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Abstract 
In 2001, Mozambique declared an area known as “Coutada 16” (hunting 
zone) the Limpopo National Park (LNP), which forms part of a trans-frontier 
park with South Africa and Zimbabwe. The park provides ecosystem services 
and supports the livelihoods of thousands people living in the many 
communities within its boundaries, which were planned for relocation outside 
the park. These moves were expected to result in major land use changes, 
both in terms of vegetation and wildlife, affecting soil quality in and around 
the LNP, including in resettlement areas. Therefore, this study aimed at 
estimating soil organic carbon (SOC) stocks in the Limpopo National park as 
an indicator of livelihoods and ecosystem function. The estimation of SOC 
stocks was first attempted from legacy data then by both measure-and-
multiply and digital soil mapping (DSM) based on a new sampling plan. Along 
this study issues of legacy data renewal quality, mapping data-poor and 
poorly-accessible areas, time-consuming and costly traditional method for 
SOC laboratory determination as well as uncertainty and reliability of SOC 
stocks estimates from different methods were also investigated. Overall this 
research provided (1) a guiding framework and quantitative measures for 
evaluation of renewed legacy survey and as such enabled an informed 
qualitative and quantitative SOC stocks estimation, (2) a cost-effective 
methodology for mapping SOC in data-poor, poorly-accessible areas following 
a DSM approach, (3) a rapid, cost-effect, non-destructive and pollutant-free 
Near-Infrared a calibration model for the determination of SOC in LNP and, 
(4) SOC stocks estimates, its uncertainty and reliability. Despite the high 
uncertainty of the estimates, which limit its use in baseline studies, achieved 
SOC stocks estimates are, in general, consistent with of SOC stocks 
estimates in the literature for similar soils in comparable environmental 
conditions in southern Africa. 



Resumo 
Em 2001, Mozambique declarou a área conhecida como “Coutada 16” (zona 
de caca) de Parque Nacional do Limpopo (PNL), que compõe o parque 
transfronteiriço com a Africa do sul e o Zimbabwe. O parque fornece serviços 
e suporta “o sustento/livelihood” de milhares de pessoas vivendo em muitas 
comunidades no interior do parque e cuja realocação foi planificada para o 
exterior do parque. Espera-se que estas acções resultem em grandes 
mudanças do uso de terra em termos de vegetação e vida selvagem e que 
afectarão a qualidade do solo dentro e cercanias do PNL. Por isso, o presente 
estudo visa estimar o “stock” de carbono orgânico do solo (COS) do parque 
como indicador do “livelihood” e “função” do ecossistema. A estimativa do 
COS foi inicialmente feita com recurso ao legado-de-dados e posteriormente 
com base no método “measure-and-multiply” e mapeamento digital do solo 
(MDS), ambos com recurso a uma nova amostragem de campo. Ao longo do 
estudo, questões da qualidade de legado-de-dados renovados, mapeamento 
de áreas pobres em dados e com pouco acessíveis, os dispendiosos e lentos 
métodos tradicionais de análises laboratoriais para a determinação do COS 
bem como “incertezas” e “confiança” das estimativas de COS pelos diferentes 
métodos foram investigadas. Da pesquisa resultou (1) um quadro-guia e 
medidas quantitativas para a avaliação de inventários-legado e como tal 
permitiu estimativa qualitativa e quantitativa da estimativa do “stocks” de 
COS, (2) uma metodologia custo-efectiva para o mapeamento de COS em 
áreas pobres de dados e de limitado acesso pelo “approach” MDS, (3) um 
modelo de calibração NIR para a determinação do COS para o PNL; rápido, 
custo-efectivo, não-destrutivo e livre de poluentes e, (4) estimativas de 
“stocks” de COS, suas “incertezas/uncertainty” e grau de confiança. Não 
obstante a elevada “incerteza/uncertainty” das estimativas do COS que 
limitam o seu uso em estudos de base, as mesmas são em geral consistentes 
com valores na literatura referentes a solos similares em condições em 
ambientais também comparáveis, na região austral de Africa. 
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Soil organic carbon as a proxy indicator of soil quality and sustainability in LNP 

1.1 Introduction 
In 2001, Mozambique declared an area known as “Coutada 16” (hunting 
zone) the Limpopo National Park (LNP), which forms part of a trans-frontier 
park with South Africa and Zimbabwe. The LNP provides ecosystem services 
and supports the livelihoods of about 20 000 people living within its 
boundaries. The formation of LNP and the planned relocation of the 
communities within the park will result in major land use changes, both in 
terms of vegetation and wildlife (Ministerio do Turismo, 2003). These changes 
are expected to affect soil quality in and around the LNP, including in 
resettlement areas. 
 
The demand for arable land, grazing, forestry, wildlife, tourism and 
community development is greater than land resources available so soil 
quality may worsen. Therefore, sustainable land management is needed. It 
aims at harmonizing the complementary goals of providing environmental, 
economic, and social opportunities for the benefit of present and future 
generations, while maintaining and enhancing the quality of land resource. 
This can only be achieved through interactive planning which allows 
monitoring how far a land use plan is meeting the goals set and change 
whenever felt necessary (Dumanski, 1998; FAO, 1993). Therefore, there is a 
need to monitor soil quality so land use management plan can be timely 
adjusted to achieve sustainability. 
 
The need for sustainable land management has raised an unfinished scientific 
discussion about the definition of soil quality and relevant indicators to 
quantify it. Nevertheless, many authors have used soil organic matter 
content (SOM) as an indicator of the impacts of land use changes, because 
SOM is (Batjes, 1992) probably the most important soil constituent. SOM is 
defined as the organic constituents of the soil, excluding undecayed plant and 
animal tissue, their partial decomposition products and the soil biomass. The 
definition, therefore, includes the identifiable high-molecular weight organic 
material such as polysaccharides and proteins, simpler substances such as 
sugars, amino acids, and other small molecules, and humic substances 
(Batjes, 1992). 
 
Decaying SOM releases essential nutrients for plant and microbial growth. 
SOM is an important determinant of cation exchange capacity, particularly in 
coarse-textured soils and on low activity clay soils, serves as reservoir of 
nutrients and water, aids in reducing compaction, surface crusting and 
improves structure, aeration, infiltration, permeability, aggregate stability and 
buffering capacity. It also protects soils against erosion. This implies that 
SOM content strongly influences soil productivity (Batjes, 1992). SOM 
content is affected by climate, soil mineralogy and fertility, soil texture, 
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structure and biodiversity, vegetation and land use changes or successions 
(Batjes, 1992) so, the role of SOM can be diminished by these factors leading 
to CO2 emission (Kamoni et al., 2007; Milne et al., 2007), loss of its 
favourable effects (e.g. soil structure), soil erosion and overall land 
degradation (Gisladottir and Stocking, 2005). 
 
Climate controls biophysical production potential; the net primary production 
(NPP). SOM levels are regulated by the net primary production, distribution of 
photosynthates into roots and shoots and the rate at which these organic 
residues decompose (Batjes, 1992). Climate and its changes affect SOM 
through changes in rainfall patterns and its effect on biomass production, as 
the low rainfall range and few but intense rainstorms cause high erosion but 
are insufficient to result in good vegetation cover (Gisladottir and Stocking, 
2005) whose decomposing residues lead to formation of SOM, and thus 
contribute to land degradation. 
 
Soil organic carbon (SOC) is the main constituent of SOM and many studies 
have shown its importance as a soil quality indicator both as a single soil or 
compound (SOM) attribute (Arshad and Martin, 2002; Brejda et al., 2000a; 
Brejda et al., 2000b; Yemefack et al., 2006). SOC plays an important role in 
terrestrial ecosystems for human well-being, which has made it a good proxy 
indicator of both environmental goods and services (such as crops, grass for 
range, but also water storage, soil biology and nutrient cycling). Of most 
interest is perhaps the fact that soils are the main terrestrial pool of organic 
carbon and therefore fixing/sequestration of carbon is the single best entry 
point for land degradation control through which mankind will be able to 
control land degradation and therefore pursue sustainable land management 
(Gisladottir and Stocking, 2005); the maintenance of good soil quality. 
 
The widely-used soil fertility-crop production model QUEFTS uses SOC, or 
total nitrogen as a proxy (assuming a stable C/N ratio), as the major yield-
explaining variable (Janssen et al., 1990; Liu et al., 2006; Pathak et al., 
2003; Smaling and Janssen, 1993). This comes as no surprise in strongly 
weathered tropical soils that largely rely on the organic fraction for their 
inherent soil fertility. These evidences support Shukla et al. (2006) who 
stated that if only one soil attribute were to be used for monitoring soil 
quality changes, it should be SOC. 
 
Any change in soil quality cannot be assessed without a proper baseline, i.e., 
present-day soil quality. As part of a project on “competing claims in natural 
resources” in the trans-frontier national park areas of Mozambique, RSA and 
Zimbabwe (Giller et al., 2008), there was a need to assess soil resources in 
the LNP of Mozambique, specifically the SOC stocks as an indicator of 
livelihoods and ecosystem function. 

 3 



Soil organic carbon as a proxy indicator of soil quality and sustainability in LNP 

This book discusses the processes through which the SOC concentration and 
stocks were estimated as well as the respective spatial distribution and finally 
the total SOC stocks for an extensive, poorly-accessible and data-poor area. 
As part of this process, issues of legacy data quality, laboratory 
determination of SOC using rapid, non-destructive technique as well as 
alternative mapping methodology for mapping poorly-accessible areas are 
discussed. 

1.2 Soil organic carbon: legacy data quality, 
estimation from NIR spectroscopy and spatial 
prediction 

Many developing countries are covered by legacy soil surveys, usually the 
only source of information because it is unlikely that new soil surveys can be 
commissioned. Despite the valuable information gathered at considerable 
effort and cost, this legacy data is in many cases hardly used. Some reasons 
for this lack of use are poor availability, poor documentation, and the 
outdated data (currency; as soil properties may have changed) and survey 
concepts and standards by which the maps were made, making them not 
adequate for decision making. Consequently these legacy surveys are likely 
to be ignored or even lost (Rossiter, 2008). If retrieved, legacy soil surveys 
can also be valuable baselines for monitoring, e.g., of changes in soil organic 
Carbon stocks and land degradation or rehabilitation, allowing therefore 
historical re-look. 
 
Legacy SRI needs first to be well documented and properly preserved in 
order to be re-used. A good example of this is the European Archive of Digital 
Soil Maps of Africa (Selvaradjou et al., 2005), where maps from many legacy 
maps from African countries were scanned and archived in an optical digital 
media. In this way the maps will be better preserved for future use. 
 
Given the currency issues of legacy soil data, the challenge is then how can 
we make best use of them. Two good examples of re-use of legacy data are 
by Dent & Ahmed (1995) and Ahmed and Dent (1997) who used statistical 
techniques to test and re-interpret archival data from soil survey of the tidal 
floodplain of the Gambia River. From their re-interpretation the authors 
concluded that the intuitively defined and mapped soil series from the 
original survey did not match the soil taxonomic units derived by cluster 
analysis of validated data. This insight was possible due to the added value of 
geostatistics for the re-use of legacy soil survey data.  
 
In recent years soil survey procedures have been revolutionized by the use of 
geo-information technology, including remotely-sensed imagery, digital 
elevation models (DEM), and statistical inference models; the emerging 

 4 



Chapter 1 

paradigm is called digital soil mapping (DSM), summarized by McBratney et 
al. (2003) and the subject of several international workshops (Hartemink and 
McBratney, 2008; Lagacherie et al., 2007) which can be applied to improve 
various aspects of legacy SRI (Rossiter, 2008). This author lays out a 
conceptual framework for using DSM techniques to support legacy data 
renewal with emphasis on areas with sparse soil data infrastructures, and soil 
maps following the discrete model of spatial variation. The author further 
gives an example where soil unit boundaries of a 1:50.000 Kenyan soil map 
are checked based on identifiable landscape features from a draped DEM on 
the soil map. Despite the improvement that can be made to legacy SRI data, 
the author did not assess the degree of improvement made. 
 
In this study the conceptual framework for using DSM techniques to support 
legacy data renewal by Rossiter (2008) was tested and the various criteria 
from the guidelines for evaluating the adequacy of soil resource inventories 
(Forbes et al., 1982) were applied, to assess the quality of renewed legacy 
soil data, and the approaches and strategies to improve legacy SRI data 
renewal even further were discussed. 
 
In the event that new soil surveys are commissioned, current SOC data can 
be obtained as part of the survey. Traditionally the knowledge of spatial 
distribution of soil properties is represented as soil maps conforming to the 
discrete model of spatial variation; DMSV (Heuvelink and Webster, 2001), 
showing polygons within which soils are considered homogeneous and with 
boundaries where changes in soil properties are considered to be abrupt. Soil 
properties of the different units were characterized by collecting large 
number of “representative” samples, subjected to traditional time-consuming 
and costly laboratory analysis. 
 
The recent rapid development of information technology along with the 
availability of new types of secondary data (e.g., digital elevation models and 
satellite imagery) allow for more quantitative approach (continuous model of 
spatial variation; CMSV) to soil survey producing surfaces based on soil 
forming factors. Furthermore, these methods give spatial estimates of the 
uncertainty of the predictions. This “predictive” (Scull et al., 2003) or “digital” 
soil mapping; DSM (McBratney et al., 2003) uses relationships between soil 
properties and auxiliary data at sample points to predict over a study area.  
 
Digital soil mapping (DSM) techniques have been successfully applied in 
studies at field scale where soil variability is largely due to the effect of 
topography on soil genesis (e.g., Florinsky et al., 2002) and therefore much 
of the success is attained by integration of terrain attributes as auxiliary data. 
The challenge is to capture the spatial structure of soil variation as well as 
the soil-environment relations over larger poorly-accessible areas due to poor 
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road networks (such as much of Africa) or difficult terrain (e.g., mountainous 
regions), a large number of observations following a sound sampling design, 
covering the feature and geographic space of the predictors (e.g., Minasny 
and McBratney, 2006) are required, which is impractical or prohibitively 
expensive. 
 
In this book an alternative DSM approach is proposed, in which sampling is 
concentrated along accessible areas and samples are then used to build the 
DSM model, which is later applied to predict over the large poorly-accessible 
area. In between sampling and DSM model building, the traditional time-
consuming, costly laboratory analyses that may result in environmental 
pollutants were replaced by applying the promising new technique in the field 
of diffuse reflectance spectroscopy (e.g. Near-Infrared spectroscopy, NIR), a 
fast, non-destructive and inexpensive soil analysis (Shepherd and Walsh, 
2002; Viscarra-Rossel and McBratney, 2008). However, the technique 
requires building robust both spectral libraries and model to describe the 
relation between soil attribute and its spectral signature. The challenge is to 
minimize the size of spectral library needed to capture all variability, 
especially in areas where no spectral library exists. The SOC-NIR calibration 
model built on the base of a limited sub-set of collected samples was later 
used to estimate SOC for the entire field collected samples. Finally and 
following the DSM approach and results, the SOC stocks, its spatial 
distribution, total SOC stocks and uncertainty were estimated for the study 
area. 

1.3 Research aim and objectives 
The aim of this study was to develop alternative methods to obtain SOC data 
in the LNP. Specific objectives were to (1) test the use of various criteria for 
evaluating the adequacy of soil resource inventories, to assess the quality of 
renewed legacy soil data, with emphasis on SOC stocks estimation (2) to 
develop an alternative DSM method for the prediction of SOC in a large, 
poorly-accessible area, (3) to test and assess the robustness of a NIR 
calibration model built from a limited number of samples for the estimation of 
SOC, and (4) to predict SOC stocks, its spatial distribution and uncertainty in 
the LNP. 

1.4 Outline of the thesis 
This research carried out in this study is reported in six chapters, including 
the introduction and Synthesis. The analysis are based on field measured A-
horizon depth, laboratory determinations of SOC concentration, particle size 
and acquisition NIR spectral signature of field collected soil samples collect 
across the study area. This book is organized to address issues related to 
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SOC data for the estimation of stocks in an extensive, data-poor and poorly-
accessible area. 
 
Chapter 1 
This chapter introduces the research problem, aim and objectives. It also 
defines SOC and discusses its role in the context of soil quality. The chapter 
also reviews the benefits and limitations faced to make use of legacy SOC 
data, reviews the challenges to estimate SOC in the laboratory as well as the 
modeling of spatial distribution of SOC concentration and stocks. 
 
Chapter 2 
The objective was to assess quality of rescued legacy soil map. Legacy soil 
maps from the study area were rescued and renewed following the 
conceptual framework for data rescue and renewal. The assessment of 
renewed legacy soil maps was made using the Cornell adequacy criteria for 
the evaluation of SRI. Rescued legacy data with good quality can be used to 
estimate SOC stocks. 
 
Chapter 3 
This chapter had the objective of developing a cost-efficient methodology for 
digital soil mapping in poorly-accessible areas. In this chapter, a stepwise 
approach to predict the spatial distribution of SOC concentration is proposed. 
The spatial model is developed based on laboratory SOC data determined 
from limited soil samples collected across the study area, chiefly in accessible 
areas. 
 
Chapter 4 
This chapter intercalated the previous one. The objective was to test the 
possibility of calibrating a useful NIR-calibration model for the prediction of 
SOC concentration based on a limited number of soil samples. The limited 
number of samples was assumed to reflect the “poor accessibility” problem of 
the study area due to limited road network, wildlife hazard and rough terrain. 
The analysis was performed on a sub-set of soil samples from previous 
chapter. Calibrated model was then used to estimate SOC in remainder of soil 
sample, later used to develop spatial model for the spatial prediction of SOC 
(previous chapter). 
 
Chapter 5 
This chapter had the objective of assessing the total SOC stock, its spatial 
variation and the causes of such variation the study area. The analysis 
included the calibration of spatial model which made use of a limited number 
(typical of poorly accessible areas) of field measures A-horizon depth and 
SOC data predicted using the NIR-calibration model (chapter 4). The spatial 
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model made also use of secondary data to represent the soil forming factor’s 
explanatory variables. 
 
Chapter 6 
This chapter synthesizes the major issues derived from this study, specifically 
in obtaining SOC data from legacy sources, laboratory measurements and 
predicting SOC concentration and stocks. Focus is given for data-poor and 
poorly-accessible areas, typical of most developing countries. This chapter 
also provides recommendations for application of results from this study and 
for future research of question not solved in this study. 

1.5 The research site 
The LNP was selected as the study area. It is located in the western part of 
Gaza province (south of Mozambique) and is one part of the study area of the 
“Competing Claims on Natural Resources” programme (Giller et al., 2008), 
centered on the trans-frontier national parks of the Mozambique-Zimbabwe-
South Africa border (Figure 1.1). LNP is located in Mozambique between 22° 
25' and 24° 10' S and 31° 18' and 32° 38' E and is delimited by about 190 
Km fenced international border with South Africa (Kruger National Park) to 
the west, and by both Limpopo (about 260 Km) and Elephant (about 85 Km) 
Rivers, east and south, respectively, covering a total of about 10 500 km2. 
Altitudes range from about 50 to about 500 m above sea level (Stalmans et 
al., 2004). It has a warm arid climate (BWh, Köppen classification) with a dry 
winter and mean annual temperature exceeding 18° C (Peel et al., 2007). 
Absolute maximum temperatures (between November and February) 
increase northwards to above 40°C. Annual rainfall decreases northwards 
from above 500 mm in the southeast to about 350 mm at the extreme north 
(Ministerio do Turismo, 2003; Stalmans et al., 2004). 
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Figure 1.1: The Great Limpopo Trans-frontier Park (left) formed by the Gonareshu 
National Park (GNP), the Kruger National Park (KNP) and the study area of this 
research; the Limpopo National Park (LNP), within which the detail of legacy data 
renewal study area (right) in shown around Massingir. 
 
The dominant lithology is the extensive Quaternary aeolian sand cover along 
the NNW-SSE spine of the park. Tertiary sedimentary rocks (limestones, 
sandstone) are found close to the drainage lines where the sand mantle has 
been exposed. Rhyolite rocks from the Karroo formation are located along 
the western border while alluvium lies along the main drainage lines. Soils 
derived from aeolian sands range from shallow to deep and are sandy, those 
derived from rhyolite are shallow and clayey, those derived from sedimentary 
rocks are deep, structured and clayey and those derived from alluvium 
materials are clayey (Manninen et al., 2008; Rutten et al., 2008; Stalmans et 
al., 2004). 
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Figure 1.2: The SRTM digital elevation model and annual precipitation (Hijmans et al., 
2011) distribution across the LNP. 
 
The LNP is poorly covered by systematic soil survey. Instead, a few detailed 
soil surveys around the Massingir dam reservoir were carried out for 
irrigation planning in the late colonial and early post-colonial times. The 
national reconnaissance soil map at 1:1.000.000 scale shows the LNP 
covered by five soil units from five major soil groups (FAO and Unesco, 1997; 
INGC et al., 2003; INIA, 1995); the Arenosols/Haplic Luvisols and Ferralic 
Arenosols on the Quaternary aeolian sands, the Eutric Leptosols over the 
Karroo formation, and the Calcaric Cambisols and Eutric Fluvisols along the 
main drainage lines. 
 
Stalmans et al. (2004) classified LNP into ten major landscape units (1) 
Combretum spp./ Colophospermum mopane Rugged Veld (CMR), 
characterised by shallow soils on the hills but deeper in the footslopes and 
low-lying areas, (2) Limpopo Levubu Floodplains (LLF), subjected to flooding 
and characterised by sandy alluvial soils, (3) Limpopo north (LN), stoney with 
loamy to clayey shallow soils derived from rhyolite but also basalts, (4) Mixed 
Combretum spp./ Colophospermum mopane woodland (MCM), made up 
mainly by rhyolite rock-outcrops, (5) Mopane Shrubveld on Calcrete (MSC), 
with shallow and calcareous soils derived from sandstones and limestones, 
(6) Nwambia Sandveld (NS), sandy soils of varying depth derived from the 
aeolian sands, (7) Pumbe Sandveld (PS), similar to NS but receives more rain 
and has red sandy soils, (8) Salvadora angustifolia Floodplains (SAF), 
subjected to flooding with black alluvium soils, (9) Andasonia 
digitata/Colophospermum mopane Rugged Veld (ADR), shallow and 
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calcareous soils with moderate clay concentration, and (10) Colophospermum 
mopane Shrubveld on Basalt (CMB), dark soils derived from basalt showing 
vertic properties. The park has only a few improved roads, and access is 
quite difficult, especially off-road, due to dense vegetation, rough ground, 
and large wild animals.  
 

Figure 1.3: The landscape units (Stalmans et al., 2004, modified with permission from 
Koedoe) and Geology units of the LNP. Geology unit codes are given in table 3.3 
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Chapter 2 
 
Legacy soil data rescue and renewal – a case 
study of the LNP1 

1 This chapter is based on: Cambule, A.H., Rossiter, D.G., Stoorvogel, J.J., Smaling, 
E.M.A., (in preparation). Legacy Soil Data Rescue and Renewal with emphasis on SOC 
assessment: a case study of the Limpopo National Park, Mozambique. 
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Abstract 
In developing countries, the need for soil information to support land use 
planning is increasing, yet funds are limited for new soil surveys. Many areas 
of these countries are covered by legacy soil surveys gathered at 
considerable effort and cost, which are usually the only source of information 
on soil geography. However, many legacy surveys are hardly used due to 
lack of easy availability in digital form, outdated standards, and unknown 
quality. Attempts to rescue and renew such surveys to meet current demands 
have hardly addressed the renewal stage; further, there are no established 
quality criteria to assess them. The objective of this study was to test the 
applicability of the Cornell adequacy criteria to assess the quality of several 
post-independence soil surveys in or near the Limpopo National Park (LNP), 
Mozambique, covering about 3% of the park. These were renewed by digital 
soil mapping method, with emphasis on assessing their quality for soil 
organic carbon (SOC) mapping and monitoring. The renewed maps’ quality 
was assessed in terms of achieved geodetic control, positional accuracy of 
digitized borders, map scale and texture and adequacy of map legend. 
Metadata was attached to the renewed maps. SOC stocks were estimated 
qualitatively based on map unit characteristics and quantitatively by the 
measure-and-multiply approach from legacy laboratory measurements. Co-
registration RMSE varied between 8.0 to 57.0 m, corresponding to 13 - 45% 
of square root of minimum legible area at published map scale. Point and 
area-class layers could be created with high positional accuracy; however the 
index of maximum reduction was high, indicating that the original publication 
scale could be reduced. Map unit definitions and overall information content 
of the surveys were adequate. Integration of remotely-sensed optical 
imagery and digital elevation models could be used to derive highly-accurate 
contours, against which positional accuracy of contour-based map borders 
was assessed, showing that less than 30% of their lengths were within a 
distance equal to the square root of MLA. However, these data sources could 
not successfully generate a high-accuracy base map to evaluate the 
positional accuracy of map unit boundaries. Qualitative estimate of SOC are 
between low and medium, consistent with other studies in this area. The 
measure-and-multiply approach resulted in an area-normalized mean of SOC 
stocks of 2.0 – 4.0 kg m-2 and total SOC stocks of about 596.2 Gg for the 
276.4 km2 of the four soil survey areas. 
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2.1 Introduction 
The demand for soil information to support land use planning (e.g. 
agricultural production, infrastructure, re-settlement, designation of 
conservation areas) in developing countries is increasing, yet funds are 
limited for new soil surveys. 
 
Many areas of these countries are covered by legacy soil surveys (also called 
soil resource inventories, SRI), usually the only source of information on soil 
geography. Despite the valuable information gathered at considerable effort 
and cost, this legacy data is in many cases hardly used. Some reasons for 
this lack of use are poor availability, poor documentation, and the outdated 
data (currency; as soil properties may have changed) and survey concepts 
and standards by which the maps were made, making them not adequate for 
decision making. Consequently these legacy surveys are likely to be ignored 
or even lost (Rossiter, 2008).  
 
Legacy soil surveys can also be valuable baselines for monitoring, e.g., of 
changes in soil organic Carbon stocks and land degradation or rehabilitation. 
 
In recent years soil survey procedures have been revolutionized by the use of 
geo-information technology, including remotely-sensed imagery, digital 
elevation models (DEM), and statistical inference models; the emerging 
paradigm is called digital soil mapping (DSM), summarized by McBratney et 
al. (2003) and the subject of several international workshops (Hartemink et 
al., 2008; Lagacherie et al., 2007). DSM relies on field observations for 
model building and validation. Legacy surveys can provide much of this 
information; reducing the amount of new fieldwork required and also allowing 
historical perspective. 
 
An example is given by Baxter and Crawford (2008) who used legacy records 
of soil pH in a DSM exercise. The potential for legacy data re-use calls for its 
renewal to meet current demands. Legacy data renewal is still at its early 
stages as is revealed by the low number of publications on the topic. Rossiter 
(2008) proposed a procedure for legacy data rescue and renewal, within 
which the author distinguishes “data archaeology” (locating legacy surveys 
and their supporting metadata), “data rescue” (keeping them from being 
lost), and “data renewal” (bringing them up-to-date and compatible with 
other databases). The renewal phase includes: (1) Geodetic control, (2) area-
class delineation and sample point data as GIS coverages, geodetically 
correct with linked attribute databases, (3) the use of medium resolution 
multispectral images, DEM and/or derived terrain parameters as background 
and/or supplemental data, (4) addition of metadata to explain the semantic 
used as well as to refer to laboratory methods and classification systems 

 15 



Legacy soil data rescue and renewal – a case study of the LNP 

used, (5) integration of the legacy data into an easily accessible geospatial 
data infrastructure. The European Archive of Digital Soil Maps of Africa 
(Selvaradjou et al., 2005) constitutes a good example of the data 
archaeology and rescue stages. These are only digital scans, not “digital soil 
maps” as the term is used in DSM. The renewal stage has hardly been 
addressed; the only published efforts are by Dent & Ahmed (1995) and 
Ahmed and Dent (1997) who used statistical techniques to test and re-
interpret archival data from soil survey of the tidal floodplain of the Gambia 
River. From the re-interpretation, the intuitively defined and mapped soil 
series from the original survey did not match the soil taxonomic units derived 
by cluster analysis of validated data, which shows the added value of 
geostatistics to renew legacy soil survey data. Despite these few efforts, 
there are no quality criteria to guide legacy data renewal to meet current and 
future demands for soil information. 
 
Mozambique is typical of sub-Saharan African countries in its soil survey 
history: pre-independence by the colonial power; post-independence by 
international and national projects; never surveyed systematically to a 
consistent standard; currently resource- and personnel-poor, with no 
prospect of systematic soil survey. Yet the country depends on the soil 
resource for agriculture, infrastructure and environmental services. Therefore 
identification of appropriate approaches for legacy soil information rescue and 
renewal would contribute to support research, policy-making and planning 
with quality legacy data. There is plenty of data to be rescued: the ISRIC-
World Soil Information database (http://library.isric.org/, accessed 23-
January-2013) lists 329 maps and reports covering some part of 
Mozambique. 
 
One such example is the Massingir area, located at the southern end of the 
LNP. The park was declared as such in 2001 to replace the then known as 
“Coutada 16” hunting zone. At that time about 20.000 people then living 
within the park were planned to be re-settled either outside or within the LNP 
multi-use zone (Ministerio do Turismo, 2003). To assess the soil suitability of 
one of those locations, a new soil survey was carried out covering about 6000 
ha; 6 new profiles and 7 legacy soil profiles data were re-used as 
representative data for some soil units in the new survey (Rural Consult Lda, 
2008). No reference to any renewal processing was reported. As more land 
elsewhere around the LNP is likely to be targeted by similar land 
development, it is important to determine the feasibility of bringing the 
legacy soil survey up to acceptable standards so to support land use planning 
as well as future soil surveys. In particular, soil organic carbon (SOC) has 
been identified as the key soil component controlling natural productivity and 
soil physio-chemical properties for soil management in resource-poor 
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agriculture (FAO, 2001), so legacy data renewal in this area can well be 
evaluated by its success in (re-)mapping SOC stocks. 
 
As part of a project on competing claims in natural resources in the trans-
frontier national park areas of Mozambique, RSA and Zimbabwe (Giller et al., 
2008), we were confronted with the task of assessing soil resources in the 
LNP of Mozambique, specifically the soil organic carbon (SOC) stocks as an 
indicator of livelihoods and ecosystem function. The excursion into data 
archaeology and data rescue, resulted in a surprising number and variety of 
legacy surveys found. Therefore a decision was made to test the 
methodology proposed by Rossiter (2008) for data rescue and renewal in 
LNP, as an illustration of similar situations that the soil data specialist may 
encounter. The specific objectives were: (1) to undertake “data archaeology” 
to locate and catalog all relevant surveys; (2) to determine the extent to 
which legacy surveys could be renewed, with emphasis on (3) assessing data 
quality for SOC mapping and monitoring, (4) to evaluate the applicability of 
the Cornell adequacy criteria for soil resource inventories (Forbes et al. 1982) 
and, (5) to discuss potential approaches and strategies for the renewal of 
legacy soil data by combining the adequacy criteria with recent computer and 
technological development. 

