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Introduction

1.1 Liquids

Liquid is the state of matter with a fixed volume, but which cdii deform con-
tinuously under influence of a shear stress. A fluid is callesvtdnian, when the
relation between the shear strasand the shear ratgis linear and passes through
the origin. The constant of proportionality is the coeffittief viscosity u, which is

a liquid property that describes the resistance of the fluideformation.

A non-Newtonian fluid is a fluid whose flow properties differany way from
those of Newtonian fluids. Most commonly the viscosity of fdewtonian flu-
ids is dependent on shear rate or shear rate history. Howtge are some non-
Newtonian fluids with shear-independent viscosity, thatatbeless exhibit normal
stress-differences or other non-Newtonian behavior. dfbeg, although the concept
of viscosity is commonly used in fluid mechanics to charao¢ethe shear properties
of a fluid, it can be inadequate to fully describe non-Newdarfiuids.

1.1.1 Shear thinning and shear thickening

Conceptually, non-Newtonian fluids can be very roughlygatized into two groups,
the shear thinning and the shear thickening liquids. Sheaning liquids show a
decrease in apparent viscosity with increasing shear wdtereas shear thickening
liquids show the opposite, namely an increase in apparsnbsity with increasing
shear rate (see Fig. 1.1). An example of a shear thinningriaitepaint. When paint

1
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shear thickening

Newtonian

viscosity

shear thinning

shear rate

Figure 1.1: Schematic explanation of the difference betwdewtonian and non-
Newtonian fluids. The horizontal axis shows the shear rat® (svhich provides the
amount of shear deformation that is applied per second. €he&al axis shows the
liquid’s viscosity (Pas).

is applied the shear created by the brush or roller will alfbem to thin and cover a
surface nice and evenly, and it will thicken again aftengarghich avoids drips and
runs. Other examples of everyday shear thinning fluids aiehke, whipped cream
and nail polish. Most shear thickening fluids are suspessi@hich are the materials
that are the center of this thesis.

Non-Newtonian fluids have been studied through several ottemlogical prop-
erties which relate stress and strain rate under many eliftétow conditions, such
as oscillatory shear, or extensional flow which are measusaty different devices
or rheometers.

1.1.2 Suspensions

Suspensions consist of a heterogeneous liquid, contapanticles that are larger
than 1um. Smaller particles are able to move due to Brownian motidrereas for
larger particles this will be negligible, and external fesavill dominate. Suspensions
are of great practical interest because they occur frebyugneveryday life. These
can have desirable properties in a natural or fabricatedyatdqthickening of sauces)
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or undesirable ones (unwanted suspension during induptoaesses). Some fa-
miliar suspensions include those in foods (puddings, sgupbarmaceutics (cough
syrups, laxatives), household products (inks, paintsyemds), and the environment
(sediments, sewage). In spite of their significance, the @ibdense suspensions re-
mains far from understood.

Almost all suspensions are found to be shear thickeningnuheéeright circum-
stances [1]. These circumstances are a combination ofllaypuil particle properties,
as well as the dynamical history of the suspension. Thessatain curve will in
general be not as simple as sketched in Fig. 1.1. Most suspsnagill actually show
a slight shear thinning for low shear rates which will, atitical shear rate, abruptly
change into a shear thickening regime [1-5]. When incredbia shear rate even fur-
ther, we may either observe another regime of shear thifdihgtay at a constant
value of viscosity, or witness fracturing of the suspenggjn

The regions in which a suspension, or another particulattesy, either flows or
jams have been investigated quite intensively, and thabias that control in which
state one will be are known as well [7]. The behavior of thesgenials, however, is
not completely understood at this point. Besides thisaninmodels describing shear
thickening (and other non-Newtonian phenomena), usuallgat take into account
the deformation history of the liquid.

Recently, dense suspensions were found to show remarkahkvibr in less
traditional experiments, which can not be explained bylte$tom rheometry alone,
and thus showing the shortcomings in our knowledge of thieggds. The main
purpose of this Thesis is to connect this remarkable beha¥idense suspensions to
the dynamics of the particle phase in it, which behaves aarutar system that may
jam or unjam while the suspension is flowing.

1.2 Vibrating liquids

One of the systems alluded to in the previous Section is ddygr of dense suspen-
sion which is vibrated vertically and then perturbed, legdio localized structures.
The free surface of a fluid at rest in a container is flat. Whés flatness is dis-

turbed, a restoring flow will flatten out the surface againl¢g as there is no or
negligible yield stress in the fluid). When the container oidlis vibrated, however,

a wide variety of interface phenomena can be observed. Tt wall-known of

these, is that a sinusoidal acceleration produces Faraaegsf8]. As the study and
understanding of such spatially extended patterns in Batoilibrium systems has
matured, attention has turned to localized structures.réThee many examples of
such localized structures in the Faraday system: pattdetide solitons, localized
jets, and oscillons. These structures usually are peradiéd, which means that
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Figure 1.2: Localized structure (fingerlike protrusion)ireunded by Faraday waves
in a vibrated cornstarch suspension.

their frequency is half that of the driving. Recently, a ndass of localized struc-
tures, namely kinks and persistent holes [9, 10] was digeovi@ the Faraday system
with a particulate suspension as the working fluid. Thesgtires need a manual
disturbance in the liquid to start, and are markedly diffiefeom the other localized
structures: They oscillate along with the driving frequeacound an unstable state.
In Fig. 1.2, an example of such a localized structure in adaraystem is shown.

The question that arises here is how the vibrations induesetistructures in the
liquid. Other than that these phenomena are most likely wobeected to the shear-
thickening properties of the suspension and a change fraquia lto a more solid-
like, jammed state, it is unknown what mechanism causes stegpes.

Research to jamming up to now has focussed on jamming ircpkate systems
which are quasistatic. In the vibrated system, howeves,ithof course not the case.
This thesis will put the focus on such systems, far from ré&. will have a deeper
look in the phenomenology of vibrated suspension, with thjeaive of unravelling
in detail to how the properties of the particles in the susfmminfluence the behavior
of the suspension.

The vibrating system, however, is a complicated system iichwtiriving and re-
sulting movement are in different directions. Besides,dtiging is not a constant,
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which also adds to the complexity of the problem. Therefoeealgo turn our atten-
tion to a simpler system in which there is movement in a sinljlection only and
a constant driving force, namely an object settling undewity in a deep bath of
liquid.

1.3 Impact on and settling in liquids

Upon impact on a liquid surface —depending on both objectigndl— a splash will
be created or the liquid will close around the object. Thescbyvill subsequently
continue to move downward. In the first case however, thecoljél also create an
air void behind itself, which will close due to hydrostatieepsure. When the liquid
pinches off in this air void, sometimes a strong jet will beated, shooting out of
the liquid bath. When the object travels through the liqtidiil at a certain moment
find a balance in forces, usually consisting of a driving usra drag force, and will
therefore reach a terminal velocity. When an object falltie@lly, driving will be
gravity, and the terminal velocity will be kept until a newde comes into play, most
likely a full stop on the bottom of the liquid bath.

In some fluids, the object’s velocity is less straightfordvaas forces that the
liquid project on the object are not constant [11-13], angstlead to a velocity
which is not constant. We will perform this same experimara deep bath of various
suspensions, where we will show some very unexpectednggltéihavior. A complex
rheology and jamming will be shown to at least partly explhiis behavior, which,
however, will turn out to be very specific to only one kind ospansion, namely a
cornstarch suspension. The main question here is whetisesytstem will give us
an insight into how an external force can lead to (local) gesnin the suspension,
leading to the phenomena we observe.

1.4 Granulates

The term liquid bath that we used above, can actually begreézd in a very broad
sense, as a granular system can also behave as a liquid thedight circumstances.
Granular materials consist of discrete macroscopic pestizhich interact mainly
through contact forces. In large quantities they can belikeea solid, a liquid, or a
gas but often behave differently from what would be expedietthese phases [14].
A few every day examples are sand, pills and grains, but hAlsdlaw of icebergs in
the oceans and cars on the road can be seen as granular atsateri
When in a very dilute state, a granular bed can behave rebilgrkamilar to

a liquid bath; when an object is thrown in either of those twstems, a splash is
formed at impact and after a short time a jet shoots out of #th.bThe physics
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Figure 1.3: Examples of a granular solid, liquid, and gas.

behind this granular jet has been studied extensively siackscovery [15—-31], and
in this Thesis, the effect of the proximity of the containalla will be investigated.

Such a dilute granular bed is actually quite similar to a ensn, also consisting
of particles with a surrounding fluid, in this experiment aind thus there are likely
to be parallels with the (jamming) behavior of suspensions.

1.5 Guide through the thesis

Through our experiments we aim at obtaining a better unaledstg of suspensions.
In our settling experiment we take a deep bath of suspensidieadifferent objects
impact onto and settle inside the suspension. We obserezatemnexpected phe-
nomena during the settling of the objects, which are dismis®d, where possible,
explained in chapters 2 and 3. In chapter 4 we will have a ladké more complex
system of a vertically vibrated layer of suspension. Foiouersuspensions and shak-
ing parameters, we see a wide variety of phenomena beyosd thported in earlier
works [9, 10, 32]. Chapter 5 focuses more specifically on gheachics of holes in
various vibrated liquid systems. In chapter 6, we will rattw the impact/settling
experiment, but now in a very loose, granular medium. Whezehserved no jets
for dense suspensions, we do see a granular jet in this cdsdesribe its char-
acteristics. In addition we have a look at the trajectoryhef impacting sphere for
different experimental parameters. In chapter 7 we wildcanclusions based upon
the work described in this thesis.
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Nonmonotonic settling of a sphere in a
cornstarch suspension *

Cornstarch suspensions exhibit remarkable behavior. im¢hapter, we present two
unexpected observations for a sphere settling in such sesisgm: In the bulk of the
liquid the velocity of the sphere oscillates around a temhiralue, without damping.

Near the bottom the sphere comes to a full stop, but then eates again toward

a second stop. This stop-go cycle is repeated several tiefesslthe object reaches
the bottom. We show that common shear thickening or linesmoelastic models
cannot account for the observed phenomena, and proposeimatijamming model

to describe the behavior at the bottom.

*Published as: Stefan von Kann, Jacco H. Snoeijer, Detle§&oand Devaraj van der Meer, Non-
monotonic settling of a sphere in a cornstarch suspensiys. Rev. E84, 060401(R) (2011).

11



12 CHAPTER 2. NONMONOTONIC SETTLING
2.1 Introduction

Concentrated particulate suspensions consist of a horaogeriluid containing par-
ticles, larger than um. They can be found everywhere, and their flow is important
in nature, industry, and even health care [1]. In spite off thignificance, many as-
pects of the flow of these dense suspensions remain poorbrstodd. In order to
study these materials, people have used methods inspirelddsical rheology, and
typically characterized them in terms of a constitutivatien of stress versus shear
rate [2—6]. A general result is that, when increasing thastete, dense suspensions
first tend to become less viscous (shear thinning) and subsdy shear thicken.

Probably the most conspicuous example of a dense suspeadiomed by a
high concentration of cornstarch in water. Recent rheckigéxperiments in corn-
starch have revealed the existence of a mesoscopic lerajeh[6¢7], a shear thinning
regime that terminates in a sudden shear thickening [8]namijc jamming point [4],
and fracturing [9]. Merket al.[10] observed in a vertically shaken, thin layer of corn-
starch suspension that, among other exotic phenomende sisdillating holes can
be formed at certain frequencies and amplitudes [10, 1liciwlvere subsequently
described using a phenomenological model based on a hystepastitutive equa-
tion [12]. At present, however, we are still far from a detdilinderstanding of dense
suspensions.

In this chapter we subject a cornstarch suspension to a&gséciment, in which
we observe and describe the settling of a spherical objectiéep bath of suspension.
This yields two interesting observations. In the bulk, we fimat the object velocity is
oscillating in addition to going toward a terminal value.aX¢he bottom we observe
a second phenomenon: The object comes to a full stop beferbatiom, but then
accelerates again, and this stop-go cycle can repeat updn §mes. We will show
that both bulk and bottom behavior are conceptually difiefeom that observed in a
wide range of other fluids. We propose a jamming model for thp-go cycles near
the bottom that specifically includes the liquid-grain mateions.

2.2 Setup

Our experimental setup is shown in Fig. 2.1(a). It consi$ta &2 x 12 x 30 cn?
glass container containing a mixture of cornstarch anddiggor the liquid we use
either demineralized water or an aqueous solution of Ce€lhharide with a density
of 1.5 g/cr?, matching the density of the cornstarch particles. Expenis actually
showed negligible differences between the density-mateme the unmatched lig-
uid, except that for the unmatched liquid the suspensiondias stirred well prior to
the experiment to counteract sedimentation. The corrstzdicles [Fig. 2.1(b)] are
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Figure 2.1: (a) Schematic view of the setup, consisting etintainer filled with the
suspension, the settling sphere with tracers attacheda digh-speed camera. For
convenience the positive direction of the vertical coaatkrx is chosen downward,
with x = 0 located at the bottom of the container. (b) Microscopidysi of the
cornstarch grains.

irregularly shaped and have a relatively flat size distidmubf 5-20 um. Although

we have varied the packing fractianof the cornstarch, for the data presented here
we have fixed it to the high value @f = 0.44, for which the phenomena of interest
are particularly pronounced. All phenomena actually appdaen@ > 0.38. In a
suspension of similarly sized spherical particles, we dilabserve the phenomena
reported here.

The settling sphere is d = 4 cm diameter pingpong ball, which is filled with
bronze beads to vary the buoyancy corrected mass,msphere— Ps7d>/6, from 0
up to 137 g. Hereps is the density of the suspension. To measure the trajecfory o
the object inside the suspension, we follow tracers on g tigid metal wire that
is attached to the top of the ball (as in Ref. [13]) with a hggeed camera imaging
at 5000 frames per second. From the trajectories the vglaoid acceleration are
determined at each timeusing a local quadratic fit arourtdn a time interval of 12
ms, corresponding to 60 measurement points.

In Fig. 2.2(a) we plot the time evolution of the velocity far¢e different, buoyancy-
corrected massgs. For the smallest mass (green curve), after some transieotigl
following the impact (at = 0), there is an approximately exponential decay toward a
terminal velocity, as would be found in a Newtonian liquidh& we increasg, we
observe a much more abrupt decrease toward a terminal tyelmgi in addition there
are oscillations around this terminal value. This is seestralearly for the highest
mass in Fig. 2.2(a) (point 1). Second, instead of stoppiray @éry close to the bot-
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tom -as would happen in a Newtonian liquid- the object atguadmes to a sudden,
full stop (point 3) at~10 mm above the bottom for the highesfFig. 2.2(a), inset].
Surprisingly, the object subsequently reaccelerateo(y,to come to another stop
slightly closer to the bottom. This process is repeatedraktimes until the bottom is
reached. The observed phenomena are also present whereagerthie sphere from
rest, but to avoid the long acceleration trajectory for $mmalve chose to impact the
spheres with non-zero initial velocities to maximize thediin which the bulk effect
is observable. To check that the bulk oscillations are nosed by interactions with
the side walls, we changed the ratio of container to ball, gjmalitatively leading to
the same phenomena.

The motion of the settling sphere is described by

mX = ug+D, (2.1)

whereD is the drag the sphere experiences inside the suspensian &Mt phere+
Madded S the total inertial mass, including the added mass for whie will take the
standard resulinagged = O.SpSnd3/6. For a Newtonian fluid with a high dynamic
viscosity n we haveD = 3rndx, leading to an exponential decay toward the ter-
minal velocity X = ug/(3mnd). When we estimate the effective viscosity of our
cornstarch suspension by identifying the (average) platetocities in Fig. 2.2(a),
we find values between = 0.87 and 3.96 Pg, which are of the same order as found
in Ref. [8], leading to Reynolds numbers on the order oER¥0. This excludes that
we are dealing with path instabilities associated with wiakgabilities at Re> 100

in Newtonian fluids (see, e.g., Ref. [14]). In addition, w& @so rule out a dom-
inant influence from history forces arising from the build afgthe boundary layer
for an accelerating object (e.g., the Basset force), a®thes expected to be more
pronounced for the lighter objects, in contrast to our olzt@rns.

We use Eg. (2.1) to determine the diagn the sphere as a function of its veloc-
ity [Fig. 2.2(b)]. From this plot it is clear that a given velty in general corresponds
to more than one value of the drag. Since non-Newtonian flyitts a monotonic
stress-strain curve -as, e.g., power-law models for slméaemning and thinning flu-
ids or yield stress fluid models- will lead to a single-valuFeg-velocity curve, we
necessarily need to turn to a model that includes some hidependence.

TCareful examination of the data even reveals a very smaditivegvelocity, corresponding to a tiny
bounce upward, which can be interpreted as the elastic mespaf the jammed region of cornstarch
underneath the sphere.
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Figure 2.2: (a) Settling velocity(t) of the settling sphere for three different masses
u =10, 52, and 122 g. The inset shows the last part of the traje¢xdt)| for

u =122 g. (b) DradD vs. velocityx of the heaviest sphere in (g) & 122 g). Note
the different scales in the right and left half of the plot,ig¢hcorrespond to the bulk
oscillations and the stop-go cycles at the bottom, resgagtiln the latter, the drag
force that causes the ball to come to an abrupt stop is up ttines as large as
gravity, and since it is limited by our fitting procedure, ality it could be even
higher. The numbers correspond to those in (a).
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2.3 Bulk oscillations

The behavior in the bulk is reminiscent of that of an objenkisig in viscoelastic
or stratified liquids for which oscillations are known to acd15-17], albeit with
two major experimental differences: First, for viscoatadiuids there is an elastic
rebound (oscillations in the position), whereas for oupsusion the object continues
to sink, with oscillations in the velocity. Second, in vistastic fluids the oscillation
is observed to be strongly damped. From a modeling perspettie damping term
in linear viscoelastic fluid models accounts for both theageof the oscillations
and the approach of a terminal velocity Clearly, such models fail to describe our
observations: The terminal velocity is reached very rgpafter impact, while the
oscillations persist without measurable damping.

Another approach is to consider a hysteretic model, sucheasrie proposed by
Deegan [12] to explain why the “persistent holes” in velticahaken cornstarch [10]
do not collapse under hydrostatic pressure. We adapt thaelhiy using a drag
force D in Eg. (2.1) which displays two states of damping with diietr effective
viscosities:D = —Bix when || falls belowx; andD = —Byx when || rises above
X2. Here,B1 < By andx; < X, such that there exists a hysteresis loop. Such a model
is capable of at least qualitatively describing any of ouasuement series, with
oscillations occurring whefB;X| < ug < |Bpx|: After impact, the object decelerates
in the direction of a terminal velocityg/B, until it reaches«s, after which a jump
to the lower drag force branch occurs. Then it starts to acatd toward a second
terminal valueug/B;, until x, is reached and the system jumps back to the higher
branch D = —B»X). This cycle repeats indefinitely, producing undampedilagicins
all the way up to the bottom.

An important drawback of the model, however, is that the grpental findings
can only be reproduced by adjustirgandx, for everyu. This can be appreciated
from Fig. 2.3 where we plot the average (terminal) velocitg éhe equivalent oscil-
lation amplitude® of the object in the bulk versus. We see that both the terminal
velocity, which should be identified wittx; +X%2) /2 in the model, and the equivalent
amplitude & X, — X1) increase with the buoyancy corrected mass. A similar trend
was observed in Deegan’s rheometer experiments [12]. Wipsies that the model
for the drag force cannot be interpreted as a constitutivdainfor the cornstarch
suspension, therewith greatly diminishing its predictiadue.

*We have used the Maxwell model and variations thereof withspring and up to two dashpots.
8The equivalent oscillation amplitude is definec\d® times the standard deviation of the velocity
signal, which would be equal to the amplitude for a sinudadmal.
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Figure 2.3: Bulk oscillations: Average (terminal) velgcimaximum and minimum
velocity (when discernible), and equivalent amplitude loé bscillations, all as a
function of the buoyancy-corrected sphere mas®scillations are only discernible
for u > 50 g. Clearly, the minimum and maximum velocities -whichutdoe iden-
tified with x; andx, in the model (see text), respectively- dependuon
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2.4 Stop-go cycles

Near the bottom we find a clear hysteresis between a situaiibra sudden, violent
deceleration [the large semicircular excursions of theg doece in the left-hand side
of Fig. 2.2(b)] and a reacceleration period with a smallk8sslike drag forcé® [the
almost horizontal parts in the same plot; also see the quwrelngXx(t) curves in
Fig. 2.2(a)]. We interpret these stop-go cycles as followstile the sphere is mov-
ing down, the cornstarch below it is slowly being compressgch that at a certain
moment a jammed network of particles forms between the thjed the container
bottom. This jammed layer is responsible for the large fohee brings the sphere to
a full stop. Stresses build up in the network and therefase alithin the interstitial
fluid, which triggers a Darcy’s flow in the porous medium fodri®y the cornstarch
grains allowing the network to relax through (small) pdeticcarrangements. This
causes the jammed region to unjam and the object will stasingoagain. Such
hardening of a cornstarch suspension has also been reporief. [18], where a
ball was pushed toward the bottom, leaving an indent on alaisr on the bottom.
This was attributed to forces being transmitted throughrddreged layer beneath the
ball.

We model this process by coupling Eq. (2.1) to an equatioari@rder parameter
which indicates whether or not the cornstarch suspensiger laetween the sphere
and the bottom is jammed. We will take this to be the localiplartzolume fraction
@. Wheng exceeds a critical valu@,, the layer is jammed and the drag fofdds
assumed to become infinitely large until the sphere comestaralstill. This leads
to the following modification of Eq. (2.1):

mX = ug+D when @< @ 2.2)
X = 0 when @> @y’ ’

with D = —Bx. The equation for the time rate of change of the packing ifsaap
should contain a term that increasgproportional to the compression rate/x of
the -cylindrical- layer of cornstarch below the sphere,aliis the process by which
the layer jams. Second, there should be a term that decredbesugh a relaxation
process toward its equilibrium, bulk valge,. This yields

9= —c2 — k(9 o) 2:3)

in which ¢c and k are the proportionality constants of the compression atak+e
ation processes, respectively. Note that constitutes a time scale for the relaxation
dynamics. The critical packing fractiop, is the value at which the cornstarch sus-
pension dynamically jams. It must lie in between the stat@timented (0.44) and
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the maximally compacted (0.57) value [19]. From creating densest, still flow-
ing cornstarch suspension in our laboratory, we estimaegh = 0.46 at most.

As a result, only varies marginally during the process, in agreemert wécent

research where during jamming of a cornstarch suspensiarCiouette cell no den-
sity differences where measured within experimental amyuf0.01) of the Magnetic
Resonance Imaging (MRI) device used [8].

In Fig. 2.4(a) we compare the above model to our experimentdhfee different
masses. We find that for a single value koe= 40 st andc = 0.025", the model pro-
vides a reasonably good description of the stop-go cyclealfenasses. Moreover,
plotting the duratiomt of a stop-go cycle and the maximum velociyax reached
after the first stop yields the correct trend [Fig. 2.4(b)heTact that the second and
higher stop-go cycles seem to be predicted too strong ahthfake model may be
partly explained from the one dimensionality of the modéijah does not fully de-
scribe the geometry of the settling sphere. Indeed, the hmdtehes even better to
preliminary experiments with a cylinder.

Finally, we connect the relaxation time scale! from Eq. (2.3) to Darcy’s law
which, combined with continuity for an incompressible madj leads to the porous
medium equatiord@/dt = (k/ny)0?AP (see Ref. [20]). Here),, is the dynamic
viscosity of waterAP the pressure, arkithe permeability, which is estimated using
the Kozeny-Carman relatiokh= d3(1— ¢)?/(150¢?), with dy the average grain di-
ameter andp ~ @q. The left-hand side of the porous media equation is equdieo t
relaxation term in Eq. (2.3), i.exA@. The LaplaciariJ?AP can be estimated as the
ratio of the pressure generated in the packing due to thedmagycorrected weight
of the sphereP ~ 4ug/(md?)] divided by the square of the typical length schle
over which the relaxation flow needs to take place to unjanmstispension. Taking
the best-fit valuex = 40 s* andA@ = @, — @.q= 0.02 yieldsL ~ 100dy. This is of
the same order as the mesoscopic length scale found by Batabi 7], dominating
the dynamics of highly concentrated cornstarch suspesision

In conclusion, we presented experiments of objects sgtittito a bed of a corn-
starch suspension, which revealed pronounced non-Neavidréhavior: Instead of
reaching a terminal velocity and monotonously stoppinghatiiottom, the object’s
velocity oscillates within the bulk and goes through a sedfstop-go cycles at the
bottom. Common shear thickening and linear viscoelasticlatsofail to account
for the observed phenomena, and we proposed a jamming nwdestribe the be-
havior at the bottom, which is in fair agreement with the eipent. A remaining
guestion is to what extent a similar model would be able tdamhe oscillations

The valueB we found near the bottom was fixed at 10 kg/s. The best fit fop#iemeter®; and
B, lies at 5 and 15 kg/s if we look at the experiment with the higghmeass, thus in the same order of
magnitude.
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Figure 2.4: (a) Stop-go cycles: Comparison of the expertaielocity (solid lines)
and that in the model (dashed blue lines) vs time for thrdfergifit massesu(= 17,

77, and 132 g from top to bottom). Note that the time axis hassdme scale in
all three plots. (b) Stop-go cycles: Comparison of the rekecation timeAt (blue
squares) and the maximum velockyax (red crosses) reached after the first stop as
a function of the buoyancy corrected masdor both the experiment (symbols) and

model (lines).
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in the bulk. One could imagine that during the downward nrotidayer of (nearly)
jammed cornstarch forms around the sphere, as also propesewtly in Ref. [18],
which somewhat increases drag and slows it down. This loedecity in turn would
allow the relaxation process to dissolve part of the jamragdrand the object would
start to accelerate again. These competing effects wouklitiduce the oscillatory
motion observed in the bulk. Clearly, more research is rescggo quantitatively
substantiate such a mechanism.
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Velocity oscillations and stop-go-cycles: The
trajectory of an object settling in a
cornstarch suspension *

We present results for objects settling in a cornstarch enosn. Two surprising
phenomena can be found in concentrated suspensions. tRiestettling object does
not attain a terminal velocity but exhibits oscillationsoand a terminal velocity
when traveling through the bulk of the liquid. Second, closime bottom, the object
comes to a full stop, but then reaccelerates, before conoiagother stop. This cycle
can be repeated up to 6 or 7 times before the object reachdsatiiem to come to a
final stop. For the bulk, we show that shear-thickening nodes insufficient to ac-
count for the observed oscillations, and that the historthefsuspension needs to be
taken into account. A hysteretic model, that goes beyonttdadéional viscoelastic
ones, describes the experiments quite well, but still missene details. The be-
havior at the bottom can be modeled with a minimal jammingehothis Chapter
provides a more extensive presentation and discussionegblienomena that have
been introduced in the previous Chapter.

*Submitted as: Stefan von Kann, Jacco H. Snoeijer, and Dexaraler Meer, Velocity oscillations
and stop-go-cycles: The trajectory of an object settling aornstarch suspension, to Phys. Rev. E.

23



24 CHAPTER 3. SETTLING IN CORNSTARCH
3.1 Introduction

A suspension is a heterogeneous fluid that contains disbsi particles which
are large enough to sediment over time when undisturbedy areeliterally found
all around us and the flow of dense suspensions is importardtime (mud slides),
industry (paint), and even health care (blood flow) [1]. litespf their significance,
the flow of these dense suspensions remains far from unddrgtoprevious studies,
people have used methods inspired by classical rheologytypitally characterized
these materials in terms of a constitutive relation of stregsus shear rate [2—-7]. A
general result is that, when increasing the shear rateedrrspensions first tend to
become less viscous (shear thinning) and subsequently thleeen.

Probably the most conspicuous example of a dense suspeadiomed by a
high concentration of cornstarch in water, also known ademdtor ooze. In earlier
work, rheology experiments with cornstarch suspensione hevealed the existence
of a mesoscopic length scale [6, 8], a shear thinning redgmaetérminates in a sud-
den shear thickening [9], a dynamic jamming point [4], aretfuring [10]. In an ex-
periment that goes beyond the classical rheological oneskt\t al. [11] observed
that stable oscillating holes can be formed in a thin layetashstarch suspension,
when shaken vertically at certain frequencies and am@gudil]. These holes were
subsequently described using a phenomenological modetilmasa hysteretic con-
stitutive equation [12]. In other dense suspensions, Etaéh found growing and
splitting holes [13, 14], where the first are contributed tmavection-like flow and
the latter are still not understood. Another set of remadekabservations were made
for settling objects. These displayed non-monotonicisgtfll5] and jamming be-
tween the object and container bottom was found [15, 16]. rAsgnt we are thus
still far from a detailed understanding of dense suspessiand why different sus-
pensions behave differently.

