

G
E

N
E

R
IC

 C
O

N
T

R
O

L
 O

F
 M

A
T

E
R

IA
L

 H
A

N
D

L
IN

G
 S

Y
ST

E
M

S

GENERIC CONTROL OF MATERIAL

HANDLING SYSTEMS

Sameh Haneyah

 Sam

eh H
aneyah

UNIVERSITY OF TWENTE.
Industrial Engineering and Business

Information Systems

GENERIC CONTROL OF MATERIAL HANDLING SYSTEMS

Material handling systems (MHSs) are in general complex
installations that raise challenging design and control problems. In
the literature, design and control problems have received a lot of
attention within distinct business sectors or systems, but primarily
from a system’s user perspective. Much less attention is paid to
generic (i.e., sector independent) control architectures and modeling
approaches across these various sectors, which is in the first place
interesting for MHS suppliers. In this thesis, the focus is on the
perspective of an MHS supplier, who produces a broad range of
MHSs for distinct sectors, for which achieving design and control
synergy is vital to facilitate, among other issues, design and
maintenance. Customized planning and control approaches for MHSs
have significant drawbacks for both MHS users and MHS suppliers.
Therefore, the aim of this thesis is to design, in collaboration with a
major industrial partner, a generic and modular planning and control
architecture for MHSs, while not compromising the performance of
customized control approaches. To this end, the thesis provides
generic modeling techniques, a better understanding of the
similarities and differences between distinct business sectors where
MHSs are used, and draws the boundaries of generic control.

D174

	

	

GENERIC	CONTROL	OF	MATERIAL	HANDLING	SYSTEMS	

Sameh	Haneyah

Dissertation committee

Chairman & secretary Prof. dr. R.A. Wessel
Promotor Prof. dr. W.H.M. Zijm
Assistant promotors Dr. J.M.J. Schutten
 Dr. P.C. Schuur
Members Prof. dr. J. van Hillegersberg
 Prof. dr. M.J. Uetz
 Prof. dr. S.S. Heragu
 Prof. dr. M.B.M. de Koster
 Dr. Dipl.-Ing D. Spee

This thesis is number D174 of the thesis series of the Beta Research School for
Operations Management and Logistics. The Beta research school is a joint
initiative of the departments of Technology Management and Mathematics and
Computing Science at the Eindhoven University of Technology, and the Center for
Telematics and Information Technology at the University of Twente. Beta is the
largest research center in the Netherland in the field of operations management in
technology-intensive environments. The mission of Beta is to carry out
fundamental and applied research on the analysis, design, and control of
operational processes.

The work described in this thesis was performed at the Industrial Engineering and
Business Information Systems group, Centre for Telematics and Information
Technology, Faculty of Management and Governance, University of Twente, PO
Box 217, 7500 AE Enschede, The Netherlands.

Printed by Wöhrmann Print Service

The book cover is based on the Denver International Airport Abstraction painting
by the American artist Sharon Schock, who kindly gave the permission to use the
painting.

© S. Haneyah, Enschede, 2013
All rights reserved. No part of this publication may be reproduced without the
prior written permission of the author.

ISBN 978-90-365-0737-0

ii

GENERIC	CONTROL	OF	MATERIAL	HANDLING	SYSTEMS	

DISSERTATION

to obtain

the degree of doctor at the University of Twente,

on the authority of the rector magnificus,

Prof. dr. H. Brinksma,

on account of the decision of the graduation committee,

to be publicly defended

on Friday, the 27th of September, 2013 at 12.45

by

Sameh Haneyah,

born on the 1st of November, 1983

in Ramallah, Palestine

	 	

iii

This dissertation is approved by the promotor,
Prof. dr. W.H.M. Zijm

and the assistant promotors,
Dr. J.M.J. Schutten
Dr. P.C. Schuur

I

Table of Contents

Chapter 1 Introduction .. 1

1.1 Research motivation .. 2

1.2 Scope of analysis and industrial sectors .. 2

1.3 Problem formulation .. 8

1.4 Literature ... 14

1.5 Theory versus practice ... 22

1.6 Summary and thesis outline .. 24

Chapter 2 A Generic Control Architecture ... 27

2.1 A concept for a generic control architecture ... 27

2.2 Decision-making processes ... 31

2.3 Concluding remarks .. 39

Chapter 3 Applications Of The Planning And Scheduling Control Modules 41

3.1 A generic material flow model .. 42

3.2 An MHS with a routing configuration .. 55

3.3 Chapter conclusion .. 60

Chapter 4 A Baggage Handling Business Case .. 61

4.1 The baggage handling process .. 61

4.2 The baggage handling system ... 63

4.3 The control architecture applied to the BHS ... 67

4.4 Implementation .. 75

4.5 Chapter conclusion .. 80

Chapter 5 Improving The Performance Of Sorter Systems By Scheduling Inbound
Containers ... 83

5.1 A generic process model for sorter systems .. 84

5.2 Literature on container scheduling .. 86

5.3 Scheduling inbound containers in parcel & postal sorting 89

5.4 Scheduling inbound containers in baggage handling 95

5.5 Computational studies ... 101

5.6 Chapter conclusion .. 114

Chapter 6 Local Traffic Control In Conveyor Merge Configurations 115

6.1 The merge configuration ... 116

II

6.2 Theoretical context and key literature ... 120

6.3 Problem formulation .. 122

6.4 A dynamic space allocation approach ... 129

6.5 Implementation .. 137

6.6 Chapter conclusion .. 142

Chapter 7 Conclusions, Recommendations, And Future Research 145

7.1 The research agenda revisited ... 145

7.2 Main contribution .. 146

7.3 General conclusions .. 147

7.4 Recommendations and guidelines for practice .. 148

7.5 Future research .. 149

1

Chapter	1 	

Introduction1	

The material handling world is broad and diverse. We can observe material handling in
many facets of modern economies: mail delivered in a postal system, bags moved in
an airport, parts moved in a manufacturing system, pallet loads moved in a warehouse,
containers handled by cranes at a sea port, trash collected in a waste management
system, and goods moved by train. This thesis focuses on industrial sectors where
systems operate within a certain facility, with material handling being the key
function. Therefore, we exclude manufacturing facilities where material handling is
not the key function but rather a support function.

Material handling systems (MHSs) 2 are in general complex installations that comprise
various processes, such as inbound, storage, batching, sorting, picking, and outbound
processes. Both the design and the control of these systems have received a lot of
attention in research in various industrial sectors. However, there are, to the best of our
knowledge, no reports on generic (i.e., sector independent) planning and control
architectures and modeling approaches. In the literature, the perspective of the
system’s user is dominant; we often encounter studies dealing with systems in a
particular airport or a distribution center of certain characteristics. Less attention is
paid to a generic, broader perspective, which is interesting for the MHSs’ supplier. In
this thesis, we take the perspective of the MHSs’ supplier, who produces a broad range
of MHSs for which achieving as much synergy as possible is vital to facilitate design.
We attempt to bridge the gap between practical requirements for generic control
approaches and existing theory. To this end, we address questions that are not typically
posted by MHSs’ users, and are in fact interesting in the first place for the producer,
apart from their scientific merits. In this context, we stress that this research is heavily
motivated by the collaboration with a major global company supplying MHSs in all
industrial sectors discussed in this thesis.

This chapter proceeds as follows: Section 1.1 discusses the research motivation in
concrete terms. Afterwards, Section 1.2 outlines the scope of our analysis and presents
the industrial sectors that we study throughout this thesis. Next, Section 1.3 formulates
the generic MHS control problem, by contrasting MHSs in the different industrial

1 This chapter is based on Haneyah et al. (2013a).
2 The terminology and list of abbreviations are provided at the end of this book.

2

sectors and then analyzing their practical requirements in view of the generic control
problem. As Section 1.3 formulates the problem and lists the requirements, Section 1.4
addresses theory by conducting a literature review in a search for answers from
existing theory to the requirements from practice. Section 1.5 weighs the practical
requirements against the theoretical knowledge and sets the research agenda. Finally,
Section 1.6 presents the structure of the remainder of this thesis.

1.1 Research motivation
Currently, planning and control of MHSs are highly customized and project specific,
which has important drawbacks for at least two practical reasons. From a system user
point of view, the environment and user requirements of systems may vary over time,
yielding the need for adaptation of the planning and control procedures. An adaptation
may include implementing new control strategies or adjusting existing ones. From a
systems’ supplier point of view, an overall planning and control architecture that
exploits synergy between the different industrial sectors (and at the same time is
flexible with respect to changing business parameters and objectives) may reduce
design time and costs considerably. Moreover, from a scientific point of view, finding
a common ground to model MHSs in totally different industrial sectors and developing
a generic control architecture that can be applied to MHSs in these different sectors
presents a true challenge.

This thesis focuses on generic planning and control of automated MHSs, where we pay
attention to a set of MHSs in three different industrial sectors:

o Baggage handling at airports, which we simply refer to as baggage handling.
o Distribution in warehouses, which we refer to simply as distribution.
o Parcel & postal sorting.

Planning and control of MHSs need to be robust and yield close-to-optimal systems’
performance. Typical performance indicators concern throughput, lead time, and
reliability. The aim of this research is to design a planning and control architecture that
clearly describes the hierarchical framework of decisions to be taken at various levels,
as well as the required information for decisions at each level (e.g., from overall
workload planning to local traffic control). The planning and control architecture
should be at low costs, flexible, easy to maintain, easy to implement, allowing for easy
adaptation to configuration changes, changes in performance criteria, different
operational modes, and adjustment of the control strategies.

In this context, we emphasize that our focus is on control architectures and not on
software architectures. Although the advantages and disadvantages of centralization
versus decentralization in both domains are very much alike, we have to make a
distinction because, e.g., a decentralized control architecture can be implemented by a
single-tier software architecture and vice versa.

1.2 Scope of analysis and industrial sectors
In this section, we outline the scope boundaries (Section 1.2.1), and then describe the
industrial sectors under study in more detail (Section 1.2.2).

3

1.2.1 Project scope

Figure 1.1 shows three possible scopes of analysis, along with the party mainly
responsible for decision-making within each scope, i.e., the MHS’s user or the MHS’s
supplier. Scope boundaries are as follows:

o Scope 3 is the widest, taking the whole logistic network into account. In this
scope, decisions have a global impact and involve many stakeholders. An
example of a problem within this scope is the facility location problem of
depots within a logistic network, in order to optimize transportation costs.
Another problem to deal with is how to plan the flow between network nodes in
order to minimize costs while satisfying supply and demand constraints.

o Scope 2 focuses on a single site in the network. It includes inbound and
outbound operations at the site of the MHS’s user. Scheduling these operations
is done by the MHS’s user. However, the MHSs’ suppliers may consider the
extension of their services to offer scheduling tools to the MHS’s user that can
result in better system performance. An example is scheduling inbound
containers that are waiting at a parcel sorting hub in order to make the operation
of the MHS more efficient.

o Scope 1 focuses on the control of the MHS. The supplier is entirely responsible
for decisions within this scope, as the (built-in) control architecture of the MHS
is the relevant element here, i.e., the software running the automated MHS.
Decisions within this scope have a local impact.

In this thesis we exclude Scope 3, because the focus then shifts towards network
optimization. A shift towards network optimization will limit the attention paid to the
internal system within a single facility in the network, i.e., the MHS, which is our main
area of interest. The focus is on the control of large MHSs, which is mostly the
analysis within Scope 1. However, we may have to deal with problems at Scope 2,
which are closely related to the operation of the MHS, e.g., container scheduling to
alleviate peak loads in MHSs. Solving this problem needs real-time information from
the MHS, e.g. on the nature of the load in transport within the MHS. Chapter 2
provides more details on the problems we work on in this thesis.

Figure 1.1. Scope boundaries.

4

In this thesis, we select MHSs from three industrial sectors to be the starting point of
our analysis. The selected MHSs, which will be described in subsequent chapters,
include the main (automated) operations of the logistic processes within the industrial
sectors studied. We are actually interested in the intersection among industrial sectors
where opportunities of generic control might be lost, and are less interested in the
obvious differences. In other words, we focus on systems in different industrial sectors
that are similar in terms of the equipment, but are using different control methods and
work in different environments. Therefore, the analysis and findings are likely to be
dependent on the initial selection of reference MHSs. However, we will analyze
variants and extensions of the modeled MHSs, and try to propose flexible generic
control methods that can apply to other MHSs than the ones this thesis concentrates
on.

1.2.2 Industrial sectors

This section addresses three different industrial sectors using MHSs. The aim is to gain
insight into the requirements and functionalities of MHSs in these sectors. Our scope
of analysis is restricted to the built-in control of the MHS that is within the
responsibility of the MHS supplier, not the MHS user.

1.2.2.1 Parcel & postal sorting

In parcel & postal sorting, systems are typically used by express parcel carriers, such
as DHL3, UPS4, and TNT5, to receive items coming to a hub from various sources, and
then sort them according to destination, in preparation for further transport. In this
business, as the quantities to be handled grow, manual operations fall short. Thus, the
need for automated sorting systems, or simply sorters, is evident. Such systems can be
seen in various forms and capabilities to meet the specific demands of system users.
The term parcel is used throughout this thesis as the main item handled within these
systems. However, other items, such as totes, can be handled by the same sorters as we
clarify later on. Figure 1.2 shows the generic scheme of a simple sorter.

The process starts at the unload area, where containers carrying parcels arrive at the
system via airplanes or trucks. Operators unload the containers and place the parcels
on the infeed conveyors (or simply infeeds). These infeeds transport the parcels to the
main conveyor represented by the big loop in Figure 1.2. The merge operation takes
place when the parcels transported on the infeeds reach the main conveyor. Once they
are on the main conveyor, the parcels are transported until they reach the load area. In
this area, parcels are automatically directed to their destinations, based on parcel
identification labels. Parcels are released into special outfeed conveyors called sorting
chutes (see Figure 1.2). At the end of these chutes, operators gather the parcels in
containers. In the layout given in Figure 1.2, some parcels may flow back into the

3 Acronym that stands for Dalsey, Hillblom and Lynn (surnames of the founders of this
Company).
4 Acronym that stands for United Parcel Service.
5 Acronym that stands for Thomas Nationwide Transport.

5

unload area, which means that they have passed the load area without being sorted.
This may happen when the chutes are full or when there is some disruption in the
system. Such a system is therefore referred to as a closed-loop sorting system, or loop
sorter. Note that the system depicted in Figure 1.2 is a relatively simple one; larger
and more complex systems can entail several load and unload areas, multiple loops,
more complex layouts, etc. Such complex systems may provide alternative routes to
reach a certain destination (chute).

Figure 1.2. Generic scheme of a closed-loop parcels sorting system.

A parcel sorting hub operates at full power in specific time intervals, mostly during
night-time. Normally, tons of parcels (and envelopes) are delivered, sorted, and
transported within a few hours. In these rush-hour conditions, the main objective is to
maximize throughput of the systems, in order to minimize the time period between the
arrival and departure times of planes or trucks. This may result in some other
functional requirements that may bring more efficiency to the process, e.g., balancing
material flows within the system.

1.2.2.2 Baggage handling

We focus on baggage handling systems (BHSs) in airports. Baggage handling is a
sector that differs from the other industrial sectors in the involvement of multiple
stakeholders. These stakeholders include: the airport (main customer), airlines and
handlers (parties using the BHS), security, and customs. The latter two are external
parties that impose restrictions on the operation of the BHS. In other sectors, e.g.,
distribution, the warehouse operator is the main stakeholder. There, the MHS’s
supplier can build and deliver a system completely according to the stakeholder’s

6

requests. However, in baggage handling the different stakeholders all influence the
system design; this makes it challenging to satisfy the interests of all stakeholders.

In a BHS, the bag as the main item treated belongs to one of three possible categories
(see Figure 1.3). On a generic level, first a bag may belong to a passenger who arrives
at the airport and has a departing flight to catch. Second, it may belong to a transit
passenger who lands on the airport and has a connecting flight to catch. Finally, a bag
may belong to a passenger for whom the airport is his or her final destination. In a
BHS, there is an Early Bags Storage (EBS), where bags that arrive early to the system
are temporarily stored.

Figure 1.3. Generic scheme of a baggage handling system.

The purpose of a BHS is to deliver each bag from some source point A to some
destination point B, within a specific time limit. However, the airport environment of a
BHS is highly dynamic and stochastic, which complicates the delivery job, and
generates additional challenges. Moreover, every stakeholder has its own desires,
which affect its criteria for assessing the BHS. A main performance measure for BHS
is the irregularity rate. The irregularity rate is the number of bags (per 1000) that are
supposed to be on a certain plane but are not (luggage that missed the correct plane,
and lost luggage). From a practical point of view, minimizing the irregularity rate is
most challenging when dealing with connecting flights. This is because several things
may go wrong when trying to correctly deliver an arriving bag to the next connecting
plane within a given (often short) time window. Problems may arise from: wrong or
corrupted bag tags, planes arriving late, disruptions in the BHS causing bags to miss
their connecting flight, etc. As a result, the main objective for a BHS is to minimize
the irregularity rate. An important system design parameter is the in-system time. This
is the time a bag needs to travel along the longest path between the input and output
points that are farthest apart in the BHS. This measure does not account for manual
operations such as manual coding of bags when bag tags are found corrupted.

Within the BHS, an important attribute of each bag is the urgency measure in terms of
the time left for the departure of its corresponding flight. Urgent bags have the highest
priority to move to the intended destination as the time window available for them is
the smallest. As time goes by, non-urgent bags become urgent. Business class bags

7

have a priority when loading and unloading the plane, but they do not affect the
urgency classification.

A BHS is a complex system consisting of several routes of transportation by different
possible means such as conveyors and Destination Coded Vehicles (DCVs). The
system includes different resources, e.g., screening machines, and redundant transport
systems to ensure high availability. Therefore, there are different possible routings to
realize the transport operation. The logistic control of this system must use the
resources in a way that optimizes the bag’s flow time in the system (Section 1.3.2
discusses other relevant requirements). To sum up, the general high level objective for
the control architecture of BHSs is to minimize the irregularity rate. This is done by
completing the overall transportation operation within the time limits, which requires a
smooth process that is able to avoid disruptions or congestion that may result in bags
missing their corresponding flights.

1.2.2.3 Distribution

The distribution sector concerns the MHSs used in warehouses and distribution centers
to handle various types of products for various customers. In distribution, projects vary
considerably in terms of user requirements and the variety of system designs and
operational approaches that can be implemented. However, for all systems the generic
set of ordered activities in a distribution center (DC) are as follows: Receiving,
Storage, Order Picking, Consolidation, and Shipping. Moreover, Cross Docking is an
operation in which the DC acts merely as a material handler without intermediate
storage. Figure 1.4 shows a schematic view of a warehouse with a goods receiving
area, a storage area, an order picking area (with three pick stations), and a
consolidation area. For storage areas, automated storage and retrieval systems
(ASRSs) are often used. An ASRS consists of a number of parallel racks and a number
of cranes operating in the aisles between these racks. We will study these systems in
more detail in subsequent chapters (see Section 3.1.1 for a more detailed illustration).
In order to study MHSs with common equipment among the three industrial sectors,
the distribution systems we study use mainly ASRSs and loop conveyors with pick
stations.

In this sector, the general purpose is to satisfy the orders in time and with good quality,
given time, cost, and other operational constraints. In order to satisfy orders properly
within a certain time frame, a high throughput of the MHSs is a main objective. At
each process stage in these systems, there normally is a set of parallel stations
performing the same tasks, for example, parallel order pick stations, parallel cranes,
etc. Therefore, it is crucial to balance the workloads within the system. There should
be a generic control approach that entails generic algorithms, allowing for applications
in different types of systems. However, the current control of MHSs in distribution
centers is highly customized and often includes quite a number of relatively
complicated rules to realize as much throughput as possible at the MHS.

As a general remark, according to observations from practice, there is an increasing
interest from system architects, towards control solutions that are more robust and
generic, at the expense of sacrificing the maximum attainable throughput from MHSs.

8

This is due to certain design and operational requirements that we explain in Section
1.3.2.

Figure 1.4. Generic scheme of a distribution center/warehouse.

1.3 Problem formulation
In this section, we contrast MHSs in the different industrial sectors (Section 1.3.1) and
then we define the common requirements for a generic control architecture (Section
1.3.2).

1.3.1 Contrasting MHSs in the different industrial sectors

Different industrial sectors imply different MHS’s user environments and
requirements. However, we take the challenge to deal with the differences in order to
model the MHSs in different sectors in a generic way that maximally exploits
synergies. A first impression from the general study of these different sectors tends to
suggest a certain level of synergy among them. MHSs in baggage handling and parcel
& postal sorting seem to have more similarity with each other than with MHSs in
distribution. In the following, we list the main similarities of these two sectors, and at
some points we indicate how the distribution sector differs:

o Routing parcels or bags within the system can be complex and with more than
one route to go from one point to another.

o Compared to MHSs that we study in distribution, the time pressure is higher in
BHSs and parcel & postal sorting systems, as is reflected in the necessity to
deliver the items to their intended destinations in time to meet strict deadlines.

o Unpredictable arrivals: in baggage handling, there is no information ahead on
the type, number or weight of bags from check-in passengers. For parcel &
postal sorting and transit bags, information is in the network but not used to

9

plan the operations. In distribution, there are planned goods to receive with
known quantities and arrival times, so the distribution center can plan
operations ahead.

o Item integrity: the bag or parcel enters and leaves a BHS or a parcel & postal
sorting system in the same form and with the same characteristics or attributes.
On the other hand, in distribution, pallets are broken into product totes, and
these product totes are handled within the material handling system. The unit
transported by the MHS may be the same, i.e., totes, but the characteristics of
the tote change. A product tote changes, e.g., when some items are picked from
it, and becomes part of a reverse flow that goes back from pick stations to the
storage area.

o Items uniqueness: a parcel or a bag is a unique item in a BHS or a parcel &
postal sorting system and is required for a certain plane or truck. However, in
distribution there are multiple alternatives for a certain item. If an order requires
one unit from item x, there may be several totes containing item x. There is a
choice from which tote to pick.

o Unit handled: in baggage handling and parcel & postal sorting, the bag or parcel
is normally picked, stored, and transported throughout the MHS. In this sense,
bags or parcels are single unit loads. However, in distribution, there may be a
different definition of the unit load, which implies a number of items to be
handled together and usually supported by a handling device such as a pallet,
case or tote.

o Heterogeneous items: bags and parcels may be of different shapes, weights,
dimensions, which affects the conveyability on an MHS. However, in a
distribution center there are normally standardized unit loads.

In the distribution sector, the synergy on a higher level may be less apparent,
especially due to the high variety in implemented systems. However, based on the
study of some distribution centers in practice, we observe synergy on a subsystem
level in terms of physical components. Direct examples are:

o The storage in the ASRS system is analogous to the Early Bags Storage in
baggage handling (note that such systems are not used in parcel & postal
sorting due to the absence of a storage function). The physical system is similar
in these two sectors, but there are storage rules in distribution centers that
determine where an item is stored, based on criteria such as item availability in
aisles. On the other hand, for baggage handling during peak times, the main
concern is to store all bags that need storage as fast as possible without
considering storage rules and anticipating the balance of picking from different
storage aisles, where a storage aisle is defined between two storage racks.
These functional issues raise challenges for developing a generic storage and
retrieval strategy that can be used by both sectors. Finally, the unit of storage in
baggage handling is a bag, whereas in distribution there are storage concepts for
totes, pallets, cartons, etc. and the picking operation differs accordingly.

o Sorting systems: the backbone of the MHSs in parcel & postal sorting is the
sorting system, consisting of sorters, which are generally characterized by a few
inputs, many outputs, and high speed. However, similar systems may be a sub-

10

system in the other two sectors. We will call similar systems also sorters for
modeling purposes. In distribution, products arriving to be stored are normally
merged on a conveyor loop that leads totes to storage aisles. In this context,
guiding a tote to its destined storage aisle is a sorting operation that is similar to
guiding the parcel to its destined sorting chute. Broken totes, which are totes
that are picked from but still contain items, return from order pick stations and
subsequently merge on the conveyor loop that leads totes back to storage,
which is again similar to the merge operation in parcel & postal sorting. In the
other direction, totes leave the storage aisles to go to the pick stations; this
transport operation sorts totes to destined pick stations as well. In baggage
handling, sorters are also used for sorting bags to, e.g., parallel screening
machines or laterals6.

We believe it makes sense to provide a generic material flow model to explain the
processes in the different sectors. The model entails generic process stages, which
should cover all possible operations of MHSs in practice. Therefore, we propose the
material flow terminology of the most complex sector in terms of operations or
process stages, which is distribution. MHSs in distribution entail some complex and
more detailed operations than the other two sectors, e.g., the order picking operation
that changes the characteristics of handled items. Our claim is that any operation in the
other two sectors can be mapped to one of the operations in the distribution sector.
Transportation channels may be more complex in BHSs, but this is a matter of
transportation complexity, not operational variety. Figure 1.5 presents a generic
material flow model, together with a tabulated description of process stages, based on
the analysis of selected reference sites from the different industrial sectors in practice.
The model divides the physical flow into six process stages. In each stage, there is a
set of resources modeled in abstract terms as workstations. This model lists resources
and indicates transportation possibilities, but no explicit transportation routes.

1.3.2 Common requirements of MHSs/control architecture

The objective of this thesis is to develop a generic control architecture that can be
applied to various types of MHSs. The challenge for a generic control architecture lies
in its ability to satisfy the objectives of different sectors. Therefore, we first look at the
objectives of MHSs in different sectors to decide whether a generic control
architecture can be achieved.

We define a set of generic requirements for an appropriate control architecture, in
which we discern functional and design requirements. Functional requirements are the
key performance indicators (KPIs) for MHSs. Design requirements are the basic
characteristics of a control architecture from development, implementation, and
maintenance perspectives. In this section, we first discuss functional requirements,
followed by design requirements. At a system level, there are two important functional
objectives that serve as KPIs for MHSs in all sectors:

6 A type of outfeed conveyors used in baggage handling to gather bags in preparation for
loading on planes.

11

Figure 1.5. Generic material flow model with the description of process stages per sector.

12

o Throughput: this is a measure concerned with the capacity of systems.
Throughput has to conform to the functional capacity requirements that specify
the number of items the MHS is able to handle per unit of time while operating,
according to design specifications. This presents a constraint to be met by the
MHS. Moreover, throughput may be directly related to the overall operation
time. For example, a transfer operation in an express parcel sorting system
refers to the operation of unloading all arriving containers, sorting all parcels,
and finally loading all sorted parcels. When this operation is performed in less
time, the throughput is higher since throughput is measured in terms of parcels
sorted per hour.

o Response time: this is a measure of the promptness in coping with dynamic
operational requirements such as the completion of an urgent order in a
distribution center, or the handling of a batch of urgent bags arriving at an
airport.

The time dimension may suggest an overlap in the definition of these two main KPIs.
However, a crucial difference is that throughput is measured at some point and as an
average value, e.g., number of parcels passing the output chute per hour. On the other
hand, response time covers the variation in the operational requirements by providing
a time frame within which to respond, measured at a system level.

In addition to response time and throughput, we mention a KPI that has to do with
operators working at the MHS. This KPI is labor efficiency, from the following
perspective: wherever an interaction between the MHS and operators occurs, the MHS
should function in a way that ensures efficient task allocation to operators even if
inefficient allocation does not hamper throughput or response time. An example is
when several operators load parcels onto parallel infeed conveyors in a sorting system
(see Section 2.1). In this case, the speeds of the infeeds should be synchronized in a
way that results in an even demand for parcels to be loaded by operators. In other
words, having an infeed moving at a slow pace (e.g., due to a blocked output point),
and another infeed moving at a fast pace, would require the operator on the fast infeed
to load parcels at a higher rate than his peer on the slow infeed. This results in unfair
workload distribution among operators. We summarize the aforementioned
requirements in the following model:

 Minimize Response time
 Subject to

Throughput>= prescribed target (functional capacity)
Labor Efficiency>= prescribed target

The decision variables in the model above are basically the control rules implemented
in the architecture. Examples of such rules are how to determine in which aisle to store
a certain item, on which workstation to activate a certain order, when to release bags
from storage to destination, and which route to take to the destination.

As a matter of fact, our collaboration with experts from industry resulted in a long list
of functional requirements for MHSs. However, we claim that the model above
presents a compact set of functional requirements, in which all other functional

13

requirements are implicitly involved. In the following, we present a list of the other
functional requirements for the MHS, which are implicit in the model above:

o Starvation avoidance: starvation to material in an active resource/workstation is
caused by delays in delivery from other resources or improper workload
balancing. This phenomenon is implicitly handled as a means to reduce
response time, or to aim at a higher throughput.

o Blocking avoidance: blocking occurs when an item is unable to get service from
a workstation/resource, because it is still occupied or its buffer is full. Blocking
is an obstacle to throughput, and may cause response times to be unnecessarily
long. Therefore, blocking avoidance plays a role in the model.

o Deadlock avoidance: A deadlock is a condition in which items do not move on
a certain transportation resource or are blocked at a certain workstation as a
result of overloading the system resources.

o Saturation management: it is known in practice, especially in BHSs, that the
capacity of the system decreases dramatically if the load on the system exceeds
a certain threshold value. This state is called saturation. Undesired resource
allocation may lead to saturation, which in turn leads to longer response times,
and eventually may lead to a deadlock situation.

o Prevention of imbalanced queues and recirculation as they cause a decline in
throughput.

o Management of buffers: in all systems there can be buffers. It is critical to deal
with buffers properly; where, when, and how much to buffer in order to
minimize response time and to satisfy throughput requirements.

o Dealing with urgent items (e.g., critical bags). This is directly related to
optimizing response times.

o Dealing with disruptions: the control architecture should be able to respond to
disruptions. E.g., it should divert bags in a BHS to a less occupied cluster of
screening machines when another cluster suffers from an accumulation of
workload. Moreover, the control architecture should respond to failures of
physical equipment by proceeding the operation on the active equipment. E.g.,
when a crane fails in a distribution system then the retrieval tasks of the crane
should be reassigned to the (active) cranes. These issues are related to the
overall objective of response time minimization.

o Operational flexibility: this perspective of flexibility refers to the ability to cope
with a changing operational environment. This requirement may be involved in
response time minimization and throughput maximization simultaneously. For
example, bags coming towards the Early Bags Storage have to be distributed
evenly among parallel storage aisles. In this way, we gain higher throughput in
the storage operation, and later in the retrieval operation as cranes can retrieve
bags from all aisles simultaneously (assuming there is at least one crane at each
aisle). Moreover, the time needed to retrieve all bags for a certain flight is
minimized when bags of this flight are distributed among different aisles,

14

allowing several cranes to work on retrievals for the same flight. When the load
in the system is high, incoming bags can be allocated to the first available aisle,
i.e., the water fall principle. This strategy would result in even quantities across
all aisles when the load is high enough to fill all aisles. However, when the load
in the system is low, the water fall principle results in the first aisle to have a
high load, whereas the load in aisles decreases as we go downstream. This
happens when the load in the system is not high enough to fill all aisles evenly
using the water fall principle. Therefore, we have to implement a smarter
balancing strategy that reacts to changes in the operational environment (in this
case low load in transport). In this context, operational flexibility is a functional
requirement to be handled.

So far we discussed the functional requirements. At this point, we present the design
requirements for a generic control architecture. Obviously, the main objective we seek
is the design of a generic control architecture that may apply to MHSs in different
industrial sectors. Moreover, we find that, in practice, other design requirements are
necessary for a generic control architecture. In the following, we list these design
requirements and make use of some descriptions presented by Zimran (1990) to define
them formally:

o Flexibility: the flexibility of a control architecture from the design perspective
is the ability to introduce changes in the system layout with minor
modifications in the control architecture.

o Modularity: a modular design allows to build the architecture gradually through
the use of a decomposed structure, and to have the architecture capable of
introducing or removing some applications based on case-specific details.

o Scalability: a scalable design allows the control architecture to control a wide
range of system sizes.

o Robustness: a robust design entails: first, graceful degradation, which is a term
used often in practice and refers to the ability of the control architecture to keep
functioning, and keep the MHS up and running when some units of the physical
system fail. Second, it entails the ability to take action when disruptions occur.

Section 1.4 presents the results of a systematic literature review carried out to look for
useful studies, which may help in synthesizing a control architecture that is in line with
the requirements presented in this section.

1.4 Literature
In this section, we first present the basic forms of control in order to define the scope
of the literature study and to position the studies in the literature review in a certain
theoretical framework. In Section 1.4.1, we define this theoretical framework.
Thereafter, in Section 1.4.2, we discuss the main literature contributions and position
these studies using the reference framework of Section 1.4.1.

15

1.4.1 The basic forms of control

We focus on high levels of control that deal with decision-making functions and not on
implementation issues, e.g., configuration of hardware elements, equipment
instructions, and conveyor movements. Therefore, due to our functional rather than
software implementation focus, we may exclude some basic principles of collaborative
control theory. For example, Conflict and Error Diagnostics and Prognostics (CEDP)
is a basic principle that is often studied in literature, e.g., in Chen and Nof (2007).
However, CEDP focuses on software-related issues, i.e., the prediction and detection
of errors in the software code, which is beyond our scope. As a matter of fact, we
believe that on this level (e.g., machine interfaces, equipment control), standardization
independent of specific applications is already the rule rather than the exception.
Therefore, we explore whether a similar standardization may be achieved at higher,
more abstract, decision-making levels. For examples of studies dealing with low levels
of control and configurability, we refer to Alsafi and Vyatkin (2010) who present a
methodology to integrate the high level planning with low level control of a
mechatronic system, and to Furmans et al. (2010) who propose a plug-and-work MHS.

We use a theoretical framework that is based on the basic forms of control that have
been suggested in the literature. We provide a description based on Dilts et al. (1991),
who review the evolution of control architectures grouped in the major four forms of
control, as follows (see Figure 1.6, where control units are represented by squares and
resources by circles).

Figure 1.6. Evolution of control architectures (Dilts et al., 1991).

I. Centralized form: Here a central control unit performs all planning and control
functions for all resources in the system. Moreover, it uses a global database
that contains all types of detailed information about the system. The main
advantages of centralized control are: access to global information, possibility
of global optimization, and a single source for system-status information. The
disadvantages include: a single point of failure, where any problem with the
central unit causes the whole system to stop functioning, slow and inconsistent
speed of response, high dependency in the structure, i.e., single control unit, and
complex software that is difficult to modify. The authors state that such control
mechanisms are no longer common as they cannot deal with the requirements
of today’s complex systems.

II. Proper hierarchical form: In this form, there are multiple control units, and a
rigid master-slave relation between decision-making levels. The control unit in
an upper hierarchy acts as a supervisor for resources in the subordinate level.
Decisions made by the supervisor have an aggregate view on the system, and do
not prescribe detailed low level actions. Subordinate control units have to
comply with tasks imposed by controls in the upper level, but as tasks are

16

delegated, subordinates make more detailed decisions for their actions. We
notice that control decisions are executed top-down, while status reporting goes
bottom-up. The main advantages of this form are: adequacy for gradual
implementation of software, with less room for problems compared to the
central control, fast response times, and last but not least delegation of lower
level decisions to lower levels in the hierarchy so that not all details are at the
highest level. The disadvantages include: making future modifications in the
design is difficult, because the structure tends to be rigid and fixed in the early
design stages (Dilts et al., 1991), an increased number of inter-level
communication links (compared to the centralized form), and computational
limitations of local controllers.

III. Modified hierarchical form: This form evolved in order to deal with some
shortcomings in the proper hierarchical form, mainly the rigid master-slave
relationship. It differs from the proper hierarchical form primarily through the
degree of autonomy of subordinates. In the modified hierarchical form, there is
some degree of coordination among subordinates on the same hierarchical
level. This loosening of the master-slave relation brings additional advantages:
more robustness to disturbances if the supervisor unit fails, because there is less
need for continuous supervision, and subordinates have the ability to coordinate
tasks among them. Some disadvantages are: connectivity problems among
subordinates and with supervisors, capacity limitation of low-level controllers,
and increased difficulty of the control system design.

IV. Heterarchical form: This form is the extreme of decentralized control, which
became popular recently. An example is a multi-agent system (MAS). In this
form, control structures have distributed locally autonomous entities. These
entities communicate with each other to make decisions in cooperation. The
master-slave relationship is totally abandoned and not just loosened as in the
modified hierarchical form. In this control form, decision-making is distributed
in some manner within the system. This distribution can be based on functions,
geographical areas, task sequence, etc. Each control unit has its own rules and
objectives, and communicates with other units to fulfill its own requirements.
This notion is the general form of the agent-based systems. The main
advantages of the heterarchical form are: full local autonomy, reduced software
complexity, implicit fault-tolerance, high modularity, and faster diffusion of
information as subordinates have smarter controllers. The disadvantages are
primarily due to technical limits of controllers, lack of standards for
communication protocols, and the likelihood of local optimization.

As a final remark, we emphasize again the distinction between our focus on control
architectures (such as described by Dilts et al., 1991), and software architectures,
because a decentralized control architecture can be implemented, in principle, by a
monolithic software architecture and vice versa. However, advantages and
disadvantages of centralization versus decentralization in both domains run in parallel
to each other and are often mixed up.

17

1.4.2 Literature review

In this section, we list studies that are relevant to planning and control of MHSs in
general, and to the industrial sectors in which we are interested. We make an attempt
to classify the reviewed studies based on the framework for the basic forms of control
(Section 1.4.1).

1.4.2.1 Centralized control

Tařau et al. (2009a) study route control in BHSs. They compare centralized and
decentralized route choice in BHSs, particularly in systems using Destination Coded
Vehicles (DCVs) as a transport mechanism. They implement centralized control
approaches, but find them computationally expensive and not robust. Furthermore,
they develop decentralized control rules for Merge and Divert switches, where each
switch has its own controller. A merge switch is basically a piece of equipment that
combines two inflows (of items) from two input sources, i.e., conveyor routes, into one
outflow. On the other hand, a divert switch is a piece of equipment where items from a
single inflow source can be routed to one of two possible outflow directions. We will
study these elements further in Chapters 3 and 4.

Mo et al. (2009) study flow diversion to multiple paths in integrated automatic
shipment handling systems. The authors take a network optimization perspective and
formulate a nonlinear multi-commodity flow problem. They develop a mathematical
programming model to propose routing strategies with the objective of minimizing the
total shipment travel time in the system. However, they do not apply their theoretical
framework to a business case and they make assumptions that may not hold in many
practical settings. For example, they assume independent waiting times at different
pieces of equipment and do not include time constraints for special shipments.

Zimran (1990) presents a commercial generic controller for material handling systems.
His design is mostly based on hardware and software linkages and communication.
The routing decision function is supported by tree graph algorithms. Tree graphs have
only one path between every pair of origin and destination. These tree graphs change
while the system is running (based on system state), by adding or removing arcs. Since
the algorithm is computationally expensive, simpler algorithms are used for low level
controllers.

1.4.2.2 Hierarchical control

The concept of Cooperation Requirements Planning (CRP) is a hierarchical decision-
making strategy that stems from collaborative control theory. Rajan and Nof (1996)
define CRP as “the process of generating a consistent and coordinated global
execution plan for a set of tasks to be completed by a multi-machine system based on
the task cooperation requirements and interactions”. CRP is divided into two steps.
The first step (CRP I) generates the cooperation requirements matrix whose elements
represent the capabilities of machine sets for processing the tasks. CRP I also
generates processing constraints. Next, the second step (CRP II) determines the
assignment of tasks to machine sets for processing. These two steps may include
advanced search algorithms to generate plans and to make assignments. In general,

18

CRP is unnecessarily complicated for our MHSs control problem. It is more adequate
for a manufacturing environment such as the robots and machine cells application
presented by Rajan and Nof (1996). In such environments, it is challenging to deal
with jobs that need several processing tasks, which are not standardized. On the
contrary, in the MHSs we study, items follow standardized routes and processes, but
the challenge lies in the control and balance of material flows within the systems.

Amato et al. (2005) state that control systems of warehouses have three main
hierarchical levels: a Planning level, a Management level, and a Handling level. The
authors introduce the Optimizer System as a new level to bridge the gap between
planning and management on the one hand, and shop floor control systems on the
other hand, by improving the realization of decisions by handling devices such as the
cranes and a shuttle handling device.

Faber et al. (2002) study the complexity in warehouses in relation to the warehouse
planning and control structures. The authors focus on warehouse management systems
(WMSs) and analyze the tradeoffs between tailor-made and standard WMSs. The
authors present a holistic view on planning and control in warehouses. They describe a
structure with different levels of planning and control. The main levels are the order
management system, the WMS, and the technical control system. In this thesis, the
focus is on planning and control activities within the technical control system, from the
perspective of the MHS manufacturer. However, in order to understand the
environment in which warehouses operate and to understand the dynamics that can
influence the operation of the technical control system in warehouses, we refer to
Faber et al. (2013). The authors investigate how warehouse management is organized
and driven by task complexity and market dynamics, develop a multi-variable
conceptual model based on the literature, and test it in 215 warehouses using a survey.
Faber et al. (2013) suggest that task complexity and market dynamics are the main
drivers of warehouse management. They assess how these drivers impact specificity of
WMS using predefined measurement criteria. They also show how planning in
production warehouses differs from distribution centers. We emphasize that the
authors focus on the management of warehouses from a system user perspective.

