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CHAPTER 1

Introduction

There is a strong worldwide drive to fundamentally control the behav-
ior of light with tailored nanophotonic media. Ordered, weakly disor-
dered, and completely disordered nanophotonic media exhibit unique
light transport properties that make them unprecedented and versatile
platforms for, e.g., tailoring light emission, sculpting integrated linear
optical circuits, controlling quantum interference, and exploring novel
fundamental physics.

Nanophotonic media are composite dielectric optical materials in which the re-
fractive index spatially varies on length scales comparable to the wavelength of
light. Light propagation in nanophotonic media strongly deviates from rectilin-
ear plane wave propagation in homogenous media by optical interference in the
multiple-scattering structure [1-9]. Nanophotonic media uniquely define light
propagation and enhance or decrease interactions with the light field as a con-
sequence of the rich dispersion characteristics. The wide availability of high re-
fractive index materials, scalable fabrication methods with nanometer accuracy,
and reversible refractive-index control mechanisms, make nanophotonic media a
key technology of modern optics.

Both ordered nanophotonic media [10-12], such as photonic crystals, and dis-
ordered media [13, 14], such as white paint, have been topic of intense research for
many decades and have found their way even in daily used devices such as white
light LEDs and solar cells. Available fabrication methods make ordered nanopho-
tonic media ideally suited for mass production. Nevertheless, any fabricated
structure contains intrinsic disorder, and therefore it is essential to understand
the impact of unavoidable deviations from designed structures. Furthermore,
weak disorder results in phenomena that are also observed in on-purposely de-
signed delicate structures, such as cavities with high quality factors [15], opening
new opportunities to embrace disorder for functionality. Disordered systems even
support intriguing quantum correlations [16-23]. Quantum optics in nanopho-
tonic media is a promising candidate for practical implementation of quantum
technology, since devices are compact, scalable, have minor losses, and support
enhanced fields [24, 25]. With recent progress in programming classical light
propagation in random multiple-scattering media by wavefront shaping [26, 27],
the road is open to exploit strongly disordered nanophotonic media for integrated
quantum optics.
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Figure 1.1. Geometry and dispersion of a two-dimensional photonic
crystal. (a) Geometry of a macroporous two-dimensional silicon
photonic crystal with a centered-rectangular lattice with a unit cell
with long side a, short side ¢ and pore radius r. The bottom shows
the corresponding Brillouin zone in reciprocal space, where the la-
bels mark points of high symmetry. (b) Calculated band structure
for r/a = 0.225 and a/c = 1.41 for transverse-electric (TE) po-
larized light. The band structure shows two two-dimensional band
gaps for TE-polarized light (yellow bars) and regimes that sustain
slow-light propagation (red encircled areas). The dashed diagonal
line indicates a fraction of the dispersion for rectilinear plane wave
propagation in a homogeneous medium with constant effective re-
fractive index similar to the one of the crystal.

1.1. Ordered nanophotonic media: photonic crystals

Photonic crystals are long-range periodic ordered two- or three-dimensional nano-
photonic media with a periodicity of the order of the wavelength of light [6]. Light
propagation in photonic crystals has much in common with electron transport
in solid-state systems [28, 29]. The key difference is that light is represented by
a vector field that is occupied by bosonic massless quanta known as photons.
Nevertheless, just like electrons in semiconductors, the resulting interference of
multiple-scattered light restricts the allowed fields to be a superposition of Bloch
modes. The optical Bloch modes exhibit a rich dispersion that strongly deviates
from the linear dispersion relation in homogenous materials. The dispersion
makes photonic crystals ultimate tools to, e.g., control spontaneous emission,
redirect, and slow-down light propagation.

Figure 1.1 shows the geometry and dispersion relation for a two-dimensional
photonic crystal. The dispersion can be calculated by solving the Maxwell’s equa-
tions inside the photonic medium, analogous to solving the Schrodinger equation
for electrons propagating in a solid-state crystal.! Methods are described in

I The optical Helmholtz equation contains a second-order time derivative, resulting in a linear
dispersion relation between energy and wave vector. The Schrodinger equation contains a
first-order time derivative, resulting in a quadratic dispersion relation between energy and
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Refs. [6, 30]. The dispersion relation of light in photonic crystals exhibits four
characteristics features that are studied in this dissertation:

1. Frequency bands emerge in which there are no modes. Hence, light cannot
propagate in a certain direction by Bragg diffraction, known as stop gaps.?
Light at the frequency and direction of the stop gap cannot be transmitted
and therefore gets scattered in other allowed directions. The effect is well
known in one-dimensional structures such as Bragg mirrors. Stop gaps are
especially useful to confine light on few-wavelength scales in, e.g., photonic-
crystal waveguides and cavities, or to diffract light with high efficiency. A
photonic band gap is a common stop gap for all directions and polariza-
tions. Figure 1.1(b) reveals two two-dimensional photonic band gaps for
TE-polarized light.3

2. The dispersion strongly deviates from that of a homogeneous material, es-
pecially near the band edge of a stop gap. Figure 1.1(b) illustrates the linear
dispersion in a homogoneous material by the diagonal dashed line between
I'M’. In contrast, the band becomes curved for the photonic crystal if light
travels along I'M’. The group index nqg is given by the inverse slope of the
band n, = (1/cy)(0w/0k)~ . The group velocity is given by v, = co/ng
and describes the rate at which energy travels. The group index is strongly
frequency-dependent and diverges near the band edge, leading to slow light.
The red encircled areas in Fig. 1.1(b) mark regions where slow light oc-
curs. Slow light is extremely useful in optical sensing, as slow light interacts
strongly with matter. The energy density of the pulse is determined by the
energy of the pulse and its spatial extent. If we assume that all the energy
of the pulse has been transmitted into the medium, slowing down the speed
of light results in a higher energy density in the medium. In a photonic
crystal, this results in an increase of the intensity in the medium, roughly
proportional to the inverse of the group velocity [31]. Another intriguing
consequence is that an incident pulse is reshaped since certain frequencies
travel faster through the crystal. The locus of maximum constructive in-
terference, the pulse’s peak, is shifted forward toward the leading edge of
the pulse, so that the peak of a replica of the original pulse seems to ar-
rive before the peak of a similar pulse propagating through a nondispersive
medium with the same group index [32].

3. The modified dispersion can result in a noticeable effect in the frequency-
dependent number of modes, defined as the density of optical states (DOS).

wave vector.

2 There is the unfortunate habit of confusing the term stop gap, stop band and band gap.
There is a fundamental difference between them that is explained in this section.

3 The term photonic band gap is also used to describe a common stop gap in two-dimensional
structures. The light field cannot be absent everywhere, because diffraction in the third
dimension is absent. Often a common two-dimensional stop gap is formed for a specific
polarization only. Therefore in the case of for example triangular photonic crystals, one
should speak about a two-dimensional band gap for transverse-electric polarized light.
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The geometry and dimension of the structure determine whether the modi-
fied dispersion will appear in the DOS. For one-dimensional structures and
propagation, any modification of the dispersion of the modes will be likely
noticeable since there are few modes at the same frequency that can coun-
teract or average out this effect; a stop gap would result immediately in a
DOSUP) of 0 and a divergence near the band edge. In three-dimensional
structures, an altered dispersion might not be noticeable in the DOS, since
there are many other modes at the same frequency that contribute. There-
fore a stop gap for a single direction might hardly affect the DOS, while a
photonic band gap would give a DOS of 0 by definition. The modification
of the DOS has drastic consequences for phenomena that are caused by
the interaction with the (vacuum) field, such as spontaneous emission and
Casimir forces.

4. The crystal modes are Bloch modes and therefore have a particular mode
profile different from a plane wave. A Bloch mode in a crystal with pe-
riodicity a propagating in the k direction with wave vector k = k| R, at
position r, and frequency w, is described by:

Uy (r,w) = ¢(r,w)exp (ik - r). (1.1)
Here ¢(r,w) is an envelope that is periodic with the lattice and satisfies
Y(r,w) = ¥ (r + ak,w). The Bloch envelope can be expanded as:

27
Zam w)exp(im=—r - k). (1.2)
a

All Bloch modes have harmonics in all Brillouin zones, including one har-
monic in the first irreducible Brillouin zone. Therefore, we consider in this
dissertation mainly folded band structures, such as shown in Fig. 1.1(b).

1.1.1. Stop gaps, stop bands and band gaps

Stop gaps are unique properties of photonic crystals that form true forbidden
zones for light. The presence of stop gaps can be explained with both Bragg
diffraction or the von Laue diffraction condition, which are equivalent descrip-
tions of elastic scattering and propagation of any kind of wave phenomenon in a
periodic lattice [28, 33].

Bragg diffraction describes scattering in real space. Figure 1.2(a) illustrates
the geometry for simple Bragg diffraction. Scattered waves on a set of lattice
planes interfere constructively if the Bragg condition is met:

mA = 2dneg cos(0), (1.3)

where m is an integer, A is the wavelength in vacuum, d is the lattice spacing,
neg the effective refractive index and 6 the angle of the incident wave with the
normal to the lattice planes. Incident waves that satisfy the Bragg condition for
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Figure 1.2. Formation of stop gaps in photonic crystals. (a) Illustration
of simple Bragg diffraction on a set of lattice planes with lattice
spacing d. Constructive interference of the scattered waves occurs if
the path length difference 2d cos(6) (blue) between reflections from
successive planes equals an integer number of wavelengths \. (b)
Dispersion relation along the normal to the lattice planes in (a). At
the Bragg condition k = 7/d, the dispersion relation (black) splits
and forms a stop gap (yellow). In the limit of vanishing photonic in-
teraction, the dispersion relation shows no stop gaps (dashed lines).
(¢) The von Laue condition is satisfied if scattered wave vectors are
bisected by a Bragg plane. The incident wave vector ki, and outgo-
ing wave vector koyu¢ lie on this Bragg plane. The difference vector
kout — kin is equal to the reciprocal lattice vector G that extends
between I' and G1;.

a set of lattice planes are diffracted for a range of frequencies, forming a stop
gap in the dispersion relation. The dimensionless photonic strength S can be
physically defined as the polarizability per unit cell volume [34]. The photonic
strength of a crystal is gauged by the relative width Aw/weenter of the main stop
gap. The interaction strength between light and a crystal increases with the
dielectric contrast between the composite materials [9, 35], resulting into broader
stop gaps. The Bragg length L, is the typical length scale that is required for
Bragg diffraction to occur. The Bragg length is related to the photonic strength
as Ly = Acenter/T™S, With Acenter the center wavelength of the stop gap.

The solid curves in Fig. 1.2(b) indicate the dispersion relation for light in a
one-dimensional photonic structure. At the Bragg condition (k = m/d), there
exist two standing waves: one mostly in the medium with high refractive index
(low frequency band) and one mostly in the medium with low refractive index
(high frequency band) [6, 30]. These standing waves result in different frequencies
of light, which form the edges of the stop gap Aw. Stop gaps are the result of
destructive interference of Bloch modes inside the crystal. Therefore, true stop
gaps only exist in structures of infinite size. The modes in a structure of finite
size are still strongly suppressed by Bragg diffraction. In real photonic crystals,
the width of reflectivity peaks gauge stop bands to indicate the difference from
infinite and perfect structures.*

4 Stop bands are experimentally observed frequency regions for which light cannot propagate
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An alternative formulation for diffraction of waves is provided by the von Laue
condition [28, 37]. The von Laue approach describes scattering in reciprocal
space and differs from the Bragg approach in that no particular sectioning of the
crystal into lattice planes is singled out, and no ad hoc assumption of specular
reflection is imposed. One regards the crystal as composed of identical micro-
scopic objects placed at the sites of a Bravais lattice, each object can scatter the
incident radiation in all directions. Constructive interference occurs in directions
and at wavelengths for which the radiation scattered from all lattice points inter-
fere constructively. This occurs when the difference between the incident wave
vector k;, and outgoing wave vector kg, is equal to a reciprocal lattice vector
G:

kout — kin = G. (1.4)

This condition is called the von Laue condition and describes diffraction of waves
in reciprocal space. The von Laue condition is satisfied at certain planes in
reciprocal space, called Bragg planes. Wave vectors ki, and kg satisfy the von
Laue condition if the tips of both vectors lie in a plane that is the perpendicular
bisector of a line joining the origin of reciprocal space to a reciprocal lattice vector
G, as illustrated in Fig. 1.2(c¢). In reciprocal space, the points on the boundary
of the Brillouin zone, which is enclosed by Bragg planes, are special because every
wave with a vector extending from the origin to the zone boundary both satisfies
the von Laue condition and Bragg condition.

Diffraction becomes more complex in the case of multiple-Bragg wave coupling.
With increasing photonic interaction and increasing frequency, light can diffract
from more than one set of lattice planes simultaneously [38]. Such multiple-
Bragg diffraction results in band repulsions between Bloch modes, causing the
frequencies of the edges of the stop gaps to become independent of angle of
incidence. In reciprocal space, this can occur at a corner of the Brillouin zone
edge at the intersection of multiple Bragg planes.

In the limit of strong photonic interaction, many Bloch modes interact so
strongly that the edges of the stop gaps hardly vary for all propagation directions.
This results in a photonic band gap [38, 39]. Only specific three-dimensional
photonic crystals have a band gap if the refractive index contrast is sufficiently
high: the simple cubic [40], the diamond [41] and diamond-like [42] structures,
such as the Yablonovite structure [43], the woodpile [44], and the close packed
fec and hep structures [45].

Experimentally realizing a photonic band gap is a tremendous challenge. One
needs a state-of-the-art structure with a minimum amount of disorder, since
disorder reduces the width of the gaps by the formation of defect states.® The
fabricated structure is of finite size and therefore a suppressed DOS is expected if

due to Bragg diffraction. These can be observed in diffraction measurements, like reflectance
or transmission spectroscopy. Not every reflectance peak or transmission trough is caused
by interference, it can also be caused by, e.g., absorption or bad coupling to crystal modes
[6, 36].

A famous example is the observed inhibited spontaneous emission rates in inverse opal
photonic crystals. A very narrow band gap is expected between higher order modes. Because
of small imperfections this gap will close, and therefore it is hard to claim the presence of
the photonic band gap.

5
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there exists a common stop band for all directions and polarizations. To confirm
the presence of a band gap one has to demonstrate (i) a common stop band and
(i) a strong suppression of the DOS. Each demonstration in itself is not sufficient
to conclude there is a band gap, since both separate observations can be caused
by different effects, such as bad mode coupling, incomplete gap for all directions,
and measuring emission statistics from sources distributed at specific locations
in the structure resulting in an improper ensemble average for the DOS. We have
recently demonstrated both criteria for the presence of a photonic band gap in
inverse woodpile photonic crystals [46, 47].

1.2. Weakly disordered nanophotonic media:
photonic-crystal waveguides

One cannot engineer a perfectly long-range ordered system; there is always dis-
order caused by, e.g., material impurities and fabrication. In the end, the third
law of thermodynamics forbids perfectly long-range ordered structures. Random
multiple scattering forces light to follow a random walk through the material,
resulting in diffuse light transport if interference effects are neglected. For very
pronounced random scattering, when the distance between succeeding scatter-
ing events is in the order of a wavelength, interference cannot be ignored and
ultimately light can become Anderson localized [13, 48]. Anderson localization
is an ensemble-averaged effect where waves cannot propagate through a medium
by interference, where disorder prevents waves to be in a propagating state. In
Anderson localization light performs random walks that return to their origin
after traveling a path length comparable to the wavelength of light. In three-
dimensional structures this is most difficult to achieve since a phase transition
must be crossed. But for one- and two-dimensional disordered structures of infi-
nite size, light will always become localized.

Sheng explains that Anderson localization is not necessarily the same as wave
confinement [49]. Wave confinement may involve walls made of materials that
have no wave state at the relevant frequency, such as standing waves formed in
a cavity. Gaps in finite-size photonic crystals are typical examples where the
waves evanescently decay and therefore such crystals form excellent materials
to confine light in nanocavities or waveguides. The crucial difference between
confinement caused by a stop gap and Anderson localization is that a gap denotes
a frequency range which is empty of wave states, whereas a localized wave is a
non-propagating wave state. The two mechanisms can interact, especially in
weakly disordered gap media in which the crystalline periodicity is perturbed
by disorder. The band edge of the gaps would be smeared to form a transition
regime. In that transition regime there would be spatial regions that are deficit of
wave states, so that instead of total confinement, the waves would be restricted in
their propagation directions. That is, instead of propagating in straight lines, the
waves would be traveling in a labyrinth. Another way of saying the same thing is
that the amount of random scattering is increased, leading to the enhancement
of localization effect. That is why the band edge states are easily localized.
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Figure 1.3. Wavefront-shaped adaptive linear optical circuits. (a) In-
cident light on a multiple-scattering medium results in a speckle
pattern. (b) The scattered light can be described by a scattering
matrix, representing a complicated linear optical circuit. (c) By
modulation of the incident wavefront with a spatial light modulator
(SLM) it becomes possible to address elements to create a speckle
pattern with desired correlations for functionality, in this cartoon a
beam splitter. Note: reflection is omitted in this figure for clarity.

Photonic-crystal waveguides form an excellent platform to investigate this effect.

Photonic-crystal waveguides consist of a two-dimensional photonic-crystal slab
with a line defect. Light is confined in the line defect by Bragg diffraction in
the surrounding photonic crystal, and total internal reflection. The Bloch modes
guided by the line defect exhibit dispersion essential for slow-light propagation
and enhanced light-matter interactions [6, 50-53]. The slow light is extraordi-
narily sensitive to unavoidable structure imperfections. Consequently, the light
undergoes unintended multiple scattering, which ultimately leads to a blockade
of its propagation by Anderson localization. The Anderson-localized modes were
first observed in 2007 to form random cavities with a relative inverse linewidth of
Q ~ 10* [15]. Tt has been demonstrated that Anderson localization in photonic-
crystal waveguides control the spontaneous emission decay rates of embedded
quantum dots [18, 54]. Phase-sensitive near-field scanning optical microscopy
(NSOM) is ideally suited to study the localized modes, because of its ability to
probe evanescent fields with sub-wavelength resolution, and extract the disper-
sion [51, 55-59).

1.3. Disordered nanophotonic media: adaptive
quantum optics

Light transport in any scattering nanophotonic medium can be described by a
linear transformation of a multi-mode system by a scattering matrix. The scat-
tering matrix of random multiple-scattering media, such as white paint, contains
correlations that are very similar to correlations describing light transport in lin-
ear optical elements, in essence forming a very complicated linear optical circuit
with many input and output modes. The output modes are generally known
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as far-field speckle spots. Freund suggested that these correlations in random
multiple-scattering media can be exploited for creating the functionality of linear
optical elements [60]. This makes random multiple-scattering one of the most
versatile platforms for creating linear optical circuits.

Wavefront shaping is an adaptive optical technique in which an incident wave-
front on a scattering medium is modulated to obtain a speckle pattern with
desired correlations. This technique allows for a complete control of light prop-
agation in strongly-scattering media in space and time [26, 27]. The concept
behind wavefront shaping is illustrated in Fig. 1.3. In essence one controls by
modulating, e.g., the phase of the incident wavefront the degree of mode-mixing
of all scattered waves that contribute to a target speckle pattern with desired
correlations. Although wavefront shaping has been generally known for focus-
ing and imaging with multiple-scattering media, many linear optical components
have been realized such as equivalents of waveguides and lenses [26, 61, 62], op-
tical pulse compressors [63, 64], programmable waveplates [65], and plasmonic
grating couplers [66]. Since one is in general not able to control all incident modes
of the scattering matrix, and the scattering matrix might not contain all desired
correlations, one has to tolerate losses that are typically orders of magnitude
higher than of custom fabricated optical circuits. On the other hand, the created
optical circuit is inherently programmable in functionality.

1.3.1. Wavefront shaping of quantum light

Quantum optics has given us groundbreaking insights in the most fundamental
nature of light [32, 67]. We are now able to create, manipulate and characterize
quantum states of the light field, making quantum optics of interest for applica-
tions [68, 69]. In most quantum optical experiments, the prepared quantum state
propagates through an interferometric linear optical circuit. Even simple linear
optical circuits, like a Mach-Zehnder interferometer, reveal unique phenomena
relevant for establishing building blocks for quantum computing. These optical
circuits are often realized either in bulky setups containing, e.g., mirrors, lenses,
polarizes, waveplates, or in state-of-the-art integrated photonics, such as cou-
pled waveguides and cavities. Integrated photonic structures form an excellent
platform for a practical implementation of quantum optics for three reasons: (7)
the size of integrated photonics makes these circuits scalable. (i7) The light field
can be enhanced by orders of magnitude with a mode volume below the wave-
length cubed. (ii7) State-of-the-art fabrication technologies reduce significantly
the amount of disorder that would degrade quantum interference of two or more
photons [24, 25].

Both free-space and integrated photonic linear optical circuits are robust plat-
forms for performing quantum optical experiments with low optical losses. How-
ever, once the linear optical circuit has been built, one has often little flexibility
in modifying or programming the evolution of the state, especially in a running
experiment. One can design the experiment to partly circumvent this issue by in-
cluding adaptive optical elements, which mostly give a controllable (phase)delay
[70]. Quantum interference can be optimized both in the spatial domain and in
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the time domain. Especially in nanophotonic structures much effort is invested in
controlling the refractive index by, e.g., temperature tuning, free-carrier excita-
tion or optical Kerr switching [71-73]. Nevertheless, it becomes a major challenge
if one would like to give the optical circuit a functionality that is entirely different
from its original design purpose, e.g., changing the number of input and output
modes.

Random multiple scattering has become an exciting platform for quantum op-
tical experiments [16-19, 21, 74, 75]. We introduce adaptive quantum optics in
which wavefront shaping is applied to quantum light to obtain ample flexibility in
programming the linear optical circuit for desired quantum interference. Spatial
light modulation in combination with quantum light has been applied to quan-
tum imaging, orbital momentum selection, and creating high-dimensional entan-
gled states [76-80]. Since quantum correlations are conserved even in random
multiple-scattering media, it becomes possible to optimize quantum interference.
An important breakthrough is the recent capability to measure parts of the scat-
tering matrix for randomly-scattering media [81]. This offers a promising route
towards programming the desired effective transmission matrix for the incident
light for the target quantum interference.