In this work we subject a cornstarch suspension to a basieriement, in which
we observe and describe the settling of objects in a deepdiathspension. The
settling dynamics exhibits two remarkable features thatrast observed in other
types of liquids, but also not in other dense suspensionghdrbulk, we find that
the object velocity is oscillating in addition to going towla a terminal value. Near
the bottom we observe a second phenomenon: The object coradslt stop before
the bottom, but then accelerates again, and this stop-de cgo repeat up to seven
times. Although non-monotonic settling has been obseme@iious other systems,
like stratified [17] and (visco)elastic [18, 19] liquids, wall show that both bulk
and bottom behavior in cornstarch are fundamentally differ We study a wide
range of experimental parameters and suspensions to gédikedensight in these
phenomena, discuss several candidates for the (phenavg@a) modeling of the
observed phenomena, and evaluate their appropriateness.
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This chapter is organized as follows. In Section 3.2 we distbe experimental
setup and some data analysis tools. Subsequently, the x@niraental observa-
tions are presented in Section 3.3, where the influence adusparameters such
as the concentration of the cornstarch suspension, thetahpgss, the object shape
and the container size are discussed. Section 3.4 focusghe bulk oscillations by
presenting its particular experimental characteristiws lay subsequently discussing
the validity of several modeling approaches. The stop-gtesyat the bottom obtain
a similar treatment in Section 3.5, a large part of which iotled to the comparison
of a jamming model and the experiments, expanding the nahésented in [15].
Finally, in Section 3.6 we briefly discuss the settling dyi@nin other particulate
suspensions and Section 3.7 concludes the chapter.

3.2 Experimental setup

The experimental setup is shown in Fig. 3.1(a). Objects wlespped into either a
vertical perspex container of size 12x12x30%n a cylindrical glass container with
a diameter of ® cm, containing a dense mixture of particles and liquid. ther
latter, we use either demineralized water or an aqueousi@olaf Cesium Chloride
(CsClI) with a density of~1600 kg/nt, which matches the density of the cornstarch
particles. Experimental results actually showed nedigiifferences between the
density matched and the unmatched liquid, provided thalatter has to be stirred
well prior to the experiment, to counteract sedimentatidhe cornstarch particles
[Fig. 3.1(b)] are irregularly shaped and have an approxiydtat size distribution
in the range of 5-2Qum, i.e., small and large particles are present in approxtyat
equal numbers.

The settling objects that were used in this study are stsrdeeel ballsg = 8000
kg/m?), with diameters of 5 and 40 cm, a 40 cm pingpong ball, and a.3 cm
diameter hollow cylinder with a flat bottom, and a length,denthan the liquid
bad depth. The latter two can be filled with bronze beads tp teair mass: For the
pingpong ball, the buoyancy corrected mgss{mspnere— PsV of the objects, where
ps is the suspension density, axds the submersed volume) could be varied from
0 to 137 grams and the actual mamsf the cylinder was varied from 40 (empty
cylinder) up to 120 grams. For the cylinder, the buoyancyemed mass is not
constant over time: The buoyancy increases when the cylpeleetrates deeper into
the cornstarch, such that decreases over time. The results for the cylinder will
therefore be given in terms of the actual mass.

To measure the trajectory of the objects inside the opagsesision, we follow
tracers on a thin, rigid metal wire that is attached to theaiojne object (as in [20])
with a high speed camera imaging at 5000 frames per secoradmaks of the wire
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Figure 3.1: (a) Schematic view of the setup, with from leftight: A light source
and diffusing plate, the container filled with suspensidmwe that the object with
tracers attached, and a high-speed-camera. (b) Micraspagure of the cornstarch,

used in the experiments.
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Figure 3.2: The velocity of the settling object versus tinte determined by two
different methods, namely (i) using a local quadratic fit diMdemploying a first
order difference. The two methods are shown for differenetintervals of the fitting
procedures, namely.@, 12, and 20 ms, to illustrate the trade-off when choosing
between higher spatial or temporal resolution.

and the resulting buoyancy of the immersed wire are neddigibmpared to the larger
object to which it is attached. Namely, the mass of the wiless than 1 gram and the
immersed tail volume is smaller than 0.1 times the voluménefdmallest object that
was used. The velocity and acceleration are determined thertrajectories at each
timet, using either (i) a local quadratic fit aroumdor (ii) a direct first and second
order difference, both determined over a time interval ofri2(corresponding to 60
measurement points). The difference between both methatitha influence of the
interval are illustrated in Fig. 3.2, where we show the rissof both procedures for
the velocity of the object during a particularly sensitivartpof the trajectory with
abrupt jumps in the velocity. Clearly, when an interval dd #ns (corresponding to
20 measurement points is used, the signal suffers from poiske due to the limited
spatial resolution of our camera. For an interval of 20 m® ({ddints) we observe that
a lot of information is lost: The abrupt decreases in vejoftdtten out, and also the
maximum and minimum velocities are resolved insufficierflgr the above reasons,
the time interval was fixed to 12 ms, as it showed the best twédehen choosing
between losing pixel noise due to limits in spatial resolutand losing temporal
resolution. In addition, the local quadratic fit leads to aenaccurate determination
of the acceleration than the method using the second orfieratice.
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3.3 Experimental observations

In this Section we will present the main experimental obstons. We will start by
comparing the settling in a viscous Newtonian liquid to th#li&g in a cornstarch
suspension and show that the behavior of the latter is higbfyNewtonian. This
will be followed by a discussion of the effects that variowsgmeters have on the
experiment.

3.3.1 General observations

In Fig. 3.3 we plot the time-evolution of the velocity of aaitesphere for two differ-
ent impact experiments: one on glycerin and the other on @stamch suspension.
The sphere is released and accelerates wp=t0, which is the moment of impact.
For glycerin (blue line), a Newtonian liquid, we find the egfesl behavior for such
a liquid: The sphere gradually decelerates and exponbntiatays towards a ter-
minal velocity, which is determined by the object and thauiligproperties. The
experiment ends when the object stops at the containembotiéhen looking at the
dense cornstarch suspension (black line), we observe semmerkable phenomena:
Upon impact, we first see an abrupt decrease towards a lowmgitye which in re-
cent experiments by Waitukaitet al. [21] was explained to be caused by jamming
of the suspension upon impact. Subsequently, instead obtmoously approach-
ing a terminal velocity, there appear velocity oscillasaround this terminal value:
The object alternately goes through periods of acceleraitd deceleration. The
oscillations show no sign of damping out in the time span ithavailable to us ex-
perimentally. These extraordinary oscillations are quiike oscillations that have
e.g. been observed in viscoelastic fluids, for which the @ogs rapidly decays. We
refer to the oscillations in our experiment as bulk osddlas, to distinguish them
from the second phenomenon: Instead of stopping at therbptte object actually
comes to a sudden, full stop at about 10 mm above the bottorpriSingly, instead
of just staying there, the object subsequently reaccelerainly to come to another
stop a little closer to the bottom. This process repeat$f gsgeral times until the
bottom is reached. From here on, we will call these phenorsmago-cycles.

As the density matching of such a large bath requires a fdigdly large amount
of salt, we repeated the experiment in an unmatched sugpernsithough the corn-
starch particles are heavier than the liquid, the settlingaaticles is negligible for at
least several minutes, as we were able to ascertain by penfgrexperiments after
different waiting times after stirring, which showed idieat behavior. Most of the
experiments presented in the current chapter are therpfafermed after stirring
well, but without density matching.

Before taking a more detailed look at the origin of both efeave will first
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Figure 3.3: The settling velocitiesof a steel sphere with a diameter of 0.5 cm in
glycerine (blue line) and a steel sphere of diameter 1.6 caciornstarch suspension
with ¢ = 0.41 (black line) as a function of timte The inset shows the last part of the
actual trajectory, clearly showing the stop-go cycles tieabottom in cornstarch in

the position versus time curve.
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Figure 3.4: Settling velocity of a stainless steel sphere (diametdr dm) in a corn-
starch suspension as a function of tinaad for different cornstarch packing fractions
@ varying from Q35 to 041.

discuss how these bulk oscillations and stop-go cyclesrdheenced by changing
the experimental parameters of the liquid bath and tharsgibject. We only find
minor changes when varying the impact velocity and the bethde

3.3.2 Packing fraction

To determine the influence of the packing fraction, we focusesults of a 1.6 cm
stainless steel ball settling in suspensions of differeakmg fractions @), whereg
is the volume occupied by the particles over the total volafrthe suspension. The
velocity of the ball for different concentrations is platte Fig. 3.4 as a function of
time. In the plotst = 0 coincides with the moment of impact on the suspension.
First of all we observe that the velocity of the sphere witlia suspension has
none of the particular characteristics for cornstarch eatrations up to volume frac-
tions of ¢ = 0.38. The behavior is similar to what is observed for a Newtotiguid
and the only difference is the way the fluid responds upon @hpehere we observe
a sudden decrease of the velocity. This may well be conneéatedmpaction upon
impact as discussed in [21]. While increasing the concgatraof cornstarch we
see the velocity drop become more pronounced, which is dnaitioh of a larger
jammed region created upon impact, consistent with thereatens in [21]. An-
other observation is that the terminal velocity is smalledt appears to be reached at
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Figure 3.5: The settling velocity versus timd in a square container with a 3212

c? and a cylindrical container with a diameter 0®%m for a ball of 16 cm diameter
impacting with a velocity of 5 m/s on a cornstarch suspension with a concentration
of @ = 0.42. For comparison, also the result of a cylindrical disklisetin a quasi-

2D setup is added.

an earlier point in time for higheap, which can be explained from an overall increase
of the apparent (or average) viscosity of the suspension.

When reachingp = 0.39, we start to observe the non-monotonic settling behavior
that was discussed in the previous subsection: After impadirst observe velocity
oscillations in the bulk and afterwards, when the spherecgmbhes the bottom, the
stop-go cycles. For increasing cornstarch concentrafi@pbserve a significant in-
crease of the amplitude of the bulk oscillations on the omelhand of the amplitude,
the duration and the number of stop-go cycles on the otherffElquency of the bulk
oscillations seems to be less affectedgby

Clearly, both phenomena are most pronounced for igivhich is why for the
remainder of this study we will will fix our bath concentratiat the particularly high
value @ = 0.44, unless specified differently.

3.3.3 Container size

We performed identical impact experiments with the 1.6 @slstphere in two differ-
ent containers (one with a circular cross section of 5 cm thadther with a square
cross section of 12x12 cthcontaining a single batch of suspensign=£ 0.42) and
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compared the results to see whether the proximity of the wiaés influences, or
maybe even causes, the observed phenomena. The resuleareis Fig. 3.5.

Already immediately after impact the behavior deviateshierdifferent contain-
ers: The ball decelerates in both cases, but for the smallgaimer even comes to
an almost full stop. This is likely to be caused by jammingte suspension in a
cone-shaped region below the sphere, as observed in [218ra&% this jammed re-
gion may move along with the sphere in the larger contaihé,region may extend
all the way up to the wall of the smaller container, such thatdphere is not able to
move down in that case.

After this initial velocity drop, both experiments reacheaninal velocity, that is
a bit lower for the smaller container. This can be attributethe proximity of the
container wall as well, which will increase the drag in a $gmway as it would in
a viscous Newtonian liquid. The bulk oscillations are diadde in both containers,
but are much less pronounced in the smaller one. This leatis ionportant conclu-
sion that the bulk oscillations are truly a bulk effect, ,ithey areweakenedy the
proximity of the side walls rather than being reinforced.

By contrast, the stop-go cycles at the bottom are qualéhtithe same, only the
maximum velocities that are reached during the re-acd@erahase differ slightly.
The smaller container again reaches somewhat lower vielecithis may, however,
well be connected to the fact that the terminal velocity islen for the small con-
tainer.

In addition to varying the container size, we repeated tlpement in a quasi
two-dimensional setup, in a rectangular container withasgrsection of 10& 5
mn? and a depth of 50 mm, using a cylindrical disk with a diamefet.6 cm and
a thickness of 4 mm as a settling object. In this experimewethaped to be able
to discern variations in suspension concentration belavstttling object. What
we observed however, was that all effects actually fullapeared due to the large
friction between the object and the lateral container wall'e added this quasi 2D
experiment to Fig. 3.5, where it can be appreciated thatéhminal) settling velocity
is only a few centimeters per second.

3.3.4 Object mass

Whereas in the previous subsections we discussed the iofudrthe bath proper-
ties on the observed phenomena, we now turn to the settlijggtabself. First, we
consider the effect of the buoyancy corrected mass (Mspnere— 4/3mr3ps with ps
the density of the suspension), by using a hollow pingpotigWwah a radiusr = 2.0
cm, that can be filled with bronze beads to a masshere This allows us to vary the
difference in density between the impactor and the suspenghile keeping all other
parameters constant. By completely filling the ball we cathea maximum density
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Figure 3.6: Time evolution of the velocity of a hollow pingpong ball filled with
different masses settling in a cornstarch suspension @ith0.44. The buoyancy
corrected mass varies fropm= 10 to u = 132 gram. Also added is an experiment
with a steel sphere qf =217 gram, with the same diameter@4m) as the pingpong
ball. The inset shows the frequency of the bulk oscillatifimghe pingpong ball.

of 5.4-10% kg/m?, which is around 3.5 times the suspension density, but |daer
the density of the steel sphere used bef@g.§~ 8.0- 10° kg/m3). The resulting
velocity versus time curves for these measurements carube io Fig. 3.6.

We observe no pronounced bulk oscillations (and even sangethat looks like
an exponential decay) for the experiments with lighter sphiéup to 90 grams, cor-
responding tqu = 47 g). When we keep increasing the object’s mass, the bulk osc
lations appear. These start out at very small amplitudeinouéase with increasing
mass. Another remarkable observation is that the oscitigtieriod is only slightly
varying over the entire range of masses where the bulk asoitis are visible: While
the buoyancy corrected mass grows over a factor 2, the atsmill frequency only
shows a slight decrease of around 20 percent (Fig. 3.6)inset

In contrast to the bulk oscillations, the stop-go cyclesodogerved for all masses,
even for the smallest buoyancy corrected masg ef 10 g which corresponds to
a density difference between object and suspension of @862 The magnitude
of the stop-go cycles, i.e., both the maximum velocity arelntbmber of cycles, is
found to increase with the mass of the object.

For comparison, we also used a massive steel sphere,rwitt2.0 cm, and



34 CHAPTER 3. SETTLING IN CORNSTARCH

U =217 g. Thus we obtain an even higher density contrast, buteagxpense of
changing the surface of the object. During settling of tinkese, we observe the
same phenomena as for the pingpong ball. The increasingd twenfound for the

amplitude of the bulk oscillations and the maximum veloeibyd number of stop-go
cycles is continued. The main difference is the fact that veasare a frequency
which is a factor 1.5 lower for the bulk oscillations. Thisyrae connected to the
different structure of the surface of the object.

3.3.5 Object shape

Besides changing the mass of the object, we also varied djgeshwe used a hol-
low cylinder with a diameter of .5 cm and a height that exceeds the depth of the
cornstarch bath. This changes two aspects: First, thetdiigesca larger contact area
with the liquid, and second, we have a flat bottom rather theumaed one. The fact
that the cylinder is longer than the depth of the bad allow® keep it aligned verti-
cally while it is settling towards the bottom. However, thigolies that the buoyancy
corrected mass changes with the object’s position. Findllg to the fact that the
cylinder is hollow, we can vary the mass in the same way as we tdane for the
pingpong ball, namely by filling it with bronze particles.

All the phenomena observed for the sphere are also presehiefaettling cylin-
der (Fig. 3.7): We observe both the bulk oscillations andstiop-go cycles near the
bottom. A few differences are clearly visible as well: Fitsie bulk oscillations are
significantly larger in amplitude, which could be either do¢he increase in contact
surface or to the flatness of the bottom of the cylinder. Tkgudency is again in-
dependent of the mass of the object, however it is approgiypat factor two lower
than that observed for the sphere. Although only a few @dimlhs are visible, they
appear undamped for the higher masses, but seem to be daonplee fowest mass.
This is most likely due to the change in the buoyancy cortentass, which for this
lightest case decreases from 35 to 20 grams between impadharfirst stop-go-
cycle. Second, we see that the number of consecutive staydes is larger than
for the sphere. We observe up to seven cycles, while for thersghis was limited
to only two or three cycles. In addition, we observe that thet §top appears at
a larger distance from the bottom, namely several centimete compared to typi-
cally one centimeter for the sphere. Finally, the drop in imann velocity between
consecutive stops is smaller for the cylinder.
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Figure 3.7: Time evolution of the velocity of a settling cylinder in a cornstarch
suspension ¢ = 0.44) for different cylinder masseasy;, varying from 40 to 120

gram. A buoyancy corrected mass can not be used here sinkcarniges along the
trajectory of the cylinder.
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3.4 Bulk oscillations

When an object is settling in a fluid it can be described by ttlewing equation:
MX = pg+D(X,X,t), (3.1)

in which x(t) is the trajectory of the object, whexe= 0 has been chosen to coincide
with the bottom of the container andincreases in the downward direction. Fur-
thermoreg = 9.81 m/ is the acceleration of gravity is the previously introduced
buoyancy corrected mass, ant= Mgpject + Madded IS the sum of the mass of the
object and the added mass. For a sphere we use the traditésg for Newtonian
liquids Magded= 0.50sVsphereWith Vspherethe volume of the sphere apd the density
of the suspension. Finallfp is the drag force which in general is a function of the
object’s velocityx'and positionx. The drag force could even be a functionalixdf)

if the history of the objects trajectory is important (whiefil indeed be argued to be
the case). The aim of the next two Sections is to find an apjatepmodel for the
drag forceD.

In the present Section, we will start with the bulk oscitbais. We will attempt
to describe this phenomenon using various models, and sdigteir appropriate-
ness. As we are using a shear thickening suspension, weofitavith traditional
shear thickening models, that have a monotonic stresisrsinave. We then consider
several viscoelastic models, which are appropriate fod#seription of the position
oscillations that have been observed in viscoelasticdgjuFinally, we investigate a
hysteresis model based on a model proposed by Deegan [18} tonhtext of holes
in vibrated cornstarch layers [11].

3.4.1 Shear thickening model

As cornstarch is well-known for its shear thickening bebgvihe most logical first
model to try is a shear thickening model, i.e., a model in Wil viscosity increases
with increasing shear rate. Or, as an alternative one cduk of a model that
combines a shear rate region where the viscosity is deogasih a region where it
is increasing to model the shear-thinning to shear-thiicigetransition that has been
observed in rheometer experiments in both cornstarch dret suspensions [2-7].
All these models have in common that the stress increasestomcally with the
strain rate, which will lead to a monotonically increasirrggD as a function of the
magnitude of the objects settling velocity

We use Eg. (3.1) to determine the drag force from the expatmh&ajectory, i.e.,
when we comput® = mX— ug for the measured acceleratigmarid plot the result as
a function of the velocity we obtain Fig. 3.8. Clearly, during the bulk oscillations
the dragD is not a monotonic function ok." Therefore, we can immediately discard
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Figure 3.8: The dra® = mX— g on a pingpong ball with buoyancy corrected mass
u = 122 g versus its velocity, calculated from the object’s trajectoryt) during a
settling experiment in a cornstarch suspension ith 0.44.

shear thinning/shear thickening models where the drags®tris a monotonically
increasing function of the velocity (strain rate). We tHiere necessarily need to turn
to a model in which the object’s history is important.

3.4.2 Viscoelastic model

One of the most conspicuous candidates to model the oscjllbehavior is to try
a (linear) viscoelastic model, not in the least becausdlatsons in the position of
settling objects have been observed in viscoelastic If[ii@] and modeled by such
models [19]. The simplest of such models is the Maxwell flindwhich the total
deformation is decomposed into an elastic term in seriels avitiscous term. For
the elastic part, stress is proportional to strain and tbegtionality constant is an
elastic modulus; or the viscous part stress is proportitmstirain rate with (dynamic)
viscosity as a proportionality constant. This translatee the following model for
the dragD in Eqg. (3.1) _
. D D
—X= E + ﬁ s (32)

where E corresponds to the elastic part of the drag term and has thendions
of a spring constant (elastic modulus times a length scate)y) corresponds to the
viscous part and has the dimensions of viscosity times ferigte minus sign reflects
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the fact that the direction drag force will generally be ofipoto the velocity of the
object. The above equation can be integrated to obtain aiessipn for the drag in
terms ofx(t)

E(t—t)

t
D=-E exp[— ] x(t")dt'. (3.3)
=0
As is shown in Section 3.8, the equation we obtain when wetitBis expression
into Eq. (3.1) can be solved exactly using Laplace transitions, leading to

— Hg
X(t)=ur +e |:VoCOSO)t+ ( m+ % ’7> smwt} (3.4)

in which the damping rate, angular frequency, the terminal velocityur, andvy

are given by
_ 2
a = =\/wg—a \/ 2”

ur f] ; and vp=x(0)— f] (3.5)
Indeed, this solution displays oscillatory behavior asahject approaches its ter-
minal velocity. However, the terminal velocity is directigupled to the damping fac-
tor a = E/(2n), which in turn is coupled to the (minimum) amplituge/(cwm) <
ug/(wom) = pug/+/mE = Awhich is obtained by settingy = 0 in Eq. (3.4). Sowhen
we divide the amplitude over the terminal velocity we obtain

2n/E

VE/m

in which T = a ! is the damping time andl = 271&)51 is the period of the oscillation.
This implies that in order to have an amplitude (much) smatan the terminal

velocity, 7/T needs to be (much) smaller than one, i.e., the damping tiroeldh
be smaller than the oscillation period. Vice versa, to obtacillations that do not
damp for several periods, one needs an amplitude which &gaemes larger than
the terminal velocity. Therefore we conclude that it is iregible to describe the bulk
oscillations observed in cornstarch within the context bfaxwell fluid.

It is possible to extend the Maxwell fluid to more complicalieéar viscoelastic
models, like the extended Maxwell fluid and the modified Keivbigt solid dis-
cussed in Section 3.8, that contain additional dissipatieenents in the hope that
this would decouple terminal velocity, damping constant ascillation amplitude.
However, as shown in Section 3.8 all of these models have @alingusimilar to the

A__Hg N _
u  vmEHJ

= = TT

T
T (3.6)
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one expressed in Eqg. (3.6) which makes them unsuitable éatelcription of the ob-
served phenomena. The conclusion is that the bulk osoitiatin cornstarch cannot
be described by a simple linear viscoelastic model like thesave considered here.
Clearly, one could think of turning to complicated viscatia models with multiple
length and time scales. However, such an approach wouldeaohtus much about
the system.

3.4.3 Hysteresis model

We therefore now turn to a model that has been proposed fdrethavior of a corn-
starch suspension in a different setting, namely a velgishlbken one. As mentioned
in the introduction, Merket al.[11] have observed long-living stable holes in a ver-
tically shaken cornstarch suspension, which they ateibdaéntatively to the shear
thickening properties of cornstarch. In a later paper, Baggoposed a model to
describe this behavior based on a hysteretic rheology Maie specifically, he pro-
posed a coexistence of two branches in the stress versus rstr@ diagram of the
cornstarch suspension, the existence of which was backdx wscillatory shear
measurements in a cone-plate rheometer. This phenoméradlogodel is able to
predict the existence of growing holes in a cornstarch suspe.

We now apply this idea for our experiment of an object sejtima deep bed of
cornstarch, using Eqg. (3.1) with a hysteretic model for tregdorce. More specifi-
cally

D(x) = —B(X)x, (3.7

where

(3.8)

B(X) B; whenxfalls belowuy,
" |B, whenxrises abovel.

Here,u; anduy (with up > u;) are the turnover velocities of the system and the drag
coefficientsB; andB; (with B, > B;) are the slopes of the two branches, namely one
corresponding to a low viscosityd{() and the other to a high on84). Betweenu,
anduy the system can be in either of the two branches, as illustiatEig. 3.9(a).

How this model foiD is able to produce oscillations in the context of Eq. (3.1) is
illustrated schematically in Fig. 3.9(b). After impactetbbject will be in the higher
branch with drag coefficier®, and will decelerate until it reaches the lower boundary
u;. There the system will switch to the lower branch and its dragfficient will
decrease tB,. As this results in a drag force smaller than the downwardslaation
of gravity, the object will accelerate again towards thenieal velocityx; = ug/Bs,
which is the steady state of Eq. (3.1) when the system is idatlver branch, i.e.,

D = —Bix. Before reachingg however, the object will hit the velocity,, where
the drag coefficient jumps tB,. Now the object will decelerate again towards a
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Figure 3.9: (a) Schematic of the drag foedefined by Eq. (3.7) as a function of
the velocityx, with the hysteresis loop betwegn="u; andX = u,. (b) Schematic of
the oscillatory solution of Eq. (3.1) using the drag forca)f For suitable values of
B1, By, U1, andu, the system alternately switches from the low to the high ¢inan
the hysteresis loop and back. In these schematics, allitjgargre in arbitrary units.
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second terminal velocity, = 1g/B; (corresponding to Eg. (3.1) in the higher branch
D = —B»X), but before arriving thereay; will be reached again. This restarts the cycle
that will now repeat over and over again.

To relateB; andB, to experimental observables, we solve equation 3.k far
each of the two branches, starting at an arbitrary timeg at one of the boundaries
up or uy of the hysteresis loop. This leads to

i (1 =) exp| AP (1), (3.9)

fori=1,2. Herexi = ug/B; are the terminal velocities introduced above.
Now we linearize this equation trbetweeru; andu,. This leads to the following

expression foBy
—Ux+ U m 1
Bij=( ——— — 3.10
1= (ZE g £ (310

and similarly forB, with the indices 1 and 2 interchanged. Hekg, andAt, are the
time intervals it takes for the object to accelerate or d=edé from the one switching
velocity to the other. By determininfjt;, Aty, ui, andu, from our experiments we
can now calculat®;, andB.

The next step is to compare the model to the experimentst Weésassumed
that the drag coefficient8; andB, are determined by fluid properties, i.e., that they
are independent of the object mass or velocity. We thus ledémlithe drag coeffi-
cients for the experiment with the highest mass and apptiech to the other masses.
Here, we do have to adjust the turnover velocitiggndu,, to obtain an oscillation
between the observed velocity boundaries. The result iwrstas the solid lines in
Fig. 3.10(a). We apply the model after all impact related@# have disappeared, and
clear fluctuations around a terminal velocity are visibler the four measurements
betweenu = 62 andu = 132 gram in Fig. 3.10(a), we see that the model fits nicely
for the heaviest balls, and quite well for the lighter balism which we conclude
that the assumption of constaBit andB; is reasonable. This can also be checked by
calculatingB; andB; for every experiment separately, the results of which aogvsh
in Fig. 3.11. We observe that boBy andB, only vary very slightly for all masses.

For further comparison, we plot the hysteresis loop in a #eagus velocity plot
for both the experiment and the model in Fig. 3.10(b). It saclthat the modeled
loop is a very simplified representation of the actual loop that, especially for the
lower masses the variations in the observed acceleratiensamsiderably smaller
than those of the model.

We compared the experiments with a spherical object to thadea cylinder
(discussed in Section 3.3.5). The cylinder diameter is tinbwhich is smaller than
the ball, and also we now have a flat bottom instead of a rouadBDoe to the length
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Figure 3.10: Comparison of the experimental results to yfstenesis model. (a) In
the region where bulk oscillations are observed, the vilaifithe sphere is plotted
versus time for four different buoyancy corrected masges 62, 82, 102, and 132
gram) for both the experiment (colored symbols) and the ringdieck lines), where
the values foB; and B, have been obtained from the experiment with the highest
mass. (b) The corresponding drag= mx — g versus velocity plots also for both
the experiment (colored symbols) and the model (black Jines
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Figure 3.11: The drag coefficienB and B, as a function of buoyancy corrected
massy, now calculated from the experiment using Eq. (3.10) séplgrdor each
value ofu. Below u = 62 g no bulk oscillations could be discerned. The different
symbols correspond to two different series of experiments.

of the cylinder we expect more interaction between the diGanid the object, but we
also have to keep in mind that we now have a buoyancy thatdeeseduring sedi-
mentation. Again, we calculat®, andB, from the measurements with the heaviest
mass, where the effect is most pronounced, and adjushdu, for each mass. The
results are shown in Fig. 3.12 where we see that (as expabedj is very nice for
the highest mass and that there are larger discrepanci¢sefdower masses. The
used values foB; andB, for the cylinder are respectively approximately a factor 2
lower and higher compared to the values used for the sphare] 35 for the cylinder
vs. 7 and 18 for the sphere.

