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1Introduction

1.1 Soil Erosion and Land Degradation

Soil is the product of complex interactions between climate, geology, ve-
getation, biological activity, time and land use. The proportions of its
different components- sand, silt and clay particles, organic matter, water
and air, as well as the way in which these components form together a
stable structure, define soil’s characteristics [Morgan, 2005]. Soil erosion
is a naturally occurring process, which plays a major role in the process
of soil formation. However, climatic conditions such as droughts, aridity,
irregular and intense precipitation regimes as well as human-induced acti-
vities such as deforestation, overgrazing and soil structure deterioration,
cause a shift from natural to accelerated soil erosion [Cerdan et al., 2010].
The latter is what presents a major concern and it is referred to in studies
of land degradation caused by soil erosion.

Soil can be eroded under the influence of wind and water. Soil detach-
ment is caused by raindrop impact and flow traction, while the material
is transported by saltation and overland water flow. Under the influence
of intense flow, a formation of small channels, also known as rills, occurs.
In agricultural areas, rills are removed by ploughing, however, although
the visible signs are removed, the process of erosion has still taken place.
If the storms are severe, or preventive measures do not take place, soil
erosion leads to forming gullies. These can be removed only by radical
measures such as re-grading of entire areas. Because these methods are
time and effort consuming, the gullied areas are often simply abandoned.

One of the major controlling factors that determine the rate and severity
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1. Introduction

of soil erosion is runoff. The amount of runoff is directly proportional to
the difference between the amount of rainfall and infiltration of the soil.
The infiltration in its turn is determined by both soil texture properties,
as well as soil structure. In many areas erosion is directly associated
with the loss of structure by crusting. Furthermore the degree of erosion
is determined by the velocity of the runoff, which is a function of the
terrain slope, surface roughness and resistance by vegetation. Although
conceptually this is a well known system, the interaction of the many
factors, each with its spatial variability, makes precise prediction of erosion
difficult.

The impact of erosion is most commonly assessed using soil erosion
models. The main limitations, however, are the variability and spatial
extent of the event, which create difficulties in obtaining sufficient spatial
data to calibrate erosion models and to verify the predicted results [Jetten
et al., 2003]. Remote sensing can play an important role considering that
it provides extensive coverage over various areas. Spatial data acquired
with satellite sensors have been used as an input for estimation of erosion
parameters, however the main focus is directed towards the visible and
infrared parts of the spectrum [Metternicht and Zinck, 1998]. Therefore,
landuse maps, vegetation cover maps and digital elevation models are the
most common products of image analysis.

One of the ways to quantify erosion spatially is with chemical and
radioactive tracers. Soil particle tracing using chemical tracers have been
conducted over the past three decades. Several chemical soil particle tra-
cers have been used to model spatial distribution of soil erosion [Zhang
et al., 2006] and to identify suspended sediment [Onda et al., 2007]. Some
of the most commonly used soil particle tracers include the Cesium 137
isotope (137Cs ) [Andersen et al., 2000, Chappell, 1999, Collins et al., 2001,
Guimaraes et al., 2003, Porto et al., 2001, Sanchez-Cabeza et al., 2007,
Timothy et al., 1997], Lead (210Pb) and Beryllium (7Be) [Mabit et al., 2008,
Wallbrink and Murray, 1993], and Rare Earth Oxides [Polyakov and Nearing,
2004, Zhang et al., 2006]. The 137Cs is considered the primary chemical
tracer for detection of soil particle movement [deGraffenried Jr and She-
pherd, 2009, Estrany et al., 2010, Meusburger et al., 2010, Rodway-Dyer
and Walling, 2010, Xiaojun et al., 2010], however it comes with a number
of limitations and assumptions. Firstly, the homogeneous distribution of

2



1.1. Soil Erosion and Land Degradation

137Cs fall out is limited to the Northern hemisphere, because it has been
introduced to the environment after the Chernobyl incident in the late
1980s. Secondly, all particle movements are assumed to be as a result
of soil erosion [Campbell et al., 1982, Chappell, 1999, Walling and Quine,
1990]. Cost of soil sampling and analysis and the limited half-life of the
element are also among the main limitations preventing extrapolation of
these methods to cover large areas [Boardman, 2006].

Considering that sampling large areas for determination of soil proper-
ties using spectral reflectance is relatively cheap and fast, compared to
traditional field and laboratory techniques [Shepherd and Walsh, 2002],
infrared spectroscopy has the potential to provide solutions to some of
the problems and limitations associated with scaling of the particle tracing
techniques.

Soil properties have been studied with infrared spectroscopy since the
1980’s, using visible, near-infrared and shortwave infrared wavelength
region (400–2500 nm). Soil spectral reflectance is determined by both
physical and chemical characteristics of soils [Baumgardner et al., 1985,
Ben-Dor et al., 2003, Shepherd and Walsh, 2002]. Soil spectral features
result from an overtone absorption and combination of bond vibrations
in molecules of three functional groups in minerals: OH, SO4 and CO3,
[Ben-Dor and Banin, 1995, Hunt and Salisbury, 1970]. In addition, organic
matter influences the spectral response because it holds most positively
charged nutrient ions in soils.

To date, infrared spectra have not been put into soil erosion perspective.
Low concentrations of the 137Cs isotope in nature makes the identifica-
tion of the element through spectral means impossible, considering the
capabilities of available spectrometers.

Elements with similar chemical and biological behaviour to the isotope,
such as Potassium (K), which is much more abundant in the environment
but still evenly applied, are not fully explored. Potassium shares electrical,
chemical and physical properties with Cs, both being members of the Group
I alkali metals [Andrello and Appoloni, 2004, Relman, 1956]. Both elements
have similar biological and chemical behaviour, where the difference is
only in reactivity [Relman, 1956], but it has not been tested as a particle
trace.

The element K is mainly present as part of preliminary soil minerals
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1. Introduction

(unavailable), in clay minerals and fine silt (slowly available), and in a
water-soluble form (readily available) [Garrett, 1996, Peterburgsky and
Yanishevsky, 1961, Sharpley, 1989]. Potassium occurs naturally in the
environment, but it is also used on agricultural lands as a fertilizer. In
general it is applied in a form of K2O or K–P–N prior to harvesting.

1.2 Soil Erosion in Europe

Soil erosion by water is an extensive and increasing problem throughout
Europe. Over the last decade, a number of reports have been produced in
order to assess the affected areas and severity of degraded land. In the
early 1990s, Oldeman [1991] and Van Lynden [1995] provided an overview
for the Council of Europe. As stated by the European Soil Bureau [2001],
with a very slow rate of soil formation, any soil loss of more than 1 t/ha/yr
can be considered irreversible within a time span of 50–100 years. Losses
of 20–40 t/ ha in individual storms, are measured once every two years in
Europe [Morgan, 2005].

The Mediterranean region is particularly prone to erosion. According to
Van Lynden [1995], areas within this region have been affected to the extent
to which erosion has stopped due to lack of soil. According to the European
Soil Bureau [2001], this area is characterized by long dry periods followed
by heavy bursts of erosive rainfall, falling on steep slopes with fragile soils.
Severe erosion is also measured in other parts of Europe mainly within
Austria, Czech Republic and the loess belt of Northern France, Belgium and
The Netherlands. Soil erosion can therefore be considered, with different
levels of severity, an EU-wide problem.

This study is part of the DESIRE Project, funded under the EU’s Sixth
Framework Programme. It has an aim to develop strategies for use and
protection of areas prone to soil erosion and desertification in Europe.
The project is conducted by 28 research institutes, non-governmental
organisations and policy makers from Europe, Australia, Africa, South
and North America. In total there are eighteen study sites located across
these continents, where soil is subjected to erosion due to wind or water,
salinization, droughts or flash floods. More information regarding exact
location and detailed description of the sites can be found in Alterra [2007].
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1.3. Study Sites

Table 1.1: Differences and similarities between Guadalentin basin, Spain and South
East Limburg, The Netherlands

Guadalentin basin South East Limburg
Relief Ranging Slopes Mainly flat
Geology Wide range of

minerals- predo-
minantly illites,
chlorites, and illite-
smectites.

Predominantly limes-
tone

Soil Silt Loam (Calcisols) Loess
Clay content 30–36 % 12–18 %
Precipitation 300–500 mm annual

(intense rainstorm
events)

820–900 mm an-
nual (distributed
throughout the year)

Erosion Severe- due to tillage,
fallow land and land

Severe- due to floo-
ding and runoff

1.3 Study Sites

Two study sites were selected in order to conduct the present research. As
part of the DESIRE Project, one of them is the Guadalentin basin, South East
Spain, while the second one is located in South Limburg, The Netherlands.
The two study sites differ in soil texture, relief, underlying geology and
precipitation rates (see Table 1.1). Both sites, however, are affected by
severe erosion.

1.3.1 Guadalentin basin

Climate, geomorphology and the impact of human activities have resulted
in progressive land degradation across the Mediterranean region of Europe.
In Spain, more than 22 million ha, 43.8 % of the land is affected by erosion
rates higher than 12 t/ha/yr. Nearly half of this area registers soil losses
higher than 50 t/ha/yr. Because of this, within the Murcia province of
Spain (Figure 1.1), a number of test sites are developed especially for soil
erosion and related studies.

This is an area where land degradation phenomenon can be readily
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1. Introduction

Figure 1.1: Location of the Guadalentin basin, South-East Spain [Alterra, 2007]

observed (Figure 1.2). Soil erosion by rills and gullies is common, caused
by tillage, fallow land and land abandonment. Rain storms are of high
intensity, while rock types are susceptible to erosion. Measures to combat
these problems have been applied for over 100 years, though only in some
parts they have been successful.

Guadalentin basin lies on the eastern edge of the Beltic ranges facing
southwest-northeast direction and faults determine the main structure of
the drainage network. The Guadalentin is an ephemeral river for the major
part of its course. The upper section of the basin has a high drainage den-
sity. The middle section is characterised by an undulating landscape with
long pediments and incised river terraces. The lower reach is characterised
by a flat valley bottom with series of developed alluvial fans.

The basin covers an area of 3300 km2 [Baartman et al., 2011]. The
climate varies from semi-arid to sub-humid Mediterranean. Annual precipi-
tation from 300 mm to 500 mm with average annual temperature between
12 and 18◦ Celcius. Summer droughts, commonly last for 4–5 months.
Annual potential evapotranspiration rates of 1000–2000 mm are common
[Baartman et al., 2011].

The main agricultural crops include almonds and herbaceous crops.
Semi-natural ecosystems include shrublands of Stipa tenacissima, Rosma-
rinus officinalis and Anthyllis cytisoides. Forests are dominated by Pinus
halepensis in part as a result of afforestation policies over the past 150
years [Alterra, 2007].

Soils are shallow with high Calcium Carbonate content exceeding 50 %
for some areas. Texture depends mainly on the hillslope position. Stoni-
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1.3. Study Sites

ness is high, low organic matter and moisture content. Salinity and crusting
are problematic for some parts of the Guadalentin Basin, where soils are
neutral to slightly alkaline. These soils are higy prone to formation of
erosion features sich as rills and gullies (see Figure 1.2).

Figure 1.2: Newly formed rills and deep gully formations in the Guadalentin basin,
South-East Spain. A: Rills; B: Gully system

As indicated on soil maps produced by FAO [2006], the main soil types,
recognized in the region of Murcia are Calcisols, Luvisols, Regosols and
Fluvisols.

Calcisols are soils with an argic horizon within 100 cm from the soil
surface. The have an irregular upper boundary resulting from albeluvic
tonguing into the argic horizon. Luvisols are characteristic soils for the fo-
rested regions. They are identified by the presence of eluvial (Ae) horizons
and illuvial (Bt) horizons where silicate clay is accumulated. Regosols are
well to imperfectly drained mineral soils which lack horizon development
or have minimal A and B horizon development. Fluvisols have a salic
horizon starting within 50 cm from the soil surface.

Gully erosion in the Guadalentin is estimated to produce about 37.60 t
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1. Introduction

ha−1 yr−1, which is equivalent to 50 % of total soil loss due to rill, interrill
and gully erosion [Poesen et al., 2003].

1.3.2 South East Limburg

Southeast Limburg is part of European loess belt which covers parts of
England, northwest France, Belgium, The Netherlands, Germany, Poland
and Russia [Kwaad et al., 2006]. They are the product of the Quaternary
Glacial period and the resulting dust accumulation ranging (in Europe)
from the maritime areas of NW-Europe (France, Belgium) over Central
Europe to the Ukraine and the Russian plains [Haase et al., 2007]. The loess
soil of Limburg is rich in lime and contains up to 70 % quartz grains in the
silt fraction [Spaan et al., 2010].

The study site is located within the area of the soil erosion experimental
farm at Wijnandsrade (Figure 1.3). It is characterised by a hilly relief
with surface elevation up to 300 m above sea level. Typical landforms
include dry valleys, incised roads and manmade cultivation terraces. The
soils belong to Typic Hapludalf soil type (Soil Taxonomy) or Albic Luvisol
[FAO, 2006]. The soils are developed the Holocene period and are highly
susceptible to soil erosion and runoff due to their low structural stability.
These processes are enhanced by continuous changes in land use and
decrease of grassland in favour of arable land [Boardman et al., 1994].

Top soils have very high silt content, classified as silt or silt loam, with
low organic matter content [Kwaad and Mücher, 1994]. The sub soils are
very stony and dry due to underlying gravels of terraces deposited by
the River Meuse. The plough layer is light in colour and has low-organic
matter content, a yellowish subsurface horizon with a weak platy structure
and textured subsoil with weak but coarse prismatic structure [de Bakker,
1979].

The slope varies between 2 and 12 % [de Bakker, 1979]. The annual
precipitation is distributed throughout the whole year with an average of
60 mm per month with high rainfall intensities reaching 1–2 mm/min. The
area is used mainly for agriculture [Winteraeken and Spaan, 2010]. The
present land use in South Limburg is mainly arable crops, nearly 50 % of
the area, of which is covered by sugar beets, potatoes, silage-maize and
cereals [Spaan et al., 2010], while the rest is meadow, forest and residential
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1.3. Study Sites

Figure 1.3: Location of soil erosion experimental farm at Wijnandsrade, South
Limbourg, The Netherlands

areas.
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1. Introduction

1.4 Problem Statement

Soil erosion has been studied and modeled for decades. However, the
large spatial extent of the event, as well as the insufficient data for input
and validation of the soil erosion models, still create limitations. Recently,
remotely sensed data have been included in various erosion studies [Vrie-
ling, 2006]. The main use of these data is to derive spatial information
from the visible and near- infrared wavelengths of the electromagnetic
spectrum, for determination of parameters associated with soil erosion
such as vegetation, topography and rainfall.

As part of soil erosion modeling, soil particle tracing has been explored
as a technique to assess soil particle movement. The most commonly used
soil particle tracer, the 137Cs isotope, comes with a number of limitations
and assumptions. The isotope has limited half-life, an assumed even
spatial distribution and, due to the high cost of analysis, it is impractical
for assessment of large areas (See also Chapter 3). Furthermore, the
concentrations in which the element is found in the environment are too
low to have influence on the soil spectral response of soils.

Different types of soil, water, rocks and vegetation are known to re-
flect, transmit or absorb electromagnetic energy coming from the Sun in
a specific and characteristic manner. The spectral response of each of
these targets is determined by the interaction of the incident radiation
with the surface, the orientation and position of the Sun, topography and
orientation of the target, the atmospheric state as well as the location of
the measuring sensor. Moreover, the chemical composition and molecular
structure of the object of interest, determine the wavelengths where reflec-
tion, transmission or absorption takes place within particular wavelengths
of the electromagnetic spectrum. The result is a spectral response curve
of for the target, also referred to as a spectral reflectance signature.

The chemical and physical properties of soil determine the amount of
solar energy that is reflected back from the target. The main controlling
factors that influence the shape of the soil spectrum include moisture
content, organic matter, particle size distribution, soil mineralogy and soil
texture. Each factor can be determined by studying the spectral curve either
directly, by looking at spectral absorption features, or indirectly, through
establishing statistical relationships between soil chemical composition

10



1.5. General Research Objectives

and soil spectral response (further described in Chapter 3 and 4).

A limited number of studies explore the use of spectral information
derived from longer wavelengths. Soil chemical properties have distinct
spectral signatures in the shortwave infrared spectrum (between 1100
and 2500 nm), however this information has not been implemented in
soil erosion studies to date. This research focuses on, firstly, identifying
potential alternative chemical soil particle tracer that has similar chemical
and physical behavior as Cesium. The element has to be more abundant
and less harmful to the environment, allowing practical application of the
technique. Secondly, the emphasis is directed towards examining whether
the shortwave infrared electromagnetic spectrum can provide sufficient
information to allow identification and quantification of this element in
order to establish a cost effective and rapid way for tracing of soil particle
movement.

The specific aim of the study is to identify the most suitable chemical
soil particle tracer, and to evaluate whether change in concentration of this
element can be measured with infrared spectroscopy by establishing direct
relationships between concentrations and absorption band parameters
of the soil spectral signature. The scope of the research is limited by
the concentrations in which the element is present. They should be high
enough to have influence on the shape of the spectral curve, but low
enough not to cause disturbance and contamination to the environment.

1.5 General Research Objectives

1. To identify gaps in the use of remote sensing in soil erosion studies
by reviewing the latest techniques associated with modeling and
assessment of the process

2. To establish direct and indirect relationships between soil chemical
composition and infrared spectral response

3. To identify whether changes in Potassium concentration in soils of
various textures can be observed using infrared spectral response

4. To examine whether Potassium can be used as a tracer for soil particle
movement under field conditions through spectral analysis

11



1. Introduction

1.6 Thesis Structure

A general introduction to the process of soil erosion, spectral characteris-
tics of soils and problem definition is presented in Chapter 1 (this chapter).
This is followed by Chapter 2, which provides an overview of the use of
remote sensing in monitoring soil erosion and its contribution as an input
for soil erosion modeling. By examining the different applications of these
data, gaps in the current knowledge are outlined and new areas where
these data can contribute are identified. Advanced stages of soil erosion
have been extensively monitored using remote sensing data, however there
are no methods developed for detecting early signs of erosion. This chapter
identifies soil particle tracing using chemical elements as a new application
of remote sensing in monitoring early stages of soil erosion.

Chapter 3 presents a method to establish direct and indirect relation-
ships between naturally occurring soil chemical elements and infrared
spectral response. Specific wavelength ranges that statistically predict and
quantify soluble fractions of chemical elements, from near infrared and
shortwave infrared spectroscopy are outlined.

Chapter 4 introduces the use of Potassium (K) as an alternative to
Cesium 137 (137Cs ) as a particle tracer. The study is conducted in a
laboratory on soils of various textural classes. Ranging concentrations
of Potassium fertilizer are applied to the surface of the soil samples and
measured for their spectral characteristics. Absorption feature parameters,
including absorption band depth, center and area, are analyzed in order to
determine the influence of K on the spectral absorption curve.

