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Overview

Granular matter is ubiquitous in our daily life yet far from completely under-
stood. The aim of this thesis is to investigate extensions to and validation of
simple granular models, for systems with either long-range force or particle
size distributions. Electrostatic interactions due to tribo-charging, van der
Waals forces in nano-particles, size-driven segregation in granular flows; all
these phenomena necessitate going beyond the simple mono-sized short-range
interaction model usually used to study granular matter.

The first chapter gives a general introduction to the themes and top-
ics treated in this thesis. In the second chapter I study the differences in
the stability properties of the Homogeneous Cooling State (HCS) of a two-
dimensional mono-disperse collection of rigid and near-elastic disks, obtained
by using different advanced formulae for the pair-correlation function at high
densities. I found out that for the modified pair correlation function at con-
tact gives a better estimate for the energy dissipation and predicts the ex-
istence of new instable hydrodynamic modes. The third chapter presents
the results of my extension to event-driven simulations in order to deal with
sticky particles, as a way of mimicking van der Waals forces at play in nano-
aerosols. I developed a new cluster-based event-driven algorithm that allows
the simulation of cluster formation in a two dimensional gas: particles move
freely until they collide and stick together irreversibly. These clusters aggre-
gate into bigger structures in an isotropic and random way, forming fractal
structures whose fractal dimension depends on the initial density of the sys-
tem. The fourth chapter focuses on the phase diagram of granular cooling
with long range interactions. I analyze structure formation in this system by
means of two methods: molecular dynamics with discrete potentials and lin-
ear stability analysis of the corresponding hydrodynamic equations. For low
dissipation and density, the data is exactly fitted by a previous mean field
theory developed for continuous potentials which is quite remarkable and
supports the use of discrete potentials and event-driven methods. The fifth
chapter presents a new way to control axial segregation in rotating tumblers,
which consist in making the tumbler non-homogeneous in the axial direction.
I explain how this happens and the conditions for it. The sixth chapter is an
essay on how I want to do science and the problems I see nowadays with it.
Finally, conclusions and outlook close the thesis.
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Sammenvatting

Hoewel granulaire materie overal om ons heen aanwezig is, is de werking van
de onderliggende fysische processen nog lang niet begrepen. Het doel van
dit proefschrift is om de uitbreidingen en de validatie van eenvoudige granu-
laire modellen te onderzoeken voor systemen met lange-afstands krachten of
met deeltjes die van grootte verschillen. Elektrostatische interacties door tri-
bologische oplading, vanderwaalskrachten in nanodeeltjes, grootte gedreven
segregatie in granulaire stromingen; al deze verschijnselen maken het noodza-
kelijk modellen te onwikkelen die complexer zijn dan de eenvoudige homogene
grootte en korte afstands interactiemodellen die meestal gebruikt worden om
granulaire materie te bestuderen. Het eerste hoofdstuk geeft een algemene
inleiding op de thema’s en onderwerpen behandeld in dit proefschrift. In het
tweede hoofdstuk bestuderen we de verschillen in de stabiliteitseigenschap-
pen van de homogene koelings toestand van een tweedimensionale, monodis-
perse verzameling van stijve en vrijwel elastische schijven, verkregen door het
gebruiken van verschillende geavanceerde vergelijkingen voor paar-correlatie
functies bij hoge dichtheden. Het derde hoofdstuk presenteert de resultaten
van mijn modificatie op event-driven simulaties om cohesieve deeltjes te inte-
greren, een manier om vanderwaalskrachten te modeleren in nano-aerosols. Ik
heb een nieuw cluster-based event-driven algoritme ontwikkeld dat de simu-
latie mogelijk maakt van cluster formatie in een tweedimensionaal gas: deelt-
jes bewegen vrij tot dat deze botsen en onomkeerbaar samen kleven. Deze
clusters vormen samen grotere structuren op een isotropische en willekeurige
manier, om structuren te vormen wiens fractale dimensies afhangen van
de initiele dichtheid van het systeem. Het vierde hoofdstuk richt zich op
het fasediagram van granulaire koelprocessen met lange afstand interacties.
Ik analyseer structuur formatie in dit systeem door gebruik te maken van
twee methodes: moleculaire dynamica met discrete potentialen en lineaire
stabiliteits analyse van de overeenkomende hydrodynamische vergelijkingen.
Voor lage dissipatie en dichtheid komen de data precies overeen met een
eerder ontwikkelde mean-field theorie voor continue potentialen. Het vijfde
hoofdstuk presenteert een nieuwe manier om axiale segregatie in draaiende
trommels te bëınvloeden. Dit wordt bereikt door de trommel inhomogeen te
maken in de axiale richting. We verklaren hoe dit gebeurt en onder welke
condities. Het zesde hoofdstuk is een opstel over hoe ik aan de wetenschap
wil bijdragen en de problemen van tegenwoordig zoals ik ze zie. Tot slot
eindig ik dit proefschrift met conclusies en vooruitzichten.
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Chapter 1

Introduction

Spheres have fascinated humanity since its origins; as Borges tell us [1] – and

deserves to be quoted at length –

Six centuries before the Christian era, the rhapsodist Xenophanes

of Colophon, wearied of the Homeric verses he recited from city

to city, lashed out at the poets who attributed anthropomorphic

traits to the gods, and offered the Greeks a single God, a god

who was an eternal sphere. In the Timaeus of Plato we read that

the sphere is the most perfect and most uniform figure, for all

points of its surface are equidistant from its centre; Olof Gigon

(Ursprung de griechischen Philosophie, 183) understands Xeno-

phanes to speak analogically: God is spherical because that form

is best – or least inadequate – to represent the Divinity. Par-

menides, forty years later, rephrased the image: “The Divine

Being is like the mass of a well-rounded sphere, whose force is

constant from the center in any direction.” Calogero and Mon-

dolfo reasoned that Parmenides intuited an infinite, or infinitely

expanding sphere, and that the words just transcribed possess

a dynamic meaning (Albertelli: Gli Eleati, 148). Parmenides

taught in Italy; a few years after his death, the Sicilian Empe-

docles of Agrigentum constructed a laborious cosmology: a stage

exists in which the particles of earth, water, air and fire make up

a sphere without end, “the rounded Sphairos, which exults in its

circular solitude.”

It may be that universal history is the history of the different

intonations given a handful of metaphors.

The aim of this PhD thesis is to yet again enunciate a handful of metaphors

concerning spheres with some of the simplest possible interaction models.
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Introduction

We will focus on the study of granular matter through simulations. In

practice, this means that the spheres we will consider are governed by two

physical principles: excluded volume and dissipation. There are several ways

of implementing such behavior. We focus on two of them: (a) the discrete

particle method (DPM), where for a given model of the material the interac-

tions forces are computed and numerically integrated the resultant dynamic

equations, and (b) event-driven (ED) simulations where the interaction po-

tential between the particles is considered to be zero if they do not touch

and infinite otherwise. Each has its own pros and cons.

The reasons to study granular matter is explained in the following section.

The use of simulations introduced after it. Finally, the structure of the rest

of the thesis is presented.

1.1 Granular Matter

Why is it important to study granular matter? They are the second most

handled materials in the world after water. It behaves differently from any

of the other forms of matter – solid, liquid or gases – and therefore should be

considered an additional state of matter in its own right. See, for example,

Refs. [2, 3].

Particulate systems of all scales are at the heart of a wide range of natural

phenomena. From the vibrations of atoms within a fluid to the swirlings of

interstellar dust, the behaviour of these many-body systems is a rich field for

study.

Granular media, as an special case of particulate systems, appears in our

daily life everywhere: the sand at the beach where we walk; the pharmaceu-

tical pills we take; the cobble stones used for constructing the streets of our

cities and buildings. The behavior of granular media is very rich, and it will

depend on its packing density, pressure and forcing, whether it behaves like a

solid, a liquid or a gas. For example, granular media with high densities are

encountered in industrial sintering where they form extremely rigid solids.

In other processes, the knowledge about the flow behavior of a more dilute

granular medium such as suspensions or pastes is important.

In recent times the modelling of these systems has progressed rapidly

thanks to large increases in computational power; however, our understand-

ing of these systems and how the complex behaviour they exhibit arises is

still quite limited.

There are two particularly important aspects that contribute to the unique

properties of granular materials: ordinary temperature plays no role, and the

interactions between grains are dissipative because of contact friction and the

inelasticity of the particles. We might at first be tempted to view any gran-
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Granular Matter

ular flow as that of a dense gas since gases, too, consist of discrete particles

with negligible cohesive forces between them. In contrast to ordinary gases,

however, the energy scale kBT is insignificant here. The relevant energy scale

is the potential energy P = mgd of a grain of mass, m, raised by its own

diameter, d, in under the Earth’s gravity, g. For typical sand, this energy is

at least 1012 times the thermal energy at room temperature. Since kBT is

irrelevant, ordinary thermodynamic arguments become useless.

In their now classical review, Jaeger, Nagel and Beringer [3] begin quoting

the following line from Victor Hugo:

“Who could ever calculate the path of a molecule? How do we

know that the creations of worlds are not determined by falling

grains of sand?” (Victor Hugo, Les Miserables).

They aimed to show that Hugo’s metaphor could have a literal meaning:

“what happens to a pile of sand in a table is relevant to processes taking

place on an astrophysical scale” [3].

Indeed, consider granular matter with long range interaction. The for-

mation of planets is only due to two mechanisms: gravitational attraction

and dissipative interactions amongst the dust particles. This can be easily

simulated in a computer. Furthermore, thanks to today’s computers and

advanced algorithms, we can study astronomical processes literally on top of

our tables without the need of a super-computer.

That is what we (mostly) did during this thesis: simulation of granular

matter with advanced algorithms. In particular, we focused in granular gases

and dense flows, each explained in what follows.

1.1.1 Granular Gases

Most of this thesis deals with structure formation on granular gases. By

a granular gas we understand an ensemble of particles in a given spatial

domain, be it two or three-dimensional, in the absence of gravity and that

interact via dissipative collisions and/or long range potentials.

In contrast to classical gases, the dissipative character of the interactions

makes that without energy input, the system is never stable. For an initially

homogeneous system, as it dissipates energy, density fluctuation can give rise

to the formation of large-scale structures and shear banding. Since there are

not external forcing, granular gases are a perfect system of study where to

understand the particularities of granular media.

We have studied how different theories predict this behaviour; a toy model

for the formation of clusters and the consequent structures obtained with it;

and the interplay between dissipation and long-range interaction and how

this affects the structure formation. The guiding thread was always how
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Introduction

to understand and model the ephemeral structures that born and die in a

free-cooling granular gas.

1.1.2 Granular Flow in Rotating Tumblers

Rotating tumblers are widely used in industry, in processes as diverse as mix-

ing, milling and calcination – the three processes present in the fabrication

of cement, for example. They are one of the easiest experiments to perform

with granular matter and present a rich phenomenology. Due to the move-

ment of the wall, the grains flow when the angle of inclination is grater than

the repose angle. Depending on the rotational speed, different flow regimes

can appear: among others, sliding, continuous flow, centrifuging [4]. In the

continuous regime, grains on the surface flow like in an avalanche while the

bottom of the drum moves together with the walls.

When the material is not homogeneous, say composed of different size

particles, the particles will segregate and form beautiful spatial patters [5];

fig. 1.1 shows one example of this. These patterns appear in the radial

direction [6] – where the small grains tend to concentrate in the center of the

drum – as well as in the axial direction [7] – where there is banding, i.e. the

system separates in bands of mostly large and small particles along the axial

direction – when the tumbler is long enough. In this thesis, we focus on the

influence of container shape on the axial segregation.

1.2 Simulations

Nowadays, computer simulations have become a standard of scientific prac-

tice. For granular materials, the use of computer simulations has since long

helped to study where the experiments cannot go and there is a standard set

of methods for its study [8].

There are mainly two methods for the simulation of granular matter.

The first consist in assuming perfectly rigid spheres that interact via in-

stantaneous collision, realising the same assumptions of kinetic theory. This

method is know as event-driven since the simulation advances through colli-

sions, called events.

On the other hand, one can model the grains as soft particles that interact

via a given interaction force.

Most models used in granular matter simulations are based on contin-

uous potentials. However, discrete potentials exhibit much of the complex

behaviour of real systems and provide some of the most elegant minimal

models which exhibit complex behaviour.

In this thesis, we use both approaches. We use the event-driven method

4



Simulations

Figure 1.1: Picture of the avalanche in the centre of a rotating drum. Par-
ticles have different colour depending on their sizes: red, small; blue, large;
yellow and green, medium sizes. The particles in the free surface flow in
an avalanche while the particles in the bulk move solidarily with the drum
(clockwise). For a detailed explanation of the experimental set up, see Chap-
ter 4.

to study the role of long-range interaction in the formation of clusters for

free-cooling gases. For the simulation of granular flow in rotating tumbler,

we the discrete particle method (DPM). In what follows, we introduce both

models and the codes we have used in this thesis.

1.2.1 Event-Driven Molecular Dynamics

Discrete potentials have also played a major role in the development of molec-

ular dynamics simulation methods. The very first molecular dynamics sim-

ulations were performed using discrete potentials because of their relatively

inexpensive computational cost. Recent advances in the simulation of dis-

crete potential systems have allowed the construction of molecular dynamics

algorithms that scale linearly with the system size, allowing access to large

system sizes and the long time scales required to extract the long time be-

haviour. Discrete potentials can even accurately approximate soft potentials,

with possible savings in computational cost and time.

The simplest discrete potential is the hard-spheres model: the interaction

energy is zero if particles are not in contact, and infinite if they are, hence

creating instantaneous and binary collisions. A collision is called an event –

since something happens, and the state of the particles changes discontinu-
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ously.

By event-driven we mean that the state of the system is evolved in time

from one event to the next. Since the dynamics can be solved analytically,

the integration of the equations of motion is processed as a sequence of events

rather than by fixed, small time-steps. After each event, the time of the next

event in the system is calculated and the system advances in time. In brief,

the algorithm consists of:

1. Given the instantaneous positions and velocities of all particles in the

system,

2. predict the time of the next collision,

3. advance the time of the system to that instant, and

4. update the velocities of the particles that collide with a given collision

rule; repeat from 1.

For the details of the algorithm we refer the reader to Chapter 2 together

with standard papers and books, see e.g. Refs. [9, 10].

In this thesis, we used two different codes. For Chapters 2 and 3, a code

based on [11,12] was used. For the results reported on Chapter 4, a new open

source code was used instead: DynamoMD [13]. The advantage of using an

open-source code is that it enables more collaboration with other scientist,

since there is an standard to exchange works. Furthermore, DynamoMD

includes many of the most recent advances in event-driven simulations and

it is in continuous development.

1.2.2 Discrete Element Method

In contrast to what we did with the ED method, for the simulations with did

not develop new methods but used existing algorithms. We used the code

Mercury1. Mercury is a code for discrete particle simulations. That is, it

simulates the motion of particles by applying forces and torques that stem

either from external body forces, (e.g. gravity) or from particle interaction

laws (e.g. Lennard-Jones). For details see Ref. [14].

Particles are modeled as spherical and soft, so particles can overlap. De-

pending on the material model of the particles, the repulsion force can be

obtained. In general, a spring-dashpot model is used, where there is a repul-

sive force proportional to the overlap, and a dissipative force proportional to

the relative velocity. In this code, different contacts law are implemented [15].

For a given contact law, the resulting Newton’s equations are integrated, and

the temporal evolution of the system obtained.

1available at http://www2.msm.ctw.utwente.nl/athornton/MD/
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Thesis Structure

The biggest advantage of the Mercury code, besides it ease of use, is

the inclusion of the Hierarchical Grid algorithm for contact detection [16].

With this algorithm, the simulation of arbitrary poly-dispersed system scales

linearly with the number of particles.

1.3 Thesis Structure

In the second chapter we study the consequences of using more complex

pair correlation functions at contact on the stability of an homogeneous 2D

granular gas. Here we show that changing the pair correlation function at

contact gives a better prediction for the cooling of dense systems and that

new hydrodynamic modes are predicted at the transition density (ν ∼ 0.7).

In the third chapter we develop a new even-driven cluster-cluster aggrega-

tion algorithm and study the evolution of the clusters formation for different

densities. In our model, particles stick once they collide and do not rotate.

We show that the fractal dimension of the final clusters depends on the initial

density of the system.

Chapter four deals with the cooling of hard spheres with long range in-

teraction either attractive or repulsive. We study the stability analysis for a

modified cooling rate based on previous research, and realize ED simulations

of the system, showing that in the dilute limit they fit perfectly the theory

for the repulsive regime. In the attractive regime we obtain something simi-

lar to the cluster-cluster aggregation process we developed in chapter three,

but this time taking into account the inelasticity of the particles. Due to

the inelasticity, the structure formation is enhanced and a complex interplay

between dissipation and attraction is found.

Chapter five deviates from the subject of granular gases and deals with

the segregation of binary mixtures in a rotating tumbler. The rationale

behind this research is the following: in our attempt to use advanced ED

algorithms in the simulation of dense granular matter, we needed to develop

a framework that would allow us to compare experiments, DPM and ED in a

reliable way. The rotating drum was the obvious set-up for its experimental

simplicity. However, since doing research means sometimes forgetting about

your goals and listen to that the phenomenon has to say, we ended up by

studying the segregation of binary mixtures in a concave rotating tumbler.

We show how to control the axial segregation by modifying the shape of

the tumbler. The results of this and the explanation of the phenomena is

presented in this chapter.

In chapter six is the text I wrote for a talk I was invited to give in the

music festival “Green Vibrations”, in spring 2012 in Enschede. In this text,

I give a personal account of what science represents for me and present a

7
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philosophical discussion concerning the way science is treated nowadays (by

policy makers, scientific journals and scientists themselves). I added it to my

thesis since I put the same intellectual effort I use in doing science in trying

to understand how and why science is done in such a way today.

Finally, the conclusions and outlook close this work in chapter seven.
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Chapter 2

Cooling of dense 2D

hard-spheres gases∗

We show the differences in the stability properties of the Homogeneous Cool-

ing State (HCS) of a two-dimensional mono-disperse collection of rigid and

near-elastic disks, obtained by using different formulae for the pair-correlation

function.

For an equation of state that takes into account the crystallisation and order-

ing of the particles (and the respective pressure drop), the critical wavelength

of the heat conduction mode is considerably modified in the transition zone,

involving a bifurcation and an additional mode of instability. The theoretical

predictions, using the improved equation of state, are confirmed by numerical

simulations. Nevertheless, some open questions remain.

2.1 Introduction

Structure formation in a granular gas has attracted much attention during

the last decades (see for example, Refs. [17–26]). Starting from a macro-

scopically homogeneous system, structures evolve and a dilute granular gas

coexists with denser, possibly much denser and even solid, clusters – in non-

equilibrium. However, the coexistence of a fluid-like granular gas with a

solid-like packing also occurs in many other systems, like during avalanche

flow on inclined planes or in vibrated containers, see Refs. [27,28] and refer-

ences therein.

In the absence of walls and external forces, the crucial phenomena in a

freely cooling granular gas involve the fluctuations in density, velocity and

temperature, which cause position-dependent energy loss [18]. In denser

areas, due to strong local dissipation, pressure and energy decay rapidly and

material moves from ‘hot’ to ‘cold’ regions, there leading to even stronger

∗Based on S. González and S. Luding, Eur. Phys. J. Special Topics 179, 55-68 (2010).
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Cooling of dense 2D hard-spheres gases

dissipation and thus causing the density instability with ever growing (dense)

clusters.