In baggage handling, Tařau et al. (2009b) address hierarchical control for route choice.
To this end, they design a control architecture with three levels of hierarchy: network
controller, switch controller, and DCV controller. In the same study, they examine
multi-agent systems, but find them hard to implement due to the extensive
communication required between the agents. In general, Tařau et al. (2009a, 2009b)
focus on BHSs and only on routing by controlling switches within BHSs, but they do
not consider the storage operation.

1.4.2.3 Modified hierarchical control

Kim et al. (2003) propose a hybrid scheduling and control architecture for warehouse
management, mainly for order picking. We classify their architecture as modified
hierarchical, although they implement it using multi-agents software. In their
architecture, they have three hierarchical levels of control: high level optimizer agent,
medium level guide agent, and low level agents. The latter agents have a degree of
autonomy that allows them to negotiate with each other and propose changes (to the

19

assigned tasks) to higher level agents. The authors claim that this architecture becomes
a purely heterarchical architecture when the optimizer agent and the guide agents are
eliminated, whereas it becomes purely hierarchical when communications among low
level agents are prohibited. However, the fact that this architecture is tailored to order
picking in a warehouse, limits it applicability as a generic control architecture for
MHSs.

1.4.2.4 Heterarchical control

As a matter of fact, heterarchical forms of control are a recent trend in research.
Babiceanu et al. (2004) present a framework for the control of MHSs as part of the so-
called holonic manufacturing approach. Holons are units that act as parts and as
wholes at the same time, meaning that they have a high degree of autonomy but
operate as part of a more general system. Therefore, holons have two main properties:
autonomy in making decisions and cooperation with other holons for mutually
acceptable plans. The authors state that from the significant number of papers in the
area of agent-based and holonic manufacturing, only a few consider material handling
problems. They present a case study focusing on a material handling system.

Van Brussel et al. (1998) present a reference architecture for holonic manufacturing
systems. Their architecture has 3 main holons:

o Product holon: represents a model of a product type, which basically acts as an
information server to other agents.

o Resource holon: represents a production resource in the system.
o Order holon: represents a task with requirements and a due date. It manages a

physical product being produced.

In addition, staff holons are optional holons that can aid other holons in decision-
making. An example is a central scheduling unit. The architecture is called PROSA,
which stands for Product-Resource-Order-Staff-Architecture. PROSA focuses
primarily on manufacturing operations rather than transport operations. In this thesis,
however, we do not aim for an architecture that is generic for MHSs and for
manufacturing systems; we focus solely on MHSs and the operations within the
industrial sectors we analyze. The complexity of decision-making in the MHSs that we
study is less than that for a flexible manufacturing cell and, more importantly, is of a
different nature. PROSA is an example of a completely heterarchical control approach,
whereas we opt, for good reasons, for another form of control (see Chapter 2).

The holonic paradigm is similar to the agent paradigm in many aspects, but there are
some differences. Giret and Botti (2004) conduct a thorough study to provide a
comprehensive comparison of holons and agents. Their main conclusion is that a holon
is a special case of an agent. A holonic system is a manufacturing-specific approach
for distributed intelligent control. On the other hand, a multi-agent system is a broad
software approach, where one of its uses is distributed intelligent control. For more
details, we refer to Giret and Botti (2004). However, we note that holonic systems are
heterarchical in the context of the systems that we address in this thesis, but they may
have hierarchical characteristics when applied to other types of systems that are
beyond the scope of this thesis.

20

Gue et al. (2013) study a high-density storage system, which has a modular physical
structure. In this system, they present a conveyor-based material movement in a puzzle
architecture that is analogous to popular board games such as the 15-puzzle and rush
hour. They describe a decentralized control structure of this physical storage system in
which each of the physical modules has an independent logic controller that is
identical to the controllers of other modules. The study is based upon an earlier study
(Gue and Kim, 2007) in which they present the puzzle-based storage system and
analyze the tradeoffs between storage density and retrieval time based on a specific
control algorithm. These studies focus mainly on a theoretical storage system in the
distribution sector. However, Gue et al. (2013) emphasize the value of decentralized
control for flexibility and scalability, and state that within material handling,
decentralized control has been confined almost exclusively to the control of Automated
Guided Vehicles (AGVs) or shuttles.

Vrba and Mařík (2006) focus on software implementation and the use of simulation in
agent-based control systems. In their control architecture, they use a basic set of agents
for conveyor-based transportation: work cell, divert, and conveyor belt. In this work,
we find useful control mechanisms such as the dynamic routing tables used by the
diverters. We stress that the main objective of our research is to propose a generic
control architecture for MHSs that is applicable in different industrial sectors, where
not every element within this architecture is necessarily a novel application.

Lau and Woo (2008) develop an agent-based dynamic routing strategy for MHSs.
They emphasize that existing routing strategies in theory often use static routing
information based on shortest path, least utilization, etc. In their study, they map the
MHS to a network with node agents connected by unidirectional links. Control points
of a network of MHS components are modeled as cooperating node agents. To make
routing decisions, they define the best route in terms of: cycle time of material,
workload balancing, and degree of tolerance to unexpected events. In their
architecture, each agent is responsible for its zone of coverage. They implement their
architecture in a simulation environment of a DC. The authors outline a generic
classification of routing strategies and classify their approach as distributed real-time
state-dependent.

Johnstone et al. (2010) study status-based routing in baggage handling. In their
approach, the status of the bag determines its processing requirements and triggers
computation of the route to be followed depending on the states of required resources
ahead. The authors study two main algorithms: the first one based on learning agents,
while the second uses a graph representation of the network to find all possible routes
at switches via Dijkstra’s shortest path algorithm (Dijkstra, 1959). They find learning
agents more efficient in larger systems, as they make use of information from
operations performed on the bags upstream. With this information, they limit the
possible routing options downstream.

Hallenborg and Demazeau (2006) use multi-agent technology in a BHS to construct
generic software components to replace traditional system-specific centralized control
software. In their approach, when the bag enters the system, the first agent on the route
can make an agreement with all agents on the route to the bag’s destination. However,

21

it is also possible to make an agreement only with the next agent on the route. This
raises the distinction between routing by static shortest path and routing on the way.
We also refer to Hallenborg (2007a) for a case study of a large airport hub in Asia, in
which a centralized control architecture is replaced by an agent-based solution.

Some of the advanced control designs generate forecasts in order to prevent
congestions and to facilitate proactive rather than reactive decisions. Studies in this
context include Hadeli et al. (2004) who present a control architecture that is a
combination of PROSA and concepts inspired by ant colony coordination
mechanisms. Weyns et al. (2007) use delegate MASs, inspired by food foraging in ant
colonies, to anticipate road conditions to make routing decisions. Claes et al. (2011)
present an MAS for anticipatory vehicle routing, which allows directing vehicle routes
by accounting for traffic forecast information. Finally, Parunak (2010) presents the
concept of swarming agents that interact through digital pheromones. However, note
that we focus on internal transport, as distinguished from external transport that is
dealt with in these studies. Chapter 2 further describes other control approaches and
anticipation techniques, which we employ to take precautions in order not to create
congestions and in order to maintain a balanced material flow in the system.

In this thesis we do not study autonomous vehciles. However, we refer to Kamagaew
et al. (2011) and Wurman et al. (2008) for control approaches for autonomous
vehicles. Moreover, we mention Mayer (2009) who develops a decentralized control
system for modular continuous conveyors. The latter study, however, focuses on the
equipment level (i.e., the mechatronics of the system) whereas we take higher
functional control levels as our main focus.

1.4.2.5 Other studies

Some simulation-based studies in the area of MHSs are worth mentioning. Meinert et
al. (1999) present a modular simulation approach for the evaluation of MHSs.
Babiceanu and Chen (2005) use simulation to justify the use of a decentralized agent-
based approach in materials handling and assess its performance compared to
conventional scheduling systems. Jahangirian et al. (2010) conduct a broad review of
simulation studies in manufacturing. A trend they notice concerns the increasing
interest in hybrid modeling as an approach to cope with complex enterprise-wide
systems. Hunter (1994) presents a model evolution analysis for simulating MHSs.
Finally, we mention Van den Berg (1999), Rouwenhorst et al. (2000), and Gu et al.
(2010) as useful literature reviews in the distribution and warehousing area.

In parcel & postal sorting, we could hardly find any studies discussing control
architectures. McWilliams et al. (2005) introduce the Parcel Hub Scheduling Problem
(PHSP); this problem concerns the scheduling of a set of inbound trailers to a fixed
number of unload docks at an express parcel sorting hub. The objective is to minimize
the makespan (i.e., total required time) of the transfer operation, i.e., sorting all
unloaded parcels to the required destinations. In his studies, McWilliams deals with
the MHS as a black box and does not interfere with the inner control. His studies
include simulation-based genetic algorithms and dynamic load balancing heuristics.
From his work on the PHSP, we mention the development of a dynamic load-
balancing scheme for the PHSP (McWilliams, 2009b). A useful result of his studies is

22

that a balanced flow within the system results in minimizing the time required to
accomplish the transfer operation.

1.4.3 Concluding remarks

As a general remark, there are few studies that attempt to build a generic control
architecture for MHSs operating in different industrial sectors. From the studies we
reviewed, we observe that a control architecture normally targets a specific sector or
deals with material handling as part of a manufacturing environment. From our point
of view, the most relevant study is the holonic architecture proposed by Babiceanu et
al. (2004). Although this architecture is based on a manufacturing system, it does
suggest a framework for material handling. However, the MHSs in the sectors we
address are far more complex and diverse than the MHS modeled by Babiceanu et al.
(2004). We conclude that their study misses an in-depth treatment of practical
requirements of complex MHSs as they do not show how decision-making processes
can be employed to achieve functional requirements. However, we may make use of
their findings in the architectural design aspects. In general, many authors favor
distributed control when dealing with complex systems.

From the studies we reviewed, we observe that a control architecture is initially
designed and then applied to some sector, often to a distribution center. For baggage
handling, there are few studies on control architectures. Most of the studies focus on
route planning through divert and merge switches and do not take the storage
operation into account. On the other hand, the relatively abundant number of studies
on warehousing systems emphasize either the design aspects or throughput
optimization of the system through the use of advanced algorithms for warehousing
activities such as: storage and retrieval sequencing and order pick concepts. From our
experience with industry we however learned that other requirements are necessary to
make the control architecture applicable in a practical setting. For example, experts
from industry value a robust control architecture that provides satisfactory solutions
higher than an architecture that provides near optimal solutions but is less robust.
Finally, we could hardly find studies for parcel & postal sorting that discuss a control
architecture, probably because MHSs in this sector are of less complexity, i.e., they are
basically sorters. In this sector, related studies deal with inbound and outbound
operations. Most relevant in this context is the parcel hub scheduling problem
introduced by McWilliams et al. (2005), which we address in Chapter 5.

1.5 Theory versus practice
This section confronts the theoretical studies with practical requirements (Section
1.5.1), and based on this confrontation defines the agenda of our research (Section
1.5.2).

1.5.1 Confronting literature studies with practical requirements

As mentioned briefly in Section 1.4.2, there is a lack of in-depth studies dedicated to
the generic control of complex MHSs. There are studies addressing MHSs from
different perspectives. A few studies claim that they propose a generic control

23

architecture or framework. However, we find them lacking due to one or more of the
following reasons:

o Being applicable only to a specific sector: when an architecture is based on one
sector, it becomes impractical for other sectors as it normally misses relevant
problems, constraints, and objectives in a different operational environment.

o Lacking an in-depth treatment of practical requirements: the functional
requirements listed in Section 1.3.2, present necessary conditions for a
comprehensive control architecture. Moreover, the architecture has to control
all possible subsystems of a complex MHS, e.g., ASRSs and divert switches.
We conclude that a comprehensive coverage of these requirements is still
lacking because the current studies are limited in several ways. First, they
model simple material handling systems where no complex decision-making is
required. Second, they focus on certain problems and subsystems, e.g., they
deal with urgent items and with routing at diverts and do not address other
problems, such as management of buffers and ASRS control, in the same
architecture.

o Limiting the role of MHSs to be merely a support to a manufacturing
environment: there is limited focus on complex MHSs that are functioning for
the sake of material handling and not merely as part of a manufacturing
environment. The latter trend generally results in simplified MHS problems.

o Missing the combination of design requirements and functional requirements in
a unified architecture: there is a need for a comprehensive control architecture
that is designed according to the design requirements, but that also entails
control rules and algorithms implemented to satisfy the functional requirements.
Studies on control architectures normally address design requirements
(modularity, robustness, scalability, and flexibility). Yet, we could hardly find
any study with proven implementation potential on MHSs in different industrial
sectors.

At a lower level of analysis, we find studies addressing specific problems or sub-
systems within MHSs. Moreover, we find sector-specific studies (e.g., control of
BHSs). Therefore, results of specific problems can be used as building blocks in a new
generic control architecture. However, having subsystems functioning properly on
their own does not mean that the combination of subsystems functions properly as
well. Therefore, a top-down design approach makes sense, because it allows to deal
with the system dynamics at an early stage. Finally, there may be a need to adapt
solutions for subsystems in certain sectors to be generic for similar subsystems in all
sectors.

1.5.2 Research agenda

In this thesis, we aim at developing a comprehensive generic control architecture that
satisfies design requirements and controls the operation of the MHSs in a way that
satisfies the functional requirements. Both sets of requirements are defined based upon
the research we performed at a major global company supplying material handling
systems in all sectors discussed in the thesis. Based on our study, we conclude that
there are still contributions needed for literature to answer questions in practice. The

24

missing points in current studies provide starting points to propose an agenda for this
research. In addition, this research differs from other studies in addressing three
different sectors from practice and using their requirements simultaneously to develop
a generic control architecture. Current studies either develop control approaches and
then apply them to a certain sector or use cases from one specific sector as a starting
point. This thesis aims to handle the following elements:

1. Proposing a concept for a control architecture: the concept may be based on
the basic forms of control (see Section 1.4.1). We may decide upon the most
appropriate form or propose a hybrid of several basic forms.

2. Detailing the concept in terms of control levels (hierarchies) and control units:
in particular, we have to address the relations between these different decision-
making bodies and the spans of control for each. This point has to satisfy the
design requirements (see Section 1.3.2).

3. Translating the concept into a concrete control architecture: this requires
proposals for control rules and algorithms at the control levels and units. We
have to define the links between control levels or control units in terms of
information transmitted and the way information is reacted upon and
communicated. This point has to satisfy the functional requirements (see
Section 1.3.2).

4. Validating the generic control architecture: this requires the modeling and
testing of operational scenarios of MHSs in different industrial sectors.

5. Proving the adequacy of the control architecture: this requires implementation
on a business case to prove its adequacy to serve as a generic control
architecture.

Section 1.6 outlines the remainder of this thesis, where it refers to the aforementioned
points on the research agenda. Moreover, Section 1.6 illustrates how each of these
points fit in the content of the subsequent chapters.

1.6 Summary and thesis outline
This chapter introduced the research problem on generic planning and control of
MHSs that occur in different industrial sectors. Section 1.1 motivated this research,
while Section 1.2 defined its scope and described the industrial sectors involved.
Section 1.3 analyzed the synergy among the different sectors. Furthermore, the process
flows in the different sectors were modeled in an analogous way given a certain level
of abstraction. This analysis, partly based on close experience with the material
handling industry, led to a list of general requirements for a generic control
architecture. These requirements are valuable for all industrial sectors and concern
both the design and functionality of the control architecture. Subsequently, Section 1.4
reviewed the literature to investigate the availability of answers to the requirements
from practice. Consequently, Section 1.5 weighed the requirements from practice
against the existing literature and highlighted the missing links to propose an agenda
for this research in the field of planning and control of MHSs. This section presents the
organization of the remainder of this thesis.

25

Chapter 2 deals with the first two points on the research agenda, i.e., proposing a
concept control architecture and detailing it (see Section 1.5.2). It builds upon our
conclusions so far to propose a concept control architecture. We propose a variant of
the modified hierarchical form of control (see Section 1.3.2) and motivate our design
choices. In this concept control architecture, we propose a set of generic control units
distributed over three levels of control, i.e., planning, scheduling, and local traffic
control. We argue that the planning and scheduling levels of control are the main
determinants of the control structure and these are the levels covering communication
links and cooperative decision-making processes. Local traffic problems have a minor
global effect on the system performance. These problems occur at certain physical
areas of the system at a low level of control, where no communications with other
system areas are needed. Therefore, at this level we can derive separate traffic
problems. For one of these problems, which is the most challenging, we develop a
solution in Chapter 6, but for the rest, available solutions in literature can be
implemented. Chapter 2 presents all decision-making processes encountered in the
control architecture and describes each of them.

Chapter 3 deals with the third and fourth points on the agenda, i.e., developing the
concept into a concrete control architecture and validating it. The control architecture
is divided into modules. We mainly implement planning and scheduling control
modules and include local traffic control modules in an aggregate manner. Chapter 3
presents a generic MHS model, in a simulation environment, which can be tuned to
simulate MHSs in different industrial sectors. We model different operational
scenarios and analyze the generality of control. Chapter 3 also presents an
implementation of the routing module (at the scheduling level), using the
aforementioned generic MHS model with a modified system base.

Chapter 4 deals with the fifth point on the research agenda, i.e., proving the adequacy
of the control architecture. It presents a comprehensive application of the control
architecture on a business case, in which we study a major European airport that
entails challenging system elements and business rules to be handled by the generic
control architecture. In this large implementation, we face new system areas that need
to be handled in a generic manner and we show how we face standardization
challenges not only among different industrial sectors, but also within the same sector
and the same MHS. Moreover, we deal with a routing module, for which we attempt to
maintain the generic control structure as proposed for such problems in Chapter 2 and
as implemented in another system and another industrial sector in Chapter 3. Finally,
given this comprehensive implementation, we compare the performance of the generic
control architecture to current practice. This chapter provides a proof-of-concept for
the applicability of generic control on practical cases.

As the control architecture is designed, implemented, and confronted with more
challenges in a business case, we take a step to extend our analysis in Chapter 5 from
Scope 1 (i.e., MHS control) to Scope 2 (i.e., inbound operations; see Section 1.2.1). In
this setting, we present a scheduling problem for system-users, which is scheduling
inbound containers to load MHSs that use sorters as the main element. We find this
scheduling problem influential to the operation of sorter systems and thus we dedicate
a chapter to it, where we build upon the state-of-the-art algorithm available in

26

literature and introduce two extensions. In this sense, Chapter 5 provides scheduling
tools for the MHSs’ users.

Although most of the local traffic decision-making problems are simple and
straightforward (e.g., determining a crane’s travel trajectory between two pickup and
retrieval locations), we identify one local traffic problem that is challenging and
requires a sound decision-making algorithm. This is the space allocation problem in
conveyor merge configurations. In such configurations, a set of parallel conveyors
transport items towards one larger merge conveyor. The merge of all incoming items
from the parallel conveyors onto the merge conveyor is an operation where several
challenges have to be dealt with. For this thesis to provide a comprehensive set of
solutions for decision-making problems in MHSs, we dedicate Chapter 6 to analyze
this local traffic control problem and to propose an algorithm for it.

In the final chapter of this thesis, i.e., Chapter 7, we present general conclusions and
recommendations for practice. Moreover, we highlight directions for future research.

 	

27

Chapter	2 	

A	Generic	Control	Architecture7	

In Chapter 1, we discussed the generic control problem of MHSs as they arise in
different industrial sectors and concluded that there is a need for a generic control
architecture for such MHSs. Following this conclusion, we have proposed a research
agenda of five points. This chapter deals with the first two points, i.e., proposing a
concept control architecture (in terms of control levels and generic control units) and
detailing it (in terms of concrete decision-making processes).

In this chapter, we propose a variant of the modified hierarchical form of control (see
Section 1.3.2) and motivate our design choices. In this concept control architecture, we
propose a set of generic control units distributed over three levels of control, i.e.,
planning, scheduling, and local traffic control. We discuss the elements that represent
a crucial part of the control structure in detail, whereas elements that are not crucial to
the control structure are treated in general terms and discussed in more detail in
subsequent chapters. Section 2.1 builds on the findings of Chapter 1 to develop a
concept control architecture that includes a set of generic control units at three levels
of control (i.e., planning, scheduling and local traffic control). Thereafter, Section 2.2
details the concept architecture by illustrating the functionality of the control units and
the decision-making processes that take place within the control units and among
different control units (at various levels of control). Finally, Section 2.3 ends this
chapter with concluding remarks.

2.1 A concept for a generic control architecture
In this section, we take a first step towards the development of a generic control
architecture by proposing a concept control architecture and detailing it in terms of
control units and hierarchies. To propose a concept for generic control, we build on the
experience from our industrial cooperation and on the basic forms of control discussed
earlier (Section 1.4).

First of all, we comment on the centralized form of control, in which a central control
unit performs all planning and control functions for all resources in the system. We
find this form of control inappropriate for the generic control of MHS for reasons
concerning both the operational environment and the design requirements. Therefore,
we exclude this option in view of the following arguments:

7 This chapter is based on Haneyah et al. (2013a) and Haneyah et al. (2013b).

28

o The centralized form of control is rigid when it comes to: handling the real-time
flow of information, dealing with disruptions in material flows, and controlling
processes in a dynamic environment.

o The required computation time for a central control unit to process a large
amount of data and to make decisions is incompatible with the real-time nature
of the MHSs.

o Information on items transported by the MHSs flows in real-time and is
revealed gradually with a narrow look-ahead horizon. Therefore, making global
decisions that affect every resource in the system based on a narrow scope of
information does not make sense, especially because it may easily happen that
the centrally proposed decisions change radically when new information
becomes available, e.g., about disruptions or new items in transport.

o The software may become complex to build and may not serve the design
requirements of being generic, modular, robust, and flexible (see Section 1.3.2).

The centralized approach is one extreme of decision-making; the other extreme is
purely decentralized decision-making embodied by the heterarchical approach.
According to various authors, the main advantage of the heterarchical approach is that
it supports desirable design aspects, i.e., modularity, a generic structure, and
robustness. Modularity is embodied in the possibility to build software components
separately and to include some intelligence in decision-making activities. The control
architecture can be composed by configuring the interfaces between software
components.

In our view, a pure heterarchical form of control results in a cooperative approach to
global decision-making, where a main concern is the extent of deviation from
optimality. In this context, higher level coordination may be necessary for some
processes, e.g., planning orders. Moreover, for the generic control problem, decisions
made within MHSs are not all at the same level. In particular, when looking at the
different industrial sectors that we analyze, we find global decisions that impact the
overall performance of the system, while others are local decisions with limited global
impact. As a matter of fact, distributed control is beneficial when dealing with
complex systems. However, we emphasize that distributed control means having
decisions made at the right level, and thus it can be realized with other forms of
control, e.g., the modified hierarchical form.

Given the aforementioned points and our observations in industry, we propose a
control architecture that involves hierarchical control and also a certain degree of
intelligence and freedom of controllers at different control levels.

The control architecture is the basic structure on which decision-making processes are
mapped. The proposed control architecture builds upon the theoretical framework
(Section 1.4.1), while the decision-making framework builds upon established theories
in the temporal decomposition of planning, scheduling, and control processes (see
Anthony (1965), Hax and Meal (1975), and Zijm (2000)).

From our analysis of the MHSs in the three sectors (distribution, baggage handling,
and parcel & postal sorting), and the decision-making aspects in particular, we find it
necessary to first have a control level that takes care of the planning activities using an

29

aggregate view of the MHS. Moreover, this control level should provide the interface
with the system-user, e.g., the receipt of flight schedules in a BHS or of order details in
a distribution system. Second, the resources of the system have to be controlled but not
centrally, as argued earlier. Therefore, resource controllers are needed that schedule
and execute work considering their own status and the status of other resources
involved in the handling operation. Finally, when all decisions on workload control
and material flow are taken, the realization of these decisions by the physical
equipment has to be taken care of at a dedicated level, e.g., to store a TSU8 within a
certain storage aisle or to induct a TSU on a conveyor belt at a merge junction. Note
that these levels are all within the control software of the MHS, i.e., the equipment,
and deal with operational tasks using inputs from higher level user systems such as the
WMS in distribution. Following this discussion, we propose three hierarchical levels
of control, where each level contains several generic controllers as we will describe
later. The three levels of control are as follows (see also Figure 2.1):

o Planning: The planning function requires a global view of the system
regardless of the system size. This is the control level that interacts with the
MHS’s user environment, e.g., customer orders or plane schedules. As a result,
this level is mainly responsible for the assignment of work to resources/system
devices. Planning decisions are made by abstract controllers using aggregate
system information.

o Resource scheduling: Given a set of assigned tasks, the scheduling function
addresses the problem of when and in what sequence to execute these tasks.
This level deals with executing the tasks assigned by the planning level.
Scheduling decisions are made by resources controllers. In this context, system
resources that need their own scheduling controller are either workstations (e.g.,
pick stations in a warehouse) or key transport and routing resources (e.g.,
sorting loops and cranes). Routing and task sequencing for each resource are
decided upon here. In this sense, this level depends on the system layout and
specific system attributes. For example, travel distances within the system and
loads in transport may affect scheduling decisions.

o Local Traffic Control: This function entails algorithms or routing rules
executed within defined boundaries of the physical system. There is minimal
interaction with other areas in the system and mostly the aim is local
optimization where no global view is needed. Decisions made at this level do
not have a major effect on the system. These decisions are implemented at a
low level of control or made by resource controllers. Examples include the
movement of a crane within its aisle and prioritizing the movement of items on
a conveyor junction.

From a theoretical point of view and also based on experiences from practice, local
traffic control problems are the easiest to deal with, as they do not affect the overall

8 Transport Stock Unit (TSU): a generic term to refer to different types of items transported
on the automated MHSs, i.e., bag, parcel, or tote.

30

control structure or the communications among different controllers. Control methods
for local traffic problems can be integrated in a control architecture with minimal
difficulty. The higher levels of control, i.e., planning and scheduling, are the
challenging levels of which the functionality is highly dependent on the control
structure and communication interfaces.

Planning

Resource Scheduling

Local Traffic Control

Figure 2.1. Levels of control.

In this concept architecture, planning control units, referred to as planners, have an
aggregate view of the system and are not directly connected to system resources. On
the other hand, scheduling control units, referred to as schedulers, are directly
connected to system resources, being workstations or transport resources. Planners
communicate with each other and assign tasks to subordinate schedulers. Schedulers
also communicate with each other to schedule the assigned tasks and report to higher
level planners. They are responsible for task sequencing and execution. Schedulers
communicate via standardized interfaces to execute the transportation process and
fulfill the tasks assigned, e.g., to deliver a bag to its destined lateral. In this thesis,
planners and schedulers are pieces of software.

The proposed control architecture (see Figure 2.2) has a certain degree of hierarchy
combined with flexible decision-making for subordinates, as in the modified
hierarchical form of control. However, we may define several higher level control
units (planners) rather than a single higher level control unit. Therefore, the control
architecture is a variant of the modified hierarchical form of control (see Section
1.4.1). At this point, we emphasize once more that we take the control perspective of
the architecture and not the software implementation perspective (see Section 1.4).

Figure 2.2. Control architecture scheme.

We have stated that schedulers are directly connected to system resources, which
implies that each system resource (e.g., a crane) has its own scheduler. Therefore,
system resources define the set of schedulers included in the architecture. On the other
hand, we define planners as higher level control units that have an aggregate view of

31

the system and are not directly connected to system resources. There are two main
planners that we incorporate in the control architecture:

o Build planner: responsible for the build area, i.e., workstations. In distribution,
this means planning the order picking process, whereas in baggage handling
this means planning the build of flights, i.e., gathering the baggage belonging to
the flight at the right build point(s). This is a planner as it requires a global view
on system information, schedules, and the build area. Moreover, it results in
assigning work to system resources (see our definition of the planning level in
the concept architecture).

o Storage planner: this controller is responsible for the storage area, i.e., the
ASRS consisting of cranes and storage aisles. The same arguments as for the
build planner hold for this controller to be a planner. Here, the global view
required is on the ASRS.

Now that we defined the basic control structure, we next have to allocate decision
functions to the different levels of control and to the different controllers. In doing so,
we follow two main principles:

o Allocate each decision function to the lowest possible control level and with the
narrowest possible scope. Here, the word possible means that no direct
deterioration in system performance is expected due to making the decision
local and with a narrow scope. However, this principle may be violated due to a
required synergy in control among different sectors.

o If an operation with certain characteristics is defined as a scheduling operation,
another operation with the same characteristics but on a wider scale due to, e.g.,
system size, may become a more complex scheduling operation, but does not
become a planning operation.

In order to apply generic control methods, we have to treat systems that are at the same
level of detail similarly. However, due to the varying nature of MHSs in different
industrial sectors, the same level of detail is not always present. Therefore, it is
essential for the control architecture to have elements that deal with the differences
among systems, to produce a certain level of detail that is then usable by generic
control methods. We describe this further in Section 2.2.

2.2 Decision-making processes
In this section, we introduce the main decision-making processes, relevant to the
proposed architecture, at each level of control. In this context, we stress that parcel &
postal sorting systems are controlled at the scheduling and local traffic levels as
described later (Chapters 5 and 6). In parcel & postal sorting, there are no ASRSs
(which need the planning level), while the assignment of destinations to chutes is an
input parameter to the system that is usually fixed for a longer time. Therefore, the
planning processes described in this section regard distribution and baggage handling.

2.2.1 Planning processes

At the planning level, we introduce two main processes: planning the outbound flow
from the ASRS and planning the inbound flow to the ASRS. In this section, we

32

describe these processes and explain their functionality in general terms. Chapter 3
deals with detailing and implementing these processes on a specific system model.

2.2.1.1 Inbound flow to the ASRS

When a TSU requires storage, it is announced to the storage planner, which responds
with a destination aisle and crane to perform the storage operation. The decision can
be made according to different control rules, which may be based on different criteria.
For example, an incoming TSU containing a certain SKU (Stock Keeping Unit) can be
assigned to the aisle having the minimum level of this SKU. As a matter of fact, the
outbound flow is the main contributor to system throughput and assigning the inbound
flow of TSUs to aisles may not have a major impact on the outbound flow. Therefore,
it may be possible to use simple control rules. The advantage is then simpler software,
but we have to test whether such simple rules do not cause any deterioration in the
system performance. Chapter 3 presents and analyzes alternative control rules further.
Note that TSUs returning from a workstation in a distribution system (no item
integrity, see Section 1.3.1) are part of the inbound flow to the ASRS.

For the user of the MHS, smarter control rules or allocation algorithms might be
incorporated. There are plenty of studies on detailed allocation decisions, e.g., where
to store an incoming tote in terms of the aisle and storage location within the aisle.
However, in this thesis we focus on the generic control structure that can
accommodate other control algorithms depending on the characteristics of the
distribution center or airport where the MHSs is used. Moreover, what happens before
a TSU is loaded on the MHS is not within our scope as it is within the responsibility of
the system user.

2.2.1.2 Outbound flow from the ASRS

This process (see Figure 2.3) is a planning process as it requires a global view of the
ASRS and of the destination workstation(s). Moreover, it results in assigning tasks to
resources, e.g., retrieval tasks to cranes. There are two main sub-processes in outbound
flow planning:

a. Stock reservation: in distribution, a customer order has a set of order lines, each
referring to an SKU required in a certain quantity. An order is built on one
workstation, but to build the order, stock is retrieved from the ASRS. Since
multiple TSUs may hold the same SKU, it is necessary to decide which TSU to
reserve for usage of a certain order, i.e., stock reservation. However, in baggage
handling, we define an order as a set of bags required for a certain flight. In this
sense, bags are uniquely identified, as each bag entering the system via check-in
desks or as transfer baggage is already assigned to a specific order (flight).
Therefore, we see stock reservation as a process that results in bringing the
distribution system to the same level of detail as a baggage handling system, by
assigning TSUs to orders. This process is accomplished as the build planner
requests stock reservation for certain orders (plans orders) from the storage
planner, which in turn looks for TSUs to reserve. Typically, broken TSUs are
attempted before breaking a full TSU, as having many broken TSUs in the
ASRS means a loss of storage capacity. The build planner makes sure that a

33

couple of orders are planned and ready for activation on any workstation
requesting work.

b. Order release: workstations trigger the build planner to activate orders, based
on work progress in distribution and according to time schedules in baggage
handling. As soon as an order is active on a workstation, stock belonging to this
order has to be released from the ASRS. Therefore, the build planner informs
the storage planner that a certain order is active. In turn, the storage planner
dynamically assigns the reserved TSUs as retrieval tasks to candidate cranes
(when a reserved TSU is accessible by more than one active crane). The storage
planner may use different control rules to assign a retrieval to a crane (e.g.,
assign the retrieval to the candidate crane having less workload). From this
point on, cranes are responsible for executing and sequencing these tasks at the
scheduling level of control. Note that the preceding stock reservation process
(a) brings a distribution system (from a control point of view) to the same level
of detail as in a baggage handling system.

Figure 2.3. Communications at the planning level.

2.2.2 Scheduling processes

At the scheduling level, we introduce the following processes: scheduling crane
retrievals, scheduling inbound containers, routing arriving TSUs, and routing TSUs in
networks. In this section, we focus on the scheduling processes that represent an
integral part of the control architecture. This applies to all of the processes mentioned
except for scheduling inbound containers. Although this process influences the
operation of MHSs, it is not an integral part of the control architecture that is at Scope
1 of our analysis (see Section 1.2.1). In fact, scheduling inbound containers is at Scope
2 (inbound and outbound operations). Therefore, we do not describe the decision-

34

making aspect of this process in this section. Likewise, with regard to the
implementation of these processes, Chapter 3 deals with detailing and implementing
the scheduling processes except for scheduling inbound containers, to which we come
back in Chapter 5.

2.2.2.1 Scheduling crane retrievals

Crane controllers have to schedule the released set of TSU retrieval tasks. In order to
support functional requirements such as avoiding blockings and deadlocks, the
pipeline occupation of the TSU destination plays a role in scheduling. TSUs are
normally retrieved to be loaded on the main sorting system in baggage handling and
distribution MHSs. However, in parcel & postal sorting, the sorter is the main element,
where no cranes are involved.

Given a set of retrieval tasks, crane controllers schedule these tasks based on their
priorities and the pipelines of destination workstations (see Figure 2.4). However, what
defines a priority TSU differs per industrial sector; we explain this further in Chapter
3. The pipeline size of a workstation is the maximum number of TSUs that are allowed
to be in transport to this destination at any point in time. Therefore, we can send more
TSUs only if the number of TSUs already in the pipeline is less than the pipeline size,
in order to prevent overloads and congestion.

Figure 2.4. Communications at the scheduling level.

We use the pipeline size concept often in the following manner: each workstation
receives information about incoming TSUs (from, e.g., cranes or the receiving divert)
and in turn updates the information about the number of empty positions remaining in
its pipeline. Scheduled retrievals that are not physically in the pipeline yet, are also
taken into account as being in the pipeline. Other controllers, e.g., crane controllers,

35

observe the pipeline capacities and take this information into consideration when
scheduling crane operations. In the control architecture, the size of the pipeline is an
important parameter to define. In general terms, there are two different approaches to
set the pipeline sizes of workstations. These approaches depend on the system layout
and the operational environment as follows:

1. If the transport equipment (e.g., sorter system) has limited capacity (in
relation to the workload) or if a group of TSUs is planned to arrive at their
destined workstation in a predetermined sequence, then the material flow has
to be strictly controlled. Therefore, the pipeline size is typically equal to the
number of locations in the inbound buffer of the workstation. In this way, if
any problem occurs at the workstation or the operator is temporarily absent
for some reason, then all TSUs in transport can be accommodated in the
inbound buffer (and in a preserved sequence if there is any). No TSU should
waste the capacity of a loop sorter by circulating on it due to blocked entry
to the workstation. Likewise, circulation may damage the predetermined
sequence of TSUs that are moving towards their destination. We provide
applications and more details on these points in Chapter 3.

2. If there are long transport routes from the ASRS to the workstations area or
if there is a large loop sorter that shows fluctuating occupation levels, e.g.,
according to baggage arrivals and flight schedules, then it is important to
maintain a continuous flow towards workstations. Otherwise, there will be
instances of no flow, causing starvation at subsequent processing units (e.g.,
workstations). Another point is that travel times to workstations may differ
due to the larger system. In this sense, the farther workstation needs more
TSUs in transport than the nearer one to maintain a continuous and balanced
flow. In these settings, we have to propose a pipeline size that is larger than
the number of locations in the inbound buffers of workstations. Several
methods can be proposed to determine the pipeline size. We propose to
define the pipeline size for workstation ݅ based on the capacity of the
workstation and the average transport time to the workstation. In more
formal terms, we introduce the following notation:

ܲ ௜ܵ	= pipeline size of workstation ݅ expressed in the number of items
(TSUs).

ܶ ௜ܶ	= Average transport time (in minutes) from all source points (e.g.,
loading points on a sorter) to workstation ݅ assuming a free flow
situation.

 .= Capacity of workstation ݅ in ipm (items per minute)			௜ܥ

The ݈݈ܽ݁ܿ݊ܽݓ݋	finally denotes a time allowance parameter (in minutes) to
account for traffic delays. Now, the pipeline size of workstation ݅ is defined
according to the following expression:

ܲ ௜ܵ ൌ ௜ܥ ⋅ ሺܶ ௜ܶ ൅ ሻ݁ܿ݊ܽݓ݋݈݈ܽ

36

Moreover, in order to prevent a deadlock situation in this approach, we also
put a limit on the maximum occupation of the loop sorter. We do not allow
further retrievals by cranes when the loop occupancy reaches 95%, even if
the pipeline limits are not reached yet.

When the pipeline to a certain destination is full, system controllers react by blocking
further TSUs from being retrieved or routed to this destination until space becomes
available in the pipeline. Therefore, the pipeline size is an important parameter that is
used to control material flow in the system and to prevent overflows.

2.2.2.2 Scheduling inbound containers

In Section 2.2.2.1, we mentioned that in parcel & postal sorting, there are no diverts or
cranes to load TSUs on sorters, as the MHS (in this sector) is basically the sorter itself.
In this case, loading sorters (with TSUs) is a scheduling problem that is already at
Scope 2 of our analysis because it is not handled by the automated system itself, but by
operators loading TSUs manually (see Figure 1.1 in Section 1.2.1). This loading
problem may also apply to some simple BHSs in small airports where bags from
incoming ULDs9 (see Figure 1.5 in Section 1.3.1) are loaded immediately on the sorter
with no preceding stages (e.g., routing in networks). In this problem, we want to
schedule the inbound containers (the inflow) in order to optimize the outflow of the
sorters.

We study sorting systems using conveyors in distribution, where incoming TSUs are
not assigned (yet) to a certain order (or destination) and so they are always stored first.
Hence, the problem of optimizing the outflow by scheduling the inflow is not clearly
defined. In addition, this scheduling problem is not critical (in distribution) for several
reasons that relate to the contrast that we make between baggage handling and parcel
& postal sorting on the one hand, and distribution on the other hand (see Section
1.3.1). The following arguments apply:

o The time pressure (in baggage handling and in parcel & postal sorting) makes it
necessary to have sound scheduling approaches that can handle the strict time
schedules.

o Item uniqueness in these two sectors induce additional pressure to sort specific
TSUs in time (their destination is generally known, as opposed to the situation
in distribution).

o The unpredictable arrivals in these two sectors also make the problem of
scheduling inbound containers more challenging.

In Chapter 5, we study scheduling algorithms that consider loads in transport within
sorting systems in order to schedule incoming containers in parcel & postal sorting and
baggage handling. These scheduling algorithms are not part of a scheduler within the
MHS’s control architecture, but can be implemented in software tools for the MHSs’
users. Scheduling inbound containers should support the functional requirements, e.g.,

9 Unit Load Devices, which are containers used in air transport of baggage.

37

management of buffers, dealing with urgent items, and starvation avoidance (see
Section 1.3.2). Chapter 5 provides a further analysis of this scheduling problem.

There are MHSs in distribution that do share the characteristics of MHSs in baggage
handling and in parcel & postal sorting. Although we do not study these systems, we
can still model them using the methods developed in Chapter 5 or the generic material
flow model of Chapter 3.

2.2.2.3 Routing arriving TSUs

At some point in the transport operation in baggage handling, a decision has to be
made on routing arriving bags either to the sorter system or to the ASRS. This choice
is made by the arrivals’ divert controller (see Chapter 3) using system information and
status of destinations.

Obviously, bags are routed to the ASRS when the build for the corresponding flight is
not open yet. Moreover, if the build is open and the pipeline(s) of the destined
workstation(s) is (are) not full, then the bags are routed to the main sorter. However, if
the pipeline(s) is (are) full then, in order to maintain a controlled flow on the main
sorter, it may be beneficial to route bags to the ASRS and delegate the scheduling task
to crane controllers there. The latter option should not be used for urgent bags as it
may cause them to miss their flights. In this case, it makes sense to allow recirculation
on the main sorter due to routing bags directly to the laterals, although they are busy.