Chapters 5 and 6 describe the application of the technique established
in field conditions. The behavior of K was tested with a flow experiment
conducted in an area severely affected by soil erosion Murcia, South East
Spain. Spectral field measurements are built into synthetic images to study
the spatial extent and variation of the tests. The experiment resulted in
identification of factors that have strong influence on the spectral response
and limit the applicability of the technique. An improved experimental
setup was conducted in South Limburg, The Netherlands (chapter 6), on
Loess soils with limited clay content. The range of concentrations of
applied fertilizer was increased, and the runoff sediment was collected.
The methods of image interpretation and statistical analysis remained the
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same.
Chapter 7 contains general discussion in the form of synthesis. The

research objectives are answered and main conclusions are outlined based
on evaluation of the findings. This section contains limitations of the
current study as well as recommendations if further work is intended.
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2Gaps and opportunities in remote

sensing for soil erosion

assessment

Abstract

Assessing soil erosion over large areas has been a challenge for
decades. The large spatial extent of the process creates difficulties
in data acquisition for both measuring and validation. This chapter
provides an overview of the most common applications of remotely
sensed data as an input for various models and techniques in soil ero-
sion studies. Remotely sensed data provide spatial coverage and are
used to derive information for various soil erosion parameters, such
as vegetation cover, topography, soil moisture, as well as to detect
large erosion features. The chapter also contains a discussion on soil
particle tracing using chemical elements as a method for assessment
of soil erosion and deposition. By identifying the limitations associa-
ted with this technique, the gaps in the use of remote sensing for soil
erosion monitoring using particle tracers are presented. Additionally,
the chapter outlines a potential use of remote sensing data in order
to expand the scope of already existing techniques. 1

1This chapter is based on: Luleva, M.I., Van Der Werff, H., Van Der Meer, F. and Jetten,
V., (2012), Gaps and opportunities in the use of remote sensing for soil erosion assessment,
Chemistry, 21(5),748 - 764, Luleva et al. [2012]
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2.1 Introduction

Land degradation and soil erosion have been studied since the 1940’s,
when the first concepts of detachment and transport of soil material were
introduced [Ellison, 1944]. Various soil erosion models have been deve-
loped to predict, simulate and assess the severity of erosion. Jetten et al.
[2003] mentioned that it is possible to predict quantitatively aggregated
soil loss, but the exact prediction in space and time of erosion features is
impossible because of the high spatial variability of all parameters involved.
Remote sensing is found to provide solutions for estimating some of the
related erosion parameters and for outlining already developed erosion
features [Alatorre and Begueria, 2009, Jetten et al., 2003, Vrieling, 2006,
Shruthi et al., 2011]. Most research, however, focused on land cover map-
ping, identification of bare soil regions, and mapping soil types [Alatorre
and Begueria, 2009]. Shruthi et al. [2011] showed that very high resolution
images are needed for erosion feature detection, while Vrieling [2006]
showed that large gullies can be detected by coarser resolution images,
but mainly through the presence or absence of vegetation. Various classifi-
cation techniques and processing algorithms based on spectral correlation
have been implemented in order to overcome some of the limitations
[Shrestha et al., 2005]. Yet, the potential of using remotely sensed imagery
for soil erosion studies is still not fully explored.

The aim of this chapter is to provide an overview of existing applications
of remotely sensed data in soil erosion studies done in the laboratory and
in the field. We provide a detailed review on the methodologies that are
applied on remotely sensed imagery to estimate the main parameters used
as input for soil erosion models. In addition we look into soil particle
tracing techniques to identify gaps, where remotely sensed data can be
integrated to widen the scope of currently existing methodologies.

2.2 Satellite remote sensing as an input for soil

erosion models

The concepts and principles behind observing soil erosion over large areas
are very well known and they are being continuously refined. The mecha-

16



2.2. Satellite remote sensing as an input for soil erosion models

nism behind the process is also clear and well defined. However, scientists
are still not able to predict it very successfully mainly because of the
resolution and spatial variability of erosion. In addition, the required high
level of precision presents an obstacle, because erosion is an accumulative
process and a small error at a particular location is accumulated into a
large error on a catchment level. Therefore, the measurement technique
should provide high resolution spatio-temporal data to characterize the
process [Chappell et al., 2005]. Research on soil erosion is mainly focused
on the use of soil erosion models in order to simulate and predict the
event.

Methods and models for soil erosion assessment have been reviewed by
Jetten et al. [2003] and later on Zhou et al. [2008]. The most widely applied
ones include: Universal Soil Loss Equation (USLE) [Wischmeier and Smith,
1978], its revised version (RUSLE) [Renard et al., 1991, Prasannakumar
et al., 2012], the Soil Erosion Model for Mediterranean regions (SEMMED)
[de Jong et al., 1999], the Water Erosion Prediction Project (WEPP) [Flanagan
and Laflen, 1997], Limburg Soil Erosion Model (LISEM) [Flanagan and Laflen,
1997, Jetten et al., 2003, Vrieling, 2006, Takken et al., 1999] as well as
particle tracing techniques [Campbell et al., 1982, Chappell, 1999, Luleva
et al., 2011, Sanchez-Cabeza et al., 2007, Syversen et al., 2001, Walling and
Quine, 1990]. A main limitation of erosion models is the fact that they
are applied on small scale for particular study area or catchment [Nigel
and Rughooputh, 2010]. Extensive reviews of satellite-based sensors that
have been used in soil studies are provided by Vrieling [2006] and later on
by Mulder et al. [2011]. Another more recent review by Goldshleger et al.
[2010] looks into the use of sensors with high spectral resolution for stu-
dying three specific degradation processes- soil salinity, soil crusting and
post-fire mineral alterations. The authors suggest that there is potential in
the use of these data for monitoring soil erosion factors.

Efforts have been put into studying land cover and land use change
[Sobrino and Raissouni, 2000] focusing mainly on vegetation. When it
comes to direct assessment of soil composition and degradation, however,
the number of studies decreases. By using satellite imagery it is possible
to observe only the surface soil characteristics and only when the signal is
not masked by the vegetation cover [Vrieling, 2006]. The most commonly
used remotely sensed data in soil erosion modeling come from Landsat
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TM imagery. Availability and low cost of the scenes allow long term moni-
toring of particular areas. The main benefit of Landsat TM sensor is the
multi-temporal aspect [de Jong et al., 1999], although the low spatial and
spectral resolution of the scenes present a limitation. Parameters asso-
ciated with soil erosion, estimated from imagery, include assessments of
vegetation cover, calculation of vegetation indices, changes in topography,
and outlining of bare ground Alatorre and Begueria [2009]. However, often
bare ground is interpreted as degraded areas which is not necessarily the
case. In addition, ground survey should always be done when interpreting
vegetation cover.

It is important to note that the information provided by remote sen-
sing is limited to the surface characteristics, although some statistical
relationships are established between the surface and depth properties
[Vrieling, 2006]. Monitoring visible signs of degradation such as sheet, rills
or gullys as well as physical deteriorations such as crusting, hard setting
and compaction, total erosion can be estimated over time [Boardman, 2006,
Omuto and Shrestha, 2007].

Table 2.1 gives an overview of the various studies that used remote
sensing data to estimate erosion related parameters or erosion itself.

Identification and mapping erosion features is performed by automated
or supervised extraction of digital information based on spectral and/or
structural pattern recognition [Alatorre and Begueria, 2009]. Classifiers
based on statistical probability functions are commonly used to allocate
ground pixels to a given surface type. Based on the composition of vegeta-
tion abundance and the identification of soil degradation features, linear
mixture modeling has shown useful to map land degradation [Metternicht
and Fermont, 1998].

Models and techniques, used to study soil related processes, provide
spatial coverage but they do not show reality, only a simulation. The
measurements are point-based, apart from a few examples of erosion
feature mapping [Takken et al., 1999] and therefore there is a clear need
for developing new methods that integrate the spatial extent of the event,
the development of the process over time, and the factors affecting soil
behavior.
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2.3 Soil erosion parameters

2.3.1 Vegetation related erosion parameters

Vegetation cover has been widely studied with remote sensing [Shoshany,
2000], due to its distinct signature in the visible and near-infrared part
of the electromagnetic spectrum. The most commonly used imagery is
provided by Landsat TM and SPOT HRV, although limited number of
studies attempted to implement airborne hyperspectral remote sensing
from HyMap [Asner and Heidebrecht, 2003, Shrestha et al., 2005, de Jong
and Jetten, 2007]. Vrieling [2006] provides an extensive review on the
different satellite sensors used for detection of vegetation in soil erosion.

The bulk of research has focused on estimating Normalized Difference
Vegetation Index (NDVI), Leaf Area Index (LAI) and Land Surface Tempera-
ture (LST) from satellite imagery. These are used as indicators for spatial
and temporal changes in soil fertility [Julien and Sobrino, 2009, Nicholson
and Farrar, 1994, Park et al., 2004]. In their study, Troufleau and Sogaard
[1998] used LST and NDVI to derive soil surface moisture status while
Unganai and Kogan [1998] used standardized difference of NDVI and LST
to estimate drought-prone areas in Southern Africa. In addition, Park
et al. [2004] used vegetation indices to estimate the impacts of hydrolo-
gic properties. They showed that values for NDVI and LST are related
to soil runoff potential. Considering that soil is classified in hydrologic
soil groups, based on runoff potential and soil physical conditions, it is
suggested that physical degradation can influence LST and NDVI [Omuto
and Shrestha, 2007, Park et al., 2004].

2.3.2 Topography

Slope is an important controlling factor for development and formation
of soil erosion. Some of the best transport equations are based on stream
power, which is the product of slope and discharge [Hessel and Jetten,
2007]. Since discharge itself is also determined by slope, the relation
between erosion and slope is a power function and therefore it is very
sensitive. In addition, the accuracy of a DEM is very important. Since
courser DEMS often generate lower slopes than high resolution DEMS this
will influence greatly the soil loss estimation.

19



2. Gaps and opportunities in remote sensing for soil erosion assessment

As stated by Smith and Clark [2005], remote sensing provides the most
effective way of developing Digital Elevation and Terrain models (DEM,
DTM). The main sources of such data have been reported to be ASTER and
Landsat TM [Thurmond et al., 2006].

The resolution of the produced DEMs plays a crucial role. LiDAR cloud
point data provide means for more accurate building of DEMs, however
this usually requires great amount of time, effort and resources [Liu, 2008],
limiting their use.

2.3.3 Soil Moisture

Soil moisture content influences soil infiltration, which determines soil
runoff. Hence, it is also considered as an indirect indicator of erosion.
Methods applied for determining soil moisture content cannot often be
extrapolated spatially due to variation over time. On the soil surface,
moisture content influences the process of exchange of heat between land
surface and atmosphere [Owe et al., 2001], as part of the environmental
water cycle. Research focuses on potential use of infrared spectra for esti-
mating surface soil moisture. It is known to affect spectrum shape in the
visible, near infrared (VNIR) and shortwave infrared (SWIR) spectral range
(350 nm and 2500 nm) [Doerr et al., 2000, Haubrock et al., 2008], where
increasing moisture content leads to decreasing reflectance [Baumgardner
et al., 1985, Lobell and Asner, 2002, Weidong et al., 2002]. Estimations
from optical measurements in the VNIR and SWIR are considered increa-
singly important, not only for improving existing hydrological models at
different scales [Doerr et al., 2000]but also for estimation of ground cover
properties.

The overtone and combination absorption bands of molecular water
around 900 nm, 1400 nm and 1900 nm are indicative regions for soil mois-
ture variability [Haubrock et al., 2008, Weidong et al., 2002]. Soil moisture
influences background reflectance and therefore affects quantification of
soil parameters [Haubrock et al., 2008]. For instance, Iron oxides, soil
organic matter and Phosphorus prediction from VNIR and SWIR have been
tested by Bogrekci and Lee [2006] and Galvao and Vitorello [1998], who
developed calibration models for estimation of these parameters using
specific bands as a function of moisture.
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Problems related to estimation of surface soil moisture from spectra,
are mainly related to validation of the results. A number of moisture
indices have been developed, including Modified Temperature- Vegetation
Dryness Index (MTVDI) [Kimura, 2007], Normalized Difference Water Index
(NDWI) [Dasgupta et al., 2007], Normalized Soil Moisture Index (NSMI)
[Haubrock et al., 2008]. The correlation coefficients between the certain
bands and the actual moisture content, however, have not been shown to
be higher than 0.71 [Haubrock et al., 2008].

MTVDI [Kimura, 2007], for instance, can be calculated from satellite-
derived surface temperature, and aerodynamic minimum and maximum
surface temperatures estimated from meteorological data. The main pur-
pose of this index was to help identifying wet-edge index, by combining
the MTDVI with the commonly used NDVI. The authors, however, reported
lack of sufficient data for drawing strong conclusions. NDWI takes into
account the bands at 860 nm and 1240 nm [Dasgupta et al., 2007], however
the study acknowledged uncertainties up to 66% associated with the index.
The most recent one reported in the literature was introduced by Haubrock
et al. [2008] (NSMI). From a systematic study over the whole spectral range
from 350–2500 nm, the NSMI based on the reflectance at 1800 nm and
2119 nm has been determined to be suitable quantifier of water content
for the surface. The authors claim that NSMI can be seen as a generally
applicable parameter, which can be used without any a priori knowledge
about the target. The index should be tested for its applicability from
remote sensing data, where resolution and atmospheric effect complicate
spectral measurements.

In arid regions, surface soil moisture is a dynamic variable at a rela-
tively low level, making optical remote sensing useful for assessment of
degradation. In such regions, moisture indices have great potential for
rapid and efficient surface soil moisture estimations [Famiglietti et al.,
1999, Khawlie et al., 2002, Zribi et al., 2005, 2003].
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2.4 Integration of high spectral resolution remote

sensing data in studies on soils

In Section 2.3, it was shown which satellite remote sensing data can be
used as an input for soil erosion modeling. The spatial extent of these data
has been explored to some degree, however the spectral properties of these
images have been somewhat neglected. Most soil erosion studies have
used only the information in the visible and near-infrared wavelengths
of the electromagnetic spectrum, although research have already establi-
shed methods that can aid the determination of soil erosion parameters.
This section will look into established methods for high resolution image
analysis that can potentially be integrated in soil erosion research.

Literature covers the use of spectral data in identifying organic matter,
moisture content, soil chemistry and roughness either directly [Baum-
gardner et al., 1985, Ben-Dor et al., 2003, Shepherd and Walsh, 2006], or
indirectly through analyzing and relating factors [King et al., 2005]. The
aim of most laboratory based studies is to establish methodologies that
can be applied on remotely sensed imagery to extrapolate results in the
spatial dimension. The focus is on detecting changes in soil structure,
which determine the impact of degradation and regenerative processes
of soil, indicating soil erosion [Chappell et al., 2005]. Research efforts
have been put into successfully linking soil erosion to particular soil types,
where studies from the 1960’s were first used [Holden, 1968]. Laboratory
analysis of soil spectra have also been conducted, to estimate chemical
constituents and predicting crust formation [Ben-Dor et al., 2003, Udel-
hoven et al., 2003]. Not much has been done in terms of scaling these to
image data.

Silt and silt loam soils have a low to medium clay content (10-20 %),
hence they are weak because the structure easily brakes down,making
them highly susceptible to erosion and soil crusting [Le Bissonnais et al.,
2005]. Soil crust decreases infiltration and causes runoff, which in turn
washes off nutrients and important chemical components of the soil at the
surface [Eghbal et al., 1996].

The challenge is to determine a method that predicts soil surface che-
mical properties using remote sensing techniques and to investigate ways
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of deriving sub-surface soil spectral information. An attempt was recently
made by Ben-Dor et al. [2008], introducing an extension to an ASD spectro-
meter, specifically designed for sub-surface spectral measurements. The
authors demonstrated the application of the technique on four different
soil profiles. Although the method was not tested on independent loca-
tions, it provides the bases for future robust soil mapping. Others refer to
more conventional methods of implementing geophysical measurements
using gamma-ray spectrometers [Tyler, 2008].

In order to implement the use of remotely sensed data for quantifying
soil chemical properties, a method to separate noise caused by different
atmospheric and environmental factors from actual signal, should be
established. However, the transition from laboratory scale analysis through
filed measurements to satellite imagery presents a challenge. As it has been
pointed out by Vrieling [2006] “due to the complexity of erosion processes,
regional differences, and scale dependency, it cannot be expected that a
standardized operational erosion assessment system using satellite data
will develop in the near future”.

2.4.1 Chemical Properties of Soils

It has been established that soil physical degradation is a relatively slow
process [Morgan, 2005]. It begins with structural deterioration culminating
into soil loss through erosion after many years [Jones et al., 2003]. Visible
signs in the field such as rills, gullies or sediment deposits are manifesta-
tions of advanced stage of degradation. To detect early warning signs, it is
important to study soil properties sensitive to the degradation.

Spectral reflectance is a property of soil that integrates many func-
tional processes influencing physical conditions [Ben-Dor et al., 2003,
Shepherd and Walsh, 2006]. It is sensitive to soil constituents such as Iron
Oxide, Carbon content and Calcium Carbonate that influence aggregation
[Baumgardner et al., 1985, West et al., 2004] and soil crust formation.
Furthermore, large-area sampling for spectral reflectance is more effective
compared to conventional sampling methods for laboratory analysis [Janik
et al., 1998, Shepherd and Walsh, 2006].

Some efforts have been put into studying soil properties from spectra.
As stated by Udelhoven et al. [2003], soil parameters are neither static nor
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homogeneous in space and time. Costs of analytical procedures are often
a limiting factor when spatial soil variability in large-scale is addressed.
Reflectance spectra have been used extensively to determine variation in
the Earth’s surface composition [van der Meer, 2004].

Soil properties derived from spectra have been studied long before
the 1980’s. Soil research has focused on VNIR and SWIR regions of the
spectrum [Baumgardner et al., 1985] and the trend has been followed to
date, with some relationships established from data in the thermal and
microwave regions [Barnes et al., 2003, Yitagesu et al., 2011]. The basic
physical and chemical soil properties show high correlation with derivative
reflectance values within the visible and short-wave infrared wavelengths
[Shepherd and Walsh, 2006].

Subtle differences in the spectral shape can serve as a valuable base
for identifying soil properties mainly due to the fact that the soil spectra
forms as a result of the overlap between absorption features of many
organic and inorganic compounds [Shepherd and Walsh, 2006]. According
to Ben-Dor et al. [2003], changes in spectral response occur due to changes
in soil albedo and soil mineralogy, where the former is strictly related
to the physical soil properties, while the latter is strictly related to the
chemical. Soil albedo is strongly influenced by soil color, organic matter,
moisture content and iron content [Post et al., 2000].