We have started a series of experiments to demonstrate the power of adap-
tive quantum optics. The best known example of quantum interference is the
Hong-Ou-Mandel (HOM) experiment in which two indistinguishable photons are
incident on the input ports of a 50:50 beam splitter. Quantum interference dic-
tates that the photons always leave the beam splitter in pairs in either of the two
output modes. We are working towards demonstrating adaptive quantum optics
by repeating this experiment with phase modulation of the incident wavefronts
and a multiple-scattering medium instead of the beam splitter.

Before one can demonstrate HOM interferometry with adaptive quantum op-
tics, one has to demonstrate (i) the capability of wavefront shaping incident
single-photon states and (¢7) the capability of making a speckle pattern with cor-
relations like an optical beam splitter. In this dissertation we demonstrate both
aspects.

1.4. Overview of this dissertation

This dissertation describes six experiments in which light propagation is con-
trolled with nanophotonic media. Each experiment forms the basis of a manuscript
that has been accepted or submitted for publication. Therefore the chapters fol-
low closely the original manuscript with updates added on. The experiments are
thematically grouped in three parts.

Part I: Forbidden zones for light in photonic band gap crystals

State-of-the-art photonic crystals have been investigated with reflectance spec-
troscopy. The following chapters report two experiments that demonstrate light
control by the close-to-perfect periodicity of the crystals.
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In chapter 2 a novel diffraction phenomena is identified which is called sub-
Bragg-diffraction. Sub-Bragg diffraction is multiple-Bragg diffraction in a di-
rection of high symmetry, which occurs at a lower frequency than simple-Bragg
diffraction. Sub-Bragg diffraction is even a general wave diffraction phenomenon
that occurs in many different Bravais lattices, including the commonly known
triangular and body-centered cubic lattices.

Chapter 3 presents an experimental signature of a photonic-band gap in three-

dimensional inverse woodpile photonic crystals. A unique combination of polarization-

resolved and position-dependent reflectance spectroscopy presents a strong sig-
nature of the presence of a photonic band gap, without the necessity to rely on
calculated band structures or studying decay rates of embedded emitters.

Part II: Light near the band edge in photonic-crystal waveguides

The periodicity of the lattice makes photonic-crystal waveguides intriguing sys-
tems for slow light and enhanced light-matter interactions. Random deviations
of the ideal non-disordered lattice are unavoidable. Especially near the band
edge, the effects of weak disorder strongly alter light transport compared to ideal
non-disordered structures. Phase-sensitive near-field microscopy is used to study
light propagation in photonic-crystal waveguides.

Photonic-crystal waveguides are multi-mode systems, that are in general de-
tected all at once with near-field microscopy. Chapter 4 describes a Bloch-mode
reconstruction algorithm that has been tested on photonic-crystal waveguides.
This algorithm allows for the extraction of field patterns of separate Bloch modes.

In chapter 5 Anderson-localized modes are observed near the band-edge. The
experimentally measured band structure reveals a broadening of the band edge.
The density of states is reconstructed revealing a smeared van Hove singularity
and the optical equivalent of the Lifshitz tail.

Part 11l: Adaptive quantum optics

Disordered nanophotonic media contain correlations that are similar to those
of linear optical elements. With wavefront shaping one can address these cor-
relations for functionality. Two experiments are presented that form essential
building blocks for a HOM experiment with adaptive quantum optics.

In chapter 6 wavefront shaping is applied to incident single-photon Fock states
on a layer of white paint. The probability that a single photon arrives at a target
speckle spot is increased 30 fold by phase modulation of the incident wavefront.
This proof-of-principle experiment constitutes the first demonstration of wave-
front shaped non-classical light. This experiment opens the road to address
correlations in multiple-scattering media for desired quantum interference.

Chapter 7 demonstrates that a random scattering medium can be used as a
balanced beam splitter by wavefront shaping. Two orthogonal wavefronts are
phase modulated to create two enhanced output speckle spots of equal intensity.
Interference measurements show that the output speckle spots are correlated like
the ports of a coherent balanced beam splitter.



Forbidden zones for light in photonic band gap
crystals. Photonic crystals are a special class of meta-
materials that radically control emission and
propagation of light. In specific three-dimensional
crystals, a common frequency range is formed for which
light is not allowed to propagate in any direction, called
the photonic band gap. It is an outstanding challenge to
create these crystals and experimentally demonstrate the
photonic band gap. Photo: microscope image of an
inverse woodpile photonic crystal surrounded by a two-
dimensional crystal. Photo courtesy of Hannie van den
Broek.
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CHAPTER 2

Observation of sub-Bragg diffraction of waves in crystals

We investigate the diffraction conditions and associated formation of
stop gaps for waves in crystals with different Bravais lattices. We
identify a prominent stop gap in high-symmetry directions that oc-
curs at a frequency below the ubiquitous first-order Bragg condition.
This sub-Bragg diffraction condition is demonstrated by reflectance
spectroscopy on two-dimensional photonic crystals with a centered
rectangular lattice, revealing prominent diffraction peaks for both the
sub-Bragg and first-order Bragg condition. These results have impli-
cations for wave propagation in 2 of the 5 two-dimensional Bravais
lattices and 7 out of 14 three-dimensional Bravais lattices, such as
centered rectangular, triangular, hexagonal and body-centered cubic.

2.1. Introduction

The propagation and scattering of waves such as light, phonons and electrons are
strongly affected by the periodicity of the surrounding structure [28, 29]. Fre-
quency gaps called stop gaps, emerge for which waves cannot propagate inside
crystals due to Bragg diffraction. Bragg diffraction is important for crystallog-
raphy using X-ray diffraction [82] and neutron scattering [83]. Diffraction deter-
mines electronic conduction of semiconductors [28, 29] and of graphene [84], and
broad gaps are fundamental for acoustic properties of phononic crystals [85, 86]
and optical properties of photonic metamaterials [4, 6].

Bragg diffraction is described in reciprocal space by the Von Laue condition
kout — kin = G, where ko, kin are the outgoing and incident wave vectors and
G is a reciprocal lattice vector. As a result, a plane exists in reciprocal space
that bisects the reciprocal lattice vector for which the Von Laue condition is
satisfied, called a Bragg plane. When the incident and outgoing wave vectors
are located on a Bragg plane these waves are hybridized, thereby opening up a
stop gap at the Bragg condition. The boundary of the Brillouin zone is formed
by intersecting Bragg planes and therefore gaps open on this boundary [28].
When diffraction involves a single Bragg plane, we are dealing with simple Bragg
diffraction, which corresponds in real space with the well-known Bragg condition:
mA = 2d cos(f). Here m is an integer, A is the wavelength inside the crystal, 6 is

The content of this chapter has been published as: S.R. Huisman, R.V. Nair, A. Hartsuiker,
L.A. Woldering, A.P. Mosk, and W.L. Vos, Phys. Rev. Lett. 108, 083901 (2012).
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the angle of incidence with the normal to the lattice planes, and d is the spacing
between the lattice planes. A stop gap is also formed when Bragg diffraction
occurs on multiple Bragg planes simultaneously, which is called multiple Bragg
diffraction [87], and is fundamental for band gap formation [29, 38, 88]. Wave
propagation in crystals is most often described along high-symmetry directions
[28], since extrema occur in these directions. Multiple Bragg diffraction has
been recognized in high-symmetry directions at frequencies above the first-order
simple Bragg diffraction condition, where the simple Bragg diffraction condition
is given by: m = 1, A = 2d or koyy = —kin, = (1/2)G. For low-symmetry
directions, multiple Bragg diffraction can occur at a frequency lower than simple
Bragg diffraction [39, 89], which occurs in higher-order Brillouin zones. To our
knowledge, for high-symmetry directions, multiple Bragg diffraction has not yet
been observed at frequencies below simple Bragg diffraction.

In this chapter we show that for high-symmetry directions multiple Bragg
diffraction can occur at frequencies! below the first order simple Bragg condi-
tion. As a demonstration we have investigated diffraction conditions for two-
dimensional (2D) photonic crystals using reflectance spectroscopy. A broad stop
gap is observed below the simple Bragg condition, depending on the symmetry
of the lattice. Our findings are not limited to light propagation, but apply for
wave propagation in general, and therefore we anticipate similar diffraction for
electrons in graphene [84], and sound in phononic crystals [85, 86].

2.2. Reflectance spectroscopy on 2D photonic
crystals with sub-Bragg diffraction

We have studied light propagation in 2D silicon photonic crystals [90]. Figure
2.1(a) shows a scanning electron microscope (SEM) image of one of these crystals
from the top view. The centered rectangular unit cell has a long side a = 693+10
nm and a short side ¢ = 488 + 11 nm. The pores have a radius of r = 155 + 10
nm and are approximately 6 ym deep. The photonic crystals are cleaved parallel
to either the a-side or c-side of the unit cell. The cleavages define two directions
of high symmetry, M’ and I'K, in the Brillouin zone, see Fig. 2.1(b). If light
travels parallel with these directions, one expects simple Bragg diffraction from
the lattice planes in real space (dashed lines in Fig. 2.1(a)). A stop gap should
appear that is seen in reflectivity as a diffraction peak. Because both directions
have a high symmetry, one naively expects that simple Bragg diffraction gives
the lowest-frequency diffraction peak.

We have identified the diffraction conditions of our 2D photonic crystals along
the M’ and T'K directions using reflectance spectroscopy [46]. The photonic
crystals are illuminated with white light from a supercontinuum source (Fianium
SC-450-2). TE-polarized light is focused on the crystal using a gold-coated re-
flecting objective (Ealing X74) with a numerical aperture of 0.65, resulting in a
spectrum angle-averaged over 0.44w sr £10% solid angle in air. By assuming an

I In this chapter we consider frequency, since this is a conserved quantity for waves.
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Figure 2.1. Geometry of 2D photonic crystals with a centered rectan-
gular lattice. (a) SEM image of a 2D photonic crystal with a
centered rectangular lattice. The white rectangle marks a unit cell
with a = 693 & 10 nm, ¢ = 488 &+ 11 nm and r = 155 £ 10 nm.
The arrows mark two directions of high symmetry I'K and I'M’.
The red and gray dashed lines mark real space lattice planes whose
lowest-frequency simple Bragg diffraction occurs along the 'K and
I'M’ directions. (b) Reciprocal space of the centered rectangular
lattice (circles). The filled area is the first Brillouin zone, by and
by are primitive vectors. I', K, K', M, and M’ are points of high
symmetry. The dashed lines are Bragg planes.

average refractive index (neg = 2.6), the angular spread inside the crystal is only
14° (half angle), corresponding to 0.06m sr +£10% solid angle. The diameter of
the focused beam is estimated to be 2wy = 1 um. Reflected light is collected by
the same objective, and the polarization is analyzed. The spectrum is resolved
using Fourier transform infrared spectroscopy (BioRad FTS-6000) with an ex-
ternal InAs photodiode. The spectral resolution was 15 cm ™!, corresponding to
about 1073 relative resolution. For calibration, spectra are normalized to the
reflectance spectra of a gold mirror.

Figure 2.2(a) shows the band structure calculated using a plane wave expansion
method [91] and reflectivity measured along the T'M’ direction (black solid). The
broad lowest-frequency measured reflectivity peak between 4700 and 7300 cm ™!
agrees well with the calculated stop gap. This reflectivity peak is caused by
simple Bragg diffraction on the lattice planes indicated in the cartoon at the top
of the figure, corresponding to the white lattice planes in Fig. 2.1(a). One can
also approximate the lowest-frequency simple Bragg diffraction condition from
the dispersion with a constant effective refractive index (neg), obtained from the
low-frequency limit [34]. This estimation is marked by the dashed vertical line
and agrees well with the center of the calculated stop gap. The two measured
peaks between 9800 and 11100 cm ™' agree well with a higher-frequency stop
gap marked by a second orange area, caused by multiple Bragg diffraction. The
peaks appear at a higher frequency than simple Bragg diffraction, as expected.
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Figure 2.2. Observed diffraction peaks on 2D photonic crystals along

high-symmetry directions. Measured (black) and simulated
(gray) reflectivity spectra, and calculated band structures for TE-
polarized light of a 2D photonic crystal along directions of high sym-
metry. (a) The measured and simulated lowest-frequency diffraction
peaks in the T M’ direction match a calculated stop gap that occurs
at the simple Bragg-diffraction condition. (b) The measured and
simulated lowest-frequency diffraction peaks in the 'K direction
match a calculated stop gap and is caused by multiple Bragg diffrac-
tion that occurs at a lower frequency than simple Bragg diffraction.

The reflectivity of an incident plane wave on a finite size structure has been
simulated with finite difference time domain (FDTD) simulations (gray) [92].
The agreement between the simulated and measured reflectivity is gratifying.
In Fig. 2.2(b) we show the calculated band structure and measured reflectivity
along the I' B direction, where K is located on the edge of the Brillouin zone and
B is located on the Bragg-plane between I' and reciprocal lattice vector G11. Two
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significant broad measured reflectivity peaks are visible. The lowest-frequency
peak between 5400 and 6900 cm ™~ agrees well with a calculated stop gap marked
by the yellow area. This peak is caused by multiple Bragg diffraction on the
lattice planes indicated in the cartoon above the calculated stop gap, and is part
of the two-dimensional band gap for TE-polarized light. The second reflectiv-
ity peak between 8100 and 10000 cm~! agrees with a second calculated stop
gap (orange area). The flat bands in the dispersion relation give an impedance
mismatch for coupling light into the crystal [6, 36], which likely broadens the
observed peak (hatched area). This is supported by FDTD simulations of the
reflectivity of incident plane waves on a finite size structure (gray). The agree-
ment between the simulated and measured reflectivity peak is gratifying. The
measured peak is probably rounded-off as a result of the high-NA microscope
objective. Note that band structure calculations and FDTD simulations neglect
the dispersion of silicon. Scattering from surface imperfections becomes more im-
portant at higher frequencies, which could explain why the measured reflectivity
peak is much lower near 10000 cm™'. At any rate, the frequency ranges of the
measured and simulated peaks agree very well.

This second stop gap is caused by simple Bragg diffraction on the lattice planes
indicated in the cartoon above the calculated stop gap, corresponding to the red
lattice planes in Fig. 2.1(a). The frequency of the simple Bragg diffraction
condition based on an n.g is inaccurate because a broad stop gap is already
present at lower frequencies. The observation of a prominent diffraction peak
caused by multiple Bragg diffraction at a much lower frequency than simple
Bragg diffraction is our main observation. This result shows that even for high-
symmetry directions such as the I' K direction, there can be a diffraction condition
below simple Bragg diffraction, which we address as sub-Bragg diffraction.?

We have performed reflectivity measurements on photonic crystals with a range
of r/a. Figure 2.3 shows the width of the diffraction peaks for the M’ (a) and
I'K directions (b). The areas correspond with calculated stop gaps, such as
in Fig. 2.2. The dashed line is the approximated frequency of lowest-frequency
simple Bragg diffraction assuming a constant neg. Note the very good agreement
between the measured frequencies of the diffraction peaks and the calculated
stop gaps. We observe for the 'K direction that diffraction always appears at
a lower frequency than simple Bragg diffraction. This observation confirms the
robustness of sub-Bragg diffraction.

2.3. Origin and occurrence of sub-Bragg diffraction

The existence of sub-Bragg diffraction can be explained by considering the lattice
in reciprocal space, see Fig. 2.1(b). For the 'K direction we observe in reciprocal
space two points of high symmetry: K and B. K is located on the Brillouin
zone boundary, at the intersection of two Bragg planes corresponding to the

2 The general behavior identified here for 2D and 3D crystals should not be confused with
sub-Bragg reflection described for 1D Bragg gratings with multiple periodicities [A.A.
Spikhal’skii, Opt. Commun. 57, 84 (1986)]. The latter considers higher-frequency (lower-
wavelength) diffraction, in contrast to our lower-frequency gaps.
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Figure 2.3. Observed diffraction peaks for 2D photonic crystals with

different normalized pore radius. Determined normalized
width of the diffraction peaks (bars) and frequency of the maximum
reflectivity (circles) for different r/a. The filled areas are calculated
stop gaps, color-coded as in Fig. 2.2. (a) Normalized frequency
of the diffraction peaks for the I'M’ direction. (b) Normalized fre-
quency of the diffraction peaks for the I' K direction.

von Laue conditions between I' and G1p, I' and G1;. Thus at K we have a
multiple Bragg diffraction condition on both Bragg planes. B is located at the
Bragg plane (dashed line) that satisfies the von Laue condition between I' = Ggg
and Gq; resulting in simple Bragg diffraction. Since B is located outside the
Brillouin zone, the simple Bragg condition occurs at higher frequency than the
sub-Bragg condition. From this figure we derive three conditions for sub-Bragg
diffraction: (3). The diffraction condition corresponds to a point on a corner
edge of the Brillouin zone, giving rise to multiple Bragg diffraction. (ii). The
incident wave vector should be along a high symmetry direction, which is satisfied
by considering only reciprocal lattice vectors Gy, for which |h|, |k|,|I| < 1 or
equivalent. (4ii). Multiple Bragg diffraction has to occur at a lower frequency
than the simple Bragg diffraction condition.

Using these three conditions, it becomes evident that diffraction conditions for
M and M’ correspond to simple Bragg diffraction for G19 and G,7 respectively.
K’ satisfies criteria (i) and (%), however, it does not satisfy criterion (). This
diffraction condition belongs to multiple Bragg diffraction in a direction of lower
symmetry, similar to the observation in Ref. [38]. Therefore, sub-Bragg diffrac-
tion is only observed at K. In this case we have measured the reflectivity of
photonic crystals that strongly interact with light. For our crystals, we find that
for r/a > 0.07 a stop gap opens at K, and for r/a < 0.07 flat dispersion bands
appear.

Up to now we have considered a centered rectangular lattice with long side
a, short side ¢, and a/c = /2. However, sub-Bragg diffraction can be expected
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Figure 2.4.

for any a/c > 1.3. To illustrate this point we have made an analytical model to
explain the sub-Bragg diffraction frequency. We calculate [T K| and |[I'B| as a
function of a/c, where the frequency of the sub-Bragg condition is proportional
to (co/nesr)|T K| and the frequency of the simple Bragg condition is proportional
to (co/ne)|T'B|, where ¢q is the vacuum velocity. The results are shown in
Fig. 2.4. When a/c — oo, sub-Bragg diffraction occurs at [TK|/|TB| = 1/2.
Panel 1 shows the reciprocal lattice for a/c = 1, corresponding to the square
lattice. In this case [T K| = |[['B| and therefore sub-Bragg diffraction and simple
Bragg diffraction occur at the same frequency, violating condition (7). Panel
2 shows the reciprocal lattice for a/c = v/2, corresponding to the experimental
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Sub-Bragg diffraction in different 2D Bravais lattices de-
scribed by a centered rectangular unit cell. Normalized sub-
Bragg diffraction condition (solid) and normalized simple Bragg
diffraction condition (dashed) as a function of a/c. The symbols
mark the reflectivity peaks of Fig. 2.2(b), assuming identical neg
for both diffraction conditions. Sub-Bragg diffraction is satisfied for
a/c > 1. Labels 1,2,3 refer to r/a shown in the panels (bottom).
Panel 1 shows the reciprocal lattice (circles) for a/c = 1, giving a
square lattice and no sub-Bragg diffraction. Panel 2 shows the re-
ciprocal lattice for a/c = V2, resulting in sub-Bragg diffraction at
K. Panel 3 shows the reciprocal lattice for a/c = v/3, resulting in
sub-Bragg diffraction at K and K'.

3 When a/c < 1, sub-Bragg diffraction occurs in the direction perpendicular to the T'K
direction for a/c > 1. For a/c < 1 it is again a centered rectangular lattice with a 90°

rotated unit

cell compared to a/c > 1.
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Figure 2.5. 3D Bravais lattices that support sub-Bragg diffraction. The
orange planes mark planar cross sections that can be described by a
centered rectangular lattice, which is required for sub-Bragg diffrac-
tion to occur.

conditions of the structures investigated by us. Panel 3 shows the reciprocal
lattice for a/c = V/3, corresponding to the triangular lattice. All three conditions
for sub-Bragg diffraction at K are fulfilled. There is also a sub-Bragg diffraction
condition for K’. It may seem that condition (i7) is violated because the 'K’
direction corresponds to G57. However, because of the rotational symmetry of
the Brillouin zone, K = K’ and the diffraction conditions in the G,7 direction
are identical to the Gy direction, and therefore condition (i) is satisfied. In a
similar experiment performed by Ref. [93] a diffraction peak was observed at
K. However, these excellent experiments were compared with band structures
between I' K, since it was not recognized that there is also a diffraction condition
at B. For the centered rectangular lattice, one must calculate band structures
in the extended range I' B to get accurately estimate the width of the stop gaps.
This is evident from the band structures in Fig. 2.2(b) by comparing the width
of the stop gaps when one would consider only 'K instead of I'B.

In the case of three-dimensional (3D) crystals, if a Bravais lattice has a planar
cross-section that can be described by a centered rectangular lattice along a
direction of high symmetry, sub-Bragg diffraction will occur. For 2D Bravais
lattices sub-Bragg diffraction can occur for 2 out of 5 Bravais lattices; centered
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rectangular and triangular (which is a special case of centered rectangular), see
Fig. 2.4. There are 7 out of 14 3D Bravais lattices that have a planar cross-
section that can be described by a centered rectangular lattice in a direction
of high symmetry; body-centered cubic, body-centered tetragonal, base-centered
orthorhombic, body-centered orthorhombic, face-centered orthorhombic, base-
centered monoclinic and hexagonal. We predict that sub-Bragg diffraction can
occur for these 7 Bravais lattices, which are illustrated in Fig. 2.5.

Sub-Bragg diffraction holds for any kind of wave-propagation in structures that
fulfill the symmetry conditions. Therefore we predict that for X-ray diffraction on
crystals a sub-Bragg diffraction peak can be observed. As multiple Bragg diffrac-
tion is required for photonic band gap formation, hence sub-Bragg diffraction
can affect band gap formation [39]. Indeed, the sub-Bragg diffraction condition
is part of the 2D TE-band gap in triangular lattices [6]. For elastic wave diffrac-
tion a propagation gap is formed at the sub-Bragg condition and therefore also
for phonons and for relativistic electrons, such as the case of graphene, which has
a triangular lattice.

