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Material handling systems (MHSs) are in general complex 
installations that raise challenging design and control problems. In 
the literature, design and control problems have received a lot of 
attention within distinct business sectors or systems, but primarily 
from a system’s user perspective. Much less attention is paid to 
generic (i.e., sector independent) control architectures and modeling 
approaches across these various sectors, which is in the first place 
interesting for MHS suppliers. In this thesis, the focus is on the 
perspective of an MHS supplier, who produces a broad range of 
MHSs for distinct sectors, for which achieving design and control 
synergy is vital to facilitate, among other issues, design and 
maintenance. Customized planning and control approaches for MHSs 
have significant drawbacks for both MHS users and MHS suppliers. 
Therefore, the aim of this thesis is to design, in collaboration with a 
major industrial partner, a generic and modular planning and control 
architecture for MHSs, while not compromising the performance of 
customized control approaches. To this end, the thesis provides 
generic modeling techniques, a better understanding of the 
similarities and differences between distinct business sectors where 
MHSs are used, and draws the boundaries of generic control. 
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Chapter	1 	

Introduction1	

The material handling world is broad and diverse. We can observe material handling in 
many facets of modern economies: mail delivered in a postal system, bags moved in 
an airport, parts moved in a manufacturing system, pallet loads moved in a warehouse, 
containers handled by cranes at a sea port, trash collected in a waste management 
system, and goods moved by train. This thesis focuses on industrial sectors where 
systems operate within a certain facility, with material handling being the key 
function. Therefore, we exclude manufacturing facilities where material handling is 
not the key function but rather a support function. 

Material handling systems (MHSs) 2 are in general complex installations that comprise 
various processes, such as inbound, storage, batching, sorting, picking, and outbound 
processes. Both the design and the control of these systems have received a lot of 
attention in research in various industrial sectors. However, there are, to the best of our 
knowledge, no reports on generic (i.e., sector independent) planning and control 
architectures and modeling approaches. In the literature, the perspective of the 
system’s user is dominant; we often encounter studies dealing with systems in a 
particular airport or a distribution center of certain characteristics. Less attention is 
paid to a generic, broader perspective, which is interesting for the MHSs’ supplier. In 
this thesis, we take the perspective of the MHSs’ supplier, who produces a broad range 
of MHSs for which achieving as much synergy as possible is vital to facilitate design. 
We attempt to bridge the gap between practical requirements for generic control 
approaches and existing theory. To this end, we address questions that are not typically 
posted by MHSs’ users, and are in fact interesting in the first place for the producer, 
apart from their scientific merits. In this context, we stress that this research is heavily 
motivated by the collaboration with a major global company supplying MHSs in all 
industrial sectors discussed in this thesis.  

This chapter proceeds as follows: Section 1.1 discusses the research motivation in 
concrete terms. Afterwards, Section 1.2 outlines the scope of our analysis and presents 
the industrial sectors that we study throughout this thesis. Next, Section 1.3 formulates 
the generic MHS control problem, by contrasting MHSs in the different industrial 

                                              
1 This chapter is based on Haneyah et al. (2013a). 
2 The terminology and list of abbreviations are provided at the end of this book. 
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sectors and then analyzing their practical requirements in view of the generic control 
problem. As Section 1.3 formulates the problem and lists the requirements, Section 1.4 
addresses theory by conducting a literature review in a search for answers from 
existing theory to the requirements from practice. Section 1.5 weighs the practical 
requirements against the theoretical knowledge and sets the research agenda. Finally, 
Section 1.6 presents the structure of the remainder of this thesis. 

1.1 Research motivation 
Currently, planning and control of MHSs are highly customized and project specific, 
which has important drawbacks for at least two practical reasons. From a system user 
point of view, the environment and user requirements of systems may vary over time, 
yielding the need for adaptation of the planning and control procedures. An adaptation 
may include implementing new control strategies or adjusting existing ones. From a 
systems’ supplier point of view, an overall planning and control architecture that 
exploits synergy between the different industrial sectors (and at the same time is 
flexible with respect to changing business parameters and objectives) may reduce 
design time and costs considerably. Moreover, from a scientific point of view, finding 
a common ground to model MHSs in totally different industrial sectors and developing 
a generic control architecture that can be applied to MHSs in these different sectors 
presents a true challenge.  

This thesis focuses on generic planning and control of automated MHSs, where we pay 
attention to a set of MHSs in three different industrial sectors: 

o Baggage handling at airports, which we simply refer to as baggage handling.  
o Distribution in warehouses, which we refer to simply as distribution. 
o Parcel & postal sorting.  

Planning and control of MHSs need to be robust and yield close-to-optimal systems’ 
performance. Typical performance indicators concern throughput, lead time, and 
reliability. The aim of this research is to design a planning and control architecture that 
clearly describes the hierarchical framework of decisions to be taken at various levels, 
as well as the required information for decisions at each level (e.g., from overall 
workload planning to local traffic control). The planning and control architecture 
should be at low costs, flexible, easy to maintain, easy to implement, allowing for easy 
adaptation to configuration changes, changes in performance criteria, different 
operational modes, and adjustment of the control strategies.  

In this context, we emphasize that our focus is on control architectures and not on 
software architectures. Although the advantages and disadvantages of centralization 
versus decentralization in both domains are very much alike, we have to make a 
distinction because, e.g., a decentralized control architecture can be implemented by a 
single-tier software architecture and vice versa.  

1.2 Scope of analysis and industrial sectors 
In this section, we outline the scope boundaries (Section 1.2.1), and then describe the 
industrial sectors under study in more detail (Section 1.2.2).  
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1.2.1 Project scope 

Figure 1.1 shows three possible scopes of analysis, along with the party mainly 
responsible for decision-making within each scope, i.e.,  the MHS’s user or the MHS’s 
supplier. Scope boundaries are as follows: 

o Scope 3 is the widest, taking the whole logistic network into account. In this 
scope, decisions have a global impact and involve many stakeholders. An 
example of a problem within this scope is the facility location problem of 
depots within a logistic network, in order to optimize transportation costs. 
Another problem to deal with is how to plan the flow between network nodes in 
order to minimize costs while satisfying supply and demand constraints. 

o Scope 2 focuses on a single site in the network. It includes inbound and 
outbound operations at the site of the MHS’s user. Scheduling these operations 
is done by the MHS’s user. However, the MHSs’ suppliers may consider the 
extension of their services to offer scheduling tools to the MHS’s user that can 
result in better system performance. An example is scheduling inbound 
containers that are waiting at a parcel sorting hub in order to make the operation 
of the MHS more efficient. 

o Scope 1 focuses on the control of the MHS. The supplier is entirely responsible 
for decisions within this scope, as the (built-in) control architecture of the MHS 
is the relevant element here, i.e., the software running the automated MHS. 
Decisions within this scope have a local impact. 

In this thesis we exclude Scope 3, because the focus then shifts towards network 
optimization. A shift towards network optimization will limit the attention paid to the 
internal system within a single facility in the network, i.e., the MHS, which is our main 
area of interest. The focus is on the control of large MHSs, which is mostly the 
analysis within Scope 1. However, we may have to deal with problems at Scope 2, 
which are closely related to the operation of the MHS, e.g., container scheduling to 
alleviate peak loads in MHSs. Solving this problem needs real-time information from 
the MHS, e.g. on the nature of the load in transport within the MHS. Chapter 2 
provides more details on the problems we work on in this thesis. 

 
Figure 1.1. Scope boundaries. 
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In this thesis, we select MHSs from three industrial sectors to be the starting point of 
our analysis. The selected MHSs, which will be described in subsequent chapters, 
include the main (automated) operations of the logistic processes within the industrial 
sectors studied. We are actually interested in the intersection among industrial sectors 
where opportunities of generic control might be lost, and are less interested in the 
obvious differences. In other words, we focus on systems in different industrial sectors 
that are similar in terms of the equipment, but are using different control methods and 
work in different environments. Therefore, the analysis and findings are likely to be 
dependent on the initial selection of reference MHSs. However, we will analyze 
variants and extensions of the modeled MHSs, and try to propose flexible generic 
control methods that can apply to other MHSs than the ones this thesis concentrates 
on. 

1.2.2 Industrial sectors 

This section addresses three different industrial sectors using MHSs. The aim is to gain 
insight into the requirements and functionalities of MHSs in these sectors. Our scope 
of analysis is restricted to the built-in control of the MHS that is within the 
responsibility of the MHS supplier, not the MHS user. 

1.2.2.1 Parcel & postal sorting 

In parcel & postal sorting, systems are typically used by express parcel carriers, such 
as DHL3, UPS4, and TNT5, to receive items coming to a hub from various sources, and 
then sort them according to destination, in preparation for further transport. In this 
business, as the quantities to be handled grow, manual operations fall short. Thus, the 
need for automated sorting systems, or simply sorters, is evident. Such systems can be 
seen in various forms and capabilities to meet the specific demands of system users. 
The term parcel is used throughout this thesis as the main item handled within these 
systems. However, other items, such as totes, can be handled by the same sorters as we 
clarify later on. Figure 1.2 shows the generic scheme of a simple sorter. 

The process starts at the unload area, where containers carrying parcels arrive at the 
system via airplanes or trucks. Operators unload the containers and place the parcels 
on the infeed conveyors (or simply infeeds). These infeeds transport the parcels to the 
main conveyor represented by the big loop in Figure 1.2. The merge operation takes 
place when the parcels transported on the infeeds reach the main conveyor. Once they 
are on the main conveyor, the parcels are transported until they reach the load area. In 
this area, parcels are automatically directed to their destinations, based on parcel 
identification labels. Parcels are released into special outfeed conveyors called sorting 
chutes (see Figure 1.2). At the end of these chutes, operators gather the parcels in 
containers. In the layout given in Figure 1.2, some parcels may flow back into the 

                                              
3 Acronym that stands for Dalsey, Hillblom and Lynn (surnames of the founders of this 
Company). 
4 Acronym that stands for United Parcel Service. 
5 Acronym that stands for Thomas Nationwide Transport. 
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unload area, which means that they have passed the load area without being sorted. 
This may happen when the chutes are full or when there is some disruption in the 
system. Such a system is therefore referred to as a closed-loop sorting system, or loop 
sorter. Note that the system depicted in Figure 1.2 is a relatively simple one; larger 
and more complex systems can entail several load and unload areas, multiple loops, 
more complex layouts, etc. Such complex systems may provide alternative routes to 
reach a certain destination (chute).  

 
Figure 1.2. Generic scheme of a closed-loop parcels sorting system. 

A parcel sorting hub operates at full power in specific time intervals, mostly during 
night-time. Normally, tons of parcels (and envelopes) are delivered, sorted, and 
transported within a few hours. In these rush-hour conditions, the main objective is to 
maximize throughput of the systems, in order to minimize the time period between the 
arrival and departure times of planes or trucks. This may result in some other 
functional requirements that may bring more efficiency to the process, e.g., balancing 
material flows within the system. 

1.2.2.2 Baggage handling 

We focus on baggage handling systems (BHSs) in airports. Baggage handling is a 
sector that differs from the other industrial sectors in the involvement of multiple 
stakeholders. These stakeholders include: the airport (main customer), airlines and 
handlers (parties using the BHS), security, and customs. The latter two are external 
parties that impose restrictions on the operation of the BHS. In other sectors, e.g., 
distribution, the warehouse operator is the main stakeholder. There, the MHS’s 
supplier can build and deliver a system completely according to the stakeholder’s 
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requests. However, in baggage handling the different stakeholders all influence the 
system design; this makes it challenging to satisfy the interests of all stakeholders. 

In a BHS, the bag as the main item treated belongs to one of three possible categories 
(see Figure 1.3). On a generic level, first a bag may belong to a passenger who arrives 
at the airport and has a departing flight to catch. Second, it may belong to a transit 
passenger who lands on the airport and has a connecting flight to catch. Finally, a bag 
may belong to a passenger for whom the airport is his or her final destination. In a 
BHS, there is an Early Bags Storage (EBS), where bags that arrive early to the system 
are temporarily stored. 

 
Figure 1.3. Generic scheme of a baggage handling system. 

The purpose of a BHS is to deliver each bag from some source point A to some 
destination point B, within a specific time limit. However, the airport environment of a 
BHS is highly dynamic and stochastic, which complicates the delivery job, and 
generates additional challenges. Moreover, every stakeholder has its own desires, 
which affect its criteria for assessing the BHS. A main performance measure for BHS 
is the irregularity rate. The irregularity rate is the number of bags (per 1000) that are 
supposed to be on a certain plane but are not (luggage that missed the correct plane, 
and lost luggage). From a practical point of view, minimizing the irregularity rate is 
most challenging when dealing with connecting flights. This is because several things 
may go wrong when trying to correctly deliver an arriving bag to the next connecting 
plane within a given (often short) time window. Problems may arise from: wrong or 
corrupted bag tags, planes arriving late, disruptions in the BHS causing bags to miss 
their connecting flight, etc. As a result, the main objective for a BHS is to minimize 
the irregularity rate. An important system design parameter is the in-system time. This 
is the time a bag needs to travel along the longest path between the input and output 
points that are farthest apart in the BHS. This measure does not account for manual 
operations such as manual coding of bags when bag tags are found corrupted. 

Within the BHS, an important attribute of each bag is the urgency measure in terms of 
the time left for the departure of its corresponding flight. Urgent bags have the highest 
priority to move to the intended destination as the time window available for them is 
the smallest. As time goes by, non-urgent bags become urgent. Business class bags 
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have a priority when loading and unloading the plane, but they do not affect the 
urgency classification. 

A BHS is a complex system consisting of several routes of transportation by different 
possible means such as conveyors and Destination Coded Vehicles (DCVs). The 
system includes different resources, e.g., screening machines, and redundant transport 
systems to ensure high availability. Therefore, there are different possible routings to 
realize the transport operation. The logistic control of this system must use the 
resources in a way that optimizes the bag’s flow time in the system (Section 1.3.2 
discusses other relevant requirements). To sum up, the general high level objective for 
the control architecture of BHSs is to minimize the irregularity rate. This is done by 
completing the overall transportation operation within the time limits, which requires a 
smooth process that is able to avoid disruptions or congestion that may result in bags 
missing their corresponding flights. 

1.2.2.3 Distribution 

The distribution sector concerns the MHSs used in warehouses and distribution centers 
to handle various types of products for various customers. In distribution, projects vary 
considerably in terms of user requirements and the variety of system designs and 
operational approaches that can be implemented. However, for all systems the generic 
set of ordered activities in a distribution center (DC) are as follows: Receiving, 
Storage, Order Picking, Consolidation, and Shipping. Moreover, Cross Docking is an 
operation in which the DC acts merely as a material handler without intermediate 
storage. Figure 1.4 shows a schematic view of a warehouse with a goods receiving 
area, a storage area, an order picking area (with three pick stations), and a 
consolidation area. For storage areas, automated storage and retrieval systems 
(ASRSs) are often used. An ASRS consists of a number of parallel racks and a number 
of cranes operating in the aisles between these racks. We will study these systems in 
more detail in subsequent chapters (see Section 3.1.1 for a more detailed illustration). 
In order to study MHSs with common equipment among the three industrial sectors, 
the distribution systems we study use mainly ASRSs and loop conveyors with pick 
stations. 

In this sector, the general purpose is to satisfy the orders in time and with good quality, 
given time, cost, and other operational constraints. In order to satisfy orders properly 
within a certain time frame, a high throughput of the MHSs is a main objective. At 
each process stage in these systems, there normally is a set of parallel stations 
performing the same tasks, for example, parallel order pick stations, parallel cranes, 
etc. Therefore, it is crucial to balance the workloads within the system. There should 
be a generic control approach that entails generic algorithms, allowing for applications 
in different types of systems. However, the current control of MHSs in distribution 
centers is highly customized and often includes quite a number of relatively 
complicated rules to realize as much throughput as possible at the MHS.  

As a general remark, according to observations from practice, there is an increasing 
interest from system architects, towards control solutions that are more robust and 
generic, at the expense of sacrificing the maximum attainable throughput from MHSs. 
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This is due to certain design and operational requirements that we explain in Section 
1.3.2. 

 

Figure 1.4. Generic scheme of a distribution center/warehouse. 

1.3 Problem formulation 
In this section, we contrast MHSs in the different industrial sectors (Section 1.3.1) and 
then we define the common requirements for a generic control architecture (Section 
1.3.2). 

1.3.1 Contrasting MHSs in the different industrial sectors 

Different industrial sectors imply different MHS’s user environments and 
requirements. However, we take the challenge to deal with the differences in order to 
model the MHSs in different sectors in a generic way that maximally exploits 
synergies. A first impression from the general study of these different sectors tends to 
suggest a certain level of synergy among them. MHSs in baggage handling and parcel 
& postal sorting seem to have more similarity with each other than with MHSs in 
distribution. In the following, we list the main similarities of these two sectors, and at 
some points we indicate how the distribution sector differs: 

o Routing parcels or bags within the system can be complex and with more than 
one route to go from one point to another. 

o Compared to MHSs that we study in distribution, the time pressure is higher in 
BHSs and parcel & postal sorting systems, as is reflected in the necessity to 
deliver the items to their intended destinations in time to meet strict deadlines.  

o Unpredictable arrivals: in baggage handling, there is no information ahead on 
the type, number or weight of bags from check-in passengers. For parcel & 
postal sorting and transit bags, information is in the network but not used to 
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plan the operations. In distribution, there are planned goods to receive with 
known quantities and arrival times, so the distribution center can plan 
operations ahead.    

o Item integrity: the bag or parcel enters and leaves a BHS or a parcel & postal 
sorting system in the same form and with the same characteristics or attributes. 
On the other hand, in distribution, pallets are broken into product totes, and 
these product totes are handled within the material handling system. The unit 
transported by the MHS may be the same, i.e., totes, but the characteristics of 
the tote change. A product tote changes, e.g., when some items are picked from 
it, and becomes part of a reverse flow that goes back from pick stations to the 
storage area.  

o Items uniqueness: a parcel or a bag is a unique item in a BHS or a parcel & 
postal sorting system and is required for a certain plane or truck. However, in 
distribution there are multiple alternatives for a certain item. If an order requires 
one unit from item x, there may be several totes containing item x. There is a 
choice from which tote to pick. 

o Unit handled: in baggage handling and parcel & postal sorting, the bag or parcel 
is normally picked, stored, and transported throughout the MHS. In this sense, 
bags or parcels are single unit loads. However, in distribution, there may be a 
different definition of the unit load, which implies a number of items to be 
handled together and usually supported by a handling device such as a pallet, 
case or tote. 

o Heterogeneous items: bags and parcels may be of different shapes, weights, 
dimensions, which affects the conveyability on an MHS. However, in a 
distribution center there are normally standardized unit loads. 

In the distribution sector, the synergy on a higher level may be less apparent, 
especially due to the high variety in implemented systems. However, based on the 
study of some distribution centers in practice, we observe synergy on a subsystem 
level in terms of physical components. Direct examples are:  

o The storage in the ASRS system is analogous to the Early Bags Storage in 
baggage handling (note that such systems are not used in parcel & postal 
sorting due to the absence of a storage function). The physical system is similar 
in these two sectors, but there are storage rules in distribution centers that 
determine where an item is stored, based on criteria such as item availability in 
aisles. On the other hand, for baggage handling during peak times, the main 
concern is to store all bags that need storage as fast as possible without 
considering storage rules and anticipating the balance of picking from different 
storage aisles, where a storage aisle is defined between two storage racks. 
These functional issues raise challenges for developing a generic storage and 
retrieval strategy that can be used by both sectors. Finally, the unit of storage in 
baggage handling is a bag, whereas in distribution there are storage concepts for 
totes, pallets, cartons, etc. and the picking operation differs accordingly. 

o Sorting systems: the backbone of the MHSs in parcel & postal sorting is the 
sorting system, consisting of sorters, which are generally characterized by a few 
inputs, many outputs, and high speed.  However, similar systems may be a sub-
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system in the other two sectors. We will call similar systems also sorters for 
modeling purposes. In distribution, products arriving to be stored are normally 
merged on a conveyor loop that leads totes to storage aisles. In this context, 
guiding a tote to its destined storage aisle is a sorting operation that is similar to 
guiding the parcel to its destined sorting chute. Broken totes, which are totes 
that are picked from but still contain items, return from order pick stations and 
subsequently merge on the conveyor loop that leads totes back to storage, 
which is again similar to the merge operation in parcel & postal sorting. In the 
other direction, totes leave the storage aisles to go to the pick stations; this 
transport operation sorts totes to destined pick stations as well. In baggage 
handling, sorters are also used for sorting bags to, e.g., parallel screening 
machines or laterals6. 

We believe it makes sense to provide a generic material flow model to explain the 
processes in the different sectors. The model entails generic process stages, which 
should cover all possible operations of MHSs in practice. Therefore, we propose the 
material flow terminology of the most complex sector in terms of operations or 
process stages, which is distribution. MHSs in distribution entail some complex and 
more detailed operations than the other two sectors, e.g., the order picking operation 
that changes the characteristics of handled items. Our claim is that any operation in the 
other two sectors can be mapped to one of the operations in the distribution sector. 
Transportation channels may be more complex in BHSs, but this is a matter of 
transportation complexity, not operational variety. Figure 1.5 presents a generic 
material flow model, together with a tabulated description of process stages, based on 
the analysis of selected reference sites from the different industrial sectors in practice. 
The model divides the physical flow into six process stages. In each stage, there is a 
set of resources modeled in abstract terms as workstations. This model lists resources 
and indicates transportation possibilities, but no explicit transportation routes.  

1.3.2 Common requirements of MHSs/control architecture 

The objective of this thesis is to develop a generic control architecture that can be 
applied to various types of MHSs. The challenge for a generic control architecture lies 
in its ability to satisfy the objectives of different sectors. Therefore, we first look at the 
objectives of MHSs in different sectors to decide whether a generic control 
architecture can be achieved.  

We define a set of generic requirements for an appropriate control architecture, in 
which we discern functional and design requirements. Functional requirements are the 
key performance indicators (KPIs) for MHSs. Design requirements are the basic 
characteristics of a control architecture from development, implementation, and 
maintenance perspectives. In this section, we first discuss functional requirements, 
followed by design requirements. At a system level, there are two important functional 
objectives that serve as KPIs for MHSs in all sectors: 

                                              
6 A type of outfeed conveyors used in baggage handling to gather bags in preparation for 
loading on planes. 
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Figure 1.5. Generic material flow model with the description of process stages per sector. 
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o Throughput: this is a measure concerned with the capacity of systems. 
Throughput has to conform to the functional capacity requirements that specify 
the number of items the MHS is able to handle per unit of time while operating, 
according to design specifications. This presents a constraint to be met by the 
MHS. Moreover, throughput may be directly related to the overall operation 
time. For example, a transfer operation in an express parcel sorting system 
refers to the operation of unloading all arriving containers, sorting all parcels, 
and finally loading all sorted parcels. When this operation is performed in less 
time, the throughput is higher since throughput is measured in terms of parcels 
sorted per hour.  

o Response time: this is a measure of the promptness in coping with dynamic 
operational requirements such as the completion of an urgent order in a 
distribution center, or the handling of a batch of urgent bags arriving at an 
airport. 

The time dimension may suggest an overlap in the definition of these two main KPIs. 
However, a crucial difference is that throughput is measured at some point and as an 
average value, e.g., number of parcels passing the output chute per hour. On the other 
hand, response time covers the variation in the operational requirements by providing 
a time frame within which to respond, measured at a system level. 

In addition to response time and throughput, we mention a KPI that has to do with 
operators working at the MHS. This KPI is labor efficiency, from the following 
perspective: wherever an interaction between the MHS and operators occurs, the MHS 
should function in a way that ensures efficient task allocation to operators even if 
inefficient allocation does not hamper throughput or response time. An example is 
when several operators load parcels onto parallel infeed conveyors in a sorting system 
(see Section 2.1). In this case, the speeds of the infeeds should be synchronized in a 
way that results in an even demand for parcels to be loaded by operators. In other 
words, having an infeed moving at a slow pace (e.g., due to a blocked output point), 
and another infeed moving at a fast pace, would require the operator on the fast infeed 
to load parcels at a higher rate than his peer on the slow infeed. This results in unfair 
workload distribution among operators. We summarize the aforementioned 
requirements in the following model: 

 Minimize Response time  
 Subject to 

Throughput>= prescribed target (functional capacity) 
Labor Efficiency>= prescribed target 

The decision variables in the model above are basically the control rules implemented 
in the architecture. Examples of such rules are how to determine in which aisle to store 
a certain item, on which workstation to activate a certain order, when to release bags 
from storage to destination, and which route to take to the destination.   

As a matter of fact, our collaboration with experts from industry resulted in a long list 
of functional requirements for MHSs. However, we claim that the model above 
presents a compact set of functional requirements, in which all other functional 
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requirements are implicitly involved. In the following, we present a list of the other 
functional requirements for the MHS, which are implicit in the model above: 

o Starvation avoidance: starvation to material in an active resource/workstation is 
caused by delays in delivery from other resources or improper workload 
balancing. This phenomenon is implicitly handled as a means to reduce 
response time, or to aim at a higher throughput. 

o Blocking avoidance: blocking occurs when an item is unable to get service from 
a workstation/resource, because it is still occupied or its buffer is full. Blocking 
is an obstacle to throughput, and may cause response times to be unnecessarily 
long. Therefore, blocking avoidance plays a role in the model. 

o Deadlock avoidance: A deadlock is a condition in which items do not move on 
a certain transportation resource or are blocked at a certain workstation as a 
result of overloading the system resources. 

o Saturation management: it is known in practice, especially in BHSs, that the 
capacity of the system decreases dramatically if the load on the system exceeds 
a certain threshold value. This state is called saturation. Undesired resource 
allocation may lead to saturation, which in turn leads to longer response times, 
and eventually may lead to a deadlock situation. 

o Prevention of imbalanced queues and recirculation as they cause a decline in 
throughput. 

o Management of buffers: in all systems there can be buffers. It is critical to deal 
with buffers properly; where, when, and how much to buffer in order to 
minimize response time and to satisfy throughput requirements. 

o Dealing with urgent items (e.g., critical bags). This is directly related to 
optimizing response times. 

o Dealing with disruptions: the control architecture should be able to respond to 
disruptions. E.g., it should divert bags in a BHS to a less occupied cluster of 
screening machines when another cluster suffers from an accumulation of 
workload. Moreover, the control architecture should respond to failures of 
physical equipment by proceeding the operation on the active equipment. E.g., 
when a crane fails in a distribution system then the retrieval tasks of the crane 
should be reassigned to the (active) cranes. These issues are related to the 
overall objective of response time minimization. 

o Operational flexibility: this perspective of flexibility refers to the ability to cope 
with a changing operational environment. This requirement may be involved in 
response time minimization and throughput maximization simultaneously. For 
example, bags coming towards the Early Bags Storage have to be distributed 
evenly among parallel storage aisles. In this way, we gain higher throughput in 
the storage operation, and later in the retrieval operation as cranes can retrieve 
bags from all aisles simultaneously (assuming there is at least one crane at each 
aisle). Moreover, the time needed to retrieve all bags for a certain flight is 
minimized when bags of this flight are distributed among different aisles, 
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allowing several cranes to work on retrievals for the same flight. When the load 
in the system is high, incoming bags can be allocated to the first available aisle, 
i.e., the water fall principle. This strategy would result in even quantities across 
all aisles when the load is high enough to fill all aisles. However, when the load 
in the system is low, the water fall principle results in the first aisle to have a 
high load, whereas the load in aisles decreases as we go downstream. This 
happens when the load in the system is not high enough to fill all aisles evenly 
using the water fall principle. Therefore, we have to implement a smarter 
balancing strategy that reacts to changes in the operational environment (in this 
case low load in transport). In this context, operational flexibility is a functional 
requirement to be handled. 

So far we discussed the functional requirements. At this point, we present the design 
requirements for a generic control architecture. Obviously, the main objective we seek 
is the design of a generic control architecture that may apply to MHSs in different 
industrial sectors. Moreover, we find that, in practice, other design requirements are 
necessary for a generic control architecture. In the following, we list these design 
requirements and make use of some descriptions presented by Zimran (1990) to define 
them formally: 

o Flexibility: the flexibility of a control architecture from the design perspective 
is the ability to introduce changes in the system layout with minor 
modifications in the control architecture. 

o Modularity: a modular design allows to build the architecture gradually through 
the use of a decomposed structure, and to have the architecture capable of 
introducing or removing some applications based on case-specific details. 

o Scalability: a scalable design allows the control architecture to control a wide 
range of system sizes. 

o Robustness: a robust design entails: first, graceful degradation, which is a term 
used often in practice and refers to the ability of the control architecture to keep 
functioning, and keep the MHS up and running when some units of the physical 
system fail. Second, it entails the ability to take action when disruptions occur. 

Section 1.4 presents the results of a systematic literature review carried out to look for 
useful studies, which may help in synthesizing a control architecture that is in line with 
the requirements presented in this section. 

1.4 Literature 
In this section, we first present the basic forms of control in order to define the scope 
of the literature study and to position the studies in the literature review in a certain 
theoretical framework. In Section 1.4.1, we define this theoretical framework. 
Thereafter, in Section 1.4.2, we discuss the main literature contributions and position 
these studies using the reference framework of Section 1.4.1.  
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1.4.1 The basic forms of control 

We focus on high levels of control that deal with decision-making functions and not on 
implementation issues, e.g., configuration of hardware elements, equipment 
instructions, and conveyor movements. Therefore, due to our functional rather than 
software implementation focus, we may exclude some basic principles of collaborative 
control theory. For example, Conflict and Error Diagnostics and Prognostics (CEDP) 
is a basic principle that is often studied in literature, e.g., in Chen and Nof (2007). 
However, CEDP focuses on software-related issues, i.e., the prediction and detection 
of errors in the software code, which is beyond our scope. As a matter of fact, we 
believe that on this level (e.g., machine interfaces, equipment control), standardization 
independent of specific applications is already the rule rather than the exception. 
Therefore, we explore whether a similar standardization may be achieved at higher, 
more abstract, decision-making levels. For examples of studies dealing with low levels 
of control and configurability, we refer to Alsafi and Vyatkin (2010) who present a 
methodology to integrate the high level planning with low level control of a 
mechatronic system, and to Furmans et al. (2010) who propose a plug-and-work MHS. 

We use a theoretical framework that is based on the basic forms of control that have 
been suggested in the literature. We provide a description based on Dilts et al. (1991), 
who review the evolution of control architectures grouped in the major four forms of 
control, as follows (see Figure 1.6, where control units are represented by squares and 
resources by circles). 

 
Figure 1.6. Evolution of control architectures (Dilts et al., 1991). 

I. Centralized form: Here a central control unit performs all planning and control 
functions for all resources in the system. Moreover, it uses a global database 
that contains all types of detailed information about the system. The main 
advantages of centralized control are: access to global information, possibility 
of global optimization, and a single source for system-status information. The 
disadvantages include: a single point of failure, where any problem with the 
central unit causes the whole system to stop functioning, slow and inconsistent 
speed of response, high dependency in the structure, i.e., single control unit, and 
complex software that is difficult to modify. The authors state that such control 
mechanisms are no longer common as they cannot deal with the requirements 
of today’s complex systems. 

II. Proper hierarchical form: In this form, there are multiple control units, and a 
rigid master-slave relation between decision-making levels. The control unit in 
an upper hierarchy acts as a supervisor for resources in the subordinate level. 
Decisions made by the supervisor have an aggregate view on the system, and do 
not prescribe detailed low level actions. Subordinate control units have to 
comply with tasks imposed by controls in the upper level, but as tasks are 
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delegated, subordinates make more detailed decisions for their actions. We 
notice that control decisions are executed top-down, while status reporting goes 
bottom-up. The main advantages of this form are: adequacy for gradual 
implementation of software, with less room for problems compared to the 
central control, fast response times, and last but not least delegation of lower 
level decisions to lower levels in the hierarchy so that not all details are at the 
highest level. The disadvantages include: making future modifications in the 
design is difficult, because the structure tends to be rigid and fixed in the early 
design stages (Dilts et al., 1991), an increased number of inter-level 
communication links (compared to the centralized form), and computational 
limitations of local controllers. 

III. Modified hierarchical form: This form evolved in order to deal with some 
shortcomings in the proper hierarchical form, mainly the rigid master-slave 
relationship. It differs from the proper hierarchical form primarily through the 
degree of autonomy of subordinates. In the modified hierarchical form, there is 
some degree of coordination among subordinates on the same hierarchical 
level. This loosening of the master-slave relation brings additional advantages: 
more robustness to disturbances if the supervisor unit fails, because there is less 
need for continuous supervision, and subordinates have the ability to coordinate 
tasks among them. Some disadvantages are: connectivity problems among 
subordinates and with supervisors, capacity limitation of low-level controllers, 
and increased difficulty of the control system design. 

IV. Heterarchical form: This form is the extreme of decentralized control, which 
became popular recently. An example is a multi-agent system (MAS). In this 
form, control structures have distributed locally autonomous entities. These 
entities communicate with each other to make decisions in cooperation. The 
master-slave relationship is totally abandoned and not just loosened as in the 
modified hierarchical form. In this control form, decision-making is distributed 
in some manner within the system. This distribution can be based on functions, 
geographical areas, task sequence, etc. Each control unit has its own rules and 
objectives, and communicates with other units to fulfill its own requirements. 
This notion is the general form of the agent-based systems. The main 
advantages of the heterarchical form are: full local autonomy, reduced software 
complexity, implicit fault-tolerance, high modularity, and faster diffusion of 
information as subordinates have smarter controllers. The disadvantages are 
primarily due to technical limits of controllers, lack of standards for 
communication protocols, and the likelihood of local optimization. 

As a final remark, we emphasize again the distinction between our focus on control 
architectures (such as described by Dilts et al., 1991), and software architectures, 
because a decentralized control architecture can be implemented, in principle, by a 
monolithic software architecture and vice versa. However, advantages and 
disadvantages of centralization versus decentralization in both domains run in parallel 
to each other and are often mixed up. 
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1.4.2 Literature review 

In this section, we list studies that are relevant to planning and control of MHSs in 
general, and to the industrial sectors in which we are interested. We make an attempt 
to classify the reviewed studies based on the framework for the basic forms of control 
(Section 1.4.1). 

1.4.2.1 Centralized control 

Tařau et al. (2009a) study route control in BHSs. They compare centralized and 
decentralized route choice in BHSs, particularly in systems using Destination Coded 
Vehicles (DCVs) as a transport mechanism. They implement centralized control 
approaches, but find them computationally expensive and not robust. Furthermore, 
they develop decentralized control rules for Merge and Divert switches, where each 
switch has its own controller. A merge switch is basically a piece of equipment that 
combines two inflows (of items) from two input sources, i.e., conveyor routes, into one 
outflow. On the other hand, a divert switch is a piece of equipment where items from a 
single inflow source can be routed to one of two possible outflow directions. We will 
study these elements further in Chapters 3 and 4. 

Mo et al. (2009) study flow diversion to multiple paths in integrated automatic 
shipment handling systems. The authors take a network optimization perspective and 
formulate a nonlinear multi-commodity flow problem. They develop a mathematical 
programming model to propose routing strategies with the objective of minimizing the 
total shipment travel time in the system. However, they do not apply their theoretical 
framework to a business case and they make assumptions that may not hold in many 
practical settings. For example, they assume independent waiting times at different 
pieces of equipment and do not include time constraints for special shipments. 

Zimran (1990) presents a commercial generic controller for material handling systems. 
His design is mostly based on hardware and software linkages and communication. 
The routing decision function is supported by tree graph algorithms. Tree graphs have 
only one path between every pair of origin and destination. These tree graphs change 
while the system is running (based on system state), by adding or removing arcs. Since 
the algorithm is computationally expensive, simpler algorithms are used for low level 
controllers. 

1.4.2.2 Hierarchical control 

The concept of Cooperation Requirements Planning (CRP) is a hierarchical decision-
making strategy that stems from collaborative control theory. Rajan and Nof (1996) 
define CRP as “the process of generating a consistent and coordinated global 
execution plan for a set of tasks to be completed by a multi-machine system based on 
the task cooperation requirements and interactions”. CRP is divided into two steps. 
The first step (CRP I) generates the cooperation requirements matrix whose elements 
represent the capabilities of machine sets for processing the tasks. CRP I also 
generates processing constraints. Next, the second step (CRP II) determines the 
assignment of tasks to machine sets for processing. These two steps may include 
advanced search algorithms to generate plans and to make assignments. In general, 
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CRP is unnecessarily complicated for our MHSs control problem. It is more adequate 
for a manufacturing environment such as the robots and machine cells application 
presented by Rajan and Nof (1996). In such environments, it is challenging to deal 
with jobs that need several processing tasks, which are not standardized. On the 
contrary, in the MHSs we study, items follow standardized routes and processes, but 
the challenge lies in the control and balance of material flows within the systems.  

Amato et al. (2005) state that control systems of warehouses have three main 
hierarchical levels: a Planning level, a Management level, and a Handling level. The 
authors introduce the Optimizer System as a new level to bridge the gap between 
planning and management on the one hand, and shop floor control systems on the 
other hand, by improving the realization of decisions by handling devices such as the 
cranes and a shuttle handling device.  

Faber et al. (2002) study the complexity in warehouses in relation to the warehouse 
planning and control structures. The authors focus on warehouse management systems 
(WMSs) and analyze the tradeoffs between tailor-made and standard WMSs. The 
authors present a holistic view on planning and control in warehouses. They describe a 
structure with different levels of planning and control. The main levels are the order 
management system, the WMS, and the technical control system. In this thesis, the 
focus is on planning and control activities within the technical control system, from the 
perspective of the MHS manufacturer. However, in order to understand the 
environment in which warehouses operate and to understand the dynamics that can 
influence the operation of the technical control system in warehouses, we refer to 
Faber et al. (2013). The authors investigate how warehouse management is organized 
and driven by task complexity and market dynamics, develop a multi-variable 
conceptual model based on the literature, and test it in 215 warehouses using a survey. 
Faber et al. (2013) suggest that task complexity and market dynamics are the main 
drivers of warehouse management. They assess how these drivers impact specificity of 
WMS using predefined measurement criteria. They also show how planning in 
production warehouses differs from distribution centers. We emphasize that the 
authors focus on the management of warehouses from a system user perspective. 

In baggage handling, Tařau et al. (2009b) address hierarchical control for route choice. 
To this end, they design a control architecture with three levels of hierarchy: network 
controller, switch controller, and DCV controller. In the same study, they examine 
multi-agent systems, but find them hard to implement due to the extensive 
communication required between the agents. In general, Tařau et al. (2009a, 2009b) 
focus on BHSs and only on routing by controlling switches within BHSs, but they do 
not consider the storage operation. 

