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Preface

In this thesis several years of investigating how strain affects the superconducting properties
of Nb3Sn is summarized. Nb3Sn is a superconductor that is used in important high-field ap-
plications, such as particle accelerators, experimental fusion reactors, high-field laboratory
magnets, and nuclear magnetic resonance spectrometry. The high magnetic fields generated
in these applications also result in large forces on the superconductor, which means that to
some extent deformation of the conductor is unavoidable. The superconducting properties
of Nb3Sn are strongly affected by strain, and a clear understanding of how strain affects
the superconducting properties is still lacking. This topic is of fundamental interest, as it is
related to the underlying quantum-mechanical nature of superconductivity, but also has as
practical implications, since the superconducting properties of Nb3Sn affect the performance
of high-field magnet applications. It is this combination that drew me to this topic.

While studying at the University of Twente, I first became acquainted with researchers at
Lawrence Berkeley National Laboratory, including Arno Godeke and Dan Dietderich dur-
ing an internship prior to the PhD. The PhD research was performed as a collaboration
between researchers at the University of Twente, Lawrence Berkeley National Laboratory,
and the University of California, Berkeley. Arno Godeke of LBNL had previously com-
pleted a PhD investigation at the University of Twente, which provided a detailed overview
of how the superconducting properties of Nb3Sn wires are affected by strain, composition
and morphology. Professor Frances Hellman of UC Berkeley had investigated Nb3Sn thin
film deposition during her own PhD research. These two investigations were taken as start-
ing points to this research.

A complication in investigating Nb3Sn is that Nb3Sn wires used in high magnetic field ap-
plications are inhomogeneous in both composition and morphology. The wires comprise
Nb-Sn grains with various grain sizes and compositions in addition to other materials such
as pure niobium and copper. As both composition and morphology strongly affect the super-
conducting properties, it is difficult to extract a detailed understanding from these samples.
In light of this, a significant part of this research was spent fabricating homogeneous thin
film samples, characterizing samples in terms of composition and morphology, and probing
how strain affects the superconducting properties of the samples.

On the other hand, bits and pieces of understanding of what determines the superconducting
properties of Nb3Sn as a function of strain has been published, but an overarching whole
was missing. We have combined microscopic theory with ab-initio calculations in an effort
to determine in what manner strain affects the superconducting properties and why Nb3Sn
is so different from, for instance, niobium-titanium with regards to strain sensitivity. The
results of this effort are validated through comparison with earlier published experimental
observations as well as with new experimental observations collected as part of this research.

This thesis is the result of the combined efforts of people from a number of institutions in
Europe and the United States. It would not have been possible to pursue this work without
these people working together. I hope that, after six decades of research on superconduct-
ing Nb3Sn, this thesis is a worthwhile contribution to our growing understanding of this
superconductor.
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Chapter 1

Introduction



1.1 Introduction
Superconducting Nb3Sn was discovered in 1954 by Matthias et al. [1] as the second A15
superconductor, after V3Si was found by Hardy et al. [2]. Since then, Nb3Sn has sparked
a lot of scientific interest for a number of reasons. Before the discovery of the HTS super-
conductors, Nb3Sn had one of the highest critical temperatures (18 K), it is relatively easy
to form and is stable at low temperatures. Over time, it has become a ‘workhorse’ super-
conductor used for applications in superconducting magnets beyond 9 T, such as laboratory
magnets for materials research, high field Nuclear Magnetic Resonance (NMR) systems, the
International Thermonuclear Experimental Reactor (ITER) fusion research and engineering
project, and more recently the High Luminosity Large Hadron Collider (HL-LHC). While
a great deal of attention has been paid to the material in terms of processing and practi-
cal conductor development, there are still some scientific questions that have not yet been
resolved. One question in particular is where the large degree of strain sensitivity in the
superconducting properties originates from, the topic at the core of this thesis.

This chapter gives a brief description of the concepts of this thesis and an introduction to the
history of superconductivity. Next, various types of Nb3Sn samples and the application of
microscopic theory are discussed. Finally, a number of key questions are formulated whose
answers this thesis tries to find.

1.2 Some concepts
Throughout this thesis, a number of terms are used quite often. The following gives a brief
description:

• Critical temperature Tc: the temperature at which a superconducting material exhibits
a phase transition from the normal to the superconducting state.

• Upper critical (magnetic) field µ0Hc2: the magnetic field at which a superconduct-
ing material reverts from superconducting state at H < µ0Hc2, to the normal state at
H > µ0Hc2.

• Critical current density Jc: the maximum current density in a superconductor without
dissipation. More specifically, the resistivity of the material is zero for current den-
sities below the critical current density and non-zero for current densities above the
critical current density.

• A15 crystal structure: the equilibrium crystal structure of Nb3Sn (figure 1.1). The tin
ions are arranged in a bcc crystal structure. The niobium ions form chains on the sides
of the unit cell.

• Stoichiometry and off-stoichiometry: with regard to Nb3Sn, stoichiometry means that
there are exactly three niobium ions for every tin ion. Off-stoichiometry means that
the ratio is different from three to one (typically due to excess niobium ions). Accord-
ing to Charlesworth et al. [3] the relevant A15 Nb-Sn phase occurs between 18 and
26 at.% Sn.

• Disorder: any deviation from the perfectly ordered (i.e. infinitely periodic) stoichio-
metric crystal structure. Examples of disorder are vacancies, where ions are missing
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Sn

Nb

Figure 1.1: The A15 crystal structure of stoichiometric Nb3Sn. The Sn ions are arranged in
a bcc crystal structure, while the niobium ions are arranged in chains along the sides of the
unit cell.

from the lattice, or anti-site disorder, where an ion of one species occupies the position
that is ordinarily occupied by the other atomic species and vice versa.

• Martensitic transformation: highly ordered stoichiometric Nb3Sn undergoes a cubic to
tetragonal transformation when cooled below approximately 43 K. In this thesis, the
phenomenon is also referred to as spontaneous tetragonal transformation and cubic
instability.

1.3 Brief overview of superconductivity
Superconductivity, a phenomenon that occurs at low temperatures, was not discovered until
after the successful liquefaction of helium by Onnes in 1908. Three years later, supercon-
ductivity was first observed in mercury by Onnes [4]. At about 4.2 K, the resistivity of the
material was shown to disappear. Another important experimental discovery was in 1933,
when Meissner et al. [5] found that the formation of the superconducting state results in the
expulsion of the applied critical magnetic field, a phenomenon nowadays called the Meissner
effect.

The first phenomenological model was presented in 1935 by the London brothers [6], de-
scribing a superconductor in terms of a two-fluid system and thereby explaining the Meissner
effect. A large amount of progress was made in the 1950s. The Ginzburg-Landau theory [7],
a phenomenological model that introduced the concept of a superconducting wave-function,
was presented. Fröhlich [8] made the suggestion that the superconducting state is made
possible by lattice vibrations, which is consistent with the observation of Maxwell [9] in
the same year that the critical temperature Tc of conventional superconductors is related to
the isotope mass. Pippard introduced the concept of a coherence length [10]. Abrikosov
presented a description of type-II superconductors, in which the application of a magnetic
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field above the lower critical magnetic field µ0Hc1 results in the presence of normal zones,
so-called fluxlines, in the superconducting bulk [11], until at the upper critical magnetic
field µ0Hc2 superconductivity is completely suppressed. In contrast, type-I superconductors
are superconductors in which externally applied magnetic field is completely excluded up
to a critical field µ0Hc and superconductivity is completely suppressed above µ0Hc. Cooper
showed that electrons can form bound pairs, so-called Cooper pairs, if a small net attrac-
tion is present. The BCS theory was presented by Bardeen, Cooper, and Schrieffer [12],
which incorporates some of the experimental and theoretical progress of the decade into a
convincing model of how superconductivity may work.

With the publication of the BCS theory, a qualitative picture of phonon-mediated supercon-
ductivity was formed. Electrons form Cooper pairs when a (weak) net attraction between the
electrons is present. Under certain conditions (i.e. at low temperature, low magnetic field,
and in certain materials), the superconducting state is energetically more favorable than the
normal one. In order for electrons to form Cooper pairs, momentum needs to be transferred
between them, which is where the phonons (i.e. lattice vibrations) come in. Momentum
is transferred indirectly between electrons through virtual phonons (i.e. phonons that only
exist temporarily). The lattice vibration temporarily holds the momentum, so that the first
electron can already be elsewhere when the second electron picks up the momentum. This
implies that the influence of the Coulomb repulsion is significantly reduced. A qualitative
picture is one where an electron with negative charge distorts the lattice, resulting in a local
positive charge. A second electron then comes in and is attracted to this positive charge, and
thus momentum is exchanged between the electrons.

The formation of the superconducting state results in an energy gap in the electron density
of states at the Fermi energy. At 0 K, the electron density of states between EF ± ∆ is
equal to zero, where EF is the Fermi energy and ∆ is the reduction in energy per electron
achieved through the formation of the superconducting state. This gap is small relative to
the Fermi energy (of the order of 3 meV for stoichiometric Nb3Sn [13], i.e. about four
orders of magnitude below the Fermi energy), but sufficiently large to prevent scattering of
the Cooper pairs under most conditions. Excitation of the electron must exceed the binding
energy of the Cooper pair in order to break the pair. Thus electrons can pass through the
material without scattering, which means that the resistivity of the material is zero when
excitations do not surpass this threshold.

After the series of discoveries culminating in the BCS description, the accuracy of the theory
continued to improve. Eliashberg formulated a description relating the electron-phonon
coupling constant to the phonon density of states [14]. This description is valid beyond
the weak coupling limit of the BCS theory. Accurate calculations of Tc were developed by
McMillan [15], Allen and Dynes [17], and Kresin [18]. After pointing out that the Ginzburg-
Landau description is a limiting case of the BCS theory applicable near Tc in the absence of
a magnetic field [19], Gor’kov combined the descriptions by Ginzburg and Landau with the
description by Abrikosov to formulate a generalized theory which is known as the GLAG
theory. The properties of Josephson junctions, two superconductors that are separated by
a weak link, were predicted by Josephson in 1962 [20] and observed by Anderson et al.
[21] in 1963. This lead to the development of extremely sensitive magnetometers, so-called
superconducting quantum interference devices (SQUIDs).

A large number of superconductors were discovered after the initial finding of supercon-
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ductivity in mercury, including the discovery of Nb3Sn in 1954 by Matthias et al. [1]. A
major breakthrough was the discovery by Bednorz and Müller [22] of high temperature
superconductivity in LaBaCuO, a cuprate with a Tc of 35 K. Thereafter, superconductors
were separated into ‘conventional’ superconductors like NbTi and Nb3Sn and ‘unconven-
tional’ superconductors like the cuprates. This discovery also triggered a search for more
superconductivity in cuprates, leading to the discovery of superconductors with critical tem-
peratures as high as 153 K (HgBa2Ca2Cu3O8+x under high pressure, by Chu et al. [23]).
More recently, superconductivity was observed in magnesium diboride by Nagamatsu et
al.[24] and in ferropnictides by Kamihara et al. [25] in 2006.

1.4 Nb3Sn samples
1.4.1 Nb3Sn wires
Nb3Sn is a phonon-mediated type-II superconductor. Slightly off-stoichiometric Nb-Sn has
a critical temperature of approximately 18 K and an upper critical magnetic field of about
30 T. Comparing its critical temperature to other superconductors with Tc values as high as
165 K, it might seem unusual that this particular material is used as a workhorse supercon-
ductor for high field magnet applications. However, it has a combination of properties that
makes it the most attractive choice for many high field applications at this time:

• Nb3Sn wires feature a relatively high critical current density in the order of 3000
Amm−2 non-Cu at 12 T and 4.2 K [26].

• Nb3Sn wires are relatively affordable and commercially readily available.

• The production of Nb3Sn wires is reliable, with little inhomogeneity along the length,
and long piece lengths can be manufactured reproducibly.

• The critical temperature and upper critical magnetic field are approximately two times
higher in Nb3Sn than in the significantly less expensive Nb-Ti, thus the accessible
temperature and magnetic field range for applications in magnets is approximately
doubled.

• Nb3Sn can be produced as multi-filamentary wires, which can be bundled into trans-
posed cables. Development of HTS cable and magnet technology is rigorously pur-
sued (see for instance the work on Bi-2212 by Scanlan et al. [27], Dietderich et al.
[28], and Godeke et al. [29, 30], and the work on ReBCO by Goldacker et al. [31]
and Van der Laan et al. [32]), but this technology is not yet fully matured.

Nb3Sn wires consist of filaments in a copper matrix. The Nb3Sn filaments carry the current,
while the highly conductive copper matrix allows for current exchange between the filaments
and heat exchange to the environment.

Well-known Nb3Sn wire production processes are the Bronze process, the Re-stacked Rod
Process (RRPTM), and the Powder-in-Tube (PIT) process (figure 1.2). While Nb3Sn is a
brittle material, its separate elements are not. For this reason, wires are formed in a process
where the niobium and tin are separated. Once the wire has the desired final shape in a
magnet, the Nb3Sn phase is formed by heat treating the wire at a typical temperature of
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Figure 1.2: High contrast field emission scanning electron microscopy (FESEM) backscat-
ter micrograph of a typical Shape Metal Innovation Powder-in-tube (SMI-PIT) filaments,
after Godeke [33]. The micrograph itself was taken by P. J. Lee.

about 650 ◦C depending on the type of wire. During this heat treatment, tin diffuses into
the niobium from a tin source, such as the core of the filament in the case of PIT strands or
the subelement in the case of RRP strands (where a subelement is a bundle of filaments), or
from the bronze surrounding the filaments in the case of the Bronze process.

The solid state diffusion reaction leads to an inhomogeneous composition, with large stoi-
chiometric Nb3Sn grains near the tin source and fine off-stoichiometric Nb-Sn grains (typ-
ically at 23.5 at.% Sn) further away from the tin source. Nb3Sn also commonly contains
additions such as copper, titanium, or tantalum, where copper is used to destabilize the
tin-rich compounds Nb6Sn5 and NbSn2 while titanium and tantalum additions improve the
superconducting properties of Nb3Sn, as shown by Suenaga et al. [34]. Furthermore, the
Nb3Sn filaments are surrounded by reaction barriers, such as pure niobium or tantalum,
which prevent tin from diffusing into the copper matrix. Finally, the copper matrix shunts
the Nb3Sn, which means that the normal state resistivity of the wire is dominated by the
copper when the material is not superconducting, decreasing the Ohmic heat production in
the event that a part of the wire becomes non-superconducting.

In summary, one of the main reasons for investigating Nb3Sn is its important technological,
feasible, and affordable applications. A thorough understanding of the material is com-
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plicated since composition and morphology of practical wires make them less suitable for
scientific study. For this reason, model samples with carefully controlled compositions and
morphologies are required.

1.4.2 Nb3Sn bulk and thin films model samples
A significant part of this PhD research was spent on evaluating different types of model
samples in terms of their suitability for determining the relation between composition and
strain sensitivity. The samples considered are bulk samples and thin films. Bulk samples
were provided by W. Goldacker of the Karlsruhe Institute of Technology, while thin films
were fabricated as part of this research. The samples were characterized to determine their
composition, morphology, and low temperature strain state. A technique was developed to
evaluate the samples in terms of their strain dependence of the superconducting properties
and the normal state properties. This work is mainly discussed in chapter 2, while the
measurement results are spread throughout this thesis.

1.5 Microscopic theory
As will be shown, the amount by which strain affects the superconducting properties is
dependent on the composition of the Nb-Sn, which means that any model that can describe
the strain sensitivity of Nb-Sn should also consider how disorder affects the superconducting
properties. To that end, chapter 4 includes a detailed review of microscopic theory, which is
combined into a model that calculates how disorder affects the superconducting properties.
The model combines verifiable hypotheses with ab-initio calculations. In chapter 5, this
model is used to calculate the superconducting and normal state properties of Nb3Sn, and
the results of the calculation are compared to experimental observations.

1.6 Scope of this thesis
A number of key questions will be addressed in this dissertation:

How is critical current density affected by temperature, magnetic field, and strain in
the case of stoichiometric and off-stoichiometric Nb-Sn?

The effect of temperature, magnetic field, and uni-axial strain (i.e. strain along the length of
the conductor) on the superconducting properties of Nb3Sn has been studied extensively in
the past, with an emphasis on slightly off-stoichiometric Nb3Sn conductors. In chapter 3, the
descriptions in literature are reviewed and differences and similarities are discussed. Next,
the effect of strain on the critical current density of stoichiometric and off-stoichiometric
binary thin films is evaluated for both longitudinal and transverse strain. The observed strain
dependence of Jc is compared to the strain dependence observed in resistivity measurements
and to comparable data of Nb3Sn wires.
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How does disorder affect the critical temperature and the upper critical field of Nb-Sn?

The critical temperature and upper critical field of Nb-Sn are strongly affected by compo-
sition. Measurements were performed on Nb-Sn bulk samples and thin films with various
compositions and the data are compared to literature results in chapters 2 and 3. In chapter
4, a model is presented which relates the critical temperature and the upper critical field
to the amount of disorder in the material. This model combines ab-initio calculations with
verifiable hypotheses, and the calculated results are compared to experimental observations.

How is the strain dependence of Tc and µ0Hc2 affected by disorder?

In chapters 2 and 3, the strain dependence of the superconducting properties of bulk and thin
film samples with various compositions is evaluated. The strain dependence is compared
to the strain dependence observed in Nb3Sn wires in chapter 3. In chapter 5, a model is
presented which is used to calculate the strain dependence of the superconducting properties
at various degrees of disorder. Once again, the model combines verifiable hypotheses with
ab-initio calculations, and the calculated and measured strain dependencies are compared.

How does strain affect the normal state resistivity of Nb3Sn?

It is observed that the application of strain results in an anisotropic change in the normal state
resistivity, i.e. a change in the normal state resistivity that depends on the orientation of the
current relative to the strain. Measurements of the effect of strain on the anisotropic normal
state resistivity are presented in chapter 2. Ab-initio calculations are used to calculate the
effect of strain on the anisotropic normal state resistivity in chapter 5. The calculated results
are compared to experimental observations.

Does strain affect the superconducting properties of Nb3Sn through changes in the
electronic properties, the vibrational properties, or both?

There is a controversy in literature about whether strain affects the superconducting prop-
erties of Nb3Sn through changes in the electronic properties, the vibrational properties, or
a combination of the two. A review of the available literature is presented in chapter 5.
The effect of strain on the electronic and vibrational properties of the crystal is determined
through ab-initio calculations, and their relative influence on the superconducting properties
is evaluated in chapter 5.

Why is the degree of strain sensitivity of the superconducting properties of A15 Nb3Sn
and Nb3Al much larger than the strain sensitivity of the superconducting properties of
bcc Nb and NbTi?

In chapter 2, the strain sensitivity of A15 Nb-Sn is shown to be large in comparison to that
of bcc Nb. In chapter 5, the difference between these two materials, as well as Nb3Al and
NbTi is discussed to illustrate the underlying origin of the large strain sensitivity in Nb3Sn.
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2.1 Introduction
As part of this research, an extensive experimental investigation of well-characterized Nb-Sn
samples was pursued. This experimental work involves fabrication and characterization of
different types of samples as well as experiments for determining the strain sensitive super-
conducting and normal state properties. The effect of strain on the normal state resistivity,
the critical temperature, and the upper critical field are investigated.

Two different types of samples are used: bulk samples and thin films. The bulk samples (pro-
vided by the Karlsruhe Institute of Technology) were fabricated with a hot isostatic pressure
process, while the thin films were fabricated through simultaneous magnetron sputtering
onto a heated substrate. While most of the samples consist of A15 Nb-Sn, a bcc niobium
thin film sample was fabricated and investigated as well.

The samples were characterized using a variety of techniques, including Scanning Electron
Microscopy - X-ray Energy Dispersive Spectroscopy (SEM-XEDS), Rutherford Backscat-
tering Spectrometry (RBS), heat capacity measurements, Scanning Transmission Electron
Microscopy (STEM), and X-Ray Diffraction (XRD). The various characterization tech-
niques point to the conclusion that the bulk samples without copper additions which were
investigated as part of this research contain nearly stoichiometric Nb3Sn and Nb regardless
of the nominal composition. Bulk samples with copper addition contain both a stoichiomet-
ric and an off-stoichiometric phase. Section 2.2 on Nb3Sn bulk therefore largely focuses on
characterizing the composition distribution of these samples.

The thin films, while not perfectly homogeneous, all have the desired single A15 phase
(which can be either stoichiometric or off-stoichiometric), and are much more homogeneous
than the bulk samples. Section 2.3 focuses on the three-dimensional strain state, morpho-
logy, and crystal orientation of these thin films.

The main experiment discussed here is the U-spring test rig (section 2.4), which allows for
resistivity and critical current measurements as a function of temperature, magnetic field,
and applied strain. From these measurements, various properties can be derived, including
the effect of strain on the normal state resistivity ρn, the critical temperature Tc and the upper
critical field µ0Hc2(0).

2.2 Bulk samples
In addition to the work that is presented here, the bulk samples were previously investigated
by others, including X-ray diffraction measurements by Goldacker et al. [35] and Guritanu
et al. [36], vibrating sample magnetometry by Goldacker et al. [35], and point-contact
spectroscopy by Marz et al. [37].

2.2.1 Fabrication
A hot isostatic pressure technique was used to produce the bulk samples. In this process,
powders are mixed, placed in a stainless steel container, and subsequently reacted at 1100 ◦C
and 100 MPa for a duration of 24 hours. The end results are densely compacted blocks of
Nb-Sn (figure 2.1, left).

In addition to binary samples with a variety of nominal composition ratios, a series of sam-

10 Chapter 2



Figure 2.1: Left: Nb-Sn bulk samples, provided by W. Goldacker at the Karlsruhe Institute
of Technology. Right: SEM image of a binary bulk sample with 24.8 at.% Sn nominal
composition, after Goldacker et al. [35].

ples was made with copper, titanium and tantalum additions, as additions are also used in
practical Nb3Sn wires. Electrical discharge machining (EDM) was used to cut the bulk
material into a shape that fits on the U-spring sample holder.

2.2.2 Morphology
The bulk samples are polycrystalline, with densely packed grains (figure 2.1, right). The
typical grain diameter is 3 to 20 µm and the crystal orientation is random [35].

2.2.3 Critical temperature distribution from heat capacity measure-
ments

Heat capacity measurements as a function of temperature and magnetic field were performed
in order to determine the critical temperature distribution of the bulk samples, an effort
which was undertaken by M. Susner of the Ohio State University.

In this technique, which is based on a method developed by Wang et al. [38], the critical
temperature distribution is obtained by comparing the heat capacities in superconducting
and normal state, where the normal state is enforced through the application of a magnetic
field. A detailed discussion on the measurement technique and the derivation of the critical
temperature distribution is found elsewhere [39].

The observed Tc distributions indicate that the composition of the bulk samples is inhomo-
geneous. As shown in figure 2.2, top, all samples contain Nb-Sn with a Tc of about 17.5 K,
regardless of the nominal content of the bulk sample. This critical temperature is indicative
of the presence of slightly disordered nearly-stoichiometric Nb-Sn [41, 42], while excess
niobium is concentrated in regions of pure (oxidized) niobium (figure 2.3). It is interesting
that no peak is observed around 9 K (the critical temperature of low-resistivity bcc niobium),
which implies that either the niobium is strongly disordered so that Tc is suppressed (for in-
stance through oxidation), or that it is in a different crystal symmetry with lower Tc such as
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Nb3Nb, also previously discussed by Flükiger [40].

The samples with copper addition contain two distinct Tc distributions, with a higher Tc
fraction close to 17.5 K indicating the presence of stoichiometric Nb3Sn and a lower Tc
fraction corresponding to the presence of off-stoichiometric Nb-Sn. These observations are
discussed in detail elsewhere [39].

2.2.4 Composition distribution from Scanning Electron Microscopy X-
ray Energy Dispersive Spectroscopy (SEM-XEDS)

Uncalibrated SEM-XEDS was used to determine the composition of both the bulk and the
thin film samples. The accuracy of this method is estimated from a comparison with litera-
ture results. Consistent with a previous observation by Rudman et al. [43], it was observed
that a tin-rich region in a thin film deposited at 700 ◦C consists of Nb6Sn5 and of Nb1−β Snβ

with β = 0.254 (figure 2.4). Charlesworth et al. [3] estimated the maximum atomic tin
content in Nb3Sn to be 26±1%, while Rudman et al. [43] argued that it is 25±1%, based
on microprobe and Rutherford Backscattering Spectrometry (RBS) measurements. An un-
certainty of 1 at.% Sn is expected in the uncalibrated SEM-XEDS used here.

For a selected group of samples, the composition distributions were investigated with SEM-
XEDS. The composition of 900 different spots within a 60×80 µm2 area and the variation
in the local Sn contents were measured. A detailed description of the method is found
elsewhere [44].

All the bulk samples contain a nearly-stoichiometric Nb3Sn phase that peaks at 25.5 at.% Sn
(figure 2.2, bottom). The samples with copper additions contain both a nearly stoichiometric
phase and an off-stoichiometric phase. Note that, although the SEM-XEDS data indicates
that the (80 at.% Nb + 20 at.% Sn) + 5 wt.% Cu sample does not have a nearly stoichio-
metric phase, the onset of superconducting behavior at 18 K clearly illustrates that a nearly
stoichiometric phase must be present, as Nb3Sn with a Tc of 18 K is necessarily (very close
to) stoichiometric, see Godeke et al. [41]. This is an example of macroscopic inhomo-
geneity: the sample is inhomogeneous on a length scale larger than the single probe region
of 80 × 60 µm2. In a similar fashion, regions of pure niobium-oxide were observed in all
samples, but not in every investigated region of 80 × 60 µm2.

As shown in figure 2.3, the samples with tantalum and titanium additions consist of Nb3Sn
but includes regions with pure tantalum, titanium oxide and niobium oxide, with a typical
size of 100 - 200 µm2. Oxygen is observed in all SEM-XEDS investigations, but it is
unclear to what extent oxygen is present in the bulk of the samples. After heat treatment,
the samples are cut with an Electrical Discharge Machining (EDM) process and polished,
which may well introduce oxygen in the surface of samples. For this reason, the ‘intrinsic’
oxygen content immediately after reaction is not known and the observed oxygen content is
omitted from figure 2.2, bottom, and figure 2.3.

One could speculate that the peculiar two-phase Tc distribution in the samples with copper
addition is a result of the preferential formation of off-stoichiometric Nb-Sn in the presence
of copper and stoichiometric Nb3Sn in its absence. The addition of copper to the bulk
samples results in the presence of the off-stoichiometric phases as evidenced by the presence
and absence of off-stoichiometric Nb-Sn in the samples with and without copper respectively
(figure 2.2). Furthermore, it is not a great leap to assume that binary regions, i.e. regions
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Figure 2.2: Critical temperature distributions of bulk Nb-Sn samples derived from heat
capacity measurements (top) and composition distributions derived from SEM-XEDS mea-
surements (bottom). The nominal compositions of the bulk samples are indicated above each
measurement.
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Figure 2.3: SEM images of bulk samples with nominal compositions: 71.95 at.% Nb + 24
at.% Sn + 4.05 at.% Ta (left) and 74.48 at.% Nb + 24 at.% Sn + 1.52 at.% Ti (right).

without copper additions, contain the same composition distribution as binary samples, i.e.
they contain stoichiometric Nb3Sn but no off-stoichiometric Nb-Sn.

Extending the speculation even further, two possible arguments could explain how the
presence of copper results in the formation of off-stoichiometric Nb-Sn. Firstly, during
the reaction the tin reacts with the copper to form bronze, and the bronze may react with
niobium to form off-stoichiometric Nb-Sn, while the pure tin reacts with niobium to form
stoichiometric Nb3Sn. The path by which the Nb-Sn is formed matters if the formation
of off-stoichiometric and stoichiometric Nb-Sn is energetically equally favorable, or if the
reaction temperature is too low to achieve the energetically most favorable composition.
Secondly, it is possible that copper reacts with oxygen which would otherwise react with
niobium and form Nb-O. It is argued elsewhere [45] that in Nb-Sn thin film depositions
it is energetically favorable to form Nb-O and stoichiometric Nb3Sn rather than off-stoi-
chiometric Nb-Sn, so that the oxygen content needs to be kept at a minimum to form off-
stoichiometric Nb-Sn. While the first explanation is more likely to be the correct one, both
mechanisms may explain how the presence of copper results in the formation of off-stoichio-
metric Nb-Sn, but proving the validity of either of these mechanisms is outside the scope of
this thesis.

Note that a similar two-phase Tc distribution was also observed in Powder-In-Tube Nb3Sn
wires by Senatore et al. [46], where the two-phase distribution was attributed to the different
properties of large grains near the core of the filaments and fine grains further away from the
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Figure 2.4: A two-phase separation into Nb6Sn5 and Nb1−β Snβ with β = 0.254±0.002 is
observed in tin-rich regions, which is consistent with previous observations by Rudman et
al. [43]. Image taken from deposition 2-14-11, which was deposited at 700 ◦C.

core.