2.2.2.4 Routing TSUs in networks

In large scale MHSs, there are often service stations, e.g., screening machines (Figure
2.5), which are available at alternative systems. In such configurations, a divert
controller has to decide to which system to divert an incoming TSU.

The proposed control logic for these routing problems is dynamic and based on the
status of the system. In order to balance loads on parallel systems and yet consider
travel times and service rates, we make routing decisions based on the expected
throughput of the alternative parallel systems.

Figure 2.5. Routing in parallel systems.

38

We develop a dashboard logic where downstream controllers post expected
throughput times (and possibly other information) on their dashboards. For example,
machine cluster controllers (see Figure 2.6) post an expected throughput time for a
TSU to be processed (given the number of TSUs already in the pipeline and the
service rate of the machines). Upstream controllers use this information to make
routing decisions. In this dynamic control, downstream controllers need information
about TSUs in the pipeline from upstream controllers, in order to estimate throughput
times. This control logic helps in the functional requirements of saturation
management, prevention of imbalanced queues and recirculation, management of
buffers, and dealing with disruptions. For example, fewer TSUs should go to the
system having a lower service rate (e.g., due to a failed component or congestion).

When there is more than one destination to which an incoming TSU can proceed, we
calculate the expected throughput time per destination. Upstream flow is always
blocked when the system has used all available capacity. System control may plan to
occupy less than the available system capacity, in order to always leave an escape and
avoid deadlocks or saturation.

Figure 2.6. Communications for dynamic routing.

We emphasize that the standardized controllers and communication interfaces allow
the implementation of the same control logic on different system layouts by merely
defining connected controllers upstream and downstream for each component. In this
thesis, we examine the applicability of this routing approach in two different settings:
Chapter 3 presents an implementation in a distribution system, whereas Chapter 4
deals with an implementation in a large baggage handling system.

2.2.3 Local traffic control

At the local traffic control, we deal with decision-making processes that can be studied
independently as they do not affect the overall control structure. At this level, we
introduce two main processes: the space allocation in merge configurations and
cranes’ storage cycles.

2.2.3.1 Space allocation in merge configurations

In merge configurations, we have to allocate free spaces on a merge conveyor (e.g., a
sorting loop) to TSUs waiting to enter this conveyor from several infeeds (Figure 2.7).
Scheduling crane retrievals, scheduling inbound containers, and routing arrivals are all
scheduling processes that result in decisions to load infeeds. Once infeed loading
decisions are taken at the scheduling level, we can use a generic local traffic control

39

algorithm in such a configuration, e.g., by a loop controller. This problem is
particularly important for parcel & postal sorting systems, which handle large numbers
of TSUs within strict time limits, and so need an efficient merge operation. This local
traffic problem has to satisfy several functional requirements, e.g., labor efficiency for
operators loading the infeeds. Space allocation is a local traffic problem and so, by
definition (see Section 2.1), can be dealt with independently.

This local traffic control problem entails a certain level of complexity and requires a
decision-making algorithm. Therefore, we dedicate Chapter 6 to develop a space
allocation algorithm that can be incorporated in the generic control architecture for
merge configurations.

Figure 2.7. Merge configuration.

2.2.3.2 Cranes’ storage cycles

Cranes execute storage cycles to store TSUs waiting in their inbound buffers. Higher
levels of control assign TSUs to a certain storage rack via a certain crane and route
them to the crane. However, regardless of these higher level decisions, once TSUs
arrive at a certain crane, the storage operation is similar for all relevant industrial
sectors. Since the process boils down to moving TSUs from inbound buffers to empty
storage locations in specific racks, we can apply a generic control logic at the local
traffic level.

The impact of the decision on where to store a certain TSU within a rack differs
according to the user’s environment and nature of the stored items. We studied MHSs
where selecting an empty location in a certain rack to store an incoming TSU has a
minor impact on other system resources or on the overall system performance. Hence,
we do not analyze this operation in detail. However, for systems in which the
execution of this operation is critical, an algorithm from literature or specific control
rules can be implemented in the storage planner or locally in the crane controller.

2.3 Concluding remarks
In the first part of this chapter, we analyzed the forms of control that are the basic
structure of any control architecture, while keeping in mind hybrid forms that can
result in variants of the basic forms of control. We then evaluated the suitability of
these alternative forms of control to our problem and excluded the two extremes

40

(centralized control and heterarchical control). Next, we built upon the nature of
decision-making in MHSs to propose a concept control architecture that entails
hierarchical levels of control and generic controllers on different levels. The concept
control architecture is a variant of the modified hierarchical form of control, which
uses the strong points of heterarchical control architectures (e.g., modular and robust
design) and of hierarchical control architectures (e.g., delegation of lower level
decisions to lower levels in the hierarchy and higher level coordination). In the second
part of this chapter, we presented the main decision-making processes and indicated
the potential to model them generically.

In the proposed control architecture, we note that schedulers are the controllers
responsible for workload control, because they decide on task execution times, e.g.,
when to execute retrieval tasks. Moreover, pipeline size limitations reflect a pull
system for material flow, which we use to avoid congestion, overflow of buffers,
saturation, imbalances in loads among buffers or parallel systems, and to support other
functional requirements. At the local traffic level, we deal with materials physically
moving as a result of scheduling decisions. Therefore, local traffic control has a small
impact on the amount of materials in transport.

In the following chapters, we detail the concept control architecture further and test its
applicability to MHSs in different settings reflecting the different industrial sectors.
Then, we analyze the extent to which we manage to maintain a generic control that
conforms to the functional requirements and design requirements as defined in Section
1.3.2. To this end, Chapter 3 provides different applications of the control architecture,
whereas Chapter 4 demonstrates an implementation of the generic control architecture
in a business case of a large baggage handling system.

41

Chapter	3 	

Applications	Of	The	Planning	And	
Scheduling	Control	Modules10	

In Chapter 2, we proposed a concept of a generic control architecture for MHSs in
different industrial sectors. We have presented the control structure and illustrated the
decision-making processes at different levels of control.

In this chapter, we develop the concept control architecture into a concrete control
architecture and validate it. To this end, we apply control modules of the generic
control architecture (Chapter 2) to a material flow model with an ASRS and a sorter
system with build workstations. These system elements are common to two industrial
sectors: baggage handling and distribution, where build workstations can be order
picking stations (in distribution) or laterals (in baggage handling). Therefore, we set up
this model to be applicable to MHSs in distribution and baggage handling. Moreover,
we report on performance and analyze how far we can control the two industrial
sectors generically in terms of software implementation. Note that parcel & postal
sorting is excluded from this model because MHSs in this sector do not use ASRSs or
build workstations.

The system elements described above require the implementation of the decision-
making processes we defined at the planning level (see Chapter 2) and a number of
decision-making processes at scheduling level. In order to implement the generic
routing approach (Chapter 2), which is at the scheduling level, and test its
performance, we present another system model with a routing configuration. We also
compare the generic routing approach to current practice. In the aforementioned
applications, we mainly implement planning and scheduling control modules and
include (generic) local traffic control modules in an aggregate manner.

Section 3.1 presents a generic MHS model, which can be tuned to simulate MHSs in
different industrial sectors. Section 3.2 presents a modification to the system base
modeled in Section 3.1 by changing the system layout and equipment to simulate a
different distribution system. The changes result in a routing configuration, which
requires an additional control module to be included in the control architecture (which
is applied in Section 3.1). This additional control module is routing TSUs in networks
(see Section 2.2.2.4). Finally, Section 3.3 ends with concluding remarks.

10 This chapter is based on Haneyah et al. (2013b).

42

3.1 A generic material flow model
In this section, we introduce a generic material flow model, which uses an ASRS as
the main element. The control modules applied reflect the first building blocks of the
concept control architecture proposed in Chapter 2. Section 3.1.1 presents the system
model and relevant components. Section 3.1.2 presents the implementation of the
proposed control architecture on the generic material flow model, discusses
experimental results, and analyzes the generality of the software implementation.
Finally, Section 3.1.3 presents concluding remarks for the generic material flow
model.

3.1.1 A generic MHS model

Based on the analysis of two MHSs operating in two different sectors (Baggage
Handling and Distribution; see Figures 3.1a and 3.1b), we construct a model of a
generic MHS (see Figure 3.1c). The generic system entails an ASRS with aisles and
cranes, a conveyor in loop configuration as a sorter system, and inbound and outbound
conveyors connecting the cranes and workstations to the loop. However, we do not
display a comprehensive MHS, i.e., in a typical baggage handling system, there are
baggage screening systems entailing other loop conveyors and clusters of screening
machines. Chapter 4 addresses these screening systems, which are upstream the ASRS
and the main sorter system.

As a general rule in the BHSs that we studied, an arriving TSU goes directly to the
sorter system if the build for the corresponding flight is open on one or more
workstations; otherwise it is diverted to the ASRS. When the build for a flight is open,
relevant bags are released from the ASRS to the workstation(s) assigned to handle the
bags of this flight.

In the distribution systems that we studied, arriving TSUs are always stored first, so
they never go to workstations directly. TSUs are full when they enter the system.
However, when a TSU is used for an order, some SKUs are picked from it at a
workstation. If the TSU is not completely consumed, it becomes a broken TSU that
has to return to the ASRS. These broken totes also have to return to the ASRS first
before being reused for other orders.

We highlight that in distribution arriving TSUs go to the ASRS via the main sorter
system (see Figure 3.1b), whereas in baggage handling, arrivals enter the ASRS via
another conveyor-based route (see Figure 3.1a). The main sorter system only handles
the outflow baggage from the ASRS to the workstations. The reason is that (in
baggage handling) the outflow of bags is critical and should not be disrupted by the
inflow. Therefore, these two flows are decoupled in terms of the handling equipment.
However, this decoupling also exists in some of the large distribution systems, which
we study in Section 3.2.

43

Figure 3.1. MHS models.

In order to apply generic control methods, we propose the generic MHS model
depicted in Figure 3.1c, in which we do not model the transport route leading arriving
TSUs (in baggage handling) to the ASRS in detail. We model this route in aggregate
terms because it is not critical from a control point of view and it does not exist in the

44

distribution system that we study for this model. The generic MHS model can still
reflect a different distribution system with a different layout, e.g., where inbound totes
do not use the conveyor loop. We apply the generic control elements to both industrial
sectors by parameterizing the generic MHS model to simulate distinct sectors. For
example, the conveyor route from the ASRS to the sorter in Figure 3.1a is incorporated
in Figure 3.1c by longer travel times on the sorting loop from the ASRS to
workstations, where travel times are configurable parameters in a travel times matrix
(see Section 3.1.2) in the generic model. The recirculation time on the sorting loop
follows the actual travel times (from practice) for each industrial sector. Moreover,
when the generic MHS is configured as a distribution system, then arriving TSUs
proceed to the ASRS via the sorting loop and do not use the other (baggage handling)
route from the divert to the ASRS. In this case, the generic model reduces to the
distribution system model (Figure 3.1b).

In this section, we focus on planning the flow of TSUs into the ASRS and out of it to
the workstations via the main sorting loop. To this end, we model the following system
components:

o Storage aisles: we model storage aisles in aggregate terms, i.e., we do not
model the exact storage locations within an aisle.

o Cranes: cranes are modeled with their inbound and outbound buffers. Travel
times for cranes are taken from tested distributions at our industrial partner.

o Workstations: workstations are modeled with their inbound and outbound
buffers.

o Divert: we model the first entry point of TSUs with an arrivals source to
generate TSUs and a divert that makes decisions on routing TSUs to the
sorter or to the ASRS.

o Sorting loop: the loop is modeled at some level of aggregation, where we
keep track of the loop capacity and travel times on the loop, but we do not
keep track of the location of every point on the loop at every moment in
time.

o Exception handling outfeed: this is a special type of conveyor where TSUs
can be diverted in some cases, e.g., when a bag misses its flight.

3.1.2 Implementation and analysis

The scope of the decision-making processes (see Section 2.2) implemented in this
generic system model is as follows: the planning level is fully implemented. With
regard to the scheduling level, the relevant processes are scheduling crane retrievals
and routing arriving TUSs (by the divert; see Figure 3.1c). Finally, local traffic control
problems introduced in Chapter 2 are implemented at a certain level of aggregation,
because they exhibit identical control procedures for the different industrial sectors.

3.1.2.1 Experimental setup

We use the UGS-Tecnomatix Plant Simulation software to build a simulation model,
which is scalable to different system sizes, in terms of the number of aisles, cranes,
and workstations. Moreover, our model is flexible to different system settings
regarding layout configurations (e.g., accessibility of cranes to storage racks) and

45

capacities of system’s resources (e.g., buffers and cranes). In order to model a certain
system, the following modeling parameters have to be configured in the simulation
model:

o Inbound/outbound buffer sizes of workstations and cranes.
o Aisle capacities, in number of storage locations per aisle.
o Crane capacity in the number of TSU locations on the crane. In our model, a

crane can carry 2 TSUs simultaneously in baggage handling and 4 TSUs
simultaneously in distribution. Moreover, we use a cycle time distribution for
each crane type depending on its characteristics.

o Workstation capacity in terms of the number of TSUs processed per minute.
o Pipeline sizes of workstations: For the distribution case we follow the first

approach of setting the pipeline sizes, i.e., the pipeline size is equal to the
number of locations in the inbound buffer of the workstation (see Section
2.2.2.1). For the baggage handling case, we follow the second approach, where
we have to tune the pipeline size parameter (see Section 2.2.2.1).

o Sorting loop speed and size in number of TSU locations available.
o Travel times matrix: this matrix provides travel times on the sorter loop for

every source and destination pair.
o Aisle-crane accessibility matrix. This matrix shows what cranes are operational

in what aisles. In distribution, a storage rack is accessible by one crane only.
However, in baggage handling, due to high reliability requirements, a redundant
system design is in place, where two cranes can access the same storage rack.

Moreover, the following parameters are control parameters, which are implemented in
the simulation model, as well as in the actual software of MHSs:

o Maximum number of orders simultaneously active on a workstation. In
distribution, it is common to have multiple orders processed simultaneously. In
this distribution system setting, 6 orders are active simultaneously on a
workstation.

o Planned orders threshold. This refers to the number of orders ready for
activation on any workstation requiring work. These are to be planned in
advance by the build planner (in distribution) and are typically equal to the
number of active workstations. This is the minimum number of orders needed
for activation on any workstation requiring a new order. We do not plan more
than this minimum value so that we can dynamically plan new orders based on
the status of the system.

For baggage handling, we configure the settings to model a baggage handling scenario
according to a major European airport, which was a reference system for our study.
This system has 18 workstations and 13 cranes operating on 12 storage racks, so that
each storage rack is accessible by two cranes. The service time of workstations
depends on the number of operators present, where each operator can handle on
average 2 bags/minute. The standard setting is 2 operators per lateral, and we translate
this into a uniformly distributed service time between 10 and 20 seconds per bag. We
use data sets regarding flight schedules and baggage arrivals from the same system, for
a 24 hour day of operation. The flight schedules are known at the beginning of the

46

operation. An order in baggage handling refers to the baggage required for a certain
flight, where each order line is a unique bag that is assigned to the flight.

For distribution, we configure the settings of our model to model an existing
automated distribution center in the Netherlands, which has 3 workstations, and 5
cranes in 5 storage aisles. The service time of a workstation is uniformly distributed
between 5 and 15 seconds per TSU, assuming one operator per workstation that can
handle on average 6 TSUs/minute. For data sets in distribution, we run experiments
according to one of the following order structure scenarios, for one day shift:

o Big orders: 15-25 order lines/order.
o Small orders: 1-5 order lines/order.

We generate the orders randomly, where the number of order lines per order is
determined using a uniform distribution that uses the order size limits as parameters.
Then, for each order line, we randomly select an SKU. All orders to be satisfied for a
day of operation are generated at the beginning of the simulation, e.g., before the order
picking starts. Orders might have different priorities that result from, e.g., due times.
Therefore, we arrange orders to be processed according to decreasing priority.
Moreover, at the beginning of the simulation, we generate a replenishment flow of
new TSUs to fill the ASRS (which starts empty). During the simulation, although we
have multiple TSUs per SKU, we assume that to satisfy an order line, one TSU
(holding the required SKU) is always sufficient even if the TSU is broken. In this case,
a TSU is never consumed completely and so there is always a returning flow of broken
TSUs from workstations to the ASRS. This returning flow compensates for the
replenishment flow of new TSUs during daily operation.

We concentrate on the logistics and transport issues of the system. Therefore, issues
related to inventory profiles, i.e., inventory position, replenishment times, and the
number of different SKUs, are not interesting factors to vary in our model. These
issues are the responsibility of the MHS’s user, who has to make sure that there is
enough inventory in the system. We use a standard value of a 1000 different SKUs in
all experiments. These modeling assumptions are based on common practice and
modeling cases from our industrial partner.

Experimental control rules for assigning inbound TSUs to aisles are as follows:

1. SKU distribution: A rule often used in practice is to select the aisle containing
the fewest TSUs of the incoming SKU. In case of ties, the criterion will be to
select the aisle with the lowest total number of TSUs. In baggage handling, a
control rule at the same level of detail would be to select the aisle containing
the fewest bags (TSUs) of the same flight. However, for baggage handling, this
level of detail is not sensible for two reasons. First, if we do not deliberately
distribute bags of the same flight over aisles, then it is very unlikely that bags of
the same flight end up in the same storage rack. This is because (in large
airports) baggage arrivals are stochastic and at any point in time a mix of
baggage for many different flights arrives. Second, the ASRS in a BHS has
sufficient capacity to retrieve all bags of a certain flight in time even if they are
in the same storage rack, especially because two cranes can access the same

47

rack. Therefore, a control rule with this level of detail is not applied in practice
for BHSs.

2. Aggregate TSU distribution: In distribution, this means to select the aisle
having the lowest number of broken TSUs in aggregate terms regardless of
what SKU they hold (ties are broken as in rule 1). In baggage handling, this rule
means to select the aisle having the lowest number of TSUs regardless of the
flights to which these TSUs belong.

3. Round-Robin: Simply store in aisles sequentially for every incoming TSU
regardless of the number of broken TSUs, SKU distribution, or flights.

In distribution, using the aggregate number of broken rather than full TSUs in the aisle
makes more sense (control rule 2), because stock reservation always looks for broken
TSUs first, and then distributing these over aisles contributes to workload balancing
among cranes. In all control rules, there should be storage locations available in the
selected aisle and at least one crane active on the aisle to perform the storage
operation. Otherwise, the aisle is not a candidate.

Note that in this simulation study, we model a daily operation both in baggage
handling and in distribution, and not the behavior in the long run. Therefore, the
dynamics at the beginning and at the end of the day are part of the study, so the data
collection starts from the beginning of the simulation.

3.1.2.2 General results on performance

Distribution

Figure 3.2 shows the number of order lines processed in every hour of operation (each
column represents the throughput of an hour), for each workstation, order size, and
inbound control rule. We observe that there are no significant differences in terms of
throughput, when considering various control rules for inbound flows. Naturally, the
last hour has fewer order lines processed due to the end of a shift and is therefore
excluded from performance measures. The average number of order lines processed
per hour was 314 and 320, with 87% and 88% utilization of workstations, for small
and big orders respectively.

Note that smaller orders cause throughput levels to decline. To analyze this trend
further, consider orders that are extremely small (1 order line per order), then 6 orders
active on a workstation lead to only 6 TSUs in transport. In this case, as an order is
picked and a new order is to be activated, more delays are expected until the next TSU
is scheduled, retrieved, and transported. When the order is big, each order requires
several TSUs that are in transport and keep the workstation busy. We experimented
with orders of 1 order line each and found that the number of picks per hour drops to
271, and utilization of workstations drops to 75%.

Moreover, we notice that in the small orders scenario the number of picks tends to
decrease as time goes by (see Figure 3.2). The interpretation is that when orders are
small, the number of orders that have to be processed is higher, in order to generate a
similar number of total order lines to simulate. Therefore, the probability that several
orders simultaneously need the same SKU becomes higher. In this case, as more TSUs
are simultaneously needed by several orders, delays may occur until reserved TSUs

48

are available for a specific order. Note that there is a limited number of TSUs per SKU
in the system.

Figure 3.2. Throughput levels per workstation under different control rules.

With regard to inbound control rules, rules 2 and 3 do not show any deterioration in
throughput measures over a whole day of operation compared to rule 1, which is
common practice. Hence, we recommend using one of these rules as they require
simpler software implementation and result in synergy in control with baggage
handling. At this point, we recommend abandoning rule 1, but recommending rule 2 or
3 depends on the results from the baggage handling scenario.

Baggage Handling

We found that setting the time allowance parameter to zero in the second approach for
determining the pipeline size (see Section 2.2.2.1) results in an underestimated
pipeline size. This causes insufficient material flow in the system. Many bags were

49

missed (irregularity rate = 13.2) and the utilization of system resources was low. The
explanation is that the workstations were often idle, because there was an insufficient
flow of TSUs to the workstations. In fact, a time allowance of zero assumes a free flow
situation, where in reality delays occur, e.g. due to waiting times to merge on the loop
which in turn may cause blocking entrance of new bags due to the maximally allowed
pipeline size. Moreover, TSUs that are scheduled and not physically in transport
contribute to pipeline occupation.

Therefore, we have to propose a positive value for the time allowance parameter in
order to account for retrieval time of cranes and traffic delays. We tested the system
performance given different time allowance values and under different control rules
(see Figure 3.3). Based on these simulation results, we find that a time allowance of
170 seconds leads to a good performance, with an irregularity rate of 0.06 (bags lost in
every 1000 bags). This irregularity rate is achievable by both control rules 2 and 3.
However, we emphasize the time allowance is a layout-specific configurable
parameter.

Figure 3.3. Irregularity rate given different allowance values and different control rules.

3.1.2.3 Analysis of generality

We have implemented the proposed control architecture in the material flow model to
analyze to what extent generic software code can be maintained for the two different
industrial sectors: baggage handling and distribution. We focus on the analysis of our
software code that deals with the logistic planning and control of the system, which is
often different per industrial sector (i.e., decision-making functions). Moreover, we do
not analyze Application Programming Interfaces (APIs) or Graphical User Interfaces
(GUIs) that need to be provided to the hardware (see Section 1.4). The latter
applications are standard interfaces that are available at our industrial partner and at
other software developers. These applications are used to drive the hardware, but are
not part of the decision-making functions. However, we provide standard interfaces
between the decision-making procedures and decision-making units (controllers). In
other words, we focus on the decision-making functions in detail (the control
architecture), but not on the implementation of the control architecture in a real-life

50

software system, and on its connection to a real-world installation (the software
architecture).

Our perspective on software is therefore on an abstract level and deals with the code
we used to implement these decision-making functions. This perspective supports our
generic approach to decision-making in providing a generic control architecture, where
connecting this control architecture to the hardware of a certain MHS is a different
issue.

Our target is to keep the control generic, but at some point we had to deviate to satisfy
sector-specific requirements. As a matter of fact, for decision-making processes that
exist in both industrial sectors, we implemented a software code of which 84% (in
terms of non-redundant lines of code) is used identically by both sectors, while the
remaining 16% vary. We present these percentages to give insight into the potential
synergy between the different industrial sectors. These percentages are dependent on
the implementation in our simulation and so they may vary in other implementations
or other simulation models or packages. However, the generic design of our decision-
making processes leads to a high degree of synergy even with different
implementations.

We note that our analysis is focused on the software related to decision-making
functions, which addresses the differences in these sectors. As we claimed earlier in
Section 1.4, standardization in software that is not related to decision-making should
be the rule rather than the exception, and so including it in our analysis has to bring
even more synergy.

We claim that our control architecture is generic in its applicability to different
systems, in the sense that implementers need to understand and customize only 16 %
of the code, where sector-specific elements need to be handled. Implementers should
understand the majority of the code (roughly 84%) at a high level using standard
procedures and reusable modules. To explain this claim, we use Figure 3.4 in which
we provide a representation of the relevant decision-making procedures, where we
include the main decision-making procedures for the main controllers we have in the
model (the build planner, the storage planner, an object from the crane controller class,
an object from the workstation controller class, the loop controller, and the arrivals
divert controller). To keep Figure 3.4 readable, we do not show many of the standard
procedures, databases and their connections, or the communication links on assigning
orders to workstations and retrieval tasks to cranes (shown in Figures 2.3 and 2.4).

At this point, we need to further analyze decision-making procedures where the
software is not the same and explain why is it inevitable to deviate from the generic
code. Therefore, the remainder of this section is dedicated to the analysis of the
decision-making procedures that are not standardized for both industrial sectors (16%
of the software code). Moreover, we analyze the procedures that can be incorporated
in the control architecture or omitted depending on the requirements of certain
industrial sectors (in the form of a plug-and-work mechanism).

51

Figure 3.4. Main decision-making procedures in the control architecture.

52

The order reservation process

At the planning level, Figure 3.4 shows the ‘order reservation’ process as a non-
common process in both the build planner and the storage planner. As mentioned
earlier, this process brings distribution at the same level of detail as baggage handling.

Figure 3.4 shows the components of this process in the build planner, i.e., the
‘Unplanned Orders’ and the ‘Plan Orders’ procedures. The ‘Unplanned Orders’
procedure checks (in connection with the orders database) whether there are still
unplanned orders and triggers the ‘Plan Orders’ procedure to plan new orders given
the threshold conditions (see Section 2.2.1). This procedure is active in our model for
the two industrial sectors. However, in baggage handling it always finds that all orders
in the database (in this case flights) are planned, and so it never triggers the ‘Plan
Orders’ procedure and in turn the ‘Order Reservation’ procedure in the storage planner
is never used. These procedures are plug-and-work like procedures that can be simply
removed from the architecture when implemented in baggage handling.

Triggering and releasing orders

In this point, we discuss two elements of Figure 3.4 together, because they are closely
connected. First of all, the trigger process in the workstation controller differs per
industrial sector, because this process is directly related to the different operational
environment, which we described in Section 2.2.1. This is summarized as follows:

o In distribution: the trigger to activate a new order and the announcement of a
complete order is based on work execution (late TSUs are waited for).

o In baggage handling: orders are triggered to start and are declared completed
based on time schedules (late TSUs are missed).

In some other distribution systems, orders might also have strict due times. However,
in the system we studied, orders are arranged beforehand according to their priority,
but meeting a certain due time is not as strict. Therefore, in Figure 3.4 there are two
variants of the ‘Trigger’ procedures, one per sector. This is an unavoidable sector-
specific application. In distribution, the ‘Sequence Control’ procedure in the loop
controller sends update messages about TSUs in transport to the destination
workstation. Specifically, the ‘Order In Transport’ procedure receives these messages.
In distribution, the ‘Order In Transport’ procedure checks whether all of the TSUs of
an order are in transport and sends a message to the ‘Trigger D’ procedure. In turn, the
‘Trigger D’ procedure checks whether a new order should be activated and, if so,
sends a message to the higher level build planner asking for a new order. This message
is received by the ‘Order Release’ procedure. The latter procedure checks whether
there are still any planned but inactivated orders. If so, then it selects an order to
activate and sends a message to the ‘Activate Order’ procedure to activate the selected
order on the triggering workstation.

In baggage handling, the ‘Order In Transport’ procedure does not send any outgoing
messages and, therefore, part of the code in this procedure is unused for this system
model. As a matter of fact, in baggage handling, the orders (in this case flights) are
planned beforehand according to certain time schedules. Therefore, at certain moments
in time the ‘Trigger BH’ procedure sends a message to the build planner to activate an

53

order (in this case the planned flight). Since it is already known what order is to be
activated, this message is received directly by the ‘Activate Order’ procedure in the
build planner.

We observe that in different industrial sectors we use the relevant variant of the
‘Trigger’ procedure in the workstation controller. Moreover, we find that the ‘Order
Release’ procedure in the build planner is used only in distribution to search for an
order to activate, if any, on the triggering workstation. The ‘Activate Order’ procedure
is standard and is used in both sectors.

Controlling TSUs that leave the workstation

As TSUs are processed at workstations, they have different options to proceed for each
of the industrial sectors. The procedure ‘Control Dest’ (Figure 3.4) is responsible for
guiding these processed TSUs. In baggage handling, TSUs always leave the system
and so the ‘Control Dest’ procedure instructs low level controllers to move the bag.
However, in distribution, processed TSUs are often broken TSUs, which need to be
returned to the ASRS. Therefore, they need to be announced and re-routed via the
‘Inbound’ procedure. Moreover, if a TSU is the last TSU of a certain order, then
‘Control Dest’ sends a message that the order is complete to the build planner.

The ‘Control Dest’ procedure needs to have a variant per industrial sector. It reflects
an unavoidable system-specific application due to the different operational
environments.

Order complete in baggage handling

In the previous point, we showed how the order is announced complete in a
distribution system. In baggage handling, the procedure ‘Closing’ (Figure 3.4) is
responsible for sending the order complete messages at certain moments in time, based
on planned end times for flight loading operations.

Routing arriving TSUs

A sector-specific procedure ‘Routing Arriving TSUs’ is added in baggage handling to
route arriving bags (see Section 2.2.2.3), because in baggage handling a scheduling
decision has to be made on routing bags either directly to workstations or to the Early
Bags Storage.

Scheduling crane retrievals

Scheduling crane retrievals is a vital decision-making process that has to adapt to
sector-specific requirements, although it has the same basic structure in the crane
controller. To understand this process better, we highlight an important operational
difference in the systems we studied: in distribution multiple orders are simultaneously
active on a single workstation, whereas in baggage handling a single order is active on
one or more workstations simultaneously.

Figure 3.4 shows that the retrieval process consists of three main procedures, executed
in each retrieval decision:

1. Defining candidate destinations (for which a retrieval can be scheduled): in
distribution, the destinations of all active order line retrievals define the

54

candidate destinations. In baggage handling, we have to serve the most urgent
flight first, and so those workstations on which the urgent flight is active are the
candidate destinations.

2. Selecting a candidate destination: the selection among candidate destinations is
identical for both industrial sectors and depends on least occupied pipeline.

3. Scheduling a retrieval: in distribution, we schedule a retrieval to the selected
destination, based on the oldest active order first. In baggage handling, we
schedule a bag for the selected workstation and the selected (urgent) flight.

In this process, the second procedure is applied identically in both industrial sectors.
However, for each of the first and third procedures above we have a variant
customized for baggage handling and a variant customized for distribution.

Figure 3.5. Commonality of code.

Overview

Having discussed the decision-making procedures in detail, we find it useful to come
back to the decision-making processes in generic terms (see Section 2.2) and provide
an overview of the commonality in software for these processes according to the
implementation in the simulation model. Figure 3.5 presents the software coverage,
i.e., commonality in the lines of code. In this sense, Figure 3.5 presents the number of
lines of code in common and the numbers of lines dedicated per sector, for every main
decision-making process. We note that decision-making processes at the local traffic
control are common for both sectors, which should be the case for such lower level
decisions that deal mainly with the movement of TSUs on the equipment. Variations

55

occur at the planning and scheduling levels, where the processes that are divided
between the baggage handling or the distribution process with no common segments
indicate that these processes require a variant per sector as described in the
aforementioned analysis. On the other hand, processes that have dedicated segments
per sector but also common segments, imply that certain procedures within these
processes are common while others require a variant per sector. Finally, processes that
are entirely dedicated refer to plug-and-work procedures.

3.1.3 Concluding Remarks

In this section, our main target was to provide a proof-of-concept for the applicability
of generic control for MHSs in different industrial sectors. To this end, we presented a
material flow model that is applicable in two different industrial sectors and applied
generic control procedures on it building upon Chapter 2, which proposes a generic
control architecture.

We provided a generic system model and explained the implementation of our control
for this model. Next, we reported on general results and analyzed the generality of our
control approach in detail. As a matter of fact, we managed to achieve a high level of
synergy in control over common decision-making processes. This is demonstrated by a
software code that is 84% identical for both the baggage handling and the distribution
sectors. The generic structure of our decision-making processes facilitates a minimal
deviation from the generic code. This is achieved because we do not hamper the
overall structure of the decision-making processes when adapting to sector-specific
rules. For example, the different decision-making criteria in scheduling crane retrievals
(flight due time or oldest active order first) are easily integrated in specific procedures
within the overall decision-making process. However, such differences are due to
sector-specific parameters, e.g., plane departure schedules, which we have to adapt to.

In addition, we found that inbound flow control in distribution can be implemented in
synergy with baggage handling. Inbound flow control can be implemented using
aggregate information about TSUs in storage or using a simple control rule, i.e.,
Round-Robin. Uncommon decision-making processes that are specific to one sector,
e.g., order reservation, are inevitable differences. These processes are built as
functional add-ons to the generic control architecture, which do not hamper the generic
structure and do not need special interfaces as we have standardized communications
between controllers.

3.2 An MHS with a routing configuration
In this section, we develop the generic model of Section 3.1 further in order to (i) test
the applicability of the generic control architecture (Chapter 2) on different
configurations and (ii) to make an application of routing TSUs in networks, which is
the scheduling process discussed in Section 2.2.2.4. This section is structured as
follows: Section 3.2.1 presents the modified model. Next, Section 3.2.2 illustrates the
implementation of the generic control architecture on the modified model and analyzes
the performance. Finally, Section 3.2.3 ends with concluding remarks.

56

3.2.1 An MHS model with a routing configuration

We use an MHS from the distribution sector in the United Kingdom to modify the
generic MHS model of Section 3.1.1 (see Figure 3.1). Figure 3.6 presents the modified
MHS model, where the original sorter downstream the ASRS is removed and a large
conveyors transport network is introduced. Moreover, there are two sorters, each with
2 workstations. The outbound flow of TSUs from the ASRS now proceeds to the first
divert, i.e., Divert 1, which routes an incoming TSU downstream to one of the
secondary diverts, i.e., Divert 2a or Divert 2b. Each of these secondary diverts then
routes an incoming TSU to one of the sorters via the connected conveyors
downstream. In this MHS, the transport operation from the ASRS to the sorters is done
by conveyors.

Figure 3.6. An MHS model with a routing configuration.

57

We note that in this large MHS, compared to the generic MHS model (Section 3.1),
there is a larger transport network and there are more workstations. Therefore, a higher
retrieval capacity from the ASRS is needed and so we extend the ASRS from 5 cranes
in 5 storage aisles (for the distribution system in Section 3.1) to 8 cranes in 8 storage
aisles. In this MHS, the outflow of TSUs from the ASRS (the product totes; see
Section 1.3.1) do not use the sorters for transport. Actually, these outgoing TSUs use
the conveyors network to eventually enter the inbound buffers of the workstations,
where operators pick from them. The sorters are used to transport and consolidate
customer/order totes (see Section 1.3.1) using additional equipment that we do not
include in this model. In this setting, we do not model the sorter loops in detail as they
are not the critical elements to the operation of this MHS. On the other hand, we focus
on the conveyor lines upstream the sorters and on the control of the diverts, because
these are the critical elements.

As mentioned before, this model reflects an MHS from the distribution sector, which
has the following business rules:

o Picking for an order is done exclusively at one of the two sorters. On a certain
sorter, it does not matter which of the two workstations processes a TSU for an
order, since all TSUs are consolidated via the sorter.

o If a TSU cannot proceed to its destination workstation due to blocking or
congestion in the system, then it has to be re-routed back to the ASRS. We
explain this point further in Section 3.2.2.

3.2.2 Implementation and analysis

Current practice uses a centralized control strategy for routing TSUs. In this strategy,
the planning level of control gives a destination for an outgoing TSU as a specific
workstation on the sorter where the corresponding order is being processed. The
decision to which workstation to assign is made based on the status of the system at
the time of decision-making, e.g., assign the least busy route on the destined sorter. In
current practice, the diverts are at a low level of control. They merely guide TSUs
according to the centrally planned route.

This central control strategy gave unsatisfactory results in practice and caused
imbalances in the material flow and a high rate of unprocessed TSUs returning to the
ASRS. The reason is basically the incapability of the central decision-making
approach to deal with the dynamically changing status of this large MHS. It is best to
describe the resulting behavior of this strategy using an example. Assume that a TSU
is planned for Sorter 1 via Workstation 1.1 (Figure 3.6), then the planned route is from
the ASRS to Divert 1 and from Divert 1 to Divert 2a. In this case, as the TSU
approaches Divert 1, assume that other TSUs have accumulated on Conveyor 1.1 due
to a short absence of the operator on Workstation 1.1. In this case, the TSU proceeds
to Divert 2a via Divert 1 according to its centrally planned route. However, at Divert
2a the Conveyor 1.1 is blocked and, therefore, Divert 2a routes the TSU to Conveyor
2.1. The TSU ends up at Sorter 2, which is a wrong destination and so the TSU returns
back the ASRS unprocessed.

58

Section 2.2.2.4 proposes a generic, distributed, and dynamic routing strategy for
similar types of configurations. In this section, we illustrate how this strategy not only
brings more benefits in terms of simpler and more robust design, but improves the
system performance as well. Using the decision-making processes of Chapter 2, we
propose to make routing decisions for the MHS at hand in the following manner:

o The build planner at the planning level of control assigns TSUs to a destination
sorter as a general destination.

o Divert controllers at the scheduling level of control dynamically route to
workstations.

The planning level of control is implemented identically as in the generic MHS model
(Section 3.1) with one small modification: an order is assigned to a sorter (with two
workstations) instead of assigning an order to a single workstation. Therefore, an
outgoing TSU from the ASRS has a general destination of Sorter 1 or Sorter 2, and not
a specific workstation destination.

To more clearly describe the dynamic routing strategy at the scheduling level, we
explain how the elements of the process in Section 2.2.2.4 are applied to this MHS.
First of all, we add the dashboard logic to the controllers involved in the routing
process, i.e., workstation controllers and divert controllers. Controllers use dashboards
in posting information to upstream controllers to help them make decisions that
balance loads on parallel routes while considering travel times and service rates.
Therefore, besides posting information whether a certain destination (downstream) is
accessible or not, the expected throughput times for each route downstream are posted.
In more concrete terms, for this MHS as a TSU can go either to Sorter 1 or to Sorter 2,
we calculate the expected throughput time per destination, where throughput time is
the travel time to the relevant workstation at the destination sorter plus the processing
time.

Workstation controllers on a certain sorter always post (on their dashboards) that this
sorter is accessible and the other sorter is not. However, when the workstation is not in
an operational mode, then both sorters are not accessible. Throughput times are
calculated based on the service rate of the workstation and the number of TSUs in the
pipeline. To this end, downstream controllers need information about TSUs in the
pipeline from upstream controllers, in order to estimate throughput times (see Figure
3.7).

Figure 3.7. Routing decision-making.

In this context, when a disruption occurs as in the aforementioned example at the
beginning of this section, e.g., route 1.1 blocked, then Divert 1 can observe which of

59

the downstream diverts gives access to the general sorter destination. Given no
accessibility via Divert 2a and accessibility via Divert 2b, Divert 1 decides to route the
incoming TSU to Divert 2b. In turn, Divert 2b routes the TSU via route 1.2, which
delivers the TSU to the assigned sorter where it can be processed.

In order to compare the generic routing strategy to current practice, we develop the
generic simulation model (Section 3.1.2) by adding the required modules, e.g., diverts
(with their controllers), and modify the model settings according to the MHS at hand.

In this MHS, the route from the ASRS to Divert 1 accommodates 100 TSUs, while the
routes from Divert 1 to Divert 2a and to Divert 2b accommodate 26 and 36 TSUs
respectively, and finally the routes from secondary diverts to workstations routes
accommodate from 30 to 47 TSUs depending on the source divert and destination
workstation.

In such a large MHS, the first approach for determining the pipeline size (see Section
2.2.2.1) by setting it equal to the number of locations in the workstations’ inbound
buffer (20 TSUs each) is inadequate. A pipeline of this limited size results in an
insufficient flow of TSUs in the system. Therefore, the pipeline sizes of workstations
are parameters that have to be tuned (see the second approach; Section 2.2.2.1). For
this MHS, our industrial partner has conducted simulation experiments to parameterize
the pipeline size and found the best results when the pipeline size is set to 100 for all
workstations. We also use this value in our simulation model in order to compare the
performance of generic control with current practice. To this end, we implement both
the generic control architecture and current practice in our simulation model.
Moreover, we introduce operational failures on workstations to impose disruption in
the material flow in order to test which control approach reacts better to disruptions. In
this setting, the centralized control approach results in 11% of all TSUs being rerouted
back to the ASRS unprocessed. However, with the generic routing approach, this
figure reduces to 7%.

3.2.3 Concluding remarks

In this section, we presented an MHS with a complex routing configuration in order to
apply the generic routing methodology (Section 2.2.2.4). We showed how to
incorporate this routing approach in an MHS that uses other modules of the generic
control architecture (Chapter 2) at the planning and scheduling levels of control.
Compared to the generic MHS (Section 3.1), the MHS with a routing configuration
uses the generic divert module with the methods for routing in parallel systems, as
outlined in Chapter 2. This generic divert module connects to different types of
resources upstream and downstream. In this section, Divert 1 connected upstream to
the ASRS and downstream to other diverts, whereas the secondary diverts connected
upstream to Divert 1 and downstream to workstations.