1.4.2.3 Modified hierarchical control 

Kim et al. (2003) propose a hybrid scheduling and control architecture for warehouse 
management, mainly for order picking. We classify their architecture as modified 
hierarchical, although they implement it using multi-agents software. In their 
architecture, they have three hierarchical levels of control: high level optimizer agent, 
medium level guide agent, and low level agents. The latter agents have a degree of 
autonomy that allows them to negotiate with each other and propose changes (to the 
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assigned tasks) to higher level agents. The authors claim that this architecture becomes 
a purely heterarchical architecture when the optimizer agent and the guide agents are 
eliminated, whereas it becomes purely hierarchical when communications among low 
level agents are prohibited. However, the fact that this architecture is tailored to order 
picking in a warehouse, limits it applicability as a generic control architecture for 
MHSs. 

1.4.2.4 Heterarchical control 

As a matter of fact, heterarchical forms of control are a recent trend in research. 
Babiceanu et al. (2004) present a framework for the control of MHSs as part of the so-
called holonic manufacturing approach. Holons are units that act as parts and as 
wholes at the same time, meaning that they have a high degree of autonomy but 
operate as part of a more general system. Therefore, holons have two main properties: 
autonomy in making decisions and cooperation with other holons for mutually 
acceptable plans. The authors state that from the significant number of papers in the 
area of agent-based and holonic manufacturing, only a few consider material handling 
problems. They present a case study focusing on a material handling system. 

Van Brussel et al. (1998) present a reference architecture for holonic manufacturing 
systems. Their architecture has 3 main holons:  

o Product holon: represents a model of a product type, which basically acts as an 
information server to other agents.  

o Resource holon: represents a production resource in the system. 
o Order holon: represents a task with requirements and a due date. It manages a 

physical product being produced.  

In addition, staff holons are optional holons that can aid other holons in decision-
making. An example is a central scheduling unit. The architecture is called PROSA, 
which stands for Product-Resource-Order-Staff-Architecture. PROSA focuses 
primarily on manufacturing operations rather than transport operations. In this thesis, 
however, we do not aim for an architecture that is generic for MHSs and for 
manufacturing systems; we focus solely on MHSs and the operations within the 
industrial sectors we analyze. The complexity of decision-making in the MHSs that we 
study is less than that for a flexible manufacturing cell and, more importantly, is of a 
different nature. PROSA is an example of a completely heterarchical control approach, 
whereas we opt, for good reasons, for another form of control (see Chapter 2). 

The holonic paradigm is similar to the agent paradigm in many aspects, but there are 
some differences. Giret and Botti (2004) conduct a thorough study to provide a 
comprehensive comparison of holons and agents. Their main conclusion is that a holon 
is a special case of an agent. A holonic system is a manufacturing-specific approach 
for distributed intelligent control. On the other hand, a multi-agent system is a broad 
software approach, where one of its uses is distributed intelligent control. For more 
details, we refer to Giret and Botti (2004). However, we note that holonic systems are 
heterarchical in the context of the systems that we address in this thesis, but they may 
have hierarchical characteristics when applied to other types of systems that are 
beyond the scope of this thesis. 
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Gue et al. (2013) study a high-density storage system, which has a modular physical 
structure. In this system, they present a conveyor-based material movement in a puzzle 
architecture that is analogous to popular board games such as the 15-puzzle and rush 
hour. They describe a decentralized control structure of this physical storage system in 
which each of the physical modules has an independent logic controller that is 
identical to the controllers of other modules. The study is based upon an earlier study 
(Gue and Kim, 2007) in which they present the puzzle-based storage system and 
analyze the tradeoffs between storage density and retrieval time based on a specific 
control algorithm. These studies focus mainly on a theoretical storage system in the 
distribution sector. However, Gue et al. (2013) emphasize the value of decentralized 
control for flexibility and scalability, and state that within material handling, 
decentralized control has been confined almost exclusively to the control of Automated 
Guided Vehicles (AGVs) or shuttles.   

Vrba and Mařík (2006) focus on software implementation and the use of simulation in 
agent-based control systems. In their control architecture, they use a basic set of agents 
for conveyor-based transportation: work cell, divert, and conveyor belt. In this work, 
we find useful control mechanisms such as the dynamic routing tables used by the 
diverters. We stress that the main objective of our research is to propose a generic 
control architecture for MHSs that is applicable in different industrial sectors, where 
not every element within this architecture is necessarily a novel application. 

Lau and Woo (2008) develop an agent-based dynamic routing strategy for MHSs. 
They emphasize that existing routing strategies in theory often use static routing 
information based on shortest path, least utilization, etc. In their study, they map the 
MHS to a network with node agents connected by unidirectional links. Control points 
of a network of MHS components are modeled as cooperating node agents. To make 
routing decisions, they define the best route in terms of: cycle time of material, 
workload balancing, and degree of tolerance to unexpected events. In their 
architecture, each agent is responsible for its zone of coverage. They implement their 
architecture in a simulation environment of a DC. The authors outline a generic 
classification of routing strategies and classify their approach as distributed real-time 
state-dependent. 

Johnstone et al. (2010) study status-based routing in baggage handling. In their 
approach, the status of the bag determines its processing requirements and triggers 
computation of the route to be followed depending on the states of required resources 
ahead. The authors study two main algorithms: the first one based on learning agents, 
while the second uses a graph representation of the network to find all possible routes 
at switches via Dijkstra’s shortest path algorithm (Dijkstra, 1959). They find learning 
agents more efficient in larger systems, as they make use of information from 
operations performed on the bags upstream. With this information, they limit the 
possible routing options downstream. 

Hallenborg and Demazeau (2006) use multi-agent technology in a BHS to construct 
generic software components to replace traditional system-specific centralized control 
software. In their approach, when the bag enters the system, the first agent on the route 
can make an agreement with all agents on the route to the bag’s destination. However, 
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it is also possible to make an agreement only with the next agent on the route. This 
raises the distinction between routing by static shortest path and routing on the way. 
We also refer to Hallenborg (2007a) for a case study of a large airport hub in Asia, in 
which a centralized control architecture is replaced by an agent-based solution. 

Some of the advanced control designs generate forecasts in order to prevent 
congestions and to facilitate proactive rather than reactive decisions. Studies in this 
context include Hadeli et al. (2004) who present a control architecture that is a 
combination of PROSA and concepts inspired by ant colony coordination 
mechanisms. Weyns et al. (2007) use delegate MASs, inspired by food foraging in ant 
colonies, to anticipate road conditions to make routing decisions. Claes et al. (2011) 
present an MAS for anticipatory vehicle routing, which allows directing vehicle routes 
by accounting for traffic forecast information. Finally, Parunak (2010) presents the 
concept of swarming agents that interact through digital pheromones. However, note 
that we focus on internal transport, as distinguished from external transport that is 
dealt with in these studies. Chapter 2 further describes other control approaches and 
anticipation techniques, which we employ to take precautions in order not to create 
congestions and in order to maintain a balanced material flow in the system. 

In this thesis we do not study autonomous vehciles. However, we refer to Kamagaew 
et al. (2011) and Wurman et al. (2008) for control approaches for autonomous 
vehicles. Moreover, we mention Mayer (2009) who develops a decentralized control 
system for modular continuous conveyors. The latter study, however, focuses on the 
equipment level (i.e., the mechatronics of the system) whereas we take higher 
functional control levels as our main focus. 

1.4.2.5 Other studies  

Some simulation-based studies in the area of MHSs are worth mentioning. Meinert et 
al. (1999) present a modular simulation approach for the evaluation of MHSs. 
Babiceanu and Chen (2005) use simulation to justify the use of a decentralized agent-
based approach in materials handling and assess its performance compared to 
conventional scheduling systems. Jahangirian et al. (2010) conduct a broad review of 
simulation studies in manufacturing. A trend they notice concerns the increasing 
interest in hybrid modeling as an approach to cope with complex enterprise-wide 
systems. Hunter (1994) presents a model evolution analysis for simulating MHSs. 
Finally, we mention Van den Berg (1999), Rouwenhorst et al. (2000), and Gu et al. 
(2010) as useful literature reviews in the distribution and warehousing area.  

In parcel & postal sorting, we could hardly find any studies discussing control 
architectures. McWilliams et al. (2005) introduce the Parcel Hub Scheduling Problem 
(PHSP); this problem concerns the scheduling of a set of inbound trailers to a fixed 
number of unload docks at an express parcel sorting hub. The objective is to minimize 
the makespan (i.e., total required time) of the transfer operation, i.e., sorting all 
unloaded parcels to the required destinations. In his studies, McWilliams deals with 
the MHS as a black box and does not interfere with the inner control. His studies 
include simulation-based genetic algorithms and dynamic load balancing heuristics. 
From his work on the PHSP, we mention the development of a dynamic load-
balancing scheme for the PHSP (McWilliams, 2009b). A useful result of his studies is 
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that a balanced flow within the system results in minimizing the time required to 
accomplish the transfer operation. 

1.4.3 Concluding remarks 

As a general remark, there are few studies that attempt to build a generic control 
architecture for MHSs operating in different industrial sectors. From the studies we 
reviewed, we observe that a control architecture normally targets a specific sector or 
deals with material handling as part of a manufacturing environment. From our point 
of view, the most relevant study is the holonic architecture proposed by Babiceanu et 
al. (2004). Although this architecture is based on a manufacturing system, it does 
suggest a framework for material handling. However, the MHSs in the sectors we 
address are far more complex and diverse than the MHS modeled by Babiceanu et al. 
(2004). We conclude that their study misses an in-depth treatment of practical 
requirements of complex MHSs as they do not show how decision-making processes 
can be employed to achieve functional requirements. However, we may make use of 
their findings in the architectural design aspects. In general, many authors favor 
distributed control when dealing with complex systems.  

From the studies we reviewed, we observe that a control architecture is initially 
designed and then applied to some sector, often to a distribution center. For baggage 
handling, there are few studies on control architectures. Most of the studies focus on 
route planning through divert and merge switches and do not take the storage 
operation into account. On the other hand, the relatively abundant number of studies 
on warehousing systems emphasize either the design aspects or throughput 
optimization of the system through the use of advanced algorithms for warehousing 
activities such as: storage and retrieval sequencing and order pick concepts. From our 
experience with industry we however learned that other requirements are necessary to 
make the control architecture applicable in a practical setting. For example, experts 
from industry value a robust control architecture that provides satisfactory solutions 
higher than an architecture that provides near optimal solutions but is less robust. 
Finally, we could hardly find studies for parcel & postal sorting that discuss a control 
architecture, probably because MHSs in this sector are of less complexity, i.e., they are 
basically sorters. In this sector, related studies deal with inbound and outbound 
operations. Most relevant in this context is the parcel hub scheduling problem 
introduced by McWilliams et al. (2005), which we address in Chapter 5. 

1.5 Theory versus practice 
This section confronts the theoretical studies with practical requirements (Section 
1.5.1), and based on this confrontation defines the agenda of our research (Section 
1.5.2). 

1.5.1 Confronting literature studies with practical requirements 

As mentioned briefly in Section 1.4.2, there is a lack of in-depth studies dedicated to 
the generic control of complex MHSs. There are studies addressing MHSs from 
different perspectives. A few studies claim that they propose a generic control 
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architecture or framework. However, we find them lacking due to one or more of the 
following reasons:  

o Being applicable only to a specific sector: when an architecture is based on one 
sector, it becomes impractical for other sectors as it normally misses relevant 
problems, constraints, and objectives in a different operational environment.  

o Lacking an in-depth treatment of practical requirements: the functional 
requirements listed in Section 1.3.2, present necessary conditions for a 
comprehensive control architecture. Moreover, the architecture has to control 
all possible subsystems of a complex MHS, e.g., ASRSs and divert switches. 
We conclude that a comprehensive coverage of these requirements is still 
lacking because the current studies are limited in several ways. First, they 
model simple material handling systems where no complex decision-making is 
required. Second, they focus on certain problems and subsystems, e.g., they 
deal with urgent items and with routing at diverts and do not address other 
problems, such as management of buffers and ASRS control, in the same 
architecture.  

o Limiting the role of MHSs to be merely a support to a manufacturing 
environment: there is limited focus on complex MHSs that are functioning for 
the sake of material handling and not merely as part of a manufacturing 
environment. The latter trend generally results in simplified MHS problems.  

o Missing the combination of design requirements and functional requirements in 
a unified architecture: there is a need for a comprehensive control architecture 
that is designed according to the design requirements, but that also entails 
control rules and algorithms implemented to satisfy the functional requirements. 
Studies on control architectures normally address design requirements 
(modularity, robustness, scalability, and flexibility). Yet, we could hardly find 
any study with proven implementation potential on MHSs in different industrial 
sectors. 

At a lower level of analysis, we find studies addressing specific problems or sub-
systems within MHSs. Moreover, we find sector-specific studies (e.g., control of 
BHSs). Therefore, results of specific problems can be used as building blocks in a new 
generic control architecture. However, having subsystems functioning properly on 
their own does not mean that the combination of subsystems functions properly as 
well. Therefore, a top-down design approach makes sense, because it allows to deal 
with the system dynamics at an early stage. Finally, there may be a need to adapt 
solutions for subsystems in certain sectors to be generic for similar subsystems in all 
sectors. 

1.5.2 Research agenda 

In this thesis, we aim at developing a comprehensive generic control architecture that 
satisfies design requirements and controls the operation of the MHSs in a way that 
satisfies the functional requirements. Both sets of requirements are defined based upon 
the research we performed at a major global company supplying material handling 
systems in all sectors discussed in the thesis. Based on our study, we conclude that 
there are still contributions needed for literature to answer questions in practice. The 
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missing points in current studies provide starting points to propose an agenda for this 
research. In addition, this research differs from other studies in addressing three 
different sectors from practice and using their requirements simultaneously to develop 
a generic control architecture. Current studies either develop control approaches and 
then apply them to a certain sector or use cases from one specific sector as a starting 
point. This thesis aims to handle the following elements: 

1. Proposing a concept for a control architecture: the concept may be based on 
the basic forms of control (see Section 1.4.1). We may decide upon the most 
appropriate form or propose a hybrid of several basic forms. 

2. Detailing the concept in terms of control levels (hierarchies) and control units: 
in particular, we have to address the relations between these different decision-
making bodies and the spans of control for each. This point has to satisfy the 
design requirements (see Section 1.3.2). 

3. Translating the concept into a concrete control architecture: this requires 
proposals for control rules and algorithms at the control levels and units. We 
have to define the links between control levels or control units in terms of 
information transmitted and the way information is reacted upon and 
communicated. This point has to satisfy the functional requirements (see 
Section 1.3.2).  

4. Validating the generic control architecture: this requires the modeling and 
testing of operational scenarios of MHSs in different industrial sectors. 

5. Proving the adequacy of the control architecture: this requires implementation 
on a business case to prove its adequacy to serve as a generic control 
architecture.  

Section 1.6 outlines the remainder of this thesis, where it refers to the aforementioned 
points on the research agenda. Moreover, Section 1.6 illustrates how each of these 
points fit in the content of the subsequent chapters.  

1.6 Summary and thesis outline 
This chapter introduced the research problem on generic planning and control of 
MHSs that occur in different industrial sectors. Section 1.1 motivated this research, 
while Section 1.2 defined its scope and described the industrial sectors involved. 
Section 1.3 analyzed the synergy among the different sectors. Furthermore, the process 
flows in the different sectors were modeled in an analogous way given a certain level 
of abstraction. This analysis, partly based on close experience with the material 
handling industry, led to a list of general requirements for a generic control 
architecture. These requirements are valuable for all industrial sectors and concern 
both the design and functionality of the control architecture. Subsequently, Section 1.4 
reviewed the literature to investigate the availability of answers to the requirements 
from practice. Consequently, Section 1.5 weighed the requirements from practice 
against the existing literature and highlighted the missing links to propose an agenda 
for this research in the field of planning and control of MHSs. This section presents the 
organization of the remainder of this thesis. 
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Chapter 2 deals with the first two points on the research agenda, i.e., proposing a 
concept control architecture and detailing it (see Section 1.5.2). It builds upon our 
conclusions so far to propose a concept control architecture. We propose a variant of 
the modified hierarchical form of control (see Section 1.3.2) and motivate our design 
choices. In this concept control architecture, we propose a set of generic control units 
distributed over three levels of control, i.e., planning, scheduling, and local traffic 
control. We argue that the planning and scheduling levels of control are the main 
determinants of the control structure and these are the levels covering communication 
links and cooperative decision-making processes. Local traffic problems have a minor 
global effect on the system performance. These problems occur at certain physical 
areas of the system at a low level of control, where no communications with other 
system areas are needed. Therefore, at this level we can derive separate traffic 
problems. For one of these problems, which is the most challenging, we develop a 
solution in Chapter 6, but for the rest, available solutions in literature can be 
implemented. Chapter 2 presents all decision-making processes encountered in the 
control architecture and describes each of them. 

Chapter 3 deals with the third and fourth points on the agenda, i.e., developing the 
concept into a concrete control architecture and validating it. The control architecture 
is divided into modules. We mainly implement planning and scheduling control 
modules and include local traffic control modules in an aggregate manner. Chapter 3 
presents a generic MHS model, in a simulation environment, which can be tuned to 
simulate MHSs in different industrial sectors. We model different operational 
scenarios and analyze the generality of control. Chapter 3 also presents an 
implementation of the routing module (at the scheduling level), using the 
aforementioned generic MHS model with a modified system base. 

Chapter 4 deals with the fifth point on the research agenda, i.e., proving the adequacy 
of the control architecture. It presents a comprehensive application of the control 
architecture on a business case, in which we study a major European airport that 
entails challenging system elements and business rules to be handled by the generic 
control architecture. In this large implementation, we face new system areas that need 
to be handled in a generic manner and we show how we face standardization 
challenges not only among different industrial sectors, but also within the same sector 
and the same MHS. Moreover, we deal with a routing module, for which we attempt to 
maintain the generic control structure as proposed for such problems in Chapter 2 and 
as implemented in another system and another industrial sector in Chapter 3. Finally, 
given this comprehensive implementation, we compare the performance of the generic 
control architecture to current practice. This chapter provides a proof-of-concept for 
the applicability of generic control on practical cases. 

As the control architecture is designed, implemented, and confronted with more 
challenges in a business case, we take a step to extend our analysis in Chapter 5 from 
Scope 1 (i.e., MHS control) to Scope 2 (i.e., inbound operations; see Section 1.2.1). In 
this setting, we present a scheduling problem for system-users, which is scheduling 
inbound containers to load MHSs that use sorters as the main element. We find this 
scheduling problem influential to the operation of sorter systems and thus we dedicate 
a chapter to it, where we build upon the state-of-the-art algorithm available in 
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literature and introduce two extensions. In this sense, Chapter 5 provides scheduling 
tools for the MHSs’ users.  

Although most of the local traffic decision-making problems are simple and 
straightforward (e.g., determining a crane’s travel trajectory between two pickup and 
retrieval locations), we identify one local traffic problem that is challenging and 
requires a sound decision-making algorithm. This is the space allocation problem in 
conveyor merge configurations. In such configurations, a set of parallel conveyors 
transport items towards one larger merge conveyor. The merge of all incoming items 
from the parallel conveyors onto the merge conveyor is an operation where several 
challenges have to be dealt with. For this thesis to provide a comprehensive set of 
solutions for decision-making problems in MHSs, we dedicate Chapter 6 to analyze 
this local traffic control problem and to propose an algorithm for it.  

In the final chapter of this thesis, i.e., Chapter 7, we present general conclusions and 
recommendations for practice. Moreover, we highlight directions for future research. 
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Chapter	2 	

A	Generic	Control	Architecture7	

In Chapter 1, we discussed the generic control problem of MHSs as they arise in 
different industrial sectors and concluded that there is a need for a generic control 
architecture for such MHSs. Following this conclusion, we have proposed a research 
agenda of five points. This chapter deals with the first two points, i.e., proposing a 
concept control architecture (in terms of control levels and generic control units) and 
detailing it (in terms of concrete decision-making processes).  

In this chapter, we propose a variant of the modified hierarchical form of control (see 
Section 1.3.2) and motivate our design choices. In this concept control architecture, we 
propose a set of generic control units distributed over three levels of control, i.e., 
planning, scheduling, and local traffic control. We discuss the elements that represent 
a crucial part of the control structure in detail, whereas elements that are not crucial to 
the control structure are treated in general terms and discussed in more detail in 
subsequent chapters. Section 2.1 builds on the findings of Chapter 1 to develop a 
concept control architecture that includes a set of generic control units at three levels 
of control (i.e., planning, scheduling and local traffic control). Thereafter, Section 2.2 
details the concept architecture by illustrating the functionality of the control units and 
the decision-making processes that take place within the control units and among 
different control units (at various levels of control). Finally, Section 2.3 ends this 
chapter with concluding remarks. 

2.1 A concept for a generic control architecture 
In this section, we take a first step towards the development of a generic control 
architecture by proposing a concept control architecture and detailing it in terms of 
control units and hierarchies. To propose a concept for generic control, we build on the 
experience from our industrial cooperation and on the basic forms of control discussed 
earlier (Section 1.4).  

First of all, we comment on the centralized form of control, in which a central control 
unit performs all planning and control functions for all resources in the system. We 
find this form of control inappropriate for the generic control of MHS for reasons 
concerning both the operational environment and the design requirements. Therefore, 
we exclude this option in view of the following arguments: 

                                              
7 This chapter is based on Haneyah et al. (2013a) and Haneyah et al. (2013b). 
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o The centralized form of control is rigid when it comes to: handling the real-time 
flow of information, dealing with disruptions in material flows, and controlling 
processes in a dynamic environment.  

o The required computation time for a central control unit to process a large 
amount of data and to make decisions is incompatible with the real-time nature 
of the MHSs.  

o Information on items transported by the MHSs flows in real-time and is 
revealed gradually with a narrow look-ahead horizon. Therefore, making global 
decisions that affect every resource in the system based on a narrow scope of 
information does not make sense, especially because it may easily happen that 
the centrally proposed decisions change radically when new information 
becomes available, e.g., about disruptions or new items in transport.  

o The software may become complex to build and may not serve the design 
requirements of being generic, modular, robust, and flexible (see Section 1.3.2). 

The centralized approach is one extreme of decision-making; the other extreme is 
purely decentralized decision-making embodied by the heterarchical approach. 
According to various authors, the main advantage of the heterarchical approach is that 
it supports desirable design aspects, i.e., modularity, a generic structure, and 
robustness. Modularity is embodied in the possibility to build software components 
separately and to include some intelligence in decision-making activities. The control 
architecture can be composed by configuring the interfaces between software 
components.  

In our view, a pure heterarchical form of control results in a cooperative approach to 
global decision-making, where a main concern is the extent of deviation from 
optimality. In this context, higher level coordination may be necessary for some 
processes, e.g., planning orders. Moreover, for the generic control problem, decisions 
made within MHSs are not all at the same level. In particular, when looking at the 
different industrial sectors that we analyze, we find global decisions that impact the 
overall performance of the system, while others are local decisions with limited global 
impact. As a matter of fact, distributed control is beneficial when dealing with 
complex systems. However, we emphasize that distributed control means having 
decisions made at the right level, and thus it can be realized with other forms of 
control, e.g., the modified hierarchical form. 

Given the aforementioned points and our observations in industry, we propose a 
control architecture that involves hierarchical control and also a certain degree of 
intelligence and freedom of controllers at different control levels.  

The control architecture is the basic structure on which decision-making processes are 
mapped. The proposed control architecture builds upon the theoretical framework 
(Section 1.4.1), while the decision-making framework builds upon established theories 
in the temporal decomposition of planning, scheduling, and control processes (see 
Anthony (1965), Hax and Meal (1975), and Zijm (2000)). 

From our analysis of the MHSs in the three sectors (distribution, baggage handling, 
and parcel & postal sorting), and the decision-making aspects in particular, we find it 
necessary to first have a control level that takes care of the planning activities using an 



29 

 

aggregate view of the MHS. Moreover, this control level should provide the interface 
with the system-user, e.g., the receipt of flight schedules in a BHS or of order details in 
a distribution system. Second, the resources of the system have to be controlled but not 
centrally, as argued earlier. Therefore, resource controllers are needed that schedule 
and execute work considering their own status and the status of other resources 
involved in the handling operation. Finally, when all decisions on workload control 
and material flow are taken, the realization of these decisions by the physical 
equipment has to be taken care of at a dedicated level, e.g., to store a TSU8 within a 
certain storage aisle or to induct a TSU on a conveyor belt at a merge junction. Note 
that these levels are all within the control software of the MHS, i.e., the equipment, 
and deal with operational tasks using inputs from higher level user systems such as the 
WMS in distribution. Following this discussion, we propose three hierarchical levels 
of control, where each level contains several generic controllers as we will describe 
later. The three levels of control are as follows (see also Figure 2.1): 

o Planning: The planning function requires a global view of the system 
regardless of the system size. This is the control level that interacts with the 
MHS’s user environment, e.g., customer orders or plane schedules. As a result, 
this level is mainly responsible for the assignment of work to resources/system 
devices. Planning decisions are made by abstract controllers using aggregate 
system information. 

o Resource scheduling: Given a set of assigned tasks, the scheduling function 
addresses the problem of when and in what sequence to execute these tasks. 
This level deals with executing the tasks assigned by the planning level. 
Scheduling decisions are made by resources controllers. In this context, system 
resources that need their own scheduling controller are either workstations (e.g., 
pick stations in a warehouse) or key transport and routing resources (e.g., 
sorting loops and cranes). Routing and task sequencing for each resource are 
decided upon here. In this sense, this level depends on the system layout and 
specific system attributes. For example, travel distances within the system and 
loads in transport may affect scheduling decisions. 

o Local Traffic Control: This function entails algorithms or routing rules 
executed within defined boundaries of the physical system. There is minimal 
interaction with other areas in the system and mostly the aim is local 
optimization where no global view is needed. Decisions made at this level do 
not have a major effect on the system. These decisions are implemented at a 
low level of control or made by resource controllers. Examples include the 
movement of a crane within its aisle and prioritizing the movement of items on 
a conveyor junction.  

From a theoretical point of view and also based on experiences from practice, local 
traffic control problems are the easiest to deal with, as they do not affect the overall 

                                              
8 Transport Stock Unit (TSU): a generic term to refer to different types of items transported 
on the automated MHSs, i.e., bag, parcel, or tote.  
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control structure or the communications among different controllers. Control methods 
for local traffic problems can be integrated in a control architecture with minimal 
difficulty. The higher levels of control, i.e., planning and scheduling, are the 
challenging levels of which the functionality is highly dependent on the control 
structure and communication interfaces.  

Planning

Resource Scheduling

Local Traffic Control
 

Figure 2.1. Levels of control. 

In this concept architecture, planning control units, referred to as planners, have an 
aggregate view of the system and are not directly connected to system resources. On 
the other hand, scheduling control units, referred to as schedulers, are directly 
connected to system resources, being workstations or transport resources. Planners 
communicate with each other and assign tasks to subordinate schedulers. Schedulers 
also communicate with each other to schedule the assigned tasks and report to higher 
level planners. They are responsible for task sequencing and execution. Schedulers 
communicate via standardized interfaces to execute the transportation process and 
fulfill the tasks assigned, e.g., to deliver a bag to its destined lateral. In this thesis, 
planners and schedulers are pieces of software. 

The proposed control architecture (see Figure 2.2) has a certain degree of hierarchy 
combined with flexible decision-making for subordinates, as in the modified 
hierarchical form of control. However, we may define several higher level control 
units (planners) rather than a single higher level control unit. Therefore, the control 
architecture is a variant of the modified hierarchical form of control (see Section 
1.4.1). At this point, we emphasize once more that we take the control perspective of 
the architecture and not the software implementation perspective (see Section 1.4). 

 
Figure 2.2. Control architecture scheme. 

We have stated that schedulers are directly connected to system resources, which 
implies that each system resource (e.g., a crane) has its own scheduler. Therefore, 
system resources define the set of schedulers included in the architecture. On the other 
hand, we define planners as higher level control units that have an aggregate view of 
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the system and are not directly connected to system resources. There are two main 
planners that we incorporate in the control architecture: 

o Build planner: responsible for the build area, i.e., workstations. In distribution, 
this means planning the order picking process, whereas in baggage handling 
this means planning the build of flights, i.e., gathering the baggage belonging to 
the flight at the right build point(s). This is a planner as it requires a global view 
on system information, schedules, and the build area. Moreover, it results in 
assigning work to system resources (see our definition of the planning level in 
the concept architecture).  

o Storage planner: this controller is responsible for the storage area, i.e., the 
ASRS consisting of cranes and storage aisles. The same arguments as for the 
build planner hold for this controller to be a planner. Here, the global view 
required is on the ASRS. 

Now that we defined the basic control structure, we next have to allocate decision 
functions to the different levels of control and to the different controllers. In doing so, 
we follow two main principles:  

o Allocate each decision function to the lowest possible control level and with the 
narrowest possible scope. Here, the word possible means that no direct 
deterioration in system performance is expected due to making the decision 
local and with a narrow scope. However, this principle may be violated due to a 
required synergy in control among different sectors.  

o If an operation with certain characteristics is defined as a scheduling operation, 
another operation with the same characteristics but on a wider scale due to, e.g., 
system size, may become a more complex scheduling operation, but does not 
become a planning operation. 

In order to apply generic control methods, we have to treat systems that are at the same 
level of detail similarly. However, due to the varying nature of MHSs in different 
industrial sectors, the same level of detail is not always present. Therefore, it is 
essential for the control architecture to have elements that deal with the differences 
among systems, to produce a certain level of detail that is then usable by generic 
control methods. We describe this further in Section 2.2. 

2.2 Decision-making processes 
In this section, we introduce the main decision-making processes, relevant to the 
proposed architecture, at each level of control. In this context, we stress that parcel & 
postal sorting systems are controlled at the scheduling and local traffic levels as 
described later (Chapters 5 and 6). In parcel & postal sorting, there are no ASRSs 
(which need the planning level), while the assignment of destinations to chutes is an 
input parameter to the system that is usually fixed for a longer time. Therefore, the 
planning processes described in this section regard distribution and baggage handling. 

2.2.1 Planning processes 

At the planning level, we introduce two main processes: planning the outbound flow 
from the ASRS and planning the inbound flow to the ASRS. In this section, we 
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describe these processes and explain their functionality in general terms. Chapter 3 
deals with detailing and implementing these processes on a specific system model. 

2.2.1.1 Inbound flow to the ASRS 

When a TSU requires storage, it is announced to the storage planner, which responds 
with a destination aisle and crane to perform the storage operation. The decision can 
be made according to different control rules, which may be based on different criteria. 
For example, an incoming TSU containing a certain SKU (Stock Keeping Unit) can be 
assigned to the aisle having the minimum level of this SKU. As a matter of fact, the 
outbound flow is the main contributor to system throughput and assigning the inbound 
flow of TSUs to aisles may not have a major impact on the outbound flow. Therefore, 
it may be possible to use simple control rules. The advantage is then simpler software, 
but we have to test whether such simple rules do not cause any deterioration in the 
system performance. Chapter 3 presents and analyzes alternative control rules further. 
Note that TSUs returning from a workstation in a distribution system (no item 
integrity, see Section 1.3.1) are part of the inbound flow to the ASRS.  

For the user of the MHS, smarter control rules or allocation algorithms might be 
incorporated. There are plenty of studies on detailed allocation decisions, e.g., where 
to store an incoming tote in terms of the aisle and storage location within the aisle. 
However, in this thesis we focus on the generic control structure that can 
accommodate other control algorithms depending on the characteristics of the 
distribution center or airport where the MHSs is used. Moreover, what happens before 
a TSU is loaded on the MHS is not within our scope as it is within the responsibility of 
the system user. 

2.2.1.2 Outbound flow from the ASRS 

This process (see Figure 2.3) is a planning process as it requires a global view of the 
ASRS and of the destination workstation(s). Moreover, it results in assigning tasks to 
resources, e.g., retrieval tasks to cranes. There are two main sub-processes in outbound 
flow planning: 

a. Stock reservation: in distribution, a customer order has a set of order lines, each 
referring to an SKU required in a certain quantity.  An order is built on one 
workstation, but to build the order, stock is retrieved from the ASRS. Since 
multiple TSUs may hold the same SKU, it is necessary to decide which TSU to 
reserve for usage of a certain order, i.e., stock reservation. However, in baggage 
handling, we define an order as a set of bags required for a certain flight. In this 
sense, bags are uniquely identified, as each bag entering the system via check-in 
desks or as transfer baggage is already assigned to a specific order (flight). 
Therefore, we see stock reservation as a process that results in bringing the 
distribution system to the same level of detail as a baggage handling system, by 
assigning TSUs to orders. This process is accomplished as the build planner 
requests stock reservation for certain orders (plans orders) from the storage 
planner, which in turn looks for TSUs to reserve. Typically, broken TSUs are 
attempted before breaking a full TSU, as having many broken TSUs in the 
ASRS means a loss of storage capacity. The build planner makes sure that a 
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couple of orders are planned and ready for activation on any workstation 
requesting work. 

b. Order release: workstations trigger the build planner to activate orders, based 
on work progress in distribution and according to time schedules in baggage 
handling. As soon as an order is active on a workstation, stock belonging to this 
order has to be released from the ASRS. Therefore, the build planner informs 
the storage planner that a certain order is active. In turn, the storage planner 
dynamically assigns the reserved TSUs as retrieval tasks to candidate cranes 
(when a reserved TSU is accessible by more than one active crane). The storage 
planner may use different control rules to assign a retrieval to a crane (e.g., 
assign the retrieval to the candidate crane having less workload). From this 
point on, cranes are responsible for executing and sequencing these tasks at the 
scheduling level of control. Note that the preceding stock reservation process 
(a) brings a distribution system (from a control point of view) to the same level 
of detail as in a baggage handling system. 

 
Figure 2.3. Communications at the planning level. 

2.2.2 Scheduling processes 

At the scheduling level, we introduce the following processes: scheduling crane 
retrievals, scheduling inbound containers, routing arriving TSUs, and routing TSUs in 
networks. In this section, we focus on the scheduling processes that represent an 
integral part of the control architecture. This applies to all of the processes mentioned 
except for scheduling inbound containers. Although this process influences the 
operation of MHSs, it is not an integral part of the control architecture that is at Scope 
1 of our analysis (see Section 1.2.1). In fact, scheduling inbound containers is at Scope 
2 (inbound and outbound operations). Therefore, we do not describe the decision-
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making aspect of this process in this section. Likewise, with regard to the 
implementation of these processes, Chapter 3 deals with detailing and implementing 
the scheduling processes except for scheduling inbound containers, to which we come 
back in Chapter 5. 

2.2.2.1 Scheduling crane retrievals 

Crane controllers have to schedule the released set of TSU retrieval tasks. In order to 
support functional requirements such as avoiding blockings and deadlocks, the 
pipeline occupation of the TSU destination plays a role in scheduling. TSUs are 
normally retrieved to be loaded on the main sorting system in baggage handling and 
distribution MHSs. However, in parcel & postal sorting, the sorter is the main element, 
where no cranes are involved.    

Given a set of retrieval tasks, crane controllers schedule these tasks based on their 
priorities and the pipelines of destination workstations (see Figure 2.4). However, what 
defines a priority TSU differs per industrial sector; we explain this further in Chapter 
3. The pipeline size of a workstation is the maximum number of TSUs that are allowed 
to be in transport to this destination at any point in time. Therefore, we can send more 
TSUs only if the number of TSUs already in the pipeline is less than the pipeline size, 
in order to prevent overloads and congestion.  

 
Figure 2.4. Communications at the scheduling level. 

We use the pipeline size concept often in the following manner: each workstation 
receives information about incoming TSUs (from, e.g., cranes or the receiving divert) 
and in turn updates the information about the number of empty positions remaining in 
its pipeline. Scheduled retrievals that are not physically in the pipeline yet, are also 
taken into account as being in the pipeline. Other controllers, e.g., crane controllers, 
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observe the pipeline capacities and take this information into consideration when 
scheduling crane operations. In the control architecture, the size of the pipeline is an 
important parameter to define. In general terms, there are two different approaches to 
set the pipeline sizes of workstations. These approaches depend on the system layout 
and the operational environment as follows:   

1. If the transport equipment (e.g., sorter system) has limited capacity (in 
relation to the workload) or if a group of TSUs is planned to arrive at their 
destined workstation in a predetermined sequence, then the material flow has 
to be strictly controlled. Therefore, the pipeline size is typically equal to the 
number of locations in the inbound buffer of the workstation. In this way, if 
any problem occurs at the workstation or the operator is temporarily absent 
for some reason, then all TSUs in transport can be accommodated in the 
inbound buffer (and in a preserved sequence if there is any). No TSU should 
waste the capacity of a loop sorter  by circulating on it due to blocked entry 
to the workstation. Likewise, circulation may damage the predetermined 
sequence of TSUs that are moving towards their destination. We provide 
applications and more details on these points in Chapter 3. 

2. If there are long transport routes from the ASRS to the workstations area or 
if there is a large loop sorter that shows fluctuating occupation levels, e.g., 
according to baggage arrivals and flight schedules, then it is important to  
maintain a continuous flow towards workstations. Otherwise, there will be 
instances of no flow, causing starvation at subsequent processing units (e.g., 
workstations). Another point is that travel times to workstations may differ 
due to the larger system. In this sense, the farther workstation needs more 
TSUs in transport than the nearer one to maintain a continuous and balanced 
flow. In these settings, we have to propose a pipeline size that is larger than 
the number of locations in the inbound buffers of workstations. Several 
methods can be proposed to determine the pipeline size. We propose to 
define the pipeline size for workstation ݅ based on the capacity of the 
workstation and the average transport time to the workstation. In more 
formal terms, we introduce the following notation: 

ܲ ௜ܵ	= pipeline size of workstation ݅ expressed in the number of items 
(TSUs). 

ܶ ௜ܶ	= Average transport time (in minutes) from all source points (e.g., 
loading points on a sorter) to workstation ݅ assuming a free flow 
situation. 

 .= Capacity of workstation ݅ in ipm (items per minute)			௜ܥ
 

The ݈݈ܽ݁ܿ݊ܽݓ݋	finally denotes a time allowance parameter (in minutes) to 
account for traffic delays. Now, the pipeline size of workstation ݅ is defined 
according to the following expression: 
 

ܲ ௜ܵ ൌ ௜ܥ ⋅ ሺܶ ௜ܶ ൅  ሻ݁ܿ݊ܽݓ݋݈݈ܽ
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Moreover, in order to prevent a deadlock situation in this approach, we also 
put a limit on the maximum occupation of the loop sorter. We do not allow 
further retrievals by cranes when the loop occupancy reaches 95%, even if 
the pipeline limits are not reached yet. 

When the pipeline to a certain destination is full, system controllers react by blocking 
further TSUs from being retrieved or routed to this destination until space becomes 
available in the pipeline. Therefore, the pipeline size is an important parameter that is 
used to control material flow in the system and to prevent overflows.  