Concluding this Section, we found that traditional shéamftiing/shear-thickening
models are not able to describe the bulk oscillations dubagtesence of history
dependence (hysteresis) in the experiments. In additienfownd that simple lin-
ear viscoelastic models fail to describe the observedlagoits due to an intrinsic
coupling between the terminal velocity and the oscillaémmplitude in these models
that is inconsistent with the experiments. The best catelidaa description in terms
of a hysteretic drag term inspired by the work of Robert Degld2]. One could
say that the major drawback of the model is that it is entipflgnomenological, i.e.,
a physical mechanism to relate its parameters to the phgsitse system, is still
lacking.

The experiments point to a physical mechanism where thénooifythe oscil-
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Figure 3.12: Comparison of the experimental results to tfstenesis model for a
cylindrical object in the region where bulk oscillation® abserved. The velocity of
the cylinder is plotted versus time for three different neasgy,; = 40, 80, and 120
gram) for both the experiment (colored symbols) and the ringdieck lines), where
the values foB; and B, have been obtained from the experiment with the highest

mass.
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lations is a modulation on top of the terminal velocity, dageriodically changing
properties in the liquid. More specifically, one could imaga jammed region around
the object which grows when it moves fast, through which ttag dncreases causing
the object to decelerate. The object would than obtain adewecity which would
allow relaxation and shrinking of the jammed layer, i.e..earéase of the drag and
an acceleration of the object. For the bulk oscillationsdltse many open questions
to propose such a model, but for the stop-go cycles at therhatie formulation of
such a model is feasible, as we will show in the next Section.

3.5 Stop-go cycles

As was shown in Section 3.3, we always observe stop-go-sywear the bottom at
cornstarch concentrations higher thpas= 0.38. Here, the object suddenly stops one
or a few centimeters above the bottom of the container. Ttexcelerates again and
comes to another abrupt stop a little closer to the bottoms @ycle repeats itself
several times.

As explained in [15], we interpret these stop-go cycles #svis: While the ob-
ject is moving down, the cornstarch below it is slowly beimgnpressed such that at
a certain moment a jammed network of particles forms betvikerobject and the
container bottom. This jammed layer is responsible for aéingd force that brings the
object to a full stop. Stresses build up in the network andefloee also within the
interstitial fluid, which triggers a Darcy’s flow in the po®medium formed by the
cornstarch grains allowing the network to relax throughainparticle rearrange-
ments. This causes the jammed region to unjam and the objikctart moving
again. Such hardening of a cornstarch suspension has asoréported in [16],
where a ball was pushed towards the bottom, leaving an inaemt clay layer on
the bottom. This was attributed to forces being transmittedugh a hardened layer
beneath the ball.

In Fig. 3.13 we compare the stop-go cycles for the settlimgpong ball (which
we previously presented in [15]) with those for the settlaydjnder, both for three
different values of the buoyancy corrected massClearly, for the cylinder there
are more stop-go cycles than there are for the pingpong Balurther quantify the
stop-go cycles, we measure the distance from the bottomiahwhe object stops for
the first time (Xo|), Fig. 3.14(a), the maximum velocity it reaches after thet itop
(Xmax), Fig. 3.14(b), and the time it needs to reach this velodity)( Fig. 3.14(c),
for both the pingpong ball and the hollow cylinder. Althoughgeneral the cylinder
has a variable buoyancy-corrected mass during its trajeaae to the proximity of
the bottom we could define a meaningful buoyancy correctestmere. Namely, we
choose the cylinder mass minus the buoyancy the cylindetdveperience when it
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Figure 3.13: Time evolution of the velocity during the stpp-<ycles for the settling
pingpong ball for three different (buoyancy corrected) seagt = 17, 77, and 132
g, and for the settling cylinder, also for three differenbyancy corrected masses
U =97, 57, and 17 g. The noisy lines represent the experimeesailts and the
dashed blue lines correspond to the model of Eqg. (3.11).
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would be at the bottom.

We see that the cylinder stops several centimeters abovottan, i.e., several
centimeters above the first stop of the pingpong ball. Furibee, in comparison
with the ball it reaches higher velocities after the first pyrbut requires approxi-
mately the same time to get there. The earlier stop can baieepl by a relatively
larger jammed region due to the flat bottom of the cylindericlvimight also give
a more confined region as compared to that below the curvddcsuof the ball.
The fact that the cylinder accelerates to a higher velositgresumably due to the
first stop being at a larger distance from the bottom, suchitiakes longer for the
material to jam again.

We model this process by coupling the equation of motion Bd.)(to an equa-
tion for an order parameter which indicates whether thestaroh suspension layer
between the object and the bottom is jammed or not. For theswil use the local
particle volume fractiorp. More specifically, we assume that wheexceeds a criti-
cal valuegq, the layer is jammed and the drag foleés assumed to become infinitely
large until the sphere comes to a standstill. This leadseddtowing modification
of the freefall equation:

mX = ug+D when @< @y

{ X = 0 when @ > %r}' (3.11)
Due to the comparatively low velocities in this regime congpkto those of the bulk-
oscillations regime, we can take@ = —Bx. Since the cornstarch layer below the
object jams through compression, the equation for the tiate of change of the
packing fractiong should contain a term that increasggroportional to the com-
pression rate-x/x of this layer. In addition, there should be a term that deszsq@
through a relaxation process towards its equilibrium vafe which is taken to be
equal to the value that it has in the quiescent cornstargiesissn. This yields

. X
fpz—c)—(—K(fp—%q), (3.12)

in which c andk are the proportionality constants of the compression alastaton
processes respectively. Note tleas dimensionless, whilg is a relaxation time.

The critical packing fractior, is the value at which the cornstarch suspension
dynamically jams. It must lie in between the static, sediteer{0.44) and the max-
imally compacted (0.57) value [22]. In our lab we tried toateethe densest, still
flowing cornstarch suspension from which we estimate ¢gat 0.46 at most. As
a resultg only varies marginally during the process, in agreemenk wnécent re-
search where during jamming of a cornstarch suspension ouat@ cell no density
differences where measured within experimental accur@®i) of the MRI device
used [9].
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Figure 3.14: Three quantities that characterize the ficgi-gb cycle as a function
of buoyancy-corrected mass for the cylinder (blue crosaad)pingpong ball (red
circles): (a) Distanceg to the bottom at which the first stop takes place. (b) The
maximum velocity reached in the relaxation period afterfitet stop. (c) The time
needed to reach the maximum velocity after the first stop. sbiid lines in (b) and
(c) represent the results obtained with the model of Eql{3.1
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To obtain the time-evolution of(t), x(t), and ¢(t) this set of equations needs
to be solved with the initial conditions the system has redcjust after the first
stop: x(0) = —Xo, the position the object at the first stop (wih> 0), x(0) = 0 and
©(0) = @. This immediately points to a convenient way of non-dimenalizing
the equations, namely by using and \/xo/g as the appropriate length and time
scales. With the non-dimensional varialikes x/xo, t =t/1/X0/ganddd = (¢(t) —
@q)/ (@ — @g), the set of equations becomes:

X = p/m—BXx  whendp <1
X = 0 whendg > 1

5 = —6)—;— KSP, (3.13)

with initial conditionsx(0) = —1, 57(0) =0, andd¢ (0) = 1. The dimensionless model
parameters are now/m, B = (B/m)/x0/d, €= ¢/(@r — @q), andK = K+/%o/g,
which is the ratio between the gravitational time scale &edr¢laxation time scale.

What can we say about the parameters in these equations egipkeat to our
experiments? First of ally/mis expected to be of order unity. Second, for most of
our experiments the acceleration phase in a cycle appebesdominated by gravity,
such that the second term in Eq. (3.11) is much smaller thaufirgt, implying that
B < 1. Third, sincexand changes irduring a single cycle are of the same order, we
expect by neglecting the last term in the last equation fat &y ~ €. Since on the
other handd@ ~ 1, because the compression is expected to charfgem its bulk
value grq to the critical valueg,, we expect to be of order one.

If we fit our model to the experimental data of the pingpond Wal find a best
fit for c = 0.025, which with@t; — ¢q~ 0.02 implies tha€ ~ 1.3, in agreement with
our expectation.

Finally, for the last parameter of our mode&l, some more extensive analysis
is necessary. To this end, let us note that the last equafi&qo(3.13) can be
immediately solved implicitly using the integrating factoethod. We then find that
exp(Kt) is the integrating factor for this equation leading to:

5pd) =e K

! XC’ Kt
1+c/t D) ) & d"] (3.14)
where we have used the initial conditid®(0) = 1. Of course, the solutioR(t)

of the first equation still needs to be inserted in this equati SinceB < 1, we
now neglect the second term in the first equation of Eq. (3uw8%imply find that
X(t) = —1+ (u/m)t2. Using this approximation witju /m= 1 and settingg = 1 in

Eq. (3.14), We can calculate the duratidhof and the travelled distana&X during
the cycle.
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Figure 3.15: The durationt (blue curve) of and the travelled distant€ (red curve)
during a stop-go cycle as a function of the logarithm of tHexation parametex.
Modeled with Eq. 3.14, usinB < 1 andc = 1;

These quantities are plotted as a function of the relaxa@mametek in Fig. 3.15.
For very small values ok (< 0.1) we have very small durations and travelled dis-
tance. This happens because now the relaxation time scaladb larger than the
gravitational time scale, which implies that as soon asdh@ijed layer starts to re-
lax, the system quickly reaccelerates and jams ag:&%will never move far from
1, i.e., @ will always be close tap,. Here the object effectively gets stuck inside
the cornstarch suspension (at the observable, gravitatione scales). On the other
hand, for very large values af (> 10) the opposite happens: we have a duration
close toy/2 corresponding to a travelled distanceaf~ 1, which means that in this
single cycle the object moves all the way to the bottom ang jarmhs when it very
quickly squeezes the very last thin layer of suspension.eH#e relaxation time
scale is much smaller than the gravitational time scaleckimplies that the system
very quickly relaxes to the quiescent stgte g.q and the gravitational acceleration
is not fast enough to jam the material. Here the object affelgt never jams and
never goes into a stop-go cycle.

Now, when we fit our model to the experimental data of the pamgpball we find
a best fit fork ~ 40 s'1, which corresponds to a relaxation time scale 6f & 0.025
s. Since forxp =~ 1 cm the gravitational timescale {gxo/g ~ 0.032 s, this leads to
K ~ 1.3. In [15] we found the value of ~ 40 s ! to be connected to a Darcy’s flow
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Figure 3.16: The maximum velocities reached during the-gtmgycles in the ex-
periments (circles) and the model (lines) per jump, norpedliby the mean bulk
velocity, positioned at cycle 0.

on a scale of 100 cornstarch particle diameters, which isistant with mesoscopic
length scales that have been found in these suspensiond/if8]this model we also
understand why we do not see the stop-go cycles for loweripgdkactions, ak
will be larger andc will be smaller. As a result, the effect will move closer te th
bottom, such that it is not measurable within our experimlergsolution.

Above, and in [15] we observed that the model works quite viggllthe first
stop-go cycle of the spherical object, but fails for the sgjoent cycles which we
attributed to the curved surface of the sphere. Howeverxpeat the model to work
better for a cylinder, which has a flat bottom and therefosejimmed cornstarch
suspension layer is expected to be closer to the modeleddagal shape than for
the sphere. When we compare the model to the experimentsSiger13, we indeed
see that now the second stop-go cycle also matches the mgoerquite well, and
also the experimentally observed number of cycles comescko the number we
see in the model. Another important point to make is that w & same value for
k = 40 s ! as for modeling the pingpong ball, which indeed should bedapendent
on the suspension. We did increase the compression faotar@r025 for the sphere
to 0.07 for the cylinder, which also stands to reason givertifierent geometry.

To quantify this difference between the ball and the cylmale plot the maximal
velocities in the successive stop-go cycles in Fig. 3.16madized by the average
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Figure 3.17: Time evolution of the velocity of a steel sphasith a diameter of
1.6 cm in three different suspensions: quartz flower, ppigsie beads, glass beads,
and cornstarch. Clearly, both the bulk oscillations andstwep-go cycles are only
observable in the cornstarch suspension.

bulk velocity, for both the experiments and the model. QYe#ne experiments of the
ball and those of the cylinder follow two different paths:the case of the pingpong
ball the cycles damp out very fast, whereas the cylinder hasra gradual decrease
in maximal velocities. The model follows both sets quite Imelit overpredicts the
number of cycles for the ball to a larger extent than for thendgr, consistent with
the above arguments.

3.6 Other suspensions

It is known that different suspensions can behave quitemfftly, which is presum-
ably connected to particle shape and size distribution. ¥amgle of this is their be-
havior when shaken vertically [11-14], where for compagaullid fractions one may
e.g. observe stable holes, growing or even splitting holeslosing holes, depending
on the suspension that was used. We therefore repeatedttimgsexperiments in

a variety of other suspensions. Although dense suspensigegticles are all shear
thickening [2], both the bulk oscillations and the stopayaies observed in corn-
starch are absent in the other suspensions we studied. arnisecseen in Fig. 3.17,
where we present settling velocities for suspensions gontaquartz flour, glass



3.7. CONCLUSIONS 53

beads, polystyrene beads, and compare these with a ceinstaspension.

More specifically, as alternatives to cornstarch, we usedadisperse spherical
particles made of polystyrene with a diameter of 2@, polydisperse glass spheres
with diameters between 0 and 20m, and quartz flour of 0-5m, in which the
particles have edgy, irregular shapes.

For the glass and quartz flour particles, only thin layersewesed without full
density matching and with a very high solid fraction. In #hdlsin layers, we hoped
to encounter stop-go-cycles, but these were not observdble possible that the
absence of the stop-go-cycles is caused by the size disbribof these particles, be-
cause in both cases there is a large amount of small partidésan get between the
fewer larger ones. This causes that no sudden rearrangeofgratrticles can happen,
which we believe to be the cause of the phenomena we see. é-anghodisperse
spherical polystyrene beads$£ 20 um, ¢ ~ 0.6) we did use a deep bath of suspen-
sion. However, also in this case no bulk oscillations or-gfofycles were observed.
Another difference is that the instant velocity drop aftepact on a cornstarch sus-
pension [21] is far less abrupt for the other suspensionssad,which suggests that
a much smaller jammed region is created below the impactijecb compared to
cornstarch.

The remaining questions is what sets aside cornstarch $e tharticles. If the
origin is geometrical, it is most likely a combination of sjzsize distribution and
shape. It would be interesting if there would exist an akéwe to cornstarch, i.e., a
rather monodisperse sample of edgy, cube-like particlés diameters of 2Qum or
somewhat larger, that could be produced in large enoughtitjearto perform set-
tling experiments. To our knowledge such an alternativeotsamailable.

3.7 Conclusions

In conclusion, we presented experiments of objects sgtthito a dense bed of a
cornstarch suspension, which revealed pronounced nortel@m behavior: Instead
of reaching a terminal velocity and monotonously stoppib¢ha bottom, the ob-
ject’s velocity oscillates within the bulk and goes throumkeries of stop-go cycles
at the bottom. These effects are not observed in a wide rangber dense suspen-
sions, leading us to believe that cornstarch particles bawge unique property. We
were not able to pinpoint this property, but suggest thataytoe connected to the
particular shape and size distribution of the particles.

We studied the influence of several parameters on the olisphenomena, and
found that both disappear if the solid fraction of corndtaparticles is belowp =
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0.38. This suggests that contact forces must play an importdatin creating the
observed behavior. If the density ratio between the objedtthe cornstarch suspen-
sion (which always is larger than 1) becomes low, the bulilaons disappear, but
the stop-go cycles are still clearly observable. Otherrpatars that were studied are
the object shape and the container size.

We discussed several models in the context of the bulk asoitls and concluded
that common shear thickening and linear viscoelastic nsofdéll to account for the
observed phenomena. A hysteretic drag model captures #ie fizenomenology in
the bulk. However, the model is entirely phenomenologiaal] a link between the
model parameters and the physical properties of the sysitmesds to be estab-
lished.

We proposed a jamming model that describes the stop-goscgeke the bottom,
and discuss its properties and its plausibility. The moslebjpable of describing both
our experiments with spheres and cylinders of variable naas$works particularly
well for the experiments done with a cylinder. This standse@ason because the
geometry of the cylinder is closest to the geometry assumétki model.

3.8 Appendix: Linear viscoelastic models

In this Appendix we will first discuss a model for the drag aesghexperiences based
on the Maxwell fluid rheology. Subsequently we will solve dtgiation of motion for
a settling sphere [Eq. (3.1)] in such a fluid using Laplacedfarmations, and finally
we will discuss extensions to the Maxwell fluid, namely theeeaxkled Maxwell model
and the modified Kelvin-Voigt solid, that contain additibdésipative elements.

Linear viscoelastic models for the drag fofdgjust like the constitutive stress-
strain (rate) relations for a viscoelastic fluid) are equraticomposed of elastic and
viscous terms which provide a relation between drag andatisment for the first
and drag and velocity for the second, or

D=—-Ex; D=-nx, (3.15)

in which we have taken the time derivative of the first relatior practical reasons.
The proportionality constart has the dimensions of a spring constant gritas the
dimensions of viscosity times length.

A Maxwell fluid consists of an elastic and a viscous term iriese(Fig. 3.18a),
such thak is the sum of an elastic and a viscous part that both are dubjde same
force such that

. D



3.8. APPENDIX: LINEAR VISCOELASTIC MODELS 55

E§ B E 7

n | Ui
(a) (b) (©)

Figure 3.18: Schematics of the three linear viscoelastidatsodiscussed in this Ap-
pendix: (a) Maxwell fluid, (b) extended Maxwell fluid, and (opdified Kelvin-\Voigt
solid.

Writing D = 3 ¢(t —t')x(t')dt’ and inserting this into Eq. (3.16) impliess thatt)
should be the solution of that equation with="d(t), the Dirac delta function. This
can be solved by first finding the solution to the homogeneaablgm [inserting
x =0 in Eqg. (3.16)] and subsequently integrating the full egumatwith x = o(t))
over a short interval arourtd= 0. This yields

Y(t)=—Eexp [—%} , (3.17)

leading to the drag of Eq. (3.3) and by insertion into the éqnaf motion Eq. (3.1)

we obtain
E(t—t)

X = pg— E /t t_oexp {— } X(t')dt . (3.18)

Introducing the Laplace transforms of the veloaity- x and the functionp, namely

U(s) = [ exp(—st)x(t)dt andi(s) = [y exp(—st)y(t)dt respectively, we obtain by
transforming Eqg. (3.18) using standard Laplace techniques

mi(s) — mu(0) = ”—Sg PSS, (3.19)

Also, we obtain from Eqg. (3.17) thgi(s) = —E/(s+ E/n) with which

) i(s) = 9 - muo). (3.20)

(ms+ s+E/n S
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The limitt — o corresponds to the limg | O of the Laplacetransform, which when
applied to Eq. (3.20) leads to ly u(s) = pug/(ns) or limy_, u(t) = pg/n. There-
fore there is a terminal velocityr = pg/n. Subtracting this terminal velocity by
introducing a new variablé= u— ug/(ns) (or, equivalently(t) = u(t) — ug/n) we
obtain after some algebraical manipulation of Eq. (3.20)

e s+a Hg Evo w
v(s) _V07(3+ a)2+w2+ (mer 20)'7) GraPta?’ (3.21)

with a =E/(2n), w = /E/m—a?, andvy = u(0) — ug/n. The (standard) inverse
transform of this equation directly leads to Eq. (3.4)

oy _at Hg Ew \ .
X(t)=ur + € [vocoswt + (wm + —an> smwt] : (3.22)

The slightly more complicated extended Maxwell fluid (Figl&b) and modified
Kelvin-Voigt solid (Fig. 3.18c) are defined by

D = D_+Dr
—X = Dr/E+Dg/n=Dr/n", (3.23)

for the extended Maxwell fluid, and

D = D_+Dr
—X = D/n+Dgr/n*=D/n+DL/E, (3.24)

for the modified Kelvin-Voigt solid. Along a similar path lgiag to Eq. (3.17), this
leads to the following equation for the extended Maxwelldl(@M) kernelem(t)

Yem(t) = —[Eexp(—(E/n)t) +n"d(1)] , (3.25)
which leads directly to its Laplace transform

E
s+E/n

Tow(s) = — [ +n*} | (3.26)

For the modified Kelvin-Voigt solid (mKV) the situation idghtly more complicated
because the analysis leads to an integral equatiol fand X that appears hard to
solve forD

Jol(d+n*/md(t—t)+E/n]D({t')dt
= — Jo[E+n*3(t—t)]x(t)dt', (3.27)
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however, we only are interested in the Laplace transf@ggry (s) which is readily
obtained from the Laplace transform of the above equatializieg thatPmky () =
D(s)/u(s)

E/s+n*
(1+n*/n)+E/(ns)’

Actually, both kernels are equivalent which can be seen trgducing a set of new
parameters, namely for eNE = E(1+n*/n),n =n(1+n*/n), andn* = n* and
for mKV: E= E/(1+n*/n), n =n, andn* = n*/(1+n*/n). With this, both
kernels become:

Umkv (S) = — (3.28)

. E-+n*s
§)=——=. 3.29
Inserting thisy(s) into the equation of motion Eg. (3.19) gives
E+1°S) g — K9
(ms+ st E/ﬁ) u(s) = S +mu0). (3.30)

Again, the limitt — o teaches us that there is a terminal velocity= pg/n and
introducing a new variabl&= U — ug/(ns) some algebraical manipulation leads to

- S+a

V(S) - VOW (331)
s Mg (E o\ w] o @

(1 n/n)wm+<,7 m>2w} SraZraR

with a = (E/n +n*/m)/2, w = \/E/m—a?, andvp = u(0) — ug/n. The above
eqguation can be instantly transformed back into the timeadoneading to a similar
expression as Eqg. (3.22). The particular case 0 of this inverse transform reads

X(t) =ur +e [(1— %) :‘)—SJ sinwt . (3.32)

Note that now the oscillational term has its smallest am@éiA. When we follow a
similar line of reasoning as we did in Section 3.4.2 and camthe ratio of amplitude
and terminal velocity we obtain

mwug  mw Mo

A_(1-T)HS L T AT
n

T (3.33)
This ratio can be small ifi* ~ n, which equation for both eM and mKYV lead to
n* ~ n*+n, which means thay andn* both need to be small (comparednowy).
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What does this imply for the ratio of the damping time- 1/a and the oscillation
periodT = 211/ w? We have

T 2w 2wn  2wn  2n
E mawy My

T o E/m+Tim S
where for the first approximate equality we used thaandn* are both small and
for the second one that is of the same order asy = y/E/m. Now, bothA/ur and
T/T are of ordem /(may). So if A/ur is small (as it should be in order to have the
oscillations with amplitude smaller than drift velocity wéserve), then so should
T/T. And if T/T is small, this means that the oscillation will damp out wethin a
single period, which contradicts the observations. Tlueegfalso the eM and mKV
models are not capable of describing the observed bulkiaisoils.
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Phase diagram of vertically vibrated dense
suspensions *

When a hole is created in a layer of a dense, vertically vixlasuspension, phe-
nomena are known to occur that defy the natural tendency afityr to close the

hole. Here, an overview is presented of the different pastehat we observed in
a variety of dense particulate suspensions. Subsequevilyelate the occurrence
of these patterns to the system parameters, namely the tlaigkgness, the particle
concentration, and the shaking parameters. Special attems given to the geomet-
ric properties of the particles in the various suspensiomshsas shape and particle
distribution.

*Stefan von Kann, Jacco H. Snoeijer, and Devaraj van der N¥&ase diagram of vertically vibrated
dense suspensions, preprint (2012).
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62 CHAPTER 4. VERTICALLY VIBRATED DENSE SUSPENSIONS
4.1 Introduction

Concentrated particulate suspensions consist of a horaogerluid containing par-

ticles larger than one micrometer, so that Brownian motamegligible. They can be

found in many places, and their flow is important in naturdustry and even health
care [1]. In spite of their significance, many aspects of thes fbf dense suspen-
sions remain poorly understood. In order to study these nmatteeople have used
methods inspired by classical rheology, and typically abtarized them in terms of
a constitutive relation of stress versus shear rate [2—@jerderal result is that, when
increasing the shear rate, dense suspensions first tenddambdess viscous (shear
thinning) and subsequently shear thicken.

Probably the most conspicuous example of a dense suspdaadiemed by a
high concentration of cornstarch in water. One could abtuah over a bath filled
with a cornstarch suspension, but one would sink when stgnslill [7]. This is
caused by solidification, activated by impact [8].

Rheological experiments in cornstarch have revealed tisteexxe of a large
shear-thinning regime that terminates in an extremely saddhear thickening [9].
In other rheological experiments people found a mesosdepgth scale [6, 10], a
dynamic jamming point [4], and fracturing [11].

Not only is the rheology of cornstarch suspensions veryrdistbut unexpected
phenomena were also found in experiments beyond the cassenlogical ones. In
experiments in which an object was left to sink into a comt$tasuspension, non-
monotonic settling was observed [12], together with thenfation of a jammed re-
gion between the object and container bottom [12, 13]. Metkil. [14] observed
in a vertically shaken, thin layer of cornstarch suspengtian, amongst other exotic
phenomena, stable oscillating holes can be formed at oefrEguencies and am-
plitudes [14]. These were subsequently described usingagrhenological model
based on a hysteretic constitutive equation [15]. In otligpensions similar stable
holes have not been reported, except for [14], where theg wisio found in glass
bead suspensions. In potato starch and glass bead susperSbataet al. found
growing and splitting holes, and a separated state respBcf{il6, 17]. They at-
tributed the first to a convection-like flow, but do not commnen the origin of the
latter phenomenon. Stable holes and kinks (which are mhyrisédilar to the sepa-
rated state of [16, 17]) have recently also been observenhinstons [18]. At present
we are still far from a quantitative understanding of whyaheve phenomena occur,
and why different suspensions may behave differently.

The purpose of this work is to make an extensive inventorhefdifferent phe-
nomena that can occur in various vertically shaken denseplate suspensions and
in what sense cornstarch suspensions occupy a uniqueopoaitiongst them. We
will do this by subjecting several suspensions, includiagesal of the suspensions
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mentioned before, to vertical vibrations. We then obsedescribe and, whenever
possible, explain the different phenomena. For cornstaecpresent a wider range of
variables, including layer depth and packing fraction,akractually leads to the ob-
servation of some hitherto unreported phenomena. Fromxiberienents with other
particles we find a dependence of particle properties onltkerged phenomena.

This chapter is organized as follows: In Section 4.2 the expntal setup and
working procedure are introduced, after which we presanvérious phenomena we
observe in a variety of vibrated suspensions in SectionAft8r that, in Section 4.4,
we will turn to the suspensions we have examined and qudntifythese phenomena
depend on the concentration, layer depth, and shaking géeasn In doing so we
will use cornstarch as our “benchmark” material and relageprroperties of the other
particles used in suspension to those of cornstarch. $edt® will conclude the
chapter.

4.2 Experimental setup and procedure

4.2.1 Setup

The experimental setup is shown in Fig. 4.1. The core canefsa cylindrical con-
tainer with a diameteD = 110 cm and a heighH of 8.0 cm. This container is
vertically vibrated by a shaker (TiraVib 50301) with frequees f between 20 and
200 Hz and a dimensionless acceleratiofrom 0 up to 60. Herel = a(2mrf)?/g,
wherea is the shaking amplitude argthe gravitational acceleration. Like any elec-
tromagnetic shaker, the parameter range attainable byirthii 50301 is limited in
amplitude & 12.8 mm), velocity € 1.5 m/s) and acceleration<(110g). The con-
tainer is filled up to a variable heightbetween 04 and 2 cm with a suspension of
varying composition. The suspension layer in the contameecorded with a high
speed camera at various frame rates, given in frames pend¢fas), and is either
imaged from the side or from the top.

4.2.2 Procedure

Suspensions consist of a suspending liquid and particlegeler, mixing two arbi-
trary constituents of these types does not always lead tefalusnd stable suspen-
sion. First of all, when particles are hydrophylic water t@nused as a suspending
liquid, but for hydrophobic particles we have to turn to athespending liquids. Sec-
ondly, even when a suitable suspending liquid has been fqarticles denser than
the liquid are likely to sediment, such that a density maiglagent needs to be used.
We used a variety of particles to create our suspensionk,veifit their own proper-
ties, an overview of which is presented in table 4.1. A moiitkdl description of
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Figure 4.1: A schematic view of the used setup. At the lowernea have the shaker,
on top of which the container with the suspension is mounith is subsequently
vibrated vertically. Above that is the high speed camerdhi® case recording the

suspension from above.
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each suspension can be found in the experimental part wineireptoperties will be
discussed in relation to the experimental results.