The freely cooling granular gas will be introduced first, as an example

of a case where dilute and dense granular media co-exist. Even though the

need to treat walls is avoided by using periodic boundary conditions, and the

initial state is macroscopically homogeneous, resembling a classical, elastic

hard sphere gas, the system develops interesting dynamics and structure for-

mation – only due to the dissipative interactions of the particles, see Fig. 2.1

in section 2.2. Hydrodynamic equations and constitutive relations are intro-

duced in section 2.3 and a stability analysis of these equations is presented

in section 2.4. This has been done several times in the literature (see for ex-

ample Refs. [18, 19, 29, 30]), but always for a given (Enskog) pair correlation

function (at contact distance, g(ν; r = d)). Our contribution is to study the

consequences of an empirical pair correlation function on the instabilities of

the HCS. Section 4.8 provides concluding comments.

2.2 From homogeneous to inhomogeneous cool-

ing

When a homogeneous granular gas cools down due to collisional dissipation,

one observes an initial homogeneous cooling state. Previous studies have

shown that granular cooling results in the formation of structures: both mass

and momentum density spontaneously become nonuniform. Four different

regimes – kinetic, shearing, clustered, and collapsed – have been identified,

(see Ref. [20] and references therein). For the clustered regime (the one we

are interested in here), two stages with different energy dissipation behaviour

can be identified: a cluster growth regime that follows the homogeneous

state, and a final (inhomogeneous, non-equilibrium) state, where the cluster

size is comparable to the system size and the structures span the whole

system [18–20,22,31–34].

Using the hard sphere model and event driven simulations, see e.g. Ref.

[9], it is straightforward to simulate the time-evolution of a homogeneous

granular gas with density (area fraction) ν = 0.25, about N = 2000 parti-

cles of diameter d̂, mass m̂, and moderate dissipation with a coefficient of

restitution r = 0.9.

10



From homogeneous to inhomogeneous cooling

2.2.1 Collision Model

For two particles, p = 1, 2, at positions ~r1,2, conservation of momentum leads

to a collision rule:

~v′1,2 = ~v1,2 ∓
1 + r

2

(

~̂k · (~v1 − ~v2)
)

~̂k , (2.1)

where the prime indicates the velocities ~v after the collision, and ~̂k = (~r2 −
~r1)/|~r2−~r1| is the unit vector pointing along the line of centers, from particle

1 to particle 2.

At collision, the normal component, vn = ~̂k · (~v1 − ~v2), of the relative

velocity, ~v1 − ~v2, changes its sign and is reduced by a factor 1 − r, with

the coefficient of restitution r. Therefore, the kinetic energy related to the

normal component is reduced by the factor ǫ2 = 1−r2

2
≃ 1− r for r ≈ 1. The

elastic limit, r = 1, implies no dissipation (ǫ = 0), while r < 1 implies ǫ > 0.

τE = 2.3 τE = 2300 τE = 23000

Figure 2.1: Two dimensional ED simulation snapshots at different dimen-
sionless times τE, for a periodic system with N = 2037 particles, volume
fraction ν = 0.25, and a coefficient of restitution r = 0.9. The colour indi-
cates if the particle is part of a cluster defined by distance, relative velocity,
and angle of movement, as explained in the main text.

2.2.2 Free Cooling Granular Gas

Three snapshots at different (dimensionless) times, τE = t̂/t̂E(0), with (di-

mensional) time t̂ and initial collision rate t̂−1
E (0), as defined in Eq. (2.11),

are displayed in Fig. 2.1. Different colours (turquoise/light-gray for single

particles) correspond to particles forming different “clusters”. Clusters are

defined as particles that are closer than 0.1d and their relative angle of move-

ment, given by arccos (~v1 · ~v2/(|~v1||~v2|)), is smaller than 30◦. This definition

is similar to the one used in Ref. [35], but differs from previous work [22,33]

where only the relative position of the particles was considered.

11



Cooling of dense 2D hard-spheres gases

2.3 Hydrodynamics

Consider a mono-disperse system of particles of fixed mass whose collisions

conserve momentum. The conservation of total mass and momentum is

the (standard) basis for the macroscopic balance equations presented below.

While mass and momentum are conserved, energy can be dissipated.

The constitutive relations needed to close the balance equations can be

obtained on the basis of certain models and assumptions [3,21,22], part of

which are presented below.

In this section, dimensional quantities are indicated by a hat.

2.3.1 Mass balance

Assume that N particles with total mass, M̂ =
∑

p∈V m̂, reside in a cer-

tain representative volume element (RVE), with volume V̂ . The continuity

equation for the density (ρ̂ = M̂/V̂ ) reads:

Dρ̂

Dt̂
+ ρ̂

∂ûi

∂x̂i

= 0 , (2.2)

with the average streaming velocity components, ûi = (1/M̂)
∑

p∈V m̂v̂pi , the

particle mass, m̂, and the particle velocity components, v̂pi . The substantial

derivative (or material derivative) is defined as: D
Dt̂

= ∂
∂t̂
+ ûi

∂
∂x̂i

, and the sum

over equal indices is implied.

2.3.2 Momentum balance

Momentum-conservation allows the momentum density ρ̂ûi to change with

time, not only due to a (momentum carrying) flux, ρ̂ûiûk, in or out of the

RVE, but also due to inhomogeneous/directed forces (like during collisions)

exerted from the outside on its interior, leading to:

ρ̂
Dûi

Dt̂
= −∂σ̂ij

∂x̂j

, (2.3)

with the stress tensor components σ̂ij on the right hand side. The stress

can be split into an isotropic and a deviatoric part, σ̂ij = p̂I 1ij + σ̂D
ij , with

(isotropic) pressure, p̂I ,where 1ij denotes the unit tensor.

For a Newtonian fluid, the deviatoric stress is proportional to the rate of

shear strain (symmetric, trace-free velocity gradient):

σ̂D
ij = −2µ̂

(

1

2

[

∂ûi

∂x̂j

+
∂ûj

∂x̂i

]

− 1

D
∂ûk

∂x̂k

1ij

)

, (2.4)
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with the shear viscosity µ̂. Note that the isotropic pressure, p̂I = p̂ + p̂ζ ,

also contains viscous terms, proportional to volume changes (divergence of

the velocity field ∂ûk/∂x̂k), which are explicitly subtracted in Eq. (2.4), for

D = 2, 3 dimensions. The isotropic, strain rate dependent stress, p̂ζ = −ζ̂ ∂ûk

∂x̂k
,

contains the bulk viscosity, ζ̂. The pressure will be assumed to be dominated

by its rate independent part, unless otherwise mentioned.

2.3.3 Energy balance

Energy-balance involves the kinetic energy density, ρ̂û2/2, due to the stream-

ing velocity, ûi, and û2 = ûiûi. In addition, there is also a fluctuating energy

density, related to the fluctuating velocity v̂T and to the “granular tempera-

ture”,

T̂g =
2Êkin

DN
=

1

DN

∑

p∈V

m̂p (v̂pi − ûi)
2 =

m̂v̂2T
D ,

i.e., twice the fluctuating kinetic energy per particle per degree of freedom,

where the sum runs over all N particles in the averaging volume V . Note

that in the following, we use T̂ = T̂g/m̂ = v̂2T/2 . The energy-density balance

then reads:

ρ̂
D

Dt̂
T̂ = −σ̂ik

∂ûi

∂x̂k

− ∂q̂k
∂x̂k

− γ̂T̂ , (2.5)

with the energy density dissipation rate, −γ̂T̂ . The right hand side of Eq.

(2.5) contains also the rate of shear-heating, and the divergence of the heat-

flux. The latter contains the classical term proportional to the temperature

gradient with the thermal conductivity, κ̂, and a second, non-classical term,

proportional to the density gradient with the corresponding transport coef-

ficient λ̂ [23, 36], so that:

q̂k = −κ̂
∂T̂

∂x̂k

− λ̂
∂ρ̂

∂x̂k

.

Below we neglect the “non-classical” term since it is proportional to 1 − r2

and we specialise to near-elastic systems, i.e, r ∼ 1 so the non-classical

contribution is of second order. The validity of this assumption has to be

studied in future works.

2.3.4 The (“classical”) transport coefficients

The equation of state (for the pressure), expressions for the shear and bulk

viscosities and the heat conductivity, as well as the expression for the dissi-

13



Cooling of dense 2D hard-spheres gases

pation rate of the energy density, are collectively referred to as “expressions

for the transport coefficients”, for the sake of brevity. They are, a priori, not

constant but dependent on the hydrodynamic fields and, possibly, also on

their gradients or other terms, which are not considered and discussed here.

Transport coefficients in 2D

In 2D, for a single species, in the elastic limit, r → 1, in lowest order in

powers of 1−r2 and the gradients, the transport coefficients can be expressed

in various forms, see Ref. [37] for a detailed review.

All transport coefficients are proportional to ρ̂ = ρ̂pν, to powers of v̂T ,

and to powers of the product s = s∗/ν = (νg(ν))−1, i.e., proportional to

the non-dimensional mean free path, which depends on the pair-correlation

function at contact g(ν) . If one divides the transport coefficients by the

combination ρ̂t̂−1
E that is common to all (see Luding’s notation [37]), only

powers of d̂, v̂T and s remain as variables:

p̂ = ρ̂ t̂−1
E v̂T

d̂

2
√
2γ̃

(s+ 2) , (2.6)

µ̂ = ρ̂ t̂−1
E

d̂2

4γ̃2

(

s2 + 2s+

(

1 +
8

π

))

, (2.7)

ζ̂ = ρ̂ t̂−1
E

d̂2

4
, (2.8)

κ̂ = ρ̂ t̂−1
E

d̂2

γ̃2

(

s2 + 3s+

(

9

4
+

4

π

))

, (2.9)

γ̂T̂ = ρ̂ t̂−1
E ǫ2

v̂2T
2

, (2.10)

with γ̃ = 4/
√
π, and hiding the proportionality

ρ̂t̂−1
E =

√
2γ̃

ρ̂v̂T

d̂s
∝ νv̂T

s
(2.11)

with the collision rate t̂−1
E = 2γ̃

√

T̂ /(d̂s). These equations have been ob-

tained from a Chapman-Enskog expansion applied to the Enskog-Boltzmann

equation in Ref. [38] and are frequently cited, e.g. in Refs. [26, 39–41].

In order to compare our results with the ones shown in Ref. [19], we

normalise and non-dimensionalise the hydrodynamic equations. Lengths

are scaled with particle diameter d̂, masses by particles mass m̂, and ve-

locities with the initial thermal velocity
√

T̂0 = v̂T (0)/
√
2. The hat that

denotes the dimensional nature of the variable will be dropped after non-

14



Hydrodynamics

dimensionalisation, as for example:

ûi = T̂
1/2
0 ui , T̂ = T̂0T , x̂ = d̂x , t̂ = d̂T̂

−1/2
0 t .

Consequently, the transport coefficients, in McNamara’s notation [19],

are defined as:

p̂ = p̃(ν)

[

ρ̂pd̂
T̂

ŝ

]

, (2.12)

µ̂ = µ̃(ν)ν−1

[

ρ̂pd̂2
T̂ 1/2

ŝ

]

, (2.13)

ζ̂ = ζ̃ν

[

ρ̂pd̂2
T̂ 1/2

ŝ

]

, (2.14)

κ̂ = κ̃(ν)ν−1

[

ρ̂pd̂2
T̂ 1/2

ŝ

]

, (2.15)

γ̂T̂ = 2ǫ2γ̃ν

[

ρ̂p
T̂ 3/2

ŝ

]

, (2.16)

with ŝ ≡ sd̂.∗ The positive non-dimensional functions p̃(ν), µ̃(ν), ζ̃, κ̃(ν),

and γ̃ are of order O(1) for any value of ν. Their explicit form, as used in

the next section, is given by:

p̃(ν) = s∗ + 2ν , (2.17)

µ̃(ν) =

√
π

8
(s∗ + ν)2 +

ν2

√
π

, (2.18)

ζ̃ =
2√
π

, (2.19)

κ̃(ν) =

√
π

2

(

s∗ +
3ν

2

)2

+
2ν2

√
π

, (2.20)

γ̃ =
4√
π

. (2.21)

Note that the last term in the heat conductivity is different by a factor 2ν2

from McNamara [19], what we think is due to a typo in his paper, however,

this term has a small effect only.

∗We give McNamara’s notation here since there is no standard in the literature, and it
is useful to know how to translate form one to the other.
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Pair-correlation functions

Note that the pair correlation function g(ν) has not been specified as yet. In

this chapter we will consider, as a working example, the differences between

the predictions obtained by four of them: the classical (Enskog) function

proposed by Henderson [42]:

g2(ν) =
1− 7ν/16

(1− ν)2
,

the one proposed by Grossman et al. in Ref. [43],

gpm(ν) = 1/(νm − ν) ,

where νm = π/(2
√
3) is the closest packing fraction in 2D, and the high

density limit of the previous one

gfv(ν) = gpm + (2ν)−1 ,

which is evidently wrong at low densities since it diverges [37,44], and finally

gQ(ν), an empirical mix between g2 and gfv, which takes into account the

disorder-order phase transition at ν = 0.7, for which the explicit definition

can be found in Ref. [37].

These functions are plotted in Fig. 2.2 to illustrate the differences. When

compared with the non dimensional pressure obtained from ED simula-

tions [44], the classical formula does not have the correct behaviour for

high densities. In the range ν > 0.75, the high density limit formula gfv
behaves well, while gpm behaves qualitatively well for all densities. The em-

pirical gQ(ν) performs quantitatively correct at all densities, including the

disorder-order phase transition at νc ≃ 0.699. In the inset of Fig. 2.2 we plot

P = 2νg(ν), i.e., the non-dimensional collisional pressure. As can be seen

from the data, when zooming in closer [44], the slope for 2νgQ(ν) is always

positive, whereas g(ν) has a negative slope in the transition zone.

In the rest of the chapter, we will assume that Eqs. (2.2), (2.3), and (2.5)

are complete and sufficient to describe arbitrary flow conditions and rheology.

This ansatz implies, that the flow behaviour of very dense, realistic granular

matter can be already rather well described, in most cases, by using the

constitutive relations in Eqs. (2.10) with an improved version of the pair-

correlation function g(ν). In the following we will study how this works in

the case of the stability analysis of the homogeneous cooling state.
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Figure 2.2: Pair-correlation function at contact. The solid blue line corre-
sponds to g2, the magenta dot-dashed line to gfv, the green dotted line to
gpm and the red dashed line to gQ. The slope of the gQ curve around νc is
strongly determined by the numerical coefficients, the width of the transi-
tion between low and high densities is mc = 0.0111, and the critical density
is νc = 0.699, as in Ref. [37]. In the inset, the non-dimensional collisional
pressure, P = 2νg(ν) is plotted against ν.
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2.4 Stability Analysis

The homogeneous reference solution for a freely cooling gas is found by taking

all the spatial derivatives in the hydrodynamic equations equal to zero, leav-

ing just equation (2.5), non-dimensionalised as described above (and drop-

ping density that occurs on both sides):

dT

dt
= −2γ̃ǫ2

s0
T 3/2 . (2.22)

The solution is known as Haff’s law [17], and can be written (following the

notation of Ref. [19]):

T (t) =
1

(ǫ2γ̃t/s0 + 1)2
, (2.23)

with the other fields remaining homogeneous and constant:

ν = ν0 , u := ux = 0 , v := uy = 0 .

The homogeneous-state variables and coefficients are designated by a sub-

script “0” (ν0, p0 ≡ p(ν0), s0 ≡ s(ν0), etc.), and the derivatives with respect

to density (evaluated at ν0) are denoted as, e.g., pν0 ≡ dp/dν|ν0 .

2.4.1 Collision rate

Starting from the initial configuration with homogeneous ν0 and T0, the sys-

tem dissipates energy at a rate that also depends on the energy of the system.

As the energy of the system is dissipated, the relative velocities of the par-

ticles become smaller. The dynamics becomes slower, and with this, less

energy is dissipated in each collision. The natural time unit of the system

is thus the number of collisions per particle, given by the integral of the

non-dimensional collision frequency f(t) := T (t)1/2 = t−1
E (t) d̂s/(2γ̃T̂

1/2
0 ) :

τ ≡ 1

s0

∫ t

0

f(t′)dt′ =
1

ǫ2γ̃
log

(

1 +
ǫ2γ̃t

s0

)

= − log(f(t))

ǫ2γ̃
. (2.24)

2.4.2 Linear equations

In the following, we study the linear stability of the system in its new time

variable, τ , since then the equations can be written in the form dZ′/dτ =

F (Z′), with the vector of perturbed fields Z′. If we would keep the physical

time as our variable, the equation for the temperature would be explicitly

time-dependent.
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In order to linearise the hydrodynamic equations about the homogeneous

but time-dependent solution (2.23), the fields are split into their homogeneous

and their perturbation parts:

ν = ν0(1 + ν ′) , (2.25)

u = fu′ , (2.26)

v = fv′ , (2.27)

T = f 2(1 + T ′) , (2.28)

where ν is the volume fraction, u(v) the bulk velocity in x(y) direction, and

the primes indicate the perturbations. The primed quantities define Z′, and

the factor f is introduced for later convenience.

The final goal of this section is to examine the linear stability of small

perturbations of the form exp (ik · x). Using Squire’s theorem, that is, pro-

jecting the 2D problem into one dimension, we will consider perturbations

only along the x direction so that the derivatives in the y direction vanish.

Taking the perturbations up to first order gives four coupled equations, by

inserting the fields into Eqs. (2.2), (2.3) and (2.5):

ν ′

t = −fu′

x , (2.29)

ν0(fu
′)t = −p′x + (µ0 + ζ0)fu

′

xx , (2.30)

ν0(fv
′)t = µ0v

′

xx , (2.31)

ν0(f
2T ′)t = −p0fu

′

x + κ0f
2T ′

xx − γ0f
2T ′ − γ′f 2 − 2ν0fftν

′ , (2.32)

where the explicit expressions for the non-dimensional transport coefficients

in the homogeneous state, p0, µ0, ζ0, γ0, and their perturbed values p′ and

γ′ can be found in Ref. [19]

Changing to the new time variable τ , using the identities f = exp (−ǫ2γ̃τ),

dτ/dt = f/s0, and scaling lengths by density as X = ν0x and thus wave

numbers as K = ν−1
0 k, gives [19]:

ν ′

τ = −s∗0u
′

X , (2.33)

u′

τ = −p̃0(T
′

X − s′X)− p̃ν0ν0ν
′

X + (µ̃0 + ν2
0 ζ̃)u

′

XX + ǫ2γ̃u′ , (2.34)

v′τ = µ̃0v
′

XX + ǫ2γ̃v′ , (2.35)

T ′

τ = −p̃0u
′

X + κ̃0T
′

XX + 2ǫ2γ̃s′ − ǫ2γ̃T ′ . (2.36)

Because the coefficients do not explicitly depend on time, we can perform

the stability analysis for any choice of the pair correlation function g(ν), as

long as it does not explicitly depends on temperature.
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2.4.3 Shear instability

The equation for the transverse velocity perturbation, v′, that is the shear

mode, is decoupled from the others. Assuming v′ = v̌ exp(στ + iKX), with

σ the grow rate and the checked quantity, v̌, a constant, Eq. (2.35) reads:

σ = −µ̃0K
2 + ǫ2γ̃ ,

indicating growing shear instabilities for perturbations with wave numbers

K < Kshear
c ≡ ǫ(γ̃/µ̃0)

1/2.

In Fig. 2.3 we present the critical shear mode wave numbers (solid blue

lines) as functions of the density for the four pair-correlation functions. Just

the gfv solution behaves differently (and incorrectly) for low densities, while

the other three functions yield similar results since the dependence of µ̃0

on the pair-correlation function goes as g(ν)−2. In order to quantify the

difference between the classical value and the one obtained with the modified

pair correlation function, we plot the shear mode onset criterion normalised

by the classical prediction (in Fig. 2.4 left). As expected, the only differences

between g2 and gQ occur for ν > 0.65, nevertheless, they are very small

(∼ 2%). In the case of gpm, for low densities it predicts an up to 10%

bigger critical wavelength than g2 (since gpm(ν ∼ 0) > g2(ν ∼ 0)), while for

intermediate densities it predicts an up to 5% smaller one. For high densities

the prediction of gpm, gfv and gQ are practically identical.