2.2.2.2 Scheduling inbound containers 

In Section 2.2.2.1, we mentioned that in parcel & postal sorting, there are no diverts or 
cranes to load TSUs on sorters, as the MHS (in this sector) is basically the sorter itself. 
In this case, loading sorters (with TSUs) is a scheduling problem that is already at 
Scope 2 of our analysis because it is not handled by the automated system itself, but by 
operators loading TSUs manually (see Figure 1.1 in Section 1.2.1). This loading 
problem may also apply to some simple BHSs in small airports where bags from 
incoming ULDs9 (see Figure 1.5 in Section 1.3.1) are loaded immediately on the sorter 
with no preceding stages (e.g., routing in networks). In this problem, we want to 
schedule the inbound containers (the inflow) in order to optimize the outflow of the 
sorters. 

We study sorting systems using conveyors in distribution, where incoming TSUs are 
not assigned (yet) to a certain order (or destination) and so they are always stored first. 
Hence, the problem of optimizing the outflow by scheduling the inflow is not clearly 
defined. In addition, this scheduling problem is not critical (in distribution) for several 
reasons that relate to the contrast that we make between baggage handling and parcel 
& postal sorting on the one hand, and distribution on the other hand (see Section 
1.3.1). The following arguments apply: 

o The time pressure (in baggage handling and in parcel & postal sorting) makes it 
necessary to have sound scheduling approaches that can handle the strict time 
schedules. 

o Item uniqueness in these two sectors induce additional pressure to sort specific 
TSUs in time (their destination is generally known, as opposed to the situation 
in distribution).  

o The unpredictable arrivals in these two sectors also make the problem of 
scheduling inbound containers more challenging.   

In Chapter 5, we study scheduling algorithms that consider loads in transport within 
sorting systems in order to schedule incoming containers in parcel & postal sorting and 
baggage handling. These scheduling algorithms are not part of a scheduler within the 
MHS’s control architecture, but can be implemented in software tools for the MHSs’ 
users. Scheduling inbound containers should support the functional requirements, e.g., 

                                              
9 Unit Load Devices, which are containers used in air transport of baggage. 



37 

 

management of buffers, dealing with urgent items, and starvation avoidance (see 
Section 1.3.2). Chapter 5 provides a further analysis of this scheduling problem. 

There are MHSs in distribution that do share the characteristics of MHSs in baggage 
handling and in parcel & postal sorting. Although we do not study these systems, we 
can still model them using the methods developed in Chapter 5 or the generic material 
flow model of Chapter 3. 

2.2.2.3 Routing arriving TSUs 

At some point in the transport operation in baggage handling, a decision has to be 
made on routing arriving bags either to the sorter system or to the ASRS. This choice 
is made by the arrivals’ divert controller (see Chapter 3) using system information and 
status of destinations.  

Obviously, bags are routed to the ASRS when the build for the corresponding flight is 
not open yet. Moreover, if the build is open and the pipeline(s) of the destined 
workstation(s) is (are) not full, then the bags are routed to the main sorter. However, if 
the pipeline(s) is (are) full then, in order to maintain a controlled flow on the main 
sorter, it may be beneficial to route bags to the ASRS and delegate the scheduling task 
to crane controllers there. The latter option should not be used for urgent bags as it 
may cause them to miss their flights. In this case, it makes sense to allow recirculation 
on the main sorter due to routing bags directly to the laterals, although they are busy. 

2.2.2.4 Routing TSUs in networks 

In large scale MHSs, there are often service stations, e.g., screening machines (Figure 
2.5), which are available at alternative systems. In such configurations, a divert 
controller has to decide to which system to divert an incoming TSU.  

The proposed control logic for these routing problems is dynamic and based on the 
status of the system. In order to balance loads on parallel systems and yet consider 
travel times and service rates, we make routing decisions based on the expected 
throughput of the alternative parallel systems.  

 
Figure 2.5. Routing in parallel systems. 
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We develop a dashboard logic where downstream controllers post expected 
throughput times (and possibly other information) on their dashboards. For example, 
machine cluster controllers (see Figure 2.6) post an expected throughput time for a 
TSU to be processed (given the number of TSUs already in the pipeline and the 
service rate of the machines). Upstream controllers use this information to make 
routing decisions. In this dynamic control, downstream controllers need information 
about TSUs in the pipeline from upstream controllers, in order to estimate throughput 
times. This control logic helps in the functional requirements of saturation 
management, prevention of imbalanced queues and recirculation, management of 
buffers, and dealing with disruptions. For example, fewer TSUs should go to the 
system having a lower service rate (e.g., due to a failed component or congestion).  

When there is more than one destination to which an incoming TSU can proceed, we 
calculate the expected throughput time per destination. Upstream flow is always 
blocked when the system has used all available capacity. System control may plan to 
occupy less than the available system capacity, in order to always leave an escape and 
avoid deadlocks or saturation. 

Figure 2.6. Communications for dynamic routing. 

We emphasize that the standardized controllers and communication interfaces allow 
the implementation of the same control logic on different system layouts by merely 
defining connected controllers upstream and downstream for each component. In this 
thesis, we examine the applicability of this routing approach in two different settings: 
Chapter 3 presents an implementation in a distribution system, whereas Chapter 4 
deals with an implementation in a large baggage handling system. 

2.2.3 Local traffic control  

At the local traffic control, we deal with decision-making processes that can be studied 
independently as they do not affect the overall control structure. At this level, we 
introduce two main processes: the space allocation in merge configurations and 
cranes’ storage cycles. 

2.2.3.1 Space allocation in merge configurations 

In merge configurations, we have to allocate free spaces on a merge conveyor (e.g., a 
sorting loop) to TSUs waiting to enter this conveyor from several infeeds (Figure 2.7). 
Scheduling crane retrievals, scheduling inbound containers, and routing arrivals are all 
scheduling processes that result in decisions to load infeeds. Once infeed loading 
decisions are taken at the scheduling level, we can use a generic local traffic control 
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algorithm in such a configuration, e.g., by a loop controller. This problem is 
particularly important for parcel & postal sorting systems, which handle large numbers 
of TSUs within strict time limits, and so need an efficient merge operation. This local 
traffic problem has to satisfy several functional requirements, e.g., labor efficiency for 
operators loading the infeeds. Space allocation is a local traffic problem and so, by 
definition (see Section 2.1), can be dealt with independently. 

This local traffic control problem entails a certain level of complexity and requires a 
decision-making algorithm. Therefore, we dedicate Chapter 6 to develop a space 
allocation algorithm that can be incorporated in the generic control architecture for 
merge configurations. 

 
Figure 2.7. Merge configuration. 

2.2.3.2 Cranes’ storage cycles 

Cranes execute storage cycles to store TSUs waiting in their inbound buffers. Higher 
levels of control assign TSUs to a certain storage rack via a certain crane and route 
them to the crane. However, regardless of these higher level decisions, once TSUs 
arrive at a certain crane, the storage operation is similar for all relevant industrial 
sectors. Since the process boils down to moving TSUs from inbound buffers to empty 
storage locations in specific racks, we can apply a generic control logic at the local 
traffic level. 

The impact of the decision on where to store a certain TSU within a rack differs 
according to the user’s environment and nature of the stored items. We studied MHSs 
where selecting an empty location in a certain rack to store an incoming TSU has a 
minor impact on other system resources or on the overall system performance. Hence, 
we do not analyze this operation in detail. However, for systems in which the 
execution of this operation is critical, an algorithm from literature or specific control 
rules can be implemented in the storage planner or locally in the crane controller.  

2.3 Concluding remarks 
In the first part of this chapter, we analyzed the forms of control that are the basic 
structure of any control architecture, while keeping in mind hybrid forms that can 
result in variants of the basic forms of control. We then evaluated the suitability of 
these alternative forms of control to our problem and excluded the two extremes 
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(centralized control and heterarchical control). Next, we built upon the nature of 
decision-making in MHSs to propose a concept control architecture that entails 
hierarchical levels of control and generic controllers on different levels. The concept 
control architecture is a variant of the modified hierarchical form of control, which 
uses the strong points of heterarchical control architectures (e.g., modular and robust 
design) and of hierarchical control architectures (e.g., delegation of lower level 
decisions to lower levels in the hierarchy and higher level coordination). In the second 
part of this chapter, we presented the main decision-making processes and indicated 
the potential to model them generically.  

In the proposed control architecture, we note that schedulers are the controllers 
responsible for workload control, because they decide on task execution times, e.g., 
when to execute retrieval tasks. Moreover, pipeline size limitations reflect a pull 
system for material flow, which we use to avoid congestion, overflow of buffers, 
saturation, imbalances in loads among buffers or parallel systems, and to support other 
functional requirements. At the local traffic level, we deal with materials physically 
moving as a result of scheduling decisions. Therefore, local traffic control has a small 
impact on the amount of materials in transport.  

In the following chapters, we detail the concept control architecture further and test its 
applicability to MHSs in different settings reflecting the different industrial sectors. 
Then, we analyze the extent to which we manage to maintain a generic control that 
conforms to the functional requirements and design requirements as defined in Section 
1.3.2. To this end, Chapter 3 provides different applications of the control architecture, 
whereas Chapter 4 demonstrates an implementation of the generic control architecture 
in a business case of a large baggage handling system.   
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Chapter	3 	

Applications	Of	The	Planning	And	
Scheduling	Control	Modules10	

In Chapter 2, we proposed a concept of a generic control architecture for MHSs in 
different industrial sectors. We have presented the control structure and illustrated the 
decision-making processes at different levels of control. 

In this chapter, we develop the concept control architecture into a concrete control 
architecture and validate it. To this end, we apply control modules of the generic 
control architecture (Chapter 2) to a material flow model with an ASRS and a sorter 
system with build workstations. These system elements are common to two industrial 
sectors: baggage handling and distribution, where build workstations can be order 
picking stations (in distribution) or laterals (in baggage handling). Therefore, we set up 
this model to be applicable to MHSs in distribution and baggage handling. Moreover, 
we report on performance and analyze how far we can control the two industrial 
sectors generically in terms of software implementation. Note that parcel & postal 
sorting is excluded from this model because MHSs in this sector do not use ASRSs or 
build workstations.  

The system elements described above require the implementation of the decision-
making processes we defined at the planning level (see Chapter 2) and a number of 
decision-making processes at scheduling level. In order to implement the generic 
routing approach (Chapter 2), which is at the scheduling level, and test its 
performance, we present another system model with a routing configuration. We also 
compare the generic routing approach to current practice. In the aforementioned 
applications, we mainly implement planning and scheduling control modules and 
include (generic) local traffic control modules in an aggregate manner.  

Section 3.1 presents a generic MHS model, which can be tuned to simulate MHSs in 
different industrial sectors. Section 3.2 presents a modification to the system base 
modeled in Section 3.1 by changing the system layout and equipment to simulate a 
different distribution system. The changes result in a routing configuration, which 
requires an additional control module to be included in the control architecture (which 
is applied in Section 3.1). This additional control module is routing TSUs in networks 
(see Section 2.2.2.4). Finally, Section 3.3 ends with concluding remarks.  

                                              
10 This chapter is based on Haneyah et al. (2013b). 
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3.1 A generic material flow model  
In this section, we introduce a generic material flow model, which uses an ASRS as 
the main element. The control modules applied reflect the first building blocks of the 
concept control architecture proposed in Chapter 2. Section 3.1.1 presents the system 
model and relevant components. Section 3.1.2 presents the implementation of the 
proposed control architecture on the generic material flow model, discusses 
experimental results, and analyzes the generality of the software implementation. 
Finally, Section 3.1.3 presents concluding remarks for the generic material flow 
model. 

3.1.1 A generic MHS model 

Based on the analysis of two MHSs operating in two different sectors (Baggage 
Handling and Distribution; see Figures 3.1a and 3.1b), we construct a model of a 
generic MHS (see Figure 3.1c). The generic system entails an ASRS with aisles and 
cranes, a conveyor in loop configuration as a sorter system, and inbound and outbound 
conveyors connecting the cranes and workstations to the loop. However, we do not 
display a comprehensive MHS, i.e., in a typical baggage handling system, there are 
baggage screening systems entailing other loop conveyors and clusters of screening 
machines. Chapter 4 addresses these screening systems, which are upstream the ASRS 
and the main sorter system.  

As a general rule in the BHSs that we studied, an arriving TSU goes directly to the 
sorter system if the build for the corresponding flight is open on one or more 
workstations; otherwise it is diverted to the ASRS. When the build for a flight is open, 
relevant bags are released from the ASRS to the workstation(s) assigned to handle the 
bags of this flight.  

In the distribution systems that we studied, arriving TSUs are always stored first, so 
they never go to workstations directly. TSUs are full when they enter the system. 
However, when a TSU is used for an order, some SKUs are picked from it at a 
workstation. If the TSU is not completely consumed, it becomes a broken TSU that 
has to return to the ASRS. These broken totes also have to return to the ASRS first 
before being reused for other orders.  

We highlight that in distribution arriving TSUs go to the ASRS via the main sorter 
system (see Figure 3.1b), whereas in baggage handling, arrivals enter the ASRS via 
another conveyor-based route (see Figure 3.1a). The main sorter system only handles 
the outflow baggage from the ASRS to the workstations. The reason is that (in 
baggage handling) the outflow of bags is critical and should not be disrupted by the 
inflow. Therefore, these two flows are decoupled in terms of the handling equipment. 
However, this decoupling also exists in some of the large distribution systems, which 
we study in Section 3.2.  
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Figure 3.1. MHS models. 

In order to apply generic control methods, we propose the generic MHS model 
depicted in Figure 3.1c, in which we do not model the transport route leading arriving 
TSUs (in baggage handling) to the ASRS in detail. We model this route in aggregate 
terms because it is not critical from a control point of view and it does not exist in the 
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distribution system that we study for this model. The generic MHS model can still 
reflect a different distribution system with a different layout, e.g., where inbound totes 
do not use the conveyor loop. We apply the generic control elements to both industrial 
sectors by parameterizing the generic MHS model to simulate distinct sectors. For 
example, the conveyor route from the ASRS to the sorter in Figure 3.1a is incorporated 
in Figure 3.1c by longer travel times on the sorting loop from the ASRS to 
workstations, where travel times are configurable parameters in a travel times matrix 
(see Section 3.1.2) in the generic model. The recirculation time on the sorting loop 
follows the actual travel times (from practice) for each industrial sector. Moreover, 
when the generic MHS is configured as a distribution system, then arriving TSUs 
proceed to the ASRS via the sorting loop and do not use the other (baggage handling) 
route from the divert to the ASRS. In this case, the generic model reduces to the 
distribution system model (Figure 3.1b). 

In this section, we focus on planning the flow of TSUs into the ASRS and out of it to 
the workstations via the main sorting loop. To this end, we model the following system 
components: 

o Storage aisles: we model storage aisles in aggregate terms, i.e., we do not 
model the exact storage locations within an aisle.   

o Cranes: cranes are modeled with their inbound and outbound buffers. Travel 
times for cranes are taken from tested distributions at our industrial partner. 

o Workstations: workstations are modeled with their inbound and outbound 
buffers. 

o Divert: we model the first entry point of TSUs with an arrivals source to 
generate TSUs and a divert that makes decisions on routing TSUs to the 
sorter or to the ASRS. 

o Sorting loop: the loop is modeled at some level of aggregation, where we 
keep track of the loop capacity and travel times on the loop, but we do not 
keep track of the location of every point on the loop at every moment in 
time.  

o Exception handling outfeed: this is a special type of conveyor where TSUs 
can be diverted in some cases, e.g., when a bag misses its flight. 

3.1.2 Implementation and analysis 

The scope of the decision-making processes (see Section 2.2) implemented in this 
generic system model is as follows: the planning level is fully implemented. With 
regard to the scheduling level, the relevant processes are scheduling crane retrievals 
and routing arriving TUSs (by the divert; see Figure 3.1c). Finally, local traffic control 
problems introduced in Chapter 2 are implemented at a certain level of aggregation, 
because they exhibit identical control procedures for the different industrial sectors. 

3.1.2.1 Experimental setup 

We use the UGS-Tecnomatix Plant Simulation software to build a simulation model, 
which is scalable to different system sizes, in terms of the number of aisles, cranes, 
and workstations. Moreover, our model is flexible to different system settings 
regarding layout configurations (e.g., accessibility of cranes to storage racks) and 
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capacities of system’s resources (e.g., buffers and cranes). In order to model a certain 
system, the following modeling parameters have to be configured in the simulation 
model:  

o Inbound/outbound buffer sizes of workstations and cranes. 
o Aisle capacities, in number of storage locations per aisle. 
o Crane capacity in the number of TSU locations on the crane. In our model, a 

crane can carry 2 TSUs simultaneously in baggage handling and 4 TSUs 
simultaneously in distribution. Moreover, we use a cycle time distribution for 
each crane type depending on its characteristics. 

o Workstation capacity in terms of the number of TSUs processed per minute. 
o Pipeline sizes of workstations: For the distribution case we follow the first 

approach of setting the pipeline sizes, i.e., the pipeline size is equal to the 
number of locations in the inbound buffer of the workstation (see Section 
2.2.2.1). For the baggage handling case, we follow the second approach, where 
we have to tune the pipeline size parameter (see Section 2.2.2.1).  

o Sorting loop speed and size in number of TSU locations available. 
o Travel times matrix: this matrix provides travel times on the sorter loop for 

every source and destination pair.  
o Aisle-crane accessibility matrix. This matrix shows what cranes are operational 

in what aisles. In distribution, a storage rack is accessible by one crane only. 
However, in baggage handling, due to high reliability requirements, a redundant 
system design is in place, where two cranes can access the same storage rack.  

Moreover, the following parameters are control parameters, which are implemented in 
the simulation model, as well as in the actual software of MHSs: 

o Maximum number of orders simultaneously active on a workstation. In 
distribution, it is common to have multiple orders processed simultaneously. In 
this distribution system setting, 6 orders are active simultaneously on a 
workstation. 

o Planned orders threshold. This refers to the number of orders ready for 
activation on any workstation requiring work. These are to be planned in 
advance by the build planner (in distribution) and are typically equal to the 
number of active workstations. This is the minimum number of orders needed 
for activation on any workstation requiring a new order. We do not plan more 
than this minimum value so that we can dynamically plan new orders based on 
the status of the system.  

For baggage handling, we configure the settings to model a baggage handling scenario 
according to a major European airport, which was a reference system for our study. 
This system has 18 workstations and 13 cranes operating on 12 storage racks, so that 
each storage rack is accessible by two cranes. The service time of workstations 
depends on the number of operators present, where each operator can handle on 
average 2 bags/minute. The standard setting is 2 operators per lateral, and we translate 
this into a uniformly distributed service time between 10 and 20 seconds per bag. We 
use data sets regarding flight schedules and baggage arrivals from the same system, for 
a 24 hour day of operation. The flight schedules are known at the beginning of the 
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operation. An order in baggage handling refers to the baggage required for a certain 
flight, where each order line is a unique bag that is assigned to the flight. 

For distribution, we configure the settings of our model to model an existing 
automated distribution center in the Netherlands, which has 3 workstations, and 5 
cranes in 5 storage aisles. The service time of a workstation is uniformly distributed 
between 5 and 15 seconds per TSU, assuming one operator per workstation that can 
handle on average 6 TSUs/minute. For data sets in distribution, we run experiments 
according to one of the following order structure scenarios, for one day shift: 

o Big orders: 15-25 order lines/order. 
o Small orders: 1-5 order lines/order. 

We generate the orders randomly, where the number of order lines per order is 
determined using a uniform distribution that uses the order size limits as parameters. 
Then, for each order line, we randomly select an SKU. All orders to be satisfied for a 
day of operation are generated at the beginning of the simulation, e.g., before the order 
picking starts. Orders might have different priorities that result from, e.g., due times. 
Therefore, we arrange orders to be processed according to decreasing priority. 
Moreover, at the beginning of the simulation, we generate a replenishment flow of 
new TSUs to fill the ASRS (which starts empty). During the simulation, although we 
have multiple TSUs per SKU, we assume that to satisfy an order line, one TSU 
(holding the required SKU) is always sufficient even if the TSU is broken. In this case, 
a TSU is never consumed completely and so there is always a returning flow of broken 
TSUs from workstations to the ASRS. This returning flow compensates for the 
replenishment flow of new TSUs during daily operation.   

We concentrate on the logistics and transport issues of the system. Therefore, issues 
related to inventory profiles, i.e., inventory position, replenishment times, and the 
number of different SKUs, are not interesting factors to vary in our model. These 
issues are the responsibility of the MHS’s user, who has to make sure that there is 
enough inventory in the system. We use a standard value of a 1000 different SKUs in 
all experiments. These modeling assumptions are based on common practice and 
modeling cases from our industrial partner. 

Experimental control rules for assigning inbound TSUs to aisles are as follows: 

1. SKU distribution: A rule often used in practice is to select the aisle containing 
the fewest TSUs of the incoming SKU. In case of ties, the criterion will be to 
select the aisle with the lowest total number of TSUs. In baggage handling, a 
control rule at the same level of detail would be to select the aisle containing 
the fewest bags (TSUs) of the same flight. However, for baggage handling, this 
level of detail is not sensible for two reasons. First, if we do not deliberately 
distribute bags of the same flight over aisles, then it is very unlikely that bags of 
the same flight end up in the same storage rack. This is because (in large 
airports) baggage arrivals are stochastic and at any point in time a mix of 
baggage for many different flights arrives. Second, the ASRS in a BHS has 
sufficient capacity to retrieve all bags of a certain flight in time even if they are 
in the same storage rack, especially because two cranes can access the same 
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rack. Therefore, a control rule with this level of detail is not applied in practice 
for BHSs. 

2. Aggregate TSU distribution: In distribution, this means to select the aisle 
having the lowest number of broken TSUs in aggregate terms regardless of 
what SKU they hold (ties are broken as in rule 1). In baggage handling, this rule 
means to select the aisle having the lowest number of TSUs regardless of the 
flights to which these TSUs belong. 

3. Round-Robin: Simply store in aisles sequentially for every incoming TSU 
regardless of the number of broken TSUs, SKU distribution, or flights. 

In distribution, using the aggregate number of broken rather than full TSUs in the aisle 
makes more sense (control rule 2), because stock reservation always looks for broken 
TSUs first, and then distributing these over aisles contributes to workload balancing 
among cranes. In all control rules, there should be storage locations available in the 
selected aisle and at least one crane active on the aisle to perform the storage 
operation. Otherwise, the aisle is not a candidate.  

Note that in this simulation study, we model a daily operation both in baggage 
handling and in distribution, and not the behavior in the long run. Therefore, the 
dynamics at the beginning and at the end of the day are part of the study, so the data 
collection starts from the beginning of the simulation. 

3.1.2.2 General results on performance 

Distribution  

Figure 3.2 shows the number of order lines processed in every hour of operation (each 
column represents the throughput of an hour), for each workstation, order size, and 
inbound control rule. We observe that there are no significant differences in terms of 
throughput, when considering various control rules for inbound flows. Naturally, the 
last hour has fewer order lines processed due to the end of a shift and is therefore 
excluded from performance measures. The average number of order lines processed 
per hour was 314 and 320, with 87% and 88% utilization of workstations, for small 
and big orders respectively. 

Note that smaller orders cause throughput levels to decline. To analyze this trend 
further, consider orders that are extremely small (1 order line per order), then 6 orders 
active on a workstation lead to only 6 TSUs in transport. In this case, as an order is 
picked and a new order is to be activated,  more delays are expected until the next TSU 
is scheduled, retrieved, and transported. When the order is big, each order requires 
several TSUs that are in transport and keep the workstation busy. We experimented 
with orders of 1 order line each and found that the number of picks per hour drops to 
271, and utilization of workstations drops to 75%.  

Moreover, we notice that in the small orders scenario the number of picks tends to 
decrease as time goes by (see Figure 3.2). The interpretation is that when orders are 
small, the number of orders that have to be processed is higher, in order to generate a 
similar number of total order lines to simulate. Therefore, the probability that several 
orders simultaneously need the same SKU becomes higher. In this case, as more TSUs 
are simultaneously needed by several orders, delays may occur until reserved TSUs 
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are available for a specific order. Note that there is a limited number of TSUs per SKU 
in the system. 

 
Figure 3.2. Throughput levels per workstation under different control rules. 

With regard to inbound control rules, rules 2 and 3 do not show any deterioration in 
throughput measures over a whole day of operation compared to rule 1, which is 
common practice. Hence, we recommend using one of these rules as they require 
simpler software implementation and result in synergy in control with baggage 
handling. At this point, we recommend abandoning rule 1, but recommending rule 2 or 
3 depends on the results from the baggage handling scenario. 

Baggage Handling  

We found that setting the time allowance parameter to zero in the second approach for 
determining the pipeline size (see Section 2.2.2.1) results in an underestimated 
pipeline size. This causes insufficient material flow in the system. Many bags were 
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missed (irregularity rate = 13.2) and the utilization of system resources was low. The 
explanation is that the workstations were often idle, because there was an insufficient 
flow of TSUs to the workstations. In fact, a time allowance of zero assumes a free flow 
situation, where in reality delays occur, e.g. due to waiting times to merge on the loop 
which in turn may cause blocking entrance of new bags due to the maximally allowed 
pipeline size. Moreover, TSUs that are scheduled and not physically in transport 
contribute to pipeline occupation.  

Therefore, we have to propose a positive value for the time allowance parameter in 
order to account for retrieval time of cranes and traffic delays. We tested the system 
performance given different time allowance values and under different control rules 
(see Figure 3.3). Based on these simulation results, we find that a time allowance of 
170 seconds leads to a good performance, with an irregularity rate of 0.06 (bags lost in 
every 1000 bags). This irregularity rate is achievable by both control rules 2 and 3. 
However, we emphasize the time allowance is a layout-specific configurable 
parameter. 

 
Figure 3.3. Irregularity rate given different allowance values and different control rules. 

3.1.2.3 Analysis of generality 

We have implemented the proposed control architecture in the material flow model to 
analyze to what extent generic software code can be maintained for the two different 
industrial sectors: baggage handling and distribution. We focus on the analysis of our 
software code that deals with the logistic planning and control of the system, which is 
often different per industrial sector (i.e., decision-making functions). Moreover, we do 
not analyze Application Programming Interfaces (APIs) or Graphical User Interfaces 
(GUIs) that need to be provided to the hardware (see Section 1.4). The latter 
applications are standard interfaces that are available at our industrial partner and at 
other software developers. These applications are used to drive the hardware, but are 
not part of the decision-making functions. However, we provide standard interfaces 
between the decision-making procedures and decision-making units (controllers). In 
other words, we focus on the decision-making functions in detail (the control 
architecture), but not on the implementation of the control architecture in a real-life 
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software system, and on its connection to a real-world installation (the software 
architecture).  

Our perspective on software is therefore on an abstract level and deals with the code 
we used to implement these decision-making functions. This perspective supports our 
generic approach to decision-making in providing a generic control architecture, where 
connecting this control architecture to the hardware of a certain MHS is a different 
issue.  

Our target is to keep the control generic, but at some point we had to deviate to satisfy 
sector-specific requirements. As a matter of fact, for decision-making processes that 
exist in both industrial sectors, we implemented a software code of which 84% (in 
terms of non-redundant lines of code) is used identically by both sectors, while the 
remaining 16% vary. We present these percentages to give insight into the potential 
synergy between the different industrial sectors. These percentages are dependent on 
the implementation in our simulation and so they may vary in other implementations 
or other simulation models or packages. However, the generic design of our decision-
making processes leads to a high degree of synergy even with different 
implementations.  

We note that our analysis is focused on the software related to decision-making 
functions, which addresses the differences in these sectors. As we claimed earlier in 
Section 1.4, standardization in software that is not related to decision-making should 
be the rule rather than the exception, and so including it in our analysis has to bring 
even more synergy.  

We claim that our control architecture is generic in its applicability to different 
systems, in the sense that implementers need to understand and customize only 16 % 
of the code, where sector-specific elements need to be handled. Implementers should 
understand the majority of the code (roughly 84%) at a high level using standard 
procedures and reusable modules. To explain this claim, we use Figure 3.4 in which 
we provide a representation of the relevant decision-making procedures, where we 
include the main decision-making procedures for the main controllers we have in the 
model (the build planner, the storage planner, an object from the crane controller class, 
an object from the workstation controller class, the loop controller, and the arrivals 
divert controller). To keep Figure 3.4 readable, we do not show many of the standard 
procedures, databases and their connections, or the communication links on assigning 
orders to workstations and retrieval tasks to cranes (shown in Figures 2.3 and 2.4). 

At this point, we need to further analyze decision-making procedures where the 
software is not the same and explain why is it inevitable to deviate from the generic 
code. Therefore, the remainder of this section is dedicated to the analysis of the 
decision-making procedures that are not standardized for both industrial sectors (16% 
of the software code). Moreover, we analyze the procedures that can be incorporated 
in the control architecture or omitted depending on the requirements of certain 
industrial sectors (in the form of a plug-and-work mechanism). 
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Figure 3.4. Main decision-making procedures in the control architecture. 
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The order reservation process 

At the planning level, Figure 3.4 shows the ‘order reservation’ process as a non-
common process in both the build planner and the storage planner. As mentioned 
earlier, this process brings distribution at the same level of detail as baggage handling.  

Figure 3.4 shows the components of this process in the build planner, i.e., the 
‘Unplanned Orders’ and the ‘Plan Orders’ procedures. The ‘Unplanned Orders’ 
procedure checks (in connection with the orders database) whether there are still 
unplanned orders and triggers the ‘Plan Orders’ procedure to plan new orders given 
the threshold conditions (see Section 2.2.1). This procedure is active in our model for 
the two industrial sectors. However, in baggage handling it always finds that all orders 
in the database (in this case flights) are planned, and so it never triggers the ‘Plan 
Orders’ procedure and in turn the ‘Order Reservation’ procedure in the storage planner 
is never used. These procedures are plug-and-work like procedures that can be simply 
removed from the architecture when implemented in baggage handling.   

Triggering and releasing orders 

In this point, we discuss two elements of Figure 3.4 together, because they are closely 
connected. First of all, the trigger process in the workstation controller differs per 
industrial sector, because this process is directly related to the different operational 
environment, which we described in Section 2.2.1. This is summarized as follows:  

o In distribution: the trigger to activate a new order and the announcement of a 
complete order is based on work execution (late TSUs are waited for).  

o In baggage handling: orders are triggered to start and are declared completed 
based on time schedules (late TSUs are missed).  

In some other distribution systems, orders might also have strict due times. However, 
in the system we studied, orders are arranged beforehand according to their priority, 
but meeting a certain due time is not as strict. Therefore, in Figure 3.4 there are two 
variants of the ‘Trigger’ procedures, one per sector. This is an unavoidable sector-
specific application. In distribution, the ‘Sequence Control’ procedure in the loop 
controller sends update messages about TSUs in transport to the destination 
workstation. Specifically, the ‘Order In Transport’ procedure receives these messages. 
In distribution, the ‘Order In Transport’ procedure checks whether all of the TSUs of 
an order are in transport and sends a message to the ‘Trigger D’ procedure. In turn, the 
‘Trigger D’ procedure checks whether a new order should be activated and, if so, 
sends a message to the higher level build planner asking for a new order. This message 
is received by the ‘Order Release’ procedure. The latter procedure checks whether 
there are still any planned but inactivated orders. If so, then it selects an order to 
activate and sends a message to the ‘Activate Order’ procedure to activate the selected 
order on the triggering workstation.  

In baggage handling, the ‘Order In Transport’ procedure does not send any outgoing 
messages and, therefore, part of the code in this procedure is unused for this system 
model. As a matter of fact, in baggage handling, the orders (in this case flights) are 
planned beforehand according to certain time schedules. Therefore, at certain moments 
in time the ‘Trigger BH’ procedure sends a message to the build planner to activate an 
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order (in this case the planned flight). Since it is already known what order is to be 
activated, this message is received directly by the ‘Activate Order’ procedure in the 
build planner.   

We observe that in different industrial sectors we use the relevant variant of the 
‘Trigger’ procedure in the workstation controller. Moreover, we find that the ‘Order 
Release’ procedure in the build planner is used only in distribution to search for an 
order to activate, if any, on the triggering workstation. The ‘Activate Order’ procedure 
is standard and is used in both sectors. 

Controlling TSUs that leave the workstation 

As TSUs are processed at workstations, they have different options to proceed for each 
of the industrial sectors. The procedure ‘Control Dest’ (Figure 3.4) is responsible for 
guiding these processed TSUs. In baggage handling, TSUs always leave the system 
and so the ‘Control Dest’ procedure instructs low level controllers to move the bag. 
However, in distribution, processed TSUs are often broken TSUs, which need to be 
returned to the ASRS. Therefore, they need to be announced and re-routed via the 
‘Inbound’ procedure. Moreover, if a TSU is the last TSU of a certain order, then 
‘Control Dest’ sends a message that the order is complete to the build planner.  

The ‘Control Dest’ procedure needs to have a variant per industrial sector. It reflects 
an unavoidable system-specific application due to the different operational 
environments. 

Order complete in baggage handling 

In the previous point, we showed how the order is announced complete in a 
distribution system. In baggage handling, the procedure ‘Closing’ (Figure 3.4) is 
responsible for sending the order complete messages at certain moments in time, based 
on planned end times for flight loading operations.  

Routing arriving TSUs 

A sector-specific procedure ‘Routing Arriving TSUs’ is added in baggage handling to 
route arriving bags (see Section 2.2.2.3), because in baggage handling a scheduling 
decision has to be made on routing bags either directly to workstations or to the Early 
Bags Storage. 

Scheduling crane retrievals 

Scheduling crane retrievals is a vital decision-making process that has to adapt to 
sector-specific requirements, although it has the same basic structure in the crane 
controller. To understand this process better, we highlight an important operational 
difference in the systems we studied: in distribution multiple orders are simultaneously 
active on a single workstation, whereas in baggage handling a single order is active on 
one or more workstations simultaneously. 

Figure 3.4 shows that the retrieval process consists of three main procedures, executed 
in each retrieval decision:  

1. Defining candidate destinations (for which a retrieval can be scheduled): in 
distribution, the destinations of all active order line retrievals define the 
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candidate destinations. In baggage handling, we have to serve the most urgent 
flight first, and so those workstations on which the urgent flight is active are the 
candidate destinations.  

2. Selecting a candidate destination: the selection among candidate destinations is 
identical for both industrial sectors and depends on least occupied pipeline.  

3. Scheduling a retrieval: in distribution, we schedule a retrieval to the selected 
destination, based on the oldest active order first. In baggage handling, we 
schedule a bag for the selected workstation and the selected (urgent) flight. 

In this process, the second procedure is applied identically in both industrial sectors. 
However, for each of the first and third procedures above we have a variant 
customized for baggage handling and a variant customized for distribution. 

 
Figure 3.5. Commonality of code. 

Overview 

Having discussed the decision-making procedures in detail, we find it useful to come 
back to the decision-making processes in generic terms (see Section 2.2) and provide 
an overview of the commonality in software for these processes according to the 
implementation in the simulation model. Figure 3.5 presents the software coverage, 
i.e., commonality in the lines of code. In this sense, Figure 3.5 presents the number of 
lines of code in common and the numbers of lines dedicated per sector, for every main 
decision-making process. We note that decision-making processes at the local traffic 
control are common for both sectors, which should be the case for such lower level 
decisions that deal mainly with the movement of TSUs on the equipment. Variations 
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occur at the planning and scheduling levels, where the processes that are divided 
between the baggage handling or the distribution process with no common segments 
indicate that these processes require a variant per sector as described in the 
aforementioned analysis. On the other hand, processes that have dedicated segments 
per sector but also common segments, imply that certain procedures within these 
processes are common while others require a variant per sector. Finally, processes that 
are entirely dedicated refer to plug-and-work procedures. 

3.1.3 Concluding Remarks 

In this section, our main target was to provide a proof-of-concept for the applicability 
of generic control for MHSs in different industrial sectors. To this end, we presented a 
material flow model that is applicable in two different industrial sectors and applied 
generic control procedures on it building upon Chapter 2, which proposes a generic 
control architecture.  

We provided a generic system model and explained the implementation of our control 
for this model. Next, we reported on general results and analyzed the generality of our 
control approach in detail. As a matter of fact, we managed to achieve a high level of 
synergy in control over common decision-making processes. This is demonstrated by a 
software code that is 84% identical for both the baggage handling and the distribution 
sectors. The generic structure of our decision-making processes facilitates a minimal 
deviation from the generic code. This is achieved because we do not hamper the 
overall structure of the decision-making processes when adapting to sector-specific 
rules. For example, the different decision-making criteria in scheduling crane retrievals 
(flight due time or oldest active order first) are easily integrated in specific procedures 
within the overall decision-making process. However, such differences are due to 
sector-specific parameters, e.g., plane departure schedules, which we have to adapt to.  

In addition, we found that inbound flow control in distribution can be implemented in 
synergy with baggage handling. Inbound flow control can be implemented using 
aggregate information about TSUs in storage or using a simple control rule, i.e., 
Round-Robin. Uncommon decision-making processes that are specific to one sector, 
e.g., order reservation, are inevitable differences. These processes are built as 
functional add-ons to the generic control architecture, which do not hamper the generic 
structure and do not need special interfaces as we have standardized communications 
between controllers.    

3.2 An MHS with a routing configuration  
In this section, we develop the generic model of Section 3.1 further in order to (i) test 
the applicability of the generic control architecture (Chapter 2) on different 
configurations and (ii) to make an application of routing TSUs in networks, which is 
the scheduling process discussed in Section 2.2.2.4. This section is structured as 
follows: Section 3.2.1 presents the modified model. Next, Section 3.2.2 illustrates the 
implementation of the generic control architecture on the modified model and analyzes 
the performance. Finally, Section 3.2.3 ends with concluding remarks. 



56 

 

3.2.1 An MHS model with a routing configuration  

We use an MHS from the distribution sector in the United Kingdom to modify the 
generic MHS model of Section 3.1.1 (see Figure 3.1). Figure 3.6 presents the modified 
MHS model, where the original sorter downstream the ASRS is removed and a large 
conveyors transport network is introduced. Moreover, there are two sorters, each with 
2 workstations. The outbound flow of TSUs from the ASRS now proceeds to the first 
divert, i.e., Divert 1, which routes an incoming TSU downstream to one of the 
secondary diverts, i.e., Divert 2a or Divert 2b. Each of these secondary diverts then 
routes an incoming TSU to one of the sorters via the connected conveyors 
downstream. In this MHS, the transport operation from the ASRS to the sorters is done 
by conveyors.  