Based on the relation between local titanium, tantalum, niobium, and tin concentration, it
was concluded that titanium preferentially replaces tin and tantalum preferentially replaces
niobium in the A15 crystal structure. A detailed description of the experimental method
leading to this conclusion can be found elsewhere [44].

2.2.5 Variable magnetic field Tc distribution measurement
In order to determine the range of µ0Hc2(0) values present in the binary bulk sample with 24
at.% Sn, Tc distributions were obtained from variable magnetic field heat capacity measure-
ments. Figure 2.5, top, shows the critical temperature distribution normalized to the peak
value. It is clear that the Tc range becomes increasingly wide with increasing magnetic field,
a clear indication that the sample contains a continuous µ0Hc2 range rather than a single up-
per critical field µ0Hc2. An approximate magnetic field dependent Tc range is determined
through a 10 % criterion (figure 2.5, top). At every magnetic field, a low and high critical
temperature limit Tc,low and Tc,high are determined. In figure 2.5, bottom, the µ0Hc2 range is
plotted as a function of temperature.

The magnetic field dependence of the upper and lower limit of the Tc range of Nb-Sn is
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Figure 2.5: Magnetic field dependent Tc distribution (top) and the corresponding µ0Hc2
range as a function of temperature (bottom) of the (nominally 24 at.% Sn + 76 at.% Nb)
binary bulk sample. The bottom figure gives a comparison between heat capacity (CP) mea-
surements which illustrate the µ0Hc2 range of the sample, and resistivity measurements,
which only probe the ‘best’ properties of the sample.
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described with the Maki-DeGennes (MDG) relation [47, 48]:

ln
(

T
Tc(0)

)
= ψ

(
1
2

)
−ψ

(
1
2
+

[
1.764

4π

]
Tc(0)

T
Hc2(T )
Hc2(0)

)
, (2.1)

where ψ is the digamma function, T is the temperature in [K], Tc is the critical temperature
at 0 T in [K], µ0Hc2(T ) is the upper critical field at temperature T , and µ0Hc2(0) is the
upper critical field at 0 K. It was shown by Godeke et al. [48] that this relation accurately
describes the temperature dependence of µ0Hc2 of Nb-Sn with various compositions, and
the underlying assumptions of this description will be discussed further in section 4.8.

Applying the MDG relation to the magnetic field dependent critical temperature, it follows
that µ0Hc2(0) ranges from 22.7 to 29.4 T within the single binary bulk sample. Near stoi-
chiometry, Tc is weakly dependent on composition, while the upper critical field µ0Hc2(0)
varies strongly with composition. If we assume that the composition range of the sample is
24.5 to 25 at.%, then one would expect a Tc range of 17.5 to 18 K and a µ0Hc2(0) range of
20 to 31 T, which is roughly consistent with the resistively determined Tc(µ0H) dependence
(see [49]) and the results of the heat capacity analysis (figure 2.5, bottom).

2.2.6 Conclusion
An investigation was performed of binary Nb-Sn bulk samples and bulk samples with tita-
nium, tantalum, and copper additions which were manufactured with a hot isostatic pressure
technique.

Using SEM-XEDS and heat capacity measurements, it was determined that the investigated
binary samples consist of regions of (nearly) stoichiometric Nb3Sn and regions of niobium
(-oxide), regardless of the total niobium to tin atomic ratio of the sample. Based on mag-
netic field dependent Tc distribution measurements, the binary samples consist of a sharp Tc
distribution within a temperature range of 17.4 to 18.0 K and an upper critical field range of
22.7 to 29.4 T.

Similar to the binary samples, the samples with titanium and tantalum additions consist
of mainly stoichiometric Nb3Sn, but also comprise regions of pure niobium, tantalum and
titanium. The samples with copper additions are found to contain both stoichiometric and
off-stoichiometric Nb-Sn.

2.3 Thin films
Once it became clear that achieving compositional control through the bulk sample route
is problematic, an alternative sample fabrication route was pursued. Binary thin film sam-
ples were fabricated by simultaneously magnetron sputtering niobium and tin onto a heated
sapphire substrate. In this section the fabrication process, the composition analysis, the
morphology, the crystal orientation, and the room temperature strain state of the films are
discussed, as well as a patterning process.
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Tin concentration gradient

R-plane substrate

Single strip

Constant 

composition

Top view

Figure 2.6: Top: schematic view of the simultaneous niobium and tin magnetron deposi-
tion onto a heated sapphire substrate, resulting in a Nb-Sn gradient in the thin film that is
deposited onto the sapphire substrate. Bottom: The R-plane substrate is cut into strips, so
that each strip has a different composition but the composition is close to constant along the
length of the strip, as demonstrated in figure 2.7.
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2.3.1 Fabrication
To heat sapphire substrates, a heater assembly was designed and used, see figure 2.6, top.
The assembly consists of cartridge heaters inserted into the niobium block. A K-type ther-
mocouple was inserted in a small hole in the niobium block, and a PID controller was used
in combination with a power supply to regulate the temperature of the niobium block (figure
2.6, top).

25.4 mm × 25.4 mm × 0.075 mm sapphire substrates with (11̄02) orientation (i.e. R-plane)
were used. The substrates were cleaned in a three-step process, using an ultrasonic bath.
The substrate was cleaned using acetone, iso-propanol, and electronic grade iso-propanol,
respectively. After each step, the solvent was blown off with nitrogen gas.

Silver paint was applied to improve thermal contact between the substrate and the heater dur-
ing growth. A molybdenum plate helps to fix the substrate to the heater, while the molybde-
num plate was held in place with stainless steel screws. The heater assembly was supported
by a stainless steel frame. Heat shields were added to reduce power consumption. This
heater assembly is comparatively cheap to construct, easy to service, and durable. Tem-
peratures up to 1000 ◦C were repeatedly maintained in periods up to a week using 300 W
heater power. A cryo-pump maintained the vacuum, resulting in a typical base pressure
of 1×10−6 Pa when the heater assembly is at room temperature. The base pressure was
typically about 2×10−5 Pa when the heater assembly is heated to 1000 ◦C. During the de-
position, 99.9998% pure argon gas continuously flowed through the chamber at a regulated
pressure of 0.27 Pa and a typical flow rate of 80 cm3min−1. The niobium and tin targets
were typically powered at 250 W (355 V) and 40 W (570 V), respectively, resulting in a
combined deposition rate of 0.32 nm/s upon the substrate.

The placement of niobium and tin targets relative to the substrate was chosen such that the tin
concentration as a function of position varies along one direction of the substrate, while it is
approximately constant along the other direction (figure 2.6, bottom). The correct placement
of the targets was confirmed with SEM-XEDS measurements (figure 2.7). By cutting strips
perpendicular to the tin concentration gradient, 10 to 20 strips with different compositions
could be produced in a single deposition.

2.3.2 Deposition parameters
Table 2.1 shows the key parameters of five selected depositions. The depositions were per-
formed at 700 and 900 ◦C. The thermal contact between the heater and the substrate was
verified by visually comparing the heater and substrate color during the deposition. In some
depositions it was observed that the substrate had a darker color than the heater during the
deposition. For these depositions, the substrate temperature is estimated by the color of the
substrate, using the heater color as a calibration. The uncertainty in the substrate temperature
is estimated at 50 ◦C.

The thickness of the thin films, detailed in table 2.1 was determined through a variety of
methods. The thickness of depositions 9-14-10 and 2-14-11 were determined through pro-
filometry on a thin film where material was selectively removed with an etching process.
The thickness of deposition 3-17-11 was determined with a Scanning Transmission Elec-
tron Microscope (STEM) (figure 2.9). The thickness of depositions 2-17-11 and 8-22-11
were determined by observing the side of a fractured sample with a SEM microscope at lo-
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Figure 2.7: Local tin content β (at.% Sn / [at.% Nb + at.% Sn]) as a function of position
on deposition 8-22-11, measured with SEM-XEDS. The grey data points are measurements
along the direction that is transverse to the direction in which the strips were cut, while the
open data points are measurements along the length of the strips.

cations corresponding to stoichiometric and off-stoichiometric compositions. The thickness
of depositions 3-17-11 and 8-22-11 were also determined by a method by which material
is selectively removed with a focused ion beam and the substrate is observed at an angle.
The results of the various techniques are consistent within an uncertainty of 2% and within
this uncertainty, the thickness is determined to be independent on composition. The STEM
and some of the SEM micrographs were taken by J. Bonevich of the National Institute of
Standards and Technology (NIST).

2.3.3 Morphology
The morphology of the samples was investigated with SEM and STEM. Figure 2.8, top,
shows a surface image of deposition 3-17-11. From the image, it is clear that the films are
polycrystalline with an average grain surface area of 0.10 µm2, corresponding to a grain
diameter of 0.31 µm. Grains with sizes ranging from 0.1 to 0.7 µm are observed. Figure
2.8, bottom, shows a surface image of deposition 8-22-11. Similar to deposition 3-17-11, the
film is polycrystalline. However, the average grain surface area is 0.046 µm2, corresponding
to a grain diameter of 0.22 µm, and the observed grain diameters range between 0.1 and 0.4
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Table 2.1: Deposition parameters and geometry.

Deposition date Temperature Deposition duration Thickness Base pressure
[◦C] [min] [µm] [10−5Pa]

9-14-10 900 60 0.23 4.5
2-14-11 700 120 1.68 0.5
2-17-11 700 120 1.89 1.3
3-17-11 900 120 2.33 1.6
8-22-11 700 120 2.28 1.0

µm, i.e. notably smaller than the grains of deposition 3-17-11.

The grain diameter of the binary thin films is significantly smaller than the grain diameter
observed in the bulk samples, but is comparable to the grain diameters found in some Nb3Sn
conductors. In an evaluation of Bronze process Nb3Sn conductors and a powder-in-tube
Nb3Sn conductor that were reacted at varying temperatures by Godeke et al. [26], it was
observed that the grain diameters vary between 0.18 and 1.5 µm at 700 ◦C and increase
by a factor 2 to 4 between 700 ◦C and 900 ◦C. As with these conductors, a likely cause of
the difference in grain diameters between depositions 3-17-11 and 8-22-11 is the different
deposition temperatures of 900 and 700 ◦C, respectively (table 2.1).

Figure 2.9 shows a cross-sectional image of deposition 3-17-11 made with a STEM with a
high angle annular dark field (HAADF) detector. From the figure, it is clear that the film
consists of dense columnar grains. The thickness of the film is 2.31 µm with a surface
roughness of 0.04 µm.

2.3.4 Composition determination from SEM-XEDS
As with the bulk samples, SEM-XEDS was used to determine the compositions of the thin
films. During the deposition, the substrates were aligned in such a way that the composition
gradient is oriented perpendicular to the direction in which the strips were cut, resulting in a
homogeneous composition along the length of the strips (figure 2.6).

An evaluation of the composition gradient along the lengths of the strips shows that this
approach is successful: the composition gradient along a stoichiometric strip was found to
be 0.008 at.% Sn per mm, while the composition gradient along an off-stoichiometric strip
was 0.06 at.% Sn per mm. The difference in gradient is likely a result of slightly different
alignment of the strips relative to the niobium and tin targets. The voltage taps are typically
spaced 5 mm apart, so that this worst-case gradient leads to a composition variation of
0.3 at.% between the voltage taps.

2.3.5 Rutherford Backscattering spectrometry (RBS)
Rutherford Backscattering Spectrometry (RBS) measurements were performed on two sam-
ples. In an evaluation of a strip from deposition 3-17-11, the composition was determined to
be 22± 1 at.% Sn with RBS, while the SEM-XEDS investigation of the same strip indicated
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Figure 2.8: Surface image of depositions 3-17-11 (top) and 8-22-11 (bottom), taken with
Scanning Electron Microscope. Courtesy of J. Bonevich of the National Institute of Stan-
dards and Technology (NIST).
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Figure 2.9: Cross-sectional Scanning Transmission Electron Microscopy (STEM) image of
deposition 3-17-11. Courtesy of J. Bonevich of NIST.

a composition of 21.6 ± 0.5 at.% Sn. The results are thus consistent. Furthermore, the RBS
analysis showed that the top 20 ± 10 nm of the thin film was oxidized while no oxygen was
detected underneath this top layer.

An RBS measurement was also performed of deposition 9-14-10 (table 2.1). Here it should
be noted that the limited thickness of this particular deposition (about 230 nm) makes the
SEM-XEDS probing method difficult, so that the RBS measurement is the main composition
probe. As in deposition 3-17-11, oxygen was detected in the top surface but not underneath.
The thickness of the oxidized surface layer is 13 ± 3 nm.

2.3.6 In-plane and out-of-plane crystal orientations
For each of the depositions, the out-of-plane crystal orientation was determined with a 2-
theta X-ray diffractometer, and the in-plane orientation of deposition 8-22-11 was deter-
mined with a 4-circle X-ray diffractometer.

In all thin films, the dominant peak in the out-of-plane orientation is the (200) peak, which
indicates that the thin films are mainly oriented (100) out-of-plane. In addition to the (200)
peak, weaker (210) and (211) reflections are observed in the spectra (figure 2.10). The ratio
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Figure 2.10: θ -2θ scan of deposition 8-22-11. The large peak at 33.9 degree indicates that
the dominant out-of-plane orientation is (200). Inset: The (210) off-axis peak was taken at
an angle to the plan, and therefore indicates grains with (100) out-of-plane orientation. The
angles in the inset indicate the various investigated substrate rotation angles ϕ .

between the amplitude of the (200) and the (210) peak varies between the depositions and
can be considered as a measure for the degree of texturing. The ratio between the (200) and
the (210) is 0.61 for deposition 9-14-10, 19.8 for deposition 2-14-11, 27.6 for deposition
2-14-11, 13.0 for deposition 3-17-11, and 213 for deposition 8-22-11. Deposition 9-14-10 is
deposited at a slower rate and a higher background pressure than the other samples, and the
degree of contamination is likely to be higher in this sample than the other samples, which
could explain the lower degree of texturing. The background pressures, deposition rates and
thicknesses of the other samples are all comparable (table 2.1). The cause of the significantly
higher degree of texturing in deposition 8-22-11 is not obvious, but it is plausible that this
is due to an improvement in substrate cleanliness. In a bulk sample with randomly oriented
grains, the ratio between the (200) and the (210) peak is 0.45 [35], i.e. lower than the
lowest observed ratio in these thin film samples. This means that the dominant out-of-plane
orientation is (100) in all investigated thin film samples.

Using a 4-circle diffractometer, the in-plane orientation of deposition 8-22-11 was inves-
tigated. In order to probe the off-axis (210) peak of grains which have (100) orientation
normal to the plane, the off-axis rotation angle ψ is set to 26.6 degree (figure 2.11). By
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Figure 2.11: Schematic representation of an XRD measurement of an off-axis (210) peak.
Indicated are the 2θ angle between the incoming and reflected X-ray beams, the off-axis
rotation angle ψ and the in-plane rotation angle ϕ .

determining the intensity of the (210) peak (of 2θ = 38◦) at various in-plane substrate rota-
tion angles ϕ , the in-plane crystal orientation (if any) is determined. Only those crystallites
for which the (210) direction is aligned along the substrate rotation angle ϕ contribute to
the measured reflection. In an epitaxial film, peaks will be observed at particular substrate
orientation angles and not at others. If, however, the in-plane crystal orientation is random,
like in a polycrystalline film with out-of-plane texturing but no preferred in-plane orientation
ϕ , then the intensity of the (210) reflection is independent of the substrate orientation angle
as there is always some small fraction of the sample that is aligned parallel to the X-ray
beam. As shown in figure 2.10, the latter case is precisely what is observed. Deposition
8-22-11 is the deposition with the highest degree of texturing and is found to be randomly
oriented in the in-plane direction, so it is reasonable to assume that all other depositions are
randomly oriented in the in-plane direction as well.

In summary, the out-of-plane orientation of various thin film depositions was investigated.
In all investigated samples, the dominant out-of-plane orientation is (100), but the degree of
texturing varies between samples. The in-plane orientation was determined to be random.

2.3.7 Room temperature strain state
In order to understand the effect of strain on the superconducting properties of Nb-Sn, it is
important to fully understand the three-dimensional strain state. Since the Nb-Sn crystals are
randomly oriented in-plane, they cannot be epitaxial with the substrate. This means that the
mismatch with the substrate lattice parameter does not need to be considered as a possible
contribution to the strain state of the thin film. The strain state at room temperature is then
determined by the strain state of the thin film during the deposition and thermal strain due
the differential thermal contraction between substrate and film, produced by the cool down
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Figure 2.12: Comparison of measured composition dependent out-of-plane lattice parame-
ters of the thin film samples and the lattice parameters of previously measured bulk samples,
after Devantay et al. [52], and Vieland et al. [53]. The arrow is a guide to the eye.

from elevated temperature to room temperature.

In a magnetron deposition, ions are accelerated with a typical voltage of several hundred
volt before impinging onto the substrate. This energy magnitude typically results in a com-
pressively strained film. To some extent, the strain state of the thin film can be tuned by
controlling the argon gas pressure, as ions travelling from the targets to the substrate collide
with the argon gas and lose energy along the way. Furthermore, the strain state of the thin
film is also related to a variety of other factors, such as ion species, the distance between the
targets and the substrate, and substrate biasing, making it difficult to predict. This topic has
been discussed in detail by Bilek et al. [54, 55], and McKenzie et al. [56].

Once the deposition is complete, the thin film cools down from elevated temperature (table
2.1) to room temperature. Differences in thermal contraction between the films and their
surroundings, which are the R-plane oriented sapphire substrate, the niobium heater, and the
molybdenum plate that holds the substrate in place, affect the strain state of the Nb-Sn thin
film at room temperature. As shown in table 2.2, the thermal expansion of stoichiometric
Nb3Sn exceeds that of the other materials. Assuming that the thermal expansion of off-
stoichiometric Nb-Sn is approximately the same as the one of stoichiometric Nb3Sn, the
cool down from elevated temperature to room temperature exerts tensile strain on the Nb-
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Table 2.2: Thermal expansion of various materials, defined as a0(T) / a0(293 K), after Yim
et al. [60], Edwards et al. [61], Tottle [62], and Schadler et al. [63].

T [◦C] R-plane sapphire bcc niobium Nb3Sn Molybdenum
700 1.0052 1.0051 1.0059 1.0038
900 1.0066 1.0060 1.0077 1.0048

Sn. For example, if the strain is dominated by the R-plane sapphire, then the cool down from
700 ◦C exerts 0.07% tensile in-plane strain and the cool down from 900 ◦C exerts 0.10%
tensile in-plane strain on the Nb-Sn.

The strain state of the material at room temperature was determined by measuring the out-
of-plane lattice parameter and then calculating the out-of-plane strain by comparing the
lattice parameter to the lattice parameter measured in bulk samples. The in-plane strain
can then be determined using a known Poisson’s ratio. The out-of-plane lattice parameter
was determined by fitting the (200) peak in a θ -2θ spectra and is compared to previously
measured composition-dependent bulk lattice parameters that were reported by Devantay et
al. [52] and Vieland et al. [53]. Based on the comparison between the literature bulk data
and the measured out-of-plane lattice constants, a difference between 0.05 and 0.5 pm is
observed, which implies that the out-of-plane strain state at room temperature is −0.01% to
−0.1% compressive.

Based on investigations by Ten Haken et al. [57], Muzzi et al. [58], and Watanabe et al.
[59], the Poisson’s ratio of Nb3Sn is 0.38± 0.08. The in-plane strain can then be determined
by applying Hooke’s law with the added condition that the film is free to expand in the out-
of-plane direction:

εip =

(
ν−1

2ν

)
εop, (2.2)

where ν is the Poisson’s ratio of Nb3Sn, εip is the in-plane strain, and εop is the out-of-
plane strain. Using equation 2.2, the average in-plane strain is 0.04±0.04% tensile at room
temperature which implies that the strain state at the deposition temperatures is slightly
compressive, in the order of −0.04 ± 0.06%.

2.3.8 Niobium on sapphire deposition
In addition to the Nb-Sn on sapphire depositions, a pure niobium film was deposited onto
R-plane sapphire with a High Power Impulse Magnetron Sputtering Process (HiPIMS) by
A. Anders at Lawrence Berkeley National Laboratory. The film was deposited at 410 ◦C,
with a background pressure of 6×10−5 Pa. From XRD measurements, this film was found
to be entirely (110) oriented out-of-plane (figure 2.13).

The out-of-plane lattice constant is 0.33529 nm, which is 1.6% larger than the literature
value of 0.3300 nm by Barns [64]. As a caveat, note that the literature result is of high
purity bcc niobium, while the relatively high µ0Hc2 of the investigated thin film indicates
that it contains at least some strongly disordered niobium (figure 2.28), which means the
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Figure 2.13: θ -2θ scan of a pure niobium deposition. Besides the peaks of the sapphire
substrate, only 110 and 220 niobium peaks are observed.

disorder is another potential explanation of the relatively large observed lattice parameter.
Using a Poisson’s ratio of 0.38 [65], a compressive in-plane strain of 1.3% is found. In
comparison to the Nb-Sn thin film, this strain state is significantly more compressive, which
is likely a result of different deposition conditions. Unlike the Nb-Sn thin films, no argon
was present during this deposition, leading to a higher energy of the impinging ions and
therefore a more compressive strain state.

2.3.9 Thin film patterning
A number of depositions were etched in a specific pattern (figure 2.14). The patterning
enables a number of measurements, including the determination of the normal state
resistivity and critical current density parallel and perpendicular to the applied strain di-
rection, and a thickness determination of the thin films through profilometry.

Selective etching was achieved by spinning a layer of positive photo-resist onto a thin film,
selectively exposing unmasked areas to ultraviolet light, removing the exposed photo-resist
with a developer, and etching through the film regions that are not covered with photo-resist
using a mixture of hydro-fluoric and nitric acid. Details on the etching process are found
elsewhere [45]. Etched thin film samples were fabricated from Nb-Sn depositions 9-14-10
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Figure 2.14: Left: schematic representation of the etched pattern in the thin film samples.
Current flows between the current taps (I+, I-), and the voltage drop is measured between
the voltage tap pairs (Vlong+,Vlong-,Vtrans+,Vtrans-). Strain is applied along the length of
the samples, so that current flows parallel to the applied strain direction in the longitudinal
direction and perpendicular to the applied strain direction in the transverse direction. Right:
picture of an etched sample glued onto the U-spring test rig, where the leads are not yet
attached to the sample. A thermometer is fixed on the sample with wax string.

and 2-14-11, and from niobium deposition 2-13-12.

2.3.10 Conclusion
Nb-Sn thin films were fabricated using a magnetron sputtering technique, by which niobium
and tin were simultaneously deposited onto a heated R-plane sapphire substrate. Cutting
depositions into strips resulted in samples with various compositions between 19.5 and 25
at.% Sn.

The thin films were investigated using a scanning electron microscope (SEM), equipped
with an X-ray energy dispersive spectroscope (XEDS), scanning transmission electron mi-
croscopy (STEM), X-ray diffraction (XRD), and Rutherford Backscattering Spectrometry
(RBS). The thin films show a dense columnar polycrystalline microstructure and are highly
textured. They are predominantly (100) oriented in the out-of-plane direction and randomly
oriented in the in-plane direction. The films were determined to be in a 0.04±0.04% tensile
strain state at room temperature in the in-plane direction.

A pure niobium film was fabricated using a high power impulse magnetron sputtering tech-
nique. This film was found to be (110) oriented out-of-plane. The room temperature in-plane
strain state is 1.3% compressive.

Patterning was applied to some of the Nb-Sn films and to the Nb film, allowing for the
measurement of normal state resistivity parallel and transverse to the uni-axial applied strain
direction, as well as critical current density measurements in these directions.
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Figure 2.15: Left: Schematic representation of the U-spring test rig. Right: Illustration of
thermal insulation with an ‘inverted cup’ system and strain application through a gear box,
after PhD thesis Godeke [33].

2.4 Cryogenic measurements with the U-spring
A U-spring test rig was constructed and optimized for the purpose of measuring the super-
conducting properties of Nb3Sn bulk samples and thin films. With this test rig, cryogenic
measurements were performed by which the voltage drop over a sample was measured as a
function of temperature, magnetic field, applied strain and current density. In this way, the
normal state resistivity, critical temperature, upper critical field and critical current density
under various conditions were determined. These measurements are discussed further in the
next chapters: chapter 3 focuses on the critical current density, chapter 4 on the relation be-
tween composition, critical temperature and upper critical field, and chapter 5 on the effect
of strain on both the superconducting properties Tc and µ0Hc2 as well as the normal state
resistivity ρn.

2.4.1 U-spring test rig
The U-spring test rig (figure 2.15) was originally developed by Ten Haken et al. [33, 71, 72]
for the purpose of measuring the critical current of Nb3Sn tapes as a function of tempera-
ture, magnetic field and strain, but also allows for the measurement of samples with various
geometries such as wires [33], thin films [45], and bulk samples [73, 74]. Detailed descrip-
tions of the operation of the U-spring for the purpose of measuring wires, bulk samples and
thin films are available elsewhere [33, 39, 45, 74].

The U-spring is made of Ti-6Al-4V, a type of titanium alloy that maintains elastic behavior
up to a strain limit of ±1.3%, i.e. both high levels of compressive and tensile strain can be
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achieved. Strain is applied through a gear box. The gear drives a double-threaded rod which
results in the movement of the legs of an H-shaped frame. The movement of the top of the
H-shaped frame is transferred to the legs of the U-spring, such that the top of the U-spring
is bent, resulting in the application of strain onto the sample (figure 2.15). Since the spring
remains elastic, the relation between the strain on top of the sample and the strain gauge is
linear and reproducible, so that the strain of the sample can be determined in-situ.

The temperature of the sample is controlled with a combination of a thermally insulating
polyimide cup, heaters and temperature sensors. The U-spring is placed inside the inverted
insulating polyimide cup. When heat is applied to the U-spring, the liquid helium inside the
cup evaporates, thus filling it with helium gas, and the temperature of the U-spring increases.
The sample temperature is measured with a temperature sensor that is pressed onto the
sample (figure 2.14, right). A PID controller measures the temperature and controls the
heaters, thus allowing for a regulation of the temperature to a desired set-point temperature.

Both bulk samples and thin films can be glued on the U-spring. A thin polyimide foil
is glued in between the bulk sample and the U-spring, so that the sample is electrically
insulated from the spring. Voltage and current tap wires are attached with conducting silver
paint. Resistivity and critical current measurements are performed in a 4-point measurement
setup. The current taps are electrically connected to the ends of the sample and the voltage
taps are connected several millimeters away from the current taps, so that the current is
sufficiently uniform in the region between the voltage taps and the contact resistance is not
included in the measured signal.

The U-spring is placed in the bore of a 15 T solenoid, thus allowing for the application of
magnetic field. The magnetic field value was verified with a Hall-probe measurement and is
accurate within the 1% uncertainty of the hall-probe calibration. The magnetic field affects
the resistive temperature sensors, a phenomenon investigated in detail by Brandt et al. [75],
and this effect is accounted for.

The thermal setup was verified for bulk samples by comparing the measured data to measure-
ments performed with different cryogenic instruments [49], such as heat capacity measure-
ments [39], vibrating scanning magnetometer (VSM) measurements [74], and an alternative
variable temperature resistance measurement setup [74]. With regards to the thin films, the
R(T ) measurement of a number of samples is verified by performing slow warm-up mea-
surements of the entire cryostat. The U-spring is placed in the center of a solenoid that is
slowly warming up, resulting in a small temperature gradient and nearly ideal isothermal be-
havior. Based on the validations, the absolute accuracy in temperature readout is estimated
at 0.1 K.

2.4.2 Thermal pre-compression
Samples are glued to the U-spring and consequently the difference in thermal contraction
between Nb-Sn and Ti-6Al-4V affects the low temperature strain state of the Nb-Sn. The
gluing involves applying M-bond 610 [76] between the sample holder, polyimide layer and
sample. Sample and sample holder are heated up to 150 ◦C and kept at this temperature for
a two-hour period to allow the glue to set. Once the test rig is at cryogenic temperature, the
amount of strain exerted on the sample by the sample holder due to thermal pre-compression
is equal to the difference in thermal contraction between the sample holder and the sample
between 423 K and 4.2 K, where it may be assumed that the much larger sample holder
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dominates the strain state of the sample.

To estimate the thermal contraction of the Nb-Sn, it is assumed that the thermal expansion
is the same as for stoichiometric Nb3Sn. The lattice parameter of stoichiometric Nb3Sn de-
creases from 0.52974 nm at 423 K [63], to 0.52915 ± 0.00001 nm at 297 K [63, 77], and
further to 0.52807 nm at 50 K. Below 50 K, stoichiometric Nb3Sn undergoes a martensitic
transformation as discussed by Mailfert et al. [77], which does not occur in off-stoichiomet-
ric samples as shown by Devantay et al. [52]. Since most of the investigated samples are
off-stoichiometric, it is assumed that (like for most cryogenic materials [78]) the change in
lattice parameter below 50 K is negligible, which means that the amount of thermal contrac-
tion between 423 K and 4.2 K is −0.32%. Ti-6Al-4V contracts 0.12% between 423 K and
293 K [79] and 0.17% between 293 and 4.2 K, according to Marquardt et al. [80], totaling
0.29%. A complicating factor in the case of thin films is that during the warm-up between
297 K and 423 K, i.e. before the glue sets, the strain state of the Nb-Sn is determined by the
R-plane sapphire. The R-plane sapphire expands by 0.096% between 293 and 423 K [60],
while Nb3Sn expands by 0.095% in the sample temperature range [63]. Thus for all in-
tents and purposes, the difference in thermal expansion between the Nb3Sn and the R-plane
sapphire can be considered negligible between 293 and 423 K.