2.4.4 Heat and sound instabilities

Now, we must resolve three remaining coupled equations with five variables,

which will give us the dispersion relation σ = σ(K). Since s = s(ν) one has

s′ =
ν2
0

s∗
0

(

ds
dν

)

|ν0 ν ′, with this, and using the same plane wave ansatz as before,

the equations read:

σν̌ = −s∗0iKǔ , (2.37)

σǔ = −p̃0(iKŤ − iKš)− iKp̃ν0ν0ν̌ −K2(µ̃0 + ν2
0 ζ̃)ǔ+ ǫ2γ̃ǔ , (2.38)

σŤ = −iKp̃0ǔ−K2κ̃0Ť + 2ǫ2γ̃š− ǫ2γ̃Ť . (2.39)

From Eq. (2.33) we have ν̌ = − iKs∗
0

σ
ǔ. Substituting the values of ν̌ and

š, and defining a∗ ≡ −ν2
0

(

ds
dν

)

|ν0 , we can write š = iKa∗ǔ/σ, the dispersion

relation is found to be:
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Figure 2.3: The critical wave numbers Kshear
c (solid-blue) and Kheat

c (dotted-
green), together with the other stability criteria (see [19]): b > 0 (dashed-red)
and ab−c > 0 (dash-dotted-magenta). In the upper left figure we used g2, in
the upper right gfv, in the bottom left we used gpm, and in the bottom right
gQ.

σ

(

σ +K2p̃0σa
∗ + p̃ν0ν0K

2 s
∗

0

σ
+K2(µ̃0 + ν2

0 ζ̃)− ǫ2γ̃

)

(

σ + κ̃0K
2 + ǫ2γ̃

)

+K2p̃20σ − 2ǫ2γ̃a∗K2p0 = 0 . (2.40)

This equation can be written in the form σ3 + aσ2 + bσ + c = 0. It can be

shown [19] that if any of a, b, c or ab − c are negative, then there exists a

σ with a positive real part, i.e., there exists an unstable mode. In this case,

a is always positive, but b, c and ab − c can become negative, indicating a

growing instability.

The above criteria, together with the critical wavelength Kshear
c are shown

in Fig. 2.3 for different pair-correlation functions and a fixed coefficient of

restitution r = 0.9. Qualitatively g2, gpm and gQ have the same shape.

Since gfv is incorrect for low densities (and will not be further analyzed), the

predictions are not valid and it even adds a new mechanism of instability

for densities below ν ∼ 0.4. Since gpm(ν ∼ 0) 6= g2(ν ∼ 0), their critical

wavelengths differ somewhat (10%) for low densities.

Like for the shear mode, the predictions for the heat mode associated to

g2 and gQ are almost equal for low and moderate densities, differing around
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Figure 2.4: The critical wave numbers Kshear
c (left) and Kheat

c (right) for the
four different pair-correlation functions normalised by the prediction given by
the classical pair-correlation function g2, and a fixed coefficient of restitution
r = 0.9. The solid blue line indicates identity and corresponds to g2, the
magenta dot-dashed line corresponds to gfv, the green dotted line corresponds
to gpm and the red dashed line corresponds to gQ. For the shear mode the
variations are of the order of 10% while for the heat mode the variations can
be as big as 40% in the case of gQ (note the different scale in the vertical axis
for both plots).

the critical density νc ≈ 0.7 and above. In the transition region, the theory

based on gQ predicts a critical wavelength that is about 40% smaller than

the classical value, and a new unstable mode appears.
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Figure 2.5: The dispersion relation for different ν increasing from ν = ∆ν =
0.075 up to ν = 0.9 in steps of ∆ν. In the upper left figure we used g2, in
the right gQ, with a coefficient of restitution r = 0.9.

In Fig. 2.5, we show the dispersion relation of the unstable modes, i.e. the

positive roots of Eq. (2.40), for g2 and gQ as a function of the scaled wave

number K = ν−1
0 k. The density is increasing from the top- to the bottom-

line, and the coefficient of restitution is again r = 0.9. The dispersion relation

for gpm (away from ν = 0.7) is qualitatively similar to the one predicted by

gQ and therefore is not shown.

For ν ≥ 0.75 the critical wave number Kc (where the lines cross the

horizontal axis) changes behaviour when gQ is used, i.e., the critical wave
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number is smaller (relative to the one predicted by g2) at densities 0.675 ≤
ν ≤ 0.85. Also, the shape of the dispersion relation is different. For the

highest density, ν = 0.9, the critical Kc is increased due to excluded volume

effects, relative to the classical case with g2.

For densities around ν = 0.7 a new mode appears for gQ. As seen in Fig.

2.6, for ν = 0.7 and r = 0.9, the dispersion relation has two positive roots that

merge around K = 0.115. To illustrate the differences between the two new

modes and the classical one, we plot the eigenmodes for K = 0.1 in Fig. 2.7.

The classical mode (Fig. 2.7 left) has σ = 0.158 and is a temperature mode

with small amplitude for velocity and density, which are shifted by ±π/2

respectively, from the temperature. The first new mode (Fig. 2.7 center)

has σ1 = 0.135, and is mainly a temperature mode, with small amplitude

for velocity and a yet smaller amplitude for density, which are in phase

and shifted by −π/2 from the temperature. This mode is analogous to the

classical mode (Fig. 2.7 left) but the velocity is shifted by −π/2. The second

new mode (Fig. 2.7 right) has σ2 = 0.020 and the three fields have comparable

amplitudes. The temperature is again the biggest mode, followed by the

density and then the velocity. The phase shift is the same as in the previous

mode, that is, velocity and density are shifted by −π/2 from the temperature.
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Figure 2.6: (Left) Dispersion relation for ν = 0.7 and r = 0.9 for different
pair-correlation functions. The magenta solid line is the one obtained by
using gQ, while the classical one is the dotted blue line. The onset of the
instability is shifted to smaller K when using gQ. The bifurcation starts
at Kb ≃ 0.115 and the new mode appears. (Right) The non-dimensional
temperature as a function of the non-dimensional time, for L = 20 magenta
dashed line, L = 30 red dotted line, and L = 100 green dot-dashed line.

2.4.5 Numerical Simulations

To test the predictions of the theory, numerical simulations were carried

out for three systems with density ν = 0.7 and r = 0.9, for different sizes

L = L̂/d̂ = 20, 30 and 100. The minimal wave numbers are Km = 2πνd̂/λ̂c ≃
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Figure 2.7: The unstable modes for ν = 0.7, r = 0.9, K = 0.1 using g2 and
gQ. In the left panel, the modes for the classical pair-correlation function,
in the middle panel the σ1 mode (the fast one), and in the right panel the
σ2 mode (the slow one) for gQ are shown. The solid blue line is the density,
ν, the dotted green line is the temperature, T , and the dot-dashed magenta
line is the velocity in the x direction, u.

0.20, 0.14 and 0.04, respectively (see Fig. 2.6), where λ̂c is the dimensional

wavelength of the marginally stable wave, i.e., the smallest size of the system

above which the instability is expected.

The system is thermalised in a way similar to [18]: starting from a square

lattice with uniform random velocities, the system evolves during at least 100

collisions per particle with r = 1, so that a Maxwellian velocity distribution

is reached. A small (δu ∼ 0.1vT ) sinusoidal perturbation of the velocity

(in x direction) is added to the initial state of the system and its evolution

with r = 0.9 is studied. The temperature evolution for the three systems

is presented in Fig. 2.6 (right). After initial agreement, the systems deviate

from Haff’s law (solid line), the largest system first, the smallest last, as

expected from the dispersion relation (see Fig. 2.6 left).

The dependence of Haff’s law on the pair-correlation function is through

s0. In Fig. 2.6 we have used gQ, which fits the data better than g2. The ratio

between the two pair-correlation functions for this density, qg = g2(0.7)/gQ(0.7)

is equal to the inverse of the ratio of the s0, that is s
g2
0 /s

gQ
0 = 0.84 = 1/qg.

To quantify the role of the clustering instability, we measure the power

spectra for the density fluctuations and the horizontal velocity, on the x axis,

averaged over the y direction in bins of size d. In Fig. 2.8 we present the

power spectra at three different times τ ≃ 0.001, 5 and 1000 for the L = 100

system, for two different initial conditions, one perturbed as described above

and the original thermal configuration. The power spectra are normalised so

that the relative power of each mode is displayed. This way we can perform

comparisons between different times, for which the amplitude of the velocity

fluctuations is decreasing. The only system that displays a clear peak for

low wave numbers, for both density and velocity fluctuations, is the one with

L = 100. The system with L = 30 presents a qualitatively similar behaviour

but slower, and the peaks are not as marked as for L = 100. The L = 20
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system does not present a peak, showing that the clustering mode is not

present and the deviation from Haff’s law in this system is due to the shear

mode instability.

In order to visualise the emergence of the clustering mode, a space-time

diagram of the density fluctuations of the three systems is presented in Fig.

2.9. The system with L = 20 does not develop a sinusoidal profile, at least

for the time scales studied here. In contrast, for L = 30, it is possible to

identify a sinusoidal perturbation at τ ∼ 104, while the system with L = 100

presents a clear sinusoidal behaviour already for τ ∼ 102, and later develops

fluctuations with a larger wave number at τ ∼ 104.

The evolution of the smallest K, the one where the perturbation in the

velocity is added, is presented in Fig. 2.10. The sinusoidal density mode that

can be appreciated in Fig. 2.9, is reflected here in the growth of the relative

power. For the system with L = 30, a growth is observed at τ ∼ 102 − 104,

while for L = 100 the growth occurs earlier at τ ∼ 0.1 − 102. The smallest

system does not present a clear growth of the field perturbation in the time

scale studied.

To illustrate the change in density in real space, four snapshots of the

perturbed system with L = 100 are shown in Fig. 2.11. The first two snap-

shots from the left correspond to the same τ used in the right two plots of

Fig. 2.8; the snapshot corresponding to τ = 0.001 is not shown due to its

similarity with the one at τ = 5. The colour code represents the kinetic en-

ergy of each particle normalised by the average temperature at that instant.

The system develops density fluctuations (clustering) that grow with time,

to finally arrive to a sheared regime with two shear bands, visible in the right

panel of Fig. 2.11.

2.5 Conclusions

In this chapter different constitutive models for the pair correlation function

at contact have been used to predict the onset of instability in a freely cooling

2D granular gas. First, the classical g2 proposed by Henderson [42], second

the gpm by Grossman et al. [43], third the high density limit of the latter,

gfv [44], and finally, the gQ proposed by Luding in Refs. [37, 44].

Only the latter takes into account the disorder-order phase transition

and the corresponding drop in the pressure around and above the critical

density. This is also the one that results in the best fit with the data from

ED simulations for mono-disperse disks.

While for low density the results do not depend on the choice of either

g2 or gQ, the expected difference for the critical wave numbers at ν > 0.75 is

rather small. The main result of this study is that around the crystallization
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Figure 2.8: (Upper panel) Normalised power spectra of the density for three
different times. The dotted magenta line corresponds to the perturbed sys-
tem, and the dashed green line to the non-perturbed system. (Bottom panel)
Normalised power spectra of the velocity in the x-direction, u, for the same
three times as above. The red dotted line corresponds to the perturbed sys-
tem, and the dashed blue line to the non-perturbed system. The contribution
of the initial perturbation can be clearly seen in the first graph with the peak
at K ≃ 0.04.

density (ν ≃ 0.7), the instability of the sound mode – that may precede

the clustering instability – is delayed, and a new mechanism of instability

appears. The growth rate of the new mechanism is one order of magnitude

slower than the classical heat mode and it was not possible to excite it in

the current simulations. Even though we present theory and simulations

for moderate dissipation, the theoretical predictions of this study are strictly

valid for smaller dissipation only. Whether it is justified to neglect the density

gradient contribution to heat flux has to be studied elsewhere.

For a given dissipation and density ν = 0.7, using gQ, theory predicts

that in order to become instable under clustering, the system size must be

approximately 40% bigger than previously predicted by using g2. We have

found that for ν = 0.7 the best fit for Haff’s cooling law is given by gQ, and

that a system with L = 20 is stable to clustering, in contrast to the theory

using g2. These are clear differences and should be checked by more system-

atically examining the onset of the clustering instability at these densities,

by using hard sphere simulations. The present results support the use of a

modified pair-correlation function even though open questions remain.

Furthermore, we observe that the inclusion of modified constitutive mod-

els does not change the mechanism of the instability for small dissipation:

the shear and the heat conduction modes are the principally unstable modes.

Nevertheless, in the critical region, for different pair-correlation functions, the
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Figure 2.9: Space-time diagrams of the density fluctuations for the three
perturbed systems, from left to right L = 20, 30 and 100. The colour code
shows in red the fluctuations above the average density, while in blue the
fluctuations under the average density.
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Figure 2.10: Time evolution for the first component of the normalised power
spectra, Φ = log (P (Km)), in the three perturbed systems: from left to right
L = 20, 30 and 100. The magenta dotted line corresponds to the velocity, the
dashed blue line to the temperature, and the solid green line to the density.

heat conduction mode is affected, while the shear mode is almost unchanged

(< 10%).
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τ = 5 τ = 1000

τ = 10000 τ = 300000

Figure 2.11: Four snapshots for the perturbed system with L = 100 for times
τ ≃ 5, 1000, 10000 and 300000. The particles are colour coded depending on
their relative kinetic energy normalised by the average. Red particles have
more kinetic energy than the average, and blue particles have less.
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Chapter 3

An Event-Driven Algorithm for

Fractal Cluster Formation∗

A new cluster based event-driven algorithm is developed to simulate the for-

mation of clusters in a two dimensional gas: particles move freely until they

collide and “stick” together irreversibly. These clusters aggregate into bigger

structures in an isotropic (random) way, forming fractal structures whose

fractal dimension depends on the initial density of the system.

3.1 Introduction

Cluster formation is an important subject in various areas of physics; for

example, in astronomy, ice clusters are believed to aggregate into planetesi-

mals [45], the base of today’s planets. In granular materials, the main theme

of this chapter, tiny nano-Newton forces are responsible for macroscopic clus-

ters in free falling jets [46]. These are similar to those that appear in nano jets

from plasma physics [47]. Clusters are also found in granular avalanches [35],

and air-driven granular beds [48].

Motivated by nano-aerosols [49], a cluster based event-driven algorithm

is developed to simulate the formation of clusters in a 2D gas with periodic

boundary conditions: particles move freely until they collide and “stick” to-

gether irreversibly, moving as one cluster. The dynamics of the clusters is

utterly simplified in our model. Conserving only linear momentum during

collisions, angular momentum is disregarded. These clusters evolve and ag-

gregate into bigger fractal structures, whose dimension df is found to be in

the range 1.4 < df < 2; in contrast, to the case of diffusion-limited aggrega-

tion (DLA), where df = 1.67 [50]. Here, we keep track of the dynamics of the

clusters instead of adding particles one by one like in DLA. This procedure

∗Based on S. González, A.R. Thornton, S. Luding, Computer Physics Communica-
tions, 182, 9, (2011).
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can be seen as a mix between irreversible coalescence [51], and a lattice-free

version of a cluster-cluster aggregation model [52].

Implementing clusters in an event-driven algorithm has two advantages:

Firstly, defining clusters of particles avoids the need to predict the events be-

tween particles of the same cluster. Since particles in a cluster move together

as a rigid solid, they cannot collide. This alone decreases the computational

effort required to simulate the clusters, where in standard event-driven mod-

els most of the collisions occur [33]. Secondly, the concept of clusters appears

in a wide range of particulate physics: granular structures develop long cor-

relations in space and time; see for example, Keys et al., Ref. [48], where it

is found that particles move in one-dimensional paths (“strings”) that aggre-

gate into clusters.

In the next section we explain the algorithm used and how it is related

to the classical event-driven model. After that, we present a selection of

numerical simulations. Finally, concluding remarks and plans for future work

are discussed.

3.2 Algorithm

By event-driven we mean that the state of the system is evolved in time

from one event to the next. After each event, the time of the next event is

calculated and the system advances. For the details of the algorithm we refer

the reader to chapter 2 together with standard papers and books, see e.g.

Refs. [9, 10]. In brief, the algorithm consists of:

1. Given the instantaneous positions and velocities of all particles in the

system,

2. predict the time of the next collision,

3. advance the time of the system to that instant, and

4. update the velocities of the particles that collide with a given collision

rule, and repeat from 1.

The event-driven algorithm presented here builds on previous work, where

the static phase in dense granular systems was simulated with a different dy-

namics, also improving the performance see Ref. [12] and the second chapter

of this thesis. This is a necessary step towards a multiple-scale event-driven

simulation for granular matter, where each cluster can have its own dynamics

and collision rules.

The kind of clusters we are interested in at the moment are, e.g., suspen-

sions of nano-particles in a gas, which stick together at contact due to Van
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der Waals forces (as in Ref. [53]). In reality, clusters of particles conserve

angular momentum when they collide, which induces rotation in the clusters.

For the sake of simplicity, and since (at the moment) we are mainly interested

in the algorithm rather than in recovering the right physics, we will disre-

gard rotations of the clusters and, hence, consider only translational motion.

This approximation should be valid for fairly dilute systems and break down

as the density of the system increases. Note that, anyway, no considerable

rotation of large clusters is expected in a gas.

In normal event-driven algorithms one has to predict the next collision

between all two-particle pairs. In this version, we introduce a new object

called cluster (which may consist of just one particle or many), and only

collisions between these objects have to be computed. Since a cluster consists

of a finite number of particles, the position of a particle i within a cluster C,

is given by

~ri,C(t) = ∆~ri + ~r0 + ~vCt ,

where ~vC is the linear velocity of the cluster and ∆~ri relative position of the

particle i in the cluster C. The time is measured since its last collision, and

r0 is the centre of mass of the cluster at that instant.

Now that we have defined the evolution of particles within a cluster,

collisions between particles in different clusters can be detected. This is a

massive time saving as collision between particles within the same cluster

do not have to be checked for, and as the size of the clusters increases the

total number of checks decreases. Once the collision of two clusters has been

carried out, the colliding particles “stick” together and the two clusters are

combined into a single larger one. The velocity of the newly formed cluster

is calculated by considering the conservation of linear momentum only. This

process is repeated until the system consists only of a single cluster.

The classical event-driven model needs to deal with a quadratic equation,

both in the case with or without gravity. Like in the classical case, here we

have to find the time of collision between two particles i, j by (analytically)

finding the first (smallest) positive root of

|~ri(t)− ~rj(t)|2 = d2,

with d the diameter of a particle. The inclusion of rotating clusters in the

simulation makes the equation to find the collision time highly nonlinear.

Furthermore, the number of roots cannot be a priori determined making the

problem extremely difficult. Recently, methods have been developed to deal

with these situations [54,55], but the inclusion of rotation is beyond the scope

of this chapter.

Summarizing the simulation procedure, one has to:

31



An Event-Driven Algorithm for Fractal Cluster Formation

1. Start with an initial configuration of particles,

2. find the time for the next collision in the system.

3. Advance the system to that instant and merge the two particles (clus-

ters) into a single cluster,

4. predict the next event with the new configuration, and

5. repeat until all the energy is dissipated and a single cluster is present in

the simulation (the simulations are run in the centre of mass reference

frame).

Three snapshots of a simulation are shown in Fig. 3.1. At the beginning of

the simulation, (a) particles are arranged in a square lattice with random ve-

locities (each component of the velocity is take from an uniform distribution

with zero mean). The colour code represents different clusters in the sim-

ulation. At this initial time, every cluster correspond to strictly one single

particle. At a later time, (b) clusters of different size coexist in the simulation

and aggregate as soon as they are in contact. Finally, (c) the system contains

only two clusters that will collide in the next event of the simulation, form

one cluster, and end the aggregation process.