2.4. Retrospective

Our work was highlighted by Cho in ”Breaking the law or bending the terminol-
ogy?” on ScienceNow (2012). Unfortunately this text suggests that sub-Bragg
diffraction might be a new terminology for an already understood physical phe-
nomenon. At the date of writing this dissertation, we have found no prior claims
of multiple Bragg diffraction in a direction of high-symmetry below the simple
Bragg condition, even after discussing with numerous eminent scientists. We
strongly believe in the originality of our work, and I am proud to be co-inventor
of the description of this phenomenon.






CHAPTER 3

Signature of a three-dimensional photonic band gap
observed on silicon inverse woodpile photonic crystals

‘We have studied the reflectivity of CMOS-compatible three-dimension-
al silicon inverse woodpile photonic crystals at near-infrared frequen-
cies. Polarization-resolved reflectivity spectra were obtained from two
orthogonal crystal surfaces using an objective with a high numerical
aperture. The spectra reveal broad peaks with maximum reflectivity
of 67% that are independent of the spatial position on the crystals.
The spectrally overlapping reflectivity peaks for all directions and po-
larizations form the signature of a broad photonic band gap with a
relative bandwidth up to 16%. This signature is supported by stop
gaps in plane wave band structure calculations and agrees with the
frequency region of the expected band gap.

3.1. Introduction

Currently, many efforts are devoted to create an intricate class of three-dimension-
al meta-materials known as photonic crystals that radically control propagation
and emission of light [4, 5, 10, 94-102]. Photonic crystals are ordered composite
materials with a spatially varying dielectric constant that has a periodicity of
the order of the wavelength of light [6]. As a result of the long-range periodic
order, the photon dispersion relations are organized in bands, analogous to elec-
tron bands in solids [28]. Frequency ranges called stop gaps emerge in which
light is forbidden to propagate in particular directions due to Bragg interference
[34]. In specific three-dimensional crystals, a common stop gap is formed for all
polarizations and directions, called the photonic band gap. Light cannot propa-
gate inside the photonic band gap, allowing for ultimate control of light emission.
Emission rates and directions can be manipulated [95, 97, 98, 102], which could
lead to efficient micro-scale light sources [102, 103] and solar cells [104]. Addi-
tional interest is aroused by the possibility of Anderson localization of light by
point defects added to photonic band gap crystals [5].

It is an outstanding challenge to experimentally demonstrate a photonic band
gap; inside the photonic band gap the density of optical states equals zero. The
density of states can be investigated with light emitters placed inside the crystal,

The content of this chapter has been published as: S.R. Huisman, R.V. Nair, L.A. Woldering,
M.D. Leistikow, A.P. Mosk, and W.L. Vos, Phys. Rev. B 83, 205313 (2011).
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see, e.g., Refs. [95, 97, 98]. These experiments are difficult to perform and to
interpret, and are not always possible due to the limited availability of appropri-
ate light sources and detection methods. However, one can obtain an indication
of the band gap by observing a stop band in a directional experiment, such as a
peak in reflectivity or a trough in transmission [105-110]. The frequency width of
an experimentally observed stop band often corresponds to a stop gap in the dis-
persion relation, where light is forbidden to propagate. Interestingly however, a
peak in reflectivity or a trough in transmission also occurs when an incident wave
cannot couple to a field mode in the crystal [6, 36, 111]. Therefore, one typically
compares observed stop bands with theory such as calculated band structures to
indicate the presence of a band gap. Unfortunately, most theory is typically valid
for ideal structures, for instance of infinite size. More compelling evidence of a
photonic band gap could be obtained if one demonstrates that stop bands have a
common overlap range independent of the measurement direction, since light is
forbidden to propagate in a photonic band gap. Angle-resolved [39, 100, 107] and
angle-averaged spectra [110] have been collected. However, due to experimental
considerations it appears to be extremely difficult to measure over 4m sr solid
angle. Stopbands are typically investigated on only one surface of the photonic
crystal, and only few studies have investigated multiple surfaces, see, e.g., Refs.
[108, 112]. In addition, one needs to rule out spurious boundary effects by con-
firming that stop bands reproduce at different locations on the crystal, requiring
position-dependent experiments. Furthermore, it can occur that field modes in
the crystal can only couple to a specific polarization [41]. Polarization-resolved
experiments are required to demonstrate that stop bands are present for all po-
larizations [113]. Therefore, a strong experimental signature for a photonic band
gap is obtained if one can demonstrate that stop bands are position-independent
and overlap for different directions and orthogonal polarizations. To the best
of our knowledge, such a detailed analysis of stop bands for three-dimensional
photonic band gap crystals has not yet been reported.

In this chapter we study silicon three-dimensional inverse woodpile photonic
crystals [44, 114]. The inverse woodpile photonic crystal is a very interesting
nanophotonic structure on account of its broad theoretical photonic band gap
with more than 25% relative gap width. Schilling et al. were the first to inves-
tigate stop bands in inverse woodpile crystals [110]. They measured unpolarized
reflectivity along one crystal direction using an objective with numerical aperture
NA = 0.57. An indication for the photonic band gap was found by a stop band
that agreed with the calculated band structure. Other groups have fabricated
inverse woodpile photonic crystals of different materials using several methods,
and also performed reflectivity measurements along one direction with unpolar-
ized light [100, 115-120], resulting in similar indications of the band gap. Here,
we present an extensive set of polarization-resolved reflectivity spectra of silicon
inverse woodpile photonic crystals. We have collected spectra from two orthog-
onal crystal surfaces using an objective with a high numerical aperture NA =
0.65. The reflectivity spectra were obtained on different locations on the pho-
tonic crystal surfaces to confirm the reproducibility, to determine the optical size
of the crystals, and to investigate boundary effects. We demonstrate position-
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independent overlapping stop bands for orthogonal polarizations and crystal di-
rections, which is a signature of a three-dimensional photonic band gap. This
signature agrees with calculated stop gaps in plane wave band structure calcula-
tions and with the frequency region of the expected band gap.

3.2. Inverse woodpile photonic band gap crystals

Figure 3.1(a) illustrates the orthorhombic unit cell of an inverse woodpile pho-
tonic crystal (left), together with a crystal consisting of eight unit cells (right).
The structure can be described by two identical sets of pores with radius r running
in two orthogonal sides of a box, where each set represents a centered rectangular
lattice with sides a and c. If the ratio a/c equals v/2, the crystal symmetry is
cubic and the crystal structure is diamond-like, see Refs. [44, 114, 121]. This
type of inverse woodpile photonic crystals with a/c = v/2 has a maximum band
gap width of 25.4% for r/a = 0.245. The sets of pores are oriented perpendicular
to each other and the centers of one set of pores are aligned exactly between
columns of pores of the other set, resulting in the structure of Fig. 3.1(a). In
Fig. 3.1(a) a coordinate system is introduced that is used in this chapter.

We have fabricated multiple inverse woodpile photonic crystals with different
pore radii in monocrystalline silicon with a CMOS compatible method, as is
described in detail in Refs. [122, 123]. Figure 3.1(b) shows a scanning electron
microscope (SEM) image of one of these crystals from the same perspective as
in Fig. 3.1(a). This crystal consists of more than 10% unit cells and is located on
top of bulk silicon. The crystal is surrounded by a macroporous two-dimensional
photonic crystal that forms the first set of pores used to fabricate inverse woodpile
photonic crystals. A second set of pores is oriented perpendicular to this two-
dimensional crystal to form the inverse woodpile photonic crystal. A part of the
boundary of the inverse woodpile photonic crystal is marked with the red dashed
line. The inverse woodpile photonic crystal has lattice parameters a = 693 + 10
nm, ¢ = 488 + 11 nm, and a pore radius of r = 1454+ 9 nm in both directions.!
Typically eight different inverse woodpile photonic crystals are made on one two-
dimensional photonic crystal that each extend over approximately 7 ym x 5 pm
x 5 pm in size. Figure 3.1(c) shows a SEM image of a crystal viewed parallel
with the second set of pores or parallel with the I'X direction. In Ref. [122] it
has been determined that the second set of pores are precisely centered to within
Ay = 17+ 12 nm between columns of pores of the first etch direction, which is
extremely close to the ideal structure of Fig. 3.1(a). One unit cell is marked
in the right bottom corner of Fig. 3.1(c). Here, we describe an extensive set of
reflectivity measurements collected from this inverse woodpile photonic crystal
centered along the I' X and I'Z direction, which is representative for more than
five other crystals that we have studied.

Figure 3.2 shows the band structure for light in a silicon inverse woodpile
photonic crystal with 7/a = 0.190 and e5; = 12.1 for the irreducible Brillouin zone

1 These parameters do not include possible calibration errors of the scanning electron micro-
scope.
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Figure 3.1.

Structure of inverse woodpile photonic crystals. (a)
Schematic representation of the orthorhombic unit cell of a cubic
inverse woodpile photonic crystal (left) and a crystal consisting of
eight unit cells (right). The structure can be described by two
identical sets of pores running in two orthogonal sides of a box.
(b) Scanning electron microscope image of a cubic inverse woodpile
crystal with a = 693 4+ 10 nm, ¢ = 488 + 11 nm (a/c = v/2) and
r = 145 £ 9 nm, surrounded by a macroporous two-dimensional
crystal. The dashed red line indicates a part of the boundary of the
inverse woodpile photonic crystal. (¢) Scanning electron microscope
image viewed from the I'X direction. The rectangle represents one
face of the orthorhombic unit cell, compare with (a).
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Figure 3.2. Band structure of an inverse woodpile photonic crystal.
The dispersion relation for the eight lowest frequency Bloch modes
are calculated for a structure with ¢ = 690 nm, ¢ = 488 nm and
pore radius 7 = 131 nm (r/a = 0.190). The left axis represents the
absolute frequency in cm ™!, the right axis shows the normalized fre-
quency. The orange bar marks a photonic band gap with a relative
gap width of Aw/w. = 15.1%. The gray bars mark stop gaps in the
I'Z direction.

of a simple orthorhombic lattice, calculated with the method of Ref. [91]. This
band structure appears to be representative for the crystal of Fig 3.1(a). Between
normalized frequency wa/2mco = 0.395 (5727 ecm™!) and wa/2mcy = 0.460 (6668
cm~1) a broad photonic band gap appears with 15.1% relative width. The band
structure in both the I' X and I'Z direction is identical and shows two stop gaps,
marked by the gray rectangles in the I'Z direction. The lowest frequency stop
gap between wa/2mco = 0.310 (4505 cm™!) and wa/2mcy = 0.318 (4611 cm™1) is
narrow and it is closed when going in the ZU direction. The broad second stop
gap between normalized frequency wa/2mcy = 0.395 (5727 em~!) and wa/2mey =
0.488 (7062 cm™1!) is part of the photonic band gap. The low frequency edge of
the photonic band gap is bounded along the I'X and I'Z direction, which we
access in our experiment. The high frequency edge of the band gap occurs at
the S and T points, which are not accessible in our experiment. Deviations in
the crystal geometry affect the dispersion relation and therefore the band gap
[114, 121]. The band gap of this kind of structure is robust to most types of
deviations, whose tolerances are well within reach of our fabrication methods
[121].
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3.3. Experimental setup

A supercontinuum white light source (Fianium SC-450-2) with a frequency range
of 4000 to 22000 cm~! is used to illuminate the photonic crystals. Light is
polarized and focused on the crystal using a gold-coated reflecting objective to
avoid dispersion (Ealing X74). The numerical aperture NA=0.65 of the objective
results in a spectrum angle-averaged over approximately 0.44m sr £10% solid
angle in air. The diameter of the focused beam is estimated to be 2wy =~ 1
pm from experiments on micropillars [124]. Reflectivity is measured for a broad
range of wave vectors that are centered on the I'X and I'Z directions, which is
expected to result in similar stop bands because of the symmetry of the crystal.
Reflected light is collected by the same objective, and the polarization is analyzed.
The spectrum is resolved using Fourier transform infrared spectroscopy (BioRad
FTS-6000) in combination with an external InAs photodiode. The reflectivity
of the crystals is collected between 4000 and 10000 cm~! with a resolution of
32 ecm~!. The reflectivity spectra are normalized to the reflectance spectra of
a gold mirror, which were collected before and after measuring on a crystal.
The individual gold spectra show only minor differences due to the excellent
stability of the setup, except between 9200 and 9600 cm ™!, close to the master
frequency of the white light source, which is thus excluded. The reflectivity is
measured for two orthogonal polarizations, where the orientation of the set of
pores perpendicular to the measurement direction is used as reference; light is
1 -polarized when the electric field is perpendicular to the direction of this set,
light is ||-polarized when it is parallel with the direction of this set. For example,
when the reflectivity is measured centered on the I'X direction (see Fig. 3.1(a)),
light is ||-polarized when the electric field is parallel with the I'Z direction. The
samples are placed on a three-dimensional x-y-z-translation stage (precision £50
nm) to study the position-dependence of the reflectivity.

3.4. Experimental results

Position-dependent reflectivity experiments have been performed by scanning
the photonic crystal through the focal spot. These scans were performed on two
orthogonal surfaces of the crystal allowing for measurements along the I'’X and
T'Z direction, see Fig. 3.1(b). These scans provide insight in the reproducibility
of the reflectivity, the optical size of the crystal, and boundary effects. We will
first describe one specific scan for the reflectivity obtained, centered on the I'’X
direction for 1 -polarized light. Next we will compare reflectivity spectra obtained
from different scans to demonstrate position-independent overlapping stop bands
for orthogonal polarizations and crystal directions that are the signature for the
photonic band gap.

3.4.1. Position-dependent reflectivity.

Figure 3.3 shows the position-dependent reflectivity along the I' X direction for |-
polarized light, where the focal spot was moved in the y direction. Figure 3.3(a)
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Figure 3.3.

Position- and frequency-resolved reflectivity for an inverse
woodpile photonic crystal. The reflectivity was measured par-
allel with the I'’X direction for L-polarized light. (a) Microscope
picture of the crystal placed in the setup. The bright spot near the
center of the crystal is reflected focussed light of the supercontin-
uum white light source. The spot was moved over the crystal surface
along the y direction. (b) Reflectivity collected as a function of the
y-position of the spot on the photonic crystal surface. The scan
started on the surrounding two-dimensional crystal (y = 0 um),
continued over the inverse woodpile photonic crystal (6 < y < 14
pm) and ended on the two-dimensional crystal. The spot was moved
in steps of 0.46 + 0.05 um. The gray lines on the horizontal axis
indicate the boundaries of the crystal. The white dashed lines in-
dicate positions for representative spectra displayed in (c). (c¢) Re-
flectivity spectra measured at the y-coordinates given by the white
dashed lines in (b). The calculated stop gap in the I'’X direction for
r/a = 0.19 is marked by the yellow bar.

Reflectivity (%)
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shows an optical microscope image of the inverse woodpile photonic crystal (dark
square in the middle) taken during the reflectivity scan, viewed along the same
perspective as Fig. 3.1(¢). The bright spot centered on the inverse woodpile
photonic crystal is the focal spot of the supercontinuum white light source. The
scan was started with the focal spot on the surrounding two-dimensional crystal
to the left of the inverse woodpile photonic crystal, continued over the inverse
woodpile photonic crystal, and finished on the two-dimensional crystal to right
of the inverse woodpile photonic crystal. Figure 3.3(b) shows a contour-plot of
the measured reflectivity as a function of position, Fig. 3.3(c) shows three cross-
sections of the contour-plot of Fig. 3.3(b).

In Fig. 3.3(b) a broad reflectivity peak is observed for the inverse woodpile
photonic crystal (6 < y < 14 pm) between 5600 and 6900 cm~! with a high
reflectivity of 60%. The spectrum taken at y = 11 pm is shown in Fig. 3.3(c).
This distinct peak is observed in the same frequency range over the entire three-
dimensional crystal surface. The stop band corresponds to the stop gap in the
I'X direction, which is marked by the yellow bar in Fig. 3.3(c), and which is part
of the photonic band gap.

The maximum reflectivity is about 67% for our inverse woodpile photonic crys-
tals, which is likely limited by surface roughness that scatters light in directions
that are not collected by the objective. This assertion is supported by the obser-
vation of lower reflectivity on crystal surfaces that were less well polished. The
finite thickness of the crystals could also lead to some reduction of the reflectivity.
From the full width at half maximum of the peak, we derive a Bragg length equal
to approximately 7d, with d the spacing between lattice planes [9]. Therefore, we
conclude that our crystals have a thickness of approximately 1.5 times the Bragg
length. This corresponds to a maximum reflectivity of 1 — e~ 1 = 78%. Since
the observed maximum reflectivity is consistent with surface roughness and finite
size effects, it is reasonable that the crystal has a high reflectivity through all of
the 0.447 sr probed solid angle. As is seen in the band structures in Fig. 3.2,
the stop gap hardly shifts in frequency for different directions in the Brillouin
zone, hence it is even more likely that the obtained angle-averaged reflectivity is
representative for the full probed range.

From the scan in Fig. 3.3(b), we observe a clear distinction between the re-
flectivity of the three-dimensional inverse woodpile photonic crystal and the sur-
rounding two-dimensional crystal. A reflectivity maximum of 70% is observed on
the two-dimensional crystal at y < 6 pum and at y > 14 ym. The spectrum taken
at y = 0.42 pm is shown in Fig. 3.3(c). This peak belongs to the 'K stop gap be-
tween 4700 and 6300 cm ™! for TE polarized light. At the interfaces between the
two-dimensional and inverse woodpile photonic crystal at y = 6 and at y = 14 um,
a peculiar double peak appears as shown in Fig. 3.3(c), which is only present at
the two-dimensional crystal to three-dimensional crystal interface. The spectrum
at y = 6 pm is shown in Fig. 3.3(c). This double peak consist of one component
between approximately 4700 and 5500 cm ™!, and a second component between
approximately 5500 and 6500 cm~!. This double peak differs from a linear com-
bination of two-dimensional crystal and three-dimensional crystal peaks (see Fig.
3.3(c)) that would be expected naively, since both of its components appear at
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lower frequencies than the two-dimensional crystal and three-dimensional crystal
peaks. While we have currently no interpretation for this intricate double peak,
the observation of interface peaks calls for advanced theoretical interpretations
outside the scope of the present chapter. In the long-wavelength limit below
5000 ecm ™!, both the two-dimensional and inverse woodpile photonic crystals are
transparent. As a result, their reflectivities are low. Since the silicon filling frac-
tion is smaller for inverse woodpile photonic crystals than for two-dimensional
crystals, they have a lower effective refractive index [125], resulting in a lower
long-wavelength reflectivity for inverse woodpile photonic crystals.

By combining this y-scan with six other scans for orthogonal directions, crystal
surfaces, and polarizations, we can measure the optical size of the crystal, in other
words, the range over which the crystal has the same reflectivity. This is in the
x direction approximately 3 um, in the y direction 7 um and in the z direction 4
pm. The optical size is smaller in the z direction than in the y direction, which
is in agreement with detailed structural information derived in Ref. [122] for
inverse woodpile photonic crystals.

3.4.2. Overlapping stop bands for orthogonal polarizations and
crystal surfaces.

We have studied the position-dependent reflectivity spectra for two orthogonal
crystal surfaces and two orthogonal polarizations, by taking scans similar to
the one presented in Fig. 3.3. From these scans we have selected 4 (= 2 x
2) spectra that are reproducible on several locations on the crystal, see Fig.
3.4(a — d), black curves. Figure 3.4(a) shows the reflectivity centered in the T'X
direction for L-polarized light, and Fig. 3.4(b) for ||-polarized light. Figure 3.4(c)
shows the reflectivity centered in the I'Z direction for 1-polarized light, and Fig.
3.4(d) for ||-polarized light. A broad reflectivity peak appears for both directions
and polarizations with maxima up to 67%. The stop bands overlap between
5900 and 6900 cm~! (blue bar), corresponding to a relative bandwidth of 16%.
This position-independent overlapping stop band for orthogonal polarizations
and crystal directions that are proved over large solid angles is a signature for
the photonic band gap with a relative bandwidth up to 16%.

The reflectivity obtained from the I'X direction is shown in Fig. 3.4(a — b).
Below 5000 cm ™!, the reflectivity behaves similarly for |- and |-polarized waves.
Based on Fresnel reflection and the filling fraction of this crystal determining the
effective refractive index, one would expect a reflectivity of approximately 10%,
which is in very good agreement with our observations. A major reflectivity peak
is observed for both polarizations; for L-polarized light (Fig. 3.4(a)) the peak
appears between 5800 and 7300 cm~!, for ||-polarized waves the peak appears
between 5300 and 7100 cm~t. At higher frequencies the reflectivity varies around
20%. Reference spectra (gray) were collected on the silicon surface within 5
pm distance from the inverse woodpile photonic crystal. The reflectivity varies
between about 20 and 30%, which agrees closely with 31% reflectivity based on
Fresnel reflection and a refractive index of n = 3.5 for a flat silicon surface. The
reference spectra confirm that the observed stop bands in the inverse woodpile
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Figure 3.4.
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Figure 3.5. Calculated stop gap for the I'X and I'Z directions as a
function of relative pore radius r/a. The band gap (orange) is
part of the broad stop gap (yellow). The gray bar is the value of
r/a based on parameters determined from SEM images. The band
structures in Fig. 3.2 and 3.4(e) were calculated at r/a = 0.19
(vertical dashed line) that agree best with the experiments. The
horizontal dashed lines mark the edges of the common stop band
determined from Fig. 3.4(a — d).

photonic crystal are indeed caused by the geometry of the nanostructure.

The reflectivity obtained from the I'Z direction is shown in Fig. 3.4(c — d).
Below 5000 cm ™!, the reflectivity behaves similarly for |- and ||-polarized waves.
For the I'Z direction, fringes appear and the average reflectivity is higher than
for the I'X direction. These fringes are Fabry-Pérot interferences caused by in-
ternal reflections in the inverse woodpile photonic crystal between the air-crystal
boundary and the crystal-silicon boundary. The fringes are also present on the
reference spectra (gray) that are collected parallel to the first set of pores that
form the surrounding two-dimensional crystal. Above 5000 cm ™! a major reflec-
tivity peak is observed for both polarizations near the expected band gap. For
L-polarized light (Fig. 3.4(c)) the peak appears between 5900 and 6900 cm~*, for
||l-polarized waves the peak appears between 5300 and 7200 cm~!. The amplitude
of the reflectivity peaks in the I'Z direction are comparable with the reflectivity
peaks of the I'X direction. For the I'Z direction, several troughs appear in the
spectra, which are likely caused by surface contamination.