Literature covers extensively in-situ laboratory procedures for esti-
mating and predicting soil properties. These procedures, however, are
rarely applicable to satellite imagery. As identified by Ben-Dor [2002], the
main limitations are that only the top few centimeters can be studied and
vegetation masks the response from the soil surface.

Recent efforts include aerial photographs and satellite images of bare
soil and related soil erosion parameters [Schmid et al., 2012]. Others
estimate Organic Matter and Phosphorus levels, however, as pointed out
by Lopez-Granados et al. [2005], these approaches were limited to linear
regression with brightness values from the blue, green and near infrared
bands. Chabrillat et al. [2002], suggests an improvement to these methods
by stating that unlike multispectral imagery, hyperspectral remote sensing
with its continuous spectrum for each pixel, enables the spectral identifica-
tion of minerals, rocks, or soils at image level [Ben-Dor, 2002, Chabrillat
et al., 2002].
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2.4.2 Chemical Soil Particle Tracing

As it was discussed in the previous section, data acquired with field and
laboratory spectrometers have been widely applied in studies on soils
in order to examine the soil chemical properties. These data and the
corresponding analytical techniques, however, have not been yet integrated
in studies of soil erosion, most likely because of the limited reference to
soil chemical composition. One of the few lines of research that can
potentially benefit from these data is the concept of chemical soil particle
tracing for monitoring soil movement due to erosion.

The Cesium-137 isotope (137Cs ) is the most widely used chemical
soil particle tracer. Soil particles move according to their size, under the
influence of wind, water or gravity [Morgan, 2005]. Using tracers for soil
erosion originated in China, shortly after the Chernobyl incident in the late
1980s. The use of 137Cs in soil erosion modeling has been identified as a
very effective technique in assessing both spatial patterns and rates of soil
redistribution in the landscape [Li et al., 2000].

Distribution of 137Cs in soil profiles at undisturbed sites shows an
exponential decrease with depth while ploughed soils show uniform mixing
of 137Cs in the ploughed layer [Belivermis, 2012]. Although biological and
chemical processes can move some amount of 137Cs , the dominant factors
affecting its movement within landscapes, are the same physical processes
that affect the movement of soil particles to which it is attached [Warren
et al., 2005]. As suggested by Chappell [1999], 137Cs offers the greatest
potential for measuring net soil flux in semi-arid environments where
soil flux monitoring is limited due to considerable spatial and temporal
variability of the controlling factors.

There is a number of assumptions behind the models that use 137Cs
distribution. Chappell [1999] explains in more detail the problems related
to them. First, it is assumed that there is a spatially uniform distribution of
137Cs within a climatologically uniform area. Secondly, the fixation of 137Cs
to the clay size fraction of different minerals is considered immediate and
permanent, and the redistribution of soil corresponds to the movement
of 137Cs . The reasoning behind this is that Cs is rapidly adsorbed by clay
particles in the surface soil and it is essentially none-exchangeable once
adsorbed to the clay surfaces. The extent of adsorption and fixation of
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137Cs to clay particles depends largely on the clay type. Generally, 137Cs is
adsorbed irreversibly by micas and hydrobiotite, while montmorillonite,
kaolinite and vermiculite hold 137Cs much less strongly

Models developed for calculation of redistribution rates of soil have
been derived from 137Cs measurements and summarized by Li et al. [2000].
Although 137Cs isotope has been extensively used to model soil redistribu-
tion, little has been reported on the integration of spectral data. Limited
number of studies have attempted the use of remote sensing to map 137Cs
net soil flux with SPOT imagery, but the results were poor [Chappell, 1998].

The limited use of spectral data in monitoring 137Cs distribution is
mainly related to the small chemical difference between the isotopes of Cs,
which is associated with reaction kinetics. Therefore, all isotopes behave
in the exact same way and it is very difficult to determine each of them
with any techniques different from laboratory based mass spectrometry.
Moreover, the relatively low concentrations of the chemical prevent the
formation of a distinct absorption. Anything below 3300 Bq of activity (or
1 nano gram per gram of soil) is already under the detection limit of the
main analytical instruments.

Considering that Cs is an alkaline metal, its physical and chemical
behavior is similar to those of Potassium (K) and Sodium (Na), extensively
studied by spectral analyses. Luleva et al. [2011] suggest that K can be used
as a potential alternative tracer that could be observed using soil spectral
response, allowing rapid spatial mapping. Table 2.2 outlines the differences
and similarities between the two elements, as well as the advantages and
limitations of each one in their use as particle tracer. Introducing K is a soil
particle tracer can introduce a number of advantages to erosion studies.
The element has potential to be measured using spectral measurements
which can increase the spatial representation. It has been shown that K
concentrations can be quantified measured using spectral means [Luleva
et al., 2011], however there is a need to test whether tracing patterns can
be established spatially using spectral data.

2.5 Conclusions

Over the recent years, the problem of soil erosion has received much
broader acknowledgment in literature. Time and effort associated with
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Saltation 

Creep 

Saltation 

Suspension 

Figure 2.1: Simplified diagram of soil particle transport under the influence of
wind by creep, saltation and suspension. Based on Lyles [1988]

field sampling and analytical techniques due to the large scale of the event,
however, still present a major limiting factor. Remote sensing provides
some solutions to spatial data acquisition; however the potential of these
data is not yet fully explored. General conclusion is that change detection
of vegetation cover alongside with change in land use are soil erosion
parameters most widely studied with remote sensing.

Landsat TM, ASTER and SPOT HRV are most frequently used, however
it can be argued that the availability and price of the science determine
their use, rather than sensor capabilities. There is a clear gap in the
use of remotely sensed data with high spectral resolution. Chemical soil
particle tracing of soil movement due to erosion is a line of research that
can benefit from the development of a methodology that combines the
spatial and the high spectral properties of remotely sensed data. The
two upcoming international missions —Enmap, scheduled to launch in
year 2013 and HyspIRI, expected to launch between year 2013 and 2016—
promise to provide satellite hyperspectral data that would allow detailed
and repetitive analysis of surface parameters.
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Table 2.2: Differences and similarities between 137Cs isotope and K, for soil particle
tracing

137Cs K
Introduction to the
environment

Introduced in the en-
vironment due to the
Chernobyl incident in
the late 1980s

Naturally occurring,
but also introduced to
the environment as an
agricultural fertilizer.

Distribution The even distribution
of Cs is always as-
sumed and therefore
it has been a cause
of debate, although
some studies have
provided supporting
arguments based on
climatological factors
and study area loca-
tions [Chappell, 1999]

Although K fertilizer
should be applied
evenly to all agricul-
tural fields in order
to maintain optimal
crop production
[Jalali, 2007], the
distribution of the
element should be
measured in order to
account for natural
variation.

Displacement Radioactive Cs is as-
sumed to move only
due to erosion as it
binds strongly to the
soil particles.

K can be moved due
to uptake by plants or
by leaching.

Cost of analytical
measurement

High Low

Previously used as
a tracer

Yes No*

Detection using
spectral response

No Yes
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3Spectrally active chemical elements

as potential soil particle tracers

Abstract

In chapter 2, various applications of remotely sensed data in soil
erosion studies were reviewed. The use of the information derived
from the shortwave infrared wavelengths of the electromagnetic spec-
trum was identified as a major gap in current research [Luleva et al.,
2012]. A way to integrate these data in studies of soil erosion is to
detect chemical composition of the soil and apply the method for che-
mical soil particle tracing. To identify a potential soil particle tracer
that has similar physical and chemical properties as the commonly
used radioactive isotope Ceasium-137 (137Cs ), and at the same time
has a spectral signature, a number of abundant in the environment
chemical elements were tested. In this chapter, wavelength ranges
that statistically predict and quantify soluble fractions of chemical
elements, from near infrared and shortwave infrared spectroscopy are
identified. Partial least squares regression (PLSR) was used to develop
prediction models for naturally occurring Calcium (Ca), Magnesium
(Mg), Potassium (K), Sodium (Na), Iron (Fe), and acidity (pH) in silt
loam soil samples. Significant wavelength ranges were determined by
establishing direct and indirect relationships between soil spectra and
soluble fractions of these elements. 1

1This chapter is based on: Luleva, M, van der Werff, H, van der Meer, F., Jetten, V. ,
Predicting Water Soluble Fractions of Chemical Elements in Silt Loam Soils Using ASD-
derived Reflectance Spectroscopy, Pedosphere (submitted)
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3.1 Introduction

The chemical composition of soils determines nutrient availability, plant
growth and soil dynamics. Estimating the concentration of chemical ele-
ments in soils requires extensive sampling and laboratory testing, which
is time consuming and expensive. In this chapter, infrared spectral data
were used to develop statistical models that predict and quantify amounts
of soluble fractions of soil chemical composition by identifying spectral
subsets of spectral wavelength regions.

Reflectance spectra have been used for the last four decades to describe
the Earth’s surface composition [van der Meer, 2006]. Studies mostly
looked at the visible, near-infrared (VNIR), and shortwave-infrared (SWIR)
regions of the electro-magnetic spectrum. In the early 1980s, it was
reported that soil moisture content, organic matter, soil texture and iron
content influence the spectral response in VNIR and SWIR [Baumgardner
et al., 1985]. A decade later, multivariate statistics were introduced to
studies on chemical elements in soils [Palacios-Orueta and Ustin, 1998].
As stated by Stenberg et al. [2010], the influence of chemical bonds on
reflectance is explained by broad molecular overtone and combination
bands in the VNIR spectral region of three functional groups in minerals:
SO3 , CO4 , and OH. The abundance of compounds is mainly determined
by soil type and parent material. The effect of major soil constituents
and chemical bonds in minerals on infrared spectra has been extensively
reported in literature [Ben-Dor et al., 2003, Viscarra Rossel et al., 2006]. The
resulting complex spectra have been found to present a challenge when
assigning specific absorption features to individual chemical elements
[Ali et al., 2010]. Soluble fractions of these elements determine chemical
processes and concentrations available to plants. To gain insight, influence
of inorganic chemicals on specific parts of the spectral response, attention
has been paid on multivariate statistics [Ben-Dor and Banin, 1995, Shepherd
and Walsh, 2002, Udelhoven et al., 2003].

Some efforts to relate soil spectra to chemical constituents have been
directed towards spectral math using reference [Ben-Dor and Banin, 1995,
Ben-Dor et al., 2003, Farifteh et al., 2007, Stenberg et al., 2010, Viscarra Ros-
sel et al., 2006]. For example, multiple linear regression analysis was
applied for identifying the presence of Nitrogen [Dalal and Henry, 1986],
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Carbonates and organic matter [Ben-Dor and Banin, 1995, Gomez et al.,
2008]. Multivariate adaptive regression splines were used for identification
of Calcium, Magnesium and Organic Carbon [Shepherd and Walsh, 2002].
Unlike principal component analysis or multi linear regression, Partial
Least Squares Regression (PLSR) handles correlated, many and noisy data.
PLSR has been used to prevent correlation from being explained as mea-
ningful information [Wold et al., 2001]. Specific to soil constituents, PLSR
has been applied to Infrared spectra in the 400 to 2500 nm wavelength
range for Nitrogen [Reeves III et al., 1999], Magnesium and Manganese
[Janik et al., 1998] as well as inorganic Carbon and total Carbon [McCarty
et al., 2002, Reeves III et al., 1999]. PLSR was also applied in several other
studies [Lee and Ramsey, 2001, Udelhoven et al., 2003, Viscarra Rossel
et al., 2006], showing its use for determination of soil nutrient status, soil
development and soil degradation. Moreover, wavelength regions, that
result from molecular overtones, have been defined for identifying and
quantifying chemical elements in soil [Farifteh et al., 2007, Gomez et al.,
2008, Lee and Ramsey, 2001, Udelhoven et al., 2003, Viscarra Rossel et al.,
2010, Yitagesu et al., 2009]. The applied methods were based on direct
and indirect relationships between compounds and soluble fractions.

However, there are two gaps in the studies listed in literature. Firstly,
there is no conclusion on whether specific absorption features can be
associated with soluble fractions of chemical elements in soils, either
directly or indirectly. Secondly, a specific wavelength range associated
with each element, covering a 50–70 nm range in VNIR or SWIR, has not
been reported to date. Such a narrow range of wavelengths would be
important for separating and defining regions associated with respective
soluble fractions of elements in silt loam soils. Currently, overlap between
constituents makes diffuse reflectance spectroscopy in VNIR and SWIR
to be considered non-specific [Stenberg et al., 2010]. Direct or indirect
relationships between soluble fractions of elements and infrared spectra
aid differentiating. Identification of relevant spectral features in a PLSR
calibration is important for several reasons. Firstly, it serves as a stepping
stone to understanding physical basis, and secondly, the selection of
only important features can decrease the risk of over-fitting, allowing the
obtainment of more robust models with fewer parameters.

The aim of this chapter is to identify specific wavelength ranges that
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3. Spectrally active chemical elements as potential soil particle tracers

statistically predict and quantify, Calcium (Ca), Magnesium (Mg), Potassium
(K), Sodium (Na), Iron (Fe) and acidity (pH) in silt loam soils by applying
PLSR techniques on spectral features within the VNIR and SWIR wavelength
regions. The current study focuses on silt loam soils in Southeast Spain,
outlining relationships of the elements with spectra acquired for this soil
textural type.

3.2 Methodology

3.2.1 Sampling and laboratory data collection

The study area is located within the Guadalentin Basin of Murcia Province,
Spain. This area was selected as part of the European Union DESIRE
Project, on desertification and soil erosion [Alterra, 2007]. The area is part
of an alluvial plain formed by the Guadalentin River. The soil material
consists of sediments and salt-rich transported material from nearby
slopes [Hernandez Bastida et al., 2004]. A total of 60 surface soil samples
were collected using a sampling spade, following a random sampling
strategy. The common attribute of the soils is a silt loam texture with 20–
25 % clay and more than 50% silt. Although similar in texture, the samples
belong to three different soil types as defined by the FAO [2006]. Different
soil types were sampled to ensure variation in soil chemical composition.
The sampled soils include Calcisols, soils with substantial accumulation of
lime (A and D); Regosols, well drained mineral soils which lack of horizon
development or exhibit minimal A and B horizon development (B); and
Fluvisols with distinct topsoil horizon (C) [FAO, 1998].

Each soil sample was air-dried for 48 hours at room temperature. The
soil material was sieved through a 2 mm sieve. To determine chemi-
cal concentrations, we followed procedures for water extractable soils
[Van Reeuwijk, 2002] in 1:20 dilutions with demineralized water. Induc-
tively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) was used
with a detection limit of 0.01 ppm to estimate the chemical concentrations
of soluble Ca, Mg, K, Na, and Fe. Acidity (pH) was determined using a
standard hand held Horiba pH Probe with a glass electrode, in a pH range
of 0–14 following Van Reeuwijk [2002]. Spectra were acquired using an
Analytical Spectral Devise (ASD) Fieldspec Pro Spectrometer with a 450–
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2500 nm wavelength range at 3–10 nm resolution and a contact probe as
fore-optic. Averages of 25 spectral measurements per sample, collected by
moving the probe, were used in the modeling. The internal average of the
instrument was kept as default at 10 iterations.

3.2.2 Partial Least Squares Regression Models

PLSR models were built using Unscrambler X software version 10.0.1
[CAMO Software AS, 2010]. The produced prediction model is a set of
equations (or PLSR factors) computed as linear combinations of spectral
amplitudes, by using a regression coefficient (known as b-coefficient) for
each wavelength position [Yitagesu et al., 2009]. The larger the values of
these coefficients, the more important the wavelength is for the model
[Gomez et al., 2008]. Considering the nature of the prediction models,
possible autocorrelation between sampling points is neglected since it
is handled by the software. This is automatically done by transforming
the original variables into a set of orthogonal latent variables, which also
results in noise reduction [Seiden et al., 1996].

Spectra were normalized by dividing the reflectance values for each
sample by the maximum spectral value. This is to ensure a normal distri-
bution of the data needed to avoid uncontrolled scale variation [Lai et al.,
2007, Yitagesu et al., 2009]. The spectra were smoothed with a Savitzky
Golay filter [Savitzky and Golay, 1964] in Unscrambler software. The filter
was characterized by a second order polynomial fit and 7 smoothing data
points, to remove spectral noise spikes while preserving chemical infor-
mation, as suggested by Savitzky and Golay [1964] and Bogaert and D’Or
[2002]. All samples were included in the prediction model development.
The chemical elements Ca, Mg, K, Na, and Fe, as well as acidity, were
used as input prediction variables. For each input variable, a set of latent
variables (principal components) were selected, based on cross-validation,
explained variance and correlation between attributes (loadings). The sum
of the selected components explained a minimum of 85 % of the residual
variance (first local maximum), to avoid over-fitting. High number of latent
variables is known to lower the prediction error, however it introduces
bias to the interpretations [Stevens et al., 2010]. The explained variance
and loadings are used to assess the relevance of an individual component
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to the overall model [Westad et al., 2003]. Loadings explain the importance
of the variables, where the number of variables included in the models and
their standard deviations influence the actual correlation structure [Westad
et al., 2003]. PLSR regression coefficients (raw b-coefficients) were used for
selecting specific wavelength ranges associated with each variable [Haaland
and Thomas, 1988]. These were computed by Unscrabler software and
their accuracy was assessed for 95 % confidence interval based on compu-
tation of t-values from Student t-distribution. The significance level was
estimated and represented by comparison of t-values and their theoretical
distribution resulting in computation of p-values. P-values lower than
0.05 (95 % confidence) were associated with significant wavelengths for
prediction of the elements. T-values were calculated as a ratio between
deviation from the mean and the standard error of the mean.

To assess each prediction model, a full cross validation, applying leave-
one-out method, was performed. This validation method was preferred
taking into account the limited number of samples [Stenberg et al., 2010,
Viscarra Rossel et al., 2006, Yitagesu et al., 2009]. Root mean-square er-
ror (RMSE) of cross validation were used together with the loadings and
b-coefficients [Gomez et al., 2008, Stenberg et al., 2010, Viscarra Rossel,
2008, Westad et al., 2003]. These were automatically calculated by the
Unscrambler software in units same as the input data. The coefficients of
determination for the identified wavelengths were compared to literature
[Udelhoven et al., 2003, Viscarra Rossel et al., 2006], in terms of establi-
shing whether the identified absorption features corresponded to already
reported soil constituents or molecular overtones.