For the hydrophylic particles we used demineralized wasethe suspending
liquid, but the particles are typically more dense than waté/hen this density
contrast is large (e.g. glass in water) density matchinghefliquid is required.
To this end we used two different salts: Cesium Chloride (C&2 densities up
to 1.8-10% kg/m® and Sodium Polytungstate (& ,W1,04q]) for densities up to
2.5-10° kg/m?®. Some of our particles are hydrophobic, making water uablgtas
the suspending liquid. For suspending these particles e sisnflower oil. An im-
portant parameter for our suspensions is the concentratibich we express as the
volume fractiong that is occupied by the solid phase in the suspension. Imibik
we will concentrate on dense suspensions, and it should fiteirkenind that all of
the described phenomena will disappear when the suspeisssafficiently diluted.

For the suspensions and (quite viscous) Newtonian liquielhave used in our
container and the shaking amplitudes and frequencies odbisistudy, the vibrated
fluid is typically at rest. The liquid surface is typically soth, on top of which,
if the shaking conditions are favorable we may observe Egradcves [19] of very
small wavelength. The phenomena we report in this work oooty after a manual
disturbance has been made in the liquid. This was either bppaffing air into the
layer using a straw, or by poking a hole into the fluid with alsti

4.3 Phenomenology

In this Section we will describe the several possible stateisphenomena we observe
after the initial perturbation has been created in the diqui

4.3.1 Newtonian liquid

Let us first briefly discuss what happens when a very viscoustdgan liquid is
vibrating vertically, and a perturbation is created in tberf of a hole. To this end,
we put a layer of honey with a thicknelss= 0.6 cm and a dynamic viscosify ~ 6.3
Pas in our setup. Without vibration, the hole will collapse andhe influence of
hydrostatic pressure. The same happens when the layerretedband a hole is
created, only now we observe that the edges of the hole atscidlong with the
driving frequency. In Fig. 4.2 we plot the time evolution bétdiameter of the hole
and we observe that the diameter actually decreases apyat@ty linearly in time.
On top of this decrease, we observe an oscillation at the f@aeaency as that of the
shaker.
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\ Particles |  Size and distribution | Density | Shape | Liquid used |
cornstarch 5-20 um flat 1.7-10° kg/m?® edgy demineralized watef
glitter 50 or 100um monodisperse 1.5-10° kg/m® | flat quadrangles sunflower oll
polystyrene beads 20 um monodisperse | 1.05-10° kg/m® spheres demineralized watef
glass beads 0-20um* 2.5-10% kg/m® spheres demineralized watef
quartz flour 0-70um* 2.5-10° kg/m® edgy demineralized watef

Table 4.1: Schematic overview of the particles and theiperties, used in this study. A flat size distribution staramfs f
an equal amount of particles for every size. The * indicateergt inhomogeneous size distribution, consisting mairily o
smaller particles and a strongly decreasing amount ofgbestivhen going bigger in size.
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Figure 4.2: Comparison of the time evolution of the diamefea hole created in a
layer of honey of thickneds= 6 mm which is vibrated at a frequendéy= 50 Hz and

a dimensionless acceleratidon= 30, recorded at 250 fps, and that of a hole created
in a layer of cornstarch suspensidn=€ 7 mm) atf = 100 Hz and” = 20, recorded

at 500 fps. The inset shows a few cycles from the experimehomney (at 500 fps),
clearly showing the oscillations of the edge with the drivfrequency.

4.3.2 Cornstarch suspensions

Contrary to Newtonian fluids, in suspensions hydrostatesgure can be dynami-
cally overcome due to the imposed vibration. The hole will (fiolly) close, and a
rich variety of phenomena can be observed. The richest phenology is found in
cornstarch suspensions, where upon varying our experahpatameters we found
four different phenomena. In accordance with the existilegdture we named stable
holes, and fingers [14]. We also found two unreported phenamich we will call
rivers, and jumping liquid. From each of these states, asmapcan be found in
Fig 4.3. We will now discuss the characteristics of thesenpheena in detail.

Stable holes

When an initial perturbation either grows or shrinks to @uar hole of constant
average diameter, we speak of a stable hole [see Fig. 4.3(a)he vertical direc-

tion such a hole typically extends to the bottom of the coraiand the hole edge
oscillates along with the driving frequency.
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(b)

(d)

Figure 4.3: Snapshots of the four different phenomena taatbe observed in a
vertically vibrated layer of cornstarch suspension. Frefhtb right: (a) Holes in a
suspension layer of thicknebs= 6 mm and with a concentratiop= 0.4, shaken at
f =80 Hz andr=20. (b) River in ap = 0.38 suspension with = 6 mm, shaken at
f =140 Hz,I' = 40. (c) Fingers in @& = 0.4 suspension with = 6 mm, shaken at
f =80 Hz withl" = 30. (d) Jumping liquid, just after its release from the vibca
layer, in ag = 0.4 suspension with = 6 mm, shaken at = 40 Hz,I" = 40.
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Merkt et al. [14] attributed the stable holes in the cornstarch susperie shear
thickening. They found that typical shear rates in the sh@léxperiments were
around the same value for which a sudden shear thickeningbgesved in rheome-
ter experiments. Deegan [15] proposed a one-dimensios&igtic model to explain
why these holes do not collapse due to hydrostatic pressarthis model he pro-
posed a coexistence of two stable branches in the streassva&rsin rate diagram.
Based on this, it was argued that the edge of the hole will ntovard only slightly
during the first half of the cycle (large shear stress), blitthén jump to the lower
branch such that during the outward motion the suspensiparinces a smaller
shear stress, resulting in a larger outward displacementthd one-dimensional
model this actually lead to opening holes, but one could im@athat a stable equi-
librium radius would be found for the two-dimensional, i&tyi symmetric problem
that corresponds to the experiment.

In more recent experiments by Falaéiral. [18] the stability of holes in a vibrated
emulsions was connected to the normal stress caused by ectionvroll in the rim
that surrounds the hole. We verified that such a roll is alsibl in the rim around
the holes in our cornstarch suspensions by putting traaéclea in the hole, which
came out along the rim of the hole.

Rivers

In cornstarch suspensions with lower concentratipnsve observe the formation
of an elongated structure [Fig. 4.3(b)], which has not besported before. Due
to its shape we denote these from here on as rivers. Also Yhesrstart from a
single perturbation in the suspension, but now the oridioé tends to slowly stretch
out or “walk” through the suspension. When the river readhescontainer wall, it
leaves an entire line-shaped structure (or even multipks)i behind that penetrates
the suspension layer all the way to the bottom of the contaifibe directionality
appears to be random. As soon as this river touches the gentiges it stabilizes
and, just like the stable holes it has a very long lifetime structure easily outlives
the duration of the experiment, which was typically in thderof 1 — 10° cycles.

Fingers

Fingers [see Fig. 4.3(c)] are formed at higher shaking gthem In this regime, the
small rim on the edge of the hole increases in size and “litsfoom the surface.
Eventually, the fingers fall down and form new holes, whichiagyrow new fingers.
These fingerlike protrusions were also reported by Metlkdl. [14].
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Jumping liquid

The fingers described in the previous paragraph grow larfenwat constarit, the
amplitude is increased. For sufficiently large amplitudiilevthe finger is growing,
the connection to the surface may break and a “blob” of suspemwill start jumping
around in the container [see Fig. 4.3(d)]. Eventually itlvidkm into a spherical
shape, and with every bounce on the suspension surfacaylyshrinks in size over
a timespan of minutes. Below a certain size this sphere wéllasce with the surface,
a process which either causes a new hole-shaped disturbaricem —eventually
leading to the growth of a new amount of jumping liquid— or #phere is simply
absorbed after which the process stops. In order to inastitdhe packing fraction
of the detached balls, we have caught several of these bfahsspension in flight.
It was found that the concentration varied by a few percauttwith an average that
was equal to the bulk packing fraction.

4.3.3 Other suspensions

Starting from the hypothesis that it is the geometrical shaipthe cornstarch parti-
cles in the suspension that is responsible for the largetyaof phenomena that can
be observed in vertically vibrated cornstarch suspensieesxamined a variety of
other dense particulate suspensions, with varying getakparameters. We how-
ever, did not succeed in creating a suspension that prest@esimilar phenomena
as cornstarch. The other suspensions we studied have egsiitig phenomenology
as well, but it is markedly different from that of cornstarchteady states like the
stable holes and rivers are absent; instead we find much nyossrdc phenomena
like the growing and splitting holes we will describe below.

Splitting holes

After creating an initial disturbance in a suspensions aioittg polydisperse parti-
cles, we observe a hole that immediately starts to grow argkigudeparts from the

circular shape: The hole tends to stretch out and eventsyalifs up into two circular

holes. These in turn again grow and become non-circulatiigdao another splitting

up. This way new holes are formed very rapidly, and as sooheasytstem is full of

holes they are also observed to collide and merge or to fldlsec The timescale of
the dynamics of splitting and colliding depends stronglyparticle type and shaking
parameters, and can range from a few seconds up to severgkesifT his eventually
leads to a very chaotic dynamics. A snapshot of a containtr se@veral of these
holes can be found in Fig. 4.4.
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Figure 4.4: Splitting holes in a vibrated polydisperse gllasad suspension with an
average diameter of 10m (f = 100 Hz,I' = 25, andh =7 mm.)
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Growing holes and kinks

In monodisperse particle suspensions the phenomenologgdwut to be very dif-
ferent again. After creating the initial disturbance, aaiar hole is formed. Depend-
ing on the shaking strength and amplitude we find either offivenomena: At the
lower end we observe a hole that grows until a maximum sizesishred. After this it
rapidly collapses to a very small size and a growth phasersatgin. When shaking
harder, the hole will grow until it hits the container walh this case the hole will
open up and form a large dry area at the container bottom ctieaging a system that
is partly covered with a thick layer of suspension, partly and an abrupt transition
between them which is called a kink [18]. Snapshots of sudtrias of events can
be found in Fig. 4.5. The distinction between the two stadewt always very clear,
since in some cases the hole size will saturate, the entleewith keep on moving
slowly inside the container, and eventually come in contattt an edge, which then
leads to the formation of a kink. The time span for this to lEappowever, can be
minutes whereas the kink formation described above maydrmapithin seconds.

4.4 Quantitative results

Which of the above mentioned phenomena we observe deperttie aomposition
of the suspension, its packing fractign the depth of the layeh, as well as the
shaking parameters frequenéyand shaking strength. In this Section, we present
the results of the experiments done with the various sugpes)sand discuss them
for every suspension by means of phase diagrams of the ghp&iameter§ and f.

4.4.1 Cornstarch

As cornstarch has proven to have the richest phenomenolagwill start with the
discussion of our experiments in cornstarch suspensiorsvidasly, these type of
shaken suspensions have been considered by Meak{14]. Their report, however,
was limited to a single set of experiments with a fixed depthacking fraction, in
which only the shaking parameters were varied. Our objedsivhere is to map out
a larger part of the parameter space by in addition varyieddier depth and con-
centration. More specifically, we want to determine how thermmena described
in [14] (holes and fingers) are influenced by these other petensy and how the
newly described rivers and jumping liquid fit into the phasgdams.

We use either demineralized water or an agueous solutioresiu@ Chloride
(CsClI) with a density of 1.7- 10° kg/m®, matching the cornstarch particle density
(based on sedimentation experiments;pAt 1.7 - 10° kg/m?® cornstarch particles do
not settle to the bottom for several days). Experimentsadlgtshowed negligible
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Figure 4.5: Four snapshots of the development of a hole tsvakink in a suspen-
sion of glitter particles. The frames go from top left to bottright and are at= 1,
60, 73 and 92 seconds after the creation of the initial hble 80 Hz,I" = 30, and
h=7mm.)
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Figure 4.6: Microscopic pictures of the various particlest were used in this study:
(a) cornstarch (particle diameter=5— 20 um); (b) polydisperse glass beads £
0— 20 um); (c) quartz flouroc = 0— 70 um; (d) monodisperse polystyrene beads
(o ~ 40 um); (e) a mixture of glitter particles (dimensions &0 um?, 50x 75
pum?, and 50x 100 um? respectively, each with a thickness of g).
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differences between results in the density-matched andirihgatched liquid, pre-
sumably due to the relative violent shaking. In the unmatchespension only some
stirring is required just before the start of a new experitnencounteract sedimen-
tation. Viewing the cornstarch particles under a microscagee Fig. 4.6, reveals
that they are irregularly shaped and have an approximatglgifle distribution in the
range of 5-2Qum.

The first parameter we studied is the packing fractpost a fixed layer depth of
h = 0.6 cm. For packing fractions up to and includiggr 0.35, we find that any
perturbation closes due to hydrostatic pressure, as waydddn in a Newtonian lig-
uid. At the slightly higher valugp = 0.38 we observe closing holes for low shaking
strengths (up td = 25), indicated by the plus symbols and the white background
in the phase diagram of Fig. 4.7(a). At relatively high aecations [ = 40) and
low frequencies (80 Hz) we observe fingerlike shapes emgifginm the rim of the
disturbance, indicated by the dots and the light grey baxkut. These fingerlike
shapes were also reported by Meektal.[14] for high shaking strengths. At higher
frequencies we observe that the created holes are not $tabtend to stretch out
and form riverlike structures [the diamonds and dark greskgeound in Fig. 4.7(a)].
These rivers spread out over the entire width of the containd then become sta-
ble. When increasing at constantf, the edge of the rivers rise up and again form
fingerlike structures.

In the phase diagram at intermediate volume fractips; 0.40, we find that the
onset of the fingers and rivers regimes shifts to lower shpgirengths [Fig. 4.7(b)].
Below this onset, there now exists an additional narrow wmah which stable holes
form (represented by circles and medium grey backgrountat 1, increasing the
acceleratior” for frequencies around 80 Hz we first observe the formatiocstathle
holes which then give way to fingerlike structures at higherWhen we increase
I at higher frequencies (around 130 Hz), stable holes first ituto rivers which
subsequently will produce fingers that will eventually aotve entire surface for the
highest values of .

When increasing the packing fraction even furtherpte: 0.42, the onset of the
stable holes regime continues to shift to lower shakingngties [Fig. 4.7(c)]. In
addition, rivers are no longer encountered in the phaseati@g The stable holes
always give rise to finger formation whdnis increased. Besides the holes and
fingers, there is one additional phenomenon: In the fingemegvhen we decrease
the frequency at a fixed, high shaking acceleration —i.eenathe amplitude of the
shaker is increased- the fingers tend to rise up higher anccetta@n point they
actually break loose of the surface and form jumping shdpegscan live for several
thousands of cycles of the driving. This jumping liquid regiis represented by
triangles and a dark grey background in the phase diagram.
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Figure 4.7: Phase diagrams in the plane spanned by the ghadiameters frequency

f and dimensionless acceleratibrior three different cornstarch suspension concen-
trations@. From left to right: (a)p = 0.38; (b) ¢ = 0.40; and (c)p = 0.42. In all
three diagrams we used a fixed layer deptthef 0.6 cm. The colored areas are
added as a guide to the eye and roughly indicate the varigismies in which the
phenomena are visible.
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Figure 4.8: Phase diagrams for three different cornstagérlthicknesses. From left
to right: (a)h=0.4 cm, (b)h= 1.0 cm, and (ch= 1.4 cm, all at a concentration of
@ = 0.41. The colored areas are added as a guide to the eye andyraugjbhte the

various regimes in which the phenomena are visible.
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The second parameter whose influence we will study in detafig layer depth
h. To this end we choose a fixed high packing fractionpof 0.41, for which the
phase diagrams are particularly rich. Since Mettial. [14] used a fixed layer depth
of 0.5 cm, we start at the slightly lower value o= 0.4 cm, and increase the depth
to h=1.0 andh = 1.4 cm (with the intermediate value ¢f= 0.6 cm covered in
Fig. 4.7(b,c) for slightly different values of the concetion ¢). The resulting phase
diagrams are presented in Fig. 4.8.

In this Figure we see that the types of observed phenomenatdary with the
layer depth, but that the regions in parameters space inhwthiey occur do vary
in size and position. First we find that the onset of the pherammoves down
in acceleratior” with increasing layer depth. Secondly we observe that th®me
in which stable holes are encountered both decreases iraszenoves to higher
shaking frequencies. In even deeper layers than the onserpeel in Fig. 4.8 no
stable holes are formed at all. This is most likely due to tha that hydrostatic
pressure becomes more important as the layer depth insreastable equilibrium
between the effect of the shaking and hydrostatic pressuteen either not possible
or happens at such high frequency/acceleration combirgatimat the regime is not
attainable with our experimental setup. The regimes in wfilegers and jumping
liquid are found increase with layer depth, mainly due toitt siithe onset towards
smallerl” for largerh. For very large layer depth sometimes it appears that fingers
can form while the empty space between the fingers does ruit tha bottom.

Finally, we will discuss how the size of the holes in the sahble regime de-
pends on the various parameters of the system. Note thatagksis complicated
by the fact that the shape and contours of the stable holeneedepend on these
parameters in a rather non-trivial manner (cf. Figs. 4.748)l Turning first to the
dependence of the time-averaged diaméterof the hole on the frequency of the
driving (Fig. 4.9), we observe a slight decrease in hole witk increasingf. This
is actually in contradiction with the observations of Meektal., who observed an
increase in hole size with increasing frequency at a fixe#tisgaacceleration. The
dependence ohhowever is only small compared to other dependences: Thagwe
hole diameter strongly depends on the shaking acceler@emFig. 4.10), where a
larger acceleration leads to larger holes, when all othexrpaters are held constant.
The increase is such that with an increase aftb@ hole can almost double in diam-
eter. In addition, the hole size also strongly depends oifetfex depth. In Fig. 4.11
we see that the layer deplitlearly sets the average hole diamé&tdras both quan-
tities appear to be proportional to one another. This ptapuality is however hard
to establish experimentally as a single value for the paranpair f andl” for which
stable holes develop could not be found. We therefore hadéoslightly varying
parametersf(= 140 Hz and™ = 30 for theh = 0.4 cm experimentf = 120 Hz and
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Figure 4.9: Time evolution of the hole diametkifor three different values of the
frequency § = 80, 120, 160 Hz) fol” = 20 andh = 0.6 cm. The inset shows the
time-averaged diametéd) as a function of the frequendy.
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Figure 4.10: Time evolution of the hole diametkfor three different values of the

shaking acceleratioh = 15, 20, 25, forf = 160 Hz anch = 0.6 cm. The inset shows
(d) as a function of .
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Figure 4.11: Time evolution of the hole diametefor four different values of the
layer depthli =4, 7, 10, 14 mm). As there was no single choice of paramétargd

f for which stable holes were found for 4l these values vary from experiment to
experiment (see main text). The inset sha@sas a function oh, together with a
linear best fit.

" = 20 for both theh = 0.7 and theh = 1.0 cm experiments, anfl = 160 Hz and
" = 24 for theh = 1.4 cm experiment). This slight variation in shaking paramsete
might explain why the points do not fall onto a single lineatlgh the origin.

Finally, the concentration does not appear to influence the $ize. It should,
however, be stated that the range in which we can vary theimmdétaction ¢ and
observe stable holes is not very large compared to the iariate can apply in the
other parameters (cf. Fig. 4.7).

Cornstarch consist of edgy particles, i.e., they more régemolygons than
spheres, that have an aspect ratio close to one and a flaistizieution with diame-
ters between 5 and 20m, with which we mean that particles of different sizes come
in roughly equal numbers. Unfortunately, apart from cargt and other similar
starches, it is hard to find particles made of a different neltand roughly the same
geometrical properties. In the remainder of this Sectiortivegefore study the be-
havior of several other particle suspensions, the pastwievhich all differ in certain
aspects from cornstarch, and compare it to the behaviorrostarch suspensions.
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4.4.2 Polydisperse glass beads

The first alternative suspension we turned to are polydsspglass beads in various
size distributions. The beads are spherical and have atgdeng.5- 10° kg/m?. Due
to the large density contrast with water, density matchiitty @odiumpolytungstate
is required. Initially, we used beads in the same size rasgmmstarch, 0-2(m,
of which a microscopic picture can be found in Fig. 4.6(b).orRrthis picture it
becomes immediately clear that there are much more smaéiltlearthan large ones,
and therefore the distribution is not flat like that of coamsh, but the smaller sizes
heavily dominate in numbers.

When performing the shaking experiment we observe thataféating an initial
disturbance, the hole immediately starts splitting up amitiding with other holes.
This splitting and colliding cycle repeats itself every feaconds, leading to a very
chaotic dynamics of which a snapshot was shown in the prev&action (Fig. 4.4).
Next to the closing holes, this is found to be the only obdeler@ahenomenon in this
type of suspension. The speed with which the holes split atitle depends on
the shaking acceleration and the onset varies with the spdkéquency. A phase
diagram of the behavior of the polydisperse glass beaderagm as a function of
shaking acceleration and frequencyf is provided in Fig. 4.12.

Polydisperse glass beads of other size distributions, lyabne50 um and 40—
70 um qualitatively have the same behavior. Varying the lay@tliand the packing
fraction also do not lead to different behavior or differphenomena.

As an alternative to the overwhelmingly large number of $ipaitticles present
in the above samples, we used a sample with a more moderg@igmarsity con-
sisting of spherical glass beads with sizes between 20 um and a more flat size
distribution. Again, only splitting and closing holes ateserved. The big difference
with the previous samples is that it now takes up to a minute faole to start split-
ting. This is a lot longer than for the more polydisperse ipks for which this only
takes seconds.

4.4.3 Quartz flour

The second alternative to cornstarch is quartz flour, whastsist of crushed quartz
crystals and of which a microscopic picture can be found @ #i6(c) The size dis-
tribution, which ranges from © 70 um, is similar to that of the polydisperse beads
mentioned above, i.e., non-flat with a very large numbertifsacof small particles.
However, the edgy particle shape is more comparable to fithieccornstarch par-
ticles. Its density isc 2.5- 10° kg/m® and the liquid used to create a suspension is
again water, density matched with sodiumpolytungstate.

The phase diagram of a vertically vibrated quartz flower ensjpn (not shown)
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Figure 4.12: Phase diagram in thEI{)-plane for polydisperse glass beads with a
non-flat size distribution from 0 to 2Am. The concentration wag = 0.6 and the
layer depth was fixed tb= 0.7 cm. The grey area is added as a guide to the eye and
indicates the region where holes grow and duplicate, mawiragdisordered state.

is very similar to that of polydisperse glass beads: We firmgossible states, namely
closing holes for low shaking accelerations and splittioteh at high values df.

For both polydisperse particles, quartz flower and glassd)ddtering was at-
tempted to reduce the surplus of small particles. We attedhpeveral rounds of
filtering, either by sieving or selective sedimentationt ibwvas not possible to re-
move the small particles to a satisfying extent, and the raxgatal results did not
qualitatively change.

4.4.4 Monodisperse beads

In the previous subsection it became clear that the chaetiaxdor of the polydis-
perse glass beads in the splitting hole state could be te bgrreducing the polydis-
persity of the material. It is therefore interesting to stmaonodisperse glass beads,
which unfortunately are hard to obtain in the necessary tifies1 We therefore used
polystyrene beads of 20, 40 or 805 um (MicroBeads, TS 20-40-80), of which a
microscopic picture can be found in Fig. 4.6(d). The pagtidiave a density of 1050
kg/m® and are mixed with water to create a suspension. Due to thé dersity
difference density matching was not necessary.

Again, for low values of” we find closing holes for all examined values fof
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Beyond a frequency-dependent onset acceleration, wewvabeat the initial pertur-

bation turns into a circular hole which grows in time withénging its circular shape.
Subsequently, depending on the suspension details anthakang parameters, the
hole will either collapse due to the formation of a rising sirhich grows in size while

the hole is growing, or will continue to grow until it reachiét® container wall and

form a kink. The intricate dynamics of the hole growth will tsreated in a separate
chapter.

4.45 Glitter

To combine monodispersity with a certain edginess of thégbes, we finally em-
ploy glitter particles (Sigmund-Lindner, SiliGlit, Polster Glitter, Gradell). These
particles predominantly consist of polyethylene, which edgy, and have a density
of 1.38-10° kg/m®. These particles —which incidentally are obtained by ogttf
sheet material and mainly intended for use in the cosmetiasiny— are available

in squares, rectangles, and octagons and are relatively(20i um) compared to
the other dimensions (50100 um) and quite monodisperse. The particles are hy-
drophobic, so an apolar liquid needs to be used to createparssion for which we
took sunflower oil. A microscopic picture of a mixture of soofdéhe glitter particles
can be found in Fig. 4.6(e).

We have produced various different suspensions, eithéraviingle size of par-
ticles, or a mixture of particles and in different concetitras, and the results were
found to be qualitatively the same: A disturbance grows amahtially form a large
kink covering part of the container surface. Snapshots cfi suseries of events had
been provided in Fig. 4.5 and a typical phase diagram withctbesover between
closing and growing holes can be found in Fig. 4.13. A phasagrdim for earlier
mentioned monodisperse particles would qualitativelyastiee same results.

The edge of the kink clearly shows a convection roll, which ba observed
without adding tracer particles. The size of the roll and sheface area covered
by the kink respectively grow and shrink with increasingkshg acceleration. It
appears that a higher kink is held in place by a larger coiorecoll, consistent with
the findings of Falcomt al. [18].

Very similar phenomena to the ones described here for th@disperse polysty-
rene and the glitter particles have been observed in otlspesisions of monodisperse
beads [16] and even in vibrated emulsions [18]. In the lattiso stable holes and a
delocalized state were found, like in cornstarch suspassio
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Figure 4.13: Phase diagram in thg[{)-plane for a mixture of glitter particles of
dimensions 5& 50 x 20, 50x 75 x 20, and 50< 100x 20 um3. The concentration
was @ = 0.6 and the layer depth was fixedtic= 0.6 cm. The grey area is added as
a guide to the eye and indicates the region where growingslgplawv and kinks are
found.
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4.5 Discussion and conclusions

In the previous Sections we have mostly focused on the diffees between the vari-
ous particulate suspensions we have studied. We thereforetavstart this conclud-
ing Section by recapitalizing the similarities of which theare quite a few:

e Like every other liquid, suspensions that are verticallyrated in a container
will develop a pattern of surface waves above a certain tiotds the famous
Faraday waves [19]. The details of this pattern depend offréggiency and
amplitude of the shaking. We have observed these patterall suspensions,
with the expected period doubling corresponding to haliitidng frequency.
We also established that the presence of Faraday waves daigmificantly
interfere with the phenomena discussed in this article.

e Besides the Faraday waves, all presented phenomena requingial pertur-
bation to be ‘initiated’.

e All presented phenomena overcome hydrostatic pressuren\&lnole is cre-
ated in a Newtonian liquid, gravity will push the liquid baekd close the
opening. Since in all presented experiments, the holesinevigble for very
long times or even grow, the interplay of the suspension gntas and the
(symmetric) driving works against gravity.

¢ In all cases particularly dense suspensions are needegersisns with lower
particle concentrations behave similar to Newtonian tiguand only present
closing holes.

e For all patterns that are described in this study, the edygeke suspension
(e.g., the rim of the holes) oscillate with the same freqyems that of the
driving, with a phase shift. The same is true for a Newtoniquidl, where the
rim of the hole, while closing, is also oscillating.

e Many of the suspensions we used appear to be very viscous athest, and
to flow more easily when shaken. This presumably is a sigeaifithe shear
thinning properties that many dense suspensions are egptarthave at mod-
erate shear rates [2—6].

In conclusion, in this chapter we have been extensivelyyatgdhe behavior of
various vertically vibrating dense suspensions with diff¢ particle sizes, shapes,
compositions, and distributions. All of these suspenstuage in common that there
are Faraday waves above a certain threshold and that whetugbpdion is created
at low shaking strengths and/or low particle concentratiae observe the formation
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of a closing hole with oscillating edges, just like what webllappen in a viscous

Newtonian liquid. However, after an initial perturbation dreated in a dense sus-
pension at high shaking strengths we observe a rich varfephenomena that all

overcome hydrostatic pressure. Of all suspensions exaline cornstarch suspen-
sions present the largest number of different phenomeniahviiclude stable holes,

rivers, fingers, and jumping liquid. Moreover, all of thesent out to be unique to

cornstarch, since —at least in this study— they have not bbsarved in the other

suspensions.