Gluing the Nb-Sn samples to the U-spring and cooling down to 4.2 K thus results in the
application of 0.03% additional tensile in-plane strain on the Nb-Sn. As was discussed in
section 2.3.7, the thin films are already strained 0.04±0.04% in the in-plane direction at
room temperature, so that the cool down to 4.2 K results in a 0.07±0.04% in-plane tensile
strain state. The niobium thin film on R-plane sapphire can be evaluated following the same
argument. Niobium expands by 0.090% between 297 K and 423 K and contracts by 0.13%
between 297 and 50 K [63]. Thus the gluing process and subsequent cool down results
in an extra 0.07% compressive in-plane strain in the niobium. At room temperature, the
niobium thin film is already strained by −1.3% in the in-plane direction, so that the cool
down results in −1.37% strain. The Nb3Sn bulk samples are assumed to be strain-free at
room temperature, leading to a 0.03% tensile strain state at 4.2 K.

2.4.3 Three-dimensional sample strain state as a function of applied
strain

Under the assumption that the deformation of the sample holder dominates the strain state
of the sample in the plane directions, the sample strain state as a function of applied strain
depends on thermal pre-strain, and the longitudinally applied strain. In the case of the U-
spring, longitudinal strain is applied by bending the U-spring. The resulting transverse
applied strain is determined by the Poisson’s ratio of Ti-6Al-4V, with:

εip,tr,a =−νshεip,long,a, (2.3)

where εip,long,a is the amount of longitudinally applied uni-axial in-plane strain and is typ-
ically shortened to εa, εip,tr,a is the amount of transversely applied in-plane strain, and νsh
is the Poisson’s ratio of the Ti-6Al-4V sample holder, which is equal to 0.342 [79]. The
relation between longitudinal strain on top of the sample and the strain on the bottom of the
U-spring is linear and reversible [33], so that the longitudinal and transverse strain on top of
the sample can be determined from a strain measurement on the bottom of the U-spring.
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Figure 2.16: Left: Schematic representation of bi-axial strain experiment. The applied
strain is measured with the longitudinal strain gauge at the bottom of the U-spring and
the bi-axial strain gauge on top of the sample. Right: Strain gauge measurements at room
temperature (RT) and 77 K (LN).

The validity of these arguments was verified by performing a measurement in which the
longitudinal and transverse sample strain, as well as the strain on the bottom of the U-
spring were measured simultaneously (figure 2.16). The experiment confirms the linearity
of the relationships between the strain of the bottom of the U-spring, the longitudinal strain
on top of the sample and the transverse strain on top of the sample (figure 2.16, right).
The proportionality constants at 4.2 K were determined through extrapolation. Consistent
with expectations, the Poisson’s ratio at 4.2 K was determined to be 0.340 ± 0.007, while
the proportionality constant between the longitudinal sample strain and the bottom strain
was determined to be −0.706 ± 0.014. Here, the uncertainty is due to the measurement
uncertainty of the strain gauges. In summary, the three-dimensional strain state of the sample
is known: the longitudinal and transverse in-plane strain state are dominated by the sample
holder while the out-of-plane strain is determined by the Poisson’s ratio of the Nb-Sn itself.

2.4.4 Resistivity measurement as a function of temperature, magnetic
field and applied strain

For each sample, the resistivity was determined at various temperatures, magnetic fields,
and strain, by keeping constant the magnetic field and strain while slowly sweeping the
temperature and then measuring the resistivity. A four terminal measurement technique was
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used to inject current and measure the voltage drop. The distance between the voltage taps
and the current injection points was in all cases more than 2 mm to avoid voltage measure-
ment anomalies that are related to inhomogeneous current injection. A DC current was used
that is sufficiently small not to affect the superconducting properties of the sample. This
was verified by measuring at various current amplitudes and confirming that the resistivity
is independent of current. Normally, a current of 1 mA was applied for the bulk samples and
10 µA for the thin film samples. To avoid voltage offsets related to thermo-electric effects,
a bipolar measurement technique was used.

The resistivity was measured while the temperature was varied at a rate of −25 mK/s, while
the strain and magnetic field were fixed. It was observed that after changing the magnetic
field and the strain and returning to a previously investigated combination of magnetic field
and strain, the R(T ) measurement is reproduced within a typical temperature uncertainty of
25 mK after the temperature.

A typical dataset consists of 50 temperature-dependent resistivity measurements per mag-
netic field and strain, 5 different magnetic fields per strain and 10 different strain states, for
a total of 2500 measurements. A subset of such a dataset is shown in figure 2.17, consisting
of resistivity versus temperature measurements at various magnetic fields, and two different
strains. The strain εa = 0% refers to the strain state that the sample is in immediately after
cool down (i.e. no applied strain), while the strain −0.3% refers to a strain state where the
sample is compressed by 0.3% along its length.

2.4.5 Critical current density measurements as a function of tempera-
ture, applied strain, and magnetic field

Critical current density measurements were also performed by measuring the electric field at
various combinations of current, temperature, magnetic field, and strain (figure 2.18). Jc is
defined as the current density at which the electric field crosses the electrical field criterion
Ec, which was set to 0.5 Vm−1.

The main difference between resistivity and critical current density measurements is that
unlike in critical current density measurements, the current density in resistivity measure-
ments is sufficiently small not to affect the superconducting properties. The critical current
density measurements were performed on the etched samples, which brings two distinct
advantages. The geometry is more carefully controlled, which reduces the uncertainty in
the critical current density from the cross-section dimensions to about 10%, and the current
carrying cross-section is significantly smaller, which allows for a higher achievable current
density at the same level of dissipation. The Jc(T,µ0H,εa) measurements are discussed in
section 3.7.

2.4.6 Strain dependent normal state resistivity
As shown in figure 2.19, strain affects the normal state resistivity ρn, i.e. the resistivity just
above the normal to superconducting transition. The effect of strain on the normal state
resistivity was investigated in more detail using the patterned samples (figure 2.14), where
current flows either parallel or perpendicular to the direction in which the strain is applied.

In order to determine the resistivity as a function of strain, the change in resistance due
to the change in the sample geometry has to be accounted for. The in-plane longitudinal
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Figure 2.17: Subset of the ρ(T ) measurements performed on deposition 8-22-11, with 22.1
at.% Sn. The resistivity was determined as a function of temperature at various magnetic
fields µ0H and applied strains εa. The measurements at εa =−0.3% and 0% are represented
with grey and open symbols respectively.

and transverse strains εip,long,a and εip,tr,a are known, while the out-of-plane strain can be
determined from Hooke’s law, with:

εop =
−νsample

1−νsample

(
εip,long,a + εip,tr,a

)
, (2.4)

where νsample is the Poisson’s ratio of the sample and εop is the out-of-plane strain resulting
from in-plane longitudinal and transverse strain. The resistivity ρ is related to the resistance
R, length l, width w, and thickness th as:

ρ =
R ·w · t

l
. (2.5)

The relations between the dimensions l, w, and t on the one hand and the strains εip,long,a,
εip,tr,a and εop on the other depend on the direction of the current relative to the strain direc-
tion. In the case of the patterned samples, the resistivity is expressed with:
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magnetic fields. The measurements shown are from deposition 9-14-10 and were all taken
at εa = 0%.

ρlong
(
εip,long,a

)
= R

(
εip,long,a

)(w0 · t0

l0

) (
1+ εip,tr,a

)(
1+ εop

)
1+ εip,long,a

, (2.6)
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1+ εop

)
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, (2.7)

where l0, w0, and t0 are the original dimensions of the sample with respect to the current
directions, ρlong is the resistivity of a sample where the current flow is parallel to the uni-axial
strain direction, and ρtr is the resistivity of a sample where the current flow is perpendicular
to the applied strain direction. With νsample ≈ 0.38, the resistance change due to geometry
change is 1.74% per % elongation in the longitudinal strain direction and −0.94% per %
elongation in the transverse strain direction.

The change in normal state resistivity with applied strain was determined for different sam-
ples at various temperatures, including longitudinal and transverse resistivity measurements
of low-resistivity Nb-Sn samples, high-resistivity Nb-Sn samples and a niobium sample. A
subset of the measurements is shown in figure 2.19, which shows that the effect of compres-
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Figure 2.19: Normal state resistivity ρn as a function of applied strain εa. In the ‘longitu-
dinal’ data, the strain is applied parallel to the current flow direction, while in the ‘trans-
verse’ data the strain is applied perpendicular to the current direction. Longitudinal and
transverse measurements of Nb-Sn with various tin concentrations and bcc Nb are shown.
The lines are guides to the eye.

sive strain on the normal state resistivity varies between the samples. Under the influence
of compressive strain, the longitudinal resistivity is strongly reduced in the case of sam-
ples with lower resistivity (ρ ≈ 20 µΩcm) but only weakly reduced in the case of samples
with higher resistivity (ρ ≈ 90 µΩcm), while the longitudinal and transverse normal state
resistivities of the niobium sample are nearly independent of strain. Compressive strain
weakly reduces the transverse resistivity of the lower resistivity Nb-Sn sample and weakly
increases that of the higher resistivity Nb-Sn sample, while the transverse resistivity of the
bcc niobium is once again nearly independent of strain.

For each of the samples, the effect of strain on the normal state resistivity was determined at
various temperatures, also in measurements where the critical temperature was suppressed
by an applied magnetic field of up to 15 T. It should be noted that the normal state resistivity
is nearly independent of applied magnetic field in the investigated temperature regime. In
a sample with a normal state resistivity of 70 µΩcm, the application of 15 T at T = 16 K
and εa = 0% resulted in an increase in normal state resistivity of 0.04% in comparison to the
normal state resistivity at 0 T.
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The normalized slope (ρ−1
n δρn/δεa)T was determined at various temperatures. A small

temperature dependence was found in the normalized slope: The slope ρ−1
n δρn/δεa in-

creases with increasing temperature. It was shown elsewhere by Devantay et al. [52] and
Gurvitch et al. [187], that ρn scales with T 2 at lower temperatures, with:

ρn ( T ) = ρ0 +ρ1T 2. (2.8)

To distinguish between the strain dependence of the residual resistivity ρ0 and the
parameter describing temperature dependence ρ1, the temperature dependence of
ρ−1

n δρn/δεa is described with:

[
ρ
−1
n
(
δρn

/
δεa
)]
(T )≈ ρ

−1
0
((

δρ0
/

δεa
)
+T 2 (

δρ1
/

δεa
))

, (2.9)

where [ρ−1
n (δρn/δεa)]T and ρ

−1
0 (δρ0/δεa) are dimensionless parameters and
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ρ
−1
0 (δρ1/δεa) is in [K−2]. In figure 2.20, the average slope (ρ−1

n δρn/δεa)avg and the ex-
trapolated slope ρ

−1
0 (δρ0/δεa) are shown for the Nb-Sn thin films and Nb3Sn binary bulk

sample, also see [49]. The parameter ρ
−1
0 (δρ1/δεa), which is barely distinguishable above

the noise level of the measurement, is within 0 and 0.017 K−2 for all measurements and on
average equal to 0.006 K−2. In figure 2.20, the average ρ−1

n (δρn/εa)avg and the extrapolated
ρ
−1
0 (δρ0/εa) are compared, and it is clear that at the temperature below 20 K at which these

measurements were taken, the strain sensitivity of ρn is dominated by the strain sensitivity
of ρ0. Also shown is ρ−1

n (δρn/δεa) of the Nb film, which was only measured at 9.5 K.

In summary, the normal state resistivity of Nb-Sn depends on the direction in which strain
is applied. This effect is not due to a geometry change, since the degree of change in normal
state resistivity with strain is much larger than can be explained by a mere geometry effect,
and the measurements are corrected for geometry changes. It is highly unlikely that this is a
measurement error, as three different measurement types were used: regular measurements
on (thicker) bulk samples and (thinner) thin films, and measurements on patterned thin film
samples. The latter measurement in particular uses a well-controlled geometry, resulting
in a high degree of confidence that indeed the sample resistivity is changing. It is also
noteworthy that the degree of normal state resistivity change in the binary bulk sample is
very close to that of the thin films even though the typical grain diameter in the bulk samples
is more than ten times larger. This implies that the strain dependence of ρn is not related to
the grain boundaries.

ρ−1
n (δρn/δεa) is larger for Nb-Sn samples with a lower normal state resistivity, smaller for

Nb-Sn samples with higher normal state resistivity and negligible for the Nb thin films. The
normal state resistivity is only weakly strain dependent in the direction perpendicular to the
applied strain, which means that under the influence of strain, the normal state resistivity
becomes anisotropic. A weak temperature dependence was observed in ρ−1

n (δρn/δεa), but
this effect is insufficient to explain the strain dependence of ρn. Thus, the residual resistivity
(i.e. ρn at 0 K) changes as a function of strain, which implies that strain affects the electrical
properties of the crystal, a phenomenon that is explained in section 5.5.2.

2.4.7 Determination of the Tc of Nb-Sn samples from resistivity mea-
surements

At a given magnetic field and strain, the critical temperature is determined from resistivity
measurements through the use of a resistivity criterion. For instance, using a resistivity
criterion of 50% means that Tc is the temperature at which the resistivity is at 50% of the
normal state resistivity, where the normal state resistivity is the resistivity at a temperature
slightly above Tc (figure 2.17).

The choice of resistivity criterion is somewhat arbitrary and different arguments can be pre-
sented for different criteria. Using a high resistivity criterion (90%) results in a Tc value
that is indicative of the highest Tc present in the sample. Using a low resistivity criterion
(10%) results in a Tc that is indicative for the highest temperature at which a superconduct-
ing path is formed in the sample, which allows for a more consistent comparison with other
experiments such as critical current measurements. Finally, a 50% criterion is useful, be-
cause δρn/δT is the largest at 50% of the normal state resistivity, resulting in the greatest
degree of sensitivity to changes in Tc. Strain typically causes small changes in the critical
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Figure 2.21: Critical temperature Tc as a function of tin content (top), and upper criti-
cal field µ0Hc2(0) as a function of Tc for the various investigated samples (grey symbols),
compared to literature data (open symbols) (section 4.8.5). The composition distribution
width near stoichiometry is about 0.5 at.% Sn, while the composition distributions of the
off-stoichiometric samples ranges between 2 at 5 at.% Sn. The arrows are guides to the eye.
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temperature, so that sensitivity is paramount, and this last criterion is selected as standard
criterion throughout this thesis.

The Tc is extracted for every sample and compared to literature data (figure 2.21, top).
The referenced authors, which are Moore et al. [13], Hellman et al. [51], Devantay et al.
[52], and Rudman et al. [82] used either inductive or heat capacity measurements. While
interpreting inductive measurements is not trivial due to complicating effects such as the
undefined paths of shielding currents, the heat capacity measurement in particular is a truly
volumetric measurement and is therefore considered as a highly reliable indication of the Tc
distribution of the sample.

As seen in figure 2.21, top, the Tc derived from resisitivity measurements is equal to or
above any average Tc at a given composition. This is to be expected since only a small per-
colating path needs to be superconducting to short out the sample. As a result, the best
rather than the average superconducting properties of a sample are determined through
resistivity measurements (also see figure 2.5, bottom). Tc increases with increasing tin
concentration, so that composition distribution width is approximately equal to twice the
difference between the highest composition in a sample (which is determined from the re-
sistively determined Tc) and the average composition of the sample (which is determined
through SEM-XEDS or RBS). This rough estimate shows that the samples near stoichiome-
try are very homogeneous with a composition distribution width in the order of 0.5 at.% Sn,
while the off-stoichiometric samples are less homogeneous with composition distribution
widths that range from 2 to 5 at.% Sn.

While the most inhomogeneous off-stoichiometric thin film samples likely have broad Tc
distributions in the order of several kelvin wide [50], this does not fully explain the observed
behavior. The average Tc transition width (as defined by the difference in Tc that is deter-
mined with a 10% and a 90% criterion) is 0.5 K while the broadest Tc transition is 1.1 K
wide. Partly, this is due to the percolating path argument discussed above. In addition,
it is not inconceivable that this effect may be due to oxidation resulting in local regions of
niobium-oxide. As this effectively traps some of the excess niobium, the niobium to tin ratio
in the A15 Nb-Sn is lower, resulting in the observed behavior. This argument is consistent
with the experimental observations by Hellman et al. [51] as well as with the deposition
conditions of the investigated samples [45].

2.4.8 Determination of µ0Hc2 of Nb-Sn samples from resistivity mea-
surements

The Tc value is determined at a number of discrete magnetic fields, which allows for an ex-
trapolation to µ0Hc2(0), as illustrated in figure 2.22. Similarly to the magnetic field depen-
dent heat capacity measurements (section 2.2.5), the Maki-DeGennes description is applied
to the experimental data to determine the upper critical field at each strain, see equation 2.1.

Consistent with previous observations by Orlando et al. [81] and by Devantay et al. [52],
it is observed that the δTc/δ µ0H decreases between 0 and 5 T (figure 2.22), leading to
minor deviations from the Maki-DeGennes description (the measured Tc values at 0 T are
approximately 0.5 K higher than the fitted ones). This phenomenon is investigated in more
detail elsewhere [45]. While the precise cause of this deviation in unclear, it is noted that the
underlying assumptions of Maki-DeGennes description, (dirty limit, weak coupling, no
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Figure 2.22: µ0Hc2 as a function of temperature. Tc was determined at various magnetic
fields and two different strains. The Maki-DeGennes description was fitted to the data using
fit parameters Tc and µ0Hc2(0).

Pauli paramagnetic limiting, no spit-orbit coupling, and a spherical Fermi surface) are some-
what inaccurate or debatable, a subject discussed in more detail in section 4.8. As the de-
scription does not fully account for the details of the microscopic properties of Nb3Sn, the
observation of minor deviations is not unexpected.

With these considerations in mind, µ0Hc2 is determined by performing a least-squares fit
to the Maki-DeGennes description, where the Tc measurement at 0 T is not included. This
results in a fit that matches the observed behavior in the intermediate to high magnetic field
range, i.e. µ0H > 5 T, but is up to 0.5 K below the actually observed Tc in the low magnetic
field range, i.e. µ0H < 5 T (figure 2.22).

For each of the investigated samples µ0Hc2(0) is determined and the result is compared to
literature values (figure 2.21), bottom. Only literature values are included in which Tc and
µ0Hc2(0) are reported simultaneously. The literature values reflect a variety of measure-
ment techniques and a variety of measurement criteria, including resistivity measurements
[R], vibrating sample magnetometer measurements [V], magnetic measurements [M], and
radio frequency measurements [RF] of bulk samples, thin films, and wires. Of particular
interest are the resistivity measurements by Godeke et al. [48], Zhou et al. [66], Jewell et al.
[68], the radio frequency measurements by Foner et al. [67], and the magnetic measurement
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by Arko [70]. All these extend over a range down to temperatures close to 0 K and up to
magnetic fields close to µ0Hc2(0). Other literature data by Orlando et al. [42], Devantay
et al. [52], and Jewell et al. [68] reflect extrapolations from lower magnetic field ranges,
making the uncertainty of these values higher. The values by Naus [69] are based on mag-
netic measurements. These various literature results are discussed in detail in section 4.8.5.

It is clear that the measured µ0Hc2(0) values are consistent with literature values. This might
seem confusing as the critical temperature versus composition data indicates the presence
of compositional inhomogeneity or compositional uncertainty due to niobium oxidation.
However, in off-stoichiometric Nb-Sn samples the fraction that is probed resistively has
both the highest Tc and the highest µ0Hc2(0) values, which is why inhomogeneity does not
affect the µ0Hc2(0) as a function of Tc curve of off-stoichiometric samples.

Consistent with the literature data, the experimentally observed µ0Hc2(0) increases with in-
creasing Tc up to Tc ≈ 17.5 K, and then sharply decreases. Due to inhomogeneity, the thin
films do not display the characteristic drop near stoichiometry, because the resistivity mea-
surement probes the best rather than the average properties of the samples. The underlying
cause of the drop in µ0Hc2(0) near stoichiometry is discussed in section 4.8.7.

2.4.9 Strain dependence of Tc and µ0Hc2 of Nb-Sn samples
Tc and µ0Hc2 were determined as a function of applied strain for bulk samples and thin
films (figure 2.23). Bulk samples can be reversibly compressed down to 0.7% compressive
strain while thin films can be reversibly compressed by 0.35%. The tensile strain limit is
somewhere between 0.05% and 0.15%, so typically a ‘safe’ experimental limit of 0.05%
was used.

The deviatoric strain model [71] was used as a data reduction tool for describing both Tc(εa)
and µ0Hc2(εa). While the deviatoric strain model is no longer applicable at high compressive
strains and a combination of compressive and tensile data, the description is accurate in the
strain range in which the bulk samples and thin films are measured and is therefore useful
as a parameterization tool. Tc and µ0Hc2 as a function of applied strain are described with:

Tc (εa) =
Tcm

(
1−Ca,Tc

√
(εa− εm)

2 + ε2
0,a

)
1−Ca,Tcε0,a

, (2.10)

µ0Hc2 (εa) =
µ0Hc2,m

(
1−Ca,Hc2

√
(εa− εm)

2 + ε2
0,a

)
1−Ca,Hc2ε0,a

, (2.11)

where Tcm and µ0Hc2m indicate the maximum Tc and µ0Hc2 values, Ca,Tc and Ca,Hc2 indicate
the degree of strain sensitivity (with a higher value indicating more strain sensitivity), ε0,a
represents the amount of rounding of the curve, and εm the position of the maximum Tc and
µ0Hc2 relative to the strain εa immediately after cool down. The optimal value of ε0,a of the
thin films was determined to be 0.3 ± 0.1%, so for data reduction this parameter is fixed to
0.3%. Likewise, ε0,a is fixed to 0.44% for the bulk samples. A single εm value is determined
per sample.

Figure 2.24 shows the strain sensitivity parameter Ca,Tc as a function of Tc and the strain
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Figure 2.23: Strain dependent Tc (top) and µ0Hc2(0) (bottom) determined from resistivity
measurements. The solid lines show individual fits of the measurement data with the devi-
atoric strain description. The open and grey symbols represent measurements on thin films
and on bulk samples, respectively.
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Figure 2.24: Strain sensitivity parameters Ca,Tc as a function of Tcm (top) and Ca,Hc2 as a
function of µ0Hc2m (bottom). The open and grey symbols represent measurements on thin
films and on bulk samples, respectively. The arrows are guides to the eye.

sensitivity parameter Ca,Hc2 as a function of µ0Hc2. The two figures look very similar, with
a general increase in strain sensitivity with increasing Tc or µ0Hc2, and a decrease near the
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Figure 2.25: Power-law exponent w reflecting the larger degree of strain sensitivity in
µ0Hc2(0) in comparison to Tc (equation 2.12). The arrows are guides to the eye.

stoichiometric composition, with Tc ≈ 18 K and µ0Hc2 ≈ 30 T. It is thus interesting to
note that the main factor determining the strain sensitivity seems to be the superconducting
properties (and, by extension, the tin content), rather than fabrication method, i.e. the mi-
crostructure. More specifically, the strain sensitivity observed in the bulk samples and the
thin films is consistent, even though the grain diameters in the bulk samples are more than
ten times larger, which points to the conclusion that the strain sensitivity is rather insensi-
tive to the grain diameters for grain diameters on the order of several hundred nanometers
and higher. Also, the strain sensitivity of Tc and µ0Hc2 in deposition 3-17-11, which was
deposited at 900 ◦C and contains larger grains, is nearly the same as for deposition 8-22-11,
which was deposited at 700 ◦C and contains smaller grains (figure 2.8).

The degree of strain sensitivity in µ0Hc2(0) in comparison to Tc is often described with a
power law description:

µ0Hc2 (0,εa) ∝ Tc(εa)
w, (2.12)

where w normally lies between 2 and 3 (see Ekin [83] and Taylor et al. [84]). The optimal
value of w is determined for each of the samples and shown in figure 2.25. In the off-
stoichiometric limit, w is around 2, while near stoichiometry w≈ 3. The arrows in the figure
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Figure 2.26: Strain maximum εm (i.e. the applied strain εa at which µ0Hc2 is maximum) as
a function of µ0Hc2m. The open and grey symbols represent measurements on thin films and
on bulk samples respectively. The arrow is a guide to the eye.

serve as guides to the eye. Note that the stoichiometric samples are omitted from this figure:
Near stoichiometry, µ0Hc2(0) decreases with increasing Tc, which means that in a somewhat
inhomogeneous sample, the resistively determined Tc reflects a different composition than
the resistively determined µ0Hc2(0), which makes a comparison of the strain sensitivity of
Tc and µ0Hc2(0) less useful. While one might wonder if the outlier at a critical temperature
of 17.4 K is a measurement anomaly, further evidence of the accuracy of this data point is
given in section 3.7.3.

Figure 2.26 indicates the strain at which µ0Hc2 reaches a maximum. While εm does seem
to be affected by composition, there is substantial variation between the samples, which
is indicative for varying thermal pre-strains on the samples. Based on the strain state of
the thin films at room temperature and the difference in thermal contraction between room
temperature and 4 K, it was argued that the thin films are 0.07±0.04% in tension (section
2.4.2). If the maxima in Tc and µ0Hc2 are found when the samples are strain free, then εm
is expected to be -0.07±0.04%, i.e. compression counters the tensile strain state of the thin
film after cool down and thus can cause an increase in Tc and µ0Hc2. While this is indeed
the case for samples near stoichiometry, it does not apply for off-stoichiometric samples. A
possible explanation is that the thermal expansion of off-stoichiometric Nb-Sn is somewhat
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different from stoichiometric Nb3Sn, leading to the observed (small) deviation.

2.4.10 Determination of µ0Hc2 of niobium
As with the Nb-Sn samples, µ0Hc2 of the niobium can be derived from the magnetic field
dependence of Tc. According to Rosenblum et al. [85], the relation between critical
temperature and magnetic field is described with:

µ0Hc2 (T )
/

µ0Hc2 (0) = 1−
(
T
/

Tc
)2
. (2.13)

Figure 2.27 shows µ0Hc2 as a function of temperature. As with the Nb-Sn samples, it is
observed that Tc curves upwards near µ0H = 0 T. It was previously shown by Rosenblum et
al. [85] that in bcc Nb with Tc > 7.7 K µ0Hc2(0) increases with decreasing Tc. At lower
magnetic field (i.e. µ0H < 1 T), the resistively determined Tc reflects the less disordered
niobium (i.e. lower ρn) with higher Tc and lower µ0Hc2(0), while at higher magnetic field
it reflects the more disordered niobium (i.e. lower ρn) with lower Tc and µ0Hc2(0). Thus,
the deviation of the empirical curve (equation 2.13) in figure 2.28 is a strong indication that
the samples comprise Nb with varying degrees of disorder. Equation 2.13 is applied only to
the measurements at elevated magnetic fields, with µ0H ≥ 1 T. The thus determined upper
critical field µ0Hc2 at εa = 0% is 2.6 T.

2.4.11 Strain dependence of Tc and µ0Hc2 of the niobium samples
The Tc as a function of strain of a sample of bcc niobium was measured on a patterned
and a regular niobium thin film sample (figure 2.14). As seen in figure 2.28, top, the critical
temperatures of the longitudinal and transverse sections are nearly identical, with an average
difference of 8 mK between the two sections, while the Tc value of the unpatterned sample
is about 50 mK lower than the patterned sample. This difference could be due to either an
error in the temperature measurement (which is estimated at 0.1 K absolute) or due to a
slight difference in composition and morphology between the two samples. In comparison
to the Nb-Sn, the strain sensitivity of the superconducting properties of bcc niobium is weak,
a phenomenon that is explained in section 5.4.3.

The upper critical field µ0Hc2 was determined as a function of applied strain for the unpat-
terned sample (figure 2.28, bottom). Consistent with the Tc measurement, the application
of strain results in a weak increase in µ0Hc2. Unfortunately, the upper critical field of the
patterned sample could not be measured.

2.4.12 Conclusion
The U-spring test rig is discussed in terms of experimental aspects and characteristic results.
The test rig allows for the measurement of the resistivity and critical current density as a
function of temperature, magnetic field, and applied strain.

The longitudinal and transverse strain states of a thin film sample on the sample holder were
determined through the use of a bi-axial strain gauge. The thermal pre-compression of the
Nb-Sn and Nb samples was determined from XRD-measurements.

Strain was shown to affect the normal state resistivity of the Nb-Sn samples in an unusual
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Hc2/Hc2(0) = 1 - (T/Tc)2
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Figure 2.27: µ0Hc2 as a function of temperature of the niobium thin film dep2-12-13. Near
µ0H≈ 0 T, Tc deviates from the behavior expected for a homogeneous sample [85].

way resulting in a strong and anisotropic change in the normal state resistivity for the lower
resistivity samples and a significantly weaker change for the higher resistivity samples. In
contrast, it was shown that the effect of strain on the normal state resistivity of niobium is
negligible.