A key element in the generic routing approach is the application of dashboards as a
mechanism of transmitting information to accomplish the routing operation. We
illustrated the implementation of dashboards in this specific MHS. For other MHSs,
the structure of the routing processes and elements used remain generic, but the
information posted on dashboards or the calculations used may be adapted. As a matter

60

of fact, Chapter 4 presents another routing configuration in another industrial sector,
i.e., baggage handling, where we implement the generic routing approach with
minimal adaptation efforts.

3.3 Chapter conclusion
In this chapter, we presented applications of the planning and scheduling control
modules of the generic control architecture proposed in Chapter 2. In Section 3.1, we
introduced a generic MHS model of which the settings can be changed to enable it to
simulate a BHS or a distribution system. In this context, the generality of control was
the main aim of our analysis, but we were also interested in the implication of generic
control methods on the overall system performance. In Section 3.2, we paid attention
to an important scheduling process that is not covered in the generic MHS model, i.e.,
routing in parallel systems. To this end, we presented an MHS with a routing
configuration and illustrated how the routing elements and methods are easily
incorporated in the control architecture applied in Section 3.1.

We have developed the concept control architecture into a concrete architecture and
validated the architecture by the implementation of all modules at the planning and
scheduling levels of control. We found interesting results with regard to the extent to
which we were able to maintain the generality of control. On the one hand, we were
able to exploit the synergy in system elements in order to apply generic decision-
making processes. On the other hand, we showed that the generic control architecture
results in a good system performance.

However, the models we presented in this chapter were distinct applications that are
not integrated to represent a larger MHS with a variety of processes. Therefore, in
order to prove the adequacy of the control architecture further, we select a business
case to make an implementation of the generic control architecture on a larger scale.
Moreover, we note that our data structures should be flexible enough to adapt to
unforeseen future applications. Therefore, in Chapter 4, we make a comprehensive
application of the generic control architecture to a large BHS, which includes a more
complex routing configuration than in Section 3.2. In addition, we introduce robots as
a new type of workstations that are different from the laterals as the main workstations
in BHSs and analyze how these new resources can be modeled generically.

61

Chapter	4 	

A	Baggage	Handling	Business	Case11		

In Chapter 3, we developed the concept control architecture (Chapter 2) into a concrete
control architecture and validated it. To this end, we presented applications of the
control modules of the generic control architecture in different system models.

In this chapter, we provide a business case as a proof-of-concept for the applicability
of the generic control architecture to a specific MHS. To this end, we build upon
previous chapters to present a comprehensive application of the generic control
architecture to the baggage handling system (BHS) of a terminal at a major European
hub. The generic control architecture should be adaptable to the particularities of this
BHS. Failing to do so means that the generic control architecture is not appropriate for
the system under study and that its ability to serve as a generic architecture is
questionable. This also applies if we have to make major changes to the architecture to
make it applicable to the system we study.

In the BHS that we study in this chapter, there are two new elements that we did not
study in earlier chapters. The first element is a screening area, which requires the
implementation of the generic routing mechanism. Second, in addition to laterals as
the main workstations, this BHS contains a new type of workstations, i.e., loading
robots. We show how the control of robots is incorporated in the generic control
architecture and how standardization can be achieved over different workstation types.

In this chapter, we also compare the generic control architecture and the current
practice of this BHS. We highlight performance indicators, discuss the behavior of
each of these control approaches, and comment on the architectural design and
software complexity.

This chapter is organized as follows: Section 4.1 provides a more detailed description
of the baggage handling process than the one provided in Chapter 1. Thereafter,
Section 4.2 describes the BHS (of our business case) in detail in terms of its core task,
components, challenges, and objectives. Section 4.3 presents the control architecture
as applied to the BHS at hand, and briefly presents the current practice control
approach of this BHS. Then, Section 4.4 presents implementation aspects. Finally,
Section 4.5 ends with concluding remarks.

4.1 The baggage handling process
Most people who travel with airplanes perceive a limited part of the baggage handling
process. They hand over their baggage at the check-in desks and receive it when they

11 This chapter is based on Haneyah et al. (2013c).

62

arrive at their destinations. The background process, however, is rather complex,
particularly in major hubs.

Figure 4.1 presents a high level overview of the baggage handling process. We choose
to center the process around the main sorter system, where bags are sorted to
corresponding flights. Incoming ULDs (unit load devices) at an airport contain either
transfer baggage or reclaim baggage. All the reclaim baggage is transported to and
unloaded on dedicated unloading conveyors (flow (1) in Figure 4.1). There are hardly
any penalties for delayed reclaim baggage and reclaim baggage does not use complex
and expensive material handling equipment. Therefore, we do not investigate this
baggage flow in detail, as it is not challenging from a control or optimization point of
view. The interesting flow is the transfer baggage, which has to make its way through
the BHS onto another airplane. As these bags have to go through the sorter system,
they mix with other bags. Therefore, delays may occur and cause bags to be late for
their connecting flight(s), even if their inbound flight was on time. Normally, the
details of a transfer bag become available only after the bag has been transported (2) to
one of the transfer areas.

Figure 4.1. The baggage handling process.

A transfer area is defined as an area that contains multiple baggage loading conveyors,
which can transport the transfer baggage onto the sorter system (3). At this point the
transfer baggage merges with the baggage that has been dropped off by passengers at
the check-in desks (4). The arrival process of checked-in baggage is stochastic and

63

difficult to influence. Early baggage is directed to one of the automatic baggage
storing facilities (5), from which it is released back onto the sorter system when the
build for the corresponding flight starts.

When the build for a flight starts, one or more laterals are opened to handle the
baggage for this flight. The baggage arrives from the sorter system at one of the make-
up (i.e., build) areas (6). There, workers take the baggage off the lateral and transport it
towards the airplane (7), either on a ramp cart or inside a ULD. In addition to the
processes described above, there are also processes for handling exceptions. A typical
sorter system, for instance, has one or more laterals for bags that are too late to make it
to their flights, for bags that can no longer be identified (e.g., because the label has
been smudged or torn), and for bags that are extremely urgent and need manual
transport to the destined airplane.

Based upon the time remaining until departure of the corresponding flight, a bag is
classified as being ‘cold’, ‘warm’, or ‘hot’. ‘Hot’ baggage is baggage that is supposed
to be on an airplane that departs very soon. The exact definition differs per airport, but
generally ‘hot’ baggage has between 45 and 20 minutes until departure. ‘Warm’
baggage can be transported directly towards the build area, because a lateral has
already been opened to its flight. Finally, ‘cold’ baggage is baggage that is too early to
be transported towards the build area, because no lateral has been opened to its flight
yet.

4.2 The baggage handling system
In this section, we first describe the core task of a BHS in general (Section 4.2.1).
Next, we focus on the BHS under study and discuss its main components (Section
4.2.2). Finally, we describe the objectives and challenges of the BHS (Section 4.2.3)
which are valid for the BHS under study and for BHSs in general.

4.2.1 Core task

As mentioned in Chapter 1, the purpose of a BHS is to deliver each bag from some
point A (related to its source) to some point B (related to its destination), within a
specific time limit. However, the airport environment of a BHS is very dynamic and
stochastic, which complicates the delivery job and generates additional challenges.
Moreover, the BHS can be a complex transport network that is challenging to control.
Finally, every stakeholder has his own requirements, which affect his criteria for
assessing the system, e.g., the compulsory security screening operation.

4.2.2 System components

In this section, we explain the components of the BHS of a terminal in a major
European airport that we take as our business case. Figure 4.2 presents a simplified
material flow diagram that may help in understanding the main components of the
system, which are as follows:

 Baggage: Baggage items that can be transported on the BHS are referred to as
conveyables, which represent the main material flow. On the other hand, non-
conveyables represent a very small portion of the total number of bags that

64

cannot be loaded on the BHS because they are too small, too large, too light,
too heavy, too unstable (e.g., a ball), etc. Non-conveyables are handled with
dedicated equipment. Moreover, there is often another flow, which we do not
consider. This is the flow of empty totes that are used to carry bags. In general,
empty totes are not bottleneck resources for the performance of BHSs. In this
BHS, empty totes are used only in the storage area. The other parts of the BHS
consist of classical conveyors without the use of totes.

 Diverts and Basic Switches: In general terms, diverts make a routing decision
on directing the bag to one of two possible routes. The selected route leads to
the bag’s next process step, e.g., the main sorter or the ASRS. If the routing
decision is based on the operational conditions of the BHS, e.g., congestion,
then diverts make scheduling decisions. On the other hand, if the routing
decision is based on the bag’s attributes, e.g., the assigned destination, then
diverts make local traffic control decisions. In the latter case, we call them basic
switches or simply switches. The physical device composing a divert or a
switch may be identical, but the control involved in it determines its role either
as a scheduling device or merely as a local traffic control device. In this BHS,
streams of bags coming from check-in desks or transfer belts mix and proceed
to one of a group of 8 diverts (depending on the input point on the BHS). In 6
out of the 8 diverts, each divert is connected to 2 screening loops downstream.
For the remaining 2 diverts, however, each divert is connected to 2 other diverts
downstream (see Figure 4.2). Moreover, there are 2 switches connected
downstream 2 of the 6 screening machines (see Figure 4.2).

 Screening Area: Security control occurs in this area. In this BHS, there are 4
screening loops and 2 clusters of screening machines. Each cluster consists of 3
screening machines and is accessible via two screening loops upstream. The
design of the screening area with the upstream diverts is redundant in the sense
that a bag has two alternative route options (decided upon by the divert) to go
through one of the parallel screening loops. Next, the bag may access one of the
parallel screening machines within a cluster. After having passed a screening
machine, the bag proceeds on a network of conveyors to one of the downstream
system areas, e.g., storage and laterals build areas. However, in this specific
BHS, the screening machines do not have the same connections to downstream
resources. More specifically, each cluster has only one machine giving access
to both the main sorter and the storage area, a second machine giving access
only to the storage area, and a third machine giving access only to the main
sorter.

 ASRS: The main function of the ASRS is to store early bags until laterals of the
corresponding flights open. In this BHS, there is a racking system to store totes
with bags or without (empty locations), cranes with a double load unit device,
and pickup and delivery stations at the end of each storage aisle. The main
function of this system is to store cold bags until the laterals of the
corresponding flights open, but it is also used for other purposes such as storing
bags that missed their flights. The ASRS has 12 storage racks and 13 cranes,
where each rack is accessible by two cranes.

65

Figure 4.2. A simplified material flow diagram of the BHS.

66

 Main sorter: This is a conveyor-based sorting system, which sorts bags to the
laterals that are open for the corresponding flights.

 Laterals build area: This is the main build area, including the sorter(s) and the
laterals, where workers unload bags from the BHS to prepare them for loading
on destined airplanes, often using ULDs. One or more laterals are assigned to a
single flight, and will be opened a couple of hours before the scheduled time of
departure. In this BHS, there is one sorter with 18 build laterals and one
exception handling lateral that collects bags that missed their flights.

 Robots build area: This is not a common resource in conventional BHSs, but
exists in the BHS under study. Robots can be used to build ULDs for different
flights, where each flight may use robots starting an hour before lateral open
time (for the flight) and closing 15 minutes before lateral open time. Section 4.3
discusses the build operation in more detail and differentiates between the
robots build area and the laterals build area. In this BHS, there are 5 robots, 2 of
which are fully automated, while the other ones are semi-automated. The semi-
automated robots can handle bags with a higher rate, because a number of
operators work on them.

 Mergers: Mergers are devices that combine two incoming flows of baggage
from two different sources into one outgoing flow.

 Conveyors: System areas and resources are connected by a complex network of
conveyors, which we take into account in our control methods, but do not
model explicitly as they are at a low level of control that mainly executes
decisions that are taken at higher levels of control.

4.2.3 Objectives and challenges

As stated in Chapter 1, the main KPI for BHSs is the irregularity rate. In large BHSs,
such as the BHS at hand, it is common to have several resources that can execute the
same job, e.g., parallel screening machines and redundant transport systems. Hence,
there are different possible routes to realize the transport operation from the entry
point of the BHS until the destined exit point. The logistic control function should use
the resources of the BHS as efficiently as possible to minimize the bag’s flow time.

In this thesis, our objective is to achieve generic control of MHSs in different
industrial sectors. Moreover, we are interested in generic control within each specific
sector. In the latter context, the control of the BHS needs to use generic methods, in
contrast with current approaches where the control of BHSs is customized per project
and not standardized even within a single project. For example, in the BHS there are
workstations that work on the build operation, being robots or manned-laterals.
However, in current practice, there is a different control approach for each workstation
type. Section 4.3 discusses the generic control of these workstations. Moreover,
current approaches often use the static shortest path in routing decision-making, i.e.,
the shortest path in-time from A to B given an empty system. However, in reality the
static shortest path may not result in the smallest travel time for several reasons, e.g.,
congestion and failing workstations. In Section 4.3, we show how to dynamically
determine the best route according to the generic routing approach proposed in Section
2.2.2.4.

67

4.3 The control architecture applied to the BHS
Chapter 3 presented an application of the generic control architecture to a generic
MHS model (with an ASRS, a main sorter, and a laterals build area). In this chapter,
we develop a more comprehensive application of the control architecture to the BHS.
In this application, we extend the BHS of the generic MHS model (Section 3.1) to
include two new areas, i.e., the screening area and the robots build area.

In this section, we present the components of the control architecture (Section 4.3.1)
and the decision-making processes involved (Section 4.3.2) in this BHS. Figure 4.3
shows the control structure with the main control units and decision-making processes.

4.3.1 The control architecture of the BHS

In this section, we present the controllers involved in this BHS at the higher levels of
control (planning and scheduling) and their main tasks.

 Build planner: This controller is responsible for the build areas, i.e., it
coordinates the build workstations being manned-laterals or robots. In baggage
handling, this means the controller plans build operations for flights, i.e., it
activates the build of certain baggage groups on workstations and
communicates with the storage planner to request the release of bags from the
ASRS to the right build point(s).

 Storage planner: This controller is responsible for the storage area, i.e., the
ASRS consisting of cranes and storage racks. The storage planner assigns
retrieval tasks to subordinate crane controllers based on information from the
build planner. Moreover, upon request by the build planner, the storage planner
investigates the possibility of releasing baggage groups to build ULDs for
certain flights (see Section 4.3.2).

 Workstation controller: In the modeled BHS, we have two types of
workstations, i.e., laterals and robots. Flight build times are planned beforehand
on laterals and so laterals are reserved for certain flights during some time
frame. On the contrary, robots are flexible workstations that can be used to fill a
ULD for any candidate flight. A candidate flight at a certain moment in time is
a flight that is allowed to use robots at this moment in time and that has a
sufficient number of bags in the ASRS to fill a ULD. Both workstation types
trigger the build planner to release work. However, a lateral workstation
triggers the build planner whenever the planned time to build a flight
commences, while a robot triggers the build planner whenever it is about to
finish the build of a certain ULD and can start receiving bags to build another
one.

 Crane controller: At the scheduling level of control, the main task of the crane
controller is to schedule the retrieval tasks (timing and sequencing). This
scheduling process considers the urgency of retrieval tasks and the pipeline of
destined workstation(s).

68

Figure 4.3. Control structure.

69

 Machine cluster (MC) controller: A machine cluster controller is responsible
for monitoring a group of parallel screening machines that are connected to the
same resources upstream, and for posting information to upstream controllers
about estimated throughput times. To this end, information about bags in the
pipeline from upstream controllers is required.

 Loop controller: Loop controllers participate in the routing process, which is on
the scheduling level of control, by transmitting information from downstream
machine clusters to upstream diverts and the other way around. In addition,
loop controllers post information about space utilization of the loop (see
Section 4.3.2).

 Divert controller: This controller makes scheduling decisions on diverting bags
to one of several downstream systems in the screening area. To make this
decision, it uses information transmitted from downstream controllers.

We stress that the planning controllers are unique and aggregate, whereas scheduling
controllers are duplicated for every resource. Section 4.3.2 explains the interfaces
between the controllers mentioned in this section and how they communicate to
perform the main decision-making processes in the control architecture as
implemented in this BHS.

4.3.2 Decision-making processes and communication

In this section, we list the decisions taken at each level of control and communication
that takes place between different controllers. In the context of the BHS, we emphasize
the key descriptions and applications presented in previous chapters and illustrate the
new elements or the adaptations that are required to control this BHS. Moreover, we
briefly indicate how decision-making processes are controlled in current practice.

4.3.2.1 Planning level

The two main problems at the planning level of control in a BHS are to plan the inflow
of bags to the ASRS and to plan the outflow of bags from the ASRS towards build
areas (see Chapter 2). In this section, we describe these planning processes in the
context of the generic control architecture as applied to the BHS.

Inbound flow planning to the ASRS

In current practice, an incoming bag (which requires storage) triggers a higher level of
control. The higher level of control responds with a destination rack and a crane to
perform the storage operation.

In the generic control architecture, the bag is announced to the storage planner, which
responds with a destination rack and crane to perform the storage operation. In this
BHS, for both control approaches, the storage rack with the smallest number of bags is
selected, provided that there is at least one active crane on the rack.

Outbound flow planning from the ASRS

In current practice, cranes trigger a higher level of control that they are ready to
perform a retrieval cycle. At the higher level of control, two different approaches are
employed to release baggage from the ASRS:

70

o Retrievals for robots are released on an individual basis considering the pipeline
of the destined robot and the sequence of bags required in the ULD. Retrievals
for robots have priority over retrievals for laterals.

o Retrievals for laterals are released in baggage groups (e.g., bags of a certain
flight) considering a limit for the ASRS on the rate of retrievals for a certain
baggage group. The baggage groups are classified at a high level of control in
different priority classes according to the number of bags in the ASRS and to
the planned retrievals’ finish times of these bags. Priority classes of the baggage
groups and the limits on release rates are dynamic and updated continuously as
they depend on the elapsed time and on the number of bags in the ASRS. The
high level of control assigns the bags that the triggering crane has to retrieve in
its next cycle. In these assignments, prioritization rules within a certain priority
class are also considered.

The generic control architecture provides a generic release approach that is based on
standardizing the two types of workstations (laterals and robots). To achieve this
standardization, we propose: first, setting pipeline size limits for all workstations and
second, imposing due times on all crane retrievals. Figure 4.4 provides an overview of
the outbound planning process as applied to the BHS.

Figure 4.4. Communications for outbound planning.

We now describe the outbound planning process in more detail and show how the
control is standardized over the workstations of the system.

Baggage is released from the ASRS in groups, where a baggage group can be as large
as all bags belonging to a certain flight or a subset of these bags defined by the storage
planner. There are two main sub-processes in outbound flow planning:

71

 Stock reservation: this is a generic planning process that we apply in Chapter 3
for the distribution sector to assign product totes to orders. In baggage handling,
this process is often not needed because each bag entering the system via
check-in desks or as transfer baggage is already assigned to a specific flight.
However, the extension to the robots build area requires the use of some
functionality of this process, because the storage planner has to make a
selection of bags from a possibly larger set to be assigned to a certain ULD. In
other words, when a robot-workstation announces its availability to build a
ULD, the build planner inquires the storage planner about candidate flights to
build a ULD for. Candidate flights should have enough content of bags in the
ASRS to fill a ULD and should be within the time allowed to build ULDs on
robots (see Section 4.2). The storage planner responds to the build planner with
available options. The build planner may then request to release a baggage
group (ULD content of bags to be selected by the storage planner) for a certain
candidate flight (e.g., the flight with minimum time remaining until departure)
and assign this baggage group to the triggering robot.

 Order release: workstations trigger the build planner to activate the build of
baggage groups, based on work progress for robot-workstations (in this case a
baggage group consists of the content of a ULD) or according to planned build
times for lateral-workstations (in this case a baggage group consists of all bags
for the flight concerned). As soon as a baggage group is active on a
workstation, bags belonging to this baggage group have to be released from the
ASRS. Therefore, the build planner informs the storage planner that a certain
baggage group is active. In turn, the storage planner dynamically assigns
relevant bags to candidate cranes as retrieval tasks, since each storage location
is accessible by two cranes. If both cranes are active, then the storage planner
assigns the retrieval to the crane having the smallest workload. Moreover, the
storage planner sets due times for retrieval tasks. The due time for bags going to
robot-workstations is a parameter that we use (see Section 4.4) to indicate the
end of the time interval allowed to build a ULD, whereas the due time for bags
going to a lateral-workstation is the planned end time of the flight build. From
this point on, cranes are responsible for executing and sequencing these tasks at
the scheduling level of control.

4.3.2.2 Scheduling level

At the scheduling level, we apply the following generic scheduling processes (see
Chapter 2): scheduling crane retrievals, routing TSUs in networks, and routing arriving
TSUs. We use the latter to make decisions on detouring bags as described later in this
section.

Scheduling crane retrievals

Given a set of retrieval tasks, crane controllers schedule these tasks based on their due
times and the pipelines of destination workstations (see Figure 4.5), as described in
Chapter 2 and applied in Chapter 3. However, in Chapter 3 we only had lateral-
workstations in baggage handling, but in this BHS there are also robot-workstations.
For robot-workstations, the flow has to be strictly controlled, because bags are to be

72

handled according to a predetermined sequence. Therefore, recirculation of bags due
to blocked entry to a robot is prohibited. In this context, we apply the first approach for
determining the pipeline size (Section 2.2.2.1), in which the pipeline size is equal to
the number of locations in the inbound buffer of the robot-workstation. In this way, if
any problem occurs in the workstation, then all bags in transport can be accommodated
in the inbound buffer with a preserved sequence. On the other hand, we determine the
pipeline sizes of lateral-workstations according to the second approach as applied in
Section 3.1.

Available positions
in the pipeline

Scheduled retrievals

Release retrievals
for active groups

Cranes’
controllers

Completed tasks &
trigger for next task

Build
Planner

Storage
Planner

Expected arrivals

Other
controllers

Activation of
Baggage groups

Work stations’
controllers

Figure 4.5. Communications for scheduling crane retrievals.

We highlight that for the robot-workstations, we use the control procedures as applied
to the workstations in the distribution system of Section 3.1 in view of the high
synergy between these two workstations. This reuse of control procedures emphasizes
the generality of the control architecture. The following are the main points of
similarity between the robot-workstations and the distribution-workstations:

o Workstations receive a group of TSUs in a predetermined sequence and TSUs
of different groups are not allowed to mix in transport, at least when destined
for the same workstation. These operational conditions govern the pipeline size
determination approach.

o Workstations trigger the build planner for new task assignments according to
the progress of work and not according to time schedules (see triggering and
releasing orders: Section 3.1.2.3).

o Workstations use the parameter ‘maximum number of orders simultaneously
active on a workstation’ (see Section 3.1.2.1). However, this parameter is 1 for

73

robot-workstations, which handle 1 ULD at a time (note that this parameter was
6 for the distribution-workstations considered in Section 3.1).

Routing bags in networks

In Chapter 2, we outlined an approach for routing TSUs in networks, where divert
controllers make the routing decision based on the state of the system downstream. In
Section 3.2, we discussed an application of this routing approach to a routing
configuration in the distribution sector. In this section, we show another application,
namely to the screening area of the BHS at hand. In the screening area, screening
machines (see Figure 4.2) are available at alternative systems. In such configurations,
a divert controller has to decide to which system to divert an incoming bag. Contrary
to current practice where static shortest path algorithms are often implemented, we
apply the generic and dynamic routing approach. We note that we model 8 diverts,
each connected to two resources downstream. More precisely, for 6 diverts, each is
connected to 2 screening loops downstream, while for the remaining 2 diverts, each is
connected to 2 other diverts downstream. Each screening loop is connected to one
cluster of screening machines downstream (see Figure 4.2).

We aim to balance the load on parallel systems and react to machine failures, i.e.,
fewer bags should go to the system having a lower capacity (due to, e.g., failed
machines). For the distribution system modeled in Section 3.2, we focus on expected
throughput times of the systems. In the BHS however, as the bag can go either to the
laterals build area or to the storage area (from the screening area) as general
destinations, we calculate the expected throughput time per destination. Note that in
Section 3.2 the general destinations were Sorter 1 or Sorter 2. To this end, machine
cluster controllers post expected throughput times. In turn, upstream controllers use
this information to make routing decisions. Upstream controllers also have to provide
information about bags in the pipeline for downstream controllers to estimate
throughput times.

In this large BHS, the decision to divert a bag to system A or to system B is
impractical to take for each bag separately due to the high rate of bags passing the
divert at a high speed. It may cause excessive switching of diverts (which is
undesirable for the equipment). Therefore, the divert is positioned to one of the
downstream systems until the difference in throughput times between downstream
systems exceeds a certain threshold. Then, we need to react to the imbalance and so
the divert switches position. As long as throughput times are balanced, we check
whether space occupation on downstream loops is balanced in the same manner. We
use the dashboard logic to post status updates to upstream controllers. Each component
(machine cluster, loop, or divert) has a dashboard that posts accessible destinations
downstream, expected throughput times, and space occupation on loop(s) downstream
(see Figure 4.6 for an example). Upstream flow is always blocked when the system has
completely absorbed the allowed capacity.

With regard to the generality of the routing approach, we note that if the threshold
values are set to 0, then the control mechanism is reduced to the mechanism that we
use in the distribution system of Section 3.2. Therefore, in this section we actually
provide a more general routing approach that can be applied to the distribution system

74

we modeled in Section 3.2. Moreover, we again show that the standardized controllers
and communication interfaces allow the application of the same control logic to
different system layouts by merely defining connected controllers upstream and
downstream for each component.

Figure 4.6. Communications for dynamic routing.

Detouring bags

As mentioned in Section 4.2.2, one screening machine per cluster has connections to
both the main sorter and to the ASRS. Therefore, outgoing bags can be routed either to
the sorter system or to the ASRS via the switches available downstream these
screening machines (see Section 4.2.2).

In current practice, switches route the bag based on the status of the corresponding
flight. In more concrete terms, if the corresponding flight is building then the switch
directs the bag to the main sorter. Otherwise, the switch directs the bag to the ASRS.
In this approach, there are no scheduling tasks involved in the switch controller.

However, in the generic control architecture, we analyze the option of upgrading these
switch controllers to divert controllers by incorporating decision-making rules at the
scheduling level (e.g., based on working conditions). In this approach, bags are routed
to the ASRS when the build for the corresponding flight is not open yet. Moreover, if
the build is open and the pipeline(s) of the destined workstation(s) is (are) not full then
the bags are routed to the main sorter (we route to the least occupied pipeline when
more than one lateral is available). However, if the pipeline(s) is (are) full, then, in
order to maintain a controlled flow on the main sorter, it may be beneficial to route
bags to the ASRS and delegate the scheduling task to crane controllers there. We refer
to the latter option as the detour option since it causes longer handling times by
routing bags through additional system areas. The detour option should not be used for
urgent bags as it may cause them to miss their flight. In this BHS, we can detour bags
only if they have at least 30 minutes until departure. Otherwise, we route them directly
to the laterals although they are busy. In this case, recirculation on the sorter is a safer
option.

75

4.3.2.3 Local traffic control

In addition to the planning and scheduling decision-making processes, we apply the
local traffic control processes (see Chapter 2) in an aggregate manner as they do not
affect the overall architecture and merely execute scheduling decisions. The main local
traffic control processes are: first, space allocation at merge junctions, e.g., allocating
free spaces on the main conveyor in front of the ASRS to bags waiting in the outbound
buffers of cranes. Second, the crane storage cycle and in-aisle travel optimizer, which
concerns the determination of travel sequences for a crane within an aisle, e.g., to
execute a storage cycle to store incoming bags.

4.4 Implementation
In order to test the control architecture, we extend the simulation model used in
Chapter 3, which includes the main building blocks of the BHS under study and of the
control architecture. In this section, we describe the experimental setup (Section 4.4.1),
the model parameterization (Section 4.4.2), and finally we present general results
(Section 4.4.3).

4.4.1 Experimental setup

We configure the settings of the simulation model to represent the BHS at hand. In
addition, there are control parameters, which need to be tuned for this BHS. These
parameters are:

 The threshold values we use in parallel screening systems to determine the
allowable difference in expected throughput times (or space occupation on
screening loops). When these threshold values are exceeded, the divert switches
the baggage flow to the other system downstream.

 The time allowance in the pipeline size expression according to the second
approach (Section 2.2.2.1).

 Due times on retrievals to robot-workstations.

We use data sets regarding real-life flight schedules and baggage arrivals for the BHS
of which the physical components are explained in Section 4.2.2. The operational
scenario covers a complete day of operation in each simulation run. We include
common screening machine failures occurring in practice during normal operation
with exponential distribution for the time to failure (mean = 6 hours) and an
exponential distribution for repair time (mean = 10 minutes). Each simulation run
includes: 61 flights where each flight is scheduled to be built on two laterals for 75
minutes, ending 15 minutes before the scheduled time of departure. We set the number
of operators per lateral to 2, with a handling capacity of 120 bags per hour per
operator. Moreover, each flight may use robots for 45 minutes, starting 1 hour before
lateral build time starts. Automated robots and semi-automated robots handle bags at a
capacity of 200 and 350 bags per hour, respectively. Finally, the number of bags
modeled per simulation run is 25,198, which consist of 7983 transit bags and 17215
checked-in bags.

76

4.4.2 Model Parameterization

In this section, we propose suitable values for the main control parameters in the
model.

4.4.2.1 Pipeline allowance parameter

We tested the generic routing logic in parallel screening systems and the detour option
(Section 4.3.2.2). To this end, we use a BHS of a limited scope, which includes the
screening area and the areas in direct connection downstream: the main sorter and the
ASRS. We do not include the robots build area, because it is not in direct connection
with the screening area where routing takes place. We test the detour option (see
Section 4.3.2.2) versus always sending bags to laterals when the build time of the
flight is open (even when the pipelines are full).

Routing parameters (see Section 4.3.2.2) are selected according to desirable values in
practice. We use a throughput time threshold of 1 minute, which means that a divert
switches position only if switching leads to at least 1 minute savings in throughput
time downstream. Moreover, we keep track of space utilization on (screening) loops.
Once the space utilization on one of the loops exceeds 90%, and as long as throughput
times are balanced, we start balancing for space utilization. We set the space
utilization threshold to 20%, which means that a divert switches position only if
switching leads an incoming bag to the loop which is at least 20% less occupied than
the other accessible loop downstream.

Figure 4.7. Time allowance versus irregularity rate with robots disabled.

In order to determine the pipeline size, we conduct several experiments to configure
the time allowance parameter (see Section 4.4.1). Figure 4.7 shows the effect of
different time allowance values on the irregularity rate, which is the main KPI. We
conduct the experiments without the detour option and with the detour option, in
which a bag may be detoured when pipelines are full provided that the bag is not
urgent, i.e., it has at least 30 minutes until departure for the BHS at hand. The best

77

value for the time allowance is found to be 100 seconds for both options (with detour
and without detour). We observe that, in this BHS, the detour option does not have a
big effect on the irregularity rate, since we are able to get comparable results without
this option. Moreover, the detour option is seldom used; on average 0.4% of all bags
were detoured. There are two causes for this result: first, the possibility of the detour
option is limited to only 2 out of the 6 screening machines in the screening area due to
the design of this particular BHS (Section 4.2.2). Second, the BHS under study is a
large system where a bag is allowed to be detoured only if it has at least 30 minutes
until departure (see Section 4.3.2.2). Therefore, the number of bags that can be
detoured is limited.

4.4.2.2 Setting due times

In Section 4.3.2, we stated that in order to achieve standardization among different
types of workstations, it is necessary to impose due times on all retrieval tasks
assigned to cranes. In this way, cranes can have a standard approach for retrievals and
do not have to distinguish retrievals going to robots from those going to laterals as in
current practice.

Due times on retrievals going to laterals are straightforward (Section 4.3.2) because
they are based on planned build times on laterals. Moreover, current practice
implements an approach that is based on due times as well. On the other hand, we have
to find the right parameters for due times on retrievals going to robots. For the robots
case, due times is a new concept that is not applied in current practice (see Section
4.3.2).

To this end, we use the simulation model to find the right parameters (using a fixed
pipeline allowance time for retrievals for lateral-workstations). As we include the
robots build area, the system capacity becomes high enough to handle all bags in time
(i.e., to have an irregularity rate equal to 0). No capacity problems occur because we
do not model major disruptions such as plane delays or severe equipment failures.
However, we need to have irregularity rates in order to make comparisons between
different due time approaches. Therefore, we impose a restriction that all bags have to
arrive at their destined lateral before the lateral close time. Otherwise, we consider
them missed. However, in reality there is still 15 minutes between lateral close time
and plane departure within which a bag can receive special handling to make it to its
flight.

We experiment with several options to set due times on retrievals to robots and
examine the effect of each option on the irregularity rate (IR) as shown in Table 4.1.
We also measure the number of ULDs built by all robots during a complete day of
operation. The first option in Table 4.1 is based on the fact that each flight has 45
minutes allowed to use robots, starting 1 hour before laterals open (ending 15 minutes
before laterals open). Therefore, we set due times for retrievals of each flight to be the
end time of this 45-minutes interval. However, this option leads to an unacceptable
performance. Following this option, a retrieval to a certain flight may have 45 minutes
until its due time, when it is released early. On the other hand, another retrieval to the
same flight may have few minutes until its due time, when it is released towards the
end of the time allowed for the flight to use robots. A resulting behavior is that crane

78

controllers delay the retrievals to robots as they had initially long time until they are
due. As a result, robots do not trigger for more work because the early assigned ULD
builds were not processed and robots are still waiting retrievals from cranes. The 5
robots build only 78 ULDs over the whole day of operation, which is a severe
underutilization. Moreover, when retrievals for robots are due soon, cranes start
working on them and cause retrievals to other flights building on laterals to be late.
The aforementioned system behavior causes the irregularity rate to be too high.

Consequently, we have to impose a ULD-specific due time on the bags of each ULD
instead of the general ‘robots build close time’ as the due time for all ULDs of a
certain flight. Therefore, we propose a time interval allowed to build a ULD, which is
based on dividing the number of bags planned for the ULD by the handling capacity of
the assigned robot. In this option, we plan for lower than 100% capacity on robots in
order to take into account issues such as transport times, waiting on junctions,
blockings, and retrieval times by cranes. Therefore, we actually divide the number of
bags planned for the ULD by 60% of the robot capacity (see Option 2 in Table 4.1).
Compared to Option 1, the resulting performance improves dramatically, where on
average less than 1 bag is not properly delivered per 10,000 bags and the number of
ULDs built is 475. A similar option to set a due time for a ULD, is to define the ULD
due time based on 100% utilization of robots and then add a time allowance to this
value (see Option 3 in Table 4.1). In this option, we divide the number of bags planned
for a ULD by the robot capacity and then add a time allowance. With this option, the
irregularity rate is the same as in Option 2, and the number of ULDs built is 479.

Table 4.1. System performance under different due time settings for retrievals to robots.

As a matter of fact, Option 4, in which we use experimental build times for ULDs,
gives the best results, with 15 minutes allowed to build a ULD for any robot. So we
use this as a parameter in our further experiments as follows: when a retrieval to a
robot is assigned to a crane, the due time is always the time of release plus 15 minutes.
It may be surprising that we achieve best results when both semi-automated robots and
automated robots are given the same time to build a ULD, although semi-automated
robots have higher capacity in handling bags (Section 4.2.2). However, giving both the
same time to build a ULD at some point in time means that the due times for all
retrievals released at this point in time are the same. Therefore, cranes work on
retrieving bags for all 5 robots in the system, but if the allowed due time intervals for

79

semi-automated robots were even a few minutes smaller, the cranes would serve these
robots and delay serving the automated robots. Consequently, at the system level, bags
are handled at a lower rate causing the overall performance to decline.

4.4.3 General results

We test our control architecture on the large scale BHS, using the parameters as tuned
in Section 4.4.2. In this BHS, we include the robots build area and implement a
common practice of 2 operators working on each lateral. Moreover, we allow special
handling for bags that miss lateral close time, but can still be delivered to the plane
before departure by an operator for example. These bags should arrive at the plane in
the 15 minutes time interval between lateral close time and the scheduled time of
departure for the corresponding flight.

In addition, we compare the performance of the generic control architecture to current
practice (see Section 4.3.2) for the same input data. Given the large BHS with full
capacity, it is possible to properly deliver all bags under generic control as well as
under current practice approaches. In this case, we analyze other performance
indicators (PIs) that are of interest. These PIs are as follows (see Table 4.2):

o The average and maximum measures of traffic delay: these measures concern
the traffic delay (waiting time) before an outgoing bag from the ASRS enters
the main sorter.

o Percent recirculations: this measures concerns bags that arrive at full inbound
buffers of their destined laterals and thus have to recirculate on the main sorter
for a second delivery attempt.

o Percent detours: this measure reflects the proportion of bags that were detoured
(see Section 4.3.2.2).

o Number of ULDs built: this is a measure of the total number of ULDs built
during the complete day of operation.

o Percent special handling bags: this is a measure of the proportion of bags
which arrive after the lateral has closed but before the departure time of the
plane, and thus could still be loaded on the plane.

We observe that, due to the pull concept, generic control performs better in
minimizing re-circulations on the main sorter, which affects traffic delays as well.
However, current practice compensates for less output on the sorter by better
utilization of robots (more ULDs are built). This may be justified because retrievals for
robots always get priority in current practice, while in generic control, there is no strict
distinction between retrievals for robots and retrievals for laterals. With regard to the
percentage of bags receiving special handling due to missing the lateral close time, the
performance is comparable to current practice.

To test the effect of the number of operators per lateral, we find that having 1 operator
per lateral instead of 2 does not increase the irregularity rate, so the BHS would still
perform well even with a lower number of operators than usual, which is desirable in
practice. On the other hand, if the robots are disabled, all other settings being the same,
then the irregularity rate increases to 3.60, which is unacceptable. However, we can
compensate for disabling robots by increasing the number of operators per lateral to 3.

80

In this case, the irregularity rate is the same as with 2 operators per lateral and robots
being enabled.

Table 4.2. Performance indicators for generic control versus current practice.

4.5 Chapter conclusion
In this chapter, we provided a proof-of-concept for the applicability of the generic
control architecture for MHSs in different sectors. To this end, we have extended the
applications we made in Chapter 3 to present a more comprehensive application to a
business case in the baggage handling industrial sector. In this business case, the BHS
consists of several areas: a laterals build area, a robots build area, a storage area, and a
screening area. Moreover, a variety of decision-making processes, at different levels of
control, are implemented in this BHS.

One of the advantages proposed by this study is to model workstations, being laterals
or robots, in a generic manner. This resulted in a simpler control software for the order
release and retrieval processes. In current practice, one approach is implemented in the
storage area to retrieve bags for robots, while another approach is implemented if the
destination is one of the laterals. Moreover, we implemented a dynamic routing
strategy that uses the dashboard logic to make routing decisions and to react to
breakdowns and congestion. These control methods have a modular and generic
structure, which allows them to be implemented in different BHSs and different MHSs
in other industrial sectors.

In our application of the generic control architecture to the BHS at hand, we highlight
some points that support the concept of generic control: first, we used the same
planning level as in the generic MHS model (Section 3.1), but on an extended system
base. Similarly, we used the same storage system with identical controllers, but
introduced new connections to the upstream screening area. Moreover, we introduced
a new type of workstations (robots) to the basic material flow model and found them
analogous to the workstations in the distribution sector. Finally, to model the layout of
the BHS at hand, we could easily modify transfer times, capacities, systems

81

connections, etc., since they are adjustable parameters in both the simulation model
and the control architecture.

Current practice approaches at the planning level are customized, complex, and
computationally intensive. Alternatively, the generic control architecture identifies the
decision-making processes at the right level of control, and handles layout-specific
details by configurable parameters. As a result, the architecture is scalable and tunable
to different system layouts and designs. Moreover, the architecture allows for a much
faster implementation and is both flexible and more robust, still without compromising
the overall performance. Finally, we stress that the comparisons we made are based on
normal operational conditions. When more severe and unexpected disturbances in the
material flow occur, we expect generic control to outperform current practice as
generic control reacts directly to problems in material flow and takes actions to avoid
possible congestions and imbalances.

As the generic control architecture is designed, implemented, and confronted with
more challenges in a business case, we extend our analysis to a scheduling problem,
which is influential for the operation of MHSs but that is not part of the control
architecture (as a software component). This problem is scheduling inbound containers
to load MHSs that use sorters as the main element. Chapter 5 analyzes this scheduling
problem.

82

 	

83

Chapter	5 	

Improving	 The	 Performance	 Of	 Sorter	
Systems	By	Scheduling	Inbound	Containers12	

In Chapter 4, we applied the generic control architecture to a BHS (baggage handling
system) and showed how generic decision-making processes are applied at the
different levels of control. With regard to the material flow, we modeled the arriving
bags (so far) as they appear at diverts. However, what system-users do before a TSU is
placed on an infeed or after a TSU has been retrieved from an outfeed was not within
our scope of analysis (Scope 1; see Section 1.2.1).

In this chapter, we study scheduling algorithms that lead to better use of sorter
systems. Such algorithms allow system-users to have better systems’ performance
without installing additional equipment. More specifically, this chapter investigates the
inbound containers scheduling problem (see Section 2.2.2.2) for automated sorter
systems in two different industrial sectors: parcel & postal sorting and baggage
handling. For the distribution sector, this scheduling problem is not relevant due to
reasons discussed in Section 2.2.2.2.