0 100
0

100

a
0 100

0

100

b
0 100

0

100

c

Figure 3.1: Three snapshots during the evolution of a system of N = 400
particles in a box of size L = 100d, a packing fraction of ν ≃ 0.03. Each
colour represents a different cluster. Time increases from left to right.

3.3 Simulations

The simulation consists of a system of N particles in a 2D square box of

size L with periodic boundary conditions. Particles are mono-disperse with

diameter d and mass m. The packing fraction of the system is given by

ν = Nπd2/(4L2). In order to start with a homogeneous configuration, we let
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the system equilibrate: starting from a square lattice, each particle collides at

least 10 times elastically until a homogeneous regime is reached with average

velocity v0. Once thermalised, the clustering algorithm is switched on, and

the simulation runs until one big cluster is formed.

3.3.1 Temporal Evolution

The natural time scale is the initial Boltzmann mean collision time (as defined

in [51]), τ0 = (4dπ2/v20)
1/2/ν, with ν the packing fraction, and g(ν) ≃ 1 for

low densities.

The scaling behavior of the energy was studied. For dilute systems, the

mean kinetic energy per particle follows a power law 〈EK〉/〈EK〉0 ∝ τ−δ, with

δ = 1.3 for almost four decades, as can be seen in figure 3.2. This results is

similar to the coalescence model from Ref. [51], where particles move freely

until they collide and merge into a single particle of larger mass and radius

(instead of a cluster, as in our model) and a scaling with δ = 1.12 was found.

This scaling breaks down when the number of clusters is small and finite size

effects become important, leading to bad statistics, since we did not employ

ensemble averaging.

For these systems, the average cluster size also follows a power law scaling

〈SC〉 ∝ τ ζ with ζ = 1, which corresponds exactly to the mean field predictions

in Ref. [56].

3.3.2 Cluster size distribution

As the simulation evolves, the distribution of clusters develops from N clus-

ters of size one (free particles), to one cluster of size N . The change of the

cluster size distribution as a function of time is plotted in figure 3.3. Since

the raw probability density function (PDF) is noisy, see Fig. 3.4, we plot the

cumulative distribution function (CDF) as a function of cluster size for differ-

ent non-dimensional times. The data presented here correspond to N = 106

and a fairly dilute packing fraction of ν = 0.0097. As time increases the

number of clusters decreases and the distribution broadens, i.e. the differ-

ence between the biggest cluster and the smallest becomes larger, reaching a

maximum around τ ∼ 924.

The resulting PDF cannot be fitted by an exponential function as in [51].

For intermediate times a fit of the form P (s; τ) = a(τ)s−γ(τ) exp(−w(τ)s),

with a(τ), γ(τ), and w(τ) are time dependent free parameters, while s is the

cluster size. This can reproduce the qualitative behavior of the distribution:

Fig. 3.4 shows the PDF for three intermediate times together with the best

fit. The numerical values for the coefficients appear in the caption of the

figure.
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Figure 3.2: Energy as a function of the non-dimensional time τ = t/τ0 for five
systems with N = 106 and packing fractions in the range 0.0008 ≤ ν ≤ 0.012.
The energy follows a power law 〈EK〉/〈EK〉0 ∝ τ−δ with δ = 1.3, as indicated
by the dashed line

3.3.3 Fractal dimension and density

With the final configuration from each simulation, we count the number of

particles present in a circle of radius r around ten randomly chosen particles

of the cluster. We do this to obtain the number distribution n(r), whose ex-

ponent is the fractal dimension of the system. We confirmed that the fractal

dimension was almost independent of the points selected, by choosing points

in the inner third, and in the outer third of the fractal: both measurements

lead to practically the same results; here, we present data for df based on

inner points.

The fractal dimension we obtain is strongly dependent on the density of

the system. If we start with a very dense system, there is no re-arrangement

possible and the final state will practically coincide with the initial state.

Due to this, an integer dimension of df = 2 is expected for dense systems.

For vanishing density, we expect an asymptotic lower fractal dimension, since

after some point the mean free path is much larger than the cluster size, i.e.,

the system is so dilute that molecular chaos holds.

Figure 3.5 shows the fractal dimension plotted against the density for

different systems. To measure the effect of the density, we vary the size of

the system for a given number of particles N = 106. The system sizes chosen

are in the range 40000d ≥ L ≥ 1000d, corresponding to densities between

0.0005 ≤ ν ≤ 0.78. We have realized one simulation for each system size,
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Figure 3.3: Cumulative distribution function for different non-dimensional
times τ for a system of N = 106 and ν = 0.0097. As time increases the num-
ber of cluster decreases and the distribution broadens, reaching a maximum
around τ ∼ 924. Eventually, just two clusters are present: (red) squares.
On the plot, each symbol (data point) represents one cluster, so we can see
that as long as there are some free particles in the system, the distribution
is smooth.

but gather statics by choosing different central particles.

The error bars correspond to the fluctuations in the measurement of the

fractal dimension on a single simulation, and not to different realizations

for the same system. As expected, for high densities the fractal dimension

approaches 2, namely for df (0.78) = 1.97 ± 0.01, that is, the cluster ap-

proaches a two dimensional structure. For vanishing densities it is found

that df (ν → 0) does not reach a clear asymptotic value and decreases with

density, at least for the few values studied here. This fractal dimension is

considerably smaller than the one found, by Witten et al. for the diffusion-

limited aggregation process [50], where the fractal dimension is dDLA = 1.67.

3.4 Conclusions

In this chapter we have presented event-driven simulations of irreversibly

aggregating clusters in 2D systems of various densities. These clusters have

non-physical dynamics but represent a “toy” model that permits us to under-

stand how to make cluster simulations in an event-driven algorithm. The for-

mation of fractals was studied, and the exponent found depends strongly on
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Figure 3.4: Probability distribution function for τ = 7.12, 36, and 182
and the same system of Fig. 3.3. The distribution flattens and be-
comes more noisy as time passes. The solid lines correspond to the
fit, while points correspond to the data. The functions plotted are
P (s; 7.12) = 0.2(1)s−0.63(1)e−0.038(1)s; P (s; 36) = 0.052(1)s−0.46(1)e−0.0086(1)s;
and P (s; 182) = 0.016(1)s−0.40(1)e−0.0020(1)s from top to bottom.

the initial density of the system, with dimensions in the range 1.4 ≤ df ≤ 2.

The denser the system, the closer to a two dimensional structure the fractal

is.
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Figure 3.5: Fractal dimension as a function of packing fraction for systems
with N = 106 particles. The dots are the simulation results while the solid
line is just a guide to the eye. The error bars correspond to the fluctuations
associated with the measurement of df and not to ensemble averages. In
the inset, two examples of the structures obtained for two different densities
νdilute = 0.0035 and νdense = 0.784, marked as red points on the plot. The
structures are colourised from red to blue depending on the distance to the
central particle.
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Chapter 4

Free Cooling of Hard-Spheres

with Long-range Interactions

We study the stability of the free cooling of a granular gas of mono-disperse

particles with long-range interactions. We analyse structure formation in

this system by means of two independent methods: event-driven molecular

dynamics with discrete potentials (in 2D and 3D) and linear stability ana-

lysis of the corresponding hydrodynamic equations (in 2D), where only the

energy dissipation term is modified to account for the long-range interaction.

Attractive potentials enhance structure formation while, on the other hand,

repulsive potentials inhibit it, as intuition indicates. However, if the potential

is weak enough, structures will develop before the repulsion has time to act.

The time for this effect to take place is estimated and the modifications to

the hydrodynamics modes discussed. Furthermore, for repulsive potentials,

in the homogeneous regime, the cooling shows a universal behaviour when

the temperature is normalised by the bounding energy. Remarkably, for low

dissipation and density, the data is captured by a previously developed mean

field theory for continuous potentials in 3D. The non-homogeneous regime is

also studied and the effect of the potential strength in relation to the cluster

formation is investigated.

4.1 Introduction

Granular gases are granular materials where the duration of a collision is

much shorter than the typical collision time [17–24]. This situation can be

obtained by either placing a dilute particle system in a micro-gravitational

environment (such as parabolic flight [57]), or experimentally easier, by feed-

ing the system with energy such that a gaseous steady state appears (e.g., by

vertically vibrating the enclosure [58]). For a granular gas, in the dilute limit,

binary collisions dominate over multiple collisions. Contrary to molecular
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gases, granular gases are dissipative. So the continuous loss of kinetic energy

due to collision not only makes the gas cool down but is also accompanied

by collective phenomena such as cluster formation or shear banding. Granu-

lar gases are subject to instabilities and cluster formation [19, 22, 34, 58, 59],

deviations from the Maxwell-Boltzmann velocity distribution [60, 61], phase

transitions [62] and the formation of vortices [19].

The hydrodynamic instability that leads to cluster formation is exclu-

sively an effect of dissipation during collisions for the case of hard spheres [18],

and thus should be enhanced by attractive potentials and diminished by re-

pulsive potentials between the particles. Electrically charged granular media

are, in nature and industrial processes, the rule rather than an exception

(see Ref. [63] and references therein). Particle systems with attractive long-

range interactions can be found, for example, in dry powders, electrostatic

coating processes, and in space. In the latter case, huge mass distributions

such as dense granular rings and disks around central bodies are affected by

considerable self-gravitation [64–66].

This study is devoted to the behaviour of granular media with either

(long-range) repulsive or attractive potentials in the dilute limit, and fur-

thermore we do not consider attractive and repulsive potentials acting at the

same time. Our goal is to understand how do dissipation and long-range

interaction relate and what kind of dynamics produces the inclusion of both

effects in a free cooling granular system.

We study the system through the stability analysis of the hydrodynamic

equations for a granular fluid and compare the results with event-driven

simulations. We find out that the homogeneous cooling of a granular gas, at

low enough densities, and with repulsive long range interaction is universal

in the sense that it does not depend on the shape of the potential. For the

repulsive case the linear analysis predicts the behavior of the system, but

not for the attractive case. In section 4.2 we present the 2D hydrodynamic

equations for our system. We introduce the modified cooling rate due to long-

range interaction in sec. 4.3 together with the stability analysis of the fluid

equations. We introduce our simulation method in sec. 4.5, and continue with

numerical results in sec. 4.6. The phase diagram for this system is presented

in 4.7. Conclusions and perspectives of future work finalise the paper in sec.

4.8

4.2 Classical Granular Gas

In this section we review the theory of the free cooling granular gas, what is

know in the literature as Haff’s law.
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4.2.1 Free Cooling Theory

In the homogeneous cooling state (HCS) [17] the decay of the kinetic energy

K is governed by the equation

K(τ)/K(0) = (1 + τ)−2 , (4.1)

with the rescaled time τ = (1 − r2)t/(2DtE). D is the dimension of the

system, r the coefficient of restitution, and tE is the initial Enskog collision

rate [37],

tE =
d
√
π

2DDνgD(ν)
√

Tg/m
, (4.2)

with the initial granular temperature Tg = T/m = 2
D

K
N
, i.e. twice the kinetic

energy per particle per degree of freedom, while T is the square of the velocity

fluctuations. The diameter of the particle is d, ν is the packing fraction of

the system and m the mass of the particles. This collision rate defines a

non-dimensional time τ = t/tE(0) for the simulations (see below). In 2D,

the pair correlation function at contact is given, approximately for low to

moderate densities, by [42,67]

g2(ν) =
1− 7ν/16

(1− ν)2
,

and in 3D by

g3(ν) =
1− ν/2

(1− ν)3
.

Improved formulae for higher density can be found in [37,68, 69].

4.2.2 Hydrodynamic Equations

The hydrodynamic equations for a granular gas are explained in detail in [70]

(Chapter 2). For the sake of brevity, we present a summarised version.

The continuity equation for the mass density (ρ = M/V ) reads:

Dρ

Dt
+ ρ

∂ui

∂xi

= 0 , (4.3)

where ui is the velocity in the xi direction. Momentum conservation in

absence of gravity gives:

ρ
Dui

Dt
= −∂σij

∂xj

, (4.4)
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where σij is the stress tensor. The energy balance reads:

ρ
D

Dt
T = −σik

∂ui

∂xk

− ∂qk
∂xk

− γ̂T , (4.5)

where qk is the heat flux and γ̂ the dimensional cooling rate. For the explicit

formulation of the coefficients see [37, 70] and Chapter 2.

The homogeneous reference solution (HCS) for a freely cooling gas is

found by taking all the spatial derivatives in the hydrodynamic equations

equal to zero, leaving just one non-dimensionalised equation for the temper-

ature:

dT

dt
= −γ̃T , (4.6)

where the energy density dissipation rate is γ̃ = −γ0T
1/2. The remaining

fields – density and velocity in each component – remaining homogeneous

and constant:

ν = ν0, ~u = 0 .

This was the solution Haff derived from simple mechanical arguments in his

seminal paper [17]. The homogeneous-state variables and coefficients are

designated by a subscript “0” (ν0, p0 ≡ p(ν0), s0 ≡ s(ν0), etc.), and the

derivatives with respect to density (evaluated at ν0) are denoted as, e.g.,

pν0 ≡ dp/dν|ν0 .

4.2.3 Cluster Instability

The homogeneous cooling state, however, is not always a stable solution for

the system. For the hard-sphere potential, when the system size is large

enough (at a given dissipation), the homogeneous cooling becomes instable

and shear and clustering modes appear in the system. For the attractive

potential we expect that the cluster instability will be always enhanced, and

on the contrary, for the repulsive case, impaired.

The spontaneous formation of clusters in a force free cooling granular gas

can be understood by simple arguments [18,71]: consider density fluctuations

in an otherwise homogeneous granular gas. In denser regions the particles

collide more frequently than in more dilute regions, therefore, dense regions

cool faster than dilute regions and the local pressure decays in these colder

regions. The resulting pressure gradient causes a flux of particles into the

denser region, which leads to further increase of the density. Hence, small

fluctuations of the density are enhanced, which leads to the formation of

clusters.
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Since the simulation and the hydrodynamic equations can be scaled to

arbitrary units and non-dimensionalised, we will take both the particle radius

and initial temperature to be one. The potential strength is scaled by the

initial temperature and hence is dimensionless. Figure 4.1 shows snapshots

for the same initial conditions after 7 × 105 collisions for an event-driven

simulation with long-range potential. We use relative week potentials with

φ = −10−5, 0, 10−5, that is, attractive, neutral, and repulsive. The three

systems present similar clusters but the evolution is different for each one of

them. The following section introduces the theoretical approach we will use

to study these differences.

Figure 4.1: Snapshots after 7 × 105 collisions for systems with φ =
−10−5, 0, 10−5, from left to right. N = 6400, ν = 0.0578 and r = 0.65.
The color code indicates the kinetic energy per particle, from blue (slow), to
yellow (average) and red (fast).

4.3 Long-range cooling: modification of the

dissipation rate

Haff’s law is valid only for particles with hard-core interaction. For long range

interaction, Müller and Luding [72, 73] predicted, using a modified pseudo-

Liouville operator formalism, a reduced cooling rate due to the repulsive

forces and an increased rate due to attractive forces.

In this theory, the ratio of the long-range potential at contact, φ to the

temperature is the control parameter,

Γ =
|φ|
T

. (4.7)

It must be noted that since the theory is a mean field theory, the shape of

the potential does not enter in the formulation, only its value at contact [72].

Since the cooling rate is modified, the transport coefficients of the system

will be modified accordingly. We will focus only on the change produced
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in the dissipation rate, since it is the dominant term in the dynamic of the

system. Namely, the dissipation coefficient is modified as follows:

γ̃ =







γ0 : Haff

γ0 exp (−Γ) : Repulsive

γ0 (2− exp (−Γ)) : Attractive

(4.8)

These modifications were derived for 3D systems by computing the average

effect of a long-range potential in the collision frequency of a granular system

with a pseudo-Liouville operator approach. We will use them directly in 2D

accounting for the different dimensionality in the pair correlation function

at contact and the numerical factors in the Enskog collision time. This is

justified since the integration of the Liouville operator considers collisions in a

plane due to angular momentum conservation, and hence only the prefactor is

different between 3D and 2D, while the functional form in Γ remains identical.

Predicted Homogeneous Cooling

The homogeneous cooling with long range interaction is given by Eq. (4.5).

It was numerically solved (we used Mathematica 8) and Fig. 4.2 shows the

evolution of the temperature for three cases: attractive (φ = −1), repulsive

(φ = 1) and no long-range interaction (Haff’s law, φ = 0).

Physically, Fig. 4.2 says the following: In Haff’s case, the dynamics of

the systems becomes slower as time advances, making the dissipation slower,

and so on, as long as the system is homogeneous [17]. In the presence of

long-range forces, the system can have at least two different regimes: at the

beginning, the thermal energy is larger than the repulsive/attractive energy,

its effect being negligible. As the system cools down, the repulsive/attractive

barrier will start to be felt, and the cooling will be consequently modified.

For the attractive force the prediction says that once the particles start

to feel the attraction they will dissipate energy faster but nevertheless will

retain the power law of the dissipation and keep the homogeneity.

4.4 Stability Analysis

In this section we present the stability analysis for the modified cooling rate

due to the long-range interaction in 2D. We first write down the linearised

system of equations and then the eigenvalue equations for the shear mode.

The explicit form of the other modes can be found in [19,70].

In what follows, we assume that the base state of the system is Haff’s

law. This is valid only when the long range potential is small compared with
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Figure 4.2: Cooling of granular systems. Top: temperature evolution for
hard-spheres (Haff’s law, solid black), repulsive interaction and attractive
interaction as given by the numerical solution of the temperature equation
(4.5) considering the dissipation term as in Eq. (4.8) for different values of
phi = 10−3, 10−2, 10−1. Bottom: quality factor qHaff = T/THaff for the same
long range potentials as on the top plot.

the temperature. The reason for this choice is the following. In the attrac-

tive case, once the temperature and the repulsive potential are comparable,

the system becomes homogeneous to any perturbation, so it is irrelevant to

make stability analysis on this state for we already know the answer. On the
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contrary, for the attractive case once the attractive potential is comparable

to the temperature the systems develops clusters. The validity of the hydro-

dynamic equations in this case is, at least in the present form, questionable.

Linear Equations

Since the stability analysis here is the same as the one done in Chapter 2, we

refer the reader there for the details and explicit formulation of the transport

coefficients.

In the following, we study the linear stability of the system in its new time

variable, τ , since then the equations can be written in the form dZ′/dτ =

F (Z′), with the vector of perturbed fields Z′. Since we work in the approxi-

mation φ ≪ 1, the equations become time-dependent only via Γ.

If we would keep the physical time as our variable, the equation for the

temperature would be explicitly time-dependent.

In order to linearise the hydrodynamic equations about the homogeneous

but time-dependent solution (4.1), the fields are split into their homogeneous

and their perturbation (primed) parts:

ν = ν0(1 + ν ′) , u = fu′ , v = fv′ , T = f 2(1 + T ′) ,

where ν is the volume fraction, u(v) the bulk velocity in x(y) direction, and

the primes indicate the perturbations. The primed quantities define Z′, and

the factor f , the collision frequency, is introduced for later convenience.

The final goal of this section is to examine the linear stability of small

perturbations of the form exp (ik · x). Without loss of generality, consider

perturbations only along the x direction so that the derivatives in the y

direction vanish. Taking the perturbations up to first order gives four coupled

equations. By inserting the fields into Eqs. (4.3), (4.4) and (4.5):

ν ′

t = −fu′

x , (4.9)

ν0(fu
′)t = −p′x + (µ0 + ζ0)fu

′

xx , (4.10)

ν0(fv
′)t = µ0v

′

xx , (4.11)

ν0(f
2T ′)t = −p0fu

′

x + κ0f
2T ′

xx − γ0f
2T ′ − γ′f 2 − 2ν0fftν

′ , (4.12)

where the explicit expressions for the non-dimensional transport coefficients

in the homogeneous state, p0, µ0, ζ0, γ0, and their perturbed values p′ and

γ′ can be found in Ref. [19] and in Sec. 2.3.4.