2.2 Material and methods 
Firstly the legacy data archaeology was performed and the history of soil 
survey in the area was summarized. Major common characteristics were 
described and grouped in terms of their currency, type, scale, format and 
use. This was then followed by a selection of legacy soil surveys data 
covering potential areas for the resettlement program. The selection was 
made considering (1) the potential of legacy soil survey for LNP SOC stocks 
estimation and (2) the soil quality monitoring in nearby resettlement areas. 
 
The selected legacy soil surveys were rescued (converted into archival digital 
format) by scanning the maps. Finally the renewal steps proposed by Rossiter 
(2008) were followed and, in each step; the quality of legacy data using 
relevant adequacy criteria (Forbes et al., 1982; Goodchild and Hunter, 1997) 
was assessed. 
 
Assessment results were compared to threshold values of adequacy criteria. 
Renewed maps with unsatisfactory results were considered not meeting 
current demands/standards and therefore requiring supplemental field survey 
to further improve quality. 
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2.2.1 Geodetic control 
The first step in legacy data renewal is to improve the geodetic control. This 
is a major deficiency of many legacy survey maps. Instead of proper 
georeference, local coordinate system with no indication of datum are often 
used (Rossiter, 2008). Some detective work was carried out to identify the 
base map over which the legacy soil surveys were printed, supposing that the 
soil surveys did not create their own base maps. This work was based on the 
printed cultural features, road intersections and contour lines. The base maps 
were then used to identify the correct coordinate system from which the 
control points were collected. These control points were identified on 
georeferenced topographic maps and remote-sensed imagery with known 
coordinate reference systems (CRS), i.e., coordinate system, projection and 
datum (Iliffe and Lott, 2008) used to georeference the scan, so that they 
could be used as the base for the creation of GIS coverages. The quality of 
this step was assessed by the absolute RMSE of the georeferencing, and also 
the RMSE normalized by the map scale. 

2.2.2 Creation of GIS layers 
The second step in legacy data renewal is the creation of area-class and point 
GIS layers. ArcGIS 9.2 was used as the GIS and linked database. The 
boundaries of the of area-class map units were digitized, the polygons built 
and labelled, and a linked database attribute table created, which was then 
populated with labels and attributes from the original map and report. 
Similarly point coverages of the observation points and their attributes were 
created. Lines were digitized through the middle of lines (soil unit 
boundaries) and points (soil profiles location) on the printed maps, at very 
high magnification to faithfully reproduce the geometry of the original maps. 
However, as is typical for renewal exercises, the original master maps 
(probably on stable mylar) could not be located and had to work with paper 
prints in various states of preservation and folding, so that this level of care 
in digitization is likely much more precise than the source material. 
 
Within this renewal step, the area-class GIS layers were subjected to quality 
assessment following the adequacy criteria in two aspects: (a) Map and map 
scale and (b) Map legend. No adequacy assessment was performed on the 
point data GIS layer or the map unit boundary locations, since there was no 
way of knowing how accurately they had been identified in the field and then 
drawn on the original maps. The boundaries were evaluated in a later step, 
with remote sensing and DEM coverages (see below). 
 
Map scale and map texture 
First, the area-class GIS layer was assessed in terms of map legibility and its 
capacity to represent the smallest area of interest, i.e., the map scale and 
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map textures of legacy maps, using the definitions of Forbes et al. (1982). 
These include (1) the Minimum Legible Area (MLA), which indicates the 
smallest land area that can legibly be represented on the map at its 
published scale, here using the Cornell criterion of 0.4 cm2 as the Minimum 
Legible Delineation (MLD). This is important in legacy map renewal as areas 
smaller than MLD could be aggregated, wherever possible, into larger ones. 
Maps were also assessed by the (2) Index of Maximum Reduction (IMR), 
which indicates the factor by which the map scale could be reduced before 
the Average Size Delineation (ASD) would become equal to the MLD , i.e., 
before half of the map would become illegible. The IMR reveals whether the 
chosen map scale matches the actual delineation sizes – a large IMR means 
paper was wasted and the map is not as detailed as its scale indicates; a 
small IMR means the map is illegible and the intensity of mapping can 
support a larger scale. This is important when renewing maps as the scale 
could be adjusted for optimum legibility, provided the sampling intensity 
would still support the new scale. 
 
Map legend 
This contains descriptions of map units: identification, descriptive (or 
narrative) and interpretive. While the identification legend is made by the 
symbols placed on the map units, the descriptive legend forms the bulk of 
the SRI report, giving information about each map unit, in narrative or 
tabular form. An interpretive legend may also be presented in narrative or 
tables for each map unit in terms of specific land uses or management 
systems. Alternatively, interpretations of each map unit may be included in 
the descriptive legend; this is the most common in legacy map reports. Map 
unit names and definitions in descriptive and interpretive legends determine 
the amount and usefulness of information about the land areas in the map. 
Map legends may be evaluated either in terms of specific use of the soil 
inventory or in a more general criterion, such as a soil classification system. 
The map units’ information (description) was evaluated using the general 
criteria; i.e., in terms of the classification used in the legacy survey. The 
information was considered adequately defined if within map unit description 
the diagnostic information (horizons, properties) or the classification result 
are included. Finally the overall information quality of the whole legacy soil 
survey was assessed by a composite measure; i.e., the proportion of land 
units or survey area evaluated as “adequate” relative to the total number of 
units or total surveyed area size. 

2.2.3 Integration of remotely-sensed data and digital 
elevation model 

The third step of legacy data renewal is the integration of remotely-sensed 
(RS) data, as well as derived maps such as land cover classification, 
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vegetation intensity, and terrain parameters to assess the displacement of 
soil units mapping borders in the context of the soil-environment relations 
interpreted by the (expert) surveyor who has field knowledge of the study 
area. Normalized difference vegetation index (NDVI) and unsupervised land 
cover classification were performed in a sub-set of Landsat TM image onto 
which the soil map and DEM were overlaid to check whether the NDVI, land 
cover classes, relief or combination could help to re-draw soil units borders 
inferred from these. The DEM seemed particularly applicable since most map 
units in the selected surveys were drawn to represent physiographic units. 
Multispectral satellite imagery (Landsat TM, 30 m resolution) from the end of 
the wet season was obtained from the USGS website (www.usgs.gov, 
preprocessing at L1T level). Contrast enhancement was performed to 
increase the distinction between the features on classified image, to facilitate 
its visual interpretability. The unsupervised land cover classification specified 
the same number of classes as soil units of the survey with the most soil 
units.  
 
A 3 arc-second (approximately 90 m) resolution DEM from Shuttle Radar 
Topographic Mission (SRTM), obtained from the JPL website 
(www.jpl.nasa.gov, preprocessing to research grade) was used to derive 
contours to check those used in the soil maps as delimiting soil units, as 
stated in some of the surveys. In the latter, a simple positional accuracy 
measure (Goodchild and Hunter, 1997) was then used to evaluate the 
boundaries displacements on legacy map. The approach relies on a 
comparison between digitized feature and its representation with higher 
accuracy. Thus a percentage of the total length of digitized feature that is 
within a specified distance of the high accuracy representation is computed 
as a measure of positional accuracy. 

2.2.4 Metadata 
The fourth step is the inclusion of metadata to describe methods used for the 
original mapping and during the renewal exercise to delineate map units, 
classify them, and convert raw data to final form. The metadata should also 
clarify semantics, e.g., the meaning of soil type names and soil properties. 
Metadata was created using the FGDC editor in combination with FGDC ESRI 
default stylesheet within ArcCatalog 9.2 extension, since ArcGIS 9.2 was 
selected to link the geospatial database of all created GIS layers. The most 
relevant metadata of all area-class and point data layer created which 
included, amongst others, the Identification information (General 
information, access constraints and keyword), spatial reference, Entity 
Attribute and data quality (positional accuracy and Process steps) was 
recorded. 
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2.2.5 Spatial data infrastructure 
The fifth step is to integrate the renewed map into easily accessible spatial 
data infrastructure. This demands that data be structured to meet the 
requirements of a host geo-spatial data infrastructure (SDI), for example a 
national clearing house (Hendriks et al., 2012). An example of internal 
quality control of geo-spatial data structure is given by Krol (2008), which 
may help to makes the data more accessible and therefore more users may 
be interested in the data. Since there was no targeted SDI, either for the 
competing claims project or for the country or region, this step was not 
pursued. 

2.2.6 Inference about SOC stocks 
The legend was then evaluated in terms of what information it gives explicitly 
or implicitly (e.g., via the soil classification or topsoil properties) about SOC 
concentration and stocks. The required information was extracted from either 
map unit descriptions or point observations. While the former yielded a 
qualitative result, the latter resulted in quantitative estimates, following the 
measure-and-multiply approach (Thompson and Kolka, 2005), making use of 
data populated in the attribute tables of both area-class and point data: SOC 
concentration, soil bulk density (Bd), A-horizon thickness and map unit area. 

2.3 Results and discussion 

2.3.1 Legacy data archeology and a brief history of soil 
resource inventory in the LNP 

Gouveia and Godinho (1955a), report the first nationwide soil maps to have 
been drawn based on soil maps of Africa at 1:25.000.000 (by Marbut) and 
1:20.000.000 (by Schokalsky) scales and that for Mozambique both were 
amplified to 1:6.000.000 with the same cartographic detail. These maps were 
known as the “Marbut’s soil map (1923)” and the “Schokalsky soil map 
(1943)”. Map units were delineated mainly by climate zone, elevation and 
geology. Soil units were broadly characterized based on their morphology and 
revealed little differentiation for the LNP soils. Nevetheless they had an 
important support role for more detailed soil surveys carried out later on. 
 
The same authors published three more soil maps: (1) the preliminary soil 
map of Mozambique at 1:4 000 000; cited by Goudinho Gouveia (1954), (2) 
the provisional soil map of southern Mozambique at 1:2.000.000 (Godinho 
Gouveia and Azevedo, 1955a) and (3) the sketch of national soil map at 
1:2.000.000 (Godinho Gouveia and Azevedo, 1955b). These maps were 
based on the amplified Marbut & Schokalsky maps, further improved by 
integrating soil surveys data from 1947 season by the then “Brigada técnica 
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de reconhecimento algodoeiro” (technical unit for cotton suitability 
reconnaissance). However, the new surveys did not cover the whole country 
so they also followed the Marbut and Schokalsky approach to draw the maps 
(climate, elevation and geology). This is the case for the LNP area, being 
outside the cotton-growing zone. 
 
Roeper (1984) cites Ripado at al. (1950) to have carried out one of the first 
soil surveys along the Elefantes and Limpopo Rivers in an area of about 100-
200 km2 in which 15 soil profiles were described. In the same report, the 
then “Brigada de estudo de solos” is mentioned to have surveyed the soils of 
Massingir District in 1964 over an area of about 250.000 ha, whose result 
supported the survey by Casimiro and Veloso (1969) summarize a soil survey 
along the left margin of the Elefantes River upstream of the confluence with 
the Singuedzi River, in an area of about 4.400 ha, where 520 soil profiles 
were described which resulted in the definition of 28 map unit, whose map 
was drawn at 1:20.000 scale.  
 
The same authors are cited by Roeper (1984) to have surveyed both margins 
of the Elefantes River in 1972, covering a total of about 26.000 ha mapped at 
10.000 in three different reports: (1) Magajamele-Maguça, (2) Maguça-aldeia 
da barragen and (3) Marrenguele-Banga, of which only the latter’s report was 
recovered (Grupo de trabalho de Limpopo, Undated). 
 
Roeper (1984) also reports that in 1971 Gouveia and Marques published a 
soil map of Mozambique at 1:5.000.000, in preparation for the FAO-UNESCO 
soil map of the world then to be published in 1974 , in which it was later 
integrated. The first soil map of Mozambique at 1:4.000.000 was finally 
published by Godinho Gouveia and Marques (1973). 
 
Soil surveys were then discontinued due to the increasing armed conflict just 
before Mozambique’s independence in 1975. In the first decade after 
independence, southern Mozambique was faced with repeated periods of 
flooding and of drought, which led to shortage in food supply with 
consequences of widespread hunger and malnutrition. These problems 
stimulated the government of Mozambique to improve the agricultural 
infrastructure, mainly water reservoirs and irrigation systems. In this respect, 
Roeper (1984) cites Priporski (1978) to have drawn the soil map of the area 
of about 2700 ha around Massingir dam at 1:20.000 as well as an area of 
irrigation schemes around Massingir. These schemes were implemented as 
part of relocation of people that would be affected by the filling of the 
Massingir dam’s reservoir, then under construction. These people were 
relocated in different communal settlements; Mavoze, Massingir, Chibotane, 
Machaule, Chinhangane, Cubo and Paulo Samuel Kankhomba, being the first 
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four within today’s LNP borders (COBA Consultores, 1981; COBA Consultores, 
1982; COBA Consultores, 1983a; COBA Consultores, 1983b). 
 
The irrigation systems were not properly managed by the beneficieary 
communities, leading to their quick deterioration and abandonment. A study 
of soil salinity problems at a new irrigation scheme for citrus orchards along 
the left margin of the Elefantes River is cited by Roeper (1984) to have been 
carried out by Sinadinov (1981), which demonstrated the poor land 
management by land users. Due to the insecurity caused by the civil war 
(1977-1992), land development projects were abandoned thereafter. 
 
Following the restoration of security, the area only benefited from the 
publication of the 1: 1 000 000 national soil map (DTA/INIA, 1995) based on 
a compilation of various soil survey studies carried out previously. This 
compilation was also supported by satellite image interpretation to 
extrapolate for areas where not enough soil information was available. 
 
A few recent works benefited knowledge of LNP soil resources in terms of 
compilation of soil and terrain data in a database (Dijkshoorn, 2003) at 1:2 
000 000 and in rescuing legacy soil maps as digital scans in the European 
Digital Archive of Soil Maps (EuDASM) project (Selvaradjou et al., 2005). 
 
Stalmans et al. (2004) were commissioned to survey the resources of the 
newly-established LNP. They did not directly survey the soil resource, did not 
delineate soil mapping units, and did not report any point observations of soil 
properties. Instead the authors relied on the 1:1 000 000 national soil map in 
the holistic definition of ecological units, also mapped at 1:1 000 000. 
 
Currently Mozambique is at peace and stable, but there are no plans for 
systematic soil survey. The country is included in the remit of the newly-
established (2010) Africa Soil Information Service (AfSIS) 
(http://www.africasoils.net/), which provides DSM inputs (DEM, specific 
catchment areas, topographic wetness indices) at 90 m horizontal resolution 
covering the study area. AfSIS is also planning a large-scale data rescue and 
renewal operation (http://www.africasoils.net/data/legacyprofile), using as a 
basis landscape units from physiographic analysis of the 90 m SRTM DEM 
data, as part of the EU FP7 e-SOTER project coordinated by ISRIC. They are 
also doing some data rescue and renewal of profile data (Leenars, 2012) 
however, the LNP area is not included in these projects. 

2.3.2 Selection of legacy soil surveys vicinity 
The performed data archaeology uncovered six more-or-less detailed legacy 
surveys in the LNP and vicinity, as well as some reconnaissance maps (Table 
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2.1). The major characteristics of these legacy surveys are summarized in 
Table 2.2. 
 
Table 2.1: Legacy soil data inventory for the LNP and surroundings 
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To represent the renewal attempt, with emphasis on estimating SOC from 
legacy soil surveys, two surveys within the LNP were selected; the Chibotana 
(Figure 2.2a, top) and Mavodze (Figure 2.2b, left) soil surveys (item 5 and 6, 
Table 2.1), and to represent the baseline for soil quality monitoring in 
resettlement area, the Massingir (Figure 2.2a, bottom) and Chinhangane 
(Figure 2.2b, right) soil surveys (item 3 and 4, Table 2.1) were selected, 
located downstream Massingir dam and along the right margin of Elefantes 
River (outside LNP). The four selected soil maps were rescued by scanning at 
300 dpi resolution for subsequent renewal steps. 
 
Table 2.2: Major characteristics of legacy soil survey  
Characteristic Description 
Currency Although most of the surveys were reported in the 80’s, few date 

back to late 40’s - 60’s 
Type These “soil map” are diverse and they go from a “sketch with 

simple legend” to somewhat complete map with legend, soil profile 
description and laboratory data 

Scale Most maps were on scale 1:10.000 and 1:20.000, few at 1:50.000 
Format These maps are printed (hard) copies, drawn over local grids with 

no reference to any geodetic control and in many cases with 
different procedures/standards 

Use Most of this are shelved and seldom used 
 

 
Figure 2.2a: Rescued (scanned) Legacy soil maps of Chibotana (top; three map sheets) 
and Massingir (bottom) 
 

 25 



Legacy soil data rescue and renewal – a case study of the LNP 

Figure 2.2b: Rescued (scanned) Legacy soil map of Mavodze ( left) and Chinhangane 
(right). 

2.2.3 Renewal of Legacy survey 

2.3.3.1 Geodetic control 
The four survey maps show different forms for georeferencing information. 
The Mavodze map shows a grid in geographic coordinate system (GCS; 
longitude, latitude) data, but gives no details of coordinate system used; the 
Chibotana map shows a local kilometer grid while the Massingir and 
Chinhangane maps shows no georeferencing information, other than contours 
forming part of their borders. The contour information allowed us to identify 
the base map used for all four soil maps as the 1:50 000 topographic map of 
the national map series. This uses the UTM projection and coordinates (zone 
36S, central meridian at 33⁰ E) projected on the Clarke 1866 ellipsoid. 
Therefore this was used to georeference the legacy soil surveys based on 
visible points (cultural features, road intersections) on both soil and 
topographic maps over which legacy surveys were printed. Figure 2.3 (left) 
illustrates the three georeferenced and geodetically-correct map sheets from 
Chobotana area (shown in Figure 2.2a, top)  
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Figure 2.3: Improved geodetic control of combined three legacy soil map sheets of 
Chibotane soil map (left) and, digitized GIS area-class (soil units) and point (soil 
profiles location) layers overlaid onto the geodetically correct scan (right). 
 
and Table 2.3 shows the quality of improved geodetic control (RMSE) for all 
selected legacy maps. Despite the RMSE measure be a spatial average and 
not sensitive to spatial variation in geometric accuracy, it well represents the 
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average error (Hughes et al., 2006). The large number of ground control 
points (GCP) used in majority of maps, reflects the difficult task to attain a 
low RMSE. However, even with low RMSE, transformation may still contain 
large errors due to poorly entered GCPs. Obtaining a necessary large number 
of GCP was limited mostly due to the poor quality of the legacy map in terms 
of features that could be easily recognized also on the reference topographic 
map of the national series. All four surveys showed relative georeferencing 
RMSE as a substantial proportion of the square root of the MLA (Table 2.3), at 
best 13% and at worst 45%. So, although the maps could be georeferenced, 
the geodetic control is poor. Although the transformation errors were 
minimized by adding more GCPs and replacing those that resulted in 
increased RMSE, the comparison made of RMSE with the square root of MLA 
indicates the good co-registration accuracy and as such it serves as a guiding 
approach to quality legacy data (rescue and) renewal.  
 
Table 2.3: Quality of improved geodetic control as assessed by the RMSE of 
georeferencing. Added are the number of ground control points (GCP), map scale, 
Maximum location accuracy and Minimum Legible Area (MLA) 
Legacy 
Survey 

RMSE (m) 
– 1st order 
polynomial 

Nr 
GCP 

Map scale Maximum 
location 
accuracy 
at scale 
(m) 

MLA 
[ha] 

side length 
of MLA 
(m) 

RMSE 
proportion 
of side 
length 
MLA 

Mavodze 56.92 20 1:50 000 12.5 10 316.23 0.18 
Chibotane 1 10.77 9 1:10 000 2.5 0.4 63.25 0.17 
Chibotane 2 26.32 8 1:10 000 2.5 0.4 63.25 0.42 
Chibotane 3 8.14 4 1:10 000 2.5 0.4 63.25 0.13 
Massingir 28.64 19 1:10 000 2.5 0.4 63.25 0.45 
Chinhangane 24.16 12 1:10 000 2.5 0.4 63.25 0.38 

2.3.3.2 Area-class and point data GIS coverages 
Figure 2.3 (left) shows the georeferenced and geodetically correct rescued 
(scanned) soil map of Chibotane and Figure 2.3 (right) shows GIS coverages 
of area-class (soil units) and point data (soil profile locations) layers on-
screen digitized and overlaid onto the just rescued and georeferenced soil 
map of Chibotane. The creation of area-class layer was a tedious and time-
consuming task of digitizing through the middle of each magnified polyline, 
as compared to point layers. One way to minimize the tedious work would be 
the implementation of automated feature extraction algorithms as this would 
ensure easy, quick and accurately digitized legacy map features. 
Nevertheless, digitalization was made through the middle of each magnified 
polyline (and points). In so doing, digitalization should be accurate enough as 
no sliver fell outside the width (line) or diameter length (point) of scanned 
map features. In a later stage, features automatically extracted could be 
used as high accuracy representation against which the positional accuracy of 
manually digitized features could be assessed. However, in absence of 
automated feature extraction algorithms, the procedure here followed can be 
handy to ensure acceptable quality of GIS area-class (and point) layer 
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creation. Attribute tables of point data layers were populated with profile 
number, pedological soil unit (FAO 74 legend), A-horizon depth, SOC 
concentration and Bd (available only in Chinhangane). Attribute tables of 
area-class maps were populated with soil unit (identification legend), polygon 
area, A-horizon depth, SOC, Bd and SOC stocks. Apart from map unit code 
and area, all other data was retrieved from the point data layer by point-in-
polygon identification; multiple points in the same polygon were averaged. 
Not all polygons contained representative profiles; for these, profile from 
sampled units with the same identification legend were used. Since the 
legacy surveys of Chibotane, Massingir and Chinhangane share the same 
legend, representative profile data was shared over these three survey areas 
whenever necessary. Finally there were few cartographic units without 
representative profiles. In those cases, the most similar profile from the 
same or nearby survey area was used. 

2.3.3.3 Quality assessment 
Given the effort to ensure a good quality in data capture, the quality of 
rescued legacy maps in evaluated next, mainly using the Cornell guidelines 
(Forbes et al., 1982). 
 
Map scale and texture 
Forbes et al. (1982) recommend a point-count method to estimate ASD on 
paper maps; however with digital maps direct computation in the GIS is 
immediate and precise. The summary of delineation sizes of Massingir legacy 
survey are shown in Figure 2.4 from which it is that clear most delineation 
sizes range between 5 and 15 ha. Table 2.4 shows the MLA and IMR for the 
area-class coverages. All delineations of all surveys are larger than the MLA, 
which indicates that the legacy soil maps meet the standard in this regard. 
However, all IMR are well above the recommended threshold value (2.0), 
meaning that legacy maps are legible but could be substantially reduced 
before losing legibility. It seems that strategically would be better to draw 
renewed maps following map scale and texture analysis prior to the choice of 
the final map scale. The optimum scale could thus be reduced by the IMR, 
which would result in a scale of about 1:1 350 000 (Mavodze), 1:110 000 
(Massingir), 1: 150 000 (Chibotane) and 1:90 000 (Chinhangane). Clearly 
the intensity of survey information does not support the advertised scales. 
Some of this may be due to large areas of homogeneous soils at the chosen 
categorical level; in this case the categorical level could have been reduced to 
show finer distinctions (e.g., by establishing soil series or phases) or the map 
could be reduced. 
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Figure 2.4: Summary of area size of the captured GIS area-class (soil units) layer from 
Massingir legacy soil survey, further used to assess the index of maximum reduction 
(IMR). 
 
Table 2.4: Assessment of map scale and map texture through the average size 
delineation (ASD) and Index of maximum reduction (IMR) of selected LNP legacy soil 
maps. 

Soil map Map unit area [ha] Map texture 
Max Min Mean ASD [cm2] IMR [-] 

Mavodze 8650.2 26.1 1438.7 287.7 26.8 
Massingir 1384.7 0.8 51.5 51.5 11.3 
Chibotane 310.9 2.1 84.8 84.8 14.6 
Chinhangane 266.1 0.6 30.5 30.5 8.7 

 
Map legend 
Table 2.5 show samples of soil map legend of the four survey areas, 
summarizing map unit information whose structure forms the map unit 
definition criterion. All four legends are based on a mixture of air-photo 
interpretation (physiographic elements) at higher levels and pedological 
aspects at lower level. The general description of soils in each map unit is 
included in the report, in most cases along with representative profiles. 
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Table 2.5: Samples of soil map legend tables of Mavodze, Massingir, Chibotane and 
Chinhangane 

(1) Rooting depth; (2) Texture class; 2.1 Surface; 2.2 Subsurface; (3) CU water; (4) 
Permeability; (5) Salinity; (6) Sodicity 
 
In the Mavodze soil survey, map unit definition criteria consider (1) the 
physiographic units A, B1-3, C1-3 (which are also the cartographic units’ 
symbols) and, (2) association of FAO/Unesco 74 soil units. The two aspects 
are linked as follows: physiographic unit “A” was assigned to eutric + calcaric 
Fluvisols, “B1” to haplic + luvic Xerosols, “B2” to the haplic + luvic Xerosols 
(with or without petric phase), “C1” to Ferralic Arenosols, “C2” to Ferralic 
Arenosols with petric phase, “C3” to luvic Xerosols (with or without petric 
phase) plus ferralic Arenosols (with petric phase). “B3” was linked to the 
heavily petrified and to all uncharacterized soils. The pedological soil units 
were derived based on soil profile information.  
 
The legend table of soil maps of Chinhangane, Chobotane and Massingir 
(Table 2.5), all at 1:10 000 scale, share the same legend, despite the slight 
differences in their structures. The most detailed legend is that of Massingir, 

Mavodze (1:50 000), 1983 
Cartographic Unit Physiography Dominant soils 
A Alluvial plains of  Singuidzi River  Eutric Fluvisols (Je) 

Calcaric Fluvisols (Jc) 
B  
 
 
            B1  
 
            B2 

Sloping and undulating sedimentary areas from the Tertiary 
 
 
Colluvial lowlands and adjacent gentle slopes 
 
Undulating to gently undulating relief 

 
 
Haplic Xerosols (Xh) 
Luvic Xerosols (Xl1) 
 
Calcic Xerosols (Xk) 

 
Chinhangane (1:10 000), 1982 
 

Physiography Cartographic unit Dominant soils Areal extent 
ha % 

A (Alluvial plain) 
Aa – Flooding area…. 

 
Aa1 
Aa2 
Aa3 

(‘modal’) Eutric 
Fluvisols 
Je1 
Je2g2,3 
Je3g3,4; Je4g3,4 

 
37.4 
52.5 
57.0 

 
3.2 
4.5 
4.9 

B (Sedimentary zone) 
Ba – Colluvial lowlands 
 

 
Ba 

Colluvial (Jb) 
Jb 

 
43.1 

 
3.7 

 
Chibotane (1:10 000), 1983 

Cartographic Unit Pedological Unit Areal extent 
Dominant Sub-dominat ha % 

Aa – Flooding área 
         Aa1 
         Aa2 
Ab – Marginal área 
         Ab1 
         Ab2 
         Ab3 

Eutric 
Je1 

Je3g3,4; Je3 
 
Je1A; Je1 
Je2, Je2g2; Je2g3 
Je3 

Fluvisols 
(Je) 
Je1A 
Je3g; Je2g 
 
Je2g 
Je3; Je3g2; 
Je3g3 
Je4 

 
26.2 

153.3 
 

324.7 
49.5 
67.2 

 
1.2 
7.1 

 
15.0 
2.3 
3.1 

 
Massingir (1:10 000), 1981 

 
Cartog 
Unit 

 
Geo 

 
Topogra

phy 

 
Drain 

Soils Soil characteristics 
Dom Sub-Dom (1) (2) (3) (4) (5) (6) 

(2.1) (2.2)  
Aa1 
Aa2 
… 
Aa6 

Aa  Less 
frequent 
flooding 

1 
2g2,3 
 
5; 5g3,4 

1A; 2v2; 2g2,3 
1A; 2v2,3; 2g2,4 
 
3g2,3; 4g; 1A 

       

Ba 
 
Bb 

Ba 
 
Bb 

  Jb 
 
Xv1; Xv2 

- 
 
Qa; Rm 
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which covers almost all contents of the remainder. It is structured in six main 
columns, successively populated with cartographic units (Aa1-6, Ab1-6, Ac1-
7, Ad1-6 and Ba-b), geomorphology (Aa….Ad, Ba and Bb), topographic 
characteristics, drainage conditions, soils (dominants and sub-dominants) 
and soil characteristics (thickness, surficial and sub-surficial texture, available 
water capacity, soil permeability, soil salinity and sodicity). The first letter of 
geomorphology unit entry symbols is of the same nature as that of Mavodze 
physiographic units “A” and “B”, while the second (lowercase) letter is added 
to indicate the different “geomorphic units” as follows: floodplain area (Aa), 
Levees (Ab), smoothly sloping slopes of the outer levees side (Ac), back 
swamps (Ad), colluvium filled lowland “Ba” and the undulating and upper 
smooth slopes on sediments from Tertiary “Bb”. The topography and 
drainage entries are descriptive entries of “geomorphology” entry. Under 
“drainage” the flooding frequency is described instead. The soil entry is 
populated with sets of dominant + subdominant associations of pedological 
soil units (FAO/Unesco 74 legend). Similarly to Mavodze, all “A” 
geomorphologic units are associated to eutric Fluvisols, those under “B” to 
(colluvial) eutric Fluvisols (Ba) and luvic Xerosols (Bb) soil units. Each set 
forms also a subdivision of the “geomorphic unit”, which is based on top-soil 
textures class denoted by a number, next to the Symbol of the FAO/Unesco 
74 soil unit as follows: Sandy (1) or loamy sand (1A), sandy loam (2), loam, 
silt loam or sandy clay loam (3), clay loam or sandy clay loam (4) and silty 
clay or clay (5). However, this parameter is one of the description aspects 
under “texture” (see under “soil characteristics” entry referred to earlier). 
Finally the sub-surficial texture and the depth range in which this layer occurs 
are denoted by a lowercase letter (h, g, p, v or c) and a number (1, 2, 3, 4 or 
5) respectively, added following the top soil texture class of both dominant 
and sub-dominant soil units. However they are not used as a definition 
criterion for further distinction of cartographic unit but rather descriptive 
aspects. 
 