The aim of this chapter is to investigate which scheduling algorithm to use for each
industrial sector, operational scenario, and system model. To this end, we build upon
existing literature, particularly on the state-of-the-art scheduling algorithm designed
for parcel hubs. We present an adapted version of this algorithm that allows for non-
zero internal travel times on sorters that in addition may differ per infeed/outfeed
combination. Moreover, we show how to apply the scheduling algorithms in baggage
handling as a new application area. We also propose extensions to the algorithms in
order to adjust to the operational environment in baggage handling. To analyze
different scheduling algorithms, we conduct computational studies on different system
models and for different operational scenarios.

This chapter is organized as follows: Section 5.1 describes the problem of scheduling
inbound containers and presents a generic process model for sorter systems in the two
industrial sectors. Then, Section 5.2 provides a literature review on containers
scheduling. Next, Section 5.3 discusses scheduling inbound containers in parcel &
postal sorting. Afterwards, Section 5.4 discusses scheduling inbound containers in
baggage handling. Section 5.5 presents the experimental setup and the results of
computational experiments. Finally, Section 5.6 ends with concluding remarks.

12 This chapter is based on Haneyah et al. (2013d) and Haneyah et al. (3013e).

84

5.1 A generic process model for sorter systems
In this chapter, we focus on sorter systems in baggage handling and parcel & postal
sorting. We exploit the commonalities between these industrial sectors to describe the
systems in a generic way. However, we first distinguish the basic physical layouts of
sorters with a line configuration (Figure 5.1a) from more complex sorters with a loop
configuration (Figure 5.1b). In this chapter, we focus on sorter systems with a loop
configuration, but the analysis and the results are applicable to sorters with a line
configuration as well.

Figure 5.1. Basic configurations of sorter systems.

Although baggage handling and parcel & postal sorting are two different industrial
sectors, a common operation is scheduling inbound trailers, ramp carts, and ULDs
(unit load devices) to unload at the infeeds of the sorter system.

In practice, a lot of information about the contents of specific containers or ULDs is
available in the network (Scope 3; see Section 1.2.1). For example, when loading a
ULD with bags at an airport of origin, the information about the number of bags in the
ULD and their destinations is registered. However, this information is not used at the
next airport where this ULD arrives. System-users typically apply a first-come-first-
served (FCFS) policy when unloading inbound containers. As a result, uncontrolled
peak flows for a particular outfeed may arise. Peak flows for outfeeds may cause them
to be overloaded, which may reduce the capacity (measured in sorted items per hour)
or at least increase material handling costs.

In sorter systems, outfeeds are generally coupled to specific destinations or regions of
destinations. When an outfeed coupled to a particular destination is full, a sorter in a
line configuration transports the corresponding items to the outfeed for unsorted items,
which leads to an area (downstream the sorter system) where unsorted items are
collected. The capacity of the sorter system is indirectly reduced, because the unsorted
items have to be re-loaded onto the sorter system for a second delivery attempt. The
other solution is that a worker manually delivers the item to the right outfeed, which
may increase material handling costs significantly. In a sorter system with a loop
configuration, a full outfeed results in recirculation. This reduces the sorter capacity
directly, since a recirculating item claims space that otherwise could have been used
by another item. In this context, balancing the workload across outfeeds may help
reducing the overload incidents and thereby reduce recirculation. This in turn might
increase the operational capacity of existing sorter systems or reduce the required

a) Line configuration b) Loop configuration

85

design capacity of new systems. Therefore, the main problem we tackle is how to
schedule the unloading operations of inbound containers using the knowledge about
their contents, in order to keep the workload on sorters well-balanced. We assume that
operators assignment to chutes and outbound destinations planning are tasks that are
already done by the system user’s process, which provides inputs to the operation of
the automated MHS. Moreover, we assume highly loaded sorters. In this context, the
main objective is to balance the load in order to maximize throughput.

In baggage handling, incoming ULDs contain either transfer baggage or reclaim
baggage that is transported on dedicated unloading conveyors. We do not consider the
flow of reclaim baggage further as it is not critical from a scheduling point of view and
not part of the flow on the main sorter system. In addition to ULDs, there are bags
arriving from check-in desks. Since these arrivals are random and unpredictable, we
model them as an uncontrollable inflow.

Contrary to the situation in BHSs, temporary storage facilities are generally not used in
parcel & postal sorting, where an outfeed is usually assigned to a single destination
during the entire shift. As a result, arriving parcels can be routed to their corresponding
outfeeds at any time. This contrasts with baggage handling where an outfeed is usually
assigned to multiple flights during the day, and so it is not always possible to route an
arriving bag to a destined outfeed. Note that routing may not result directly in
successful delivery due to, e.g., congestion, overloaded outfeeds, etc.

Figure 5.2 presents a generic process model for sorter systems in both industrial
sectors. Note that there can be several infeed areas (1..J), storage areas (1..S), and
outfeed areas (1..K). In this model, we can set the uncontrollable flow equal to zero to
model a parcel & postal sorter, where no uncontrollable flow of check-in items exists.
Likewise, a zero capacity temporary storage system models a parcel & postal sorter.

Figure 5.2. A generic process model for sorter systems.

86

5.2 Literature on container scheduling
Parcel & postal sorting

The parcel hub scheduling problem (PHSP), introduced by McWilliams et al. (2005),
is one of the first studies that focus solely on scheduling inbound containers at parcels
sorting hubs. The authors consider a parcels sorting hub with three unloading docks
and nine loading docks. McWilliams et al. (2005) use a sorter system in line
configuration, where they try to minimize the makespan of the sorting process. They
use a simulation-based scheduling algorithm (SBSA), which is based on a genetic
algorithm, to solve the problem and show that their approach is superior to the
arbitrary scheduling (ARB) approach, which randomly assigns available containers to
available infeeds. McWilliams (2005) shows that similar results can be achieved using
iterative local search or simulated annealing techniques. McWilliams (2009a) aims at
an approach to balance the workload on the loading docks. He solves small problems
to optimality using a binary minimax programming model. For big problem instances,
he uses a genetic algorithm that outperforms the SBSA and ARB approaches used in
McWilliams et al. (2005). A drawback of this approach is that due to the minimax
problem, there may exist many optimal solutions in a large non-convex solution space.
In further research, McWilliams (2010) shows that iterative approaches, such as
simulated annealing, provide solutions that are on average 6% better than the solutions
provided by the genetic algorithm, although large problems require more time to solve.

McWilliams (2009b) develops a relatively simple dynamic load balancing algorithm
(DLBA). While the other algorithms require information on all trailers in a particular
shift, this algorithm only requires knowledge of the trailers that are waiting to be
assigned to an unloading dock. He finds that the DLBA performs much better than
random assignments (makespan reduction of 15%). Furthermore, the DLBA is
generally better (makespan reduction of 8%) in large complex problems than the
approach of McWilliams (2010).

A relevant problem is the cross-docking problem, for which Cohen and Keren (2009)
develop an algorithm given forklifts as the mean of freight transport. However, this
algorithm does not suit conveyor-based sorter systems. Boysen and Fliedner (2010)
present a literature review of cross dock scheduling and propose a research agenda in
this field. Although a cross-dock is defined as a no-inventory sorting facility, many
studies explicitly use temporary storage. Li et al. (2009) consider the situation in
which the floor space in the center of the facility is used to temporarily store products.
They study a problem where each inbound trailer is also an outbound trailer that has to
be loaded directly after it has been unloaded (unlike the scheduling problem we
address). They use a heuristic based on the parallel uniform machine scheduling
problem. Yu and Egbelu (2008) focus on coping with the possibilities of limited
intermediate storage when scheduling the inbound and outbound operations of a cross-
dock to minimize the makespan of the operation. They provide both a mathematical
model to solve the scheduling problem to optimality and a heuristic algorithm.
However, their approach entails a number of restrictive and unrealistic assumptions,
e.g., that all trailers are available at the start of the operation and the unloading
sequence of products from an inbound trailer can be determined.

87

McAree et al. (2002) test the bin and rack assignment model (BRAM) using a realistic
case from a large package sort facility. This algorithm was specifically designed for air
terminals where inbound ULDs are assigned to bins to be broken into individual
pallets. Their main goal is to minimize the operational cost. Because the BRAM is too
complex to solve, they develop a new algorithm that finds a solution by iteratively
solving the Bin Assignment Model (BAM) and Rack Assignment Model (RAM), both
of which are formulated as mixed integer programs (MIPs). McAree et al. (2006) find
solutions for different layouts with running times ranging from a few minutes to a few
hours, which is fast enough for large scale investment decisions, but too slow for
online scheduling decisions.

Gue (1999) determines which docks to use for unloading and which for loading in a
cross-dock facility. The author uses a simple algorithm based on scheduling rules and
logic similar to that in the approaches of McWilliams (2009b) and Yu and Egbelu
(2008).

Werners and Wülfing (2010) consider a more complicated sorter system. In their
model of a Deutsche Post parcels sorting center, each parcel is unloaded at an
unloading dock, sorted into a chute and then assigned to a loading dock. The authors
aim at minimizing the total transport effort, i.e., reducing the total distance travelled on
the sorters. In order to solve this complex problem, they hierarchically decompose the
problem into two sub-problems. They show that their approach ensures a balanced
workload over the different areas in the sorting center, whilst providing robust
solutions. However, they do not discuss the inbound unloading process, they solely
focus on scheduling the outbound process.

Baggage handling

Robusté and Daganzo (1992) provide an extensive overview of the possible pre-
sorting strategies, whilst aiming at minimizing baggage handling costs. They model
the baggage handling process in detail, by specifying for each strategy the number of
moves (for each bag, staff member, container, etc.) and determining the resulting costs
of the strategy. They conclude that airlines could achieve significant cost reductions if
they segregate the baggage for the larger destinations at the origin airport.

Abdelghany et al. (2006) address the outbound assignment problem, i.e., assigning
outfeeds to specific flights. Frey et al. (2010) apply a mathematical approach for a
BHS scheduling problem. They consider a baggage handling facility with an EBS
(Early Bags Storage) system and assign flights to workstations and carousels. They
solve a decomposed problem to determine when to retrieve bags from the EBS. This
problem could be converted into a scheduling problem for inbound containers, but
there are two main limitations: the assumption that full knowledge is available is
questionable, and the runtime of the algorithm is too long.

Although not entirely related to the aforementioned studies, Hallenborg (2007b)
presents an approach to determine the urgency of a bag. Even though he focusses on
agents-based scheduling in BHSs using DCVs (destination coded vehicles), the
urgency function of a bag may be useful for us to determine the urgency of a container
of bags. Hallenborg (2007b) proposes an approach where a bag ݆ becomes urgent

88

when the time allowance remaining before the destined lateral closes (cutoff time) is
below a threshold ௦ܷ௧௔௥௧. Let ܥ௝ denote the cutoff time for the lateral handling bag ݆
and let ܷ௠௔௫ denote the maximum time allowance a bag can have before cutoff, hence
the lateral handling bag j opens at time ܥ௝ െ ܷ௠௔௫ (note that any lateral’s open and
closure time is of course the same for all bags that are handled there, for one flight, the
sub-index j just serves to distinguish the urgencies of bags destined to distinct laterals.
Now if we plot the urgency function on a time scale, then the urgency ݑ௝ሺݐሻ of the bag
is determined by the following function:

ሻݐ௝ሺݑ ൌ ቐ
െቀ

஼ೕି௧ି௎ೞ೟ೌೝ೟

௎೘ೌೣି௎ೞ೟ೌೝ೟
ቁ
ଶ
	 , ௝ܥ െ ܷ௠௔௫ ൑ ݐ ൑ ௝ܥ െ ௦ܷ௧௔௥௧

ଵ

ሺ஼ೕି௧ሻమ
௝ܥ								,											 െ ௦ܷ௧௔௥௧ ൏ ݐ ൏ 	௝ܥ

Figure 5.3 shows the urgency function when ܷ௠௔௫ is equal to 120 minutes, ௦ܷ௧௔௥௧ is
equal to 30 minutes, and ܥ௝ is equal to 150 minutes. As the time ݐ approaches the
cutoff time, urgency increases at a decreasing rate until it is zero when the bag has
௦ܷ௧௔௥௧ time allowance remaining. From that moment on, the bag becomes urgent, its

urgency increases at an increasing rate until it tends to infinity when the build area
closes, i.e., when ݐ ൌ ௝. This approach may provide a good solution to determineܥ
which containers need to be unloaded first to ensure that their contents are sorted in
time. However, in this approach, we find it disadvantageous that the increase in the
urgency is relatively late and that the urgency suddenly becomes very steep.

Figure 5.3. Hallenborg’s urgency function with ܜܚ܉ܜܛ܃ ൌ ૜૙, ܠ܉ܕ܃ ൌ ૚૛૙, and ࢐࡯ ൌ ૚૞૙ minutes.

Conclusion

From our review, we find the DLBA (McWilliams, 2009b) of the PHSP (McWilliams
et al., 2005) to be the most relevant study from different points of view. First, the
DLBA is an online algorithm that does not require full knowledge about incoming
containers but uses existing knowledge about containers that are already at the sorting

89

hub. Second, it is a relatively simple and fast approach, which can be implemented
easily in practice. Finally, McWilliams (2009b) reports impressive reductions in the
makespan of the sorting operation. Section 5.3 builds further upon this conclusion.

5.3 Scheduling inbound containers in parcel & postal sorting
In this section, we first describe the state-of-the-art load balancing algorithm, which is
the DLBA by McWilliams (2009b) as developed for the PHSP (parcel hub scheduling
problem). Note that the DLBA does not consider internal travel times on sorters
(Section 5.3.1). However, in particular in BHS but also in more complicated sorting
systems, sorter travel times may be significant and in addition differ for distinct
infeed-outfeed combinations. Therefore, we formulate the load balancing problem
with non-zero and variable internal travel times (Section 5.3.2) and present an adapted
DLBA to incorporate these features (Section 5.3.3).

5.3.1 The dynamic load balancing algorithm (DLBA)

The DLBA (McWilliams, 2009b) constructs unload schedules for inbound containers
using an online scheduling approach. The aim is to dynamically balance the workloads
of the outfeeds in order to minimize the probability of an outfeed being overloaded.

The DLBA assumes that the infeeds of the sorter are parallel identical resources.
Given this assumption, whenever an infeed becomes idle, a dispatcher decides (online)
which of the available inbound containers to assign to the idle infeed. The dispatcher’s
objective is to balance the flow of parcels over the sorter system and to avoid
congestion. Thus, monitoring the state of the system is essential. In other words, the
dispatcher has to be informed once an infeed becomes idle. Moreover, the dispatcher
has to know (at each moment in time) the number of parcels going to a certain
destination in the system. This includes the parcels flowing across the sorter and the
parcels in the inbound containers being processed at the other infeeds. This
information is known because parcels’ tags are read when they are unloaded from the
containers to the infeeds and when they exit the sorter system at the outfeeds.

The DLBA is an online algorithm that is triggered when an infeed becomes idle. Then
the DLBA evaluates all containers available and selects the container that (when
assigned to the idle infeed) minimizes the overflow on outfeeds (number of excess
parcels).

The DLBA assumes zero internal travel times on the sorter. As a result, a parcel
loaded on an infeed is immediately unloaded at an outfeed. Note that the assumption
of zero internal travel times is not a stronger assumption than the assumption that
internal travel times are fixed and equal for any infeed-outfeed pair. As a result of the
assumption of zero internal travel times, all infeeds are implicitly assumed to be
identical. Therefore, if a container arrives and there are multiple infeeds idle, then the
DLBA assigns the container to an arbitrary infeed. The restriction of zero internal
travel times might be a valid simplification for small single-sorter systems where
internal travel times for any infeed-outfeed pair are comparable, or when unloading a
container requires much more time than the internal travel time of parcels in the
system. However, this may not hold for larger systems or when the time to unload a

90

container is short compared to the travel time on a large sorting system with multiple
loop sorters, multiple infeed areas, and routing complexities. Therefore, in Section
5.3.2, we propose an adapted version of the DLBA, which takes internal travel times
into account.

5.3.2 Problem formulation with internal travel times

In this section, we formulate the workload balancing problem of parcels sorters, which
takes (unequal) travel times on the sorter into account. For the PHSP, the DLBA only
keeps track of the total number of parcels in the system destined for a specific outfeed.
McWilliams (2009b) argues that as long as the total number of parcels in the sorting
process for each of the outfeeds was more or less equal, the resulting workload is
balanced.

Incorporating travel times means that the workload should not only be balanced over
the different outfeeds, but also over time. Determining the expected outflow (the
number of parcels that arrive at the chute) for each outfeed at each moment in time
indicates the excess in capacity (if any) of the outfeed at some moment in time.
However, not only the number of excess parcels is relevant, but also the rate at which
these excess parcels arrive. We choose to use the squared value of excess flows as an
optimization criterion to heavily penalize large excess flows. Another possible goal
function would be a minimax goal function that minimizes the maximum excess
amount. A drawback of this approach is that it may not properly distinguish different
solutions. For example, a solution in which only one outfeed exceeds its capacity by ݊
parcels is considered the same as a solution in which all outfeeds exceed their capacity
by ݊ parcels. In fact, in the latter case many more parcels may arrive at a full outfeed
and thus are forced to recirculate on the sorter.

Determining the squared excess outflow on a continuous time scale is impractical. A
computationally less challenging approach is to use time buckets. In the time bucket
approach, we determine for each parcel in which time bucket it is likely to arrive at the
outfeed. The size of the time buckets is an important model parameter since it affects
the level of detail that can be achieved. In order to achieve sufficient detail, we use a
time bucket size of 1 minute. This is approximately a quarter of the time required to
unload a single ULD and roughly equal to the smallest travel time between infeed-
outfeed pairs in the sorter systems that we study. Using time buckets of 1 minute
provides sufficient detail but also results in valid and meaningful outflows.
Furthermore, we use a concept related to time buckets, namely container segments,
where we divide the load of each container into fictitious segments of equal size, each
needing exactly one time bucket to unload all parcels in the segment.

By including the internal travel times, the problem increases in complexity from the
integer-linear program (ILP) for the PHSP that McWilliams (2010) provides. Unlike
the PHSP, the infeeds are not identical in our problem. Therefore, it is important to
know at which infeed a container is docked since travel times to outfeeds may differ
amongst infeeds. We now present a mathematical formulation (with linear constraints
and a non-linear objective function) for parcel sorting hubs with (possibly unequal)
internal travel times.

91

Parameters

݅) set of infeeds :ܫ ∈ .(ܫ

ܱ: set of outfeeds (݋ ∈ ܱ).

ܶ: set of time buckets (ݐ ∈ ܶ ൌ ሼ1,2, … ሽ).

ܿ) set of inbound containers :ܥ ∈ .(ܥ

ܵ௖: number of time buckets (segments) needed to unload container ܿ.

 .length of one time bucket in seconds :ܾݐ

 Note that it is common practice .(in parcels per hour) ݋ ௢: outflow capacity of outfeedܨ
to define the capacities of sorter systems in parcels per hour.

௖݂,௢: number of parcels in container ܿ destined for outfeed ݋.

 excluding possible (in time buckets) ݋ ௜,௢: internal travel time from infeed ݅ to outfeedݐ
traffic delays.

Decision variables

௖,௦,௜,௧ݔ ൌ ቄ1 if	container	ܿ, segment	ݏ, is	assigned	to	infeed	݅, in	time	bucket	ݐ	
0 																																																																																																								݁ݏ݅ݓݎ݄݁ݐ݋

Auxiliary variables

 .ݐ in time bucket ,݋ ௢,௧: excess outflow at outfeedܧ

௧௢௧ଶܧ : total squared excess flow for all outfeeds.

Constraints

1. Overlap prevention constraints: this set of constraints ensures that each infeed
is used by at most one container segment per time bucket, where a container is
divided into Sୡ segments of equal size such that in one time bucket the parcels
of exactly one container segment can be unloaded at an infeed.

 ∑ ∑ ௖,௦,௜,௧ݔ
ௌ೎
௦ୀଵ ൑ 1௖∈஼ ,ݐ∀ ݅

2. Assignment constraints: these sets of constraints are similar to the ones
proposed by McWilliams (2010), except for the addition of the index ݅ for the
infeeds. The combination of the following two sets of constraints ensures that
each container segment is assigned exactly once and that a container is emptied
in successive time buckets.

 ∑ ∑ ௖,௦,௜,௧ݔ ൌ 1 ∀ܿ, ௧∈்௜∈ூݏ

 ܵ௖ ⋅ ௖,ଵ,௜,௧ݔ െ ∑ ௖,௦,௜,ሺ௧ା௦ିଵሻݔ ൌ 0ௌ೎
௦ୀଵ ∀ܿ, ݅, ݐ

3. Parcels flow constraints: the first term in this set of constraints incorporates the
internal travel times ݐ௜,௢. In order to measure the outflow at outfeed ݋ at time ݐ,
the flows that were generated by the infeeds ݅ ∈ ݐ at time ܫ െ ௜,௢ have to beݐ
considered. Here, we use an approximate outflow measure since we assume that
the parcels from a certain container that are destined to a certain outfeed are
uniformly distributed over the segments of this container. The second term of

92

this set of constraints ensures that only outflows that exceed the capacity ܨ௢
force the value of ܧ௢,௧ to be positive.

 ∑ ∑ ∑ ቀ
௙೎,೚
ௌ೎
⋅ ௖,௦,௜,ሺ௧ି௧೔,೚ሻቁݔ െ

ி೚⋅ଷ଺଴଴

௧௕
൑ ௢,௧௜∈ூܧ

ௌ೎
௦ୀଵ௖∈஼ ,݋∀ ݐ ൐ ௜,௢ݐ

Objective function

The objective function minimizes the sum of the squared values of the excess outflows
for all outfeeds and all time buckets in the planning horizon.

 ݉݅݊ ௧௢௧ଶܧ ൌ ∑ ∑ ሺܧ௢,௧ሻଶ௢∈ை௧∈்

In this formulation, we assume that the total sorter capacity is sufficient to
accommodate incoming parcels, whereas the chute capacity is the bottleneck which we
control. However, for systems with limited sorter capacity, further inflow would be
blocked when the capacity on the loop conveyor is reached. Another options is to add
a constraint to stop the inflow when the occupation of the sorter reaches a predefined
limit.

This formulation merely describes the static form of the problem. In order to solve it,
we need full knowledge about incoming containers, which is unrealistic and would
lead to an intractable problem. In Section 5.3.3, we present a dynamic online approach.

5.3.3 The Adapted-DLBA

In this section, we propose the Adapted-DLBA (ADLBA), which is an online algorithm
that modifies the DLBA to incorporate (unequal) travel times on the sorter (without
possible traffic delays). The main idea of the ADLBA is to make a selection on which
containers to unload at idle infeeds in order to minimize the excess outflow over
outfeeds and over time. Moreover, we show how to deal with an arriving container if
multiple infeeds are available once the container arrives.

Given a certain idle infeed, we examine the containers available in the queue at the
sorting hub. For each container ܿ, we examine the ௖݂,௢ values for every outfeed ݋.
These values represent the number of parcels destined to outfeed ݋ (see Section 5.3.2).
Next, we find the time bucket in which the first of these ௖݂,௢ parcels are expected to
arrive at the destination outfeed ݋ and the time bucket in which the last of these parcels
are expected to arrive at this outfeed. Then, we evenly spread the ௖݂,௢ parcels over the
time buckets from the first time bucket until the last time bucket. In this way, we
determine the expected outflow of parcels to outfeeds if a container ܿ is selected to
unload. Before explaining the procedures of the ADLBA, we present additional
notations to those presented in Section 5.3.2.

௖݂,௧௢௧௔௟: total number of parcels in container ܿ.

 .௜: capacity of infeed ݅ (in parcels per hour)ܨ

ܽ௖: the time when the first parcel from container ܿ is announced at an infeed (in
seconds).

 ܿ ௖,௢,௦௧௔௥௧௖௢௡௧௔௜௡௘௥: number of the first time bucket in which the parcels from containerܤܶ
which have the destination outfeed ݋ are expected to arrive at outfeed ݋.

93

௖,௢,௘௡ௗܤܶ
௖௢௡௧௔௜௡௘௥: number of the last time bucket in which the parcels from container ܿ

which have the destination outfeed ݋ are expected to arrive at outfeed ݋.

௖,௢,௦௧௔௥௧,௘௡ௗܮܨ
௖௢௡௧௔௜௡௘௥ : number of parcels from container ܿ that are expected to arrive at

outfeed ݋ in any time bucket from ܶܤ௖,௢,௦௧௔௥௧௖௢௡௧௔௜௡௘௥ until ܶܤ௖,௢,௘௡ௗ
௖௢௡௧௔௜௡௘௥. Note that these are

auxiliary variables that depend on alternative assignment decisions.

 based on ݐ in time bucket ݋ ௧,௢: actual total expected outflow of parcels at outfeedݓ݋݈ܨ
all assignment decisions made so far.

 if we decide to ݐ in time bucket ݋ ௜,௖,௧,௢: expected outflow of parcels at outfeedݓ݋݈ܨ
assign container ܿ to infeed ݅ at time ܽ௖.

Now, given a container ܿ assigned to infeed ݅, then for each destination outfeed ݋ (to
which parcels exist in the container), we determine the values of ܶܤ௖,௢,௦௧௔௥௧௖௢௡௧௔௜௡௘௥ and
௖,௢,௘௡ௗܤܶ

௖௢௡௧௔௜௡௘௥ using the following equations:

௖,௢,௦௧௔௥௧௖௢௡௧௔௜௡௘௥ܤܶ ൌ ቜ
௔೎ା

యలబబ
ಷ೔

ା௧೔,೚

௧௕
ቝ

௖,௢,௘௡ௗܤܶ
௖௢௡௧௔௜௡௘௥ ൌ ቜ

௔೎ା
యలబబ
ಷ೔

⋅௙೎,೟೚೟ೌ೗ା௧೔,೚

௧௕
ቝ

Then, we calculate the expected outflow from container ܿ at outfeed ݋ as follows:

௖,௢,௦௧௔௥௧,௘௡ௗܮܨ
௖௢௡௧௔௜௡௘௥ ൌ

௙೎,೚
்஻೎,೚,೐೙೏

೎೚೙೟ೌ೔೙೐ೝି்஻೎,೚,ೞ೟ೌೝ೟
೎೚೙೟ೌ೔೙೐ೝାଵ

Note that the time required to unload a container (
ଷ଺଴଴

ி೔
⋅ ௖݂,௧௢௧௔௟ seconds) depends on all

parcels inside the container, while the expected outflow arriving at a specific outfeed
depends only on the parcels destined to this outfeed.

The variable ݓ݋݈ܨ௧,௢ keeps track of the total outflow of parcels at outfeed ݋ in time
bucket ݐ based on all assignment decisions made so far. Therefore, we increase the
value of ݓ݋݈ܨ௧,௢ (for ݐ ∈ ൛ܶܤ௖,௢,௦௧௔௥௧௖௢௡௧௔௜௡௘௥, . . , ௖,௢,௘௡ௗܤܶ

௖௢௡௧௔௜௡௘௥ൟ) by ܮܨ௖,௢,௦௧௔௥௧,௘௡ௗ
௖௢௡௧௔௜௡௘௥ when the

assignment decision of a container is fixed. Figure 5.4 summarizes the procedure to
update the outflow values when a container is assigned to an infeed.

Figure 5.4. Updating the outflow values when assigning a container to an infeed.

In order to make an assignment decision, we have to select one of the containers in the
queue to unload at an idle infeed. Therefore, we have to determine the objective value
for an assignment decision of a specific container to a specific infeed. In this regard,
time buckets in the past are irrelevant, and information about time buckets that are

94

relatively far in the future is not reliable, because recirculation and merging difficulties
may alter these predictions. Therefore, we focus on the total expected outflow in the
next 15 minutes. We introduce the set ܪ, which defines all time buckets that are part
of the planning horizon. Then, for every alternative decision of assigning a container ܿ
to an infeed ݅ at some time ܽ௖, we calculate the total expected outflow for each outfeed
and each time bucket ݐ ∈ .௜,௖,௧,௢ݓ݋݈ܨ and store these values in the variables ܪ

Let ܨܧ௜,௖ be the total expected overflow of parcels at all outfeeds, summed over all
time buckets in the planning horizon if container ܿ is assigned to infeed ݅ at time ܽ௖.
Then, we determine the objective value for each assignment decision as follows:

௜,௖ܨܧ
ଶ ൌ ∑ ∑ ቀ݉ܽݔ ቄ0, ௜,௖,௧,௢ݓ݋݈ܨ െ

ி೚⋅௧௕

ଷ଺଴଴
ቅቁ

ଶ

௢∈ை௧∈ு

The best assignment is the assignment with the lowest ܨܧ௜,௖
ଶ value, which represents

the cumulative squares of the overflows over all time buckets and outfeeds if container
ܿ is assigned to infeed ݅. The general procedure to implement the ADLBA is as
follows: given an infeed ݅ we calculate the expected overflow for each possible
container selection and then select the container that minimizes the total expected
squared overflow. However, if a containers arrives and there are multiple infeeds
available, then we assign this arriving container to the infeed which minimizes the
total expected squared overflow (see Figure 5.5 for an overview of the ADLBA).

2
,ciEF

2
,ciEF

Figure 5.5. Main logic of the ADLBA.

95

5.4 Scheduling inbound containers in baggage handling
In Section 5.3, we discussed scheduling inbound containers at parcels sorting hubs.
We described the state-of-the-art approach and adapted this approach to cover
operational scenarios where internal travel times on sorters are important. In this
section, we move to the baggage handling sector and adapt the scheduling approaches
of parcel & postal sorting to baggage handling systems.

Since we study scheduling approaches for inbound containers in two industrial sectors,
we use the same system models in our experiments (see Section 5.5). Therefore, to
keep the implementation of scheduling approaches generic to both sectors, we assume
that in the BHSs we study, only one lateral is assigned for each destination. However,
to model BHSs where more than one lateral is assigned for the same destination, we
may aggregate the multiple laterals into one lateral but with a higher capacity, a longer
build time, and a larger inbound buffer.

In parcel & postal sorting, inbound containers are the (only) source of parcels’ inflow
to the sorter. In baggage handling, the inbound containers that we consider are ULDs
that contain transfer bags that have to be unloaded at the sorter and to be sorted to
destination outfeeds (see Section 5.1). In this context, we note that at the airport of
origin (where these containers were loaded), there is normally a segregation of
baggage where transfer bags are not mixed in the same container with bags arriving at
their last destination. Moreover, as in parcel & postal sorting, the information about
the contents of inbound containers in terms of the number of bags and their destination
is available from the moment the container is loaded at the airport of origin. However,
this information is often not (fully) used in practice.

In addition to inbound containers, there are two sources of inflow that exist in baggage
handling but not in parcel & postal sorting. These are the EBS and the check-in flow
of bags (see Figure 5.2). In this section, we first study how to incorporate these two
elements in the scheduling algorithms (Section 5.4.1). Then, we analyze the baggage
handling environment further and propose additional scheduling tools for baggage
handling (Section 5.4.2).

5.4.1 The EBS and the check-in baggage

In this section, we present additional procedures that need to be added to the
scheduling approaches of Section 5.3 in order to make them applicable in baggage
handling. To this end, we show how the EBS and the check-in baggage are
incorporated in the DLBA and in the ADLBA. Note that the DLBA is an algorithm
that is designed for parcel & postal sorting. Likewise, the proposed ADLBA is for
parcel & postal sorting. In this chapter, we test the applicability of both the DLBA and
the ADLBA in baggage handling as well. Therefore, in this section, we show how to
make both algorithms applicable in baggage handling.

We model the EBS as a resource with a special type of outfeed from the sorter to
receive bags. Consequently, when a container is assigned to an infeed and there are
bags inside it for which the flights are not open yet for loading, then we set their
destination as the EBS outfeed. Then, we handle these bags similar to other bags with

96

other destination outfeeds. However, when the destinations of bags in the EBS are
open on the sorter, then the bags have to be retrieved from the EBS to deliver them to
their destination outfeeds. The EBS has a special infeed for the flow of bags to the
sorter.

In the remainder of this section, we show how to incorporate the inflow from the EBS
and check-in desks to the sorter. To this end, we merely show how the baggage flows
generated by these two elements are incorporated in the outflow figures at outfeeds.
We use these outflow figures when scheduling inbound containers (see Section 5.3). In
this chapter, we do not propose decision-making algorithms for the EBS. On the other
hand, the check-in flow is uncontrollable by nature and we model it as an
uncontrollable and stochastic flow.

The DLBA in baggage handling

In order to implement the DLBA in baggage handling, we have to incorporate the
inflows from the EBS and from check-in desks in the outflow numbers to outfeeds.
For the bags from the EBS, we release the bags for destination ݀ open at outfeed ݋ as
soon as this destination is open and then increase the outflow to the assigned outfeed ݋
by the number of bags in the EBS with destination ݀. Moreover, to process a checked-
in bag using the DLBA, we increase the outflow for the bag's destination outfeed by
one as soon as the bag is announced in the system.

Incorporating the baggage flow from the EBS in the ADLBA

For this process, we assume that when a destination is open at a certain outfeed ݋, then
the bags destined to this outfeed are retrieved from the EBS and arrive homogeneously
at outfeed ݋ over a set of time buckets that we define beforehand. We determine the
time buckets in a way similar to determining the time buckets when a container is
assigned to an infeed (see Section 5.3.3). Before showing this procedure, we present
additional notations to model the flow from the EBS.

ܽௗ
ா஻ௌ: the time when the first bag with destination ݀ (i.e., flight) is announced at the

infeed from the EBS to the sorter (in seconds).

 .݀ ௗ: total number of bags in the EBS with destinationܵܤܧ

 .ா஻ௌ: retrieval rate from the EBS (in bags per hour)ܨ

 .(in seconds) ݋ ா஻ௌ,௢: travel time from the EBS to outfeedݐ

௢,௦௧௔௥௧ܤܶ
ா஻ௌ : number of the first time bucket in which the bags with destination outfeed ݋

are expected to arrive at the outfeed ݋, when announced at ܽௗ
ா஻ௌ.

௢,௘௡ௗܤܶ
ா஻ௌ : number of the last time bucket in which the bags with destination outfeed ݋

are expected to arrive at the outfeed ݋, when announced at ܽௗ
ா஻ௌ.

௢,௦௧௔௥௧,௘௡ௗܮܨ
ா஻ௌ : number of bags from the EBS that are expected to arrive at outfeed ݋ in

any time bucket from ܶܤ௢,௦௧௔௥௧
ா஻ௌ until ܶܤ௢,௘௡ௗ

ா஻ௌ .

Note that in the BHS case, it is not always sufficient to define outfeeds as destinations.
We distinguish some parameters with destinations (e.g., flights) because a single

97

outfeed is assigned to multiple destinations during the day. Given the aforementioned
parameters, we determine ܶܤ௢,௦௧௔௥௧

ா஻ௌ ௢,௘௡ௗܤܶ ,
ா஻ௌ , and ܮܨ௢,௦௧௔௥௧,௘௡ௗ

ா஻ௌ as follows:

௢,௦௧௔௥௧ܤܶ
ா஻ௌ ൌ ቜ

௔೏
ಶಳೄା

యలబబ
ಷಶಳೄ

ା௧ಶಳೄ,೚

௧௕
ቝ

௢,௘௡ௗܤܶ
ா஻ௌ ൌ ቜ

௔೏
ಶಳೄା

యలబబ
ಷಶಳೄ

⋅ா஻ௌ೏ା௧ಶಳೄ,೚

௧௕
ቝ

௢,௦௧௔௥௧,௘௡ௗܮܨ
ா஻ௌ ൌ ா஻ௌ೏

்஻೚,೐೙೏
ಶಳೄ ି்஻೚,ೞ೟ೌೝ೟

ಶಳೄ ାଵ

In Section 5.3.3, we used the variable ݓ݋݈ܨ௧,௢, which keeps track of the total outflow
of parcels at outfeed ݋ in time bucket ݐ from all assigned containers. In baggage
handling, we include the flow from the EBS by increasing the value of ݓ݋݈ܨ௧,௢ by
௢,௦௧௔௥௧,௘௡ௗܮܨ

ா஻ௌ for ݐ ∈ ൛ܶܤ௢,௦௧௔௥௧
ா஻ௌ , . . , ௢,௘௡ௗܤܶ

ா஻ௌ ൟ.

Incorporating the check-in baggage arrivals in the ADLBA

Let ܽ௖௜ be the time when a checked-in bag is announced in the system (in seconds).
Then, we determine ܶܤ௢,௦௧௔௥௧௖௜ , which is the number of the time bucket in which the
checked-in bag is expected to arrive at its destined outfeed ݋, as follows:

௢,௦௧௔௥௧௖௜ܤܶ ൌ ቒ
௔೎೔ା௧೎೔ା௧೔,೚

௧௕
ቓ

Here ݐ௖௜ is a time delay that we add because bags are announced before they actually
arrive at the check-in infeed of the main sorter. What remains is to increase, by one,
the variable ݓ݋݈ܨ௧,௢ for the destination outfeed ݋ and ݐ ൌ ௢,௦௧௔௥௧௖௜ܤܶ .

Conclusion

We discussed that for BHSs, inbound containers are not the only source of inflow.
There are two other sources of inflow, which are the EBS and the check-in baggage. In
this section, we showed how these additional sources of inflow can be incorporated in
order to use the containers scheduling algorithms of parcel & postal sorting (see
Section 5.3). However, keeping track of the inflow of bags from these two resources
may not be sufficient to implement scheduling approaches of parcel & postal sorting.
In Section 5.4.2, we analyze the characteristics of the operational environment in
baggage handling, which differs from parcel & postal sorting. Then, we examine
whether we need additional scheduling tools in baggage handling.

5.4.2 Extensions to the scheduling approaches

In the DLBA and the ADLBA, we schedule the inbound containers with the aim to
balance workload in the system. In doing so, we implicitly assume that the inbound
containers have equal priority. This assumption does not hold for the baggage handling
sector where flights, and as a result bags, have different deadlines. Moreover, in
baggage handling, a single outfeed is usually assigned to multiple flights during the
day. As a result, for the early arriving bags, the destination outfeeds may not be open
yet. We solved this problem in Section 5.4.1 by assigning such early bags to the EBS

98

outfeed and then dealing with the EBS outfeed as any other outfeed in the system.
However, we propose another method to deal with containers carrying early bags.

In this section, we propose two extensions to the scheduling approaches that we study.
These extensions concern the topics of urgency and delayability. Both extensions deal
with inbound containers that carry transfer baggage.

Urgency

Hallenborg (2007b) provides an approach to determine a bag's urgency (see Section
5.2). We build on this approach to calculate the urgency of a container of bags. Note
that from a certain point in time onwards, it becomes physically impossible to
transport bags through the sorter system to arrive at the assigned outfeeds before they
close. For our problem, bags in a container for destination ݀ become non-urgent if they
have less than a duration of time ௘ܷ௡ௗ remaining before cutoff time. In the systems
that we model, we set this time duration ௘ܷ௡ௗ equal to the internal travel time ݐ௜,௢,
where ݅ is the infeed under consideration, and ݋ is the outfeed to which destination ݀ is
assigned. Thus, a bag that cannot be delivered on time, even if it was the first to be
unloaded from a container, is non-urgent. Unfortunately, this extension does not suit
scheduling approaches that do not keep track of internal travel times (e.g., DLBA). For
such approaches, we use a fixed value of 5 minutes that is an estimation of the average
internal travel times in our experimented system layouts. Another relevant time
threshold is ௦ܷ௧௔௥௧, where bags become urgent if they have less than this threshold
remaining before cutoff time. Let ܥ௝ denote the cutoff time for a bag ݆.

We use a simple rule from practice, where the bags to a certain destination are urgent
for 30 minutes. Thus, ௦ܷ௧௔௥௧ is equal to ௘ܷ௡ௗ ൅ 30 minutes. We model the urgency of
a bag ݆ to start at zero (the minimum value) when a bag has ௦ܷ௧௔௥௧ time allowance
remaining, and to increase at an increasing rate to one (the maximum value), when the
bag has ௘ܷ௡ௗ time allowance remaining. We define the urgency function of a bag ݆ as:

ሻݐ௝ሺݑ ൌ ቆ
ݐ െ ሺܥ௝ െ ௦ܷ௧௔௥௧ሻ

௦ܷ௧௔௥௧ 	െ ௘ܷ௡ௗ
ቇ
ଶ

, ௝ܥ െ ௦ܷ௧௔௥௧ ൑ ݐ ൑ ௝ܥ െ ௘ܷ௡ௗ

Figure 5.6 shows the urgency function of a bag ݆, assuming ܥ௝ is equal to 40 minutes.

To determine the urgency of a container, we propose one of three simple approaches.
A container is assigned either the maximum of all individual bags’ urgencies, the
average of all individual urgencies, or the sum of all individual urgencies. The
maximum measure might often fail to correctly differentiate between the urgencies of
containers. For instance, if the bags for one destination are urgent, then a container that
holds one bag for this destination is as urgent as a container that holds 10 bags for this
destination. The average measure tackles this issue, as the latter container would have
an urgency that is 10 times higher than that of the former, assuming that they contain
the same number of bags. However, this assumption is the drawback of this approach,
as a container holding only 13 bags, provided they are all urgent, may receive priority
over a container in which 14 out of 15 bags are urgent. The sum approach solves this
issue, and so it is used in this research.