If one overlays the spectra for L-polarized light, compare Fig. 3.4(a,c), it
appears that the peaks overlap at the low-frequency side. In addition, for both
the T'’X and I'Z directions, the stop band is broader for ||-polarized waves than
for 1-polarized waves. This is an experimental indication that the pore radii of
both sets of pores are identical, as expected from the symmetry of the structure.
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3.5. Discussion

In order to interpret our observations, notably of the overlapping stop bands for
two orthogonal crystal directions and two orthogonal polarizations, we have per-
formed photonic band structure calculations. In the course of the calculations,
we have come to realize that pore radii determined from electron microscopy are
an overestimate of the true pore radii by approximately 10 nm. This is reason-
able, since parameters determined from electron microscopy have un uncertainty,
typically near 2 to 3% [126]. Therefore, we have performed band structure calcu-
lations as a function of r/a. Figure 3.5 shows the calculated stop gap in the T'X
and I'Z direction and the band gap versus r/a. The broad stop gap corresponds
to the intense stop bands in our reflectivity spectra. The horizontal dashed lines
mark the edges of the overlapping stop band observed in Fig. 3.4. The gray bar
is the value of r/a based on parameters determined from SEM images. For a
relative pore radius between r/a = 0.19 and r/a = 0.20, the observed stop band
is in agreement with the calculated band gap and stop gap, which is close to the
value of r/a based on SEM images. This indicates that the crystal has an r/a be-
tween 0.19 and 0.20. The corresponding band structure for r/a = 0.190 is shown
in Fig. 3.2 and the band structure in the I' X and I'Z directions are shown in Fig.
3.4(e). A stop gap is predicted between 5727 and 7061 cm~!, which is part of
the calculated band gap between 5727 and 6668 cm~'. The calculated band gap
agrees well with the observed signature of the photonic band gap between 5900
and 6900 cm~! (16% relative bandwidth), which thus provides further support
for our assertion.

We have performed reflectivity measurements with an objective with NA=
0.65, resulting in a spectrum angle-averaged over 0.447m sr +10% solid angle in
air. We have measured the reflectivity from two orthogonal crystal surfaces and
we observe intense peaks. Therefore, as argued above from the high reflectivity
and the finite size of the photonic crystals, it is most likely that the observed
stop bands extend over 0.887 sr +£10% solid angle. By invoking the symmetry of
the crystal, the stop bands centered along the opposite —I'X and —I'Z directions
are identical to the I'’X and I'Z directions. Therefore, our observations would
correspond to stop bands up to 1.767w st £10% external solid angle of the inverse
woodpile photonic crystal, in other words nearly half of all directions. In previous
experiments on inverse opals without bandgap [127], nearly half of all directions
were found to be excluded for propagation for a vanishingly narrow frequency
band. Therefore, the present result is to the best of our knowledge the largest
solid angle for which a broad photonic stop band has been reported.

The observed common stop band between 5900 and 6900 cm ™! is well ex-
plained with band structure calculations. A limitation to our interpretation is
that we invoke a theory for infinite crystals. Theoretical calculations of reflec-
tivity for finite crystals could result into new insights in the obtained spectra,
for instance how light propagates inside photonic band gap crystals, which is an
extremely complex problem as described in Ref. [128]. A well known method for
finite crystals are finite-difference time domain simulations [129]. Unfortunately,
however, full three-dimensional simulations with reasonable parameters for our
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experiments will require very extensive numerical calculations [130] that are out-
side the scope of our present experimental study. Scattering matrix methods
[131, 132] provide a good description of three-dimensional crystals with finite
thickness. However, the method assumes that a crystal is infinitely extended
in both transverse dimensions which is not the case for our crystals. In future,
we expect that discontinuous Galerkin methods may provide in new roads into
calculating light propagation in three-dimensional photonic crystals of finite size
[133]. Hence we conclude that a theory for three-dimensional finite crystals is
currently being called for. It will be even more difficult to implement the experi-
mental boundary conditions into such calculations, such as the shape of the pores
and the NA of the microscope objective. At any rate, the agreement between
our calculations and our experimental data is gratifying.

For good measure, the observed signature of the photonic band gap is not
a complete experimental observation of such a gap. At this time, we can not
experimentally exclude that there are crystal directions where the stop bands
are either closed or shifted to different frequencies. While we consider these
possibilities unlikely based on the theoretical study of our crystals and in view of
the measured crystal parameters, a fully experimental observation of a photonic
band gap must entail an experimental method where the local density of optical
states is probed. An example would be the doping of the crystals with quantum
dots [134] and measuring the emission rates [95, 97, 98].

3.6. Conclusions

In conclusion, we have studied the polarization-dependent reflectivity centered on
the I'’X and I'Z direction of three-dimensional silicon inverse woodpile photonic
crystals. We have observed a position-independent overlapping stop band for
different polarizations and directions, which are supported with calculated band
structures. This is the signature of a photonic band gap with a bandwidth of up
to 16%.

3.7. Retrospective

Within one year after observing the strong signature of a photonic band gap,
we demonstrated the first inhibited spontaneous emission of embedded quantum
dots in the same structures, confirming the presence of the photonic band gap
[47].



Near-field microscopy on light propagation near the
band edge in photonic-crystal waveguides. Near-field
microscopy forms an excellent technique to analyze light
transport in nanophotonics. Photo: white light
illumination of silicon photonic crystals with different
pitch. Grating-like diffraction results into different
reflected colors. A near-field tip consisting of a tapered
glass fiber glued on a tuning fork is in close contact with
the surface. Photo courtesy of Eric Frater.
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Light near the band edge in
photonic-crystal waveguides






CHAPTER 4

Extraction of optical Bloch modes in a photonic-crystal
waveguide

We perform phase-sensitive near-field scanning optical microscopy on
photonic-crystal waveguides. The observed intricate field patterns are
analyzed by spatial Fourier transformations, revealing several guided
TE- and TM-like modes. Using the reconstruction algorithm proposed
by Ha, et al. [Opt. Lett. 34 (2009)], we decompose the measured
two-dimensional field pattern in a superposition of propagating Bloch
modes. This opens new possibilities to study specific modes in near-
field measurements. We apply the algorithm to study the transverse
behavior of a guided TE-like mode, where the mode extends deeper in
the surrounding photonic crystal when the band edge is approached.

4.1. Introduction

Near-field scanning optical microscopy (NSOM) is a powerful tool to study ob-
jects with a resolution below the diffraction limit [8]. A unique feature of NSOM
is the ability to tap light from structures that are designed to confine light, such
as integrated optical waveguides [51, 55] and cavities [57, 58, 135, 136]. Using
the effect of frustrated total internal reflection, light that is invisible to other mi-
croscopy techniques can be detected. It is mainly for this reason that NSOM is so
useful in the study of photonic-crystal waveguides. Photonic-crystal waveguides
are two-dimensional (2D) photonic-crystal slabs with a line defect wherein light
is guided [6]. They possess unique dispersion relations, supporting slow-light
propagation and enhanced light-matter interactions [52, 137].

With NSOM, one can measure the dispersion relation in these waveguides, map
light pulses spatially, and study slow-light propagation [51, 56, 138]. It is also
possible to measure the field patterns, which can be complicated because of the
multimodal nature of the structures. Spatial Fourier transforms are especially
useful to analyze, e.g., the dispersion [51] or individual mode contributions [139].
For light propagation in photonic-crystal waveguides the detected field pattern
is a superposition of Bloch modes determined by the symmetry of the waveg-
uide. Ha et al. [140] recently proposed an algorithm that uses these symmetry
conditions to extract Bloch modes from arbitrary measured field patterns [141].

The content of this chapter has been published as: S.R. Huisman, G. Ctistis, S. Stobbe, J.L.
Herek, P. Lodahl, W.L. Vos, and P.W.H. Pinkse, J. Appl. Phys. 111, 033108 (2012).
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Figure 4.1. Light transport in photonic-crystal waveguides. (a)
Schematic top view of a photonic-crystal waveguide that is divided
in N unit cells (rectangles) for the reconstruction algorithm. (b)
Calculated band structure for a GaAs photonic-crystal waveguide
showing both TE-like (red curve) and TM-like (blue curves) guided
modes. The gray area marks the light cone, LL is the light line,
the blue area marks TM-like slab modes, the pink area marks TE-
like slab modes, the purple area marks both TE- and TM-like slab
modes. The labels A, B, C mark the different modes considered in
this chapter. All measurements were conducted in the range marked
by the orange bar.

In the optical domain the algorithm has so far been used to identify dispersion
relations in photonic-crystal waveguides [59, 142]. To date, however, 2D spatial
patterns of Bloch modes at optical frequencies have not been obtained with this
method.

In this chapter, we show the power of the Bloch mode reconstruction algorithm
by extracting individual 2D mode patterns from phase-sensitive NSOM measure-
ments on a GaAs photonic-crystal waveguide. We discuss in detail a specifically
measured field pattern for which the Bloch modes are reconstructed. We apply
this algorithm to study the behavior of the spatial width of the lowest frequency
TE-like guided mode in the 2D band gap for TE-polarized light as a function of
the wave vector.
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4.2. Waveguide description and Bloch mode
reconstruction

Figure 4.1(a) illustrates the top view of the waveguide studied here. It consists
of a GaAs photonic-crystal slab with holes forming a triangular lattice with pitch
size @ = 240 £ 10 nm, normalized hole radius r/a = 0.309 £ 0.002, waveguide
length of approximately 1 mm and slab thickness h = 160 =10 nm. A single row
of missing holes forms a W1 waveguide. Light is guided in the & direction. Each
numbered rectangle represents a unit cell. Fig. 4.1(b) shows the calculated band
structure along & for the photonic-crystal waveguide surrounded by air using a
plane wave expansion [91] (assuming a constant refractive index of ngaas = 3.56
and thickness h/a = 0.67). The black diagonal line represents the light line,
corresponding to light propagation in air. Modes above the light line couple
to modes outside the waveguide, are therefore lossy [6] and are not considered
here. The blue and pink areas mark a continuum of modes propagating in the
surrounding photonic crystal for TM- and TE-polarized light, respectively. The
blue and red curves describe modes for, respectively, TM- and TE-polarized light
that are guided by the line defect. Here we concentrate on modes A and B that
are TM-polarized, and mode C' that is TE-polarized.

A continuous-wave diode laser (Toptica DL pro 940) is used with a linewidth
of 100 kHz and an emission wavelength between 907 — 990 nm, corresponding to
a normalized frequency wa/2mcy in the range 0.24...0.26. Light is side-coupled
on a cleaved end-facet of the 1 mm long waveguide with a high-NA glass objec-
tive (NA=0.55). The incident light is linearly polarized with an angle of about
45° with respect to the normal of the waveguide to excite both TE- and TM-
like modes. The field pattern is collected approximately 100 ym away from the
coupling facet using an aluminum coated fiber tip with an aperture of 160 + 10
nm. We perform phase-sensitive NSOM using heterodyne detection. Detailed
descriptions of a similar setup are presented in Ref. [56].

The propagating modes considered here represent eigenmodes of the crystal
and can therefore be represented by Bloch modes. A Bloch mode propagating in
the & direction at position r = [z, y] and frequency w is described by ¥, (r,w) =
Y (1, w)exp(iky, £). Here 9, (r,w) is an envelope that is periodic with the lattice
and satisfies ¥, (r,w) = ¥, (r + aZ,w), m labels the Bloch mode, and k,, is the
corresponding normalized Bloch vector with respect to a (we consider normalized
wave vectors only) and exp(ik,, %) is a plane wave. We restrict ourselves to
propagating modes (k € R). It is assumed that the measured field pattern ®(r,w)
can be described by a superposition of M Bloch-modes ¥, (r,w) with amplitude
am and one overall residual e(r,w):

M
O(r,w) = Y am U (r,w) +£(r,w). (4.1)

The residual £(r,w) describes measured field patterns that cannot be described
by the M Bloch modes, such as modes that do not follow the periodicity of the
lattice, such a defect states, but also accounts for experimental artifacts and
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noise.

In the reconstruction algorithm [59, 140] a section of the waveguide is sep-
arated into N unit cells, see Fig. 4.1(a). The algorithm uses the property
that each ,,(r,w) is periodic in the photonic-crystal lattice, and requires us
to analyze the measured field for each unit cell U, (r',w), with r’ the coordi-
nate within one unit cell. The measured ®(r,w) can be fitted with a sum of
Bloch modes using a least squares optimization that minimizes the functional
W = [|e(r,w)?dr/ [ |®(r,w)|?dr. This procedure results in the field pattern
Ay = amtm(r,w) and the Bloch vector k,, for m = 1... M. We compare the
extracted k,, with wave vectors determined from spatial Fourier transforms to
confirm the accuracy of the algorithm.

4.3. Near-field patterns decomposed in propagating
Bloch modes

Figure 4.2(a) shows the measured field amplitude |®(r, w)| for a waveguide section
of 30 unit cells (7.2 £ 0.5 pm) at a wavelength of A = 931.6 + 0.1 nm, which is
equivalent to wa/2mco = 0.257. A beating pattern with a period of 5.7 4 0.2 unit
cells, indicated by the meandering maximums, reveals that multiple modes are
involved in the spatial pattern. To ensure that each U, (r',w) describes precisely
one unit cell, the original measurement was resampled on a different grid. Figure

M
4.2(b) shows the reconstructed amplitude | > A, (r,w)| with M = 7 Bloch
m=1

modes, which is in excellent agreement with the measured field amplitude. We
have chosen M = 7 because we expect from Fig. 4.1(b) a forward propagating
mode corresponding to the light line (which can also be approximated by a Bloch
mode [31]) and for modes A, B and C both forward and backward propagating
components, hence M =14 (2 x 3) = 7. The low values for the functional W =
0.0133 demonstrates that indeed ®(r,w) is well described by the superposition of
7 Bloch modes. This conclusion is confirmed by the absolute residuals |e(r, w)]
plotted in Fig. 4.2(c). The fitted k,, are presented in the second column of
Tab. 4.1. The third column describes the relative contribution of each mode as
cm = | [ A% (r,w)®(r,w)dr|/ [|®(r,w)|?dr. Note that the 7 contributions plus
that of the residual add up to unity. The fifth column describes which modes
of Fig. 4.1(b) correspond to k,,, the propagation direction and polarization.
We observe mainly the forward propagating TE-like mode C' (m = 5) and the
forward propagating TM-like mode A (m = 4). The errors in k,, are estimated
by varying the grid element size and allowing for a relative increase of AW by
maximum 10%; within this range the mode patterns Ay(r,w) and As(r,w) do
not change noticeably.

Next, the fitted k,, are compared with wave vectors determined from the spatial
Fourier transforms (kspr) that are shown in Fig. 4.2(d). A Fourier transform in
the Z direction was made for each line parallel to the waveguide over a range of
35.4 + 0.9 pm, which includes the range shown in Fig. 4.2(a). For comparison
k., and kgpr are listed in Tab. 4.1, showing an excellent agreement. The spatial
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Figure 4.2. Reconstructed Bloch modes of a measured near-field pat-
tern on a photonic-crystal waveguide. (a) Measured ampli-
tude for a photonic-crystal waveguide at 931.6 + 0.1 nm. (b) Fitted
amplitude using 7 reconstructed Bloch modes over 30 unit cells.
(¢) Residual amplitude. (d) Amplitude coefficients of the spatial
Fourier transforms of the measured near-field pattern. Labels cor-
respond to those in Fig. 6.1(b).
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Table 4.1. Comparison between fitted wave vectors from Bloch-mode recon-
struction (kn,), and obtained wave vectors from spatial Fourier trans-
forms (kspr). The first column labels the Bloch modes. The second
column gives the fitted k,,,. The third column gives a measure how
strongly present a mode is. The fourth column gives the kspr, where
the superscript F' marks the fundamental wave vector. In the fifth
column we identify the modes from the calculated band structure in
Fig. 4.1(b), the propagation direction, where +(—) corresponds to
the positive(negative) & direction, and polarization.

m km (27) Cm ksrr (%’T) Label
1T 0.251(1) 0.0073 0.251(3) TLL
2 0.330(3) 00117 —0.668(3)7, 0.331(3)  -C, TE
3 0.379(2)  0.0086 0.370(3) +B, TM
4 0488(2) 06714 —0.516(3), 0.489(3)"  +A, TM
5 —0.331(2) 02202 —0.332(3), 0.668(3)" +C, TE
6 —0.367(6) 0.0014 ~0.370(3) -B, TM
7 —0.486(2) 0.0681 —0.489(3)F, 0.516(3) -A, TM

Fourier transforms show for modes A and C higher Bloch harmonics. Both the
fundamental kspr and the observed higher Bloch harmonics are listed in the
table. In Fig. 4.2(d) the modes from Fig. 6.1(b) are identified. The amplitude
coeflicients confirm that we detect mainly the forward propagating TE-like mode
C (kspr = —0.332 + 0.003,0.668 + 0.003) and the forward propagating TM-like
mode A (kspr = —0.516 £ 0.003, 0.489 £ 0.003).

We have demonstrated that the forward propagating TE-like mode C' and
the forward propagating TM-like mode A are the most prominent Bloch modes
present in the data of Fig. 4.2. Figure 4.3(a) shows the amplitude when only
these two modes are taken into account for the reconstruction. A very good
agreement is observed with ®(r,w) of Fig. 4.2(a). Especially the diagonal beats
are well reproduced. The difference wave vector of the two modes corresponds to
a beating period of (5.5 40.2)a. The beating pattern of two orthogonal modes is
the result of quasi-interference; the NSOM tip thereby projects both orthogonal
modes on a detection basis where these modes interfere [143]. Figure 4.3(b)
shows the amplitude, the real part and the imaginary part of the reconstructed
TE-like Bloch mode C' with k5 = —0.331 +0.002. The mode profile is symmetric
in the § direction about the center of the waveguide. Figure 4.3(d) shows the
calculated [91] time-averaged amplitude (|E|) for the TE-like mode (left) and
the measured amplitude |A| for approximately 3 unit cells. Both show a similar
pattern. Figure 4.3(c) shows the amplitude, the real part and the imaginary part
of the reconstructed TM-like Bloch mode A with ky = 0.487 4+ 0.003. Figure
5.3(e) shows the calculated (|E|) for the TM-like mode (left) and the measured
amplitude |A| for approximately 3 unit cells (right). For mode A the agreement is
poor, likely because the near-field tip has a low response to E, and a non-trivial
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Figure 4.3. Measured near-field pattern decomposed in two Bloch
modes. (a) Reconstructed amplitude for Fig. 4.2(a) using Bloch
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response to E, and E,, see Ref. [139], in addition to its finite resolution. The
reconstructed field patterns are an approximation of the Bloch modes propagating
in the system and moreover, they are not necessarily orthogonal because of quasi-
interference. Although the effect of the tip is far from straightforward ([58, 144,
145]), we anticipate that the comparison between calculated modes of an optical
system and reconstructed modes could lead to methods to deduce the response
function of a near-field tip.

4.4. Reconstructed width of the TE-like guided
mode

Next, we demonstrate the power of the reconstruction algorithm by studying
the transverse behavior of TE-like mode C versus wave vector. We consider the
forward propagating TE-like mode (ks = —0.331,0.669 in Fig. 4.3) and take its
reduced wave vector (0 < k; < 0.5) to compare directly with the folded band
structure of Fig. 4.1(b). We have measured field patterns in the wavelength
range of A = 907 — 944 nm, and apply the reconstruction algorithm to determine
A(r,w) and k, for this mode at each A. We have selected ®(r,w) where this
TE-like mode is prominently present in spatial Fourier transforms. The inset in
Fig. 4.4(c) shows the fitted k, versus normalized frequency wa/2mcy.

In order to concentrate on the transverse behavior, we define the transverse

mode profile [|A(r,w)|dz. Figure 4.4(a) shows the measured normalized trans-
0

verse mode profile for three different wave vectors. At k, = 0.285 (black curve) a
transverse mode profile is apparent that can be mainly described by one promi-
nent maximum at y/a = 0 that is slightly asymmetric, describing light guided
in the line defect. Additional side lobes are observed at y/a = —0.9 and at
y/a = 1.4, representing light extending into the surrounding photonic crystal.
At k, = 0.332 (red dashed curve) we observe a central maximum at y/a = 0, and
the contributions of the side lobes become stronger. Also note the new peaks
observed at y/a = —3.2, —2.2, —1.5, and 2.8. When the wave vector is increased,
the relative contributions of these additional peaks increase. At k, = 0.375 (blue
dashed curve) the central peak is still present, and the contributions of the sur-
rounding peaks have grown. Qualitatively, the measured transverse mode profiles
correspond with the calculated ones shown in Fig. 4.4(b), which were obtained
a

from the time-averaged amplitude of the total electric field [ |E(r,w)|dz. The
0

maxima and minima occur at approximately the same locations and the width
w of the central maximum is growing with increasing k,. Not all features are
resolved of the calculated transverse mode profile in our measurements. For ex-
ample, the measured relative amplitude of the central maximum compared with
the additional maxima differs from the calculations.

The central maxima of the transverse mode profiles are fitted with a Gaussian
with width w. Figure 4.4(c) shows the normalized width w/a versus wave vector
(black symbols, bars represent 95% convergence intervals). The red symbols
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Extracted mode width as a function of wave vector. (a)
Measured normalized transverse mode profile for k; = 0.285 (black),
ks = 0.332 (red dashed), and k, = 0.375 (blue dashed). (b) Cal-
culated normalized transverse mode profile for k, = 0.280 (black),
ke = 0.330 (red dashed), and k, = 0.380 (blue dashed). (c) Deter-
mined (black) and calculated width w (red) versus longitudinal wave
vector ks for the TE-like guided mode. Inset: measured (symbols)
and calculated dispersion (red).
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interpolated by the dashed curve represent w/a determined from the calculated
transverse mode profile. The measured w increases with k,. For k, < 0.34
the measured w matches the calculated w well. For k, > 0.34 the measured w
becomes larger than the calculated w. We attribute this to the finite resolution
of the near-field tip and to its response function. For most considered k,-values,
however, the measured w/a matches the calculated with a 10% accuracy.