The other suspensions studied —polydisperse glass bealgsisperse quartz
flower, monodisperse spherical particles, and monodiepelitter particles— pre-
sented two types of patterns, namely growing holes, whitimately develop into
kinks, and splitting holes, which split, collide, and meng@ chaotic dynamics. The
pattern that is selected is found to be connected to theldiitn of particle sizes:
Suspensions of monodisperse particle lead to growing halbereas suspensions
containing a polydisperse particle distribution lead tlittspg holes.

Itis particularly intriguing that cornstarch suspensibesave so differently com-
pared to the other suspensions. This either suggests thdiethavior is typical for
monodisperse, edgy particles of the size of cornstaxcB(Q um) —for which no al-
ternative made of a different, preferably inorganic, nmatdrad been found so far—
or that some other undisclosed property of cornstarch ikgt pinally, all of the ob-
served phenomena are worthy of a thorough theoretical tigati®n of their origin,
but such an endeavor goes beyond the scope of the current work
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Hole dynamics in vertically vibrated
suspensions *

We study the dynamics of holes, created in vertically véutatense suspensions and
viscous Newtonian liquids. We find that all the holes od&illaith the driving fre-
quency, with a phase shift af/2. In Newtonian liquids holes always close, while in
suspensions holes may grow in time. We present a lubricatiotiel for the closure
of holes which is in good agreement with the experiments mtdlgan liquids. The
growth rate of growing holes in suspensions is found to seailk the particle di-
ameter over the suspending liquid viscosity. Comparinginbpholes in Newtonian
liquids to growing holes in dense suspensions we find a sihaisdinear response
in the first, and a highly non-linear one in the latter. Moregwvthe symmetry of the
oscillation is broken and is shown to provide an explanafanthe observation that
holes in dense suspensions can grow.

*Stefan von Kann, Matthias van de Raa, and Devaraj van der, Mige dynamics in vertically
vibrated suspensions, preprint (2012).
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90 CHAPTER 5. HOLE DYNAMICS
5.1 Introduction

When a hole is created in a horizontal layer of a (viscous)idicat rest, the hydro-
static pressure will cause the hole to close. In spite of isencomplicated rheology,
the same thing is expected to happen in a non-NewtoniardliqRiecently however,
the reverse has been shown to occur in experiments whernes lafyearious particu-
late suspensions and emulsions were subjected to vertlwaltions: Holes created
in these vibrated liquids do not necessarily close, but neyilize [1, 2], grow [3], or
lead to chaotic dynamics [4, 5]. Although phenomenologinaldels are suggested
in the literature [3, 6] our understanding of this behav®fdr from complete. In
this chapter we will shed light onto this dynamics by invgsting the analogies and
differences between vertically vibrated viscous Newtorfiaids and a suspension of
monodisperse particles in liquids with the viscosity of evaind higher.

A concentrated particulate suspension consists of a neixtfia homogeneous
liquid and particles that are large enough Ium) such that their Brownian motion
is negligible. They can be found in many places, ranging fouitksand, through
freshly mixed cement and paints to the inside of flexible arsuits. Their flow is im-
portant in nature, industry and even health care [7]. Iresgfitheir common presence
and significance, many aspects of the flow of these densersisps remain poorly
understood. In order to study these materials people haad mgthods inspired by
classical rheology, and typically characterized them imgeof a constitutive rela-
tion of stress versus shear rate [8-13]. A general resufias when increasing the
shear rate, dense suspensions first tend to become lesas/igt®ar thinning) and
subsequently shear thicken. In recent experiments peoplelfmesoscopic length
scales [12, 14], fracturing [15], and a dynamic jamming pfi0] to be important in
such suspensions. Connected to the above, normal stresgatice in the approach
to awall [16], and non-monotonic settling [17] have beeroregd for objects moving
through dense cornstarch suspensions.

Turning to vertically vibrated suspensions, Meeittal. [1] observed in a verti-
cally shaken, thin layer of cornstarch suspension that -Agstoother quite exotic
phenomena-— stable oscillating holes can be formed forinerédues of the shaking
parameters. These stable holes were subsequently desuasing a phenomenolog-
ical model based on a hysteretic constitutive equation [[6Jother particulate sus-
pensions, Ebatat al. found growing and splitting holes and a separated state],[3, 4
where the latter is attributed to a convective flow in the riml ¢he first are still not
understood. Stable holes and kinks (which appear to beasitailor even identical
to the separated state mentioned above) have also beeterepoemulsions [2]. At
present we are still far from a detailed understanding osdeuspensions, and why
different suspension behave differently.

Here, we will investigate the dynamics of opening holes iyl of vibrated
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suspension of monodisperse particles of various sizesndsg in a glycerol-water
mixture. We will investigate how this dynamics depends atigla size and viscosity
and compare it to the dynamics of closing holes in a layer dfoadly shaken viscous
liquids, for which we will present a model within the lubrin approximation. We
will then shed light upon how the differences arise and intwhanner these can
explain the observation that the holes in the suspensionoticlose as a result of
hydrostatic pressure.

The chapter is organized as follows: We will start with a shd@scription of
our setup in Section 5.2. After this we will present expernitsefor the dynamics
of closing holes in a (vibrated) layer of a viscous Newtorligoid (Section 5.3.1),
followed by the introduction and discussion of a lubricatimodel for this system
(Section 5.3.2). Subsequently, in Section 5.4 we turn todifreamics of opening
holes in vibrated particle suspensions and discuss thdasitieis and differences
with the closing holes. The chapter will be concluded in Bech.5.

5.2 Experimental setup

The experimental setup is shown in Fig. 5.1. Its core consift cylindrical con-
tainer with a diameteD = 110 cm and a heighH of 8.0 cm. This container is
vertically vibrated by a shaker (TiraVib 50301) with frequeees f between 20 and
200 Hz and a dimensionless acceleratiofrom 0 up to 60. Herel = a(2mrf)?/g,
wherea is the shaking amplitude argithe gravitational acceleration. The container
is filled up to a heighhg = 64+ 1 mm with a viscous liquid or a suspension of varying
composition. The dynamics of the fluid layer in the contaiseecorded with a high
speed camera at various frame rates, given in frames pendgéips), and is imaged
from the top. The bottom of the container was covered witle fap improved con-
trast between liquid and container bottom. When using parent liquids, a small
amount of powdered milk was added to whiten the liquid. Ofrseut was checked
that adding tape or milk powder did not influence the dynarofdke system.

5.3 Viscous Newtonian liquids

Before turning to the —anomalous— opening holes in dengeeagins consisting of
monodisperse particles in a mixture of glycerine and waterwill first study the
regular case of holes closing in a viscous Newtonian ligwd.will both discuss the
case where the holes close purely due to the hydrostatisyreei the liquid and the
case in which a periodic forcing is added by vibrating theeysvertically. In the
second subsection we will subsequently present a modebktwide both cases.
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Figure 5.1: A schematic view of the used setup. At the lowenea have the shaker,
on top of which the container with the suspension is mountdi;h is subsequently
vibrated vertically. Above that is the high speed camerepnding the suspension

from above.
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Figure 5.2: The diameter of a closing hole in a layer of honey(6.4 Pas) with a
thickness ohg = 6+ 1 mm as a function of time, while the layer is vertically vitad

at f =50 Hz,I = 30 and recorded at a framerate of 250 fps (blue line). Thekblac
line is the result of a calculation using the lubrication rlodThe inset is from an
experiment using the same shaking parameters, but twiceettoeding speed (500

fps).

5.3.1 Experiment

We prepare a layer with a thickness lgf = 6 =1 mm of a viscous liquid in the
container as described in the previous Section. Subsdgugudisturbance is created
into the layer by blowing air from the top until a more or lesualar hole with
a diameter of a few centimeters is formed. To vary the visgas the liquid we
choose honey, with a dynamic viscosityof= 6.4 Pas, and several glycerine-water
mixtures with viscosities oft = 1.3, 11, 0.45, and 015 Pas. Viscosities below the
last value lead to holes that close extremely fast; in paercthey were found to
close within a single cycle of the lowest driving frequenoy ave used in our study
(f =20 Hz). Moreover, for these low viscosities inertial eftewtill start to become
important and therefore such fluids were not considered here

Fig. 5.2 provides a typical experimental result foh@= 6 mm thick layer of
honey, vibrated af = 50 Hz,I" = 30. After creating a circular hole in the layer, we
follow the dynamics of its closing and plot the hole diametsra function of time.
Over the course of several seconds the hole closes almeatlim At the same time
the hole oscillates at the same frequency as the drivingstwisishown in the inset
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Figure 5.3: Time evolution of the hole diameter in a verticalbrated layer of glyc-
erine (U = 1.3 Pas andhy = 6 mm): (a) For a constant shaking frequericy: 50 Hz
and different values of the shaking accelerafioa 0 (no shaking, blue line), = 10
(red line),I” = 20 (magenta line), and = 30 (black line). (b) The same, but now for
varying frequenciesf = 0 Hz, I = 0 [no shaking, blue line, as in (a)f; = 20 Hz,

Ir =5 (black line); f =50 Hz,I = 10 [red line, as in (a)]; and = 200 Hz,I = 40
(magenta line).

where part of the signal has been magnified in time.

When changing the shaking parametéendT, it becomes clear that the closing
time is to a large extent independent foindl", as is shown in Fig. 5.3 where we
show results obtained in glycerine. In particular, when wadt shake at all and just
create a hole in the container at rest and observe its clakirgo gravity, we find
that its time evolution follows the very same trend. The atagé of the oscillation
increases more or less linearly with the shaking acceterdtiand is in fact of the
same order as the shaking amplituale- 'g/(27f)?. The latter observation also
explains why the amplitude of the oscillation decreases schmvhen the frequency
is raised tof = 200 Hz, which causes the shaking amplitude to go down by arfact
16. Moreover, the amplitude of the oscillations of the edfythe hole appear to be
independent of the hole size, i.e., the amplitude remaigela constant while the
hole diameter shrinks down to zero.

In Fig. 5.4 we compare results for the different liquid visities, shaken at =
50 Hz andl" = 10. For the lowest viscosityu(= 0.15 Pas) we observe that the
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Figure 5.4: Time evolution of the hole diameter ihg= 6 mm thick layer of liquid
of varying viscosityu, vibrated atf =50 Hz and™ = 10. The solid (not oscillating)
lines denote the time evolution according to the model dised in Section 5.3.2.

holes closes in less than a tenth of a second, i.e., withiwayeles of the driving.
When we increase the viscosity the closing time increag@dlyaand for the highest
viscosity (that of honey = 6.4 Pas) the closing time is over six seconds.

In the same Figure we observe that there is a significant spam® in which
the average closure velocity appears to be linear. Thigvallges to correct the signal
by subtracting this linear behavior and afterwards compdoethe vertical position
of the container. This is done in Fig. 5.5, where we zoom in dewacycles only.
There is a clear phase shift between the driving and the dieh is measured to
be approximately a quarter of a period, as shown in the insEtgo 5.5. The fact
that the horizontal oscillation of the hole lags behihgy = 17/2 with the vertical
container position implies that the oscillating velocitf/tbe hole is in phase with
the latter. This in turn implies that the velocity with whitie hole oscillates is in
antiphase with the shaking acceleration. Note that thidigsphat the acceleration
of the liquid layer is in phase with the velocity of the holes.j the hole closes for
downward and opens for upward acceleration of the layer.

To quantitatively compute the average velocity profile inyale we start from
the corrected signal and shift all cycles on top of each pteseen in Fig. 5.6(a).
We then compute the average diameter and the average ydbigt 5.6(b)]. We
conclude that both are nicely sinusoidal. Most importatitly positive and negative
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Figure 5.5: Comparison of a sine fit of the trajectory of thetigal position of the
container (vibrated af = 20 Hz andl" = 5; dotted line), and the trajectory of the
diameter of a closing hole intgy = 6 mm layer of glyceriney{ = 1.3 Pas), corrected
for the (linear) closing velocity (see text; solid line). dlnset shows the phase
differenceAy for every period shown in the main Figure.
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Figure 5.6: (a) Superposition of several cycles of the abecktrajectory of the di-
ameter of a closing hole shifted over an integer number abgerof the driving.
The black plus symbols indicate the average position andltieline is a sinusoidal
fit to the average. (b) The instantaneous velocity of theimtphole averaged over
all cycles. The solid line shows the derivative of the sinefi{a). Taken from an
experiment with glyceriney( = 1.3 Pas,hp = 6 mm, f =50 Hz,I" = 20).

half of each cycle are close to each others mirror imagesatmhfthe shape of the
driving signal very well.

Now what is happening physically? First one should realie the magnitude
of the shaking acceleration that we subject our liquid layeris many times that of
gravity. This means that the liquid layer is alternatelyjeated to a large downwards
acceleration, that is forcing the hole to close —as gravitgse in one half of the
driving period, and an almost equally large upwards acatt®r in the other half.
Clearly, in this stage the liquid strives to move upward wéhkpect to the container,
and therewith opens the hole again. It is the small unbalbateeen the upward and
the downward acceleration caused by gravity that makesdhediose in the long
run'.

TOf course, when the direction of the acceleration is upweel fluid surface becomes potentially
unstable, which one could call a Rayleigh-Taylor, Richtmlyeshkov, or Faraday instability, depend-
ing on the perspective and the specific timescale one isrigoid. This instability is counteracted by
surface tension (which stabilizes the smaller wavelengihs liquid viscosity. From the experiment
we infer that for the liquids in this study this leads to séastanding wave patterns (the Faraday waves)
in the worst case.
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5.3.2 Modeling

To model the dynamics of closing holes in a viscous Newtotiguid we use ax-
isymmetric lubrication theory. In absence of the drivingg quation of motion for
the liquid profileh(r,t) can be derived from continuity and a lubrication ansatz for
the velocity profile within the layer (See Section %)6

oh  pg d 30h
ot 3uror [rh dr] ’ ®-1)

wherer is the radial coordinate the acceleration of gravity the density, angi the
dynamic viscosity of the liquid. Using lubrication theompplies neglecting inertial
effects. In particular this means that the scaling behavidhe closing velocity can
be derived from an (instantaneous) balance of the grawitaltiforce which drives the
closing and the viscous forces that counteract it, i.e.

d . pghd
~ U= d~ 220 5.2
P9 “hg = T (5.2)

in whichd denotes the time derivative of the hole diameter and we hstimated the
viscous forces in the layep (92u/d7%) as the velocity of the rind /2 divided by the
squared initial layer thicknes®. From this simple balance it follows that the closing
velocity should scale ag/ls. If we check this for our experimental results by plotting
the closing velocityd (determined from the linear regime of plots as in Fig. 5.4) as
a function of viscosityu Fig. 5.7 we find a very good agreement. Remarkable is
that the plot does not only contain data without driving, &lsb with various driving
strengths.

When we assume an infinite layer of liquid, we can derive a semalytical self-
similar solution to the closing hole problem which leads tbage diameter of the

form
d(t) = ZnON/%ac—t) , (5.3)

whereng is a numerical constant amglis the time the hole needs to close. In our case
these can be thought of as fixed by the initial hole size tagettith the boundary
conditions at the sidewalls of our container. This selfigimsolution goes to zero
with a square-root dependence on time which is however —majth the exception
of the very end— not observable in our experiments (Figs. ®2and 5.4). This
is presumably connected to the proximity of the side wallse térefore decided

*Some technical details in the derivation of several reqrisented in this Section can be found in
Section 5.6.
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Figure 5.7: Average closing velocity as a function of vistgog a double logarith-
mic plot, for three different values for the driving (no sivak f =50 Hz and™ = 10;
and f =50 Hz andl" = 20. The blue solid line isidose: 0.05/u, making the pro-
portionality constant in Eq. (5.2) equal tal@.

to numerically solve Eq. (5.1), supplemented wf&?‘/z h(r,t)rdr = constant, which
expresses the conservation of liquid in our system.

In Figs. 5.2 and 5.4 we compare our model results to the axeaits and find
that behavior is well captured by the model.

We can use Eg. (5.1) to model the modulation due to the aet®erof the shaker
as well, by simply substituting(1+ I sinwt) for g, leading to

Jh . pg 0 30h
— =(1+T t) —— |rh°— 5.4
ot (1+[sinet) 3ur or [r or -4
The result is (at least in first order) the same as for the puwyedvitational case,
with a continuous oscillation on top of the gravitationadut, just like we see in our

experiments. More details can be found in Section 5.6.
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5.4 Non-Newtonian liquids

Whereas disturbances created in a layer of a Newtoniardl@juiays close, indepen-
dent of whether the layer is being vibrated or not, for nonwbd@ian liquids things
are observed to be different. More specifically, for theipalite suspensions stud-
ied here®, holes close when the suspensions are at rest, but may ejteeror close
when vertically vibrated.

5.4.1 Experiment

As discussed in Section 5.1, several types of non-clositgsheere found in vari-
ous vibrated suspensions and emulsions, including stais hsplitting holes, and
growing holes [1-6]. Itis this last type, the growing holesich will be the focus of
this Section. Growing holes are typically found in suspemsicontaining monodis-
perse particled [1, 2], and splitting holes occur in suspensions of parsiaiéth a
substantial poydispersity [5]. We therefore use monodgsespherical polystyrene
particles with a diameterx) of 20, 40, and 8Gt 5 um, and a density of 1050 kgfn
(MicroBeads, TS 20-40-80). As the suspending liquid we usatbus glycerine-
water mixtures, with varying viscosities and densitiesc&ese the suspending lig-
uid may be either denser or less dense than the particles) wetcattempt to density
match the liquid. In all cases the time scale at which theexusipn separates is much
larger than the time scales of the experiment. In some casdsawe checked that
our results did not depend on whether the liquid density ddaa larger or smaller
than that of the particles by adding Cesium Chloride to tlepsnding liquid. Much
care has been taken to ensure that the packing fragtiethe volume occupied by
the solid phase in the suspension divided by the total voluwess kept at a constant
value of 052.

In Fig. 5.8 we show the typical time evolution of the hole d&er for a growing
hole, here in a suspension consisting of the- 40 um particles and glycerol-water
mixtures of three different viscosities. We observe thateel viscosity causes holes
to open faster. This appears to be comparable to the Newttigiads, where holes
also close faster for lower viscosity, but one needs to befekin making this com-
parison: First of all, the viscosity of the suspending lajisigenerally not comparable
to the (non-constant) viscosity of the suspension as a whirlee there is a usually
non-negligible or even dominant contribution from the jmdetphase. Secondly, we
are now looking at the rate at which the hole gragsinst bothgravity and the sus-

8As a yield stress has been reported in some very dense sigspelisis conceivable that gravity is
not capable of overcoming this yield strength when such @ri@is at rest. In the suspensions studied
here, this is not the case.

TStable holes have been observed in cornstarch suspensibssme emulsions
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Figure 5.8: Time evolution of the diametdrof a growing hole in a suspension of
40 um polystyrene particles in glycerine-water mixtures okthdifferent viscosi-
ties, namelyu = 0.14 Pas (red line),u = 0.22 Pas (black line), angt = 0.52 Pas
(blue line) versus time for three opening holes in a 52% vediraction suspensions,
shaken al’ = 28 andf = 45Hz.

pension viscosity, whereas for the closing holes in a Neiatotiquid gravity was
the driving force of the closure.

The trend mentioned above holds for all experiments we padd. Noteworthy
is that for the higher suspending liquid viscosities anddarparticles we typically
observe growth of the hole until it develops a kink (where pathe system, includ-
ing part of the wall, falls dry separated by a kink from thepgrssion) whereas for
small values of the suspending liquid viscosity and larg¢igdas we also observed
holes that would go through many consecutive cycles of drdaltowed by a rapid
collapse to an almost zero radius.

To further quantify the dependence of the growth rate on tispending liquid
viscosity, we determined the average grovthof the hole diameter per cycle and
plotted it against the suspending liquid viscosityin Fig. 5.9(a) for all three bead
sizes. We observe that all three data sets show a clear dear&sd with increasing
U, confirming our observation that the growth rate decreas#s imcreasing sus-
pending liquid viscosity. The data however does not codlapsto a single curve.
Therefore, in Fig. 5.9(b) we plot the same data as a functign/o which leads to a
reasonable collapse of the data for the two larger sizesidingdicance of which will
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Figure 5.9: (a) The average growtal per cycle of a growing hole as a function of
the suspending liquid viscosify. The experiments were done for suspensions of all
three bead diameters, = 20 um (green circles)g = 40 um (red diamonds), and

o =80 um (blue pluses) and a packing fractiong@#= 0.52. The driving parameters
aref =45 Hz and" = 28. (b) The same data as in (a) but now plotted as a function
of /o, the suspending liquid viscosity over the particle diamete



5.4. NON-NEWTONIAN LIQUIDS 103

+ average
f — sinefit /g
W\ — 0.523Pas/]f

;’(l/‘ﬁ

12} +0.523Pas
— sine fit

_~ 0
g2 B
S N
-3r
_4 L NN

@) -12/ (b)
0 0.01 0.02 0 0.01 0.02

t(s) t(s)

Figure 5.10: (a) Overlay of many cycles of a growing hole expent with 40um
beads suspended in a glycerine-water mixture of viscqsity0.52 Pas, all shifted
to start at = 0 and the initial diameter shifted thb= 0. The plus symbols indicate
the cycle-averaged hole diameter.The black line is a sitlerfitigh the average (thus
neglecting the actual growth of the hole). (b) The instagtars velocity of the grow-
ing hole averaged over all cycles. The solid line is the @gitre of the sine fit of (a).
The experimental parameters ang= 6 mm, f =45 Hz,I' = 28, andp = 0.52.

be discussed further down.

Just like we have done for the Newtonian liquids (cf. Fig.)5ve can overlay
many single cycles and compute the cycle-averaged diametevelocity, the result
of which is plotted in Fig. 5.10. This reveals several proenitnfeatures: The first is
that —quite unlike for the closing holes in the Newtoniawids— the signal deviates
significantly from a sinusoidal shape. This is especialBaciwhen comparing the
cycle-averaged velocity to the derivative of the sine fig[F$.10(b)]. In this plot
we find a second remarkable feature: The magnitude of the negsttive velocity
(d ~ —0.9 m/s) is larger than that of the most positive velocity@.7 m/s), which is
surprising since the hole on average must be growing, he titne averagéd> > 0.
When determining the duration of the opening and closintsprthe cycle, we find
that they are very close to one another, implying that laigsirg velocities occur
in a narrow time interval, whereas large opening velocities found in a broader
period of time. In Fig. 5.10(b) we observe that the closinij éfethe cycle is sharply
peaked, compared to a wider, more sinusoidal, shape duvnggening half.
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Figure 5.11: (a) The differenas/ = max(d) + min(d) in the maximum opening and
closing velocities in the growing hole state, averaged allezycles as a function of
the suspending liquid viscosity, again for suspensions of all three bead diameters,
o =20 um (green circles)g = 40 um (red diamonds), and = 80 um (blue pluses)
and a packing fraction ap = 0.52. As before, the driving parameters dre- 45 Hz
andl" = 28. (b) The same data as in (a) but now plotted as a functiqy of
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Figure 5.12: The phase differen&g between the vertical position of the container
(vibrated atf =45 Hz and™ = 28) and the diameter of a growing hole, averaged over
all cycles. This quantity is plotted as a function of the supng liquid viscosity
over the particle diameteau /o, again for suspensions of all three bead diameters,
o =20 um (green circles)g = 40 um (red diamonds), and = 80 um (blue pluses)
and a packing fraction ap = 0.52.

This asymmetry is visible in all of our experiments, as carséen in Fig. 5.11,
where we plot the difference between the magnitudes of tesaopening and clos-
ing velocitiesAV = max(d) + min(d). The fact that\V is always negative expresses
that the magnitude of the most negative velocity is larganttihat of the most pos-
itive. Just like the average growtkd per cycle increased with decreasing viscosity,
so does the magnitude of the velocity differeddé, which becomes more negative
asu becomes smaller. In addition we find that the data for thedfit hole sizes are
rather scattered in th&V versusu plot, but appear to collapse when plotted against
p/o.

Finally, we can determine the phase siify between the driving and the hole
although this is slightly more difficult than in the Newtonibquid case because of
the deviations from the sinusoidal shape. The results atedl as a function of
u/o in Fig. 5.12: Again the horizontal oscillation of the holg$sbehind the vertical
container position but now by a phase shift that is slighalgér tharvr/2 and that
increases somewhat when the viscosity of the suspendinigl lmpcomes smaller or
the particle size becomes larger. So again the velocity witich the hole oscillates
is in antiphase with the container acceleration, and as secpuence the hole velocity
is in phase with the acceleration of the suspension layer.
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5.4.2 Interpretation

It is now time to make an inventory of what we believe happehemwwe create a
hole-shaped disturbance in a liquid layer in a containectvis oscillated vertically:

e For “highly viscous” fluids (even if not Newtonian), the veity of the hole
walls is in phase with the acceleration the liquid layer eipees.

e A viscous Newtonian liquid follows the acceleration petfigd.e., for a sinu-
soidal acceleration also the velocity is sinusoidal. Thasids to reason since
for a viscous fluid forcing (acceleration) and the resporigbeoliquid (the ve-
locity profile in the layer) are proportional at all times tviscosityu as the
proportionality constant.

e Consequently, if the liquid is non-Newtonian the proponélity factor itself
depends on the forcing and therefore the response of thd liga sinusoidal
acceleration is a deformed signal. However, if stress d#peronotonously on
strain rate (like, e.g., in a power-law fluid) the deformatigill be symmetric,
i.e., sinusoidal with a superposition of only odd highemhanics.

e For our vertically vibrated suspension layers we find a ngnfaetric veloc-
ity cycle. The negative velocity part is strongly deformedhereas the positive
velocity half is close to sinusoidal [Fig. 5.10(b)]. It apps that during the clos-
ing half of the cycle the suspension behaves strongly nomtdiear whereas
during the opening half it responds more or less like a Neiatofiuid.

The behavior in this last point can be summarized by sayiagttie behavior of
the liquid is highly hysteretic. This is in agreement witk fthenomenological model
proposed by Deegan [6], who argued that a hysteretic rhgologld be necessary to
explain the existence of stable or growing holes in a vdlyicgbrated liquid layer.

Now, let us speculate about what could cause the suspersi@sgond in this
manner. In the first half of the driving the suspension laygregences a downward
acceleration and, consequently, the suspension layebeilushed against the bot-
tom of the container and when set in motion by the presencheohole it will do
so with the typical non-Newtonian (shear-thinning) bebavhat characterizes sus-
pensions. In the second half of the driving, inertia acyuatieates a low pressure
between the layer and the container bottom. Now supposéhisgiressure gradient
would be able to displace the liquid slightly with respecthie particle phase such
that a thin layer of liquid —with a thickness comparable te garticle diameteo—
forms between the bottom and the suspension. Such a layleractias a lubrication

ln fact, from the shape of the curve in Fig. 5.10(b) one carudedhat it behaves like a shear-
thinning fluid
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layer, i.e., during the second half the layer would move gndbthis layer and the
entire velocity gradient would be in this thin layer of Newian liquid, i.e., it would
be a shear band.

This in turn would explain why the suspension layer in theosdchalf behaves
like a Newtonian fluid, namely because this thin liquid lajgea Newtonian fluid.
More specifically, if we balance the gravitational energyhaf suspension layer and
the dissipation in the lubrication layer we obtain

d : o
psgh~p— = d~ pghﬁ, (5.5)

i.e., the velocityd in the second half of the driving would scale(as/o) 1. This is
consistent with the fact that many of the observabl&g &ndAd) that characterize
the growth of the hole, show a better collapse when plottednatu /o rather than
u itself. Conversely, one could state that dependencg /@nindicates the existence
of a shear layer of suspending liquid (with viscosityand thickness- o.

Incidentally, the presence of such a thin shear layer canaaisount for the con-
vection rolls that have been observed in the rim of thesetsires [2, 3]: In the first
half of the driving the suspension responds with a flow prdfildhe layer in with the
largest velocity on top and zero velocity at the bottom. k& skecond half, the layer
slides back as a whole, on top of the thin shear layer. Coesgiguthe displacement
per cycle of a fluid particle near the bottom is different frdmt near the top, giving
rise to a convection roll.

5.5 Conclusions

We have comparatively studied the dynamics of holes in acadlst vibrated layer
of viscous Newtonian liquids on the one hand and of densécfeguspensions on
the other. We find that all the holes oscillate with a phasé shiAy = 11/2 with
respect to the driving signal, such that the velocity of tb&ehs in phase with the
vertical acceleration experienced by the fluid layer in ttzenfe of reference of the
container. In the Newtonian liquids we observe that holesgs close, while in the
suspensions holes may grow in time, depending on the drpémgmeters.