99

Figure 5.6. The urgency function for a bag ܒ with ܜܚ܉ܜܛ܃ ൌ ૜૞, ܌ܖ܍܃ ൌ ૞, and ࢐࡯ ൌ ૝૙ minutes.

In the context of load balancing, we use a priority procedure to select a subset of
available containers to which we apply scheduling approaches. We decide to disregard
containers with urgency less than 75% of the maximum urgency container. This
ensures that a priority container is scheduled, while also balancing the workload
among the outfeeds. The DLBA or the ADLBA may accommodate the priority
extension by calling the priority procedure (Figure 5.7) when they start searching for a
suitable container to assign to infeed ݅.

Figure 5.7. Priority scheduling.

100

Delayability

So far, we have implicitly assumed that every arriving container joins the queue of
waiting containers that are announced to the dispatcher. Then, the dispatcher decides
which container to unload at which infeed. However, it is possible to deliberately
delay specific containers and not announce them to the dispatcher. This can be
advantageous for two reasons: first, many airports lack infeed capacity during peak
hours (usually workdays between 6am and 9am). To reduce these peaks, we may
temporarily park some of the inbound containers (carrying transfer baggage) on a
remote yard. In doing so, we delay containers that carry only early baggage. This
reduces the workload in the BHS and so we expect less congestion on the sorter. Less
congestion means less traffic delays, which is beneficial for several reasons. For
example, the ADLBA uses an approach that considers travel times on the sorter
without possible traffic delays. So when traffic delays are less, the estimated travel
times become more reliable.

The second benefit of delaying some containers is that we may be able to reduce the
required EBS systems size. In current practice, early bags are stored in expensive EBS
systems. Keeping them on the yard, in the containers in which they arrived, is a much
cheaper solution.

Figure 5.8. Delayable scheduling.

The decision to delay a container is made upon arrival. However, to decide when to
bring a container back to the dispatcher, we consider the fact that in the BHSs that we
analyze in this chapter, a destination is assigned to a single outfeed for approximately
three hours. Therefore, according to experts’ opinion, we propose to make a container
available one hour after the destination of one of the contained items is open at the

101

assigned outfeed, leaving two hours to sort the bag(s) that triggered our decision. We
call the procedure to delay containers the delayability approach and it is executed as
soon as a container arrives in the queue (see Figure 5.8).

5.5 Computational studies
In this section we describe the experimental setup for implementing the scheduling
algorithms (Section 5.5.1) and discuss the implementation results (Section 5.5.2). The
ultimate result of our computational studies is to propose a matrix where we show
what algorithm works best for what system model, industrial sector, and operational
scenario (Section 5.5.3).

5.5.1 Experimental setup

For our experiments, we test the performance of four algorithms: first-come-first-
served (FCFS) as a common current practice, arbitrary scheduling (ARB) merely as an
academic benchmark, the DLBA, and the ADLBA. We use the Applied Materials
AutoMOD simulation software package to apply the scheduling approaches on sorter
systems. Based on layouts that are frequently delivered by our industrial partner, we
developed three simulation models of sorter systems with simple built-in local traffic
control rules. However, we do not further invest in the control logic of sorter systems
as this chapter is concerned with inbound operations scheduling and not with the local
traffic control on sorters. The simulation models we use are as follows:

o A single sorter in loop configuration with one infeed area and one outfeed area,
where each area consists of three conveyors. Moreover, there is one infeed for
check-in baggage and one EBS (Figure 5.9a).

o A single sorter in loop configuration with two infeed areas and two outfeed
areas, where each area consists of three conveyors. Moreover, there is one
infeed for check-in baggage and one EBS (Figure 5.9b).

o Two sorters in loop configuration, where each sorter consists of one infeed area
and one outfeed area. In turn, each area consists of three conveyors. Moreover,
each sorter has one infeed for check-in baggage and one EBS. Crossovers are
conveyors with limited capacity that connect the two sorters (Figure 5.9c).

We use a tuple notation to identify layouts: number of loops, number of infeed and
outfeed areas, special transport routes. Using ܿ to denote the crossovers and 0 to
denote no specials, the three layouts mentioned above can be identified by the tuples
110, 120, and 22c. The catchall outfeed collects items that cannot be sorted due to,
e.g., a missed flight.

Regarding datasets, we distinguish both industrial sectors based on their specific
characteristics, e.g., the presence or absence of check-in flows, and the size of the
containers. A second distinction is based on the quantities of items going to certain
destinations inside one container. A homogeneous distribution means that inside one
container, the number of items for a specific destination is nearly the same for all
destinations. A heterogeneous distribution means that some containers hold
significantly more items for destination ܽ while other containers hold more items for
destination ܾ. Before describing how we apply this distinction in generating the

102

contents of containers, we present the following four scenarios that we use in the
experiments:

o Parcel & postal sorting, homogeneous distribution (PP-even).
o Parcel & postal sorting, heterogeneous distribution (PP-uneven).
o Baggage handling, homogeneous distribution (BHS-even).
o Baggage handling, heterogeneous distribution (BHS-uneven).

Figure 5.9. Layouts of the three test models.

Let ݊ be the number of outfeeds in a modeled system. In parcel & postal sorting, the
number of outfeeds equals the number of destinations modeled. The destinations are
open at the outfeeds during the entire simulation. Then for the PP-even scenario, each

destination has
ଵ

௡
 probability of occurrence. For the PP-uneven scenario, we use 1 ൅ ݊

container types, one with an even distribution and ݊ with a preferred destination. For
the latter, the preferred destination has 0.50 probability of occurrence while all other

destinations have
଴.ହ଴

௡ିଵ
 probability of occurrence. The probability that a specific

container type is selected is
ଵ

ଵା௡
.

103

In baggage handling, the total number of destinations is twice the number of outfeeds.
We divide the destinations in two sets with ݊ destinations each. At the start of the
simulation, the destinations from the first set of ݊ destinations are opened successively
at the outfeeds as follows: the first outfeed in every outfeed area is opened for a
destination. After 15 minutes the second outfeed in every outfeed area is opened for
another destination and after another 15 minutes the third outfeed in every outfeed area
is opened for another destination. Each outfeed is open for a destination for three hours
and then the outfeed is left unassigned for half an hour. Thereafter, the outfeed is open
for a destination from the second set of ݊ destinations. Given this operational
environment, we cannot model the contents of containers similar to parcel & postal
sorting (where outfeeds are open for the same set of destinations during the entire
shift) because then many bags may arrive after their destinations have closed.
Therefore, we introduce time windows in which containers with specific contents may
arrive. In this context, the BHS-even scenario consists of two container types, the first
type holds mainly (85% of its contents) bags for the first set of destinations, each of

these destinations has
଴.଼ହ

௡
 probability of occurrence. The remaining 15% of the

container’s contents is for the second set of destinations with
଴.ଵହ

௡
 probability of

occurrence per destination. The second container type consists solely of bags for the

second set of destinations, each with
ଵ

௡
 probability of occurrence.

The BHS-uneven scenario consists of 2 ൅ 2݊ container types, where the first two
types are the same as in the BHS-even scenario. The other 2݊ container types have
90% of their contents for one preferred destination. Each of these container types has
an arrival time window that starts as soon as the preferred destination is open at an
outfeed and ends 30 minutes before the outfeed closes. For ݊ container types, the
preferred destination is one of the first set of destinations. For these containers, the
remaining 10% of their contents is distributed evenly over all other destinations, each

with
଴.ଵ଴

ଶ௡ିଵ
 probability of occurrence. The preferred destination for the other ݊

container types is one of the second set of destinations. For these containers, the
remaining 10% of their contents is evenly distributed over the second set of

destinations, each with
଴.ଵ଴

௡ିଵ
 probability of occurrence.

Table 5.1 provides an overview of the selected values for the scenario parameters.
Note that we generate unrealistically high loads on baggage sorters, which can occur
only in high peak hours. We do so to better test the impact under hard operational
conditions.

We emphasize that there is no single KPI that holds for both industrial sectors (see
Chapter 1). While the KPI of a BHS is the irregularity rate, throughput is the KPI in
parcel & postal sorting systems. In addition to these KPIs, we report on other
performance indicators that are of interest, i.e., average container waiting time,
maximum number of waiting containers, recirculation rate, and the maximum number
of bags in the EBS for BHSs.

104

Table 5.1. Scenario parameters per simulation model.

105

5.5.2 Results

We distinguish between statistical significance and operational significance when
comparing the results of different algorithms. A difference is statistically significant, if
we can statistically prove it exists with 95% confidence. However, a statistically
significant measure may not be relevant from an operational perspective. For example,
a statistically significant difference of one item per hour on throughput in a system
sorting thousands of items per hour is operationally unimportant.

In the boxplots used to show results, the central rectangle spans the first quartile to the
third quartile. The segment inside the rectangle shows the median and the two
whiskers indicate the extreme values that are not outliers (i.e., within 1.5 times the
interquartile range of the first and third quartile). Finally, ‘+’ symbols indicate outliers.

5.5.2.1 Parcel & postal sorting

PP-even

For the evenly distributed scenario in parcel & postal sorting, the simulation studies
show that for models 110 and 120 there is no statistical difference between any of the
scheduling approaches (Figures 5.10a and 5.10b). However, Figure 5.10c shows that
for model 22c the ADLBA approach outperforms all others, with a throughput that is
approximately 25 items per hour (1.5%) higher. The original DLBA performs
statistically just as well as FCFS and ARB and is therefore not considered to be an
improvement. A possible explanation for this behavior is related to the infeed
assignment problem. FCFS, ARB, and DLBA assign a container to an available infeed
irrespective of its location on the sorter system, and so when containers are
homogeneous there is no clear optimization criterion. However, the ADLBA assigns
the containers to infeeds that are selected based on the load balancing criterion.
Therefore, although containers are similar, the ADLBA still balances the workload
over the two separate sorters and over time, which yields improvements.

106

Figure 5.10. Throughput using the PP-even scenario.

107

PP-uneven

For the unevenly distributed scenario in parcel & postal sorting, the simulation studies
show that the load balancing algorithms (DLBA and ADLBA) outperform the FCFS
and ARB in all simulation models (see Figure 5.11). In particular, the DLBA proves to
be an interesting approach as it outperforms FCFS by 11, 52, and 63 items per hour
(1.4, 3.7, and 4.5%) for models 110, 120, and 22c respectively. As containers become
differentiable, the original DLBA proves to be a better scheduling approach than the
ADLBA for all models, although not from an operational point of view. For models
110, 120, and 22c the differences are respectively 6, 15, and 18 items per hour (0.8,
1.0, and 1.3%).

Although not displayed in the figures, the simulation studies also show interesting
results regarding the waiting containers. The DLBA is able to reduce the maximum
number of containers in the queue, compared to FCFS, by 0.5, 2.5 and 2.7 (4.8, 11.3,
and 12.5%) for models 110, 120 and 22c respectively. The results of the latter two
models, in particular, suggest that significant reductions in required yard space could
be achieved. Furthermore, the results show that the DLBA is able to significantly
reduce the average waiting time of a container. Specifically, the reductions for models
120 and 22c are impressive (approximately 10 minutes and just over 20% of the
original waiting time).

108

Figure 5.11. Throughput using the PP-uneven scenario.

109

5.5.2.2 Baggage handling

In baggage handling, we test the scheduling algorithms and also the extensions. We
use the suffixes ‘u’ and ‘d’ to indicate the urgency and the delayability extensions
respectively in Figures 5.12 and 5.13 and in the discussion below.

There are key points that make the results in baggage handling incomparable to those
in parcel & postal sorting. First, the contents of the containers differ in the destinations
of the items, the number of items contained, and more important in urgency. Second,
the focus is now on the irregularity rate (number of bags missed per 1000 bags), which
is a different KPI. Third, in a parcel sorter system, the impact of assignment decisions
is directly realized because parcels are sorted immediately to outfeeds. In baggage
handling, however, there is the storage function and flights’ schedules that heavily
influence the interdependency between the inflow and the outflow.

BHS-even

For the evenly distributed baggage handling problem, the ADLBA approach is
preferred in model 110, as it outperforms the DLBA by 0.4 (7.0%). In model 120,
FCFS is the best approach. It outperforms the DLBA by 1.7 (2.5%). Note that since
containers are homogeneous, the DLBA does not have a significant advantage over the
simple FCFS approach. Finally, in model 22c, the DLBA is the best approach. It
outperforms FCFS and the ADLBA by 2.8 and 2.5 (18.4% and 16.3%) respectively.
Apparently, the estimations of the ADLBA with regard to internal travel times are
more reliable in simple sorters (model 110). In more complex sorters and given a more
stochastic environment, the ADLBA estimations appear to be less reliable and thus
simpler approaches that do not depend on estimations of travel times perform better. In
this context, an issue for future research is to propose methods that come up with
better estimations of internal travel times.

BHS-even with extensions

The urgency extension improves the results of the DLBA and the ADLBA approach.
However, the improvements are often only statistically and not operationally
significant. On the contrary, the d-extension tremendously improves the performance
of the sorter systems. Generally speaking, this extension reduces the irregularity rate
by 1.0, 47.6 and 7.3 (20.8, 68.7 and 50.1%) in models 110, 120, and 22c respectively
(compared to the best performing approach per model). The extreme increase in
performance in model 120 is partly due to the unrealistically high irregularity rates
caused by a relatively high workload (70% of outfeed capacity), which we used on
purpose. The d-extension also affects other PIs, e.g., it reduces the required EBS space
by 96, 230, and 204 items (approximately 30% in all cases) for models 110, 120, and
22c respectively. These improvements are achieved by delaying on average 5.6 (out of
70) containers in model 110 and 12.2 (out of 150) containers in models 120 and 22c.

The simulation studies show that applying the d-extension in combination with FCFS
gives results that are comparable to the more complicated scheduling approaches in
models 110 and 120. In model 22c, however, the DLBA-ud outperforms FCFS-d by
2.4 (28.8%) on irregularity rate, 2.7 containers (14.9%) on the number of waiting
containers, and 1 minute (18.3%) on container waiting time.

110

Figure 5.12. Irregularity rate using the BHS-even scenario.

FCFS ARB DLBA ADLBA DLBA-u ADLBA-u DLBA-ud ADLBA-ud FCFS-d

FCFS ARB DLBA ADLBA DLBA-u ADLBA-u DLBA-ud ADLBA-ud FCFS-d

FCFS ARB DLBA ADLBA DLBA-u ADLBA-u DLBA-ud ADLBA-ud FCFS-d

Ir
re

gu
la

ri
ty

 r
at

e
(i

te
m

s/
10

00
)

Ir
re

gu
la

ri
ty

 r
at

e
(i

te
m

s/
10

00
)

Ir
re

gu
la

ri
ty

 r
at

e
(i

te
m

s/
10

00
)

111

BHS-uneven

In the unevenly distributed baggage handling scenario, the differences between the
scheduling approaches become more evident. For models 120 and 22c, the DLBA is
the best performing approach with differences of 2.0 and 4.6 (3.6 and 29.5%)
respectively compared to FCFS. All other PIs show no operationally significant
differences except in model 22c. There, the DLBA reduces the maximum number of
waiting containers and the average container waiting time, compared to FCFS, by 2.3
containers (9.0%) and 2.0 minutes (14.7%) respectively. The ADLBA is the least
suitable approach. We observe that the realizations of internal travel times are not in
line with the estimations used by the ADLBA, especially for larger baggage handling
systems. The highly stochastic environment and the occasionally used storage function
make the estimations unreliable.

BHS-uneven with extensions

Including the u-extension does not bring significant improvements. However, the d-
extension has a positive effect on the performance of the scheduling approaches. In
model 110, the ADLBA-ud is clearly the best approach and outperforms FCFS by 1.7
(19.6%). In models 120 and 22c, the DLBA-ud is the best approach, which
outperforms FCFS by 33.1 and 4.4 (59.0 and 27.9%) respectively. Not only the
irregularity rate, but also the other PIs are affected by the delayability extension. Even
with FCFS, the delayability extension is able to reduce the maximum number of
waiting containers and the average container waiting time in model 110 by 1.5
containers (17.5%) and 2.2 minutes (32.3%) respectively. The DLBA-ud is the best
approach for models 120 and 22c as it reduces the maximum number of waiting
containers by 4.4 and 1.7 containers (27.3 and 6.9%) respectively, compared to FCFS.
In addition, the DLBA-ud reduces the average container waiting time by 2.5 and 2.9
minutes (44.6 and 20.5%) respectively. Furthermore, the simulation studies show that
both workload balancing approaches are able to reduce the required EBS space by 97,
213, and 198 items (approximately 40%) for models 110, 120, and 22c respectively,
by delaying on average 5.6, 12.2, and 12.2 containers.

112

Figure 5.13. Irregularity rate using the BHS-uneven scenario.

Ir
re

gu
la

ri
ty

 r
at

e
(i

te
m

s/
10

00
)

Ir
re

gu
la

ri
ty

 r
at

e
(i

te
m

s/
10

00
)

Ir
re

gu
la

ri
ty

 r
at

e
(i

te
m

s/
10

00
)

FCFS ARB DLBA ADLBA DLBA-u ADLBA-u DLBA-ud ADLBA-ud FCFS-d

FCFS ARB DLBA ADLBA DLBA-u ADLBA-u DLBA-ud ADLBA-ud FCFS-d

FCFS ARB DLBA ADLBA DLBA-u ADLBA-u DLBA-ud ADLBA-ud FCFS-d

113

5.5.3 Recommended approach per sector, system, and operational
scenario

In this section, we construct a matrix (Table 5.2) in which we show the recommended
approach for each industrial sector, system model, and operational scenario. This
matrix is based on the computational experiments and analysis of the different
scheduling algorithms. Moreover, we comment on the results in general.

System model

Industrial sector Scenario 110 120 22c

Parcel & postal sorting
even no difference no difference ADLBA

uneven DLBA DLBA DLBA

Baggage handling
even ADLBA-ud FCFS-d DLBA-ud

uneven ADLBA-ud DLBA-ud DLBA-ud
Table 5.2. Recommended approach per sector, system model, and operational scenario.

We observe that the ADLBA uses a detailed approach that performs differently in the
different industrial sectors. In baggage handling, the environment is highly stochastic,
there is an intermediate storage function, and there are varying plane schedules. These
attributes make the estimations of internal travel times less reliable. Therefore, the
ADLBA performs better with small sorter systems where the realization of travel times
is in line with the estimations.

In baggage handling, the delayability extension is beneficial in reducing the workload
on sorters, which in turn helps in reducing the variability of internal transport times.
Moreover, using the delayability extension reduces the dependency on the EBS. What
happens is that instead of unloading containers carrying early bags and letting these
bags proceed to the EBS, we keep these containers unloaded until they are due. Then,
when we unload these containers, we have an influence on the outflow figures to
outfeeds by the assignment decisions. However, when we release the early bags from
the EBS, they result in an uncontrollable flow that creates unpredictable outflows at
the destination outfeeds. In other words, the delayability extension helps in replacing
the uncontrollable flow from the EBS to destination outfeeds by a controllable flow
from the delayed containers to destination outfeeds, which gives us more control over
the outflow figures. In the BHS-uneven scenario, for system model 110 in particular,
the ADLBA approach is the best performing approach only in combination with the
delayability extension.

In parcel & postal sorting, the ADLBA performs better with homogeneous containers
and in complex systems. In the more complex systems, the ADLBA logic of balancing
the flow over the outfeeds (at different sorters) and over time proves to be beneficial.
In this sector, the ADLBA benefits from a more deterministic environment, due to the
fixed assignments of destinations to outfeeds, the absence of the storage function, and
the single source of inflow, i.e., containers, which we schedule. However, in relatively
simple parcel & postal sorter systems, the ADLBA is not likely to contribute much to
the performance because in such systems internal travel times are comparable.

114

In parcel & postal sorting, when containers become more differentiable the DLBA
outperforms the other algorithms in all system models. Therefore, we conclude that the
differences among the contents of containers overrule the differences among
(estimated) travel times on sorters.

5.6 Chapter conclusion
In this chapter, we studied inbound containers scheduling for sorter systems in
baggage handling and in parcel & postal sorting. In our analysis, we used the state-of-
the-art algorithm (i.e., DLBA) from literature as the first building block and adapted it
to incorporate internal travel times on sorters in parcel & postal sorting. Then, we
studied the inbound containers scheduling in baggage handling, where we had to
incorporate the other sources of inflow from the EBS and check-in desks. As we
incorporated the other sources of inflow, we showed how the DLBA and the ADLBA
can be applied in baggage handling. However, baggage handling is a sector with
special characteristics that have to be considered when scheduling inbound containers.
Therefore, we provided two extensions (i.e., urgency and delayability) to the
scheduling algorithms in order to improve their performance in baggage handling .

We analyzed the performance of different scheduling algorithms (DLBA, ADLBA,
FCFS, and ARB) in the two industrial sectors using different operational scenarios and
different system models. Then, we gave advice on which scheduling approach to use
for each industrial sector, system model, and operational scenario. Actually, in
baggage handling, we found that the delayability extension shows impressive
improvements on all performance indicators. Hence, we recommend applying the
delayability extension in practice. It is interesting that the delayability extension is
applicable as an add-on to current scheduling tools, since we were able to get
significant improvements from implementing delayability with the FCFS approach.

In general, we note that in certain cases (at least in the layouts we tested) invoking
much detail at the scheduling level by estimating travel times on the sorter, is
counterproductive. In fact, the estimated travel times are disrupted by imbalances in
travel delays on the sorter, especially when the workload is high. For these cases, we
recommend approaches that use less detail at the scheduling level. However, we have
to invest in local traffic control rules and algorithms in order to balance the material
flow on the sorter. Therefore, in Chapter 6, we analyze the merge operation on
conveyor-based sorter systems, since it is the key local traffic problem that affects
travel delays on sorters.

115

Chapter	6 	

Local	Traffic	Control	In	Conveyor	Merge	
Configurations13	

In Chapter 5, we studied scheduling algorithms for loading sorter systems in baggage
handling and parcel & postal sorting. One conclusion was that incorporating too much
detail at the scheduling level can be counterproductive in some operational scenarios.
In particular, we found that a high workload on sorter systems makes the estimations
with regard to the expected travel times on sorters less reliable. In our opinion, the
main cause of the unreliability of the estimations is the inconsistency in traffic delays
among TSUs (transport stock units) being transported. Therefore, we need to take a
closer look at the areas of sorter systems where TSUs face traffic delays.

In this chapter, we analyze an interesting control problem at the local traffic level. This
is concerned with the merge area of sorter systems. This area often faces a high
workload. As a result, a challenging local traffic control problem arises, which is to
allocate empty spaces on the main conveyor to TSUs (on infeeds) waiting to be
merged. From a local traffic control point of view, the merge area is the critical area in
sorter systems. The other area in these systems is the area where the system diverts
TSUs to the pre-assigned outfeeds or chutes.

We develop a generic algorithm that can be applied in merge configurations within
different industrial sectors. However, we choose to study the problem in the context of
systems in parcel & postal sorting. In this industrial sector, MHSs are basically the
sorter systems that have to work under operational conditions that are much more
demanding compared to sorter systems in the other sectors (see Section 1.2.2).
Therefore, from this point on, we will base our modeling and analysis on systems of
parcel & postal sorting.

The structure of this chapter is as follows: First, Section 6.1 introduces the merge
configuration in terms of its components, objectives, and the space allocation problem
(see Section 2.2.3.1). Then, Section 6.2 presents a review of literature that is relevant
for the problem at hand. Next, in Section 6.3 we propose a model of the merge area
and formulate the space allocation problem mathematically. Thereafter, Section 6.4
describes a generic space allocation algorithm. Section 6.5 deals with the
implementation of the generic space allocation algorithm in a simulation environment
and provides a performance analysis in different operational settings. Finally, Section
6.6 ends with concluding remarks.

13 This chapter is based on Haneyah et al. (2011).

116

6.1 The merge configuration
In this section, we sequentially describe the relevant elements and components of the
merge configuration (Section 6.1.1) and define its objectives (Section 6.1.2). Then, we
formulate the space allocation problem (Section 6.1.3).

6.1.1 Elements of the merge configuration

In this section, we describe the main elements of a merge configuration. Some of these
elements are hardware components while others are abstract control points. Figure 6.1
outlines the layout of a merge configuration.

Figure 6.1. Merge configuration.

The merge conveyor

The merge conveyor or the main conveyor is represented horizontally in the layout of
Figure 6.1. On this conveyor, all parcels coming from the infeeds have to be merged.
The merge conveyor is responsible for transporting parcels from the merge area to the
sorting area where parcels are sorted to the assigned outfeeds. On the merge conveyor,
the direction of the flow is referred to as downstream and the opposite direction as
upstream. The structure of this conveyor can either be a continuous space (e.g., a
continuous belt) or consist of discrete space units.

An example of a discrete space merge conveyor is a tilt-tray conveyor. Tilt-trays
(simply trays) are discrete space units that can accommodate at most one parcel. A
parcel occupies at least one tray, but may occupy more trays depending on its length.
In the sorting area, the tray(s) transporting a parcel is (are) tilted to allow the parcel to
fall into the assigned chute without interfering with other parcels on the merge
conveyor.

On a continuous space merge conveyor, a parcel in transport occupies a space called
the merge space. This space consists of the space the parcel occupies physically and
additional free spaces in front and at the back of the parcel that no other parcels can
occupy. This free space is known as the gap. The leading gap is the required free
space in front of the parcel; the trailing gap is the required free space at the back.
Defining the required sizes of the leading gap and the trailing gap for each parcel
depends on the dimensions of the parcel and the characteristics of the equipment.

117

The gaps between parcels that are transported on continuous space conveyors are
required mainly due to the later sorting operation. In order to sort these parcels, a
hardware component (e.g., a mechanical arm) is used to push them into their chutes.
Pushing parcels in this way, while the merge conveyor is moving, makes them slide in
a curved path on the merge conveyor which may disrupt the parcel in front if no proper
gap is preserved. However, in this chapter we focus mainly on discrete space
conveyors, although our results apply to both types. Generally, the merge conveyor
runs at a constant speed denoted by ݒெ௘௥௚௘.

Infeed conveyors (infeeds)

Infeeds (the parallel conveyors in Figure 6.1) are responsible for transporting parcels
from the point where they are loaded by operators, to the merge conveyor. Parcels are
loaded on an infeed in a sequence that is preserved when they are delivered onto the
merge conveyor. However, distances between them on the merge conveyor can differ
from the distances that were between them on the infeeds. The distance may differ
because, in contrast to the merge conveyor, the infeeds do not move at a constant
speed, e.g., an infeed can deliver a parcel and then stop and deliver the next parcel
later. For most systems, the infeeds in a merge area are of equal length.

There are two possible structures for the infeeds: a continuous belt, and a segmented
belt consisting of sections. Figure 6.2 sketches these two variants. For the continuous
belt case, any point on the belt has the same speed. For the segmented belt case, the
infeed consists of several small conveyor segments (which may run at different
speeds) transferring parcels to each other in sequence. However, for both cases there is
one special segment (which is always decoupled) at each infeed, indicated by the
shaded sections in Figure 6.2. This is the last segment of the infeed at the connection
with the merge conveyor. It is always running at a constant speed, so once a parcel
arrives at this segment it will be merged immediately on the merge conveyor. The
speed of this section is called the downstream speed and denoted by ݒௗ௢௪௡௦௧௥௘௔௠,
whose horizontal component is equal to the speed of the merge conveyor ݒெ௘௥௚௘ ൌ
ௗ௢௪௡௦௧௥௘௔௠ݒ ⋅ cos ሺ0	ߙ where ,ߙ ൏ ߙ ൏ గ

ଶ
ሻ is the angle between the merge conveyor

and the infeed (see Figure 6.2).

Parcels on the infeed have certain distances between them. These distances have to be
taken into account as they can restrict the possible locations of parcels when merged
onto the merge conveyor. If the infeed conveyor is a continuous belt conveyor, then
the distance between any two parcels remains constant as long as they are on the belt.
All points on the belt have the same speed, so when the belt is stopped all parcels on it
stop, and when it moves all parcels on it move at the same speed. In this case, if a
parcel (parcel 1) from an infeed is merged, it may not be possible to merge the next
parcel (parcel 2) directly next to it on the merge conveyor. Parcel 2 has to travel until it
reaches the last segment of the infeed to be merged as well. While it moves to reach
the last segment, parcel 1 also moves on the merge conveyor. In addition, note that the
last segment can only receive parcel 2 after it has delivered parcel 1 to the merge
conveyor. As a consequence, the distances between parcels on the infeeds result in
certain minimum distances between the parcels when merged on the merge conveyor.
These distances are called follow-up distances.

118

Figure 6.2. Continuous versus segmented infeed conveyors.

Merge space request point

This is the point at which the parcel is placed on the infeed. It is also referred to as the
announcement point. Sensors detect the placement of the parcel on the infeed and then
the parcel is announced in the system. In general, at the time the parcel is announced,
it requests a merge space at the merge conveyor. The request consists of two elements.
The first is the time at which the parcel is expected to arrive at the merge infeed point,
which is the point where the infeed and the merge conveyor meet. This time is called
the delivery time and it is calculated based on the highest possible speed profile to
deliver the parcel. Second, the required merge space is announced. If the merge
conveyor is a tilt-tray conveyor, then the merge space is represented by the number of
trays needed.

Fly through point

This is the starting point of the merge area. The status of the merge conveyor upstream
this point is unknown for the local traffic controller of the merge area. The fly through
point is the point where circulating parcels re-enter the merge area. These are parcels
that have not been sorted in the sorting area. They are unpredictable and uncontrollable
by the controller of the merge area. The configuration and locations of these parcels
cannot be changed. The parcels passing into the merge area at this point are called
flying through parcels.

Merge point

This is the end point of the merge area, downstream all merge infeed points (see
Figure 6.1). At this point, the resulting parcels structure built by the space allocation
algorithm within the merge area can be observed.

6.1.2 Merge configuration objectives

In this section, we introduce the objectives of the merge configuration and explain the
relevance of each of them to the performance of the sorter system as a whole. There
are two main objectives within the merge configuration. The first one is throughput
maximization (Section 6.1.2.1), which follows directly from the overall system
objective (see Chapters 1 and 5). The second is workload balancing, which does not

119

have a direct relation to the objective of the sorter system as a whole. In Section
6.1.2.2, we explain why this objective is nevertheless important.

Before going through these objectives, we note that the objectives are to be achieved
by the space allocation algorithm, which is the underlying logic for the local traffic
controller that is responsible for allocating the space on the merge conveyor to the
parcels from the infeeds. The algorithm uses the available information in the merge
area. The input information for the algorithm is: first, available spaces on the merge
conveyor, i.e., space windows, and second, parcels announced on the infeeds.

6.1.2.1 Throughput

Throughput of the merge area is related to space utilization on the merge conveyor. In
other words, it refers to the extent to which the space on the merge conveyor is
occupied by parcels after leaving the merge area, i.e., when passing the merge point. In
this context, it is required to merge as many parcels as possible and fill the space
windows between flying through parcels.

6.1.2.2 Workload balancing

Workload balancing corresponds to the infeed conveyors. It is important to keep a
balance in the delivery of parcels among all infeeds. The case where one infeed fills all
possible spaces while another infeed struggles to get a space for its parcels should be
avoided. Two main reasons make this objective interesting. First, there are operators
that load parcels on each infeed. The distribution of work among these operators
should be fair. Second, when distinct batches are placed at the beginning of each
infeed, all these batches have to be served. For this reason, balancing the workload
among infeeds makes it possible for all batches to be served in reasonable time. In
fact, this objective is concerned with labor efficiency as incorporated in the MHSs’
requirements model (Section 1.3.2).

In current practice, some MHSs’ suppliers set a space utilization limit for infeeds. For
example, in a merge system with two infeeds, each infeed can use at most 50% of the
available space on the merge conveyor. This strategy makes sense when both infeeds
are working with similar loads. However, assume that infeed 1 has one parcel and that
infeed 2 has a long queue; then the space utilization limit on infeed 2 forbids it from
delivering more parcels, while there are still free space windows that are not used by
infeed 1. This leads to starvation (see Section 1.3.2), which is a phenomenon that we
should avoid in the control architecture.

The main KPI of the sorter system is high throughput, and so workload balancing is a
secondary objective. Workload balancing is not a goal on its own, but it has to do with
the system functionality, e.g., operators’ task division. Moreover, balancing waiting
times for parcels on infeeds may have a positive effect on higher level scheduling
approaches. For example, the estimations of travel times used by the ADLBA (see
Chapter 5) become more reliable when traffic delays are evenly distributed among
parcels being transported.

120

6.2 Theoretical context and key literature
Theoretical context

We may classify space allocation in the merge area of the sorter system as a real-time
scheduling problem. In real-time scheduling, schedules have to be created with
incomplete information about the system, which also applies to online scheduling.
However, the main difference is that the time available to create schedules is very
limited in real-time scheduling, much more than in online scheduling. In sorter
systems, information about incoming parcels and incoming space windows is
incomplete. Moreover, allocation decisions have to be made in few milliseconds.
Therefore, we focus the literature review of this section on real-time scheduling since
the time available for computations does not allow us to use complex online
scheduling algorithms.

Lu et al. (1999) classify real-time scheduling algorithms into two categories: static and
dynamic scheduling. In static scheduling, the scheduling algorithm has complete
knowledge about the tasks to be scheduled, their properties, and all constraints. In
dynamic scheduling, the scheduling algorithm does not have complete knowledge
about tasks and their properties. In this case, future new tasks are arriving, which the
algorithm was not aware of while scheduling the previous set of tasks. Lu et al. (1999)
further divide dynamic scheduling to be working in either resource sufficient or
resource insufficient environments. Resource sufficient environments are
environments in which there are sufficient resources to serve all arriving tasks, even if
they arrive dynamically. System designers try to ensure that the system has sufficient
resources. However, due to highly uncertain environments, it is sometimes impossible
to serve all tasks, which yields a resource insufficient situation. Moreover, in terms of
schedules’ adjustability, scheduling algorithms can be either closed-loop or open-loop.
Closed-loop algorithms are those that can be adjusted based on continuous feedback.
Similarly, open-loop scheduling algorithms refer to the fact that once schedules are
created, it is not possible to modify them based on incoming feedback (Lu et al.,
1999).

We classify the space allocation problem in merge configurations as a dynamic,
resource sufficient, and closed-loop scheduling problem.

Key literature

There is an extensive quantity of papers discussing real-time systems from a software
implementation point of view. Koster and Wijnen (1998) describe the merge problem
and study several simple control rules using simulation and under relatively simplistic
assumptions. Their study is very useful for understanding the problem at hand and for
different control rules. However, Koster and Wijnen (1998) do not propose a real-time
algorithm that adapts to the operational changes and works beyond the assumptions the
present. Audsley and Burns (1990) review the application of scheduling theory to
dependable real-time systems. Their review takes the form of an analysis of the
problems presented by different application requirements and characteristics. They
cover issues such as uniprocessor and multiprocessor systems, periodic and aperiodic
processes, static and dynamic algorithms, transient overloads, and resource usage.

121

Stankovic et al. (2001) discuss scheduling in distributed real-time systems. They
develop a distributed real-time scheduling approach based on an analytical model, with
feedback control design techniques. The emphasis they place on software architectures
is not within the focus of this chapter. Other studies in this context are Lu et al. (2002)
and Stankovic et al. (1999), to list a few.

Ramamritham and Stankovic (1994) classify scheduling algorithms and operating
systems support for real-time systems in four paradigms:

o Static table-driven approaches: these approaches create static schedules
(offline) in order to execute a set of predictable tasks. The resulting schedule,
which is often in the form of a table, is used to dispatch tasks during execution.

o Static priority-driven preemptive approaches: these approaches are similar to
the previous category in creating static schedules. However, a difference is that
tasks have priorities that may be revealed dynamically. In this case, during
execution, high priority tasks are handled first and may preempt low priority
tasks. This paradigm, in its use of priorities, can be a starting point to the space
allocation problem at hand.

o Dynamic planning-based approaches: in these approaches, there are tasks
arriving during execution. When a new task arrives the scheduling approach
attempts to schedule it while keeping the schedules of earlier tasks intact. If the
attempt fails then new schedules are created. The feasibility of schedules
continuously checked online. One of the results of the feasibility analysis is to
decide when a task can be executed.

o Dynamic best effort approaches: in these approaches, there are no feasibility
checks. The scheduling approach tries to meet the tasks’ deadlines. However,
there is no guarantee that all tasks can be processed. Therefore, some tasks may
be canceled.

Regarding conveyor systems, most of the studies we reviewed were simulation based,
and scheduling was not evident beyond simple rules or policies. Nazzal and El-Nasher
(2007) state that all of the studies have been simulation-based, application-specific,
and cannot be generalized. An example is a simulation modeling study, based on
queuing theory, by Jing et al. (1998) on a conveyor merge configuration. They model a
merge configuration with the objectives of high throughput on the merge conveyor and
minimizing imbalance among infeeds. They try different control rules for assigning
space windows to parcels: FCFS, longest queue first, highest priority first, random,
natural (no control), and cyclic. However, no discussion of the algorithms or the
application of these general rules is involved.

Other studies focus on the mechanical properties and the physical forces that are
involved in the merge operation, e.g., speeds, friction, layout angles, where the aim is
to optimize the technical details of the merge operation, usually for a single infeed.
Landschützer et al. (2013) and Jodin and Wolfschluckner (2010) provide mathematical
models for these problems, where the higher level space allocation algorithms are not
part of these studies.

Bozer and Hsieh (2005) analyze a closed-loop conveyor system, which consists of
machines, loading and unloading stations, and jobs to be processed. They follow an

122

analytical approach based on queuing theory. They first derive the stability condition
for the conveyor system and then find the layout of the loading and unloading stations
around the conveyor loop. Next, they study the tradeoffs between the objectives of
high throughput and low work-in-process. Their study uses conveyors as a transport
mode while the focus is on the other system elements. Moreover, there are no merge
configurations involved.

Schmidt and Jackman (2000) claim that no analytical models for closed-loop
conveyors were available and present an analytical model for such systems. They
show that the results of their analytical model are similar to simulation results.
However, they focus on manufacturing environments and jobs to be processed. Other
analytical approaches are found in the modeling of closed-loop conveyors with load
recirculation by Hsieh and Bozer (2005).

Many studies on merge configurations focus on systems that are more analogous to
railways than to conveyors. For example, Shladover (1980) analyzes the operation of
merge junctions in dynamically entrained automated guide-way transit systems. The
author analyzes a merge junction with two input lanes and one output lane. The aim of
this study is to provide a realistic estimate of the lane capacity that can be used when
merge restrictions are involved. Using simulation, the author analyzes the effects of
varying inputs on the capacity usage of the output lane. He distinguishes between
isocapacity and concatenating merges. The first refers to merging carts on one railway
after a junction, while the latter refers to combining two separate carts at the merge
point into one connected cart. The relevance and application of traffic theory is evident
in his study, which falls in a context different from merge configurations in MHSs.

Conclusion

We find that studies focusing on the software development aspect in real-time systems
rather than scheduling algorithms are not of much use in this thesis. Moreover, studies
that focus on analytical approaches are not relevant to the space allocation problem as
we consider a real-time system, for which we are interested in an algorithm that can
make allocation decisions in real-time, given different operating conditions. An
analytical approach is a rigid approach that cannot handle the dynamic nature of the
problem and cannot update decisions and system performance measures online.
Moreover, it is not applicable to several merge system configurations. As a conclusion,
we have not found a specific study focusing on real-time space allocation algorithms.
Moreover, we could not find studies discussing the control and scheduling of
conveyors in MHSs. The study of conveyors is limited to their role as a support
element within a manufacturing environment.

6.3 Problem formulation
In this section, we formulate the space allocation problem in more concrete terms.
Section 6.3.1 deals with modeling aspects of the merge area. Then, Section 6.3.2
formulates the objectives in a quantitative manner. Finally, Section 6.3.3 presents a
static approach for space allocation in the merge area.

123

6.3.1 Modeling the merge area

In this section, we list the main modeling points and constraints for space allocation in
the merge area. Figure 6.3 presents a schematic overview of the merge area.

o The boundary of the merge area is the fly through point upstream and the merge
point downstream. The status of the merge conveyor upstream the fly through
point is unknown and the status downstream the merge point is of no further
interest.

Figure 6.3. Modeling the merge area.

o The merge conveyor is a closed-loop conveyor that consists of a finite number
of trays ܶ ൌ ሼ1, . . , ݊௧ሽ that are numbered in order of their occurrence
(ascending upstream).

o The subset ܱ ⊂ ܶ specifies which trays are already occupied by flying through
parcels. These trays are unavailable for allocation.

o There is a finite set of infeeds ܨ ൌ ൛1, . . , ݊௙ൟ. For each infeed ݂ ∈ a ,ܨ
sequence of parcels is given. Let ܲ be the set of all parcels.

o Parcels on an infeed ݂ ∈ ,are denoted by tuples ሺ݂ ܨ ሻ. The first entry refers to݌
the infeed where they are located, and the second refers to their sequence
number on the infeed. The positions are numbered in an ascending order
starting from the most downstream parcel (see Figure 6.3).