For the classical stability analysis, one changes variables to intrinsic time

scale of the system, given by the collision frequency, τ , using the identities

f = exp (−ǫ2γ̃τ), dτ/dt = f/s0, and scaling lengths by density as X =

ν0x and thus wave numbers as K = ν−1
0 k. In our case, however, γ̃ is not
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a constant. We nevertheless neglect this dependence and simply add the

modified dissipation rate to the classical eigen-value equations for stability,

replacing γ̃ by the corresponding long-range term from (4.8). The validity of

this assumption will be confirmed later by the simulations.

Shear Mode

Since the shear mode is decoupled from the other modes in the hydrodynamic

equations, the method we use can be easily explained by this example. The

equation for the shear mode in the non-dimensional coordinates for time and

space reads:

ν0(fv
′)τ = µ0v

′

xx ,

with ν0 the non-perturbed density and µ0 = the shear viscosity (see Sec.

2.3.4). The approximation we make now consists of introducing the new

dissipation rate taken all the other variables as constants.

The standard method for stability analysis [19] considers a plane wave as

the solution for the hydrodynamic modes and studies the growth rate of an

arbitrary perturbation. If the growth rate is positive, the mode is instable.

Assuming that v′ ∝ exp(−στ + kx), the dispersion relation for the shear

mode in Haff’s case reads

σ = −µ0k
2 + ǫ2γ̃(T ) .

This approximation is formally equivalent to Eq. (9) in Ref. [74]. As noted

before, for the long-range case we assume that the homogeneous cooling is

still the base state since the long-range potential has a small amplitude, i.e.

Γ0 ≪ 1. Hence, the collision frequency does not appear to first order and

the exponential terms enters only on the dissipation rate: γ̃(T ) = γ0e
−Γ .

Figure 4.3 shows the evolution for ten different wave numbers of the shear

mode, from k = 1, ..., 10 in even intervals, solved numerically. The attractive

case (left) shows that for k small enough the system is instable, while for the

repulsive case all the wavelengths are eventually suppressed and the system

becomes stable and homogeneous.

Critical wavelength for the other modes

As we saw in Chapter 2, the other hydrodynamic modes are linear combi-

nations of the density, temperature and transversal velocity. They can be

solved numerically but for the sake of simplicity we are going to focus only

on the critical wave number as a function of density for different Γ and draw

the physical consequences of it.

Instead of looking at the dispersion relation for the other modes, we
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Figure 4.3: Evolution of shear mode for different K. (We have considered
ǫ2γ0 = µ0 = 1 for the sake of simplicity; for different restitution coefficients
and density the plot is scaled but the form remains the same. In the left,
φ = −1 while in the right φ = 1.

focus on the dependence of the critical wave lengths on density [19]. This is

a clearer way to picture how the long-range potential affects the stability of

the system.

Figure 4.5 shows the different criteria for instability for attractive and

repulsive potentials at different φ for r = 0.9. Each line represents the

smallest K at which each mode becomes instable. As K is decreased, the

shear mode is the first to become unstable. As K is decreased further, the

stability condition for the granular heat mode is violated.

If we move now downward in the plots, we see that in the repulsive case

the critical K moves upward as φ increases, while the repulsive case is exactly

the contrary: the critical K decreases as φ increases. Furthermore, for the

attractive case, qualitative changes appear at around φ ∼ −1, while for the

repulsive case they appear at φ ∼ 0.3.

This make a quantitative difference between the attractive and the repul-

sive case: while the attractive case becomes significantly different at φ ∼ 1,

the repulsive potential becomes active much earlier, and furthermore, when

the thermal energy and the potential are comparable, all the disturbances

are blushed away and the system remains homogeneous independent of the

restitution coefficient and the density of the system.

In the next section we will see how this is reflected by the simulations.

4.5 Event-Driven simulations

The simulations used to prove the theoretical predictions in Ref. [72] were

done with continuous potentials, which make them computationally expen-

sive and time consuming. However, the theoretical description does not con-

sider the shape of the potential but only its value at contact. Therefore, we
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Figure 4.4: Critical wave numbers as a function of density for attractive
(left) and repulsive (right) potentials at φ = ±0.01 (upper row), φ = ±0.3
(middle) and φ = ±1 (lower row). Shear-mode in solid-blue and heat-mode
(dotted-green), together with the other stability criteria (see [19]): b > 0
(dashed-red) and ab− c > 0 (dash-dotted-magenta).

use much faster discrete potential simulations where the range of attraction

is finite.

Event-driven simulations have been widely used to study granular gases

[19,22,71], and have shown to capture the correct behavior. In what follows

we present the details of the simulations.

4.5.1 Discontinuous potentials

Discrete potentials, such as the hard sphere model, have an important ad-

vantage over more complex “soft” potentials. Between collisions the spheres

or molecules experience no forces and travel on ballistic trajectories. The dy-

namics can be solved analytically, and the integration of the equations of mo-
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tion is processed as a sequence of events rather than fixed, small time-steps.

Current event driven molecular dynamics algorithms are quite advanced and

allow the simulation of large systems for the long times required to extract

accurate transport properties and study, e.g., the evolution of clusters [70,75]

over many orders of magnitude.
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Figure 4.5: Plot of the potential energy for both continuous and discontinuous
models with attractive (left) and repulsive (right) potentials as a function of
the inter-particle distance r.

For our simulations we use a two-level potential. The core is a hard sphere

and there is a well (or barrier) at a distance ω = 1.5 (for all simulations unless

otherwise noted) and of amplitude φ. The core is a hard sphere potential

and the relative velocity in a collision is updated only in the normal direction

according to

v′

ij = vij − (1 + r)(vij · rij) , (4.13)

where rij is the distance between the particles, vij is the pre-collisional rela-

tive velocity, and the prime indicates a post-collisional quantity. At crossing

the well (barrier) the particles loose or gain energy instantaneously depend-

ing on the direction of the collision. The velocity after the crossing can be

written as:

v′

ij =
√

v2ij ± 2φ/m , (4.14)

with |vij| = vij, and the sign depends on whether the potential is attractive or

repulsive and whether the collision is outgoing or incoming. For an incoming

collision, in the attractive (repulsive) case, the particles gain (loose) energy.

For the outgoing collision this is reversed. How the sign and magnitude of

this potential affect the macroscopic evolution of a free-cooling gas is the

subject of the rest of the study.
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4.5.2 System and Preparation

The simulation consists of a system of N particles in a square box of side

length L with periodic boundary conditions. Particles are mono-disperse

with diameter d and mass m. The packing fraction of the system is given by

ν = Nπd3/(6L3) in 3D and by ν = Nπd2/(4L2) in 2D. The simulations were

carried out in DynamO, a free and open-source event-driven code [13].

Initial Conditions

The initial state is prepared as follows: (1) Start with a square lattice (2D)

or HCP packing (3D), uniform random velocities and a fixed φ. (2) Let the

system equilibrate: each particle collides at least 100 times elastically until

a homogeneous regime is reached. This is tested looking at the distribution

of velocities and confirming that is very close to a Maxwellian. (3) Once

thermalised, the velocities are scaled so T0 = 1 and dissipation is turned on.

From here, the system is let to freely cool down.

Simulation Units

The simulation runs a non-dimensionalised system. The units of length, mass

and time are set such that, d = 1, m = 1 and T0 = 1. Since we are interested

in the perturbative case, the potential, φ, is varied between 10−3 and 10−5

for both, attractive and repulsive cases.

4.6 Numerical Results

In this sectiont we present first the results for the attractive regime, followed

by the repulsive case.

4.6.1 Attractive forces

In this subsection we analyse data for cooling with attractive potentials of

different intensity and for different restitution coefficients. The objective is to

understand how the dynamics is influenced by these two factors and how they

interact. We focus on the evolution of three aspects: the temperature, i.e.

cooling, the velocity distribution of the particles, and the cluster structure

and size distribution.

The initial state for different systems is always the same: the distribution

of particles is homogeneous, with a Maxwellian velocity distribution, and,

hence, the cooling is well described by Haff’s law. As time passes dissipation

and the attractive potential will have time to act and modify this picture

giving rise to clusters.
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Cooling

The theoretical prediction from Müller and Luding [72] for the cooling rate

is an homogeneous state with a modified dissipation rate, namely, twice as

large. From Eq. (4.8), we have that limt→∞ γ = 2γ0. Furthermore, systems

with different φ will deviate from Haff’s law at different times; the smaller φ

the more time it takes to deviate, however, the functional form remains the

same.

Fig. 4.6 shows the temperature (normalised by Haff’s law) for systems

with φ = 10−3, 2 × 10−3, 5 × 10−3, 8 × 10−3, 10−4 and low dissipation so the

cooling is homogeneous. The cooling is well predicted by the theory only

for the initial deviation from Haff’s law but there is no agreement after

that; simulations dissipate more energy than predicted. Interestingly, the

simulations do seem to collapse to a power law of the same slope but with

different scaling factor. This can be seen around τ ≃ 100 where all the

curves collapse at a value close to qHaff ≃ 1.5. Due to the long time it

takes to simulate the clusterised state, we do not have data on the long term

regime.

The time evolution for these low-dissipation systems can be seen in Fig.

4.7. Once the attractive force is larger than the thermal fluctuations, the

system develops clusters. The structure of these clusters is typical for a

cluster-cluster aggregation process, with an exponential decay on the cluster

size (see below).

Velocity Distribution

The temperature alone is not a good indicator of the structure formation

process since this also depends on phi. A better indicator is to look for

the deviation of the velocity distribution from a Maxwellian. For this, we

focus on the evolution of the kurtosis β2 = µ4/µ
2
2, where µi denotes the ith

central moment (and µ2 in particular the variance) as a function of Γ. When

the β2 ≃ 3.108 the system is homogeneous. (It most be noted that since

the system has a finite number of particles, the kurtosis does not reach the

theoretical value but fluctuates near to it.) As soon as clusters appear in

the system, the velocities of the particles in the cluster are more correlated

and hence the distribution of velocities deviates from the Maxwellian towards

higher values of β2.

By studying the evolution of the system as a function of Γ one is looking

at the same time at the temporal evolution of the system. The advantage

of looking at Γ instead of at the proper time of the system is that different

coefficient of restitution can be studied in the same plot without shifting

the he axis. For different coefficients of restitution and phi the temporal
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Figure 4.6: Temperature evolution normalized by Haff’s law with attractive
potential for r = 0.99, φ = 10−3, 2 × 10−3, 5 × 10−3, 8 × 10−3, 10−4 together
with Haff’s law (solid-black) and the theoretical prediction for φ = 1 (dashed
magenta). The onset of cooling in the simulations is well predicted but the
later cooling rate is overestimated, the magenta line runs noticeably on top
of the simulations.
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Figure 4.7: Simulation snapshots at different Γ (time increases from left to
right) for a considerable attractive potential (φ = 1) for N = 6400, ν =
0.0578 and r = 0.99. This corresponds to a system equivalent to the lower
dashed line in Fig. 4.8 but with a larger attractive force.
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evolution can spread over several orders of magnitude. With Γ, all these

curves collapse in a single region.

Figure 4.8 shows the kurtosis during the cooling of three systems with at-

tractive potentials for different restitution coefficients and potential strength

for a fixed density. If the cooling is homogeneous (solid and dashed lines), the

deviation from the homogeneous state is due solely to the attractive potential

and sets up when Γ−1 is smaller than one. When the cooling is not homo-

geneous, the system deviates from the Maxwellian distribution of velocities

before the attractive potential has time to act.
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Figure 4.8: Kurtosis of the velocity distribution as a function of Γ for systems
with attractive potential. Different φ collapse on the same curve as long as the
coefficient of restitution is large enough. When the coefficient of restitution
goes below the critical value given by HCS, the system develops dissipative
clusters before the attractive cooling sets in. The bottom lines correspond to
an evolution as in Fig. 4.7, while the upper line corresponds to an evolution
as observed in Fig. 4.9.

The cluster structure as a function of φ

Despite similar final states for each system with dissipation and attractive

force, there are a number of distinctive characteristics depending on how

strong the attractive potential is compared to the initial kinetic energy of

the system.

Roughly, we divide the phenomenology in two different regimes quantified

by Γ: comparable (Γ ∼ 1) and small (Γ ≪ 1) long-range effects. In the first

regime, the attractive potential is stronger than the kinetic energy and hence

when particles collide, due to the dissipation, they tend to remain bound
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together creating clusters in a homogeneous way. The second regime is one

where the attractive potential is weak enough to let the cluster instability

appear in the system. Once a cluster occurs, the attractive force binds it to-

gether and makes the dissipation to be stronger than in an equivalent cluster

of hard spheres. The regime Γ ≫ 1 is not considered, since it resembles the

limit of cluster-cluster aggregation and the dissipation has no role to play

there.

Γ
−1

= 7.51

β2 = 2.9

Γ
−1

= 3600

β2 = 3.4

Γ
−1

= 4.7

β2 = 3.4

Figure 4.9: Simulation snapshots at different Γ (time increases from left to
right) for a weak attractive potential (φ = 10−4) for N = 6400, ν = 0.0578
and r = 0.6. This correspond to an evolution as the one depicted in Fig. 4.8,
upper dotted line.

Figures 4.7 and 4.9 show snapshots of a system for different number of

collisions and a different restitution coefficient in each figure. In the first case,

with a relatively strong potential and low dissipation, the cooling is homoge-

neous until Γ ≃ 1 when clusters start to appear homogeneously, in a way sim-

ilar to the cluster-cluster aggregation process. Fig. 4.9 shows snapshots for

the same system but with an increased dissipation, r = 0.6 and reduced at-

tractive potential, φ = 10−4. This gives enough time for dissipation-induced

clusters to appear first. Once a cluster appears, since the relative velocity

of the its particles is smaller than the thermal fluctuations, the attractive

forces come into play, increasing the cooling inside the cluster. The effect of

this is that there is no energy left to break the cluster, and once it forms,

it will remain in the system with roughly the same shape, thus creating

a non-homogeneous clusterisation. This can be seen from the cluster size
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distribution and its temporal evolution.

Figure 4.10 shows the cumulative distribution function (CDF) for the

cluster size distribution for the two final snapshots of Figs. 4.7 and 4.9. In

the homogeneous case (red dots) the distribution of cluster sizes is similar

to a Poisson distribution: most of the clusters have the average size and

there are fewer clusters with large sizes. On the other hand, for the non-

homogeneous case (black squares), most of the clusters have few particles,

and there is one big cluster that has most of the remaining particles in the

system. This can be readily appreciated by looking at the largest cluster for

each simulation. In the homogeneous case, the largest cluster has around a

hundred particles, while for the homogeneous case, the largest cluster is ten

times bigger.
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Figure 4.10: Cumulative cluster size as a function of cluster number for
systems similar to those in Figs. 4.7 (red dots) and 4.9 (black squares). In
the homogeneous case (dots) there are plenty of average size clusters, while
in the in-homogeneous case (squares) the “winner takes it all”.

Attractive systems are always instable

The reason for this behavior is that hard-spheres with attractive long-range

interactions present condensation [76]. Indeed, for the elastic case, there is

a region of temperatures where the liquid and gas phases can coexist. Con-

sequently, for a homogeneous gas of cooling hard-spheres with long-range

attraction, the temperature eventually reaches the critical point where the

liquid phase becomes stable, and then clusters develop. These clusters will

grow due to the inelasticity of the particles to eventually reach a single cluster

composed of all the particles of the system. In this way, the free cooling of
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hard-spheres with long-range attraction is always instable to cluster forma-

tion disregarding the size of the system. However, the clusterisation process

can be, in turn, homogeneous or inhomogeneous. It most be noted that

the term homogeneous is scale-dependent: once the energy of the system is

low enough particles merge into pairs breaking the local homogeneity, but

remaining homogeneous in larger scale that comprises several small clusters.

This makes a fundamental difference with the free cooling of hard-spheres,

where the clustering instability depends on the wavelength of the perturba-

tion; if the system is small enough, the cooling will be always stable. We

proved this by realizing small (N ≈ 100) simulations of attractive elastic

particles – the phase separation always appeared independent of the system

size. Furthermore, even for two particles, if the temperature is low enough,

they will eventually find each other and merge into a cluster. Thus, since the

phase separation does not depend on the system size, it always appears in a

free cooling system when the temperature gets low enough (Γ ≈ 1).

Comparison with wet granulates

Our model can be compared to the cooling of wet granulates [77,78]. Ulrich

et al. studied the cooling of a very simple model for the interaction of two

wet grains, which only takes into account the essential features of a capillary

bridge: hysteresis and dissipation with a well-defined energy loss. Cooling is

controlled by the probability for a bridge to rupture and hence logarithmically

slow in the long time limit, when a percolating structure has been formed.

In contrast to theirs, our model has the dissipation occurring at collision and

conserves energy at the crossing of the energy barrier (dissipation takes place

at the “liquid bridge breaking” in Ulrich’s model). This two microscopic

differences may have a great influence in the macroscopic behavior of the

system. As we have seen, our model develops inelastic clusters, contrary

to Ulrich’s which is homogeneous. This can, however, be due to the strong

attraction they use as initial condition (Γ = 1). A detailed comparison of

the two models is beyond the scope of this study; however, it remains as an

interesting open question to investigate in the future.

Effects of higher density

For the continuous potential of Ref. [72], the cooling of denser systems was

shown to be not predicted by the dilute limit theory. This was due to the

multiparticle interaction that occur in dense systems with long-range cou-

pling. To see if the discrete potential reproduces this behaviour, we realised

simulations analogous to the ones in Müller and Luding’s paper [72].

One of the most notable features of the continuous potential simulations is
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that the cooling is not monotonically decreasing: the system phase-separates

and the geometrical rearrangements produce an increase in the kinetic energy

of the system. We did not observe this increase in the temperature for the

simulations with a well width of ω = 1.5 despite seeing the phase separation.

Hence we decided to vary the potential width to see if this long-scale rear-

rangements are recovered with discontinuous potentials. Figure 4.11 shows

the energy for dense systems with different well widths ω in 3D. For this

density, ν = 0.157, all the systems present a phase transition below a criti-

cal temperature: the homogeneous system becomes instable and the system

phase-separates in a liquid and a gaseous (almost vacuum) region. This is

independent of the well width ω. However, as the well becomes wider, the

phase separation changes qualitatively, from a percolating system with big

bubbles to a system made of one big drop. For different φ the qualitative

evolution is similar, only shifted to the corresponding temperature (data not

shown). The discrete system also presents a peak in the kinetic energy if ω

is large enough. In this case, the qualitative change from a cooling that is

strictly monotonous to one that presents a peak, occurs around ωp ≈ 2.25. It

must be noted that since the strength of the potential was kept constant, the

“bump” in the temperature shifts to earlier times since the potential energy

of the system increases too when increasing ω.

In these systems where the density is so large that the particles’ interac-

tions are not binary anymore, the theory does not predict the cooling behav-

ior at all. However, the physics – at least the increase in the temperature

due to geometrical rearrangements – is recovered with a discrete potential.

4.6.2 Repulsive forces

Intuition tells us that in the repulsive case there are two regimes depending

on whether the original hard-sphere system presents a homogeneous or non-

homogeneous cooling. For the homogeneous cooling situation it is obvious

that the repulsive potential will not enhance the clustering and the cooling

will remain homogeneous. In the non-homogeneous case, the repulsive forces

will act against the cluster formation since they tend to separate particles.