Table 2.6 shows the evaluation of map unit definitions. Since map units are 
associations of pedological units, a map unit was considered to be “well-
defined” only if all members had the same positive evaluation result. The 
inclusion of soil classification in map unit descriptions should have made all 
units “adequately defined”. However, one could not be confident of names 
assigned map units that had not been sampled nor contained a 
representative profile. As such the adequacy criterion “unambiguous 
placement in a taxonomic class” as suggested by Forbes et al. (1982) was 
questioned. Therefore, those units were considered “not adequately defined”. 
The overall information quality of the surveys is “adequate” (>80%) for all 
surveys when the “proportion/percentage of area-size of “adequately 
defined” map unit description is considered rather than the 
“proportion/percentage of number of cartographic units adequately defined”. 
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Table 2.6: Assessment of map unit definition and overall information quality of soil 
survey for the selected legacy soil maps from LNP. In between brackets the total 
number of soil profiles in each survey area 

*: no lab data in one soil profile; **: one of them could not have a replacement; A: 
adequately define, NA: not adequately defined 
 
Despite the simplicity of the Mavodze legend from the surveyor point of view, 
there are few aspects on its structure worth commenting; first, the 
cartographic unit entry reflects two hierarchical levels (A, B and C; 
unspecified) and physiography (A, B1-3 and C1-3), which could well be 
separated in two different hierarchical levels (separate columns), to show the 
dichotomic subdivision of “unspecified” into physiographic units, since it is 
clear that, in general the “unspecified” units “A” are associated to Fluvisols, 
“B1-3 (and C3)” to Xerosols and “C1-2” to Arenosols. Second, there is no 
indication of the proportions of pedological units forming each association, 
creating confusion when the same pedological unit appears in a different 
physiographic unit where it is part of a different association. The proportion 
of the different members within soil association, and thus its homogeneity, 
cannot be assessed without additional field work. 
 
When legend table is built in a hierarchical approach, lower-level categorical 
units are easily interpreted within higher categories. The legend structure can 
thus be improved by (1) separating the “unspecified” from physiography into 
a different level. Thus it is suggested to name the unspecified hierarchical 
level to “Land type and position” and, (2) by placing the cartographic units at 
the end of the legend. Table 2.7.a shows the suggested improvement of 
Mavosze legend. 
 

Variable Approach Diagnostic 
criterion 

Units Mavodze 
(nr|ha) 

Chibotana 
(nr|ha)  

Massingir 
(nr|ha) 

Chinhagane 
(nr|ha) 

Map unit 
definition 

General map 
unit 
information 

Unambiguously 
placeable in a 
taxonomic 
class 

Cartographic  7 (10) 12 (30) 28 (20) 18 (14) 

Total  15 21581.0 24 2035.9 55 2833.1 39 1190.0 

A (sampled)  15* 19567.4 15 1816.4 13 2267.7 7 534.0 

A (not sampled, 
with 
representative 
profile 

8 2013.6 6 154.2 23 334.5 23 490.6 

NA (not sampled 
and no 
representative 
profile)  

0 0 3 154.2 19** 230.9 9 165.5 

Overall 
information 
quality  

proportion of 
“adequate” 
land size 

80% or more 
“adequately 
defined” 

% well defined 100 100 87.5 96.8 65.5 91.8 76.9 86.1 

Evaluation A A A A NA A NA A 
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Table 2.7.a: Improved survey legends of Mavodze, after introduction of “Land type and 
position” entry and repositioning the cartographic unit at the last (third) entry to depict 
the map definition hierarchal structure. 

Land type and 
position 

Physiography Cartographic 
unit 

Dominant soil 
association 

Extent 
ha % 

A - lowlands (flat) 1 (sole unit) A    
B - intermediate 
undulating and 
sloping land 

1…3 B1…B3    

C - peneplained 
upper land 

1…3 C1…C3    

 
In the Massingir legend table, the terms “geomorphology” and 
“physiography” were used unnecessary, since the content under 
“geomorphology” rather reflects that of “physiography” in other legend 
tables. The columns “topographic characteristics” and “drainage” were used 
to describe the content of the column ”geomorphology”, rather than to define 
levels of “geomorphology”. This is also confusing when there is a separate set 
of columns used to describe the map units at the end of the legend table. 
Similarly the use of surficial texture class both as definition criteria and map 
unit description is confusing. 
 
The FAO/Unesco 74 legend used in this survey is outdated. This was revised 
in 1997 (FAO et al., 1997), at which time the major soil grouping of Xerosols 
was eliminated, since climate was no longer considered a soil classification 
criterion; most Luvic Xerosols were reclassified as Orthic Luvisols but the 
Haplic Xerosols could be Regosols or Cambisols depending on the presence of 
a cambic horizon. Both FAO legends have been superseded by the World 
Reference Base for Soil Classification (WRB, 2006) which has similarities to 
the 1997 legend but introduces new concepts, so that for a proper renewal all 
legacy map units should be reclassified from profile descriptions, 
supplemented if necessary with inferences from the 1974 names. 
 
Improvements to the Chinhangane, Chibotane and Massingir are suggested in 
Table 2.7b where the hierarchical map unit definition as well as general 
description of the cartographic units is made. 
 
Table 2.7b: Restructured and unified (improved) legend (Massingir, Chibotane and 
Chinhangane) after inclusion of “Land type and position” and re-positioning the surficial 
soil texture as part of map unit definition criteria 

Land type 
and 
position 

Physiography 
& flooding 
frequency 

Top-
soil 
texture 

Cartographic 
unit 

Soil association Description Extent 
Dominant Sub-

dominant 
ha % 

A Aa 1 Aa1 Je1 Je1A,…    
… …      
6 Aa6      

Ab 1…6 ….      
…. …. ….      
Ae 1 & 2 ….      

B Ba - Ba      
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2.3.3.4 Integration of RS and DEM layers 
The 100 masl and 90 masl contours were used as the southern (Massingir) 
and western (Chinhangane) borders, respectively, in two surveys. These 
contours as shown on the georeferenced digitization of the published maps 
were compared to those derived from the SRTM DEM. Figure 2.5 (left) shows 
The 100 and 110 masl derived contours overlaid onto the Massingir soil map 
GIS coverage. Similarly, the 90 masl contours is shown (Figure 2.5, right) 
overlying the Chinhangane soil map GIS coverage. 
 

 
Figure 2.5: The 100 and 110 masl contours extracted from SRTM DEM overlaid onto 
Massingir soil map (left) and the 90 masl contour overlaid onto Chinhangane soil map 
(right), whose southern (Massingir) and western (Chinhangane) borders were 
considered to be 100 and 90 masl contours, respectively. 
 
From this comparison, it is clear there is a large mismatch between the 
drawn and SRTM DEM derived 100 masl contours. The drawn 100 masl is 
much closer to the 110 masl SRTM DEM derived contour than the 100 masl 
one. This casts doubt on the accuracy of all other lines drawn on the map. 
The 110 and 90 masl SRTM DEM derived contours assumed to be accurate, 
against which the 100 and 90 masl soil map borders were compared (Table 
2.8). The tested length spanned between two crossing points between the 
contour and soil map border and, in the absence of local map accuracy 
standards, the maximum location accuracy (2.5 m for 1:10 000 legacy soil 
map scale) was used to start the iteration as suggested by Goodchild and 
Hunter (1997). Linear interpolation in results (Table 2.8), show that less than 
30% of border length (both cases) falls within a buffer length of the square 
root of MLA, thus the positional accuracy is poor. Only at a buffer length of 
348.7 m all the tested Chinhangane’s border falls in while only about 90% of 
Massingir falls in for similar buffer length (320.5 m). Therefore, replacing the 
mapped soil borders by their high accuracy representation from contours 
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would thus represent a substantial improvement for both the Massingir and 
Chinhagane surveys, though slightly to lesser extent for the latter. A 
complication is that several delineation borders are connected to the 
Chinhangane contour. Thus the 90 masl border should be revised after the 
intersecting soil unit borders (see following paragraph). This step would be 
followed by the assessment of positional uncertainty of all polygon borders, 
taking the land cover classes’ borders as high accuracy representations 
against which could be compared, using the approach proposed by Kiiveri 
(1997). 
 
Table 2.8: Simple positional measure for the 110 masl of Massingir and 90 masl 
Chinhangane soil border segments, respectively for target of 99th percentile 
Iteration 
(i) 

Massingir, test length: 17577.97 m Chinhangane, test length: 11408.43 m 
Buffer 
[m] 

Length 
within [m] 

Proportion 
[-] 

Buffer [m] Length 
within [m] 

Proportion [-] 

0 0 0 0 0 0 0 
1 2.5 177.1 0.010 2.5 196.0 0.017 
2 245.7 13351.3 0.760 144.0 6915.4 0.606 
3 320.5 14902.0 0.848 236.3 9791.6 0.858 
4 441.0 15969.9 0.909 284.5 10525.2 0.923 
5 602.7 16841.5 0.958 335.0 11129.8 0.976 
6 706.7 17093.2 0.972 348.7 11408.4 1.000 
7 834.4 17424.1 0.991 343.1   
8 825.9      
 
Figure 2.6 shows the classified (30 classes) and contrast enhanced 
(histogram equalization) subset of Landsat TM imagery of the study area 
onto which the semi-transparent SRTM DEM plus the soil map of Mavodze 
(top) and Massingir (bottom) are overlaid. While in Mavodze the soil unit 
boundaries to some degree match those of different land cover classes within 
the well-vegetated undulating landscape, very few land cover classes match 
soil units in the Massingir fluvial plain, where land cover has changed 
substantially since the original survey. In both cases the SRTM DEM did not 
add substantial relief displacement effect, raising the question as whether the 
updated physiographic/soil borders could be used as high accuracy 
representation against which positional accuracy of legacy cartographic units’ 
borders could be assessed. The derived NDVI classes did not match better 
than the unsupervised land cover classes. This suggests that land cover 
classes inferred from current imagery can be used to improve soil unit 
boundaries where soils are related to land cover and land cover has not 
changed. In both cases no attempt was made to assess the positional 
accuracy/uncertainty for reasons just exposed, especially in low-relief areas 
(Massingir) the SRTM DEM does not show enough detail to adjust boundaries 
based on subtle relief differences. Even the use of physiographic units from 
SOTER (Dijkshoorn, 2003) would be limited for the same reasons. To obtain 
consistently high accuracy representation of physiographic border, rather 
than hand-done, it would be advised to implement (semi-)automated 
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procedure similar to e.g. terrain analysis by Gallant and Wilson (1996), 
supervised landform classification by Hengl and Rossiter (2003), and 
automatic segmentation of landforms by MacMillan et al. (2000). However 
they should be much more sensitive to subtle relief differences. The resulting 
physiographic units’ borders could be used to assess the positional accuracy 
of legacy maps. 

2.3.3.5 Metadata 
Following step by step of the ArcCatalog 9.2 metadata editing process, most 
of the template form were populated, especially those refereeing to 
Identification information, spatial reference, entity attribute and data quality. 
Table 2.9 shows some of the (xml document file) metadata included in the 
GIS layer of Massingir renewed legacy soil map. This information should allow 
others users to access the data and evaluate its usefulness for their intended 
purposes. 
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Figure 2.6: The Mavodze (top) and Massingir (bottom) soil maps overlaid onto Landsat 
TM classified (unsupervised) image 
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Table 2.9: Some of the metadata information included in the GIS layer of Massingir soil 
map 
Item Detail Description 
ID information General 

description 
The soil map was created for use in SOC stocks inference 
based on the map unit information (attributes), especially 
the soil classification information. Specific objective was 
to….  

 Access constraints This is part of the paper “Legacy dsta rescue and renewal 
with emphasis on SOC assessment: a case study of the LNP, 
Mozambique… copyrights by John Wiley & Sons, Inc 

 Keywords Legacy soil map Massingir; Gaza, Mozambique; SOC stocks 
Massingir 

Spatial reference General GCS_Tete; Tete_UTM_Zone_36S; Clarke 1866 
Entity attribute General Attributes: FID (OID); Shape (geometry); Id (Nr); UntFisiog 

(string); SOC (Nr); A-horizon depth (Nr); F_Area (float); 
OBS (string) 

Data quality Positional 
accuracy 

100% of digitized polylines within (paper) map line width 

 Process steps This GIS layer was created by (1) scanning at 300 dpi the 
legacy soil (paper) map of Massingir by COBA Consultores 
(1981), then (2) georeferencing using a 11:50000 
topographic map from the national topog. Series, (3) 
digitizing through the middle of the soil units’ borders at a 
very high magnification, (4) populate the attribute tables 
with:… 

2.3.3.6 Inferences about SOC stocks 
The legacy map units are based on physiography and make no direct 
reference to SOC or many other soil properties. However, the physiographic 
units are described by their pedological composition (dominant and sub-
dominant, relative proportions unspecified), based on representative profiles 
data. This combination allowed us to make qualitative inferences about SOC 
stocks, based on a combination of physiographic unit’s expected 
characteristics as revealed in the taxonomic name and representative 
profiles: soil depth, soil texture, watertable seasonal depths, and flooding 
frequency. Other soil properties, such as salinity and pH and also affect SOC 
stocks, but these were not included in map unit information so could not be 
used in the inference. Table 2.10 presents a qualitative assessment of SOC 
stocks for physiographic units of Chibotane, Chinhangane and Massingir soil 
areas. The inferred stocks vary between low and medium, the main limiting 
condition being coarse textures, thin A-horizons, high water tables, and high 
flooding frequency. The natural levees, the backswamps, the transition to 
terraces and colluvium-filled lowlands are the sites expected to have higher 
SOC stocks. These areas are those where condition for vegetation growth is 
better as a result of substantial rooting depth (levees), low rate of SOC 
mineralization (backswamps) and available soil moisture (transition from 
floodplains to terraces and colluvium filled lowlands, with water seeping from 
higher positions). 
 

 39 



Legacy soil data rescue and renewal – a case study of the LNP 

Table 2.10: Inference of SOC stocks based on physiographic map unit characteristics 
Unit Physiographic characteristic Inferences 

Location Texture A-horiz. 
depth 

Water dynamic 
(water level, 
flooding frequency) 

SOC 
concentr
ation 

SOC 
stocks 

Aa Flooding area, between 
natural levees 

coarse deep High watertable, 
frequent flooding 

low low 

Ab Natural levee medium deep deep watertable, no 
flooding 

medium medium 

Ac Outer gently sloping 
levee slopes (occurrence 
of oxbow lakes) 

medium deep deep watertable, no 
flooding 

Low low 

Ad Backswamps Fine deep High level, frequent 
flooding 

medium medium 

Ae Outer edge flood plain, 
rich in water ways 

Medium deep High level, 
moderate flooding 

medium medium 

Ba Colluvium filled lowlands 
(sediments from Tertiary 
and Quaternary)  

medium deep Deep, rare flooding medium medium 

Bb Erosional/undulating 
upper terraces (Tertiary 
and Quaternary), under 
dense mopane 

Coarse shallow deep watertable, no 
flooding  

medium low 

T Upper terraces under 
dense mopane 

Coarse shallow deep watertable, 
very rare flooding 

medium low 

 
Section 2.3.3.2 presented the point data layers with attribute tables 
populated, amongst others, by the SOC concentration, A-horizon thickness 
and Bd. Data from 64 soil profiles were available. Figure 2.7 shows the 
summary SOC data, ranging mainly between 0.4 and 1.4%, well within the 
range of mean SOC (A-horizon) per survey area (Table 2.10). This range is 
within the range of mean SOC spatial distribution predicted for the entire LNP 
(Cambule et al., 2013). These low values are expected, due to the 
substantial coarse textured soils in the study area and the hot dry climate. 
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Figure 2.7: Summary of retrieved SOC concentration data from legacy soil profiles data 
of Mavodze, Massingir, Chibotane and Chinhangane. 
 
Table 2.11 also shows the computed SOC stocks for each the four survey 
areas, following the measure and multiply approach (Thompson and Kolka, 
2005). The range of area-normalized mean SOC stocks is 2.0 – 4.0 kg m-2. 
These values are a little higher than those found by Cambule et al. ((under 
review)) and, given the fact that SOC concentration is comparable to those 
across the LNP, the higher mean SOC stocks may be explained by the thicker 
A-horizons typical of floodplain soils. The computed stocks are also higher 
than those found by Vågen (2005) for southern African soils, but far lower 
than those found by Ryan et al. (2011a) and also at the lower end of those 
obtained by Williams (2008) in an eastern miombo woodlands in 
Mozambique. These higher stocks are likely due to the high litter leaf from 
the leguminous trees (Brachystegia spiciformis) which is typical of miombo 
woodlands. 
 
Table 2.11: Inference of SOC stocks in A-horizon of legacy soil survey areas based on 
available point data 

Variable Units Legacy soil survey area 
Mavodze Massingir Chibotane Chinhangane 

Bd mean Ton Kg-1 1.4 1.4 1.4 1.4 
A_depth mean m 0.24 0.25 0.31 0.28 
SOC mean % 0.46 1.12 1.01 0.75 
Total Area km2 215.8 28.3 20.4 11.9 
SOC Stocks ton 413260.2 70432.9 78796.3 33764.4 
SOC Stocks mean Kg m-2 1.9 2.5 3.9 2.8 
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The total SOC stocks of the four survey areas is 596.2 Gg, which represents 
about 4.0% LNP stocks (16744 Gg) estimated by Cambule et al. ((under 
review)). This is proportionally about the same since the study area is 276.4 
km2, about 3% of LNP area size. The small area-size and especially the not 
so representative floodplain type of the physiography covered by legacy data, 
limits its extrapolation to the whole LNP. 
 
The SOC stocks just inferred are reflect the soil conditions in the early 1980s 
and might not accurately represent the current situation due to changes in 
factors controlling the dynamic of SOC stocks, e.g. land use. Vågen (2005) 
reported SOC stocks change rates of about -0.82 ton C ha-1 yr-1 in southern 
Africa after conversion from savanna to agriculture and of about -14.26 ton C 
ha-1 yr-1 from woodlands to agriculture in the east Sudanian savanna. In 
Masvingo (Zimbabwe), Zingore et al. (2005) modelled long-term change rate 
of about -0.26 ton C ha-1 yr-1 for woodlands clearance for smallholder 
subsistence farming; this is closer to the situation of LNP study area.  

2.4 Summary and Conclusion 
Below follows the summary of this study with respect to stated objectives. 
 
The data archaeology exercise was successful, and revealed many more 
relevant surveys than was initially suspected when beginning the project. 
Similar diligent detective work in any area of the world is likely to uncover a 
large number of useful surveys. 
 
The renewal of selected surveys was possible to some extent. It was not 
possible to solve problems of missing information, nor rectify map unit 
boundaries not defined according to physiography or land cover which could 
be identified on recent imagery and DEM. It was possible to identify base 
maps and their original geometry, and thus georeference the soil maps to 
moderate accuracy. Each step was documented, as well as what was possible 
to infer about the source maps, as systematic metadata in the renewed 
digital products. 
 
It was possible to assess data quality for SOC mapping and monitoring, and 
make semi-quantitative estimates of the spatial distribution of SOC stocks at 
the mapping dates. This exercise revealed that the effective map scales as 
measured by the IMR and observation density were much smaller than 
publication scales. 
 
The Cornell adequacy criteria proved to be a useful framework for 
determining the fitness for use of legacy surveys. The advances in GIS since 
the original publication (1982) enabled the computation of geodetic and scale 
adequacy exactly more efficiently than in the original proposal. 
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To conclude, the strategies for the renewal of legacy soil data here followed 
can be applied in general, whether to get the maximum value out of legacy 
surveys or to identify spatial and thematic knowledge gaps to guide (partial) 
resurveys.  
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A DSM methodology for poorly accessible 
area2 

2 This chapter is based on: Cambule, A.H., Rossiter, D.G., Stoorvogel, J.J., 2013. A 
methodology for digital soil mapping in poorly accessible areas. Geoderma 192, 341-
351. 
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Abstract 
Effective soil management requires knowledge of the spatial patterns of soil 
variation within the landscape to enable wise land use decisions. This is 
typically obtained through time-consuming and costly surveys. The aim of 
this study was to develop a cost-efficient methodology for digital soil 
mapping in poorly-accessible areas. The methodology uses a spatial model 
calibrated on the basis of limited soil sampling and explanatory covariables 
related to soil-forming factors, developed from readily available secondary 
information from accessible areas. The model is subsequently applied in the 
poorly-accessible areas. This can only be done if the environmental 
conditions in the poorly-accessible areas are also found in the accessible 
areas in which the model is developed. This study illustrates the methodology 
in an exercise to predict soil organic carbon (SOC) concentration in the 
Limpopo National Park, Mozambique. Readily-available secondary data was 
used as explanatory variables representing the soil-forming factors. 
Conditions in the accessible and poorly-accessible areas corresponded 
sufficiently to allow the extrapolation of the spatial model into the latter. The 
spatial variation of SOC in the accessible area was mostly described by the 
sampling cluster (71.5%) and the landscape unit (46.3%). Therefore ordinary 
(punctual) kriging (OK) and kriging with external drift (KED) based on the 
landscape unit were used to predict SOC. A linear regression (LM) model 
using only landscape stratification was used as control. All models were 
independently validated with test sets collected in both accessible and poorly-
accessible areas. In the former the root mean squared error of prediction 
(RMSEP) was 0.42-0.50% SOC. The ratio between the RMSEP in the poorly-
accessible and accessible areas was 0.67-0.72, showing that the 
methodology can be applied to predict SOC in poorly-accessible areas as 
successful as in accessible areas. The methodology is thus recommended for 
areas with similar access problems, especially for baseline studies and for 
sample design in two-stage surveys. 
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3.1 Introduction 
Effective land management depends on knowing the spatial distribution of 
soil properties. Traditionally this knowledge is represented as soil maps 
conforming to the discrete model of spatial variation; DMSV (Heuvelink and 
Webster, 2001), showing polygons within which soils are considered 
homogeneous and with boundaries where changes in soil properties are 
considered to be abrupt. However, many soil properties can be better 
modelled with a continuous model of spatial variation (CMSV), in which 
properties vary continuously in space. The recent rapid development of 
information technology along with the availability of new types of secondary 
data (e.g., digital elevation models and satellite imagery) allow for more 
quantitative approach to soil survey producing continuous surfaces based on 
soil forming factors. Furthermore, these methods give spatial estimates of 
the uncertainty of the predictions. This “predictive” (Scull et al., 2003) or 
“digital” soil mapping (McBratney et al., 2003) uses relationships between 
soil properties and auxiliary data at sample points to predict over a study 
area. in addition, the high sampling costs can be reduced by applying recent 
developments in the field of diffuse reflectance spectroscopy (e.g. Near-
Infrared spectroscopy), a fast, non-destructive and inexpensive soil analysis 
method that can enhance or replace traditional laboratory methods 
(Shepherd and Walsh, 2002; Viscarra-Rossel and McBratney, 2008).  
 
Digital soil mapping (DSM) techniques have been successfully applied in 
studies at field scale where soil variability is largely due to the effect of 
topography on soil genesis (e.g., Florinsky et al., 2002) and therefore much 
of the success is attained by integration of terrain attributes as auxiliary data. 
To capture the spatial structure of soil variation as well as the soil-
environment relations over larger poorly-accessible areas due to poor road 
networks (such as much of Africa) or difficult terrain (e.g., mountainous 
regions), a large number of observations following a sound sampling design, 
covering the feature and geographic space of the predictors (e.g., Minasny 
and McBratney, 2006) are required, which is impractical or prohibitively 
expensive. A DSM approach which can concentrate sampling in accessible 
areas, yet deliver results of sufficient quality, would greatly reduce costs and 
survey effort. 
 
The objective of present study was to develop a methodology for DSM for 
poorly accessible areas. It consists in developing a quantitative predictive 
model based on limited sampling (mainly in accessible areas) combined with 
readily-available auxiliary spatial data representing soil forming factors. It is 
hypothesized that if the auxiliary data in accessible and inaccessible areas 
are sufficiently similar, models built in the former can be applied in the latter, 
with very few or even no soil samples. It is thus applicable in mapping 
projects where legacy samples from accessible areas are available.  
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3.2 Material and methods 
The proposed method is based on similarities between accessible and poorly-
accessible areas in terms of the relation between soil-forming explanatory 
variables (covariables) and soil properties (target variables). If the areas are 
similar, the predictive model based on soil samples and explanatory variables 
from accessible areas can be applied in inaccessible areas. The predictive 
model uses the conceptual model scorpan-SSPFe proposed by McBratney et 
al. (2003) and widely-applied as a generic method for DSM. Scorpan 
represents the list of soil-forming factors that has been expanded from the 
original definition by Jenny (1980) representing the initial soil conditions (s), 
climatic conditions (c), organisms (o) including animals, land cover and 
human occupation; relief (r), parent material (p), age (a), and the 
neighbourhood (n). The conceptual model uses a soil spatial prediction 
function with spatially-autocorrelated errors (SSPFe) that uses (1) a 
prediction based on environmental covariables and (2) a prediction based on 
soil properties measured at a limited set of observation points. 
 
This section explains stepwise the proposed methodology as illustrated in the 
flowchart of figure 3.1 and the way it was operationalized for the specific 
objectives and context of the test case (The LNP). 
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Figure3.1: Flowchart of the proposed methodology for digital soil mapping in poorly 
accessible areas. 
 
Step 1: Gathering of secondary data covering all area 
The secondary data is the raw material to derive insight in the soil forming 
factors. The data must cover the area of interest (i.e., have values at all 
locations). A good example is a digital elevation model that covers the area 
and provides insight in the soil forming factor “relief” (r). 
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In the test case, the selected secondary data for SOC prediction in LNP 
included (1) mean annual precipitation at a 30 arc-second resolution grid 
from the WorldClim website (Hijmans et al., 2011), (2) the multispectral 
Landsat TM satellite imagery at a 30 m resolution for a wet and dry season 
from the US Geological Survey website (www.usgs.gov, row/path: 168/076 
from August 2009, preprocessing: L1T level), (3) a digital elevation model at 
a 3 arc-second (approximately 90 m) resolution from the shuttle radar 
topographic mission (SRTM) from the Jet Propulsion Laboratory 
(www.jpl.nasa.gov, tile: 43_17, preprocessing: research grade), (4) a 
1:250.000 lithology map developed by the Geological Survey of Finland 
(Manninen et al., 2008; Rutten et al., 2008), and (5) the 1 : 1.000.000 scale 
landscape map of Stalmans et al. (2004) as an integrated soil forming factor. 
These latter two are equivalent to, at best, 125 m and 500 m resolution, 
respectively (Hengl, 2006, Sec. 2.1), the latter somewhat smaller than the 
largest cluster dimension, 720 m. However, considering the size of the study 
area, it was decided on a 1 Km resolution (thus, about 10 000 pixels) for the 
final maps. 
 
Step 2: Explanatory variables 
The gathered secondary data must then be converted into covariables with 
direct link to soil formation. The Scorpan approach aims to elucidate 
quantitative relationships between soil properties and the soil-forming 
factors. The covariables should provide information on soil formation. If 
covariables describing relevant soil formation processes are lacking the 
predictive power of the model will be limited. An example is the conversion of 
a DEM into terrain derivatives such as a wetness index and potential erosion 
rates (Gessler et al., 2000b; McKenzie et al., 2000).  
 
At this stage coverages were derived from the available secondary maps with 
potential covariables for the test case. The scorpan-SSPfe modelling 
framework was used to organize the coverages by soil-forming factor. Spatial 
resolution was kept the same as of the original coverages as it is meant for 
similarity analysis. The time factor was assumed constant for the present 
study and therefore no analysis were performed. 
 
Climate (c) influences rates of vegetative growth and turnover of soil organic 
matter through differences in precipitation, temperature and evaporation 
(McBratney et al., 2003). 
 
The most influential organisms (o) for SOC are vegetation and humans 
(McBratney et al., 2003). The LNP was long used as a hunting zone since 
colonial times. Later (in 2001) it was declared a conservation area with 
minimal human influence is minimal, with confined to scattered subsistence 
farming near the Singuedzi River. Wildlife density is low, and therefore 
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vegetation is the principal organism related to SOC. Normalized vegetation 
index (NDVI) is a surrogate of vegetation biomass (whose decay contributes 
to SOC) and is calculated as (NIR-G)/(NIR+G) where NIR and G are the 
reflectances in the near-infrared and green electromagnetic spectrum, 
respectively. Green NDVI is sensitive to chlorophyll concentrations, 
adequately measuring the rate of photosynthesis (Gitelson and Merzlyak, 
1998; Yoder and Waring, 1994), and can therefore be used as an indicator of 
vegetation cover. Focal statistics at 3x3 pixels were applied to the NDVI grid 
in order to match the spatial resolution of NDVI with the support of the 
sample sites. Dry-season NDVI is an indicator of water availability and hence 
biological activity in that season. Wet-season NDVI is an indicator of 
maximum vegetative growth. NDVI for the wet (February) and dry (June) 
seasons were selected to represent the soil forming factor organism in 
agreement with the study of Mora-Vallejo et al. (2008) in Kenya. Wet and dry 
season NDVI are derived from Landsat TM scenes that cover most of park. 
 
 Relief (r) influences water movement and accumulation across the 
landscape. As a result, relief has indirect consequences on SOC contents 
through biomass production, erosion, sedimentation and redox conditions. 
Altitude and flow accumulation (an indirect way of measuring drainage area) 
were selected as appropriate covariables. Flow accumulation was derived 
from the DEM using ArcGIS 10. Values above 50 pixels are excluded as they 
correspond to drainage lines.  
 
Parent material (p) was represented by the lithology map. Small units were 
merged with neighboring larger ones of similar lithology to avoid a large 
number of different units.  
 
The spatial factor (n) accounts for spatial trends not revealed by other factors 
(McBratney et al., 2003). Although in principle any trend should be reflected 
by the soil forming factors, the selected covariables may not capture all the 
regional variation. Hence the spatial position was represented by the 
coordinates.  
 
The soil factor (s) represents soil attributes measured at sampling locations. 
The SOC concentrations derived from a Partial Least Square Regression 
(PLSR) calibration model relating the Near-infrared spectral signature of a soil 
sample to its SOC concentration (%) was used. Field sampling and laboratory 
analysis details are described further on. 
 
Finally, the advantage of the landscape study of Stalmans et al. (2004) was 
taken to consider the landscape units as an integrated soil-forming factor, 
combining elements of lithology, general relief, climate, and soil type into a 
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local eco-region. Stalmans et al. (2004) classified LNP into ten major 
landscape units, as summarized in the study area description. 
 
Step 3: Stratification of study area 
At this stage the study area should be divided into accessible (ACC) and 
poorly-accessible (PACC) areas. The latter are those beyond easy reach by 
common means due to, for example, poor road infrastructure, difficult 
navigation, wildlife hazard, or poor security. 
 
The main road network, comprised of two dirt roads following the N-NW 
direction, one along the right margin of the Limpopo River, and the other 
located about the centre of the park, along Singwedzi River (parallel to the 
Limpopo River) was mapped using a handheld GPS while traversing the entire 
network in an all-terrain vehicle. This included few other roads connecting 
main roads. The areas within 2.5 km of a road were considered accessible 
areas. This threshold was considered a practical limit of easy access for field 
sampling (including carrying tools, water, samples, and a firearm for 
protection against wildlife) after parking a vehicle along the road.  
 