3.3 Results and Discussion

3.3.1 Sampling and laboratory data collection

The results obtained through laboratory analysis are summarized in Table 3.1
and 3.2, for all samples. All data are skewed, indicating the need for nor-
malization prior to modelling. Table 3.1 contains description and expected
concentrations per soil type to emphasize variation between and within
samples (Table 3.1), based on FAO [2006]. It can be noted that the soils are
characterized with high Ca levels, while Na is present in low quantities. The
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Table 3.1: Soil characteristics [FAO, 2006] and mean concentrations per soil type.
Each soil type contents 15 sampling units

Soil
Type

Soil
Tex-
ture

Parent
Material

Processes
and
Characte-
ristics

Mean measured concen-
trations at depth of 0–
20cm (ppm)

Ca Mg Fe K Na
Calcisols Sandy

Loam
Alluvial,
collu-
vial and
aeolian
deposits
of wea-
thering
material

Water ero-
sion

680.4 13.9 2.9 16.7 3.1

Regosols Silt
Loam

Unconsoli-
dated,
finely
grained
material

Water ero-
sion; De-
position

623.1 10.8 2.5 15.2 2.4

Fluvisols Sandy
Loam

Alluvial
and
marine
deposits

Water Ero-
sion; De-
position

225.4 5.3 2.6 12.7 2.0

texture of all samples comprises of more than 50 % silt. Hence, variation in
chemical composition is mainly determined by the difference in soil type.
High Ca concentrations were found in soil samples that belong to Calcisols,
as expected. The smallest variation in elements concentration is noted for
Fluvisols (see Table 3.1), which is associated with formation of a salt crust
at the surface (Table 3.1).

3.3.2 Partial Least Squares Regression

The results from each prediction model are summarized in Table 3.3. Root
mean square error (RMSE) values indicate the quality of performance of
the model. The wavelength ranges associated with the each property are
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Table 3.2: Mean, minimum, maximum and standard deviation of soil property
concentrations for the total of 60 samples, determined following a reference
method for ICP-OES

Soil property Mean Min Max Std Dev.
pH 6.70 5.85 7.43 0.43

Ca(ppm) 580.68 21.58 2144.84 525.10
Mg(ppm) 11.60 2.07 43.85 9.33
K(ppm) 15.59 6.61 35.32 6.54
Na(ppm) 2.68 0.77 8.17 1.24
Fe(ppm) 2.79 1.52 5.73 0.94

listed with corresponding R2 (Table 3.3). The highest correlation is noted
for K and Ca. The values for significance (p values) of b-coefficients per
element were used for selection of specific wavelength ranges and are
shown in Table 3.3. RMSE values range between 0.80 ppm for Na to 3.73
ppm for K. Full record of all statistical parameters estimated during the
cross validation per soil property is included in Figures 3.1- 3.6.

PLSR uses correlated variables and relates them to a set of output
variables by projecting the data into a low dimensional space, defined by
orthogonal latent vectors [Dayal and MacGregor, 1997]. The presence of
exchangeable ions in soils that are high in clay content can influence the
prediction of soluble fractions of elements [Gomez et al., 2008]. Moreover,
as stated in Stevens et al. [2010], the use of spectral data derived from
heterogeneous areas in terms of soil type, has been reported to diminish
the predictive ability of VNIR-SWIR spectroscopy. Hence, the results of this
study should not be extrapolated to not sampled soil types. To establish
relationships between absorption and chemical elements for clay-rich soils,
representative samples would need to be included in the PLSR analysis.

The specific wavelength ranges predicted for soluble fraction of Ca coin-
cide with reports in literature on Calcium Carbonate overtone vibrations
at 2333 nm [Baumgardner et al., 1985, Gomez et al., 2008, Shepherd and
Walsh, 2006, Udelhoven et al., 2003]. This is expected since the concentra-
tions of Ca in these soils are determined by the presence of lime. Figure 3.1
shows PLSR model performance for Ca. Three distinct clusters can be
identified associated to the differences in concentration between soil types.
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Table 3.3: Results of PLSR models: coefficients of determination, Root Mean Square
Error (RMSE) of Cross Validation (leave-one-out) and wavelengths associated with
individual chemical elements found in soils.

Soil pro-
perty

RMSE
of CV

Significant
wavelength
range

R-Square
per band

Mean P values
for B-coefficient
per band range

Ca 3.270 2310–2379 0.904 0.007

Mg 3.570 1693–1722;
2350–2410

0.754;
0.829

0.030; 0.028

K 3.730 1628–1699;
2440–2480

0.883;
0.913

0.021; 0.01

Na 0.808 2025–2103 0.774 0.033

Fe 0.909 2225–2261 0.738 0.023

pH 2.360 1001–1096;
2334–2379

0.731;
0.885

0.021; 0.019

The b-coefficients, combined with coefficients of determination for Fe,
indicate a specific wavelength range between 2225–2261 nm (Table 3.3).
This wavelength range is associated with the presence of clay particles
in soils, and the high coefficient values are likely caused by Fe-OH bonds
[Herrmann et al., 2001]. The expected absorption feature near 1000 nm
for Fe was not selected, which could be caused by low abundance of this
element in the top soil at all sampling locations (Table 3.1 and 3.2). This
is also the reason for the lowest R2 values derived from the PLS model
(R2 =0.73). As shown on Figure 3.3, prediction values are underestimated
by the model for soluble K, the model outlined absorption bands centred
near 2470 nm with a R2 of 0.91 and RMSE of cross validation of 3.73
(Table 3.3). Figure 3.3 shows the model performance, indicating the fit
between regression lines for predicted and measured values. Literature
does not report on influence of molecular overtones or certain chemical
bonds in this region. However, investigation with different concentrations

39



3. Spectrally active chemical elements as potential soil particle tracers

Figure 3.1: Cross validation for Calcium in all 60 samples, predicted versus refe-
rence values for soluble fractions of chemical elements against the full spectrum.
Blue line: calibration line. Red line: validation line.

of these soluble fractions established the direct influence of the element
on absorption [Luleva et al., 2011]. The wavelength range identified for
Mg between 2350–2400 nm (Table 3.3) can be explained by the Mg–OH
feature reported in literature [Clark et al., 1990, Herrmann et al., 2001].
The model performance, shown on Figure 3.4, indicates the suitability of
the technique for the prediction of this element with R2 values of 0.83
and RMSE of 3.57. PLSR models for Na, as seen in Table 3.3, produce
R2 of 0.77 for the significant wavelength range between 2025–2103 nm.
The difference between regression lines that correspond to predicted and
measured values (Figure 3.5) can be explained by the difference in soil
salinity between the soil types. Wavelength regions associated with soil
pH have been found to overlap with those corresponding to Ca, showing
a R2 of 0.89 for the wavelength range between 2334–2379 nm (Table 3.3).
This can be explained by soil pH that is directly influenced by calcium
carbonate contents, higher concentrations leading to a higher pH. This is
also shown on Figure 3.1 and Figure 3.6, where the similar performance of
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Figure 3.2: Cross validation for Iron in all 60 samples, predicted versus reference
values for soluble fractions of chemical elements against the full spectrum. Blue
line: calibration line. Red line: validation line.

the models indicated by the regression lines, can be seen.

Full cross validation following leave-one-out approach was found to be
the most effective technique for model assessment based on the number of
samples available for this study Viscarra Rossel et al. [2006], Viscarra Ros-
sel [2008]. The cross validation results shown in Table 3.3 indicate that
PLSR models can be used in prediction and quantification of soluble frac-
tions of individual elements. Figure 3.1 shows that the models overestimate
fractions of elements present in low concentrations (Na and Fe), while the
predicted values for the remaining elements of interest (Ca, Mg, K) are
lower than the measured. Based on the calculated b-coefficients, RSME and
R2 values, it can be stated that the identified spectral wavelength ranges
are associated with the respective property of interest. Wavelengths are
associated with certain properties, which cannot be observed from visual
inspection of the spectra alone. This is especially the case of elements
present in low quantities, such as Na and Fe.

PLSR uses correlated variables and relates them to a set of output
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Figure 3.3: Cross validation for Potassium in all 60 samples, predicted versus
reference values for soluble fractions of chemical elements against the full spec-
trum.Blue line: calibration line. Red line: validation line.

variables by projecting the data into a low dimensional space, defined by
orthogonal latent vectors [Dayal and MacGregor, 1997]. The presence of
exchangeable ions in soils that are high in clay content can influence the
prediction of soluble fractions of elements [Gomez et al., 2008]. Moreover,
as stated in Stevens et al. [2010], the use of spectral data derived from
heterogeneous areas in terms of soil type, has been reported to diminish
the predictive ability of VNIR-SWIR spectroscopy. Hence, the results of this
study should not be extrapolated to not sampled soil types. To establish
relationships between absorption and chemical elements for clay-rich soils,
representative samples would need to be included in the PLSR analysis.

These results show the feasibility of the proposed methodology for
identifying soluble fractions of soil chemical elements in silt loam soils
using infrared spectroscopy. The influence of each element on specific
wavelength ranges can be explained by the molecular overtones of the
compounds present in the soil samples. The prediction models associated
with soluble fractions of various concentrations (Ca, Mg and K) gave overall
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Figure 3.4: Cross validation for Magnesium in all 60 samples, predicted versus
reference values for soluble fractions of chemical elements against the full spec-
trum.Blue line: calibration line. Red line: validation line.

higher R2 and lower RMSE values. This suggests that the methodology
can potentially be applied to other soil types in order to develop a more
generalized soil model for prediction of soluble fractions of individual
chemical elements.

3.4 Conclusions

This chapter reports on an approach for identification of soluble fractions
of Calcium, Magnesium, Potassium, Sodium, and Iron as well as acidity (pH)
through laboratory spectral response. The highest coefficients of determi-
nation were reported for Calcium, Magnesium and Potassium. Elements
such as iron and sodium were strongly correlated only to specific wave-
length ranges with limited influence over the full wavelength range. The
chapter presents an attempt to identify the influence of individual soluble
fractions of chemical elements in silt loam soils on infrared spectra.
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Figure 3.5: Cross validation for Sodium in all 60 samples, predicted versus re-
ference values for soluble fractions of chemical elements against the full spec-
trum.Blue line: calibration line. Red line: validation line.
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Figure 3.6: Cross validation for pH in all 60 samples, predicted versus reference
values for soluble fractions of chemical elements against the full spectrum.Blue
line: calibration line. Red line: validation line.
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4Spectral sensitivity of Potassium

as a proxy for soil particle
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Abstract

In Chapter 3, the feasibility of using Partial Least Squares Regres-
sion for identifying soluble fractions of soil chemical elements in
silt loam soils using infrared spectroscopy was tested. By outlining
wavelength ranges where the change in reflectance is associated with
change in the concentration of the element, Potassium was identified
as having the closest to 137Cs properties that can be predicted from
infrared spectra.

This chapter presents a laboratory based study on the use of Po-
tassium (K) as a potential replacement of Cesium (Cs) in soil particle
tracing. The element has similar electrical, chemical and physical
properties. In order to test this, heavy clay, clay loam, loam, silty loam
and sandy loam and fine sand soils were sampled for the study. Sensi-
tivity analyses were performed on soil chemical properties and spectra
to identify the wavelength range related to K concentration. Different
concentrations of K fertilizer were added to soils with varying texture
in order to establish spectral characteristics of the absorption feature
associated with K. 1

1This chapter is based on: Luleva, M.I., van der Werff, H., Jetten, V., van der Meer,
F., (2011). Can Infrared Spectroscopy Be Used to Measure Change in Potassium Nitrate
Concentration as a Proxy for Soil Particle Movement?, Sensors (11), 4188–4206.
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4.1 Introduction

Land degradation is a relatively slow process [Omuto and Shrestha, 2007].
Physical and chemical degradation, under the influence of wind and wa-
ter, leads to loss of nutrients, soil instability, subsoil exposure and de-
sertification. Well-known erosion features such as rills and gullies are
manifestations of an already advanced degradation [Boardman et al., 2009,
Boardman and Evans, 2006]. To detect early warning signs, however, it
is important to monitor soil properties sensitive to degradation, such as
chemical composition, runoff and sediment yield. Natural variation in soil
chemical composition is associated with bedrock geology and soil type,
although agricultural practices and overgrazing also influence surface soil
chemistry and quality [Lemenih et al., 2005, Nael et al., 2004, Zhang et al.,
2006]. Hence, studies on soil erosion have focused on using soil chemical
composition mainly for particle tracing.

Various chemical soil particle tracers have been used to obtain spatially
distributed data for soil erosion [Zhang et al., 2006] and used to identify
suspended sediment [Onda et al., 2007]. Commonly used soil particle
tracers are the Cesium 137 isotope (137Cs ) [Andersen et al., 2000, Chappell,
1999, Collins et al., 2001, Guimaraes et al., 2003, Porto et al., 2001, Sanchez-
Cabeza et al., 2007, Timothy et al., 1997], Lead (210Pb) and Beryllium
(7Be) [Mabit et al., 2008, Wallbrink and Murray, 1993], and Rare Earth
Oxides [Polyakov and Nearing, 2004, Zhang et al., 2006]. Although 137Cs
is considered the primary chemical tracer for detection of soil particle
movement [deGraffenried Jr and Shepherd, 2009, Estrany et al., 2010,
Meusburger et al., 2010, Rodway-Dyer and Walling, 2010, Xiaojun et al.,
2010], one has to assume a homogeneous distribution of 137Cs fall out
limited to the Northern hemisphere, and that all particle movements are a
result of soil erosion [Campbell et al., 1982, Chappell, 1999, Walling and
Quine, 1990]. Cost of soil sampling and analysis and the limited half-life
of the element are the main limitations to extrapolate these methods to
cover large areas [Boardman, 2006].

Soil properties have been studied with infrared spectroscopy since the
1980’s, using visible, near-infrared and shortwave infrared wavelength
region (400–2500 nm). Spectral reflectance is determined by both physical
and chemical characteristics of soils [Baumgardner et al., 1985, Ben-Dor
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et al., 2003, Shepherd and Walsh, 2002]. Soil spectral features are mainly a
result of overtone absorption and combination of bond vibrations in mole-
cules of three functional groups in minerals: OH, SO4 and CO3, [Ben-Dor
and Banin, 1995, Hunt and Salisbury, 1970]. Organic matter is also found to
have influence on spectral response since it holds most positively charged
nutrients in soils. However, due to the relatively weak attraction between K
and this soil constituent, K absorption is not found to be affected [Schulte
and Kelling, 1998]. Results obtained using regression models for detection
of soluble fractions of Potassium, only have moderate accuracy and vary
according to study sites [Stenberg et al., 2010]. Sampling large areas for
determination of soil properties using spectral reflectance is relatively
cheap and fast, compared to traditional field and laboratory techniques
[Shepherd and Walsh, 2002]. To date, infrared spectra have not been put
in use when studying soil erosion with 137Cs . Low concentrations of the
isotope in nature makes the identification of the element through spectral
means impossible, considering the capabilities of available spectrometers
[Stevens et al., 2010].

The element Potassium (K) shares electrical, chemical and physical
properties with Cs, both being members of the Group I alkali metals
[Andrello and Appoloni, 2004, Relman, 1956]. Both elements have similar
biological and chemical behaviour, where the difference is only in reactivity
[Relman, 1956], but it has not been tested as a particle tracer. Potassium
occurs naturally in the environment, but it is also used on agricultural
lands as a fertilizer. The amount of K fertilizer (in a form of K2O or
K–P–N) typically applied by farmers, according to EU Directives: Nitrates
Directive (91/676/EC) and Water Framework Directive (2000/60/EC), as
well as EU commission recommendations, is 183 kg of solid fertilizer per
hectare or in dissolved solution 1.83 g of solid fertilizer per 10 ml of water
for sandy silt soils, although there is no specific policy adopted for the
EU region. In practice, the range of totals of applied amount may reach
5–8 g/10ml according to soil type and water conditions. In soils, K is
mainly present as part of preliminary soil minerals (unavailable), in clay
minerals and fine silt (slowly available), and in a water-soluble form (readily
available) [Garrett, 1996, Peterburgsky and Yanishevsky, 1961, Sharpley,
1989]. When K fertilizers are applied, they dissolve and K becomes part
of the soil-water solution [Garrett, 1996]. Fertilizers are applied prior to
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harvesting. To maintain optimal crop production, uniform application of
the fertilizer is the most desired practice [Jalali, 2007]. Potassium remains
immobile as long as soils are not chopped or plowed. The mobility and
distribution of this element has also been discussed by Askegaard and
Eriksen [2000], Jalali and Rowell [2009, 2003]. These authors explain the
behaviour of the element determined by soil physical properties such
as texture, porosity, organic matter and water holding capacity. They
also state that due to low cation exchange capacity and organic matter
content, sandy soils are more likely to experience K leaching than clays.
Furthermore, soil texture combined with chemical composition (presence
of Calcium, Sodium or Gypsum, of both soil and water used for irrigation)
determine the rates of leaching of K [Jalali and Rowell, 2003, Kolahchi and
Jalali, 2007]. Establishing the behaviour of K in soils can prevent under
or overestimating of predicted sediment deposits in studies where the
element is used as a tracer.

The aim of this chapter is to determine spectral characteristics of
K in soils and its capability to replace 137Cs in large scale soil erosion
monitoring. This is examined by measuring infrared spectral response
of soils of different texture. The laboratory analysis comprises of two
experimental stages, with varying concentrations of added K fertilizer.
Fertilizer concentrations, in range of three times higher than typically
applied by farmers, are used to quantify K through spectral analysis and
establish wavelength ranges sensitive to change in concentration of the
element. The findings are subsequently compared to literature based on
Partial Least Squares Regression modelling and derivative manipulations.
The second stage of the experiment includes application of typically used
in agricultural field concentrations, to determine the lowest detectable
concentrations.

4.2 Methods

4.2.1 Laboratory Experiment

Eight locations in central, east and southeast Netherlands were chosen for
soil sample collection, according to soil type and soil texture. The collected
material varied from heavy clay (Fluvisol- Eutric), clay loam (Fluvaquent-
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Typic), loam (Fluvisol- Calcaric), silty loam (Luvisol- Orthic) and sandy loam
(coarse sand) (Podzol- Humic), to fine sand (Arenosols- Albic). Description
of each soil type can be found in Table 4.1.

At each location, 1–2 kg of material was collected using a clean spade
to form a composite sample of the surface soil (0–5 cm). Each composite
sample comprised of ten combined discrete samples collected around a
single location, in order to represent all components of the sampled body
material. Duplicates were acquired for silty and sandy loam soils. The
samples were air dried for two days and subsequently sieved to remove
particles larger than 5 mm. First, each sample was divided and placed
in four identical metal dishes (30 g of soil each). The soil material in
three of the dishes was fertilized with respectively 8, 16 and 32 g/10ml
solution of Potassium Nitrate Fertilizer (46 % K2O 13 % N, Organic mat-
ter). The use of fertilizer in the experiment allowed strict control over
the added concentrations. To the fourth, demineralised water was added
for use as a reference. Prior to acquiring spectra, samples were dried
overnight at 30 degrees Celsius, to remove the effect of moisture on the
spectral reflectance. The percentage Sand-Silt-Clay content was determined
through bulk density and soil texture analysis, following standard labo-
ratory procedures [Van Reeuwijk, 2002]. An Analytical Spectral Devices
(ASD) Fieldspec Pro Spectrometer with a 450–2500 nm wavelength range
coverage at 3–10 nm spectral resolution was used to acquire reflectance
spectra. A high-intensity contact probe with internal light source was
used as fore-optic with a spot size of 10mm. An average spectrum was
created per soil textural type and amount of K, based on 10 measurements
repeated for 20 iterations.