4.5. Summary and outlook

In conclusion, we have implemented an algorithm proposed by Ha et al. to extract
Bloch modes from near-field measurements on a photonic-crystal waveguide. The
extracted wave vectors are in very good agreement with the wave vectors deter-
mined from spatial Fourier transforms. We have studied two extracted Bloch
modes to explain the observed near-field pattern. We also have studied how the
width of a selected mode changes with wave vector and find good agreement with
calculations. This algorithm seems excellently suited to study individual modes
in multi-mode periodic systems. We anticipate that this algorithm can be used
to filter states that cannot be described by propagating Bloch modes, such as
Anderson-localized states observed in the slow-light regime [15, 18, 54, 146], as
is demonstrated in appendix A.



CHAPTER 5

Measurement of a band-edge tail in the density of states of
a photonic-crystal waveguide

We investigate light transport near the band edge of slow-light photonic-
crystal waveguides using phase-sensitive near-field microscopy. We

obtain and interpret high-resolution band structures, allowing the re-

trieval of the optical density of states for a one-dimensional periodic

system with weak intrinsic disorder. Because of this disorder, the

band edge is smeared and the van Hove singularity is removed. The

density of states shows a decaying tail in the band gap corresponding

to Anderson-localized modes, as predicted by Lifshitz for solid-state

systems.

5.1. Introduction

Band gaps and accompanying band-edge effects are among the most intriguing
phenomena in solid-state physics [28]. Unavoidable disorder in periodic media
strongly alters the transport of electrons, phonons or photons, ultimately re-
sulting in the breakdown of transport, known as Anderson localization [13, 48,
49, 147, 148]. Electromagnetic waves form an excellent platform to study the
effects of disorder on bosonic propagation because of the availability of strong
scatterers, a high energy and wave vector resolution, polarization- and phase
control, and subwavelength fabrication precision. For many years, microwave
experiments have improved our understanding of disorder, such as the demon-
stration of localized modes near the band edge [149, 150]. However, with current
nanofabrication methods, nanophotonic structures have become excellent alter-
natives for performing experiments at optical energies. This allows us to study
the influence of disorder with a direct impact on applied nanophotonics.
Photonic-crystal waveguides are commonly used for strong light confinement
with unique dispersion essential for slow light propagation and enhanced light-
matter interactions [6, 52, 137, 151]. Light propagation in these waveguides
can be approximated by one-dimensional transport. Intrinsic disorder results
in Anderson-localized modes [5], smearing of the band edge and removal of the
Van Hove singularity. The localized modes in the band gap contribute to the

The content of this chapter has been published as: S.R. Huisman, G. Ctistis, S. Stobbe,
A.P. Mosk, J.L. Herek, A. Lagendijk, P. Lodahl, W.L. Vos, and P.W.H. Pinkse, Phys. Rev.
B. 86, 155154 (2012).
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formation of the optical equivalent of a Lifshitz tail in the density of states (DOS)
[152]. For doped semiconductors and superconductors, the Lifshitz tail is known
as a tail in the DOS that decays away from the band edge caused by the ensemble
of localized states [153-157]. Indeed, Anderson-localized modes in photonic-
crystal waveguides have been demonstrated near the band edge [15, 18, 146,
158-160]. Furthermore, recent optical experiments demonstrate that the effects
of strong scattering can be observed in the DOS [18, 161-164]. However, no
experiments near the band edge have been conducted to reveal the optical Lifshitz
tail in the DOS. Band-edge phenomena in the DOS have been studied with
scanning tunneling microscopy (STM) and spectroscopy (STS) for many years.
Surprisingly, to our knowledge, a clear identification of a Lifshitz tail is missing,
possibly caused by complicated band structures, fabrication control, temperature
broadening, and the available energy resolution.

In this chapter, we combine the optical analog of STM, near-field scanning
optical microscopy (NSOM) [8], with photonic-crystal waveguides. NSOM offers
unique opportunities to measure the wavefunction and the band structure [51, 57—
59, 160, 165, 166]. We observe, near the band edge for transverse electric (TE)-
like waveguide modes, Anderson-localized modes that weakly couple to ballistic
transverse magnetic (TM)-like modes that extend over the entire waveguide.
The localized modes are seen to explicitly smear out the band edge in the band
structure, an observation most relevant for disordered quantum systems [167].
From the band structure the DOS is reconstructed, demonstrating the absence
of the Van Hove singularity and yielding a direct observation of an optical Lifshitz
tail in a one-dimensional (1D) system.

5.2. Experimental setup and waveguide properties

Figure 6.1(a) illustrates our experiment. A continuous-wave laser (Toptica DL
Pro 940) with a tunable wavelength A between 907 and 990 nm, and a linewidth
of 0.1 MHz is side-coupled on a cleaved end facet of a GaAs photonic-crystal
waveguide (right SEM image) with an objective (NA=0.55). The incident light
is polarized with an angle of approximately 45° with respect to the normal of the
waveguide to excite both TE-like (polarization is oriented in the crystal plane,
E || y) and TM-like modes (polarization is oriented perpendicular to the crystal
plane, E || z). The field pattern is collected approximately 200 ym away from
the coupling facet using an aluminum coated near-field tip with an aperture
of 160 + 10 nm (left SEM image). We perform phase-sensitive NSOM using
heterodyne detection [143].

The photonic-crystal waveguide consists of a 1-mm-long photonic-crystal slab
with holes forming a triangular lattice with pitch @ = 240 nm, a normalized hole
radius of r/a = 0.309, and a slab thickness A = 160 nm. A row of missing holes
forms the W1 waveguide. Details on sample fabrication can be found in Refs.
[18] and [146], where Anderson localization was demonstrated for waveguides
fabricated under identical conditions. Figure 6.1(b) shows the calculated band
structure along the propagation axis for such a photonic-crystal waveguide [91].
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Figure 5.1. Experimental scheme for studying light transport in
photonic-crystal waveguides. (a) Laser light is side-coupled on
a GaAs photonic-crystal waveguide. Light propagation is studied
with a near-field tip. SEM images are shown of the coated near-
field tip (left) and the waveguide (right). (b) Calculated band struc-
ture showing both TE-like (red dashed) and TM-like (blue) guided
modes in the 2D band gap for TE-like modes for (r/a = 0.303,
h/a = 0.67). The encircled area is the main focus of this chapter.
Here, the TE-like waveguide mode C becomes flat at the band edge,
leading to a Van Hove divergence in the DOS. The black diagonal
line represents the light line (LL).

The blue solid curves and red dashed curve describe modes that are guided by
the line defect for TM- and TE-polarized light, respectively. The blue and pink
areas mark continua of modes propagating in the surrounding photonic crystal
for TM- and TE-polarized light, respectively, which overlap at the purple area.
We concentrate on modes A and B, which are TM-like, and mode C, which is
TE-like. Intrinsic disorder causes Anderson localization in the slow-light regime
of mode C (encircled area near k, = 0.5) [15, 146, 159], where the dispersion
relation flattens and the optical DOS ideally diverges, known as a Van Hove
singularity.

5.3. Near-field observation of Anderson-localized
modes

Figure 5.2 presents measured near-field amplitudes at different excitation frequen-
cies. Periodic beating patterns are observed above and below the band edge of
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Figure 5.2. Measured near-field amplitude for a photonic-crystal
waveguide at different frequencies near the band edge.
Propagating extended Bloch modes are observed in (a) and (d),
Anderson-localized modes are found in (b, c¢). The arrows mark lo-
calized states.

TE-like mode C'. Spatial Fourier transforms [51] and Bloch-mode reconstruction
[140] confirm that these patterns are completely described by a superposition of
propagating Bloch modes [165]. Since these propagating modes are unperturbed
by intrinsic disorder and extend over the entire waveguide, they are considered not
to be localized and are therefore referred to as propagating. For 907 < A < 9424
and 954.9 < A < 990 nm patterns of propagating Bloch modes similar to that of
Fig. 5.2(a) and Fig. 5.2(d), respectively, were observed.

Figures 5.2(b) and (c) are measured near the band edge, corresponding to
frequencies in the range where the periodic patterns are perturbed by standing-
wave field patterns (marked by arrows) that extend up to approximately 3a into
the surrounding crystal. These perturbations are the Anderson-localized modes
that are expected at the band edge. We have verified that these localized modes
occur at random locations along the waveguide only within a wavelength range
of 942.4 — 954.9 nm near the band edge of mode C.

The extended field patterns in the surrounding photonic crystal indicate high
field amplitudes in the center of the waveguide. The observed maximum ampli-
tude is likely quenched by the presence of the near-field tip. From spatial Fourier
transforms we know that the periodic background is formed by TM-like modes
A and B, which contain most of the field energy [165]. The observed localized
modes agree well with calculated profiles of localized modes [152, 168]. Moreover,
from Bloch-mode reconstruction [140] we know that these are not a superposi-
tion of Bloch modes, as is demonstrated in appendix A. Clearly, from Figs. 5.2(b)
and (¢) it can be deduced that the presence of the localized modes is strongly
wavelength dependent.
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Figure 5.3. Coupling between ballistic and Anderson-localized modes.
Amplitude for two coupled localized modes (arrow 1 and 2) for
3 wavelengths separated by 0.1 nm for two incident polarizations
with respect to the pores ((a — ¢) = 45°; (d) 0°). Amplitudes are
normalized to the amplitude of light propagating along the surface
of the structure. White circles in (a) indicate the location of the
holes.

Localized modes in photonic-crystal waveguides are known to be narrowband
[15, 18, 146, 152, 158, 159, 168]. In Fig. 5.3 we show the wavelength dependence
of two such modes (1 and 2) with a resolution of AX = 0.1 nm. In Fig. 5.3(a)
we observe that the periodic pattern is perturbed at the locations of the arrows
at A = 948.5 nm. In Fig. 5.3(b) we observe the localized mode at A = 948.6 nm,
where the perturbations develop maximally in the surrounding photonic crystal.
In Fig. 5.3(c) at A = 948.7 nm, the localized modes vanish. At A = 948.9 nm
the localized modes have completely vanished (not shown). This demonstrates
that these localized modes have a linewidth of A\ = 0.2 nm, corresponding to a
quality factor of @ ~ 10% —10*. We have observed ~ 102 of such localized modes
and they fully extend within a range of typically AXA < 0.5 nm. The observed
linewidths should be considered as an upper limit for the true resonance widths,
since near-field tips are known to shift and broaden resonances [58, 144, 145].

We observe Anderson-localized modes far along the waveguide, where the in-
tensity should naively be vanishingly small. Therefore we explain how the modes
are excited. The near-field patterns in Fig. 5.3(a — ¢) were obtained with an in-
cident polarization angle of approximately 45° with respect to the normal of the
photonic-crystal waveguide to excite both TE- and TM-like modes. Figure 5.3(d)
shows the near-field pattern at A = 948.6 nm when the incident polarization an-
gle is 0° to excite only TM-like modes. We observe a field pattern identical to
that in Fig. 5.3(b). From spatial Fourier transforms, only TM-like Bloch modes
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were identified, but the localized modes remained observed. We conclude that we
are detecting a subset of localized modes at the band edge for the TE-like mode
C that are excited by the TM-like propagating mode A, consistent with previous
interpretations [158]. We anticipate that the weak coupling between localized
modes and ballistic light offers an opportunity to address, manipulate, and read
out light-matter interactions with localized modes.

In previous work localized modes were found to appear near the band edge of
mode C' [15]. In Fig. 5.4 we show the measured frequency range where localized
modes occur as a function of normalized hole radius for four photonic-crystal
waveguides with different hole radii. A gratifying agreement is observed with
the calculated band edge. The frequency ranges are determined from near-field
images when perturbation like in Fig. 5.2 appear. We estimate an error of 1 nm
for the wavelength ranges (not shown). The r/a is determined from SEM images
with a systematic error of 5% (not shown).

5.4. Band structure reconstruction and extraction of
the Lifshitz tail

We have collected near-field patterns over the wide spatial range of x = 73
pm and y = 2.5 ym for a whole range of normalized laser frequencies w! and
obtained their spatial Fourier transform Sin(ks,y,w). We have calculated the
spatial Fourier transform S(k,y,w) for each line parallel with the line defect.
We define Sing(k,w) = [|S(k,y,w)|dy. All Sin¢(k,w) are normalized to have the
same average value for —3.5 < k, < —1.8, which is dominated by 1/ f noise. This

IEvery frequency in this subsection is normalized as wa/2mco.
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procedure resulted in the experimentally reconstructed band structure shown in
Fig. 5.5(a) [51]. At 0 < k, < 0.5 the calculated folded band structure in
Fig. 6.1(b) is overlapped as symbols, showing good agreement with the maxima
in Sint(ks,w). One expects that Bloch harmonics repeat every Brillouin zone
(kz = ko + na, n € Z) and are symmetric around the Bragg conditions (k, =
n+0.5, n € Z). The identification of the modes as TE-like (circles) and TM-like
(triangles) modes was confirmed by rotating the polarization of the incident light.
We identify a narrow stopgap for mode A at w, = 0.2555 (k = —0.5,0.5). As a
consequence, the overlap with the excitation beam changes and hence the spatial
Fourier transform amplitudes of the modes change abruptly around w =~ w,. The
band edge for TE-polarized mode C is located at w = 0.250 (k = —0.5,0.5).

In Fig. 5.5(b) a zoom-in of the band structure is shown near the band edge
of mode C in the range —1 < k; < —0.5. A most intriguing feature is that
our measurements do not show a sharp band edge, but a softened cutoff, in
agreement with predictions of Ref. [152]. The smearing-out of the cutoff in the
range 0.247 < w < 0.251 is caused by localized states, and starts to appear at
a fitted group index of ny(w = 0.251) = 37. No localized modes are observed
outside this cutoff region. The width of the blurred cutoff Aw = 0.004 is a
measure for the amount of disorder. If variations in the hole size and position are
the dominant source of disorder [152], this would indicate a standard deviation
of 0 = 0.015a in the hole positioning and hole radius, in reasonable agreement
with sample characterization. The group index at which we first observe localized
modes is consistent with our previous estimate [18]. Mode (D) is not a Bloch
mode, but likely the result of a third-order scattering process, since its wave
vector is given by 2kc — k4 (one has to take mode A in the range —0.5 < k, < 0
and mode C' in the range —1.0 < k, < —0.5). Also, higher-order modes like
3k 4 are observed (not shown here). We suspect that these additional modes are
caused by the x? nonlinearity of GaAs. This therefore is a potential system for
study of the relation between nonlinear transport and disorder.

Figure 5.5(c) shows the main result of this chapter: We have reconstructed the
DOS from the bands in Fig. 5.5(b). For each w we have calculated the number of
k,-bins that satisfy |Sine(ksz,w)| > g, with Ak, = 0.0033 and threshold ¢ = 0.08.
This measure for the DOS is shown in Fig. 5.5(c) (black curve). The extra mode
(D) is excluded. The shape of the reconstructed DOS is not very sensitive to
the exact value of ¢, as indicated by the gray area behind the curve, indicating
the reconstructed DOS in the range 0.06 < ¢ < 0.1. We have applied a similar
sampling method to the calculated band structure of Fig. 6.1(b) to modes A, B
and C, representing the calculated DOS of an ideal periodic waveguide (red
curve). This DOS is scaled to have the same value as the experimental DOS in
the range 0.255 > w > 0.254. Both the experimental and calculated DOS are
approximately constant in the range 0.255 > w > 0.251 and for 0.247 > w. For
these frequency ranges no localized modes are observed. Note the contribution
of the TM-like modes, which lead to a finite DOS for 0.247 > w. In the range
0.251 > w > 0.250 both the experimental and the calculated DOS increase
rapidly. The DOS of an ideal periodic system diverges to infinity at the gap
frequency Weap as p(w) o (W — wgap) ~ /2, forming the Van Hove singularity [169,
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Experimentally reconstructed band structure. The color represents
the amplitude of the spatial Fourier coefficients |Sint (kz,w)|. Black
curves are fitted modes of Fig. 6.1(b). The dashed rectangle is
highlighted in (b), where localized modes are represented by the
smeared-out band edge. The dashed red curve approximates mode
C for the ideal system. (c¢) Experimentally reconstructed DOS
(black curve) compared with a fitted DOS (red curve) for an ideal
non-disordered waveguide. The single-exponential fit (dashed blue
curve) is a guide for the eye for the Lifshitz tail.
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170]. The experimental DOS follows this increase, until it saturates at w =
0.2505. In this range the first localized modes are observed. Although the single
peak at w = 0.2476 (arrow 1) belongs to a single localized mode, it is unclear
whether the sharp features in the reconstructed DOS are dominated by individual
localized states, since localized states are present at every w in this range. In
future this could be answered by reconstructing band structures with a smaller
Aw. Tt is clear, though, that the Van Hove divergence is absent, in agreement
with computations by Savona [152]. In the band gap for 0.250 > w > 0.247 the
experimental and the calculated DOS differ significantly: the calculated DOS is
constant, whereas the experimental DOS slowly decays away from the band edge,
forming the Lifshitz tail known from solid-state systems [153-157]. Our present
data do not allow us to draw conclusions about the exact shape of the tail, which
is debated in the literature [153-157], but show the possibility of addressing this
issue in future experiments.

5.5. Summary and outlook

We have reported near-field measurements of localized modes using phase-sensitive
NSOM; the experimentally obtained band structure reveals how the localized
states perturb the band edge. Ensemble averaging by measuring band structures
of different parts of the sample should smoothen the envelope of the reconstructed
DOS and will afford the possibility of quantitatively studying the shape of the
Lifshitz tail. Ensemble averaging for several degrees of disorder will allow us to
study the scaling properties of localized states near the band edge [171]. We also
predict that the Lifshitz tail should appear when the DOS is directly probed by
studying the emission of embedded quantum dots [47, 137, 172]. Recently Garcia
et al. demonstrated in emission experiments that the Lifshitz tail increases with
the amount of disorder [173].



Adaptive quantum optics: combining quantum light
with wavefront shaping. Incident light on a multiple-
scattering material generates speckles. The speckle
pattern contains correlations dictated by the interference
of the many scattered modes in the material. By
modulation of the incident wavefront one can program
the correlations. This makes it possible to program
quantum interference with opaque scattering media.
Photo: a sugar cube illuminated with two HeNe beams.
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CHAPTER 6

Controlling single-photon Fock-state propagation through
opaque scattering media

The control of light scattering is essential in many quantum optical
experiments. Wavefront shaping is a technique used for ultimate con-
trol over wave propagation in multiple-scattering media by adaptive
manipulation of incident waves. We control the propagation of single-
photon Fock states in opaque scattering media by spatial phase mod-
ulation of the incident wavefront. We enhance the probability that a
single photon arrives in a target output mode with a factor 30. Our
proof-of-principle experiment shows that wavefront shaping can be ap-
plied to non-classical light, with prospective applications in quantum
communication and quantum cryptography.

6.1. Introduction

Wavefront shaping is an adaptive technique for classical light that transforms ran-
dom multiple scattering media to a versatile platform for creating programmable
speckle patterns with correlations similar to transport in linear optical circuits
[26, 27, 60]. Although adaptive techniques have been introduced to quantum
light [72, 174-177], such a versatile platform as wavefront shaping is still missing
for quantum light.

Light transport in a multiple-scattering medium can be considered as a linear
transformation of a multi-mode system by a scattering matrix, which results gen-
erally in a speckle pattern [49, 148, 178]. Each far-field speckle spot represents a
single output mode of the system. In wavefront shaping the incident wavefront is
spatially phase modulated, controlling the degree of mode-mixing of all scattered
waves that contribute to the target speckle spots. Recent wavefront-shaping
experiments have transformed opaque media in equivalents of waveguides and
lenses [26] and optical pulse compressors [63, 64] that are inherently flexible in
performance.

Multiple scattering is also an exciting platform for quantum optical experi-
ments [17-19, 21, 74, 75]. Non-classical correlations are observed, even for opaque
scattering media [16, 17, 20, 74]. We have started a series of experiments to con-
trol quantum interference in multiple-scattering materials by wavefront shaping.
Controlling single-photon propagation opens unique opportunities for quantum

The content of this chapter is available on ArXiv:1210.8388 (2012).
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Figure 6.1. Setup for single-photon wavefront shaping. Entangled pho-
ton pairs generated in the PPKTP-crystal are separated by a po-
larizing beam splitter cube (PBS). One photon is fiber-coupled to a
single-photon counting module (SPCM;). The conjugate photon is
phase-modulated with a spatial light modulator (SLM). The phase-
modulated single photon is focused on a layer of white paint (ZnO).
Only multiple-scattering events are selected by fiber-coupling the
reflection of the PBS to SPCMa,.

patterning [179], secure key generation [180], or addressing quantum transport
through disordered media [20].

In this chapter we report the first experimental demonstration of wavefront
shaping of quantum light. We control light propagation of single-photon Fock
states |1) through a layer of white paint. We enhance the probability that a
single photon arrives in a target output mode, consisting of a single speckle spot,
with a factor 30.

6.2. Experimental setup for single-photon wavefront
shaping

A schematic of our setup is shown in Fig. 6.1 and consists of two parts: a
quantum-light source (top half) and a wavefront-shaping setup (bottom half).
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The quantum-light source is based on earlier work reported by Refs. [181,
182], which gives the opportunity to engineer quantum states up to the two-
photon level. A mode-locked Ti:Sapphire laser (Spectra-Physics, Tsunami) emits
transform-limited pulses at a repetition rate of 80 MHz with a pulse duration of
0.304+0.02 ps (FWHM of the optical power versus time) and a center wavelength
of 790.0 nm. Typically 600 mW is incident on a 5-mm-long BBO nonlinear
crystal cut for Type-I frequency doubling. After spectral and spatial filtering,
about 70 mW of the frequency-doubled light pulses are focused in a 2-mm-long
periodically-poled KTP (PPKTP) crystal cut for type-II spontaneous paramet-
ric down-conversion (SPDC) in a single-pass configuration. The polarization-
entangled output state can be approximated by:

(W) ~ /(1 =72)[0,0) +7(1,1), (6.1)

where states beyond the single-photon level are omitted. The kets are labeled
by the photon numbers in the separate polarization modes, and the constant
~v < 1 is proportional to the pump field and the effective nonlinear susceptibility
of the PPKTP crystal. The produced light generated by SPDC is filtered with
a bandpass filter with a bandwith of approximately 1.5 nm. The modes are
separated with a polarizing beam splitter cube (PBS) from which the reflection
is used as trigger mode and the transmission as signal mode. Both modes are
coupled into single-mode fibers, and the fiber of the trigger mode is connected
to a single-photon counting module (SPCM;). Click rates were detected up to
8-10° s~'. Coincidence measurements with two detectors in one of the output
arms confirmed that a detection event corresponds to a detection of state |1)
with a probability of 98 + 1%. A Hong-Ou-Mandel dip was observed with a
visibility of 38%. The dip visibility was independent of the incident pump power,
indicating that states beyond the single-photon level can indeed be ignored in our
experiment. Further characterization of the source can be found in Ref. [183].
The fiber-coupled signal mode is directed to the wavefront-shaping setup.