Step 4: Assessment of similarity between strata 
At this stage ACC and PACC strata must be compared to evaluate the degree 
to which conditions in PACC areas are found in the ACC areas. This 
determines the potential applicability of the methodology. Similarities can be 
assessed by comparing, e.g., the histograms, ranges, clusters, class 
frequencies, or trends of covariables between the two areas, either 
qualitatively or with formal similarity measures. A decision is taken as to 
whether PACC areas are sufficiently represented by ACC areas; if not, the 
method is not applicable and both areas need to be sampled. 
 
In the test case the similarity between the two areas was evaluated by 
comparison of the mean and the inter quartile range (IQR) for the 
quantitative covariables and the proportion in which each mapping unit occur 
in ACC and PACC areas for the categorical covariables. It would have been 
instructive to do this comparison per-stratum; however, this requires an 
adequate number of grid cells in each stratum for both ACC and PACC areas. 
In the present study this was not possible because of the small area of some 
combinations, e.g., there were only 34 grid cells in the ACC area of the CMR 
stratum.  
 
Step 5: Sampling of accessible areas, laboratory analysis and PLSR-
NIR calibration model 
A sampling strategy must be designed and implemented to gather a 
representative sample of the target soil properties in ACC areas. The 
sampling strategy should be based on the available information from the 
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covariables (Minasny and McBratney, 2006), the expected spatial structure 
(Lark, 2002; Webster et al., 2006), or a combination (Brus and Heuvelink, 
2007). If there are legacy samples, and if these can be harmonized with 
current methods, they can be used to optimize the sampling plan, e.g., by 
simulated annealing (Brus et al. 2007). 
 
The only legacy soil observations in the LNP are from a 1969 irrigation 
suitability survey of the extreme SE of the park, with poor georeference and 
no analytical data. Therefore the sampling design did not take these into 
account, and started from the “no previous data” situation. 
 
Accessibility and wildlife hazard were major constraints to a random or 
regular sampling design. Therefore a stratified, clustered random sampling 
design was applied, which provides a statistical valid sample with high 
operational efficiency (De Gruijter et al., 2006). The LNP was stratified by 
landscape units (Stalmans et al., 2004), this being an integrative factor of 
soil genesis, and so is expected to capture a large part of the SOC variation. 
The number of clusters per stratum, i.e., landscape unit, was proportional to 
the stratum size. Sixty clusters were planned, 46 for model calibration in 
accessible areas and 14 for validation across LNP. Both sets were collected in 
the same field campaign. Cluster centres were positioned randomly within 
each stratum. Each cluster was composed out of two orthogonal transects of 
720 and 360 m length crossing at their midpoints with a total of 7 sampling 
points units 180 m apart (Figure 3.4). In order to capture the maximum 
variation the longer transect was oriented along the aspect as determined at 
the midpoint. At each sample point one soil sample was collected and this 
was a composite of five sub-samples from the four corners of a 90 m square 
support area plus the centre. Each sub-sample was from a (variable-
thickness) field-identified (and measured) A horizon, collected with a hand 
shovel after scooping out the upper 2-5 cm (to remove sticks, undecomposed 
leaves, etc). Subsamples were thoroughly mixed in a bucket, and then about 
a half a kg was collected in a plastic bag and sent to soil laboratory.  
 
In order to minimize the costs of laboratory analysis, all samples were 
analyzed using NIR spectrometry and a PLSR-NIR calibration model relating 
SOC to NIR spectra was built and validated (chapter 4) as described in 
Cambule et al. (2012). The PLSR predicted SOC was then used as 
explanatory variable for the “soil” (s) factor.  
 
Step 6: Building of spatial model for accessible areas 
The correlation between explanatory variables (i.e., the environmental 
covariables) and the soil properties of interest must be evaluated, using 
pedometric modeling approaches (McBratney et al., 2003; McBratney et al., 
2000) to build a quantitative model for the accessible areas. A separate 

 53 



A DSM methodology for poorly accessible area 

model must be built for each property. The model may include local spatial 
correlation, e.g., regression kriging (Hengl et al., 2007), but since the PACC 
area is by definition not or very sparsely sampled, the local spatial structure 
cannot be used to explain much of the variability in these areas. The 
calibrated model must be applied to the environmental covariables and 
measured soil properties to make a prediction map of the soil properties of 
interest across ACC areas. This should also produce an estimate of the 
prediction variance as an internal measure of model quality. 
 
In the test case the spatial model for ACC was developed on the base of 
explanatory variables that best explain SOC variation, for which appropriate 
spatial models were selected, followed by spatial structure (within- and 
between-cluster) analysis, as follows: 
 
To assess the proportion of SOC variation explained by the continuous 
explanatory variables, pixel values of each explanatory variable layer at 
sampling points were extracted and regressed against SOC; the regression 
model was evaluated by ANOVA of the model compared to a null model, and 
by visual inspection of regression diagnostic plots (Fox, 1997). The 
proportion of SOC variation explained by the categorical explanatory 
variables (clusters, geology and landscape) was evaluated by means of 
ANOVA of linear models of SOC as a function of each categorical variable. 
Regression adjusted goodness-of-fit was used to select explanatory 
covariables for model building and the appropriate spatial prediction model. 
 
Residuals from selected models show the unexplained variation in SOC. 
These, as well as the original values of SOC, were examined for local spatial 
autocorrelation using empirical variograms (Goovaerts, 1999). If structure 
was evident, models of spatial dependence (both original values and model 
residuals) were fit to the empirical variogram using weighted least square 
(WLS) in gstat (Pebesma, 2004). Anisotropy was evaluated visually with a 
variogram map. In order to minimize irregularities (due to small sampling 
size and to avoid arbitrary decisions on variogram bin width) and therefore 
improve the variogram fitting within the range of the variogram model, a 
residual maximum likelihood (REML) (Marchant and Lark, 2007) was applied 
directly to the variogram cloud from WLS fit, using gstat. The ordinary and 
residual variogram with spherical models using all calibration samples was 
fitted. 
 
In order to assess within-cluster spatial autocorrelation, an experimental 
variogram spanning the cluster range (720 m) was calculated, plotted and 
visually inspected in order to determine the practical support area, within 
which SOC variation is controlled by very short-range factors (i.e., within a 
cluster) and therefore should be ignored when mapping. 
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SOC was predicted across ACC areas from the calibration observations, by 
applying the selected spatial models. Internal prediction quality was assessed 
by kriging prediction standard deviation (Goovaerts, 1999; McBratney et al., 
2000). 
 
Step 7: Validation of spatial model in accessible areas 
At this stage an independent field sample must be taken, using the same 
strategy as the calibration sample; for practical reasons this could be during 
the original sampling campaign, with a proportion taken out randomly for this 
validation. The model prediction must then be compared to the true values 
with measures of quality such as root mean square error of prediction 
(RMSEP), or bias and gain of modeled vs. actual. If the model quality does 
not match requirements, one of the following corrections must be 
undertaken: (1) try another model structure or explanatory variables; (2) 
make more observations to refine the model; (3) abandon the DSM project if 
properties cannot be predicted with this approach.  
 
The sampling plan (step 5) considered an independent set for the validation 
of spatial model. A sub-set comprised by those samples collected in 
accessible was used for spatial model validation in ACC. 
 
Step 8: Application of spatial model in poorly-accessible areas 
The calibrated model must be applied to the environmental covariables and 
field-sampled soil properties (from ACC areas) to make a prediction map of 
the soil properties of interest across poorly-accessible areas. If there is any 
local spatial structure represented in the model, the prediction quality will 
naturally be better nearer to ACC areas. 
 
SOC was predicted here using the same models and the same support area, 
also for the same reasons as in the ACC area. The internal prediction quality 
was also assessed by kriging prediction standard deviation (KPSD) 
(Goovaerts, 1999; McBratney et al., 2000). Given the rocky nature of the LN 
and MCM units, their SOC contents were assumed to be effectively zero. Most 
landscapes in LNP are dominated by plant communities with 
Colophospermum mopane. However, this mopane vegetation is not present 
in the aeolian sands (PS) and in wetter (LLF and SAF) landscapes along the 
major drainage lines. 
 
Step 9: Validation of spatial model in poorly-accessible areas 
An independent field sample using the same strategy as the validation set in 
ACC must be taken; but this will be by definition quite limited (this is the 
motivation of the methodology), given the difficulty of access. Validation is as 
accessible areas and similarly to step 7 where a sub-set of independent 
validation set comprised of samples collected in poorly-accessible was used. 
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Step 10: Relative performance of spatial model 
Finally the relative performance in both ACC and PACC areas is assessed: 
Validation results in the two areas must be compared; the ratio between the 
validation RMSE and other validation statistics should then be used to 
determine the degree of success of the methodology for poorly-accessible 
areas. The performance in accessible areas should already have been judged 
adequate (step 7); if the relative performance in poorly-accessible areas was 
satisfactory, by deduction so will be the absolute performance. If relative 
performance is too poor, there is no remedy but to conduct a full (expensive) 
sampling in the poorly-accessible area, following the same scheme that 
produced a satisfactory result in the accessible areas. 

3.3 Results and discussion 
This section presents and discusses obtained results, for the specific 
objectives and context of the test case. It illustrates the decisions that must 
be made, and how they can be justified. All statistical analyses were carried 
out in the R environment for statistical computing (R Development Core 
Team, 2011) version 2.12 including geostatistical analyses with the gstat R 
package (Pebesma, 2004) version 1.0.  

3.3.1 Explanatory variables 
Following the gathering and selection of secondary data for SOC prediction in 
the LNP, explanatory variables were developed. The summary statistics are 
presented in Table 3.1. 
 
Climate (c): The WorldClim database shows a clear rainfall increase to the 
south with an annual precipitation difference of approximately 220mm 
(Figure 3.2). The higher grounds in the SW and NW also show precipitation 
above 500 mm as it is with the SE corner of the study area. Summary 
statistics (Table 3.1) show a mean bellow 500 mm, which indicate a rather 
drier climate. Temperature and evaporation do not vary substantially across 
the area and therefore were left out. 
 
Table 3.1: Summary statistics of the soil-forming explanatory variables in LNP as a 
whole. 
Variable  unit Min Max Range Mean SD 

Elevation  m 54 531 477 241 99 
Flow accumulation  nr. Pixels 0 50 50 4 8.2 
NDVI wet season - -1.0 0.69 1.69 0.35 0.13 
NDVI dry season - -0.34 0.56 0.91 0.11 0.08 
Annual precipitation mm 362 580 218 461 40 
 
The most influential organisms (o) for SOC are vegetation and humans 
(McBratney et al., 2003). Wet and dry season NDVI (Figure 3.2) are derived 
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from Landsat TM scenes that cover most of park. In general higher NDVI 
values are found along the main drainage lines and at higher grounds of the 
northern section along the NNW-SSE spine of the park. At this location large 
patches of distinctive dense 5-10 m high and evergreen Androstachys 
johnsonii forests are located (Stalmans et al., 2004). Summary statistics 
(Table 3.1) show the wider range in dry season NDVI. Lower values are found 
in the southern section with aeolian sands due to the dry conditions and 
higher values along the drainage lines. Wet season NDVI shows a much wider 
spatial distribution of higher values, spanning beyond the main drainage 
lines. This is a result of the vegetation growth during rainy season. 
 

 
Figure 3.2: Dry and wet season NDVI of the LNP derived from Landsat TM imagery. 
 
Relief (r) influences water movement and accumulation across the landscape: 
Higher elevations are located at the extreme north of the NNW-SSE spine of 
the park and along the western border with KNP. Lower elevations are found 
along the major drainage lines. Overall elevation ranges approximately 250 
m with a standard deviation is about 20% (Table 3.1). Flow accumulation 
was derived from the DEM using ArcGIS 10. Values above 50 pixels are 
excluded as they correspond to drainage lines. The 50th percentile of flow 
accumulation was zero (0) indicating that most of the study area has no flow 
accumulation as a result of the almost flat topography. The summary 
statistics in Table 1 show a standard deviation twice as higher than the 
mean, which may indicate the influence of the extreme higher values on the 
mean and therefore an evidence of the almost flat topography. 
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Parent material (p): The lithology map shows six major geological units cover 
the study area (Figure 1.3), three of which are bedrock (sandstone, 
limestone, and rhyolite) and three surficial sediments (Aeolian sands, fluvial 
terrace gravel and sand, and alluvium-gravel-and-silt). Small units were 
merged with neighboring larger ones of similar lithology to avoid a large 
number of different units.  
 
The spatial factor (n): The spatial trends not revealed by other factors were 
represented by the projected coordinates; using Universal Transverse 
Mercator projection (33⁰ Central Meridian) on Clark 1866 datum. 
 
The soil factor (s) represents soil attributes measured at sampling locations. 
The SOC concentrations as determined on samples collected and described in 
“sampling of accessible areas, laboratory analysis and NIR calibration model” 
section (step 5), detailed further on was used. 
 
The integrated soil-forming factor landscape map from Stalmans et al. (2004) 
combining elements of lithology, general relief, climate, and soil type into a 
local eco-region is as presented in study area description. However, given the 
rocky nature of the LN and MCM units, their SOC contents were assumed to 
be zero. The remaining eight landscape units were reduced to six (Figure 1.3) 
by merging the very small units (<0.1% of total area) ADR into NS and CMB 
into MCM. 

3.3.2 Strata based on accessibility, similarity analysis 
The two strata on the base of accessibility are shown in Figure 3.3. ACC 
areas, represented by a 2.5 km buffer along the main road network amount 
to about 27% of LNP.  
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Figure 3.3: Accessible and poorly accessible strata and the location of sampling 
clusters for calibration and validation of spatial prediction models. 
 
Quantitative explanatory variables showed differences in mean between ACC 
and PACC areas below 10% with exception of elevation (20%). The difference 
in IQR was less than 6%, with exception of dry season NDVI and precipitation 
(about 20%) (Table 3.2). All mapping units of geology (Table 3.3) and 
landscape (Table 3.4) occur in both ACC and PACC areas, however in 
different proportions. Overall, ACC areas present ecological conditions that do 
occur in PACC areas. Therefore, similarity of the ACC and PACC areas can be 
considered to be adequate. 
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Table 3.2: Summary statistics of the explanatory variables in accessible and poorly 
accessible area. 

Variable  Unit area 1st Qu. Mean 3rd Qu. IQR 

Elevation  m ACC 135 205 272 137 

PACC 188 254 317 129 

Flow Accumulation  nr. 

Pixels 

ACC 0 4 3 3 

PACC 0 4 3 3 

NDVI wet season 

(1% trimmed) 

- ACC 0.28 0.34 0.40 0.12 

PACC 0.31 0.37 0.44 0.13 

NDVI_dry season, 

(1% trimmed) 

- ACC 0.07 0.12 0.16 0.09 

PACC 0.06 0.11 0.17 0.11 

Annual 

precipitation  

mm ACC 431 459 494 63 

PACC 438 463 488 50 

 
Table 3.3: Proportion of each geological unit (%) in Accessible and poorly accessible 
areas. 
Geology Unit Code ACC PACC 

Sandstone TeZ 39.1 29.8 

Limestone TeAul 9.5 6.8 

Fluvial terrace, gravel and sand Qt 1.5 0.3 

Eluvial floodplain, clayey sand Qps 0.4 0.8 

Aeolian sand Qe 34.7 51.7 

Alluvium sand, silt, gravel Qa 8.3 2.4 

Dacite and Trachydacite JrUt 0.1 0.1 

Rhyolite JrUr 5.6 7.0 

Basalt JrSba 0.9 1.0 

 
Table 3.4: Proportion of each landscape unit (%) in Accessible and poorly accessible 
areas. 
Landscape unit Code ACC PACC 

Limpopo Levubu Floodplains LLF 7.0 0.9 

Combretum / Mopane Rugged Veld CMR 5.8 7.0 

Nwambia Sandveld NS 26.6 49.6 

Pumbe Sandveld PS 6.1 1.1 

Salvadora angustifolia floodplains SAF 16.0 2.5 

Mopane Shrubveld on calcrete MSC 38.5 39.0 
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3.3.3 Primary data collection and laboratory analysis 
Following the sampling plan, a total of 410 samples from 59 clusters (Figure 
3.4) were collected of which 45 calibration and 14 validation (8 in PACC and 6 
in ACC). 
 

 
Figure 3.4: The cluster (transect) design followed during field sampling, also showing 
the details of the support area for composite sampling at each sampling sub-station. 
 
Laboratory results showed topsoil SOC contents ranging from 0.0% to 2.7% 
with a mean of 0.9%. The RMSE of the duplicate samples was 0.13% SOC 
which is in the normal range of variability of the Walkley and Black 
methodology (Chatterjee et al., 2009). The PLSR model explained 83.7% of 
the variation in SOC, with a RMSE of 0.32% using cross validation and 0.33% 
using true validation. The mean of validation residuals is almost zero, i.e., 
there is no bias, but extremes values are about 0.5% and as high as first 
quartile of PLSR-predicted SOC. The detailed results are reported separately 
by Cambule et al. (2012). The calibrated (and validated) model showed it 
tends to under-predict SOC contents above 1.5-1.8%, but the proportion of 
under-estimated samples was small and similar in both the wet laboratory 
sample sets (7%) used to build the model and for the all predicted samples 
(6%) (Table 3.5, Figure 3.5). 
 
Table 3.5: Summary statistics of the PLSR SOC (%) prediction (all samples) and SOC 
(%) cluster averages. 
SOC (%) Min 1stQ Med Mean 3rdQ Max 
PLSR predicted 0.00 0.61 0. 87 0.92 1.19 2.68 
cluster mean 0.21 0.61 0.89 0.93 1.10 1.91 
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Figure 3.5: PLSR-NIR predicted SOC concentrations for all samples (left) relative to the 
laboratory samples only (right). 

3.3.4 Development of the spatial prediction model 
The spatial model was developed on the base of explanatory variables that 
best explain SOC variation, for which appropriate spatial models were 
selected. This was then followed by spatial structure (within- and between-
cluster) analysis. The main steps are described below: 

3.3.4.1 SOC explained variation by explanatory variables 
To assess the proportion of SOC variation explained by the continuous 
explanatory variables, pixel values of each explanatory variable layer at 
sampling points were extracted and regressed against SOC; the regression 
model was evaluated by ANOVA of the model compared to a null model, and 
by visual inspection of regression diagnostic plots (Fox, 1997). The 
proportion of SOC variation explained by the categorical explanatory 
variables (clusters, geology and landscape) was evaluated by means of 
ANOVA of linear models of SOC as a function of each categorical variable. 
Regression adjusted goodness-of-fit was used to select explanatory 
covariables for model building. 
 
The SOC variation explained by each of the explanatory variables is shown in 
Table 3.6. The soil factor (clusters) explains most SOC variation (71.1%), 
followed by geology (26.9%). Unfortunately all other single explanatory 
variables did not explain substantial amount of SOC variation. The landscape, 
here taken as an integrated explanatory covariable, did explain a substantial 
amount (39.4%). 
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Table 3.6: Explained SOC (%) variation (adjusted R2) by the explanatory variables. 
Variable All points  Clusters 
Elevation 2.6 1.3 
Flow Accumulation 1.4 1.3 
NDVI wet season 8.0 20.9 
NDVI dry season 0.1 1.6 
Annual precipitation 0.7 -0.7 
Geology 26.9 33.2 
Landscape 39.4 46.3 
SOC (clusters) 71.1 71.5 
Coordinates 7.7 6.7 

 
Elevation explains little of SOC variation, suggesting height differences 
(maximum height differences are about 220 m) are not sufficient enough to 
result in either pronounced temperature differences or elevation differences 
that could be reflected in steep slopes. This is also corroborated by the 
consistently low flow accumulation across the study area, which indicates 
that contributing area is too small for water to accumulate. 
 
Similarly, mean annual precipitation did not explain substantial amount of 
SOC variation (<1%), perhaps because absolute differences in the study area 
are not large enough to affect SOC. This is also corroborated by the weak 
regional trend as demonstrated by the explained SOC variation on the 
coordinates, despite visible variation in greenness, also detected by NDVI. 
Perhaps the greenness may be explained by below-ground water movement 
as precipitation easily infiltrates the extensive sand soils. 
 
Wet season NDVI explains a little more than double the SOC variation as 
the dry season NDVI. However the amount explained in both seasons is 
low. This may be a result of the combined effects from elevation, flow 
accumulation and mean annual precipitation as all have an effect on water 
availability across the study area. 
 
Lithology explains about 27% of SOC variation, the best single covariable 
(Figure 3.6). This may be because the soil over most of the area is residual. 
Rhyolite and aeolian sand have consistently high and low median SOC, 
respectively; however the rhyolite unit includes only one sampling cluster. 
Topsoil in this unit was consistently dark and pebble-rich. Other units do not 
differ substantially. 
 
The clusters predicted SOC, the soil factor, explains SOC variation the most 
(71.1%). Although about 30% of SOC variation is still within the clusters, the 
clusters’ size and the sampling strategy were effective in capturing 
considerable SOC variation across the LNP. 

 63 



A DSM methodology for poorly accessible area 

The landscape explained about 40% of SOC variation (Figure 3.6); by 
design it captures both lithology and any vegetation effect. Regression 
coefficients show CMR landscape unit contributing more to the model. This 
may be due to its proximity to the Lebombo mountain chain, where rainfall is 
suspected to be a little higher (Stalmans et al., 2004). This is followed by 
MSC, SAF and LLF, located along the Singwedzi and Limpopo Rivers under 
similar surface water regime. The sandvelds (PS and NS) have the least SOC 
%, perhaps due to sandier soil textures and lower water-holding capacities. 
 

 
Figure 3.6: Boxplot of SOC as a function of Geology (left) and landscape (right) as 
calculated based on calibration clusters. 

3.3.4.2 Selection of prediction model 
Thus there were three possibilities for spatial prediction: (1) ordinary kriging 
(OK), considering only the known observations (factor s); (2) linear 
regression models (LM) from environmental predictors; (3) kriging with 
external drift (KED), equivalent to regression kriging (RK) (Hengl et al., 
2007), considering the regression model and the spatial correlation of its 
residuals. In the case where there is demonstrated spatial structure in 
regression model residuals, the LM method can be replaced by a generalized 
linear model (GLM). Based on the above, predicted SOC in the clusters and 
geology represent the soil and parent material factors in the scorpan-
SSPFe model, while landscape is an integrated factor, representing all seven 
scorpan factors. Lithology explains less variation in SOC than landscape, 
which apparently incorporates the lithological information, so it was not used. 
Separate spatial models were considered, one using the soil factor (OK) and 
the other using the landscape integrated factor with residuals (KED), as well 
as the landscape regression model, which has the advantage over kriging 
methods when spatial structure is weak or have limited range. 
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3.3.4.3 Variogram analysis 
The fitted ordinary and residual variograms with spherical models using all 
calibration samples showed autocorrelation ranging to about 16.0 km for SOC 
and 4.0 Km for the residuals from the landscape linear model (Table 3.7 and 
Figure 3.7). The nugget of REML-fitted variograms is about the same but the 
residual variogram sill is much lower, about half. The effect of landscape is 
clear in the shorter range and lower partial sill. This is consistent with the 
linear regression model with landscape unit as predictor. Both nuggets are 
higher than RMSE of laboratory analysis on duplicates (about 0.13% 
squared), so that the laboratory uncertainty is included in the nugget. 
Despite the relatively higher nuggets, the fitted variograms show the nugget-
to-sill ratio of about 22% (ordinary) and 33% (residual), indicating that the 
short range variability shares some autocorrelation variance, though not by 
much (Gringarten and Deutch, 2001; Mapa and Kumaragamage, 1996). 
 
Table 3.7: REML fitted variogram parameters 

Variogram type Nugget [m2] Partial sill [m2] Range (m) 

Ordinary, points 0.065 0.236 15986 

Residual, points 0.057 0.115 3908 

Ordinary (within cluster) 0.016 0.069 528 

Ordinary, clusters 0.000 0.225 18126 

Residual, clusters 0.008 0.100 5278 

 
While the obtained variogram ranges could be used to design a second-phase 
sampling, the residual variogram range should enable SOC predictions from 
ACC through into PACC using explanatory covariables of environmental 
predictors derived from secondary data. However, in most of the centre-
southern part of the study area, the obtained residual variogram range is 
limited relative to the extent of PACC areas, which extend up to about 50 Km 
away from ACC areas. 
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Figure 3.7: Ordinary and residual (landscape as covariable) variograms, all calibration 
points. 

3.3.4.4 Within-cluster SOC spatial autocorrelation 
The experimental variograms along with a fitted pentaspherical variogram 
model for within-cluster spatial autocorrelation (up to 720 m) are shown in 
Figure 3.8. It reveals good spatial structure, with spatial dependence to 
about 500 m. The spatial dependence at short range was strong: nugget 
variance was fit to zero, but then raised to the known uncertainty of the 
laboratory analysis. The originally-modelled zero nugget shows the effect of 
composite sampling on a 90 m support. Thus most differences in SOC 
concentration are explained by local factors at scales between cluster range 
(720 m) and bulk sample range (90m). The linear model predicting SOC by 
sampling clusters (R2 = 0.71) has a residual mean square of 0.073%. This is 
the variance not explained by the clusters and should correspond to the sill of 
the within-station variograms, which were estimated at about 0.06 (% 
SOC)2. This also means that the nugget found in the long-range variogram 
represents a support of at least a cluster and that the clusters can be 
represented by their ordinary (unweighted) averages. Therefore spatial 
models as well as the remainder of the analyses were based on cluster 
averages. The averaging generally increased the proportion of SOC explained 
by the different explanatory variables (see Table 3.6). 
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Figure 8: Ordinary Kriging experimental variogram of SOC up to a cut-off of cluster 
length (720 m), based on all calibration points. 

3.3.4.5 Variogram analysis *clusters) 
Experimental variograms based on calibration cluster averages were difficult 
to model, due to the low number of point-pairs in each bin. Starting from the 
parameters of the fitted variograms based on all calibration points, spherical 
models were fitted (Figure 3.9, Table 3.7), resulting in slightly longer ranges, 
much lower structural sills and effectively zero nugget. These are all 
consistent with the averaging effect. The REML fit did not improve the 
variogram due to the high variance at smaller lag, pulling the REML 
variogram fit up and introducing an unrealistic nugget. Therefore the WLS fit 
was retained for mapping. The obtained variogram ranges increased by about 
12% (ordinary) and 26% (residual), which potentially improves the ability for 
predictions in PACC from the ACC areas. This is despite the reduction in the 
partial sill. Cluster averaging will also be economical in future sampling as the 
within cluster variation will be ignored. 

 67 



A DSM methodology for poorly accessible area 

 
Figure 3.9: WLS and REML fitted ordinary (left) and REML fitted residual (right) 
variograms drawn based on calibration clusters (accessible areas). 

3.3.5 Application of the model in accessible area 
SOC was predicted across ACC areas from the calibration observations, by 
applying the selected OK, KED and LM spatial models. Internal prediction 
quality was assessed by kriging prediction standard deviation (Goovaerts, 
1999; McBratney et al., 2000). Since the within-cluster analysis showed that 
SOC in a cluster could be represented by the cluster average, prediction was 
performed by punctual kriging over 1x1 km grid as a support area, assuming 
that the average of a 1x1 km cell would to be similar to that of the 720x720 
m support area for which spatial structure had a little longer than half the 
cluster length. The kriging prediction variance is thus realistic: “punctual” in 
this case means on a cluster-size support. 
 
The summary statistics of OK prediction (Table 3.8) shows OK with narrower 
range (1.27%) and the KED with the wider range (1.97%) and LM in between 
(1.44%). The same is observed for the mean SOC predictions by the three 
models. The OK prediction map clearly shows the effect of low sampling 
density. Areas further away from sampling locations are predicted as a 
spatially-weighted average (0.93%) as there is no information on spatial 
variation structure. Predictions by KED much resemble the landscape map 
(Figure 3.10). 
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Table 3.8: Summary statistics of SOC (%) spatial prediction, Kriging prediction 
standard deviation (Kriging SD) and model independent validation. 

model 
Prediction KPSD Independent 

validation 

Min Median Mean Max Mean IQR Mean RMSE Bias 

OK_ACC 0.42 0.90 0.91 1.69 0.40 0.08 -0.03 0.50 -0.02 

OK_PACC 0.46 0.90 0.89 1.68 0.44 0.04 0.09 0.36 0.09 

KED_ACC 0.35 1.01 1.22 2.32 0.37 0.03 -0.01 0.42 -0.01 

KED_PACC 0.40 0.97 1.06 2.17 0.37 0.03 0.06 0.31 0.06 

LM_ACC 0.46 0.93 0.87 1.90 0.05 0.02 -0.03 0.45 -0.03 

LM_PACC 0.46 0.92 0.84 1.90 0.05 0.01 0.07 0.31 0.07 

 
Kriging prediction standard deviation (KPSD) is lower (Table 3.8) for the LM 
and higher for OK, with KED (Figure 3.10) in between the two, all with low 
IQR, suggesting that kriging prediction SD is a rather precise measure. 
However, the mean KPSD is about half (OK), a third (KED) and 5% (LM) the 
median and as high as the minimum predicted SOC (OK, KED) but only about 
11% (LM). This suggests prediction quality by internal measure is better for 
LM and poor for OK and KED. 

 
Figure 3.10: SOC (%) prediction maps by KED using landscape as a covariable (left) 
and its kriging prediction standard deviation (right). 
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3.3.6 Model validation in accessible areas 
Two validation measures were used; (1) the leave-one-out cross-validation 
(LOOCV) (Goovaerts, 1999; McBratney et al., 2000) as an internal measure 
of model fitness and (2) true validation with an independent sample set. 
Since there is no cross-validation concept for the linear regression model, it 
was not performed for the landscape model. LOOCV RMSE for both OK and 
KED are low, about 0.02% and mean prediction residuals are about 0.00% 
which indicate the models are unbiased. However largest residuals (±0.70%, 
symmetrical) are a little higher than the minimum prediction by the models. 
OK IQR of residuals is twice that of KED (0.29%). Independent validation 
results (Table 3.8) show KED and LM performing similarly (RMSE about 
0.43%) and better than OK. Neither method is satisfactory given the fact that 
RMSE is a substantial proportion (about half) of the median from the model 
predictions. All methods are also biased (under-predictions). True validation 
RMSE is about double LOOCV RMSE in both cases, which is consistent with 
expectations. True validation RMSE and mean kriging SD are almost identical, 
and therefore kriging standard SD is a reasonable estimate of the actual 
error. At this point a decision had to made whether the model was sufficiently 
accurate to proceed to the next step of the methodology. Given the generally 
low values of the target variable in the LNP (maximum 2.68%, median 
0.87%, see Table 3.5, and the result that the validation RMSE is about half 
the median, surely the model is of limited utility. It does show some 
landscape differences and accounts for spatial structure near the observation 
points, but even at a 1x1 km block gives predictions that are only about twice 
as precise as taking the area-weighted average or median observed value 
over the whole area. Nonetheless, the method is applied for the remainder 
steps for illustration purpose. 
 