 
Figure 3.6. An MHS model with a routing configuration. 
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We note that in this large MHS, compared to the generic MHS model (Section 3.1), 
there is a larger transport network and there are more workstations. Therefore, a higher 
retrieval capacity from the ASRS is needed and so we extend the ASRS from 5 cranes 
in 5 storage aisles (for the distribution system in Section 3.1) to 8 cranes in 8 storage 
aisles. In this MHS, the outflow of TSUs from the ASRS (the product totes; see 
Section 1.3.1) do not use the sorters for transport. Actually, these outgoing TSUs use 
the conveyors network to eventually enter the inbound buffers of the workstations, 
where operators pick from them. The sorters are used to transport and consolidate 
customer/order totes (see Section 1.3.1) using additional equipment that we do not 
include in this model. In this setting, we do not model the sorter loops in detail as they 
are not the critical elements to the operation of this MHS. On the other hand, we focus 
on the conveyor lines upstream the sorters and on the control of the diverts, because 
these are the critical elements. 

As mentioned before, this model reflects an MHS from the distribution sector, which 
has the following business rules: 

o Picking for an order is done exclusively at one of the two sorters. On a certain 
sorter, it does not matter which of the two workstations processes a TSU for an 
order, since all TSUs are consolidated via the sorter. 

o If a TSU cannot proceed to its destination workstation due to blocking or 
congestion in the system, then it has to be re-routed back to the ASRS. We 
explain this point further in Section 3.2.2. 

3.2.2 Implementation and analysis 

Current practice uses a centralized control strategy for routing TSUs. In this strategy, 
the planning level of control gives a destination for an outgoing TSU as a specific 
workstation on the sorter where the corresponding order is being processed. The 
decision to which workstation to assign is made based on the status of the system at 
the time of decision-making, e.g., assign the least busy route on the destined sorter. In 
current practice, the diverts are at a low level of control. They merely guide TSUs 
according to the centrally planned route.   

This central control strategy gave unsatisfactory results in practice and caused 
imbalances in the material flow and a high rate of unprocessed TSUs returning to the 
ASRS. The reason is basically the incapability of the central decision-making 
approach to deal with the dynamically changing status of this large MHS. It is best to 
describe the resulting behavior of this strategy using an example. Assume that a TSU 
is planned for Sorter 1 via Workstation 1.1 (Figure 3.6), then the planned route is from 
the ASRS to Divert 1 and from Divert 1 to Divert 2a. In this case, as the TSU 
approaches Divert 1, assume that other TSUs have accumulated on Conveyor 1.1 due 
to a short absence of the operator on Workstation 1.1. In this case, the TSU proceeds 
to Divert 2a via Divert 1 according to its centrally planned route. However, at Divert 
2a the Conveyor 1.1 is blocked and, therefore, Divert 2a routes the TSU to Conveyor 
2.1. The TSU ends up at Sorter 2, which is a wrong destination and so the TSU returns 
back the ASRS unprocessed. 
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Section 2.2.2.4 proposes a generic, distributed, and dynamic routing strategy for 
similar types of configurations. In this section, we illustrate how this strategy not only 
brings more benefits in terms of simpler and more robust design, but improves the 
system performance as well. Using the decision-making processes of Chapter 2, we 
propose to make routing decisions for the MHS at hand in the following manner: 

o The build planner at the planning level of control assigns TSUs to a destination 
sorter as a general destination.  

o Divert controllers at the scheduling level of control dynamically route to 
workstations. 

The planning level of control is implemented identically as in the generic MHS model 
(Section 3.1) with one small modification: an order is assigned to a sorter (with two 
workstations) instead of assigning an order to a single workstation. Therefore, an 
outgoing TSU from the ASRS has a general destination of Sorter 1 or Sorter 2, and not 
a specific workstation destination. 

To more clearly describe the dynamic routing strategy at the scheduling level, we 
explain how the elements of the process in Section 2.2.2.4 are applied to this MHS. 
First of all, we add the dashboard logic to the controllers involved in the routing 
process, i.e., workstation controllers and divert controllers. Controllers use dashboards 
in posting information to upstream controllers to help them make decisions that 
balance loads on parallel routes while considering travel times and service rates. 
Therefore, besides posting information whether a certain destination (downstream) is 
accessible or not, the expected throughput times for each route downstream are posted. 
In more concrete terms, for this MHS as a TSU can go either to Sorter 1 or to Sorter 2, 
we calculate the expected throughput time per destination, where throughput time is 
the travel time to the relevant workstation at the destination sorter plus the processing 
time.  

Workstation controllers on a certain sorter always post (on their dashboards) that this 
sorter is accessible and the other sorter is not. However, when the workstation is not in 
an operational mode, then both sorters are not accessible. Throughput times are 
calculated based on the service rate of the workstation and the number of TSUs in the 
pipeline. To this end, downstream controllers need information about TSUs in the 
pipeline from upstream controllers, in order to estimate throughput times (see Figure 
3.7). 

 
Figure 3.7. Routing decision-making. 

In this context, when a disruption occurs as in the aforementioned example at the 
beginning of this section, e.g., route 1.1 blocked, then Divert 1 can observe which of 
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the downstream diverts gives access to the general sorter destination. Given no 
accessibility via Divert 2a and accessibility via Divert 2b, Divert 1 decides to route the 
incoming TSU to Divert 2b. In turn, Divert 2b routes the TSU via route 1.2, which 
delivers the TSU to the assigned sorter where it can be processed. 

In order to compare the generic routing strategy to current practice, we develop the 
generic simulation model (Section 3.1.2) by adding the required modules, e.g., diverts 
(with their controllers), and modify the model settings according to the MHS at hand.  

In this MHS, the route from the ASRS to Divert 1 accommodates 100 TSUs, while the 
routes from Divert 1 to Divert 2a and to Divert 2b accommodate 26 and 36 TSUs 
respectively, and finally the routes from secondary diverts to workstations routes 
accommodate from 30 to 47 TSUs depending on the source divert and destination 
workstation.  

In such a large MHS, the first approach for determining the pipeline size (see Section 
2.2.2.1)  by setting it equal to the number of locations in the workstations’ inbound 
buffer (20 TSUs each) is inadequate. A pipeline of this limited size results in an 
insufficient flow of TSUs in the system. Therefore, the pipeline sizes of workstations 
are parameters that have to be tuned (see the second approach; Section 2.2.2.1). For 
this MHS, our industrial partner has conducted simulation experiments to parameterize 
the pipeline size and found the best results when the pipeline size is set to 100 for all 
workstations. We also use this value in our simulation model in order to compare the 
performance of generic control with current practice. To this end, we implement both 
the generic control architecture and current practice in our simulation model. 
Moreover, we introduce operational failures on workstations to impose disruption in 
the material flow in order to test which control approach reacts better to disruptions. In 
this setting, the centralized control approach results in 11% of all TSUs being rerouted 
back to the ASRS unprocessed. However, with the generic routing approach, this 
figure reduces to 7%.   

3.2.3 Concluding remarks 

In this section, we presented an MHS with a complex routing configuration in order to 
apply the generic routing methodology (Section 2.2.2.4). We showed how to 
incorporate this routing approach in an MHS that uses other modules of the generic 
control architecture (Chapter 2) at the planning and scheduling levels of control. 
Compared to the generic MHS (Section 3.1), the MHS with a routing configuration 
uses the generic divert module with the methods for routing in parallel systems, as 
outlined in Chapter 2. This generic divert module connects to different types of 
resources upstream and downstream. In this section, Divert 1 connected upstream to 
the ASRS and downstream to other diverts, whereas the secondary diverts connected 
upstream to Divert 1 and downstream to workstations. 

A key element in the generic routing approach is the application of dashboards as a 
mechanism of transmitting information to accomplish the routing operation. We 
illustrated the implementation of dashboards in this specific MHS. For other MHSs, 
the structure of the routing processes and elements used remain generic, but the 
information posted on dashboards or the calculations used may be adapted. As a matter 
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of fact, Chapter 4 presents another routing configuration in another industrial sector, 
i.e., baggage handling, where we implement the generic routing approach with 
minimal adaptation efforts. 

3.3 Chapter conclusion 
In this chapter, we presented applications of the planning and scheduling control 
modules of the generic control architecture proposed in Chapter 2. In Section 3.1, we 
introduced a generic MHS model of which the settings can be changed to enable it to 
simulate a BHS or a distribution system. In this context, the generality of control was 
the main aim of our analysis, but we were also interested in the implication of generic 
control methods on the overall system performance. In Section 3.2, we paid attention 
to an important scheduling process that is not covered in the generic MHS model, i.e., 
routing in parallel systems. To this end, we presented an MHS with a routing 
configuration and illustrated how the routing elements and methods are easily 
incorporated in the control architecture applied in Section 3.1. 

We have developed the concept control architecture into a concrete architecture and 
validated the architecture by the implementation of all modules at the planning and 
scheduling levels of control. We found interesting results with regard to the extent to 
which we were able to maintain the generality of control. On the one hand, we were 
able to exploit the synergy in system elements in order to apply generic decision-
making processes. On the other hand, we showed that the generic control architecture 
results in a good system performance.  

However, the models we presented in this chapter were distinct applications that are 
not integrated to represent a larger MHS with a variety of processes. Therefore, in 
order to prove the adequacy of the control architecture further, we select a business 
case to make an implementation of the generic control architecture on a larger scale. 
Moreover, we note that our data structures should be flexible enough to adapt to 
unforeseen future applications. Therefore, in Chapter 4, we make a comprehensive 
application of the generic control architecture to a large BHS, which includes a more 
complex routing configuration than in Section 3.2. In addition, we introduce robots as 
a new type of workstations that are different from the laterals as the main workstations 
in BHSs and analyze how these new resources can be modeled generically. 
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Chapter	4 	

A	Baggage	Handling	Business	Case11		

In Chapter 3, we developed the concept control architecture (Chapter 2) into a concrete 
control architecture and validated it. To this end, we presented applications of the 
control modules of the generic control architecture in different system models. 

In this chapter, we provide a business case as a proof-of-concept for the applicability 
of the generic control architecture to a specific MHS. To this end, we build upon 
previous chapters to present a comprehensive application of the generic control 
architecture to the baggage handling system (BHS) of a terminal at a major European 
hub. The generic control architecture should be adaptable to the particularities of this 
BHS. Failing to do so means that the generic control architecture is not appropriate for 
the system under study and that its ability to serve as a generic architecture is 
questionable. This also applies if we have to make major changes to the architecture to 
make it applicable to the system we study. 

In the BHS that we study in this chapter, there are two new elements that we did not 
study in earlier chapters. The first element is a screening area, which requires the 
implementation of the generic routing mechanism. Second, in addition to laterals as 
the main workstations, this BHS contains a new type of workstations, i.e., loading 
robots. We show how the control of robots is incorporated in the generic control 
architecture and how standardization can be achieved over different workstation types.  

In this chapter, we also compare the generic control architecture and the current 
practice of this BHS. We highlight performance indicators, discuss the behavior of 
each of these control approaches, and comment on the architectural design and 
software complexity.  

This chapter is organized as follows: Section 4.1 provides a more detailed description 
of the baggage handling process than the one provided in Chapter 1. Thereafter, 
Section 4.2 describes the BHS (of our business case) in detail in terms of its core task, 
components, challenges, and objectives. Section 4.3 presents the control architecture 
as applied to the BHS at hand, and briefly presents the current practice control 
approach of this BHS. Then, Section 4.4 presents implementation aspects. Finally, 
Section 4.5 ends with concluding remarks.  

4.1 The baggage handling process 
Most people who travel with airplanes perceive a limited part of the baggage handling 
process. They hand over their baggage at the check-in desks and receive it when they 

                                              
11 This chapter is based on Haneyah et al. (2013c). 
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arrive at their destinations. The background process, however, is rather complex, 
particularly in major hubs.  

Figure 4.1 presents a high level overview of the baggage handling process. We choose 
to center the process around the main sorter system, where bags are sorted to 
corresponding flights. Incoming ULDs (unit load devices) at an airport contain either 
transfer baggage or reclaim baggage. All the reclaim baggage is transported to and 
unloaded on dedicated unloading conveyors (flow (1) in Figure 4.1). There are hardly 
any penalties for delayed reclaim baggage and reclaim baggage does not use complex 
and expensive material handling equipment. Therefore, we do not investigate this 
baggage flow in detail, as it is not challenging from a control or optimization point of 
view. The interesting flow is the transfer baggage, which has to make its way through 
the BHS onto another airplane. As these bags have to go through the sorter system, 
they mix with other bags. Therefore, delays may occur and cause bags to be late for 
their connecting flight(s), even if their inbound flight was on time. Normally, the 
details of a transfer bag become available only after the bag has been transported (2) to 
one of the transfer areas.  

 
Figure 4.1. The baggage handling process. 

A transfer area is defined as an area that contains multiple baggage loading conveyors, 
which can transport the transfer baggage onto the sorter system (3). At this point the 
transfer baggage merges with the baggage that has been dropped off by passengers at 
the check-in desks (4). The arrival process of checked-in baggage is stochastic and 
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difficult to influence. Early baggage is directed to one of the automatic baggage 
storing facilities (5), from which it is released back onto the sorter system when the 
build for the corresponding flight starts.  

When the build for a flight starts, one or more laterals are opened to handle the 
baggage for this flight. The baggage arrives from the sorter system at one of the make-
up (i.e., build) areas (6). There, workers take the baggage off the lateral and transport it 
towards the airplane (7), either on a ramp cart or inside a ULD. In addition to the 
processes described above, there are also processes for handling exceptions. A typical 
sorter system, for instance, has one or more laterals for bags that are too late to make it 
to their flights, for bags that can no longer be identified (e.g., because the label has 
been smudged or torn), and for bags that are extremely urgent and need manual 
transport to the destined airplane. 

Based upon the time remaining until departure of the corresponding flight, a bag is 
classified as being ‘cold’, ‘warm’, or ‘hot’. ‘Hot’ baggage is baggage that is supposed 
to be on an airplane that departs very soon. The exact definition differs per airport, but 
generally ‘hot’ baggage has between 45 and 20 minutes until departure. ‘Warm’ 
baggage can be transported directly towards the build area, because a lateral has 
already been opened to its flight. Finally, ‘cold’ baggage is baggage that is too early to 
be transported towards the build area, because no lateral has been opened to its flight 
yet. 

4.2 The baggage handling system 
In this section, we first describe the core task of a BHS in general (Section 4.2.1). 
Next, we focus on the BHS under study and discuss its main components (Section 
4.2.2). Finally, we describe the objectives and challenges of the BHS (Section 4.2.3) 
which are valid for the BHS under study and for BHSs in general. 

4.2.1 Core task 

As mentioned in Chapter 1, the purpose of a BHS is to deliver each bag from some 
point A (related to its source) to some point B (related to its destination), within a 
specific time limit. However, the airport environment of a BHS is very dynamic and 
stochastic, which complicates the delivery job and generates additional challenges. 
Moreover, the BHS can be a complex transport network that is challenging to control. 
Finally, every stakeholder has his own requirements, which affect his criteria for 
assessing the system, e.g., the compulsory security screening operation. 

4.2.2 System components 

In this section, we explain the components of the BHS of a terminal in a major 
European airport that we take as our business case. Figure 4.2 presents a simplified 
material flow diagram that may help in understanding the main components of the 
system, which are as follows: 

 Baggage: Baggage items that can be transported on the BHS are referred to as 
conveyables, which represent the main material flow. On the other hand, non-
conveyables represent a very small portion of the total number of bags that 
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cannot be loaded on the BHS because they are too small, too large, too light, 
too heavy, too unstable (e.g., a ball), etc. Non-conveyables are handled with 
dedicated equipment. Moreover, there is often another flow, which we do not 
consider. This is the flow of empty totes that are used to carry bags. In general, 
empty totes are not bottleneck resources for the performance of BHSs. In this 
BHS, empty totes are used only in the storage area. The other parts of the BHS 
consist of classical conveyors without the use of totes. 

 Diverts and Basic Switches: In general terms, diverts make a routing decision 
on directing the bag to one of two possible routes. The selected route leads to 
the bag’s next process step, e.g., the main sorter or the ASRS. If the routing 
decision is based on the operational conditions of the BHS, e.g., congestion, 
then diverts make scheduling decisions. On the other hand, if the routing 
decision is based on the bag’s attributes, e.g., the assigned destination, then 
diverts make local traffic control decisions. In the latter case, we call them basic 
switches or simply switches. The physical device composing a divert or a 
switch may be identical, but the control involved in it determines its role either 
as a scheduling device or merely as a local traffic control device. In this BHS, 
streams of bags coming from check-in desks or transfer belts mix and proceed 
to one of a group of 8 diverts (depending on the input point on the BHS). In 6 
out of the 8 diverts, each divert is connected to 2 screening loops downstream. 
For the remaining 2 diverts, however, each divert is connected to 2 other diverts 
downstream (see Figure 4.2). Moreover, there are 2 switches connected 
downstream 2 of the 6 screening machines (see Figure 4.2).   

 Screening Area: Security control occurs in this area. In this BHS, there are 4 
screening loops and 2 clusters of screening machines. Each cluster consists of 3 
screening machines and is accessible via two screening loops upstream. The 
design of the screening area with the upstream diverts is redundant in the sense 
that a bag has two alternative route options (decided upon by the divert) to go 
through one of the parallel screening loops. Next, the bag may access one of the 
parallel screening machines within a cluster. After having passed a screening 
machine, the bag proceeds on a network of conveyors to one of the downstream 
system areas, e.g., storage and laterals build areas. However, in this specific 
BHS, the screening machines do not have the same connections to downstream 
resources. More specifically, each cluster has only one machine giving access 
to both the main sorter and the storage area, a second machine giving access 
only to the storage area, and a third machine giving access only to the main 
sorter. 

 ASRS: The main function of the ASRS is to store early bags until laterals of the 
corresponding flights open. In this BHS, there is a racking system to store totes 
with bags or without (empty locations), cranes with a double load unit device, 
and pickup and delivery stations at the end of each storage aisle. The main 
function of this system is to store cold bags until the laterals of the 
corresponding flights open, but it is also used for other purposes such as storing 
bags that missed their flights. The ASRS has 12 storage racks and 13 cranes, 
where each rack is accessible by two cranes. 
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Figure 4.2. A simplified material flow diagram of the BHS. 
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 Main sorter: This is a conveyor-based sorting system, which sorts bags to the 
laterals that are open for the corresponding flights.  

 Laterals build area: This is the main build area, including the sorter(s) and the 
laterals, where workers unload bags from the BHS to prepare them for loading 
on destined airplanes, often using ULDs. One or more laterals are assigned to a 
single flight, and will be opened a couple of hours before the scheduled time of 
departure. In this BHS, there is one sorter with 18 build laterals and one 
exception handling lateral that collects bags that missed their flights. 

 Robots build area: This is not a common resource in conventional BHSs, but 
exists in the BHS under study. Robots can be used to build ULDs for different 
flights, where each flight may use robots starting an hour before lateral open 
time (for the flight) and closing 15 minutes before lateral open time. Section 4.3 
discusses the build operation in more detail and differentiates between the 
robots build area and the laterals build area. In this BHS, there are 5 robots, 2 of 
which are fully automated, while the other ones are semi-automated. The semi-
automated robots can handle bags with a higher rate, because a number of 
operators work on them. 

 Mergers: Mergers are devices that combine two incoming flows of baggage 
from two different sources into one outgoing flow. 

 Conveyors: System areas and resources are connected by a complex network of 
conveyors, which we take into account in our control methods, but do not 
model explicitly as they are at a low level of control that mainly executes 
decisions that are taken at higher levels of control. 

4.2.3 Objectives and challenges 

As stated in Chapter 1, the main KPI for BHSs is the irregularity rate. In large BHSs, 
such as the BHS at hand, it is common to have several resources that can execute the 
same job, e.g., parallel screening machines and redundant transport systems. Hence, 
there are different possible routes to realize the transport operation from the entry 
point of the BHS until the destined exit point. The logistic control function should use 
the resources of the BHS as efficiently as possible to minimize the bag’s flow time. 

In this thesis, our objective is to achieve generic control of MHSs in different 
industrial sectors. Moreover, we are interested in generic control within each specific 
sector. In the latter context, the control of the BHS needs to use generic methods, in 
contrast with current approaches where the control of BHSs is customized per project 
and not standardized even within a single project. For example, in the BHS there are 
workstations that work on the build operation, being robots or manned-laterals. 
However, in current practice, there is a different control approach for each workstation 
type. Section 4.3 discusses the generic control of these workstations. Moreover, 
current approaches often use the static shortest path in routing decision-making, i.e., 
the shortest path in-time from A to B given an empty system. However, in reality the 
static shortest path may not result in the smallest travel time for several reasons, e.g., 
congestion and failing workstations. In Section 4.3, we show how to dynamically 
determine the best route according to the generic routing approach proposed in Section 
2.2.2.4. 
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4.3 The control architecture applied to the BHS 
Chapter 3 presented an application of the generic control architecture to a generic 
MHS model (with an ASRS, a main sorter, and a laterals build area). In this chapter, 
we develop a more comprehensive application of the control architecture to the BHS. 
In this application, we extend the BHS of the generic MHS model (Section 3.1) to 
include two new areas, i.e., the screening area and the robots build area.  

In this section, we present the components of the control architecture (Section 4.3.1) 
and the decision-making processes involved (Section 4.3.2) in this BHS. Figure 4.3 
shows the control structure with the main control units and decision-making processes. 

4.3.1 The control architecture of the BHS  

In this section, we present the controllers involved in this BHS at the higher levels of 
control (planning and scheduling) and their main tasks.  

 Build planner: This controller is responsible for the build areas, i.e., it 
coordinates the build workstations being manned-laterals or robots. In baggage 
handling, this means the controller plans build operations for flights, i.e., it 
activates the build of certain baggage groups on workstations and 
communicates with the storage planner to request the release of bags from the 
ASRS to the right build point(s). 

 Storage planner: This controller is responsible for the storage area, i.e., the 
ASRS consisting of cranes and storage racks. The storage planner assigns 
retrieval tasks to subordinate crane controllers based on information from the 
build planner. Moreover, upon request by the build planner, the storage planner 
investigates the possibility of releasing baggage groups to build ULDs for 
certain flights (see Section 4.3.2).   

 Workstation controller: In the modeled BHS, we have two types of 
workstations, i.e., laterals and robots. Flight build times are planned beforehand 
on laterals and so laterals are reserved for certain flights during some time 
frame. On the contrary, robots are flexible workstations that can be used to fill a 
ULD for any candidate flight. A candidate flight at a certain moment in time is 
a flight that is allowed to use robots at this moment in time and that has a 
sufficient number of bags in the ASRS to fill a ULD. Both workstation types 
trigger the build planner to release work. However, a lateral workstation 
triggers the build planner whenever the planned time to build a flight 
commences, while a robot triggers the build planner whenever it is about to 
finish the build of a certain ULD and can start receiving bags to build another 
one.  

 Crane controller: At the scheduling level of control, the main task of the crane 
controller is to schedule the retrieval tasks (timing and sequencing). This 
scheduling process considers the urgency of retrieval tasks and the pipeline of 
destined workstation(s).  
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Figure 4.3. Control structure. 



69 

 

 Machine cluster (MC) controller: A machine cluster controller is responsible 
for monitoring a group of parallel screening machines that are connected to the 
same resources upstream, and for posting information to upstream controllers 
about estimated throughput times. To this end, information about bags in the 
pipeline from upstream controllers is required.  

 Loop controller: Loop controllers participate in the routing process, which is on 
the scheduling level of control, by transmitting information from downstream 
machine clusters to upstream diverts and the other way around. In addition, 
loop controllers post information about space utilization of the loop (see 
Section 4.3.2). 

 Divert controller: This controller makes scheduling decisions on diverting bags 
to one of several downstream systems in the screening area. To make this 
decision, it uses information transmitted from downstream controllers. 

We stress that the planning controllers are unique and aggregate, whereas scheduling 
controllers are duplicated for every resource. Section 4.3.2 explains the interfaces 
between the controllers mentioned in this section and how they communicate to 
perform the main decision-making processes in the control architecture as 
implemented in this BHS.  

4.3.2 Decision-making processes and communication 

In this section, we list the decisions taken at each level of control and communication 
that takes place between different controllers. In the context of the BHS, we emphasize 
the key descriptions and applications presented in previous chapters and illustrate the 
new elements or the adaptations that are required to control this BHS. Moreover, we 
briefly indicate how decision-making processes are controlled in current practice. 

4.3.2.1 Planning level 

The two main problems at the planning level of control in a BHS are to plan the inflow 
of bags to the ASRS and to plan the outflow of bags from the ASRS towards build 
areas (see Chapter 2). In this section, we describe these planning processes in the 
context of the generic control architecture as applied to the BHS.  

Inbound flow planning to the ASRS  

In current practice, an incoming bag (which requires storage) triggers a higher level of 
control. The higher level of control responds with a destination rack and a crane to 
perform the storage operation.  

In the generic control architecture, the bag is announced to the storage planner, which 
responds with a destination rack and crane to perform the storage operation. In this 
BHS, for both control approaches, the storage rack with the smallest number of bags is 
selected, provided that there is at least one active crane on the rack. 

Outbound flow planning from the ASRS  

In current practice, cranes trigger a higher level of control that they are ready to 
perform a retrieval cycle. At the higher level of control, two different approaches are 
employed to release baggage from the ASRS:  
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o Retrievals for robots are released on an individual basis considering the pipeline 
of the destined robot and the sequence of bags required in the ULD. Retrievals 
for robots have priority over retrievals for laterals. 

o Retrievals for laterals are released in baggage groups (e.g., bags of a certain 
flight) considering a limit for the ASRS on the rate of retrievals for a certain 
baggage group. The baggage groups are classified at a high level of control in 
different priority classes according to the number of bags in the ASRS and to 
the planned retrievals’ finish times of these bags. Priority classes of the baggage 
groups and the limits on release rates are dynamic and updated continuously as 
they depend on the elapsed time and on the number of bags in the ASRS. The 
high level of control assigns the bags that the triggering crane has to retrieve in 
its next cycle. In these assignments, prioritization rules within a certain priority 
class are also considered. 

The generic control architecture provides a generic release approach that is based on 
standardizing the two types of workstations (laterals and robots). To achieve this 
standardization, we propose: first, setting pipeline size limits for all workstations and 
second, imposing due times on all crane retrievals. Figure 4.4 provides an overview of 
the outbound planning process as applied to the BHS.  

 
Figure 4.4. Communications for outbound planning. 

We now describe the outbound planning process in more detail and show how the 
control is standardized over the workstations of the system.  

Baggage is released from the ASRS in groups, where a baggage group can be as large 
as all bags belonging to a certain flight or a subset of these bags defined by the storage 
planner. There are two main sub-processes in outbound flow planning: 
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 Stock reservation: this is a generic planning process that we apply in Chapter 3 
for the distribution sector to assign product totes to orders. In baggage handling, 
this process is often not needed because each bag entering the system via 
check-in desks or as transfer baggage is already assigned to a specific flight. 
However, the extension to the robots build area requires the use of some 
functionality of this process, because the storage planner has to make a 
selection of bags from a possibly larger set to be assigned to a certain ULD. In 
other words, when a robot-workstation announces its availability to build a 
ULD, the build planner inquires the storage planner about candidate flights to 
build a ULD for. Candidate flights should have enough content of bags in the 
ASRS to fill a ULD and should be within the time allowed to build ULDs on 
robots (see Section 4.2). The storage planner responds to the build planner with 
available options. The build planner may then request to release a baggage 
group (ULD content of bags to be selected by the storage planner) for a certain 
candidate flight (e.g., the flight with minimum time remaining until departure) 
and assign this baggage group to the triggering robot. 

 Order release: workstations trigger the build planner to activate the build of 
baggage groups, based on work progress for robot-workstations (in this case a 
baggage group consists of the content of a ULD) or according to planned build 
times for lateral-workstations (in this case a baggage group consists of all bags 
for the flight concerned). As soon as a baggage group is active on a 
workstation, bags belonging to this baggage group have to be released from the 
ASRS. Therefore, the build planner informs the storage planner that a certain 
baggage group is active. In turn, the storage planner dynamically assigns 
relevant bags to candidate cranes as retrieval tasks, since each storage location 
is accessible by two cranes. If both cranes are active, then the storage planner 
assigns the retrieval to the crane having the smallest workload. Moreover, the 
storage planner sets due times for retrieval tasks. The due time for bags going to 
robot-workstations is a parameter that we use (see Section 4.4) to indicate the 
end of the time interval allowed to build a ULD, whereas the due time for bags 
going to a lateral-workstation is the planned end time of the flight build. From 
this point on, cranes are responsible for executing and sequencing these tasks at 
the scheduling level of control.  

4.3.2.2 Scheduling level 

At the scheduling level, we apply the following generic scheduling processes (see 
Chapter 2): scheduling crane retrievals, routing TSUs in networks, and routing arriving 
TSUs. We use the latter to make decisions on detouring bags as described later in this 
section.   

Scheduling crane retrievals  

Given a set of retrieval tasks, crane controllers schedule these tasks based on their due 
times and the pipelines of destination workstations (see Figure 4.5), as described in 
Chapter 2 and applied in Chapter 3. However, in Chapter 3 we only had lateral-
workstations in baggage handling, but in this BHS there are also robot-workstations. 
For robot-workstations, the flow has to be strictly controlled, because bags are to be 
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handled according to a predetermined sequence. Therefore, recirculation of bags due 
to blocked entry to a robot is prohibited. In this context, we apply the first approach for 
determining the pipeline size (Section 2.2.2.1), in which the pipeline size is equal to 
the number of locations in the inbound buffer of the robot-workstation. In this way, if 
any problem occurs in the workstation, then all bags in transport can be accommodated 
in the inbound buffer with a preserved sequence. On the other hand, we determine the 
pipeline sizes of lateral-workstations according to the second approach as applied in 
Section 3.1.  

Available positions
in the pipeline

Scheduled retrievals

Release retrievals 
for active groups

Cranes’
controllers

Completed tasks &
trigger for next task 

Build
Planner

Storage
Planner

Expected arrivals

Other 
controllers

Activation of
Baggage groups

Work stations’
controllers

 
Figure 4.5. Communications for scheduling crane retrievals. 

We highlight that for the robot-workstations, we use the control procedures as applied 
to the workstations in the distribution system of Section 3.1 in view of the high 
synergy between these two workstations. This reuse of control procedures emphasizes 
the generality of the control architecture. The following are the main points of 
similarity between the robot-workstations and the distribution-workstations: 

o Workstations receive a group of TSUs in a predetermined sequence and TSUs 
of different groups are not allowed to mix in transport, at least when destined 
for the same workstation. These operational conditions govern the pipeline size 
determination approach. 

o Workstations trigger the build planner for new task assignments according to 
the progress of work and not according to time schedules (see triggering and 
releasing orders: Section 3.1.2.3). 

o Workstations use the parameter ‘maximum number of orders simultaneously 
active on a workstation’ (see Section 3.1.2.1). However, this parameter is 1 for 
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robot-workstations, which handle 1 ULD at a time (note that this parameter was 
6 for the distribution-workstations considered in Section 3.1). 

Routing bags in networks  

In Chapter 2, we outlined an approach for routing TSUs in networks, where divert 
controllers make the routing decision based on the state of the system downstream. In 
Section 3.2, we discussed an application of this routing approach to a routing 
configuration in the distribution sector. In this section, we show another application, 
namely to the screening area of the BHS at hand. In the screening area, screening 
machines (see Figure 4.2) are available at alternative systems. In such configurations, 
a divert controller has to decide to which system to divert an incoming bag. Contrary 
to current practice where static shortest path algorithms are often implemented, we 
apply the generic and dynamic routing approach. We note that we model 8 diverts, 
each connected to two resources downstream. More precisely, for 6 diverts, each is 
connected to 2 screening loops downstream, while for the remaining 2 diverts, each is 
connected to 2 other diverts downstream. Each screening loop is connected to one 
cluster of screening machines downstream (see Figure 4.2). 

We aim to balance the load on parallel systems and react to machine failures, i.e., 
fewer bags should go to the system having a lower capacity (due to, e.g., failed 
machines). For the distribution system modeled in Section 3.2, we focus on expected 
throughput times of the systems. In the BHS however, as the bag can go either to the 
laterals build area or to the storage area (from the screening area) as general 
destinations, we calculate the expected throughput time per destination. Note that in 
Section 3.2 the general destinations were Sorter 1 or Sorter 2. To this end, machine 
cluster controllers post expected throughput times. In turn, upstream controllers use 
this information to make routing decisions. Upstream controllers also have to provide 
information about bags in the pipeline for downstream controllers to estimate 
throughput times.  

In this large BHS, the decision to divert a bag to system A or to system B is 
impractical to take for each bag separately due to the high rate of bags passing the 
divert at a high speed. It may cause excessive switching of diverts (which is 
undesirable for the equipment). Therefore, the divert is positioned to one of the 
downstream systems until the difference in throughput times between downstream 
systems exceeds a certain threshold. Then, we need to react to the imbalance and so 
the divert switches position. As long as throughput times are balanced, we check 
whether space occupation on downstream loops is balanced in the same manner. We 
use the dashboard logic to post status updates to upstream controllers. Each component 
(machine cluster, loop, or divert) has a dashboard that posts accessible destinations 
downstream, expected throughput times, and space occupation on loop(s) downstream 
(see Figure 4.6 for an example). Upstream flow is always blocked when the system has 
completely absorbed the allowed capacity.  

With regard to the generality of the routing approach, we note that if the threshold 
values are set to 0, then the control mechanism is reduced to the mechanism that we 
use in the distribution system of Section 3.2. Therefore, in this section we actually 
provide a more general routing approach that can be applied to the distribution system 
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we modeled in Section 3.2. Moreover, we again show that the standardized controllers 
and communication interfaces allow the application of the same control logic to 
different system layouts by merely defining connected controllers upstream and 
downstream for each component.  

 
Figure 4.6. Communications for dynamic routing. 

Detouring bags  

As mentioned in Section 4.2.2, one screening machine per cluster has connections to 
both the main sorter and to the ASRS. Therefore, outgoing bags can be routed either to 
the sorter system or to the ASRS via the switches available downstream these 
screening machines (see Section 4.2.2).  

In current practice, switches route the bag based on the status of the corresponding 
flight. In more concrete terms, if the corresponding flight is building then the switch 
directs the bag to the main sorter. Otherwise, the switch directs the bag to the ASRS. 
In this approach, there are no scheduling tasks involved in the switch controller.  

However, in the generic control architecture, we analyze the option of upgrading these 
switch controllers to divert controllers by incorporating decision-making rules at the 
scheduling level (e.g., based on working conditions). In this approach, bags are routed 
to the ASRS when the build for the corresponding flight is not open yet. Moreover, if 
the build is open and the pipeline(s) of the destined workstation(s) is (are) not full then 
the bags are routed to the main sorter (we route to the least occupied pipeline when 
more than one lateral is available). However, if the pipeline(s) is (are) full, then, in 
order to maintain a controlled flow on the main sorter, it may be beneficial to route 
bags to the ASRS and delegate the scheduling task to crane controllers there. We refer 
to the latter option as the detour option since it causes longer handling times by 
routing bags through additional system areas. The detour option should not be used for 
urgent bags as it may cause them to miss their flight. In this BHS, we can detour bags 
only if they have at least 30 minutes until departure. Otherwise, we route them directly 
to the laterals although they are busy. In this case, recirculation on the sorter is a safer 
option. 
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4.3.2.3 Local traffic control 

In addition to the planning and scheduling decision-making processes, we apply the 
local traffic control processes (see Chapter 2) in an aggregate manner as they do not 
affect the overall architecture and merely execute scheduling decisions. The main local 
traffic control processes are: first, space allocation at merge junctions, e.g., allocating 
free spaces on the main conveyor in front of the ASRS to bags waiting in the outbound 
buffers of cranes. Second, the crane storage cycle and in-aisle travel optimizer, which 
concerns the determination of travel sequences for a crane within an aisle, e.g., to 
execute a storage cycle to store incoming bags. 

4.4 Implementation 
In order to test the control architecture, we extend the simulation model used in 
Chapter 3, which includes the main building blocks of the BHS under study and of the 
control architecture. In this section, we describe the experimental setup (Section 4.4.1), 
the model parameterization (Section 4.4.2), and finally we present general results 
(Section 4.4.3). 

4.4.1  Experimental setup 

We configure the settings of the simulation model to represent the BHS at hand. In 
addition, there are control parameters, which need to be tuned for this BHS. These 
parameters are:  

 The threshold values we use in parallel screening systems to determine the 
allowable difference in expected throughput times (or space occupation on 
screening loops). When these threshold values are exceeded, the divert switches 
the baggage flow to the other system downstream.  

 The time allowance in the pipeline size expression according to the second 
approach (Section 2.2.2.1). 

 Due times on retrievals to robot-workstations. 

We use data sets regarding real-life flight schedules and baggage arrivals for the BHS 
of which the physical components are explained in Section 4.2.2. The operational 
scenario covers a complete day of operation in each simulation run. We include 
common screening machine failures occurring in practice during normal operation 
with exponential distribution for the time to failure (mean = 6 hours) and an 
exponential distribution for repair time (mean = 10 minutes). Each simulation run 
includes: 61 flights where each flight is scheduled to be built on two laterals for 75 
minutes, ending 15 minutes before the scheduled time of departure. We set the number 
of operators per lateral to 2, with a handling capacity of 120 bags per hour per 
operator. Moreover, each flight may use robots for 45 minutes, starting 1 hour before 
lateral build time starts. Automated robots and semi-automated robots handle bags at a 
capacity of 200 and 350 bags per hour, respectively. Finally, the number of bags 
modeled per simulation run is 25,198, which consist of 7983 transit bags and 17215 
checked-in bags. 
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4.4.2 Model Parameterization 

In this section, we propose suitable values for the main control parameters in the 
model. 

4.4.2.1 Pipeline allowance parameter  

We tested the generic routing logic in parallel screening systems and the detour option 
(Section 4.3.2.2). To this end, we use a BHS of a limited scope, which includes the 
screening area and the areas in direct connection downstream: the main sorter and the 
ASRS. We do not include the robots build area, because it is not in direct connection 
with the screening area where routing takes place. We test the detour option (see 
Section 4.3.2.2) versus always sending bags to laterals when the build time of the 
flight is open (even when the pipelines are full).  

Routing parameters (see Section 4.3.2.2) are selected according to desirable values in 
practice. We use a throughput time threshold of 1 minute, which means that a divert 
switches position only if switching leads to at least 1 minute savings in throughput 
time downstream. Moreover, we keep track of space utilization on (screening) loops. 
Once the space utilization on one of the loops exceeds 90%, and as long as throughput 
times are balanced, we start balancing for space utilization. We set the space 
utilization threshold to 20%, which means that a divert switches position only if 
switching leads an incoming bag to the loop which is at least 20% less occupied than 
the other accessible loop downstream. 