However, one can expect that if the potential is weak enough, it will not

affect the formation of clusters, at least temporarily before, eventually, the

temperature drops under the repulsive energy and the clusters are eliminated.

Quantifying this statement is the subject of the following subsections.

Homogeneous Cooling

Contrary to the attractive case, the mean field theory for repulsion is in

great agreement with the simulations. The density remains homogeneous
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Figure 4.11: Cooling for dense (ν = 0.157) systems with large dissipation,
r = 0.85 and different potential width w = 1.1, 1.5, 2, 2.5, 3 but fixed φ = 0.1.
As the well becomes wider, the kinetic energy presents a peak due to large-
scale reorganization.

and the temperature follows Eq. (4.5). This is a strong result as there are

no free parameters in the theory, everything is determined by the potential

at contact. Fig. 4.12 shows the temperature for two systems, in both 3D

and 2D. The prediction works equally well for any φ, the only difference is

that the cooling is shifted to earlier/later times depending on the strength of

the potential. For 3D, the modification in the cooling rate fits perfectly the

cooling of the system as long as it remains homogeneous. For 2D systems

there is an appreciable deviation for long times: the theory under-predicts

the cooling.
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Figure 4.12: Cooling in 3D and 2D for the homogeneous case with φ = 10−3

and φ = 10−5, left and right respectively. The 2D system is denser (ν2D =
0.057 versus ν3D = 0.0052) and that may cause the small difference for large
τ between the theory (magenta dashed line) and the simulations (blue dotted
line). The black solid line is Haff’s cooling state for reference.
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Non-Homogeneous Cooling

A more interesting case is when the system is large/dissipative enough to

present clusters. If the repulsive potential is weak enough, the time it takes

to separate two particles that are close to each other is much larger than the

time the cluster formation takes to develop, thus creating transient clusters in

the system. If the potential at the beginning is much smaller than the thermal

energy, the system has time to develop clusters before the repulsive force

has time to separate them similar to the transient cluster due to velocity-

dependent restitution coefficient [71].

Γ
−1

= 4.15

β2 = 3.01

Γ
−1

= 7000

β2 = 3.3

Γ
−1

= 7.3

β2 = 2.9

Figure 4.13: Simulation snapshots at different Γ (time increases from left to
right) for a weak repulsive potential (φ = 10−4) with N = 6400, ν = 0.057
and r = 0.6. In the picture of the middle the transient cluster formation can
be seen; in this case, the kurtosis deviates towards a lower value due to the
presence of clusters.

Figure 4.13 shows snapshots of the system at different times for a given

repulsive potential and restitution coefficient. In the middle picture, the

transient cluster structures can be seen, while before and after (left and

right) the system is homogeneous. This corresponds to the evolution of the

system represented in Fig. 4.14 by the dotted blue line.

Figure 4.14 shows the kurtosis of the velocity distribution as a function

of Γ for three different φ and restitution coefficient r = 0.99, 0.95, 0.9. If

the repulsive potential is weak enough and there is enough dissipation, the

cluster instability can develop, making the distribution of velocities much
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Transient Cluster Formation 
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Figure 4.14: Kurtosis of the velocity distribution for three systems with
φ = 10−3, 10−4, 10−5 (solid, dashed and dotted lines) and different restitution
coefficients r = 0.99, 0.95, 0.9 as a function of Γ. The peak in the kurtosis
at Γ−1 ≃ 10 corresponds to the appearance of a transient cluster. As Γ
approaches the unity, the velocity distribution tends to decorrelate and β2

decreases.

more correlated and hence having a larger kurtosis (dotted line). When the

thermal energy is comparable to φ, i.e. Γ ≃ 0.1, the repulsive force starts to

destroy the clusters and produces again a more Maxwellian distribution of

the velocities. If the dissipation is small enough, the evolution for different

coefficients of restitution in the plane Γ − β2 is similar. The fluctuations

around Γ = 1 are due to the long time it takes the system to reach lower

temperatures, and hence the evolution appears compressed when plotted as a

function of Γ instead of τ . The fluctuations look larger than in the repulsive

only because of the different scales of plotting; for large Γ−1 both oscillate a

similar amount.

Transient formations

The evolution of the free cooling with repulsive interactions is somewhat

analogous to a system with a velocity dependent restitution coefficient, where

cluster and shearing appear transiently [71]. However, the mechanism that

determines the presence of clusters is the repulsive force being non-zero.

Any amount of repulsive force between the particles will inhibit the cluster

formation. Since there is no external pressure to compress the system, the

particles always tend to repel each other. However, this repulsion mechanism

has a temporal scale set by the intensity of the potential at contact. For two

spheres touching, the time they need to separate a particle diameter, i.e. to
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do not feel the attractive potential, is

tr ≃ d/
√

2φ/m .

Consequently, unless the time of free flight for the particles becomes com-

parable to tr, the repulsive potential is not able to separate the particles and

the dynamics is dominated by the hard-sphere properties. Once the time-

scale of the system approaches tr the clusters begin to disintegrate and the

system eventually returns to a homogeneous state.

Effects of higher density

For dilute enough systems the cooling rate becomes practically logarithmic,

as is the case for a velocity-dependent coefficient of restitution. However, if

the density is high enough, the system can reach an elastic regime due to

the finite size of the system and the consequent bound for the kinetic energy.

For such systems, the evolution is no longer independent of the coefficient

of restitution, as it is the case in the dilute regime (data not shown). Since

the barrier in the discontinuous case is abrupt, when the temperature is low

enough particles cannot overcome the repulsive barrier and stop colliding.

Then particles acquire an effective radius equal to the well width and the

energy of the system remains constant.

Contrary to the attractive case, increasing the well width would be of no

use in trying to recover the physics of the continuous potentials. What is

needed in this case is to study how the inclusion of more steps in the potential

approaches the continuous case. However, that is beyond the scope of this

study.

4.7 Phase diagram for cooling with long-range

interactions

Finally, the phenomenology for the clustering of hard spheres with long range

interactions can be summarised as follows: for attractive potentials the free

cooling systems always show clusters on the long term. If φ is large enough

the cooling is homogeneous: once individual particles are bound together,

the cooling continues as a cluster-cluster aggregation process. However, if

the systems presents a shear or a cluster instability, the system will show

inelastic clusters that cool down faster than the homogeneous hard-sphere

case, giving rise to a different cluster structure.

For repulsive cases the homogeneous cooling is well predicted by a simple

modification of the collision frequency. If the system is instable to clustering

62



Conclusions

and φ small enough, the system will present inelastic transient clusters, in

a way analogous to a granular gas with a velocity-dependent coefficient of

restitution. Figure 4.15 shows a qualitative sketch of the phase diagram, for

both attractive and repulsive potentials at a fixed density ν = 0.057 and

different restitution coefficients and potential strengths.

A qualitative transition line can be drawn on the phase diagram by look-

ing at how the critical restitution coefficient for the shear instability and a

given system size changes as a function of φ. From the stability analysis we

have that for the smallest kmin, the critical restitution coefficient is given by

µ0k
2
min = ǫ2c . If we add a long range potential the critical restitution coeffi-

cient will change. The transition line in the plane r−φ is given implicitly by

ǫ2 exp(φ/T ) = ǫ2c . Solving for this equation for the potential as a function of

r, one gets in the repulsive case

φc = T log

(

(1− rc)
2

(1− r)2

)

, (4.15)

for r < rc. In the attractive case, the critical φ reads:

φc = T log

(

(−1 + r)2

1 + 2(−2 + r)r − (−2 + rc)rc

)

. (4.16)

In both cases, the critical line depends on temperature T . What temper-

ature one should put there? If we use the initial temperature the line does

not recover the behaviour we see for the repulsive case, where the system

becomes stable for larger dissipation. If we use an arbitrary temperature of

T = 10−3, the curve reproduces the trend form the simulations as seen in Fig.

4.15. Further study is required to understand the cause of this discrepancy.

4.8 Conclusions

The free cooling of granular matter with long-range interactions has been

studied by means of event-driven simulations and stability analysis. The

physical behaviour was investigated by means of stability analysis of the

modified hydrodynamic equations where the dissipation rate was taken from

a previous mean-field theory [72]. This theory was developed for 3D but

we have shown that it also works for 2D systems in a straightforward man-

ner. Simulations confirmed the theoretical prediction for low densities in the

repulsive case (in 2D and 3D) but felt short for the attractive case where

non-linear effects are more important.

For attractive potentials the formation of structures, i.e., clusters, is

strongly enhanced, as is expected from the results on condensation of elas-

tic hard-spheres with attractive potentials [76]. This effect is not predicted
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Figure 4.15: Phase diagram of the free cooling for the potential strengths φ
and dissipation, r, for systems with N = 6400 and ν = 0.057. The line is the
transition curve for T = 10−3.

by the simple mean-field theory nor by the corresponding stability analy-

sis where only the dissipation rate accounts for the long-range interactions.

Indeed, the stability analysis of the hydrodynamic equations over-predicts

the stability of the cooling with attractive forces; simulations show that the

cooling is always instable to cluster formation, contrary to what the stability

analysis says. Finally, the geometry of the resulting clusters is determined

by a complex interplay between dissipation, potential strength and range,

density.

For repulsive potentials, the theory predicts consistently the cooling be-

haviour for low dissipation and density when the system is homogeneous.

This confirms once again that discrete potentials are a good approximation

in this regime and capture much of the interesting physics of particulate sys-

tems. For larger dissipation and low repulsion we have found that transient

clusters appear in the system in a way analogous to the cooling of grains

with a velocity dependent coefficient of restitution. This is expected since

the hydrodynamic equations have the same functional form.

Finally, these results point to the great importance of microscopic param-

eters in the macroscopic evolution of the system and the complex interaction
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of different phenomena. In particular, we showed that the long-time dy-

namics for a system with both dissipation and long-range interactions is not

simply the addition of each effect but a complex interplay of forces that will

depend on the evolution of the temperature from the initial state and the

dissipation rate of the particles.

Future research in this subject comprises the unification of the algorithm

from Chapter 3, together with long-range potentials. The idea is to be able

to simulate the cluster of particles as solid structures, moving together, that

can break and form in a dynamic way. This algorithm would make the

simulations of dense and highly dissipative granular gases extremely fast,

what could be applied, for example, to fluidised beds of nano-particles that

agglomerate due to van der Waals forces [79].
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Chapter 5

Shaping Segregation∗

Controlling segregation is both a practical and a theoretical challenge. In

this chapter we demonstrate that by introducing asymmetries along the axial

direction of a rotating tumbler, the size-driven segregation in the axial direc-

tion of a granular mix can be controlled and speeded up. This observation –

and the new understanding that springs from its explanation – could lead to

radical new designs for a vast set of particle processing applications.

5.1 Introduction

Granular flows in rotating drums present a rich variety of phenomena. They

have been widely used to study mixing, segregation, and pattern formation

[5]. While the majority of studies on rotating-drum flows focused on the

circular cylinder geometry, several works, particularly in the last decade,

explored similar phenomena in tumblers with other geometries [80–84]. Non-

circular tumblers are important from both an application perspective, as they

are used in various industries, and from a theoretical perspective, to further

validate theoretical approaches developed primarily from observations of the

simpler cylindrical configuration.

The role of geometry in mixing and segregation has long been known [85].

However, to the best of my knowledge this is the first study to present mixed

convex-concave drum shapes. (Although there is some research on model

SAG mills that present an indentation in the inner surface of the drum,

hence weakly breaking the convexity, see e.g. [86, 87].) As it shall be seen,

concave rotating tumblers can be used to enhance the segregation of mixtures,

a discovery whose applications could be far-reaching in industries ranging

from pharmaceuticals to mining.

The structure of this chapter is as follows. I first introduce the system

and explain both, experiments and simulations setups. Then, I characterise

∗Based on S. González, S. Luding, A.R. Thornton, submitted to Phys. Rev. Lett..
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the dynamics of the granular flow in a concave tumbler. A comparison with

the flow in a pentagonal tumbler, and in general with convex shapes is made

and differences are highlighted. Bi-dispersity in size is added and I study the

effect of different shapes in the segregation pattern along the axial direction.

Finally, I demonstrate that the combination of different geometries along the

axial direction can enhance the strength of segregation in binary mixtures

along that direction.

The study is started with a drum shaped as a five-point star, commonly

known as a pentagram. Its shape has puzzled humanity since the Sumerians;

it was the symbol of perfection for the Pitagoreans; and, represented the five

elements in ancient China. It belongs to the dihedral symmetry group and

the ratio of its width to each side is the square of the golden ratio, 1.618...,

and thus it was considered perfect by the Greeks. The first objective of this

chapter is to explore the dynamics of a granular flow in a star-shaped tumbler

as an example of a granular flow in a concave geometry. Since the star is

not symmetric under reflexions on the horizontal plane, one expects different

dynamics when the star is pointing up or down. The second objective is to

explain such differences of the flow and harvest them to achieve a controlled

axial segregation.

5.2 Experimental set-up

For the experiments, I use tumblers made of layers of 2mm plywood laser-cut

to arbitrary shapes. The drum is partially filled with glass beads and rotated

at a constant speed (Ω = 30 rpm) by a stepper motor. The granular medium

is confined vertically between two acrylic plates in order to illuminate the

bulk from behind and record it from the front (see Fig. 5.1, upper row). The

length of the star is a = 119mm and it is W = 10 mm wide, creating a

relatively thin, quasi-2D configuration. Laser-cutting is a versatile and fast

way to produce drums of arbitrary shape at low cost. Thus, one can easily

perform studies that involve different shapes and optimise the shape for the

required function. I use volume-coloured glass beads of nominal size 3.5±0.3

mm and density of 2.5± 0.02 kg/m3 (manufacturer data sheet).

In the simulations, particles’ contact forces are represented using a stan-

dard spring dash-pot model [14]. For the first simulations described here,

slightly poly-disperse particles (rmean = 3.5±0.03 mm, uniform distribution)

are used and the same density as in the experiments. The boundary condi-

tions are those of a horizontal rotating five-point star of length a = 119mm

and depth W = 10 mm, periodic in the direction perpendicular to the plane

of view in order to avoid boundary effects due to the walls. These are the

same dimensions as the experiment. The rotation of the drum is achieved
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ω

15%

45%

60%

Figure 5.1: Granular flow in a rotating star: experiments (left) and sim-
ulations (right). The effect of increasing filling fraction (measured as the
occupied area of the polygon) in the drum’s dynamics can be seen from top
to bottom (10%, 30% and 60%).
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by changing the angle of gravity in the plane x-y with an angular velocity

of Ω = π/2 rad/s, hence mimicking the rotation of the walls. Since I am

interested in the effect of the filling fraction, the angular velocity is fixed at

this value since it provides a continuous free-surface avalanche [4].

For the bi-disperse experiments and simulations in the final section I use

particles of 4 and 2.5 mm, in a constant volume distribution, i.e. there is the

same volume, and not number, of both particle types.

5.3 The effect of the filling fraction

There are four different regimes of flow depending on the filling fraction. If

the grains occupy a volume smaller than that of one of leg of the star, the

grains flow from leg to leg in an intermittent way, Fig. 5.1 (a). If the amount

of grains increases such that there are always grains in at least two legs,

the flow is constant but its angle changes due to the geometry, Fig. 5.1 (b).

When the grains reach the level of filling between two and four legs, the flow

is continuous but with roughly two different flow profiles depending on the

angle of the star, Fig. 5.1 (c). Once the grains occupy more than four legs,

the flow becomes intermittent and the displacement of the grains is strongly

limited, so the transport of grains in the bulk decreases and the dynamics is

mostly due to geometrical rearrangements (data not shown).

The most interesting regime corresponds to Fig. 5.1 (c). In this case one

can clearly see the unsteady flow produced by a star-shaped rotating tumbler

at constant rotation rate. The geometric shape naturally causes periodic

changes in the flowing layer as a function of the instantaneous orientation of

the star; something recently reported also in other geometries [84]. On this

regime I focus next.

5.4 Bi-stable flow

In a cylindrical rotating drum, the steady flow has a constant kinetic energy.

For the star, however, the flow is oscillating: when a star tip is pointing up,

the flow is slow while when the star is pointing down, the flow is much faster.

Figure 5.2 shows the instantaneous velocity field for both the star and the

pentagon. The star shows a great variation in the magnitude of the velocity

between the pointing up versus pointing down configuration. Whereas the

pentagon shows a more constant flow pattern; in both orientations the mag-

nitude of the velocity is similar, and only the length of the flowing layer is

changing.

The explanation is that when the star is pointing up, the avalanche oc-

curs in a thick layer of particles. As the star rotates, more space becomes
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available for the particles to flow and there is a saltation flow going on. This

produces a fast avalanche in the down part of the flow, and the consequent

movement of all the flowing layer. In turn, this explains why the total kinetic

energy of the particles shows five maxima during one cycle, see Fig. 5.3. By

allowing particles more space to flow, a big, fast, avalanche is produced. This

avalanche is not symmetric along the free-surface. Most of the kinetic energy

is on the downside, where it is easier to flow due to the free volume. Even-

tually, the leg of the star is filled with particles and the avalanche recovers

its slow flow. As the star turns the process repeats. Now I want to focus on

how this feature can be used to control segregation. To do this, one needs to

introduce the convex counterpart of the star, the pentagon.

5.5 Comparison of Star with Pentagon

The flow in a concave tumbler is clearly different from the flow encountered on

convex tumblers [80–83,88]. Take, for example, a rotating pentagon that has

the same rotation symmetry as the pentagram but is convex. The differences

in their respective flows should be due then only to the concavity/convexity

of the tumbler.

As the pentagon rotates, the total length of the flowing layer changes,

hence creating an oscillation in the kinetic energy with the same period as

the pentagram, see Fig. 5.3. However, this flow is much more continuous in

the pentagon and the velocity of the flowing layer is more constant and its

variation between minimum and maximum is smaller.

The periodic structure of the kinetic energy (see Fig. 5.3) can be under-

stood by simple arguments. If one considers the speed of the flowing layer

and its depth constant, then, the kinetic energy is proportional to the length

L of the flowing layer. Disregarding the angle of the walls (i.e. assuming a

square instead of a pentagon so I disregard the fact that the walls in the pen-

tagon are not parallel), the length of the flowing layer scales as L ∝ 1/ cos(θ),

with θ ∈ [0, 2π/5] the angle of rotation modulo the symmetry of the shape, in

this case 2π/5; see fig. 5.4 for the explanation (and Ref. [84] for an example

in a triangular geometry). Hence, the kinetic energy is E ∝ 1/ cos(θ)2. The

agreement of the simulation with this simple model is remarkably good, as

can be seen in Fig. 5.3 by the agreement between the solid and dotted line.

The explanation for the such a behaviour of the kinetic energy is the

following. Consider the mean velocity of the system written as a continuous

field with the free surface in the horizontal and assuming a constant velocity
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in z, for simplicity,

v̄ =
1

A

∫ L/2

−L/2

∫ H

−L/2

v(x, y)dxdy ,

where A is the total area of the system. Since the packing fraction remains

roughly constant, so does the area. One can make a change of variable in

the x direction,

v̄ =
L

A

∫ 1

0

∫ H

−L/2

v(x′, y)dx′dy .

Using, for example, the velocity profile proposed in Ref. [89], the integral is

a constant. Since the flow depth is a fixed height, h, much smaller than the

vertical size of the flow, the integral is independent of the angle of rotation

of the tumbler. So, for an arbitrary angle, one has that the average velocity

v̄(θ) ∝ L(θ) . (5.1)

In a pentagon, the flowing layer is at the edge of the geometric region of

constant volume. This region is always connected for convex shapes and thus

the filling height H does not change much. However, for concave shapes the

constant-volume regions are not always connected. This causes H to change

strongly and discontinuously as the star rotates. Consequently, both of the

last assumptions, namely that the flowing layer is smaller than the material

height and that the vertical profile is independent of the angle of rotation,

are broken for concave shapes. In this way, grains flow faster when they

encounter a “run-out” leg with free volume, where the relative change in the

container’s wall angle affects the velocity of the flow.