To put the obtained results in context, they are compared with other studies 
reported in the literature. Mueller and Pierce (2003) studied the effect of 
sampling scale on accuracy of SOC predictions of top 20 cm across an area of 
12.5 ha in Michigan, USA, and showed that despite the finer grids followed 
and a wide SOC range (0.2-0.29%), the best RMSEP obtained was 0.28-
0.30%, about 30% of the SOC observed mean. Robinson and Metternich 
(Robinson and Metternicht, 2006) compared the accuracy of OK, lognormal 
OK, IDW and splines for interpolation of soil proprieties in 60 ha, south west 
Australia. The best OK RMSEP was 1.43% and about 30% of the average 
observed OM and 35% of the mean predictions. Chai et al. (2008) compared 
the performance of empirical best linear unbiased predictor (E-BLUP) with 
REML with that of RK for prediction of SOM in the presence of different 
external drifts across an area of 933 km2 in China. The best RMSEP obtained 
was 0.38% (RK), which represented about 29% of mean observed data. 
Grimm et al. (2008) predicted the spatial distribution of SOC following the 
DSM approach in Panamá for different soil depths in a 1500 ha area. The best 
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RMSEP obtained was 1.72% for the top 10 cm soil depth, corresponding to 
about 34% of the observed SOC data. 
 
The above results show that the proportion of RMSEP to mean predictions or 
mean observed SOC in present study is poor relative to other studies.  
 
Comparative studies closer to the study area or in Africa, in general, are few 
but show different results. For example Stoorvogel et al. (2009) used a 
classification tree approach combined with existing knowledge from literature 
and a small data set to map top soil SOC content for a data-poor 
environment in a 1030 km2 of the Senegalese peanut basin, with a RMSEP of 
about 0.17%, representing about 40% of the mean observed SOC. 
 
As another example, Mora-Vallejo et al. (2008) tested whether DSM is suited 
for exploratory or reconnaissance soil survey of SOC. Their results in a 13 
500 km2 area in southeast Kenya show SOC RMSEP of about 0.2%, 
corresponding to about 25% of both the mean predictions by regression 
kriging and mean observed SOC data. While these results are consistent with 
those from elsewhere, Schloeder et al. (2001) found rather more accurate 
results when they compared different interpolation methods (OK, IDW and 
thin-plate with and without tensions) for organic matter (OM) prediction 
across a 70x20 km area in the Omo basin, south-west Ethiopia. The best MSE 
was 0.08%, i.e., RMSE=0.28%, for OK, which represented about 20% of the 
mean observed data. Regardless of the different results, all are better than 
the one found in present study. 

3.3.7 Application of the model in poorly-accessible areas 
SOC was predicted here using the same models (OK, KED and LM) for the 
same support area, also for the same reasons as in the ACC area. The 
internal prediction quality by kriging prediction standard deviation (KPSD) 
was also assessed (Goovaerts, 1999; McBratney et al., 2000). The summary 
statistics of OK prediction (Table 3.8) shows OK with narrower range (1.22% 
SOC) and the KED with the wider range (1.77%) and LM in between 
(1.44%). The same is observed for the mean SOC predictions by the three 
models. The OK prediction map (Figure 3.10) clearly shows the effect of low 
sampling density. Areas further away from sampling locations are predicted 
as a spatially-weighted average (0.93%) as there is no information on the 
structure of spatial variation. KPSD is lower (Table 3.8) for the LM and higher 
for OK, with KED in between the two, all with low IQR, suggesting that 
Kriging prediction SD is a rather precise measure. However, the mean KPSD 
is a little less than half (OK, KED) and 5% (LM) the median and as high as 
the minimum predicted SOC (OK, KED) but only about 11% (LM). This 
suggests prediction quality by internal measure is better for LM and poor for 
OK and KED. 
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Examples of the predictions into PACC based on models built from the ACC 
area, as proposed here, are not available in the literature. However, the 
obtained prediction results are within the range of those obtained (and 
discussed) for ACC areas. 

3.3.8 Model validation in poorly-accessible areas 
The true validation was performed with an independent sample set as 
planned. Validation results (Table 3.8) show, surprisingly, all models with 
RMSEP lower than the one for ACC areas. Further KED and LM performed 
similarly (RMSEP about 0.31% SOC) and better than OK. However, all models 
performed poorly, given the fact that RMSEP are about 4/10 of the SOC 
prediction median, so effective mapping is not possible with the present 
sampling density. All models were also biased (under-prediction); with LM 
similar to KED and both a little better than OK. Mean KPSD was a little higher 
that validation RMSE (OK and KED) so KPSD is a reasonable estimate of 
actual error. 
 
Similar to predictions, validation results both the RMSEP (true validation) and 
KPSD (with exception to LM) found in the present study are about the 
minimum predictions and as high as double the mean predictions, which 
confirms obtained poor results in present study. 

3.3.9 Relative performance of prediction model in PACC 
areas 

When comparing validation RMSE between ACC and PACC, the three models 
performed better in PACC than in ACC areas by about 28% (OK) and 26% 
(KED) and 31% (LM). This is likely due to the different test set sizes (larger 
for the PACC). Thus the extrapolation into non-sampled PACC areas seems 
justified for KED, although predictions are largely determined by landscape 
away from sampling points in accessible area. LM performed relatively best 
and does not suffer from the requirement of spatial autocorrelation for 
interpolation into PACC areas. 
 
Despite poor predictions by both models, the methodology is promising 
because predictions into PACC areas are close to predictions made in ACC 
areas. The poor model predictions result from cumulative error effects 
brought about along the different steps, namely laboratory analysis, PLSR 
calibration, model building, and spatial predictions. The weak SOC variation 
explained by most of the explanatory variable here selected may also have 
contributed to the poor model predictions, although many authors have 
demonstrated the role of secondary data to improve prediction of SOC 
(Mueller and Pierce, 2003; Simbahan et al., 2006). Nevertheless, one of the 
strong points of obtained results lies on the spatial models’ range, which 
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allows interpolation into PACC (about 5 Km KED and 18 Km for OK). Despite 
a longer range for OK, the low sampling density is a limiting factor as 
information on spatial structure is absent in the PACC. By contrast, KED 
allows mapping based on the covariable but the range of spatial structure is 
rather limited. LM can take over beyond the OK and KED range, into the 
PACC areas. 
 
The spatial models building was in this case made possible based on the 
integrated soil-forming factor (landscape) and the clusters, which explained 
most SOC variation. The OK results could be used to aid future sampling to 
improve prediction since the within cluster spatial structure is rather weak 
and could be bulked. Therefore future sampling could be based on the 
obtained structural range. 

3.4 Conclusions 
The chosen test case turned out to be a difficult one. The range of SOC 
concentrations was narrow, weakly-dependent on covariables, and exhibited 
most of its spatial structure within the support of a cluster. It is concluded 
that SOC concentration in the study area varies mostly by local factors, 
probably current and past vegetation and animal activity (including termites), 
not captured by any covariable. The proposed method did work as planned in 
the sense that the models did as well in poorly-accessible as in accessible 
areas. The use of a previous integrative survey (Stalmans et al., 2004) was 
quite helpful in this case and was able to substitute for a large number of 
coverages. Such a survey substitutes for multiple factors in the scorpan-
SPPfe framework. 
 
Despite the somewhat disappointing performance in this test case, the 
proposed methodology as such was appropriate, certainly as the first stage in 
a survey in areas with difficult access. At this point the spatial structure and 
relation of target variable with covariables are known, and there is evidence 
that the model structure in poorly-accessible areas is likely to be similar to 
that in accessible areas. Thus if not satisfied with the predictions mostly as 
landscape spatial averages, a sampling campaign can be planned by 
optimizing the KED variance to a realistic target (set here by the PLSR 
precision) as proposed by Brus and Heuvelink (2007). Certainly, in this case, 
is better to sample on a 1 km support and not try to map variation in smaller 
areas. All this could support preparation for the most efficient approach 
possible in the difficult circumstances of a survey in poorly-accessible areas. 
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Building a NIR spectral library for the LNP3 
 

3 This chapter is based on: Cambule, A.H., Rossiter, D.G., Stoorvogel, J.J., Smaling, 
E.M.A., 2012. Building a near infrared spectral library for soil organic carbon estimation 
in the Limpopo National Park, Mozambique. Geoderma 183-184, 41-48. 
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Abstract 
Soil organic carbon (SOC) is a key soil property and particularly important for 
ecosystem functioning and the sustainable management of agricultural 
systems. Conventional laboratory analyses for the determination of SOC are 
expensive and slow. Laboratory spectroscopy in combination with 
chemometrics is claimed to be a rapid, cost-effective and non-destructive 
method for measuring SOC. The present study was carried out in Limpopo 
National Park (LNP) in Mozambique, a data- and access-limited area, with no 
previous soil spectral library. The question was whether a useful calibration 
model could be built with a limited number of samples. Across the major 
landscape units of the LNP, 129 composite topsoil samples were collected and 
analyzed for SOC, pH and particle sizes of the fine earth fraction. Samples 
were also scanned in a near-infrared (NIR) spectrometer. Partial least square 
regression (PLSR) was used on 1037 bands in the wavelength range 1.25 – 
2.5 µm to relate the spectra and SOC concentration. Several models were 
built and compared by cross-validation. The best model was on a filtered first 
derivative of the multiplicative scatter corrected (MSC) spectra. It explained 
83% of SOC variation and had a root mean square error of prediction 
(RMSEP) of 0.32% SOC, about 2.5 times the laboratory RMSE from duplicate 
samples (0.13% SOC). This uncertainty is a substantial proportion of the 
typical SOC concentrations in LNP landscapes (0.45 – 2.00%). The model 
was slightly improved (RMSEP 0.28% SOC) by adding clay percentage as a 
co-variable. All models had poorer performance at SOC concentrations above 
2.0%, indicating a saturation effect. Despite the limitations of sample size 
and no pre-existing library, a locally-useful, although somewhat imprecise, 
calibration model could be built. This model is suitable for estimating SOC in 
further mapping exercises in the LNP. 
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4.1 Introduction 
The increasing need to manage land sustainably has triggered the debate on 
soil quality, its definition and the indicators best reflecting it (Arshad and 
Martin, 2002). Some researchers have developed indicators based on 
selected specific combinations of soil characteristics to characterize soil 
quality (Yemefack et al., 2006) but still there is no consensus on how the 
indicators should be interpreted (Bouma, 2002). However, all indicators 
related to soil quality include soil organic carbon (SOC) as one of the most 
important properties (Arshad and Martin, 2002). Shukla et al. (2006) states 
that if only one soil attribute were to be used for monitoring soil quality 
changes, it should be SOC. The widely-used soil fertility-crop production 
model QUEFTS uses SOC, or total nitrogen as a proxy (assuming a stable C/N 
ratio), as the major yield-explaining variable (Janssen et al., 1990; Liu et al., 
2006; Pathak et al., 2003; Smaling and Janssen, 1993). This comes as no 
surprise in strongly weathered tropical soils that largely rely on the organic 
fraction for their inherent soil fertility. SOC is also recognized as the best 
entry point for land degradation assessment (Gisladottir and Stocking, 2005). 
 
 Assessment of SOC over larger areas by field sampling and conventional 
laboratory analysis is expensive and slow. Laboratory spectroscopy is widely-
applied in chemometrics (Geladi and Kowalski, 1986) and recently also to soil 
characterization (Brown et al., 2006; Shepherd and Walsh, 2002). It offers 
rapid and about 50% cheaper soil analysis (Cécillon et al., 2009a), and, as an 
added benefit it is non-destructive, so samples can be analysed repeatedly. 
 
The most common form of spectroscopy for SOC determination is visible and 
near-infrared reflectance (VNIR, 0.4 – 3.0 µm) and - mid-infrared (MIR, -3.0 
–30 µm) (Clark, 1999). Other authors indicate different spectral ranges for 
the same regions, e.g. Vis-NIR-SWIR to be 0.4-2.5 µm (Ben-Dor, 2002; 
Shepherd and Walsh, 2002). SOC produces a spectral signature, defined by 
the reflectance or absorbance of electromagnetic radiation as a function of 
wavelength. In the case of SOC, as with the absolute majority of absorbants, 
combination of bands and overtones of the fundamental spectral features are 
detected in the NIR regions (Shepherd and Walsh, 2002). 
 
Direct quantitative prediction from spectra is almost impossible because soil 
constituents interact in a complex way to produce a given spectrum. 
Therefore, quantification of the property of interest is done with multivariate 
statistical models (Cécillon et al., 2009b). Viscarra Rossel et al. (2006) 
demonstrated the potential of reflectance spectroscopy along with the 
chemometric methods applied to develop these multivariate statistical models 
to predict soil properties. Partial least-squares regression (PLSR) and 
principal components regression (PCR) were the multivariate methods most 
applied for SOC determination, while sample size varied from 68 to 674, 
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resulting in a calibration R2 of 0.86 - 0.96. However, only three of the 
reported 14 studies on SOC had a sample size bellow 150. Shepherd and 
Walsh (2002) indicate that as the sample size decreases, the predictive 
performance decreases gradually at large sample sizes but rapidly as sample 
size decreased between about 100 to 200 samples to a R2 < 0.7 and even 
below 0.5 for sample sizes smaller than 100, implying more relative variation 
in the dataset. 
 
Despite the reported problems with small sample sizes, there are many 
situations where it is impractical to obtain large sample sizes. Typical 
limitations are financial, access, and logistical (limited conventional 
laboratory facilities, limited access to spectrometers, limited trained 
technicians). Studies with such limitations have to make the best out of the 
limited data that can be collected and analyzed. However, local calibrations 
with small sample sizes may be possible if soil variation is limited within a 
specific study area (Brown, 2007).  
 
Small sample sizes in a particular study are not a problem if there is a 
calibrated spectral library which includes soils similar to those collected in the 
new study (Shepherd and Walsh, 2002), but for many areas of the world, 
and for many soil types, such libraries do not exist. 
 
Thus, the objective of this study was to test whether a locally-developed 
calibration model for SOC based on a limited number of samples can be 
developed within the context of a project with limited resources, in an area of 
limited access, and where no soil spectral library exists.  

4.2 Materials and methods 

4.2.1 Soil samples and spectral acquisition 
Soil samples are the same as those used for DSM (chapter 3). In the soil 
laboratory, samples were air-dried, gently crushed and passed through a 2 
mm mesh sieve to collect the fine earth fraction. Samples were put in petri 
dishes and then scanned in a Bruker FR-NIR MultiPurpose Analyser (MPA), 
(Bruker optic GmbH, Ettlingen, Germany) located in the Instituto de 
Investigação Agronómica de Moçambique (IIAM), Maputo. This instrument 
has built-in validation to perform instrument internal (operational and 
performance) quantification tests, and its spectrum is calibrated before each 
scan to an internal gold reference. Spectra were recorded from 0.8 to 2.6 µm 

at a spectral resolution of 1250 µm, with zero-filling factor of 2, resulting in 
an effective bandwidth of 3.86µm. Each spectrum is an average of 64 scans. 
Spectra were further reduced to the range 1.25 – 2.5 µm as these bands 
contain most of relevant information. 
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4.2.2 Selection of soil samples for reference analysis 
To form a subset of samples for reference analysis, a total of 129 samples 
were selected from both DSM calibration (104) and validation (25) sample 
sets as described in previous Section. The samples represent one third and 
one fourth of DSM calibration and validation sets (chapter 3), respectively. 
These proportions are commonly used in laboratory spectroscopy (Brown et 
al., 2005; Grinand et al., 2008). Reference samples from DSM calibration 
were used for model calibration (about four fifth) and those from DSM 
validation, used for model validation (about one fifth); note these are here 
referred to as “model” calibration and validation, as opposed to the “DSM” 
calibration and validation sets from field sampling. To select a representative 
set covering the range of spectra and SOC contents, the spectra were 
compressed using principal component analysis (PCA), to summarize the data 
and examine its structure. The PCA scores were grouped by computing a K-
means clustering in the Unscrambler 9.7 program (CAMO Software AS, Nedre 
Vollgate, Oslo, Norway). The number of groups was determined iteratively to 
minimize the sum of distances (SOD). Samples were randomly chosen from 
the different groups as suggested by Martens and Naes (1986) in order to 
enhance sample set diversity (Stenberg et al., 1995). Samples were then 
drawn from these groups, excluding any that met any of the following three 
conditions: (1) high residuals and low leverage, (2) both high residual and 
leverages or (3) high leverages and away from the PCA model trend, were 
considered outliers and not considered for laboratory analysis (Esbensen, 
1994). Outliers as thus defined were automatically flagged based on the 
default threshold values in Unscrambler 9.7. 

4.2.3 Laboratory analysis 
The selected samples were analyzed in the soils laboratory of Eduardo 
Mondlane University, Maputo, for SOC and possible co-variable predictors soil 
pH and particle size fractions, following standard ISRIC methods for soil 
laboratory analysis (van Reeuwijk, 2002). SOC was determined by the 
Walkley-Black method. Soil pH was measured potentiometrically in a 
supernatant suspension of 1:2.5 soil:liquid mixture (two determinations: in 
distilled water and 1 M KCl solution). Particle-size separates of the fine earth 
(<2 mm) fraction were determined after cementing agents were first 
removed by means of hydrogen peroxide, calgon and calcium chloride 
solution. The sand fraction (2 mm - 50µm) was washed onto a 50µm sieve, 
after which silt (50µm - 2µm) and clay (<2µm) fractions were determined by 
hydrometer method. Twenty randomly-selected samples were analyzed in 
duplicate for quality control and to quantify laboratory precision. 
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4.2.4 Calibration and validation 
Mathematical and statistical procedures were carried out in the R 
environment for statistical computing (Ihaka and Gentleman, 1996), 
Unscrambler (CAMO Software AS, Nedre Vollgate, Oslo, Norway), and ParLes 
(Viscarra-Rossel, 2008). The “pls” package was used within R for multivariate 
calibration (Mevik and Wehrens, 2007). 
 
PLSR was used to develop models based on spectra and reference laboratory 
data of the 129 selected soil samples. Models were evaluated in two ways: 
(1) “leave-one-out” cross-validation on models developed with all 129 
samples and (2) true validation by splitting the sampling set into spectral 
calibration (104 samples) and validation (25 samples) sets. The former was 
used to search for the best pre-processing of the raw spectra and the latter 
to obtain realistic estimates of prediction accuracy. 
 
Models were attempted with the original spectra, multiplicative scatter 
corrected (MSC) spectra, first derivatives of these; and all of these also after 
applying a Savitsky-Golay filter (2nd order polynomial covering 11 adjacent 
bands). MSC was applied since the original spectra showed additive effects 
which could result from differential scattering in the granular sample. The 
derivative transformation minimizes the effect of variation in sample grinding 
and optical set-up (Shepherd and Walsh, 2002). Transformations of the 
laboratory measurements were also attempted but did not improve results 
and therefore are not reported. 
 
Model calibration accuracy was evaluated by means of the root-mean 
squared error of calibration (RMSE) of the cross-validation predictions, and R2 
(proportion of variation explained) of the SOC vector. Because the resulting 
model was intended to be used to map SOC across the LNP, there was no 
option of rejecting any observations as outliers. Prediction accuracy was 
assessed by the ratio of standard deviation (SD) to RMSE of cross-validation 
and by the multiple R2 (Chang et al., 2001; Waiser et al., 2007). 
 
In an attempt to improve the predictive performance of the best PLSR model 
and following a suggestion by (Fearn, 2010), the proportion of clay in the fine 
earth - a commonly used covariate for SOC spatial interpolation (McGrath 
and Zhang, 2003; Mutuo et al., 2006), - was added to the spectra 
information as a supplementary “band”, and a new PLSR model built. Clay 
proportion may be helpful for PLSR modelling in cases where a collection of 
samples and its laboratory analysis results for clay (but not SOC) from past 
surveys is kept. For new surveys the laboratory costs of determinating clay 
and SOC are comparable, so these models are not relevant. Clay variance 
was inflated 86 times to match the true dimensionality of spectra predictors 
so that it could be properly weighted, on the basis that previous PLSR model 
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did explain most of SOC variation with about 12 factors (as shown in the 
results, below); 12 x 86 = 1037, the approximate number of spectral bands. 

4.3 Results and discussion 

4.3.1 Sample selection for reference analysis 
Figure 4.1 shows the sample selection procedure for reference analysis from 
the DSM validation set. The first two principal components explained 98% 
(91 + 7%) of spectra variation; the SOD was achieved for 6 clusters. The 
influence plot was used to identify outliers. The same procedure was followed 
for the DSM calibration set, where the first two PC’s explained 98% (95 + 
3%) of spectra variation and the minimum SOD was achieved for 12 clusters. 
As per the sampling plan 25% (=25) of DSM validation and 1/3 (=104) of the 
DSM calibration sets were selected for reference analysis. Since the number 
of PCA score groups (intended to represent spectra variability) was small, 
more than one sample was selected from most of them. The small number of 
groups indicates the fairly homogeneous nature of the sample sets. This 
procedure has also been followed by other workers (Viscarra-Rossel and 
Behrens, 2010) to select samples based on spectral variability. Whereas PCA 
score grouping enhances spectral diversity, it may also enhance the spatial 
autocorrelation between the selected samples due to possible coincidence of 
PCA score groups with the field sample clusters. This raises the possibility of 
false precision (Brown et al., 2005). However, RPD (Figure 4.5) suggests that 
this effect is minimal in present case.  

 
Figure 4.1: Score plot of the first two principal components principal of spectra from 
DSM calibration set symbolized by their cluster (left) and sample influence plot (right) 
used to select samples for reference laboratory analysis. 

4.3.2 Soil properties 
The summary statistics of laboratory analysis (Table 4.1, Figure 4.2) show a 
fairly wide range for SOC in this semi-arid environment, from below the 
detection limit to moderate values (2.7%), thus providing a good range for 
model calibration. Soils range from quite acid to alkaline, with a somewhat 
left-skewed distribution emphasizing the alkaline range. Most are coarse-
textured. The empirical distributions of SOC, clay and silt appear positively 
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skewed while that of the sand fraction is negatively skewed. Parametric 
correlations between duplicates were all linear and generally very good. 
Laboratory duplicate RMSE (on the expected 1:1 line) were low, indicating 
good analytical precision. The moderate precision for particle sizes matches 
the expected precision of the hydrometer method. These RMSE set an upper 
limit on the precision of any calibration. Bivariate correlations between soil 
properties showed positive correlations between SOC and pHH20 (0.50), pHKCl 
(0.49), clay (0.56) and a negative correlation between SOC sand (-0.65), all 
significant at 0.01 level. These results are expected: finer-textured soils 
retain moisture longer, and neutral to alkaline soils generally support more 
soil microorganisms and more vigorous vegetation (hence more leaf litter); 
both of these situations are conducive to higher levels of SOC. 
 
Table 4.1: Summary statistics for 129 soil samples set submitted for reference 
laboratory analysis. Included is the correlation coefficient (r) of duplicate samples as 
well as the RMSE from 1:1 line. 
Summary statistics  
(N = 129) 

Soil property 
pH water pH KCl SOC (%) Clay (%) Silt (%) Sand (%) 

Minimum 3.7 3.4 0.0 5.3 0.0 2.2 
1st quartile 5.7 5.3 0.4 8.7 1.8 74.4 
Median 6.7 6.2 0.7 13.9 4.6 81.3 
Mean 6.5 6.1 0.9 14.4 7.4 78.3 
3rd quartile 7.6 7.3 1.2 17.3 8.7 88.8 
Maximum 9.0 8.1 2.7 47.3 50.5 93.5 
SD 1.1 1.2 0.6 7.1 8.5 14.4 
r (duplicates, n =20) 0.96 0.99 0.97 0.89 0.93 0.98 
RMSE (from 1:1 line) 0.32 0.17 0.13 2.6 3.2 2.9 
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Figure 4.2: Distribution of soil properties in laboratory samples; bars = histogram, 
dashed line = density and fine dashed line =normal fit), Soil fractions units in 
percentages. Rug marks along the x-axis show individual sample location. 

4.3.3 Laboratory SOC vs Landscape units 
Mean SOC per landscape units is highest in CMR (2.00%), decreasing 
through PS (1.15%), MSC (0.95%), SAF (0.91%), LLF (0.60%) and NS 
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(0.45%). Note that the laboratory RMSE for SOC (0.13%) is a significant 
proportion of the low-SOC landscape units. Duncan’s multiple-range test 
shows that CMR is clearly separated from all other landscape units, NS and 
LLF are grouped at the lower end and cannot be separated from the grouping 
of MSC and SAF. This group cannot also be statistically separated from PS, 
due to the wide ranges of SOC for MSC, SAF and NS (Figure 4.3). ANOVA 
shows that landscapes explain about 24% of the total SOC variation. Thus 
SOC is rather similar over most of the landscape, which should reduce 
prediction errors due to the small sample size. Separate analysis per 
landscape is in any case not possible because of the limited number of 
samples; this result shows that such an analysis would be unlikely to result in 
different models. 

 
Figure 4.3: Box-plots and Duncan’s multiple range test (alfa = 0.05 and Df=117) for 
the SOC per landscape unit. 

4.3.4 Spectral features 
The raw spectra (Figure 4.4) generally showed the typical pattern of soil 
spectra, with three major absorption features around 1.37-1.46, 1.86-2.06 
and 2.14-2.26 µm. The first absorption region (near 1.4 µm) is the first 
overtone of OH stretches (moisture adsorbed to the clay surfaces) and near 
1.9 µm it is the combination of OH stretches and H-O-H bend in water 
molecules trapped in the crystal lattice (not present in for example well 
developed dried Kaolinites). Near 2.2 µm it is OH-metal bend and OH 
stretches combinations where the metals can be AL or Fe or Mg substituting 
Si (Fe and Mg closer to 2.3 µm) Clark et al. (1990). In addition, a number of 
spectra showed two noisy (or fluctuating) reflection regions around 1.34-1.39 
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and 1.79-1.92 µm. These ranges overlap with the first two absorption 
features. These raw spectra are similar to those found by other authors, e.g. 
Ben-Dor et al. (1999) and Ben-Dor and Banin (1995). The SOC component 
normally affects the overall positioning and shape of the spectrum (Shepherd 
and Walsh, 2007). 

 
Figure 4.4: Spectra of the soil samples showing three major absorption features, 
related to OH groups in both absorbed water (≈ 1.4 and 1.9 µm) and the crystal lattice 
water (≈ 2.2 µm), (Ben-Dor and Banin, 1995) 

4.3.5 Prediction of SOC from NIR spectra 
Since there is no a priori way to determine which spectra pre-processing 
methods result in the best predictive model (Ben-Dor and Banin, 1995), a 
number of spectra pre-processing methods were compared (Section 4.2.4). 
Pre-processed spectra showed peaks at around the same wavelength ranges 
as the raw spectra, regardless of pre-processing method. 
 
The best PLSR model (Figure 4.5), MSC smoothed and 1st derivative) for the 
prediction of SOC in the LNP was obtained with nine factors with a RMSEP of 
about 2.5 times that obtained from laboratory analysis on duplicate samples . 
The model also explained 99.5% of spectra variance. The median cross-
validation residual was –0.0035%, inter-quartile range (IQR) –0.015 to 
+0.013%, but there were some very poorly-modelled points, at the extremes 
–1.25 and +1.75% SOC. The loadings of the first two model factors explained 
95.1% of spectral variation; The other pre-processing methods (Figure 4.5) 
resulted in PLSR models with RMSE slightly higher (0.36 to 0.32% SOC) and 
therefore lower SOC explained variation. In addition about half of these 
models suffered from non-linearity effects expressed in the form of “banana-
like” trends, causing underprediction for the extreme values. The 5% 
absolute extreme values of best model’s regression coefficients (Figure 4.7) 
show regions that were important for SOC predictions. These regions are in 
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good agreement with those where assigned SOC spectral features are 
located. 
 
However, these interpretations should be considered with caution given the 
fact that is made on the base of pre-processed spectra (MSC smoothed 1st 
derivative spectra), which may not be as useful as if the analysis would have 
been carried out on the base of raw spectra, as peaks in raw spectra are 
represented by. In pre-processed following derivatives, peaks will occur at 
maximum slopes of the original spectra and the original peaks will occur as 
crossing the zero line. Thus, in the derived spectrum each original peak will 
be represented by one positive and one negative peak. 
 
The MSC minimized the amplification and offset effects of light scattering in 
the raw spectra, which resulted in PLSR calibration improvement. Shepherd 
and Walsh (2002) preferred the first derivative pre-processing technique to 
MSC, as the latter did not improve multivariate adaptive regression tree 
(MART) calibration. The first derivative is the most commonly applied 
transformation to minimize variation among samples caused by variation in 
grinding and optical set-up (Stenberg et al., 2010). MSC is not preferred by 
many authors because it is difficult to locate an adequate spectral range to 
apply, raising the risk of affecting relevant spectral features for the 
component of interest (Esbensen, 1994). 
 
Despite the acceptable model reliability, the proportion of RMSEP to the mean 
SOC of sample set is substantial, about 36%. Literature shows this proportion 
varies considerably. For example Fidêncio et al. (2002) determined SOM by 
radial basis function networks and NIR spectroscopy and found a proportion 
of RMSEP to mean SOC of between 9 and 108%, Brown et al. (2006) 
obtained a proportion around 265%, and Terhoeven-Urselmans et al. (2010) 
of about 190%. Better proportions were obtained by Shepherd and Walsh 
(2002), about 18%, Fystro (2002) about 20%, and Wetterlind et al. (2008) 
about 8%. Most of the high proportions are from studies covering large areas 
as does the present study, which suggests room for further improvement by 
spiking (Guerrero et al., 2010), i.e., inclusion of a few local samples. The 
obtained results are between the local and large-area studies, hence being 
here characterized as “regional”.  
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Figure 4.5: SOC PLSR prediction models derived as a function of spectra pre-
processing method; (a) –(h) which included a combination of raw (original)/smoothed 
spectra, multiplicative scatter correction (MSC), standard normal variate (SNV), and 
1st derivative. (i) shows SOC PLSR model derived from inclusion of clay covariable in 
the predictor set. 
 
Although the best model found in the present study fitted well the 1:1 
validation line, all eight observations with SOC concentrations above 2.0% 
were under-predicted. In addition there were three observations with 
moderate SOC concentrations but large negative residuals (over-predictions). 
The cause for these poor predictions was investigated by plotting the SOC 
against pH and clay proportion. Clay did not give an obvious explanation as it 
spanned a wide range for the poorly-predicted samples. The pH was in the 
range 6 – 7.5 for the underpredicted samples and around 8 for overpredicted 
ones. The pH range 7.8 – 8.4 is often indicative of carbonate presence 
(Schumacher, 2002). However, no effervescence was observed after addition 
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of HCl 10% to the samples. There was also no apparent relation between 
landscape units and poor predictions (Figure 4.6). 
 