For the Newtonian liquids we find that the closing velocityngersely propor-
tional to the liquid viscosity, which is explained from a @il® balance of gravita-
tional and viscous forces. The presence of the driving ia s@dardly influence the
closing: Independent of frequency and acceleration of thend we find that the
cycle-averaged closing rate of the holes is the same as fosare that is driven by
gravity only. We present a lubrication model for the closoirboles which is in good
agreement with the experiments.
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For the suspensions we focus on the growing holes regime addtHat the
growth rate of these growing holes is proportional to theoraf the particle diame-
ter and the suspending liquid viscosity. Comparing the grgwoles to the closing
ones in Newtonian liquids, we observe that in suspensioagdhlponse is highly
non-linear. In addition, the symmetry of the oscillatiorbreken, with larger inward
velocities than outward ones, which is surprising sincehible is growing. The rea-
son is that large outward velocities only occur in a smalktimterval, whereas the
inward ones are spread over the whole half-period. We feabaexplain this asym-
metry from the formation of a thin lubricating layer of susding liquid between the
suspension and the bottom in the half-period in which the fobpening.

5.6 Appendix: Modeling of hole closure in a viscous layer

A lubrication model of a horizontal axisymmetric viscougdah(r,t) starts with
the axisymmetric Stokes’ equation in the thin layer limitthwpressure given by the
hydrostatic pressure in the laypr= pg[h(r,t) — z]. Neglecting gradients in the radial
direction in comparison to those in the vertical directioe, then integrate

Py _op _ pyoh

52 = ar = U 211 arz(z—2h), (5.6)

where we have used the no-slip boundary condition at thetnodt, (0) = 0) and the
free-slip condition at the free surfacdy; /dz(h) = 0). Continuity, integrated over
the layer height gives

Jh 10 h
a—t - —FE |:r /0 Ur(z,t)d2:| 5 (57)
which with Eqg. (5.6) immediately leads to Eq. (5.1)

ot 3urar or (5.8)

If we look to compute the closure of a hole of initial diamedgr(att = 0 s) in
an infinite horizontal layer of liquid of thickne$s, we can find a similarity solution
to Eq. (5.8). To do so, we first nondimensionalize, andt with the length and time
scale in the problem, namely andty = 3u/(pgho) respectively. If we now use a
selfsimilar ansath = t“H (f/tP) in Eq. (5.8), we find a solution provided that= 0,

B=1/2
B [ 3ur?
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wheret, is the time at which the hole closes adn) is a solution of

d?H® 1dHt ) dH?
dnz " ndn ~ “Tdp
H(ewo)=1; H(no)=0. (5.10)

The fact thatp needs to be a constant implies that the rim diametershould scale

as
d(t) = do (tcti:t) = 2no4 | w . (5.11)

Note that the problem is not uniquely determined by prowdis and that in addition
the closure time; needs to be supplied to obtain a full solution to the problem.
Then,no can be determined a = [3ud3/(4pghgtc)]*/? and Eq. (5.10) has a unique
solution. Note, that in this case the initial profile is alscefl by the self-similar
solution. Alternatively, one could therefore also staonfrthe initial profile, match

it to the solution of Eq. (5.10) for a certaify which then fixeg.. (This can be done
provided that the initial profile is compatible with the etjaas.)

To obtain solutions of Eq. (5.8) that are more realistic gitke experimental
setup that we use, we turn to numerical simulations. Herereptace the actual
boundary conditions at the side wall (zero radial velocitg ao-slip) —which are im-
possible to incorporate into the lubrication model— with fbllowing integral state-
ment of mass conservation in the system

D/2
/ h(r,t)rdr = constant (5.12)
r=0
whereD is the diameter of the container, or equivalently, taking time derivative
of Eq. (5.12) and using Eq. (5.8)

h h
1p [hsa_} 0 = M o (5.13)
ol pp or |i_p)2

where it was used th&t(D/2,t) > 0. Eqg. (5.8) is of a type that is known as a non-
linear diffusion equation, which is of a very stable type tieaders them easy to solve

numerically. The equations are therefore solved with a Enfgrward integration
scheme which lead to results that compare well to the exjgertisr(see Section 5.3.2).

Actually it is conceptually straightforward to incorpagathe driving into the
equations, as the only thing one needs to do is to substitgteytavitational ac-
celerationg with g+ a(t) wherea(t) is the instantaneous acceleration of the liquid
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layer, a(t) = aw?sinwt = Igsinwt (with w = 27tf). This however has enormous
implications for the numerical solvability of the equatipsince fol™ > 1 there ex-
ists a time interval in each cycle for whigd a(t) < 0. In this interval Eq. (5.8)
becomes a non-linear diffusion equation with a negativieisiibn coefficient, which
is terribly unstable and consequently extremely difficaltsblve numerically. For
the current problem there exists a workaround however, fuchvwe need some
additional understanding of the equations first.

To this end let us first examine a modified Eq. (5.8) withouvilya

Jh : pg 0 30h
T I sin(wt) 3ur o [rh dr} . (5.14)
Clearly, a solution to Eq. (5.14) must have the same pelitydis the driving, i.e.,
h(r,t+T) =h(r,t). Now, the simplest form that such a solution could hav&iig) =
hs(r) + A(r) explict + ¢ (r)], which corresponds to neglecting non-linear effects, (i.e.
higher harmonics) in Eq. (5.14). Now(r) can be any profile that satisfies the non-
driven Eq. (5.14), i.e.ghs/dt = 0, which is satisfied by any well-behaved function
of r. Inserting this form into Eq. (5.14) and linearizing leads t

;o

(wt+oM+m2) _ - P9 0
wA(r)ée r [rhs o

j ot
3ur or } e,

which needs to hold for arty leading to

T pgo 30hs
AN = as—ura[r Sar |
T

o = —3. (5.15)

with which

h(r,t) = he(r) + E) %% [rhg%} expii (wt — 71/2)]. (5.16)

The full equation, including both the driving and gravity,dqual to

oh : pg 0 30h
o = (Isin(owt) + 1) 3ur o [rh ar | (5.17)
Note that, since we are dealing with>> 1, gravity is only a small perturbation to
Eqg. (5.14). This implies that the gravitational timescalevhich the profile decays
(tg ~ 3u/(pghy)) is typically much larger than that of the driving. l.e.hif(r,t) is

a solution to Eq. (5.8), on the timescale of a single periadbis not significantly
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change and may hardly interfere with the oscillation. Inlagyto Eq. (5.16), this
suggests a solution to the full problem of the form

h(r,t) = hy(r,t) + E)% expli(wt — 11/2)], (5.18)

where we have used thhg(r,t) is a solution to Eq. (5.8) to simplify the expression
for the amplitude of the oscillation.

This line of reasoning comes to the rescue when numericaliyrg Egs. (5.14)
and (5.17). Afirst useful trick is to realize that we can nucaly integrate Eq. (5.14)
fromt =01toT/2 since in this interval the coefficient of the right hand s&lalways
positive. By going to a new time variabfe= —t we obtain a minus sign on the left
hand side which exactly compensates for the minus sign ofdkéicient in the in-
terval [T /2,0]. Consequently we can integrate Eq. (5.14) backwards in fiore
t =0 to —T/2, such that we obtain the solution AT /2,T /2], i.e., a full cycle.
Since the sought-for solution is periodic in time, this dodes our calculation.

For Eq. (5.17) we can proceed in a similar way and, by integyaboth back-
wards and forwards fromh = —(T/2m) arcsin1/l") = —t; (where the coefficient
changes sign), obtain a numerical solution[e /2+1t., T /241, i.e., also on a
full period of the driving. And, of course, it is impossible éxtend this interval be-
cause itis bounded by an interval where the coefficient igipe®n the negative side
—such that backwards integration is not possible— andailyiby an interval where
the coefficient is negative on the positive side. We can heweake the solution (cq.
initial condition) h(r, —t¢) and integrate it using Eq. (5.8), i.e., the equation thay onl
contains gravity, from-t; to T —tc. The solutionhg(r, T —t¢) is now subsequently
used as an initial condition for the full problem Eq. (5.1High we then integrate on
the interval[T /2+t, 3T /2+t]. If there is any truth in the analytical approximation
Eq. (5.18) the two solutions should match at the point whieeetwo intervals meet,
i.e., int =T/2+t.. This procedure can be iterated until the solution is olethion
the full time interval [see the inset of Fig. 5.13(a)].

In Fig. 5.13(a) we plot the result of this procedure for a fayiliquid with vis-
cosity u = 1.23 Pas and a thickness &b = 6 mm, which is vibrated at a frequency
of 50 Hz and a dimensionless acceleratios 20. The solid line is the solution of
Eq. (5.8) starting from the same initial solution and thetetbtine is the solution
of that same equation that is used in the integration praeedClearly the inte-
gration procedure appears to work well. To quantify how gdaattually works,
in Fig. 5.13(b) we plot the difference between directly graing fromt = —t to
t =T /2+t. and indirectly by using the gravitational solution to reachT —t. and
integrating Eq. (5.17) backwards in timette- T /2+t.. The difference, normalized
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Figure 5.13: (a) Time evolution of the hole diameter in a tagka liquid of vis-
cosity 4 = 1.23 Pas, densityp = 1.26- 10° kg/m? and thicknes$y = 6 mm, driven
at f =50 Hz andlr = 20, obtained by numerically integrating Eq. (5.17) using th
procedure described in the text (blue solid line). The blaws are solutions of the
corresponding gravitational closure problem Eq. (5.8¢ etarting from the same
initial condition as the blue line (solid) and the other is tine that is used in the in-
tegration procedure of the blue curve. The inset illustrdite integration procedure.
(b) Difference between the profiletat T /2+t. obtained starting frorh= —t. by di-
rect integration of Eq. (5.17) and by integrating Eq. (58)+ T —t. and integrating
Eq. (5.17) backwards in time to= T /2+t.. The inset illustrates this procedure.
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by the initial layer thickness is never larger tharr§dllustrating the accuracy of the
procedure.
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The effect of finite container size on granular
jet formation *

When an object is dropped into a bed of fine, loosely packed, saisurprisingly
energetic jet shoots out of the bed. In this chapter we stuelgffect that boundaries
have on the granular jet formation. We did this by (i) deciregshe depth of the sand
bed and (ii) reducing the container diameter to only a few delmeters. These con-
finements change the behavior of the ball inside the bed,dlitcollapse, and the
resulting jet height and shape. We map the parameter spatepaict with Froude
number, ambient pressure, and container dimensions agwypeters. From these re-
sults we propose a new explanation for the thick-thin stecof the jet reported by
several groups.

*Published as: Stefan von Kann, Sylvain Joubaud, Gabrielbdallero-Robledo, Detlef Lohse, and
Devaraj van der Meer, The effect of finite container size amngtfar jet formation, Phys. Rev. B1,
041306 (2010).
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116 CHAPTER 6. CONFINED GRANULAR JET
6.1 Introduction

Granular materials consist of discrete particles whiclraxtt mainly through contact
forces. In large quantities they can behave like a solidgaidi or a gas but often
behave differently from what would be expected of these ghgk]. A marked ex-
ample is the impact of an object on a bed of sand. When dry &ioisn through
such a bed all contact forces between the individual pegiare broken and after
slowly turning off the air flow, the bed settles into an extedyrioosely packed solid-
like state. When a ball is dropped in such a bed, one obsergptash and a jet,
strikingly similar to the ones that are seen when the samecblg dropped into a
liquid.

Research interest in this granular jet started when S.Trothsen and A.Q. Shen
first reported this phenomenon in 2001 [2], in a study with diective to gain
insight into the importance of surface tension on jettingeémeral and the properties
of flowing granular materials. Since these results, sewaspécts of the formation
of the granular jet have been studied. The influence of thaatnygelocity onto the
jet height for impacts on a bed of very loose sand was invagiin [3]. Using
a pseudo two-dimensional setup, numerical simulationscamaparisons to water
impact experiments, a model for the jet formation was predahat is based on
cavity collapse: The impacting ball creates a cavity in t#wedsbed which collapses
due to the hydrostatic pressure in the sand and leads to tioalgets. One jet is
observable above the bed and the other one is going dowrhiatoetd [3]. The series
of events is concluded by a “granular eruption” at the serfaicthe sand which was
attributed to the surfacing of an air bubble that is entrdpghgring the collapse.

The influence of the ambient pressure on the formation of auima jet was first
studied by Royeet al. [4]. They observed that at lower ambient pressures the jet
reaches less high and also reported a puzzling thick-thilctsire at lower pressures.
Using X-ray radiographic measurements, they were abledk ilaside the bed and
then proposed the following mechanism to explain this stingc the thick jet is
caused by the compressed air in the cavity pushing up bedrialaterming the
thick part of the jet [4—6]. The thin jet was attributed to thydrostatic collapse
as formulated in [3]. Subsequently, the thick-thin stroetwas also observed by
increasing the ball size in the same container, which suggéa contrast to the
earlier explanation— that the structure may be a bounddegtdf7]. Marstonet al.
also found a thick-thin structure by decreasing the packiagtion, and they too
found that this effect is more pronounced for a larger bdll [igs the exploration of
the formation of this thick-thin structure that constitite main motivation for the
work described in this chapter.

In parallel to the research concerning the formation of taeglar jet, quite some
effort was made to understand the motion of an object movingugh a granular
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medium. Different drag force laws were proposed [9-15]min&ting in a model
containing a hydrostatic term that linearly depends on #yhdinside the bed and a
dynamic term which is proportional to the square of the vigyaxf the object [14, 15].
The influence of the ambient air pressure on this traject@y wwestigated in [5, 7]
where it was shown that the drag force reduces at high ampressure. Another
important issue is the interaction between the impactitigaba the container bound-
aries. Nelsoret al. found that “the presence of sidewall causes less penetratid
an effective repulsion” [16, 17].

In this chapter, we present experiments in which the sizdnefcontainer has
been systematically reduced. We did this by (i) decreasieglepth of the sand bed
(section 6.4) and (ii) reducing the container diameter tly anfew ball diameters
(section 6.5). We explore how these confinements changeethavior of the ball
inside the bed, the void collapse, the resulting jet heightshape, and the presence
of a granular eruption, which was only observed in part ofgemeter space cov-
ered in this study. All of the observed phenomena are exgiaimithin the context
of a simple hydrostatic collapse model [3] together withagdiaw for the trajectory
of the ball inside the sand [15]. Finally, we propose an exati@n for the presence
of an eruption and a new mechanism for the thick-thin stnectaported by several
groups mentioned above.

The chapter is organized as follows: In Section 6.2 we st#H the introduc-
tion of the drag law and the hydrostatic collapse model tieaat the heart of the
analysis of this work. Subsequently we discuss our experiahsetup in Section 6.3
after which we present our results for impacts in confinetinget. In Section 6.4 we
discuss the influence of the proximity of the bottom, afterchitwe turn to the influ-
ence of the side walls in Section 6.5. Finally, in Sectioneadiscuss the thick-thin
structure and end with conclusions in Section 6.7.

6.2 Drag law and hydrostatic collapse model

In this Section we review the drag law and the Rayleigh-typkapse model that
constitute the ingredients of the hydrostatic collapse ehficst introduced in [3] and
form the theoretical backbone against which the experiseiit be analyzed.
Before doing so let us briefly recall the succession of evebservable after an
impact of a sphere on a bed of fine, loose grains. These eventschematically
represented in Fig. 6.1 and involve the introduction of svine and length scales
that are crucial to the analysis in the following SectionsaAimet = 0, the sphere
impacts on the granular medium with a velocity. A splash is created and the
ball penetrates into the sand bed. The void created by thedlpses in a time
tc (closure time) and a jet shoots out of the sand at the posgitidhe impact. The
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t=0 t=tc t=ts t=terup

Figure 6.1: Schematic representation of the impact of aibtdla sand bed, indi-
cating the time and length scales that play an importantirotbe analysis of the
experimental work in this chapter, as described in the nen t

closure depth —also known as the pinch-off point— is denassd and the position
of the ball inside the sand at that timezis ). Meanwhile, the ball moves downward
inside the sand bed. After a timg the ball reaches its final depth and stops.
Finally, a granular eruption is seen at the surfade-ater,p, Which, after comparison
to 2D experiments, has been attributed to an entrapped iMdwhich slowly rises
inside the sand bed and reaches the surface [18].

We now turn to the hydrostatic collapse model we use to expte observed
phenomena. Its first ingredient concerns the motion of tHeviigh diameterd
through the sand bed. To describe the trajectory of the bkdll {s the depth of
the ball at a time), we use the law introduced by Tsimring [14] and Katsura§i [1
The drag force is decomposed into two terms: The first onehyieostatic term,
involves Coulomb friction as well as the force needed to ldisp material against
the hydrostatic pressure and is proportional to the depdhvaas introduced in this
context in [11]. We here writéhydrostatic= KZ Wherek is a constant. The second
term is an quadratic drag independent of the defifhamic= V2, interpreted as the
quadratic force required for the projectile to mobilize duvoe of granular media
with densitypg proportional to the volume of the bdll Adding gravity, this leads to

TNote that the quadratic drag is called “inertial drag” ane= m/dg wherem is the mass of the
sphere andl is the constant introduced in [15].
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the equation of motion:
mZz=mg—Kz—aV?, (6.1)

with initial conditionsz(0) = 0 andz(0) = vo.

The second ingredient regards the dynamics of the hydiostallapse of the
void that is formed by the ball. The radius of the void at a timend a deptte,
R(zt), evolves from the two-dimensional Rayleigh-type equationvhich, for each
depthz, the collapse is driven by the hydrostatic pressaygz at that depth [3]

(RR+R?) Iog%—i—%RZ:QZ, (6.2)

whereR denotes the time derivative aiRd, is a constant of the order of the system
size. Under the assumption that the cavity that is creatagpsoximately cylindri-
cal, i.e., with the same diametatf)(as the impacting ball, the initial conditions are
R(0) = d/2 andR(0) = 0. By rescaling lengths with the ball radidg2 and time
with d/(2,/2) (i.e., R=2R/d, R= R/,/gz etc., where the dot on a dimensionless
variable denotes a derivative with respect to dimensientese), Eq. (6.2) can be
written in dimensionless form

2 R 12
(RRJFR)IOQEJFER =1, (6.3)

together with initial condition&R(0) = 1 andR(0) = 0. With these initial conditions
this equation has a unique solutiﬁff), from which we obtain a constant dimension-
less collapse timé&gy. It now follows immediately that the (dimensional) collaps
time teon [= tcond/(2,/92)] scales as- d/(2,/92).

We can combine the above two ingredients to determine thidgoand the time
of closure. The total time that elapses from the impact tactiapse of the cavity at
any deptteis given by:

ttot(z) = tpasg(Z) +teoll (Z) . (6.4)

wheretpassis the amount of time the ball takes to reach degfvbtained from solving
the drag law) and.g is the time needed for the collapse at a deptfihe closure
depthz is the depth which minimizes equation 6.4. The closure tioreesponds to
the total time at the closure depth € tiot(z)).
Finally, as argued in [7] within the context of the hydrogtallapse model, the
jet heighthjet is expected to be proportional the closure degthThis is because
the pressure that drives the collapse must be proportiorthlet pressure that builds
up after collapse along the vertical axis, which pushestoufdt. Consequently, the
initial jet velocity vie is expected to scale as the square root of the closure depth

Viet =C,/0%.
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6.3 Experimental setup

In the previous section, we have introduced the theorefiiaaiework for the analy-
sis of the phenomenon. We now turn to the description of the’mental setup,
which is sketched in Fig. 6.2. It consists of a container waitheight of 1 m and a
square cross section of 2414 cn?, which is filled with sand grains, nonspherical
and slightly polydisperse in size (between 20 angu6t); the density of the granular
medium is 221 g/cn? and its angle of repose 26As described in [7], before each ex-
periment, the sand is fluidized by blowing pressurized dryhabugh a sintered plate
at the container bottom. After slowly turning off the air flothie bed reproducibly
settles into a static, loose, weakened state (volume dradtl %). The airtight sys-
tem can be slowly evacuated to perform experiments at lowdrient pressureg
(the pump speed is low enough not to irreversibly alter thekiog fraction). Then a
steel ball of diameted = 1.6 cm and mass= 16.5 g is dropped into the sand from
different heightsH which controls the impact velocityy = \/2gH, whereg is the
acceleration of gravity. Thus, the impactor is characeetiay a single dimensionless
number, the Froude number (Fr), defined as-Rv3/(gd) = 4H /d.

The impact is recorded with a high-speed camera (PhotrambIAPX-RS) at
1500 frames per second. For the measurements a unifornmtigiiom behind is
needed to obtain better movies with higher contrast betwe=aobjects and the back-
ground. This is realized by positioning two light sourced ardiffusing plate behind
the container.

In order to obtain the trajectory of the sphere inside thelsare attach a wire
with markers which remain above the sand during impact aeadraaged with the
high-speed camera. This procedure is explained in greatail th Section 6.5-A.

We use two ways to confine the impact and jet formation expammFirst of
all, we study the influence of the bottom of the container luoeng the height at
which the container is filled with sand down to a few ball diaene (Section 6.4).
Second, to investigate the influence of the closeness ofdbenslls, we insert PVC
cylinders of varying diameters into the sand, such that fhieder axis coincides
with the trajectory of the ball inside the sand. In this pahoe sufficient care was
taken that the presence of the cylinder did not disturb thidiflation and settling
process of the sand bed (Section 6.5).

Time and position of collapse

When traveling through the sand bed, the ball creates aycaiie shape of the cavity

is obtained using a profilometer similar to the one describgtl9] (see Fig. 6.3). A
diode laser sheet with wavelength of 680 nm strikes the dmamedia at an anglé,

fixed arbitrarily at 58. Using a mirror and a high-speed camera, we can measure the
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Figure 6.2: Setup: (a) perspex container <184 x 100 cn?, (b) pneumatic release
mechanism, (c) Photron Ultima APX-RS, (d) two light soureéth diffusing plate,
(e) pressurized, dry air source, (f) computer and (g) vacpump with pressure
gauges.
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Figure 6.3: (I) Laser profilometer. A diode laser sheet (ajriscted onto the surface
at an angled. Using a mirror (b) and a high-speed camera (c), images dufface
are recorded. (II) Schematic view of the resulting surfadee dashed line represents
the laser sheet when the surface is flat and the continuaithirlaser sheet when the
surface is perturbed. The local deviatidr= x(y) — x of the laser sheet is related to
the vertical coordinatéz = z(y) of the surface. (d) is the center of the cavity, from
which the cavity radiufk(z) can be deduced.

horizontal projection of the points where the laser shaathes the sand from above.
When the surface is flat, this projection is a straight lineafi@l to they-direction;
the coordinate of a point on this straight linexs, ). When the surface is perturbed,
the projection appears to be a curved line. For any point isritte with coordinate
(x(y), y)) the depth of the surface can be deducted —as a function fsbyr-x and

X(y)

2(y) = (x(y) —x ) tan(6). (6.5)
If we assume rotational symmetry of the cavity around thearesf the ball [denoted
as :,yc)] we can in addition deduce the radius of the cavity at akbéheepthz(y)

R(zY)) =/ (X(Y) ~ %)% + (Y~ ye)?2. (6.6)

By analyzing each of the high speed imaging recordings sy, we can obtain
the cavity profileR(zt) as a function of both depth and timet (up to a certain
maximum depth that is set by the laser sheet ayle
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6.4 Influence of the bottom: A shallow bed

Now that we have introduced the experimental setup, we wiitiaue with the dis-
cussion of our results: In this Section we start with whattisesved in a less-filled
container (i.e., a shallow sand bed) and in the next Sectiocepd with the discus-
sion of what happens when the diameter of the system is dedea

Before turning to the case in which the proximity of the camta bottom be-
comes important, let us first recall in table 6.1 the resubtsioed in the usual un-
confined case, here at Er70 and ambient pressure: the container is large enough
(D =14 cm>> d) to avoid any effect of the surrounding walls and deep endtigh
height of the sand beth,eqis around 30 cm, that is 185d) such that the bottom has
no influence.

Final depthz; | Stopping timésp | collapse time,
11d 110 ms 51 ms
closure deptlz; jet heighthiet eruption timeteryp

2d 18.5d 510 ms

Table 6.1: Results obtained at £r70 andp = 1 bar in the usual unconfined case,
i.e., in a deep bed withyeg = 18.8d. These values will be used as reference values
in the discussion of the experimental results.

We modified the height of the sand béwgeq by simply adjusting the amount of
sand in the container. The first and most conspicuous efetiait below a certain
depth of the sand bed the impacting sphere is stopped apiuptts collision with
the container bottom, rather than slowly being stopped lag drs happens in the
unconfined case. In this way, decreasing the depth of thelsashdllows us to look
at the influence of the final depth of the bail,and the cavity size on the jet and the
eruption.

6.4.1 Influence on the jet

In Fig. 6.4, we show four images from the jet formed when tHei®dropped into the
sand bed for F&= 70 and ambient pressure. While reduchygg, there is no change
in the jet shape or height down to a certain threshold. Belos/threshold, the jet
reaches less high and becomes broader, most notably apthEte maximum height
of the jet,hjet, is obtained by measuring the initial jet velociy; as soon as it appears
above the surface of the sand (using energetic argumgats] vjzet). The initial jet
velocity Viet is plotted as a function diieq in Fig. 6.5: Forhpeq higher than 8, vjet
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hbed /d =5 hbed / d = 4.1 hbed / d =2.6 hbed / d =2.1

Figure 6.4: Influence of the height of the sand bgg, on the shape and height of the
jet for Fr= 70 andp = 1 bar: Images of the jet, taken atl@ s after the ball impact
for four different bed heights, decreasing from left to tigBelow a threshold there
is a clear change in height and width of the jet.
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Figure 6.5: Initial velocity of the jetyjer as a function of the height of the sand bed,
hpeq for Fr ~ 70 andp = 1000 mbar 4) and p = 100 mbar ¢). There is a sharp
threshold below which the initial jet velocity rapidly deases. The dashed lines
represent the undisturbed values/gf, measured in a deep beh§y= 18.8d).

saturates to its undisturbed value of approximate®y3/s. Reducindp,eq below 3d,

Viet decreases rapidly. When we reduce the ambient pressyre-tt00 mbar, we
find the same behavior (see Fig. 6.5) although the crossakes fplace at a slightly
higher value ohyeq. Remarkably, in both cases this decrease does not happes at t
depth at which the ball is stopped by the bottom (which wod@imunchpeg = 11d
andhpeg = 6d for p = 1000 mbar andg» = 100 mbar respectively) but at a much
lower depth othpeq ~ 3d.

This can be explained as follows: The closure degthremains unaltered by
the presence of the bottom (which belbyeg= 11d only makes the ball stop earlier
and less deep) until the bed depth becomes less than the sweebehe position of
the unconfined collapse R see table 6.1) and the diameter of the ball. Below this
value, the collapse happens on top of the ball leading tosadiesctional top of the
jet which has a more or less spherical shape; moreover tsarelalepth decreases
when the bed becomes smaller and so does the initial jetityeloc
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Figure 6.6: The timéeryp When the granular eruption at the surface starts is plotted
as a function of the height of the sand begdy for Fr= 70 andp = 1 bar (black
open circles). Measurement points witlh,, = 0 correspond to those cases where
no eruption was observed. The experimental regimes withaatisut eruption are
separated by the vertical black lines. The grey region sgmis the region where
no air bubble is entrapped. The thin black and red lines sgmitethe different time
scales that are involved in the problépis the time the air bubble needs to reach the
surface (black thin line) antd is the time the air bubble needs to diffuse within the
sand bed (red thin line). When is smaller thartp, an eruption is expected; this is
depicted by the continuous thick blue line. The differerfioas obtained from the
timescale argument qualitatively correspond to the erpemial results. More details
about the way in whicly andt, are estimated are provided in the main text.
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6.4.2 Influence on the eruption

Providing that the void collapse does not happen directtheball, an air bubble is
entrapped. The volume of this bubble can be estimated as:

Vbubble U hrzad(z(tc) —Z) ~ dZ(Z(tc) —Z), (6.7)

wherez(t;) is the position of the ball at closure amg,g is the radial length scale
of the bubble, which can be approximated by the diameter@btil. The bubble
slowly rises through the sand and can lead to a violent gaarasliption. However,
this eruption is not always observed. To study when and wisyiththe case, in
Fig. 6.6 we plot the time between impact and erupttggp, as function of the height
of the sand bedhpeq. (Note that measurement points with,, = O correspond to
those cases where no eruption was observed.) Up to a cdntaishold, which is
around 48d, no eruptions can be observed. This can be attributed toatitettat,
while rising, small air bubbles just dissolve into the sard before reaching the
surface. When the bed gets deeper, the air bubble reachetam agitical volume
V*, above which a granular eruption can be seen. From the expetal results, this
size found to be around* ~ d?(z(t;) —z;) ~ 3.8d>. Then remarkably, abovedhe
eruptions disappear again and reappears only mhen> 14d.