 
Figure 4.7. Time allowance versus irregularity rate with robots disabled.  

In order to determine the pipeline size, we conduct several experiments to configure 
the time allowance parameter (see Section 4.4.1). Figure 4.7 shows the effect of 
different time allowance values on the irregularity rate, which is the main KPI. We 
conduct the experiments without the detour option and with the detour option, in 
which a bag may be detoured when pipelines are full provided that the bag is not 
urgent, i.e., it has at least 30 minutes until departure for the BHS at hand. The best 
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value for the time allowance is found to be 100 seconds for both options (with detour 
and without detour). We observe that, in this BHS, the detour option does not have a 
big effect on the irregularity rate, since we are able to get comparable results without 
this option. Moreover, the detour option is seldom used; on average 0.4% of all bags 
were detoured. There are two causes for this result: first, the possibility of the detour 
option is limited to only 2 out of the 6 screening machines in the screening area due to 
the design of this particular BHS (Section 4.2.2). Second, the BHS under study is a 
large system where a bag is allowed to be detoured only if it has at least 30 minutes 
until departure (see Section 4.3.2.2). Therefore, the number of bags that can be 
detoured is limited. 

4.4.2.2 Setting due times 

In Section 4.3.2, we stated that in order to achieve standardization among different 
types of workstations, it is necessary to impose due times on all retrieval tasks 
assigned to cranes. In this way, cranes can have a standard approach for retrievals and 
do not have to distinguish retrievals going to robots from those going to laterals as in 
current practice.  

Due times on retrievals going to laterals are straightforward (Section 4.3.2) because 
they are based on planned build times on laterals. Moreover, current practice 
implements an approach that is based on due times as well. On the other hand, we have 
to find the right parameters for due times on retrievals going to robots. For the robots 
case, due times is a new concept that is not applied in current practice (see Section 
4.3.2). 

To this end, we use the simulation model to find the right parameters (using a fixed 
pipeline allowance time for retrievals for lateral-workstations). As we include the 
robots build area, the system capacity becomes high enough to handle all bags in time 
(i.e., to have an irregularity rate equal to 0). No capacity problems occur because we 
do not model major disruptions such as plane delays or severe equipment failures. 
However, we need to have irregularity rates in order to make comparisons between 
different due time approaches. Therefore, we impose a restriction that all bags have to 
arrive at their destined lateral before the lateral close time. Otherwise, we consider 
them missed. However, in reality there is still 15 minutes between lateral close time 
and plane departure within which a bag can receive special handling to make it to its 
flight.   

We experiment with several options to set due times on retrievals to robots and 
examine the effect of each option on the irregularity rate (IR) as shown in Table 4.1. 
We also measure the number of ULDs built by all robots during a complete day of 
operation. The first option in Table 4.1 is based on the fact that each flight has 45 
minutes allowed to use robots, starting 1 hour before laterals open (ending 15 minutes 
before laterals open). Therefore, we set due times for retrievals of each flight to be the 
end time of this 45-minutes interval. However, this option leads to an unacceptable 
performance. Following this option, a retrieval to a certain flight may have 45 minutes 
until its due time, when it is released early. On the other hand, another retrieval to the 
same flight may have few minutes until its due time, when it is released towards the 
end of the time allowed for the flight to use robots. A resulting behavior is that crane 
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controllers delay the retrievals to robots as they had initially long time until they are 
due. As a result, robots do not trigger for more work because the early assigned ULD 
builds were not processed and robots are still waiting retrievals from cranes. The 5 
robots build only 78 ULDs over the whole day of operation, which is a severe 
underutilization. Moreover, when retrievals for robots are due soon, cranes start 
working on them and cause retrievals to other flights building on laterals to be late. 
The aforementioned system behavior causes the irregularity rate to be too high.  

Consequently, we have to impose a ULD-specific due time on the bags of each ULD 
instead of the general ‘robots build close time’ as the due time for all ULDs of a 
certain flight. Therefore, we propose a time interval allowed to build a ULD, which is 
based on dividing the number of bags planned for the ULD by the handling capacity of 
the assigned robot. In this option, we plan for lower than 100% capacity on robots in 
order to take into account issues such as transport times, waiting on junctions, 
blockings, and retrieval times by cranes. Therefore, we actually divide the number of 
bags planned for the ULD by 60% of the robot capacity (see Option 2 in Table 4.1). 
Compared to Option 1, the resulting performance improves dramatically, where on 
average less than 1 bag is not properly delivered per 10,000 bags and the number of 
ULDs built is 475. A similar option to set a due time for a ULD, is to define the ULD 
due time based on 100% utilization of robots and then add a time allowance to this 
value (see Option 3 in Table 4.1). In this option, we divide the number of bags planned 
for a ULD by the robot capacity and then add a time allowance. With this option, the 
irregularity rate is the same as in Option 2, and the number of ULDs built is 479.  

Table 4.1. System performance under different due time settings for retrievals to robots. 

As a matter of fact, Option 4, in which we use experimental build times for ULDs, 
gives the best results, with 15 minutes allowed to build a ULD for any robot. So we 
use this as a parameter in our further experiments as follows: when a retrieval to a 
robot is assigned to a crane, the due time is always the time of release plus 15 minutes. 
It may be surprising that we achieve best results when both semi-automated robots and 
automated robots are given the same time to build a ULD, although semi-automated 
robots have higher capacity in handling bags (Section 4.2.2). However, giving both the 
same time to build a ULD at some point in time means that the due times for all 
retrievals released at this point in time are the same. Therefore, cranes work on 
retrieving bags for all 5 robots in the system, but if the allowed due time intervals for 
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semi-automated robots were even a few minutes smaller, the cranes would serve these 
robots and delay serving the automated robots. Consequently, at the system level, bags 
are handled at a lower rate causing the overall performance to decline. 

4.4.3 General results 

We test our control architecture on the large scale BHS, using the parameters as tuned 
in Section 4.4.2. In this BHS, we include the robots build area and implement a 
common practice of 2 operators working on each lateral. Moreover, we allow special 
handling for bags that miss lateral close time, but can still be delivered to the plane 
before departure by an operator for example. These bags should arrive at the plane in 
the 15 minutes time interval between lateral close time and the scheduled time of 
departure for the corresponding flight. 

In addition, we compare the performance of the generic control architecture to current 
practice (see Section 4.3.2) for the same input data. Given the large BHS with full 
capacity, it is possible to properly deliver all bags under generic control as well as 
under current practice approaches. In this case, we analyze other performance 
indicators (PIs) that are of interest. These PIs are as follows (see Table 4.2):  

o The average and maximum measures of traffic delay: these measures concern 
the traffic delay (waiting time) before an outgoing bag from the ASRS enters 
the main sorter. 

o Percent recirculations: this measures concerns bags that arrive at full inbound 
buffers of their destined laterals and thus have to recirculate on the main sorter 
for a second delivery attempt.  

o Percent detours: this measure reflects the proportion of bags that were detoured 
(see Section 4.3.2.2). 

o Number of ULDs built: this is a measure of the total number of ULDs built 
during the complete day of operation. 

o Percent special handling bags: this is a measure of the proportion of bags 
which arrive after the lateral has closed but before the departure time of the 
plane, and thus could still be loaded on the plane.  

We observe that, due to the pull concept, generic control performs better in 
minimizing re-circulations on the main sorter, which affects traffic delays as well. 
However, current practice compensates for less output on the sorter by better 
utilization of robots (more ULDs are built). This may be justified because retrievals for 
robots always get priority in current practice, while in generic control, there is no strict 
distinction between retrievals for robots and retrievals for laterals. With regard to the 
percentage of bags receiving special handling due to missing the lateral close time, the 
performance is comparable to current practice.  

To test the effect of the number of operators per lateral, we find that having 1 operator 
per lateral instead of 2 does not increase the irregularity rate, so the BHS would still 
perform well even with a lower number of operators than usual, which is desirable in 
practice. On the other hand, if the robots are disabled, all other settings being the same, 
then the irregularity rate increases to 3.60, which is unacceptable. However, we can 
compensate for disabling robots by increasing the number of operators per lateral to 3. 
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In this case, the irregularity rate is the same as with 2 operators per lateral and robots 
being enabled.  

Table 4.2. Performance indicators for generic control versus current practice. 

4.5 Chapter conclusion 
In this chapter, we provided a proof-of-concept for the applicability of the generic 
control architecture for MHSs in different sectors. To this end, we have extended the 
applications we made in Chapter 3 to present a more comprehensive application to a 
business case in the baggage handling industrial sector. In this business case, the BHS 
consists of several areas: a laterals build area, a robots build area, a storage area, and a 
screening area. Moreover, a variety of decision-making processes, at different levels of 
control, are implemented in this BHS. 

One of the advantages proposed by this study is to model workstations, being laterals 
or robots, in a generic manner. This resulted in a simpler control software for the order 
release and retrieval processes. In current practice, one approach is implemented in the 
storage area to retrieve bags for robots, while another approach is implemented if the 
destination is one of the laterals. Moreover, we implemented a dynamic routing 
strategy that uses the dashboard logic to make routing decisions and to react to 
breakdowns and congestion. These control methods have a modular and generic 
structure, which allows them to be implemented in different BHSs and different MHSs 
in other industrial sectors.   

In our application of the generic control architecture to the BHS at hand, we highlight 
some points that support the concept of generic control: first, we used the same 
planning level as in the generic MHS model (Section 3.1), but on an extended system 
base. Similarly, we used the same storage system with identical controllers, but 
introduced new connections to the upstream screening area. Moreover, we introduced 
a new type of workstations (robots) to the basic material flow model and found them 
analogous to the workstations in the distribution sector. Finally, to model the layout of 
the BHS at hand, we could easily modify transfer times, capacities, systems 
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connections, etc., since they are adjustable parameters in both the simulation model 
and the control architecture. 

Current practice approaches at the planning level are customized, complex, and 
computationally intensive. Alternatively, the generic control architecture identifies the 
decision-making processes at the right level of control, and handles layout-specific 
details by configurable parameters. As a result, the architecture is scalable and tunable 
to different system layouts and designs. Moreover, the architecture allows for a much 
faster implementation and is both flexible and more robust, still without compromising 
the overall performance. Finally, we stress that the comparisons we made are based on 
normal operational conditions. When more severe and unexpected disturbances in the 
material flow occur, we expect generic control to outperform current practice as 
generic control reacts directly to problems in material flow and takes actions to avoid 
possible congestions and imbalances.  

As the generic control architecture is designed, implemented, and confronted with 
more challenges in a business case, we extend our analysis to a scheduling problem, 
which is influential for the operation of MHSs but that is not part of the control 
architecture (as a software component). This problem is scheduling inbound containers 
to load MHSs that use sorters as the main element. Chapter 5 analyzes this scheduling 
problem.  
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Chapter	5 	

Improving	 The	 Performance	 Of	 Sorter	
Systems	By	Scheduling	Inbound	Containers12	

In Chapter 4, we applied the generic control architecture to a BHS (baggage handling 
system) and showed how generic decision-making processes are applied at the 
different levels of control. With regard to the material flow, we modeled the arriving 
bags (so far) as they appear at diverts. However, what system-users do before a TSU is 
placed on an infeed or after a TSU has been retrieved from an outfeed was not within 
our scope of analysis (Scope 1; see Section 1.2.1).  

In this chapter, we study scheduling algorithms that lead to better use of sorter 
systems. Such algorithms allow system-users to have better systems’ performance 
without installing additional equipment. More specifically, this chapter investigates the 
inbound containers scheduling problem (see Section 2.2.2.2) for automated sorter 
systems in two different industrial sectors: parcel & postal sorting and baggage 
handling. For the distribution sector, this scheduling problem is not relevant due to 
reasons discussed in Section 2.2.2.2. 

The aim of this chapter is to investigate which scheduling algorithm to use for each 
industrial sector, operational scenario, and system model. To this end, we build upon 
existing literature, particularly on the state-of-the-art scheduling algorithm designed 
for parcel hubs. We present an adapted version of this algorithm that allows for non-
zero internal travel times on sorters that in addition may differ per infeed/outfeed 
combination. Moreover, we show how to apply the scheduling algorithms in baggage 
handling as a new application area. We also propose extensions to the algorithms in 
order to adjust to the operational environment in baggage handling. To analyze 
different scheduling algorithms, we conduct computational studies on different system 
models and for different operational scenarios.  

This chapter is organized as follows: Section 5.1 describes the problem of scheduling 
inbound containers and presents a generic process model for sorter systems in the two 
industrial sectors. Then, Section 5.2 provides a literature review on containers 
scheduling. Next, Section 5.3 discusses scheduling inbound containers in parcel & 
postal sorting. Afterwards, Section 5.4 discusses scheduling inbound containers in 
baggage handling. Section 5.5 presents the experimental setup and the results of 
computational experiments. Finally, Section 5.6 ends with concluding remarks. 

                                              
12 This chapter is based on Haneyah et al. (2013d) and Haneyah et al. (3013e). 
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5.1 A generic process model for sorter systems 
In this chapter, we focus on sorter systems in baggage handling and parcel & postal 
sorting. We exploit the commonalities between these industrial sectors to describe the 
systems in a generic way. However, we first distinguish the basic physical layouts of 
sorters with a line configuration (Figure 5.1a) from more complex sorters with a loop 
configuration (Figure 5.1b). In this chapter, we focus on sorter systems with a loop 
configuration, but the analysis and the results are applicable to sorters with a line 
configuration as well. 

 
 

Figure 5.1. Basic configurations of sorter systems. 

Although baggage handling and parcel & postal sorting are two different industrial 
sectors, a common operation is scheduling inbound trailers, ramp carts, and ULDs 
(unit load devices) to unload at the infeeds of the sorter system.  

In practice, a lot of information about the contents of specific containers or ULDs is 
available in the network (Scope 3; see Section 1.2.1). For example, when loading a 
ULD with bags at an airport of origin, the information about the number of bags in the 
ULD and their destinations is registered. However, this information is not used at the 
next airport where this ULD arrives. System-users typically apply a first-come-first-
served (FCFS) policy when unloading inbound containers. As a result, uncontrolled 
peak flows for a particular outfeed may arise. Peak flows for outfeeds may cause them 
to be overloaded, which may reduce the capacity (measured in sorted items per hour) 
or at least increase material handling costs.  

In sorter systems, outfeeds are generally coupled to specific destinations or regions of 
destinations. When an outfeed coupled to a particular destination is full, a sorter in a 
line configuration transports the corresponding items to the outfeed for unsorted items, 
which leads to an area (downstream the sorter system) where unsorted items are 
collected. The capacity of the sorter system is indirectly reduced, because the unsorted 
items have to be re-loaded onto the sorter system for a second delivery attempt. The 
other solution is that a worker manually delivers the item to the right outfeed, which 
may increase material handling costs significantly. In a sorter system with a loop 
configuration, a full outfeed results in recirculation. This reduces the sorter capacity 
directly, since a recirculating item claims space that otherwise could have been used 
by another item. In this context, balancing the workload across outfeeds may help 
reducing the overload incidents and thereby reduce recirculation. This in turn might 
increase the operational capacity of existing sorter systems or reduce the required 

a) Line configuration    b) Loop configuration    
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design capacity of new systems. Therefore, the main problem we tackle is how to 
schedule the unloading operations of inbound containers using the knowledge about 
their contents, in order to keep the workload on sorters well-balanced. We assume that 
operators assignment to chutes and outbound destinations planning are tasks that are 
already done by the system user’s process, which provides inputs to the operation of 
the automated MHS. Moreover, we assume highly loaded sorters. In this context, the 
main objective is to balance the load in order to maximize throughput. 

In baggage handling, incoming ULDs contain either transfer baggage or reclaim 
baggage that is transported on dedicated unloading conveyors. We do not consider the 
flow of reclaim baggage further as it is not critical from a scheduling point of view and 
not part of the flow on the main sorter system. In addition to ULDs, there are bags 
arriving from check-in desks. Since these arrivals are random and unpredictable, we 
model them as an uncontrollable inflow. 

Contrary to the situation in BHSs, temporary storage facilities are generally not used in 
parcel & postal sorting, where an outfeed is usually assigned to a single destination 
during the entire shift. As a result, arriving parcels can be routed to their corresponding 
outfeeds at any time. This contrasts with baggage handling where an outfeed is usually 
assigned to multiple flights during the day, and so it is not always possible to route an 
arriving bag to a destined outfeed. Note that routing may not result directly in 
successful delivery due to, e.g., congestion, overloaded outfeeds, etc.  

Figure 5.2 presents a generic process model for sorter systems in both industrial 
sectors. Note that there can be several infeed areas (1..J), storage areas (1..S), and 
outfeed areas (1..K). In this model, we can set the uncontrollable flow equal to zero to 
model a parcel & postal sorter, where no uncontrollable flow of check-in items exists. 
Likewise, a zero capacity temporary storage system models a parcel & postal sorter. 

 
Figure 5.2. A generic process model for sorter systems. 
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5.2 Literature on container scheduling 
Parcel & postal sorting 

The parcel hub scheduling problem (PHSP), introduced by McWilliams et al. (2005), 
is one of the first studies that focus solely on scheduling inbound containers at parcels 
sorting hubs. The authors consider a parcels sorting hub with three unloading docks 
and nine loading docks. McWilliams et al. (2005) use a sorter system in line 
configuration, where they try to minimize the makespan of the sorting process. They 
use a simulation-based scheduling algorithm (SBSA), which is based on a genetic 
algorithm, to solve the problem and show that their approach is superior to the 
arbitrary scheduling (ARB) approach, which randomly assigns available containers to 
available infeeds. McWilliams (2005) shows that similar results can be achieved using 
iterative local search or simulated annealing techniques. McWilliams (2009a) aims at 
an approach to balance the workload on the loading docks. He solves small problems 
to optimality using a binary minimax programming model. For big problem instances, 
he uses a genetic algorithm that outperforms the SBSA and ARB approaches used in 
McWilliams et al. (2005). A drawback of this approach is that due to the minimax 
problem, there may exist many optimal solutions in a large non-convex solution space. 
In further research, McWilliams (2010) shows that iterative approaches, such as 
simulated annealing, provide solutions that are on average 6% better than the solutions 
provided by the genetic algorithm, although large problems require more time to solve. 

McWilliams (2009b) develops a relatively simple dynamic load balancing algorithm 
(DLBA). While the other algorithms require information on all trailers in a particular 
shift, this algorithm only requires knowledge of the trailers that are waiting to be 
assigned to an unloading dock. He finds that the DLBA performs much better than 
random assignments (makespan reduction of 15%). Furthermore, the DLBA is 
generally better (makespan reduction of 8%) in large complex problems than the 
approach of McWilliams (2010). 

A relevant problem is the cross-docking problem, for which Cohen and Keren (2009) 
develop an algorithm given forklifts as the mean of freight transport. However, this 
algorithm does not suit conveyor-based sorter systems. Boysen and Fliedner (2010) 
present a literature review of cross dock scheduling and propose a research agenda in 
this field. Although a cross-dock is defined as a no-inventory sorting facility, many 
studies explicitly use temporary storage. Li et al. (2009) consider the situation in 
which the floor space in the center of the facility is used to temporarily store products. 
They study a problem where each inbound trailer is also an outbound trailer that has to 
be loaded directly after it has been unloaded (unlike the scheduling problem we 
address). They use a heuristic based on the parallel uniform machine scheduling 
problem. Yu and Egbelu (2008) focus on coping with the possibilities of limited 
intermediate storage when scheduling the inbound and outbound operations of a cross-
dock to minimize the makespan of the operation. They provide both a mathematical 
model to solve the scheduling problem to optimality and a heuristic algorithm. 
However, their approach entails a number of restrictive and unrealistic assumptions, 
e.g., that all trailers are available at the start of the operation and the unloading 
sequence of products from an inbound trailer can be determined. 
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McAree et al. (2002) test the bin and rack assignment model (BRAM) using a realistic 
case from a large package sort facility. This algorithm was specifically designed for air 
terminals where inbound ULDs are assigned to bins to be broken into individual 
pallets. Their main goal is to minimize the operational cost. Because the BRAM is too 
complex to solve, they develop a new algorithm that finds a solution by iteratively 
solving the Bin Assignment Model (BAM) and Rack Assignment Model (RAM), both 
of which are formulated as mixed integer programs (MIPs). McAree et al. (2006) find 
solutions for different layouts with running times ranging from a few minutes to a few 
hours, which is fast enough for large scale investment decisions, but too slow for 
online scheduling decisions. 

Gue (1999) determines which docks to use for unloading and which for loading in a 
cross-dock facility. The author uses a simple algorithm based on scheduling rules and 
logic similar to that in the approaches of McWilliams (2009b) and Yu and Egbelu 
(2008). 

Werners and Wülfing (2010) consider a more complicated sorter system. In their 
model of a Deutsche Post parcels sorting center, each parcel is unloaded at an 
unloading dock, sorted into a chute and then assigned to a loading dock. The authors 
aim at minimizing the total transport effort, i.e., reducing the total distance travelled on 
the sorters. In order to solve this complex problem, they hierarchically decompose the 
problem into two sub-problems. They show that their approach ensures a balanced 
workload over the different areas in the sorting center, whilst providing robust 
solutions. However, they do not discuss the inbound unloading process, they solely 
focus on scheduling the outbound process. 

Baggage handling 

Robusté and Daganzo (1992) provide an extensive overview of the possible pre-
sorting strategies, whilst aiming at minimizing baggage handling costs. They model 
the baggage handling process in detail, by specifying for each strategy the number of 
moves (for each bag, staff member, container, etc.) and determining the resulting costs 
of the strategy. They conclude that airlines could achieve significant cost reductions if 
they segregate the baggage for the larger destinations at the origin airport. 

Abdelghany et al. (2006) address the outbound assignment problem, i.e., assigning 
outfeeds to specific flights. Frey et al. (2010) apply a mathematical approach for a 
BHS scheduling problem. They consider a baggage handling facility with an EBS 
(Early Bags Storage) system and assign flights to workstations and carousels. They 
solve a decomposed problem to determine when to retrieve bags from the EBS. This 
problem could be converted into a scheduling problem for inbound containers, but 
there are two main limitations: the assumption that full knowledge is available is 
questionable, and the runtime of the algorithm is too long. 

Although not entirely related to the aforementioned studies, Hallenborg (2007b) 
presents an approach to determine the urgency of a bag. Even though he focusses on 
agents-based scheduling in BHSs using DCVs (destination coded vehicles), the 
urgency function of a bag may be useful for us to determine the urgency of a container 
of bags. Hallenborg (2007b) proposes an approach where a bag ݆ becomes urgent 
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when the time allowance remaining before the destined lateral closes (cutoff time) is 
below a threshold ௦ܷ௧௔௥௧. Let ܥ௝ denote the cutoff time for the lateral handling bag ݆ 
and let ܷ௠௔௫ denote the maximum time allowance a bag can have before cutoff, hence 
the lateral handling bag j opens at time ܥ௝ െ ܷ௠௔௫ (note that any lateral’s open and 
closure time is of course the same for all bags that are handled there, for one flight, the 
sub-index j just serves to distinguish the urgencies of bags destined to distinct laterals. 
Now if we plot the urgency function on a time scale, then the urgency ݑ௝ሺݐሻ of the bag 
is determined by the following function: 

ሻݐ௝ሺݑ  ൌ ቐ
െቀ

஼ೕି௧ି௎ೞ೟ೌೝ೟

௎೘ೌೣି௎ೞ೟ೌೝ೟
ቁ
ଶ
	 , ௝ܥ െ ܷ௠௔௫ ൑ ݐ ൑ ௝ܥ െ ௦ܷ௧௔௥௧

ଵ

ሺ஼ೕି௧ሻమ
௝ܥ								,											 െ ௦ܷ௧௔௥௧ ൏ ݐ ൏ 	௝ܥ

 

Figure 5.3 shows the urgency function when ܷ௠௔௫ is equal to 120 minutes, ௦ܷ௧௔௥௧ is 
equal to 30 minutes, and ܥ௝ is equal to 150 minutes. As the time ݐ approaches the 
cutoff time, urgency increases at a decreasing rate until it is zero when the bag has 
௦ܷ௧௔௥௧ time allowance remaining. From that moment on, the bag becomes urgent, its 

urgency increases at an increasing rate until it tends to infinity when the build area 
closes, i.e., when ݐ ൌ  ௝. This approach may provide a good solution to determineܥ
which containers need to be unloaded first to ensure that their contents are sorted in 
time. However, in this approach, we find it disadvantageous that the increase in the 
urgency is relatively late and that the urgency suddenly becomes very steep. 

 
Figure 5.3. Hallenborg’s urgency function with ܜܚ܉ܜܛ܃ ൌ ૜૙, ܠ܉ܕ܃ ൌ ૚૛૙, and ࢐࡯ ൌ ૚૞૙ minutes. 

Conclusion 

From our review, we find the DLBA (McWilliams, 2009b) of the PHSP (McWilliams 
et al., 2005) to be the most relevant study from different points of view. First, the 
DLBA is an online algorithm that does not require full knowledge about incoming 
containers but uses existing knowledge about containers that are already at the sorting 
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hub. Second, it is a relatively simple and fast approach, which can be implemented 
easily in practice. Finally, McWilliams (2009b) reports impressive reductions in the 
makespan of the sorting operation. Section 5.3 builds further upon this conclusion. 

5.3 Scheduling inbound containers in parcel & postal sorting 
In this section, we first describe the state-of-the-art load balancing algorithm, which is 
the DLBA by McWilliams (2009b) as developed for the PHSP (parcel hub scheduling 
problem). Note that the DLBA does not consider internal travel times on sorters 
(Section 5.3.1). However, in particular in BHS but also in more complicated sorting 
systems, sorter travel times may be significant and in addition differ for distinct 
infeed-outfeed  combinations. Therefore, we formulate the load balancing problem 
with non-zero and variable internal travel times (Section 5.3.2) and present an adapted 
DLBA to incorporate these features (Section 5.3.3).  

5.3.1 The dynamic load balancing algorithm (DLBA) 

The DLBA (McWilliams, 2009b) constructs unload schedules for inbound containers  
using an online scheduling approach. The aim is to dynamically balance the workloads 
of the outfeeds in order to minimize the probability of an outfeed being overloaded.  

The DLBA assumes that the infeeds of the sorter are parallel identical resources. 
Given this assumption, whenever an infeed becomes idle, a dispatcher decides (online) 
which of the available inbound containers to assign to the idle infeed. The dispatcher’s 
objective is to balance the flow of parcels over the sorter system and to avoid 
congestion. Thus, monitoring the state of the system is essential. In other words, the 
dispatcher has to be informed once an infeed becomes idle. Moreover, the dispatcher 
has to know (at each moment in time) the number of parcels going to a certain 
destination in the system. This includes the parcels flowing across the sorter and the 
parcels in the inbound containers being processed at the other infeeds. This 
information is known because parcels’ tags are read when they are unloaded from the 
containers to the infeeds and when they exit the sorter system at the outfeeds. 

The DLBA is an online algorithm that is triggered when an infeed becomes idle. Then 
the DLBA evaluates all containers available and selects the container that (when 
assigned to the idle infeed) minimizes the overflow on outfeeds (number of excess 
parcels).  

The DLBA assumes zero internal travel times on the sorter. As a result, a parcel 
loaded on an infeed is immediately unloaded at an outfeed. Note that the assumption 
of zero internal travel times is not a stronger assumption than the assumption that 
internal travel times are fixed and equal for any infeed-outfeed pair. As a result of the 
assumption of zero internal travel times, all infeeds are implicitly assumed to be 
identical. Therefore, if a container arrives and there are multiple infeeds idle, then the 
DLBA assigns the container to an arbitrary infeed. The restriction of zero internal 
travel times might be a valid simplification for small single-sorter systems where 
internal travel times for any infeed-outfeed pair are comparable, or when unloading a 
container requires much more time than the internal travel time of parcels in the 
system. However, this may not hold for larger systems or when the time to unload a 



90 

 

container is short compared to the travel time on a large sorting system with multiple 
loop sorters, multiple infeed areas, and routing complexities. Therefore, in Section 
5.3.2, we propose an adapted version of the DLBA, which takes internal travel times 
into account.  

5.3.2 Problem formulation with internal travel times 

In this section, we formulate the workload balancing problem of parcels sorters, which 
takes (unequal) travel times on the sorter into account. For the PHSP, the DLBA only 
keeps track of the total number of parcels in the system destined for a specific outfeed. 
McWilliams (2009b) argues that as long as the total number of parcels in the sorting 
process for each of the outfeeds was more or less equal, the resulting workload is 
balanced.  

Incorporating travel times means that the workload should not only be balanced over 
the different outfeeds, but also over time. Determining the expected outflow (the 
number of parcels that arrive at the chute) for each outfeed at each moment in time 
indicates the excess in capacity (if any) of the outfeed at some moment in time. 
However, not only the number of excess parcels is relevant, but also the rate at which 
these excess parcels arrive. We choose to use the squared value of excess flows as an 
optimization criterion to heavily penalize large excess flows. Another possible goal 
function would be a minimax goal function that minimizes the maximum excess 
amount. A drawback of this approach is that it may not properly distinguish different 
solutions. For example, a solution in which only one outfeed exceeds its capacity by ݊ 
parcels is considered the same as a solution in which all outfeeds exceed their capacity 
by ݊ parcels. In fact, in the latter case many more parcels may arrive at a full outfeed 
and thus are forced to recirculate on the sorter.  

Determining the squared excess outflow on a continuous time scale is impractical. A 
computationally less challenging approach is to use time buckets. In the time bucket 
approach, we determine for each parcel in which time bucket it is likely to arrive at the 
outfeed. The size of the time buckets is an important model parameter since it affects 
the level of detail that can be achieved. In order to achieve sufficient detail, we use a 
time bucket size of 1 minute. This is approximately a quarter of the time required to 
unload a single ULD and roughly equal to the smallest travel time between infeed-
outfeed pairs in the sorter systems that we study. Using time buckets of 1 minute 
provides sufficient detail but also results in valid and meaningful outflows. 
Furthermore, we use a concept related to time buckets, namely container segments, 
where we divide the load of each container into fictitious segments of equal size, each 
needing exactly one time bucket to unload all parcels in the segment. 

By including the internal travel times, the problem increases in complexity from the 
integer-linear program (ILP) for the PHSP that McWilliams (2010) provides. Unlike 
the PHSP, the infeeds are not identical in our problem. Therefore, it is important to 
know at which infeed a container is docked since travel times to outfeeds may differ 
amongst infeeds. We now present a mathematical formulation (with linear constraints 
and a non-linear objective function) for parcel sorting hubs with (possibly unequal) 
internal travel times. 
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Parameters 

݅) set of infeeds :ܫ ∈  .(ܫ

ܱ: set of outfeeds (݋ ∈ ܱ). 

ܶ: set of time buckets (ݐ ∈ ܶ ൌ ሼ1,2, … ሽ). 

ܿ) set of inbound containers :ܥ ∈  .(ܥ

ܵ௖: number of time buckets (segments) needed to unload container ܿ. 

   .length of one time bucket in seconds :ܾݐ

 Note that it is common practice .(in parcels per hour) ݋ ௢: outflow capacity of outfeedܨ
to define the capacities of sorter systems in parcels per hour. 

௖݂,௢: number of parcels in container ܿ destined for outfeed ݋. 

 excluding possible (in time buckets) ݋ ௜,௢: internal travel time from infeed ݅ to outfeedݐ
traffic delays. 

Decision variables 

௖,௦,௜,௧ݔ ൌ ቄ1 if	container	ܿ, segment	ݏ, is	assigned	to	infeed	݅, in	time	bucket	ݐ	
0 																																																																																																								݁ݏ݅ݓݎ݄݁ݐ݋

 

Auxiliary variables 

  .ݐ in time bucket ,݋ ௢,௧: excess outflow at outfeedܧ

௧௢௧ଶܧ : total squared excess flow for all outfeeds.  

Constraints 

1. Overlap prevention constraints: this set of constraints ensures that each infeed 
is used by at most one container segment per time bucket, where a container is 
divided into Sୡ segments of equal size such that in one time bucket the parcels 
of exactly one container segment can be unloaded at an infeed. 

  ∑ ∑ ௖,௦,௜,௧ݔ
ௌ೎
௦ୀଵ ൑ 1௖∈஼ ,ݐ∀ ݅ 

2. Assignment constraints: these sets of constraints are similar to the ones 
proposed by McWilliams (2010), except for the addition of the index ݅ for the 
infeeds. The combination of the following two sets of constraints ensures that 
each container segment is assigned exactly once and that a container is emptied 
in successive time buckets. 

  ∑ ∑ ௖,௦,௜,௧ݔ ൌ 1 ∀ܿ, ௧∈்௜∈ூݏ  

 ܵ௖ ⋅ ௖,ଵ,௜,௧ݔ െ ∑ ௖,௦,௜,ሺ௧ା௦ିଵሻݔ ൌ 0ௌ೎
௦ୀଵ ∀ܿ, ݅,  ݐ

3. Parcels flow constraints: the first term in this set of constraints incorporates the 
internal travel times ݐ௜,௢. In order to measure the outflow at outfeed ݋ at time ݐ, 
the flows that were generated by the infeeds ݅ ∈ ݐ at time ܫ െ  ௜,௢ have to beݐ
considered. Here, we use an approximate outflow measure since we assume that 
the parcels from a certain container that are destined to a certain outfeed are 
uniformly distributed over the segments of this container. The second term of 
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this set of constraints ensures that only outflows that exceed the capacity ܨ௢ 
force the value of ܧ௢,௧ to be positive.  

  ∑ ∑ ∑ ቀ
௙೎,೚
ௌ೎
⋅ ௖,௦,௜,ሺ௧ି௧೔,೚ሻቁݔ െ

ி೚⋅ଷ଺଴଴

௧௕
൑ ௢,௧௜∈ூܧ

ௌ೎
௦ୀଵ௖∈஼ ,݋∀ ݐ ൐  ௜,௢ݐ

Objective function  

The objective function minimizes the sum of the squared values of the excess outflows 
for all outfeeds and all time buckets in the planning horizon. 

 ݉݅݊ ௧௢௧ଶܧ ൌ ∑ ∑ ሺܧ௢,௧ሻଶ௢∈ை௧∈்  

In this formulation, we assume that the total sorter capacity is sufficient to 
accommodate incoming parcels, whereas the chute capacity is the bottleneck which we 
control. However, for systems with limited sorter capacity, further inflow would be 
blocked when the capacity on the loop conveyor is reached. Another options is to add 
a constraint to stop the inflow when the occupation of the sorter reaches a predefined 
limit.  

This formulation merely describes the static form of the problem. In order to solve it, 
we need full knowledge about incoming containers, which is unrealistic and would 
lead to an intractable problem. In Section 5.3.3, we present a dynamic online approach. 

5.3.3 The Adapted-DLBA 

In this section, we propose the Adapted-DLBA (ADLBA), which is an online algorithm 
that modifies the DLBA to incorporate (unequal) travel times on the sorter (without 
possible traffic delays). The main idea of the ADLBA is to make a selection on which 
containers to unload at idle infeeds in order to minimize the excess outflow over 
outfeeds and over time. Moreover, we show how to deal with an arriving container if 
multiple infeeds are available once the container arrives. 

Given a certain idle infeed, we examine the containers available in the queue at the 
sorting hub. For each container ܿ, we examine the ௖݂,௢ values for every outfeed ݋. 
These values represent the number of parcels destined to outfeed ݋ (see Section 5.3.2). 
Next, we find the time bucket in which the first of these ௖݂,௢ parcels are expected to 
arrive at the destination outfeed ݋ and the time bucket in which the last of these parcels 
are expected to arrive at this outfeed. Then, we evenly spread the ௖݂,௢ parcels over the 
time buckets from the first time bucket until the last time bucket. In this way, we 
determine the expected outflow of parcels to outfeeds if a container ܿ is selected to 
unload. Before explaining the procedures of the ADLBA, we present additional 
notations to those presented in Section 5.3.2. 

௖݂,௧௢௧௔௟: total number of parcels in container ܿ. 

 .௜: capacity of infeed ݅ (in parcels per hour)ܨ

ܽ௖: the time when the first parcel from container ܿ is announced at an infeed (in 
seconds). 

 ܿ ௖,௢,௦௧௔௥௧௖௢௡௧௔௜௡௘௥: number of the first time bucket in which the parcels from containerܤܶ
which have the destination outfeed ݋ are expected to arrive at outfeed ݋. 
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௖,௢,௘௡ௗܤܶ
௖௢௡௧௔௜௡௘௥: number of the last time bucket in which the parcels from container ܿ 

which have the destination outfeed ݋ are expected to arrive at outfeed ݋. 

௖,௢,௦௧௔௥௧,௘௡ௗܮܨ
௖௢௡௧௔௜௡௘௥ : number of parcels from container ܿ that are expected to arrive at 

outfeed ݋ in any time bucket from ܶܤ௖,௢,௦௧௔௥௧௖௢௡௧௔௜௡௘௥ until ܶܤ௖,௢,௘௡ௗ
௖௢௡௧௔௜௡௘௥. Note that these are 

auxiliary variables that depend on alternative assignment decisions.   

 based on ݐ in time bucket ݋ ௧,௢: actual total expected outflow of parcels at outfeedݓ݋݈ܨ
all assignment decisions made so far. 

 if we decide to ݐ in time bucket ݋ ௜,௖,௧,௢: expected outflow of parcels at outfeedݓ݋݈ܨ
assign container ܿ to infeed ݅ at time ܽ௖. 

Now, given a container ܿ assigned to infeed ݅, then for each destination outfeed ݋ (to 
which parcels exist in the container), we determine the values of ܶܤ௖,௢,௦௧௔௥௧௖௢௡௧௔௜௡௘௥ and 
௖,௢,௘௡ௗܤܶ

௖௢௡௧௔௜௡௘௥ using the following equations: 

௖,௢,௦௧௔௥௧௖௢௡௧௔௜௡௘௥ܤܶ  ൌ ቜ
௔೎ା

యలబబ
ಷ೔

ା௧೔,೚

௧௕
ቝ 

௖,௢,௘௡ௗܤܶ 
௖௢௡௧௔௜௡௘௥ ൌ ቜ

௔೎ା
యలబబ
ಷ೔

⋅௙೎,೟೚೟ೌ೗ା௧೔,೚

௧௕
ቝ 

Then, we calculate the expected outflow from container ܿ at outfeed ݋ as follows: 

௖,௢,௦௧௔௥௧,௘௡ௗܮܨ 
௖௢௡௧௔௜௡௘௥ ൌ

௙೎,೚
்஻೎,೚,೐೙೏

೎೚೙೟ೌ೔೙೐ೝି்஻೎,೚,ೞ೟ೌೝ೟
೎೚೙೟ೌ೔೙೐ೝାଵ

 

Note that the time required to unload a container (
ଷ଺଴଴

ி೔
⋅ ௖݂,௧௢௧௔௟ seconds) depends on all 

parcels inside the container, while the expected outflow arriving at a specific outfeed 
depends only on the parcels destined to this outfeed.  