 
Figure 4.6: The best PLSR prediction model showing the samples symbolized by the 
landscape unit (Stalmans et al., 2004) from where they were collected. 
 
A scatterplot of SOC against clay or clay + silt revealed a fairly strong 
relation at lower values, which degraded above about 18% clay or 25% clay 
+ silt. This disagrees with results reported by Stenberg (2010) , who found 
out that prediction of SOM could be substantially improved by removing the 
sandiest soils. 
 
The wavelengths contributing most for the best model in the present study 
are near 1.4, 1.9 and 2.2 µm, which correspond to OH groups of soil 
moisture (first two) to the crystal lattice in soil clay minerals (last) (Ben-Dor 
and Banin, 1995) (Figure 4.7). Although the latter do overlap with assigned 
wavelength for the determination of the alkaline-earth carbonates, calcite 
and dolomite by near infrared spectroscopy, it was not possible to identify 
them, possibly because carbonate content was not detected (far below the 
10% weight basis threshold) and that samples were not pre-heated to 600 ºC 
for 8 h in order to remove the strong absorption features of OH groups both 
in the organic matter and clay minerals, to enhance CO3 features (Ben-Dor 
and Banin, 1990). 
 
Ben-Dor and Banin (1995) identified the 1.4 and 1.9 μm bands as important 
for prediction of soil organic matter, while they are at the same time 
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characteristic for OH and water molecules. This confirms the difficulty in 
identifying with confidence the spectral ranges characteristics for different 
compounds (Ben-Dor et al., 1999; Clark, 1999; Brown at al., 2006; 
Stenberg, 2010) 
 

 
Figure 4.7: The 5% extreme values of PLSR coefficients (2.5% positive and 2.5% 
negative) of best model, showing the most contributing wavelengths ranges for model 
predictions. 
 
PLSR is a data compression method that summarizes most of variables’ 
variance in a few factors and by so doing helps to reveal hidden patterns in 
the data (Esbensen, 1994). The analysis was performed here on the pre-
processed spectra to help explain whether landscape units may have 
influence on the model prediction ability and therefore explain its poor 
performance for some of the samples. The score plot of the first three PLSR 
components (factors) did not reveal landscape-related pattern, except for the 
LLF (Limpopo Levubu Floodplains) landscape unit which did follow a specific 
pattern, but samples collected in this unit were not a problem for the 
prediction model. Thus there are groups of similar samples but these did not 
separate under- from over-predictions. 
 
The normal probability plot of SOC residuals suggests that the PLSR model 
may still have some non-linearity, as the sample residuals at both ends 
slightly deviated from the tails of the normal distribution. All the under-
predicted samples are located at the upper end of this plot while, 
surprisingly, the over-predicted ones do fall within the linear range of the 
plot. 
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4.3.6 Calibration subset models 
The best model form (smoothed first derivative of MSC-corrected spectra) 
was fit to the 104-observation DSM calibration subsample. A nine-component 
PLSR model had an internal cross-validation RMSEP of 0.323% SOC, just a 
little worse than the model from the full set, 0.315%. Predictions from this 
model for the 25-observation spectral validation had errors from -0.50 to 
+0.65%SOC, with a median of -0.10% and inter-quartile range (IQR) from -
0.22 to +0.27%; compared to cross-validation errors these are much lower 
extremes but wider IQR. The true validation RMSEP was 0.331%, just a bit 
higher than the full-set cross-validation RMSEP of 0.315%. 
 
This shows that (1) cross-validation gives a realistic estimate of the true 
validation error, (2) the model built from DSM calibration spectra only is a 
little less accurate than that built from all spectra; (3) the 104/25 split fairly 
reflects model performance; (4) the DSM calibration and validation samples 
have similar characteristics. 

4.3.7 Prediction of SOC from NIR spectra and Clay 
The PLSR model based on the NIR + clay (Figure 6), following same spectra 
pre-treatment, shows some improvement compared to that based on the NIR 
spectra only. The best model now contained only seven factors (Figure 6 (i)), 
explaining 100.0% of clay + spectra and 84% of SOC variances, with a 
RMSEP of 0.28% SOC, about 0.04% better than the model without the 
covariate) and slightly above twice as much as that obtained for laboratory 
analysis on duplicate samples. Almost all clay + spectra variance is explained 
by the first factor, while this component explains about 32% of SOC. The 
remaining 52% of explained variance attained at the seventh factor of the 
model is generated by a cumulative < 1% clay + spectra variance. This result 
is not surprising, given the generally good relation between clay and SOC in 
this sample set, and the strong diagnostic features in clay spectra. 
 
This result agrees with that of Brown et al. (2006), who showed that the 
inclusion of sand fraction and soil pH as auxiliary predictors improved 
calibrations. 

4.4 Conclusions 
Using only 129 samples combined from the different landscape units of the 
LNP resulted in a fairly stable, effective NIR PLSR calibration model for SOC 
prediction in the target area. The model predicted fairly well irrespective of 
landscape unit. However, model performance was limited at higher SOC 
concentrations. The stable and effective model here obtained from a limited 
number of samples shows that reasonable models can be built for areas of 
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limited access, where a limited number of representative samples can be 
collected, as it is the case of LNP. 
 
The addition of a moderately-correlated covariable (here, clay concentration) 
in the set of predictors slightly improved the precision (RMSE). This is of 
interest in the case where there are stored samples where particle-size has 
been analysed in the lab; these samples may now be scanned and the 
developed predictive equations used to estimate SOC. 
 
Despite the improvement of model accuracy by inclusion of clay, errors are 
still a substantial proportion of mean prediction. This suggests that caution 
must be considered when using spectroscopy to estimate SOC for mapping or 
monitoring low-SOC landscapes. While the model has a potential for SOC 
prediction in regional and baseline studies, it can be improved further for 
detailed ecological and farm-level studies within the LNP or in similar nearby 
soil landscapes by recalibrating the model after adding a few “local” samples 
(spiking). 
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SOC stocks in the LNP - Amount, spatial 
distribution and uncertainty4 
 

4 This chapter is based on: Cambule, A.H., Rossiter, D.G., Stoorvogel, J.J., Smaling, 
E.M.A., (under review). Soil Organic Carbon stocks in the Limpopo National Park, 
Mozambique: amount, spatial distribution and uncertainty. Geoderma. 
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Abstract 
Many areas in sub-Saharan African are data-poor and poorly accessible. The 
estimation of Soil Organic Carbon (SOC) stocks in these areas will have to 
rely on the limited available secondary data coupled with restricted field 
sampling. The total SOC stock, its spatial variation and the causes of this 
variation was assessed in Limpopo National park (LNP), a data-poor and 
poorly accessible area in southwestern Mozambique. During a field survey, A-
horizon thickness was measured and soil samples were taken for the 
determination of SOC concentrations. SOC concentrations were multiplied by 
soil bulk density and A-horizon thickness to estimate SOC stocks. Spatial 
distribution was assessed through: i) a measure-and-multiply approach to 
assess average SOC stocks by landscape unit, and ii) a soil-landscape model 
that used soil forming factors to interpolate SOC stocks from observations to 
a grid covering the area by Ordinary (OK) and Universal (UK) kriging. 
Predictions were validated by both independent and leave-one-out cross 
validations. The total SOC stock of the LNP was obtained by i) calculating an 
area-weighted average from the means of the landscape units and by ii) 
summing the cells of the interpolated grid. Uncertainty was evaluated by the 
mean standard error for the measure-and-multiply approach and by the 
mean kriging prediction standard deviation for the soil-landscape model 
approach. The reliability of the estimates of total stocks was assessed by the 
uncertainty of the input data and its effect on estimates. The mean SOC 
stock from all sample points is 1.59 kg m-2; landscape unit averages are 1.13 
- 2.46 kg m-2. Covariables explained 45% (“soil”) and 17% (coordinates) of 
SOC stock variation. Predictions from spatial models averaged 1.65 kg m-2 
and are within the ranges reported for similar soils in southern Africa. The 
validation Root Mean Square Error of Prediction (RMSEP) was about 30% of 
the mean predictions for both OK and UK. Uncertainty is high (coefficient of 
variation of about 40%) due to short-range spatial structure combined with 
sparse sampling. The range of total SOC stock of the 10 410 km-2 study area 
was estimated at 15 579 - 17 908 Gg. However, 90% confidence limits of the 
total stocks estimated are narrower (5 – 15%) for the measure-and-multiply 
model and wider (66 - 70%) for the soil-landscape model. The spatial 
distribution is rather homogenous, suggesting levels are mainly determined 
by regional climate. 
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5.1 Introduction 
Soil organic carbon (SOC) drives natural soil fertility and is a common 
indicator of livelihoods and ecosystem functions. It has been a focus of 
attention in the context of both agricultural development and carbon 
sequestration. Under the various United Nations protocols, there is an 
increasing need for accurate estimates of SOC stocks at national and sub-
national scale to aid policy makers in making land use and management 
decisions (Milne et al., 2007). Estimates of current SOC stocks and their 
spatial variation are the starting point for the estimation of the carbon sink 
capacity and SOC sequestration. The focus of the study determines the type 
of data required. In the case of climate change, estimates of total SOC stocks 
are important for mitigation purposes. However, when carbon payments are 
considered, the spatial distribution of stocks and their respective change 
become important (Antle et al., 2007). 
 
Techniques for estimating SOC stocks have been grouped into two categories 
(Mishra et al., 2010; Thompson and Kolka, 2005): (1) the measure-and-
multiply approach and (2) the soil-landscape modeling approach. In the 
measure-and-multiply approach the study area is stratified. Point 
measurements per stratum are averaged and multiplied by the area of each 
stratum of maps that stratify (Guo et al., 2006; Tan et al., 2009; Thompson 
and Kolka, 2005). Soil survey maps and field observations are primary 
resources to estimate SOC stocks with the measure and multiply approach 
that has been applied from regional (Amichev and Galbraith, 2004; Batjes, 
2008; Tan et al., 2004; Thompson and Kolka, 2005) to global (Batjes et al., 
2007) scales. The approach has the advantage of being simple, though it is 
not exempt of several limitations like potentially high within-stratum SOC 
variability (Mishra et al., 2010; Thompson and Kolka, 2005). The soil 
landscape modeling approach analyzes the spatial variability of SOC stocks 
with respect to variations in environmental covariables such as topography, 
land use or climate (Mishra et al., 2010). A model is built based on the 
various environmental covariables covering the entire study area plus limited 
number of field observations of SOC stocks, and is used to make predictions 
over a grid across the study area (Gessler et al., 2000a; Thompson et al., 
2001). These are then summed to an area total. Examples of use of this 
approach are many, e.g., Ungaro et al. (2010) and Ziadat (2005), though 
many have successfully been applied to small areas (< 100 ha) and using of 
digital elevation models as the covariate, e.g. Florinsky et al. (2002), Bhatti 
et al. (1991) and Gessler et al. (2000a). 
 
The soil-landscape approach may result in a lower estimation error at each 
prediction location, due to the use of complete spatial coverages of secondary 
information, i.e., the environmental covariables. The measure-and-multiply 
approach has the advantage of simplicity, although within-stratum variability 
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(heterogeneous strata) limits precision (Aubry and Debouzie, 2000; Mishra et 
al., 2010; Thompson and Kolka, 2005). Further, the soil-landscape approach 
produces a grid map of SOC stocks whereas the measure-and-multiply 
approach produces a chloropleth map with an average value per stratum. It 
is not clear a priori which method gives lower estimation errors for total 
stocks. 
 
In 2001, Mozambique declared an area known as “Coutada 16” (hunting 
zone) the LNP, which forms part of a trans-frontier park with South Africa 
and Zimbabwe. The LNP provides ecosystem services and supports the 
livelihoods of about 20 000 people living within its boundaries. The formation 
of LNP and the planned relocation of the communities within the park will 
result in major land use changes, both in terms of vegetation and wildlife 
(Ministerio do Turismo, 2003). These changes are expected to affect SOC 
stocks in and around the LNP, including in resettlement areas where SOC 
stocks are a major contributor to soil fertility. Any change cannot be assessed 
without a proper baseline, i.e. present-day stocks. Therefore, the aim of this 
study was to quantify the total SOC stock and its spatial variation in the 
Limpopo National Park, and the probable causes of any variation. 
Furthermore, to compare the various approaches to estimating SOC stocks. 

5.2 Material and methods 
A summary of the methodology follows; later in the section each step is 
explained in detail. We assessed SOC stocks for sampling points, its variation 
across the LNP by landscape, and the total SOC stock. First SOC 
concentrations were converted to SOC stocks at the sampling points using 
the field measured A-horizon thickness and estimated soil bulk density. To 
estimate the SOC stocks distribution across the LNP, two approaches were 
followed: (a) the measure-and-multiply method where mean stocks are 
calculated per landscape unit, and (b) the soil-landscape approach where 
stocks are estimated over a grid using spatial models derived using auxiliary 
information and limited field sampling. Total stocks were calculated by 
summing up (a) the estimated stocks of the landscape units and (b) the 
estimates at each grid cell. In addition, total stocks were estimated based on 
calculated naïve and spatial means converted to LNP area size. The 
uncertainty of estimates of stocks’ spatial distribution was also assessed by 
calculating the standard error (SD of the mean) and kriging prediction 
standard deviation, respectively for the measure-and-multiply and soil-
landscape approaches. Uncertainties of estimates of total stocks were 
obtained by calculating the standard error and mean kriging prediction 
standard deviation plus the 90% confidence interval. Finally the reliability of 
the estimates of total stocks was assessed by assessing the uncertainty of 
the input data and its effect on estimates of total stocks. The results from the 
various methods are then compared based on their width of confidence 
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interval (Janssen and Heuberger, 1995; Smith et al., 1997; Wösten et al., 
2001). Statistical analysis was performed in the R environment for statistical 
computing (R Development Core Team, 2006). 

5.2.1 Assessing SOC stocks 
SOC stocks at the sampling points 
To assess SOC stocks at sampling points, the field-identified A-horizon was 
chosen as the sample volume because it is where most biological activities 
take place and therefore most of the soil carbon is stored (Gessler et al., 
2000a). SOC concentrations obtained in chapter 3 (in Table 3.5) were 
converted into SOC stocks using the field measured A-horizon thickness and 
soil bulk density (BD), estimated as 1.44 ± 0.02 g.cm-3. This estimate is 
based on measurements (n = 14) by COBA Consultores (1982) around the 
confluence area between the Singuedzi and Elefant Rivers and Nhantumbo et 
al. (2009) on the sandy soils in the extensive NS landscape unit. This 
average was used instead of estimating BD at each point by a pedotransfer 
function (PTF) from the measured clay content and SOC concentration, 
because there is no calibrated PTF for the area and the use PTF developed 
elsewhere is not appropriate even under similar ecological conditions 
(Gijsman et al., 2002). The average BD used is consistent with ranges 
reported in the literature by EUROCONSULT (1989) for the sandy loam to 
sandy clay loam soil textural classes found in LNP (1.4 – 1.65 g.cm-3). The 
practice followed here is consistent with that of Williams et al. (2008) in the 
miombo woodlands of central Mozambique, who justified the use of a single 
value of BD (1.29 cm-3) because of the low variability of BD from 28 
composite topsoil samples. Despite the similarity in soil textural classes, their 
study site is located in a much wetter climate than LNP study area (annual 
precipitation of about 700 mm vs. 450 mm) as depicted by the much richer 
miombo vegetation, so the soils with higher organic matter are expected to 
have lower BD. 
 
SOC stocks spatial distribution 
 
The measure-and-multiply approach 
In this approach the spatial distribution of SOC stocks across the LNP was 
interpreted to be a function of the sampling strata, i.e., the landscape map of 
Stalmans et al. (2004). In this approach an average of each landscape unit 
was calculated based SOC stocks data from sampling points. The averages 
were computed by a single-factor ANOVA (R function ‘lm’), followed by a 
pairwise means comparison with pooled standard deviation and the Holm 
correction for multiple comparisons (R function ‘pairwise.t.test’) to group and 
rank landscape units, thus showing the stocks spatial distribution across the 
LNP as a chloropleth map of single values (with uncertainty) per landscape 
unit. 
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The soil-landscape approach 
Here we interpreted the spatial distribution of SOC stocks across LNP as a 
function of soil-forming factors (McBratney et al., 2003). These were 
represented by explanatory variables derived from readily-available, full-
coverage secondary information. Spatial models were developed to describe 
the variation in SOC stocks in relation to the soil-forming factors. These steps 
are now described in detail. 
 
(a) Soil-forming explanatory variables 

The framework for digital soil mapping described by McBratney (2003) 
was followed. In the study area SOC stocks are expected to be related to 
a number of soil forming factors including rainfall, vegetation, 
topography, parent material, and soil conditions. Selected secondary data 
corresponding to these soil forming factors (Table 2) include the same 
five secondary data collected for DSM (chapter 3). First- and second-
order trend surfaces, which are surrogates for regional change in soil-
forming factors, were also considered. 

 
(b) Selection of explanatory variables for spatial models 

To select the explanatory variables for model building, their values at 
sampling points were first extracted through map overlay. The SOC stock 
at these points was linearly regressed on the continuous explanatory 
variables, and as a one-way or multiway linear partitioning of variance for 
the categorical variables, both using R function ‘lm’. Models were 
evaluated by ANOVA of the model compared to a null model, and by 
visual inspection of regression diagnostic plots (Fox, 1997). The highest 
adjusted goodness-of-fit of models with acceptable diagnostics was used 
to select explanatory covariables for model building (Moore, 1993). 
 

(c) Spatial structure and models 
To assess the spatial structure and scale of SOC stocks variation, first the 
within- and between-cluster ANOVA was performed, then calculated the 
respective experimental variograms (Franklin and Mills, 2003; Oliver, 
2001; Webster et al., 2006) for the residuals from linear models 
(obtained in previous section) and original values of SOC stocks. 
Variogram maps were prepared to visually detect any anisotropy, 
followed by automatic variogram model fitting using the Weighted Least 
Square (WLS) method (Pebesma, 2004). In order to minimize 
irregularities caused by the small sample size and to avoid arbitrary 
decisions on variogram bin width, the residual maximum likelihood 
(REML) method was applied to estimate sills directly to the variogram 
cloud starting from the WLS fit (Marchant and Lark, 2007). Variogram 
models of the residuals from the feature-space and trend surface models 
described in (b) were also constructed. 
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(d) Spatial distribution of SOC stocks 
The selected spatial models were used for spatial prediction on a 1x1 km 
grid and their results compared. This resolution was chosen as a 
compromise among the resolutions of the secondary data, and also to 
account for the practical support, given the scale of spatial variation as 
revealed by the within-cluster variograms.  

 
(e) Model validation 

Spatial models were validated by leave-one-out cross-validation (LOOCV) 
as well as by independent validation. The latter was performed by 
randomly splitting the sample set (70% calibration and 30% validation) 
and fitting variograms based only on the calibration sample set. 
Differences between observed and predicted values were summarized as 
the root-mean squared error of prediction (RMSEP) and the bias of the 
estimation. Independent validation was compared with the internal 
measure of goodness-of-fit, i.e., the standard deviation (SD), to assess 
which model most closely estimates the true error (Goovaerts, 1999; 
McBratney et al., 2000). 

 
Assessing total LNP SOC stocks and their uncertainty 
The total stock from the measure-and-multiply approach was computed three 
ways: (1) summing the total SOC stocks of the landscape units (equivalent to 
landscape unit area weighted average), (2) calculating the naive mean of all 
observations and multiplying by LNP area and (3) calculating the spatial 
mean of all observations and multiplying by LNP area. The spatial mean (i.e., 
without stratification) was computed as the best linear unbiased estimate 
(BLUE) of the mean, taking into account the modeled spatial structure of the 
all-sample ordinary variogram (Aubry and Debouzie, 2000). This is the first 
step in kriging estimation by the Gstat package’s `krige’ function (Pebesma, 
2004). 
 
The total stock from the soil-landscape approach was computed by summing 
the interpolation grid. Prediction uncertainty was expressed as 90% 
confidence intervals based on prediction standard deviations. For the 
measure-and-multiply approach these were calculated in each landscape unit 
from the standard errors of each unit’s mean; for the soil-landscape approach 
by summing the grid cells’ kriging standard deviation. 
 
Assessing the reliability of total SOC stocks estimates 
The sources of uncertainty affecting SOC estimates are (1) field 
measurement of A-horizon thickness, (2) laboratory analysis of SOC (3) 
spectral measurements of soil samples, (4) PLSR models used to predict SOC 
of samples measured by spectroscopy, (5) estimation of bulk density, and (6) 
sampling density. For each their reliability was discussed based on the 
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technique followed and numerical measures of consistency. At sampling 
points the uncertainty in measured A-horizon thickness was assessed by 
calculating the SD. The uncertainty of BD was assessed by assigning a range 
from the literature. Uncertainty in SOC concentration was taken from 
previously reported work by Cambule et al. (2013). At spatial distribution 
level the uncertainty of A-horizon thickness, SOC (concentration) was 
assessed by calculating the standard error and mean kriging prediction 
standard deviation for the measure-and-multiply and soil-landscape model 
approaches, respectively. The reliability of estimates of total SOC stocks was 
then assessed by checking whether their 90% confidence interval cover the 
effect of uncertainties from these three inputs. 

5.3 Results and discussion 

5.3.1 SOC stocks at sampling points 
The summary statistics of converted SOC concentrations was already into 
stocks are shown in Table 5.1. The resulting SOC stocks’ histogram is right-
skewed (Figure 5.1c) over a fairly wide range (0 – 5.6 kg m-2). SOC stocks 
are estimated from A-horizon thickness and SOC concentration. A-horizon 
thickness also covers a wide range (0 – 26 cm) and is approximately 
normally-distributed. SOC concentration shows a right-skew (Figure 5.1b), 
again over a wide range for this semi-arid environment (0 – 2.7%). SOC 
concentration and A-horizon thickness are negatively-correlated (r = -0.44, 
Figure 5.2a); there is thus a compensation effect: total stock is less variable 
than concentration, because soils with lower concentrations tend to have 
thicker A-horizons, and vice-versa. This suggests that total stock is mostly 
controlled by the general climate and vegetation of the area, whereas A-
horizon thickness and SOC concentrations vary with local site factors. Thus 
the expected positive correlations between SOC stock and A-horizon (r = 
+0.40, Figure 5.2b) and SOC concentration (r = +0.57, Figure 5.2c) are only 
moderate. Both relations are poor for high SOC stocks. 
 
Table 5.1: Summary statistics of SOC concentration, A-horizon depth and SOC stocks 
SOC Unit N Min 1st Qu. Med. Mean 3rd 

Qu. 
Max 

SOC concentration* % 399 0.00 0.61 0.88 0.93 1.20 2.68 
A-horizon thickness cm 399 0.0 10.0 13.0 13.3 17.0 26.0 
SOC stock kg m-2 399 0.00 0.95 1.47 1.59 2.10 5.59 
SOC stock, clusters  kg m-2 59 0.51 1.09 1.48 1.62 2.02 3.91 
*Source: Cambule et al (2012) 
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Figure 5.1: Histograms of (a) A-horizon thickness, (b) SOC concentrations and (c) SOC 
stocks, all at sampling points. 
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Figure 5.2: (a) SOC concentration and (b) stocks as a function of A-horizon thickness; 
(c) relation between SOC stocks and concentration (right). Results for landscape unit 
NS shown with ‘x’ symbol. 
 
The fitted variogram for A-horizon thickness (Table 5.2) shows that its range 
of spatial dependence almost matches the cluster size. About two-thirds of 
the variance is spatially-dependent (structural sill vs. total sill). Given this 
good within-station spatial structure of A-horizon thickness (parameters in 
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Table 5.2) as well as the substantial (30%) and mostly random within-cluster 
SOC variation revealed by one-way ANOVA, the low correlation can be 
attributed to the high short-range variability of SOC due to local factors such 
as animal activity and vegetation patches (Cambule et al., 2012). 
 
Table 5.2: Nugget, structural sill and range of REML fitted variogram model parameters 
of SOC stocks 

Variogram type Nugget (kg m-2) 2 Structural sill (kg m-2) 2 Range (m) 

Ordinary, SOC stock 

(within-cluster) * 

0.436 0 0 

Ordinary, SOC stock 

(between-clusters) 

0.059 0.453 10692 

Residual from 1st order 

trend, 

SOC stock 

0.119 0.294 10362 

Ordinary, A-thickness 

(within-cluster) 

6.089** 12.652** 788 

* WLS fitted variogram, ** unit in cm2 

5.3.2 Assessing SOC stocks spatial distribution 
The measure-and-multiply approach 
Summary statistics of A-horizon thickness, SOC concentration, and SOC 
stocks by landscape unit, as well as grouped boxplots of these, are shown in 
Table 5.3 and Figure 5.3. Pairwise mean differences of A-horizon thickness 
from one-way ANOVA show that landscapes units CMR, LLF and MSC form 
one group, with thinner A-horizons, and NS, PS and SAF another group; 
overall explained variation is 19.5%. Thus the sandier upland (PS and NS) 
and the low lying floodplains (SAF) soils tend to have thicker A-horizons 
(Figure 5.3a) and correspondingly lower SOC concentrations (Figure 4b). 
 
Boxplots of SOC stocks by landscape unit (Figure 5.3c) depict a rather lower 
landscape influence as compared to SOC concentration (Figure 5.3b); only 
13.3% vs. 33.9% variance explained by a one-way ANOVA. The resulting 
chloropleth map produced by reclassifying the map units with the mean SOC 
stock (Figure 5.5b) resembles the landscape units with same sharp 
boundaries. Pairwise mean differences from the ANOVA showed that the 
extensive NS has distinctly lower mean SOC stock than all others but the 
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LLF; this latter however is not distinguishable from the others. Thus the fairly 
homogeneous distribution of stocks across LNP is explained by the negative 
correlation between SOC concentration and A-horizon thickness. That is, 
large SOC stocks may have either thick A-horizons or high SOC 
concentrations (and vice-versa), but rarely both. Within-landscape variation 
is, however, considerable as shown by the coefficients of variation (Table 
5.3); from an overall CV of about 60%, CMR has the lowest and MSC the 
highest. This heterogeneity may be due to local differences in soil-forming 
processes that were not recognized or mappable by Stalmans et al. (2004). 
The differences in sample size per landscape unit also affect the computation: 
smaller sample sizes give less reliable statistics. 
 
Table 5.3: Summary statistics of SOC concentrations, A-horizon thickness and SOC 
stocks as a function of the landscape unit. 

SOC Unit CMR LLF MSC NS PS SAF 
Number of samples - 14 22 197 98 15 52 
SOC concentration* % 1.90 0.91 1.06 0.51 0.92 0.93 
SOC concentration SD % 0.36 0.20 0.47 0.26 0.33 0.41 
SOC concentration CV % 18.9 22.0 44.3 51.0 35.9 44.1 
Area size  km2 689 264 4058 4514 253 637 
A-horiz. thickness mean cm 9.07 11.11 11.59 15.82 16.53 15.07 
A-horiz. thickness SD mean cm 0.86 0.75 0.36 0.41 0.82 0.66 
A-horiz. Thickness CV % 35.5 31.5 43.1 25.7 19.1 29.6 
SOC stock mean  kg m-2 2.46 1.50 1.62 1.13 2.02 2.05 
SOC stock SD mean kg m-2 0.25 0.14 0.07 0.06 0.15 0.13 
SOC stock CV % 38.6 43.1 57.1 53.5 28.1 46.6 
SOC total stocks  Gg 1695.9 395.4 6587.7 5081.8 510.3 1307.4 
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Figure 5.3: Relation of landscape units and (a) A-horizon thickness, (b) SOC stocks and 
(c) concentration 
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The soil-landscape approach 
 
Explained SOC stocks variation 
The selected soil-forming explanatory variables are the same as for DSM so 
their summary statistics were already shown in tab 3.1 (chapter 3). The 
proportion of SOC stocks variation of all observations explained by the 
scorpan covariables is about 13.5% (landscape units, i.e., the integrated soil 
forming factor), 9.5% (coordinates, i.e., geographic trend) and 45% 
(sampling clusters, i.e., soil factor). Other covariables explained lesser 
variation, so that a spatial model based on them would not be helpful. When 
cluster averages were considered, only the coordinates showed increased 
explanatory power, from 9.5% to about 17%. The obtained amounts of 
explained variation, from both numerical and categorical explanatory 
variables, are substantially lower than those obtained for SOC concentration 
Cambule et al. (2012). That is, the SOC stocks are less variable than SOC 
concentrations across the study area, which suggests that stocks are mostly 
in equilibrium with regional climate whereas concentrations vary more with 
local factors. 
 
Spatial structure 
The result of the within- vs. between-cluster ANOVA shows that the clusters 
explain about 45% of SOC stocks variation. This is much less between-cluster 
effect than found for SOC concentration (71.1%) by Cambule et al. (2012). 
The lower between-cluster stocks variation and its fairly homogeneous spatial 
distribution (as explained under 4.2.1) may be interpreted as the result of a 
general equilibrium of SOC stocks with regional climate, i.e., in this 
environment the net primary production is equal to the litter input to the soil, 
and the decomposition rate matches these. 
 
Visual assessment of the within-cluster variogram (to 720 m) (Figure 5.6a) 
suggested a very weak spatial dependency to about 300 m with total sill of 
about 0.44 (kg m-2) 2, quite close to the MSE of the within- vs. between-
cluster ANOVA (0.446 kg m-2), which is taken as the residual variance. The 
total structured variance represents about 0.4% of SOC concentration (Figure 
5.2c), about three times the Root Mean Square Error (RMSE) of SOC 
determination on the base of duplicate samples (0.13%). When the 
experimental variogram was fitted with a pentaspherical function using WLS 
fit, an unrealistic zero nugget resulted; this was not improved by the REML. 
The apparent visible spatial dependence could not be modelled; therefore a 
pure nugget (0.436 kg m-2) variogram was fitted by WLS (Table 5.2). 
Consequently the within-cluster SOC stocks variation (about 55%) can be 
considered as spatially random, i.e., caused by local unmapable factors with 
high very short-range spatial variability (Janzen and Ellert, 2002; Mapa and 
Kumaragamage, 1996). Thus the nugget found in the long-range variogram 
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represents a support of at least a cluster. Therefore the remainder of the 
analysis is based on the cluster averages. 