Several mechanisms are considered that would explain the experimentally observed change
in normal state resistivity. Geometrical effects are ruled out as a possible explanation as they
would lead to a much smaller change in the normal state resistance. The strain dependence
of ρn is consistently observed in different sample geometries, including regular Nb3Sn bulk
samples, regular Nb-Sn thin films, and patterned Nb-Sn thin films. The high degree of
consistency between the measurement types indicates that the observed phenomenon is not
a measurement anomaly. The behavior observed in a Nb3Sn bulk sample overlaps with the
behavior of Nb-Sn thin films, in spite of the fact that the typical grain diameter in the bulk
sample is over ten times larger than the typical grain diameter in the thin films. This implies
that the change in normal state resistivity is not related to the grain boundaries. Finally, the
change in normal state resistivity with strain is weakly related to the temperature, but this
effect is not large enough to explain the complete effect. The normal state resistivity changes
because the residual resistivity (i.e. ρn at 0 K) changes, and the temperature dependent
behavior is a smaller second-order effect. The relevance of these experimental observations
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(bottom). The arrows are guides for the eye.
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is presented in section 5.4. It will be demonstrated that the underlying cause of the strain
dependence of ρn can also explain the strain sensitivity of the superconducting properties.

The Nb-Sn thin film and bulk samples have a range of superconducting properties, with
Tc varying between 9.8 and 18.1 K, and µ0Hc2 between 15.5 and 30.4 T. The composition
dependent critical temperature indicates that the off-stoichiometric thin film samples (with
a composition distribution width ranging between 2 and 5 at.% Sn) are less homogeneous
than the stoichiometric thin films (with a composition distribution width of the order of 0.5
at.% Sn). The µ0Hc2(0) versus Tc relation is consistent with literature values. The niobium
sample has a Tc of 9.3 K and a µ0Hc2 value of 2.6 T. The observed temperature dependence
of µ0Hc2 is consistent with a bcc niobium sample that contains both weakly disordered
niobium (evident from the high Tc) and strongly disordered niobium (evident from the high
µ0Hc2(0)).

The strain sensitivity of Tc and µ0Hc2 of the Nb-Sn samples increase with increasing Tc
and µ0Hc2, which indicates that samples with higher tin concentration are more strain sen-
sitive. However, near stoichiometry (i.e. Tc > 17 K and µ0Hc2(0) ≈ 29 T) the observed
strain sensitivity decreases strongly. As discussed in section 5.5.4, this can be related to the
martensitic transformation that occurs in low-resistivity Nb3Sn. In contrast, Tc and µ0Hc2
of the niobium thin films weakly increase with applied compressive strain, a phenomenon
that is further explained in section 5.4.3.

2.5 Conclusion
This chapter gave a general overview of sample fabrication, characterization, and deter-
mination of the superconducting properties and normal state properties, while the detailed
analysis of these properties is discussed in the following chapters.

Bulk samples were investigated in terms of their composition and morphology. In spite of
nominal off-stoichiometry in the starting powder ratios, the binary samples and the samples
with titanium and tantalum additions were shown to consist of stoichiometric Nb3Sn, nio-
bium, and regions of tantalum or titanium. In contrast, the samples with copper addition
comprise both stoichiometric and off-stoichiometric Nb-Sn.

A binary bulk sample was investigated in terms of µ0Hc2 through heat capacity measure-
ments, and it was found that while the binary sample exhibits a narrow Tc distribution near
17.5 K, the µ0Hc2(0) ranges between 22.4 and 29.4 T.

Thin film samples were fabricated as an alternative to the bulk samples, allowing for im-
proved control of composition and its distribution. The fabrication process involved simul-
taneous magnetron sputtering of niobium and tin onto a heated R-plane sapphire substrate.
This results in dense, highly textured, polycrystalline Nb-Sn films with various composi-
tions. Unlike the bulk samples, both stoichiometric and off-stoichiometric single phase films
were produced.

The films were determined to be predominantly (100) oriented in the out-of-plane direction
and randomly oriented in the in-plane direction. A niobium film was also produced in a
high power impulse magnetron sputtering process (HiPIMS), resulting in a dense, highly
textured niobium film. Patterning was applied to some of the thin films in order to measure
the orientation-dependent normal state resistivity and the critical current density.
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The U-spring test rig was used for resistivity and critical current density measurements as
a function of temperature, magnetic field, and applied strain. The critical current is dis-
cussed in detail in the next chapter. Uni-axial strain affects the normal state resistivity in an
anistropic manner. The degree of strain sensitivity correlates to the magnitude of the normal
state resistivity. In contrast, the normal state resistivity of the niobium is nearly independent
of applied strain. The results and implications of a strain sensitive ρn are discussed in detail
in chapter 5.

The strain sensitivity, i.e. the amount of reduction of Tc and µ0Hc2(0) with applied strain
correlate with the overall magnitude of the superconducting properties and by extension
with the composition. In general, the observed strain sensitivity increases with increasing
Tc and µ0Hc2, only to drop near Tc ≈ 18 K and µ0Hc2 ≈ 30 T, i.e. when approaching the
stoichiometric composition. In contrast, Tc and µ0Hc2 of the niobium thin film only weakly
increases with compressive strain, which will be discussed further in chapter 5.
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Chapter 3

Strain Dependent Critical Current
Density of Nb3Sn and Nb-Ti



3.1 Introduction
The effect of temperature, magnetic field and strain on the critical current density of Nb-Ti
and Nb3Sn is introduced. The three most commonly used Nb3Sn critical current density
scaling relations and a commonly used Nb-Ti critical current density scaling relation are
evaluated. The scaling relations are shown to be largely indistinguishable except for some
subtle differences.

The scaling descriptions for Nb3Sn are the Mentink-Arbelaez-Godeke (MAG) scaling rela-
tion [86], as used by the nuclear fusion [87] and high energy physics communities [88], the
Ekin scaling relation [83, 89], and the Durham scaling relation [84, 90]. Seven
different descriptions that describe the normalized upper critical field of Nb3Sn as a function
of uni-axial strain are discussed. The difference between these descriptions is that they were
formulated by various authors, that the strain range in which they are valid varies between
the descriptions, and the mechanism which explains the strain sensitivity in Nb3Sn varies
between the descriptions as well.

Also presented is the scaling relation by Bottura et al. [91] which describes the critical
current density of Nb-Ti. Even more scaling relations were developed, and comprehensive
overviews of these scaling relations are published elsewhere [89, 92, 41].

An experiment is presented for measuring the critical current density of stoichiometric and
off-stoichiometric Nb-Sn as a function of temperature and magnetic field, as well as strain,
applied either longitudinally or transversely to the current direction. The MAG relation
relates the strain sensitivity of the critical current density to strain sensitivity of the super-
conducting properties Tc and µ0Hc2(0). Tc is isotropic while µ0Hc2(0) is close to isotropic
(with a maximum observed direction dependent variation from the average of less than 3%,
see Foner et al. [67]), which implies that the critical current density as a function of applied
strain is independent of whether strain is applied parallel or perpendicular to the current flow
direction, a hypothesis that is extensively discussed here.

3.2 Underlying physics of the critical current density
3.2.1 Lorentz force and bulk pinning force
The critical current for a given temperature, magnetic field and strain in a type II supercon-
ductor reflects a force balance between the bulk pinning force and the Lorentz force that is
exerted on the fluxlines.

A type-II superconductor like Nb3Sn is permeated with flux lines when a magnetic field
is applied that is larger than µ0Hc1 (approximately 50 mT for stoichiometric Nb3Sn). The
core of a flux line is in normal state, and this permeation with normal cores is energetically
favorable, due to the negative surface energy of the boundaries between superconducting
and normal states [93].

A Lorentz force Fl is exerted on the flux lines when current flows through the material in the
presence of a non-zero magnetic field, with:

−→
FL ≡

−→
Jc ×
−→
B . (3.1)
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Movement of flux lines results in a non-zero electric field, following ∇×E =−δB/δ t, and
thus dissipation. However, flux lines can be held in place by so-called pinning sites, which
are imperfections in the material such as grain boundaries in the case of Nb3Sn [94, 95]
or α-Ti precipitates in the case of NbTi [117]. It is energetically favorable for the normal
cores of flux lines to overlap with the pinning cites and energetically unfavorable for the flux
lines to move away from this configuration. Moreover, flux lines exert a repelling force on
each other, which results in collective pinning. In Nb3Sn where the pinning site density is
insufficient to pin each individual flux line, through collective behavior the pinned flux lines
also hold the other flux lines in place (figure 3.6).

Provided the bulk pinning force is larger than the Lorentz force exerted on the flux-line
lattice, the flux lines are prevented from macroscopic movement, and the electric field along
the superconductor remains zero. The critical current density is the current density at which
the Lorentz force and the bulk pinning force are equally strong. Exceeding the critical
current density results in collective movement of the flux lines and a non-zero macroscopic
electric field.

The critical current density is not to be confused with the significantly larger depairing cur-
rent density, which is the current density at which the kinetic energy of the moving electrons
exceeds the pairing energy.

3.2.2 Experimental critical current density
The macroscopic electric field in a superconductor as a function of current density, see for
instance figure 2.18, can be empirically described rather well with a power law:

E = Ec

(
J
Jc

)n

, (3.2)

where Jc is the critical current density, and n is determined by various factors like the homo-
geneity of the conductor [33] and the effect of temperature on the movement of flux lines
[100], and Ec is an arbitrary electric field criterion such as 10 µVm−1.

3.3 Tools for measuring temperature, magnetic field, and
uni-axial strain dependent critical current density

Besides the U-spring test rig, which was developed by Godeke et al. [33, 71, 72], various
other experimental tools were developed to measure the critical current of Nb3Sn conductors
as a function of temperature, magnetic field, and uni-axial strain. Well-known tools are the
PACMAN, developed by Godeke et al. [107] and the Walters spring, developed by Walters
et al. [108]. The main difference of these tools with the U-spring test rig is the larger length
of the homogeneously strained region, which allows for a more homogeneously distributed
current inside the conductor as well as a higher voltage resolution, which sometimes is an
advantage.
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3.4 Nb3Sn scaling relations
3.4.1 Nb3Sn critical current density following the MAG relation
The MAG relation is derived from Ekin’s originally proposed parameterization model [83].
It was refined by Godeke et al. [33, 103, 106] and accepted as the standard scaling relation
by the HEP [86] and ITER [92] communities.

Subsequently, the MAG relation was mathematically simplified for the purpose of making
the description more accessible and to show a clear separation of temperature and magnetic
field on one hand, and strain on the other hand [104, 105]. The critical current density is
expressed as a function of temperature, magnetic field, and strain with:

Jc(T,µ0H,ε) =CI
(
1− t2)µ

hp−1(1−h)q, (3.3)

CI =
√

2C∗µ0H∗c (0), (3.4)

t ≡ T
Tc(0,ε)

, (3.5)

h≡ H
Hc2(T,ε)

, (3.6)

where C∗ is a normalization constant related to the maximum bulk pinning force, p and q are
free parameters describing the magnetic field dependence of the pinning force, Tc(0, ε) is the
critical temperature in the absence of applied magnetic field for a given strain, µ0Hc2(T, ε)
is the upper critical field at a given temperature and strain, and ε represents the three-
dimensional strain state of the Nb3Sn.

µ is a scaling parameter that describes the temperature dependence of the critical current
density and is typically set to 1. However, as pointed out by a few authors [104, 105, 92]
and also demonstrated here, the temperature dependence of Nb3Sn conductors varies, which
means that this parameter is in fact conductor dependent. A possible explanation is that
practical Nb3Sn conductors are inhomogeneous in composition.

This can be illustrated with a mental exercise. Assume that the temperature dependence of
a perfectly homogeneous conductor scales as (1− t2). Then one can imagine an inhomoge-
neous conductor that consists of two perfectly homogeneous Nb3Sn regions with different
critical temperatures (for example 15 K and 18 K) but otherwise having identical micro-
scopic properties. The current density of this conductor is then described with:

Ic1 (T,µ0H,ε) =
(

1− (T/15)2
)

f (µ0H,ε) for T ≤ 15K, (3.7)

Ic2 (T,µ0H,ε) =
(

1− (T/18)2
)

f (µ0H,ε) for T ≤ 18K, (3.8)

Ic,tot = Ic1 + Ic2, (3.9)
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Figure 3.1: Critical current density pre-factor C(T ) as a function of temperature. Illustra-
tion of compositional inhomogeneity resulting in µ > 1.

where f (µ0H,ε) describes the magnetic field and strain dependence of the critical current,
and Ic1 and Ic2 describe the two parallel sections with different critical temperatures. As
the two sections are parallel, the total critical current of this imaginary wire is simply the
sum of the two sections. As shown in figure 3.1, the summation of the two sections results
in a ‘tail’ in the temperature dependent critical current density that is similar to the ‘tail’
that is observed when sections with different upper critical fields are shunted in a parallel
fashion as described by Cooley et al. [96]. As is also illustrated in figure 3.1, this tail can be
approximated by using a description of the temperature dependence with a free parameter
µ:

Ic,tot ≈ 2.02
(

1− (T/17.5)2
)µ

f (µ0H,ε) for T ≤ 17.5K, (3.10)

where µ is equal to 1.26 for this imaginary conductor.

In summary, if the temperature dependence of a perfectly homogeneous conductor is accu-
rately described with µ = 1, then it follows that a somewhat inhomogeneous conductor is
more accurately described with µ 6= 1.

In the MAG relation, the temperature dependence of the upper critical field is described with
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Figure 3.2: Reduced upper critical field as a function of reduced temperature. The appli-
cability of the Maki-DeGennes description of µ0Hc2 is demonstrated on a wide range of
compositions for various types of Nb3Sn superconductors, after Godeke et al. [48].

the Maki-DeGennes description (section 2.2.5). It has been convincingly demonstrated that
this description accurately describes the temperature dependence of the upper critical field
µ0Hc2 of various Nb3Sn conductors over a wide range of compositions and strain states
[33, 48] (figure 3.2). The temperature dependence of µ0Hc2 can be approximated by [103]:

hc2 ≈
(

1− t1.52
)
, (3.11)

which provides an accurate approximation over the full temperature range with an average
error of 0.7% and a standard deviation of 0.4%. The strain sensitivity of the upper critical
field is captured in a parameter s(ε)≤ 1, following:

µ0Hc2(0,ε) = µ0Hc2m(0)s(ε), (3.12)

where µ0Hc2(0, ε) is the upper critical field as a function of strain and µ0Hc2m(0) is the
maximum upper critical field of the material.
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Similar to the upper critical field, the critical temperature is also affected by strain. The
relation between the strain sensitivity of the upper critical field and that of the critical tem-
perature is described by a power law [83], with:

Tc(0,ε) = Tc(0,εm)s(ε)1/w, (3.13)

where Tc(0, ε) is the critical temperature as a function of strain, Tcm(0) is the maximum
critical temperature and w is a composition dependent parameter, which for nearly stoichio-
metric Nb3Sn is approximately equal to 3.

The strain dependence of s(ε) is described by a relation by Arbelaez et al. [106], which is
discussed in the next section.

3.4.2 Nb3Sn critical current density following Ekin
Ekin, in an updated version [89] of his original scaling relation [83] proposed to describe
the critical current density for Nb3Sn, with:

Jc(T,µ0H,ε) =
Ce

µ0H
s(ε)γ f (t) f (h), (3.14)

f (t) =
(
1− t2)µ

(
1− t1.52

)η−µ

, (3.15)

f (h) = hp(1−h)q, (3.16)

where p, q, and Ce are free parameters. The approximation to the Maki-DeGennes relation
(equation 3.11) is used to find:

µ0Hc2(T,ε) = µ0Hc2m(0)s(ε)
(

1− t1.52
)
, (3.17)

and the normalized magnetic field is defined as:

h =
H

Hc2(T,ε)
=

H
Hc2m(0)

(
1− t1.52

)−1
s(ε)−1. (3.18)

Using equation 3.18, equation 3.14 is reformulated as:

Jc(T,µ0H,ε) =CIs(ε)γ−1(1− t2)µ
(

1− t1.52
)η−µ−1

hp−1(1−h)q, (3.19)

CI =
Ce

µ0Hc2m(0)
. (3.20)

Ekin observed that γ ≈ 1 [83, 109, 110] and that in order to accurately describe the tem-
perature dependence of various Nb3Sn samples, only one of the two parameters µ and η

is required as a free parameter [89]. With γ = 1 and setting η = µ + 1, equation 3.19 is
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reduced to:

Jc(T,µ0H,ε) =CI
(
1− t2)µ

hp−1(1−h)q, (3.21)

which is identical to equation 3.3. Thus, even though the starting equations seem very
different, the two descriptions are in fact identical.

3.4.3 Nb3Sn critical current density following the Durham group
The Durham group proposed for Jc as described by Taylor et al. [84]:

Jc (T,µ0H,εI) = A(εI)
(
Tc (εI)

(
1− t2))2

(µ0Hc2 (T,εI))
n−3hp−1(1−h)q, (3.22)

µ0Hc2 (T,εI) = µ0Hc2 (0,εI)(1− tν) , (3.23)

(
A(εI)

A(0)

)1/u

=

(
Hc2 (0,εI)

Hc2 (0,0)

)1/w

=
Tc (εI)

Tc (0)
. (3.24)

In a detailed overview of scaling of various high Jc Nb3Sn conductors by Lu et al. [90], it
was shown that optimal values for n, ν , w, and u are 2.5, 1.5, 2.2, and 0, respectively, while
the remaining parameters are free parameters. Equation 3.23 is approximately the same as
equation 3.11 (because 1.50≈ 1.52). Using the fixed values of n, ν , w and u, equations 3.22,
3.23, and 3.24 can be reformulated into a mathematically equivalent form:

Jc (T,µ0H,εI) =C1s(εI)
9/22 f ( T )hp−1(1−h)q, (3.25)

f ( T ) =
(
1− t2)2

(
1− t1.5

)−0.5
, (3.26)

C1 = A(0)T 2
cm(µ0Hc2m(0))−0.5, (3.27)

s(εI) =
Hc2 (0,εI)

Hc2m (0)
. (3.28)

For 0.1 < t < 1, the temperature dependent part is approximated by:

f ( T ) =
(
1− t2)2

(
1− t1.5

)−0.5
≈ 1.03

(
1− t2)µ

, (3.29)

with µ = 1.38 (figure 3.3). Including this approximation, the general form is:

Jc (T,µ0H,εI) =CDs(εI)
9/22(1− t2)1.38

hp−1(1−h)q. (3.30)
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CDurham = 1.03(1-t2)1.38
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Figure 3.3: Critical current density pre-factor as a function of temperature of the Durham
scaling relation and a simpler approximation.

CD = 1.03A(0)Tcm
2(µ0Hc2m(0))−0.5. (3.31)

At constant temperature and magnetic field, the change in critical current due to a strain
induced change in h and t dominate the strain dependence of Jc , i.e. :

s(εI)
9/22 ≈ 1. (3.32)

Inserting this approximation into equation 3.30, the Durham description reduces to:

Jc (T,µ0H,εI) =CD
(
1− t2)1.38

hp−1(1−h)q. (3.33)

Thus, the Durham scaling relation is nearly identical to the MAG relation (equation 3.3) and
Ekin’s scaling description (equation 3.21), with the main difference being a fixed value of
µ equal to 1.38. Thus, a striking conclusion is reached: the scaling following MAG, Ekin,
and Durham are nearly indistinguishable. This is a powerful testament to the validity of the
MAG relation, as competing groups of scientists developed different scaling relations that
converge onto the same result.
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Figure 3.4: Strain function s as a function of uni-axial strain. A variety of strain func-
tion descriptions are compared to experimental data, after Lu et al. [90]. An additional
normalization factor was added to the strain function description by Bordini et al. [99].

3.5 Strain function s(εI)

3.5.1 Introduction
A number of different descriptions were developed describing the strain dependence of
µ0Hc2(0) through the strain function s(εI), defined as:

s(εI)≡
µ0Hc2 (0,εI)

µ0Hc2 (0,0)
. (3.34)

The parameter εI is related to the applied uni-axial strain εa and a term εm that is equal to εa
at which the superconducting properties are at a maximum:

εI = εa− εm. (3.35)

In this section, some of the most commonly used strain function descriptions are discussed,
and their applicability is illustrated in figure 3.4.
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3.5.2 Strain function description by Ten Haken et al.
The deviatoric strain description by Ten Haken et al. [101] is based on the idea that a change
in µ0Hc2(0) is proportional to the second strain invariant in addition to rounding near the
maximum µ0Hc2(0), which is described with a remaining strain term ε0,a. It is the first
description that accounts for the three-dimensional strain state. This description was used to
parameterize the observed strain sensitivity in the superconducting properties of the Nb-Sn
bulk samples and thin films:

s(εI) =
1−Ca,Hc2

√
(εI)

2 +(ε0,a)
2

1−Ca,Hc2ε0,a
. (3.36)

The value of this description is in its simplicity, as well as making a verifiable prediction for
any strain state rather than just the strain state that is found in uni-axial strain experiments.
The drawback of this description is that it does not account for a slight asymmetry near
the maximum of s(εI), nor the upward curvature in the observed strain function at high
compressive strain.

3.5.3 Strain function description by Godeke et al.
The strain function by Godeke et al. [33] is an extension of the deviatoric strain model
with an empirical correction for the asymmetry of the strain function near the maximum
µ0Hc2(0), with:

s(εI) =

Ca,1

(√
(εsh)

2 +(ε0,a)
2−
√
(εI− εsh)

2 +(ε0,a)
2
)
−Ca2εI

1−Ca,1ε0,a
+1, (3.37)

εsh =
Ca,2ε0,a√
Ca,1 +Ca,2

. (3.38)

The application of this correction increases the strain range in which the Deviatoric strain
model is applicable, although this description does not account for the upward curvature at
high compressive strains. Note that equation 3.37 is identical to equation 3.36 when Ca,2 is
set to 0.

3.5.4 Strain function description by Arbelaez et al.
The strain description by Arbelaez et al. [106] is also an extension of the Deviatoric strain
description. It relates the strain function to the third invariant as well as the second, and thus
accounts for the upward curvature at high compressive strain:

s(εI) =
1−Ca,1

√
(εI)

2 +(ε0,a)
2−Ca,2

(
(εI)

3−3(ε0,a)
2
εI

)
1−Ca,1ε0,a

. (3.39)

The benefit of this description is, similar to the Deviatoric strain model, that a general pre-
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diction is made which relates the strain function to the three-dimensional strain state of the
material. Note that equation 3.39 is identical to equation 3.36 when Ca,2 is set to 0.

3.5.5 Strain function description by Ekin
The description by Ekin [83] relates the strain function to εI in the case of uni-axial strain:

s(εI) =
(

1−a|εI|1.7
)
. (3.40)

This description is very simple, and still accounts for the asymmetry in the strain function by
using different values for a depending on whether εI is positive or negative. The drawback
is that it is only applicable at moderate strains.

3.5.6 Strain function description by Taylor et al.
The strain function by Taylor et al. [84] uses a polynomial form:

s(εI) = 1+ c2(εI)
2 + c3(εI)

3 + c4(εI)
4. (3.41)

This simple and compact description very accurately describes the strain function in the case
of uni-axial strain without addressing the underlying physics.

3.5.7 Strain function description by Markiewicz
The strain function by Markiewicz [97] is very similar to the strain function by Taylor et al.,
and describes the strain function in the case of uni-axial strain, with:

s(εI) =
1

1+ c2(εI)
2 + c3(εI)

3 + c4(εI)
4 . (3.42)

By the author’s own account, this description is empirical, although the author did present
a model of the underlying physics elsewhere [98], relating the strain function to changes in
the vibrational properties of the Nb3Sn. This model is discussed further in section 5.4.2.

3.5.8 Strain function by Bordini et al.
The most recent addition is the strain function by Bordini et al. [99], which describes the
strain function as a function of uni-axial strain, with:

s(εI) =
exp
(
−C1

(
J2+3
J2+1

)
J2

)
+ exp

(
−C1

(
I2
1+3

I2
1+1

)
I2
1

)
2

, (3.43)

I1 = (1−2ν)εa + ε10 +2εt0, (3.44)
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J2 =

(
1
3

)
(ε10− εt0 +(1+ν)εa)

2, (3.45)

εt0 =−νε10 + K. (3.46)

The various parameters are optimized to match the experimental observations of high-Jc
Nb3Sn wires. According to the authors, this approach makes this description highly predic-
tive (i.e. only a limited strain range needs to be measured in order to accurately predict the
full strain range). An unusual feature is that this strain function is not normalized.

3.5.9 Conclusion
A variety of descriptions of the strain function are discussed. Some are applicable over a
rather limited range while others are applicable over the entire range of practical strain.

While the descriptions match the observed behavior well, they rely on free parameters to
relate the change in superconducting properties to a strain related property (applied strain,
strain energy, or pressure) in an empirical fashion. In order to fully understand the underly-
ing physics of strain sensitivity of the superconducting properties, it is important to calculate
the strain sensitivity of the superconducting properties without the use of free parameters.
Such a calculation is presented in chapter 5.

3.6 Nb-Ti critical current density description by Bottura et
al.

3.6.1 Similarities between the critical current density descriptions for
Nb-Ti and Nb3Sn

A critical current density relation was formulated by Bottura et al. [91], with:

Jc(T,µ0H) =
CB

µ0H
hp(1−h)q(1− t1.7)γ

, (3.47)

t =
T

Tc(0)
, (3.48)

h =
H

Hc2(T )
, (3.49)

where CB, p, q and γ are free parameters and the effect of strain is considered negligible.
The temperature dependence of the upper critical field is described following [111, 112]:

µ0Hc2(T ) = µ0Hc2(0)
(
1− t1.7) . (3.50)

When combining equations 3.47, 3.49 and 3.50, the critical current density can be reformu-
lated:
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Figure 3.5: Critical current density pre-factor as a function of temperature. The tempera-
ture dependent parts of equations 3.21 and 3.51 are shown to be approximately equal for
various values of γ .

Jc(T,µ0H) =CI
(
1− t1.7)γ−1

hp−1(1−h)q, (3.51)

CI =
CB

µ0Hc2(0)
. (3.52)

Equation 3.51 is similar to equation 3.21, although the description of the temperature depen-
dence is somewhat different. However, the temperature dependence is accurately approxi-
mated by the temperature dependence of the MAG relation (figure 3.5):

(
1− t1.7)γ−1 ≈

(
1− t2)µ

. (3.53)

In the MAG relation, the recommended value of µ ≈ 1 corresponds to γ ≈ 1.91, while for
Nb-Ti a typical range of γ = 1.76 to 2.30 is observed [91]. In other words, the temperature
dependencies of the Nb-Ti and Nb3Sn are identical for all intents and purposes and also
overlap in terms of parameter values.
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Combining equations 3.51 with 3.53, the critical current density of NbTi is found to be
accurately described by:

Jc(T,µ0H) =CI
(
1− t2)µ

hp−1(1−h)q, (3.54)

which is identical to equation 3.3, i.e. the MAG relation which describes the critical current
density of Nb3Sn.

3.6.2 Differences between Jc parameterizations of Nb-Ti and Nb3Sn
There are some distinct differences between Nb-Ti and Nb3Sn in terms of the critical current
density dependence on magnetic field, temperature, and strain.

The temperature dependence of the upper critical field µ0Hc2 is different for Nb3Sn and
Nb-Ti, see equations 3.11 and 3.50. The difference in the temperature dependence of µ0Hc2
between Nb3Sn and Nb-Ti implies that the underlying physics mechanism is different. One
likely explanation is that Pauli limiting plays a smaller role in the case of Nb3Sn [81] (section
4.8.3), but a larger role in the case of Nb-Ti. A very detailed experimental investigation of
the temperature dependence of µ0Hc2 in Nb-Ti was performed by Muller [114], which also
includes a discussion on the underlying physics.

Another difference is the magnetic field dependence of the critical current density. For
Nb3Sn, the parameters p and q are close to 0.5 and 2 respectively, while for Nb-Ti these
parameters are both close to 1. This has been explained in terms of the difference in pinning
site density by Godeke et al. [33, 115]. α-Titanium precipitates are introduced into Nb-
Ti conductors, resulting in a nearly optimal pinning site density as shown by West et al.
[117]. In Nb3Sn, however, pinning occurs mainly at the grain boundaries and the grains
have a typical diameter of about 150 nm for optimized commercial high-Jc wire. In order to
achieve optimal pinning at 12 T, for example, the grain diameter would need to be reduced
to 12 nm. This relative scarcity of pinning sites not only results in a reduced maximum
achievable pinning force, but also a less desirable magnetic field dependence, with p ≈ 0.5
and q≈ 2, as opposed to p≈ 1 and q≈ 1 found in Nb-Ti. In figure 3.6, it is illustrated that in
NbTi the pinning force peaks at a higher reduced magnetic field, which is desirable for high
field applications. It was previously demonstrated that pinning in Nb3Sn can be improved
substantially through ternary additions in thin films by Dietderich et al. [116] and Godeke
et al. [115], which could lead to a future method for improving the pinning properties of
Nb3Sn wires.