This peculiar behavior can be understood, at least queditat from the com-
petition of the two time scales corresponding to the two raaims the air in the
bubble has to escape from the bed:

e The bubble needs a timigto reach the surface. First of all, fogeq < 3d, the
collapse happens on top of the ball, and no air bubble is go#ih Between
3d and 55d, the position of the ball at closure(t), increases and so does
the volume of the air bubble; in this regian,decreases. While increasing the
sand depth even further, the volume of the air bubble renwnstant, but the
initial position of the bubble is deeper since the entrappgable will follow
the ball until it stops. Therefortg will increase untilhyeqis equal to 18l which
is the final depth of the ball in the unconfined case. Aboveuaise, there is
no change on the final depth athdbecomes independent of the depth of the
sand bed. This is depicted by the thin black line in Fig. 6.6.

e The air in the bubble trapped by the collapse escapes —inisheldtion time
to— through pressure driven flow through the porous bed. Fathat affect
this process are the size of the bubble (which determinesti@unt of air
that needs to escape), the pressure of the air (which appatedy equals the
hydrostatic pressure in the surrounding sand), and theHeofgthe path the
air needs to travel. For this last quantity we need to condit air can both
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escape through the top and through the bottom of the bedatttee tue to the
presence of the sintered plate. These factors combine iatoy3 law: Q [
AP/H, where the flow rat&€ depends on the pressure differer driving
the flow and the path lengtH. Turning to Fig. 6.6 again, fony,eq < 3d, no
air bubble is entrapped. Betweed and 55d, z(t;) —and therefore the bubble
size— increases, leading to a steep increase of the dissolirmet,. Upon
increasing the sand depth beyon&d the bubble size remains constant but
the pressure inside the bubble increases. From Darcy’s kahus find that
t, decreases. This continues utijlLq is equal to 11 beyond which the ball
does not reach the bottom of the plate anymore. Note thdtthigipoint the
shortest (and therefore chosen) path for the bubble to ldes$® towards the
bottom of the container. If we now increasgqbeyond 1 this shortest path
starts to grow, and with the path, using Darcy’s law, alsodissolution time.
This is captured by the thin red line in Fig. 6.6.

As a result, an eruption can be only seen if the timéecomes larger than *.
This is expressed by the continuous thick blue line, in dgathe agreement with the
experimental behavior.

*Starting from the collapse timg, the rise time of the bubble has been estimated as that of
similarly sized bubble in a liquid experiencing Stokes dragsuming that it rises in a straight path

with its terminal velocity immediately, i.e., from the bat® @pgVhupbid [ nvblu/t?blevrise (with the

packing fractiong and the dynamic viscosityy assumed to be constant) we hayge O Vbzlfsbleq
with Viupble 0 (z(tc) — z)d?. Now, we estimating the initial position of the top of the bid as
7 — (2tc) — zc). This leads tdy = (z + 2 — Z(tc)) /Miise 0 (z + 2o — Z(tc) ) (2(tc) — %) 2/3d~4/3g 1.
The proportionality constant was fitted to give the corracgé depth behavior.

Regarding the dissolution time up tgeq~ 11d we can estimate the pressure difference by the
hydrostatic pressure in the center of the bubble at the mbtherall has stoppedle. AP ~ @pg0(z —
(1/2)(z(tc) — zc)) (Wherez(tc) equalshyeg— d for hpeq < 5.5d), the volume of entrapped air again as
Vhubble J (2(tc) — z2)d?, and, since ball reaches the bottom, the shortest pathusi@dtbe ball through
the sintered plate, i.eH ~ d. Using Darcy’s law we have ~ Vyubple/ Q O VhubbidH /AP. Inserting the
above quantities we obtain (z(tc) — z:)d3/ (@pga(z — (1/2)(z(te) — zc)). Abovehyeg= 11d only the
path length changes té [ hpeq— zf such thaty O (z(tc) — ) (hped— zf)dz/(qopgg(zf —(1/2)(z(te) —
Z)). Again, the proportionality constant was used as a fittimgupeeter.
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6.5 Influence of the side walls

In the previous section, we discussed the influence of themadf the cavity on the
process of object penetration and jet formation and fouat] ihthe sand depth is
fixed at 30 cm, there is no effect of the bottom on the jet foromaprocess. Fixing
this bed depth, we now turn to study the effects of the sidésvedithe container on
the complete series of events leading to the jet. For thimesoylinders of different
diametersD are placed inside the sand during the fluidization processchoose
D=42cm, 6 cm, & cm, 10 cm and 18 cm. In this way we change the aspect
ratioD/d from 2.6 to 7.8.

6.5.1 Balltrajectory

The first thing that happens upon impact of the ball onto théaee is that it pene-
trates and creates a void inside the sand bed. The questiaskii the next subsec-
tion concerns the influence of the container diameter on thag fbrce experienced
by the ball during its motion through the bed. To monitor ttegetctory of the ball, a
wire with a tracer is attached to the ball. Using a high-speedera (1500 frames per
second) and image analysis, we obtain the trajectory ofrtwet and therefore the
trajectory of the balk(t). To keep the wire tense an extra friction device and a light
counterweight are used, which have the effect that the kpkrences a downward
acceleration due to gravity which is approximately 10 % $endhang. The actual
acceleration is measured during the “free fall” part of ttegeictory, and the results
presented here have been corrected for this effect.

In the top two plots of Fig. 6.7, we compare the trajectoriethe ball at ambient
pressure for an impact with Ef 25 and for two diameters of the confining cylinder
(D =6.0 and 100 cm). We can fit the experimental trajectories using the miode
troduced in Section 6.2 (Eq. 6.1) usiogandk as fitting parameters. The agreement
between the model and the experiments is very good (see .FFig. 6

Decreasing the diameter of the container surprisinglyeiases both the final
depth of the ballz and the time to reach the final depth, In Fig. 6.8a, we re-
port the final deptlz as a function of the container diameter at different pressur
for Fr=25. There is a clear dependence: The final position of theibdikeper for
a smaller container. Also, the influence of the boundarieshis Froude number is
less pronounced at small pressures. We conclude that ferZsrthe drag force the
ball experiences becomes smaller for small containers.

But what happens at higher Froude numbers? In Fig. 6.8b, patréhe final
depth,z as a function of the container diameter for=Fr75. At first glance the
behavior now seems completely opposite to what we obsesraalt Froude number,
as the final depth now decreases with decreasing contaiagretitr: To be more
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Figure 6.7:(top) Depth of the ballz(t) (a) and its velocity(t) (b) as a function of
time after impact for F&= 25, p= 1000 mbarD = 10 cm ) andD =6 cm (d). The
lines correspond to a fit using equation 6.1 with- 4.525 N/m ando = 0.132 kg/m
for D =10 cm andk = 1.695 N/m anda = 0.118 kg/m forD = 6 cm. (bottom)
Depth of the ballz(t) (c) and its velocityv(t) (d) as a function of time after impact
t for Fr=75, p=50 mbarD = 4.2 cm (0) andD = 125 cm [@). Again, the lines
correspond to a fit using equation 6.1 with= 14 N/m anda = 0.281 kg/m for
D = 4.2 cm and withk = 135 N/m anda = 0.111 kg/m forD = 12.5 cm. Within
the smallest container, and only at low pressure, we obsameenalous behavior:
The ball reaches a plateau in which the velocity remainstaohdefore going to
zero again at larger times. Clearly, the model fails to dbsdhe data in this case.
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Figure 6.8: Final deptlz as a function of the container diameter at different
pressures, for a) Ft 25 and b) Fe= 75. The final depth is divided by the final depth
for the unconfined case in order to emphasize the deviatiaesta the proximity
of the boundaries. The dashed lines are a guide to the ey@anate the different
pressures.
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precise, at atmospheric pressure the final depth stays nndessconstant and at
lower pressures there is a decreasg with decreasing container diameter. So now
the drag force seems to be larger for small container diasete

To understand this difference, we have to separately lodkeabehavior of the
hydrostatic and quadratic drag force: After all, for smathlkde numbers we expect
that the hydrostatic dragkz will dominate the behavior of the ball, whereas for
higher impact velocities it is expected that the quadratgd v will start to become
increasingly more important during the motion of the balbd tfis end, in Fig. 6.9
we plotk and a as a function of container diameter for three different guess.
Each value represents the average parameters obtainefit8oothe trajectory data
analogous to the ones of Fig. 6.7 over a range of Froude nsriroen 25 to 103. As
shown by Caballero [7], the hydrostatic force depends omithieient air pressures
decreases witlp roughly asp~Y/2. Our findings are consistent with this observation,
also for smaller container diameters (not shown). Nextigwle find thatk increases
quite steeply withD, which is consistent with the lower drag experienced by the
impacting ball at smaller container diameters at low Fraug®bers. Physically, the
behavior of the hydrostatic drag force can be understoaagusisimilar argument
as [7]: When the ball passes through the sand, an air flow &emtearound it which
fluidizes the sand bed and reduces the drag force. This éffegpected not only to
be more important at higher pressure but also when the camtdiameter becomes
smaller: Near the wall, the velocity of the interstitial &rrequired to be zero and,
since the same amount of air needs to be displaced, the fldwenihore important if
the aspect rati®/d is small. Consequently, the hydrostatic drag force willdoedr.

Figure 6.9b contains the coefficieatof the quadratic drag terrav?. Clearly,
o becomes larger for smaller container diameters but therdifice is hardly as pro-
nounced as was the case farThis accounts for the observation that at some point,
for larger Froude number, the drag does become larger wigecotfitainer diameter
is decreased.

Finally, in Figs. 6.9a and b there is one exceptional value:tke smallest con-
tainer diameterd/d = 2.6) and the lowest pressure (50 mbar) the fitted values of
Kk and a turn out to strongly depend on the Froude number. The botwonptots
in Fig. 6.7, which contain two trajectories at 50 mbar for kwgest and the small-
est container diameter, reveal the reason why: Whereashéobiggest container
(D =125 cm), the behavior is similar to the behavior described fo=R25, for
the smallest one{ = 4.2 cm) it is qualitatively different. Whereas the agreement
between the experimental and the computed trajectory eslins to be reasonable

8The (small) differences in the fitting parametarsind a found for the various Froude numbers
were consistent with the measurement error, except forrttadlest container diameter at the smallest
pressure, as explained in the text.
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Figure 6.9: a) and b)a as a function of cylinder diameté for different pres-
suresp. For almost all values ob and p variations of bothk and a are within
the measurement error and each point is obtained from aags@ver a range of
Froude numbers from 25 to 100. Only for the smallest contgidéd = 2.6) and the
lowest pressure (50 mbar), there is a strong dependengeantl a on the Froude
number; the model is not valid in this situation. Plot b) re@gethat for large Fr the
quadratic drag takes over for small cylinder diametersiteatb less intrusion of the

ball (Fig. 6.8).
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(Fig. 6.7c), the velocity of the ball (Fig. 6.7d) presentgéadiscrepancies: The mea-
sured ball velocity doesn’'t decrease to zero gradually,fibsit slows down until it
reaches a plateau at constant velocity where it stays forile Wéfore slowing down
until it stops. This behavior is identical to the one obsdrivethe X-ray experiments
of Royeret al. [6], in which the container needed to be kept small. The faat the
velocity plateau is only present for small container diargtclearly indicates that it
is a boundary effect.

We believe that the origin of the plateau lies in an additidoece acting on
the sphere that originates from the side walls and is matliayethe sand graink
In order to produce a constant velocity during some timeriale this force must
be depth-independent, dominant over the hydrostatic dvege fand must, together
with the quadratic drag force, balance gravity at the plateglocity. The constant
velocity regime ends when, at a certain depth, the Couloraly ésrce takes over
again, slowing the ball down to zero. The verification of taésertion goes beyond
the technical possibilities of our set-up and asks for rrgtudy.

6.5.2 Collapse of the cavity

The second issue that we want to address in this Section isfthence of the con-
tainer diameter on the collapse of the cavity. We study theadyics of the collapse
of the cavity at closure depth using the profilometric mettedcribed in detail in
Section 6.3. In Fig. 6.10, the radius of the cavity is plotéeda function of time
t — tpassfor two different diameters at atmospheric pressure whgggis the time
needed for the ball to reach the closure degthWe can clearly distinguish a slight
expansion of the cavity followed by a strong contractione Thllapse accelerates to-
wards the pinch-off. Due to experimental limitations we ad have enough spatial
resolution to obtain data points close to the pinch-off. Voiel dynamics is in qual-
itative agreement with the behavior predicted by the 2D &ightPlesset equation
described in section 6.2 (Eq. 6.2). Whereas the expansios twt to be weak and
more or less independent of the container diameter, theaian and the closure
strongly depend on it. A plausible explanation would be,tf@t small containers,
less sand is involved in the collapse. Therefore, the hyalticpressure which drives
the collapse is not as sustained as for a larger containgigieing why the collapse
takes longer for a smaller container (Fig. 6.10).

In Fig. 6.11 we plot the closure depth and the closure timg. We find thatt,
increases ang. decreases when decreasing the container diameter. Theadeof
the closure depth is generic: Also for small Fr, wharactually increases, we find a
decrease daf;. The fact that a decrease of the closure depimplies an increase of

YIn our view, as the ball penetrates into the bed it pushes agaihst the side walls such that a
jammed region (or force network) is formed between the sphad the walls that mediates this force.
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Figure 6.10: Dynamics of the cavity collapse at closure liépt two container di-
ameterd = 4.2 cm (@) andD = 10 cm ). Here, Fr= 70 andp = 1 bar. The time
has been rescaled by multiplying with a factqy@z/d in order to show the results
in a single plot. The continuous line correspond to a fit utieg?D Rayleigh-Plesset
equation (Eq. 6.2).
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the collapse timé,q can be understood from a reduction of driving pressirgz,)
and the availability of less sand for smaller container ditars (as explained above).

6.5.3 Jet Height

Now that we studied how the process of the formation and suies# collapse of the
cavity are influenced by the proximity of the side walls, watimue with the influ-
ence of the diameter of the contairi2ion the jet and, in particular, on the maximum
height reached by the jet. In Fig. 6.12, the jet heightis plotted as a function of
the diameter for two Froude numbers €125 and Fr= 50) at different values of
the ambient pressure. Since it was already discussed &xdbnis [7] that the jet
becomes smaller at reduced ambient pressure, we now digidey the jet height
in the unconfined situation. We observe that, while decnegtfie container diame-
ter, the jet reaches less high. This behavior is the combiesalt of the reduction
of the closure depth and the increase of the closure time détineasing container
diameter as was described in the previous subsection: Thetien ofz. reduces
the hydrostatic pressure that drives the collapse and tnedse of the closure time
is connected to the fact that —because of the reduced centdimmeter— there is less
sand available during the collapse, making the drivingsuresless sustained. Both
factors contribute to a decrease of the jet height. The liegcay the unconfined jet
height also reveals that the influence of the boundariesniasifor all pressures and
even for these two different Froude numbers. The unconfird@bor is obtained
when the diameter of the container is seven times higherttieadiameter of the ball.
At high Froude number (Fr = 100), the results can only be abthifor small
containers, because, when the diameter is large, the Jetesoith the splash which
is being sucked into the cavity behind the ball at high ambpessures. This is
similar to the surface seal that has been observed for impaca liquid [20, 21]. For
this high Froude number the results are less conclusivearade seen in Fig. 6.13.
This is possibly due to the increased importance of the aiv 8aused by the ball
when it is restricted to a smaller container diameter atettégh impact velocities.

6.5.4 Granular eruption

Finally, we turn to the granular eruption that terminates skries of events. Since
the container diameter has an influence on both the final deytithe closure depth,

it is expected that the granular eruption will depend on the&ainer diameteD. In

Fig. 6.14a we report, for F= 100, the phase diagram indicating the presence of an
eruption in(p,D)-spacél. There is a marked dependence on the container diameter

IITo obtain Fig. 6.14 the closure depthsor the diameter ob = 8.5 cm (which were not measured
directly) are obtained by interpolation from Fig. 6.11a.
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Figure 6.11: (a) Closure dept as a function of the container diameterfor dif-
ferent pressures. (b) Closure tirgeas a function of the container diameterfor
different pressures. For all measurements-H0.
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Figure 6.12: The jet heighhye; as a function of the container diameffor Fr= 25
(a) and Fr=50 (b) at different ambient pressures. The jet height igiéidiby the jet
height in the unconfined case in order to see the deviatioagalthe proximity of
the boundaries. For all pressures and Froude numbers theiggtt increases with
increasing container diameter. The dashed lines are a tuitle eye to separate the
measurement series at different pressures.
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Figure 6.13: The jet heightter as a function of the container diameifor Froude
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Figure 6.14: (a) Phase diagram for the granular eruptiom at F00 as a function of
the pressurg and the container diamet&. In both plots red open circles indicate
parameter values where an eruption was absent, whereaplokisigns stand for
parameter values with an eruption. (b) The same phase diagraw as a function
of the volume of the entrapped air bubbie(f.) — z;) /d) and the container diameter
D. The latter plot clearly indicates that the presence of thpt®n is a function of
the entrapped air bubble size only.
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D: More eruptions are observed in a small container than inge leontainer.

This behavior can be explained using the influence of thewals on the tra-
jectory of the ball and on the collapse time together withdlesure depth: For the
same pressure, the closure time is larger, which leads teed@osition of the ball
at closurez(tc), and at the same time the closure depth is smaller, incigp#isinsize
of the entrapped air bubble for small container diametdnselreplace the pressure
in Fig. 6.14a by the quantityz(t.) — ;) /d which is proportional to the volume of the
entrapped air bubble [remember that it was argued\thabie ~ d?(z(tc) — z), see
Eq. (6.7), which is subsequently divided 8], we remove the dependence Bnin
Fig. 6.14b the phase diagram is separated into two partg adiorizontal line repre-
senting a critical volum¥* ~ 3.8d%. This means that, independently of the diameter
of the container, the bubble volume upon its formation hdsetbdig enough to lead
to an eruption. As was explained in Section 6.4 this is bex#us air bubble must
have sufficient time to reach the surface before it has caelpléissolved into the
sand bed. Incidentally, the value for the critical voluméedmined from the phase
diagram corresponds well to the value found in Section 6.4.

6.6 Jet shape and thick-thin structure

The proximity of the side walls and the bottom does not onfgafthe height of the
jet but also its shape. One of the most prominent featurdseishick-thin structure
first described by Royeet al. [4, 6] who studied the dependence of this structure
on ambient pressure and Froude number. In the same work Rbgkrproposed a
formation mechanism for the thick part of the jet based orptiessurized air bubble
pushing sand into the thin jet originating from the pinchaifthe closure depth.

In this Section we report, in addition to the Froude and pnesslependence, a
pronounced dependence of the thick-thin structure on theipity of the container
boundaries. We propose an alternative model for the foomati the structure which
semi-quantitatively accounts for the observed behaviahefphenomenon for the
entire parameter space.

6.6.1 Observations

In our experiments we can distinguish three different jeip&s, two of which exhibit
a thick-thin structure:

(1) a‘normal’ jet, in which the width of the jet gradually deases from bottom to
top,

(2) a thick-thin structure with a sharp shoulder, where tiektlower part abruptly
changes into a thin upper part,
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Figure 6.15: Typical snapshots of the three distinct jepsbabserved in experiment:
1) Normal jet (forD = 10 cm, Fr= 100 andp = 1000 mbar); 2) Thick-thin structure
with sharp shoulder (fob = 8.5 cm, Fr= 100 andp = 100 mbar); 3) Thick-thin
structure with a transition (fdb = 10 cm, Fr= 50 andp = 50 mbar). All snapshots
show the fully developed shape of the jet at its maximum Heighe snapshots are
not on the same scale.
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(3) a thick-thin structure with a transition, charactedizgy a transient region in
which the thick lower part gradually passes into the thinarggart.

An example of each of the three jet shapes is shown in Fig. 6.15

First, we briefly look at the influence of the bed depth on thesactures for a
moderate Froude number (Er70). At atmospheric pressure we observe a ‘normal’
jet for all values of the bed depti,eq (Fig. 6.4). To observe a thick-thin structure
we need to go to lower ambient pressures: At 100 mbar, a thickstructure with
sharp shoulders can be observed in the unconfined castrilargehyeq (Fig. 6.15).
Below a certain thresholdhfeq < 4d), the thick-thin structure gradually disappears
(Fig. 6.16). This disappearance coincides with the disagmee of the entrapped air
bubble below & in which case the collapse happens more or less on top of the ba

The effect of the proximity of the side walls (within a suféatly deep bed) is
reported in the three phase diagrams of Fig. 6.17, wherestt#hapes are classified
as a function of container diameter and pressure, for thffsgeht Froude numbers.
For the lowest Froude number (Er25), a thick-thin structure with a transition is
found only for the smallest pressure at intermediate coatailiameter. Thick-thin
structures with a sharp shoulder are not found for this Feoaaimber. When we
increase the Froude number, the thick-thin-structureoregs found to grow. Within
the region containing the transition variety of the thibkatstructure we observe the
formation and growth of a region containing the sharp-stieuvariety. Although the
thick-thin-structure region grows to include the largeshtainer diameters that we
have used in our experimetit, thick-thin structures are never found in the smallest
container diameter for the parameter space explored irstingy.

Remarkably, in our experiments a granular eruption (aljmaster coincides with
a thick-thin structure (one can, e.g., compare Figs. 6.hdiz6al7c). Combined with
the fact that a granular eruption only takes place for largeapped air bubbles (as
explained in Section 6.5.4), this implies that thick-thirustures are only formed
for smaller entrained air bubbles. This in turn seems to beoirtradiction with a
mechanism in which the pressurized air bubble pushes up begtial that forms the
thick part of the jet [6], since such a mechanism is likely éodtronger for a larger
entrapped air bubble. In addition, for varying containeanaiter, we observe both
thick-thin structures and normal jets for the same amouernhtfapped air.

We will therefore in the next subsections propose an alteanechanism for
the formation of the thick-thin structures. At this poinsiitould be stressed that there
is no direct experimental evidence for the proposed meshaas this would require
the ability of imaging the events inside the sand, whichlunttwv is possible only in
a small setup [6]. This issue needs to be settled in futuearek.

**Note that the largest container size (the one without arrtiedecylinder) has not been included
because of its square cross section, which is found to hawkechinfluence on the jet shape.
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hoeq / d = 4.1 hbed/ d =34 hpegq/d=2.6

Figure 6.16: Three snapshots of the shape of the jet at elifferalues of the height
hpeq Of the sand bed, taken 120 ms after the ball impacpferl00 mbar and F= 70.
For hpeg= 4.1d there is a clear thick-thin structure (with a transitionioey, which
gradually disappears when the bed height is decreased doaBdd 26d.



6.6. JET SHAPE AND THICK-THIN STRUCTURE 145

10° 'normal jgt o o o o
—_ o (0} O O (o]
E o (0} O O o
8 o o R O O o
o (o] f’&’ --;(~'O (@)
transition regime
-2
10 ‘
0 5 10
D/d
10° ‘normal Jgt 6 o o o
— o O O O _? -
- _.---"Transition
S © . .9--"F X Fegime
8 o) :‘1;‘~~ X X x 9
Q. O + F--x
107 Thick—thin structure
0 5 10
D/d
10° normaljet = I
S ° PTTE Y ftfansition
o N .
= o i 1T rbaime
o o "'+ + o+ +
P Thick—thin structure
10 ‘
0 5 10
D/d

Figure 6.17: Phase diagram of the observed jet shapes astfunf the ambient
pressurep and the container diametBrfor three different Froude numbers: (a)Fr

25; (b) Fr=50; and (c) Fe= 100. The dashed lines are a guide to the eye to separate
the different regions in the phase diagrams.
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6.6.2 Hypothesis

We propose an alternative model for the formation of thekttidin structures based
on the hypothesis that there is a second collapse that tdd&es pn top of the ball
forming a second jet. Such a second collapse can be motiftaiedexperiments
in a quasi-twodimensional setup [18] and from X-ray measer@s [4, 6], where
multiple collapses have also been observed. The idea idlaw$o Since the ball is
still moving when the first collapse occurs (section 6.3#&) decond collapse happens
at a later point in time and therefore the first jet is alreadllwn its way in the
formation process when the second one is being formed. Wespeaulate that, if
the second jet can catch up with the first fast enough, it wtilithbase and produce
a thick-thin structure. When the time span between the tigigetoo long however,
the first jet will have (almost) fully formed and the collisiof the second jet with its
base will not disturb its shapd and hence not create a thick-thin structure.

In order to test the above hypothesis, we need to estimatedto experimental
data the time interval between the moment that the first jigrimed at the closure
depthz, and the moment that the hypothetical second jet reaghe$his will be
done in the next subsection. If the hypothesis is correctwilldind that thick-thin
structures are only formed below a certain threshold valdkis time interval.

This alternative model is not in contradiction with the esipental observation
that a granular eruption almost never coincides with a tthak structure: If an erup-
tion is observed, this means that a relatively large air lulphust have been en-
trapped. This concurs with a large distance between theaficsthe second collapse
point, which makes it unlikely that a thick-thin structurdlwe formed. Conversely,
if a thick-thin structure is observed, this means that aafnedly small) air bubble
must have been pierced by the second jet, which will fatdites dissolution in the
sand.

The proposed mechanism can at least qualitatively incatpgsrevious experi-
ments done in [5, 6]. They observed that the height of thektigitdecreases when
the diameter of the ball or the ambient pressure decreassse@sing one of these
parameters decreases the final depth of the ball and therdfeposition of the sec-
ond collapse. As the height of the jet depends on the positidime second collapse,
a lower depth will result into a less high jet.

TTAt this point it is good to note that such a mechanism explaihg the occurrence of a thick-thin
structure never seems to interfere with the jet height: Téight is determined by the free flight of the
thin part which is being formed at the first closug i.e., before the formation of the thick part can
become of influence.
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Figure 6.18: Schematic drawing of the proposed mechaniadirlg to the thick-thin

structure. In case (a), the second collapse happens befmdain threshold time,
such that the thickness of the layer of sand from the firsapsk still is thin enough
to be pushed up by the second jet and a thick-thin structuergem. In case (b) we
are above the threshold: The second jet collides with a tlaigkr of sand and is
unable to disturb the formation of the first jet.
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6.6.3 Estimating the time interval

In order to test our hypothesis, we now proceed with the ediom of the interval
between the time that the first jet is formed at the closurdhdepand the moment
that the second jet reaches This time interval consists of the difference between
the two closure time#t > —t;) (wheret is the closure time of the lower collapse),
summed with the time the second jet needs to reache., (z — z;) /v» with v, the
velocity of the second jet. If this time interval is shorteah some threshold valdg

we obtain a thick-thin structure, as visualized in Fig. 6.1Bis leads to:

4% \7 % F(te2—t) <T (6.8)
2

Before continuing our estimate, let us first illustrate tharkings of this mecha-
nism in an example: For F+ 75 andp = 50 mbar we start from the largest container
size where a thick-thin structure is visible. When decraatiie size of the container,
the closure deptl, and the final deptlz decrease following approximately the same
behavior, such that the distance between the two collagse®iie or less constant.
Becausez decreases, the hydrostatic pressure and therefore thetyedbthe sec-
ond jet decrease as well, such that the first term in Eq. (B@pases. The same
holds for the second term, because the closure time is favimdtease with decreas-
ing container diameter (cf. Fig 6.11b). Thus, the left haidé &f Eq. (6.8) increase
with decreasing the container diameter, explaining whgwed certain diameter the
thick-thin structure disappears.

We now approximate the several terms in Eq. (6.8) with expentally known
gquantities. Because there is no direct experimental eviléor the second collapse,
this involves some speculation in which we suppose that thdetof section 6.2 can
be extended to describe the second collapse. Doing so, firshéerm of Eq. (6.8)
the velocity of the second jetsp, is proportional to the square root of the driving
hydrostatic pressure at dephi.e.,v, =C, /g%, with C constant. Because, similarly,
for the velocity of the first jet we havge; = C, /0%, we findvs ~ /7% /Z Viet Which
is inserted into the first term of Eq. (6.8). In tune can be deduced from the jet
heighthjet asviet = 1/29Met.