 
Figure 5.4: Empirical and fitted variogam models (a) within-cluster, based on all 
sampling points, (b) between-cluster, based on cluster averages; (c) residuals from 
first-order trend surface, based on cluster averages. 
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The long-range (beyond cluster) ordinary experimental variogram showed 
local spatial dependence to a range of about 20 km (Figure 5.4b). The WLS 
and REML fitted spherical variograms (separations < 20 km) both showed 
reasonable structures, with spatial autocorrelation to about 11 km separation 
(Table 3). This range is about a quarter of the east-west dimension of the 
LNP, so from the present sample distribution predictions for most of the 
unsampled areas can only be made by the (spatial) mean, thus giving little 
insight into spatial variability of SOC stocks. The spherical model was 
selected based on the patchy structure of spatial variability exhibited by most 
soil properties. 
 
The nugget effect is about 12% of total sill, indicating a high proportion of 
autocorrelation (Mapa and Kumaragamage, 1996). This low nugget is 
explained by the averaging effect of clusters, since when the variogram is 
based on all observations rather than cluster averages, the nugget effect 
raises to about 43% of the total variance. This is interpreted as the effect of 
uneven spatial distribution of the “organisms” soil-forming factor (e.g., 
woody- and non-woody vegetation, termites) as plant production in semi-arid 
regions depend on small differences on water availability, runoff, infiltration 
and storage, whose combination results in a very large variation in 
vegetation and soil properties over small areas (Janzen and Ellert, 2002; 
Martius et al., 2001; Tiessen and Santos, 1989; Wang et al., 2009); however 
when this is averaged over a cluster, this variation largely is averaged out. 
The REML-fitted residual variogram (Table 5.2, Figure 5.4c) for the residuals 
from a first-order polynomial (the best explanatory variable, representing 
“spatial position” or local trend) had a range of about 10 km and a nugget 
effect of 29% of the total sill. Higher-order trend surfaces resulted in lower 
adjusted goodness-of-fit, and had no obvious interpretation so were not 
considered. Despite the weak spatial model, a large proportion of spatial 
dependence spans across a substantial range (> 10 times the cluster length; 
720 m), although this range is short relative to the LNP dimensions; thus 
similarly to the ordinary variogram model, most of unsampled area is 
predicted by the trend surface, a marginal improvement over the spatial 
mean. None of beyond-cluster variogram maps showed anisotropy. 
 
Selection of spatial prediction model 
Based on the above result there were the following options for the spatial 
model: ordinary kriging (OK) considering only the SOC stocks from sampling 
clusters (“soil”), and universal kriging (UK) with the soil-forming explanatory 
variable “spatial position” (the coordinates) determining the clear but weak 
trend. UK is a combination of the standard model of multiple linear regression 
and the geostatistical methods of ordinary kriging the (trend) residuals 
(McBratney et al., 2000). The fitted first-order polynomial (plane) represents 
the trend, whose coefficients (slope in each direction) indicated decrease 
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towards the NNW. This is interpreted as the effect of decreased annual 
precipitation and longer dry season in this direction, moving away from the 
Indian Ocean. 
 
SOC stocks distribution in LNP 
Following the demonstration that within-cluster stocks variation has no 
spatial structure, cluster averages were used as “points” and therefore the 
block-kriging was implemented as “punctual” kriging over the practical 
support of 1x1 km grid, a similar size to the 720x720m clusters. The 
summary statistics of the SOC stocks across the park by the soil-landscape 
modelling approach is shown in Table 5.4. 
 
Table 5.4: Summary statistics of kriging predictions, kriging prediction standard 
deviation (SD) and validation results of SOC stocks (kg m-2) 

Model 
Prediction Cross-Validation Validation 

Min Median Mean Max SD RMSEP Bias RMSEP Bias 

OK 0.71 1.63 1.62 3.53 0.68 0.72 0.01 0.51 -0.35 

UK 0.81 1.59 1.59 3.29 0.64 0.69 0.01 0.49 -0.26 

 
The two spatial models predicted similarly as the means differ by about 2%. 
However OK has larger extreme values, by about 14% and 7% in the lower 
and higher end, respectively. The maps (Figure 5.5a and c) show clear hot 
and cold spots. These are unlikely to be true hot/cold spots, rather, the result 
of limited sampling density relative to the variogram range; thus areas 
between apparent hot/cold spots are predicted by the spatial mean, resulting 
in the “pock-marked” map. Both kriged maps show a smooth surface, by 
contrast to the chloropleth map from the measure-and-multiply approach 
(Figure 5.5b). The UK map (Figure 5.5c) shows a clear but weak NNW-SSE 
trend (especially in the higher predictions in the SE corner) and fits well the 
moderate drop-off in rainfall (Figure 1.2), although adjusted best-fit of linear 
model of stocks on annual precipitation were not as good as the trend 
surface. The precipitation surface also takes into account the modest 
elevation differences (approx. 150 m), which apparently do not improve the 
relation with SOC. 
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Figure 5.5: SOC stocks spatial distribution as predicted by (a) ordinary kriging, (b) 
landscape unit mean and by (c) Universal kriging. 
 
Similarly the uncertainty in the estimates (Figure 5.6) is high (CV about 
40%) and as is usual for kriging, is much lower near observation points; this 
effect is more pronounced in OK than UK. In the former, SD is as low as 20% 
of the mean prediction closer to sampling clusters, rapidly increasing to the 
maximum SD over most of the study area. The uncertainty of the UK 
estimates follows a similar pattern, however, with more gradual changes due 
to the trend surface. The high uncertainty is mainly due to the low sampling 
density relative to the short-range spatial variation. 

 
Figure 5.6: kriging prediction standard deviation by Universal kriging. 
 
Model validation 
Validation statistics are presented in Table 5. The RMSEP determined by 
LOOCV is about 44 and 43% of the median of predicted SOC stocks by OK 
and UK, respectively and therefore poor. OK and UK RMSEP are respectively 
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about 6 and 8% higher than their mean kriging SD, which is therefore a 
slightly over-optimistic estimation of the actual error. 
 
Refitted spatial models for independent validation were constrained by the 
reduced number of point-pair within the effective range and the 
corresponding necessity to make wide bins for the experimental variograms. 
However, the resulting variograms showed a reasonable structure, with 
ranges similar to the all-cluster averages variograms. Nugget was however 
set to 0.0 as REML fit resulted in an unrealistic negative value (Table 5.2). 
The zero nugget corresponds to the averaging effect of clustered samples. 
 
The RMSEP of the independent validation of both spatial models are about 
30% of the median predicted SOC stock. When comparing with mean kriging 
SD, RMSEP is, in both cases, about 35% lower, so kriging SD is a pessimistic 
measure of the actual prediction error. The models are also biased towards 
over-prediction, though UK is slightly less so. 
 
There are many published studies which estimate SOC stocks; however, in 
most of these the proportion of the error relative to the range of the 
predictions is not discussed. Of those that do, the results obtained in this 
study appear to be slightly better than those obtained in large areas, and as 
good as those obtained from models applied to smaller areas. In large areas, 
Mendonça-Santos et al. (2010) estimated the SOC of Rio de Janeiro state 
(Brazil) in an area of about 44 000 km-2, also following the scorpan-SSPFe 
framework. Their results show SOC stocks strongly correlated with landscape 
units and their final map is dominated by SOC stocks < 2.5 kg m-2 and a 
RMSEP of about 1.2-1.4 kg m-2, i.e., a CV of 50%. Similarly, Mishra et al. 
(2010) predicted SOC stocks for an area of about 650 00 km-2 in seven 
midwestern states of the USA, following three methods: multiple linear 
regression, regression kriging and geographically-weighted regression, 
obtaining a proportion of RMSE to mean prediction of 103%, 69% and 68%, 
respectively. Scott et al. (2002) estimated SOC stocks for all of New Zealand 
based on soil moisture and temperature regimes and landuse. Their findings 
also show a RMSE proportion of about 44% relative to the mean predictions 
in sandy soils, but much better (7%) for soils with low-activity clays. 
 
In small areas the precision of estimates is somewhat better. For example, 
Misnasny et al. (2006) estimated SOC stocks in the lower Namoi valley (1 
500 km-2) in Australia following the scorpan-SSPFe framework. Their 
estimates were mostly in the range 2-9 kg m-2 (to 1 m depth) with CV of 30 
– 140%. Simbahan et al. (2006) estimated SOC stocks in Nebraska for fields 
of about 50 – 65 ha using OK, Kriging with external drift, Regression Kriging, 
and co-kriging, and estimated SOC stocks from 4 to 7 kg m-2 with RMSE from 
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1.1 and 1.3 kg m-2; for a CV from 17 to 30%. The estimates from present 
study over a much larger (10 415 km2) area are similar to these.  
 
However, the followed soil-landscape modelling approach was not very 
precise: a RMSEP about 30% the prediction median for both OK and UK. This 
may be due to the more complex soil-landscape relations at larger areas of 
the already highly (spatially) variable soil carbon in the landscape (Janzen 
and Ellert, 2002), justifying the general less precise estimates also found in 
the literature. It may also be a result of the low sampling density. 
Nevertheless, in data-poor and poorly accessible areas like LNP study area, 
achieving comparable results to those from smaller areas shows that the 
approach is as promising as those based on more comprehensive sampling. 

5.3.3 Total SOC stocks estimates and their uncertainty 
The estimates of total SOC total stocks in LNP are presented in Table 5.5. The 
results reveal a difference of about 15% between applied methods, being 
that obtained by summing the landscape totals higher than that from the 
spatial mean. 
 
However, all estimates of the area-normalized mean stock are in a narrow 
range, 1.59 – 1.62 kg m-2, which is comparable to those reported in the 
literature for southern Africa. A review by Vagen et al. (2005) reports values 
for southern Africa savanna soils (to 30 cm depth) between 1 and 1.3 kg m-2 
(sandy) and 1.44 to 2 kg m-2 (clay). Williams et al. (2008) studied the SOC 
stocks of the eastern miombo woodlands soils in Mozambique (to 30 cm 
depth) and found stocks of about 1.8 to 14 kg m-2. The values are relatively 
high and may be explained by high leaf litter from leguminous trees 
(Brachystegia spiciformis), typical of rich miombo vegetation. Ryan et al. 
(2011b) estimated SOC stocks (to 50 cm depth) in the same vegetation type 
in Gorongoza District (central Mozambique) at 13.3 kg m-2. The LNP study 
area is in a much drier environment with less dense vegetation and that of 
leguminous trees so our figures are much lower. 
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Table 5.5: Mean SOC stocks, their uncertainty and total stocks, following different 
approaches 

Approach Method Mean 

(kg m-2) 

SD  

(kg m-2) 

TOC stock 

(Gg) 

90% conf. 

limit (Gg) 

Measure and 

multiply 

Landscape 1.59 0.45 15 579 ±1 433 

naive mean 1.59 0.05 17 828 ±831 

Spatial mean 1.60 0.14 17 908 ±2 669 

Soil-landscape 

modelling 

OK 1.62 0.68 16 858 ±11 663 

UK 1.59 0.64 16 545 ±10 892 

 
The obtained estimates of SOC stocks by the different methods differ by 
about 15%, while estimates of the mean SOC stocks only differ by about 2%. 
This is because of the relative area covered by the different landscape units, 
each with a different mean stock. This is also corroborated by the wide range 
between the extreme values of SD (93%), the naive mean having the least 
dispersion, in contrast to uncertainty estimates from prediction by the spatial 
models, of which OK is the worse. The naive mean does not account for 
spatial correlation of the clusters, and thus underestimates the variance, 
which is thus more realistic when estimated by the spatial mean. 
 
The different approaches result in different confidence intervals. The 
spatially-explicit kriging-based methods of the soil-landscape approach have 
very wide intervals, 69% (OK) and 65% (UK) of the mean prediction. This is 
because each grid cell has an uncertainty, and these are not pooled, as in the 
measure-and-multiply or means approaches. The narrow interval for the 
naive mean is probably too optimistic, because it does not consider the 
spatial correlation between observations. Thus the confidence interval based 
on the spatial mean (15% of the mean prediction) is preferred if only the 
total stock, not accounting for spatial distribution either over a grid or by 
landscape unit, is wanted. 
 
Despite the differences in confidence intervals and totals, when one is 
interested in total stocks the measure-and-multiply approach is sufficient 
given the similarity in the estimates of total stocks. It has also the advantage 
of not requiring a variogram, which may be difficult to model from a small 
sample. On the contrary, when interested on the spatial patterns of stocks, 
then the soil-landscape models are required. 

5.3.4 Reliability of SOC stocks estimates and potential 
improvements 

This section discusses the effect of each input on estimates of total stocks, 
and how each could be improved. 
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The measurements of A-horizon thickness showed a normal distribution, with 
a precise estimation of the mean (SD-mean about 2% of the mean), narrow 
95% confidence limits (4% of the mean) and few extreme values (5% 
trimmed mean within 95% confidence limits). The field method is simple and 
reproducible with an estimated precision of < 0.5 cm in this landscape. There 
seems to be little room for further improvement, thus its impact on the 
reliability of estimates is minimal. 
 
Laboratory results reported by Cambule et al. (2012), show that SOC 
concentration measured on 129 samples has an SD of the mean just 6% of 
the mean, a 95% confidence interval of 12% of the mean, and 5% trimmed 
mean within 95% confidence limits. Further, RMSE on twenty duplicate 
samples for quality control was 0.13% SOC, about 15% of the mean and 
similar to the expected precision for the Walkley-Black method. Again the 
room for improvement is small. Note however that this results do indirectly 
influence the PLSR predicted SOC concentration (see further on). 
 
The spectrometer used to scan the soil samples has an internal validation 
test and its spectrum is calibrated before each scan to an internal gold 
reference. Spectra were only read when internal test was positive. Soil 
samples were uniformly prepared, and duplicates showed almost no 
difference in spectra. So it is expected that uncertainty derived from 
spectroscopy are minimal. 
 
Laboratory-measured SOC concentrations were used to build a PLSR 
calibration model with which estimates were made for the remaining 283 
samples. The summary statistics for the entire sample set showed that the 
SD of the mean was only 3% of the mean (down from the 6% for the 
laboratory sub-set), the 95% confidence limits were about 5% of the mean 
and that the 5% trimmed mean fell within the 95% confidence limits of 
original data. The calibration model had a RMSEP of 0.32% SOC, 
corresponding to 15% the mean. This uncertainty includes that from the lab 
analysis of the 129 samples. If the mean stocks would change by 3%, it 
would still be within the SD-error so it is not expected to affect the 90% 
confidence intervals. Therefore the estimates made based on spectroscopy 
can be considered reliable. 
 
Bulk density was used to convert SOC from volume concentration to weight 
and therefore both uncertainty as well as reliability of SOC stock estimates is 
affected by the BD. In present study the spatial distribution of BD is not 
known, nor is there a known relation with landscape unit. Only a single value 
of soil bulk density (1.44 ± 0.02 g.cm-3), derived from nearby measurements 
and checked against literature, was used. However, given the limited range 
of SOC concentration (0 – 2.68%, Table 2) and that of the textural classes 
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(sandy loam to sandy clay loam) from the study area, it seems unlikely that 
BD could be outside the range 1.4 – 1.65 g cm-3 (EUROCONSULT, 1989). 
This would correspond to maximum variation in estimated BD of about 15% 
which would affect the SOC stocks estimates by the same amount. This is 
more than the SD for the naive and spatial means (SD < 9%) and therefore 
one could expect that the 90% confidence intervals of total SOC stocks 
estimated by these methods would also be exceeded. This is then the most 
unreliable part of the estimate. However, this is a worst-case situation: from 
obtained estimate of 1.44 g cm-3 to the upper limit 1.65 g cm-3, which would 
correspond to sandier soils across the entire LNP. This estimate is based on 
somewhat heavier soils (sandy clay loams) near the confluence of the 
Singuedzi and Elefant Rivers, similar to the Salvadora angustifolia Floodplains 
(SAF) map unit, but also from sandy soils from the NS map unit. Thus it 
seems unlikely that the true mean BD as high as this upper limit, and so the 
reliability of obtained estimate may not be as poor as this worst-case. 
 
Despite the quality control in measurements, the successful PLSR calibration 
model and the validation statistics for spatial prediction models, the kriged 
maps have high uncertainty away from sampling locations, and so the 
reliability of the kriged maps of SOC stock spatial distribution is questionable. 
This results from a combination of low sampling density and short spatial 
autocorrelation range relative to study area dimensions. Bulking within-
cluster samples at the target grid resolution of 1x1 km would remove the 
high within-cluster variability. Thus future sampling can be more efficient: 
only one-seventh of the observations are needed, although some time must 
be taken in adequately covering the block with a composite sample. 
 
With a known variogram, reducing uncertainty in SOC stocking mapping can 
be aided by the “optimal sampling scheme for isarithmic mapping” (OSSFIM) 
approach through which the target kriging prediction standard error can be 
achieved by either (1) reducing the sampling spacing or (2) making 
predictions over larger blocks (McBratney and Webster, 1981; McBratney et 
al., 1981). To lower the uncertainty to, e.g., a coefficient of variation of 30% 
or less (SD ≤ 0.48 kg m-2 on a mean of 1.59 kg m-2), observations would 
have to be made at maximum 4 km interval for cover the whole area by 
block universal kriging on 1 km blocks (total of 700, Table 5.6). Similar SD 
can be obtained by predicting block averages on 5x5 km blocks based on 138 
points spaced 9 km apart, i.e., spatial resolution is traded for efficiency. A 
blocks size smaller than 1x1 km has too much short-range variability to map 
without very intensive sampling; whether a 1x1 km, 5x5 km or larger block is 
needed depends on the minimum decision area for management. There is a 
limit to the efficiency gain, since ground must in any case be traversed. 
Saving time by bulking the within-cluster samples would make possible to 
reach further away sampling points. 
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Table 5.6: Optimal sample spacing for an uncertainty (CV) target of 30% (mean = 
1.59 kg m-2) 

Block size 

(side, m) 

Widest 

spacing (m) 

Achieved 

SD (kg m-2) 

Number of 

observation 

points required 

1000 4000 0.4361 700 

2000 5000 0.4475 448 

4000 7000 0.4565 229 

5000 9000 0.473 138 

7500 20000 0.4325 28 

10000 20000 0.3717 28 

 
The sampling points in the regular grid derived from the OSSFIM approach 
can further be optimized by the spatial simulated annealing, which also 
allows the minimization of the kriging variance taking into account existing 
samples (van Groenigen et al., 1999); this would be a sound strategy for a 
second phase of sampling, starting from the current phase to achieve a 
target uncertainty. This would however result in a more spread of sampling 
points which would cost sampling time in exchange for map quality, though 
not realistic in poorly-accessible areas. 

5.4 Conclusions 
In the present study the total SOC stocks in the LNP was estimated based on 
limited data collected from accessible areas and have made use of secondary 
information covering the entire area. The estimates followed both the 
“measure-and-multiply” and “soil-landscape modelling” approaches. In the 
former the per stratum mean, the naive mean and the spatial mean, were 
used while in the latter the ordinary and universal kriging methods, chosen 
based on the fact that sampling cluster and regional trend were the soil-
forming factors that explained SOC stocks variation the most.  
 
The mean SOC stocks obtained in all methods are very close however, the SD 
were distinct, with the soil-landscape modelling methods having at least four 
times as high SD as the maximum SD for the measure-and-multiply ones. 
The high uncertainty is mainly due to the short-range spatial variation, by the 
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sparse sample, the weak trend, and poor correlation with covariables. It 
would be difficult to improve on this estimate without intensive sampling. 
The total stocks, obtained by summing (1) the landscape averages and (2) 
the block-universal-kriged estimates of 1x1 km averages across the whole 
study area are similar, and also similar to average estimates in soils of 
similar texture from southern Africa. The high uncertainty of these estimates 
limit its use as a baseline, however they may be useful for many agricultural 
studies. 
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Synthesis and Conclusions 

6.1 Synthesis and discussion 

6.1.1 Renewing legacy soil data for SOC stocks 
estimation: is it worth the trouble? 

Legacy soil data can be a source of data for SOC stocks estimation provided 
it meets today’s demands in terms of quality. With thorough data archeology 
many legacy data were uncovered and this can also be the situation in many 
developing countries. It was based on these data that the recuing, renewal 
and the testing of its quality following the Cornell adequacy criteria were 
performed. Chapter 2 established that legacy data can be renewed to some 
extent and as such the Cornell adequacy criteria proved to be a useful 
framework for the evaluation of map scale/texture, map legend and 
positional accuracy of terrain related soil borders. The renewed maps also 
enabled semi-quantitatively estimation of SOC stocks. However, the poor 
geodetic control of legacy maps is a main constraint affecting the subsequent 
renewal steps and quality. Geodetic control of legacy maps with no reference 
to base map source were made more efficient thanks to the advances of 
information technology (GIS, computer speed) in combination with thorough 
data archeology and detective work. The use of GIS made it much efficient to 
determine the ASD rather than the point count used earlier on. The balance 
between the gains and pitfalls in legacy data rescue and renewal from 
present study points to a worthwhile exercise with potential application in 
developing countries. 

6.1.2 Mapping SOC in poorly-accessible areas 
Effective soil management requires knowledge of the spatial patterns of soil 
variation within the landscape to enable wise land use decisions. Following 
Chapter 2 which established that legacy soil data quality could only be 
improved to some extent through renewal process, the spatial variation of 
SOC would have to be typically obtained through time-consuming and costly 
surveys. However, these traditional survey methods are very difficult to 
implement in poorly-accessible areas. Therefore, chapter 3 developed a cost-
efficient methodology for digital soil mapping in such conditions. The 
methodology is illustrated in an exercise to predict soil organic carbon (SOC) 
concentration in the Limpopo National Park, Mozambique. 
 
The methodology uses a spatial model calibrated on the basis of limited soil 
sampling and explanatory covariables related to soil-forming factors, 
developed from readily available secondary information from accessible 
areas. The model is subsequently applied in the poorly-accessible areas. The 
methodology is based on three key aspects, namely (i) the similarity of 
environmental conditions between accessible and poorly accessible areas and 
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the (ii) sufficiently robust calibration model in accessible areas and, (iii) 
relative performance of spatial model in poorly-accessible areas. 
 
Assessing similarity of environmental conditions between accessible 
and poorly-accessible areas 
This first critical stage was here assessed by comparing the mean and the 
inter quartile range (IQR) for the quantitative covariables and the proportion 
in which each mapping unit occur in ACC and PACC areas for the categorical 
covariables. This was a simpler way to compare the two strata. However, 
more refined and sophisticated methods can be used, depending on 
availability of the data demanded by the method (Chen et al., 2006; Chen et 
al., 2008). Chapter 3 established that conditions in the accessible and poorly-
accessible areas corresponded sufficiently to allow the extrapolation of the 
spatial model into the latter. 
 
The analysis of similarity in environmental conditions can help target 
sampling points in accessible areas where samples have higher degree of 
representativeness of same conditions (and same stratum) in poorly-
accessible areas. It is also worth mentioning that this step ensures that the 
model does not perform satisfactory by chance. 
 
Model calibration in accessible areas 
The predictive model uses the conceptual model scorpan-SSPFe proposed by 
McBratney et al. (2003) and widely-applied as a generic method for DSM. 
Scorpan represents the list of soil-forming factors that has been expanded 
from the original definition by Jenny (1980) representing the initial soil 
conditions (s), climatic conditions (c), organisms (o) including animals, land 
cover and human occupation; relief (r), parent material (p), age (a), and the 
neighbourhood (n). The conceptual model uses a soil spatial prediction 
function with spatially-autocorrelated errors (SSPFe) that uses (1) a 
prediction based on environmental covariables and (2) a prediction based on 
soil properties measured at a limited set of observation points. 
 
Readily-available secondary data was used as explanatory variables 
representing the soil-forming factors. Chapter 3 established that the spatial 
variation of SOC in the accessible area was mostly described by the sampling 
cluster (71.5%) and the landscape unit (46.3%). Therefore ordinary 
(punctual) kriging (OK) and kriging with external drift (KED) based on the 
landscape unit were used to predict SOC. A linear regression (LM) model 
using only landscape stratification was used as control. All models were 
independently validated with test sets collected in accessible areas for which 
the RMSEP was 0.42-0.50% SOC. Despite the limited utility of the model, 
given the fact that RMSEP was a substantial proportion predictions median, 
the subsequent steps were performed to demonstrate the methodology. 
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Relative performance of spatial model in poorly-accessible areas 
Only sufficiently robust spatial models build based on data from accessible 
areas should be used to make prediction through into poorly-accessible 
areas. An independent sample set from poorly-accessible areas was used for 
validation of all models built in accessible areas. RMSEP was about 0.31-
0.36% SOC (Chapter 3). The relative performance as measured by the ratio 
between the RMSEP in the poorly-accessible and accessible areas was 0.67-
0.72, showing that the methodology is predicting SOC in poorly-accessible 
areas as successful as in accessible areas. Areas with similar problems can 
thus test the methodology and make predictions if sufficient performance is 
achieved. This methodology may be also used in baseline studies and for 
sample design in two-stage surveys. 
 
Despite the relatively better model performance in poorly-accessible areas, 
independent validation from both accessible and poorly-accessible areas were 
poor, given the fact that independent validation RMSE was a substantial 
proportion (about half) of the median from models predictions.  
 
One way to improve this mapping approach could be, perhaps to calibrate a 
spatial model per stratum to minimize uncertainty, given the heterogeneity 
mentioned earlier on. It should be noted that the total number of samples to 
cover all strata would increase, which could limit validation possibilities in 
poorly-accessible areas, given the limited number of samples that can be 
collected. 
 
The soil forming factors’ explanatory variables, especially the landscape, were 
critical for extrapolation into poorly-accessible areas. Without them it would 
have been much more difficult to make prediction, given the limited number 
of samples that can be collected there. Therefore, robust soil-forming 
explanatory variables are helpful and should be explored for DSM mapping of 
poorly-accessible environments. 

6.1.3 Near-infrared spectroscopy: a rapid, non-
destructive and environmentally friendly lab 
method 

Soil organic carbon (SOC) is a key soil property and particularly important for 
ecosystem functioning and the sustainable management of agricultural 
systems. 
 
Soil surveys rely on large number of soil samples to reveal the spatial 
patterns of soil properties. Traditional laboratory methods to analyse these 
samples are time-consuming and costly. Many authors claim that laboratory 
spectroscopy in combination with chemometrics to be a rapid, non-
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destructive, environmentally friendly and inexpensive soil analysis for SOC 
determination. However, they require calibration of robust models which also 
require a large number of samples. Unfortunately in poorly-accessible areas 
only a limited number of soil samples can be collected, which constitutes a 
challenge for calibrating of a robust model. Chapter 3 calibrated a PLSR-NIR 
model later used for DSM mapping. 
 
Calibration of PLSR-NIR model 
One third (129) of soil samples collected for DSM in the LNP (chapter 3) were 
selected for reference analysis, lab-NIR spectral signature acquisition and 
subsequent building of PLSR-NIR calibration model. Selection was made on 
the base of their spectral diversity using a combination of PCA and K-means 
clustering techniques. Model calibration accuracy was evaluated by RMSE of 
calibration of the cross-validation predictions, and R2 of the SOC vector. 
Prediction accuracy was assessed by the RPD of cross-validation and by the 
multiple R2 (Chang et al., 2001; Waiser et al., 2007). 
 
Partial least square regression (PLSR) was used on 1037 bands in the 
wavelength range 1.25 – 2.5 µm to relate the spectra and SOC 
concentration. Several models were built and compared by cross-validation. 
The best model was on a filtered first derivative of the multiplicative scatter 
corrected (MSC) spectra. It explained 83% of SOC variation and had a root 
mean square error of prediction (RMSEP) of 0.32% SOC, about 2.5 times the 
laboratory RMSE from duplicate samples (0.13% SOC). This uncertainty is a 
substantial proportion of the typical SOC concentrations in LNP landscapes 
(0.45 – 2.00%). The model was slightly improved (RMSEP 0.28% SOC) by 
adding clay percentage as a co-variable. All models had poorer performance 
(under-prediction) at SOC concentrations above 2.0%, indicating a saturation 
effect. 
 
Chapter 3 established then that despite the limitations of sample size and no 
pre-existing library, a locally-useful, although somewhat imprecise, 
calibration model could be built. This model is suitable for estimating SOC in 
further mapping exercises in the LNP. This comes in hand to support soil 
survey in poorly-accessible areas. 
 
Prediction of SOC using PLSR-NIR calibrated model  
The 412 soil samples for DSM were scanned for NIR spectral signature 
acquisition and the calibration model just obtained was used to predict SOC 
concentration. Chapter 3 reports prediction of SOC for the entire sample set, 
using PLSR-NIR calibrated model (chapter 4). Here the model also tended to 
under-estimate at the higher end (1.5-1.8%) however, the proportion of 
under-estimated samples was slightly smaller (6%) compared to observed 
under-prediction on reference wet laboratory sample sets (7%). The 
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predicted SOC at sampling points was further used to build the spatial model 
with which was predicted the LNP SOC spatial distribution. 

6.1.4 SOC stocks in LNP; amount, spatial distribution 
and uncertainty 

Many areas in sub-Saharan African are data-poor and poorly accessible so 
mapping Soil Organic Carbon (SOC) stocks in these areas will have to rely on 
the limited available secondary data coupled with restricted field sampling. 
SOC spatial distribution is a function of the interaction of the soil-forming 
factors as described by Jenny (1980). It was here modelled based on limited 
available secondary data coupled with restricted field sampling and following 
two approaches: the i) measure-and-multiply by landscape unit and ii) soil-
landscape model following the predictive conceptual model scorpan-SSPFe 
McBratney et al. (2003) which uses a soil spatial prediction function with 
spatially-autocorrelated errors (SSPFe) that uses (1) a prediction based on 
environmental covariables and (2) a prediction based on soil properties 
measured at a limited set of observation points. It is widely-applied as a 
generic method for DSM. 
 
During field survey A-horizon thickness measurements were made and soil 
samples taken for the determination of SOC concentrations. SOC 
concentrations were multiplied by soil bulk density and A-horizon thickness to 
estimate SOC stocks. An average BD was used and it was based on earlier 
measurements in part of the study area (the extensive NS landscape), 
reported by COBA Consultores (1982) and was crosschecked in the literature 
(EUROCONSULT, 1989) for similar soils, resulting in expected maximum BD 
variation of about 15% and equal impact on SOC stocks estimates in a 
worse-case situation. 
 