This fundamental difference between the flow in a convex and concave

rotating tumbler – in the concave case there is a run-out leg with faster flow

– is the key ingredient to develop a new mechanism of segregation, as shown

in the following.

72



Comparison of Star with Pentagon

a)
b)

c) d)

Figure 5.2: Velocity field for two snapshots of the simulation on the moving
frame and a filling fraction of 60%. The arrows represent the instantaneous
velocity in the x-y plane for all the particles. In all the pictures the scale
is the same; the red horizontal arrow representing 0.25 ms−1. For the star
pointing up (b) the flow presents a typical rotating drum profile that de-
creases exponentially from the free surface. When the star is pointing down
(a), the right bottom leg provides the space for a shallow and fast avalanche
to occur. For the pentagon, the energy per particle in the avalanche remains
roughly the same (c and d), but with more particles flowing when the pen-
tagon is pointing down (c) since due to the geometry, there are more particles
available to flow.
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Figure 5.3: Kinetic energy as a function of time during one cycle for the
simulation of a pentagonal tumbler (solid, black), a star (red, dashed), and
the result form the model for the pentagon (blue, dotted). The structure and
angle of rotation of the drum can be guessed from the energy evolution. In
this case, both systems show the same temporal structure of five peaks per
turn. However, the star presents a relatively faster avalanche when pointing
down; this is the main feature that it will be used in order to induce seg-
regation along the axial direction. Data averaged over eight cycles over one
simulation of each geometry.
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Figure 5.4: Relation of the length of the free surface to the rotation angle
for the case of a square tumbler. Since the occupied area is conserved as the
square rotates, the length of the free surface is determined by the geometry.
This formula is valid in π/2 intervals. In the case of the pentagon, the
analytic formula is more complex, but as a first order approximation one
can consider the same functional form as for the square only valid in 2π/5
intervals.
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5.6 Shape-induced axial segregation

The differences in the flow patterns presented by a star and a pentagon

can be used to influence the segregation behaviour of a bi-disperse mixture.

The influence of the container’s shape on segregation patterns has already

been reported [90, 91], however, this is the first time that it is used in a

rotating tumbler. It is also known that modifying the geometry (e.g. by

adding obstacles or mixing blades in the drum) can reduce segregation [92]

but it has not been shown how to improve and control it – a matter of obvious

practical importance.

When using a bi-disperse mixture of particles in any rotating container,

the small particles will go preferably to the centre of the drum irrespective of

the drum’s shape [5,93]. This is also the case for the star and the pentagon:

small particles are preferably in the centre of the drum, see Fig. 5.7.

However, if two different geometries are used along the axial direction,

say, by making a tumbler half star-shaped and half a pentagon along the axial

direction, the usually slow segregation in this axis can be enhanced and its

direction controlled, see Fig. 5.7. In both experiments and simulations two

sections with the same width of the original experiment are combined, hence

doubling the size of the drum along the z-axis. The rapid axial segregation

happens only when a convex and non-convex shape are brought together, as

for convex shapes the flow does not show much differences in the level of the

flow, just its length. I performed different experiments putting together cir-

cular and square sections, pentagonal and square, and square sections rotated

in different angles (data not shown). None of these configurations presented

axial segregation on the time scale of observation (around 20 revolutions).

One can understand that the change in the geometry – from convex to

concave – of the drum creates a level difference between the two sides of the

tumbler due to the strong variations on the concave side. The grains tend

to go to the side of less potential energy, i.e. the pentagonal side, which

happens to be also the side with more free-volume. This can be seen from

Fig. 5.5: the segregation occurs in an oscillating way, when the big particles

drop from the run-out leg of the star to the pentagon the centre of mass

of the large particles shifts to the negative side (and the one of the small

particles to the positive sides). However, since there is mixing in the system

some large particles go again to the star side. In this way, an oscillating

movement of the centre of mass of each species is observed: big particles fall

to the pentagonal side five times per turn when the run-out leg is empty;

once the flows covers the run-out leg some large particles return to the start

side. The drift of particles follows a clear trend until it saturates around the

eighth revolution.

As the mix is bi-disperse, in each side the radial segregation is taking place
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Figure 5.5: Evolution of the displacement of the centre of mass for the sim-
ulations at 50% filling fraction in a star-pentagon geometry, each of width
∆z = 11 mm. Small particles move towards the star side (z > 0) while the
big particles move to the pentagonal side (z < 0). The system equilibrates
after some 8 turns (32s).

so the large particles go to the surface and the small to the centre. Since for

this packing fraction the avalanche in the pentagonal side of the drum (z < 0

in the simulation domain) is slower than in the star-shaped section (z > 0),

the large particles can move to the empty side since they are faster and there

is room for them in the pentagonal side. Once the two avalanches reach the

same angle there is no more flux of particles. This process is repeated five

times per turn. By this mechanism, there is a net transport of large particles

to the convex side of the drum while the non-convex side remains mostly

composed of small particles. This mechanism is orders of magnitude faster

than the phenomenon of banding previously reported for granular materials

in axially homogeneous tumblers [94].

One must note that the segregation is not the same for every filling frac-

tion. Figure 5.8 shows the change in the number of large particles in the

pentagonal side of the tumbler for different filling fractions. If the system is

too empty, the avalanche on the star side of the drum arrives at the same

time than the one in the pentagon and the axial segregation is slower. It

must be noted that there is also axial segregation due to the wall; large par-

ticles tend to be close to walls while small particles are mostly in the centre,

in accordance with [95].

This points to the existence of two mechanisms of segregation. On the
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a) b)

c) d)

Figure 5.6: Photographs of the experiment after four revolutions in the axi-
ally homogeneous tumbler for the star (a) and the pentagon (b). Simulations
for the axially inhomogeneous, layered tumbler after four revolutions, from
the front (c), i.e., the star-shaped side, and from the back (d), the pentag-
onal side. Particles are coloured by size with orange small and green large;
black particles correspond to those particles that belong to the opposite side
of the tumbler. It can be seen in (d) that the particles in the back, run-out
zone (black particles) are higher than those in front (green and orange), and
consequently, they can eventually fall to the pentagonal side.

one hand, the excluded volume effects make the small particles to go prefer-

ably to the star side since the large particles do not fit on the legs so easily,

in accordance with [91]. However, this mechanism does not explain the max-

imum on the segregation at around 50% filling fraction. This is can only be

due to the flow structure as previously discussed.

5.7 Conclusions

In this chapter I showed that for a five-point-star shaped drum filled with

grains there is a rich flow behaviour, depending on the filling fraction due

to the non-convexity of the drum. Different regimes are found for a fixed

angular velocity. From intermittent avalanching (low filling fraction) to ge-

ometrical rearrangements (high filling fraction) passing by continuous flow
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(around half filled). By controlling the shape of the drum, it is possible to pro-

duce different dynamics with a single driving frequency; if different dynamic

regimes coexist in a drum along the axial direction, segregation will occur.

I have used this insight to control the segregation pattern in a binary mix-

ture of grains, achieving fast shape-induced size segregation along the axial

direction. The possible applications of this mechanism can be revolutionary.

Firstly, this is a way to produce axial segregation orders of magnitude faster

than previously reported. Secondly, this can be used, for example, on ro-

tating kilns to have differential residence times depending on the size of the

particles. Finally, this mechanism can be used on milling devices: by doing

a sandwich of concave sections with a convex shape in the middle, large par-

ticles can be induced to go to the middle of the tumbler, thus making the

milling more effective by keeping the grinders and larger particles in the mill

while moving the fines to the sides, where they can be removed. The range

of application of this discovery goes from the production of pharmaceutical

products to improved mill design in the mining industry and sheds new light

onto the role of the boundary condition in segregation problems.

Before

After

Figure 5.7: Photographs of the experiments showing the mechanism of seg-
regation, before and after the flow in the pentagon catches up with the on in
the star. On the star side (before), particles have a larger potential energy
and thus tend to flow to the other side. As the tumbler rotates the run-out
zone is filled with particles (after).
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Figure 5.8: Number ratio (R = Nlarge/Nsmall) in the pentagonal side of the
drum (z < 0) versus the filling fraction normalised by the initial conditions. A
value of two means that the ratio of large to small particles is twice the initial
value. The segregation has a clear maximum for the half filled configuration,
however, it also has a larger error. Data is averaged in ten snapshots during
two turns of the tumbler and the errors bar are the standard deviation of
these measurements.
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Chapter 6

A ritual that is not rotten∗

Tout problème humain demande à être considéré à

partir du temps. L’idéal étant que toujours le

présent serve à construire l’avenir.

Franz Fanon

6.1 Introduction

In April 2011, Nature published a special edition covering the future of the

PhD 1. In it, different authors argued that the PhD must be completely

reformed: too many PhDs for not enough University positions; a formation

that is too specialized to be used in industry; no noticeable economical gain

for PhD holders compared to Master graduates.

On top of this less than exciting diagnostic for the PhD, Science nowadays

is more and more mistaken for an economical endeavor2; the publishing model

favors the profit making of private companies instead of the communication

of science; research founding promotes the repetition of well proven recipes

instead of adventures in unknown lands.

With such a perspective I felt that my job was utterly senseless and

pointless. However, I deeply believe that science is something worth giving

your life for, something that changes the world, and that it is beautiful.

Trying to resolve such a deadlock, I came to face the question “What

is Science?” There is no easy answer. Furthermore, I was obliged to take

a philosophical position in order to attempt to answer this question. This

philosophical study then became both a vital and an academic task for me.

∗A shorter version of this text was presented at the music festival Green Vibrations,
17th of May, 2012, Enschede, The Netherlands.

1Available at http://www.nature.com/news/specials/phdfuture/index.html
2See Nature Volume 484 Number 7392 (2012).
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In what follows I introduce the philosophical perspective I chose to tackle

this problem and some of the conclusions I have reached.

6.2 The Beginnings

The Event of Science

A long long time ago, in a faraway land, two men are talking. Maybe Socrates

and Parmenides; however, their names are unimportant. Two Greek men talk

about abstract matters. They argue, but they are not interested in winning

or losing.

They know something: discussion is the not-impossible path to arrive

at the truth. They refused to accept any pre-given opinion, any tradition

without questioning it, and so they look for the Truth in itself. They have

forgotten praying and myths.

The attitude of these two unknown men toward their world rapidly grew

into a defined cultural form that the Greeks called philosophy. This was

nothing but universal science, science of the world as a whole, of the universal

unity of all being.

Very soon, the interest in the totality and, by the same token, the question

regarding the all-embracing becoming – Heraclitus’ river – and the resulting

being – the being with capital B from the philosophers – began to particu-

larize into disciplines. So science began.3

My path to Science

The house surrounded by shit. That is the name I have for Latin-America. It

comes from a poem by Nicanor Parra, a fellow Chilean. The poem is called

Flies in the shit and goes like this:

To the gentlemen – to the tourist – to the revolutionary

I would like to ask them just one question:

have you ever seen a fleet of flies

hover around a piece of shit

land and work in the shit?

have you ever seen flies in the shit?

because I was born and raised with the flies

in a house surrounded by shit.4

3This account is based on Borges’ poem El origen and Husserl’s Philosophy and the

Crisis of European Man.
4Nicanor Parra, Emergency Poems (New York: New Directions 1972), our translation.
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I was born there. In the house at my right, a step-father raping and impreg-

nating his 15-years-old step-daughter. In the house at my left, an 80 years

old woman getting older and loosing her mind, living alone, getting her purse

in the middle of the night to go to the dentist, only to fall right outside her

door, crying. I was trying to convince her to go back to bed, telling her that

it is midnight and it was cold. I was twelve by then. In my house... well, a

bit of violence, not so much – a bit of poverty, neither that much for Latin

American standards. A house with books at least. With an encyclopedia

whose pages I read over and over again, realizing that there were truths. No

matter whether I woke up to the sound of breaking glass in my parents bed-

room, there were truths. There is something that is there and does not ask

you where you are from, what is your sex, and how you look to be learned.

It is there, it is free, it is yours: Knowledge. And I decided that I wanted to

understand. Understand the world.

I thought in my childish mind that if you were able to understand the

world, the human suffering I saw around me could be understood and hence

changed.

Eventually I grew up, I studied physics in the best university of Chile and

managed to escape and live in Europe where I’m finishing a PhD.

After a year in Europe, I came back to Chile for a conference and was

invited to visit the University of Chicago. I went there for two months. It’s

the best place in the world to make experimental granular dynamics, my

subject of research. The same university responsible for the atomic bomb5

and the neo-liberal economic policies6.

I went there with my bike and my pink comforter. After a week or so I

wanted to kill myself: for my life as a scientist to go undisturbed, I needed

the police cars to protect the closed environment of the University of Chicago

so the black people from the ghettos around the university would not come

in to kill us.7 And then science appeared to me as not worth it. No discovery

would make the situation right, no new idea, no new invention could justify

science if science doesn’t care about the world.

I was depressed in Chicago. I was sad. I felt utterly alone and a feeling of

senselessness invaded me. The only thing I could think was: it is not worth

it, science is not worth it.

And nobody seemed to care about it. In the building I was, some of the

most intelligent men of the world; a few blocks south, black people living in

poverty killing each other. It was natural for them. That was the way things

were.

5See http://en.wikipedia.org/wiki/Chicago_Pile-1
6See http://en.wikipedia.org/wiki/Chicago_boys
7For some data on Chicago’s distribution of poverty, see http://www.city-data.com/

poverty/poverty-Chicago-Illinois.html
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The deadlock of doing science

So after 10 years of study, I was faced with the same problem that I was faced

with as a child. There is suffering in the world and the method I chose to

explain reality was not able to say anything about what really interested me.

The feeling, the certitude that the world was wrong could not be grounded in

any scientific statement. It could not be demonstrated as I used to do with

my physics problems. My näıve idea was that if one could demonstrate that

the way society works is wrong, people would understand and change their

ways. Now I see that this is not possible nor desirable. Furthermore, having

access to the whole truth implies the end of freedom, and to take a decision

with all the knowledge means no courage at all.8

Then my question was: how come this conversation the two Greek men

had so long ago became this? Why did science take for granted a state of the

world as if it were something natural? Why did we betray our forefathers? I

have spent the last two years trying to understand this, and the more I got

into it, the more it seems to correspond to a state of the world and not only

to science.

Today, science and technological innovation are necessary for the material

working of capitalism. Does scientific knowledge also imply a theoretical

support of the economic and politic order of the world? Or on the contrary,

is there an idea of a better world beyond what we know today that comes

from natural historical necessity, as the japanese philosopher Kojin Karatani

sustains [96]? Or none of the above but, worse, is it the case that science

cannot talk about politics due to a constitutive and insurmountable lack of

knowledge, and should remain silent there where it cannot speak?

To answer these questions we need to make a genealogy of Science.

8This is Kantian insight in the Critique of Practical Reason. If we were to gain access to
the noumenal domain, to the Ding an sich: “...instead of the conflict which now the moral
disposition has to wage with inclinations and in which, after some defeats, moral strength
of mind may be gradually won, God and eternity in their awful majesty would stand
unceasingly before our eyes. [...] Thus most actions conforming to the law would be done
from fear, few would be done from hope, none from duty. The moral worth of actions, on
which alone the worth of the person and even of the world depends in the eyes of supreme
wisdom, would not exist at all. The conduct of man, so long as his nature remained as it
is now, would be changed into mere mechanism, where, as in a puppet show, everything
would gesticulate well but no life would be found in the figures.” (Immanuel Kant, Critique
of Practical Reason, New York: Macmillan 1956, p. 152-153.) So, for Kant, the direct
access to the noumenal domain would deprive us of the very “spontaneity” which forms
the kernel of freedom: it would turn us into lifeless automaton, or, to put it in today’s
terms, into “rational agents”. The basic gesture of Kant’s transcendental turn is thus
to invert the obstacle into a positive condition. To turn the limits of our cognition into
the condition of our freedom. The impossibility of knowing all becomes the condition of
possibility for our doing freely.
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6.3 Genealogy of Science

Summarizing greatly, the conversation that the Greeks started, passed to the

Romans and when Christianism appeared it was “baptized”. This lasted a

good thousands years. So in the middle ages, universities where under the

church dominance. Knowledge was only passed through, teaching Aristotle.

(Remember Aquinas’ “creatura non potest creare”, creatures cannot create.)

There was a clear understanding of a flat and ordered world. Quite sound

and beautiful, but utterly false.

In the 1600s one of the greatest revolutions of humanity occured. A man,

Galileo Galilei showed that the worldview the church was putting forward

was simply wrong. Thanks to him, we got rid of Aristotle, the Church lost

its central place in the world, and we proved that reason was the way to

understand reality.

This new vision of the world that appeared with the scientific revolution of

Galileo, and the consequent changes in social structure (formation of nations,

state and a capitalist economic system), transformed the role of universities

and included for the first time the creation of knowledge as a mayor point.

This was the German model of universities, developed by Alexander von

Humboldt. In 1810, Humboldt convinced the King of Prussia to build a

university in Berlin based on Friedrich Schleiermacher’s liberal ideas; the

goal was to demonstrate the process of the discovery of knowledge and to

teach students to “take account of fundamental laws of science in all their

thinking.” Thus, seminars and laboratories started to evolve. In this way

the student becomes a researcher and the teacher a guide.

In the nineteenth century and the beginning of the twentieth, research was

carried out mostly in universities. There was however, a significant amount

done also in institutes, private gardens and houses, or even patent offices,

using well-thought-through communication with low frequency, in contrast

to today’s practices. Time passed, there was a world war, then another,

and scientists moved from one continent to the other, where they ended up

working on atomic bombs among other things.

This was an important shift since transformed science – that was a na-

tional endeavor, with journals in national languages – into a global enterprise

with its common language, English.

After the second world war the economic dominance of the United States

imposed an economic worldview that supposedly will bring freedom to the

world. The invisible hand of the market knows what’s best for the world

and America will take care to impose the market on all the world and in

every sphere of existence, from the commodification of sex to the patenting

of genetic code and living beings.
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6.4 The University Today

In what follows, I want to focus on the economisist worldview that has per-

meated science, endangering its practice. I start with an example: a friend

of mine received a letter from the University of Twente that addresses him as

“Beste Klant...”, and continues to inform him that if he doesn’t pay his debt

of 3.000 euros, he won’t be able to continue his studies. Signed by Credit

Department, UT.

This is something that can only happen at the beginning of the 21st

century. Education is not seen anymore as a right or a privilege but as an

economic relation – an investment by part of the consumers who acquire a

certain good, namely education, that will eventually result in profit for the

consumer. In this view, the University becomes a business, and science, the

Trojan horse that will convince costumers to apply to one or another univer-

sity. Hence, the dominant discourse becomes one of efficiency, productivity

and valorization.

Historically, this world view extended worldwide with the fall of commu-

nist Russia and the imposition of capitalism in China. There is no alternative

– a slogan made infamous by Margaret Thatcher – history seemed to be say-

ing to us, this is the best you will ever get, or at least the less bad. Only in

such a worldview a student can be called a “client”, a label that for me is

outrageous and contradicts everything that education and culture stand for.

In science, this translated in the need to “measure” scientific output.

Since the easiest thing to measure is the number of publications – computers

are really good at doing that – the means of communication, i.e. the paper,

became the end of science. What matters today is, mostly, not to find truths

but to publish papers. Of course there are still exceptions, and good science

continues to be made, but when we publish more than a million papers per

year, something tells me that we are doing something wrong.

6.5 What science can say

As a scientist, one should attack this economic view for several reasons. First,

the validity of its axioms is highly questionable from a scientific point of view.