The wavefront-shaping setup is based on the configuration described in Ref.
[26], with the main difference that we use a reflection configuration. The reflection
configuration is expected to give a higher collection efficiency of the scattered
modes [180]. The results presented in this chapter have been reproduced by us
in a transmission configuration, similar to the experiment described in chapter
7. The signal mode is incident on a spatial light modulator (SLM, Hamamatsu
LCOS-SLM) and focused on a layer of white paint with an objective (NA=0.95).
The layer of white paint consists of ZnO powder with a scattering mean free path
of 0.74+0.2 pum. The reflected speckle pattern is collected with the same objective
and polarization filtered with a polarizing beam splitter cube to select multiple-
scattered light. One of the speckle spots is coupled to a single-mode fiber that is
connected to SPCMs. For convenience we align the setup by wavefront shaping
transform-limited laser pulses to extract the phase pattern that is subsequently
applied to the signal photons. Calculations based on the dispersion of PPKTP
[184] indicate that the expected spectral width of the photons is narrower than
2 times that of the laser pulses (3 nm FWHM, before spectral filtering). After
optimization with coherent light, the same phase pattern is used for the single
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Figure 6.2. Programmable single-photon diffraction patterns. (a) Tar-
get diffraction pattern consisting of 3 bars. (b) Measured diffraction
pattern imaged on a CCD camera for laser pulses. (¢) Measured co-
incidence count rate for single-photon diffraction when a multi-mode
fiber is scanned over the line indicated in (b). Each bar is imaged
separately (black, red, gray dashed).

photons.

6.3. Wavefront shaping of single-photon Fock states

We first demonstrate in Fig. 6.2 the capability of programming the wavefront of
single photons using spatial phase modulation. Figure 6.2(a) shows the intended
diffraction pattern, consisting of three bright bars. Figure 6.2(b) shows the pat-
tern directly behind the SLM imaged with a lens on a CCD camera for incident
laser pulses that act as an alignment field for the single photons. The three
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bars are clearly visible, where the hologram software (Holoeye) gives a spatially
fluctuating intensity distribution of the bars. After we stored the corresponding
phase pattern on the SLM, the incident classical laser pulses are replaced with
single photons, and the CCD camera is replaced with a multi-mode fiber with
a 62.5 ym core diameter connected with SPCMs. The fiber is scanned over the
line indicated in Fig. 6.2(b) to detect the coincidence count rate as a function of
position. The results are shown in Fig. 6.2(c). Each bar is imaged separately, in
order to demonstrate the ability to program the pattern, and to improve the ob-
served coincidence count rate per bar by roughly a factor three. The coincidence
count rate is clearly highest in the intended regions, and shows similar spatial
intensity fluctuations as observed for laser light.

Figure 6.3 shows the main result of this chapter: a wavefront-shaped single-
photon speckle pattern. We first use laser pulses to create an optimized classical
speckle pattern with a single enhanced speckle spot. SPCM, is replaced with a
Si-pin photodiode to optimize the reflected pattern for classical laser light. The
beam is phase modulated by approximately 500 segments consisting of 20x20
pixels. Each segment is sequentially addressed with a random phase. Only if the
intensity increased, this new phase was accepted. This algorithm was repeated
approximately 5 times for all segments to obtain a single enhanced speckle spot.
Figure 6.3(a) shows the speckle pattern for a constant phase pattern and Fig.
6.3(b) shows the pattern after optimization. A clear enhanced speckle spot is
visible in the center of the image. The speckle patterns are measured with a
CCD camera.

Figure 6.3(c) shows the result with incident single photons for the same realiza-
tion. The camera was removed and the target mode is coupled in a single-mode
fiber that is connected with SPCM;. Figure 6.3(c) presents the coincidence count
rate for different phase patterns; optimized (red), random (white) and constant
(gray). 20 subsequent measurements of 1 second integration time were performed
for each bar. From the optimized phase pattern we obtain a coincidence count
rate which is 33 £ 13 times higher than the average coincidence count rate for
random phase patterns. The optimized phase pattern provides a reproducible
coincidence rate as indicated by the second red bar in Fig. 6.3(c). We have,
hence, increased the probability for a single photon to appear in a desired mode
30-fold, demonstrating the capability of wavefront shaping quantum light. This
corresponds to an overall mode transmission of the order of 1%, based on the
total number of speckle spots of order 10 and the 30-fold enhancement. Based
on energy conservation and the high purity of our photon source, the detected
coincidences occur when the incident wavefront and the optimized target speckle
spot contained a single photon.

6.4. Discussion
We have increased the probability that a single photon arrives at a desired speckle

spot by using a phase mask optimized for classical light. Our experiment demon-
strates that this method works. The intensity enhancement for the incident laser
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Figure 6.3. Wavefront-shaped single-photon speckle. (a) Speckle pattern
imaged on a CCD camera for classical laser pulses with a random
phase pattern. The circle indicates the target for optimization. (b)
Speckle pattern with a single enhanced mode for an optimized phase
pattern. (¢) Measured coincidence count rate at the position of the
bright speckle spot in (b) for an optimized (red), constant (gray) and
random phase patterns (white). The blue dashed line represents the
average coincidence rate measured for random phase patterns. The
error bars are taken as 2 times the standard deviations.

pulses, which is in the order of = 30, is mainly limited by the optimization al-
gorithm we have implemented. There are algorithms that work faster and more
efficiently resulting in optimized speckles of higher intensity [185]. At the mo-
ment of writing this dissertation, these algorithms are being modified, already
showing preliminary intensity enhancements that are improved by an order of
magnitude.

In addition, the enhancement is reduced by the broad spectrum of the laser that
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restricts the path lengths that can constructively interfere to the optimized speck-
les [63]. Wavefront-shaping experiments with continuous-wave classical light have
shown intensity enhancements n > 103 [26]. In principle, SPDC could be pumped
by continuous-wave light, resulting in photons with a longer coherence length.
We expect that the enhancement can be improved by increasing the temporal
width of the photons by using, e.g., 2-5 ps-pulses for the pump light, without
sacrificing the possibility of creating quantum states on the two-photon level.

The spectrum of the alignment laser pulses and the prepared photons can
be better matched using narrowband spectral filters, although this reduces the
count rate by extinction losses. Instead of using the laser pulses for alignment of
the single-photon wavefronts, one could seed the PPKTP crystal with the laser
light to produce parametric amplification instead of SPDC, to find accurately
the spatio-temporal mode of single photons in wavefront shaping [186].

If one can reduce the extinction losses of the system by at least an order
of magnitude, by choosing, e.g., a different disordered structure like a thinner
layer of paint, the initial coincidence count rate for unoptimized speckles would
already be in the order of 102 s~!, making it in principle possible to directly
wavefront shape single photons. On the other hand, our results demonstrate
that the phase mask obtained for classical light is adequate for the single photons.
Optimization with classical light simplifies addressing more advanced correlations
for quantum interference, which have inherently a smaller intensity enhancement,
see for example appendices B and C, or Ref. [81].

6.5. Conclusions

In summary, we have controlled single-photon propagation in opaque scattering
media with phase-modulation of the incident light. This opens new opportu-
nities to address elements of the scattering matrix to obtain desired quantum
interference. Our findings are not limited to single-photon Fock states, but can
be applied to non-classical light in general.






CHAPTER 7

Programming optical beam splitters in opaque scattering
media

Wavefront shaping allows for ultimate control of light propagation in
multiple-scattering media by adaptive manipulation of incident waves.
Two orthogonal wavefront-shaped modes are incident on a layer of
white paint to create two enhanced output speckle spots of equal
intensity. We experimentally confirm by interference measurements
that the output speckle spots are correlated like the two outputs of
a balanced beam splitter. The observed deviations from the phase
behavior of an ideal beam splitter are analyzed with a transmission
matrix model. Our experiments demonstrate that wavefront shaping
in multiple-scattering media can be used to program linear optical
devices with multiple inputs and outputs.

7.1. Introduction

Linear optical components like lenses, mirrors, polarizers and wave plates are the
essential building blocks of optical experiments [187, 188]. One has often little
freedom to modify the linear optical circuit, besides rearranging components or
including adaptive elements. For computational applications and on-chip light
processing [24, 68, 189, 190], it would be fantastic to have a programmable linear
optical circuit that can be controlled during operation. Randomness provides an
excellent platform to accomplish this [60]. In wavefront shaping [26, 27] incident
light is modulated by a spatial light modulator to obtain a desired speckle pattern
for functionality. Although one has to tolerate high losses, this technique makes
it possible to transform opaque scattering media in linear optical elements that
are flexible in performance [62-65, 191, 192]. If one controls light propagation
inside strongly scattering media, one can make the most exotic linear optical
circuits within a fraction of a mm?.

In earlier reported wavefront-shaping experiments, multiple target speckle spots
have been simultaneously optimized with a single incident wavefront [26, 65, 81].
These experiments essentially demonstrate 1 x m linear optical circuits with 1
incident mode projected to m output modes. If one is capable to manipulate n
incident modes with wavefront shaping, it becomes possible to program n x m
optical circuits with a desired transmission matrix T. To our knowledge, no
experiment demonstrating this capability has been reported.
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Figure 7.1. Interference at an ideal lossless 50:50 beam splitter. (a) Two
incident modes (1,2) with equal intensity interfere at a 50:50 beam
splitter (BS) resulting in two output modes (1’,2'). (b) Normalized
intensity in the output modes as a function of relative phase shift
A0 applied to incident mode 1. All intensities are normalized to the

total input intensity I1 + I2.

In this chapter we describe an experiment in which a layer of white paint is
made to behave as an optical beam splitter. We apply wavefront shaping to
optimize 2 output speckle spots for 2 separate incident modes, forming a 2 x 2
optical circuit. The optimized speckles are correlated like the outputs of a 50:50
beam splitter. This behavior is verified by an optical interference experiment.
Our measurements indicate that the speckles become more correlated like a beam
splitter when the intensity enhancement 7 increases. This surprisingly suggests
that one can program beam splitters without prior measurement of the transmis-
sion matrix T. We explain this with random matrix calculations. Our experiment
demonstrates that wavefront shaping can be extended to multiple incident modes
that can interfere in a controlled manner, allowing for programmable linear op-
tical circuits.

7.2. Interference on a beam splitter

The scattering matrix of a lossless beam splitter represents a unitary transforma-
tion that can be written in its most general form as the product of three matrices

[193]:
g _ eiz 0 cos % sin % eiz 0
o 0 e % —sin % cos 5 0 et |

(7.1)

The nonzero terms in the first and last matrix are phase differences ¥ and &
applied by the beam splitter on the incident and outgoing modes® respectively.

1 In this chapter we use the term input mode for an incident wave that describes a single
input of the normal beam splitter or wavefront-shaped beam splitter.
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The phase angle O in the center matrix determines the splitting ratio, which has
to be © = (2n + 1)7/2 for a 50:50 beam splitter, with n an integer value.

Now consider the experiment in Fig. 7.1(a) in which two modes (1,2), con-
taining coherent light of equal intensity, are incident on a 50:50 beam splitter
giving two output modes (1’,2'). The relative phase difference Af between mode
1 and 2 can be controlled; this is the same as controlling ® = Af in Eq. (7.1).
The intensity I/, Iy as a function of Af is shown in Fig. 7.1(b). I and Iy
will oscillate with a phase difference of § = 7 for the ideal lossless beam splitter,
independent of phases ® and ¥ in Eq. (7.1). For this graph we have set ¥ = 0
and used A = . Any nonzero value for ¥ will provide a phase offset to both
the output modes, essentially shifting both I, and I along the horizontal axes
by the same amount. Note that energy is conserved: Iy + Io» = I 4+ I, and a
fringe visibility of 100% is observed. If one of the incident modes is blocked, a
constant intensity is detected in both output modes that is 4 times lower than
the maximum intensity in one of the output modes when both inputs are present.

Modelling lossy beam splitters is an interesting subject on its own with a wide
variety of approaches [194-198]. We describe the effective transmission matrix T
as a non-unitary version of Eq. (7.1). The phase difference § = 7 will still hold if
there are losses in any of the input or output modes. In such a case, the damping
can be modelled in the left or right matrix in Eq. (7.1) by making them non-
unitary with a determinant smaller than 1. This is valid for the typical beam
splitter one uses. However, when the scattering in the beam splitter does not
conserve energy (the damping is in the center matrix in Eq. (7.1) dictating that
not all energy goes to the output modes), § could in principle take on any value
as long as the total output intensity does not exceed the total input intensity.
To model the most general form of a lossy beam splitter we make the following
assumptions:

Assumption 1 The system is described by an effective transmission matriz T
consisting of 2 X 2 elements.

Assumption 2 T provides an equal intensity splitting ratio.
Assumption 3 The intensity losses for both input modes are identical.

The system behaves as a lossy beam splitter with equal splitting ratio. For
convenience to compare to the ideal beam splitter, we consider that a single input
mode is reflected with intensity reflectance |r|2 and transmitted with transmission
|t|>. For a lossy beam splitter this means |r| = |t| and |r|* + [¢|* < 1. We relate
the input amplitudes to the output amplitudes as A; — |r|(Ay + €*®1 Ay/) and
Ay — |r|(€¥2 Ay + Ay), with phase terms ¢; and ¢o. Now we set |r|> = 1/N,
with splitting factor N and N > 2. This leads to the following transmission

matrix: ) "
1 e
T_\/ﬁ{ew? 1 ] (7.2)

For the ideal lossless 50:50 beam splitter, T is only unitary when N = 2, with
for example ¢1 = ¢ = 7/2, and would always result to interference as shown in
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Figure 7.2. The allowed phase difference ¢ and ¢ as a function of re-
flectivity |r|*> for the balanced beam splitter.

Fig. 7.1(b). The eigenvalues A\; and Ay of Eq. (7.2) are:

Pb1t+d2 7;4)14—4)2

1+e 2 )\71—672
N VN

Next we make the substitution ¢ = (¢1 + ¢2)/2. The observed phase difference
in an interference experiment is given by d = ¢1 + ¢2 = 2¢. Since T is a square
matrix, from the singular values of Eq. (7.2) 72 = [A{|* = (2 + 2cos(¢))/N and
72 = [A2* = (2 = 2cos(¢))/N we obtain:

A\ = (7.3)

4
ﬁ+ﬁzﬁ. (7.4)
If this relation is fulfilled, one guarantees that |r|> = [¢/>. In addition 7,75 < 1
to guarantee a transmission not exceeding 1. This restricts the possible ¢ to be
in the range between cos™! (N/2 —1) < ¢ < cos™! (1 — N/2) for 2 < N < 4, as
marked by the gray area in Fig. 7.2.
With wavefront shaping it is possible to use a multiple-scattering material as
a balanced beam splitter, which is inherently lossy. In our experiment we are
working with N > 102 and therefore any ¢ and 6 are allowed. The scattering
statistics of the sample, such as the the singular value distribution, and the
intensity enhancement defining N in Eq. (7.4), determine the combination of
71 and 7o that satisfy Eq. (7.4). Therefore one would not expect in general a
constant probability distribution for § in the gray marked area in Fig. 7.2. We
would like to approximate the behaviour of a beam splitter where § — 7 since
this mimics the beam splitter one normally uses.

7.3. Optimization algorithm

The optimization procedure for wavefront-shaped balanced beam splitters is il-
lustrated in Fig. 7.3. We start with a single incident mode. All segments of a
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Figure 7.3. Optimization procedure for wavefront-shaped balanced
beam splitters. A single SLM is divided in two sections to phase
modulate incident modes 1 and 2 that are spatially separated. (a)
Only mode 1 is incident and mode 2 is blocked. Two target speckles
1" and 2’ are optimized on a CCD camera. (b) Only mode 2 is inci-
dent and mode 1 is blocked, and the same target speckles 1’ and 2’
are optimized. (c) Both modes 1 and 2 are incident on the SLM, us-
ing both optimized phase patterns. A relative phase differenced Af
between mode 1 and 2 is applied with the SLM to confirm optical
interference like in Fig. 7.1(b).

phase-only SLM are subsequently addressed. The phase ¢, C [0,27) of the n't
segment is randomly chosen and the output intensities I3, and Is, are monitored.
¢n is accepted and kept on the SLM if the summed output intensities of both
spots has increased and the difference intensity has decreased:

1. Il’,new + IQ’,new > Il/,old + IQ/,old + €
2. ‘Il’,new - IQ’,new| < |Il’,01d - I2’,01d| + €2

with positive tolerances €1, €2 — 0 to compensate for noise. Otherwise the pre-
vious ¢, was restored. Next the (n + 1)™ segment is addressed, etc. After the
final segment has been addressed, the entire optimization is repeated until the
desired convergence is reached.

The same procedure is repeated for the second incident mode for the same
two target spots. Finally both modes are incident to perform an interference
experiment as described in Fig. 7.1, where the relative phase A6 is controlled
with the SLM.

We have decided to select this optimization algorithm because of ease of imple-
mentation and the guaranteed convergence to spots of equal intensity. There are
algorithms that work faster and more efficiently resulting in speckles of higher
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Figure 7.4. Setup for wavefront-shaped balanced beam splitters. (a)
Two incident modes (1,2) are phase-modulated with a spatial light
modulator (SLM). Both modes are spatially overlapped with a po-
larizing beam splitter cube (PBS). The modes are focussed on a
layer of white paint (ZnO particles) that has been spray coated on
a 1 mm thick microscope slide. The transmitted light is projected
on a CCD camera. Two output modes 1’ and 2" are selected. (b)
Optimized phase pattern on the SLM. (¢) Camera image for two
optimized speckles when mode 1 is blocked.

intensity enhancement [185], see also appendix B and C. At any rate, in the next
sections we demonstrate that our algorithm is adequate for this experiment.

7.4. Experimental setup

The setup is illustrated in Fig. 7.4(a). The light source is a mode-locked
Ti:Sapphire laser (Spectra-Physics, Tsunami) emitting transform-limited pulses
at a repetition rate of 80 MHz with a pulse width of approximately 0.3 ps and
a center wavelength of 790.0 nm. The pulses are spectrally filtered by a Fabry-
Perot cavity with a linewidth of 1.5 nm. The beam is split and coupled into two
separate single-mode fibers. The output modes have identical polarization and
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waist and form the input modes 1 and 2. The two modes are phase-modulated
with a SLM (Hamamatsu, LCOS-SLM). The two modes are spatially overlapped
with a half-wave plate (HWP) and polarizing beam splitter (PBS) cube, resulting
in co-linear propagation of modes with orthogonal polarization. This allows us to
completely fill the aperture of the objective (NA=0.95, Zeiss) that focusses the
light on a layer of white paint. Both pulses arrive simultaneously at the sample
to within 20 fs. We make sure that the intensity of both incident modes on the
objective are identical (input power of approximately 0.5 mW per mode). The
layer of white paint consists of ZnO powder with a scattering mean free path of
0.7 £ 0.2 pm. The layer is approximately 30 pm thick and spray painted on a
glass microscope slide of 1 mm thickness. The transmitted speckle pattern is col-
lected with a second objective (NA=0.55, Nikon) and imaged on a CCD camera
after reflection on a PBS, see for example Fig. 7.4(¢). The optimized speckles
can be transmitted through the PBS, towards a different part of the setup for
applications, by rotating the HWP.

The SLM was divided into segments of 20x20 pixels. Each segment was sequen-
tially addressed with a random phase as described in the optimization algorithm.
The phase is applied by writing a gray value between 0 and 255. This corresponds
to a phase modulation depth of (2.0 & 0.1)7 rad. This algorithm was repeated
approximately 15 times for all segments to obtain two enhanced speckles of equal
intensity at 1’ and 2/, see Fig. 7.4(c). The total optimization procedure for both
incident modes takes about 3 hours. We confirm interference between the output
modes by adding a phase offset to the encircled area in Fig 7.4(b).

7.5. Experimental results

Fig. 7.5 presents the main result of this chapter: optical interference with a
wavefront-shaped nearly balanced beam splitter. Fig. 7.5(a) shows a series of
camera images when on incident mode 1 a phase offset is applied. The number
in the left top corners represent the phase offset A# in gray values. All pictures
are subsequently taken with the same integration time. The intensity clearly
oscillates between the two target spots.

Fig. 7.5(b) shows the intensity I;- (red squares) and I (blue diamonds) as
a function of the applied phase difference Af. Both curves show sinusoidal be-
haviour and are approximately out-of-phase, mimicking the behaviour of an ideal
beam splitter as is shown in Fig. 7.1(b). We expect an error in the phase of about
A(A0) = 0.1 rad due to interferometric stability during data collection and an
additional systematic error of 0.1 rad due to phase calibration (both not shown).
We have fitted two functions of the form A sin(Af#+b)+ ¢ to the measured inten-
sity, which is in good agreement with the data points. From b we determined the
phase difference [0| = 2.30 £ 0.14 rad, close to but significantly different from the
value of § = 7 of an ideal beam splitter. Both I, and Is show a fringe visibility
of approximately 100%, which indicates a near-perfect mode matching between
the output modes for the two seperate incident modes. The maximum measured
intensity in both spots is approximately the same to within 5%. When one of
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Figure 7.5.
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Interference between two optimized speckles of a
wavefront-shaped beam splitter. A phase shift is applied on
one of the incident modes by applying an offset to the phase pat-
tern of the SLM. (a) Camera images for different phase offsets A#
expressed as gray values. (b) Intensity in the two optimized speckles
(red squares and blue diamonds) as a function of gray value offset.
The solid and dashed lines are sinusoidal fits. When only one inci-
dent mode is present, a constant intensity in both target speckles is
observed (white diamonds and white squares).
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Figure 7.6. Measured phase difference || for different realizations of
the wavefront-shaped balanced beam splitter.

the incident modes is blocked in the interference experiment, the output inten-
sity is approximately constant (white diamonds and squares). The small spatial
separation between mode 1 and 2 on the SLM gives a small crosstalk, causing
fluctuations within 10%. The output intensity is approximately 4 times lower
as the maximum intensity when both modes are incident, in excellent agreement
with Fig. 7.1(b).