Chapter 5 established that spatial distribution of SOC stock in the LNP was 
rather homogeneous (suggesting levels are mainly determined by regional 
climate); mean SOC stock from all sample points is 1.59 kg m-2; landscape 
unit averages are 1.13 - 2.46 kg m-2. Covariables explained 45% (“soil”) and 
17% (coordinates) of SOC stock variation. Predictions from spatial models 
averaged 1.65 kg m-2 and are smoother, though with clear hot/cold spots due 
to limited sampling density across LNP. These results are within the ranges 
reported for similar soils in southern Africa (Ryan et al., 2011; Vågen et al., 
2005; Williams et al., 2008). The RMSEP was about 30% of the mean 
predictions for both OK and UK. Uncertainty is high (CV of about 40%) due to 
short-range spatial structure combined with sparse sampling. The range of 
total SOC stock of the 10 410 km-2 study area was estimated at 15 579 - 17 
908 Gg. However, 90% confidence limits of the total stocks estimated are 
narrower (5 – 15%) for the measure-and-multiply and wider (66 - 70%) for 
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the soil-landscape model due to the short-range spatial variation, the sparse 
sample, the weak trend, and poor correlation with covariables. The expected 
impact of BD uncertainty on SOC stocks also contributed to these wider 90% 
confidence limits and thus affecting the reliability of the estimates. 
 
The chapter also established that improving these estimates would be difficult 
without intensive sampling. However, bulking within-cluster samples at the 
target grid resolution of 1x1 km would remove the high within-cluster 
variability and thus future sampling can be more efficient. Now that the 
variogram is known, reducing uncertainty in SOC stocks mapping to a desired 
level can be achieved by either (1) reducing the sampling spacing or (2) 
making predictions over larger blocks. This can be aided by the “optimal 
sampling scheme for isarithmic mapping” (OSSFIM) (McBratney and Webster, 
1981; McBratney et al., 1981).  
 
Nevertheless, the results from this study are below the typical levels of SOC 
stocks (30 cm depth) typically found in arid environments or on arenosols, 
namely about 2.0 – 2.2 kgm-2 (FAO, 2001) by, about 20-25%. This may be 
due to the effect of nutrient-poor sands and also poor land use management, 
leading to lower levels.  

6.2 Concluding remarks 
The Cornell adequacy criteria here tested to assess legacy survey renewal 
quality proved to be a guiding framework to consider in legacy survey data 
renewal. As such it has a potential to screen shelved and almost forgotten 
wealth of legacy surveys to bring back quality data into use.  
 
The proposed DSM methodology for mapping poorly-accessible areas is 
promising because it did work as planned in the sense that the models did as 
well in poorly-accessible as in accessible areas. One of the strong points of 
the obtained results lies on the long spatial models’ range, which allows 
interpolation into PACC. This is despite the poor model predictions result, 
which were due to cumulative error effects brought about along the different 
steps, namely laboratory analysis, PLSR calibration, model building.  
 
The use of a previous integrative survey by Stalmans et al. (2004) was quite 
helpful in this case and was able to substitute for multiple factors (soil-
forming explanatory variables) in the scorpan-SPPfe framework. This implies 
that a previous study, stratifying an area to be surveyed by major soil-
forming factors, can be a valuable first step before any geostatistical 
sampling. 
 
SOC concentration in the study area varies mostly by local factors, probably 
current and past vegetation and animal activity (including termites), not 
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captured by any covariable. The range of SOC concentrations was narrow, 
weakly-dependent on covariables, and exhibited most of its spatial structure 
within the support of a cluster. 
 
A locally-useful PLSR-NIR calibration model based on limited sample size and 
no pre-existing library could be built and is suitable for estimating SOC in 
further mapping and monitoring exercises in the LNP. The model is somewhat 
imprecise for monitoring, but still cost-effective. The inclusion of clay 
percentage (a moderately-correlated covariable) in the set of predictors 
slightly improved the precision. 
 
The two approaches followed to assess the spatial distribution of SOC stocks 
resulted in closer SOC mean values however; they had distinct uncertainty, 
with soil-landscape modelling methods showing the highest. This is mainly 
due to the short-range spatial variation, by the sparse sample, the weak 
trend, and poor correlation with covariables. In this situation, improving the 
estimates require intensive sampling. The high uncertainty of these estimates 
limits its use as a baseline; however they may be useful for many agricultural 
studies. 
 
The estimated total stocks, obtained following both approaches for the whole 
study area are similar, and also similar to average estimates in soils of 
similar texture from southern Africa. However and similar to SOC 
concentrations they show high uncertainty which limit its use as a baseline, 
however they may be useful for many agricultural studies. 

6.3 Recommendations 

6.3.1 Application of the results of this study 
The renewal of legacy soil maps following the stepwise DSM approach by 
Rossiter (2008) made it easier to test the Cornell adequacy criteria as data 
renewal evaluation criteria. Therefore its implementation can be 
recommended either to bring most out of legacy data in data-poor or to 
support new (re)surveys. The criteria have a potential for a wider use as a 
result of recent advances in information technology and computer speed, 
which make their applicability more efficient. 
 
The stepwise methodology for digital soil mapping in poorly-accessible areas 
as proposed in present study can be applied easily elsewhere and as such can 
aid in mapping soil properties in similar areas, provided soil-forming 
explanatory variables that explain substantial amount of soil property 
variation are available. Integrative surveys like the one by Stalmans et.al. 
(2004) are good examples that can also be used as soil-forming explanatory 
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variable, especially for poorly-accessible and data-poor environments. 
However, such surveys require integrative expertise, on landscape processes, 
which in any case is needed for intelligent management. 
 
The use of NIR to largely replace wet laboratory determinations is becoming 
routine. However, in areas with no previous calibration, such as the LNP, 
there remains the question as to how easily a calibration can be built. LNP is 
such a pioneer area with no previous spectral library, yet the present 
modestly-sized study was able to obtain a reasonable calibration. This is 
encouraging for similar studies of pioneer areas. From the current study, 
following the approach brought about by present study can aid in building a 
wider Mozambican soil spectral library which would enhance the robustness 
of calibration model. 
 
The present study demonstrated that the use correlated covariable (e.g. clay) 
in the set of predictors can improve the precision of PLSR-NIR calibration 
models. This approach can be applied with other correlated covariables to 
improve calibration models in future. This may result in cost-effective, rapid 
and environmental friendly laboratory analysis of several soil properties. 
 
The methodology for total SOC stocks estimation here followed; especially for 
spatial model building can be easily applied to other areas to estimate total 
SOC stocks. This is important in the context of climate change mitigation, 
e.g.: for the estimation of the carbon sink capacity and SOC sequestration. 
The importance of bulk density measurement is clear here; any method to 
make this more efficient would greatly enhance TOC studies. 

6.3.2 Recommendations for further research 
Semi-detailed legacy soil surveys were carried out following free survey 
methods and physiographic approach for map unit definition. Available 
algorithms for the extraction of physiographic units are limited to at lower 
scale maps and therefore poorly perform in floodplains type of landscapes 
where many legacy soil surveys were carried out to support land 
development (irrigation schemes). Therefore research should be also 
targeted the refinement of such algorithms to support legacy data renewal in 
these environments. 
 
Given the poor DSM prediction results (SOC concentration), it would be worth 
to investigate the sampling plan that would improve the estimates. This could 
be achieved by e.g. optimizing the KED variance to a realistic target (e.g. the 
one set by PLSR precision) as suggested by Brus and Heuvelink (2007). This 
would be supported by now known spatial structure and relation of target 
variable with covariables, and there is evidence that the model structure in 
poorly-accessible areas is likely to be similar to that in accessible areas. It 
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was also demonstrated that it is not work mapping smaller areas, instead is 
better to sample on a 1 km support given the fact that below that variation is 
high and unstructured. However that would imply that management decisions 
would be on a 1 km block size. This would be adequate for general land-use 
planning, e.g., siting of settlements; within identified areas detailed surveys 
could be carried out. 
 
The precision level of NIR calibration models obtained here have potential for 
SOC prediction in regional and baseline studies, however they cannot be used 
for detailed ecological and farm-level studies within the LNP or in similar 
nearby soil landscapes. Therefore it would be worth testing as whether 
spiking the models (recalibration after adding a few “local” samples) would 
improve precision as demonstrated elsewhere (Guerrero et al., 2010). 
It was observed from the results that both NIR-PLSR calibration models 
(normal and inclusion of clay) under-predicted at the extreme values with 
emphasis to the higher extreme values due to a “banana-like” model trend. 
Therefore it would worth to investigate as whether non-linear PLS could 
remove the observed non-linear trend, to improved predictions. 
 
The chosen sampling plan for soil collection was designed for soil mapping. It 
was designed following random cluster to capture more efficiently the local 
and regional spatial variation. However, the same samples were also used to 
build the PLSR-NIR calibration model by selecting samples based on PCA 
score grouping for reference analysis. Whereas PCA score grouping enhances 
spectral diversity, it may also enhance the spatial autocorrelation between 
the selected samples due to possible coincidence of PCA score groups with 
the field sample clusters. This raises the possibility of false precision as noted 
by Brown et al. (2005). In situations where few samples can be collected 
“false precision” imposes limitation for this combination analysis. Therefore 
alternative approaches are needed. 
 
The BD was the main source of uncertainty in the SOC stocks estimates. It is 
therefore recommended to investigate as to what extent BD is causing the 
high uncertainty, perhaps by taking measurements of BD to represent its real 
spatial distribution in the LNP. Further, efficient methods for determining BD 
in-situ should be investigated. 
 
It is also recommended to investigate what could be best soil-forming 
explanatory variables to be used as predictors in the spatial model as all 
(except landscape and coordinates, also week) selected here did not explain 
substantial SOC variation and therefore were not helpful for model 
calibration. 
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The establishment of the Limpopo National park (LNP) in 2001 , which forms 
part of a trans-frontier park with South Africa and Zimbabwe, will displace 
about 20 000 from park’s ecosystem. The formation of LNP and the planned 
relocation of the communities within the park will result in major land use 
changes (vegetation and wildlife), and is expected to affect soil quality in and 
around the LNP, including in resettlement areas. Soil organic matter (SOM) 
content has been considered a good indicator of land quality, especially in 
natural and low-input agroecosystems, and thus a good indicator of the 
effects of land use change. Soil organic carbon (SOC) is the major constituent 
of SOM. 
 
Any change in soil quality cannot be assessed without a proper baseline, i.e., 
present-day soil quality. As part of a project on “competing claims in natural 
resources” in the trans-frontier national park areas of Mozambique, RSA and 
Zimbabwe, there was a task to assess soil resources in the LNP of 
Mozambique, specifically the SOC stocks as an indicator of livelihoods and 
ecosystem function. 
 
This book discusses the processes through which the SOC concentration and 
stocks were estimated as well as the respective spatial distribution and finally 
the total SOC stocks for an extensive, poorly-accessible and data-poor area. 
Chapter 2 attempted the estimation of SOC stocks from legacy soil surveys, 
which are usually the only source of information on soil geography, yet hardly 
used due to lack of easy availability in digital form, outdated standards, and 
unknown quality. While there are few attempts to rescue and renew such 
surveys to meet current demands, they have hardly addressed the renewal 
stage; further, there are no established quality criteria to assess them. Here 
the applicability of the Cornell adequacy criteria to assess the quality of few 
post-independence legacy soil surveys in and near the LNP was tested. These 
were renewed aided by digital soil mapping methods, with emphasis on 
assessing their quality for SOC mapping and monitoring. The renewed maps’ 
quality was assessed in terms of achieved geodetic control, positional 
accuracy of digitized borders, map scale and texture and adequacy of map 
legend. Metadata describing data quality, spatial referencing, and 
accessibility was attached to the renewed maps. SOC stocks were estimated 
qualitatively based on map unit characteristics and quantitatively by the 
measure-and-multiply approach from legacy laboratory measurements. Co-
registration RMSE varied between 8.0 to 57.0 m, corresponding to 13 - 45% 
of square root of minimum legible area at published map scale. Point and 
area-class layers could be created with high positional accuracy; however the 
index of maximum reduction was high, indicating that the original publication 
scale could be reduced. Map unit definitions and overall information content 
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of the surveys were adequate. Integration of remotely-sensed optical 
imagery and digital elevation models could be used to derive highly-accurate 
contours, against which positional accuracy of contour-based map borders 
was assessed, showing that less than 30% of their lengths were within a 
distance equal to the square root of minimum legible area. However, these 
data sources could not successfully generate a high-accuracy base map to 
evaluate the positional accuracy of map unit boundaries. Qualitative estimate 
of SOC are between low and medium, consistent with other studies in this 
area. The measure-and-multiply approach resulted in an area-normalized 
mean of SOC stocks of 2.0 – 4.0 kg m-2 and total SOC stocks of about 596.2 
Gg for the 276.4 km2 of the four soil survey areas. These results could not be 
extrapolated to the entire area due to poor representativeness of the area-
size (3%) and floodplain physiography relative to the entire LNP. 
 
From these conclusions an attempt was made to estimate SOC from a 
completely new sampling plan. However this objective was soon faced with 
two main difficulties: (1) poorly-accessible and extensive area (2) time-
consuming and costly laboratory analysis following traditional methods. For 
the former an alternative Digital Soil Mapping (DSM) method for poorly-
accessible areas was proposed while a near-infrared (NIR) calibrated model 
was developed for the latter. Both cases were based on limited number of 
samples to respond for conditions of poor accessibility and therefore a limited 
number of representative samples that can be collected. 
 
The DSM methodology for poorly-accessible areas (Chapter 3) is based on 
similarity of environmental conditions between accessible and poorly-
accessible areas. The limited soil sampling along accessible areas and 
explanatory covariables related to soil-forming factors, developed from 
readily available secondary information from accessible areas was used to 
calibrate the spatial model. This model was subsequently applied in the 
poorly-accessible areas. Conditions in the accessible and poorly-accessible 
areas corresponded sufficiently to allow the extrapolation of the spatial model 
into the latter. The spatial variation of SOC in the accessible area was mostly 
described by the sampling cluster (71.5%) and the landscape unit (46.3%). 
Therefore ordinary (punctual) kriging (OK) and kriging with external drift 
(KED) based on the landscape units were used to predict SOC. A linear 
regression model using only landscape stratification was used as control. All 
models were independently validated with test sets collected in both 
accessible and poorly-accessible areas. In the former the root mean squared 
error of prediction (RMSEP) was 0.42–0.50% SOC. The ratio between the 
RMSEP in the poorly-accessible and accessible areas was 0.67–0.72, showing 
that the methodology can be applied to predict SOC in poorly-accessible 
areas as successful as in accessible areas. The methodology is thus 
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recommended for areas with similar access problems, especially for baseline 
studies and for sample design in two-stage surveys. 
 
The claimed rapid, non-destructive, inexpensive and pollutant-free technique 
in the field of diffuse reflectance NIR-spectroscopy was tested to build a 
robust calibration model based on a limited number of samples (Chapter 4). 
This is again in line with the poor accessibility of the study area. Across the 
major landscape units of the LNP, 129 composite topsoil samples were 
collected and analyzed for SOC, pH and particle sizes of the fine earth 
fraction. Samples were also scanned in a NIR spectrometer. Partial least 
square regression was used on 1037 bands in the wavelength range 1.25–2.5 
μm to relate the spectra and SOC concentration. Several models were built 
and compared by cross-validation. The best model was on a filtered first 
derivative of the multiplicative scatter corrected spectra. It explained 83% of 
SOC variation and had a root mean square error of prediction (RMSEP) of 
0.32% SOC, about 2.5 times the laboratory RMSE from duplicate samples 
(0.13% SOC). This uncertainty is a substantial proportion of the typical SOC 
concentrations in LNP landscapes (0.45–2.00%). The model was slightly 
improved (RMSEP 0.28% SOC) by adding clay percentage as a co-variable. 
All models had poorer performance at SOC concentrations above 2.0%, 
indicating a saturation effect. Despite the limitations of sample size and no 
pre-existing library, a locally-useful, although somewhat imprecise, 
calibration model could be built. This model is suitable for estimating SOC in 
further mapping exercises in the LNP. 
 
Following the same sampling for SOC mapping in poorly-accessible areas, 
SOC stocks, its spatial variation and the causes of this variation in LNP was 
assessed (Chapter 5). During a field survey, A-horizon thickness was 
measured additionally to the soil samples collection for the determination of 
SOC concentrations. SOC concentrations were multiplied by inferred soil bulk 
density and A-horizon thickness to estimate SOC stocks. Spatial distribution 
was assessed through: i) a measure-and-multiply approach to assess 
average SOC stocks by landscape unit, and ii) a soil-landscape model that 
used soil forming factors to interpolate SOC stocks from observations to a 
grid covering the area by OK and Universal kriging (UK). Predictions were 
validated by both independent and leave-one-out cross validations. The total 
SOC stock of the LNP was obtained by i) calculating an area-weighted 
average from the means of the landscape units and by ii) summing the cells 
of the interpolated grid. Uncertainty was evaluated by the mean standard 
error for the measure-and-multiply approach and by the mean kriging 
prediction standard deviation for the soil-landscape model approach. The 
reliability of the estimates of total stocks was assessed by the uncertainty of 
the input data and its effect on estimates. The mean SOC stock from all 
sample points is 1.59 kg m-2; landscape unit averages are 1.13 - 2.46 kg m-
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2. Covariables explained 45% (“soil”) and 17% (“coordinates”) of SOC stock 
variation. Predictions from spatial models averaged 1.65 kg m-2 and are 
within the ranges reported for similar soils in southern Africa. The validation 
RMSEP was about 30% of the mean predictions for both OK and UK. 
Uncertainty is high (coefficient of variation of about 40%) due to short-range 
spatial structure combined with sparse sampling. The range of total SOC 
stock of the 10 410 km-2 study area was estimated at 15 579 - 17 908 Gg. 
However, 90% confidence limits of the total stocks estimated are narrower (5 
– 15%) for the measure-and-multiply model and wider (66 - 70%) for the 
soil-landscape model. The spatial distribution is rather homogenous, 
suggesting levels are mainly determined by regional climate. 
 
This research has provided a set of qualitative and quantitative information 
and techniques for legacy data rescue, renewal and evaluation as well as for 
the laboratory determination of SOC concentration; prediction of SOC (and 
stocks) spatial distribution. Emphasis was given for data-poor areas and/or 
where accessibility is a major constraint such as most of developing 
countries. The results from this research are expected to make a useful 
contribution to science, agricultural development, decision-making, 
environmental monitoring as well as for new research orientation. 
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Samenvatting 
De oprichting van het Limpopo Nationaal Park (LNP) in 2001, dat deel 
uitmaakt van een grensoverschrijdende park met Zuid-Afrika en Zimbabwe, 
gaat gepaard met de verhuizing van ongeveer 20 000 mensen vanuit het 
park naar omringende gebieden. De vorming van LNP en de geplande 
verhuizing van de gemeenschappen zal leiden tot grote veranderingen in 
landgebruik (en dus in flora en fauna) in het park. Deze veranderingen zullen 
ook de bodemkwaliteit in en rond LNP beïnvloeden. Het bodem organisch stof 
gehalte (of het sterk gecorreleerde bodem organisch koolstofgehalte (BOK)) 
wordt beschouwd als een goede indicator van bodemkwaliteit, vooral in 
natuurlijke en extensieve agro-ecosystemen, en is daarmee dus een goede 
indicator voor de effecten van veranderingen in landgebruik. Veranderingen 
in bodemkwaliteit kunnen niet worden beoordeeld zonder het vaststellen van 
het startpunt, i.e., de huidige bodemkwaliteit. Als onderdeel van het 
onderzoeksprogramma "Competing Claims in Natural Resources" moest de 
bodemkwaliteit in LNP worden gekwantificeerd om het levensonderhoud van 
de bevolking en ecosysteem functies te kunnen onderzoeken. 
 
Dit proefschrift bespreekt de schatting van BOK in een uitgestrekte, slecht 
toegankelijke, en data-arme regio. In hoofdstuk 2 wordt BOK geschat op 
basis van historische bodemkarteringen. Deze zijn meestal de enige bron van 
informatie over bodem-geografie. Ze zijn echter nauwelijks beschikbaar in 
digitale vorm, ze maken gebruik van verouderde normen, en de kwaliteit van 
de kaarten is vaak onbekend. Hoewel er enkele pogingen zijn gedaan om de 
historische karteringen te redden zodat ze aan de huidige vraag kunnen 
voldoen, gaan deze studies maar zeer beperkt in op de vernieuwing van de 
gegevens en kwaliteitscriteria. In dit onderzoek is de toepasbaarheid van de 
“Cornell adequacy criteria” om de kwaliteit van historisch bodemonderzoeken 
in en rond LNP vast te stellen onderzocht. De karteringen werden verbeterd 
met behulp van digitale bodemkartering methoden. De nadruk lag op de het 
inschatting van bodemkwaliteit en het gebruik voor monitoring. De kwaliteit 
van de vernieuwde kaarten werd beoordeeld in termen van de bereikte 
geodetische controle, de positionele nauwkeurigheid van gedigitaliseerde 
grenzen, de schaal en de textuur van de kaart,  en geschiktheid van de kaart 
legenda. De kwaliteit van gegevens, ruimtelijke verwijzingen, en de 
toegankelijkheid zijn beschreven in termen van metadata gekoppeld aan de 
vernieuwde kaarten. Bodem organische-stofvoorraden zijn kwalitatief geschat 
op basis van de eigenschappen voor de kaarteenheden en kwantitatief door 
de meet-en vermenigvuldig aanpak met historische laboratoriummetingen. 
De co-registratie root-mean-square-error (RMSE) varieerde tussen 8,0 tot 
57,0 meter, wat overeenkomt met 13-45% van de vierkantswortel van het 
minimum leesbaar gebied op de gepubliceerd kaartschaal. Kaarten van 
observaties en kaarteenheden kunnen worden gemaakt met een hoge 
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positionele nauwkeurigheid, maar de index van de maximale verkleining was 
hoog, wat aangeeft dat de oorspronkelijke publicatie schaal zou kunnen 
worden verminderd. De definities van de kaart eenheden en de algemene 
informatie-inhoud van de karteringen waren voldoende. Satelliet beelden en 
digitale hoogte modellen kunnen worden gebruikt om zeer nauwkeurig de 
hoogtelijnen te bepalen, waarna de positionele nauwkeurigheid van 
kaartgrenzen die gekoppeld waren aan hoogtelijnen kon worden beoordeeld. 
De analyse toonde aan dat minder dan 30% van de lengte van de grenzen 
binnen een marge van de vierkantswortel van de minimum leesbare zone 
viel. Echter, de satellietbeelden en de hoogtemodellen waren niet in staat om 
een een zeer nauwkeurige basis kaart te maken waarmee de positionele 
nauwkeurigheid van kaart-eenheid grenzen kon worden geëvalueerd. 
Kwalitatieve schattingen gaven lage tot middelhoge BOKs aan. Dit komt 
overeen met andere studies in de regio. De meet-en-vermenigvuldig aanpak 
resulteerde in een gebied-genormaliseerde gemiddelde van BOK van 2,0 - 
4,0 kg m-2. Deze resultaten zijn gebaseerd op karteringen in m.n. de 
terrassen en uiterwaarden welke niet representatief zijn en slechts een klein 
deel van het totale studiegebied beschrijven. Om toch BOK in LNP te schatten 
is een volledig nieuw bemonsteringsplan geïmplementeerd. Echter, de 
ontwikkeling van een dergelijk bemonsteringsplan kreeg te maken met twee 
grote problemen: (1) het gebied is slecht toegankelijk en uitgestrekt, en (2) 
de analyse van BOK met behulp van nat-chemische analyse is een 
tijdrovende en kostbare laboratoriumanalyse. Daarom werd een alternatieve 
digitale bodemkarterings methode voor de slecht-toegankelijke gebieden 
ontwikkeld en geïmplementeerd (hoofdstuk 3) met behulp van nabij-
infrarood (NIR) spectrometrie voor de chemische analyse (hoofdstuk 4). 
Beide studies waren gebaseerd op een beperkt aantal monsters om zo om te 
gaan met de slechte toegankelijkheid waardoor in veel gevallen ook maar 
een beperkt aantal representatieve monsters kan worden verzameld. 
 
De digitale bodemkarting methode voor slecht toegankelijke gebieden 
(hoofdstuk 3) is gebaseerd op de gelijkenis van omgevingsomstandigheden in 
toegankelijke en slecht toegankelijke gebieden. Door middel van een 
beperkte bemonstering van de bodem in toegankelijke gebieden en 
verklarende co-variabelen gerelateerd aan bodemvormende factoren is een 
ruimtelijk model gekalibreerd op basis van direct beschikbare secundaire 
gegevens van toegankelijke gebieden. Dit model werd vervolgens toegepast 
in de slecht toegankelijke gebieden. De omstandigheden in de toegankelijke 
en slecht toegankelijke gebieden kwamen voldoende overeen om het 
ruimtelijke model breder in te zetten. De ruimtelijke variatie van BOK in het 
toegankelijke gebied werd verklaard door het bemonstering cluster (71,5%) 
en landschapseenheid (46,3%). Daarom werden gewone (punctueel) kriging 
en kriging met externe drift op basis van de landschappelijke eenheden 
gebruikt om BOK te voorspellen. Een lineaire regressiemodel met alleen 
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landschap stratificatie werd gebruikt ter controle. Alle modellen zijn 
gevalideerd met onafhankelijk test data verzameld in toegankelijke en slecht 
toegankelijke gebieden. De RMSE van de voorspelling (RMSEP) was 0,42-
0,50% BOK. De verhouding tussen de RMSEP in de slecht toegankelijke en 
toegankelijke gebieden was 0.67-0,72%, waaruit blijkt dat de methode kan 
worden toegepast om het BOK te voorspellen in zowel de toegankelijke 
gebieden alsmede in de slecht toegankelijke gebieden. De methodologie lijkt 
daarom geschikt voor gebieden met vergelijkbare toegankelijkheid 
problemen, vooral voor baseline studies en in twee-staps bemonsteringen. 
 
De geclaimde snelle, niet-destructieve, goedkope en niet vervuilende 
techniek op het gebied van diffuse reflectie NIR-spectroscopie werd getest 
om een robuust kalibratie model op basis van een beperkt aantal monsters te 
bouwen (hoofdstuk 4). Dit is wederom in lijn met de slechte bereikbaarheid 
van het studiegebied. In de grote landschappelijke eenheden van LNP werden 
129 samengestelde bovengrond monsters verzameld en geanalyseerd op 
BOK, pH en de textuur van de fijne fractie. Monsters werden ook gescand in 
een NIR spectrometer. Partiële kleinste kwadraten regressie werd gebruikt 
om de spectra (beschreven in 1037 banden in het golflengtegebied 1.25-2.5 
μm) te correleren aan BOK. Verschillende regressie modellen werden 
gebouwd en vergeleken m.b.v. een cross-validatie. Het beste model is op 
basis van een gefilterde, eerste afgeleide van de multiplicatieve scatter 
gecorrigeerde spectra. Het model verklaarde 83% van de BOK variatie en 
had een kwadratisch gemiddelde fout van voorspelling (RMSEP) van 0,32% 
BOK, ongeveer 2,5 maal het laboratorium RMSEP van de duplo monsters 
(0,13% BOK). Deze onzekerheid is een aanzienlijk deel van de typische BOK 
in LNP landschappen (0.45 tot 2.00%). Het model werd enigszins verbeterd 
(RMSEP 0,28% BOK) door toevoeging van het klei percentage als co-
variabele. Alle modellen hadden een slechtere prestaties bij BOKs boven de 
2,0%, wat wijst op een verzadigings effect. Ondanks de beperkingen van de 
aantallen monsters en het niet kunnen beschikken over een spectrale 
bibliotheek, kon een,  lokaal nuttig, hoewel enigszins onnauwkeurig, 
kalibratie model worden gebouwd. Dit model is geschikt voor het schatten 
van BOK en voor de kartering van bodemkwaliteit in LNP. 
 
Middels dezelfde bemonstering voor de BOK kartering is de variatie in bodem 
organische koolstof voorraden (BOKV) en de oorzaken van deze variatie in 
LNP bestudeerd (hoofdstuk 5). Tijdens de bemonstering is tevens de dikte 
van de A-horizon gemeten. BOKV is geschat als het product van BOK,  
bulkdichtheid en de A-horizon dikte. De ruimtelijke variatie is geanalyseerd 
door middel van: i) de meet-en-vermenigvuldig aanpak om de BOKV per 
landschap-eenheid te bepalen, en ii) een bodem-landschap model dat de 
bodemvormende factoren gebruikt om de waargenomen BOKV te 
interpoleren naar een raster door OK en Universal kriging (UK). 
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Voorspellingen werden gevalideerd door zowel onafhankelijke als kruis-
validaties. De totale BOKV van de LNP werd verkregen door i) het 
oppervlakte-gewogen gemiddelde op basis van de gemiddelden voor de 
landschapseenheden en ii) de som van de cellen van het geïnterpoleerde 
raster. De onzekerheid werd geëvalueerd door het gemiddelde standaardfout 
voor de meet-en-vermenigvuldig aanpak en door de gemiddelde voorspelfout 
van kriging voor de bodem-landschap model aanpak. De betrouwbaarheid 
van de schattingen van de BOKV werd beoordeeld door de onzekerheid van 
de invoergegevens en het effect daarvan op schattingen. De gemiddelde 
BOKV van alle meetpunten is 1,59 kg m-2; de gemiddelden voor de 
landschappelijke eenheden variëren tussen 1,13 tot 2,46 kg m-2. Bodemtype 
en coördinaten verklaarden als co-variabelen 45% en 17% van de variatie in 
BOKV. Ruimtelijke modellen voorspelden een gemiddeld BOKV van 1,65 kg 
m-2. Deze schatting valt binnen de literatuurwaardes voor soortgelijke 
gronden in zuidelijk Afrika. De validatie RMSEP was ongeveer 30% van de 
gemiddelde voorspellingen m.b.v. OK en UK. Er bestond een grote 
onzekerheid (variatiecoëfficiënt van ongeveer 40%) als gevolg van de korte 
afstand variatie in combinatie met een lage bemonsteringsdichtheid. De 
totale BKOV van het 10 410 km-2  studiegebied werd geschat op 15 579 tot 
17 908 Gg. Echter, de 90% betrouwbaarheidsgrenzen van de geschatte 
totale voorraden zijn smaller (5 - 15%) voor de meet-en-vermenigvuldig 
methode en breder (66 - 70%) voor het bodem-landschap model. De 
ruimtelijke variatie is vrij homogeen wat suggereert dat de niveaus vooral 
worden bepaald door het regionale klimaat. 
 
Dit onderzoek geeft een reeks van kwalitatieve en kwantitatieve technieken 
om historische bodemgegevens te redden, vernieuwen en evalueren. 
Daarnaast beschrijft het methodes om op een efficiënte wijze BOK te 
schatten in het laboratorium en de ruimtelijke verdelingen van BOK (en 
BOKV) te analyseren. De nadruk in de studie ligt op data-arme gebieden 
en/of gebieden waar de toegankelijkheid een belangrijke beperking is. Dit 
geldt voor een groot deel van de ontwikkelingslanden. De resultaten van dit 
onderzoek zullen naar verwachting een zinvolle bijdrage leveren aan de 
wetenschap, landbouwkundige ontwikkeling, de besluitvorming, milieu 
monitoring, maar ook aan nieuwe onderzoek richtingen. 
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