A third distinct difference is the degree of strain sensitivity in the upper critical field µ0Hc2.
While equation 3.47 is motivated by the approximation that the strain sensitivity of Jc in
Nb-Ti is negligible, some strain sensitivity is presented and has been observed by Ekin
[118], though in particular at magnetic fields close to µ0Hc2. Similarly to Nb3Sn, Ekin
concluded that the strain sensitivity of the critical current density of Nb-Ti is mainly related
to a reduction of µ0Hc2 under the influence of strain. However, the strain sensitivity is
considerably weaker for Nb-Ti than for Nb3Sn, which is explained in section 5.4.3.

It should be emphasized that equation 3.47 is based on the approximation that the strain
sensitivity is negligible and that the subsequent derivation leading to equation 3.51 is valid
under this approximation. For more details on how strain affects the critical current density
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Figure 3.6: Magnetic field dependence of the macroscopic pinning force FP = µ0H×Jc, with
p = 0.5 and q = 2, typical of Nb3Sn, and p = 1 and q = 1, typical for Nb-Ti.

of NbTi, the reader is referred to the investigation by Ekin [109].

3.7 Experimentally observed temperature, magnetic field,
and longitudinal and transverse strain dependence of
the critical current density of Nb3Sn

3.7.1 Introduction
The critical current density of a stoichiometric Nb3Sn in thin films was measured as a func-
tion of temperature, magnetic field, and both longitudinal and transverse strain.

Non-hydrostatically applied strain is anisotropic by definition. On the other hand, the MAG
relation of the critical current density of Nb3Sn relates the strain dependence of the critical
current to the critical temperature Tc and upper critical field µ0Hc2, which are both isotropic
properties [70]. This implies two things:

• First, in the case of the thin films, uni-axial applied strain should affect the critical
current density in the same way regardless of whether the critical current density is
perpendicular or transverse to the direction in which the samples are strained.
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Table 3.1: MAG scaling parameters derived at constant strain of stoichiometric (dep 2-14-
11) and off-stoichiometric (dep 9-14-10) samples, where current flows parallel
(‘long’) and perpendicular (‘tr’) to the strain direction.

2-14-11, long 2-14-11, tr 9-14-10, long 9-14-10, tr

Tc [K] 17.6 17.4 13.6 12.4

µ0Hc2(0) [T] 29.4 29.9 22.4 20.8

p 0.50 0.50 0.61 0.66

q 1.33 1.37 2.07 2.75

CI [kA/mm2] 2.7 1.8 1.8 1.7

µ 1.47 1.63 1.83 2.28

• Second, the strain sensitivity of Tc and µ0Hc2 which is extracted from critical cur-
rent density measurements should be close to the observed strain sensitivity that was
determined from resistivity measurements.

As presented in section 2.3.9, a selected number of samples were etched into a pattern that
allows for the measurement of the critical current density parallel and perpendicular to the
direction in which strain is applied. Each sample consists of a ‘longitudinal’ and a ‘trans-
verse’ section, in which the critical current density is aligned parallel and perpendicular to
the uni-axial strain direction, respectively. In both sections the strain and current directions
are perpendicular to the magnetic field orientation.

3.7.2 Evaluation of the temperature and magnetic field dependence of
the critical current density at constant strain

An extensive set of measurements was performed at constant strain to allow for a careful
analysis of the effect of temperature and magnetic field on the critical current density. The
critical current density was determined at magnetic fields above 60% of µ0Hc2(T, ε) in
deposition 2-14-11 and 15% of µ0Hc2(T, ε) in deposition 9-14-10. In the case of deposition
2-14-11, p is set at 0.5, because the lack of data at magnetic fields that are low relative to
µ0Hc2(T, ε) means that this parameter cannot reliably be extracted [33]. In contrast, p is a
free parameter in deposition 9-14-10. q is a free parameter in both depositions.

A temperature dependent C(T ) and an extrapolated µ0Hc2 are derived at each temperature
(figure 3.7), using:

Jc(T,H) =C(T )
(

H
Hc2(T )

)p−1(
1− H

Hc2(T )

)q

, (3.55)

where a unique temperature dependent C(T ) and µ0Hc2(T ) are extracted for all critical cur-
rent density measurements at a given temperature, and where p and q are global constants.
The optimal values are determined by applying equation 3.55, and minimizing the mean
square error.
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Figure 3.7: Top: Maki-DeGennes fit of temperature dependence of the upper critical field
µ0Hc2. Bottom: Normalized temperature dependence of the critical current density pre-
factor.
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Figure 3.8: Upper critical field µ0Hc2 as a function of critical temperature Tc. The grey
symbols indicate the properties extracted from the critical current density measurements,
while the open symbols indicate the measurements and literature results as discussed in
sections 2.4.8 and 4.8.5. The arrows are guides to the eye.

The Maki-DeGennes relation is used to determine Tc and µ0Hc2(0). The accuracy of this
relation is illustrated in figure 3.7, top. The extrapolated critical temperatures and upper
critical fields (table 3.1) are closely consistent with the results from the resistivity measure-
ments and the literature results, as is demonstrated in figure 3.8.

As discussed in the preceding sections, the temperature dependent pre-constant is described
with:

C ( T ) =CI

(
1−
(
T
/

Tc
)2
)µ

, (3.56)

where Tc is extracted by extrapolation with the Maki-DeGennes description, and µ is a free
parameter (table 3.1). It is clear that a free parameter µ is indeed beneficial for
improving accuracy and that equation 3.56 accurately describes the observed behavior, which
is illustrated in figure 3.7, bottom.

As shown in table 3.1, the pre-constant CI is nearly identical for the two sections in deposi-
tion 9-14-10, and the transverse section of 2-14-11, but noticeably deviates in the longitudi-
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Table 3.2: MAG scaling parameters describing the strain dependence of Tc and µ0Hc2.

2-14-11, long 2-14-11, tr 9-14-10, long 9-14-10, tr

Tcm [K] 17.6 17.3 13.7 12.4

µ0Hc2m(0) [T] 29.6 30.0 22.3 20.8

w 3.30 3.29 1.77 1.70

εm [%] −0.01 −0.01 0.08 0.10

ε0,a [%] 0.30 0.30 0.30 0.30

Ca,Hc2 43.7 53.3 26.4 20.7

Ca,Tc 15.2 19.7 15.6 12.6

nal section of deposition 2-14-11. This difference can be explained in two ways. Firstly, it
should be noted that the longitudinal section of deposition 2-14-11 has an average tin con-
centration of 25.0 at.% Sn, while the transverse section of this sample and the longitudinal
and transverse sections of deposition 9-14-10 contain 24.8, 23.2, and 22.2 at.% Sn, respec-
tively. The measured normal state resistivities are 21, 25, 70 and 91 µΩcm, respectively.
Below a normal state of 27 µΩcm, Nb3Sn is preferentially tetragonal, while it is other-
wise preferentially cubic (see section 4.4.5). Tweed modulation occurs when the material
is preferentially tetragonal (section 4.4.6), and it is not inconceivable that the tweed pattern
contributes to the pinning of flux-lines, thus increasing CI. Secondly, a more mundane expla-
nation is that this is a measurement anomaly related to sample inhomogeneity. The critical
current density measurements of this particular sample were mainly performed at magnetic
fields near µ0Hc2 due to current limitation considerations (i.e. the current density in the
sample was limited to avoid thermal runaway in the sample). As with the binary bulk sam-
ples that were discussed in section 2.2.5, this sample likely contains a µ0Hc2(0) range rather
than a single µ0Hc2(0) (figure 3.8). Thus, as CI is determined through extrapolation from
measurements near µ0Hc2, and µ0Hc2 of this sample is poorly defined, this could explain
the deviating value of CI.

3.7.3 Evaluation of the strain dependence of the critical current density

Besides extensive measurements at constant strain, the critical current density was measured
at various values of applied strain in the range −0.3 to 0.05%, where the negative sign
indicates compressive strain. At each strain, the critical current density is measured at at
least three different temperatures and at least three different magnetic fields per temperature.
Equation 3.3 is applied to the entire dataset, where CI, p, q and µ are as listed in table 3.1.
Tcm(0) and w are determined from a global fit (table 3.2), and µ0Hc2(0, εa) is determined
per strain as shown in figure 3.9.

As in the procedure that was applied to the resistivity measurements (section 2.4.9), the
strain dependent Tc and µ0Hc2(0) are fitted with the deviatoric strain description, where ε0,a
is fixed to 0.3 %. The results are shown in table 3.2 and figure 3.9.

The strain sensitivity of Tc is shown to be closely consistent with the strain sensitivity as
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Figure 3.9: Extrapolated strain dependent upper critical field µ0Hc2(0) as a function of
strain, compared to the deviatoric strain description.

extracted from resistivity measurements (figure 3.10, top). The observed strain sensitivity in
µ0Hc2 is also consistent, although the degree of scatter is larger (figure 3.10, bottom). Also
shown are parameterization results of Nb3Sn wires (after Lu et al. [90] and Arbelaez et al.
[106]) which are consistent with the overall observations.

The optimal values of w shown in table 3.2 are consistent with the optimal parameters as
determined from resistivity measurements, within an uncertainty of about 0.3 (figure 3.11).
The increased value of w for the tin rich sample validates the rise in w when approaching
stoichiometry in figure 2.25.

To illustrate the applicability of the scaling procedure, figure 3.12 shows a comparison of the
measured Jc at various temperatures, magnetic fields, and strains, and a global description
of the longitudinal and transverse sections of deposition 9-14-10 (which covers a much
larger reduced magnetic field range in comparison to deposition 2-14-11), that combines the
MAG relation (equation 3.3) with the Deviatoric strain description (equation 3.36). The fit
parameters are shown in tables 3.1 and 3.2. The average error and the standard deviation
are displayed in table 3.3, which are measures of both the experimental uncertainty and the
applicability of the fit.
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Figure 3.10: Strain dependence parameter Ca,Tc as a function of Tc and Ca,Hc2 as a function
of µ0Hc2(0). The parameters are extracted from resistivity measurements (open symbols)
and critical current density measurements (grey symbols). Also shown are results from strain
sensitivity measurements on Nb3Sn strands, after Lu et al. [90] and Arbelaez et al. [106].
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Figure 3.11: Exponent w as a function of maximum critical temperature Tc, from resistivity
measurements ([R], open symbols) and critical current measurements ([Jc], grey symbols).
The arrows are guides to the eye.

Table 3.3: Average error and standard deviation of the global fits for 4 thin film samples.

2-14-11 2-14-11 9-14-10 9-14-10

long tr long tr

Jc,max [A/mm2] 71 76 360 280

avg. error [A/mm2] 1.2 1.5 1.1 1.8

st.dev [A/mm2] 1.2 2.0 0.7 1.4

avg. error / Jc,avg [%] 2.5 6.9 0.8 1.3

3.8 Conclusion
An extensive survey of the descriptions of the critical current density of Nb3Sn and Nb-Ti
as a function of temperature, magnetic field and strain was presented.

It is argued and demonstrated that indeed the general accuracy of the MAG relation can be
improved through the addition of a free parameter that describes the temperature dependence

3. Strain Dependent Critical Current Density of Nb3Sn and Nb-Ti 75



Dep 9-14-10, longitudinal

9.5 K, 6 T
7.5 K, 9 T
5.5 K, 12 T
9.5 K, 5 T
7.5 K, 8 T
5.5 K, 11 T

9.5 K, 4 T
5.5 K, 10 T
7.5 K, 7 T

Cr
iti

ca
l c

ur
re

nt
 d

en
sit

y 
J c

 [A
/m

m
2 ]

0

50

100

150

200

250

300

Applied uni-axial strain εa [%]
−0.3 −0.2 −0.1 0 0.1

Dep 9-14-10, transverse

5.5 K, 8 T

9.5 K, 3 T
5.5 K, 10 T
7.5 K, 6 T
5.5 K, 9 T
9.5 K, 2 T
7.5 K, 5 T

5.5 K, 7 T
7.5 K, 4 T
9.5 K, 1 T

Cr
iti

ca
l c

ur
re

nt
 d

en
sit

y 
J c

 [A
/m

m
2 ]

0

50

100

150

200

250

300

Applied uni-axial strain εa [%]
−0.3 −0.2 −0.1 0 0.1

Figure 3.12: Critical current density as a function of applied uni-axial strain, at various
temperatures, and magnetic fields.
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of the critical current as was suggested earlier [104, 105, 92].

Two other commonly used scaling relations that describe the critical current density of
Nb3Sn are shown to be indistinguishable from the MAG relation. A commonly used
description of the critical current density of Nb-Ti is shown to be identical as well, except
for a different temperature dependence in µ0Hc2(T ).

Results of an experiment are presented in which the critical current densities of nearly stoi-
chiometric and off-stoichiometric Nb-Sn were measured as a function of temperature, mag-
netic field, and longitudinal and transverse strain. The MAG relation indicates that the strain
dependence of the critical current density is a result of the strain dependence of the critical
temperature Tc and the upper critical field µ0Hc2, which are both (nearly) isotropic proper-
ties (also see [67]). This implies that transversely applied strain affects the critical current
density in the same manner as perpendicularly applied strain, a hypothesis that is indeed
shown to be correct.

The observed strain dependence in the critical current density measurements was shown to
be consistent with the temperature, magnetic field, and strain dependent resistivity measure-
ments as presented in chapter 2, as well as the strain dependence of various commercially
available Nb3Sn wires. This confirms the accuracy of the MAG relation, which relates the
strain dependence of the critical current density to the strain dependence of the critical tem-
perature and upper critical field.

In order to understand the origin of the strain sensitivity of the superconducting properties
of Nb3Sn, emphasis should be placed on the physics behind Tc(ε) and µ0Hc2(0,ε), which
will be discussed in detail in chapters 4 and 5.
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Chapter 4

Calculation of the Microscopic
Properties of Nb3Sn



4.1 Introduction
In this chapter, microscopic theory and computational calculations of the effect of disorder
on Tc and µ0Hc2(0) are discussed. A model is discussed for calculating the effect of disorder
on Tc and µ0Hc2(0), and the results are compared to experimental observations.

Microscopic properties of Nb-Sn are calculated using density functional theory (DFT) and
Density Functional Perturbation Theory (DFPT). Various starting models are evaluated for
feasibility, including a free electron model, a single unit cell configuration, and two super-
cell configurations. Disorder is introduced into these models through an electron lifetime
broadening description.

To validate the modeling approach, the calculated properties of Nb-Sn are compared to
experimental results. In particular, the disorder dependent martensitic transformation, the
critical temperature Tc, and the upper critical field µ0Hc2(0) are considered.

4.2 Density Functional Theory and Density Functional Per-
turbation Theory

Density Functional Theory (DFT) is a tool used to calculate the most optimal distribution of
charge density, i.e. the ground state, of a system consisting of ions and electrons. Inspired
by the Thomas-Fermi model [120, 121], it was proven by Kohn and Hohenberg [122] that
the non-degenerate ground state of a system is uniquely determined by the charge density of
the system. Specifically, the two theorems formulated [123], are:

1. The external potential Vext (
−→r ) is (to within a constant) a unique functional of ρ (−→r ).

Since, in turn Vext (
−→r ) fixes Ĥ the full many particle ground state is a unique functional of

ρ (−→r ).

2. FHK (ρ), the functional that delivers the ground state energy of the system, delivers the
lowest energy if, and only if, the input density is the true ground state density.

After the formulation of the HK theorems, the self-consistent Kohn-Sham equations [124]
were defined, which equate the total energy of a system of interacting particles to the sum of
the total energy of a system of non-interacting particles and an exchange-correlation energy
term EXC. If the term EXC is known precisely, then the optimal charge density distributions
of the two systems are identical. The advantage of this approach is that finding the optimal
charge density distribution of the system of non-interacting particles requires significantly
less computational effort in comparison to calculating the optimal charge density distribution
of the system with interacting particles.

Once the optimal charge density distribution is known, various electronic properties are
readily derived, such as the electron density of states and the Fermi velocity. In addition,
the vibrational properties can be calculated using Density Functional Perturbation Theory
(DFPT) as shown by Baroni et al. [125, 126]. This involves introducing perturbations and
evaluating the linear response of the system.

The main challenge in the development of DFT calculations is to find suitable approxi-
mations for EXC. Since the original formulation of the HK theorems and the Kohn-Sham
equations, significant progress has been made in the accuracy of these approximations.
Well-known approximations for EXC are the local density approximation (LDA) and the
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generalized gradient approximation (GGA).

Both DFT and DFPT are powerful techniques that allow for accurate predictions of various
material properties in a computationally efficient way.

4.2.1 Quantum Espresso
Quantum Espresso [127] software is used to perform both the DFT and the DFPT calcula-
tions. The source code is freely available online as well as manuals, tutorials, and a support
group.

4.2.2 Pseudopotentials
The pseudopotential approximation, first introduced by Hellmann [128], is an approximation
based on the assumption that the core electrons are tightly bound to the nuclei and exert a
fixed potential on the electrons in the higher energy bands. As most of the properties of
solids are related to interaction of electrons in the highest energy bands, approximating the
core electrons by a fixed potential can dramatically reduce the amount of electrons that
need to be considered in a DFT calculation without reducing the predictive power of the
calculation.

Suitable ultra-soft pseudopotentials were used which are available on the quantum espresso
website. The pseudopotentials use the Perdew-Wang 91 gradient corrected functional ap-
proximation by Perdew et al. [129], a variation on the generalized gradient approximation.

4.2.3 Computational details
All calculations used a kinetic energy cutoff of 40 Rydberg and a charge density cutoff of
320 Rydberg. Structural optimization and density of states calculations were performed with
a k-point grid consisting of 16×16×16 automatic Monkhorst-Pack divisions. Fermi velocity
calculations were performed with a k-point grid of 40×40×40 automatic Monkhorst-Pack
divisions. The phonon calculations utilized a k-point grid consisting of 8×8×8 Monkhorst-
Pack divisions and a q-point grid consisting of 4×4×4 Monkhorst-Pack divisions.

4.3 Computational modeling of disorder
Three different approaches are considered for understanding how off-stoichiometry affects
the superconducting properties.

4.3.1 Free electron model
The Drude-Sommerfeld model, better known as the free electron model, is a relatively sim-
ple model for predicting the properties of a material that contains a free electron gas.

The model predicts the Fermi energy and the electron density of states under the assumption
of a free electron gas, following:

EF =
h̄2

2m

(
3π2Ne

a3
0

)2/3

, (4.1)
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N (EF) =
3
2

Ne

EF
, (4.2)

where h̄ is the Planck constant in [J×s], m is electron mass in [kg], Ne the amount of free
electrons per unit cell, a0 the lattice parameter of a unit cell, EF the Fermi energy in [J], and
N(EF) the electron density of states in [states / (J×unit cell)]. A stoichiometric Nb3Sn unit
cell contains six niobium ions and two tin ions. The valence of niobium is 5 (4 d-electrons
and 1 s-electron) and the valence of tin is 2 (1 s-electron and 1 p-electron), which means
there are 38 ‘free’ electrons per unit cell. According to Devantay et al. [52], the lattice
parameter of stoichiometric Nb3Sn is about 0.529 nm. The free electron model (equation
4.1) predicts a Fermi energy EF of 2.4×10−18 J, or 14.7 eV. The density of states N(EF)
is 2.4×1019 states/(J×unit cell), which is equal to 3.87 states / (eV × unit cell). For com-
parison, Orlando et al. [81] determined that the electron density of states of stoichiometric
Nb3Sn is equal to N(EF) = 15±6 states / (eV × unit cell). This large deviation is to be
expected, since the free electron model is poorly suited for systems that contain lots of d-
electrons, meaning that this model is too simplistic to be useful.

4.3.2 Electron lifetime broadening in a stoichiometric unit cell
Testardi et al. [130] and Mattheiss et al. [131] argued that the effect of disorder on the
band structure can be calculated with an electron lifetime broadening approximation. If the
density of scattering centers in the material is increased, electrons scatter more often. This
scattering results in a broadening of the band structure, with:

EB =
h̄
τ
, (4.3)

where EB is the broadening energy in [eV], h̄ the Planck constant in [eV×s], and τ the
mean scattering time (i.e. the mean time between electron scattering events). This follows
from the uncertainty principle: the energy of an electron that never scatters is well defined,
while the energy of an electron that scatters often is poorly defined. An analogy is a Fourier
transform of a sound wave: the frequency of a short sample is poorly defined. Furthermore,
if the frequency spectrum of a sample is infinitely sharp then the sample is by definition
infinitely long.

Consistent with Testardi’s paper [130], Fermi-Dirac broadening is used and the broadening
is applied to a single unit cell, which consists of six niobium ions and two tin ions arranged
in an A15 crystal structure. After performing structural optimization, a variety of properties
can be calculated, such as the electron density of states. Figure 4.1 shows two calculated
results in which different mean scattering times were used as input. The calculated results
illustrate the effect of broadening. At lower mean scattering time, the peak structure in the
electron density of states is washed out and the electron density of states at the Fermi energy
N(EF) is reduced.

As this model is used to calculate the effect of disorder on stoichiometric Nb3Sn, one could
argue about the usefulness of this model for understanding the properties of off-stoichio-
metric Nb-Sn. However, it was argued by Orlando et al. [42] that in samples in which the
influence of strain is not considered, the degree of disorder, as measured by the normal state
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Figure 4.1: Top: niobium and tin ions are arranged in an A15 crystal structure, after which
a structural optimization is performed. Bottom: calculated electron density of states as a
function of electron energy at two different mean scattering times τ .

resistivity, uniquely determines the superconducting properties, regardless of whether the
sample is stoichiometric or off-stoichiometric. The implication is that the effect of disorder
on the superconducting properties of stoichiometric and off-stoichiometric Nb3Sn is similar
or identical, so that a comparison of these two systems is useful.
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21.9 at.% Sn23.4 at.% Sn

NbSn

Figure 4.2: Supercell configurations. The center Sn ion is replaced in the left configuration
(23.4 at.% Sn), and both the center Sn ion and the corner Sn ions are replaced in the right
configuration (21.9 at.% Sn).

4.3.3 Electron lifetime broadening in an off-stoichiometric supercell
An attempt was made to calculate the electronic properties of two supercells containing Nb-
Sn in an off-stoichiometric ratio. The supercells consists of 2× 2× 2 unit cells for a total of
64 ions. In one case, the central tin ions are replaced by a niobium ion so that 23.4% of the
ions are tin ions, while in the other case, both the center and the corner tin ion are replaced
so that 21.9% of the ions are tin ions (see 4.2). The electron density of states was calculated
after performing a structural optimization.

The electron density of states was calculated for both cases and compared to the stoichio-
metric case at two values of τ . In figure 4.3, the electron density of states of the single
unit cell and the two supercells is presented at two different values of τ . In addition, a stoi-
chiometric supercell calculation (i.e. a supercell consisting of eight single unit cells without
any ion replacement in the crystal) was performed. It was determined that the results of the
stoichiometric supercell and the stoichiometric single unit cell are identical in terms of the
electron density of states.

The calculated result indicates that excess niobium affects the electron density of states in
an additional manner besides only acting as a scattering center.

There is some uncertainty associated with this calculation. The excess niobium ions are
introduced into the simulation in a perfectly periodic fashion, while in reality the distribution
of niobium ions is likely either random, or clustered into regions of niobium in the vicinity of
stoichiometric Nb3Sn. As was discussed in section 2.2.4, the investigated binary bulk Nb3Sn
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Figure 4.3: Top: calculated electron density of states at τ = 1.27×10−14 s, comparison of
stoichiometric single unit cell to off-stoichiometric supercells, with 23.4 and 21.9 at.% Sn.
Bottom: same as top, but with τ = 7.64×10−15s.

sample consists of regions of pure niobium and stoichiometric Nb3Sn on a length scale of
microns, while the off-stoichiometric thin films have broad Tc distributions, which implies a
local variation in the niobium ion distribution on the length scale of a coherence length. As
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it is not clear how the distribution of niobium ions affects the electronic properties, it is not
clear to what extent these supercell configurations, in which excess niobium is introduced in
a perfectly periodic fashion, are representative of off-stoichiometric Nb-Sn samples.

A larger problem is the computational effort. In comparison to the single cell calculation,
the calculations take about 400 times longer to complete. For this reason, the supercell
calculations are limited to electron density of states in cubic symmetry.

In theory both problems are solvable by committing significant amounts of computational
power to evaluating the properties of the large supercells. However, within the constraints
of this research, such an investigation was not feasible.

4.3.4 Conclusion
Three types of models are presented as candidates for the computational investigation of the
effect of disorder on the microscopic properties of Nb3Sn.

It is concluded that the free electron model is too simple to properly account for the micro-
scopic properties of Nb3Sn.

An electron lifetime broadening approximation is considered, in which the effect of disorder
is introduced through broadening of the electronic band structure of stoichiometric Nb3Sn.
This model is useful because it was experimentally observed that the superconducting prop-
erties of Nb3Sn are determined by disorder, regardless of whether the overall composition
of the material is stoichiometric or off-stoichiometric. This model is investigated in more
detail in the remainder of this chapter.

Finally, the use of the electron lifetime broadening on supercell configurations with excess
niobium was considered, but it was concluded that within the resources that were available
for this research, the computational cost of investigating supercells in a physically realistic
manner was too high.

4.4 Martensitic transformation in Nb-Sn
The electron lifetime broadening approximation is applied to investigate the effect of disor-
der on Nb3Sn. The validity of this approach was investigated by calculating the properties
of Nb3Sn and comparing these to experimental observation. In this section, the martensitic
transformation of Nb3Sn is presented.

4.4.1 Literature on the martensitic transformation
It was shown by Mailfert et al. [77] in an analysis of XRD data that stoichiometric binary
Nb3Sn undergoes a martensitic transformation at about 43 K. Above this temperature, the
crystal structure is cubic, and below this temperature, the crystal structure is tetragonally
distorted. In a similar fashion, a resistivity analysis was performed by Arko et al. [70],
which indicated that it occurs at 51 K. An XRD analysis by Watanabe et al. [132] indicated
that it occurs at 38 K. In a neutron scattering analysis by Axe et al. [159] 45 K was found.
The effect of strain on the normal state resistivity was investigated by Mentink et al. [49],
which indicated the transformation to occur at 42±5 K.

Devantay et al. [52] and Zhou et al. [66] performed studies of binary Nb-Sn bulk samples
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with different tin concentrations. In both investigations the normal state resistivity at Tc, the
composition, and the effect of the martensitic transformation on selected X-ray diffraction
peaks at room temperature and at 10 K were determined. According to Devantay, a sample
with an average tin concentration of 24.4 at.% and a normal state resistivity of 19 µΩcm, is
a mix of cubic and tetragonal Nb3Sn at 10 K, while in a sample with a tin concentration of
23.9 at.% and a normal state resistivity of 23 µΩcm, no indication of tetragonal distortion
was observed. In Zhou’s work, tetragonal Nb3Sn was observed in three samples with normal
state resistivities below 20.9 µΩcm, while the material was shown to be (mostly) cubic for
samples with normal state resistivities above 31.3 µΩcm (not including a sample with an
unusually high normal state resistivity, which the author attributed to NbSn2 grain boundary
precipitation).

According to a study by King et al. [133], a martensitic transformation can be observed
in material with tin concentrations as low as 22.6 at.% Sn. However, unlike Devantay and
Zhou, who both used various techniques to investigate the composition and homogeneity
of their samples, King derived the sample composition solely from a room temperature
measurement of the lattice constant, which does not preclude the possibility of measurement
anomalies due to compositional inhomogeneity and/or an unusual sample strain state.

In experiments by Goldacker et al. [134, 135], it was observed that the martensitic trans-
formation in stoichiometric Nb3Sn could be prevented through various additions, including
tantalum, titanium, nickel, gallium, and hydrogen. The martensitic transformation was com-
pletely suppressed in samples with 0.6 at.% H, 2.8 at.% Ta, 1.3 at.% Ti, and 1 at.% Ni, with
normal state resistivities of 37 µΩcm, 29 µΩcm, 33 µΩcm, and 30 µΩcm, respectively.
The martensitic transformation did occur in a binary bulk sample following Guritanu et al.
[36] and a sample with 0.9 at% Ga, with normal states resistivities of 13 and 23 µΩcm,
respectively. The martensitic transformation temperature range of 20 to 50 K was observed
in a sample with 1.7 at.% Ta and a normal state resistivity of 26 µΩcm and it was concluded
that 1.7 at.% is very close to the critical tantalum concentration required to suppress the
martensitic transformation.

The change in normal state resistivity with applied strain peaks at 42±5 K in a binary bulk
sample [49], which was attributed to the occurrence of the martensitic transformation. At
42±5 K, the normal state resistivity of this sample is 25±3 µΩcm.

In summary, the literature results on samples in which the martensitic transformation is sup-
pressed through temperature, excess niobium, and ternary additions, shows that the normal
state resistivity at which the martensitic transformation is suppressed is 25±3 µΩcm.

4.4.2 Hypothesis and calculation details
Here the hypothesis is made that the reduction in mean scattering time with increasing scat-
tering site density results in a stabilization of the cubic phase as well as an increase in the
normal state resistivity, and that the maximum mean scattering time at which the cubic phase
is stabilized corresponds to a minimum normal state resistivity ρn of 25±3 µΩcm.