124

o Each parcel ሺ݂, ሻ requires a number of trays based on its length. This number݌
is denoted by ݈௙,௣. Each parcel ሺ݂, ሻ on an infeed needs to be allocated to ݈௙,௣݌
consecutive trays on the merge conveyor (at least one). Therefore, the output of
the space allocation algorithm is given by an allocation of the parcels from the
infeeds to trays on the merge conveyor.

o The set of consecutive trays assigned to a parcel ሺ݂, ሻ cannot be assigned to݌
any other parcel.

o For parcel ሺ݂, ௙,௣ is given, which denotes theܦܷܨ ሻ, a follow-up distance݌
minimum number of trays possible between the most upstream tray (last tray) to
which parcel ሺ݂, ሻ is allocated and the most downstream tray (first tray) to݌
which parcel ሺ݂, ݌ ൅ 1ሻ is allocated. Follow-up distances result from the
distances between parcels on the infeeds. The distances are taken as an input in
our model. This constraint also preserves the sequence of parcels on the infeeds.

o Each parcel ሺ݂, ሻ has an expected delivery time to the merge conveyor. This is݌
expressed by the expected delivery tray ݀௙,௣. The expected delivery tray is
calculated as the first tray on the merge conveyor where the parcel can be
delivered using the highest possible speed of the infeed. The calculations of
delivery trays respect downstream parcels (on the same infeed) by accounting
for their possible delivery trays and follow-up distances between parcels.
However, parcels on the merge conveyor and parcels on other infeeds are not
incorporated in this measure.

6.3.2 Objectives formulation

The output of a space allocation algorithm is given by an allocation of the parcels from
the infeeds to trays on the merge conveyor. This allocation has the objectives of
maximizing throughput at the merge point and balancing workload among infeeds (see
Section 6.1.2).

Maximizing throughput requires that the space on the merge conveyor is utilized as
much as possible as it passes the merge point. In this context, assume that we have an
allocation for a set of parcels (from infeeds) on the merge conveyor. Then, measuring
the total number of empty trays from the first assigned tray until the last assigned tray
provides a representative measure of low utilization. We can define this number as the
number of empty trays in ሼ1, . . , ,is the last tray a parcel is allocated to ܮ ሽ, whereܮ
given an allocation of a set of parcels on the merge conveyor.

With regard to workload balancing, all infeeds should be treated fairly in terms of
waiting times. In other words, if there are not enough space windows on the merge
conveyor to serve the requests from the infeeds, then waiting time on infeeds is
inevitable. Waiting time occurs when an infeed has to wait for a space window on the
merge conveyor to arrive at the merge infeed point (see Figure 6.3), by either slowing
down or completely stopping. When an infeed slows down or stops, the parcels on it
are not delivered to their first possible delivery trays identified by ݀௙,௣, but to later
trays. In this case, the waiting time for a parcel ሺ݂, ሻ can be represented by the݌
difference between the first tray actually allocated to the parcel and the first possible

125

delivery tray ݀௙,௣. This difference is referred to as the delay in the delivery of the
parcel.

6.3.3 Static modeling for a formal problem description

In this section, we consider a static view of the space allocation problem in the merge
configuration. This means that we take at some moment in time a sort of snapshot of
the system and consider the problem of allocating all parcels visible at that moment.
This static problem may be used in an iterative approach. In each iteration, the static
approach deals with a set of parcels on the infeeds and a set of available space
windows on the merge conveyor. The result is an allocation of all parcels in the given
data set. However, applying the static approach iteratively may result in an overlap
between two different sets of parcels or space windows, which may require changing
some allocation decisions.

Figure 6.4. Static view of the merge area.

The static approach uses a planning horizon that includes a finite set of parcels on each
infeed and a part of the merge conveyor to allocate these parcels on. As an input, the
static approach has deterministic data about the parcels that need to be allocated, and
space windows available on the merge conveyor. We call the set of parcels in a
specific planning horizon a batch. The static approach calculates an allocation for the
batch of parcels within the planning horizon at once. Figure 6.4 shows a static view of
the merge area. The following points explain the static approach:

126

o We introduce the flow build point as the starting point for space allocation of a
batch on the merge conveyor, i.e., upstream this point all trays ݐ ∉ ܱ are open
for allocating parcels of the batch.

o The tray at the flow build point is given the index 1.
o For each infeed ݂ ∈ ,a finite sequence of parcels ሺ݂ ܨ 1ሻ. . ሺ݂,݉௙ሻ is given.
o A position upstream the merge infeed point of infeed 1 is chosen for the flow

build point. The position of the flow build point leads to a virtual line that
crosses through the infeeds (see Figure 6.4). Parcels upstream this line arrive at
the flow build point (tray 1) or any tray upstream of it, when delivered at the
highest possible speed.

o The area between the flow build point and the fly through point is the part of
the merge conveyor where the batch of parcels has to be allocated. We assume
that this part of the merge conveyor is long enough to accommodate all parcels
in the batch.

The static approach leads to a deterministic optimization problem. Such a problem is
often modeled using mathematical programming. A mathematical program has a set of
formally written constraints and an objective function to optimize. All input data to the
program has to be given before solving. We now present an ILP (integer-linear
programming) model for the problem of finding a feasible allocation of parcels with
respect to a given objective function.

Decision variables

The model makes decisions for parcels’ allocations. In order to know the trays
allocated to parcel ሺ݂, ሻ it is enough to know the first tray allocated to the parcel. The݌
other trays occupied directly result from the parameter ݈௙,௣. The output of the ILP is an
assignment of the first occupied tray for each parcel. This can be achieved by binary
assignment variables as follows:

௧ܺ,௙,௣ ൌ ቄ1 if	tray	t	is	assigned	as	the	first	tray	for	parcel	ሺ݂, ሻ݌
0 otherwise																																																																															

Auxiliary variables

௙ܹ,௣: waiting time of parcel ሺ݂, .ሻ measured in trays݌

݃ݒܣ ௙ܹ: Average waiting time on infeed ݂ measured in trays.

ݐ݋ܶ ௙ܹ: Total waiting time on infeed ݂ measured in trays.

Constraints for a feasible allocation

1. First tray assignment: each parcel from the infeeds needs to be allocated.
Therefore, each parcel needs to be assigned to a first tray. However, the first
tray cannot be a tray downstream the first possible delivery tray.
Mathematically:
 ∑ ௧ܺ,௙,௣ ൌ 1௧ஹௗ೑,೛ ∀ሺ݂, ሻ݌ ∈ ܲ
 ௧ܺ,௙,௣ ൌ 0 ∀ሺ݂, ሻ݌ ∈ ܲ, ݐ ൏ ݀௙,௣

2. Overlap prevention: no tray can be used by more than one parcel. Trays of the
set ܱ

are occupied by flying through parcels and cannot be assigned to any

127

parcel from the infeeds. The following constraints prevent the usage of any tray
by more than one parcel.
 ∑ ∑ ܺ௧ᇲ,௙,௣

௧
௧ᇲୀ௧ି௟೑,೛ାଵ௙,௣ ൑ 1 ݐ∀ ∉ ܱ

 ∑ ∑ ܺ௧ᇲ,௙,௣
௧
௧ᇲୀ௧ି௟೑,೛ାଵ௙,௣ ൌ 0 ݐ∀ ∈ ܱ

3. Follow-up constraints: Follow-up distances have to be respected for two
successive parcels ሺ݂, ,ሻ, ሺ݂݌ ݌ ൅ 1ሻ from infeed ݂.
 ∑ ݐ ⋅ ௧ܺ,௙,௣ାଵ௧ ൒ ∑ ݐ ⋅ ௧ܺ,௙,௣௧ ൅ ݈௙,௣ ൅ ௙,௣ܦܷܨ ∀ሺ݂, ሻ݌ ∈ ܲ, ݌ ൏ ݉௙

ILP objective formulation

For the static case, total waiting time and average waiting time on the infeeds are both
important since we want to have the work balanced in terms of total waiting and the
average waiting time of parcels on the infeeds. Therefore, both measures need to be
incorporated in the objective function of the ILP model.

The waiting time for parcel ሺ݂, ሻ is specified as the difference between the first tray݌
actually assigned to parcel ሺ݂, .ሻ and the first possible delivery tray ݀௙,௣݌
Mathematically:

 ௙ܹ,௣ ൌ ∑ ௧ݐ ⋅ ௧ܺ,௙,௣ െ ݀௙,௣ ∀ሺ݂, ሻ݌ ∈ ܲ

Given the waiting times for parcels, the average waiting time for infeed ݂ can be
calculated as:

݃ݒܣ ௙ܹ ൌ
∑ ௐ೑,೛೛

௠೑
∀݂ ∈ ܨ

Note that waiting time has a cumulative effect, e.g., if a parcel (from a batch of
successive parcels on an infeed) is delayed by one tray, then all parcels upstream are
delayed by one tray as well. Therefore, for a static problem with a pre-defined set of
parcels, the total waiting time on an infeed is determined by the delay of the last parcel
(,)ff m on the infeed within the planning horizon, which is:

ݐ݋ܶ ௙ܹ ൌ ∑ ௧ݐ ⋅ ௧ܺ,௙,௠೑
െ ݀௙,௠೑

∀݂ ∈ ܨ

However, for systems’ users, it is not always sufficient to balance the total waiting
time. Figure 6.5 shows two parallel infeeds; infeed 1 with a low load of parcels and
infeed 2 with a high load. The aforementioned total waiting time formulation
overlooks the differences in the sizes of the parcels, and hence the different loads on
the infeeds (see Figure 6.5). In fact, systems’ users may prefer to give advantage to the
highly loaded infeeds. To account for such cases, we may multiply the total waiting
time of the infeed by the total load on the infeed. Mathematically, this yields:

ݐ݋ܶ ௙ܹ
ᇱ ൌ ቀ∑ ݈௙,௣

௠೑
௣ୀଵ ቁ ⋅ ቀ∑ ௧ݐ ⋅ ௧ܺ,௙,௠೑

െ ݀௙,௠೑
ቁ ∀݂ ∈ ܨ

The total and the average waiting times of an infeed should be minimized
simultaneously. However, we should be aware that the total waiting time has always a
greater numerical value than the average waiting time, because it represents the total
delay (and possibly the load on the infeeds). In order to make the two measures
comparable, we multiply the total waiting time by the parameter ߜ	ሺ0 ൑ ߜ ൑ 1ሻ.
However, determining a good value for ߜ may depend on the instance given.

128

Figure 6.5. Highly loaded versus lowly loaded infeeds.

In a qualitative sense, the objective of the ILP is to distribute waiting times evenly
among infeeds. In a quantitative sense, we may formulate this problem as a MinMax
problem, e.g., to minimize the maximum waiting time. In a MinMax problem, a global
value that represents the maximum measure in the problem is introduced in the model,
and the objective is then to minimize this value. In this specific problem, we introduce
the value imbalance as the value to be minimized in the objective function. In order to
account for the objectives of total waiting time and average waiting time
simultaneously, we propose the following formulation to characterize the imbalance:

ߜ ⋅ ݐ݋ܶ ௙ܹ ൅ ݃ݒܣ ௙ܹ ൑ ܾ݈݅݉ܽܽ݊ܿ݁ ∀݂ ∈ ܨ

The objective function of the ILP model now becomes:

ܼ	݊݅ܯ ൌ ܾ݈݅݉ܽܽ݊ܿ݁

In this formulation, the infeed with the largest waiting time determines the imbalance
value. Therefore, in order to minimize this value, the model tends to make waiting
times on the different infeeds as equal as possible, which is what we want to achieve.

This objective function is concerned with workload balancing. However, the average
waiting time and the total waiting time of an infeed are variables that depend on
waiting times of the parcels. In turn, the waiting times of parcels are directly linked to
the utilization of trays on the merge conveyor. Therefore, minimizing the imbalance
variable tends to minimize the number of empty trays in ሼ1, . . , is the last ܮ ሽ, whereܮ
tray a parcel is allocated to, given an allocation of a set of parcels on the merge
conveyor.

The reason is that a deterioration in throughput that occurs by leaving empty trays in
the solution, directly causes a deterioration in parcels’ waiting times, because empty
trays increase waiting times for parcels. If one tray is left empty, then the waiting
times of all parcels allocated upstream of it may increase by one. However, the model
does not grant maximizing throughput when minimizing the imbalance variable. In
some cases, minimizing the imbalance variable may impose leaving out some empty
trays. Therefore, the objective of minimizing the imbalance variable acts as a sufficient
approximate measure to realize the objectives of throughput and workload balancing.

129

ILP model implementation

Let us use a small test instance, which consists of sequences of in total 16 parcels on 4
infeeds, and a merge conveyor with 4 flying through parcels. For this test instance, we
solve the ILP problem using special-purpose software (GAMS) that uses the CPLEX
solver. In order to select a value for ߜ, we solve the ILP problem with the sum of the
total waiting times (including the loads on the infeeds) and the average waiting times
as the objective. The result shows that the value of total waiting time is approximately
ten times the value of the average waiting time. Therefore, we use ߜ ൌ 0.1 to make
total waiting time and average waiting time comparable. Further experimentation with
other values of ߜ showed that ߜ ൌ 0.1 indeed gives good results for this test instance.
The resulting allocation shows that the space is 100% utilized (i.e., no empty trays are
present). On the other hand, the average waiting time for the infeeds ranges between
8.7 and 9.5 trays, while the total waiting time ranges between 80 and 85. These results
show that the workload is balanced.

The running time for this test instance is 32.23 seconds using CPLEX, which is a
powerful commercial solver, on a workstation with an Intel® Core™2 Duo CPU
T9300 @ 2,50GHz processor and 4.00 GB RAM. This running time is certainly
unacceptable for the sorter system. Furthermore, the test instance was for a small
merge area with a small number of parcels to allocate (16 parcels) and only 4 infeeds.
Therefore, we expect the running time of an ILP problem for a large merge area that
may have up to eight infeeds to be much longer. In the merge area of the sorter system,
allocation results have to be retrieved in milliseconds, and so finding an optimal
solution is not an option. Although the ILP can be interrupted and a solution can be
retrieved, there is no guarantee that a feasible and good solution is ready in less than a
second. Moreover, the static approach is not applicable to different layouts and
possibly different objectives of the merge area. Finally, the static approach assumes
that the part of the merge conveyor within the planning horizon is long enough to
accommodate all parcels in the batch. This assumption does not hold in most of the
existing configurations of the merge area as we will describe in Section 6.4. Parcels to
be allocated are also not all known in batches as assumed. These points result in
unreliable and incomplete input data for the ILP model, which makes a dynamic
allocation approach more reasonable.

6.4 A dynamic space allocation approach
The dynamic approach works with information revealed in real-time. The dynamic
approach deals with a narrower view of the merge area compared to the static
approach (Section 6.3.3). Therefore, we are not aware of a large batch on parcels on
the infeeds. Moreover, we are not aware of the availability of space on the merge
conveyor. In this approach, we investigate one space window at a time. For each space
window, we look for candidate parcels from infeeds. A candidate parcel is a parcel that
fits in the space window and can be delivered to the space window. Hence, an iteration
in the dynamic approach is concerned with allocating an available space window and
only considers the most downstream unallocated parcel from each infeed.

130

6.4.1 A priority-based algorithm (PBA)

In this section, we embody the dynamic approach in the context of a priority-based
algorithm (PBA) for the basic configuration of the merge area (Section 6.3.1). The
PBA uses real-time information when making allocation decisions. Information at the
fly through point specifies available space windows on the merge conveyor, where a
space window consists of a number of consecutive empty trays that can be allocated to
parcels from the infeeds. Thereafter, infeeds having candidate parcels, which can be
allocated to incoming space windows, are identified. We denote the set of candidate
parcels by ܥ	ሺܥ ⊂ ܲሻ.

An iteration of the PBA is executed every time a space window is available. After each
iteration, the algorithm updates the available space windows. The length of a space
window (ݓݏ) is given by a number of empty trays. Each ݓݏ is measured by counting
the number of empty trays appearing at the fly through point until one of the following
two cases occurs:

1. A tray occupied by a flying through parcel is reached.
2. The number of trays required by the parcel (ሺ݂, ሻ݌ ∈ of largest size is (ܥ

reached.

The second case avoids counting large numbers when the next tray occupied by a
flying through parcel is far upstream (if there are flying through parcels at all).
Moreover, once the number of trays required by a parcel of the largest size is reached,
further counting has no added value in the calculations that follow.

Parcels ሺ݂, ሻ that are candidates to be allocated in the given space window of length݌
 :must satisfy the following conditions ݓݏ

1. Fit in the available space window (݈௙,௣ ൑ .(ݓݏ
2. Their downstream parcels have been already allocated.
3. They can arrive at the first tray of the available space window at the merge

infeed point.

Therefore, at most one candidate from each infeed can be in the set ܥ of candidates,
which is the most downstream unallocated parcel of that infeed. If the set ܥ contains
more than one candidate, a priority is calculated for each candidate parcel, and the
algorithm allocates the available space to the candidate parcel with the highest priority.
The method to calculate priorities is critical. First, the priority calculation for a parcel
ሺ݂, ሻ݌ ∈ is relative to the other candidate parcels. Second, the priority of a parcel ܥ
ሺ݂, ሻ݌ ∈ depends on the contribution of its infeed ݂ to the workload balancing ܥ
objective and the contribution of the candidate parcel to the throughput objective. To
capture both objectives in the priority calculations, the formula to calculate the priority
gives weight to each of the two objectives. It is of the form:

௙,௣ݕݐ݅ݎ݋݅ݎ݌ ൌ ߙ ⋅ ݎݑݏܽ݁ܯ݈݁ܿ݊ܽܽܤ ௙݁,௣ ൅ ሺ1 െ ሻߙ ⋅ ,௙,௣݁ݎݑݏܽ݁ܯݐݑ݌݄݃ݑ݋ݎ݄ܶ

where ߙ is a weighing parameter. In this way, we give attention to both objectives.
The default value of ߙ has to be tuned by simulation.

131

The throughput measure depends on the candidate parcel itself. We use the extent to
which a candidate parcel can occupy an available space window on the merge
conveyor as a measure. This measure gives priority to large parcels, which is desirable
in practice because delaying the delivery of a large parcel creates a risk of not finding
another space window that can accommodate this parcel for a long time. The balance
measure of a parcel ሺ݂, ሻ depends only on the infeed ݂ transporting the candidate݌
parcel. We use the total (accumulating) waiting time of the infeed to calculate the
balance measure. Let ܨᇱ ൌ ሼ݂ ∈ :݌∃|ܨ ሺ݂, ሻ݌ ∈ ሽ, then the proposed measures are asܥ
follows:

௙,௣݁ݎݑݏܽ݁ܯݐݑ݌݄݃ݑ݋ݎ݄ܶ ൌ
௟೑,೛
௦௪

∀ሺ݂, ሻ݌ ∈ ܥ

ݎݑݏܽ݁ܯ݈݁ܿ݊ܽܽܤ ௙݁,௣ ൌ
்௢௧ௐ೑

∑ ்௢௧ௐ೑ᇲ೑ᇲ∈ಷᇲ
∀ሺ݂, ሻ݌ ∈ ܥ

It remains to explain how we calculate ܶݐ݋ ௙ܹ. The basic idea is that the total waiting
time of an infeed is calculated as the sum of waiting times for all parcels on an infeed,
starting from the first parcel that has been allocated up to the most downstream
unallocated parcel. The waiting time for a parcel ሺ݂, ሻ, i.e., ௙ܹ,௣, is calculated as the݌
number of trays between the tray actually assigned to the parcel and the first possible
delivery tray of the parcel. Clearly, the first possible delivery tray of a parcel is based
only on the allocation of its downstream parcel. In other words, the first possible
delivery tray of parcel ሺ݂, ௙,௣ିଵ trays after the mostܦܷܨ ሻ is the tray which is݌
upstream tray allocated to the downstream parcel ሺ݂, ݌ െ 1ሻ. However, if there is no
downstream parcel that is restricting delivery, then the first possible delivery tray is the
first tray reachable using the highest possible speed on the infeed. With regard to the
most downstream unallocated parcel, we do not know the tray assigned to it.
Therefore, instead of its assigned tray, which is unknown, we use the most
downstream unallocated tray that can be allocated to this parcel to calculate a lower
bound for its waiting time. If no such tray is found downstream the fly through point,
then we use the tray at the fly through point. In this manner, we can trace the increase
in waiting time as long as a parcel is waiting and is unallocated, given that the possible
delivery tray is not upstream the fly through point.

The calculation of total waiting time for an infeed is then represented as follows:

ݐ݋ܶ ௙ܹ ൌ ∑ ௙ܹ,௣௣

The PBA is a suitable option for a constructive heuristic for space allocation. It is
flexible as it can handle any number of infeeds or appearance of space windows on the
merge conveyor in the same generic steps. In addition, merge configurations in other
operational environments or with different layouts may be handled, either by changing
the method to calculate the priorities or by incorporating additional measures in the
priority calculations. For example, in baggage handling, the priority may depend on
the urgency of a bag.

The PBA is based on the basic configuration of the merge area, which we discussed so
far. However, in practice there are certain layout restrictions of the merge area, which
make space allocation more challenging. Section 6.4.2 explains these restrictions.

132

6.4.2 Layout restrictions and the early reservations phenomenon

So far, we have implicitly assumed that for an available space window on the merge
conveyor, we are aware of all parcels that request to be allocated to this space window.
This assumption represents the predictable case. The validity of this assumption
depends on the layout characteristics of the merge area. Basically, when the infeeds
are of a sufficient length, then at the fly through point all parcels from all infeeds that
request the tray at the fly through point as their delivery tray are known. Therefore, the
allocation decision is made using the information about alternative parcels.

Figure 6.6. Merge area layout leading to the unpredictable case.

However, in most sorter systems the layout of the merge area does not lead to the
predictable case. Figure 6.6 gives a layout of the merge area with short infeeds. In this
case, we are not aware of all parcels that may arrive at a certain tray when the
allocation decision for this tray is made. Therefore, if space windows on the merge
conveyor are allocated by handling incoming requests from parcels on a FCFS basis, a
deterioration in the workload balance among infeeds occurs due to the early
reservations phenomenon. In order to describe this phenomenon, we sketch, in Figure
6.7, a merge configuration with two infeeds of limited length; each infeed has a parcel.
As soon as a parcel is loaded on an infeed, it is announced in the system and requests a
merge space. The parcel from infeed 1 can arrive at point A, and therefore can reserve
it. The parcel from infeed 2 can arrive at point B. However, if all infeeds are busy with
parcels, then already at an earlier decision moment, point B could have been allocated
to some previous parcel from infeed 1. This phenomenon induces the dedication of
most of the space as requested by parcels from infeed 1, while forcing parcels from
infeed 2 to wait for a space at later points than requested. The main idea is that parcels
from infeed 1 can reserve spaces on the merge conveyor earlier than parcels from
infeed 2, due to the restricted look ahead horizon. Therefore, as the system operates for
a long time, the total waiting time for parcels of infeed 2 accumulates. Moreover, in a
larger system with more infeeds, this phenomenon propagates and may result in high
imbalance measures.

This phenomenon mainly occurs when infeeds farther downstream are not long
enough to see all incoming parcels that compete for the same merge space at the time

133

of making allocation decisions. Then, parcels from those infeeds are forced to wait
before being merged, more than parcels from upstream infeeds. The PBA (Section
6.4.1) deals with the predictable case of the merge area, but it does not work for this
unpredictable case because it depends on a set of announced parcels when making
allocation decisions. As a result, the PBA needs to be adapted to cover this case.

Figure 6.7. Layout leading to the early reservation phenomenon.

In this section, we discussed why a FCFS control principle does not work in practice
for the unpredictable case of the merge area. Note that the FCFS is a good approach if
we only strive for high throughput. However, it is not suitable in terms of workload
balancing. Another basic control principle that is applied in practice is Round-Robin.
Using the Round-Robin principle, we reserve space windows appearing at the fly
through point for infeeds sequentially. However, the main problem is that a space
window reserved for a certain infeed may not be used by this infeed when it arrives at
the merge infeed point. This may occur because there may be no parcels to merge by
the infeed or there may be a parcel with a size that does not fit in the reserved space
window. In this case, space on the merge conveyor is lost (i.e., the space window
cannot be used by upstream infeeds anymore because it has already passed them). This
results in a deterioration in throughput, which is the main objective. Section 6.4.3
develops the PBA into a generic PBA that aims for high throughput and at the same
time keeps the workload balanced.

6.4.3 A generic PBA

In order to extend the PBA to the unpredictable case, we propose to make allocation
decisions based on available merge space requests. Thus, we do not reserve spaces on
the merge conveyor in anticipation of parcels that are not yet announced. Thereafter,
as new parcels are announced on infeeds, we improve the space allocation decisions by
executing a reallocation procedure downstream the fly through point. Making space
allocation decisions based on the available parcels tends to maximize throughput as the
main objective. Thereafter, as new parcels appear, a reallocation procedure interferes
to balance the workload by changing some allocation decisions. In this case, it may be
possible to maintain a high throughput as the main objective and then balance the
workload among infeeds by reallocation.

134

Figure 6.8. Reallocation of space windows in the merge area.

Figure 6.8 clarifies the basic concept of reallocation. At the fly through point, trays are
allocated to parcels that have merge space requests. Figure 6.8A illustrates the first
results of space allocation at the fly through point. The numbers on the trays refer to
the infeed to which the tray is allocated. As the workload balance deteriorates due to
the early reservations by infeed 1, reallocation is needed to retain the balance.
Reallocation is achieved by canceling some of the trays allocated to parcels from
infeed 1 and reallocating them to parcels from infeed 2 (see Figure 6.8B). An
important point to mention is that reallocation is not possible for all trays. A tray is
unavailable for reallocation if it is locked. For each infeed there is a point on the merge
conveyor called the lock point (see Figure 6.8). When a tray that is allocated to infeed
1 passes the lock point of infeed 1, it becomes locked and cannot be reallocated to
another infeed even though it is still physically empty. The reason is that after passing
the lock point, the parcel assigned to this tray is already moved to the last segment of
the infeed that is responsible for merging the parcel (see Section 6.1.1) and so

135

downstream the lock point the parcel assigned to this tray cannot be stopped from
being merged. The reallocation procedure is based on searching possible spaces on the
merge conveyor and uses priority calculations as described in the remainder of this
section.

We extend the PBA (Section 6.4.1) to the generic PBA that is able to handle a merge
area with infeeds of any length. To achieve this extension, we develop additional
procedures to be added to the basic steps discussed in Section 6.4.1. Moreover, for the
generic PBA, space windows appearing at the fly through point are no more the only
trigger of allocation decisions. Announced parcels that request merge spaces
downstream the fly through point also trigger allocation decisions. To clarify these
concepts, we state the three main procedures that compose the generic PBA:

A. The reallocation procedure: this procedure aims at balancing the workload
among infeeds by changing allocation decisions after more information
becomes available in the system. This is an improvement procedure that is
activated by parcels and not by available space windows. We detail this
procedure later on.

B. The queue procedure: this procedure is the PBA described in Section 6.4.1,
which allocates space windows, appearing at the fly through point, to parcels in
the pending requests queue. Therefore, this procedure is activated by appearing
space windows. The allocation of spaces is based on priorities.

C. The search procedure: an announced parcel may activate this procedure to
search for an available merge space. The search area for a merge space starts
from the first possible delivery tray of the parcel and ends at the fly through
point upstream.

The algorithm only takes into account announced parcels whose downstream parcels
are all allocated. If parcel ሺ݂, ,ሻ is announced but its downstream parcel ሺ݂݌ ݌ െ 1ሻ is
not allocated yet, then we cannot allocate parcel ሺ݂, ሻ as we do not know its first݌
possible delivery tray on the merge conveyor. We only consider parcel ሺ݂, ሻ when݌
parcel ሺ݂, ݌ െ 1ሻ is allocated.

If parcel ሺ݂, ሻ is announced and all of its downstream parcels are allocated, it requires݌
a merge space. Moreover, a specific delivery tray that is the first tray reachable by the
parcel is determined. The search procedure starts at the specified delivery tray and
searches upstream for a possible space window for the parcel. The parcel is assigned to
the first possible space window. If no space window is found up to the fly through
point, the parcel remains unassigned and is added to the pending requests queue.

The reallocation procedure is executed only for priority parcels. These are parcels that
are announced on priority infeeds. An infeed has priority if the difference between its
total waiting time and the minimum total waiting time among all infeeds exceeds a
preset threshold value. Consequently, if a parcel is announced on an infeed with high
priority, then the reallocation procedure is started and not the search procedure.

The reallocation procedure differs from the search procedure in one main point. This
point is that the merge space search does not only consider empty trays, but it can also
consider trays that are allocated to parcels with low priority. In this case, the priority

136

parcel can take the spaces assigned to parcels with low priority (as long as the trays
assigned to low priority parcels are not locked), resulting in canceling the allocations
for the parcels with low priority. Next, the canceled parcels are also processed by the
reallocation procedure to find new merge spaces for them upstream the canceled
merge spaces. The result of the reallocation procedure can be that a merge space
downstream the fly through point is found to allocate the parcel, or that no merge
space is found. In the latter case, the merge space request of the parcel ends up in the
pending requests queue, as happens with a parcel that does not find a merge space by
the search procedure.

Parcel (f,p) requests
a merge space

Is
parcel (f,p) a

priority
parcel?

Activate the
reallocation
procedure

YES
Activate the

search
procedure

NO

Merge space
downstream the

FTP found?

Allocate
parcel

YES
Add parcel to the
pending requests

queue
NO

Allocate parcels of the
pending requests queue
by the queue procedure

START

END

Any
parcels

in the pending
requests
queue?

YES

NO

Figure 6.9. The basic scheme of the generic PBA.

The queue procedure is executed as long as there are parcels in the pending requests
queue. It examines space windows appearing at the fly through point and allocates

137

them to parcels in the pending requests queue. Whenever a new space window
appears, the queue procedure tries to allocate a parcel to it. This may not be possible if
the space window is too small to fit any of the parcels of the queue. As the reallocation
and the search procedures may be executed for incoming parcels that are not in the
pending requests queue, the reallocation procedure can still cancel the allocations done
by the queue procedure, while the search procedure can use only unallocated trays.

We note that the queue procedure deals with parcels that could not be allocated by the
reallocation or the search procedures. The link between the reallocation and the search
procedures on the one hand, and the queue procedure on the other hand, is the pending
requests queue. The reallocation and the search procedures can add parcels to the
pending requests queue; the queue procedure then deals with these parcels. We stress
that the pending requests queue has at most one parcel from each infeed, since any
parcel whose downstream parcel is unallocated is not considered for allocation.
Therefore, when a merge space for parcel ሺ݂, ሻ is canceled, merge spaces of all݌
parcels upstream parcel ሺ݂, ሻ are canceled. Moreover, if the merge space request of a݌
parcel upstream parcel ሺ݂, ሻ is in the queue, then it is removed from the queue. Figure݌
6.9 presents the basic scheme of the generic PBA (where FTP stands for the fly
through point).

6.5 Implementation
In order to implement the generic PBA and test its performance under varying
operating conditions, we build a simulation model (in Delphi 2009) that represents a
merge configuration with four infeeds.

6.5.1 Experimental setup

In this section, we present the setup to generate the input data and the method to
measure the performance of the generic PBA. The relevant inputs are: parcels’ lengths,
parcels’ inter-arrival times, and the density of flying through parcels. For these inputs
we use data based on practice.

Parcels’ lengths

Parcels’ lengths are drawn from uniform distributions. Possible lengths are 1, 2, or 3
trays. In general, using a constant parcel length in an experiment is not realistic, and
overlooks the challenges brought by the inconsistency in parcels’ lengths.

Parcels’ inter-arrival times

We represent time in terms of trays, and so the time measure results directly in a
distance measure. We know that in the merge area, batches of parcels are successively
placed next to the infeeds and operators load these parcels on the infeeds. Therefore,
we model two possibilities to determine the inter-arrival time of a parcel.

1. The next parcel is a parcel from the same batch with 97% probability.
2. The next parcel is a parcel from a new batch with 3% probability.

If a parcel is from a new batch, then the inter-arrival time is taken as 30 trays, which is
a constant value. If a parcel is from the same batch, then inter-arrival times are drawn
from a uniform distribution according to one of the following three possible ranges:

138

o ሼ1,2ሽ
o ሼ2,3,4ሽ, which is the standard range unless mentioned otherwise,
o ሼ4,5,6ሽ

These ranges represent variable factors in the simulation experiments. Moreover, inter-
arrival times directly result in follow-up distances on the merge conveyor.

Density of flying through parcels

For trays appearing at the fly through point, the density of flying through parcels refers
to the fraction of trays occupied by flying through parcels from the total number of
trays. We examine the following densities of flying through parcels:

o 0%
o 5%
o 15%, which is the standard value unless mentioned otherwise,
o 30%

For a certain layout of the merge area, the number of possible combinations of input
parameters is 12; 3 (ranges of inter-arrival times) times 4 (densities of flying through
parcels). We use 11 trays as it is the standard length of the infeeds in practice.
Moreover, in each simulation experiment, we generate 2500 parcels on each infeed.

Performance measurement

The two objectives of the merge system are throughput maximization and workload
balancing. We measure the performance of the algorithm in achieving these objectives
as follows:

o Throughput maximization is measured by the utilization of space on the merge
conveyor.

o Workload balancing is measured by the imbalance in waiting times between the
infeed with maximum total waiting time and the infeed with minimum total
waiting time, and expressed as a percentage as follows:

ܹ݈ܾܶ݁ܿ݊ܽܽ݉ܫ ൌ
௠௔௫೑∈ಷ൛்௢௧ௐ೑ൟି௠௜௡೑∈ಷ൛்௢௧ௐ೑ൟ

௠௔௫೑∈ಷ൛்௢௧ௐ೑ൟ
⋅ 100%

Hence, the algorithm aims at maximizing the utilization and minimizing the imbalance
in waiting times.

6.5.2 Model parameterization

In this section, we tune the values of the main parameters in the generic PBA, which
are the parameter ߙ used in calculating the priority of parcels (see Section 6.4.1) and
the threshold value for the reallocation procedure (see Section 6.4.3).

The threshold value for the reallocation procedure

This parameter is selected by the MHS supplier. It is relevant to how much difference
in waiting times is acceptable and when is it necessary to execute a reallocation
procedure. This also relates to the load on the control software, because calling the
reallocation procedure more frequently results in more executions by the control
software. In general, tuning the threshold value may depend on the specific system

139

modeled. For the merge configuration under study, we propose a standard threshold
value of five.

The parameter ࢻ

We want to investigate how the weights of the objectives in priority calculations
influence the results. This is technically done by varying the value of the parameter ߙ,
which plays a role in prioritizing the pending requests queue. To this end, we conduct
1320 experiments to tune the value of ߙ. We use the average results of 10 test
instances, for each of the 12 possible combinations of input data, and run the
simulation for 11 different values of ߙ	ሺߙ ൌ ሼ0, 0.1, 0.2, . . , 1ሽሻ. In these experiments,
we use a threshold value of 5. For every combination of input parameters and every
value of ߙ, we calculate the resulting utilization and imbalance in waiting times (see
Table 6.1).

α Utilization (%) ImbalanceWT (%)

0.0 86.38 17.01
0.1 86.84 4.20
0.2 86.84 4.20
0.3 86.84 4.22
0.4 86.82 4.22
0.5 86.83 4.21
0.6 86.81 4.25
0.7 86.84 4.28
0.8 86.88 4.23
0.9 86.85 4.27
1.0 86.03 4.27

Table 6.1. Average results for different values of ࢻ.

In order to determine a standard value for ߙ, we first investigate the two extreme
values (0 and 1). Table 6.1 shows that giving full weight to the throughput objective
by setting ߙ equal to 0 causes a dramatic deterioration in workload balancing, with no
improvement in throughput. On the other hand, giving full weight to workload
balancing by setting ߙ equal to 1 causes a limited deterioration in throughput, but with
no improvement in workload balancing as compared to values smaller than 1 (but
larger than 0). Note that minimizing the imbalance tends to maximize throughput (see
Section 6.3.3). We observe that the effect of changing the value of ߙ between 0 and 1
is low. This is because ߙ only plays a role in the queue procedure, while in the
unpredictable case of the merge area, the reallocation and the search procedures play a
vital role. The maximum throughput (which is the main objective) is achieved by
setting ߙ equal to 0.8, and the workload balancing at that value is also good.
Therefore, we use this standard value of ߙ.

6.5.3 Experimental results

This section reports on the performance of the generic PBA under different operating
conditions.

140

Performance of the generic PBA under varying operating conditions

We examine the performance of the generic PBA under varying operating conditions,
where an operating condition is specified by a combination of input data (see Section
6.5.1). Table 6.2 shows the average results for each combination.

Density of flying
through parcels

Performance indicators
Range of inter-arrival times

ሼ૚, ૛ሽ ሼ૛, ૜, ૝ሽ ሼ૝, ૞, ૟ሽ

0 %

Utilization (%)

ImbalanceWT (%)

Number of reallocations

90.9

2.1

3339.9

86.2

1.2

4461.7

79.5

21.8

2826

5 %

Utilization (%)

ImbalanceWT (%)

Number of reallocations

91.8

2

2766.7

86.7

1.3

4044.2

81.1

11.1

3293.3

15 %

Utilization (%)

ImbalanceWT (%)

Number of reallocations

92.1

2.2

1642.4

87.7

1.7

3050.6

83

1.2

3330.3

30 %

Utilization (%)

ImbalanceWT (%)

Number of reallocations

91.3

2.6

632.7

88

2.1

1520.2

84.2

1.4

2273.6

Table 6.2. Average results under varying operating conditions.

Based on the results in Table 6.2, we make the following general remarks:

o As the range of inter-arrival times increases, the utilization of space on the
merge conveyor drops. In this case, the system is not busy with parcels and so
there is an unavoidable deterioration in utilization.

o Given a fixed range of inter-arrival times, increasing the density of flying
through parcels increases the utilization of the merge conveyor in most of the
cases. As the density of flying through parcels increases, the parcels on the
infeed are more likely to wait for merge spaces. When parcels wait, it is likely
that they are added to the pending requests queue. Therefore, allocation by the
queue procedure may utilize the space on the merge conveyor more efficiently
as prioritizing the pending requests queue considers space utilization, especially
filling the gaps between flying through parcels. However, in some cases, when
the density of flying through parcels is too high, the utilization may drop. This
may happen because when the merge conveyor is highly loaded with flying
through parcels, it becomes more difficult to merge parcels from the infeeds
between these flying through parcels. For example, it is difficult to merge a

141

large parcel when there are many flying through parcels with small spaces
between them on the merge conveyor.

o For low and medium ranges of inter-arrival times, ሼ1,2ሽ and ሼ2,3,4ሽ, varying
the density of flying through parcels has a minor effect on the imbalance in
waiting times.

o For a high range of inter-arrival times, ሼ4,5,6ሽ, varying the density of flying
through parcels has a big impact on the performance of the algorithm with
regard to the workload balancing objective. In this operating condition, the
effect of the queue procedure is limited, because the possibility that parcels
from different infeeds are present in the queue is small. Moreover, the effect of
the reallocation procedure is limited because trays allocated to low priority
parcels may become locked before high priority parcels appear, due to long
inter-arrival times and short waiting times of low priority parcels. Short waiting
times are caused by no (or low density of) flying through parcels.

o When long inter-arrival times are combined with no flying through parcels, or
to a lesser extent, a very low density of flying through parcels, workload
balancing is not as efficient as for other conditions. However, this condition
may not create a problem for the system and better workload balancing may not
be achievable with other algorithms as well. In this case, the merge conveyor is
not busy and the inter-arrival times of the parcels are long. Therefore, most of
the parcels may find merge spaces with minimal waiting times. Some parcels
may wait for a short time when the first possible delivery trays of parcels from
different infeeds are coincidentally the same. However, the overall performance
is acceptable because this operating condition describes a system that is not
overloaded, where all infeeds have low waiting times. In this case, differences
in waiting times among infeeds may not represent a real problem.

The effect of the length of the infeeds

In order to test the performance of the generic PBA algorithm for different lengths of
the infeeds, we perform experiments under two modes of the generic PBA: (i) with the
reallocation procedure, and (ii) without the reallocation procedure. Figure 6.10 shows
the results for different lengths of the infeeds under modes (i) and (ii), using the
standard values of input data (where L(x) means infeeds of the length x trays).

Figure 6.10 shows that longer infeeds yield slightly better results with regard to
utilization. This is mainly due to the effect of the queue procedure, as longer infeeds
make it more likely that parcels are added to the pending requests queue. Moreover,
Figure 6.10 verifies that the reallocation procedure has big impact on balancing the
workload among infeeds while not deteriorating throughput. It also shows that as the
infeeds get longer, the impact of the reallocation procedure decreases. This is an
intuitive result because when infeeds are long, we are aware of incoming parcels early,
and the chance that parcels are added to the pending requests queue is higher.
Consequently, prioritizing the queue by the queue procedure balances the workload
and minimizes the need for further balancing via the reallocation procedure.