We have repeated this interference experiment 5 times for different target
speckle spots and determined |d|. The result is shown in Fig. 7.6. All measure-
ments were performed under comparable circumstances. Although the number of
measurements are not sufficient for any statistical relevant conclusion, our mea-
surements suggest a tendency for |d| to cluster close to 7. In the next section we
present a model that simulates this behavior.

7.6. Model for the phase difference

In this section we model the observed phase difference § in the interference ex-
periment based on random matrix theory. Light undergoes isotropic multiple
scattering in a sample with a thickness much larger than the scattering mean
free path [ and kI > 1. We therefore expect the transmission matrix to follow
the statistics of a random matrix, as was demonstrated experimentally for ZnO
by Popoff et al. [81]. One could argue that T is a subset of the scattering matrix
S, and therefore ¢ and @2 can take in principle any value between [0, 27) with
equal probability. This would naively result in a constant probability distribution
for 0, which is not observed.

The scattering matrix S has to be unitary, which sets restrictions on the allowed
values for each element s, ;. Consider a random S in a basis where one input
mode is one element of the input vector and one target output speckle spot is one
element of the output vector. If S contains a beam splitter of equal splitting ratio,
there have to be 2 rows and 2 columns in S with corner elements of approximately
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Figure 7.7. Calculated normalized probability distribution for the
phase difference ¢ for random scattering matrices S with
different Dim(S) containing balanced lossy beam splitters.
All 4 elements in the scattering matrix that form the beam split-
ter have an equal amplitude within 1% to be accepted. The green
dashed line represents the boundary of allowed and forbidden phases
as in Fig. 7.2. The black vertical dashed line represents <|5a,b\2>.

the same amplitude:
86,51 = €1 18i4ni| = c2Sij4m| = €3 Sign,j4ml (7.5)

with 4, j, m,n positive integers and ¢ ~ 1. For a random scattering matrix with
dimension Dim(S) = 2, the only possibility for a balanced beam splitter is that
0 = m. From matrix algebra it follows that for Dim(S) = 3, ¢ can only lie on the
boundary lines of the gray area of Fig. 7.2 and the amplitude coefficients of S
should satisfy |sa,b|2 > 1/4. For Dim(S) > 4 any phase becomes accessible within
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the gray marked area of Fig. 7.2. However, the corresponding phase distribution
is strongly dependent on Dim(S), as illustrated in Fig. 7.7. There we have
generated many random scattering matrices with different dimension that contain
a balanced beam splitter. The corresponding intensity enhancement is given by

2 2 : 2 2 2 2 2
m= st/ (Isasl?), with Isf® = (1/4) (50 + 51051 sl + bsism o),
and <|sa7b\2> = 1/Dim(S). An increased probability for 6 = 7 is observed with

higher 7. The probability distribution becomes flat for small . How this scales
depends strongly on Dim(S). It becomes extremely difficult to observe n > 4 for

<|sa7b|2> < 0.01, because the probability to get these realizations out of random

unitary matrices becomes astronomically small. Our experiment is described by
this situation.

Therefore we have simulated our experiment by applying our optimization
algorithm on large random S. Fig 7.8 shows the observed distribution for |J| as
a function of intensity enhancement 7. The main observation is that P(|d]) has
a global maximum at |0] = 7 that increases with 7.

The simulations in Fig. 7.8 are performed for Dim(S) = 300. We control the
phase of 40 input elements representing incident mode 1, and 40 input elements
representing incident mode 2. Each controlled input element has a normalized
input intensity of 1. We have set e; = 0 and e; = 0.001. We apply the opti-
mization algorithm 2500 times per mode to guarantee convergence. We select
output elements for which the total intensity of the optimization for mode 1 is
within 10% of the optimization for mode 2, approximating our experiment. The
intensity enhancement 7 is given by the observed intensity in a target speckle,

divided by <|sa7b|2> = 40/Dim(S), where the factor 40 comes from the number

of channels that are controlled per incident mode.

It is beyond the scope of this model to match experimental conditions. In par-
ticular the large number of channels is difficult to implement. We have repeated
our simulations for several Dim(S) and several amounts of controlled input chan-
nels, always demonstrating a global maximum at a |§| = 7w that increases with
7. This demonstrates that the two optimized speckle spots approximate better
the behavior of a balanced beam splitter with increasing enhancement, using our
optimization algorithm. Based on the model with large unitary matrices, it is
likely that this is independent of the type of optimization algorithm used.

7.7. Discussion

We have experimentally created two optimized speckle spots that are correlated
like the output of a lossy balanced beam splitter. The interference experiment
suggests that |§| — 7 with increasing 7, which is indicated by a computational
model. The model could not match the dimension of our experiment, neverthe-
less, the agreement is gratifying. Our model demonstrates that the probability
distribution for ¢ depends on the number of modes in the system. It would be
intriguing to perform these kind of experiments with systems of lower dimension,
such as, multi-mode fibers with embedded disorder to confirm this scaling [199].
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Figure 7.8. Simulated phase difference |§| for the balanced beam split-
ter for different intensity enhancements n. The probability
that 6 — 7 increases with 7. (a) Realizations with 7.5 < n < 8.5.
(b) Realizations with 9.5 < n < 10.5. (c¢) Realizations with
11.5 < n < 12.5. (d) Realizations with 13.5 < n < 14.5.

It would be fascinating to measure the transmission matrix of the sample prior
to optimization. This allows for an experimental study on the influence of the
optimization algorithm and 7 on the observed §. In addition this would also allow
to address speckle patterns with more complicated correlations.

The loss in our experiment can be reduced by several orders of magnitude by
implementing more efficient wavefront-shaping procedures and using continuous
wave lasers. On the other hand, our pulsed experiment reveals the opportunity to
apply this beam splitter on incident light produced in nonlinear processes, such
as entangled photon pairs or higher order quantum states produced with sponta-
neous parametric down-conversion [181]. This makes it possible to program linear
optical circuits for incident quantum states to exploit quantum correlations in
disordered media [16, 17, 19-21, 72, 74, 75].
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7.8. Conclusions and outlook

In summary, we have controlled light propagation in opaque scattering media
with phase modulation of the two incident light modes. We have optimized two
speckles that show interference like a 50:50 beam splitter.

Advanced optimization algorithms make it possible to create more compli-
cated linear circuits out of multiple-scattering media. In appendix B we present
an algorithm that allows making arbitrary n x m linear optical circuits without
the need of measuring a transmission matrix of the multiple-scattering medium.
Based on this algorithm, we find an upper limit for the average energy transmis-
sion of the wavefront-shaped beam splitter, which is on average 17:17, instead of
50:50 for the ideal beam splitter. The calculations are presented in appendix C.






CHAPTER 8

Summary and outlook

In this dissertation experimental results are presented on controlling light with
photonic systems. The first part describes research on forbidden zones of light:
frequency gaps in photonic crystals. Polarization-resolved and position-dependent
reflectance spectroscopy on silicon two- and three-dimensional photonic crystals
revealed broad stop bands with record-high reflectivity exceeding 60%, indicating
the excellent quality of these structures. It would be intriguing to modify these
photonic structures with defects to form, e.g., waveguides and cavities, which
could be studied with the described methods. Polarization-resolved measure-
ments in a different polarization basis, such as circular polarized light, could be
used to investigate if the current geometry sustains chirality, or can be modified
to address specific polarization states.

A general diffraction phenomenon, called sub-Bragg diffraction, has been dis-
covered and explained. In sub-Bragg diffraction, gap formation occurs in a high-
symmetry direction by multiple-Bragg diffraction at a lower frequency than the
well-known simple Bragg diffraction. Sub-Bragg diffraction is essential for the for-
mation of the two-dimensional band gap for TE-polarized light in triangular pho-
tonic crystal slabs. Sub-Bragg diffraction occurs for general wave propagation in
2 out of the 5 two-dimensional Bravais lattices and 7 out of 14 three-dimensional
Bravais lattices. It would be intriguing to investigate sub-Bragg diffraction for
lattices with controlled photonic strength with, e.g., reflectance spectroscopy or
phase-sensitive near-field microscopy. Sub-Bragg diffraction is predicted to give
rise to stop gaps for phonons and electrons, and therefore it would be interesting
to investigate its influence on, e.g., the specific heat of materials, the melting
temperature of ice, or relativistic electron propagation in graphene.

Angle-averaged, polarization-resolved and position-dependent spectra reveal a
common stop band of up to 16% gap-to-midgap frequency ratio for inverse wood-
pile photonic crystals, forming a strong experimental signature of the presence
of a complete photonic band gap. The presence of the band gap was confirmed
with the observation of inhibited emission rates of embedded quantum dots [47].
Novel experiments on controlling vacuum fluctuations in photonic band gap crys-
tals are expected in the near-future to study, e.g., light emission near the band
edge and inside the gap, investigate the influence of the finite crystal size, control
black body radiation, manipulate Forster energy transfer [200], and study the
impact of ordered and disordered defect states on propagation.

It would be fascinating if photonic crystals could be fabricated of GaAs or
GaP, which have a refractive index comparable to silicon. This would bring
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gaps to visible wavelengths and gives the opportunity to grow, and interact with,
quantum dots inside the structures. This opens experiments with high efficiency
silicon single-photon detectors. If the three-dimensional crystals could be created
with layer-by-layer methods, such as has been done for woodpile crystals [201],
it becomes possible to position defects and emitters, and increase the size of the
structure.

The second part of this dissertation presents experiments on light propagation
near the band edge in GaAs photonic-crystal waveguides. Phase-sensitive near-
field microscopy (NSOM) was used to map light propagation with sub-wavelength
resolution, revealing periodic field patterns consisting of superpositions of optical
Bloch modes. A Bloch mode reconstruction algorithm was tested to extract and
study individual Bloch modes. It is expected that this algorithm can be extended
to general wave diffraction in any planar periodic structure.

In the slow-light regime, the periodic field patterns are perturbed by Anderson-
localized modes that form due to random multiple-scattering on intrinsic disorder.
A detailed dispersion relation has been measured for a specific photonic-crystal
waveguide, where the localized modes smear out the band edge starting from a
group index of 37. The observed localized modes are excited by TM-like propa-
gating modes, allowing detection of localized modes far away from the excitation
facet. A method was introduced to reconstruct the density of optical states
(DOS), constituting to the first experimental demonstration of an optical Lif-
shitz tail. Ensemble averaging allows for a quantitative study of the Lifshitz
tail.

The Lifshitz tail has been recently observed by probing the DOS with embed-
ded quantum dots [173]. Embedded quantum dots only probe the field inside
GaAs at fixed locations, which makes the DOS reconstruction with NSOM a
powerful alternative since its ability to pick up the evanescent light everywhere.
Since both propagating and localized modes can be observed with NSOM, it
would be intriguing to map these modes on embedded quantum dots. Important
properties of the field modes that interact with the emitter can be extracted, like
the mode volume and polarization.

Polarization-resolved phase-sensitive NSOM would allow for a better under-
standing of the observed field pattern and a more accurate reconstruction of
the DOS. Since the presence of the near-field tip is known to alter especially
linewidths of resonances, it would be intriguing to use non-invasive measurements
to study these localized modes, with for example phase-sensitive angle-resolved
far-field imaging [202].

Cathodoluminescence has been used to reconstruct far-field radiation patterns
and the local density of states in nanophotonic structures [203]. Although this
method does not yet provide phase-information, and gives little control of the ex-
cited polarization states, it seems suitable to map the Anderson-localized modes.
One would not need to rely anymore on a weak coupling with the propagating
TM-like modes, or to measure close to the sample edge, to observe the localized
modes. In addition, this would give direct access to permanently modify the
structure with electron or ion beam milling. The imaging quality of the topog-
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raphy with an electron or ion beam is in practice better than with NSOM, since
one does not rely on shear-force feedback of a tip in contact. This technique
could be suitable to point out the source of disorder.

The refractive index of GaAs can be reversibly controlled by light via the in-
tensity dependent refractive index, and therefore in principle an intensity pattern
can be written on top of the structure to locally modify the refractive index to,
e.g., compensate for disorder. The presence of a near-field tip would significantly
hamper the accessibility for projecting this intensity pattern, but far-field imag-
ing techniques such as transmission measurements, out-of-plane scattering, and
cathodoluminescence, provide better access to the structure.

The third part of this dissertation describes experiments towards adaptive quan-
tum optics. A high-rate entangled-photon source was developed based on type-II
spontaneous parametric down conversion. Single-photon propagation in multiple-
scattering media has been controlled with wavefront shaping. The probability
that a photon arrives at a target output speckle spot after propagation through a
layer of white paint has been increased 30-fold. This number can be improved by
increasing the temporal width of the pump laser driving the spontaneous para-
metric down-conversion (SPDC), and using more advanced wavefront-shaping al-
gorithms. In the experiments the signal arm of SPDC has been phase-modulated.
Fewer losses in the signal arm are expected if one modulates the conjugate arm,
or the pump laser driving the SPDC [204]. It would be intriguing to analyze
the optimized output speckle spot with, e.g., Hong-Ou-Mandel interferometry to
learn more about the spectral shape of the output photons, or to measure how
long a photon travels through a disordered medium.

The phase patterns in the experiments were obtained by wavefront shaping
classical light to simulate the field modes of the single-photon states. In principle,
wavefront shaping could also be applied directly on the single-photon source if
the amount of optical losses caused by uncontrolled and undetected channels is
reduced. On the other hand, simulation of the spatiotemporal mode with classical
light has proven to be suitable, allows for an interferometric measurement of the
transmission matrix, and it is applicable on states with a higher photon number.

Wavefront shaping techniques on classical light have been successfully imple-
mented to use opaque scattering media as a balanced optical beam splitter. This
is the first demonstration of a multiple input and output wavefront shaping opti-
mization. Our experiment could be extended to incident single-photon states to
observe a Hong-Ou-Mandel dip with the wavefront-shaped beam splitter, which
is planned for the near future. This work will be extended to program quan-
tum interference in disordered photonic media in general, forming the essence of
adaptive quantum optics.

Using random scattering media described by scattering matrices of lower di-
mension, such as disordered multi-mode fibers, would reduce optical losses caused
by uncontrolled and undetected channels. If these systems support the desired
linear optical circuit, one can attach a phase mask directly on the incoupling
facet to have a permanent integrated linear optical circuit optimized for the tar-
get correlation. This would be an optical multi-mode interference device based
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on disorder.

It would be intriguing to exploit two-dimensional planar disordered structures
for wavefront shaping optical circuits, such as a slab with randomly placed holes.
With polarization- and phase-sensitive NSOM it becomes possible to measure
the complex field anywhere in the structure, allowing for a mapping of the opti-
cal transfer function, resulting in, e.g., wavelength-dependent transfer matrices.
In addition, planar structures improve local accessibility via the out-of-plane di-
mension, enhancing local control of, e.g., the refractive index, add or remove
perturbations, and simplify structure design for coupling to other platforms like
plasmonics or acoustics.



APPENDIX A

Extraction of individual Anderson-localized modes

In chapter 4 we have applied the Bloch mode reconstruction algorithm [140, 165]
to decompose near-field patterns in propagating optical Bloch modes. Here we
show a proof-of-principle result that one can apply this algorithm to extract
individual localized modes. Localized modes are confined to a certain spatial
region and therefore cannot be superpositions of propagating Bloch modes with
real wave vectors. Figure A.1 shows a near-field pattern measured for a photonic-
crystal waveguide with r/a = 0.316 £ 0.001 and a near-field tip with an aperture
of 170 nm. Figure A.1(a) shows the topography. Omne can easily identify the
individual holes and the line defect. Figure A.1(b) shows the near-field pattern
at A = 941.20 £ 0.02 nm. A localized mode (arrow) is observed that has higher
amplitude than the propagating modes forming the background. The best fit
consisting of propagating Bloch-modes is shown in Fig. A.1(c¢). When this best
fit is subtracted from the original data set, the residual clearly highlights the
localized mode in Fig. A.1(d).

Most of the near-field measurements contain many localized modes, hamper-
ing the algorithm to fit Bloch modes for decent subtraction. Nevertheless, we
have repeated this procedure for 8 other near-field patterns consisting of a clear
periodic background pattern with a localized mode, similar to Fig. A.1. We de-
fine the effective mode areal as A = [ I(z,y)dzdy/max(I(z,y)), with I(x,y) the
intensity distribution in the waveguide. We find an upper limit for the average
effective mode area of A = (10 & 5)a®. The localized mode in Fig. A.1 has a
mode area of approximately 10a?.

The amplitudes of the localized modes show the periodicity of the lattice within
its confined region. It would be interesting to use a more advanced version of the
Bloch mode extraction algorithm to fit the localized modes with Bloch modes
that have complex wave vectors to include evanescent damping [140].

! This is a two-dimensional version of the mode volume defined by Ref. [205].



90

Extraction of individual Anderson-localized modes

Figure A.1.

|
Normalized amplitude 1

Extracted Anderson-localized mode. (a) Topography of a
photonic-crystal waveguide. (b) Measured amplitude at A =
941.20 £ 0.02 nm. (c¢) Reconstructed propagating Bloch modes.
(d) Measured amplitude minus the reconstructed Bloch modes
((b)—(c)), revealing the localized mode. Amplitudes are normalized
to the maximum amplitude in each figure.



APPENDIX B

Programmable linear optical circuits: the TomTom for light
propagation in opaque scattering media

Random multiple-scattering media, such as white paint, contain correlations for
light propagation that are very similar to correlations in complicated linear op-
tical circuits with many input and output modes [60]. These correlations can
be addressed by phase-modulation of the incident wavefronts [26, 27], which has
led to the realization of many optical components out of disordered materials
[62-65, 191, 192]. In principle one should be able to program the most exotic

linear optical circuits within a fraction of a mm?3.

We propose and test an algorithm that allows for programming the effective
transmission matrix T of a n X m linear optical circuit in a multiple-scattering
material with phase-modulation of the incident light. The great advantage of our
algorithm is that it can be directly applied to existing wavefront-shaping setups
without the need of measuring a transmission matrix. One simply requires a
phase-only spatial light modulator (SLM) and a CCD camera.

B.1. Algorithm

We propose an algorithm that is based on the linearity of the scattering process
in a thick random scattering material. The algorithm is illustrated for a 2 x 2
linear optical circuit in Fig. B.1 and explained for the general n x m system
below:

1. Start with an incident stationary wavefront on the SLM. The SLM is di-
vided in n spatial segments to form the basis of the input modes. For
simplicity we have illustrated in Fig. B.1 a single incident planar wave-
front that is divided in incident modes by the SLM. Experiments presented
in this appendix are performed in this manner. In principle the modes
could already be separated before arrival on the SLM, as illustrated in Fig.
7.3. This will work if the phase difference between the incident modes is
constant.

2. Optimize a target output speckle spot by phase modulation of the complete
incident wavefront (all n modes are incident and have a fixed phase relation
before arriving at the SLM). The complex field amplitude E! in the target
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Figure B.1. Schematic illustration for programming a 2 x 2 linear op-
tical circuit. The incident modes 1 and 2 are spatially separated
on the SLM. (I) For optimization of output mode 1, one creates
an optimized speckle spot with both modes incident. A permanent
phase offset « is added to one of the incident modes to get a de-
sired target field at the optimized speckle. (II) For optimization of
output mode 2, one creates an optimized speckle spot that is or-
thogonal to the output speckle spot corresponding to mode 1. (I1I)
Finally one writes phase pattern 8 = arg (eie1 + ei92) to obtain a
superposition of the fields in steps I and II.
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speckle spot is given by:!

Ey
El = a1 a 4 Es
P i1 Gi2 ... Qin ] . s (B].)

E,
where ¢; is an overall phase factor with respect to a fixed reference, a; ;
are real-valued transfer amplitudes, and E; is the complex field amplitude
of the j*" incident mode.? The transfer amplitudes a; ; are expected to be
approximately equal for random isotropic scattering. The overall phase ¢;

is often random and unknown in a standard wavefront-shaping setup, since
only the intensity is monitored.?

3. A controlled phase offset ¢; ; is applied to each field mode E; by writing a
phase offset on the corresponding segment on the SLM. This gives a desired
correlation for the row matrix that describes the transmission to E:

Ey

. B H i E2
E; — (it [ ai,lel¢i’1 aigelqﬁi,z ai,nel(b"" ] : . (B.2)

E,
This row matrix forms a programmed n X 1 transmission matrix. In prin-
ciple each a;; could be controlled by amplitude modulation of Ej;, or by
decorrelating the optimized phase pattern in the ;' segment. The com-

plete phase pattern on the SLM, including all the phase offsets for each
mode, are stored as phase pattern 6;.

4. Repeat steps 2 and 3 (m — 1) times for (m — 1) optimized orthogonal target
speckle spots to obtain different rows of the desired transmission matrix
and store each corresponding 6;.

5. Since the scattering process is linear and random,* one obtains the phase
pattern © for the desired transmission matrix by creating the superposition

1 The subscript i is a label that is 1 for the first target speckle spot, with i < m.

2 The subscript j is a label that is 1 for the first incident mode, with j < n.

3 If the modes are already separated before arrival on the SLM, as shown in Fig. 7.3, small
phase fluctuations between the incident modes are expected due to the stability of the setup,
which can hamper the optimization of a target output speckle spot as described in step 2.
This can be circumvented by first optimizing the target output speckle spot for incident
mode 1 while all other incident modes are blocked. Next optimize the same speckle spot
for incident mode 2, etcetera. Afterwards take the complete phase pattern for all incident
modes and apply phase offsets to each incident mode to maximize the intensity of the target
output speckle spot. This gives the same result as described by Eq. (B.1).

The random scattering makes the phase patterns 6; approximately orthogonal. This requires
the wavefront-shaping process to be efficient: ideally only one optimized speckle spot should
be visible in step 2.

4
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of the stored phase arrays 6;:
(B.3)

m
O =arg Z(cjewj) ,
j=1

with scaling factors |¢;|. One obtains a transmission matrix® of the form:

ctc 0 ... 0 ay €911 ay gelfr2 ay pelfin
0 e 0 ag,q €92 ag peiP2n

T = P,
0 0 Cm am,lel¢n1.l am)2el¢m,2 am7nel¢m,n

(B.4)

where the center matrix consists of the row elements that were programmed
in steps 3 and 4, and contains the correlations of the desired m x n linear
optical circuit. The right diagonal matrix ® contains the uncontrolled
overall phase contribution of each incident mode, and can therefore be
omitted.