The nature of the martensitic transformation in A15 superconductors was investigated in the
past. It was argued by Labbé et al. [136] that the martensitic transformation is a Jahn-Teller
effect [137]: a rearrangement of the crystal structure breaks the degeneracy of the electronic
band-structure and reduces the overall energy in a manner that is sufficiently energetically
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Figure 4.4: Schematic representation of the tetragonal transformation of low-resistivity
Nb3Sn. Upon undergoing to martensitic transformation, the position of the niobium ions
changes, a phenomenon that is referred to here as sublattice distortion. A quantitative study
of tetragonal transformation and sublattice distortion was previously published by Sadigh
et al. [138].

favorable to overcome the cost of assuming a lower crystal symmetry.

The martensitic transformation in Nb3Sn was also investigated from a computational per-
spective by Sadigh et al. [138] and Weber et al. [140]. It was shown that the tetragonal
transformation of the crystal also results in sublattice distortion of the niobium chains (fig-
ure 4.4). In the two transverse directions a and b, the niobium ions move toward or away
from each other. The sublattice distortion of the niobium ions was experimentally observed
by Shirane et al. [139].

Structural optimizations are performed at various mean scattering times τ . The structural
optimization involves minimizing the enthalpy of the crystal by adjusting the lattice pa-
rameters and ion positions. In order to verify that a particular ion lattice parameter and
ion configuration correspond to the global optimal configuration rather than just local op-
timal configuration, two different starting configurations are used. Both configurations are
orthorhombic with lattice parameters of 0.5318, 0.5313, and 0.5265 nm, versus 0.5318,
0.5313 and 0.5308 nm. The end results are compared and the most energetically favorable
configuration is used.

For any resulting crystal symmetry that is close to a higher crystal symmetry, a calculation
is also performed with this higher degree of symmetry, to verify which of the two has lower
enthalphy. For instance, all orthorhombic starting configurations either converge to an op-
timal crystal structure that is tetragonal or nearly-tetragonal and in all cases the tetragonal
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Figure 4.5: Calculated direction dependent lattice parameter as a function of mean scatter-
ing time τ .

configuration is energetically more favorable. Consistent with the computational investi-
gation of Sadigh et al. [138], sublattice distortion of the niobium chains occurs when the
crystal assumes non-cubic symmetry (figure 4.4).

The calculated result, see figure 4.5, shows that the lowest energy configuration is cubic at
low τ and tetragonal at high τ . The optimal lattice parameter is 0.5313 ± 0.0001 nm for all
compositions where the cubic phase is stable. Whenever the lowest energy
configuration in the absence of externally applied strain is cubic, the material is referred
to as preferentially cubic, and whenever the lowest energy configuration in the absence of
externally applied strain is tetragonal, the material is referred to as preferentially tetragonal.
This distinction is important, because it will be shown in section 5.5.4 that the behavior of
preferentially cubic Nb3Sn that is forced into tetragonal symmetry is very different from
preferentially tetragonal Nb3Sn. The transition between preferentially cubic and preferen-
tially tetragonal crystal symmetry is not instantaneous but smooth and occurs at a critical τc
of (1.53±0.08)×10−14 s.

The regime where the lowest energy configuration is cubic in the absence of externally ap-
plied strain or stress is referred to as the preferentially cubic regime and in similar fashion the
regime where the lowest energy configuration is tetragonal is referred to as the preferentially
tetragonal regime.
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The calculated result indicates that the c/a ratio is dependent on τ and converges to a min-
imum of 0.987. This is consistent with the experimentally observed c/a ratio of 0.991 by
Mailfert et al. [77] if one considers that Mailfert’s sample in all likelihood contained some
disorder.

4.4.3 Normal state resistivity
To determine the resistivity of a sample with a given τ , an anisotropic Drude model is used,
where the resistivity is expressed in terms of the mean scattering time, the electron density
of states and the root mean square Fermi velocity, after Allen et al. [142]:

ρn,x =
V

eN (EF)v2
F,xτ

, (4.4)

where ρn,x is the normal state resistivity in direction x in [Ωm], V is the molecular volume
[m3], e the elementary charge in [C], N(EF) the electron density of states at the Fermi energy
in [states × eV−1 × unit cell−1], and vF,x the root mean square Fermi velocity in direction x
in [ms−1].

This equation has commonly been applied for Nb3Sn and other A15 superconductors, see
Schachinger et al. [113], Mattheiss et al. [131], and Allen et al. [142]. Note that this
equation is a special case of the more general Boltzmann transport equation. Instead of a
k-space dependent τ and Fermi velocity, equation 4.4 uses a mean scattering time and a root
mean square Fermi velocity, also see Ibach et al. [148]. In addition, the Boltzmann transport
equation contains a correction factor to account for the direction in which electrons move
before and after a scattering event, which in equation 4.4 is set equal to 1, as discussed by
Grimvall [149]. According to Schachinger et al. [113] the use of this equation is valid when
the normal state resistivity is dominated by s-wave scattering on non-magnetic impurities.

For a molecule where the lattice vectors are perpendicular to each other, the molecular vol-
ume is expressed as:

V = axayaz, (4.5)

where ax, ab, and az are the lengths of orthogonal lattice vectors in [m].

4.4.4 Root mean square Fermi velocity
vF,x, which is the root mean square Fermi velocity in direction x, is related to the change
in energy with a shift in momentum space in direction x, for every band and every point in
momentum space, as expressed by Pickett et al. [150]:

(h̄vF,x)
2 =

∑
k,n

(
Ex(k,n)

2
δ (E (k,n)−EF)

)
∑
k,n

δ (E (k,n)−EF)
, (4.6)

Ex (k,n) =
E (k+∆kx,n)−E (k,n)

∆kx
, (4.7)
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Figure 4.6: Calculated k-space dependent electron band energy of cubic Nb3Sn.

δ (E) =
1

2+ exp
( E

h̄τ

)
+ exp

(−E
h̄τ

) , (4.8)

where k indicates a momentum space coordinate in [m−1], E(k,n) is the energy of an electron
in band n and at momentum space coordinate k in [J] and δ (E) describes the Fermi-Dirac
broadening term. In figure 4.6, the electronic band structure along various high-symmetry
directions is presented. Both N(EF) and vF are determined by the nature of the bands near
the Fermi energy. N(EF) is determined by both the amount of bands crossed the Fermi
energy and the angle at which they cross (with bands with lower δE/δk contributing more
than bands with higher δE/δk), while the Fermi velocity is determined by the angle (which
bands with higher δE/δk contributing more to vF than bands with lower δE/δk).

Once the root mean square Fermi velocity is known in three orthogonal directions, the total
effective Fermi velocity is calculated with:

vF =

√
(vF,x)

2 +
(
vF,y
)2

+(vF,z)
2, (4.9)

where directions x, y, z, are calculated along the a, b, and c planes in the crystal. In a cubic
crystal with vF,x ≡ vF,y ≡ vF,z , equation 4.9 is simplified to:

vF =
√

3vF,x. (4.10)
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4.4.5 Comparison between calculated results and experimental data
Using equation 4.4, the critical resistivity is calculated that separates the preferentially cubic
and tetragonal regimes. The electron density of states and Fermi velocity are calculated for
τ = 1.53±0.08×10−14 s, resulting in an N(EF) of 15.13 ±0.23 states/(eV × unit cell), a vF,x
of (1.225±0.008) ×105 ms−1, a vF of (2.121±0.014)×105 ms−1, and an a0 of 0.5312 nm.
Using equation 4.4, ρc is calculated to be 27.0±1.4 µΩcm, where ρc is the transition point
between cubic and tetragonal crystal symmetry (figure 4.4).

The experimental observations of samples in which disorder is introduced in a variety of
ways indicates that the critical normal state resistivity is 25±3 µΩcm, which is consistent
with the calculated result (section 4.4.1).

4.4.6 Discussion
The consistency of the calculation results and the experimental observations of samples
where disorder was introduced in a variety of ways is a first validation that the electron life-
time broadening model a good approximation that mitigates the unrealistically large com-
putational resources required for physically more correct supercell calculations.

The fact that low-resistivity Nb3Sn is preferentially tetragonal presents a problem from the
perspective of DFT calculations because the martensitic transformation results in a phe-
nomenon called tweed modulation: domains are formed in which the c-axis is aligned along
a different direction in comparison to neighboring domains throughout the Nb3Sn sample.
The resulting tweed patterns were experimentally observed in V3Si by Goringe et al. [143]
and Onozuka et al. [144]. This phenomenon has sparked a lot of scientific interest such
as the computational investigation by Kartha et al. [145]. Goringe et al. [143] observed
tweed pattern spacing as low at 10 nm, and speculated that even finer spacing, beyond the
resolution of the TEM technique, would be present in the sample. This tweed modulation is
problematic from the perspective of using single unit cell DFT calculations: an underlying
assumption of DFT calculations is that the next unit cell over is identical (i.e. the crystal
is periodic) which fails to incorporate the periodicity of the tweed modulation extending
well beyond a single unit cell. In other words, in DFT calculations it is assumed that the
c-axis is aligned along a single direction throughout an infinitely large single crystal, while
in the case of preferentially tetragonal Nb3Sn this assumption is incorrect. Moreover, it is
not obvious to what extent this incorrect assumption affects the calculated results, which is
why the choice was made to calculate the properties of preferentially cubic Nb3Sn and to
treat the properties of preferentially tetragonal Nb3Sn as a topic that is beyond the scope
of this research. An exception is made in section 4.8.7, where it calculated what the super-
conducting properties of low-resistivity Nb3Sn would be if the martensitic transformation is
suppressed. This is justified, because it is the tetragonal distortion that results in the forma-
tion of tweed patterns [145], which means that tweed modulation does not occur when the
martensitic transformation is suppressed.

The calculated lattice parameter of 0.5313 ± 0.0001 nm for all compositions where the
cubic phase is stable is somewhat higher than the experimentally observed lattice param-
eter of 0.5280±0.0001 nm for a slightly off-stoichiometric thin film at 45 K [77]. This
discrepancy of 0.6% in the value of the lattice parameter is characteristic for the accuracy of
DFT calculations.
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4.4.7 Conclusion
The electron-lifetime broadening model is applied to calculate the stability of the cubic
phase as a function of mean scattering time τ and the corresponding normal state resistivity
ρn is calculated with a Drude resistivity model.

The calculated critical resistivity of 27.0±1.4 µΩcm, which separates the cubic from the
tetragonal crystal symmetry, is consistent with experimental observations where the cubic
phase is stabilized through excess niobium, ternary additions and temperature.

4.5 Microscopic properties of cubic Nb-Sn
Before considering the critical temperature and the upper critical field, an overview is given
of various ab-initio calculated properties as a function of mean scattering time. These prop-
erties include various electronic properties, which are the electron density of states, the
Fermi velocity, the mean free path, the normal state resistivity, and the Drude frequency,
and also vibration properties, which are phonon dispersion curves and the frequency depen-
dent phonon density of states. Various references in literature are presented to validate the
calculated results.

4.5.1 Electronic properties
The mean free path is related to vF and τ , with:

lmfp = τ× vF, (4.11)

where lmfp is the mean free path in [m]. If equations 4.4 and 4.11 are combined, the normal
state resistivity can be expressed in terms of the mean free path:

ρn,x =
V

eN (EF)vF,xlmfp,x
, (4.12)

where lmfp,x is the directional mean free path in direction x in [m]. The Drude frequency is
related to N(EF) and vF [142], with:

ΩP = h̄

√
NVv2

F
3ε0

, (4.13)

where ΩP is the Drude frequency in [eV] and ε0 is the vacuum permittivity.

Figure 4.7 shows various electronic properties as a function of τ . Figures 4.8 and 4.9 show
N(EF) and vF as a function of normal state resistivity. Also shown are derivations of N(EF)
and vF as a function of ρn. Orlando et al. [81], Schachinger et al. [113], and Lim et al.
[147] investigated the properties of stoichiometric and off-stoichiometric Nb-Sn samples
with an emphasis on the ratio between ρn, Tc, and µ0Hc2(0), while Ghosh et al. [146]
performed a similar analysis on stoichiometric Nb3Sn samples that were exposed to electron
irradiation. The consistency between the calculated results and the literature is quite good,
with quantitative and qualitative consistency over the entire disorder range.
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Figure 4.8: Calculated electron density of states as a function of normal state resistivity,
compared to literature results by Schachinger et al. [113], Orlando et al. [81], Lim et al.
[147], and Ghosh et al. [146].

4.5.2 Phonon dispersion curves and phonon density of states
Phonon dispersion curves and the phonon density of states were calculated at various mean
scattering times and compared to experimental observations obtained through neutron scat-
tering measurements by Axe et al. [156], Pintschovius et al. [157], and Schweiss et al.
[158]. The comparison is shown in figures 4.10 and 4.11. As is customary, the energy
equivalent of the vibrational frequency is used throughout this thesis.

The calculated phonon density of states has sharp features (i.e. very narrow frequency ranges
per mode) while the experimentally observed phonon density of states is broadened. There
are a number of explanations for this effect including instrument resolution, broadening
due to the presence of impurities, phonon scattering due to thermally excited quasiparticles,
instabilities related to the Martensitic transformation, and direct excitation by phonons of
quasiparticles across the superconducting energy gap. It was shown by Axe et al. [159]
that the observed broadening is dominated by the last effect. In order to allow for an
approximate comparison between the calculated and experimentally observed phonon den-
sity of states and Eliashberg spectrum, the calculated phonon density of states is convoluted
with a Gaussian function with a FWHM of 1.2 meV, which is the average phonon linewidth
in stoichiometric Nb3Sn according to [159].
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Figure 4.9: The calculated Fermi velocity as a function of the normal state resistivity, com-
pared to results of Orlando et al. [81], and Schachinger et al. [113].

Note that this phenomenon does not change the parameters relevant for superconductivity,
such as λ , because these are calculated through integrals over the entire phonon density of
states (with an approximate width of the order of 30 meV) and small broadening features
(of the order of 1 meV) do not influence the integral.

As a general statement, the phonon density of states as determined from neutron scattering
measurements is not the same as the calculated phonon density of states, because it is also
dependent on the neutron scattering cross-section. This distinction is expressed in the sym-
bols used for the phonon density of states. Typically the calculated phonon density of states
is denoted with F, while the phonon density of states which is measured through neutron
scattering measurements is denoted with G. In the special case of Nb3Sn, it is argued by
Freeriks et al. [160] that F ≈ G, because the mass of the Nb and Sn ions is of the same
magnitude.

Figure 4.11 shows a comparison between calculated and measured dispersion curves. The
comparison is imperfect because the measurements were performed at elevated temperatures
and on low-resistivity Nb3Sn, while the calculated result is for Nb-Sn with somewhat higher
normal state resistivity at 0 K. This distinction matters to some extent, because the variation
between the calculated results in figure 4.10 indicates that the phonon density of states is
dependent of disorder. In the measurement data the peaks in F(ω) are found at somewhat
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Figure 4.10: Calculated phonon density of states as a function of vibrational frequency
at various degrees of disorder, compared to experimentally determined generalized phonon
density of states of low-resistivity Nb3Sn, after Schweiss et al. [158].

higher frequencies than in the calculated results. This could be due to the difference in dis-
order, because the measurement data by Schweiss et al. is of low ρn and thus preferentially
tetragonal Nb3Sn, while the calculation results are of higher ρn preferentially cubic Nb3Sn.
At the same time, this could also indicate a small systematic error in the calculation result.

4.6 Dependence of α2(ω) on the electronic and vibrational
properties of the crystal

In this section, the dependence of the Eliashberg spectrum α2(ω) on the electronic and the
vibrational properties of the material is discussed. From the Eliashberg spectrum and the
dimensionless effective Coulomb repulsion term, the critical temperature can be calculated,
which is discussed section 4.7.

Note that the Eliashberg spectrum can be calculated directly from ab-initio calculations, as
was shown by Baroni et al. [126]. The validity of the calculation method was investigated
by Salvetti [161, 162]. It was determined that it only produces quantitatively correct values
when highly dense k- and q-point grids are utilized. An investigation of the effect of stress
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on the superconducting properties of aluminum has shown that an insufficiently dense k- and
q-point grid leads to calculated results which are shown to qualitatively and quantitatively
incorrect. At the same time, the computational cost of performing a sufficiently dense cal-
culation is excessive and therefore unfeasible for a systematic study. This means that while
this method might be usable in the future to directly determine the frequency dependence of
α2(ω) as a function of strain and degree of disorder, the method has to be used with some
caution.

In spite of this issue, the method was used to calculate the critical temperature of Nb3Sn
by Tutunce et al. [163] and De Marzi et al. [164]. However, neither author considered the
influence of disorder, both authors neglected the influence of the tetragonal distortion, and
both authors found that the critical temperature of cubic stoichiometric Nb3Sn is 18 K. It was
experimentally established by Devantay et al. [52] that stoichiometric Nb3Sn with a critical
temperature of 18 K is preferentially tetragonal. Without a thorough discussion on how
disorder influences their calculated results, one can only conclude that the calculated results
(indicating that stoichiometric Nb3Sn is preferentially cubic with a calculated Tc of 18 K)
is inconsistent with the experimental evidence (which states the stoichiometric Nb3Sn with
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Figure 4.12: Experimentally observed α2F as a function of vibrational frequency of stoi-
chiometric Nb3Sn, after Freeriks et al. [160], Geerk et al. [166], Shen [167], Rudman et al.
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a Tc of 18 K is preferentially tetragonal [41]), which could be a result of an insufficiently
dense k- and q-point grid in the calculation of α2(ω).

In light of these issues, no effort was made to directly calculate α2(ω). Instead, the depen-
dence of α2(ω) on the electronic and vibrational properties of the material was derived from
experimental data as discussed in this section.

4.6.1 Derivation of α2, simple argument
The electron-phonon coupling constant λ describes the amount of coupling between elec-
trons and phonons and is related to an Eliashberg spectrum [14] through:

λ = 2
∫

α2 (ω)F(ω)

ω
δω, (4.14)

where lambda is the electron-phonon coupling constant in dimensionless units, α2(ω) is
the electron-phonon coupling characteristic in [meV−1], F is the phonon density of states in
[meV−1], and ω is the phonon frequency in [meV].

4. Calculation of the Microscopic Properties of Nb3Sn 99



α2 ∝ exp(   ω / ω0 )

WolfRudman

Shen

Geerk

Freeriks

El
ec

tro
n-

ph
on

on
 c

ou
pl

in
g 

ch
ar

ac
te

ris
tic

 α
2  [m

eV
]

0

5

10

15

20

25

30

35

Frequency ω [meV]
0 5 10 15 20 25 30 35

Figure 4.13: Electron-phonon coupling characteristic α2 as a function of vibration
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It was shown by Markiewicz [98] that the vibrational frequency dependence of Nb3Sn can
empirically be described with:

α
2 (ω) ∝ exp(−ω/ω0) , (4.15)

where ω0 is a characteristic frequency of Nb3Sn. In the case of intermediate coupling and
in the case of a single ion species, the electron-phonon coupling constant is related to the
electron density of states by McMillan and Hopfield [15, 16, 165], through:

λ =
η

M 〈ω2〉 =
N (EF)

〈
I2
〉

M 〈ω2〉 , (4.16)

where η is the McMillan-Hopfield parameter, < I2> is the mean squared electronic ma-
trix element, M is the effective ion mass, and <ω2> is the average of the squared phonon
frequency in the Eliashberg spectrum.

As λ is proportional to both the amplitude of α2 and N(EF), one could speculate that α2 is
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proportional to N(EF). Combining this with equation 4.15, one can formulate an ansatz:

α
2
eff (ω) = α

2
IM,effN (EF)exp

(
−ω
/

ω0
)
, (4.17)

where α2
IM,eff and ω0 are characteristic constants. To determine the magnitude of these con-

stants, a number of experimentally observed Eliashberg spectra of stoichiometric Nb3Sn,
after Shen [167], Geerk et al. [166], Freeriks et al. [160], Rudman et al. [168], and Wolf
[169] as shown in figure 4.12, are divided by the experimentally observed phonon density
of states by Schweiss et al. [158], shown in figure 4.10. This procedure is analogous to the
investigation performed by Markiewicz [98]. The electron density of states of slightly disor-
dered stoichiometric Nb3Sn is equal to 15.36 states/(eV×unit cell) according to Schachinger
et al. [113], which is consistent with the results of Orlando et al. [81] and Ghosh et al. [146].
The optimal values of α2

IM,eff and ω0 are then determined to be 2.08 × 10−3 eV2 / (states ×
unit cell) and 14.2 meV, respectively (figure 4.13).

4.6.2 Derivation of α2, detailed explanation
An empirical approach was used to formulate equation 4.17, but one can also use micro-
scopic theory to determine what α2 is. In addition to the expression of λ , Eliashberg ex-
pressed <ω2>0.5 as:

〈
ω

2〉= 2
λ

∫
α

2 (ω)F (ω)ωδω. (4.18)

The phonon density of states is a normalized property:

∞∫
0

F (ω)δω ≡ 1. (4.19)

Combining equations 4.16, 4.18, and 4.19, one can formulate a solution for α2, which is
applicable in the presence of a single ion species:

α
2 (ω) =

〈
I2
〉

2M
N (EF)

ω
= α

2
IM

N (EF)

ω
. (4.20)

However, Nb3Sn contains two ion species (niobium and tin). In a system with more than
one ion, λ can be approximated as the sum of the individual contributions of the ions [158],
with:

λ =
η1

M1〈ω2〉1
+

η2

M2〈ω2〉2
+ ... (4.21)

One can then define an effective α2
IM,eff, which is dependent on the relative contributions of

the different species. A weighting function fW is defined which accounts for the relative
contributions:
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α
2
eff (ω) =

N (EF) fW (ω)

ω
, (4.22)

fW (ω) =
α2

IM,1F1 (ω)+α2
IM,2F2 (ω)+ ...

Ftotal (ω)
(4.23)

where fW is a weighting function that describes the weighted contribution of each individual
ion. Through a comparison of different superconductors, Schweiss et al. [158] determined
that the intermediate frequency range (i.e. around 14 meV) contributes more to the su-
perconducting properties of Nb3Sn than the low and high frequency ranges. One can thus
postulate that:

fW (ω) = α
2
IM,effω exp

(
−ω

ω0

)
, (4.24)

which peaks at frequency ω0. In combination with equation 4.22, one finds:

α
2
eff (ω) = α

2
IM,effN (EF)exp

(
−ω
/

ω0
)
, (4.25)

which is the same as equation 4.17. Moreover, the equation is applicable at various levels of
disorder if the variation in α2

IM,eff and ω0 are weakly dependent on disorder.

4.6.3 Comparison of calculated α2F , compared to experimentally de-
termined α2F in disordered Nb-Sn

One can hypothesize that equation 4.17, an empirical equation that was derived from tunnel
junction data of weakly disordered stoichiometric Nb3Sn, is also applicable in strongly dis-
ordered Nb3Sn, and thus over an entire range of disorder. In order to determine the validity
of this hypothesis, the disorder dependent electron and phonon density of states are calcu-
lated, the Eliashberg spectrum is calculated using equation 4.17 and the results are compared
to experimentally observed Eliashberg spectra of off-stoichiometric Nb-Sn by Rudman et al.
[168].

The comparison is shown in figure 4.14. It is clear that the calculated and experimentally ob-
served Eliashberg spectra are consistent, although the peaks in the experimentally observed
Eliashberg spectra are at a somewhat higher vibrational frequency. In this particular case,
this is likely an experimental issue. Rudman identified some persistent nonidealities in the
measurement (because the characteristics of tunnel junctions are extremely sensitive to any
imperfections in the junction) and was unable to determine the lower frequency range below
about 8 meV.

On the right side of figure 4.14, λ and <ω2>0.5 are shown, which are derived from the
Eliashberg spectra through equations 4.14 and 4.18. The calculated λ is close to Rudman’s
result and the calculated <ω2>0.5 is slightly lower than Rudman’s results. Also shown are
λ and <ω2>0.5 derived from the various literature data of weakly disordered stoichiometric
tunnel junction data (figure 4.12, table 4.1). The error bars indicate one standard deviation
in the literature data (table 4.1).
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Figure 4.14: Calculated and experimentally observed α2F, λ , and <ω2>0.5. The experi-
mental data are reproduced from Rudman et al. [168].

Table 4.1: Values for λ , <ω2>0.5 and µ∗ of weakly disordered stoichiometric Nb3Sn after
Freeriks et al. [160], Wolf [169], Shen [167], Geerk et al. [166], and Rudman et
al. [168], mean values, and standard deviations.

λ <ω2>0.5 [meV] µ∗Kresin µ∗Allen−Dynes

Freeriks 2.55 10.9 0.17 0.17

Wolf 1.79 15.2 0.16 0.15

Shen 1.56 13.9 0.09 0.11

Geerk 1.50 13.8 0.08 0.06

Rudman 1.75 14.2 0.13 0.12

Average 1.83 13.6 0.127 0.122

Std.dev 0.42 1.6 0.042 0.044
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Figure 4.15: µ∗ as a function of ρn, derived from tunnel junction data by Rudman et al.
[168], and constant µ∗ approximation.

4.7 Critical temperature
4.7.1 Kresin and Allen-Dynes critical temperature descriptions
A number of relations exist connecting the critical temperature to the electron-phonon cou-
pling constant λ and the characteristic phonon frequencies. Here, the descriptions of Kresin
[18] and Allen and Dynes [17] are used, which both have greater accuracy than original
critical temperature description of McMillan [170].

Kresin’s description [18, 98] relates Tc to λ , <ω2>0.5 , and µ∗, following:

t (λ ) = 1.5exp(−0.28λ ) , (4.26)

λeff =
λ −µ∗

1+2µ∗+λ µ∗t (λ )
, (4.27)

kBTc,Kr =
0.25

〈
ω2
〉0.5√

exp(2/λeff)−1
, (4.28)
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where <ω2>0.5 is in [eV], Tc is in [K], t, λeff, and λ are dimensionless numbers, kB is
the Boltzmann constant in [eV/K], and µ∗ is the dimensionless effective Coulomb repulsion
term.

In addition to <ω2>0.5, µ∗, and λ , Allen and Dynes’s Tc description [17] requires additional
characteristic frequencies, with:

〈ω〉= 2
λ

∫
α

2F (ω)δω, (4.29)

ωlog = exp
(

2
λ

∫
α2F (ω) ln(ω)

ω
δω

)
, (4.30)

Λ1 = 2.46(1+3.8µ
∗) , (4.31)

Λ2 = 1.82(1+6.3µ
∗)
〈
ω

2〉0.5
/

ωlog, (4.32)

f1 =
(

1+(λ/Λ1)
3/2
)1/3

, (4.33)

f2 = 1+

(〈
ω2
〉0.5
/

ωlog−1
)

λ 2

λ 2 +Λ2
2

, (4.34)

kBTc,AD =
f1 f2ωlog

1.2
exp
(
−1.04(1+λ )

λ −µ∗−0.62λ µ∗

)
, (4.35)

where ωlog and <ω> are characteristic phonon frequencies in [meV] and f1 and f2 are
correction parameters close to unity.

The effective Coulomb repulsion term µ∗ is significantly lower than the normal Coulomb
repulsion term µ , due to a timing difference between the attraction and repulsion interaction.
The Coulomb interaction process is retarded on a timescale of 1/ΩP, where ΩP is the plasma
frequency. However, the electron-phonon attraction is retarded on a timescale 1/ΩD, where
ΩD is the Debye frequency, so that the attractive force between the electrons is exerted while
the repulsion force is partially screened (see Allen [165]). Because ΩP�ΩD, µ∗ � 1.

λ and the characteristic phonon frequencies are calculated from the stoichiometric tunnel
junction data (figure 4.12) and µ∗ is determined by setting Tc equal to 18 K and solving
for µ∗ using both the Kresin and the Allen-Dynes Tc equations (table 4.1). This procedure
yields nearly identical values of µ∗, with 0.127 and 0.122 for the Kresin and the Allen-Dynes
Tc equations, respectively. Taking the average of these values, µ∗ = 0.125 is found.

In an investigation of Nb-Sn samples with various compositions, Rudman et al. [168] found
that µ∗ is equal to 0.132 with a standard deviation of 0.011. No composition dependent
trend was observed, which validates the use of µ∗ as a global constant (figure 4.15).
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Figure 4.16: Empirical description of the experimentally observed normal state resistivity
ρn at Tc as a function of atomic tin content. This figure is reproduced from Godeke [41].
The experimental observations were performed by Devantay et al. [52], Hanak et al. [152],
and Orlando et al. [42].

4.7.2 Critical temperature of cubic Nb3Sn as a function of normal state
resistivity

The disorder dependent critical temperature Tc was calculated as a function of ρn using
both the Kresin and Allen-Dynes descriptions, which are compared to experimental data.
This calculation uses microscopic properties which are obtained from ab-initio calculations
(section 4.5) in combination with a globally constant µ∗ (figure 4.15), and an empirical
description of α2(ω) (equation 4.17) which includes two global parameters α2

IM,eff and ω0.
No further assumptions or free parameters are needed to calculate Tc as a function of ρn.