In the second stage of the experiment, three soil textural types (heavy
clay, fine sand and silt loam) were selected, as these clearly show the
effect of each textural component (sand, silt, clay) on spectra. The same
procedure as above was followed, but now nine dilutions of fertilizer in
the range of 1.13 g/10ml to 1.93 g/10ml were applied to each soil class,
and one set was used as a reference. Spectra were collected in the same
setup as described above.
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Figure 4.1: Absorption feature parameters: absorption band depth, absorption
band width, absorption band center., after van der Meer [2004]

4.2.2 Absorption Feature Parameters

To determine the wavelength range influenced by change in K concen-
trations, and to compare the parameters from a common base line, an
absorption feature analysis using continuum removal was performed follo-
wing Richter et al. [2009]. This method is found to enhance differences in
shape between individual features [Noomen et al., 2006]. Mathematically,
it is calculated by dividing each individual spectrum by the corresponding
continuum line [Kokaly and Clark, 1999]. Absorption features were asso-
ciated with K through sensitivity analysis to assess the impact of added
fertilizer on specific absorption features. After identifying the wavelength
range related to K, absorption feature characteristics including absorption
depth, absorption center, absorption area and absorption width of the
individual feature were calculated using IDL-ENVI software [ITT Visual
Information Solutions, 2009]. Figure 4.1 is an example to illustrate each
absorption feature parameter. Equations implemented in IDL scripts are
reported in van der Meer [2004].
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Table 4.1: Soil types [FAO, 2006, de Bakker, 1979] and typical texture characteris-
tics per soil type. Each soil type contents 15 sampling units

Map
Unit

Soil Type Description and Properties
[FAO, 2006]

Texture

Rn95C Fluvaquent-
Typic

Originate from Clayey ma-
rine and fluvial sediments.
Typically sandy loam or fine
sand texture.

Clay
loam

Rd10A Fluvisol-
Calcaric

Originate from predomi-
nantly recent fluvial and ma-
rine deposits. Calcaric mate-
rial between 20 and 50 cm
from the surface

Loam

Rn44C Fluvisol-
Eutric

Originate from predomi-
nantly recent fluvial and ma-
rine deposits. Having a base
saturation of 50 % or more
in the major pat between 20
and 100cm from the soil sur-
face.

Heavy
Clay

Zd21 Arenosols-
Albic

Originate from unconsoli-
dated, finely grained mate-
rial. Relatively young, sandy
soils with no profile develop-
ment

Fine
Sand

Hd30 Podzol-
Humic

Originate from weathering
materials of siliceous rock.
Spodic illuviation horizon
under a subsurface horizon
that has the appearance of
ash and is covered by an or-
ganic layer

Coarse
Sand

Bld6 Luvisol-
Orthic

Originate from unconsolida-
ted material. Pedogenetic
clay differentiation between
topsoil and subsoil. Prone
to erosion due to high silt
content.

Silty
Loam
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4.3 Results

4.3.1 Laboratory Testing of Potassium Influence on Spectra

Based on results from continuum removal and sensitivity analyses, the
wavelength range that relates to Potassium concentration was found to be
2450–2470 nm. For this wavelength range, coefficients of determination
values vary between 0.918 for clay loam samples to 0.984 for silty loam
samples. Figure 4.2 shows changes in absorption at 2450–2470 nm caused
by changes in K concentration, based on the first stage of laboratory expe-
riments. The deepest point of absorption was observed between 2450 nm
and 2470 nm. With addition of fertilizer, the depth of absorption increases
accordingly. This is also observed when small quantities of fertilizer were
applied (Figure 4.3). This figure shows changes in absorption after applica-
tion of fertilizer in quantities between 1.13 g/10ml and 1.93 g/10ml, for
the heavy clays, fine sand and silt loam soil samples. Changes are noted
for fine sand and silt loam samples, the absorption in the heavy clay soil
samples is not clear.

4.3.2 Absorption Feature Analysis

Figure 4.4 shows variation per soil textural type in absorption depth, width
and center of absorption in the 2450–2470 nm wavelength range. Figure 4.5
shows changes in absorption feature characteristics due to increase in K
concentrations. Both figures show that the spectral response of soils
with higher clay content is characterised by noisier spectrum. A shift of
5–10 nm in center of absorption is most profound in the clay samples,
although all samples show a shift to lower wavelengths with increase of K
concentration. An increase in band depth is noted for soil samples that
belong to the silty loam textural class. This cannot be observed for the
heavy clay and fine sand samples.
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[a]

[b]

Figure 4.2: Change in absorption at 2450–2470 nm with change in K concentration.
Each spectrum is shown in continuum removed reflectance and it is an average of
10 measurements. The blue lines belong to soils with no added fertilizer and used
as a reference. The deeper absorption features belong to samples with addition of
K fertilizer in concentrations 8, 16 and 32 g/10ml, indicated with black, green and
red line respectively. The sub-figures show (a) Clay Loam, and (b) Loam.
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[a]

[b]

Figure 4.3: Change in absorption at 2450–2470 nm with change in K concentration.
Each spectrum is shown in continuum removed reflectance and it is an average of
10 measurements. The blue lines belong to soils with no added fertilizer and used
as a reference. The deeper absorption features belong to samples with addition of
K fertilizer in concentrations 8, 16 and 32 g/10ml, indicated with black, green and
red line respectively. The sub-figures show (a) Heavy clay, and (b) Coarse Sand.
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[a]

[b]

Figure 4.4: Change in absorption at 2450–2470 nm with change in K concentration.
Each spectrum is shown in continuum removed reflectance and it is an average of
10 measurements. The blue lines belong to soils with no added fertilizer and used
as a reference. The deeper absorption features belong to samples with addition of
K fertilizer in concentrations 8, 16 and 32 g/10ml, indicated with black, green and
red line respectively. The sub-figures show (a) Fine Sand, and (b) Silt loam.
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[a]

[b]

[c]

Figure 4.5: Change in absorption at 2450–2470 nm with change in K concentration.
Each spectrum is an average of 10 measurements. The blue lines belong to soils
with no added fertilizer and used as a reference. The deeper absorption features
belong to samples with addition of K fertilizer in concentrations 1.13 g/10ml
(black), 1.33 g/10ml (green), 1.73 g/10ml (orange) and 1.93 g/10ml (red); (a) Heavy
clay, (b) Fine Sand, (c) Silt Loam.
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Figure 4.6: Variation in absorption feature parameters per soil textural type. (a)
Absorption center, (b) Absorption depth, (c) Absorption width.
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Figure 4.7: Change in absorption feature parameters- depth of the absorption,
width and center, classes based on varying concentrations of added K fertilizer 0
to 32 g/10ml for all samples and soil textural types: (a) Absorption band depth
for 0 to 1.93 g/10ml, (b) Absorption band depth for 0 to 32 g/10ml, (c) Absorption
width for 0 to 1.93 g/10ml, (d) Absorption width for 0 to 32 g/10ml, (e) Absorption
center for 0 to 1.93 g/10ml, (f) Absorption center for 0 to 32 g/10ml.
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4.4 Discussion

4.4.1 Potassium Influence on Spectra

From continuum removal and sensitivity analysis performed on laboratory
derived spectra, the wavelength range where the center of K absorption
can be found is 2450 to 2470 nm. This falls within the range reported in
literature using second derivative calculations [Ben-Dor and Banin, 1995]
and Partial Least Squares Regression models [Udelhoven et al., 2003]. These
studies reported optimal calibration equations for K that produce R2 of
0.89 for wavelengths between 2396 and 2462 nm. The characteristic
feature can be accounted to possible absorptions of combination modes
between the free K ions and OH functional group.

Minor change in depth of absorption with addition of K fertilizer, is
observed in samples with high clay content, that belong to soil textural
classes clay loam and heavy clay (Figures 4.2 and 4.3). This is explained by
the fact that clay content in samples prevents significant spectral changes
caused by non-clay minerals [Ben-Dor et al., 2003]. Potassium is held at the
edges of the clay particles, causing easy replacement by other positive ions
[Johnston, 2010]. The soil textural types that show consistency between
change in K concentration and depth of absorption are also the ones most
prone to soil erosion: silty loam and fine sand (Figures 4.3(a), 4.3(b) &
4.4(a)), and Figures 4.5(b) & 4.5(c)).

4.4.2 Absorption Feature Analysis

The center wavelength and depth of the K absorption feature becomes
better defined with an increase in concentration of added fertilizer. This
is observed in the findings that emerge from both stages of laboratory
analysis for all soil textural types (Figure 4.2 and 4.5). Changes in absorp-
tion feature parameters appear when 8, 16 and 32 g/10ml of fertilizer
are applied. Figure 4.4(a) shows that soil texture defines the position of K
absorption center. High clay content in soils causes greater fluctuations
in absorption center values. The increase in concentration, as seen in
Figure 4.7(e) and 4.7(f)), has strong influence on the peak position only
above 8 g/10ml of fertilizer. The effect K concentration has on spectra is
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highlighted in the case of absorption band depth for concentrations higher
than 8 g/10ml (Figure 4.7(b).

Samples with high clay content experience smaller changes in absorp-
tion compared to those belonging to highly erosive soil textural types -
sand and silt loam. This is explained by the abundance of free K ions in
clays and the formation of illite-like [Barre et al., 2008] groups, where K
replaces water and fills the interlayer clay sites. The presence of clay par-
ticles in soils causes shifts in clay absorption from 2200nm towards longer
wavelengths, and therefore influencing the features at 2400–2500 nm [Ha-
segawa, 1963]. On the other hand, as stated in Kolahchi and Jalali [2007],
when K fertilizer is applied to soils with low clay content, K ions do not
interact strongly with the soil matrix. As a result, a localized increase in K
concentration in the soil solution can be observed. The influence of texture
on spectral absorption of K can be seen in Figure 4.6(a–c). Values for
absorption feature parameters: center of absorption, depth and width, are
dependent on soil textural type. The figure shows how higher percentage
of each textural component- clay (Clay loam, Loam, Heavy clay), sand (Fine
sand, Coarse sand) or silt (Silty loam), influences the results. Therefore, the
influence of soil texture prevents the computation of a universal statistical
model for all textural classes.

Reflecting back on erosion, it is the silty soils that are most prone
to erosion. Heavy Clays are rarely found in landscape positions prone
to erosion since they are associated with floodplain soils. All the other
texture types can occur on hill slopes, but of those, the higher the sand
content, the higher the infiltration rate, meaning less runoff. This leaves
the silty soils and loamy sands to be the most interesting in this context.

Both experiments indicate that quantification of K depends on the
amount of fertilizer added to the soil samples, as well as the soil sand-silt-
clay content. In order to serve as particle tracer, the initial amount of K
present in the soil should be established by collection of spectra prior to
fertilizer application. This serves as a baseline and it should be accounted
for when change in concentration occurs due to removal of fertilizer by
erosion agents. Furthermore, particle tracing using K fertilizer is limited
by K uptake by plants, and therefore cannot be performed after vegetation
cover has emerged. Nevertheless, K can be quantified, through spectral
response when more than 1.73 g/10ml of K fertilizer is present in the soil.

62



4.5. Conclusions

As shown in Figures 4.6(a–c) and 4.7, the degree of change above this
value becomes more constant for all textural types, while the fluctuation in
parameter values for lower concentrations can be explained by noise in the
spectra. In relation to common agricultural practices, this amount is the
minimum quantity of needed fertilizer recommended for crop production.
Higher amounts of available K in soils have not been found to cause
contamination or have a negative effect on agricultural practices. This
laboratory experiment to detect and quantify K concentration in soils using
spectral response, suggests that the technique can be applied in field and
possibly on airborne hyperspectral imagery in order to achieve rapid and
extensive spatial coverage over large areas affected by soil erosion.

4.5 Conclusions

This chapter presents a new approach to soil particle tracing using infra-
red spectroscopy, allowing a rapid monitoring of soil particle movement,
towards monitoring soil erosion. The aim was to find a chemical element
that can replace radioactive 137Cs , while allowing fast and relatively in-
expensive way of obtaining spatial data. Potassium is known to have the
same physical and chemical behaviour in soils differing only in reactivity.
Similarly to studies on 137Cs , near-even distribution of the element can
be assumed based on the annual application of fertilizer over soil erosion
affected fields. Limitations in K quantification are an unknown initial
concentration of available and unavailable K, as well as the effect of uptake
by plants. If fertilizer is present in concentrations higher than 1.73 g/10ml,
our technique can be applied. Best results are achieved when the method
is used on soils high in sand and silt content.

The defined absorption feature with a peak center positioned between
2450 and 2470 nm, in the infrared spectrum associated with Potassium,
makes it possible to detect and quantify using spectroscopy. Spectra
should be acquired before and after the application of the fertilizer, to
establish reference concentration.
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5Tracing Potassium in a silty loam

soil with field spectroscopy

Abstract

In Chapter 4, tracing soil particles using K fertilizer and infrared
spectral response was identified as suitable technique for quantifica-
tion of K in soils with sandy and sandy silt texture. It was suggested
as a new approach that can potentially grow to a technique for rapid
monitoring of soil particle movement.

The aim of this chapter is to identify soil particle movement using
Potassium fertilizer and infrared spectral response. Flow experiment
was conducted in the area of the Guadalentin basin in Murcia, South
East Spain. The severe soil erosion that takes place in the region, as
well as the silty loam texture of the soil, determined the selection of
the field area. The study was used as a pilot experiment to identify
possible limitations of an experiment of this type.
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5.1 Introduction

Soil properties sensitive to soil erosion, such as chemical composition,
moisture content, runoff and sediment yield, can serve as an indicator for
monitoring and detecting early signs of degradation. Agricultural practices
and changes in landuse influence the quality and chemical composition
of the surface soil material, although natural variation associated with
bedrock geology determines the soil type and composition [Lemenih et al.,
2005, Nael et al., 2004, Zhang et al., 2006].

As already discussed previously in Chapter 2, an approach to predict
soil erosion is to use chemical tracers [Onda et al., 2007] as a proxy for
tracking of soil particles movement [Zhang et al., 2006]. Soil particle
tracing is an approach to detect early signs of hazard in arid and semi-
arid environments [Chappell, 1996]. The Cesium 137 isotope (137Cs ) is
considered to be the primary chemical tracer for detection of soil particle
movement and has been used in soil erosion studies for over 40 years. The
137Cs was introduced to the environment between the 1950s and 1970s
through nuclear fallout of atomic bomb tests, and in 1986 through the
Chernobyl power plant accident (see Chapter 3). The applicability of the
technique is limited by the half-life of the isotope and the cost of soil
chemical analysis, preventing its use over large areas [Boardman, 2006].

Remote sensing allows the acquisition of continuous spatial informa-
tion over larger areas [Alatorre and Begueria, 2009, Jetten et al., 2003,
Vrieling, 2006], which, combined with the information about soil chemi-
cal composition, provided by the shortwave infrared wavelengths in the
electromagnetic spectrum, could allow extensive soil particle tracing. As
presented in Chapter 3, the spectrally active element Potassium (K) can
be used as a proxy to 137Cs in soil particle tracing [Luleva et al., 2011]. A
spectral absorption feature near 2465 nm is indicative for the abundance
of K in soils, and absorption band depth is linearly related to concentration
[Luleva et al., 2011]. Potassium (K) can be introduced as a fertilizer in the
form of Potassium Oxide (K2O ) and Potassium-Phosphorus-Nitrogen (KPN).
The recommended amount of fertilizer for EU countries is 0.6–2 mg/g of
soil, although quantities may be higher. When applied as a fertilizer, the
majority of available K ions adsorb onto the surface of soil particles in the
first 30 seconds to 2 minutes after application When soils are not plowed,
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1.003 mg of K per gram of soil is adsorbed, while if disturbed, this amount
reduces depending on quantity of removed organic matter in soil [Wang
and Huang, 2001]. The mobility of K is determined by various factors, the
most important of which include physical and chemical properties such as
soil texture [Luleva et al., 2011], organic matter [Askegaard and Eriksen,
2000], cation exchange capacity and presence of Calcium, Sodium and
Gypsum [Jalali, 2007, Jalali and Rowell, 2009].

The aim of this chapter is to examine the possibility to use Potassium
(K), in the form of an agricultural fertilizer, as a soil particle tracer in
field conditions. Moreover, the chapter aims to outline key limitations and
provide suggestions for improving the used methodology.

5.2 Methodology

5.2.1 Study site

The study site is located in the Guadalentin basin, within the province of
Murcia, Southeast Spain. This is an area severely affected by soil erosion
(Figure 5.1). Rills and gullies are the most common soil erosion feature,
caused by tillage, fallow land and land abandonment. Rain storms are of
high intensity, while rock types are susceptible to erosion.

Guadalentin basin lies on the eastern edge of the Betic ranges facing
southwest-northeast direction and faults determine the main structure of
the drainage network. The basin covers an area of 3300 km2. Soils are
shallow with high Calcium Carbonate content exceeding 50 % for some
areas. Texture depends mainly on the hillslope position. Stoniness is
high, low organic matter and moisture content. Salinity and crusting
are problematic for some parts of the Guadalentin Basin, where soils
are neutral to slightly alkaline. According to FAO [2006] the main soil
types, recognized in the region of Murcia are Calcisols, Luvisols, Regosols
and Fluvisols. The area has a typical semi-arid climate Mediterranean.
Annual precipitation ranges from 300 mm to 500 mm with average annual
temperature between 12 and 18◦ C [Alterra, 2007].
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Figure 5.1: Advanced soil erosion in the Region of Murcia, South East Spain

5.2.2 Experimental setup and data collection

In this chapter, the field-based experiment was based on two experimental
plots placed in bare agricultural field with silty loam Calcisols with ranging
clay content between 30 and 36%. One of the plots (Plot A) was sprayed
with K–P–N fertilizer (24%, 12%, 16%), diluted with 20% water by volume
(1:1.5 ratio) recommended by the manufacturer to avoid crystalization,
while the second plot (Plot B) was used as a reference with no added
fertilizer.

The plots were 2.5 m in length and 0.6 m in width, following the set up
in Morgan (2005).