The variable ݓ݋݈ܨ௧,௢ keeps track of the total outflow of parcels at outfeed ݋ in time 
bucket ݐ based on all assignment decisions made so far. Therefore, we increase the 
value of ݓ݋݈ܨ௧,௢ (for ݐ ∈ ൛ܶܤ௖,௢,௦௧௔௥௧௖௢௡௧௔௜௡௘௥, . . , ௖,௢,௘௡ௗܤܶ

௖௢௡௧௔௜௡௘௥ൟ) by ܮܨ௖,௢,௦௧௔௥௧,௘௡ௗ
௖௢௡௧௔௜௡௘௥  when the 

assignment decision of a container is fixed. Figure 5.4 summarizes the procedure to 
update the outflow values when a container is assigned to an infeed. 

 
Figure 5.4. Updating the outflow values when assigning a container to an infeed. 

In order to make an assignment decision, we have to select one of the containers in the 
queue to unload at an idle infeed. Therefore, we have to determine the objective value 
for an assignment decision of a specific container to a specific infeed. In this regard, 
time buckets in the past are irrelevant, and information about time buckets that are 
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relatively far in the future is not reliable, because recirculation and merging difficulties 
may alter these predictions. Therefore, we focus on the total expected outflow in the 
next 15 minutes. We introduce the set ܪ, which defines all time buckets that are part 
of the planning horizon. Then, for every alternative decision of assigning a container ܿ 
to an infeed ݅ at some time ܽ௖, we calculate the total expected outflow for each outfeed 
and each time bucket ݐ ∈   .௜,௖,௧,௢ݓ݋݈ܨ and store these values in the variables ܪ

Let ܨܧ௜,௖ be the total expected overflow of parcels at all outfeeds, summed over all 
time buckets in the planning horizon if container ܿ is assigned to infeed ݅ at time ܽ௖. 
Then, we determine the objective value for each assignment decision as follows:  

௜,௖ܨܧ 
ଶ ൌ ∑ ∑ ቀ݉ܽݔ ቄ0, ௜,௖,௧,௢ݓ݋݈ܨ െ

ி೚⋅௧௕

ଷ଺଴଴
ቅቁ

ଶ

௢∈ை௧∈ு  

The best assignment is the assignment with the lowest ܨܧ௜,௖
ଶ  value, which represents 

the cumulative squares of the overflows over all time buckets and outfeeds if container 
ܿ is assigned to infeed ݅. The general procedure to implement the ADLBA is as 
follows: given an infeed ݅ we calculate the expected overflow for each possible 
container selection and then select the container that minimizes the total expected 
squared overflow. However, if a containers arrives and there are multiple infeeds 
available, then we assign this arriving container to the infeed which minimizes the 
total expected squared overflow (see Figure 5.5 for an overview of the ADLBA). 

2
,ciEF

2
,ciEF

 
Figure 5.5. Main logic of the ADLBA. 
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5.4 Scheduling inbound containers in baggage handling 
In Section 5.3, we discussed scheduling inbound containers at parcels sorting hubs. 
We described the state-of-the-art approach and adapted this approach to cover 
operational scenarios where internal travel times on sorters are important. In this 
section, we move to the baggage handling sector and adapt the scheduling approaches 
of parcel & postal sorting to baggage handling systems. 

Since we study scheduling approaches for inbound containers in two industrial sectors, 
we use the same system models in our experiments (see Section 5.5). Therefore, to 
keep the implementation of scheduling approaches generic to both sectors, we assume 
that in the BHSs we study, only one lateral is assigned for each destination. However, 
to model BHSs where more than one lateral is assigned for the same destination, we 
may aggregate the multiple laterals into one lateral but with a higher capacity, a longer 
build time, and a larger inbound buffer.  

In parcel & postal sorting, inbound containers are the (only) source of parcels’ inflow 
to the sorter. In baggage handling, the inbound containers that we consider are ULDs 
that contain transfer bags that have to be unloaded at the sorter and to be sorted to 
destination outfeeds (see Section 5.1). In this context, we note that at the airport of 
origin (where these containers were loaded), there is normally a segregation of 
baggage where transfer bags are not mixed in the same container with bags arriving at 
their last destination. Moreover, as in parcel & postal sorting, the information about 
the contents of inbound containers in terms of the number of bags and their destination 
is available from the moment the container is loaded at the airport of origin. However, 
this information is often not (fully) used in practice.  

In addition to inbound containers, there are two sources of inflow that exist in baggage 
handling but not in parcel & postal sorting. These are the EBS and the check-in flow 
of bags (see Figure 5.2). In this section, we first study how to incorporate these two 
elements in the scheduling algorithms (Section 5.4.1). Then, we analyze the baggage 
handling environment further and propose additional scheduling tools for baggage 
handling (Section 5.4.2).    

5.4.1 The EBS and the check-in baggage 

In this section, we present additional procedures that need to be added to the 
scheduling approaches of Section 5.3 in order to make them applicable in baggage 
handling. To this end, we show how the EBS and the check-in baggage are 
incorporated in the DLBA and in the ADLBA. Note that the DLBA is an algorithm 
that is designed for parcel & postal sorting. Likewise, the proposed ADLBA is for 
parcel & postal sorting. In this chapter, we test the applicability of both the DLBA and 
the ADLBA in baggage handling as well. Therefore, in this section, we show how to 
make both algorithms applicable in baggage handling.  

We model the EBS as a resource with a special type of outfeed from the sorter to 
receive bags. Consequently, when a container is assigned to an infeed and there are 
bags inside it for which the flights are not open yet for loading, then we set their 
destination as the EBS outfeed. Then, we handle these bags similar to other bags with 
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other destination outfeeds. However, when the destinations of bags in the EBS are 
open on the sorter, then the bags have to be retrieved from the EBS to deliver them to 
their destination outfeeds. The EBS has a special infeed for the flow of bags to the 
sorter. 

In the remainder of this section, we show how to incorporate the inflow from the EBS 
and check-in desks to the sorter. To this end, we merely show how the baggage flows 
generated by these two elements are incorporated in the outflow figures at outfeeds. 
We use these outflow figures when scheduling inbound containers (see Section 5.3). In 
this chapter, we do not propose decision-making algorithms for the EBS. On the other 
hand, the check-in flow is uncontrollable by nature and we model it as an 
uncontrollable and stochastic flow. 

The DLBA in baggage handling 

In order to implement the DLBA in baggage handling, we have to incorporate the 
inflows from the EBS and from check-in desks in the outflow numbers to outfeeds. 
For the bags from the EBS, we release the bags for destination ݀ open at outfeed ݋ as 
soon as this destination is open and then increase the outflow to the assigned outfeed ݋ 
by the number of bags in the EBS with destination ݀. Moreover, to process a checked-
in bag using the DLBA, we increase the outflow for the bag's destination outfeed by 
one as soon as the bag is announced in the system. 

Incorporating the baggage flow from the EBS in the ADLBA 

For this process, we assume that when a destination is open at a certain outfeed ݋, then 
the bags destined to this outfeed are retrieved from the EBS and arrive homogeneously 
at outfeed ݋ over a set of time buckets that we define beforehand. We determine the 
time buckets in a way similar to determining the time buckets when a container is 
assigned to an infeed (see Section 5.3.3). Before showing this procedure, we present 
additional notations to model the flow from the EBS. 

ܽௗ
ா஻ௌ: the time when the first bag with destination ݀ (i.e., flight) is announced at the 

infeed from the EBS to the sorter (in seconds).  

 .݀ ௗ: total number of bags in the EBS with destinationܵܤܧ

 .ா஻ௌ: retrieval rate from the EBS (in bags per hour)ܨ

   .(in seconds) ݋ ா஻ௌ,௢: travel time from the EBS to outfeedݐ

௢,௦௧௔௥௧ܤܶ
ா஻ௌ : number of the first time bucket in which the bags with destination outfeed ݋ 

are expected to arrive at the outfeed ݋, when announced at ܽௗ
ா஻ௌ. 

௢,௘௡ௗܤܶ
ா஻ௌ : number of the last time bucket in which the bags with destination outfeed ݋ 

are expected to arrive at the outfeed ݋, when announced at ܽௗ
ா஻ௌ. 

௢,௦௧௔௥௧,௘௡ௗܮܨ
ா஻ௌ : number of bags from the EBS that are expected to arrive at outfeed ݋ in 

any time bucket from ܶܤ௢,௦௧௔௥௧
ா஻ௌ  until ܶܤ௢,௘௡ௗ

ா஻ௌ .    

Note that in the BHS case, it is not always sufficient to define outfeeds as destinations. 
We distinguish some parameters with destinations (e.g., flights) because a single 
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outfeed is assigned to multiple destinations during the day. Given the aforementioned 
parameters, we determine ܶܤ௢,௦௧௔௥௧

ா஻ௌ ௢,௘௡ௗܤܶ ,
ா஻ௌ , and ܮܨ௢,௦௧௔௥௧,௘௡ௗ

ா஻ௌ  as follows: 

௢,௦௧௔௥௧ܤܶ 
ா஻ௌ ൌ ቜ

௔೏
ಶಳೄା

యలబబ
ಷಶಳೄ

ା௧ಶಳೄ,೚

௧௕
ቝ 

௢,௘௡ௗܤܶ 
ா஻ௌ ൌ ቜ

௔೏
ಶಳೄା

యలబబ
ಷಶಳೄ

⋅ா஻ௌ೏ା௧ಶಳೄ,೚

௧௕
ቝ 

௢,௦௧௔௥௧,௘௡ௗܮܨ 
ா஻ௌ ൌ ா஻ௌ೏

்஻೚,೐೙೏
ಶಳೄ ି்஻೚,ೞ೟ೌೝ೟

ಶಳೄ ାଵ
 

In Section 5.3.3, we used the variable ݓ݋݈ܨ௧,௢, which keeps track of the total outflow 
of parcels at outfeed ݋ in time bucket ݐ from all assigned containers. In baggage 
handling, we include the flow from the EBS by increasing the value of ݓ݋݈ܨ௧,௢ by 
௢,௦௧௔௥௧,௘௡ௗܮܨ

ா஻ௌ  for ݐ ∈ ൛ܶܤ௢,௦௧௔௥௧
ா஻ௌ , . . , ௢,௘௡ௗܤܶ

ா஻ௌ ൟ. 

Incorporating the check-in baggage arrivals in the ADLBA 

Let ܽ௖௜ be the time when a checked-in bag is announced in the system (in seconds). 
Then, we determine ܶܤ௢,௦௧௔௥௧௖௜ , which is the number of the time bucket in which the 
checked-in bag is expected to arrive at its destined outfeed ݋, as follows: 

௢,௦௧௔௥௧௖௜ܤܶ  ൌ ቒ
௔೎೔ା௧೎೔ା௧೔,೚

௧௕
ቓ 

Here ݐ௖௜ is a time delay that we add because bags are announced before they actually 
arrive at the check-in infeed of the main sorter. What remains is to increase, by one, 
the variable ݓ݋݈ܨ௧,௢ for the destination outfeed ݋ and ݐ ൌ ௢,௦௧௔௥௧௖௜ܤܶ . 

Conclusion 

We discussed that for BHSs, inbound containers are not the only source of inflow. 
There are two other sources of inflow, which are the EBS and the check-in baggage. In 
this section, we showed how these additional sources of inflow can be incorporated in 
order to use the containers scheduling algorithms of parcel & postal sorting (see 
Section 5.3). However, keeping track of the inflow of bags from these two resources 
may not be sufficient to implement scheduling approaches of parcel & postal sorting. 
In Section 5.4.2, we analyze the characteristics of the operational environment in 
baggage handling, which differs from parcel & postal sorting. Then, we examine 
whether we need additional scheduling tools in baggage handling.   

5.4.2 Extensions to the scheduling approaches 

In the DLBA and the ADLBA, we schedule the inbound containers with the aim to 
balance workload in the system. In doing so, we implicitly assume that the inbound 
containers have equal priority. This assumption does not hold for the baggage handling 
sector where flights, and as a result bags, have different deadlines. Moreover, in 
baggage handling, a single outfeed is usually assigned to multiple flights during the 
day. As a result, for the early arriving bags, the destination outfeeds may not be open 
yet. We solved this problem in Section 5.4.1 by assigning such early bags to the EBS 
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outfeed and then dealing with the EBS outfeed as any other outfeed in the system. 
However, we propose another method to deal with containers carrying early bags.  

In this section, we propose two extensions to the scheduling approaches that we study. 
These extensions concern the topics of urgency and delayability. Both extensions deal 
with inbound containers that carry transfer baggage. 

Urgency 

Hallenborg (2007b) provides an approach to determine a bag's urgency (see Section 
5.2). We build on this approach to calculate the urgency of a container of bags. Note 
that from a certain point in time onwards, it becomes physically impossible to 
transport bags through the sorter system to arrive at the assigned outfeeds before they 
close. For our problem, bags in a container for destination ݀ become non-urgent if they 
have less than a duration of time ௘ܷ௡ௗ remaining before cutoff time. In the systems 
that we model, we set this time duration ௘ܷ௡ௗ equal to the internal travel time ݐ௜,௢, 
where ݅ is the infeed under consideration, and ݋ is the outfeed to which destination ݀ is 
assigned. Thus, a bag that cannot be delivered on time, even if it was the first to be 
unloaded from a container, is non-urgent. Unfortunately, this extension does not suit 
scheduling approaches that do not keep track of internal travel times (e.g., DLBA). For 
such approaches, we use a fixed value of 5 minutes that is an estimation of the average 
internal travel times in our experimented system layouts. Another relevant time 
threshold is ௦ܷ௧௔௥௧, where bags become urgent if they have less than this threshold 
remaining before cutoff time. Let ܥ௝ denote the cutoff time for a bag ݆. 

We use a simple rule from practice, where the bags to a certain destination are urgent 
for 30 minutes. Thus, ௦ܷ௧௔௥௧ is equal to ௘ܷ௡ௗ ൅ 30 minutes. We model the urgency of 
a bag ݆ to start at zero (the minimum value) when a bag has ௦ܷ௧௔௥௧ time allowance 
remaining, and to increase at an increasing rate to one (the maximum value), when the 
bag has ௘ܷ௡ௗ time allowance remaining. We define the urgency function of a bag ݆ as: 

ሻݐ௝ሺݑ ൌ ቆ
ݐ െ ሺܥ௝ െ ௦ܷ௧௔௥௧ሻ

௦ܷ௧௔௥௧ 	െ ௘ܷ௡ௗ
ቇ
ଶ

, ௝ܥ െ ௦ܷ௧௔௥௧ ൑ ݐ ൑ ௝ܥ െ ௘ܷ௡ௗ 

Figure 5.6 shows the urgency function of a bag ݆, assuming ܥ௝ is equal to 40 minutes. 

To determine the urgency of a container, we propose one of three simple approaches. 
A container is assigned either the maximum of all individual bags’ urgencies, the 
average of all individual urgencies, or the sum of all individual urgencies. The 
maximum measure might often fail to correctly differentiate between the urgencies of 
containers. For instance, if the bags for one destination are urgent, then a container that 
holds one bag for this destination is as urgent as a container that holds 10 bags for this 
destination. The average measure tackles this issue, as the latter container would have 
an urgency that is 10 times higher than that of the former, assuming that they contain 
the same number of bags. However, this assumption is the drawback of this approach, 
as a container holding only 13 bags, provided they are all urgent, may receive priority 
over a container in which 14 out of 15 bags are urgent. The sum approach solves this 
issue, and so it is used in this research. 
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Figure 5.6. The urgency function for a bag ܒ with ܜܚ܉ܜܛ܃ ൌ ૜૞, ܌ܖ܍܃ ൌ ૞, and ࢐࡯ ൌ ૝૙ minutes. 

In the context of load balancing, we use a priority procedure to select a subset of 
available containers to which we apply scheduling approaches. We decide to disregard 
containers with urgency less than 75% of the maximum urgency container. This 
ensures that a priority container is scheduled, while also balancing the workload 
among the outfeeds. The DLBA or the ADLBA may accommodate the priority 
extension by calling the priority procedure (Figure 5.7) when they start searching for a 
suitable container to assign to infeed ݅. 

 
Figure 5.7. Priority scheduling. 
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Delayability 

So far, we have implicitly assumed that every arriving container joins the queue of 
waiting containers that are announced to the dispatcher. Then, the dispatcher decides 
which container to unload at which infeed. However, it is possible to deliberately 
delay specific containers and not announce them to the dispatcher. This can be 
advantageous for two reasons: first, many airports lack infeed capacity during peak 
hours (usually workdays between 6am and 9am). To reduce these peaks, we may 
temporarily park some of the inbound containers (carrying transfer baggage) on a 
remote yard. In doing so, we delay containers that carry only early baggage. This 
reduces the workload in the BHS and so we expect less congestion on the sorter. Less 
congestion means less traffic delays, which is beneficial for several reasons. For 
example, the ADLBA uses an approach that considers travel times on the sorter 
without possible traffic delays. So when traffic delays are less, the estimated travel 
times become more reliable.  

The second benefit of delaying some containers is that we may be able to reduce the 
required EBS systems size. In current practice, early bags are stored in expensive EBS 
systems. Keeping them on the yard, in the containers in which they arrived, is a much 
cheaper solution.  

 
Figure 5.8. Delayable scheduling. 

The decision to delay a container is made upon arrival. However, to decide when to 
bring a container back to the dispatcher, we consider the fact that in the BHSs that we 
analyze in this chapter, a destination is assigned to a single outfeed for approximately 
three hours. Therefore, according to experts’ opinion, we propose to make a container 
available one hour after the destination of one of the contained items is open at the 
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assigned outfeed, leaving two hours to sort the bag(s) that triggered our decision. We 
call the procedure to delay containers the delayability approach and it is executed as 
soon as a container arrives in the queue (see Figure 5.8). 

5.5 Computational studies 
In this section we describe the experimental setup for implementing the scheduling 
algorithms (Section 5.5.1) and discuss the implementation results (Section 5.5.2). The 
ultimate result of our computational studies is to propose a matrix where we show 
what algorithm works best for what system model, industrial sector, and operational 
scenario (Section 5.5.3). 

5.5.1 Experimental setup 

For our experiments, we test the performance of four algorithms: first-come-first-
served (FCFS) as a common current practice, arbitrary scheduling (ARB) merely as an 
academic benchmark, the DLBA, and the ADLBA. We use the Applied Materials 
AutoMOD simulation software package to apply the scheduling approaches on sorter 
systems. Based on layouts that are frequently delivered by our industrial partner, we 
developed three simulation models of sorter systems with simple built-in local traffic 
control rules. However, we do not further invest in the control logic of sorter systems 
as this chapter is concerned with inbound operations scheduling and not with the local 
traffic control on sorters. The simulation models we use are as follows: 

o A single sorter in loop configuration with one infeed area and one outfeed area, 
where each area consists of three conveyors. Moreover, there is one infeed for 
check-in baggage and one EBS (Figure 5.9a). 

o A single sorter in loop configuration with two infeed areas and two outfeed 
areas, where each area consists of three conveyors. Moreover, there is one 
infeed for check-in baggage and one EBS (Figure 5.9b). 

o Two sorters in loop configuration, where each sorter consists of one infeed area 
and one outfeed area. In turn, each area consists of three conveyors. Moreover, 
each sorter has one infeed for check-in baggage and one EBS. Crossovers are 
conveyors with limited capacity that connect the two sorters (Figure 5.9c).  

We use a tuple notation to identify layouts: number of loops, number of infeed and 
outfeed areas, special transport routes. Using ܿ to denote the crossovers and 0 to 
denote no specials, the three layouts mentioned above can be identified by the tuples 
110, 120, and 22c. The catchall outfeed collects items that cannot be sorted due to, 
e.g., a missed flight. 

Regarding datasets, we distinguish both industrial sectors based on their specific 
characteristics, e.g., the presence or absence of check-in flows, and the size of the 
containers. A second distinction is based on the quantities of items going to certain 
destinations inside one container. A homogeneous distribution means that inside one 
container, the number of items for a specific destination is nearly the same for all 
destinations. A heterogeneous distribution means that some containers hold 
significantly more items for destination ܽ while other containers hold more items for 
destination ܾ. Before describing how we apply this distinction in generating the 
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contents of containers, we present the following four scenarios that we use in the 
experiments: 

o Parcel & postal sorting, homogeneous distribution (PP-even). 
o Parcel & postal sorting, heterogeneous distribution (PP-uneven). 
o Baggage handling, homogeneous distribution (BHS-even). 
o Baggage handling, heterogeneous distribution (BHS-uneven). 

 
Figure 5.9. Layouts of the three test models. 

Let ݊ be the number of outfeeds in a modeled system. In parcel & postal sorting, the 
number of outfeeds equals the number of destinations modeled. The destinations are 
open at the outfeeds during the entire simulation. Then for the PP-even scenario, each 

destination has 
ଵ

௡
 probability of occurrence. For the PP-uneven scenario, we use 1 ൅ ݊ 

container types, one with an even distribution and ݊ with a preferred destination. For 
the latter, the preferred destination has 0.50 probability of occurrence while all other 

destinations have 
଴.ହ଴

௡ିଵ
 probability of occurrence. The probability that a specific 

container type is selected is 
ଵ

ଵା௡
. 
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In baggage handling, the total number of destinations is twice the number of outfeeds. 
We divide the destinations in two sets with ݊ destinations each. At the start of the 
simulation, the destinations from the first set of ݊ destinations are opened successively 
at the outfeeds as follows: the first outfeed in every outfeed area is opened for a 
destination. After 15 minutes the second outfeed in every outfeed area is opened for 
another destination and after another 15 minutes the third outfeed in every outfeed area 
is opened for another destination. Each outfeed is open for a destination for three hours 
and then the outfeed is left unassigned for half an hour. Thereafter, the outfeed is open 
for a destination from the second set of ݊ destinations. Given this operational 
environment, we cannot model the contents of containers similar to parcel & postal 
sorting (where outfeeds are open for the same set of destinations during the entire 
shift) because then many bags may arrive after their destinations have closed. 
Therefore, we introduce time windows in which containers with specific contents may 
arrive. In this context, the BHS-even scenario consists of two container types, the first 
type holds mainly (85% of its contents) bags for the first set of destinations, each of 

these destinations has 
଴.଼ହ

௡
 probability of occurrence. The remaining 15% of the 

container’s contents is for the second set of destinations with 
଴.ଵହ

௡
 probability of 

occurrence per destination. The second container type consists solely of bags for the 

second set of destinations, each with 
ଵ

௡
 probability of occurrence.  

The BHS-uneven scenario consists of 2 ൅ 2݊ container types, where the first two 
types are the same as in the BHS-even scenario. The other 2݊ container types have 
90% of their contents for one preferred destination. Each of these container types has 
an arrival time window that starts as soon as the preferred destination is open at an 
outfeed and ends 30 minutes before the outfeed closes. For ݊ container types, the 
preferred destination is one of the first set of destinations. For these containers, the 
remaining 10% of their contents is distributed evenly over all other destinations, each 

with 
଴.ଵ଴

ଶ௡ିଵ
 probability of occurrence. The preferred destination for the other ݊ 

container types is one of the second set of destinations. For these containers, the 
remaining 10% of their contents is evenly distributed over the second set of 

destinations, each with 
଴.ଵ଴

௡ିଵ
 probability of occurrence. 

Table 5.1 provides an overview of the selected values for the scenario parameters. 
Note that we generate unrealistically high loads on baggage sorters, which can occur 
only in high peak hours. We do so to better test the impact under hard operational 
conditions. 

We emphasize that there is no single KPI that holds for both industrial sectors (see 
Chapter 1). While the KPI of a BHS is the irregularity rate, throughput is the KPI in 
parcel & postal sorting systems. In addition to these KPIs, we report on other 
performance indicators that are of interest, i.e., average container waiting time, 
maximum number of waiting containers, recirculation rate, and the maximum number 
of bags in the EBS for BHSs. 
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Table 5.1. Scenario parameters per simulation model. 
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5.5.2 Results 

We distinguish between statistical significance and operational significance when 
comparing the results of different algorithms. A difference is statistically significant, if 
we can statistically prove it exists with 95% confidence. However, a statistically 
significant measure may not be relevant from an operational perspective. For example, 
a statistically significant difference of one item per hour on throughput in a system 
sorting thousands of items per hour is operationally unimportant. 

In the boxplots used to show results, the central rectangle spans the first quartile to the 
third quartile. The segment inside the rectangle shows the median and the two 
whiskers indicate the extreme values that are not outliers (i.e., within 1.5 times the 
interquartile range of the first and third quartile). Finally, ‘+’ symbols indicate outliers. 

5.5.2.1 Parcel & postal sorting 

PP-even 

For the evenly distributed scenario in parcel & postal sorting, the simulation studies 
show that for models 110 and 120 there is no statistical difference between any of the 
scheduling approaches (Figures 5.10a and 5.10b). However, Figure 5.10c shows that 
for model 22c the ADLBA approach outperforms all others, with a throughput that is 
approximately 25 items per hour (1.5%) higher. The original DLBA performs 
statistically just as well as FCFS and ARB and is therefore not considered to be an 
improvement. A possible explanation for this behavior is related to the infeed 
assignment problem. FCFS, ARB, and DLBA assign a container to an available infeed 
irrespective of its location on the sorter system, and so when containers are 
homogeneous there is no clear optimization criterion. However, the ADLBA assigns 
the containers to infeeds that are selected based on the load balancing criterion. 
Therefore, although containers are similar, the ADLBA still balances the workload 
over the two separate sorters and over time, which yields improvements. 
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Figure 5.10. Throughput using the PP-even scenario. 
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PP-uneven 

For the unevenly distributed scenario in parcel & postal sorting, the simulation studies 
show that the load balancing algorithms (DLBA and ADLBA) outperform the FCFS 
and ARB in all simulation models (see Figure 5.11). In particular, the DLBA proves to 
be an interesting approach as it outperforms FCFS by 11, 52, and 63 items per hour 
(1.4, 3.7, and 4.5%) for models 110, 120, and 22c respectively. As containers become 
differentiable, the original DLBA proves to be a better scheduling approach than the 
ADLBA for all models, although not from an operational point of view. For models 
110, 120, and 22c the differences are respectively 6, 15, and 18 items per hour (0.8, 
1.0, and 1.3%). 

Although not displayed in the figures, the simulation studies also show interesting 
results regarding the waiting containers. The DLBA is able to reduce the maximum 
number of containers in the queue, compared to FCFS, by 0.5, 2.5 and 2.7 (4.8, 11.3, 
and 12.5%) for models 110, 120 and 22c respectively. The results of the latter two 
models, in particular, suggest that significant reductions in required yard space could 
be achieved. Furthermore, the results show that the DLBA is able to significantly 
reduce the average waiting time of a container. Specifically, the reductions for models 
120 and 22c are impressive (approximately 10 minutes and just over 20% of the 
original waiting time). 
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Figure 5.11. Throughput using the PP-uneven scenario. 
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5.5.2.2 Baggage handling  

In baggage handling, we test the scheduling algorithms and also the extensions. We 
use the suffixes ‘u’ and ‘d’ to indicate the urgency and the delayability extensions 
respectively in Figures 5.12 and 5.13 and in the discussion below.  

There are key points that make the results in baggage handling incomparable to those 
in parcel & postal sorting. First, the contents of the containers differ in the destinations 
of the items, the number of items contained, and more important in urgency. Second, 
the focus is now on the irregularity rate (number of bags missed per 1000 bags), which 
is a different KPI. Third, in a parcel sorter system, the impact of assignment decisions 
is directly realized because parcels are sorted immediately to outfeeds. In baggage 
handling, however, there is the storage function and flights’ schedules that heavily 
influence the interdependency between the inflow and the outflow. 

BHS-even 

For the evenly distributed baggage handling problem, the ADLBA approach is 
preferred in model 110, as it outperforms the DLBA by 0.4 (7.0%). In model 120, 
FCFS is the best approach. It outperforms the DLBA by 1.7 (2.5%). Note that since 
containers are homogeneous, the DLBA does not have a significant advantage over the 
simple FCFS approach. Finally, in model 22c, the DLBA is the best approach. It 
outperforms FCFS and the ADLBA by 2.8 and 2.5 (18.4% and 16.3%) respectively. 
Apparently, the estimations of the ADLBA with regard to internal travel times are 
more reliable in simple sorters (model 110). In more complex sorters and given a more 
stochastic environment, the ADLBA estimations appear to be less reliable and thus 
simpler approaches that do not depend on estimations of travel times perform better. In 
this context, an issue for future research is to propose methods that come up with 
better estimations of internal travel times.  

BHS-even with extensions 

The urgency extension improves the results of the DLBA and the ADLBA approach. 
However, the improvements are often only statistically and not operationally 
significant. On the contrary, the d-extension tremendously improves the performance 
of the sorter systems. Generally speaking, this extension reduces the irregularity rate 
by 1.0, 47.6 and 7.3 (20.8, 68.7 and 50.1%) in models 110, 120, and 22c respectively 
(compared to the best performing approach per model). The extreme increase in 
performance in model 120 is partly due to the unrealistically high irregularity rates 
caused by a relatively high workload (70% of outfeed capacity), which we used on 
purpose. The d-extension also affects other PIs, e.g., it reduces the required EBS space 
by 96, 230, and 204 items (approximately 30% in all cases) for models 110, 120, and 
22c respectively. These improvements are achieved by delaying on average 5.6 (out of 
70) containers in model 110 and 12.2 (out of 150) containers in models 120 and 22c.  

The simulation studies show that applying the d-extension in combination with FCFS 
gives results that are comparable to the more complicated scheduling approaches in 
models 110 and 120. In model 22c, however, the DLBA-ud outperforms FCFS-d by 
2.4 (28.8%) on irregularity rate, 2.7 containers (14.9%) on the number of waiting 
containers, and 1 minute (18.3%) on container waiting time.  
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Figure 5.12. Irregularity rate using the BHS-even scenario. 
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BHS-uneven 

In the unevenly distributed baggage handling scenario, the differences between the 
scheduling approaches become more evident. For models 120 and 22c, the DLBA is 
the best performing approach with differences of 2.0 and 4.6 (3.6 and 29.5%) 
respectively compared to FCFS. All other PIs show no operationally significant 
differences except in model 22c. There, the DLBA reduces the maximum number of 
waiting containers and the average container waiting time, compared to FCFS, by 2.3 
containers (9.0%) and 2.0 minutes (14.7%) respectively. The ADLBA is the least 
suitable approach. We observe that the realizations of internal travel times are not in 
line with the estimations used by the ADLBA, especially for larger baggage handling 
systems. The highly stochastic environment and the occasionally used storage function 
make the estimations unreliable.   

BHS-uneven with extensions 

Including the u-extension does not bring significant improvements. However, the d-
extension has a positive effect on the performance of the scheduling approaches. In 
model 110, the ADLBA-ud is clearly the best approach and outperforms FCFS by 1.7 
(19.6%). In models 120 and 22c, the DLBA-ud is the best approach, which 
outperforms FCFS by 33.1 and 4.4 (59.0 and 27.9%) respectively. Not only the 
irregularity rate, but also the other PIs are affected by the delayability extension. Even 
with FCFS, the delayability extension is able to reduce the maximum number of 
waiting containers and the average container waiting time in model 110 by 1.5 
containers (17.5%) and 2.2 minutes (32.3%) respectively. The DLBA-ud is the best 
approach for models 120 and 22c as it reduces the maximum number of waiting 
containers by 4.4 and 1.7 containers (27.3 and 6.9%) respectively, compared to FCFS. 
In addition, the DLBA-ud reduces the average container waiting time by 2.5 and 2.9 
minutes (44.6 and 20.5%) respectively. Furthermore, the simulation studies show that 
both workload balancing approaches are able to reduce the required EBS space by 97, 
213, and 198 items (approximately 40%) for models 110, 120, and 22c respectively, 
by delaying on average 5.6, 12.2, and 12.2 containers. 



112 

 

 
Figure 5.13. Irregularity rate using the BHS-uneven scenario. 
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5.5.3 Recommended approach per sector, system, and operational 
scenario 

In this section, we construct a matrix (Table 5.2) in which we show the recommended 
approach for each industrial sector, system model, and operational scenario. This 
matrix is based on the computational experiments and analysis of the different 
scheduling algorithms. Moreover, we comment on the results in general.  

System model 

Industrial sector Scenario 110 120 22c 

Parcel & postal sorting 
even no difference no difference ADLBA 

uneven DLBA DLBA DLBA 

Baggage handling 
even ADLBA-ud FCFS-d DLBA-ud

uneven ADLBA-ud DLBA-ud DLBA-ud
Table 5.2. Recommended approach per sector, system model, and operational scenario. 

We observe that the ADLBA uses a detailed approach that performs differently in the 
different industrial sectors. In baggage handling, the environment is highly stochastic, 
there is an intermediate storage function, and there are varying plane schedules. These 
attributes make the estimations of internal travel times less reliable. Therefore, the 
ADLBA performs better with small sorter systems where the realization of travel times 
is in line with the estimations.  

In baggage handling, the delayability extension is beneficial in reducing the workload 
on sorters, which in turn helps in reducing the variability of internal transport times. 
Moreover, using the delayability extension reduces the dependency on the EBS. What 
happens is that instead of unloading containers carrying early bags and letting these 
bags proceed to the EBS, we keep these containers unloaded until they are due. Then, 
when we unload these containers, we have an influence on the outflow figures to 
outfeeds by the assignment decisions. However, when we release the early bags from 
the EBS, they result in an uncontrollable flow that creates unpredictable outflows at 
the destination outfeeds. In other words, the delayability extension helps in replacing 
the uncontrollable flow from the EBS to destination outfeeds by a controllable flow 
from the delayed containers to destination outfeeds, which gives us more control over 
the outflow figures. In the BHS-uneven scenario, for system model 110 in particular, 
the ADLBA approach is the best performing approach only in combination with the 
delayability extension. 

In parcel & postal sorting, the ADLBA performs better with homogeneous containers 
and in complex systems. In the more complex systems, the ADLBA logic of balancing 
the flow over the outfeeds (at different sorters) and over time proves to be beneficial. 
In this sector, the ADLBA benefits from a more deterministic environment, due to the 
fixed assignments of destinations to outfeeds, the absence of the storage function, and 
the single source of inflow, i.e., containers, which we schedule. However, in relatively 
simple parcel & postal sorter systems, the ADLBA is not likely to contribute much to 
the performance because in such systems internal travel times are comparable. 
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In parcel & postal sorting, when containers become more differentiable the DLBA 
outperforms the other algorithms in all system models. Therefore, we conclude that the 
differences among the contents of containers overrule the differences among 
(estimated) travel times on sorters.  

5.6 Chapter conclusion 
In this chapter, we studied inbound containers scheduling for sorter systems in 
baggage handling and in parcel & postal sorting. In our analysis, we used the state-of-
the-art algorithm (i.e., DLBA) from literature as the first building block and adapted it 
to incorporate internal travel times on sorters in parcel & postal sorting. Then, we 
studied the inbound containers scheduling in baggage handling, where we had to 
incorporate the other sources of inflow from the EBS and check-in desks. As we 
incorporated the other sources of inflow, we showed how the DLBA and the ADLBA 
can be applied in baggage handling. However, baggage handling is a sector with 
special characteristics that have to be considered when scheduling inbound containers. 
Therefore, we provided two extensions (i.e., urgency and delayability) to the 
scheduling algorithms in order to improve their performance in baggage handling .  

We analyzed the performance of different scheduling algorithms (DLBA, ADLBA, 
FCFS, and ARB) in the two industrial sectors using different operational scenarios and 
different system models. Then, we gave advice on which scheduling approach to use 
for each industrial sector, system model, and operational scenario. Actually, in 
baggage handling, we found that the delayability extension shows impressive 
improvements on all performance indicators. Hence, we recommend applying the 
delayability extension in practice. It is interesting that the delayability extension is 
applicable as an add-on to current scheduling tools, since we were able to get 
significant improvements from implementing delayability with the FCFS approach. 

In general, we note that in certain cases (at least in the layouts we tested) invoking 
much detail at the scheduling level by estimating travel times on the sorter, is 
counterproductive. In fact, the estimated travel times are disrupted by imbalances in 
travel delays on the sorter, especially when the workload is high. For these cases, we 
recommend approaches that use less detail at the scheduling level. However, we have 
to invest in local traffic control rules and algorithms in order to balance the material 
flow on the sorter. Therefore, in Chapter 6, we analyze the merge operation on 
conveyor-based sorter systems, since it is the key local traffic problem that affects 
travel delays on sorters.   
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Chapter	6 	

Local	Traffic	Control	In	Conveyor	Merge	
Configurations13	

In Chapter 5, we studied scheduling algorithms for loading sorter systems in baggage 
handling and parcel & postal sorting. One conclusion was that incorporating too much 
detail at the scheduling level can be counterproductive in some operational scenarios. 
In particular, we found that a high workload on sorter systems makes the estimations 
with regard to the expected travel times on sorters less reliable. In our opinion, the 
main cause of the unreliability of the estimations is the inconsistency in traffic delays 
among TSUs (transport stock units) being transported. Therefore, we need to take a 
closer look at the areas of sorter systems where TSUs face traffic delays. 

In this chapter, we analyze an interesting control problem at the local traffic level. This 
is concerned with the merge area of sorter systems. This area often faces a high 
workload. As a result, a challenging local traffic control problem arises, which is to 
allocate empty spaces on the main conveyor to TSUs (on infeeds) waiting to be 
merged. From a local traffic control point of view, the merge area is the critical area in 
sorter systems. The other area in these systems is the area where the system diverts 
TSUs to the pre-assigned outfeeds or chutes. 

We develop a generic algorithm that can be applied in merge configurations within 
different industrial sectors. However, we choose to study the problem in the context of 
systems in parcel & postal sorting. In this industrial sector, MHSs are basically the 
sorter systems that have to work under operational conditions that are much more 
demanding compared to sorter systems in the other sectors (see Section 1.2.2). 
Therefore, from this point on, we will base our modeling and analysis on systems of 
parcel & postal sorting.  

The structure of this chapter is as follows: First, Section 6.1 introduces the merge 
configuration in terms of its components, objectives, and the space allocation problem 
(see Section 2.2.3.1). Then, Section 6.2 presents a review of literature that is relevant 
for the problem at hand. Next, in Section 6.3 we propose a model of the merge area 
and formulate the space allocation problem mathematically. Thereafter, Section 6.4 
describes a generic space allocation algorithm. Section 6.5 deals with the 
implementation of the generic space allocation algorithm in a simulation environment 
and provides a performance analysis in different operational settings. Finally, Section 
6.6 ends with concluding remarks. 