One issue with experimental data is that off-stoichiometric Nb-Sn is typically somewhat in-
homogeneous implying a broad Tc distribution, as was discussed in section 2.4.7. The same
can apply to samples in which disorder is introduced through other means. For instance,
if thin film samples are irradiated then it stands to reason that more disorder (i.e. radiation
damage) is introduced in side facing the irradiation source rather than in the side of the thin
film facing away from the irradiation source. While in normal state resistivity measurements
all the material contributes to the measurement, so that the measurement is an effective av-
erage of the sample, the superconducting properties that are determined through resistivity
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Figure 4.17: Calculated and measured Tc as a function of normal state resistivity ρn. The
Tc of preferentially tetragonal Nb3Sn is approximately 18 K. The deviating literature results,
indicating a Tc of about 16 K are most likely a result of a systematic error in the determina-
tion of the composition, also see Rudman et al. [43].

measurements represent the best rather than the average properties of the sample (see sec-
tion 2.4.7). Thus, the Tc and µ0Hc2(0) determined from resistivity measurements represent
a different composition or degree of disorder than the normal state resistivity, unless the
sample is highly homogenous.

To get around this issue, measurements are used which probe the bulk of the sample rather
than the best properties of the sample, such as heat capacity measurements (the most reliable
volumetric measurement type) and inductive measurements, by Hellman [51], Rudman et
al. [82], Devantay et al. [52], and Moore et al. [13]. In these publications, the critical
temperature was determined as a function of composition.

The relation between composition and normal state resistivity at Tc of binary Nb3Sn is well
understood, see Godeke et al. [41] (figure 4.16) and Flükiger et al. [188]. The relation
between composition and residual resistivity can be summarized with an empirical relation,
after Godeke [41]:

ρn (β ) = 91
(

1− (7β −0.75)4
)
+3.4 for β ≤ 25%, (4.36)
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where β is the atomic tin fraction and ρn is the residual resistivity (i.e. the normal state
resistivity slightly above Tc ) in [µΩcm]. The uncertainty in this description is estimated to
be about 5 µΩcm. These average Tc measurements are added (in grey symbols) to Orlando’s
original data set [42] (in open symbols) and shown in figure 4.17.

Tc is then calculated as a function of normal state resistivity using the Kresin (equation
4.28) and Allen-Dynes (equation 4.35) expressions of Tc (figure 4.17). The calculated and
measured Tc as a function of normal state resistivity are closely consistent. As expected,
the experimentally observed Tc from resistivity measurements (i.e. the open symbols) is in
all cases the same or higher than the experimentally observed Tc which is derived from heat
capacity or inductive measurements (i.e. the grey symbols). It is also interesting to note that
the two expressions of Tc are closely consistent.

4.7.3 Electronic and vibrational contribution to the disorder depen-
dence of Tc

The disorder dependence of Tc is mainly a result of the disorder dependence of N(EF),
although the disorder dependence of the phonon density of states is not negligible.

The N(EF) at τ = 1.45×10−14 s and 0.51×10−14 s is 14.90 and 9.76 states/(eV×unit cell),
respectively (figure 4.7), λ is 1.80 and 0.89, respectively (figure 4.14), <ω2>0.5 is 12.9
and 14.8 meV, respectively (figure 4.14). With the Tc expression by Kresin (equation 4.28),
critical temperatures of 17.4 and 7.2 K is found, respectively.

If the phonon density of states is fixed to the calculated value at τ = 1.45×10−14 s and
thus independent of disorder, then λ is 1.18, <ω2>0.5 is 12.9 meV and Tc is 10.3 K at τ =
0.51×10−14 s.

Thus, it is clear that the disorder dependence of Tc is mainly a result of N(EF) rather than
the phonon density of states: the fraction of change in Tc that is due to a change in N(EF) is
(17.4−10.3)/(17.4−7.2) = 70%.

4.7.4 Critical temperature of preferentially tetragonal Nb3Sn
In section 4.4.6 it was explained that the properties of preferentially tetragonal Nb3Sn cannot
be calculated within the single unit cell DFT approach, because the material undergoes
tweed modulation.

This inconsistency can be illustrated with calculated results. At τ = 1.91×10−14 s, the
calculated N(EF) of a fully relaxed tetragonal unit cell is 12.9 states /(eV×unit cell), the
calculated vF is 2.07×105 m/s, and the calculated ρn is 21.4 µΩcm. Thus, the calculated
result indicates that N(EF) of preferentially tetragonal Nb3Sn is significantly lower than
preferentially cubic Nb3Sn, which is inconsistent with literature results (figure 4.8). If the
phonon density of states is assumed to be the same as at τ = 1.45×10−14 s (see section
4.7.3), then Tc, calculated with Kresin’s expression (equation 4.28) is 14.8 K, which deviates
strongly from the experimentally observed Tc of about 18 K (figure 4.17).

In summary, the single unit cell DFT approach cannot be used to predict the microscopic
properties of preferentially tetragonal Nb3Sn.
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4.7.5 Discussion
The quantitative match between the calculated and experimentally observed disorder depen-
dent Tc is a strong indicator that the computational model used to calculate the disorder de-
pendent Tc is accurate. This model applies three global parameters α2

IM,eff, ω0, and µ∗. The
uncertainty in α2

IM,eff, related to the uncertainty in the electron density of states of weakly
disordered stoichiometric Nb3Sn (figure 4.8) and the uncertainty in the Eliashberg spectra
of weakly disordered Nb3Sn (figure 4.13, is estimated at 5%, which implies an uncertainty
in Tc of 0.9 K. The expected uncertainty in µ∗ is about 0.04, leading to an uncertainty of
about 2 K in Tc. The effect of uncertainty in ω0 on Tc is small. Thus, these arguments imply
that the total uncertainty in Tc is about 3 K. However, over the entire investigated range,
the calculated and experimentally observed critical temperatures are consistent within the
experimental scatter of about 1 K, which is why the uncertainty of Tc is estimated at 1 K.

4.7.6 Conclusion
The electron-lifetime broadening model is used to calculate the critical temperature at
various degrees of disorder. An empirical description of α2 is derived from experimen-
tal data and validated in the case of weakly and strongly disordered Nb3Sn. The validation
includes a comparison with experimentally determined values of α2F , λ , <ω2>0.5 , and
Tc measurements in samples with various off-stoichiometric compositions. This compari-
son shows that the calculated results are consistent with the experimental results, within an
uncertainty of 1 K.

The consistency between the calculated results and the experimental observations indicates
that the electron-lifetime broadening model in combination with DFT calculations captures
most of the relevant physics that explains the variation in Tc with disorder.

4.8 Upper critical field of Nb-Sn
In the third and final comparison between calculation results and the experimental observa-
tions, the upper critical field µ0Hc2 is calculated as a function of disorder and compared to
the experimentally observed composition dependence of µ0Hc2.

The upper critical field in phonon-mediated superconductors was thoroughly investigated in
the past, resulting in a number of descriptions. After the initial success of the Ginzburg-
Landau-Abrikosov-Gor’kov (GLAG) theory [7, 11, 171], various corrections were consid-
ered and developed to account for the various phenomena which affect the upper critical
field. The temperature dependence of µ0Hc2 was described by Maki and De Gennes [47],
under the assumption of a dirty superconductor (i.e. small mean free path and high normal
state resistivity), a spherical Fermi surface, a constant N(EF), and a weak-coupling inter-
action. Subsequent refinements were made to include various effects, such as the impurity
dependence of µ0Hc2 by Helfand et al. [172, 173], Fermi surface anisotropy by Hohenberg
et al. [174] and Schachinger et al. [113], spin-orbit coupling by Werthamer et al. [175]
Schopohl et al. [176] and Rieck et al. [177], anisotropic scattering by Schopohl et al. [178],
Pauli paramagnetic limiting by Orlando et al. [81, 42] and Rieck et al. [177], strong cou-
pling effects by Werthamer et al. [179], Masharov [180], and Schossmann et al. [181], p-
and d-wave scattering by Rieck at al. [177] and the energy-dependence of N(EF) by Schoss-
mann et al. [182]. A useful overview of these various mechanisms is provided by Rieck et
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al. [177].

Four different approaches are used here to calculate µ0Hc2. First of all, as it has previously
been demonstrated by Godeke et al. [33, 48] that the Maki-DeGennes description accurately
fits the upper critical field at various temperatures, compositions, and strains for Nb-Sn,
µ0Hc2 is calculated under the assumption of weak coupling, a dirty limit h∗c2, without Pauli
limiting, which are the underlying assumptions of the Maki-DeGennes description.

After this, a best-effort calculation is performed using first principles calculations to calcu-
late the effect of various mechanisms on µ0Hc2(0). The calculation includes strong-coupling
corrections, a variable reduced collision frequency (i.e. it considers the dirty limit and inter-
mediate limit), Pauli limiting, and isotropic s-wave scattering.

As both Tc and µ0Hc2(0) are dependent on ρn, and ρn is dependent on temperature, the
change in ρn between 0 and Tc affects the relation between Tc and µ0Hc2(0). The magnitude
of this effect is estimated here.

Each of these approaches results in a different µ0Hc2(0) as a function of Tc, which is com-
pared to experimental data. Finally, the relative influence of the energy dependence of the
electron density states, Fermi surface anisotropy, spin-orbit coupling, and p- and d-wave
scattering on µ0Hc2(0) is discussed.

4.8.1 Upper critical field without Pauli limiting µ0H+
c2

The slope of dH+
c2/dT at µ0H = 0 T is described by GLAG theory [7, 11, 81, 131, 171],

with:

−δ (µ0Hc2)

δT

∣∣∣∣
Tc

=

(
24π2kB

2

7ζ (3) h̄e

)
ηµ0Hc2Tc(1+λ )2

v2
FX (Z)

, (4.37)

where δ µ0Hc2/dT is in [T/K], ζ (3) is Apery’s constant, kB is in [JK−1], h̄ is in [Js], e is
in [C], Tc is in [K], and vF is in [ms−1]. ηHc2 is the strong coupling correction factor for
µ0Hc2 [180].

Z is the reduced collision frequency [172], which is closely related to mean scattering time:

Z =
h̄

2πkBTc (1+λ )τ
=

h̄vF

2πkBTc (1+λ ) lmfp
. (4.38)

X(Z) is the Gor’kov function [131, 183], with:

X (Z) =

∞

∑
v=0

(2v+1)−2(2v+1+Z)−1

∞

∑
v=0

(2v+1)−3
. (4.39)

The upper critical field µ0H+
c2 is calculated from -δ (µ0Hc2/δT ) using parameter h∗c2, with:

110 Chapter 4



X(Z)-1hc2
* (Z) exact + 1

X(Z)-1hc2
* (Z) + 1 ≈ 0.608Z + 0.766 + 1

X(Z)-1hc2,dirty
*  ≈ 0.614Z + 0.761

X(Z)-1hc2,dirty
*  exact

h c
2*
(Z

)×
X(
Z)

-1

0

5

10

15

Reduced scattering frequency Z
0 5 10 15 20

hc2,dirty
*

h
c2 *(Z)

0.68

0.7

0.72

Z
5 10 15 20

Figure 4.18: Linearization of h∗c2,dirty×X(Z)−1 and h∗c2(Z)×X(Z)−1 as a function of the
reduced collision frequency Z. The inset shows h∗c2 as a function of Z, and the dirty limit
approximation of h∗c2.

µ0H+
c2 (0) = h∗c2(Z)

−δ (µ0Hc2)

δT

∣∣∣∣
Tc

T. (4.40)

Combining equations 4.37 and 4.40, µ0H+
c2 is expressed as:

µ0H+
c2 (0) = ηHc2X(Z)−1h∗c2 (Z)

(
24π2k2

B
7ζ (3) h̄e

)
T 2

c (1+λ )2

v2
F

. (4.41)

4.8.2 Weak-coupling approximation of µ0Hc2 without Pauli limiting,
with a dirty limit h∗c2

As shown by Godeke et al. [33, 48], the Maki-DeGennes [47] calculation matches the
observed temperature dependent behavior of µ0Hc2(T ) in Nb3Sn quite well. The underlying
assumption is that the material is weak-coupling (i.e. ηHc2 = 1 [180]) without Pauli limiting
in the dirty limit (i.e. h∗c2,dirty = 0.69267 [177]). In the inset in figure 4.18, the dirty limit
approximation of h∗c2,dirty is compared to the variable limit h∗c2.
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The exact solution to the Gor’kov equation, see equation 4.39, is numerically calculated
and X(Z)−1h∗c2,dirty is linearized, as shown in figure 4.18. The appropriate range of the re-
duced collision frequency Z for the considered composition range is Z = 1.56 (correspond-
ing to 27 µΩcm) to Z = 17.5 (corresponding to 90 µΩcm). In this range, linearization of
X(Z)−1h∗c2,dirty results in:

X(Z)−1h∗c2,dirty ≈ 0.614Z +0.761. (4.42)

In the range of Z = 1.56 to 17.5, the maximum deviation between the linearized fit and
the exact result is 0.7% and the average error is 0.4%. Combining equations 4.42 and 4.41
results in:

µ0Hc2,Maki (0) =CD1
T 2

c (1+λ )2

v2
F

+CD2
Tc (1+λ )

vFlmfp
, (4.43)
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CD1 =
0.761×24π2k2

B
7ζ (3) h̄e

= 2.416×108, (4.44)

CD2 =
0.614×12πkB

7ζ (3)e
= 2.371×10−4, (4.45)

where CM1 is in [Tm2K−2s−2] and CM2 is in [Tm2K−1s−1], Tc is in [K], λ is dimensionless,
vF is in [ms−1] and lmfp is in [m]. Using the calculated Tc, λ , vF and lmfp as input, µ0Hc2(0)
is calculated, see 4.19.

4.8.3 Calculation of µ0Hc2 with strong coupling corrections and Pauli
paramagnetic limiting in the dirty and intermediate limit

In order to improve the accuracy of the calculation of µ0Hc2, several effects are included
for which the macroscopic derivation is known, including strong-coupling corrections (i.e.
ηHc2 > 1), Pauli paramagnetic limiting, and the reduced collision frequency dependence
of h∗c2. The strong coupling correction parameter ηHc2 was related to Tc and <ω2>0.5 by
Masharov [180]:

ηHc2 = 1+

(
πkBTc

〈ω2〉0.5

)(
0.6ln

(〈
ω2
〉0.5

kBTc

)
−0.26

)
, (4.46)

where kBTc is the energy equivalent of Tc in [eV], <ω2>0.5 is in [eV] and ηHc2 is a dimen-
sionless parameter.

The reduced collision dependent parameter h∗c2 in the absence of spin-orbit coupling was
described by Helfand et al. [173], reproduced by Rieck et al. [177] and shown in the inset
in figure 4.18. X(Z)−1h∗c2(Z) is linearized through:

X(Z)−1h∗c2 (Z)≈ 0.608Z +0.766, (4.47)

which results in an average deviation of 0.4% and a maximum deviation of 0.6% in the range
of Z = 1.56 to 17.5.

Combining equations 4.41 and 4.47 results in:

µ0H+
c2(0) = ηHc2

(
CO1

T 2
c (1+λ )2

v2
F

+CO2
Tc (1+λ )

vFlmfp

)
, (4.48)

CO1 =
0.766×24π2k2

B
7ζ (3) h̄e

= 2.433×108, (4.49)

CO2 =
0.608×12πkB

7ζ (3)e
= 2.349×10−4, (4.50)
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where CO1 is in [Tm2K−2s−2], CO2 is in [Tm2K−1s−1], Tc is in [K], λ is dimensionless, vF
is in [ms−1] and lmfp is in [m].

Pauli limiting describes a reduction in the free energy of the normal state relative to the
superconducting state due to a difference in spin susceptibility in these two states. The re-
duction in energy difference results in a reduction of µ0Hc2, which can be quantified through
the Pauli limiting field µ0Hp.

A description of µ0Hp in the absence of spin-orbit coupling is given by Orlando et al. [184].
Using an expression of µ0Hp by Clogston [185] for first-order transitions, Orlando spec-
ulated that the reduction in µ0Hc2 due to Pauli paramagnetic limiting does not apply for
Nb3Sn [81]. After realizing that Clogston’s expression is not applicable for Nb3Sn, Orlando
published the correct expression for µ0Hp, as well as the relation between the upper critical
field with Pauli limiting µ0Hc2, the upper critical field without Pauli limiting µ0H+

c2, and the
Pauli paramagnetic field µ0Hp. After Orlando et al. [184], µ0Hp is expressed through:

µ0Hp(0) = 1.86Tc (1+λ ) . (4.51)

This expression is combined with the upper critical field without Pauli limiting to find µ0Hc2:

(µ0Hc2 (0))
−2 =

(
µ0H+

c2 (0)
)−2

+2
(
µ0Hp (0)

)−2
. (4.52)

The calculated parameters Tc, λ , vF, lmfp, and α2F are used as input for µ0Hc2(0) and the
result is shown in figure 4.19.

Relative to the dirty limit h∗c2 approximation without Pauli paramagnetic limiting and strong-
coupling correction, see equation 4.43, the strong-coupling correction raises µ0Hc2 by 14%
at ρn = 28.4 µΩcm (with Tc ≈ 17.2 K), and by 3% at ρn = 89.8 µΩcm (with Tc ≈ 7.3 K).
Pauli paramagnetic limiting reduces µ0Hc2 by 12% at a ρn of 28.4 µΩcm and by 15% at a
ρn of 89.8 µΩcm. h∗c2(Z) is identical to h∗c2,dirty at a ρn of 28.4 µΩcm and 0.6% lower at a
ρn of 89.8 µΩcm .

In summary, the increase in µ0Hc2 due to strong-coupling correction is mostly cancelled out
by the reduction in µ0Hc2 due to Pauli paramagnetic limiting over most of the composition
range. However, close to the dirty limit, µ0Hc2 is about 10% lower than the dirty limit h∗c2
approximation without Pauli paramagnetic limiting and strong coupling corrections, which
is mostly due to Pauli paramagnetic limiting.

4.8.4 Temperature correction to the mean scattering time
Until now, an implicit assumption was made, which is that the normal state resistivity at the
critical temperature is approximately equal to the normal state resistivity at 0 K. In other
words:

ρn(Tc)≈ ρn(0K). (4.53)

Experimentally, the normal state resistivity is known to scale with T 2 at low temperatures,
as shown by Devantay et al. [52], Kaveh et al. [186], and Gurvich et al. [187]. The
origin of this variation is likely related to a decrease in τ with increasing temperature due to
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electron-electron scattering [186].

With increasing ρn, Tc is reduced. µ0Hc2(0) is a 0 K property while Tc is a property that
is determined at non-zero temperature. In order to compare the calculated µ0Hc2(0) as a
function of Tc to the experimentally observed Tc (in which Tc at a non-zero temperature is
compared to a zero temperature µ0Hc2(0)), a correction term is implemented, through:

µ0Hc2,corr = µ0Hc2,calc +
δ (µ0Hc2,calc)

δρn
(ρn,0K−ρn,Tc) . (4.54)

The temperature dependence of the normal state resistivity was studied in Nb-Sn samples
by Gurvitch et al. [187]. It was shown that the temperature dependence of ρn varies with
ρ0, which can be summarized through a parabolic fit:

A(ρn) = 6.02ρ
2
n,0K +1.28×10−4

ρn,0K +8.02×10−11, (4.55)

ρn (Tc) = ρn,0K +A(ρn,0K)Tc
2, (4.56)

where ρn is in [Ωm]. The correction leads to a small increase in µ0Hc2(Tc): at Tc ≈ 16 K,
this effect raises µ0Hc2(0) by 0.9 T. At Tc ≈ 8 K, µ0Hc2(0) is unaffected, because the differ-
ence between ρn(Tc) and ρn(0) becomes vanishingly small at large ρn(0). At a Tc of about
17.5 K µ0Hc2(0) is unaffected because δ µ0Hc2(0)/δρn ≈ 0 at ρn ≈ 27 µΩcm [42]. Thus,
this effect mainly impacts µ0Hc2(0) at Tc ≈ 16 K, which is also the critical temperature at
which the calculated results (which do not take this effect into account) deviates the most
from the experimentally observed µ0Hc2(0) (figure 4.19). This effect is thus considered to
be relatively minor, which is why it is not included in the calculations in chapter 5.

4.8.5 Literature data on experiments
A number of results from experiments as reported in the literature are shown in figure 4.19,
including measurements that were performed on bulk samples, thin films and composite
wires.

The literature data consist of resistivity measurements (R), critical current density measure-
ments (Jc), vibrating sample magnetometer measurements (V), other magnetic measure-
ments (M) and radio frequency measurements (RF). The results by Zhou et al. [66], Foner
et al. [67], Jewell et al. [68], Arko et al. [70], and Devantay et al. [52] are of bulk material,
the results by Orlando et al. [42] are of thin films, and the results by Godeke et al. [48]
and Naus [69] are of wires. Of particular interest are the resistivity measurements by Zhou
et al. [66], Jewell et al. [68], and Godeke et al. [48], the RF measurements by Foner et al.
[67] and the magnetic measurement by Arko et al. [70], which were performed in a range
that extends down to temperatures close to 0 K and up to magnetic fields close to the upper
critical field. In this research and in the other literature sources, after Orlando et al. [42],
and Devantay et al. [52], µ0Hc2 was determined through extrapolation and the uncertainty
of these results is higher.

Also shown are the average superconducting properties of inhomogeneous Nb3Sn wires,
after Naus [69]. Naus used inductive measurements to determine an average Tc and an ex-
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trapolated Kramer field µ0HK. Assuming that µ0HK(4.2 K)≈ µ0Hc2,avg(4.2 K), µ0Hc2,avg(0)
is determined through Maki-DeGennes extrapolation (see section 2.2.5). In spite of the sam-
ple inhomogeneity it is clear that the derived µ0Hc2,avg(0) as a function of Tc,avg is consistent
with the other literature results. The measurements by Godeke et al. [48] and Naus [69] il-
lustrate the characteristic Tc of 17±1 K and µ0Hc2(0) of 28.5±1.5 T that is found in high
Jc Nb3Sn wires.

4.8.6 Other effects
Besides the effects that are implemented in the analyses presented, various other effects can
influence µ0Hc2(0) as well.

In an analysis of two binary Nb-Sn samples with different compositions, Schachinger [113]
argued that the upper critical field is strongly enhanced (by 30%) in the case of stoichiomet-
ric Nb3Sn, due to Fermi surface anisotropy, and somewhat enhanced (about 5%) in the case
of off-stoichiometric Nb-Sn with a Tc of 16.1 K. Indeed, in the calculations in which an
isotropic Fermi surface is assumed, the resulting µ0Hc2(0) as a function of Tc dependence
is somewhat below the experimentally observed µ0Hc2(0) versus Tc dependence, which
gives credence to the notion that further mechanisms such as Fermi anisotropy should be
considered. At the same time Schachinger did not consider various other effects that can
raise µ0Hc2, such as spin-orbit coupling [175] and did not include a discussion on why other
effects are considered negligible, beyond the statement that these effects do not need to be
included in order to achieve a good agreement between experimental data and theory.

Rieck et al. [177] took a different approach and constructed a model that considered the
impact of various phenomena (Fermi surface anisotropy, Pauli limiting, s-, p-, and d-wave
scattering, and spin-orbit coupling) where the magnitude of each phenomenon was described
through a free parameter. In evaluating the same experimental data that Schachinger evalu-
ated, Rieck determined that the experimental data was accurately described with dirty limit
theory (i.e. 4.43) in the case of the off-stoichiometric sample and clean limit theory in
the case of the stoichiometric sample and that fitting the free parameters only resulted in
marginal improvements in the fit accuracy. Moreover, it was concluded that different com-
binations of free parameters resulted in equally good fit accuracy such that the appropriate
magnitude of each phenomenon could not be determined with a high degree of confidence.

In summary, it is likely that additional phenomena need to be considered in order to accu-
rately describe the upper critical field, but that it is not certain which of the above mentioned
phenomena are most relevant. Further research on this topic would be beneficial, in particu-
lar if this leads to a first principle calculation of the magnitude of each of these phenomena.

As it is not clear whether additional effects such as spin-orbit coupling or Fermi surface
anisotropy need to be included to accurately describe the upper critical field, the uncertainty
in the calculation of µ0Hc2, which takes into account a variable h∗c2, strong coupling, and
Pauli limiting, is estimated to be applicable for Nb3Sn with an uncertainty of the order of
10%.

4.8.7 Effect of the tetragonal distortion on Tc and µ0Hc2(0)
As is observed in figures 4.17 and 4.19, at the cubic to tetragonal crystal symmetry transition,
the dependence of Tc and µ0Hc2(0) on disorder changes: Tc increases with decreasing ρn
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in the cubic regime but is nearly independent of ρn in the tetragonal regime and µ0Hc2(0)
increases with decreasing ρn in the cubic regime but decreases with decreasing ρn in the
tetragonal regime. One could hypothesize that the transition of cubic to tetragonal crystal
symmetry causes these changes in dependencies. This is a somewhat controversial issue and
different authors claim different arguments.

In a study of the effect of aluminum doping on the critical temperature Tc and the lattice
parameters of Nb-Sn, it was shown by Vieland et al. [189] that aluminum doping results in
an increase in Tc as well as an inhibition of the tetragonal transformation and the authors
postulate that the latter leads to the former. Consistent with this observation, it was observed
by Akihama et al. [190] that aluminum doping raises µ0Hc2 to 29 T at 4.2 K, which (through
the Maki-DeGennes extrapolation) indicates that µ0Hc2(0) is 32 T, i.e. in excess of the
highest µ0Hc2(0) observed in binary Nb3Sn. The observed increase in Tc in the absence
of the tetragonal transformation is consistent with an argument by Flükiger, who estimated
that inhibition of the cubic-to-tetragonal transformation would increase Tc to more than
18.5 K. In similar fashion, it was argued by Devantay et al. and Foner et al. [67, 191] that
it is the tetragonal transformation reduces µ0Hc2(0). Note that neither author considers the
possibility of another mechanism by which to explain the variation in µ0Hc2(0), such as a
lower lmfp in the preferentially tetragonal Nb3Sn.

In a more recent publication by Zhou et al. [66], in which 29 T is stated for the tetragonal
phase, it is argued that µ0Hc2(0) is not at all suppressed by a cubic to tetragonal transition,
a result that is attributed to improved homogeneity in the bulk samples that were analyzed.
To address potential concerns that a presence of cubic phases could provide 29 T in a resis-
tive measurement, the resistive results were validated by a magnetization measurement. It
can, nonetheless, be argued whether the observed overlap between the resistive and magne-
tization measurements constitutes reliable proof of high sample homogeneity and whether
accurate extrapolation of the magnetization results indeed yields the same upper critical
magnetic field as a resistive measurement.

In order to determine whether the tetragonal transformation reduces Tc and µ0Hc2(0), the
model was used to investigate this possibility. The model cannot be used to calculate the
properties of preferentially tetragonal Nb3Sn (as explained in section 4.7.4), but it can be
used to calculate the properties of Nb3Sn in which the cubic-to-tetragonal transformation
is suppressed. At τ = 1.91 ×10−14 s, the electron density of states was calculated in a
calculation in with enforced cubic symmetry, and found equal to 16.1 states / eV× unit cell,
while the Fermi velocity is 2.07 × 105 ms−1. The associated normal state resistivity is then
21.4 µΩcm. The phonon density could not be evaluated, as the calculation only produces
realistic results, i.e. without negative phonon frequencies, when the crystal configuration
is stable. If we assume that the phonon density of states is approximately the same as at
τ = 1.45 ×10−14 s, a reasonable assumption as change in superconducting properties with
composition is mainly a result of changes in the electron properties (section 4.7.3), then Tc
is 18.8 K (figure 4.17) and µ0Hc2(0) is 34.5 T (figure 4.19).

According to Orlando et al. [81], in an analysis in which the influence of the tetragonal dis-
tortion is incorporated into the results, vF, lmfp, λ , Tc, and ηHc2 of preferentially tetragonal
Nb3Sn are (2.1±0.2)×105 ms−1, 10∓4 nm, 1.78, 17.9 K, and 1.17. Through equation 4.52,
µ0Hc2(0) is 23.6±1.1 T, i.e. consistent with the drop in µ0Hc2(0) near Tc ≈ 18 K (figure
4.19). This implies that equation 4.52 captures the relevant physics, a further indication that

4. Calculation of the Microscopic Properties of Nb3Sn 117



the result that the tetragonal transformation lowers Tc and µ0Hc2(0) is valid.

In summary, the cause of the drop in µ0Hc2 near stoichiometry is a controversial issue, but
the calculated results and experimental evidence seems to indicate that the drop in µ0Hc2
near stoichiometry is a direct result of the tetragonal transformation. Thus, a further investi-
gation of different dopants besides titanium and tantalum could lead to further improvements
of the maximum attainable upper critical field in practical superconducting wires. The ex-
perimental investigations by Vieland et al. [189] and Akihama et al. [190] suggest that
aluminum might be a suitable candidate.