Each plot was evened out and cleared from larger soil aggregates or
loose vegetation residuals to achieve optimal flow conditions. The degree
of slope of the plots was 12 %. Controlled water flow was generated to
trigger particle movement. A water tank with volume of 10 l with dispenser
was used to generate water flow for a total of 15 min per plot.

Infrared spectral measurements were acquired with an Analytical Spec-
tral Devices (ASD) Fieldspec Pro instrument with a 450–2500 nm wave-
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length range coverage at a 3–10 nm spectral resolution, following a grid
sampling strategy. The fore-optic was a high-intensity contact probe with
internal light source and a spot size of 10 mm in diameter. The measure-
ments were collected in three stages: prior to application of fertilizer to
determine background values of K, after application of fertilizer to esta-
blish the distribution of fertilizer, and after water flow to observe particle
displacement. Data were obtained in a grid with 10 measurements across
flow direction and 11 measurements along flow direction, to a total of 110
measurements per plot per stage. The same locations were measured at
each stage of the experiment.

A spectral library was built from spectra collected during the expe-
riment. These were mosaicked to produce artificial images, each repre-
sentative for a plot in one of the three stages of the experiment. Each
pixel within an image contains the spectral information collected from
the corresponding sampling point in a plot. A spectral subset of bands
was created for the 1800–2500 nm wavelength range to include the water
absorption band around 1900 nm, the clay feature near 2200 nm and the
K absorption feature near 2465 nm [Luleva et al., 2011]. A continuum
removal conversion was applied to all spectra to eliminate brightness
differences and thus enhance colour difference while standardizing the
shape of absorption features [Noomen et al., 2006]. The absorption feature
parameters- depth, position and area were computed for each pixel in IDL
ENVI software, following van der Meer [2004].

The images were spatially interpolated using ordinary kriging with
a spherical semivariogram model in ArcGIS 10 software. Validation of
the spectrally obtained images was done by comparison with laboratory
determined K concentrations in the collected soil samples, as well as
digitized images of the flow patterns.

5.2.3 Sensitivity analysis on spectral data

The collected ASD infrared spectra were built into artificial images that
represent each of the three stages of the experiment. A pixel within an
image contains the spectral information collected from the corresponding
sampling point in a plot. A spectral subset of bands was created for the
2000–2500 nm wavelength range to include the clay feature near 2200 nm
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and the K absorption feature near 2465 nm [Luleva et al., 2011]. A conti-
nuum removal conversion was applied to all spectra to eliminate brightness
differences and thus enhance colour difference while standardizing the
shape of absorption features [Noomen et al., 2006]. The absorption feature
parameters- depth, position and area (described in Chapter 4) were com-
puted for each pixel in IDL-ENVI software, following van der Meer [2004].
Each image pixel was then assigned the corresponding absorption para-
meter values for clay and K absorption feature. The images were spatially
interpolated using ordinary kriging with a spherical semivariogram model
in ArcGIS 10 software. The absorption depths for clay (near 2200 nm) and
K (near 2465 nm) absorption bands were plotted to determine the relation
and coefficient of determination between clay content and K content. The
procedure was applied for both plots on values derived after each stage of
the experiment.

5.3 Results and Discussion

5.3.1 Potassium Fertilizer Mobility

Although the plots were not fully covered by the flow, the sampling points
were deliberately kept the same, in order to examine the whether change is
caused by the flow. This was mainly due to the fact that the soil was fully
dried and large lumps were formed. This allowed the water to accumulate
near the water tank, before it could trigger a flow. It is possible, that this
has caused leaching down the soil profile, or further dilution of the applied
fertilizer. Therefore, it can only be assumed that fertilizer is removed with
the particles under the influence of the water flow. The runoff water was
not collected, and therefore this could not be tested with the available
dataset.

Figures 5.2 and 5.3 show the change in absorption band depth for clay
absorption feature near 2200 nm and K absorption feature near 2460 nm.
The pixels shown in white colour are these with deepest absorption, while
the green indicate the shallowest.

Figure 5.4 shows scatter plots and coefficients of determination calcu-
lated based on absorption band depth values for clay and K absorption
features.
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The plot received no fertilizer, however difference is still noted. The
flow in the top 1/3 has decreased the K absorption, while the flow line
to the right coincides with an increase in K. This might indicates that the
higher concentration of K has deposited.

Higher values of absorption depth represent higher concentrations. The
representation of the plots before addition of fertilizer or water flow, indi-
cated on Figures 5.2 and 5.3, show that the K pattern follows clay content
as expected. The application of K solution results in a heterogeneous
image, where the center has much higher K values, while the upper right
where water pooled, due to difference in surface roughness caused by the
flow.

The results clearly show that there is change after each stage of the
experiment, however the concentrations of applied fertilizer might be too
low to indicate whether particles have moved.

The images after water flow resemble the original situation, except for
the accumulation of water at the top right. There is little evidence of flow.
The fact that in the areas of the image where no flow has taken place the
values are back to near original, suggests that leaching of K away from the
surface has occurred.

Study site with soils with lower clay content than the one at the present
location should be selected in order to minimize the influence of clay
absorption on K feature. Furthermore, in order to attempt quantification
of fertilizer using infrared spectra, ranging concentration of fertilizer
should be applied and threshold values and statistical relationships should
be established.

Delineation of the plots is recommended, so that the flow can remain
within the area of interest. In case the soil is dry and prone to formation
of lumps, the flow should have higher intensity and longer duration.

To estimate the deposition, all runoff water should be collected, and
the collected sediment should be analysed for its K content. Soil samples
should also be collected from the plots after each stage of the experiment
in order to validate the produced images.
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Figure 5.2: Spatial representation of K absorption feature depth near 2465 nm
and clay absorption feature depth near 2200 nm for plot A. This plot was treated
with 2.4 mg/g of added fertilizer. Each image comprises 110 sampling points
collected after each stage of the field experiment (before treatment, after addition
of fertilizer, and after water flow)
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Figure 5.3: Spatial representation of K absorption feature depth near 2465 nm and
clay absorption feature depth near 2200 nm for plot B. This plot was not treated
with fertilizer. Each image comprises 110 sampling points collected after each
stage of the field experiment (before treatment, after addition of fertilizer, and
after water flow)

73



5. Tracing Potassium in a silty loam soil with field spectroscopy

[a]

R² = 0.9142

0

160

0 200

C
la

y 
F

ea
tu

re

K Feature
[b]

R² = 0.9185

0

160

0 200

C
la

y
 F

ea
tu

re

K Feature

[c]

R² = 0.9158

0

160

0 200

C
la

y 
F

ea
tu

re

K Feature
[d]

R² = 0.9418

0

160

0 200

C
la

y
 F

ea
tu

re

K Feature

Figure 5.4: Relationships between band depth near 2465 nm (K feature) and band
depth near 2200 nm (Clay feature) expressed using coefficient of determination
(R2) for experimental plot A [a,b] and plot B [c,d] for each stage of the experiment.

5.3.2 Change in absorption feature depth in relation to K

concentrations

Using contact probe mode of the ASD field spectrometer has limited the
influence of external factors. This allowed the estimation of absorption
feature parameters at wavelength near 2460 nm. As previously discussed in
Chapter 4, clay absorption near 2200 nm strongly influences the identified
K absorption feature near 2460 nm. Therefore, both features had to be
examined and compared statistically in order to establish if the amount of
clay present in the soil is sufficient to affect the depth of absorption of the
K feature.

On Figure 5.4 shows the relationship between depth of absorption near
2200nm and 2460nm. The values for coefficient of determination that
were calculated for all plots indicate R2 of 0.9 and above between the two
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variables. This can also be observed from the images shown on Figures 5.2
and 5.3, where the change in absorption band depth are illustrated.

5.4 Conclusions

The research hypothesis states that flowing water moves surface soil
particles with adsorbed K and can be traced by observing the change in
absorption feature characteristics. The experiment was conducted on
two plots- one was fertilized with a commercial Potassium fertilizer, by
applying recommended by the manufacturer concentrations. The second
plot was used as a reference in order to determine any natural change
in surface composition under the influence of water flow. Soil spectral
measurements were collected using ASD Fieldspec Pro Spectrometer, in
a contact probe mode, prior application of fertilizer, after application of
fertilizer and after water flow.

Change in depth of absorption near 2460nm was observed. However,
from the experiment, it is not clear whether the movement of K is due
to runoff or infiltration. More detailed analysis of clay movement and
moisture patterns could aid the interpretation of the sampling plots.
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with field spectroscopy

Abstract

In Chapter 5, a number of limitations of the field based experiment
for tracing soil particle movement using Potassium fertilizer and in-
frared spectral measurements were outlined. The most important of
these were the presence of high clay content, the insufficient runoff
data, as well as the low variation in applied fertilizer concentrations.
These prevented the drawing of optimal conclusions, however it re-
sulted outlining of key recommendations for improvement of the
experiment. A field-based water flow experiment, conducted on 6
plots on silt loam Loess soils in the Netherlands, is presented in this
chapter. The field area was selected due to the fact that the soils are
developed on Loess, and are characterized with limited clay content.
The plots were treated with various concentrations of K2O and one
plot was used as reference. Infrared reflectance spectra were collected
to observe spatial variation in available K, before and after application
of fertilizer, and after runoff simulation by water flow. The runoff
sediment was also collected in order to establish potential removal of
fertilizer under the influence of the water flow. 1

1This chapter is based on: Luleva, M, van der Werff, H, van der Meer, F., Jetten, V. (2013),
Observing change in potassium abundance in a soil erosion experiment with field infrared
spectroscopy, Chemistry, 22, pp 91–109, Luleva et al. [2013]
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6.1 Introduction

Soil erosion and sedimentation have been studied extensively in the last
decades [Boardman, 2006]. An approach to predict soil erosion is to use
chemical tracers [Onda et al., 2007] as a proxy for tracking of eroding
soil particles [Zhang et al., 2006]. Soil particles are moved by wind, water
or gravity [Moran et al., 2002]. Soil particle tracing is an approach to
measure net soil flux in arid and semi-arid environments and to detect
early signs of hazard [Chappell, 1999]. The Cesium 137 isotope (137Cs ) is
considered to be the primary chemical tracer for detection of soil particle
movement. This element has been used in a number of soil erosion studies
for over 40 years. Most recent publications cover the use of 137Cs either
for comparison between various methods [Sac et al., 2008, Xiaojun et al.,
2010], or as a validation technique of historical records [deGraffenried Jr
and Shepherd, 2009, Estrany et al., 2010, Meusburger et al., 2010, Rodway-
Dyer and Walling, 2010]. Cesium- 137 was introduced to the environment
between the 1950s and 1970s through nuclear fallout of atomic bomb
tests, and in 1986 through the Chernobyl power plant accident. Once fallen
onto the Earth surface, 137Cs attaches to soil particles. Its redistribution
is mainly controlled by erosion, transport and deposition of sediments
[Porto et al., 2001]. The use of 137Cs for soil particle tracking has some
assumptions [Parsons and Foster, 2011]: The distribution of 137Cs fall
out is homogeneous (while being limited to the Northern hemisphere),
and particles would only move by the influence of soil erosion [Campbell
et al., 1982, Chappell, 1999, Walling and Quine, 1990]. Furthermore, the
use is limited by the half-life of the isotope and the cost of soil chemical
analysis, preventing its use over large areas [Boardman, 2006]. There
is hence a demand for a substitute of 137Cs by a chemical element that
has similar physical and chemical behaviour, can be distributed evenly in
the environment and can be measured with already established analytical
techniques.

Remote sensing allows the acquisition of continuous spatial information
over larger areas [Alatorre and Begueria, 2009, Jetten et al., 2003, Vrieling,
2006]. Recently, we suggested in Luleva et al. [2011] that the spectrally
active element Potassium (K) can be used as a proxy to 137Cs in soil particle
tracing. Potassium has similar electrical, chemical and physical properties
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to Cs [Andrello and Appoloni, 2004, Relman, 1956], and both elements
show similar chemical behaviour in the environment [Relman, 1956]. A
spectral absorption feature near 2465 nm is indicative for the abundance
of K in soils, and absorption band depth is linearly related to concentration
[Luleva et al., 2011].

Potassium (K) is found in soils in three forms: readily available to plants
in a water soluble form, slowly available when released from clay mine-
rals, and unavailable as part of the crystalline structure of soil minerals.
Potassium (K) can be introduced as a fertilizer in the form of Potassium
Oxide (K2O ). The recommended amount of fertilizer for EU countries is
0.6–2.0 mg/g of soil, although quantities may be higher. When applied
as a fertilizer, the majority of available K ions adsorb onto the surface of
soil particles in the first 30 seconds to 2 minutes after application When
soils are not plowed, 1.003 mg of K per gram of soil is adsorbed, while if
disturbed, this amount reduces depending on quantity of removed organic
matter in soil [Wang and Huang, 2001]. The mobility of K is determined
by various factors, the most important of which include physical and che-
mical properties such as soil texture [Luleva et al., 2011], organic matter
[Askegaard and Eriksen, 2000], cation exchange capacity and presence of
Calcium, Sodium and Gypsum [Jalali, 2007, Jalali and Rowell, 2009].

The aim of the study presented in this chapter is to determine whether
change in K concentration, when applied in the form of commercially
available K fertilizer in concentrations commonly applied in agriculture,
can be observed using field infrared spectroscopy on Loess soils with
limited clay content.

We will examine this by answering three questions:

• Can a relative change in abundance of K in the field be observed with
spectroscopy using the absorption feature near 2465 nm?

• Does a change in absorption depth of the 2465nm absorption feature
correspond with the controlled addition and removal of K?

• Does the amount of K removed by water flow correspond to the
concentration of K found in runoff water?
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6.2 Methodology

6.2.1 Site Description

The experiment was done in an agricultural field in South Limburg region,
The Netherlands. This region is part of the European Loess belt which
covers parts of England, Northwest France, Belgium, The Netherlands,
Germany, Poland and Russia [Kwaad et al., 2006]. Typical landforms
include dry valleys, incised roads and manmade cultivation terraces. The
soils belong to Typic Hapludalf soil type (Soil Taxonomy) or Albic Luvisol
[FAO, 2006] and were developed on the Loess during the Holocene period.
These soils are highly vulnerable to soil erosion and runoff due to their low
structural stability. Top soils contain up to 60 % silt, while sub soils are
stony and dry due to underlying gravel of palaeo river terraces deposited
by the river Meuse. The slope varies from 2 to 12 % [de Bakker, 1979].
The annual precipitation is distributed throughout the whole year with
high-intensity rainfall restricted between April and October. The average
rainfall is 60mm per month, with maximum reaching 1–2 mm/min [Kwaad
et al., 2006]. Erosion is enhanced by a continuous change in land cover
and decrease of grassland in favour of arable land [Boardman et al., 1994].
The area is mainly used for crop production, therefore the soil is bare for
the period outside the growing season [Winteraeken and Spaan, 2010].

6.2.2 Field Experiment Design

A standard practice in soil erosion studies is the use of experimental
plots [Morgan, 2005]. In this chapter, the field-based experiment was
based on six experimental plots. Each plot was sprayed with a different
concentration of K fertilizer. Controlled water flow was generated to trigger
soil erosion and runoff. The six plots were 2.5 m in length and 0.6m in
width, following Morgan [2005]. Each plot was evened out and cleared
from larger soil aggregates or loose vegetation residuals to achieve optimal
flow conditions. Plot edges were raised 5–10 cm above the soil surface
to contain the runoff. The degree of slope naturally varied from 9.0 % to
9.6 %. 30 l water tanks with dispenser were used to generate water flow
and doormats to distribute the flow evenly. Galvanized steel sheets placed
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Figure 6.1: Experimental plot set up and components. a) photo of the setup in the
field, b) a schematic diagram of the setup.

at the bottom of each plot (20 cm below the surface) were used to collect
runoff into collector tanks (Figure 6.1).

400 ml of commercially available K fertilizer (K2O ) solution was sprayed
onto each plot (except the reference plot C) with a plant sprayer, applying
a fixed volume as evenly on the plot as possible. The concentrations of
applied fertilizer were 0.6 mg/g (plot A and plot F), 2.48 mg/g concentra-
tion (plot B), one with 1.18 mg/g (Plot D) and 1.76 mg/g (Plot E). Plot C
was used as a reference to observe the behaviour of naturally occurring K
under the influence of flowing water. The duration of the flow was 14–20
min., depending on the path of the flow. 10 l of runoff water and eroded
soil were collected at the bottom of the plot during the flow simulation,
which corresponds with a rainfall event of 90 mm per hour.

6.2.3 Field Data Collection

Before and after the flow experiment, Loess soil samples for validation
were collected from the surface (0–2 cm) and at 15 cm depth of each plot,
following a grid-point sampling strategy [Hengl et al., 2003]. Initial mois-
ture content was measured in the field using an IRROMETER Watermark
soil moisture meter. Water samples were collected per litre of runoff water,
up to a maximum of 10 samples or until runoff had stopped. Mixed water
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samples were collected from the runoff tank, taken from the surface, 10 cm
and 20 cm depth.

Infrared spectral measurements were acquired with an Analytical Spec-
tral Devices (ASD) Fieldspec Pro instrument with a 450–2500 nm wave-
length range coverage at a 3–10 nm spectral resolution. The fore-optic was
a high-intensity contact probe with internal light source and a spot size
of 10 mm in diameter. The measurements were collected in three stages:
prior to application of fertilizer to determine background values of K, after
application of fertilizer to establish the distribution of fertilizer, and after
water flow to observe particle displacement. Data were obtained in a grid
with 6 measurements across flow direction and 18 measurements along
flow direction, up to a total of 108 measurements per plot per stage. The
same locations were measured at each stage of the experiment.

6.2.4 Geochemical analysis

The soil samples were dried overnight at 30◦ Celsius and sieved through
a 2 mm sieve to remove large particles. Water samples were filtered
using laboratory membrane filters and the residual sediments were air
dried overnight. All samples were analysed for total K content following
standard laboratory procedures [Van Reeuwijk, 2002] with Inductively
Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) with a detection
limit of 0.01 mg/ml. Texture and bulk density analyses were performed to
determine the sand-silt-clay fractions.

The relationship between water contents and spectral absorption of K
was analysed in a laboratory. A soil sample was passed through a 2 mm
sieve and evenly distributed in three sample dishes, each dish containing
approximately 50 grams of dry material. Three different concentrations
of K fertilizer were added. The first set as a reference with addition of
10 ml of demineralized water and 0 mg/g of K, the remaining two with
addition of 1.20 mg K/ g of soil and 2.48 mg K/g of soil in 10 ml solution
respectively.

Spectral absorption was measured under laboratory conditions using
the same instrument specifications and settings as during the field expe-
riment (section 6.2.2).