° For convenience we have omitted the normalization constant for every transmission matrix
in this appendix.



The programmable 2 x 2 and 2 x 3 transmission matrix

95

B.2. The programmable 2 x 2 and 2 x 3 transmission
matrix

We first demonstrate the power of our algorithm by wavefront shaping a pro-
grammable 2 X 2 transmission matrix of the form:

1 i
Taxo = [ 1 el :|a (B.5)

with controllable phase difference o. We use incident continuous-wave HeNe light
(632.8 nm) on a ~ 10 pm thick layer of white paint, spray painted on a glass
microscope cover slide. An existing wavefront-shaping setup [61] was used for
this experiment. An intensity enhancement 7 over 100 was observed for each
individual speckle spot. We have performed identical experiments as described
in Sec. 7.5 where the relative phase between the incident modes is controlled
to perform an interferometric measurement of the effective transmission matrix.
The results are shown in Fig. C.2(a) where the phase difference between the
output modes is plotted as a function of the programmed phase difference a. An
excellent agreement between the programmed target phase o and observed phase
difference § is obtained.

We have repeated the same experiment for a 2 X 3 transmission matrix of the
form:

1 eia
Toxs= | 1 €7 |, (B.6)
1 1

with controllable phase differences « and . We take in our experiment g = «/4.
The results are shown in Fig C.2(b). The blue dashed lines are the expected
phase differences between the output modes as a function of the programmed
phase a. Again an excellent agreement between the programmed phases and
observed phase differences § are obtained.

Many parameters have to be explored to identify the restrictions of our algo-
rithm. It would be fascinating to explore the influence of the scattering properties
of the material, e.g., the sample geometry, the sample thickness, and scattering
mean free path. The performance of our algorithm is expected to be affected
by the efficiency of the wavefront shaping process, determining the intensity en-
hancement and the amount of light that gets focused in a target speckle spot.

At any rate, our proof-of-principle experiments demonstrate an excellent agree-
ment with theory. We anticipate that our algorithm can be implemented to create
more advanced linear optical circuits.






APPENDIX C

How good is the wavefront-shaped beam splitter?

In adaptive quantum optics random multiple-scattering media are used as a plat-
form for experiments. It is therefore essential to understand how efficiently one
can shape a speckle pattern with a programmed correlation to achieve a desired
interference. In this appendix we estimate an upper limit for the efficiency of a
wavefront-shaped balanced beam splitter. We extract two parameters that de-
scribe the performance of the wavefront-shaped balanced beam splitter: (i) the
phase difference § one would observe in interference experiments as described in
Sec. 7.5 and Sec. B.2. (i7) The energy coupling efficiency Cog that defines the
amount of energy of the light field that would undergo the transmission matrix
of the ideal lossless beam splitter. This quantity is illustrated in Fig. C.1 by two
additional beam splitters with energy transmission 7' = |t|2 = Cog.

C.1. Explanation of the simulation

Definitions and approximations

In our simulations we describe random isotropic multiple-scattering media by
randomly generated scattering matrices S of different size. We call each element
of the input vector of S an input channel, and each element of the output vector
an output channel. The number of input channels and the number of output
channels is equal to the dimension of S: Dim(S). A number of input channels
together form a separate input mode. The phase of each input channel within a
mode is controlled; one input mode describes a wavefront-shaped incident beam.
We define the input control ratio R, as the number of controlled input channels
divided by the total number of input channels. We define the mode control ratio
rs as the number of input channels in one input mode divided by the total number
of channels. In our simulations the number of input channels is the same for every
mode, and therefore Ry = nr, with n = 2 input modes. Two output channels
form the two target output modes of the wavefront-shaped beam splitter. The
simulations describe a continuous-wave experiment where every input channel
can contribute to the output channels by optical interference. The results are
valid for situations where the coherence length of the light source is much longer
than the average path length that light propagates through the random scattering
medium.



98 How good is the wavefront-shaped beam splitter?
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Figure C.1. Explanation of the energy coupling efficiency Ceg.

wavefront-shaped beam splitter will be a lossy device. To quan-
tify the fraction of the incident energy that undergoes the desired
beam splitting transmission matrix, we approximate the device by
an ideal lossless balanced beam splitter and two additional ‘vir-
tual’ beam splitters that give an energy loss. These ‘virtual’ beam

splitters have an energy transmission of Ceg.
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We want to program a target transmission matrix described by:

1 1 -1
Ttarget - ﬁ |: 1 1 :| . (Cl)

Simulation for given Dim(S) and R;

Here we describe the simulation steps required to program Tiarget:

1.
2.

Generate a random S with a given Dim(S) = D.

Select two random output channels #f and 5 of S, these will form the two
target output speckles. From now on one only has to consider rows i} and
i, of S. The output channels i} and i}, are chosen randomly for ensemble
averaging.

We define the number of input channels p = r¢D. Input mode 1 is formed
by input channels j = 1---p. Input mode 2 is formed by input channels
j=p+1---2p. From now on one only has to consider columns 1---2p
of S. This relates the field amplitudes in the output channels to the field
amplitudes of the input channels as:

Ey

Bl | 2

IR @2
Es,

with transfer matrix T/ given by:
S, S., R
T/ — |: ih,1 11,2 i1,2p ) (03)
Sipa Sip2 0 Sipop

The algorithm of Sec. B.2. is applied to obtain a beam splitter. We first
start with output mode 1. Therefore we only consider row 1 of T'. Suppose
the medium is illuminated with an incident plane wave. A maximum field
amplitude for ] is obtained if all elements Sy ;- Siz 2, have the same
phase. Therefore we set the controlled phase ¢; for each input channel
equal to —arg (Si’l _,j), which is a direct application of phase conjugation
and gives the highest possible enhancement for a single output channel.

. Weset By ---Ep=1and E,q1---Es, =0. The corresponding field 4; ; =

>~ E;¢; is calculated, which is a real number because of phase conjugation
in the previous step. The same is done for Fy --- E, = 0and Epyq -+ Fop =
1 to obtain A .

One aims for A; 7 = A; 2 to get a balanced beam splitter. Suppose one
of the two output amplitudes is significantly smaller, e.g., 411 < Aj.
We can compensate that by reducing A; 2 by adjusting the phase pat-
tern of ¢; between j = p + 1---2p by choosing a random value for ¢;
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10.

11.

12.

for a random input channel. This is repeated for random input channels
until ||A12] — A1,1] /411 < 0.02. Here A 5 becomes a complex number,
however, Re(A; 2)>Im(A; 2) since random values for ¢; are chosen and
D > 10.

. A phase offset of arg (Ttarget,1,1) is added to ¢ - - - ¢, and a phase offset of

arg (Tiarget,1,2) is added to ¢p4q - - - P2p. The phase mask 6, is given by all
G1 - Pop.

. Repeat steps 4-7 for output mode 2 to obtain .
. The total phase mask is given by:
® =arg (em1 + eiaz) , (C.4)
And is used to form a diagonal matrix @ of the form:
e, 0 ... 0
0 O, 0
. . . (C.5)
0 0 ... O
One now has related all the output channels to the input channels as:
By
Bl el P2
{ E ] =Te . (C.6)
Esp

This is an equation of the form

EL | E,
[Eé]_T[EQ , (1)
where E; are the input modes. The corresponding elements of the 2 x 2
transmission matrix T are calculated with Eq. (B.6) by setting all the
amplitudes of the input channels E; = 1 for the first input mode (j =

1---p) and E; = 0 for the second input mode (j = p+1---2p), and vice
versa.

The phase difference 0 that would be observed in an interference experiment
is given by:

6 = |(arg (T1,1) — arg (T ,2)) — (arg (T2,1) — arg (T2.2))] (C.8)
that can be reduced to the range between 0 - - - 27.

The energy coupling efficiency Ceg is given by the average intensity trans-
mission to the target output channels (B.7) divided by the same number
for Eq. (B.1). In Fig. C.1 there is a ‘virtual’ loss beam splitter for every
input mode. One therefore gets a value for Ceg for every input channel.
We restrict ourselves to the average Ceg of both input channels.
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13. Repeat steps 1-12 for ensemble averaging.

C.2. Computational results

We have performed simulations for different Dim(S) and input control ratios R;.
Each realization was repeated 99 times. The results are presented in Fig. C.2.

Figure C.2(a) shows the phase difference ¢ that one would observe in an inter-
ference experiment. The data points correspond with Dim(S) = 2000. A mean
phase difference (§) = 7 is observed that is independent of R,. The phase dif-
ference is in excellent agreement with the programmed target phase difference
(dashed blue curve). This result reproduces for Dim(S) = 100, 200, 500, 1000 and
is therefore expected to have converged to the limit that the presented (J) are
independent of Dim(S). The errors are formed by 2 times the standard deviation
o(9) of the simulations. The error in 0 decreases with increasing Rs. Figure
C.2(c) demonstrates that o(d) decreases as a function of R, for all Dim(S). The
higher Dim(S) the smaller o(d) becomes. Both observations can be attributed
to a better control of interference since more input channels contribute to the
target output channels.

Figure C.2(b) shows the energy coupling efficiency Ceg as a function of Rj.
The data points correspond with Dim(S) = 2000. The mean coupling efficiency
is well described by the line (Cog) = (1/3)Rs (dashed blue curve), for which
we do not have an explanation for. Again, this result reproduces for Dim(S)
= 100, 200, 500, 1000 and is therefore expected to have converged to the limit
that the presented (Ceg) are independent of Dim(S). The error in Ceg increases
with increasing Rg. Figure C.2(d) shows that the standard deviation o(Ceg) in-
creases as a function of R for all Dim(S). The higher Dim(S) the smaller o(Ceg)
becomes, which can be attributed to a better control of interference since more
channels contribute. For R, = 1 one can expect a wavefront shaped balanced
beam splitter with an average splitting ratio of (1/3)x(50:50)=17:17. In other
words, if one controls in an experiment all incident modes (over 47 for all polar-
izations), one would obtain on average a 17:17 beam splitter and the remaining
66% of the light energy is distributed over other output channels.

The mean phase difference (§) = 7 is excellent for optical experiments. In state-
of-the-art wavefront shaping experiments reported in literature it is expected that
Rs; < 0.1. The corresponding o(6(Rs = 0.1)) requires that several realizations
might have to be made before § = 7 is observed with high precision. The cor-
responding energy coupling efficiency Ceg(Rs = 0.1) ~ 0.03 is sufficiently high
for both classical and quantum optical interference experiments. The expected
reference coincidence rate! of a Hong-Ou-Mandel (HOM) experiment would de-
crease by a factor CEH ~ 103 compared to the ideal beam splitter, which would
be feasible with current single-photon sources. Our single-photon source gives a
reference coincidence rate in the order of 102 —10* s~! with a dip visibility of 36%
for a normal beam splitter. The maximum expected HOM reference coincidence

I The coincidence rate when the photons do not interfere.
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Calculated efficiency of the wavefront-shaped balanced
beam splitter as a function of the relative number of chan-
nels that is controlled. (a) Obtained phase difference § one
would observe in an interference experiment. The blue dashed
curve is the programmed target phase difference of 7. (c) Stan-
dard deviation over the obtained phase difference for different sizes
of the scattering matrix Dim(S). (b) Observed energy coupling ef-
ficiency Cesr. The blue dashed curve is given by (1/3)Rs, which
seems to describe the calculated data points very well. (d) Stan-
dard deviation over the obtained coupling efficiency for different
Dim(S).
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rate would therefore be in the order of 0.1 — 1 s~ for a wavefront-shaped beam
splitter in a random multiple-scattering medium. These numbers demonstrate
that a HOM experiment is indeed possible with adaptive quantum optics.
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Samenvatting

Verstrooiing en interferentie bepalen de transporteigenschappen van golven. Licht
is een golfverschijnsel dat gemanipuleerd kan worden met optische nanostructu-
ren. Licht gedraagt zich op unieke wijze in optische nanostructuren vanwege de
combinatie van sterke veelvuldige verstrooiing en interferentie over lengtescha-
len vergelijkbaar met de golflengte. De resulterende transporteigenschappen zijn
van belang voor onder andere optische communicatie, detectie, dataverwerking,
microscopie, energieopwekking en fundamentele wetenschap.

In dit proefschrift staat het temmen van licht met optische nanostructuren cen-
traal. Er worden zes experimenten beschreven die nieuwe onderzoeksrichtingen
beschrijven. Deze experimenten zijn thematisch onderverdeeld in drie delen: I
verboden zones voor licht in fotonische kristallen, IT lichttransport in fotonische
kristal golfgeleiders en III adaptieve kwantum optica. Het proefschrift vangt aan
met een algemene introductie op deze drie thema’s in hoofdstuk 1.

In deel I wordt onderzoek beschreven aan fotonische kristallen: een speciale klasse
van periodiek geordende optische nanostructuren. De combinatie van verstrooiing
en interferentie aan het periodieke rooster van fotonische kristallen zorgt ervoor
dat licht met bepaalde energieén in specifieke richtingen niet kan voortbewegen
door het kristal. Deze verboden energiebanden worden veroorzaakt door een al-
gemeen golfinterferentiefenomeen dat is beschreven door de wet van Bragg. In
deze sectie wordt onderzoek gepresenteerd naar verboden energiebanden in twee-
en driedimensionale silicium fotonische kristallen door de structuren te beschij-
nen met licht met een breed energiespectrum. Door het energiespectrum van het
gereflecteerde licht te bestuderen worden verboden energiebanden geidentificeerd.

Theoretisch stond de laagste energie al bijna een eeuw lang onwrikbaar vast
zoals voorspeld door de wet van Bragg. In hoofdstuk 2 wordt een speciale vorm
van interferentie aangetoond waarbij verboden energiebanden ontstaan met la-
gere energieén. Dit verrassende interferentiefenomeen blijkt een universeel golf-
verschijnsel dat op kan treden in bijna de helft van alle klassen van kristalroosters.
Wij noemen dit fenomeen sub-Bragg diffractie.

Het is voorspeld dat speciaal ontworpen driedimensionale fotonische kristallen
een overlappende verboden energieband hebben voor alle richtingen en polarisa-
ties van licht, beter bekend als een fotonische bandkloof. Deze kristallen hebben
een kristalrooster geinspireerd op het rooster van diamant. De fotonische band-
kloof vormt een verboden zone voor licht, zoals de elektrische bandkloof dat doet
voor elektronen in diamant. De realisatie van een fotonische bandkloof is mo-
gelijk de grootste uitdaging op het gebied van optische nanostructuren en zou
revolutionaire doorbraken leveren in de ontwikkeling van onzichtbaarheidsman-
tels, optische geheugens, efficiéntere lasers, LEDs en zonnecellen. Het aantonen
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van de aanwezigheid van een fotonische bandkloof is iets waar niemand tot voor
ons werk in was geslaagd. In hoofdstuk 3 wordt het gereflecteerde energiespec-
trum van deze fotonische kristallen onderzocht voor verschillende invalshoeken,
polarisaties en posities. Een overlappende verboden energieband is aangetoond
voor alle metingen, waaruit geconcludeerd kan worden dat deze kristallen zeer
waarschijnlijk een fotonische bandkloof bevatten.

In deel IT wordt onderzoek gepresenteerd aan lichttransport in fotonische kris-
tal golfgeleiders met behulp van nabije-veld microscopie. De fotonische kristal
golfgeleiders worden gevormd door een dunne laag GaAs waarin een gatenroos-
ter een tweedimensionale fotonische kristal vormt, waarbij een enkele rij gaten is
weggelaten. Licht wordt gedwongen om in deze ontbrekende rij gaten te blijven
door het omliggende fotonische kristal en interne reflectie. Licht plant zich lang-
zaam voort in deze structuren wat van belang is voor het beheersen van optische
informatie overdracht en het vergroten van de gevoeligheid van nanosensoren.
Normaliter blijft licht in deze structuren ingesloten en dus is het lastig om in
kaart te brengen hoe het in een structuur beweegt. Nabije-veld microscopie is
een unieke techniek die het mogelijk maakt om lokaal het lichtveld te meten
terwijl het zich bevindt in fotonische kristal golfgeleiders.

Licht kan met verschillende polarisaties in beide richtingen door een fotoni-
sche kristal golfgeleider bewegen. Dit maakt het ingewikkeld om een specifieke
toestand van het lichtveld te bestuderen waarbij het licht een gedefinieerde pola-
risatie en propagatierichting kent. In hoofdstuk 4 wordt een methode toegepast
waarbij met behulp van nabije-veld microscopie specifieke lichttoestanden bestu-
deerd kunnen worden.

Zelfs de meest geavanceerde nanostructuren wijken iets af van het perfecte ob-
ject dankzij de minieme hoeveelheid wanorde die onvermijdelijk aanwezig is door
bijvoorbeeld fabricageprocessen of materiaaleigenschappen. Dit kan leiden tot
extra verstrooiing en interferentie in de structuur, wat resulteert in een trilholte
voor licht waarin het gevangen komt te zitten. Dit zorgt voor een significante
wijziging in het transport van licht nabij verboden energiebanden. In hoofdstuk 5
wordt het effect van wanorde op licht transport in fotonische kristal golfgeleiders
bestudeerd. De energie-afthankelijke transporteigenschappen van deze nanostruc-
turen rond de verboden energiebanden zijn volledig in kaart gebracht. De kans
dat licht vast komt te zitten neemt toe wanneer de golven zich langzamer voort-
bewegen. Het gevolg is dat licht gevangen wordt op willekeurige locaties in de
golfleider voor energieén dichtbij verboden energiebanden. Zelfs in de verboden
energiebanden wordt licht opgesloten. Dit verschijnsel is 60 jaar geleden voor-
speld door Lifshitz en aangetoond voor elektronen. Wij laten nu voor het eerst
hetzelfde verschijnsel zien voor licht.

In deel III worden compleet wanordelijke optische nanostructuren onderzocht.
Dikke ondoorzichtig materialen, zoals witte verflagen, blijken een zeer interes-
sant platform te zijn voor optische experimenten. Veelvuldige verstrooiing en
interferentie zorgen ervoor dat licht zich gedraagt alsof het door een optisch dool-
hof propageert bestaande uit een complex lineair optische circuit gevormd door
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elementen zoals spiegels, lenzen en bundelsplitsers. Als een wanordelijk optisch
materiaal belicht wordt met een gemodificeerd belichtingspatroon, kan licht op
een gewenste manier door dit doolhof bewegen. Op deze manier kan een witte
verflaag worden gebruikt als een lineair optisch circuit dat programmeerbaar is
in functionaliteit. Dit is ook toepasbaar voor kwantumtoestanden van licht, zoals
enkele inkomende fotonen. Dit maakt het mogelijk om kwantuminterferentie te
programmeren met behulp van wanordelijke optische nanostructuren, iets wat
wij adaptieve kwantum optica noemen. In deze sectie worden twee experimenten
beschreven die nodig zijn om een Hong-Ou-Mandel interferometrie experiment
te doen waarbij de bundelsplitser wordt gevormd door een witte verflaag. Dit
vormt de allereerste demonstratie van adaptieve kwantum optica.

Voor het Hong-Ou-Mandel experiment met een witte verflaag als bundelsplit-
ser moet allereerst worden aangetoond dat enkele fotonen programmeerbaar door
een wanordelijke optisch materiaal kunnen bewegen. In hoofdstuk 6 worden de
kwantumlichtbron beschreven en aangetoond dat het golffront van enkele fotonen
gecontroleerd kan worden. Dit vormt de eerste demonstratie van programmeer-
bare propagatie van enkele fotonen door een wanordelijk optische nanostructuur.

Het Hong-Ou-Mandel experiment heeft een bundelsplitser nodig. In hoofdstuk
7 worden twee inkomende lichtbundels op een witte verflaag dusdanig gemani-
puleerd dat het belichtingsspattroon twee uitgaande bundels veroorzaakt. Door-
middel van interferentie experimenten blijkt dat deze twee uitgaande bundels
zich bij benadering vrijwel hetzelfde gedragen als de uitgangen van een normale
bundelsplitser. Dit werk vormt de basis voor de realisatie van complexere lineaire
optische elementen.

In hoofdstuk 8 wordt een samenvatting gegeven van het proefschrift en worden
suggesties aangedragen voor toekomstig onderzoek. Appendix A beschrijft een
combinatie van het werk van hoofdstuk 4 en 5 waarbij een enkele gevangen toe-
stand van licht langs een fotonische kristal golfgeleider wordt bestudeerd. Appen-
dix B beschrijft theoretisch en experimenteel werk gebaseerd op hoofdstuk 7 over
een algemeen toepasbaar algoritme dat het mogelijk maakt om arbitraire lineaire
optische circuits te programmeren in wanordelijke optische nanostructuren. Dit
algoritme werkt als het ware als een TomTom voor lichtpropagatie. Gebaseerd op
dit algoritme is een afschatting gemaakt van hoe efficiént een bundelsplitser kan
zijn die gevormd wordt door een wanordelijk optische nanostructuur. Simulaties
hierover worden gepresenteerd in appendix C.
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Propositions

belonging to the thesis

LIGHT CONTROL WITH
ORDERED AND DISORDERED NANOPHOTONIC MEDIA

by Simon R. Huisman

Proposition 1 Sub-Bragg diffraction affects the melting point of ice and there-
fore influences our calibration of temperature.

- Chapter 2 -

Proposition 2 Not so much new fabrication methods, but rather sophisticated
theory on finite-size photonic crystals is warranted to advance the study on light
interaction with photonic band gap crystals.

- Chapter 3 -

Proposition 3 Two-dimensional random scattering media offer the most versa-
tile platform for programmable interference.

- Chapters 6 and 7 -

Proposition 4 The cost of a single-photon counting module scales approximately
inversely proportional to its dark count rate.

Proposition 5 Every good scientist has to act sometimes like a successful sci-
entist to become a better scientist.

- Inspired by A. Lagendijk (2012) -

Proposition 6 Scientists should heed commercial billboard advertisements in or-
der to deliver a message.

Proposition 7 The modern Dutch policy on connecting wildlife areas is a waste
of resources as long as agriculture is protected.

Proposition 8 To present, pretend, and participate are key components in bi-
asing public judgment.
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