                                              
13 This chapter is based on Haneyah et al. (2011). 
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6.1 The merge configuration 
In this section, we sequentially describe the relevant elements and components of the 
merge configuration (Section 6.1.1) and define its objectives (Section 6.1.2). Then, we 
formulate the space allocation problem (Section 6.1.3). 

6.1.1 Elements of the merge configuration 

In this section, we describe the main elements of a merge configuration. Some of these 
elements are hardware components while others are abstract control points. Figure 6.1 
outlines the layout of a merge configuration. 

 
Figure 6.1. Merge configuration. 

The merge conveyor  

The merge conveyor or the main conveyor is represented horizontally in the layout of 
Figure 6.1. On this conveyor, all parcels coming from the infeeds have to be merged. 
The merge conveyor is responsible for transporting parcels from the merge area to the 
sorting area where parcels are sorted to the assigned outfeeds. On the merge conveyor, 
the direction of the flow is referred to as downstream and the opposite direction as 
upstream. The structure of this conveyor can either be a continuous space (e.g., a 
continuous belt) or consist of discrete space units. 

An example of a discrete space merge conveyor is a tilt-tray conveyor. Tilt-trays 
(simply trays) are discrete space units that can accommodate at most one parcel. A 
parcel occupies at least one tray, but may occupy more trays depending on its length. 
In the sorting area, the tray(s) transporting a parcel is (are) tilted to allow the parcel to 
fall into the assigned chute without interfering with other parcels on the merge 
conveyor.  

On a continuous space merge conveyor, a parcel in transport occupies a space called 
the merge space. This space consists of the space the parcel occupies physically and 
additional free spaces in front and at the back of the parcel that no other parcels can 
occupy. This free space is known as the gap. The leading gap is the required free 
space in front of the parcel; the trailing gap is the required free space at the back. 
Defining the required sizes of the leading gap and the trailing gap for each parcel 
depends on the dimensions of the parcel and the characteristics of the equipment. 
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The gaps between parcels that are transported on continuous space conveyors are 
required mainly due to the later sorting operation. In order to sort these parcels, a 
hardware component (e.g., a mechanical arm) is used to push them into their chutes. 
Pushing parcels in this way, while the merge conveyor is moving, makes them slide in 
a curved path on the merge conveyor which may disrupt the parcel in front if no proper 
gap is preserved. However, in this chapter we focus mainly on discrete space 
conveyors, although our results apply to both types. Generally, the merge conveyor 
runs at a constant speed denoted by ݒெ௘௥௚௘. 

Infeed conveyors (infeeds) 

Infeeds (the parallel conveyors in Figure 6.1) are responsible for transporting parcels 
from the point where they are loaded by operators, to the merge conveyor. Parcels are 
loaded on an infeed in a sequence that is preserved when they are delivered onto the 
merge conveyor. However, distances between them on the merge conveyor can differ 
from the distances that were between them on the infeeds. The distance may differ 
because, in contrast to the merge conveyor, the infeeds do not move at a constant 
speed, e.g., an infeed can deliver a parcel and then stop and deliver the next parcel 
later. For most systems, the infeeds in a merge area are of equal length. 

There are two possible structures for the infeeds: a continuous belt, and a segmented 
belt consisting of sections. Figure 6.2 sketches these two variants. For the continuous 
belt case, any point on the belt has the same speed. For the segmented belt case, the 
infeed consists of several small conveyor segments (which may run at different 
speeds) transferring parcels to each other in sequence. However, for both cases there is 
one special segment (which is always decoupled) at each infeed, indicated by the 
shaded sections in Figure 6.2. This is the last segment of the infeed at the connection 
with the merge conveyor. It is always running at a constant speed, so once a parcel 
arrives at this segment it will be merged immediately on the merge conveyor. The 
speed of this section is called the downstream speed and denoted by ݒௗ௢௪௡௦௧௥௘௔௠, 
whose horizontal component is equal to the speed of the merge conveyor ݒெ௘௥௚௘ ൌ
ௗ௢௪௡௦௧௥௘௔௠ݒ ⋅ cos ሺ0	ߙ where ,ߙ ൏ ߙ ൏ గ

ଶ
ሻ is the angle between the merge conveyor 

and the infeed (see Figure 6.2).   

Parcels on the infeed have certain distances between them. These distances have to be 
taken into account as they can restrict the possible locations of parcels when merged 
onto the merge conveyor. If the infeed conveyor is a continuous belt conveyor, then 
the distance between any two parcels remains constant as long as they are on the belt.  
All points on the belt have the same speed, so when the belt is stopped all parcels on it 
stop, and when it moves all parcels on it move at the same speed. In this case, if a 
parcel (parcel 1) from an infeed is merged, it may not be possible to merge the next 
parcel (parcel 2) directly next to it on the merge conveyor. Parcel 2 has to travel until it 
reaches the last segment of the infeed to be merged as well. While it moves to reach 
the last segment, parcel 1 also moves on the merge conveyor. In addition, note that the 
last segment can only receive parcel 2 after it has delivered parcel 1 to the merge 
conveyor. As a consequence, the distances between parcels on the infeeds result in 
certain minimum distances between the parcels when merged on the merge conveyor. 
These distances are called follow-up distances.  
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Figure 6.2. Continuous versus segmented infeed conveyors. 

Merge space request point  

This is the point at which the parcel is placed on the infeed. It is also referred to as the 
announcement point. Sensors detect the placement of the parcel on the infeed and then 
the parcel is announced in the system. In general, at the time the parcel is announced, 
it requests a merge space at the merge conveyor. The request consists of two elements. 
The first is the time at which the parcel is expected to arrive at the merge infeed point, 
which is the point where the infeed and the merge conveyor meet. This time is called 
the delivery time and it is calculated based on the highest possible speed profile to 
deliver the parcel. Second, the required merge space is announced. If the merge 
conveyor is a tilt-tray conveyor, then the merge space is represented by the number of 
trays needed. 

Fly through point  

This is the starting point of the merge area. The status of the merge conveyor upstream 
this point is unknown for the local traffic controller of the merge area. The fly through 
point is the point where circulating parcels re-enter the merge area. These are parcels 
that have not been sorted in the sorting area. They are unpredictable and uncontrollable 
by the controller of the merge area. The configuration and locations of these parcels 
cannot be changed. The parcels passing into the merge area at this point are called 
flying through parcels.   

Merge point  

This is the end point of the merge area, downstream all merge infeed points (see 
Figure 6.1). At this point, the resulting parcels structure built by the space allocation 
algorithm within the merge area can be observed. 

6.1.2 Merge configuration objectives 

In this section, we introduce the objectives of the merge configuration and explain the 
relevance of each of them to the performance of the sorter system as a whole. There 
are two main objectives within the merge configuration. The first one is throughput 
maximization (Section 6.1.2.1), which follows directly from the overall system 
objective (see Chapters 1 and 5). The second is workload balancing, which does not 
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have a direct relation to the objective of the sorter system as a whole. In Section 
6.1.2.2, we explain why this objective is nevertheless important. 

Before going through these objectives, we note that the objectives are to be achieved 
by the space allocation algorithm, which is the underlying logic for the local traffic 
controller that is responsible for allocating the space on the merge conveyor to the 
parcels from the infeeds. The algorithm uses the available information in the merge 
area. The input information for the algorithm is: first, available spaces on the merge 
conveyor, i.e., space windows, and second, parcels announced on the infeeds. 

6.1.2.1 Throughput 

Throughput of the merge area is related to space utilization on the merge conveyor. In 
other words, it refers to the extent to which the space on the merge conveyor is 
occupied by parcels after leaving the merge area, i.e., when passing the merge point. In 
this context, it is required to merge as many parcels as possible and fill the space 
windows between flying through parcels. 

6.1.2.2 Workload balancing 

Workload balancing corresponds to the infeed conveyors. It is important to keep a 
balance in the delivery of parcels among all infeeds. The case where one infeed fills all 
possible spaces while another infeed struggles to get a space for its parcels should be 
avoided. Two main reasons make this objective interesting. First, there are operators 
that load parcels on each infeed. The distribution of work among these operators 
should be fair. Second, when distinct batches are placed at the beginning of each 
infeed, all these batches have to be served. For this reason, balancing the workload 
among infeeds makes it possible for all batches to be served in reasonable time. In 
fact, this objective is concerned with labor efficiency as incorporated in the MHSs’ 
requirements model (Section 1.3.2).  

In current practice, some MHSs’ suppliers set a space utilization limit for infeeds. For 
example, in a merge system with two infeeds, each infeed can use at most 50% of the 
available space on the merge conveyor. This strategy makes sense when both infeeds 
are working with similar loads. However, assume that infeed 1 has one parcel and that 
infeed 2 has a long queue; then the space utilization limit on infeed 2 forbids it from 
delivering more parcels, while there are still free space windows that are not used by 
infeed 1. This leads to starvation (see Section 1.3.2), which is a phenomenon that we 
should avoid in the control architecture.  

The main KPI of the sorter system is high throughput, and so workload balancing is a 
secondary objective. Workload balancing is not a goal on its own, but it has to do with 
the system functionality, e.g., operators’ task division. Moreover, balancing waiting 
times for parcels on infeeds may have a positive effect on higher level scheduling 
approaches. For example, the estimations of travel times used by the ADLBA (see 
Chapter 5) become more reliable when traffic delays are evenly distributed among 
parcels being transported. 
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6.2 Theoretical context and key literature 
Theoretical context 

We may classify space allocation in the merge area of the sorter system as a real-time 
scheduling problem. In real-time scheduling, schedules have to be created with 
incomplete information about the system, which also applies to online scheduling. 
However, the main difference is that the time available to create schedules is very 
limited in real-time scheduling, much more than in online scheduling. In sorter 
systems, information about incoming parcels and incoming space windows is 
incomplete. Moreover, allocation decisions have to be made in few milliseconds. 
Therefore, we focus the literature review of this section on real-time scheduling since 
the time available for computations does not allow us to use complex online 
scheduling algorithms.    

Lu et al. (1999) classify real-time scheduling algorithms into two categories: static and 
dynamic scheduling. In static scheduling, the scheduling algorithm has complete 
knowledge about the tasks to be scheduled, their properties, and all constraints. In 
dynamic scheduling, the scheduling algorithm does not have complete knowledge 
about tasks and their properties. In this case, future new tasks are arriving, which the 
algorithm was not aware of while scheduling the previous set of tasks. Lu et al. (1999) 
further divide dynamic scheduling to be working in either resource sufficient or 
resource insufficient environments. Resource sufficient environments are 
environments in which there are sufficient resources to serve all arriving tasks, even if 
they arrive dynamically. System designers try to ensure that the system has sufficient 
resources. However, due to highly uncertain environments, it is sometimes impossible 
to serve all tasks, which yields a resource insufficient situation. Moreover, in terms of 
schedules’ adjustability, scheduling algorithms can be either closed-loop or open-loop. 
Closed-loop algorithms are those that can be adjusted based on continuous feedback. 
Similarly, open-loop scheduling algorithms refer to the fact that once schedules are 
created, it is not possible to modify them based on incoming feedback (Lu et al., 
1999).  

We classify the space allocation problem in merge configurations as a dynamic, 
resource sufficient, and closed-loop scheduling problem.  

Key literature 

There is an extensive quantity of papers discussing real-time systems from a software 
implementation point of view. Koster and Wijnen (1998) describe the merge problem 
and study several simple control rules using simulation and under relatively simplistic 
assumptions. Their study is very useful for understanding the problem at hand and for 
different control rules. However, Koster and Wijnen (1998) do not propose a real-time 
algorithm that adapts to the operational changes and works beyond the assumptions the 
present. Audsley and Burns (1990) review the application of scheduling theory to 
dependable real-time systems. Their review takes the form of an analysis of the 
problems presented by different application requirements and characteristics. They 
cover issues such as uniprocessor and multiprocessor systems, periodic and aperiodic 
processes, static and dynamic algorithms, transient overloads, and resource usage.  
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Stankovic et al. (2001) discuss scheduling in distributed real-time systems. They 
develop a distributed real-time scheduling approach based on an analytical model, with 
feedback control design techniques. The emphasis they place on software architectures 
is not within the focus of this chapter. Other studies in this context are Lu et al. (2002) 
and Stankovic et al. (1999), to list a few. 

Ramamritham and Stankovic (1994) classify scheduling algorithms and operating 
systems support for real-time systems in four paradigms: 

o Static table-driven approaches: these approaches create static schedules 
(offline) in order to execute a set of predictable tasks. The resulting schedule, 
which is often in the form of a table, is used to dispatch tasks during execution. 

o Static priority-driven preemptive approaches: these approaches are similar to 
the previous category in creating static schedules. However, a difference is that 
tasks have priorities that may be revealed dynamically. In this case, during 
execution, high priority tasks are handled first and may preempt low priority 
tasks. This paradigm, in its use of priorities, can be a starting point to the space 
allocation problem at hand. 

o Dynamic planning-based approaches: in these approaches, there are tasks 
arriving during execution. When a new task arrives the scheduling approach 
attempts to schedule it while keeping the schedules of earlier tasks intact. If the 
attempt fails then new schedules are created. The feasibility of schedules 
continuously checked online. One of the results of the feasibility analysis is to 
decide when a task can be executed.  

o Dynamic best effort approaches: in these approaches, there are no feasibility 
checks. The scheduling approach tries to meet the tasks’ deadlines. However, 
there is no guarantee that all tasks can be processed. Therefore, some tasks may 
be canceled. 

Regarding conveyor systems, most of the studies we reviewed were simulation based, 
and scheduling was not evident beyond simple rules or policies. Nazzal and El-Nasher 
(2007) state that all of the studies have been simulation-based, application-specific, 
and cannot be generalized. An example is a simulation modeling study, based on 
queuing theory, by Jing et al. (1998) on a conveyor merge configuration. They model a 
merge configuration with the objectives of high throughput on the merge conveyor and 
minimizing imbalance among infeeds. They try different control rules for assigning 
space windows to parcels: FCFS, longest queue first, highest priority first, random, 
natural (no control), and cyclic. However, no discussion of the algorithms or the 
application of these general rules is involved. 

Other studies focus on the mechanical properties and the physical forces that are 
involved in the merge operation, e.g., speeds, friction, layout angles, where the aim is 
to optimize the technical details of the merge operation, usually for a single infeed. 
Landschützer et al. (2013) and Jodin and Wolfschluckner (2010) provide mathematical 
models for these problems, where the higher level space allocation algorithms are not 
part of these studies.  

Bozer and Hsieh (2005) analyze a closed-loop conveyor system, which consists of 
machines, loading and unloading stations, and jobs to be processed. They follow an 
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analytical approach based on queuing theory. They first derive the stability condition 
for the conveyor system and then find the layout of the loading and unloading stations 
around the conveyor loop. Next, they study the tradeoffs between the objectives of 
high throughput and low work-in-process. Their study uses conveyors as a transport 
mode while the focus is on the other system elements. Moreover, there are no merge 
configurations involved. 

Schmidt and Jackman (2000) claim that no analytical models for closed-loop 
conveyors were available and present an analytical model for such systems. They 
show that the results of their analytical model are similar to simulation results. 
However, they focus on manufacturing environments and jobs to be processed. Other 
analytical approaches are found in the modeling of closed-loop conveyors with load 
recirculation by Hsieh and Bozer (2005).   

Many studies on merge configurations focus on systems that are more analogous to 
railways than to conveyors. For example, Shladover (1980) analyzes the operation of 
merge junctions in dynamically entrained automated guide-way transit systems. The 
author analyzes a merge junction with two input lanes and one output lane. The aim of 
this study is to provide a realistic estimate of the lane capacity that can be used when 
merge restrictions are involved. Using simulation, the author analyzes the effects of 
varying inputs on the capacity usage of the output lane. He distinguishes between 
isocapacity and concatenating merges. The first refers to merging carts on one railway 
after a junction, while the latter refers to combining two separate carts at the merge 
point into one connected cart. The relevance and application of traffic theory is evident 
in his study, which falls in a context different from merge configurations in MHSs. 

Conclusion  

We find that studies focusing on the software development aspect in real-time systems 
rather than scheduling algorithms are not of much use in this thesis. Moreover, studies 
that focus on analytical approaches are not relevant to the space allocation problem as 
we consider a real-time system, for which we are interested in an algorithm that can 
make allocation decisions in real-time, given different operating conditions. An 
analytical approach is a rigid approach that cannot handle the dynamic nature of the 
problem and cannot update decisions and system performance measures online. 
Moreover, it is not applicable to several merge system configurations. As a conclusion, 
we have not found a specific study focusing on real-time space allocation algorithms. 
Moreover, we could not find studies discussing the control and scheduling of 
conveyors in MHSs. The study of conveyors is limited to their role as a support 
element within a manufacturing environment. 

6.3 Problem formulation 
In this section, we formulate the space allocation problem in more concrete terms. 
Section 6.3.1 deals with modeling aspects of the merge area. Then, Section 6.3.2 
formulates the objectives in a quantitative manner. Finally, Section 6.3.3 presents a 
static approach for space allocation in the merge area.  
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6.3.1 Modeling the merge area 

In this section, we list the main modeling points and constraints for space allocation in 
the merge area. Figure 6.3 presents a schematic overview of the merge area. 

o The boundary of the merge area is the fly through point upstream and the merge 
point downstream. The status of the merge conveyor upstream the fly through 
point is unknown and the status downstream the merge point is of no further 
interest. 

 
Figure 6.3. Modeling the merge area. 

o The merge conveyor is a closed-loop conveyor that consists of a finite number 
of trays ܶ ൌ ሼ1, . . , ݊௧ሽ that are numbered in order of their occurrence 
(ascending upstream). 

o The subset ܱ ⊂ ܶ specifies which trays are already occupied by flying through 
parcels. These trays are unavailable for allocation. 

o There is a finite set of infeeds ܨ ൌ ൛1, . . , ݊௙ൟ. For each infeed ݂ ∈  a ,ܨ
sequence of parcels is given. Let ܲ be the set of all parcels. 

o Parcels on an infeed ݂ ∈ ,are denoted by tuples ሺ݂ ܨ  ሻ. The first entry refers to݌
the infeed where they are located, and the second refers to their sequence 
number on the infeed. The positions are numbered in an ascending order 
starting from the most downstream parcel (see Figure 6.3).  
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o Each parcel ሺ݂,  ሻ requires a number of trays based on its length. This number݌
is denoted by ݈௙,௣. Each parcel ሺ݂,  ሻ on an infeed needs to be allocated to ݈௙,௣݌
consecutive trays on the merge conveyor (at least one). Therefore, the output of 
the space allocation algorithm is given by an allocation of the parcels from the 
infeeds to trays on the merge conveyor. 

o The set of consecutive trays assigned to a parcel ሺ݂,  ሻ cannot be assigned to݌
any other parcel.  

o For parcel ሺ݂,  ௙,௣ is given, which denotes theܦܷܨ ሻ, a follow-up distance݌
minimum number of trays possible between the most upstream tray (last tray) to 
which parcel ሺ݂,  ሻ is allocated and the most downstream tray (first tray) to݌
which parcel ሺ݂, ݌ ൅ 1ሻ is allocated. Follow-up distances result from the 
distances between parcels on the infeeds. The distances are taken as an input in 
our model. This constraint also preserves the sequence of parcels on the infeeds. 

o Each parcel ሺ݂,  ሻ has an expected delivery time to the merge conveyor. This is݌
expressed by the expected delivery tray ݀௙,௣. The expected delivery tray is 
calculated as the first tray on the merge conveyor where the parcel can be 
delivered using the highest possible speed of the infeed. The calculations of 
delivery trays respect downstream parcels (on the same infeed) by accounting 
for their possible delivery trays and follow-up distances between parcels. 
However, parcels on the merge conveyor and parcels on other infeeds are not 
incorporated in this measure. 

6.3.2 Objectives formulation  

The output of a space allocation algorithm is given by an allocation of the parcels from 
the infeeds to trays on the merge conveyor. This allocation has the objectives of 
maximizing throughput at the merge point and balancing workload among infeeds (see 
Section 6.1.2).  

Maximizing throughput requires that the space on the merge conveyor is utilized as 
much as possible as it passes the merge point. In this context, assume that we have an 
allocation for a set of parcels (from infeeds) on the merge conveyor. Then, measuring 
the total number of empty trays from the first assigned tray until the last assigned tray 
provides a representative measure of low utilization. We can define this number as the 
number of empty trays in ሼ1, . . ,  ,is the last tray a parcel is allocated to ܮ ሽ, whereܮ
given an allocation of a set of parcels on the merge conveyor. 

With regard to workload balancing, all infeeds should be treated fairly in terms of 
waiting times. In other words, if there are not enough space windows on the merge 
conveyor to serve the requests from the infeeds, then waiting time on infeeds is 
inevitable.  Waiting time occurs when an infeed has to wait for a space window on the 
merge conveyor to arrive at the merge infeed point (see Figure 6.3), by either slowing 
down or completely stopping. When an infeed slows down or stops, the parcels on it 
are not delivered to their first possible delivery trays identified by ݀௙,௣, but to later 
trays. In this case, the waiting time for a parcel ሺ݂,  ሻ can be represented by the݌
difference between the first tray actually allocated to the parcel and the first possible 
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delivery tray ݀௙,௣. This difference is referred to as the delay in the delivery of the 
parcel. 

6.3.3 Static modeling for a formal problem description 

In this section, we consider a static view of the space allocation problem in the merge 
configuration. This means that we take at some moment in time a sort of snapshot of 
the system and consider the problem of allocating all parcels visible at that moment. 
This static problem may be used in an iterative approach. In each iteration, the static 
approach deals with a set of parcels on the infeeds and a set of available space 
windows on the merge conveyor. The result is an allocation of all parcels in the given 
data set. However, applying the static approach iteratively may result in an overlap 
between two different sets of parcels or space windows, which may require changing 
some allocation decisions. 

 
Figure 6.4. Static view of the merge area. 

The static approach uses a planning horizon that includes a finite set of parcels on each 
infeed and a part of the merge conveyor to allocate these parcels on. As an input, the 
static approach has deterministic data about the parcels that need to be allocated, and 
space windows available on the merge conveyor. We call the set of parcels in a 
specific planning horizon a batch. The static approach calculates an allocation for the 
batch of parcels within the planning horizon at once. Figure 6.4 shows a static view of 
the merge area. The following points explain the static approach: 
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o We introduce the flow build point as the starting point for space allocation of a 
batch on the merge conveyor, i.e., upstream this point all trays ݐ ∉ ܱ are open 
for allocating parcels of the batch.  

o The tray at the flow build point is given the index 1. 
o For each infeed ݂ ∈ ,a finite sequence of parcels ሺ݂ ܨ 1ሻ. . ሺ݂,݉௙ሻ is given.  
o A position upstream the merge infeed point of infeed 1 is chosen for the flow 

build point. The position of the flow build point leads to a virtual line that 
crosses through the infeeds (see Figure 6.4). Parcels upstream this line arrive at 
the flow build point (tray 1) or any tray upstream of it, when delivered at the 
highest possible speed. 

o The area between the flow build point and the fly through point is the part of 
the merge conveyor where the batch of parcels has to be allocated. We assume 
that this part of the merge conveyor is long enough to accommodate all parcels 
in the batch.  

The static approach leads to a deterministic optimization problem. Such a problem is 
often modeled using mathematical programming. A mathematical program has a set of 
formally written constraints and an objective function to optimize. All input data to the 
program has to be given before solving. We now present an ILP (integer-linear 
programming) model for the problem of finding a feasible allocation of parcels with 
respect to a given objective function. 

Decision variables  

The model makes decisions for parcels’ allocations. In order to know the trays 
allocated to parcel ሺ݂,  ሻ it is enough to know the first tray allocated to the parcel. The݌
other trays occupied directly result from the parameter ݈௙,௣. The output of the ILP is an 
assignment of the first occupied tray for each parcel. This can be achieved by binary 
assignment variables as follows: 

௧ܺ,௙,௣ ൌ ቄ1 if	tray	t	is	assigned	as	the	first	tray	for	parcel	ሺ݂, ሻ݌
0 otherwise																																																																															

 

Auxiliary variables 

௙ܹ,௣: waiting time of parcel ሺ݂,  .ሻ measured in trays݌

݃ݒܣ ௙ܹ: Average waiting time on infeed ݂ measured in trays. 

ݐ݋ܶ ௙ܹ: Total waiting time on infeed ݂ measured in trays. 

Constraints for a feasible allocation 

1. First tray assignment: each parcel from the infeeds needs to be allocated. 
Therefore, each parcel needs to be assigned to a first tray. However, the first 
tray cannot be a tray downstream the first possible delivery tray. 
Mathematically:  
 ∑ ௧ܺ,௙,௣ ൌ 1௧ஹௗ೑,೛ ∀ሺ݂, ሻ݌ ∈ ܲ 
 ௧ܺ,௙,௣ ൌ 0 ∀ሺ݂, ሻ݌ ∈ ܲ, ݐ ൏ ݀௙,௣ 

2. Overlap prevention: no tray can be used by more than one parcel. Trays of the 
set ܱ

 
are occupied by flying through parcels and cannot be assigned to any 
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parcel from the infeeds. The following constraints prevent the usage of any tray 
by more than one parcel. 
 ∑ ∑ ܺ௧ᇲ,௙,௣

௧
௧ᇲୀ௧ି௟೑,೛ାଵ௙,௣ ൑ 1 ݐ∀ ∉ ܱ 

 ∑ ∑ ܺ௧ᇲ,௙,௣
௧
௧ᇲୀ௧ି௟೑,೛ାଵ௙,௣ ൌ 0 ݐ∀ ∈ ܱ 

3. Follow-up constraints: Follow-up distances have to be respected for two 
successive parcels ሺ݂, ,ሻ, ሺ݂݌ ݌ ൅ 1ሻ from infeed ݂. 
 ∑ ݐ ⋅ ௧ܺ,௙,௣ାଵ௧ ൒ ∑ ݐ ⋅ ௧ܺ,௙,௣௧ ൅ ݈௙,௣ ൅ ௙,௣ܦܷܨ ∀ሺ݂, ሻ݌ ∈ ܲ, ݌ ൏ ݉௙ 

ILP objective formulation 

For the static case, total waiting time and average waiting time on the infeeds are both 
important since we want to have the work balanced in terms of total waiting and the 
average waiting time of parcels on the infeeds. Therefore, both measures need to be 
incorporated in the objective function of the ILP model. 

The waiting time for parcel ሺ݂,  ሻ is specified as the difference between the first tray݌
actually assigned to parcel ሺ݂,  .ሻ and the first possible delivery tray ݀௙,௣݌
Mathematically: 

 ௙ܹ,௣ ൌ ∑ ௧ݐ ⋅ ௧ܺ,௙,௣ െ ݀௙,௣ ∀ሺ݂, ሻ݌ ∈ ܲ 

Given the waiting times for parcels, the average waiting time for infeed ݂ can be 
calculated as: 

݃ݒܣ  ௙ܹ ൌ
∑ ௐ೑,೛೛

௠೑
∀݂ ∈  ܨ

Note that waiting time has a cumulative effect, e.g., if a parcel (from a batch of 
successive parcels on an infeed) is delayed by one tray, then all parcels upstream are 
delayed by one tray as well. Therefore, for a static problem with a pre-defined set of 
parcels, the total waiting time on an infeed is determined by the delay of the last parcel 
( , )ff m on the infeed within the planning horizon, which is: 

ݐ݋ܶ  ௙ܹ ൌ ∑ ௧ݐ ⋅ ௧ܺ,௙,௠೑
െ ݀௙,௠೑

∀݂ ∈  ܨ

However, for systems’ users, it is not always sufficient to balance the total waiting 
time. Figure 6.5 shows two parallel infeeds; infeed 1 with a low load of parcels and 
infeed 2 with a high load. The aforementioned total waiting time formulation 
overlooks the differences in the sizes of the parcels, and hence the different loads on 
the infeeds (see Figure 6.5). In fact, systems’ users may prefer to give advantage to the 
highly loaded infeeds. To account for such cases, we may multiply the total waiting 
time of the infeed by the total load on the infeed. Mathematically, this yields: 

ݐ݋ܶ  ௙ܹ
ᇱ ൌ ቀ∑ ݈௙,௣

௠೑
௣ୀଵ ቁ ⋅ ቀ∑ ௧ݐ ⋅ ௧ܺ,௙,௠೑

െ ݀௙,௠೑
ቁ ∀݂ ∈  ܨ

The total and the average waiting times of an infeed should be minimized 
simultaneously. However, we should be aware that the total waiting time has always a 
greater numerical value than the average waiting time, because it represents the total 
delay (and possibly the load on the infeeds). In order to make the two measures 
comparable, we multiply the total waiting time by the parameter ߜ	ሺ0 ൑ ߜ ൑ 1ሻ. 
However, determining a good value for ߜ may depend on the instance given. 
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Figure 6.5. Highly loaded versus lowly loaded infeeds. 

In a qualitative sense, the objective of the ILP is to distribute waiting times evenly 
among infeeds. In a quantitative sense, we may formulate this problem as a MinMax 
problem, e.g., to minimize the maximum waiting time. In a MinMax problem, a global 
value that represents the maximum measure in the problem is introduced in the model, 
and the objective is then to minimize this value. In this specific problem, we introduce 
the value imbalance as the value to be minimized in the objective function. In order to 
account for the objectives of total waiting time and average waiting time 
simultaneously, we propose the following formulation to characterize the imbalance: 

ߜ  ⋅ ݐ݋ܶ ௙ܹ ൅ ݃ݒܣ ௙ܹ ൑ ܾ݈݅݉ܽܽ݊ܿ݁ ∀݂ ∈  ܨ

The objective function of the ILP model now becomes:   

ܼ	݊݅ܯ  ൌ ܾ݈݅݉ܽܽ݊ܿ݁  

In this formulation, the infeed with the largest waiting time determines the imbalance 
value. Therefore, in order to minimize this value, the model tends to make waiting 
times on the different infeeds as equal as possible, which is what we want to achieve.   

This objective function is concerned with workload balancing. However, the average 
waiting time and the total waiting time of an infeed are variables that depend on 
waiting times of the parcels. In turn, the waiting times of parcels are directly linked to 
the utilization of trays on the merge conveyor. Therefore, minimizing the imbalance 
variable tends to minimize the number of empty trays in ሼ1, . . ,  is the last ܮ ሽ, whereܮ
tray a parcel is allocated to, given an allocation of a set of parcels on the merge 
conveyor. 

The reason is that a deterioration in throughput that occurs by leaving empty trays in 
the solution, directly causes a deterioration in parcels’ waiting times, because empty 
trays increase waiting times for parcels. If one tray is left empty, then the waiting 
times of all parcels allocated upstream of it may increase by one. However, the model 
does not grant maximizing throughput when minimizing the imbalance variable. In 
some cases, minimizing the imbalance variable may impose leaving out some empty 
trays. Therefore, the objective of minimizing the imbalance variable acts as a sufficient 
approximate measure to realize the objectives of throughput and workload balancing.  
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ILP model implementation 

Let us use a small test instance, which consists of sequences of in total 16 parcels on 4 
infeeds, and a merge conveyor with 4 flying through parcels. For this test instance, we 
solve the ILP problem using special-purpose software (GAMS) that uses the CPLEX 
solver. In order to select a value for ߜ, we solve the ILP problem with the sum of the 
total waiting times (including the loads on the infeeds) and the average waiting times 
as the objective. The result shows that the value of total waiting time is approximately 
ten times the value of the average waiting time. Therefore, we use ߜ ൌ 0.1 to make 
total waiting time and average waiting time comparable. Further experimentation with 
other values of ߜ showed that ߜ ൌ 0.1 indeed gives good results for this test instance. 
The resulting allocation shows that the space is 100% utilized (i.e., no empty trays are 
present). On the other hand, the average waiting time for the infeeds ranges between 
8.7 and 9.5 trays, while the total waiting time ranges between 80 and 85. These results 
show that the workload is balanced. 

The running time for this test instance is 32.23 seconds using CPLEX, which is a 
powerful commercial solver, on a workstation with an Intel® Core™2 Duo CPU 
T9300 @ 2,50GHz processor and 4.00 GB RAM. This running time is certainly 
unacceptable for the sorter system. Furthermore, the test instance was for a small 
merge area with a small number of parcels to allocate (16 parcels) and only 4 infeeds. 
Therefore, we expect the running time of an ILP problem for a large merge area that 
may have up to eight infeeds to be much longer. In the merge area of the sorter system, 
allocation results have to be retrieved in milliseconds, and so finding an optimal 
solution is not an option. Although the ILP can be interrupted and a solution can be 
retrieved, there is no guarantee that a feasible and good solution is ready in less than a 
second. Moreover, the static approach is not applicable to different layouts and 
possibly different objectives of the merge area. Finally, the static approach assumes 
that the part of the merge conveyor within the planning horizon is long enough to 
accommodate all parcels in the batch. This assumption does not hold in most of the 
existing configurations of the merge area as we will describe in Section 6.4. Parcels to 
be allocated are also not all known in batches as assumed. These points result in 
unreliable and incomplete input data for the ILP model, which makes a dynamic 
allocation approach more reasonable. 

6.4 A dynamic space allocation approach 
The dynamic approach works with information revealed in real-time. The dynamic 
approach deals with a narrower view of the merge area compared to the static 
approach (Section 6.3.3). Therefore, we are not aware of a large batch on parcels on 
the infeeds. Moreover, we are not aware of the availability of space on the merge 
conveyor. In this approach, we investigate one space window at a time. For each space 
window, we look for candidate parcels from infeeds. A candidate parcel is a parcel that 
fits in the space window and can be delivered to the space window. Hence, an iteration 
in the dynamic approach is concerned with allocating an available space window and 
only considers the most downstream unallocated parcel from each infeed. 
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6.4.1 A priority-based algorithm (PBA) 

In this section, we embody the dynamic approach in the context of a priority-based 
algorithm (PBA) for the basic configuration of the merge area (Section 6.3.1). The 
PBA uses real-time information when making allocation decisions. Information at the 
fly through point specifies available space windows on the merge conveyor, where a 
space window consists of a number of consecutive empty trays that can be allocated to 
parcels from the infeeds. Thereafter, infeeds having candidate parcels, which can be 
allocated to incoming space windows, are identified. We denote the set of candidate 
parcels by ܥ	ሺܥ ⊂ ܲሻ. 

An iteration of the PBA is executed every time a space window is available. After each 
iteration, the algorithm updates the available space windows. The length of a space 
window (ݓݏ) is given by a number of empty trays. Each ݓݏ is measured by counting 
the number of empty trays appearing at the fly through point until one of the following 
two cases occurs:  

1. A tray occupied by a flying through parcel is reached. 
2. The number of trays required by the parcel (ሺ݂, ሻ݌ ∈  of largest size is (ܥ

reached. 

The second case avoids counting large numbers when the next tray occupied by a 
flying through parcel is far upstream (if there are flying through parcels at all). 
Moreover, once the number of trays required by a parcel of the largest size is reached, 
further counting has no added value in the calculations that follow.   

Parcels ሺ݂,  ሻ that are candidates to be allocated in the given space window of length݌
 :must satisfy the following conditions ݓݏ

1. Fit in the available space window (݈௙,௣ ൑  .(ݓݏ
2. Their downstream parcels have been already allocated. 
3. They can arrive at the first tray of the available space window at the merge 

infeed point.  

Therefore, at most one candidate from each infeed can be in the set ܥ of candidates, 
which is the most downstream unallocated parcel of that infeed. If the set ܥ contains 
more than one candidate, a priority is calculated for each candidate parcel, and the 
algorithm allocates the available space to the candidate parcel with the highest priority. 
The method to calculate priorities is critical. First, the priority calculation for a parcel 
ሺ݂, ሻ݌ ∈  is relative to the other candidate parcels. Second, the priority of a parcel ܥ
ሺ݂, ሻ݌ ∈  depends on the contribution of its infeed ݂ to the workload balancing ܥ
objective and the contribution of the candidate parcel to the throughput objective. To 
capture both objectives in the priority calculations, the formula to calculate the priority 
gives weight to each of the two objectives. It is of the form: 

௙,௣ݕݐ݅ݎ݋݅ݎ݌  ൌ ߙ ⋅ ݎݑݏܽ݁ܯ݈݁ܿ݊ܽܽܤ ௙݁,௣ ൅ ሺ1 െ ሻߙ ⋅  ,௙,௣݁ݎݑݏܽ݁ܯݐݑ݌݄݃ݑ݋ݎ݄ܶ

where ߙ is a weighing parameter. In this way, we give attention to both objectives. 
The default value of ߙ has to be tuned by simulation.  
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The throughput measure depends on the candidate parcel itself. We use the extent to 
which a candidate parcel can occupy an available space window on the merge 
conveyor as a measure. This measure gives priority to large parcels, which is desirable 
in practice because delaying the delivery of a large parcel creates a risk of not finding 
another space window that can accommodate this parcel for a long time. The balance 
measure of a parcel ሺ݂,  ሻ depends only on the infeed ݂ transporting the candidate݌
parcel. We use the total (accumulating) waiting time of the infeed to calculate the 
balance measure. Let ܨᇱ ൌ ሼ݂ ∈ :݌∃|ܨ ሺ݂, ሻ݌ ∈  ሽ, then the proposed measures are asܥ
follows: 

௙,௣݁ݎݑݏܽ݁ܯݐݑ݌݄݃ݑ݋ݎ݄ܶ  ൌ
௟೑,೛
௦௪

∀ሺ݂, ሻ݌ ∈  ܥ

ݎݑݏܽ݁ܯ݈݁ܿ݊ܽܽܤ  ௙݁,௣ ൌ
்௢௧ௐ೑

∑ ்௢௧ௐ೑ᇲ೑ᇲ∈ಷᇲ
∀ሺ݂, ሻ݌ ∈  ܥ

It remains to explain how we calculate ܶݐ݋ ௙ܹ. The basic idea is that the total waiting 
time of an infeed is calculated as the sum of waiting times for all parcels on an infeed, 
starting from the first parcel that has been allocated up to the most downstream 
unallocated parcel. The waiting time for a parcel ሺ݂,  ሻ, i.e., ௙ܹ,௣, is calculated as the݌
number of trays between the tray actually assigned to the parcel and the first possible 
delivery tray of the parcel. Clearly, the first possible delivery tray of a parcel is based 
only on the allocation of its downstream parcel. In other words, the first possible 
delivery tray of parcel ሺ݂,  ௙,௣ିଵ trays after the mostܦܷܨ ሻ is the tray which is݌
upstream tray allocated to the downstream parcel ሺ݂, ݌ െ 1ሻ. However, if there is no 
downstream parcel that is restricting delivery, then the first possible delivery tray is the 
first tray reachable using the highest possible speed on the infeed. With regard to the 
most downstream unallocated parcel, we do not know the tray assigned to it. 
Therefore, instead of its assigned tray, which is unknown, we use the most 
downstream unallocated tray that can be allocated to this parcel to calculate a lower 
bound for its waiting time. If no such tray is found downstream the fly through point, 
then we use the tray at the fly through point. In this manner, we can trace the increase 
in waiting time as long as a parcel is waiting and is unallocated, given that the possible 
delivery tray is not upstream the fly through point. 