Collection of spectra was done for 6 contiguous hours over 2 days,
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adding up to a total of 117 measurements. Each sample was weighed
before spectra were collected in order to measure the amount of moisture
that had evaporated. The experiment was terminated when the initial
moisture content of the samples was reached.

6.2.5 Spectral analysis

All ASD infrared spectra were mosaicked to produce artificial images, each
representative for a plot in one of the three stages of the experiment. Each
pixel within an image contains the spectral information collected from
the corresponding sampling point in a plot. A spectral subset of bands
was created for the 1800–2500 nm wavelength range to include the water
absorption band around 1900 nm, the clay feature near 2200 nm and the
K absorption feature near 2465 nm [Luleva et al., 2011]. A continuum
removal conversion was applied to all spectra to eliminate brightness
differences and thus enhance colour difference while standardizing the
shape of absorption features [Noomen et al., 2006]. The absorption feature
parameters- depth, position and area were computed for each pixel in IDL
ENVI software, following van der Meer [2004].

The values of absorption band depth were mosaicked into artificial
images, following the sampling pattern in IDL ENVI software. Each image
pixel was then assigned the corresponding absorption parameter values
for the water, clay and K absorption feature. The images were spatially
interpolated using ordinary kriging with a spherical semivariogram model
in ArcGIS 10 software. Validation of the spectrally obtained images was
done by comparison with laboratory determined K concentrations in the
collected water and soil samples, as well as digitized images of the flow
patterns.

A spectral library was built from spectra collected during the control-
led moisture experiment. Absorption band depth was calculated in IDL
ENVI software [ITT Visual Information Solutions, 2009] following van der
Meer [2004]. The absorption depths of the water (near 1900 nm), clay
(near 2200 nm) and K (near 2465 nm) absorption bands were plotted to
determine the relation and coefficient of determination between moisture
content, clay content and K content. The Normalized Soil Moisture Index
(NSMI) was calculated in order to minimize the influence of varying soil
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texture and albedo [Haubrock et al., 2008]. The index was chosen because
it has linear correlation with soil moisture but is not influenced by surface
crusting or substrate heterogeneity. It is calculated by combining reflec-
tance values at 1800 and 2119 nm [Haubrock et al., 2008]. The resulting
values are in spectral reflectance units. The same procedure was applied
to the images corresponding to each experimental field plot.

6.3 Results

K adsorbs onto the surface of soil particles at the latest 10 minutes after
application of fertilizer [Wang and Huang, 2001]. Once attached, K remains
immobile [Garrett, 1996] unless displaced by water or taken up by plants
[Jalali and Rowell, 2009]. Soil particles are considered displaced if mea-
sured K concentrations are lower than what has been applied in the form
of a fertilizer, or are similar to the concentration prior to application of
fertilizer.

Moisture influences the results, so it is hard to distinguish the effect
of K alone because of moisture changes during and after application. In
addition, K is absorbed by the clay particles,which could influence the
results, together with the exchange between absorbed K and K in solution.

In the context of soil erosion, clay particles move and create a movement
of free K, absorbed K and clay. Furthermore the top few centimeters of the
soil dry out and reach an equilibrium value, such as field capacity, which
depends partly on the amount of clay and partly on the soil structure. The
drying out affects the depth of absorption features and the rate with which
clay and K can be detected.

These processes are illustrated on figures 6.5 and 6.6. Figures 6.7– 6.12
show whether K movement can be isolated and distinguished.

6.3.1 Laboratory analysis

Table 6.1 shows the characteristics of the soil found in each plot. These
consist of the amount of fertilizer applied, initial soil moisture tempera-
ture values, water fraction per volume (WFV), total salt content, texture
characteristics and bulk density per plot. The table shows that, in all plots,
the K concentration at 15 cm depth is lower than at the surface. Bulk
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Figure 6.2: Bar chart showing a decrease in K concentration measured in sediment
per litre of discharge (1 to 7) for plots A, B and C. The values under Mix 1, 2
and 3 are derived from analysis of water samples at three depths from the total
collected runoff.

density varies with 0.03 g/cm3 between the plots. Texture characteristics
indicate that these soils have typical characteristics of silt loam derived
from Loess with silt content 53–58 % and maximum clay content of 18%
(see table 6.1).

Figure 6.2 shows the change in K concentration per litre of discharge du-
ring the flow experiment. The concentration of K in the collected sediment
collected decreases indicating removal of fertilizer.

Figure 6.3 shows the area of each plot covered by water flow after the
experiment was completed. It can be noted that parts of plots A, B and E
were not affected by runoff water.

6.3.2 Spectral analysis

Figure 6.4 shows the change in K absorption feature depth (near 2465 nm)
for each plot at each stage of the experiment. It can be observed that
for most pixels, depth of absorption features increases with addition of
fertilizer. After water flow, K absorption continues to increase for all plots.
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Table 6.1: Field conditions in the experimental plots, obtained by geochemical
analysis of soil samples from each plot.

Plot Reference K, depth cm Added
K2O

Moisture Characteristics Texture % Bulk
Den-
sity

0-
2cm
(mg/g)

5-
20cm
(mg/g)

0-
2cm
(mg/g)

Temp.
(C)

WFV Total
Salt
(s/m)

Sand Silt Clay g/cm3

A 2.61 0.72 0.6 14.9 0.34 0.29 31 56 13 1.32
B 2.93 0.87 2.48 15.1 0.34 0.35 30 58 12 1.29
C 2.60 0.57 0 15.7 0.34 0.28 29 53 18 1.32
D 4.23 0.72 1.18 17.4 0.35 0.29 32 53 18 1.35
E 3.21 0.67 1.76 17.6 0.32 0.27 30 52 18 1.36
F 2.74 0.63 0.6 17.5 0.34 0.28 29 53 18 1.32

d) f)e)

b) c)a)

Figure 6.3: Schematic outline of each plot with the area inside the white polygon
that was covered by flowing water. The area outside the polygon remained dry.
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Figure 6.4: Change in K absorption feature depth, for each plot for each stage of
the experiment.

Figure 6.5 and figure 6.6 show relationships between the NSMI index
(soil moisture), clay absorption bands at 2200 nm and K absorption bands
at 2465 nm. For all plots, after application of fertilizer, the values for R2

indicate that the influence of moisture on K absorption is higher than it is
of clay. After water flow, however, R2 values between clay and moisture,
as well as clay and K feature increase.

Figures 6.7– 6.12 show the results of absorption feature analysis. The
natural variation in K can be observed from Figures 6.7– 6.12(top rows)
for each plot. The range of K absorption band depth is 1.3–8.3 % for plot A,
1.3–8.5 % for plot B, and 3.2–4.5 % for plot C. In all images, NSMI is highest
after water flow. The images showing clay absorption band depth show a
decreased absorption after water flow (figures 6.7– 6.12, right column).
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Figure 6.5: Relationships between band depth near 2465 nm (K feature), band
depth near 2200nm (Clay feature) and NSMI values (Soil moisture) expressed using
coefficient of determination (R2) for experimental plots A, B and C.
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Figure 6.6: Relationships between band depth near 2465 nm (K feature), band
depth near 2200 nm (Clay feature) and NSMI values (Soil moisture) expressed
using coefficient of determination (R2) for experimental plots D, E and F.
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Figure 6.7: Spatial representation of K absorption feature depth near 2465 nm,
Normalised Soil Moisture Index (NSMI) and clay absorption feature depth near
2200 nm for plot A. This plot was treated with 0.6 mg/g of fertilizer. Each image
comprises 108 sampling points collected after each stage of the field experiment
(before treatment, after addition of fertilizer, and after water flow).
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Plot B K Feature NSMI Clay Feature Flow Outline
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Figure 6.8: Spatial representation of K absorption feature depth near 2465 nm,
Normalised Soil Moisture Index (NSMI) and clay absorption feature depth near
2200 nm for plot B. This plot was treated with 2.4 mg/g of added fertilizer.
Each image comprises 108 sampling points collected after each stage of the field
experiment (before treatment, after addition of fertilizer, and after water flow)
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6. Tracing Potassium in a Loess soil with field spectroscopy

Plot C K Feature NSMI Clay Feature Flow Outline
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Figure 6.9: Spatial representation of K absorption feature depth near 2465 nm,
Normalised Soil Moisture Index (NSMI) and clay absorption feature depth near
2200 nm for plot C. This plot had no added fertilizer. Each image comprises 108
sampling points collected from the untreated plot and after water flow.
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Plot D K Feature NSMI Clay Feature Flow Outline
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Figure 6.10: Spatial representation of K absorption feature depth near 2465 nm,
Normalised Soil Moisture Index (NSMI) and clay absorption feature depth near
2200 nm for plot D. This plot was treated with 1.18 mg/g of added fertilizer.
Each image comprises 108 sampling points collected after each stage of the field
experiment (before treatment, after addition of fertilizer, and after water flow) 93



6. Tracing Potassium in a Loess soil with field spectroscopy

Plot E K Feature NSMI Clay Feature Flow Outline
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Figure 6.11: Spatial representation of K absorption feature depth near 2465 nm,
Normalised Soil Moisture Index (NSMI) and clay absorption feature depth near
2200 nm for plot E. This plot was treated with 1.76 mg/g of added fertilizer.
Each image comprises 108 sampling points collected after each stage of the field
experiment (before treatment, after addition of fertilizer, and after water flow)
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Plot F K Feature NSMI Clay Feature Flow Outline
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Figure 6.12: Spatial representation of K absorption feature depth near 2465 nm,
Normalised Soil Moisture Index (NSMI) and clay absorption feature depth near
2200 nm for plot F. This plot was treated with 0.6 mg/g of added fertilizer.
Each image comprises 108 sampling points collected after each stage of the field
experiment (before treatment, after addition of fertilizer, and after water flow)
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6. Tracing Potassium in a Loess soil with field spectroscopy

6.4 Discussion

6.4.1 Potassium Fertilizer Mobility

The K concentration in the mixed runoff sediment samples was 1.2 mg/g,
which is 0.6 mg/g higher than the amount of K that was added with the
fertilizer (0.6 and 2.4 mg/g for plot A and plot B respectively). This might
be due to the release of slowly available K under the influence of water
flow. Alternatively, it may so result from K fertilizer that had been applied
by farmers before the experiment, as the experiment took place in an
agricultural field. Unknown concentrations of K in the water that was
used for the experiment could also add to these amounts. Soil texture
is not considered to have an influence, since the texture analysis of the
soil material indicates a comparable sand-silt-clay content of all plots
(table 6.1).

6.4.2 Change in absorption feature depth in relation to K

concentrations

For all plots, figures 6.5 and 6.6 show that after applying fertilizer, the
increase in K is associated with increase in moisture, indicating that more
K was added. In addition, there is no relation between K and clay, which is
expected due to the fact that K was added to the plots and the concentra-
tions became higher than the natural K that is already attached to the clay.
The lack of relationship between moisture and clay can be explained by
the soil saturation, which is irrespective of clay content.

After the flow, the relation between K and moisture is generally decrea-
sing. K and clay relation increases, because clay starts absorbing K, so
more clay means less free K. The moisture is removed from the top soil
so the clay content causes the moisture to be retained and shows a high
relation again.

Figures 6.7–6.12 show the change in surface soil moisture, K absorption
band depth and clay absorption band depth for all plots and all stages of
the experiment. With the addition of K, a change in depth of the feature
near 2465 nm is observed. Although the fertilizer was applied as evenly
as possible to the surface of all plots, a uniform distribution cannot be
observed. This is likely to be a result of natural variation in the initial K
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6.4. Discussion

concentration, application of fertilizer by farmers prior to the experiment,
or due to the difference in surface roughness.

On Figure 6.7 the reference images clearly indicate that K in concentra-
tions of 0.6 mg/g cannot be used to explain soil erosion. K has low values,
absorption feature depth increases as fertilizer solution is added and stays
higher as additional water is added with the flow. The high moisture values
indicate that the plot has not dried out completely. A general decrease
in clay can be due to erosion and movement of particles. However since
the central plot shows a higher content of clay, there is interference from
moisture and K.

Figure 6.8 shows the images from the plot with 2.4 mg/g of added
fertilizer. Although the added concentrations are much higher, the results
do not indicate runoff. The wetter plots after the experiment show that
the plots have not dried out completely. The decrease in clay could again
be associated with movement of particles due to erosion.

Figure 6.9 shows the results from the reference plot with no added
fertilizer. All measurements were collected from points on the plot covered
by the flow. The variability suggests movement of K downslope after the
flow experiment. Clay content shows a similar pattern to K, and therefore
there is an indication that clay has moved downslope. This suggests that K
movement is caused by the movement of clay particles with the flow.

Figure 6.10 illustrates the plot with added 1.18 mg/g of fertilizer.
The image in the middle shows that moisture was evenly distributed
after applying the fertilizer solution. The added K has moved down and
spread over showing a clear movement of K. Moisture has influenced clay
absorption, and therefore movement cannot be established.

Figure 6.11 shows the results from the plot with added 1.76 mg/g of
K fertilizer. After the flow, loss of K can be observed in some parts of
the image. The moisture values indicate that the plot has not dried out
completely. The clay images show small movement of clay away form the
plot at the lower and upper middle portions.

Figure 6.12 illustrates the results from the experiment with 0.6 g/mg of
added fertilizer. The low K concentrations show a little bit of movement
from the applied K in the center to the bottom of the plot. Moisture image
suggests moisture is relatively homogeneous and so not of great influence.
Clay does not seem to show changes.
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6. Tracing Potassium in a Loess soil with field spectroscopy

In general, after water flow, the K absorption feature appears deeper.
From Figure 6.3 that shows flow coverage, and Figures 6.7–6.12 showing
change in absorption depth, it can be observed that the patches that were
not covered by the water flow have the shallowest spectral absorption
features. Variations within the plots can also be due to larger particles
that travel shorter distances and might be deposited early [Morgan, 2005],
before reaching the end of the plot.

The spatial representation of soil moisture and clay content, as pre-
sented by NSMI and clay absorption band depth, show their influence on
spectroscopic detection of K in soils.

In all images, NSMI increased after each stage of the experiment (Fi-
gures 6.7–6.12). The depth of clay absorption feature decreased after
water flow, which can be explained by the removal of fine clay particles by
flowing water.

Based on the work of Luleva et al. [2011] and Yitagesu et al. [2009], it
was expected that clay content would influence the depth of absorption
near 2465 nm. The experimental field was hence selected in the Loess
derived soils, which only have a maximum of 18 % clay [Jacobs and Mason,
2007]. However, as stated by Jacobs and Mason [2007], clay content in
Loess soils can be higher if post sedimentation has taken place. The
concentration of K applied to the plots was insufficient to show a spectral
signature given the high amounts of water and clay are present. Additional
tests are required in order to establish whether decrease in clay absorption
can be used to indicate removal of particles due to erosion.

A direct relationship between the K absorption band depth near 2465 nm
and its distribution in the field could not be established. This would pro-
bably be possible if higher amounts of fertilizer would have been added
(as done in Luleva et al. [2011]). These amounts however exceed what is
recommended for agricultural practices. Exploring absorption features
associated with K in the thermal (mid) infrared could minimize the in-
fluence of moisture and clay. Imaging spectrometers that acquire spatial
data simultaneously could limit the noise that was now introduced while
measuring individual points.
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6.4.3 Potential use of Potassium as a tracer for soil erosion

In all soil erosion studies using chemical particle tracers, the even distri-
bution of the chemical has been assumed [Chappell, 1999]. The natural
variation of the element due to parent material or crop residue, as well as
previously applied fertilizer, presents a limitation. This could however be
overcome by collecting and analysing soil spectra prior to fertilization.

Knowing the concentration of K prior to fertilizer application is crucial
for using the element as a tracer. Compared to 137Cs , however, Potassium
(K) is spectrally active, and the absorption feature near 2465 nm allows
rapid detection of its abundance in the environment prior to additional
application of the element. Furthermore, this provides an opportunity to
collect measurements before each stage of the field experiment. This helps
determining the natural distribution of the element or previously applied
quantities of fertilizer, as well as testing the method and distribution of
added K before the flow experiment.

A factor that should be considered when using K as a tracer is its
behaviour when introduced to the environment. While radioactive elements
are considered to move only due to erosion, when attached to soil particles,
K can be moved due to uptake by plants or by leaching into the subsurface.
To prevent vegetation uptake and to allow collection of soil spectra using
hyperspectral imagers, measurements are limited to the time between
fertilizer application and crop growth. In addition, clay and moisture
content restrict the applicability of the method at concentrations of applied
fertilizer lower than 2.48 mg/g soil, as presented in this study.

6.5 Conclusions

In this chapter, we discussed the use of infrared spectroscopy for de-
tecting changes in K concentrations in soils. Potassium (K) fertilizer for
commercial use was applied in various concentrations to six experimental
plots on silt loam soils. A flow experiment was conducted, and spectral
measurements were collected to determine change in K before application
of fertilizer, after application of fertilizer and after water flow. Labora-
tory and spectral analyses were performed to determine the change in
absorption characteristics associated with K.
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6. Tracing Potassium in a Loess soil with field spectroscopy

The study aimed to provide answers to three main questions.

• Can a relative change in abundance of K in the field be observed with
spectroscopy using the absorption feature near 2465 nm? A relative
change in abundance of K could be observed in the field using the
spectral absorption feature near 2465 nm.

• Does the amount of K removed by water flow correspond to the
concentration of K found in runoff water? The amount of K removed
with water flow corresponds to concentrations of K found in the
sediment of the runoff water, although background concentrations
from either naturally occurring K or previously applied fertilizer had
increased the amount of K.

• Does a change in depth of the 2465 nm absorption feature corres-
pond with the controlled addition and removal of K? Change in the
2465 nm absorption feature depth does not seem to correspond to
the controlled addition and removal of K. This is likely to be a result
of external influences such as moisture and clay content.

Although previous studies indicate the suitability of the method at
laboratory level [Luleva et al., 2011], in the field, the absorption feature
near 2465 nm, associated with K, is highly influenced by moisture and clay
content, at concentrations of K typically applied to agricultural fields.

If further work is intended, the method can only be applied successfully
using quantities of fertilizer higher than 2.48 mg/g, or on soils with lower
than 18 % clay content. Establishing K as a particle tracer can provide an
opportunity for increase in size of study area and density of sampling
points. This however could be possible only give that the limitations,
identified in the current study, can be overcome at field level.
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7General Discussion and

Conclusions

The aim of this research was to identify the most suitable chemical soil
particle tracer, and to evaluate whether change in concentration of this
element can be detected with infrared spectroscopy by establishing direct
relationships between concentrations and absorption band parameters of
the soil spectral signature. The scope of the research is limited by the
concentrations, in which the element is present. They should be high
enough to have influence on the shape of the spectral curve, but low
enough not to cause disturbance and contamination to the environment.