Second, the economist view is sensless in scientific context, as I will argue

later. Third, the economic developement nowadays is putting our biological

support in a strain hitherto unheard-of, endangering our own survival as a

species.9

9I think the perfect counter example of what I propose here is the anti religious prattle
of Dawkings and Dennet, amonsgt others. What we have today, instead of a proper
political intervention from scientists, is intolerant racist propaganda veiled as atheism.
What Dennet and Dawkins do, is criticizing religion because of its content, while formally
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What are the axioms of economic practice? The invisible hand of the

market, rational agents and exponential growth.

Think of you, do you really think you are rational? Have you ever been

in love? The truth is that we are not rational, at least not all the time.

That we do things for different reasons, not only calculating which is the

best output for us. This is a biological fact. The truth is that we do not

know what human nature is. We are not our genes nor our synapses, as

some reductionist authors pretend. Science is no closer to understand what

the human is than Borges was when he said that we are drops in Heraclitus’

river.

The invisible “hand” of the market in turn is a metaphor with no ex-

plicative value, it explains nothing. Furthermore, there is no such a thing

as free markets, nor markets make free, as in freedom. They are always al-

ready inside a political frame. Why can’t I buy kids? or human kidneys?

or love? Because not everything is a commodity nor everything should be a

commodity.

Economic growth is another such dogma: “To believe in unlimited growth

right now still seems to be an act of pure faith”10 [97]. We live in a fi-

nite world, and if alone for thermodynamic arguments11, we cannot continue

growing indefinitely.

In the next section I attempt a different approach to understand science,

one that seems to me to contain more truth. For this, we need to make a

detour through philosophy.

6.6 Philosophical Position

To talk about science always presupposes a definite philosophical position.

There is no neutral point from where to look at it. Mark Taylor in an editorial

behaving as the same religious people they attack. In their critic, they assume that
occidental institutions are the natural result of evolution, and hence they justify the state
of the world as something necessary, being religious de facto. Science did not undermine
religious power because of a particular animosity regarding religion. It undermined religion
because the institution of religion was based on precepts that contradicted the material
grounding of the world. If we want a scientific critic of society, today it should start
by capitalism, for is the where most of our dangers come from (global warming, food
sovereignity, dna-manipulation, etc.). What are a few Islamic terrorist compared with
the harm a copyright law on seeds brings to the world? Science’s depoliticizing is not its
greatest achievement but the mere price of its survival in today’s world. I see no reason
for not taking science’s premises to their logical conclusion, even if this means that by
doing so science becomes politicized.

10This article, appeared in Nature a good six months after I gave my talk, gives me hope
on science: we are finally saying (in a high impact journal, the epitome of the scientific
establishment) what has been in front of our eyes for years, and we cannot continue
pretending it is not there.

11http://physics.ucsd.edu/do-the-math/2012/04/economist-meets-physicist/.
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comment in Nature12, for example, talks about the “global competition for

the multibillion-dollar education market”, taking for granted an economic

notion of education.

What is at stake here is not simply a personal point of view. Taylor has

a certain (neo-liberal) understanding of the world that permeates his views

on education. His discourse appears logical only under a certain conception

of the world – a world view that is, just as the flat universe of the middle

ages, simply wrong.

When talking about science, notions such as being, truth and meaning

cannot be taken as given; they depend on the way we understand the world.

For a poor psychoanalyst, science is the sublimation of sexual drives; for a

Marxist, the expression of class struggle and the need to always transform

capitalist society; for an american positivist, the only discourse that has any

truth. By explicitly stating my philosophical position I submit to discussion

not only what I want to say but also the ground on which I base myself

to say something. I invite the reader to question her or his most “natural”

conceptions, trying to repeat in spirit what the Greek philosophers did.

How do I understand science if I don’t want to recourse to the economic

discourse of innovation so dominant today? One way to do it is the proposed

by the philosopher Alain Badiou [98, 99]. Science as a procedure of truth

– where what didn’t have existence previously comes into being – formally

equivalent to the artistic process, love and politics.13 This is not the place to

enter in a discussion with (or concerning) Badiou; I just want to point out

that the answer to what is science is not a given, and most importantly, some-

thing that cannot be reduced to the language of efficiency and performance

without losing a fundamental part of it: science discovers truths.

From a certain configuration of the world, in the midst of the old world-

view, science finds the new. What it was not there but that once discovered

becomes something that always already was part of the world.

So, when FOM (my funding agency) writes me that “after all your pri-

mary focus is testing hypotheses, analysing research results and publishing

your findings,” something of vital importance gets lost. They miss the point

concernig what science is. It seems that for them, reality is there waiting to

be discovered by methods that we already think to know perfectly. It just

needs time and funding so we can find out how the world works.

I disagree profundly with this view. I think that there is an effective

act of creation in science, and more general, in naming, in giving name to

12Nature 472, 261 (2011) — doi:10.1038/472261a
13For Badiou, a “generic procedure” is the ontological process by which a truth is con-

stituted. He insists that the human animal knows only four generic procedures: love,
politics, art and science. (Alain Badiou, Logics of Worlds: Being and Event II, Albert
Toscano (tr.), Continuum, 2009)
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things. The name is not a label that we put over things as a nameplate.

When we name something, we are at the same time creating it. I do not

mean a creation ex nihilo in the material world, for this would be magic. I

mean that by naming, we create the way to relate to some part of reality,

and in giving a name, we define the domain of possibilities for that part of

reality.14

This creation associated with the act of naming does not happen in a lin-

ear way, as FOM seems to imply. It happens through events, breaks with the

previously established order. Schrödinger’s equation, the Copernican revo-

lution, the theory of relativity; they are not improvements over old theories,

but completely different ways of looking at the world.

There is a fruitful distinction made by the French philosopher Jacques

Derrida between le futur and l’avenir, two words for “the future” in French:

In general, I try to distinguish between what one calls the future

and “l’avenir.” The future is that which – tomorrow, later, next

century – will be. There’s a future which is predictable, pro-

grammed, scheduled, foreseeable. But there is a future, l’avenir

(to come) which refers to someone who comes whose arrival is

totally unexpected. For me, that is the real future. That which

is totally unpredictable. The other who comes without my being

able to anticipate their arrival. So if there is a real future beyond

this other known future, it’s l’avenir in that it’s the coming of

the other when I am completely unable to foresee their arrival.15

The objective of science is precisely to create l’avenir. In Einstein’s words:

“If we knew what it was we were doing, it would not be called research.”

Scientists have a dream. We have no illusion about it, but we dream of

discovering truths about the world. We are trying to avoid the old and we

search for the new. The new that we cannot bring, that we only can hope to

arrive out of grace, and for which the most subtle intelligence is needed.

Of course in doing science there is a lot of “testing hypotheses, analysing

research results and publishing your findings,” but this is not, nor it can be,

the primary focus of my research. There is no recipe for doing science, no

“best practices”, no ISO 9000 that tells me how to discover something new.

If there were, I could learn how to do science in 21 days with the appropiate

manual and not spend four years in close contact with a senior researcher in

order to learn this so particular craft.

14Think of order parameters in physics: they are not an “objective” property to be
discovered by scientists, they are created insamuch as from all the possible physical ob-
servables, I pick one that signals the phase transition.

15Transcript of the film Derrida, 2002. Available at http://kirbydick.com/derrida/
DerridaTRANSCRIPT.doc
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6.7 What is to be done?

In Galileo’s times, science was revolutionary. It undermined the foundations

of religious institutions and consequently modified our vision of the world.

Today, scientific discoveries emerge within a complex and international net-

work of (mostly state-founded) institutions that are completely interwoven

with capitalist economy. Science and capitalism seem so interrelated that

people have lost the capacity to imagine or think of them as separate pro-

cesses. However, science was done before the emergence of capitalism, and

it will continue after capitalism disappears.

Husserl warned us, in 1935: “The crisis of European existence can end

in only one of two ways: in the ruin of a Europe alienated from its rational

sense of life, fallen into a barbarian hatred of spirit; or in the rebirth of

Europe from the spirit of philosophy, through a heroism of reason that will

definitively overcome naturalism.” He didn’t live to see that Europe ended

up in Auschwitz and that the barbarian hatred of spirit imposed itself over

the heroism of reason. Our task is not to repeat this.

Today, a certain way of understanding economy is threatening to dissolve

Europe. An economic view that is not grounded on science [100]. Someone

could argue that economics and politics have nothing to do with science, but

I disagree for two reasons.

First, the biological understanding that we have of human beings oblige

us to see ourselves not as individual units, isolated beings16. What we know

from science contradicts the assumptions of economy. We are not the rational

individuals that economy presupposes. It is the sum of our social relations

that makes us what we are.

Second, our scientific understanding of the world obliges us to put the

“care for all human beings and the natural capital upon which they depend

[...] at the top of the political agenda,” [101] if we want a sustainable envi-

ronment in which to live. This literally means to change the world.17

Science is not an isolated activity. It depends – and at the same time

shapes – the social environment in which it is made. The way we do science

is both a consequence and a determining factor of the world we inhabit.

To put it bluntly and stretching a bit the metaphor: the poverty of the

16For a complete treatment of this, see Alva Nöe’s Out of our heads. Why you are not

your brain, and other lessons from the biology of consciousness, Hill & Wang, New York,
2009, and Evan Thompson’s Mind in life: Biology, phenomenology, and the sciences of

mind, Harvard University Press, 2007.
17Despite agreeing with their conclusions, I don’t think that “natural capital” is a good

concept. It remains too much dependent on an econiomicist view of the world, the same
world view that brought us into this mess in the first place. Furthermore, people use this
concept as something that is already existing on the world, and forget that by using the
concept of capital we are limited to think in economical terms, which as I hope to have
showed, are nothing more than blind belief.
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black ghettos is a necessary consequence of the existence of the University of

Chicago.18

L’avenir of Science

Amongst the four procedures that Badiou considers, science deserves a special

place. Science is the only truth procedure that, in modernity, managed to

bring the new inside the old institutions. On the contrary, art created the

new in a constant war against the established schools, and hence the name

vanguard. The same with politics: every revolution politicizes something

that wasn’t part of the political agenda before. However, the price science

had to pay for this is that it cannot criticize the system that founds it,

betraying its task in favor of the continuation of the institution of science.

Scientists do not own compliance to capitalism, for then they would be

no more than intellectual prostitutes. Scientists have a debt to humanity,

and even more, to truth. The opportunity of risking one’s life, as Basquiat

or Rimbaud did, is the price science had to pay in order to produce the

new inside the old institution. However, this is not necessary, and only a

circumstantial accident. Just a hundred years ago, frontier science was being

done by a man working in a Swiss patent office and spending his nights

reading Kant and mathematics19, and there is no reason for not to repeat his

example.

People bet their lives for truth, not only Galileo, or Curie, or Spinoza, but

every person who reached for unknown lands without a return ticket. Most of

them died without having found anything, but their search wasn’t worthless.

Today, science is widely accepted as a necessary endeavor. Nobody looses

his or her life for doubting the theory of relativity. However, a science that

complies so gaily with the demands of society is not science at all. It is not

revolutionary, it is just technique. Put somewhat differently, to make science

means to search for the truth, not to be part of a community of professionals

that accept without questioning the dreadful standards that governments use

to assign money for research. What I mean with this is that a science that fits

too easily in the established order is certainly bound not to change anything.

In Derrida’s terms, it belongs to le future. What we need, as should be clear

by now, is a science that creates l’avenir.

I think that the problem is that we, scientists, forgot the fundamental

18This metaphor is not as far reached as it may seem at first sight. The University
of Chicago was directly responsible for the application of neo-liberal policies around the
globe during the 80s. This marked a shift from the full-employemnt model of John Keynes
to the natural (sic.) unemployement rate of Milton Friedman. By doing this, the poverty
in the black gettos was naturalised: this is the way things are.

19As recounted in Il était sept fois la révolution : Albert Einstein et les autres, Etienne
Klein, Flammarion, 2007.
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lesson of philosophy: not to accept without question any pre-given opinion,

any tradition; to search for the truth by ourselves.

The french poet Arthur Rimbaud wrote, “L’amour est à réinventer, on

le sait.”20 I think that with science it is something similar. One needs to

re-invent it each time. It’s an adventure. And this goes not only for science.

The lives of each one of us are an adventure. History is the adventure of

humanity. Everything that we value and see as natural things today are

not natural things, they came to be through history. We had to fight for

democracy, for female vote, for equal rights for black people.

Now we have to fight for free science – the question is how?

6.8 A ritual that is not rotten

What I am advocating is not to leave the scientific endeavor and replace it

by philosophizing. Neither to spend all our energies just talking about how

to properly do science instead of go and do it. I do not have the answers on

how to be a scientist, being just a starting one myself and not particularly

brilliant at that.

However, I think that a rather simple linguistic exercise could help us:

let’s change the metaphors we use to understand science. What I propose is

to look at science as something closer to love than to a private business. It

would make no sense talking about relations in a couple in terms of efficiency

and output – ground the decision to have a child on the GDP of the country,

or find the minimum number of nights out that “produce” a good relation.

In the same way, one should be embarrassed of talking about the economic

impact of one’s research. We do it for the fun of it (both science and love) –

and we should be proud of it.

The metaphor can be further extended. Relationships start with an event.

A night together, a talk in a cafe, the casual encounter of our eyes in the

middle of the crowd. And they continue in time, they develop. Rituals

and certain ways of doing things emerge. One repeats oneself without being

repetitive. A kiss remains a beautiful moment of silence, even after years of

sharing life together. Rituals should be like kisses.

The inaugural event of science was the imagined talk between Socrates

and Parmenides that Borges writes about. It has its own rituals and insti-

tutions, conferences and peer reviewing are two examples. But science is

also different. It’s a relationship that lasts thousands of years and involves

millions of people. However, it has the halo of magic that love has as well.

One should do science respecting that.

20Love must be reinvented, one knows it. Arthur Rimbaud, A Season in Hell, available
at http://abardel.free.fr/tout_rimbaud/une_saison_en_enfer.htm
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Postmodernist discourses have attempted to dispose ideas as illusory.

They reduce human behavior to rational decision making or hedonist plea-

sure satisfaction; they are cynical and cannot see beyond profit. However,

these attempts are themselves mere illusion – an easy answer in a complex

world, not different from the understanding of the world we had in the mid-

dle ages. To the best of our knowledge we don’t know what man is. A clear

statement of the limits of what we know is much greater aid than faulty and

simplistic models, mostly when they become normative, as it is the case with

neo-classical economics. Furthermore, by acknowledging our ignorance, we

open the space for our freedom to exist. The freedom to do what we want.

6.9 Conclusion: The science I want to make

I was taken out of the house surrounded by shit thanks to the knowledge that

was waiting for me in the Encyclopedia. I had no future, and knowledge gave

me an avenir. If I want to understand my personal history I cannot avoid

to confront the political and social history of Chile, and in general, of the

world. And since biologically we are not isolated individuals, but part of a

network of relations, my story is also part of your story. This story started

with two men in Greece who decided to think, continued with all those who

kept the conversation alive through history, and is still written today.

I want a science that doesn’t stay unabated by social reality. A science

that remains faithful to the event of philosophy. A science that refuses to

accept without question any pre-given opinion, any tradition, and so looks

for the truth in itself, with the certitude that discussion is the not-impossible

path to reach it. A science that is truly interdisciplinary, even at the cost

of not publishing several papers a year but instead each time that a new

and big understanding is developed, may this take years. A science with a

critical spirit and not afraid of telling the truth; and brave enough to act

accordingly.

Wittgenstein writes somewhere in his notebooks that “each of the sen-

tences I write is trying to say the whole thing, i.e., the same thing over and

over again; it is as though they were all simply views of one object seen from

different angles.” [102] For me, this also applies to science. We are trying

to understand the same thing from different points of view: the mystery of

existence; the phenomenon of life; that things are; in a word, we are trying

to understand the world. And this should be science’s goal; not the num-

ber of publications, the economic impact of research or the fancy of funding

agencies or managers. My research should reflect this.
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Chapter 7

Conclusions and Outlook

In this thesis, I have studied different systems with both hard- and soft-

spheres models. In particular, I studied how the long range interaction af-

fected the cooling behaviour of granular gases; developed a new algorithm

for the cluster-cluster aggregation process; and discovered a new mechanism

to control the axial segregation in rotating tumblers by the shaping the con-

tainer in a particular way.

General conclusions include:

1. The dynamics of 2D free cooling hard sphere gas in the dense regime

is better predicted by a modified pair correlation function at contact

that considers the phase transition to ordered crystals.

2. Discrete potentials reproduce much of the physics of continuous poten-

tials, at least for the free cooling of granular gases at low densities.

3. The fractal dimension of granular aggregates obtained by cluster-cluster

aggregation depends on the density of the homogeneous initial gas.

4. In the presence of long range forces, cluster formation in granular gases

is a complex phenomenon that involves the subtle interplay between

dissipation and attractive force.

5. I have developed a framework that comprises an easily modifiable ex-

perimental set-up and same-scale computer simulations for rotating

tumblers.

6. There are fundamental differences between the flow in a convex and a

concave tumbler. By controlling the shape of the drum, it is possible

to produce different dynamics with a single driving frequency.

7. Axial segregation in rotating tumblers can be controlled by modifying

the shape of the drum. This can have far fetching practical conse-

quences in industries ranging from pharmaceutical to mining.
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In the different subjects we studied there are a few lines of research that

could be continued. In what follows we give an account of the ones we

consider the most important.

Different Models for Clustering

One of the open questions left by this thesis is what is the relation between

the clusters obtained by the “sticky” potential and the square well.

One is extremely simple but does have the proper physics. For example,

the role of rotation is totally neglected; Does this modify the structure of

the clusters? How bad is this approximation for dilute systems? How does

the inclusion of rotation – and hence conservation of angular momentum –

affects the cooling dynamics?

Finally, with the creation of a new stable ED algorithm by Bannerman

[103] it is possible now to simulate non-spherical particles in a stable way.

The extension to arbitrary clusters is rather straightforward, and an obvious

line of research to be applied, among other, in the simulation of nano-cluster

in a fluidised bed.

Event-driven simulations

As future work, one can envisage at least three areas of development. First,

finish the implementation of aggregates of spherical particles in event-driven

simulations. This could be use to, for example, continue the cluster-cluster

aggregation process in 3D including rotation, so to study the dynamics of

nano-aggregates in gases, or take into account the duration of collisions in

event-driven simulations (see Ref. [104]). Furthermore, event-driven algo-

rithms could be used to study the dynamics of systems where Monte-Carlo

simulations have already showed fascinating properties [105].

Second, study of segregation in long rotating drums. For this, the use

of sleeping particles would be extremely efficient, allowing the simulation of

millions of particles at almost no computational cost. To realize this, a proper

comparison between event-driven simulations and experiments is needed, in

order to assert the parameter region where the model is representative of the

actual dynamics.

Third, continue the study of the discontinuous potentials as approxima-

tions of long range potentials. Discontinuous potentials has been already

used in the simulation of complex molecules as benzene [106], or in the simu-

lation of polymer chains [107]. To quantify the applicability range of discrete

potentials for long-range interactions systems can improve the understanding

of complex dynamics with a relatively simple simulation.
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Shaping Segregation

Our results show that by controlling the shape of a rotating tumbler, the

segregation in the axial direction can be controlled.

The next step should be to contact industrial partners to see how and

where this knowledge can be used, for example, in SAG mills where the

biggest problem concerns the milling of the medium size particles. Together

with this, a more comprehensive study involving different drum shapes, dif-

ferent component number, different symmetries, and why not, non-symmetric

shapes, is the eviden way of continuation for this work.

In concrete, I would like to answer the following questions: What is the

optimal drum’s shape to obtain a given segregation pattern? How to use this

insight in existing processes in the granular industry? What is the best shape

to maximise milling volume and minimise residency time in a SAG mill?
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