The calculation of total waiting time for an infeed is then represented as follows: 

ݐ݋ܶ  ௙ܹ ൌ ∑ ௙ܹ,௣௣   

The PBA is a suitable option for a constructive heuristic for space allocation. It is 
flexible as it can handle any number of infeeds or appearance of space windows on the 
merge conveyor in the same generic steps. In addition, merge configurations in other 
operational environments or with different layouts may be handled, either by changing 
the method to calculate the priorities or by incorporating additional measures in the 
priority calculations. For example, in baggage handling, the priority may depend on 
the urgency of a bag.  

The PBA is based on the basic configuration of the merge area, which we discussed so 
far. However, in practice there are certain layout restrictions of the merge area, which 
make space allocation more challenging. Section 6.4.2 explains these restrictions.   



132 

 

6.4.2 Layout restrictions and the early reservations phenomenon 

So far, we have implicitly assumed that for an available space window on the merge 
conveyor, we are aware of all parcels that request to be allocated to this space window. 
This assumption represents the predictable case. The validity of this assumption 
depends on the layout characteristics of the merge area. Basically, when the infeeds 
are of a sufficient length, then at the fly through point all parcels from all infeeds that 
request the tray at the fly through point as their delivery tray are known. Therefore, the 
allocation decision is made using the information about alternative parcels. 

 
Figure 6.6. Merge area layout leading to the unpredictable case. 

However, in most sorter systems the layout of the merge area does not lead to the 
predictable case. Figure 6.6 gives a layout of the merge area with short infeeds. In this 
case, we are not aware of all parcels that may arrive at a certain tray when the 
allocation decision for this tray is made. Therefore, if space windows on the merge 
conveyor are allocated by handling incoming requests from parcels on a FCFS basis, a 
deterioration in the workload balance among infeeds occurs due to the early 
reservations phenomenon. In order to describe this phenomenon, we sketch, in Figure 
6.7, a merge configuration with two infeeds of limited length; each infeed has a parcel. 
As soon as a parcel is loaded on an infeed, it is announced in the system and requests a 
merge space. The parcel from infeed 1 can arrive at point A, and therefore can reserve 
it. The parcel from infeed 2 can arrive at point B. However, if all infeeds are busy with 
parcels, then already at an earlier decision moment, point B could have been allocated 
to some previous parcel from infeed 1. This phenomenon induces the dedication of 
most of the space as requested by parcels from infeed 1, while forcing parcels from 
infeed 2 to wait for a space at later points than requested. The main idea is that parcels 
from infeed 1 can reserve spaces on the merge conveyor earlier than parcels from 
infeed 2, due to the restricted look ahead horizon. Therefore, as the system operates for 
a long time, the total waiting time for parcels of infeed 2 accumulates. Moreover, in a 
larger system with more infeeds, this phenomenon propagates and may result in high 
imbalance measures. 

This phenomenon mainly occurs when infeeds farther downstream are not long 
enough to see all incoming parcels that compete for the same merge space at the time 
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of making allocation decisions. Then, parcels from those infeeds are forced to wait 
before being merged, more than parcels from upstream infeeds. The PBA (Section 
6.4.1) deals with the predictable case of the merge area, but it does not work for this 
unpredictable case because it depends on a set of announced parcels when making 
allocation decisions. As a result, the PBA needs to be adapted to cover this case. 

 
Figure 6.7. Layout leading to the early reservation phenomenon.  

In this section, we discussed why a FCFS control principle does not work in practice 
for the unpredictable case of the merge area. Note that the FCFS is a good approach if 
we only strive for high throughput. However, it is not suitable in terms of workload 
balancing. Another basic control principle that is applied in practice is Round-Robin. 
Using the Round-Robin principle, we reserve space windows appearing at the fly 
through point for infeeds sequentially. However, the main problem is that a space 
window reserved for a certain infeed may not be used by this infeed when it arrives at 
the merge infeed point. This may occur because there may be no parcels to merge by 
the infeed or there may be a parcel with a size that does not fit in the reserved space 
window. In this case, space on the merge conveyor is lost (i.e., the space window 
cannot be used by upstream infeeds anymore because it has already passed them). This 
results in a deterioration in throughput, which is the main objective. Section 6.4.3 
develops the PBA into a generic PBA that aims for high throughput and at the same 
time keeps the workload balanced.     

6.4.3 A generic PBA 

In order to extend the PBA to the unpredictable case, we propose to make allocation 
decisions based on available merge space requests. Thus, we do not reserve spaces on 
the merge conveyor in anticipation of parcels that are not yet announced. Thereafter, 
as new parcels are announced on infeeds, we improve the space allocation decisions by 
executing a reallocation procedure downstream the fly through point. Making space 
allocation decisions based on the available parcels tends to maximize throughput as the 
main objective. Thereafter, as new parcels appear, a reallocation procedure interferes 
to balance the workload by changing some allocation decisions. In this case, it may be 
possible to maintain a high throughput as the main objective and then balance the 
workload among infeeds by reallocation. 
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Figure 6.8. Reallocation of space windows in the merge area. 

Figure 6.8 clarifies the basic concept of reallocation. At the fly through point, trays are 
allocated to parcels that have merge space requests. Figure 6.8A illustrates the first 
results of space allocation at the fly through point. The numbers on the trays refer to 
the infeed to which the tray is allocated. As the workload balance deteriorates due to 
the early reservations by infeed 1, reallocation is needed to retain the balance. 
Reallocation is achieved by canceling some of the trays allocated to parcels from 
infeed 1 and reallocating them to parcels from infeed 2 (see Figure 6.8B). An 
important point to mention is that reallocation is not possible for all trays. A tray is 
unavailable for reallocation if it is locked. For each infeed there is a point on the merge 
conveyor called the lock point (see Figure 6.8). When a tray that is allocated to infeed 
1 passes the lock point of infeed 1, it becomes locked and cannot be reallocated to 
another infeed even though it is still physically empty. The reason is that after passing 
the lock point, the parcel assigned to this tray is already moved to the last segment of 
the infeed that is responsible for merging the parcel (see Section 6.1.1) and so 
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downstream the lock point the parcel assigned to this tray cannot be stopped from 
being merged. The reallocation procedure is based on searching possible spaces on the 
merge conveyor and uses priority calculations as described in the remainder of this 
section. 

We extend the PBA (Section 6.4.1) to the generic PBA that is able to handle a merge 
area with infeeds of any length. To achieve this extension, we develop additional 
procedures to be added to the basic steps discussed in Section 6.4.1. Moreover, for the 
generic PBA, space windows appearing at the fly through point are no more the only 
trigger of allocation decisions. Announced parcels that request merge spaces 
downstream the fly through point also trigger allocation decisions. To clarify these 
concepts, we state the three main procedures that compose the generic PBA: 

A. The reallocation procedure: this procedure aims at balancing the workload 
among infeeds by changing allocation decisions after more information 
becomes available in the system. This is an improvement procedure that is 
activated by parcels and not by available space windows. We detail this 
procedure later on. 

B. The queue procedure: this procedure is the PBA described in Section 6.4.1, 
which allocates space windows, appearing at the fly through point, to parcels in 
the pending requests queue. Therefore, this procedure is activated by appearing 
space windows. The allocation of spaces is based on priorities. 

C. The search procedure: an announced parcel may activate this procedure to 
search for an available merge space. The search area for a merge space starts 
from the first possible delivery tray of the parcel and ends at the fly through 
point upstream. 

The algorithm only takes into account announced parcels whose downstream parcels 
are all allocated. If parcel ሺ݂, ,ሻ is announced but its downstream parcel ሺ݂݌ ݌ െ 1ሻ is 
not allocated yet, then we cannot allocate parcel ሺ݂,  ሻ as we do not know its first݌
possible delivery tray on the merge conveyor. We only consider parcel ሺ݂,  ሻ when݌
parcel ሺ݂, ݌ െ 1ሻ is allocated.  

If parcel ሺ݂,  ሻ is announced and all of its downstream parcels are allocated, it requires݌
a merge space. Moreover, a specific delivery tray that is the first tray reachable by the 
parcel is determined. The search procedure starts at the specified delivery tray and 
searches upstream for a possible space window for the parcel. The parcel is assigned to 
the first possible space window. If no space window is found up to the fly through 
point, the parcel remains unassigned and is added to the pending requests queue. 

The reallocation procedure is executed only for priority parcels. These are parcels that 
are announced on priority infeeds. An infeed has priority if the difference between its 
total waiting time and the minimum total waiting time among all infeeds exceeds a 
preset threshold value. Consequently, if a parcel is announced on an infeed with high 
priority, then the reallocation procedure is started and not the search procedure.  

The reallocation procedure differs from the search procedure in one main point. This 
point is that the merge space search does not only consider empty trays, but it can also 
consider trays that are allocated to parcels with low priority. In this case, the priority 



136 

 

parcel can take the spaces assigned to parcels with low priority (as long as the trays 
assigned to low priority parcels are not locked), resulting in canceling the allocations 
for the parcels with low priority. Next, the canceled parcels are also processed by the 
reallocation procedure to find new merge spaces for them upstream the canceled 
merge spaces. The result of the reallocation procedure can be that a merge space 
downstream the fly through point is found to allocate the parcel, or that no merge 
space is found. In the latter case, the merge space request of the parcel ends up in the 
pending requests queue, as happens with a parcel that does not find a merge space by 
the search procedure.  

Parcel (f,p) requests 
a merge space

Is 
parcel (f,p) a 

priority 
parcel?

Activate the 
reallocation 
procedure

YES
Activate the 

search 
procedure

NO

Merge space 
downstream the 

FTP found?

Allocate 
parcel

YES
Add parcel to the 
pending requests 

queue
NO

Allocate parcels of the 
pending requests queue
by the queue procedure

START

END

Any 
parcels

in the pending 
requests 
queue?

YES

NO

Figure 6.9. The basic scheme of the generic PBA. 

The queue procedure is executed as long as there are parcels in the pending requests 
queue. It examines space windows appearing at the fly through point and allocates 
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them to parcels in the pending requests queue. Whenever a new space window 
appears, the queue procedure tries to allocate a parcel to it. This may not be possible if 
the space window is too small to fit any of the parcels of the queue. As the reallocation 
and the search procedures may be executed for incoming parcels that are not in the 
pending requests queue, the reallocation procedure can still cancel the allocations done 
by the queue procedure, while the search procedure can use only unallocated trays.   

We note that the queue procedure deals with parcels that could not be allocated by the 
reallocation or the search procedures. The link between the reallocation and the search 
procedures on the one hand, and the queue procedure on the other hand, is the pending 
requests queue. The reallocation and the search procedures can add parcels to the 
pending requests queue; the queue procedure then deals with these parcels. We stress 
that the pending requests queue has at most one parcel from each infeed, since any 
parcel whose downstream parcel is unallocated is not considered for allocation. 
Therefore, when a merge space for parcel ሺ݂,  ሻ is canceled, merge spaces of all݌
parcels upstream parcel ሺ݂,  ሻ are canceled. Moreover, if the merge space request of a݌
parcel upstream parcel ሺ݂,  ሻ is in the queue, then it is removed from the queue. Figure݌
6.9 presents the basic scheme of the generic PBA (where FTP stands for the fly 
through point).  

6.5 Implementation  
In order to implement the generic PBA and test its performance under varying 
operating conditions, we build a simulation model (in Delphi 2009) that represents a 
merge configuration with four infeeds.  

6.5.1 Experimental setup 

In this section, we present the setup to generate the input data and the method to 
measure the performance of the generic PBA. The relevant inputs are: parcels’ lengths, 
parcels’ inter-arrival times, and the density of flying through parcels. For these inputs 
we use data based on practice. 

Parcels’ lengths 

Parcels’ lengths are drawn from uniform distributions. Possible lengths are 1, 2, or 3 
trays. In general, using a constant parcel length in an experiment is not realistic, and 
overlooks the challenges brought by the inconsistency in parcels’ lengths. 

Parcels’ inter-arrival times 

We represent time in terms of trays, and so the time measure results directly in a 
distance measure. We know that in the merge area, batches of parcels are successively 
placed next to the infeeds and operators load these parcels on the infeeds. Therefore, 
we model two possibilities to determine the inter-arrival time of a parcel. 

1. The next parcel is a parcel from the same batch with 97% probability. 
2. The next parcel is a parcel from a new batch with 3% probability.  

If a parcel is from a new batch, then the inter-arrival time is taken as 30 trays, which is 
a constant value. If a parcel is from the same batch, then inter-arrival times are drawn 
from a uniform distribution according to one of the following three possible ranges: 
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o ሼ1,2ሽ  
o ሼ2,3,4ሽ, which is the standard range unless mentioned otherwise, 
o ሼ4,5,6ሽ 

These ranges represent variable factors in the simulation experiments. Moreover, inter-
arrival times directly result in follow-up distances on the merge conveyor.  

Density of flying through parcels 

For trays appearing at the fly through point, the density of flying through parcels refers 
to the fraction of trays occupied by flying through parcels from the total number of 
trays. We examine the following densities of flying through parcels: 

o 0% 
o 5% 
o 15%, which is the standard value unless mentioned otherwise, 
o 30% 

For a certain layout of the merge area, the number of possible combinations of input 
parameters is 12; 3 (ranges of inter-arrival times) times 4 (densities of flying through 
parcels). We use 11 trays as it is the standard length of the infeeds in practice. 
Moreover, in each simulation experiment, we generate 2500 parcels on each infeed. 

Performance measurement 

The two objectives of the merge system are throughput maximization and workload 
balancing. We measure the performance of the algorithm in achieving these objectives 
as follows: 

o Throughput maximization is measured by the utilization of space on the merge 
conveyor. 

o Workload balancing is measured by the imbalance in waiting times between the 
infeed with maximum total waiting time and the infeed with minimum total 
waiting time, and expressed as a percentage as follows: 

ܹ݈ܾܶ݁ܿ݊ܽܽ݉ܫ  ൌ
௠௔௫೑∈ಷ൛்௢௧ௐ೑ൟି௠௜௡೑∈ಷ൛்௢௧ௐ೑ൟ

௠௔௫೑∈ಷ൛்௢௧ௐ೑ൟ
⋅ 100% 

Hence, the algorithm aims at maximizing the utilization and minimizing the imbalance 
in waiting times. 

6.5.2 Model parameterization 

In this section, we tune the values of the main parameters in the generic PBA, which 
are the parameter ߙ used in calculating the priority of parcels (see Section 6.4.1) and 
the threshold value for the reallocation procedure (see Section 6.4.3). 

The threshold value for the reallocation procedure 

This parameter is selected by the MHS supplier. It is relevant to how much difference 
in waiting times is acceptable and when is it necessary to execute a reallocation 
procedure. This also relates to the load on the control software, because calling the 
reallocation procedure more frequently results in more executions by the control 
software. In general, tuning the threshold value may depend on the specific system 
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modeled. For the merge configuration under study, we propose a standard threshold 
value of five.  

The parameter ࢻ 

We want to investigate how the weights of the objectives in priority calculations 
influence the results. This is technically done by varying the value of the parameter ߙ, 
which plays a role in prioritizing the pending requests queue. To this end, we conduct 
1320 experiments to tune the value of ߙ. We use the average results of 10 test 
instances, for each of the 12 possible combinations of input data, and run the 
simulation for 11 different values of ߙ	ሺߙ ൌ ሼ0, 0.1, 0.2, . . , 1ሽሻ. In these experiments, 
we use a threshold value of 5. For every combination of input parameters and every 
value of ߙ, we calculate the resulting utilization and imbalance in waiting times (see 
Table 6.1). 

α Utilization (%) ImbalanceWT (%) 

0.0 86.38 17.01 
0.1 86.84 4.20 
0.2 86.84 4.20 
0.3 86.84 4.22 
0.4 86.82 4.22 
0.5 86.83 4.21 
0.6 86.81 4.25 
0.7 86.84 4.28 
0.8 86.88 4.23 
0.9 86.85 4.27 
1.0 86.03 4.27 

Table 6.1. Average results for different values of ࢻ.  

In order to determine a standard value for ߙ, we first investigate the two extreme 
values (0 and 1). Table 6.1 shows that giving full weight to the throughput objective 
by setting ߙ equal to 0 causes a dramatic deterioration in workload balancing, with no 
improvement in throughput. On the other hand, giving full weight to workload 
balancing by setting ߙ equal to 1 causes a limited deterioration in throughput, but with 
no improvement in workload balancing as compared to values smaller than 1 (but 
larger than 0). Note that minimizing the imbalance tends to maximize throughput (see 
Section 6.3.3). We observe that the effect of changing the value of ߙ between 0 and 1 
is low. This is because ߙ only plays a role in the queue procedure, while in the 
unpredictable case of the merge area, the reallocation and the search procedures play a 
vital role. The maximum throughput (which is the main objective) is achieved by 
setting ߙ equal to 0.8, and the workload balancing at that value is also good. 
Therefore, we use this standard value of ߙ. 

6.5.3 Experimental results 

This section reports on the performance of the generic PBA under different operating 
conditions. 
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Performance of the generic PBA under varying operating conditions 

We examine the performance of the generic PBA under varying operating conditions, 
where an operating condition is specified by a combination of input data (see Section 
6.5.1). Table 6.2 shows the average results for each combination. 

Density of flying 
through parcels 

Performance indicators 
Range of inter-arrival times 

ሼ૚, ૛ሽ ሼ૛, ૜, ૝ሽ ሼ૝, ૞, ૟ሽ 

0 % 

Utilization (%) 

ImbalanceWT (%) 

Number of reallocations 

90.9 

2.1 

3339.9 

86.2 

1.2 

4461.7 

79.5 

21.8 

2826 

5 % 

Utilization (%) 

ImbalanceWT (%) 

Number of reallocations 

91.8 

2 

2766.7 

86.7 

1.3 

4044.2 

81.1 

11.1 

3293.3 

15 % 

Utilization (%) 

ImbalanceWT (%) 

Number of reallocations 

92.1 

2.2 

1642.4 

87.7 

1.7 

3050.6 

83 

1.2 

3330.3 

30 % 

Utilization (%) 

ImbalanceWT (%) 

Number of reallocations 

91.3 

2.6 

632.7 

88 

2.1 

1520.2 

84.2 

1.4 

2273.6 

Table 6.2. Average results under varying operating conditions. 

Based on the results in Table 6.2, we make the following general remarks:  

o As the range of inter-arrival times increases, the utilization of space on the 
merge conveyor drops. In this case, the system is not busy with parcels and so 
there is an unavoidable deterioration in utilization. 

o Given a fixed range of inter-arrival times, increasing the density of flying 
through parcels increases the utilization of the merge conveyor in most of the 
cases. As the density of flying through parcels increases, the parcels on the 
infeed are more likely to wait for merge spaces. When parcels wait, it is likely 
that they are added to the pending requests queue. Therefore, allocation by the 
queue procedure may utilize the space on the merge conveyor more efficiently 
as prioritizing the pending requests queue considers space utilization, especially 
filling the gaps between flying through parcels. However, in some cases, when 
the density of flying through parcels is too high, the utilization may drop. This 
may happen because when the merge conveyor is highly loaded with flying 
through parcels, it becomes more difficult to merge parcels from the infeeds 
between these flying through parcels. For example, it is difficult to merge a 
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large parcel when there are many flying through parcels with small spaces 
between them on the merge conveyor.  

o For low and medium ranges of inter-arrival times, ሼ1,2ሽ and ሼ2,3,4ሽ, varying 
the density of flying through parcels has a minor effect on the imbalance in 
waiting times. 

o For a high range of inter-arrival times, ሼ4,5,6ሽ, varying the density of flying 
through parcels has a big impact on the performance of the algorithm with 
regard to the workload balancing objective. In this operating condition, the 
effect of the queue procedure is limited, because the possibility that parcels 
from different infeeds are present in the queue is small. Moreover, the effect of 
the reallocation procedure is limited because trays allocated to low priority 
parcels may become locked before high priority parcels appear, due to long 
inter-arrival times and short waiting times of low priority parcels. Short waiting 
times are caused by no (or low density of) flying through parcels. 

o When long inter-arrival times are combined with no flying through parcels, or 
to a lesser extent, a very low density of flying through parcels, workload 
balancing is not as efficient as for other conditions. However, this condition 
may not create a problem for the system and better workload balancing may not 
be achievable with other algorithms as well. In this case, the merge conveyor is 
not busy and the inter-arrival times of the parcels are long. Therefore, most of 
the parcels may find merge spaces with minimal waiting times. Some parcels 
may wait for a short time when the first possible delivery trays of parcels from 
different infeeds are coincidentally the same. However, the overall performance 
is acceptable because this operating condition describes a system that is not 
overloaded, where all infeeds have low waiting times. In this case, differences 
in waiting times among infeeds may not represent a real problem.   

The effect of the length of the infeeds 

In order to test the performance of the generic PBA algorithm for different lengths of 
the infeeds, we perform experiments under two modes of the generic PBA: (i) with the 
reallocation procedure, and (ii) without the reallocation procedure. Figure 6.10 shows 
the results for different lengths of the infeeds under modes (i) and (ii), using the 
standard values of input data (where L(x) means infeeds of the length x trays). 

Figure 6.10 shows that longer infeeds yield slightly better results with regard to 
utilization. This is mainly due to the effect of the queue procedure, as longer infeeds 
make it more likely that parcels are added to the pending requests queue. Moreover, 
Figure 6.10 verifies that the reallocation procedure has big impact on balancing the 
workload among infeeds while not deteriorating throughput. It also shows that as the 
infeeds get longer, the impact of the reallocation procedure decreases. This is an 
intuitive result because when infeeds are long, we are aware of incoming parcels early, 
and the chance that parcels are added to the pending requests queue is higher. 
Consequently, prioritizing the queue by the queue procedure balances the workload 
and minimizes the need for further balancing via the reallocation procedure. 
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Figure 6.10. Effect of the length of the infeeds on the performance of the algorithm under 

standard operating conditions. 

Distribution of waiting time among infeeds 

Figure 6.11 displays the distribution of waiting times for each of the four modeled 
infeeds ሼ0݂݊ܫ, . . , ,1ܥ3ሽ and for each input combination ሼ݂݊ܫ . . ,  12ሽ. We observe thatܥ
we are able to overcome the early reservations phenomenon (see Section 6.4.2). The 
first infeed has less waiting time than other infeeds only in combinations 9 and 10, 
which are the combinations that limit the effects of the reallocation and the queue 
procedures as described earlier. 

Number of reallocations per infeed 

Figure 6.12 shows the average number of reallocations per infeed for each input 
combination. We observe that parcels of the fourth infeed (3݂݊ܫ in Figure 6.12) are 
less frequently reallocated in all input combinations. We expect this result since the 
fourth infeed suffers the most from the early reservations phenomenon and so its 
parcels are normally high priority parcels. Similarly, parcels of the first and second 
infeeds (0݂݊ܫ and 1݂݊ܫ in Figure 6.12) are expected to be low priority parcels, and so 
are frequently subject to reallocations. 

6.6 Chapter conclusion 
In this chapter, we have taken a closer look at the space allocation problem in merge 
configurations, which is a local traffic problem that occurs in all industrial sectors. The 
objective was to develop a generic space allocation algorithm that provides the 
necessary control for merge configurations.  
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Figure 6.11. Distribution of waiting times among infeeds (measured in trays). 

 

 
Figure 6.12. Number of reallocations executed per infeed. 

Although we took a discrete modeling approach of the conveyors, the generic PBA can 
be easily implemented on a continuous belt conveyor (e.g., instead of counting empty 
trays for a space window, we can measure empty distances). Moreover, we have 
studied the space allocation problem in the context of parcel & postal sorter systems, 
but the results are generic to applications in the other industrial sectors. For example, 
in baggage handling or in distribution, the outfeeds of storage aisles in ASRSs 
connecting to a merge conveyor represent a merge configuration. 
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The generic PBA is flexible in terms of incorporating possibly different objectives and 
different prioritization rules, depending on the application. For example, in baggage 
handling, the priorities may be based on urgent bags.   

As a final word, we comment on how the generic PBA fits in the generic control 
architecture. Space allocation is a local traffic control problem. Therefore, as 
mentioned in Chapter 2, decision-making algorithms for these problems can be 
incorporated in a scheduling controller, e.g., the loop controller (see Section 2.2.3.1), 
which can execute local traffic control procedures. Otherwise, a dedicated local traffic 
controller in merge areas can be part of the control architecture to accommodate this 
algorithm.  
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Chapter	7 	

Conclusions,	 Recommendations,	 And	 Future	
Research	

In Chapter 1, we introduced the research problem which concerns the development of 
a generic planning and control structure for MHSs as they occur in different industrial 
sectors, i.e., parcel & postal sorting, baggage handling, and distribution. Moreover, we 
discussed both the scope and limitations of the research problem on generic control. In 
the subsequent chapters, we investigated the problem on various planning and control 
levels. 

In this chapter, we conclude the thesis by first presenting a summary of our results 
(Section 7.1), tracing them back to the research agenda that we proposed in Section 
1.5.2. Second, we point out the main contribution of this thesis (Section 7.2). Third, 
we present general conclusions (Section 7.3). Fourth, we provide recommendations 
and guidelines for future applications of the generic control architecture (Section 7.4). 
Finally, we highlight directions for future research (Section 7.5). 

7.1 The research agenda revisited 
In Section 1.5.1, we weighed the practical requirements for a generic control 
architecture against contributions from the literature. Consequently, in Section 1.5.2, 
we proposed a research agenda of five points.  

In Chapter 2, we dealt with the first two points on the research agenda, i.e., proposing 
a concept control architecture and detailing it in terms of control levels and control 
units. The concept control architecture we proposed was motivated by a number of 
design choices. Subsequently, we defined a set of generic control units distributed 
among three levels of control, i.e., planning, scheduling, and local traffic control. In 
Chapter 2, we presented our proposal for a general structure that covers all decision-
making processes encountered in the control architecture. In this sense, Chapter 2 
defined the necessary building blocks of this generic control architecture. We devoted 
the subsequent chapters to the development of these building blocks. 

In Chapter 3, we dealt with the third and fourth element on the agenda, i.e., translating 
the concept into a concrete control architecture and validating it. In Chapter 3, we 
mainly developed planning and scheduling control modules and included local traffic 
control modules only in an aggregate way. We also showed implementations of the 
generic control modules that we developed on generic system models, which we tuned 
to simulate MHSs in different industrial sectors. A key deliverable in Chapter 3 is the 
analysis on the generality of the control modules given the implementation in different 
industrial sectors. 
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In Chapter 4, we dealt with the fifth item on the research agenda, i.e., proving the 
adequacy of the control architecture. In other words, we provided a proof-of-concept 
for the applicability of generic control on a practical case. To this end, we presented a 
comprehensive application of the control architecture on a challenging business case 
of a major European airport. In this large implementation, we showed how to handle 
new system elements in a generic manner and how to standardize control approaches 
for these different elements.  

In Chapter 5, we extended our scope of analysis to propose scheduling algorithms for 
system users. We tackled the problem of scheduling inbound containers when loading 
them to MHSs that consist primarily of sorting elements. This scheduling problem 
influences the operation of sorter systems and requires sound scheduling tools. To this 
end, we analyzed different scheduling algorithms for different industrial sectors, 
different operational scenarios, and different system models. Then, we investigated 
which scheduling approach works best in which setting.     

In Chapter 6, we tackled a local traffic problem that occurs in various industrial 
sectors. This is the space allocation problem in conveyor merge configurations. 
Common practice control rules for this local traffic problem do not perform well in 
satisfying the objectives of merge configurations. Therefore, we presented a detailed 
model of merge configurations and proposed a generic space allocation algorithm that 
satisfies system objectives. The algorithm is generic and can be implemented in 
different merge configurations within different industrial sectors. 

7.2 Main contribution 
In practice, control methods are customized for each industrial sector, and even for 
different MHSs within the same industrial sector. In this thesis, we focused on the high 
potential of generic control. The value of the proposed control architecture is that it 
helps MHSs’ suppliers to improve on their services. In particular, MHSs’ suppliers 
may benefit from the standardization in control methods to develop the control 
architecture of an MHS in shorter time and with less costs and effort than before, and 
hence facilitating the bidding process as well. A standardized and modular control 
architecture is also useful for MHSs’ users for a number of reasons. For example, the 
operational environment and requirements of systems may vary over time, which 
necessitates the adaptation of the planning and control procedures. Obviously, a 
generic control structure may significantly simplify the implementation of new control 
strategies or the adjustment of existing ones, as compared to adaptations of a highly 
customized system. Moreover, a generic control architecture makes it easier to install 
software updates, maintain the control software, solve implementation problems, or 
even extend the system base. 

In this thesis, we provided methods and modeling techniques that allowed us to deal 
with different MHSs in a generic manner. Consequently, we showed that generic 
control of MHSs in different industrial sectors is possible. The use of generic control is 
two-fold: first, from a scientific perspective, this thesis provides a basis to build a 
general control theory for MHSs in different industrial sectors. Second, from a 
practical perspective, we offer an approach for MHSs’ suppliers that improves on the 
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MHSs’ design aspects in terms of system development time, maintainability, and 
upgradeability.  

The generic control architecture identifies the main decision-making processes at the 
right level of control, while layout-specific details are handled by configurable 
parameters. As a result, the control architecture is scalable and tunable to different 
system layouts and designs.  

In general, one may expect that implementing generic control methods instead of 
customized control methods may bring benefits from the aforementioned perspectives, 
but at the cost of a decline in performance. However, we showed that the proposed 
generic control methods perform as good as the customized control approaches and in 
a number of cases outperform them. 

7.3 General conclusions 
In this section, we formulate the overall conclusions of this thesis. 

o Our main conclusion is that a generic control system for MHSs in different 
industrial sectors is possible. To this end, we have shown what control tools are 
needed to model decision-making processes in a generic manner. For example, 
we proposed control procedures that bring one industrial sector (distribution) to 
the same level of detail as another industrial sector (baggage handling). After 
bridging that gap, standardized control procedures could be implemented. 

o The control modules of the generic control architecture, which we developed 
throughout this thesis, can function together in the control architecture of a 
specific MHS. For example, in a large airport, we may use the planning and 
scheduling control modules as developed in Chapter 3 in combination with the 
local traffic control module of Chapter 6. By putting these modules together, 
the control architecture is comprehensive in terms of covering all decision 
making processes at the different levels of control. Moreover, for inbound 
containers in such a large airport, the system user may incorporate a scheduling 
algorithm for inbound containers as discussed in Chapter 6.  

o Sector-specific processes can be built as functional add-ons to the control 
architecture. To this end, we showed how these processes can be integrated in a 
plug-and-work like mechanism. 

o With regard to the generality of control, we experience more similarity among 
the different industrial sectors at the lower levels of control. As we move to the 
higher levels of control, we experience more situations that require adaptations 
to model the specificities of the different industrial sectors. 

o The extent to which we can develop generic decision-making algorithms is 
dependent on the level of control. For example, at the local traffic level, we 
have more freedom to model systems similarly in all sectors. Therefore, in 
Chapter 6, we were able to develop a space allocation algorithm that is generic 
and can be easily reused in the different industrial sectors. As we go one level 
higher to the scheduling level, we analyzed algorithms for inbound containers 
scheduling. We discussed these algorithms in a generic framework, but the 
effect of the different sectors was more tangible than in the local traffic case 



148 

 

(e.g., the EBS and plane schedules affect the algorithmic design). Another 
example is the scheduling process for cranes’ retrievals (see Chapter 3). For this 
process, we had to adapt to sector-specific characteristics when scheduling 
retrievals, although within a generic process structure.  

o The highest level of differentiation among sectors is at the planning level. At 
this level, the interfaces with the system-user’s functions play an important role 
and the different operational environments are more prevailing. An algorithmic 
analysis at this level is less generic. However, we presented a generic structure 
for planning processes. This is embodied by the modular planning control units 
and the standardized forms of communication. The standardized forms of 
communication occur between the planning control units at the same level and 
also with the scheduling control units at a lower level of control. This generic 
structure can accommodate sector-specific planning algorithms. For example, in 
baggage handling, a customized algorithm can be implemented in the storage 
planner to select a set of bags to compose a ULD for robots. 

7.4 Recommendations and guidelines for practice  
In this thesis, we presented a number of applications of the generic control modules. 
For future applications, we list some of the lessons learned, which are points to 
commit to when implementing the generic control architecture on other MHSs:  

o The use of generic control modules is essential, since the introduction of 
customized modules would hamper the generic structure. For example, we 
model any type of ‘build’ workstations by the generic workstation module. 

o The standard interfaces between different controllers should be maintained. 
o System size and layout characteristics should not affect the implementation of 

the generic scheduling processes. This is shown by our application of the 
generic dynamic routing both in the screening area of the baggage handling 
business case (see Chapter 4) and in the orders build area of the distribution 
center modeled in Section 3.2.  

o As mentioned before, the planning level of control is generic, but may include 
system-specific business rules or algorithms, since it is the interface to the 
users’ processes. 

o A distributed decision-making structure is necessary, as it supports the 
modularity, robustness, and the generic nature of the control architecture. For 
example, if the routing decisions are executed by a central controller, this 
controller would not be easily applicable to different system layouts. 

o The pull-concept in the control architecture is beneficial to keep the workload 
under control and reduce variability. Moreover, the pull-concept facilitates 
more generality among different sectors. For example, we proposed a pull-
concept for the retrieval process of bags from the EBS rather than the current 
practice push-concept. This resulted in a process than is analogous to the 
retrieval process in the distribution sector. 

o Local traffic controllers can accommodate algorithms that can be easily 
integrated as add-ons to the architecture and do not affect the communication at 
the higher levels of control. 
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o Going back to the modular structure of control, we believe that using all control 
modules for an MHS may improve the overall system performance and the 
performance of individual modules. For example, the ADLBA is an approach 
that uses information about internal travel times in MHSs. For such an 
approach, it is beneficial when the MHS’s control includes the planning, 
scheduling, and local traffic control modules as developed in the other chapters. 
In this case, the variability resulting from current practice local traffic control 
rules and EBS control is reduced by implementing the generic control methods. 
This makes internal travel times on sorters more reliable, and thus the 
performance of the ADLBA may improve. In this case, the ADLBA may be 
preferable in more settings than those recommended in Chapter 5. 

7.5 Future research 
In this thesis, we developed a generic control architecture for MHSs in different 
industrial sectors. We based our analysis, system models, and implementations on 
three different industrial sectors, i.e., parcel & postal sorting, baggage handling, and 
distribution. In fact, the issues we dealt with in this thesis open directions for future 
research. In this section, we highlight three possible research directions. 

Material handling equipment 

Throughout this thesis, we argued that we can model different equipment in abstract 
terms depending on the role they play in the system, and therefore generic control 
modules could be applied. For example, a build workstation can refer to a robot, a 
manned-lateral, or a manned-pick station. However, these arguments were based on 
the range of material handling equipment that we studied. In fact, it would be 
interesting to analyze the applicability of the generic control architecture on material 
handling equipment that were not within our scope of analysis. 

In this context, an important area to investigate is autonomous vehicles, e.g., AGVs 
(automated guided vehicles). These material handling elements may be employed to 
perform tasks that some of the equipment we modeled perform. However, we cannot 
assume that the control approaches we proposed apply easily to these new equipment 
types. A key difference is that autonomous vehicles have more flexible movement 
trajectories than the equipment we modeled. This may result also in an overlap 
between the areas where each of these autonomous vehicles is active. We did not face 
such overlaps in the systems we modeled, e.g., each crane was operational in a 
dedicated aisle and a build workstation is functional at a designated area in the system. 
However, autonomous vehicles may access the same areas of operation and in this 
case there are additional issues to deal with. For example, the assignment of tasks to 
these resources may be affected by their locations at certain points in time. At the local 
traffic level, collisions between different autonomous vehicles and vehicles blocking 
each other are main control issues for which generic local traffic rules or algorithms 
should be developed and incorporated in the control architecture.   

Generic control methods in different settings 

In this thesis, we studied generic control of MHSs within a certain facility (Scope 1; 
see Section 1.2.1). For future research, it may be interesting to study the applicability 
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of the control methods that we proposed within different scopes and in other settings. 
For example, a question for future research is how to implement the generic control 
architecture not only in a single facility, but in multiple facilities that are connected, 
e.g., several terminals of a large airport. In this case, merely installing the control 
software for each facility may not result in a satisfactory system performance. In 
particular, the planning processes among different facilities may need coordination. A 
possibility is to have multiple layers of the planning control units. For example, a 
primary storage planner that supervises several subordinate storage planners might be 
an option. In this case, the primary storage planner has a system view on all facilities 
while each subordinate planner is responsible for the storage area of a single facility. 

Another area of interest for future research may be to control the flow of people 
(instead of TSUs) in networks during big events. For example, when a major event 
takes place in some city and large crowds of people are expected to arrive from 
different cities via, e.g., trains, then it would be interesting to implement control 
methods for balancing flows over different railways (instead of conveyors) and to give 
real-time estimations on expected travel times. 

On the other hand, it is also interesting to study control approaches that are developed 
for other settings and study whether it is possible to adapt them and incorporate them 
in the generic control architecture for MHSs. 

Design for controllability 

The aim of this thesis was to study generic control methods without interfering with 
the layout and process designs of MHSs. We dealt with MHSs as given in terms of 
processes and layouts. Then, we developed and applied generic control modules and 
adapted them, when necessary, to deal with system-specific characteristics.  

The generic control architecture provides a sound basis for analyzing what system 
designs fit more easily in a generic context, and thus result in easier applicability of the 
generic control methods. Likewise, we may define what designs deviate from the 
generic context and make it more difficult to apply generic control methods. In this 
context, an interesting area for future research is to start with the deliverables of this 
thesis, i.e., the generic control methods, and then study how to design MHSs in a way 
that serves the generic control objectives. This is especially relevant when alternative 
layout designs are available to achieve a certain functional purpose. At the local traffic 
level, we gave an example in Chapter 6, where we showed how longer infeeds result in 
better system performance when using the generic space allocation algorithm. 

Foreseeing the consequences of design decisions is an important issue not only in the 
context of MHSs, but in a more general context for systems in different areas, e.g., 
manufacturing or construction. The main reason is that the flexibility in decision-
making is higher in the early stages than in the later stages of systems development. 
Therefore, certain design choices that may cause difficulties in later stages of systems’ 
development or systems’ functionality should be avoided. In fact, the attention paid to 
foreseeing the future effects of early design choices is growing. For example, in the 
manufacturing world, we encounter concepts such as design for manufacturability and 
design for assembly. Similarly, it might be interesting to propose the concept of design 
for controllability for future research.   
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