijkt goed te beschrijven met een model dat de hydrostatische druk en
een kwadratische weerstand op de snelheid bevat. Alleen onder speciefieke experi-
mentele omstandigheden, vertoont het object een onverwacht resultaat, waarbij zelfs
voor korte tijd een terminale snelheid wordt bereikt. De door de bal gemaakte ope-
ning en het dichtvallen hiervan wordt hierdoor ook veranderd, maar ook de veran-
derende hoeveelheid zand in een kleinere container heeft invloed op de uiteindelijke
jet die wordt gevormd. Tot slot is er nog beredeneerd dat wanneer de bal diep ge-
noeg komt er een tweede, diepere plaats is waar de opening dichtvalt. Hierdoor zal er
een tweede jet ontstaan, die afhankelijk van de experimentele variabelen al dan niet
de eerste jet kan inhalen. Wanneer dit het geval is zal de uiteindelijke zichtbare jet
boven het oppervlak een zeer specifieke structuur hebben meteen smal deel aan de
bovenkant, gevolgd door een abrupte verbreding naar een bredere basis.

De eruptie die het experiment beëindigd bleek afhankelijkte zijn van de balans
van twee tijdschalen, namelijk hoe snel de luchtbel naar hetoppervlak komt tegen-
over de tijd die nodig is voor deze bel om op te lossen in het bed.
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