In Chapter 2, the use of remote sensing techniques in land degradation
and soil erosion studies was evaluated. It was established that the majority
of studies used data derived only from the visible and near infrared part of
the spectrum. There are a number of reasons behind this, most probable
of which are the low cost and availability of the imagery, as well as the
relatively easy to apply analytical techniques. Shortwave infrared spectrum,
covered by many of the available sensors, however, contains information
about soil chemical composition that has not been fully explored in stu-
dies of soil erosion. Soil particle tracing technique was outlined, where
shortwave infrared data could be used to improve the findings. To date,
the most commonly used soil particle tracer is the isotope Cesium 137
(137Cs ). There are a number of limitations associated with the use of this
isotope, including its limited half-life, assumed even spatial distribution
as well as high cost of measuring techniques. Hence in this chapter it is
suggested that there is a clear gap and need in finding an alternative soil
particle tracer that can be measured using remote sensing techniques.
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7. General Discussion and Conclusions

Following in Chapter 3, a method to establish direct and indirect re-
lationships between soil chemical composition and infrared spectral res-
ponse is presented. The aim of the chapter was to evaluate common
elements abundant in prone to erosion soils that have the potential to be
used as an alternative particle tracer. Specific wavelength ranges that sta-
tistically predict and quantify soluble fractions of chemical elements, from
near infrared and shortwave infrared spectroscopy were outlined. Partial
least squares regression (PLSR) was used to develop prediction models for
Calcium (Ca), Magnesium (Mg), Potassium (K), Sodium (Na), Iron (Fe), and
acidity (pH) in silt loam soil samples. The element that showed highest
coefficients of determination with spectra and had the closest physical and
chemical properties as 137Cs was Potassium.

The study was then focused more closely on testing whether Potassium
can serve as a potential soil particle tracers as an alternative to Cesium 137
(137Cs ). When large areas are considered, the expensive soil sampling
and analysis present an obstacle for determining concentrations of this
isotope. Infrared spectral measurements provide a solution, however the
small concentrations of the isotope do not influence the spectral signal
sufficiently. Therefore, based on the fact that Potassium (K) has similar
electrical, chemical and physical properties it was initially hypothesised
that it can be used as possible replacement in soil particle tracing. The
study was conducted under laboratory conditions on soils of six different
texture types. The results were promising, identifying wavelengths bet-
ween 2450 and 2470 nm to be affected directly by the amount of applied
K. Absorption feature parameters (absorption band depth, width and area)
were also found to change with K concentration with coefficient of deter-
mination between 0.85 and 0.99. In order for this methodology to work,
however, there were two main aspects that had to be considered. First, the
presence of high clay content in the soil sample, showed to have influence
on the depth of absorption near 2460 nm. Second, at low concentrations,
change in absorption of Potassium was observed with addition of fertilizer,
however statistical relationships between absorption band parameters and
added concentrations were not established, and therefore quantification
could not be performed.

Based on these findings, the study was taken to the field, where the
behaviour of K was tested by applying typically used concentrations of K
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fertilizer. Chapter 5 and 6 describe the flow experiment that was conduc-
ted on silt loam Calcisols and Loess soils. Spectral measurements were
built into synthetic images to represent the spatial extent and variation of
the tests. In Chapter 5, the study was conducted in highly susceptible to
erosion area in Murcia, Spain. Clay content of Calcisols, however, showed
to be sufficiently high, while the concentration of fertilizer applied to the
experimental plot was too low. Moreover, the runoff sediment were not
collected, and therefore it could not be shown if the fertilizer was removed
by the water flow with the soil particles, or it has been diluted or has
leached down the soil profile. However, the methodology of spectral data
collection and analysis proved effective in terms of minimizing the amount
of noise caused by external factors in the far end of the shortwave electro-
magnetic spectrum, and at the same time allowed spatial representation
of absorption caused by K presence.

Taking these limitations into account, a second field experiment took
place, described in Chapter 6. The study area in Southeast Limburg, The
Netherlands, was selected due to the fact that the soil is Loess, characteri-
zed by minimal clay content. The setup was improved by including more
plots and adding various concentrations of fertilizer. The runoff sediment
was collected together with soil samples for validation. The presence of
moisture and clay in the soils, however, still proved to mask the influence
of K on the spectral signal.

The advantage of using K as a particle tracer and measuring it with
infrared spectroscopy is that the initial distribution of the element can
be determined prior and after additional application. By doing so, the
distribution of the element can be established and assumptions do not
need to be made. In comparison, the even distribution of 137Cs is always
assumed and therefore it has been a cause of debate, although some studies
have provided supporting arguments based on climatological factors and
study area locations [Chappell, 1999].

Knowing the concentrations of K prior to fertilizer application is crucial
for using the element as a tracer. The natural variation of K due to
the nature of the parent material or crop residue, as well as previously
applied fertilizer should be established or measured. One way is to analyse
reference soil samples prior to annual fertilizer application, as shown in
the current study, or consult reference soil maps and farmers.
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7. General Discussion and Conclusions

A factor that should be considered when using K as a tracer is its
behaviour when introduced to the environment. While radioactive elements
are considered to move only due to erosion, as attached to soil particles,
K can be moved due to uptake by plants or by leaching. To prevent the
vegetation uptake, a soil erosion study using K should take place between
the time of fertilizer application and crop growth. The study should also
be performed on silt loam soils, characteristic for soil erosion, and at the
same time limiting K leaching by having higher organic matter contents
[Askegaard and Eriksen, 2000].

Exploring K as a soil particle tracer introduces a number of advantages
to current erosion studies. It is applied annually as a fertilizer and there-
fore does not have a half-life as radioactive elements do. The scope of the
study, however, was limited to K concentrations that are not harmful to the
environment, and are regularly applied during agricultural practices. Thus,
a methodology would be suitable for effective monitoring of early signs of
soil erosion. Although high concentrations of Potassium in the laboratory
showed promising results, high amounts of fertilizer were not used in
the field experiments. The focus of this study was put on the removal
of K under the influence of water flow. Therefore, in order to establish
whether sedimentation and deposition can be measured, additional tests
should be conducted at the locations where the flow stops. Additionally, it
is recommended that further tests on K leaching are performed, despite
that, as described in Chapters 4 and 6, leaching is unlikely to occur for
the duration of the proposed experiment. Considering the need to find an
alternative to 137Cs particle tracer, applying the above recommendations
are encouraged. Potassium is harmless to the environment, and therefore
would be a desirable particle tracer.

Based on the findings of this research, the concentrations of the element
show high correlations with absorption feature parameters within the
shortwave infrared only at very high concentrations and under laboratory
conditions [Luleva et al., 2011]. At concentrations typically applied by
farmers, the influence of moisture and clay content limit the application
of the technique in field conditions.

The detailed spatial patterns vary wildly between phases of the expe-
riment, although in some cases they are logical with movement of K and
clay. Varying moisture contents obscure clear results. Also the amount
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of water applied did not cause any visible erosion in the form of rills, the
relatively high clay content creates a relatively stable structure.

However, common features can be observed from the correlation plots.
These coincide with the processes that are taking place (runoff, infiltration,
absorption and solution of K, movement of clay particles). In future
experiments where higher rate of erosion is created (e.g. with a rainfall
simulator) or under field circumstances with heavy rainfall, the results
might be clearer.

In most plots, a movement of clay particles was observed. Detailed
roughness analysis and identifying indicators for where puddles and micro-
sedimentation occur, could widen the scope for further explanation of the
crusting process. In addition, studies of pesticides absorbing to the clay on
the soil surface, could benefit from these results, but further investigation
is necessary.

Infrared cameras should replace the use of ASD spectrometer in order
to reduce cross contamination and noise introduced during the measure-
ments. Studies use information derived from the thermal infrared part
of the spectrum [Yitagesu et al., 2009] where it is seen that clays rich in
K show distinct absorption based on the concentration of the element.
Exploring this part of the spectrum could provide a mean to deal with the
noise introduced by clay content in the shortwave infrared. Due to these
limitations, the study was terminated at an experimental stage. Conside-
ring that K is applied by farmers in relatively low concentrations, rapid
particle tracing detection might not prove successful in uncontrolled fields.
Nevertheless, if the method is applied on fields that are fertilized with
higher amounts of K2O , the method has potential. A condition that has to
be met is that the initial concentration of K before fertilizer application is
known.

Upscaling the experiment to hyperspectral remotely sensed imagery was
initially intended, however this would only be successful once the above
limitations are handled. A possible continuation of the study will have to
look into testing new methodologies outside the controlled experimental
setting prior to image interpretation.
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Summary

Assessing soil erosion over large areas has been a challenge for decades.
The large spatial extent of the process creates difficulties in data acqui-
sition, for both measuring and validation. Remotely sensed data provide
spatial coverage and are used to derive information for various soil erosion
parameters, such as vegetation cover, topography, and soil moisture.

As part of this work, various applications of remotely sensed data in
soil erosion studies were reviewed to identify gaps in current soil erosion
research. To date, infrared spectroscopy has been applied in only a limited
number of studies. A way to better integrate these data in studies of soil
erosion was to detect the chemical composition of the soil and apply the
method for soil chemical particle tracing.

To identify a potential soil particle tracer that has similar physical and
chemical properties as the commonly used radioactive isotope Ceasium-
137 (137Cs ), but at the same time does possess a distinctive spectral
signature, a number of abundant in the environment chemical elements
were tested. Wavelength ranges that statistically predict and quantify
soluble fractions of chemical elements, from infrared spectroscopy were
identified. Partial least squares regression (PLSR) was used to develop
prediction models for naturally occurring Calcium (Ca), Magnesium (Mg),
Potassium (K), Sodium (Na), Iron (Fe), and acidity (pH) in silt loam soil
samples. Significant wavelength ranges were determined by establishing
direct and indirect relationships between soil spectra and soluble fractions
of these elements.

The feasibility of using Partial Least Squares Regression for identifying
soluble fractions of soil chemical elements in silt loam soils using infrared
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spectroscopy was tested. By outlining wavelength ranges where the change
in reflectance was associated with change in the concentration of the
element, Potassium was identified as having the closest to 137Cs properties
that can be predicted from infrared spectra.

A laboratory based study on the use of Potassium (K) as a potential
replacement of 137Cs in soil particle tracing was then conducted. The
element was found to have similar electrical, chemical and physical pro-
perties. In order to test the suitability of the element as a particle tracer,
heavy clay, clay loam, loam, silty loam and sandy loam and fine sand soils
were sampled for the study. Sensitivity analyses were performed on soil
chemical properties and spectra to identify the wavelength range related
to K concentration. Different concentrations of K fertilizer were added to
soils with varying texture in order to establish spectral characteristics of
the absorption feature associated with K.

Quantifying concentrations of K by using commercial fertilizer and
infrared spectroscopy was possible for soils with sandy and sandy silt
texture. The current study suggested the method as a new approach
that could potentially grow to a technique for rapid monitoring of soil
particle movement. A flow experiment was conducted in the area of the
Guadalentin basin in Murcia, South East Spain in order to identify soil
particle movement using Potassium fertilizer and infrared spectroscopy in
the field. The severe soil erosion that takes place in the region, as well as
the silty loam texture of the soil, determined the selection of the field area.

This experiment allowed identification of key factors that determine
the detection of K, when tested as a potential particle tracer. A follow
up experiment was designed to take into consideration soil clay content,
runoff data and concentrations of applied fertilizer. Consequently, a field-
based water flow experiment was conducted on 6 plots in silty loam soils
in the Netherlands. The field area was selected due to the fact that the
soils were developed on Loess, and were characterized with limited clay
content. The plots were treated with various concentrations of K2O and
one plot was used as reference. Infrared reflectance spectra were collected
to observe spatial variation in available K, before and after application of
fertilizer, and after runoff simulation by water flow. The runoff sediment
was also collected in order to establish potential removal of fertilizer under
the influence of the water flow.
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Exploring K as a soil particle tracer introduced a number of advantages
to current erosion studies. It is applied annually as a fertilizer and there-
fore does not have a half-life as radioactive elements do. The scope of the
study, however, was limited to K concentrations that are not harmful to the
environment, and are regularly applied during agricultural practices. Al-
though high concentrations of Potassium in the laboratory show promising
results, high amounts of fertilizer were not used in the field experiments.
Thus, the methodology would be suitable for effective monitoring of early
signs of soil erosion.

The focus of this study was put on the removal of K under the influence
of water flow. Therefore, in order to establish whether sedimentation
and deposition can be measured, additional tests should be conducted at
the locations where the flow stops. Moreover, it was recommended that
further tests on K leaching should be performed, despite that leaching
is unlikely to occur for the duration of the proposed experiment. There
is a strong need to find an alternative to 137Cs for soil erosion modeling,
considering the radioactive properties and half life of the element. If used
as a particle tracer, potassium is environmentally friendly, readily available
in the form of a fertilizer, and its abundance can be detected with infrared
spectroscopy in dry, silty loam or sandy soils, with low clay content.
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Samenvatting

Het waarnemen van bodemerosie over grote landoppervlaktes is al voor
langere tijd een uitdaging in de wetenschap. De ruimtelijke schaal waarop
dit proces zich afspeelt maakt het moeilijk gegevens te vergaren voor
zowel het meten van het proces als het valideren van deze meetgegevens.
Aardobservatie geeft de benodigde ruimtelijke dekking en wordt gebruikt
om informatie te verkrijgen over verscheidene bodem erosie parameters,
zoals vegetatie bedekking, topografie en bodemvocht gehalte.

Als deel van dit onderzoek werd een overzicht gemaakt van verschei-
dene toepassingen van aardobservatie voor bodemerosie, en mogelijkhe-
den die in huidig onderzoek naar bodem erosie onbenut bleken, konden
daarmee geïdentificeerd worden. Infrarood spectroscopie werd tot nu toe
gebruikt in slechts een beperkt aantal studies, en een mogelijkheid voor het
gebruik van deze techniek bleek te liggen in het meten van de chemische
samenstelling van bodems en het volgen van verplaatsende bodemdeeltjes.

Gewoonlijk wordt in bodem erosie studies het radio-actieve Caesium-
137 (137Cs ) isotoop gebruikt voor volgen van verplaatsende bodemdeeltjes.
Dit element heeft echter geen absorptie kenmerken heeft in het infrarode
spectrum. Er werd daarom gezocht naar een alternatief element dat verge-
lijkbare fysische en chemische eigenschappen heeft, maar wel spectraal
actief is.

Partial Least Squares regressie (PLSR) werd gebruikt om de absorp-
tie golflengtes te bepalen die statistisch de wateroplosbare fractie van
chemische elementen voorspellen, waarbij zowel directe alsook indirecte
relaties tussen spectra en de elementen gebruikt werden. Van de natuur-
lijk voorkomende elementen Calcium (Ca), Magnesium (Mg), Kalium (K),
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Natrium (Na), IJzer (Fe), en van de zuurtegraad (pH), konden in silt leem
bodem monsters de golflengtes vastgesteld worden die een significante
voorspelling geven.

Uit het systematisch testen van veranderingen in het absorptie spec-
trum als gevolg van veranderende concentraties van opgeloste elementen,
bleek dat PLSR gebruikt kon worden voor het identificeren van de water-
oplosbare fracties van bodem elementen in silt leem bodems. Van de
bovengenoemde elementen, die alle spectroscopisch detecteerbaar zijn,
komt Kalium chemisch met meest overeen met 137Cs .

Een laboratorium onderzoek werd uitgevoerd om de geschiktheid van
Kalium (K) als mogelijke vervanger van 137Cs te bepalen. Een gevoeligheids-
analyse werd uitgevoerd tussen infrarood spectra en bodemchemische
eigenschappen van klei, klei leem, leem, silt leem en zand leem bodem
monsters, waaraan verschillende concentraties van een Kalium houdende
kunstmest toegevoegd werden. Hiermee werden de absorptie golflengtes
gerelateerd aan veranderingen in Kalium concentratie vastgesteld. Het
bleek dat het vaststellen van deze Kalium concentratie met behulp van
infrarood spectroscopie aleen mogelijk was in zand of zand leem bodems.

In dit proefschrift is dit gegeven gezien als een mogelijkheid om bewe-
ging van bodemdeeltjes te observeren. Om beweging van bodemdeeltjes in
het veld te observeren, werd een vloei experiment met Kaliumhoudende
kunstmest en infrarood spectroscopie uitgevoerd in het Guadalentin bek-
ken, nabij Murcia in Zuidoost Spanje. Dit gebied heeft bodems met een
overwegend silt leem textuur en gaat tevens gebukt onder hevige erosie.
Dit experiment belichtte een aantal sleutel factoren die het detecteren van
Kalium beinvloeden. In een vloei experiment gedaan in een Loess gebied in
Zuid Nederland, dat gekenmerkt worden door bodems met een relatief laag
klei gehalte, werd ook de invloed van klei gehalte, stroomsterkte van water
en de concentratie van de toegevoegde kunstmest bepaald. Hiertoe werden
vijf plekken in een silt leem grond voorzien van verschillende concentra-
ties K2O, terwijl één plek als referentie gebruikt werd. Infrarood spectra
werden gebruikt om de ruimtelijke variatie van Kalium te bepalen voor en
na het vloeien van water. Het verplaatste sediment werd opgevangen om
het transport van kunstmest door het water vast te stellen.

Het gebruik van Kalium als indicator voor transport van bodemdeeltjes
geeft nieuwe mogelijkheden aan bodemerosie studies. Kalium wordt jaar-
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lijks opgebracht als meststof, en het heeft geen beperkende halfwaarde
tijd zoals radioactieve elementen. Dit onderzoek bleef beperkt tot het
gebruik van Kalium concentraties die gebruikelijk jaarlijks opgebracht
worden en die niet schadelijk zijn voor het milieu. Hoewel het gebruik
van hogere concentraties Kalium in laboratorium experimenten duidelijker
resultaten laat zien, en daarmee geschikt zou zijn om de eerste signalen
van bodemerosie op te vangen, zijn deze hoge hoeveelheden in het veld
niet gebruikt.

Deze studie was gericht op het verwijderen van Kalium door het laten
vloeien van water. Om vast te stellen of erosie en sedimentatie daadwerke-
lijk gemeten kan worden, zou in toekomstige experimenten ook metingen
gedaan moeten worden op plaatsen waar de waterstroom stopt. Ook zou
het weglekken van Kalium in de bodem beter gecontroleerd moeten wor-
den, hoewel zulks niet waarschijnlijk is in de korte tijdsduur die vloei
experimenten nemen.

Voor bodemerosie modelering is het belangrijk een alternatief voor
137Cs te vinden, gezien de radio-activiteit en half-waarde tijd van dit ele-
ment. Voor deze toepassing, Kalium is milieu vriendelijk, beschikbaar in
de vorm van kunstmest, en kan gedetecteerd worden in droge, silt leem of
zandige bodems met infrarood spectroscopie.
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