In the second term, the unknown quantity is the second aasmet;, —i.e., of
the cavity just above the ball- which consists of the sum eftitmets the ball needs
to come to a standstill and the tinigy > the cavity needs to collapse at that point.
Since according to the Rayleigh model discussed in Sectidrih@ collapse times
should scale atqi2 = C'd/(2,/9%) andteq = C'd/(2,/9%) respectively (withC’
constant), we haveoi2 ~ \/Z/ztcn. Inserting all of the above in Eq. (6.8) we
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Figure 6.19: Phase diagram with on the vertical axis thénkafid side of Eq. (6.9) and
on the horizontal axis the container diamdierThe plot contains all measurements
from Fig. 6.17. Short, green dashes indicate normal jetsrrimediate, blue dashes
the thick-thin structure with a transition, and long, redluzs thick-thin structures
with a shoulder.

obtain
4 — 7

Ve \/§+ (ts—te) < T. (6.9)

In Fig. 6.19 we find a phase diagram in which all measuremeaits Fig. 6.17
are plotted again, but now with the left hand side of Eq. (8®)he vertical axis.
Clearly, all thick-thin structures (intermediate and Eadashes) lie below some time-
threshold, in agreement with the formation mechanism dsed above. The smallest
container diameter forms an exception, in the sense thatthik-thin structures are
also not found for time scales where they could have beenceegdi.e., that lie
clearly below the threshold@). This behavior may be due to the fact that lack of
material to sustain the collapse leads to an underestimatiadhe actual times in
Eqg. (6.9). But in general the estimate seems to work fairlif.we

+ teoll
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6.7 Conclusions

In conclusion, we have studied the influence of the bounslanethe various phe-
nomena that can be observed after impact of a ball on a logsalyed sand bed:
The penetration of the ball into the bed, the formation of i vits collapse and the
creation of a granular jet, the shape of the granular jet,thagresence of a gran-
ular eruption. We have shown that the observed behavioreob#ifl inside the sand
bed and the formation and collapse of the cavity created &yt is generally well
captured by the drag law and hydrostatic collapse model cti@e6.2.

In more detail, we have shown in the first part of this study tha proximity of
the bottom changes these phenomena, starting with the wbwodification of the
final position of the ball, which below a certain depth jusshihe bottom. The height
of the jet is affected, when the void closure is constraireetigppen on top of the
ball. A granular eruption at the surface only happens if thleme of the entrapped
air bubble is large enough, and can be fully suppressed yeasiog the height of
the sand bed.

In the second part we have investigated the influence of pesde walls. Here
we find a strong influence on the drag force that the sand betsexethe ball when
it moves through the sand bed: We find that the hydrostatig fivace component
becomes less important, whereas the quadratic (veloejgmdent) component be-
comes more important. The latter can be traced back to theased importance of
the air flow in the container due to the confinement. Apart ftbenquestion why and
how the coefficients depend on ambient pressure and contdim@eter, the drag
model of Section 6.2 provides a quite accurate descriptfotien observations for
most of the parameter space. Only the results for the srhabesainer at low ambi-
ent pressure cannot be explained using this framework, atleetconstant velocity
plateau that is observed during the motion.

The formation and subsequent collapse of the cavity is ngtinfluenced by the
modification of the trajectory of the ball; also a smaller amtoof sand is involved
in its collapse which therefore takes longer for decreasedainer size. Apart from
this, the simple hydrostatic collapse model of a cylindrizavity presented in Sec-
tion 6.2 accounts well for most of the observations. In thé/ythe modification of
the closure time, and closure depth observed in our expaténean be understood.

As a result of both the changes in the ball’s trajectory amedsthaller amount of
sand that is involved in the collapse, the jet height is adfédy the proximity of the
wall. In the parameter range of our experiments the uncamtimdavior is retrieved
when the diameter of the container is larger thdntfiis value however does seem to
depend on the Froude number, and is larger when the Froudbanusnlarger. The
occurrence of a granular eruption was shown to be correlaitbdthe size of the air
bubble entrapped inside the sand bed.
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Finally, this chapter culminates in the proposal of a newmacsm for the for-
mation of the thick-thin structure, based upon a secondjesd that occurs on top of
the ball when it has come to a standstill. To obtain a thick ipethe jet, the second
jet coming from this secondary collapse needs to be formg&defaough to penetrate
the rapidly growing layer of sand that is being created adotne point where the
first jet had originated.
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Conclusions and Outlook

The response of dense suspensions to an external forcewgasgated in two special
experiments. Although all dense suspensions show qunadiathe same behavior in
basic rheological experiments, namely slight shear thipfollowed by more sudden
shear thickening with increasing shear rate, in these erpets, the behavior of the
suspensions was found to be very different.

In our first experiment we let objects settle in a deep bathadbus suspensions
(chapters 2 and 3). In every suspension but one, we obsemvdldrsbehavior as
in Newtonian liquids: The velocity accelerates (cq. deegés) towards a terminal
value, and the object simply stops at the bottom. Only in eéps>- 0.38) cornstarch
suspensions we saw completely new phenomena, which sugéstontact forces
must play an important role. First, instead of exponertiaibving towards a termi-
nal velocity, the velocity of the object actually startsitiating between two values.
In contrast to earlier work, e.g., that describing osdilas in viscoelastic liquids,
these oscillations do not damp out, at least not within oyeédrental conditions.
We found that modeling such behavior is challenging: Weeatbat shear thickening
and viscoelastic models fail to describe the observed behahe most promising
candidate is a hysteretic drag model, in which the systesrrates between two
branches of the drag force and thus between two differemtinett velocities. Before
either of those velocities is reached, there is a changeam, @nd thus a switch to ac-
celeration or deceleration. Details of this hysteretigdreodel are still missing, such
as the fact that crossover velocities have to be varied niigrfoa different masses
of the settling object, whereas it would be more logical tthatse would be liquid
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properties. We show that the bulk oscillations are not cdbgenteractions with the
wall, as the proximity of the walls actually damps out theikkstions. The second
phenomenon is seen when the object approaches the bottdra cbntainer, where
it comes to a full stop at a short distance from the bottom. Bleete this effect is

caused by a layer of jammed particles between the objectrentddttom. After the

jamming, due to a small difference in pressure between thened and surrounding
region, there is a flow back into the jammed layer. This laydasequently unjams
and the object reaccelerates. As only a slight decrease jimonming was needed
to reaccelerate, the layer can get jammed again easilgrtiest the process. This
can occur several more times before actually reaching ttierho This jamming and

unjamming was modeled and we were able to reproduce the ioelavy accurately

for a settling cylinder, and reproduce the first cycle for lisg sphere.

Although a wide variety of parameters has been studied, andbtained a good
understanding of the effect at the bottom, a more completenstanding of the bulk
oscillations is still lacking. Rheology experiments thatuld focus on the hysteresis
may give more insight in this phenomenon. It would also ber&gting to examine
whether the phenomena would be visible when we would haveession flowing
through a pipe or around an obstacle, which would be morettirapplicable to
industry.

In our second experiment, we exerted vertical vibrations tioin layer of dense
suspensions (chapters 4 and 5). For almost every diffetespesision we used, we
observed a different phenomonology when vibrated. Agaitersse cornstarch sus-
pension { > 0.37) was found to have the richest of phenomenologies of a&itl us
suspensions: Depending on the packing fraction and therghplrameters, we ob-
served stable holes, rivers, jumping liquid and fingerliketqusions. Other suspen-
sions actually showed none of these phenomena: Polydéspersicle suspensions
give holes that continuously split, collide, and merge dber entire surface of the
layer. In monodisperse particle suspensions holes werelftaugrow over time and,
depending on shaking and suspensions parameters, thisarokither grow to form
a separated state (or kink) in which half of the containetaios suspension, and the
other half is dry. The similarity between all these phenoanisrthat a convection roll
was observed on the edge of the liquid.

In the same experiment, we studied the dynamics of thesemgdwles in more
detail, and compared it to collapsing holes in Newtoniamitlg. We found that
the closing of the hole in a Newtonian liquid is largely indagent of the shaking
parameters and inversely proportional to the viscosityhefliquid. When shaken,
a hole was found to close on average at the same rate as it wd the liquid
would be at rest. The hole size is found to oscillate arouiglaberage at the same
frequency as driving. For a dense suspension containingdigperse particles, in
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the regime where the hole is found to grow, we investigatedetifiect of particle
size and the viscosity of the liquid. We found that for lowéscesities the hole
opens faster, but also the hole edge becomes less stable radd likely to fall into
the hole and close it again. The most remarkable phenomenitiati although the
hole opens, the velocity during the closing half of the cyislactually larger than
during opening. This is where the difference with the Nevaorliquid is found:
Whereas the hole in the Newtonian liquid oscillates alonttp wie driving, following
an almost perfect sinusoidal pattern, the hole in the sisperoscillates in a far
from symmetric manner. Not only are the peak velocitiesedé#ht, with a larger
inward velocity, also the width of the halves are very difet: The closing half is
very peaked, where the opening half is more sinusoidal ipesh#t was found that
the results for these experiments scaled very nicely wittr, leading us to believe
that due to the vertical vibrations a difference in volumection is created over the
height of the suspension, resulting in a thin lubricatioyefaof suspending liquid
during the opening half of the cycle. This last statementdade be confirmed in
future experiments.

The biggest question that remains after these two expeté#msenWhat makes
a cornstarch suspension so special? Their physical prepeitheir edgy shape and
relatively flat size distribution— are unique, and were motrfd in other commonly
available —and neither in even quite exotic— particles. vBugther it is truly the geo-
metrical properties of the cornstarch particles that $etsitapart from other particle
suspensions remains to be investigated thoroughly.

In chapter 6 we performed experiments in a different ‘susjmery, namely in
sand (silica) particles surrounded by air. We studied thmaichand settling dynamics
of an object in a loosely packed sand bed of restricted difoess After impact, a
splash is observed, which is in contrast to impact on a damsggession. The object
then penetrates further into the bed, creating a void, whiithcollapse under the
influence of hydrostatic pressure. This collapse leadséet, ahich shoots out of the
bed (which was also not observed for a dense suspension).

In this work we varied the proximity of the boundaries, naynantainer width
and bed depth. In this experiment, we observed that the lawigsdcan influence the
experimental results in four ways: First, by changing thiects trajectory, which in
turn influences the collapse of the formed cavity. This imtafluences the resulting
jet height and shape and finally there will be an effect on iime tand strength of
the eruption at the very end, the surfacing bubble. The inflaeof the bottom on
trajectory, cavity, and jet could be deduced in a straightfsd manner. When the
layer is shallow enough, the ball will stop on the bottom,rading the height of the
collapse and thus the velocity of the jet. The influence ofditke walls is more
complicated. Due to the confinement, air flow caused by theabliself becomes a
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more dominant factor. The object’s trajectory was found eonell described by a
drag law, containing a hydrostatic pressure and a quadtedg. Only when the side
walls are very close to the impact the model fails and theablbgaches a temporarily
constant, “terminal” velocity, before slowing down to zero

The cavity formation and collapse is thus changed by the fication of the tra-
jectory of the ball. But, in addition, also the amount of samalved in the collapse
changes the dynamics and therefore the resulting jet heilyhen the object pene-
trates very far into the bed, a second collapse will happearchndeeper in the bed.
When this second jet overtakes the first jet, which can happerto a more violent
collapse, a very remarkable jet structure can be formed,hictwthere is a broad
shoulder separating a thin jet from a very broad jet. We eckatmodel that predicts
when this second jet will influence the shape of the jet we idesabove the bed
surface.

The eruption, which is caused by an entrapped air bubble gifieh off rising to
the surface, was found to depend on the size of the bubblethandissolving time.
This causes the eruption to alternately be not visible asiblei two times, when
increasing the sand depth.

In the settling experiments in our two “suspensions”, ctamreh in water and sand
in air, we can find similarities and differences. Both expenits lead to behavior
different from that in a Newtonian liquid, but the observeghavior is very different
in the two materials. Whereas, there is a sort of constantitglin cornstarch, there
is a continuous decrease in velocity for the granular case.

A similarity is that in both systems, the objects eventuatlyps because of jam-
ming. In both baths, the movement of the object causes a ehamgacking fraction
in front of it until jamming is reached. The difference istfar the granular bed, this
happens somewhere in the bulk, whereas this only happess twahe bottom for
the cornstarch suspension. The reason for this is the eliféerin surrounding liquid.
Water is strong enough to counteract this increase in pgdkaction, whereas air
is not. This also explains why this behavior only happenselm the bottom for
cornstarch, and why unjamming takes place after the ob@ues to a stop.

Research on the granular jet now turns to the observationhaft Wappens in-
side the sand bed, using X-ray technology and pressure negasnts. With these
techniques we can get a better view of the processes insdeetth which was not
possible in the experiments that were done for this thesis.



Summary

In this thesis, we studied the response of dense suspertsi@msexternal force in
two different experimental situations.

In our first experiment we let objects settle in a deep bathddrezsse cornstarch
suspension. Here, we observed two unexpected phenomesg:istead of expo-
nentially moving towards a terminal velocity, like in a Nentan fluid, the velocity
of the object actually starts oscillating between two valuén contrast to earlier
work, e.g., that describes oscillations in viscoelastjailis, these oscillations do not
damp out, at least not within our experimental conditions fdund that modeling
such behavior is challenging: We argue that shear thickeaim viscoelastic mod-
els fail to describe the observed behavior. A hysteretig anadel proved to come
closest to our experimental results. In this model the systkernates between two
branches of the drag force and thus alternatively movesrtsatavo different termi-
nal velocities. Before either of those velocities is reahbere is a change in drag,
and thus a switch to acceleration or deceleration.

The second phenomenon is encountered when the object appsotne bottom
of the container, where it comes to a full stop at a short degtdrom the bottom. We
believe this effect is caused by a layer of jammed particktsvben the object and
the bottom. We argue that after the jamming, due to a smdérdifice in pressure
between the jammed and the surrounding region, there is d&#owinto the jammed
layer. The layer subsequently unjams and the object rezredes. As only a slight
decrease in packing fraction from the jammed state was detedeaccelerate, the
layer easily gets jammed again, restarting the process chaie can repeat several
more times before actually reaching the bottom. This jangnaimd unjamming cycle
was modeled, and we were able to reproduce the behaviorapgteately.

In our second experiment, we exerted vertical vibrations tioin layer of dense
suspensions. In testing various particle suspensionsnsedsrnstarch suspension
was found to have the richest of phenomenologies of all usspemnsions. Depend-
ing on the suspension type and the shaking parameters, veevellsstable holes,
rivers, jumping liquid, fingerlike protrusions, splittiregd colliding holes, and grow-
ing holes and kinks. The similarity between all these phesraaris that a convection
roll was observed on the edge of the liquid.
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We studied the dynamics of the growing holes in more detail, @@mpared it
to collapsing holes in viscous Newtonian liquids. We fouhdttthe gravity-driven
closing of the hole in a Newtonian liquid is largely indepentof the shaking pa-
rameters and inversely proportional to the viscosity oflihpeid. When shaken, a
hole was found to close at the same rate as it would when thiel igould be at rest,
with an additional oscillation of the hole edge at the dryfnequency. This behav-
ior, including both the closing and the oscillations, wasdeled with a lubrication
model.

For a dense suspension containing monodisperse partietegjvestigated the
effect of particle size and the viscosity of the liquid, iretregime where the hole
is found to grow. We found that for lower viscosities of thesgending liquid the
hole opens faster, but also the hole edge becomes less atabile more likely to fall
into the hole and close it again. The most remarkable phenomis that, although
the hole opens, the maximum velocity during the closing bgthe cycle is actually
larger than during opening. The hole in the suspensionlataslin a far from sym-
metric manner, which is markedly different from the Newtmicase. Not only the
peak velocities are different, also the shape of the twodsadliffer significantly. The
closing half is very peaked, whereas the opening half is reionesoidal in shape. It
was found that the results for these experiments scaledniegjy with /o, lead-
ing us to believe that due to the vertical vibrations a défere in volume fraction
is created over the height of the suspension, resulting linalabrication layer of
suspending liquid during the opening half of the cycle.

We also performed experiments in a granular material thafiaged to a suspen-
sion, namely in very fine, loosely packed sand (silica) pkesi surrounded by air.
When an object impacts on such a sand bed, a cavity is knowa torined, which
subsequently collapses, leading to the formation of a jet.stdied the impact and
settling dynamics of an object in a sand bed of restrictecedsions.

We observed that the boundaries can influence the expeahesults in four
ways: First, by changing the object’s trajectory, whichumtinfluences the collapse
of the cavity that is formed after impact. This in turn inflges the resulting jet
height and shape and finally there will be an effect on the time strength of the
eruption at the very end, caused by a surfacing air bubble.

The influence of the bottom on trajectory, cavity, and jetlddae deduced in a
straightforward manner. When the layer is shallow enough ball will stop on the
bottom, changing the height of the collapse and thus thecitglof the jet.

The influence of the side walls is more complicated. Due tacthdinement, air
flow caused by the object itself becomes a more dominantrfathe object’s trajec-
tory was found to be well described by a drag law, that costaihydrostatic pressure
and a quadratic drag term. Only when the side walls are vesedo the impact the
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model fails and the object reaches a temporarily constgrininal” velocity, before
slowing down to zero.

The cavity formation and collapse is thus changed by the ficatibn of the tra-
jectory of the ball, and in addition, also the amount of sanlved in the collapse
changes the dynamics and therefore the resulting jet heilyhen the object pene-
trates very far into the bed, we argue that a second collajideappen, much deeper
in the bed. When this second jet overtakes the first jet, a Mamnarkable structure
can be formed, in which there is a broad shoulder separatthinget on top of a
very broad jet at the bottom. We presented a quantitativenaegt to predict when
this second jet will influence the shape of the jet we obsebewathe surface of the
bed.

The eruption, which is caused by an entrapped air bubble gifieh off rising to
the surface, was found to depend on the size of the bubblethandissolving time.
This causes the emergence of alternating regimes with atiutieruptions, while
increasing the depth of the sand bed.
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Samenvatting

In dit werk hebben we gekeken naar het gedrag van geconeatgresuspensies
wanneer er een externe kracht op wordt uitgeoefend. Allergmmtreerde suspen-
sies vertonen kwalitatief hetzelfde gedrag in standaaedldyische experimenten,
namelijk een afname van de viscositeit (shear thinningyolgel door een meer
abrupte toename van de viscositeit (shear thickening) aemate afschuifsnelheid op
de vloeistof toeneemt. In onze experimenten bleek dat ldragevan verschillende
suspensies ook zeer verschillend uitpakte. Wij hebbenrandet hoe in hoeverre de
dynamica van de deeltjes in de suspensies dit gedrag kalareark

In ons eerste experiment lieten we objecten zinken in egniohe van een sus-
pensie onder invioed van zwaartekracht (hoofdstukken 2.elm lke suspensie, be-
halve één, zagen we hetzelfde gedrag wat we ook zien indtes&nse vloeistoffen,
namelijk een snelheid, die naar een terminale snelheidezgeert. Deze snelheid zal
aangehouden worden tot de bodem wordt bereikt. Alleen iomgEntreerdeq >
0.38) suspensies van maizena observeerden we een aantaérienomenen. Het
eerste fenomeen is dat het object geen terminale snelhestkfyenaar dat de snel-
heid afwisselend toe- en afneemt, en daarbij tussen tweeleraaeen en weer blijft
schommelen. In andere complexe vloeistoffen zijn ook tz@ks waargenomen,
maar deze dempten echter snel uit, terwijl de oscillatiesvdiiwaarnemen als eigen-
schap hebben dat ze niet noemenswaardig uitdempen in oesragpt. Dit gedrag
bleek zeer moeilijk te modelleren. We tonen aan dat sheekehing en viscoelas-
ticiteit dit gedrag niet kunnen beschrijven, aangezieredespectievelijk leiden tot
een enkele curve die de weerstand beschrijft en gedemgptiatiss, beide in tegen-
spraak met onze experimenten. Het dichtste bij het moeéellean deze experi-
menten komen we door een model te gebruiken met een hystdretiveerstand. In
dit model wordt aangenomen dat de suspensie twee verselgll@eerstanden kan
aannemen, afhankelijk van de snelheid en de geschiedemidevanelheid. Door-
dat er twee snelheden zijn waarbij er tussen deze twee \wadest wordt gewisseld
komen we inderdaad uit bij een oscillerende snelheid. Hdéalavan dit model is
echter dat we voor elk experiment deze snelheden moeteeflreéden, waar we
eigenlijk verwachten dat deze alleen afhankelijk van deesusie zouden zijn.

Het tweede fenomeen nemen we waar wanneer het object de baikart. Het
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object stopt al enkele centimeters voor het bereiken vanoderh, doordat er zich
een vaste laag van deeltjes bevindt tussen het object erddenligamming). Na deze
stop stroomt er echter vioeistof terug in dit gejamde gebiadrdoor het object weer
kan accelereren. Doordat het object verder zinkt vormtar apnieuw een gejamde
laag tussen object en bodem waardoor dit proces zich nodeemiaden zal herhalen
totdat de bodem wordt bereikt. Dit proces hebben we geneetellen de resultaten
kwamen zeer goed overeen voor een experiment met een cjlemdé&wamen voor

een bal in elk geval goed overeen voor de eerste cyclus.

Ondanks dat we een grote hoeveelheid parameters hebbeaiegedais het os-
cilleren van de snelheid in de bulk van de suspensie nog efetaj begrepen. Waar-
schijnlijk kunnen rheologische experimenten die zich emieeren op hysterese meer
inzicht geven in deze oscillaties. Daarnaast zou het issarg zijn om te zien of het-
zelfde fenomeen optreedt wanneer we een soortgelijk expetizouden herhalen,
maar dan door suspensies door een pijp te laten stromen,sbfdsing van suspen-
sies rondom een object, zeker aangezien deze experimeanteardij toepassingen
in de industrie zullen staan.

In ons tweede experiment, hebben we dunne lagen van gedmwrele suspen-
sies verticaal laten trillen (hoofdstukken 4 en 5). Wanrjeein een vloeistof in
rust een gat maakt zal dit snel weer dichtgaan. Dit is echisdrhet geval in sus-
pensies, wanneer deze verticaal trillen. Voor bijna elkepsuasie die we gebruikt
hebben, vinden we verschillend gedrag in dit experimenni€pv zien we dat een
geconcentreerde suspensie van maizegna 0.37) de rijkste fenomenologie ver-
toont. Afhankelijk van de eigenschappen van de maizenzesste en de frequentie
en amplitude van de aandrijving, zien we stabiele gatemerem, rondspringende
klodders en vingervormige groeisels. Andere suspensigedegen vertonen deze
fenomenen niet, maar laten weer andere opmerkelijke gediag zien. Wanneer
een suspensie polydisperse deeltjes bevat zien we gaterictlien de loop van
de tijd continu blijven delen, maar ondertussen ook botsehetkaar en daardoor
samensmelten of dichtvallen. In suspensies met monodshreltjes zien we dat
gaten groeien tijdens het experiment. Wanneer dan de randesaontainer wordt
bereikt opent dit gat zich, waarna de ene helft van de comtairoog valt en de an-
dere helft alle suspensie bevat. De overeenkomst tusseszalfednomenen is dat op
de overgang van een droog deel naar de suspensie zich atiifubavectierol bevindt.

In ditzelfde experiment hebben we ook specifiek gekeken ad@aynamica van
deze groeiende gaten in suspensies en naar sluitende g&tewionse vloeistoffen.
Het dichtvallen van een gat in een Newtonse vloeistof béjkeen af te hangen van
de viscositeit van de vloeistof; het maakt daarbij nietofide vlioeistof ondertussen
trilt of niet. Wanneer er getrild wordt, zien we wel dat dedaran de vloeistof met
dezelfde frequentie en sinusvorm oscilleert als waarmegetiele vioeistof getrild
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wordt. De trilling van de rand van de vloeistof loopt wel eemakt periode achter
op de trilling van het systeem. Dit systeem hebben we ook é&summodelleren met
behulp van lubricatie theorie en de resultaten hiervan koneer goed overeen met
de experimenten.

Voor een sterk vibrerende, geconcentreerde suspensie oneidisperse deeltjes
groeit een gat gedurende de tijd. We hebben in dit regimeuedd van de grootte
van deeltjes en de viscositeit van de vloeistof onderzddbk in deze experimenten
trilt de rand van de vloeistof weer met dezelfde frequenisensarmee we het sys-
teem aandrijven en het faseverschil was voor alle expetsneook hier weer een
kwart periode. Een lagere viscositeit leidt tot een snejtereiend gat, maar maakt
deze ook minder stabiel. Dit komt doordat de rand van het giter boven het op-
pervlak uitsteekt en daardoor een grotere kans heeft omtigatee vallen en deze
daardoor te doen sluiten. Het meest opmerkelijke in dit gt is dat, ondanks
dat het gat opent, de snelheid tijdens het naar binnen beweager is dan tijdens
het naar buiten bewegen. Dat het gat toch groeit, komt doatelavorm van het
snelheidsprofiel zeer gepiekt is gedurende het sluiten eesiuitsnelheid daardoor
gemiddeld toch lager uitvalt dan de gemiddelde openindissite De resultaten van
het openen van de gaten en de snelheid waarmee dit gebdlen, waor al onze ex-
perimenten, met verschillen viscositeiten en deeltjesttge heel goed over elkaar als
we de viscositeit schalen met de deeltjesgrootte. Dit leetiekolgens ons dat er een
verschil in deeltjesconcentratie zit over de hoogte vanudpensie. Deze aanname
zal in toekomstige experimenten nog moeten worden bewkstig

De grootste vraag die overblijft is waarom maizena in waten zo speciale
suspensie vormt. Zowel bij het vibreren als bij het zinkenden we hier de rijk-
ste fenomenologie. Het kan zijn dat de unieke geometris@engchappen van de
maizenadeeltjes, hoekige vormen en de grootteverdatiieg,eenvoudig te vinden
Zijn in andere deeltjes.

We hebben onze zinkexperimenten herhaald in een granutderiaal dat over-
eenkomsten vertoont met een suspensie, namelijk een ltspgts bed van fijne
zandkorrels in lucht. In dit experiment hebben we het inskx@ zinken van een bal
in een bad van dergelijk droog drijffzand beschreven (hdokd§). Na inslag op het
zand zinkt de bal in het bed en laat hierbij een cilindervgerdpening achter. Deze
valt dicht door de hydrostatische druk en leidt tot de vognian een jet die uit het
bed omhoog schiet.

In dit werk hebben we gekeken naar de invloed van de contaamaten en de
bodem op de vorm en hoogte van deze jet en het zinkgedrag \aslaande bal. We
observeren dat de wanden onze experimenten op vier maikieneen beinvioeden.
Als eerste zal het traject van de bal veranderen, wat op eijintlinvioed heeft op het
dichtvallen van de opening in het zand die in het zog van dadiakrblijft. Hierdoor
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zal de jet niet allen in hoogte, maar ook van vorm veranderBst. slot is er nog
invioed op de eruptie die plaatsvindt wanneer de achtesgehllucht in het bed het
oppervlak bereikt.

De invloed van de aanwezigheid van de bodem was redelijkoeelity te verkla-
ren. Doordat de bal stopt op de bodem zal er een kleinere rmgp&mnrden gemaakt
in het zand waardoor ook de jet minder hoog reikt. De invioad de zijwanden
is complexer. Door de kleinere container wordt de invioed d& luchtstroom,
gecreéerd door de bal zelf, een zeer belangrijke factoreinrdésulterende traject.
Het traject blijkt goed te beschrijven met een model dat ddrdstatische druk en
een kwadratische weerstand op de snelheid bevat. Alleeer @peciefieke experi-
mentele omstandigheden, vertoont het object een onvetwesiitaat, waarbij zelfs
voor korte tijd een terminale snelheid wordt bereikt. Derdd® bal gemaakte ope-
ning en het dichtvallen hiervan wordt hierdoor ook veraddenaar ook de veran-
derende hoeveelheid zand in een kleinere container heddethop de uiteindelijke
jet die wordt gevormd. Tot slot is er nog beredeneerd dat eande bal diep ge-
noeg komt er een tweede, diepere plaats is waar de openimyalic Hierdoor zal er
een tweede jet ontstaan, die afhankelijk van de experineensgiabelen al dan niet
de eerste jet kan inhalen. Wanneer dit het geval is zal dandékjke zichtbare jet
boven het oppervlak een zeer specifieke structuur hebbeeenetmal deel aan de
bovenkant, gevolgd door een abrupte verbreding naar edereréasis.

De eruptie die het experiment beéindigd bleek afhankédijkijn van de balans
van twee tijdschalen, namelijk hoe snel de luchtbel naaohperviak komt tegen-
over de tijd die nodig is voor deze bel om op te lossen in het bed
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