142

Figure 6.10. Effect of the length of the infeeds on the performance of the algorithm under

standard operating conditions.

Distribution of waiting time among infeeds

Figure 6.11 displays the distribution of waiting times for each of the four modeled
infeeds ሼ0݂݊ܫ, . . , ,1ܥ3ሽ and for each input combination ሼ݂݊ܫ . . , 12ሽ. We observe thatܥ
we are able to overcome the early reservations phenomenon (see Section 6.4.2). The
first infeed has less waiting time than other infeeds only in combinations 9 and 10,
which are the combinations that limit the effects of the reallocation and the queue
procedures as described earlier.

Number of reallocations per infeed

Figure 6.12 shows the average number of reallocations per infeed for each input
combination. We observe that parcels of the fourth infeed (3݂݊ܫ in Figure 6.12) are
less frequently reallocated in all input combinations. We expect this result since the
fourth infeed suffers the most from the early reservations phenomenon and so its
parcels are normally high priority parcels. Similarly, parcels of the first and second
infeeds (0݂݊ܫ and 1݂݊ܫ in Figure 6.12) are expected to be low priority parcels, and so
are frequently subject to reallocations.

6.6 Chapter conclusion
In this chapter, we have taken a closer look at the space allocation problem in merge
configurations, which is a local traffic problem that occurs in all industrial sectors. The
objective was to develop a generic space allocation algorithm that provides the
necessary control for merge configurations.

143

Figure 6.11. Distribution of waiting times among infeeds (measured in trays).

Figure 6.12. Number of reallocations executed per infeed.

Although we took a discrete modeling approach of the conveyors, the generic PBA can
be easily implemented on a continuous belt conveyor (e.g., instead of counting empty
trays for a space window, we can measure empty distances). Moreover, we have
studied the space allocation problem in the context of parcel & postal sorter systems,
but the results are generic to applications in the other industrial sectors. For example,
in baggage handling or in distribution, the outfeeds of storage aisles in ASRSs
connecting to a merge conveyor represent a merge configuration.

144

The generic PBA is flexible in terms of incorporating possibly different objectives and
different prioritization rules, depending on the application. For example, in baggage
handling, the priorities may be based on urgent bags.

As a final word, we comment on how the generic PBA fits in the generic control
architecture. Space allocation is a local traffic control problem. Therefore, as
mentioned in Chapter 2, decision-making algorithms for these problems can be
incorporated in a scheduling controller, e.g., the loop controller (see Section 2.2.3.1),
which can execute local traffic control procedures. Otherwise, a dedicated local traffic
controller in merge areas can be part of the control architecture to accommodate this
algorithm.

145

Chapter	7 	

Conclusions,	 Recommendations,	 And	 Future	
Research	

In Chapter 1, we introduced the research problem which concerns the development of
a generic planning and control structure for MHSs as they occur in different industrial
sectors, i.e., parcel & postal sorting, baggage handling, and distribution. Moreover, we
discussed both the scope and limitations of the research problem on generic control. In
the subsequent chapters, we investigated the problem on various planning and control
levels.

In this chapter, we conclude the thesis by first presenting a summary of our results
(Section 7.1), tracing them back to the research agenda that we proposed in Section
1.5.2. Second, we point out the main contribution of this thesis (Section 7.2). Third,
we present general conclusions (Section 7.3). Fourth, we provide recommendations
and guidelines for future applications of the generic control architecture (Section 7.4).
Finally, we highlight directions for future research (Section 7.5).

7.1 The research agenda revisited
In Section 1.5.1, we weighed the practical requirements for a generic control
architecture against contributions from the literature. Consequently, in Section 1.5.2,
we proposed a research agenda of five points.

In Chapter 2, we dealt with the first two points on the research agenda, i.e., proposing
a concept control architecture and detailing it in terms of control levels and control
units. The concept control architecture we proposed was motivated by a number of
design choices. Subsequently, we defined a set of generic control units distributed
among three levels of control, i.e., planning, scheduling, and local traffic control. In
Chapter 2, we presented our proposal for a general structure that covers all decision-
making processes encountered in the control architecture. In this sense, Chapter 2
defined the necessary building blocks of this generic control architecture. We devoted
the subsequent chapters to the development of these building blocks.

In Chapter 3, we dealt with the third and fourth element on the agenda, i.e., translating
the concept into a concrete control architecture and validating it. In Chapter 3, we
mainly developed planning and scheduling control modules and included local traffic
control modules only in an aggregate way. We also showed implementations of the
generic control modules that we developed on generic system models, which we tuned
to simulate MHSs in different industrial sectors. A key deliverable in Chapter 3 is the
analysis on the generality of the control modules given the implementation in different
industrial sectors.

146

In Chapter 4, we dealt with the fifth item on the research agenda, i.e., proving the
adequacy of the control architecture. In other words, we provided a proof-of-concept
for the applicability of generic control on a practical case. To this end, we presented a
comprehensive application of the control architecture on a challenging business case
of a major European airport. In this large implementation, we showed how to handle
new system elements in a generic manner and how to standardize control approaches
for these different elements.

In Chapter 5, we extended our scope of analysis to propose scheduling algorithms for
system users. We tackled the problem of scheduling inbound containers when loading
them to MHSs that consist primarily of sorting elements. This scheduling problem
influences the operation of sorter systems and requires sound scheduling tools. To this
end, we analyzed different scheduling algorithms for different industrial sectors,
different operational scenarios, and different system models. Then, we investigated
which scheduling approach works best in which setting.

In Chapter 6, we tackled a local traffic problem that occurs in various industrial
sectors. This is the space allocation problem in conveyor merge configurations.
Common practice control rules for this local traffic problem do not perform well in
satisfying the objectives of merge configurations. Therefore, we presented a detailed
model of merge configurations and proposed a generic space allocation algorithm that
satisfies system objectives. The algorithm is generic and can be implemented in
different merge configurations within different industrial sectors.

7.2 Main contribution
In practice, control methods are customized for each industrial sector, and even for
different MHSs within the same industrial sector. In this thesis, we focused on the high
potential of generic control. The value of the proposed control architecture is that it
helps MHSs’ suppliers to improve on their services. In particular, MHSs’ suppliers
may benefit from the standardization in control methods to develop the control
architecture of an MHS in shorter time and with less costs and effort than before, and
hence facilitating the bidding process as well. A standardized and modular control
architecture is also useful for MHSs’ users for a number of reasons. For example, the
operational environment and requirements of systems may vary over time, which
necessitates the adaptation of the planning and control procedures. Obviously, a
generic control structure may significantly simplify the implementation of new control
strategies or the adjustment of existing ones, as compared to adaptations of a highly
customized system. Moreover, a generic control architecture makes it easier to install
software updates, maintain the control software, solve implementation problems, or
even extend the system base.

In this thesis, we provided methods and modeling techniques that allowed us to deal
with different MHSs in a generic manner. Consequently, we showed that generic
control of MHSs in different industrial sectors is possible. The use of generic control is
two-fold: first, from a scientific perspective, this thesis provides a basis to build a
general control theory for MHSs in different industrial sectors. Second, from a
practical perspective, we offer an approach for MHSs’ suppliers that improves on the

147

MHSs’ design aspects in terms of system development time, maintainability, and
upgradeability.

The generic control architecture identifies the main decision-making processes at the
right level of control, while layout-specific details are handled by configurable
parameters. As a result, the control architecture is scalable and tunable to different
system layouts and designs.

In general, one may expect that implementing generic control methods instead of
customized control methods may bring benefits from the aforementioned perspectives,
but at the cost of a decline in performance. However, we showed that the proposed
generic control methods perform as good as the customized control approaches and in
a number of cases outperform them.

7.3 General conclusions
In this section, we formulate the overall conclusions of this thesis.

o Our main conclusion is that a generic control system for MHSs in different
industrial sectors is possible. To this end, we have shown what control tools are
needed to model decision-making processes in a generic manner. For example,
we proposed control procedures that bring one industrial sector (distribution) to
the same level of detail as another industrial sector (baggage handling). After
bridging that gap, standardized control procedures could be implemented.

o The control modules of the generic control architecture, which we developed
throughout this thesis, can function together in the control architecture of a
specific MHS. For example, in a large airport, we may use the planning and
scheduling control modules as developed in Chapter 3 in combination with the
local traffic control module of Chapter 6. By putting these modules together,
the control architecture is comprehensive in terms of covering all decision
making processes at the different levels of control. Moreover, for inbound
containers in such a large airport, the system user may incorporate a scheduling
algorithm for inbound containers as discussed in Chapter 6.

o Sector-specific processes can be built as functional add-ons to the control
architecture. To this end, we showed how these processes can be integrated in a
plug-and-work like mechanism.

o With regard to the generality of control, we experience more similarity among
the different industrial sectors at the lower levels of control. As we move to the
higher levels of control, we experience more situations that require adaptations
to model the specificities of the different industrial sectors.

o The extent to which we can develop generic decision-making algorithms is
dependent on the level of control. For example, at the local traffic level, we
have more freedom to model systems similarly in all sectors. Therefore, in
Chapter 6, we were able to develop a space allocation algorithm that is generic
and can be easily reused in the different industrial sectors. As we go one level
higher to the scheduling level, we analyzed algorithms for inbound containers
scheduling. We discussed these algorithms in a generic framework, but the
effect of the different sectors was more tangible than in the local traffic case

148

(e.g., the EBS and plane schedules affect the algorithmic design). Another
example is the scheduling process for cranes’ retrievals (see Chapter 3). For this
process, we had to adapt to sector-specific characteristics when scheduling
retrievals, although within a generic process structure.

o The highest level of differentiation among sectors is at the planning level. At
this level, the interfaces with the system-user’s functions play an important role
and the different operational environments are more prevailing. An algorithmic
analysis at this level is less generic. However, we presented a generic structure
for planning processes. This is embodied by the modular planning control units
and the standardized forms of communication. The standardized forms of
communication occur between the planning control units at the same level and
also with the scheduling control units at a lower level of control. This generic
structure can accommodate sector-specific planning algorithms. For example, in
baggage handling, a customized algorithm can be implemented in the storage
planner to select a set of bags to compose a ULD for robots.

7.4 Recommendations and guidelines for practice
In this thesis, we presented a number of applications of the generic control modules.
For future applications, we list some of the lessons learned, which are points to
commit to when implementing the generic control architecture on other MHSs:

o The use of generic control modules is essential, since the introduction of
customized modules would hamper the generic structure. For example, we
model any type of ‘build’ workstations by the generic workstation module.

o The standard interfaces between different controllers should be maintained.
o System size and layout characteristics should not affect the implementation of

the generic scheduling processes. This is shown by our application of the
generic dynamic routing both in the screening area of the baggage handling
business case (see Chapter 4) and in the orders build area of the distribution
center modeled in Section 3.2.

o As mentioned before, the planning level of control is generic, but may include
system-specific business rules or algorithms, since it is the interface to the
users’ processes.

o A distributed decision-making structure is necessary, as it supports the
modularity, robustness, and the generic nature of the control architecture. For
example, if the routing decisions are executed by a central controller, this
controller would not be easily applicable to different system layouts.

o The pull-concept in the control architecture is beneficial to keep the workload
under control and reduce variability. Moreover, the pull-concept facilitates
more generality among different sectors. For example, we proposed a pull-
concept for the retrieval process of bags from the EBS rather than the current
practice push-concept. This resulted in a process than is analogous to the
retrieval process in the distribution sector.

o Local traffic controllers can accommodate algorithms that can be easily
integrated as add-ons to the architecture and do not affect the communication at
the higher levels of control.

149

o Going back to the modular structure of control, we believe that using all control
modules for an MHS may improve the overall system performance and the
performance of individual modules. For example, the ADLBA is an approach
that uses information about internal travel times in MHSs. For such an
approach, it is beneficial when the MHS’s control includes the planning,
scheduling, and local traffic control modules as developed in the other chapters.
In this case, the variability resulting from current practice local traffic control
rules and EBS control is reduced by implementing the generic control methods.
This makes internal travel times on sorters more reliable, and thus the
performance of the ADLBA may improve. In this case, the ADLBA may be
preferable in more settings than those recommended in Chapter 5.

7.5 Future research
In this thesis, we developed a generic control architecture for MHSs in different
industrial sectors. We based our analysis, system models, and implementations on
three different industrial sectors, i.e., parcel & postal sorting, baggage handling, and
distribution. In fact, the issues we dealt with in this thesis open directions for future
research. In this section, we highlight three possible research directions.

Material handling equipment

Throughout this thesis, we argued that we can model different equipment in abstract
terms depending on the role they play in the system, and therefore generic control
modules could be applied. For example, a build workstation can refer to a robot, a
manned-lateral, or a manned-pick station. However, these arguments were based on
the range of material handling equipment that we studied. In fact, it would be
interesting to analyze the applicability of the generic control architecture on material
handling equipment that were not within our scope of analysis.

In this context, an important area to investigate is autonomous vehicles, e.g., AGVs
(automated guided vehicles). These material handling elements may be employed to
perform tasks that some of the equipment we modeled perform. However, we cannot
assume that the control approaches we proposed apply easily to these new equipment
types. A key difference is that autonomous vehicles have more flexible movement
trajectories than the equipment we modeled. This may result also in an overlap
between the areas where each of these autonomous vehicles is active. We did not face
such overlaps in the systems we modeled, e.g., each crane was operational in a
dedicated aisle and a build workstation is functional at a designated area in the system.
However, autonomous vehicles may access the same areas of operation and in this
case there are additional issues to deal with. For example, the assignment of tasks to
these resources may be affected by their locations at certain points in time. At the local
traffic level, collisions between different autonomous vehicles and vehicles blocking
each other are main control issues for which generic local traffic rules or algorithms
should be developed and incorporated in the control architecture.

Generic control methods in different settings

In this thesis, we studied generic control of MHSs within a certain facility (Scope 1;
see Section 1.2.1). For future research, it may be interesting to study the applicability

150

of the control methods that we proposed within different scopes and in other settings.
For example, a question for future research is how to implement the generic control
architecture not only in a single facility, but in multiple facilities that are connected,
e.g., several terminals of a large airport. In this case, merely installing the control
software for each facility may not result in a satisfactory system performance. In
particular, the planning processes among different facilities may need coordination. A
possibility is to have multiple layers of the planning control units. For example, a
primary storage planner that supervises several subordinate storage planners might be
an option. In this case, the primary storage planner has a system view on all facilities
while each subordinate planner is responsible for the storage area of a single facility.

Another area of interest for future research may be to control the flow of people
(instead of TSUs) in networks during big events. For example, when a major event
takes place in some city and large crowds of people are expected to arrive from
different cities via, e.g., trains, then it would be interesting to implement control
methods for balancing flows over different railways (instead of conveyors) and to give
real-time estimations on expected travel times.

On the other hand, it is also interesting to study control approaches that are developed
for other settings and study whether it is possible to adapt them and incorporate them
in the generic control architecture for MHSs.

Design for controllability

The aim of this thesis was to study generic control methods without interfering with
the layout and process designs of MHSs. We dealt with MHSs as given in terms of
processes and layouts. Then, we developed and applied generic control modules and
adapted them, when necessary, to deal with system-specific characteristics.

The generic control architecture provides a sound basis for analyzing what system
designs fit more easily in a generic context, and thus result in easier applicability of the
generic control methods. Likewise, we may define what designs deviate from the
generic context and make it more difficult to apply generic control methods. In this
context, an interesting area for future research is to start with the deliverables of this
thesis, i.e., the generic control methods, and then study how to design MHSs in a way
that serves the generic control objectives. This is especially relevant when alternative
layout designs are available to achieve a certain functional purpose. At the local traffic
level, we gave an example in Chapter 6, where we showed how longer infeeds result in
better system performance when using the generic space allocation algorithm.

Foreseeing the consequences of design decisions is an important issue not only in the
context of MHSs, but in a more general context for systems in different areas, e.g.,
manufacturing or construction. The main reason is that the flexibility in decision-
making is higher in the early stages than in the later stages of systems development.
Therefore, certain design choices that may cause difficulties in later stages of systems’
development or systems’ functionality should be avoided. In fact, the attention paid to
foreseeing the future effects of early design choices is growing. For example, in the
manufacturing world, we encounter concepts such as design for manufacturability and
design for assembly. Similarly, it might be interesting to propose the concept of design
for controllability for future research.

151

References	

Abdelghany, A., Abdelghany, K., & Narasimhan, R. (2006). Scheduling baggage-handling
facilities in congested airports. Journal of Air Transport Management, 12 (2), 76 - 80.

Alsafi, Y. & Vyatkin V. (2010). Ontology-based reconfiguration agent for intelligent
mechatronic systems in flexible manufacturing. Robotics and Computer-Integrated
Manufacturing. 26(4): p.381-391.

Audsley, N. & Burns, A. (1990). Real-time system scheduling. Technical Report YCS 134,
Department of Computer Science, University of York

Amato, F., Basile, F., Carbone, C., & Chiacchio, P. (2005). An approach to control automated
warehouse systems. Control Engineering Practice. 13(10): p. 1223-1241.

Anthony, R.N. (1965). Planning and control systems: a framework for analysis. Harvard
Business School Division of Research. Boston

Babiceanu, R.F. & Chen, F.F. (2005). Performance evaluation of agent-based material
handling systems using simulation techniques. Proc. of the Winter Simulation Conference,
Orlando, FL, December 2005.

Babiceanu, R.F., Chen, F.F., & Sturges, R.H. (2004). Framework for the control of automated
material-handling systems using the holonic manufacturing approach. International Journal
of Production Research. 42(17): p. 3551-3564.

Boysen, N., & Fliedner, M. (2010). Cross dock scheduling: classification, literature review
and research agenda. Omega. 38: p. 413 - 422

Bozer, Y.A. & Hsieh, Y. (2005). Throughput performance analysis and machine layout for
discrete-space closed –loop conveyors. IIE Transactions. 37(1): p. 77-89.

Chen, X.W. & Nof, S.Y. (2007). Prognostics and diagnostics of conflicts and errors over e-
Work networks, in Proceedings of the 19th international conference on production research
(ICPR-19). Valparaiso, Chile, July 2007.

Claes, R., Holvoet, T., & Weyns, D. (2011). A decentralized approach for anticipatory vehicle
routing using delegate multi- agent systems. IEEE Transactions on Intelligent Transportation
Systems. 12(2): p. 364-373.

Cohen, Y. & Keren, B. (2009). Trailer to door assignment in a synchronous cross-dock
operation. International Journal of Logistics Systems and Management, 5(5): p. 574 - 590.

Dijkstra, E.W. (1959). A note on two problems in connexion with graphs. Numerische
Mathematik. 1(1): p. 269-271.

Dilts, D.M., Boyd, N.P. & Whorms, H.H. (1991). The evolution of control architectures for
automated manufacturing systems. Journal of Manufacturing Systems. 10(1): p. 79-93.

152

Faber, N., Koster, M.B.M. de & Velde, S.L. van de (2002). Linking warehouse complexity to
planning and control structure. International Journal of Physical Distribution and Logistics
Management. 32(5): p. 381-395.

Faber, N., Koster, M.B.M. de & Smidts, A. (2013). Organizing Warehouse Management,
International Journal of Operations & Production Management, 33(9): in press.

Frey, M., Artigues, C., Kolisch, R., & Lopez, P. (2010). Scheduling and planning the
outbound baggage process at international airports. In Proceedings of the IEEE International
Conference on Industrial Engineering and Engineering Management. Macao, China.

Furmans, K., Schönung, F., & Gue, K.R. (2010). Plug-and-Work material handling systems.
In Progress in Material Handling Research: Proceedings of 2010 International Material
Handling Research Colloquium, eds. K.P. Ellis, K. Gue, R. de Koster, R. Meller, B.
Montreuil, & M. Ogle, p. 132-142.

Giret, A. & Botti V. (2004). Holons and agents. Journal of Intelligent Manufacturing. 15(5):
p. 645-659.

Gue, K.R. (1999). The effects of trailer scheduling on the layout of freight terminals.
Transportation Science, 33(4): p. 419–428.

Gue, K.R., Furmans, K., Seibold, Z., & Uludağ, O. (2013). GridStore: A Puzzle-based storage
system with decentralized control, forthcoming in IEEE Transactions on Automation Science
and Engineering.

Gu, J., Goetschalckx, M., & McGinnis, L.F. (2010). Research on warehouse design and
performance evaluation: A comprehensive review. European Journal of Operational
Research. 203(3): p. 539-549.

Gue. K.R. & Kim, B.S. (2007). Puzzle-based storage systems, Naval Research Logistics.
54(5): p. 556-567.

Hadeli, Valckenaers, P., Kollingbaum, M., & Van Brussel, H. (2004). Multi-agent
coordination and control using stigmergy. Computers in Industry. 53(1): p. 75-96.

Hallenborg, K. (2007a). Domain of impact for agents collaborating in a baggage handling
system. Artificial Intelligence and Innovations 2007: from Theory to Applications. C. Boukis,
A. Pnevmatikakis & L. Polymenakos, Springer US. 247: p. 243-250.

Hallenborg, K. (2007b). Decentralized scheduling of baggage handling using multi-agent
technologies. In E. Levner (Ed.), Multiprocessor scheduling. Vienna, Austria: I-Tech
Education and Publishing.

Hallenborg, K. & Demazeau, Y. (2004). Dynamical Control in Large-Scale Material
Handling Systems through Agent Technology, IAT '06. IEEE/WIC/ACM International
Conference on Intelligent Agent Technology, p. 637-645.

Haneyah, S., Hurink, J., Schutten, M., Zijm, H., & Schuur, P. (2011). Planning and Control of
Automated Material Handling Systems: The Merge Module. In: B. Hu, K. Morasch, S. Pickl,
& M. Siegle, editors. Operations Research Proceedings 2010, Part 8, pages 281-286, Springer
Heidelberg Dordrecht London New York, 2011. ISBN 978-3-642-20008-3.

153

Haneyah, S.W.A., Schutten, J.M.J., Schuur, P.C., & Zijm, W.H.M. (2013a). Generic planning
and control of automated material handling systems. Computers in Industry, 64(3): p. 177-
190.

Haneyah, S.W.A., Schutten, J.M.J., Schuur, P.C., & Zijm, W.H.M. (2013b). A generic
material flow control model applied in two industrial sectors. Computers in Industry, 64(6): p.
663-677.

Haneyah, S.W.A., Schutten, J.M.J., Schuur, P.C., & Zijm, W.H.M. (2013c). Application of a
generic control architecture for automated material handling systems to a baggage handling
system. In: J.-L.Ferrier, O.Y. Gusikhin, K. Madani, & J. Sasiadek, (Eds). Proceedings of
ICINCO 2013 - 10th International Conference on Informatics in Control, Automation and
Robotics, Reykjavik, Iceland, 29-31 July, 2013, Volume 1, pages 121-130, SciTePress 2013
ISBN: 978-989-8565-70-9.

Haneyah, S.W.A., Schutten, J.M.J., & Fikse, K. (2013d). Throughput Maximization of Parcel
Sorter Systems by Scheduling Inbound Containers. To appear: in International Logistics
Science Conference 2013 proceedings, part of the series Lecture Notes in Logistics (LNL);
published by Springer

Haneyah, S.W.A., Schutten, J.M.J., & Fikse, K. (2013e). Improving the Performance of
Sorter Systems by Scheduling Inbound Containers. submitted for publication (working paper:
http://beta.ieis.tue.nl/node/2092)

Hax, A.C., & Meal, H.C. (1975). Hierarchical integration of production planning and
scheduling. Geisler M (ed) TIMS Studies in the management sciences: logistics. North
Holland-American Elsevier, Amsterdam: p. 53-69.

Hsieh, Y.J. & Bozer, Y. (2005). Analytical Modeling of Closed-Loop Conveyors with Load
Recirculation. Computational Science and Its Applications – ICCSA 2005. O. Gervasi, M.
Gavrilova, V. Kumaret al, Springer Berlin Heidelberg. 3483: p. 437-447.

Hunter, T. (1994). Simulation model evolution a strategic tool for model planning. Proc. of
the Winter Simulation Conference, Lake Buena Vista, FL, December 1994.

Jahangirian, M., Eldabi, T., Naseer, A., Stergioulas, L. K., & Young, T. (2010). Simulation in
manufacturing and business: A review. European Journal of Operational Research. 203(1): p.
1-13.

Jing, G.G., Kelton, W.D., Arantes, J.C., & Houshmand, A.A. (1998). Modeling a controlled
conveyor network with merging configuration. Proceedings of the 30th conference on Winter
simulation. Washington, D.C., USA, IEEE Computer Society Press: p. 1041-1048.

Jodin, D. & Wolfschluckner, A. (2010). Merge problems with high speed sorters, Progress in
Material Handling Research: 2010, Charlotte, NC, USA, p. 186−196.

Johnstone, M., Creighton, D., & Nahavandi, S. (2010). Status-based routing in baggage
handling systems: Searching verses learning. IEEE Transactions on Systems, Man and
Cybernetics Part C: Applications and Reviews, 2010. 40(2): p. 189-200.

Kamagaew, A., Stenzel, J., Nettsträter, A., & ten Hompel, M. (2011). Concept of Cellular
Transport Systems in Facility Logistics. Proceedings 5th International Conference on
Automation, Robotics and Applications (ICARA), Wellington, New Zealand, p. 40-45

154

Kim, B.I., Heragu, S., Graves, R.J., & Onge, A.St. (2003). A hybrid scheduling and control
system architecture for warehouse management. IEEE Transactions on Robotics and
Automation. 19(6): p. 991-1001.

Koster, R. de & Wijnen, R. (1998). How to obtain maximum capacity on high-capacity sorters
(Published on CD-ROM). In R.J. Graves et al. (Ed.), Progress in Material Handling
Research: 1998 (pp. 143-158). Charlotte: Material Handling Institute.
Landschützer, C., Wolfschluckner, A., & Jodin, D. (2013). CAE for a high performance in-
feed processes at sorting systems. Proceedings in Manufacturing Systems. 8(2): p. 79-86

Lau, H.Y.K. & Woo, S.O. (2008). An agent-based dynamic routing strategy for automated
material handling systems. International Journal of Computer Integrated Manufacturing.
21(3): p. 269-288.

Li, Z.P., Low, Y.H., Shakeri, M., & Lim, Y.G. (2009). Cross docking planning and
scheduling: Problems and algorithms. SIMTech technical reports, 10(3): p. 159-167.

Lu, C., Stankovic, J.A., Tao, G., & Son, S.H. (1999). Design and Evaluation of a Feedback
Control EDF Scheduling Algorithm. Proceedings of the 20th IEEE Real-Time Systems
Symposium, IEEE Computer Society: 20: p. 56-67.

Lu, C., Stankovic, J.A., Tao, G., & Son, S.H. (2002). Feedback Control Real-Time
Scheduling: Framework, Modeling, and Algorithms. Real-Time Systems 23(1/2): p. 85-126.

Mayer, H.S. (2009). Development of a completely decentralized control system for modular
continuous conveyors, Ph.D. dissertation, Universiẗat Karlsruhe (TH)

McAree, P., Bodin, L., & Ball, M. (2002). Models for the design and analysis of a large
package sort facility. Networks, 39 (2): p. 107-120.

McAree, P., Bodin, L., Ball, M., & Segars, J. (2006). Design of the federal express large
package sort facility. Annals of Operations Research. 144(1): p. 133-152.

McWilliams, D. L., Stanfield, P.M., & Geiger, C.D. (2005). The parcel hub scheduling
problem: A simulation-based solution approach. Computers & Industrial Engineering, 49 (3):
p. 393-412.

McWilliams, D.L. (2005). Simulation-based scheduling for parcel consolidation terminals: a
comparison of iterative improvement and simulated annealing. In M. E. Kuhl, N. M. Steiger,
F. B. Armstrong, & J. A. Joines (Eds.), Proceedings of the 2005 Winter Simulation
Conference. Orlando, FL, USA.

McWilliams, D.L. (2009a). Genetic-based scheduling to solve the parcel hub scheduling
problem. Computers & Industrial Engineering, 56(4): p. 1607-1616.

McWilliams, D.L. (2009b). A dynamic load-balancing scheme for the parcel hub scheduling
problem. Computers & Industrial Engineering, 57(3): p. 958-962.

McWilliams, D.L. (2010). Iterative improvement to solve the parcel hub scheduling problem.
Computers & Industrial Engineering, 59(1): p. 136-144.

Meinert, T.S., Don Taylor, G., & English, J.R. (1999). A modular simulation approach for
automated material handling systems. Simulation Practice and Theory. 7(1): p.15-30.

155

Mo, D.Y., Cheung, R.K., Lee, A.W., & Law, G.K. (2009). Flow diversion strategies for
routing in integrated automatic shipment handling systems. IEEE Transactions on Automation
Science and Engineering. 6(2): p. 377-384.

Nazzal, D. & El-Nasher, A. (2007). Survey of research in modeling conveyor-based
automated material handling systems in wafer fabs. Proceedings of the 2007 Winter
Simulation conference, p. 1781-1788.

Parunak, H.V.D., Generation and analysis of multiple futures with swarming agents (2010).
Proceedings of the 9th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS'10), Toronto, Canada, May 10-14, 2010. 1: p. 1549-1550

Rajan, V.N. & Nof, S.Y. (1996). Cooperation Requirements Planning (CRP) for
Multiprocessors: Optimal Assignment and Execution Planning. Journal of Intelligent and
Robotic Systems. 15: p. 419-435.

Ramamritham, K. & Stankovic, J.A. (1994). Scheduling algorithms and operating systems
support for real-time systems, Proceedings of the IEEE , 82(1): p.55-67

Robusté, F. & Daganzo, C.F. (1992). Analysis of baggage sorting schemes for containerized
aircraft. Transportation Research part A: Policy and Practice, 26 (1): p. 75-92.

Rouwenhorst, B., Reuter, B., Stockrahm, V., van Houtum, G. J., Mantel, R. J., & Zijm,
W.H.M. (2000). Warehouse design and control: Framework and literature review. European
Journal of Operational Research. 122(3): p. 515-533.

Schmidt, L.C. & Jackman, J. (2000). Modeling recirculating conveyors with blocking.
European Journal of Operational Research, 124(2): p. 422-436

Shladover, S.E. (1980). Operation of merge junctions in a dynamically entrained automated
guideway transit system. Transportation Research Part A: General, 14(2): p. 85-112.

Stankovic, J.A., Tian, H., Abdelzaher, T., Marley, M., Tao, G., Son, S., & Chenyang, L.
(2001). Feedback control scheduling in distributed real-time systems. Proceedings of the 22nd
IEEE Real-Time Systems Symposium, 2001. (RTSS 2001): p. 59-70.

Stankovic, J.A., Chenyang, L., Son, S., & Tao, G. (1999). The case for feedback control real-
time scheduling. Proceedings of the 11th Euromicro Conference on Real-Time Systems, 1999:
p.11-20.

Tařau, A., De Schutter, B., & Hellendoorn, H. (2009a). Centralized versus decentralized route
choice control in DCV-based baggage handling systems. Proceedings of the IEEE
International Conference on Networking, Sensing and Control, Okayama, Japan, March 26-
29, 2009

Tařau, A. N., De Schutter, B., & Hellendoorn, H. (2009b). Hierarchical route choice control
for baggage handling systems. Proceedings of the 12th International IEEE Conference on
Intelligent Transportation Systems, St. Louis, MO,USA, October 3-7, 2009

Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., & Peeters, P. (1998). Reference
architecture for holonic manufacturing systems: PROSA. Computers in Industry. 37(3): p.
255-274.

Van den Berg, J.P. (1999). A literature survey on planning and control of warehousing
systems. IIE Transactions. 31(8): p. 751-762.

156

Vrba, P. & Mařík, V. (2006). Simulation in agent-based control systems: MAST case study.
International Journal of Manufacturing Technology and Management. 8(1): p.175-187.

Werners, B. & Wülfing, T. (2010). Robust optimization of internal transports at a parcel
sorting center operated by Deutsche Post World Net. European Journal of Operational
Research, 201(2): p. 419-426.

Weyns, D., Holvoet, T., & Helleboogh, A. (2007). Anticipatory Vehicle Routing using
Delegate Multi-Agent Systems, Intelligent Transportation Systems Conference ITSC 2007.
IEEE , vol., no., p.87-93, Sept. 30-Oct. 3, 2007

Wurman, P.R., D'Andrea, R. & Mountz, M. (2008). Coordinating hundreds of cooperative,
autonomous vehicles in warehouses. AI Magazine, 29(1): p. 9-19.

Yu, W. & Egbelu, P.J. (2008). Scheduling of inbound and outbound trucks in cross docking
systems with temporary storage. European Journal of Operational Research, 184 (1): p. 377-
396.

Zijm, W.H.M. (2000). Towards intelligent manufacturing planning and control systems. OR
Spectrum, 2000. 22: p. 313-345.

Zimran, E. (1990). Generic material handling system. Proceedings of Rensselaer's Second
International Conference on Computer Integrated Manufacturing

157

List	of	abbreviations	

ADLBA

AGV

ARB

ASRS

BHS

DC

DCV

DHL

DLBA

EBS

FCFS

ILP

ipm

IR

KPI

MAS

MC

MHS

PBA

PHSP

SKU

TNT

TSU

ULD

UPS

WMS

Adapted Dynamic Load Balancing Algorithm.

Automated Guided Vehicle.

Arbitrary scheduling.

Automated Storage and Retrieval System.

Baggage Handling System.

Distribution Center.

Destination Coded Vehicle.

Dalsey, A., Hillblom, L., and Lynn, R.

Dynamic Load Balancing Algorithm.

Early Bags Storage.

First-Come-First-Served.

Integer Linear Program.

items per minute.

Irregularity Rate.

Key Performance Indicator.

Multi-Agent System.

Machine Cluster.

Material Handling System.

Priority-Based Algorithm.

Parcel Hub Scheduling Problem.

Stock Keeping Unit.

Thomas Nationwide Transport.

Transport Stock Unit.

Unit Load Device.

United Parcel Service.

Warehouse Management System.

158

 	

159

Terminology	

A
ADLBA, 92
AGV, 20
ARB, 86
ASRS, 7

B
basic switch, 64
BHS, 5
BHS‐even, 102
BHS‐uneven, 102
Broken tote, 10
build area, 31
build of flights, 31
Build planner, 31

C
chute, 4
container segment, 90
Crane controller, 34
Crossover, 101
cutoff time, 88

D
DC, 7
DCV, 17
Deadlock, 13
DHL, 4
Divert, 17
divert controller, 37
DLBA, 86

E
EBS, 6
Exception handling outfeed, 44

F
FCFS, 84
flow build point, 126
Fly through point, 118
flying through parcel, 118
functional capacity, 12

G
generic, 1
generic PBA, 133

H
heterogeneous distribution, 101
homogeneous distribution, 101

I
ILP, 90
infeed, 4
in‐system time, 6
ipm, 35
IR, 77

K
KPI, 10

L
lateral, 10
leading gap, 116
load area, 4
lock point, 134
loop controller, 39
loop sorter, 5

M
machine cluster controller, 38

160

main conveyor, 4
MAS, 16
MC, 69
Merge, 17
merge area, 115
merge conveyor, 116
Merge point, 118
merge space, 116
Merge space request point, 118
Merger, 66
MHS, 1

O
Order release, 33
outfeed, 4
overflow on outfeeds, 89

P
PBA, 130
PHSP, 21
pick station, 7
pipeline, 34
PP‐even, 102
PP‐uneven, 102
pull system, 40

R
reallocation, 133
recirculation, 13
Round‐Robin, 47

S
Saturation, 13
SKU, 32
sorter, 4
Starvation, 13
Stock reservation, 32
Storage planner, 31

T
the early reservations phenomenon, 132
tilt‐tray conveyor, 116
time bucket, 90
TNT, 4
tote, 4
trailing gap, 116
TSU, 29

U
ULD, 36
unit load, 9
unload area, 4
UPS, 4

W
water fall principle, 14
WMS, 18
workstation controller, 50

161

Acknowledgements	
Accomplishing this PhD project would not have been possible without the help and
support of a number of people. First of all, I want to thank my teachers and supervisors
during my master’s studies, who believed in me and encouraged me enthusiastically to
pursue my PhD studies, in particular I thank Erwin Hans, Marco Schutten, Matthieu
van der Heijden, Johann Hurink, and Leo van der Wegen. I am very grateful for your
encouragement and very pleased with my decision to pursue my PhD studies, without
which I would have often felt that something is incomplete. In this context, I express
my thanks and appreciation to Henk Zijm, who has put a lot of effort with the
university and with the industrial partner to set up this PhD project. This also leads me
to thank our industrial partner and all of the mentors and team members I had there.
You have put a lot of effort and provided all means to support the project from the
beginning to the end. Concealing the names and details (in an attempt to protect
confidentiality) does not underestimate your role.

Writing this thesis is a challenging process whose completion is not attributed only to
myself. I cannot imagine that I could have better supervisors than Henk Zijm, Marco
Schutten, and Peter Schuur. Henk, thanks for helping me formulate complex concepts
in few accurate sentences that can be understood. Marco, thanks for keeping an eye on
the discipline and accuracy of the text, and for highlighting those statements that could
have a double meaning. Peter, thanks for always digging up those subtle textual details
that could confuse the reader. Moreover, I want to thank Niels Fikse, whose master’s
thesis was part of my PhD project, without your work, Chapter 5 might not have been
there.

If life has been only work, then I would not have been able to complete this project. I
have been very fortunate to work in a pleasant environment with great colleagues. I
will certainly miss your company and the nice discussions during our coffee breaks.
Moreover, I thank my friends, for making my life very enjoyable and for the support
you provided in all life matters. Most of you have already left Enschede, some of you
are still here, but I prefer not to mention names in order not to miss any one. Finally, I
would like to thank my precious family, thank you for your unlimited support, for
always putting my interests and development as your top priority, and for tolerating
my distance. In particular, I thank my parents, Waleed and Rasha, and my siblings,
Deema, Ola, and Ehab. Last but not least, I thank my adorable wife Nadine, you have
joined me in this journey and have always been there to support me and to make my
life beautiful.

Sameh	

Enschede,	the	12th	of	August,	2013	

162

	 	

163

About	the	author	
Sameh Haneyah was born in Ramallah, Palestine, on the 1st of November, 1983. In
2001, he completed his pre-university education at the Evangelical Lutheran School of
Hope in Ramallah. Afterwards, he studied Industrial Engineering at the Eastern
Mediterranean University in North Cyprus, where he earned his bachelor of science
degree in 2006. After a short working period in industry, Sameh moved, in 2007, to
the Netherlands to pursue his master’s studies in Industrial Engineering and
Management at the University of Twente, with Logistics and Production Management
as a specialization. For his master’s thesis, Sameh collaborated with a major industrial
partner to develop a real-time scheduling tool for parcel sorting systems. The results of
his master’s thesis led to the initiation of a PhD project on generic planning and
control of material handling systems. Sameh worked on his PhD project at the
University of Twente in collaboration with the same industrial partner. This thesis
presents the results of the project.

List	of	publications	
Haneyah, S., Hurink, J., Schutten, M., Zijm, H., & Schuur, P. (2011). Planning and Control of
Automated Material Handling Systems: The Merge Module. In: B. Hu, K. Morasch, S. Pickl,
& M. Siegle, editors. Operations Research Proceedings 2010, Part 8, pages 281-286, Springer
Heidelberg Dordrecht London New York, 2011. ISBN 978-3-642-20008-3.

Haneyah, S.W.A., Schutten, J.M.J., Schuur, P.C., & Zijm, W.H.M. (2013a). Generic planning
and control of automated material handling systems. Computers in Industry, 64(3): p. 177-
190.

Haneyah, S.W.A., Schutten, J.M.J., Schuur, P.C., & Zijm, W.H.M. (2013b). A generic
material flow control model applied in two industrial sectors. Computers in Industry, 64(6): p.
663-677.

Haneyah, S.W.A., Schutten, J.M.J., Schuur, P.C., & Zijm, W.H.M. (2013c). Application of a
generic control architecture for automated material handling systems to a baggage handling
system. In: J.-L.Ferrier, O.Y. Gusikhin, K. Madani, & J. Sasiadek, (Eds). Proceedings of
ICINCO 2013 - 10th International Conference on Informatics in Control, Automation and
Robotics, Reykjavik, Iceland, 29-31 July, 2013, Volume 1, pages 121-130, SciTePress 2013
ISBN: 978-989-8565-70-9.

Haneyah, S.W.A., Schutten, J.M.J., & Fikse, K. (2013d). Throughput Maximization of Parcel
Sorter Systems by Scheduling Inbound Containers. To appear: in International Logistics
Science Conference 2013 proceedings, part of the series Lecture Notes in Logistics (LNL);
published by Springer

Haneyah, S.W.A., Schutten, J.M.J., & Fikse, K. (2013e). Improving the Performance of
Sorter Systems by Scheduling Inbound Containers. submitted for publication (working paper:
http://beta.ieis.tue.nl/node/2092)

164