4.8.8 Discussion
As is seen in figure 4.19, both the µ0Hc2 result that is calculated with Maki’s dirty limit
approximation without Pauli paramagnetic limiting and the µ0Hc2 result with the strong-
coupling corrected calculation with Pauli paramagnetic limiting and reduced collision fre-
quency dependent h∗c2(Z) are quite close to the experimental literature data over most of
the range. The largest difference between the two calculated results is found at lower Tc,
i.e. closer to the dirty limit where the calculation that considers strong coupling correc-
tion and Pauli paramagnetic limiting is closer to the experimental result than the dirty limit
approximation without Pauli limiting.

A variety of effects are discussed which could affect µ0Hc2(0), but it is not clear to what
extent these effects affect µ0Hc2(0). In some research specific phenomena are emphasized
over others without a clear explanation of why this choice is correct, while in other research
a large number of phenomena are considered without a clear conclusion over the relative
contribution of each of these effects. For this reason, a rather conservative error estimation
of the calculation accuracy of µ0Hc2(0) is assumed in this chapter, and it is hoped that this
topic will be addressed in the future.

4.8.9 Conclusion
Using the calculated input parameters Tc, λ , <ω2>0.5, vF, and lmfp, µ0Hc2(0) is calculated
and compared to experimental data. Two descriptions are used: a weak-coupling descrip-
tion with a dirty limit h∗c2, without Pauli paramagnetic limiting and strong coupling correc-
tions (which are the underlying assumptions of the Maki-DeGennes temperature dependent
description of µ0Hc2), and a ‘best-effort’ description with strong coupling correction and
Pauli paramagnetic limiting which is valid in the dirty and intermediate limit. While the two
descriptions predict µ0Hc2 with reasonable accuracy, the ‘best-effort’ description is some-
what more consistent with experimental observations in disordered Nb3Sn (with a lower Tc),
which is mainly due to the inclusion of Pauli limiting in the description.

The difference between the calculated and experimentally observed µ0Hc2 as a function of
Tc is roughly on the same order of magnitude as the uncertainty in experimental data. How-
ever, based on the available literature, additional phenomena such as Fermi anisotropy and
spin-orbit coupling might have to be considered in the description of µ0Hc2. The litera-
ture on this topic does not indicate a clear consensus on how much these phenomena affect
µ0Hc2, so it can only be concluded that the ‘best-effort’ description that is formulated here
might be incomplete. In light of this, the uncertainty in µ0Hc2 is estimated to be of the order
of 10%.
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In spite of not using free parameters to calculate µ0Hc2 from Tc, the calculated µ0Hc2 is
close to the experimental result, which is an indication that the electron lifetime broadening
model in combination with DFT calculations and various microscopic relations captures
most of the relevant physics that determine Tc and µ0Hc2(0).

4.9 Discussion
The various calculated results as presented in this chapter coincide with experimental results
with a high degree of consistency, a strong indication that most of the relevant physics is
captured in this approach. In spite of this success, some limitations can be identified.

One limitation is that this approach includes disorder but not off-stoichiometry, while the ex-
perimental observations that are presented in sections 2.4.7 and 2.4.8 are of off-stoichiometric
Nb-Sn. The approach that is used here is reasonable because it was argued by Orlando et
al. [42] that, in experimental observations in which the influence of strain is not consid-
ered, disorder determines Tc and µ0Hc2(0), regardless of whether the material is stoichio-
metric or off-stoichiometric. In an ideal case, DFT and DFPT calculations would be applied
to off-stoichiometric Nb-Sn, which would involve using supercell configurations. Indeed,
supercell configurations are discussed at the start of this chapter and calculations are per-
formed in a limited fashion. However, it was concluded that supercell configurations are (at
the present time) impractical because the computational cost of performing DFT calcula-
tions on supercells significantly exceeds the cost of performing DFT calculations on single
unit cells. It is however conceivable that, with the rise of ubiquitous computing power, su-
percells could be evaluated in the future using the approach discussed in this chapter as a
recipe.

The second limitation is the lack of evaluation of the microscopic properties of preferen-
tially tetragonal Nb3Sn. As was discussed in section 4.4.6, the martensitic transformation
results in the formation of tweed patterns, in which the c-axis (figure 4.4) is aligned along
different directions throughout the sample. DFT calculations on single unit cell Nb3Sn are
a poor approximation of this phenomenon, because in the single unit cell approach it is as-
sumed that neighboring unit cells are identical, which means that the c-axis is aligned along
the same direction throughout the sample. Because it is not understood how tweed modu-
lation affects the microscopic properties of Nb3Sn, emphasis is placed on the properties of
preferentially cubic Nb3Sn. In theory, a very large supercell with dimensions comparable to
the spacing of the tweed modulation could be used to evaluate how tweed modulation affects
the microscopic properties. In practice, such a calculation, involving hundreds or thousands
of ions, is likely unrealistic for the foreseeable future.

4.10 Overall conclusion
The martensitic transformation, the critical temperature, and the upper critical field of Nb-Sn
are evaluated as a function of disorder using an electron lifetime broadening model. Density
functional theory software is used to evaluate the stability of the cubic phase as a function of
mean scattering time. Density functional theory and density functional perturbation theory
is used to calculate the disorder dependent Tc and µ0Hc2.

In addition to the DFT and DFPT calculations on single unit cell stoichiometric Nb3Sn, a
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free electron model and two different supercell configurations were considered as poten-
tial models for evaluating how off-stoichiometry affects the superconducting properties of
Nb3Sn. Neither of these two approaches was utilized, because the free electron model is too
simplistic to account for the properties of Nb3Sn, while the supercell approach is impractical
due to the large associated computational cost.

Using a Drude resistivity model, the normal state resistivity is calculated as a function of
mean scattering time. The transition point between cubic and tetragonal crystal symmetry
was determined to be (1.53±0.08)×10−14 s, which corresponds to a critical normal state
resistivity of 27.0±1.4 µΩcm. The calculated critical resistivity is shown to be consistent
with the experimental results within experimental uncertainty, where normal state resistivity
increases due to off-stoichiometry, additions, and temperature increase are considered.

An empirical description of α2F is formulated and validated through comparison of calcu-
lated and experimentally observed Eliashberg spectra over a wide disorder range. Using the
strong-coupling corrected Kresin and Allen-Dynes Tc equations, the normal state resistivity
dependence of Tc is calculated. A comparison with literature values is provided and these
calculated and experimentally determined Tc values are in good agreement.

Two descriptions are formulated to calculate the upper critical field as a function of Tc.
One of the descriptions assumes a dirty limit h∗c2 in a weak coupled superconductor without
Pauli limiting (which are also the assumptions of the Maki-DeGennes description of the
temperature dependence of µ0Hc2), while the other description includes strong-coupling
corrections, Pauli limiting, and is valid in the dirty and intermediate limit. Based on a
comparison to experimental data, both descriptions predict µ0Hc2 with reasonable accuracy,
although the second description is somewhat more accurate in strongly disordered Nb3Sn.
This difference is mainly due to the inclusion of Pauli paramagnetic limiting.

The consistency between the calculated results and the experimental observations implies
that most of the relevant physics are captured in these calculations.
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Chapter 5

Computational Investigation and
Experimental Observation of

Strain Sensitivity



5.1 Introduction
In chapter 4, it was shown that combining microscopic theory with ab-initio density function
theory and density functional perturbation theory can provide accurate calculation of various
disorder dependent microscopic properties, including Tc and µ0Hc2. In this chapter, the
model is applied to calculate the strain dependent properties of Nb-Sn and a comparison of
calculated results and experimental observations is given.

In section 5.2, the background of the model is given. Various strain dependent calculation
results of microscopic properties are presented in section 5.3, including Tc and µ0Hc2. The
relation between sublattice distortion and the strain sensitivity of the normal state resistivity
and superconducting properties of A15 Nb-Sn and bcc Nb is explored in section 5.4. And
finally, in section 5.5, the model calculations are compared to experimental observations and
the validity of the model is evaluated.

It is argued that strain affects the distribution of niobium ions inside the crystal, a phe-
nomenon called sublattice distortion. It was previously shown in theoretical (Labbé et al.
[136]), computational (Sadigh et al. [138]), and experimental (Shirane et al. [139]) analyses
that sublattice distortion spontaneously occurs during the martensitic transformation (figure
4.4).

The results presented here indicate that sublattice distortion not only occurs as a result of the
martensitic transformation, but also occurs when the crystal is forced into non-cubic sym-
metry due to externally applied strain. The sublattice distortion affects both the electronic
and the vibrational properties of the crystal, and thus Tc and µ0Hc2 as well.

If sublattice distortion causes strain sensitivity in A15 materials, then it follows that the
strain sensitivity of bcc Nb and NbTi, which do not comprise the characteristic niobium
chains as present in Nb3Sn, is significantly lower in comparison to Nb3Sn. The validity of
this argument will be demonstrated. In addition, a partial comparison to Nb3Al is provided,
a material with a known reduced strain sensitivity in comparison to Nb3Sn.

5.2 Computation details
5.2.1 Hypothesis
In chapter 4 it was convincingly demonstrated that the composition dependence of the super-
conducting properties Tc and µ0Hc2(0) can be calculated by combining an electron lifetime
broadening approximation, ab-initio calculations of stoichiometric Nb3Sn, and an empirical
description of α2F . The calculated and experimental results were shown to be consistent.

The hypothesis discussed here is that this model not only accurately describes the disorder
dependence of the superconducting properties, but also the strain dependence of the super-
conducting properties.

5.2.2 Constant mean free path approximation
The mean free path is defined as the mean distance an electron can travel before it scatters.
In the 0 K limit, electron scattering is dominated by scattering on defects. Other types of
scattering such as electron-electron scattering and electron-phonon scattering are assumed
to be minor, which in practical terms means that ρn(T = 0 K)� ρn(Tc)−ρn(T = 0 K). As
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the mean free path lmfp is determined by the distance between the scattering centers and the
distance between the scattering centers is affected by strain, it follows that strain affects the
mean free path.

The mean free path is expressed in three orthogonal components, with:

lmfp =

√(
lmfp,ip,long

)2
+
(
lmfp,ip,tr

)2
+
(
lmfp,op,tr

)2
, (5.1)

where lmfp describes the mean distance that an electron travels between scattering events,
and lmfp,ip,long, lmfp,ip,tr, and lmfp,op,tr describe the in-plane longitudinal, the in-plane trans-
verse, and the out-of-plane transverse components of the mean free path, respectively. The
directions relative to the U-spring sample holder are illustrated in figure 5.2, left. With cu-
bic symmetry, in an infinitely large crystal without an externally applied magnetic field, the
magnitudes of the components are equal:

lmfp,ip,long (0)≡ lmfp,ip,tr (0)≡ lmfp,op,tr (0)≡ lmfp (0)/
√

3. (5.2)

The application of strain affects the three components following:

lmfp,ip,long
(
εip,long

)
= lmfp,ip,long (0)

(
1+ εip,long

)
, (5.3)

lmfp,ip,tr
(
εip,tr

)
= lmfp,ip,tr (0)

(
1+ εip,tr

)
, (5.4)

lmfp,op,tr
(
εop,tr

)
= lmfp,op,tr (0)

(
1+ εop,tr

)
. (5.5)

An in-plane longitudinal compression of 1% (assuming a Poisson’s ratio of 0.38 for Nb3Sn
[58]) leads to εip,long = −1%, εip,tr = 0.34%, and εop,tr = 0.40% (see sections 2.4.3 and 2.4.6
for the relations between the strain components). Relative to the cubic case, equation 5.2,
the in-plane compression of 1% results in an decrease in lmfp of 0.08%. As this number
is very small, it is deemed negligible, which means that the application of strain by the U-
spring test rig does not change lmfp. lmfp is thus a useful measure of the degree of disorder
in a sample as neither lmfp nor the degree of disorder are affected by strain.

It is desirable to evaluate the strain sensitivity at a constant degree of disorder, and thus
a constant lmfp. However, the model uses an isotropic mean scattering τ as input and the
corresponding lmfp is unknown until vF is calculated, so that a calculation at a fixed lmfp
and variable strain requires repeated iterations to determine the corresponding τ . Rather
than following this computationally extensive route, the problem is better solved by assum-
ing a value for τ , finding the corresponding lmfp1, and determining the various calculated
properties at a desired lmfp2 through:

X
(
lmfp2

)
≈ X

(
lmfp1

)
+

δX
(
lmfp1

)
δ lmfp1

(
lmfp2− lmfp1

)
, (5.6)

where X refers to an arbitrary calculated parameter, such as N(EF). In all cases, the change
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Figure 5.1: Calculation scheme, with strain boundary conditions and mean scattering time
τ as input, and structural optimization results, Fermi velocity vF, electron density of states
N(EF), phonon density of states F(ω), mean free path lmfp, electron-phonon coupling con-
stant λ , critical temperature Tc, normal state resistivity ρn, and upper critical field µ0Hc2(0)
as output.

in X with strain is large relative to the change in the term (δX/δ lmfp1)(lmfp2− lmfp1) with
strain, showing that linearization is justified.
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θ

Figure 5.2: Left: schematic of the U-spring sample holder with the in-plane longitudinal
and transverse and the out-of-plane transverse directions. Right: the Nb-Sn thin films are
predominately (100) oriented in the out-of-plane direction and randomly in the in-plane
direction. ϕ is the in-plane rotation angle, and θ is the angle between the lattice vectors.

5.2.3 Calculation scheme
Figure 5.1 shows the input and output parameters of the electron lifetime broadening model,
applied for the investigation of strain sensitivity. The model takes strain boundary conditions
and the isotropic mean scattering time τ as input. A structural optimization is performed for
each combination of boundary conditions and τ to determine the three-dimensional lattice
arrangement with the lowest enthalpy, which also provides the strain and stress state of the
crystal.

Subsequently, the Fermi velocity vF, the electron density of states N(EF), and the fre-
quency dependent phonon density of states F(ω) are calculated, and the mean free path lmfp,
electron-phonon coupling constant λ , the critical temperature Tc, the normal state resistivity
ρn, and the upper critical field µ0Hc2(0) are derived. The various expressions, introduced in
chapter 4, are once again listed here.

5.2.4 Experimentally observed strain boundary conditions
The model calculates of the superconducting properties as a function of the three dimen-
sional strain state of the Nb-Sn thin films samples which were mounted on the U-spring test
rig (see figure 2.15).

Three orthogonal directions are defined, which are the in-plane longitudinal, in-plane trans-
verse, and out-of-plane transverse directions (figure 5.2). In the calculations, it is assumed
that the degree of thermal pre-compression is small (section 2.4.2) and that the in-plane
transverse strain is determined by the Poisson’s ratio of the sample holder (i.e. 0.342 [79],
section 2.4.3). The in-plane longitudinal and transverse strains are expressed by:

εip,long ≈ εa, (5.7)
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εip,tr =−0.342× εip,long, (5.8)

where εip,long, and εip,tr are the in-plane longitudinal and transverse strain, and εa is the
applied longitudinal strain. The thin film is free to expand in the out-of-plane direction, so
that the out-of-plane stress is equal to zero:

σop,tr = 0, (5.9)

where σop,tr is the out-of-plane stress. In section 4.4.2, the lattice parameter of 0.5313 ±
0.0001 nm was found at degrees of disorder where the cubic phase is stable, so the lattice
parameter a0 is fixed to 0.5313 nm.

The Nb-Sn thin films were found to be predominantly oriented (100) in the out-of-plane di-
rection and randomly in the in-plane direction (section 2.3.6). The orientation of the crystal
relative to the in-plane longitudinal direction in the absence of applied strain is designated
ϕ (figure 5.2, right), so that the length of the in-plane lattice vectors of the crystal and the
angle between the in-plane lattice vectors are expressed with:

|vip1|= a0

√((
1+ εip,long

)
cos(ϕ)

)2
+
((

1+ εip,tr
)

sin(ϕ)
)2
, (5.10)

|vip2|= a0

√((
1+ εip,long

)
sin(ϕ)

)2
+
((

1+ εip,tr
)

cos(ϕ)
)2
, (5.11)

θ = cos−1

a2
0

((
1+ εip,long

)2−
(
1+ εip,tr

)2
)

cos(ϕ)sin(ϕ)

aip1aip2

 , (5.12)

where |vip1| and |vip2| are the lengths of the two in-plane lattice vectors and θ is the angle
between the two in-plane lattice vectors. The out-of-plane lattice vector is orthogonal to the
two in-plane lattice vectors and the length of this vector is determined by using the boundary
condition that the out-of-plane stress is equal to zero.

Note that there are three high-symmetry conditions. First of all, if no strain is applied then
the two in-plane lattice vector lengths are equal to a0 and θ is equal to 90◦, regardless of ϕ .

Second, if ϕ = 0◦, then:

|vip1|= a0
(
1+ εip,long

)
, (5.13)

|vip2|= a0
(
1+ εip,tr

)
, (5.14)

and θ = 90◦. In this orientation, the crystal is strained along the (100) in-plane direction
(figure 5.3, top). Note that the sample holder determines both the in-plane longitudinal and
the transverse strains. If the Poisson’s ratio of the Ti-6Al-4V sample holder were to match
that of the Nb3Sn, then (100) strain leads to a tetragonal crystal structure. However, the
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Sn

(100) strain

vip,tr vip,long

vop,tr

Sublattice distortion δ

Nb, after strain
Nb, before strain

Nb, after strain
Nb, before strain

Sn

(110) strain

vip,tr

vip,2vip,1

vip,longvop,tr

Figure 5.3: Schematic representation of how externally applied (100) and (110) strain dis-
torts the positions of the niobium ions inside the crystals. The fat arrows inside the crystals
indicate the direction in which the crystal is compressed. The black markers represent the
Sn ions. The initial positions of the Nb ions (before the crystal is strained) and the final
positions of the Nb ions (after the crystal is strained) are indicated with open markers.
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Figure 5.4: Calculated N(EF) as a function of rotation angle ϕ for two strains.

Poisson’s ratio of the sample holder is 0.342 (section 2.4.3), while the Poisson’s ratio of
Nb3Sn is approximately 0.38 [58], which means that (100) strain leads to an orthorhombic
crystal symmetry, i.e. all three lattice parameters are different but they are orthogonal to one-
another. Note that the in-plane lattice vectors are aligned along the in-plane longitudinal and
transverse directions, which is why the in-plane lattice vectors are referred to as vip,long and
vip,tr in this case.

The third high-symmetry condition is found when ϕ = 45◦, with:

|vip1|= |vip2|= a0

√(
1+ εip,long

)2
+
(
1+ εip,tr

)2
/
√

2, (5.15)

θ = cos−1


((

1+ εip,long
)2−

(
1+ εip,tr

)2
)

(
1+ εip,long

)2
+
(
1+ εip,tr

)2

 . (5.16)

In this orientation, the crystal is strained along the (110) in-plane direction (figure 5.3, bot-
tom). This application of strain leads to a monoclinic crystal structure, i.e. the out-of-plane
lattice vector is orthogonal to the in-plane lattice vectors, but the in-plane lattice vectors are
not orthogonal to one-another, and in addition the in-plane lattice vectors are of equal length.
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Table 5.1: Quantitative description of Nb and Sn ion positions. The position of each of the
eight ions in a stoichiometric unit cell is expressed relative to the vectors that
span the unit cell (also see figure 5.3). The values for δ are presented in figure
5.5).

(100) strain
=

=

=

=

=

=

=

=
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5.2.5 Crystal orientation dependent strain sensitivity
The in-plane rotation of the Nb-Sn is random (figure 2.10). In order to get a qualitative
impression of the angle dependence of the strain sensitivity, a simulation is performed
where the relation between N(EF) and ϕ is investigated, with a mean scattering time τ of
1.27×10−14 s, and an in-plane longitudinal strain εip,long of −0.5%, compared to 0%. The
calculation involves a structural optimization followed by a calculation of N(EF).

The result of the simulation is shown in figure 5.4. It is found that, compared with a εip,long
of 0%, the compression of the crystal results in a reduction in N(EF). The size of reduction
is dependent on ϕ , with the largest reduction following strain along the (100) direction
and the smallest reduction for strain along the (110) direction. As (100) and (110) strain
represents the extremes in terms of strain sensitivity, emphasis is placed on these two strains
throughout the calculations. In both cases the lattice vector pointing in the out-of-plane
direction is designated as vop,tr.

5.3 Calculated effect of strain on the microscopic proper-
ties of disordered Nb3Sn

The model calculation results are presented, which includes the degree of niobium ion sub-
lattice distortion, the strain dependent electron density of states, anisotropic Fermi velocity,
anisotropic normal state resistivity, strain dependent phonon dispersion curves and phonon
density of states, Eliashberg spectra and derived properties, the critical temperature, and the
upper critical field.
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Figure 5.5: Calculated degree of sublattice distortion as a function of in-plane longitudinal
(100) and (110) strain (shown in the top and bottom figures, respectively).

5.3.1 Niobium ion sublattice distortion
The effect of externally applied strain on the niobium ions was calculated. Structural op-
timizations were performed for various strains and degrees of disorder. The calculations
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show that under the influence of externally applied strain, the niobium ions assume different
positions inside the unit cell and the new positions are determined by the extent of disorder,
the externally applied strain, and whether strain is applied along the (100) direction or the
(110) direction.

Figure 5.3 illustrates how externally applied strain affects the position of the niobium ions
inside the unit cell. Table 5.1 and figure 5.5 describe the sublattice distortion in quantitative
terms. Figure 5.6 shows the calculated out-of-plane strain determined by setting the out-of-
plane stress to 0 Pa.

Application of strain along the (100) direction results in dimerization of the niobium chains
in the in-plane and out-of-plane transverse directions. Within the unit cell, the niobium ions
move toward or away from each other (figure 5.3, top). The dimerization of the niobium
ions along the two transverse directions is nearly identical in magnitude but opposite in
sign, but the degree of dimerization along the longitudinal direction is relatively weak, as
shown in figure 5.5, top. (110) strain not only results in dimerization, i.e. movement of
the niobium ions along the niobium chains, but also in buckling, which means that the ions
move away from the initial location of the niobium chain, which is shown in figure 5.3,
bottom. The term sublattice distortion broadly indicates the movement of niobium ions,
which incorporates both the dimerization and, for (110) strain, the buckling of the chains.

The degree of sublattice distortion decreases with decreasing lmfp. This phenomenon can
qualitatively be explained in terms of the stability of the crystal: at sufficiently large lmfp,
the material is preferentially tetragonal (figure 4.5) and sublattice distortion spontaneously
occurs (figure 4.4). Thus, sublattice distortion is energetically favorable and no externally
applied pressure is needed for sublattice distortion to occur. With decreasing lmfp, the ma-
terial becomes preferentially cubic. Now, sublattice distortion is energetically unfavorable,
but can still be achieved by forcing the crystal structure into non-cubic symmetry through
externally applied strain. With further decreases in lmfp the energetic favorability of the cu-
bic crystal symmetry relative to the tetragonal one increases, and the degree of sublattice
distortion is reduced (figure 5.5).

5.3.2 Electron density of states
Figure 5.7 shows the change in electron density of states N(EF) with in-plane longitudinal
strain at various mean free paths. The calculated results indicate a strong difference in the
strain sensitivity of the electron density of states between (100) and (110) strain. At all
compositions, the change in electron density of states is more pronounced for (100) strain
than (110) strain. The degree of strain sensitivity in N(EF) decreases with decreasing lmfp.
As will be argued in the next section, this decrease is a result of the decrease in sublattice
distortion with decreasing lmfp (figure 5.5).

5.3.3 Anisotropic Fermi velocity
The Fermi velocity is affected by strain in an anisotropic manner. The root-mean-square
(rms) Fermi velocity is calculated as a function of direction, in-plane longitudinal strain,
and mean free path.

The calculated result indicates that the Fermi velocity is anisotropic. This anisotropy is
consistent with the anisotropic nature of the sublattice distortion. For instance, as shown
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Figure 5.6: Calculated out-of-plane strain as a function of in-plane longitudinal (100) and
(110) strain (shown in the left and right figures, respectively).

in figure 5.3, (100) strain results in a degree of sublattice distortion in the two transverse
directions that is nearly identical in magnitude but opposite in sign and a degree of sublattice
distortion in the in-plane longitudinal direction that is significantly smaller.

The strain sensitivity of the Fermi velocity decreases with decreasing lmfp. This can also be
attributed to the degree of sublattice disorder. With decreasing lmfp, the degree of sublattice
distortion decreases (figure 5.5).

5.3.4 Anisotropic normal state resistivity
The normal state resistivity is calculated from the crystal volume, the directional mean free
path, the directional Fermi velocity and the electron density of states, with:

ρn,x =
V

N (EF) lmfp,xvF,xe
. (5.17)

If the crystal is strained, the normal state resistivity ρn,x is direction dependent, i.e. com-
pressive strain reduces the normal state resistivity along the strain direction with respect to
the transverse direction. This is mainly a result of the anisotropic nature in which strain af-
fects the Fermi velocity. A detailed comparison between the calculated and experimentally
observed strain dependence of ρn follows in section 5.4.4.
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Figure 5.7: Calculated electron density of states N(EF) as a function of in-plane longitudinal
(100) and (110) strain (shown in the top and bottom figures, respectively).
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Figure 5.8: Calculated directional Fermi velocity as a function of in-plane longitudinal
strain, for various values of lmfp. The solid, dashed, and dotted lines represent the in-plane
longitudinal, the in-plane transverse, and the out-of-plane transverse directions respectively.
The effect of (100) and (110) strain are shown in the top and bottom figures, respectively.
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Figure 5.9: Calculated in-plane longitudinal and transverse normal state resistivities
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Figure 5.10: Calculated phonon dispersion curves at lmfp = 1.8 nm for cubic (top) and
(100) strained (bottom) Nb3Sn.

5.3.5 Phonon density of states
Phonon dispersion curves were calculated as a function of strain and mean free path, which
are shown in figure 5.10. In the dispersion plot splitting of vibrational modes can be ob-
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Figure 5.11: Calculated phonon density of states as a function of frequency at two strains
and lmfp = 1.8 nm (top) and 2.8 nm (bottom).
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Figure 5.12: Calculated Eliashberg spectra, α2F as a function of frequency ω , for two
mean free paths and two strains.

served. For instance, the lowest frequency acoustic mode in the cubic crystal symmetry
splits into two distinct bands at q = (001) (indicating a lattice vibration in the out-of-plane
direction) when the crystal is strained. This splitting coincides with a shift towards higher
vibrational frequencies, as shown in figure 5.11, in a manner that is more pronounced at a
higher lmfp.

5.3.6 Eliashberg spectrum, λ and <ω2>0.5

As discussed in section 4.6.3, the Eliashberg spectra α2F(ω) are calculated at various mean
free paths and validated through comparison to experimental tunnel junction data. Here,
the Eliashberg spectra are calculated as a function of strain, and the corresponding electron
phonon coupling constant λ and <ω2>0.5 are determined.

These results are particularly relevant because they can be validated through comparison
with experimental results. Tunnel junctions can be fabricated and strained and the Eliash-
berg spectra can be determined as a function of strain. An effort was made to perform this
experiment [192], but within the time limits of this research, tunnel junctions of sufficient
quality could not be fabricated.

The Eliashberg spectra of cubic and strained Nb3Sn for two mean free paths are shown
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Figure 5.13: Calculated electron-phonon coupling constant λ as a function of (100) and
(110) strain (shown in the top and bottom figures), for two mean free paths.
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Figure 5.14: Calculated <ω2>0.5 as a function of (100) and (110) strain (shown in the top
and bottom figures), for various mean free paths.
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in figure 5.12. The calculation results point to three conclusions. Firstly, the Eliashberg
spectrum shifts towards a higher frequencies under the influence of strain, due to the shift
in the phonon density of states. Secondly, the overall amplitude of the Eliashberg spectrum
is reduced due to a decrease in the electron density of states. Both effects are detrimental to
superconductivity.

Thirdly, the effect of strain on the Eliashberg spectrum is more pronounced when the degree
of disorder is lower, suggesting a larger strain sensitivity in the superconducting properties
in less disordered Nb3Sn. From the Eliashberg spectra, λ and <ω2>0.5 are calculated, with:

λ = 2
∫

α2 (ω)F (ω)

ω
δω, (5.18)

〈
ω

2〉0.5
=

(
2
λ

∫
α

2 (ω)F (ω)ωδω

)0.5

. (5.19)

In figures 5.13 and 5.14, λ and <ω2>0.5 are presented as a function of strain, at various
lmfp. λ decreases with both compressive and tensile strain, while <ω2>0.5 increases with
compressive and tensile strain. The degree of strain sensitivity in both of these parameters
decreases with decreasing lmfp.

5.3.7 Critical temperature Tc

The critical temperature Tc was calculated using the Kresin [18], and Allen-Dynes descrip-
tions (equations 4.28 and 4.35). Besides µ∗, Kresin’s description is a function of λ and
<ω2>0.5, while the Allen-Dynes description also takes additional characteristic frequen-
cies into account, which are derived from the Eliashberg spectrum.

For all investigated mean free paths and strains, the maximum absolute difference between
the Kresin and Allen-Dynes descriptions is 0.38 K. Figure 5.15 shows the calculated Tc as
a function of strain for various lmfp as calculated with Kresin’s description. The following
conclusions can be drawn:

• The critical temperature is reduced when the crystal is forced into a non-cubic sym-
metry and the degree of reduction is typically in the order of several Kelvin. This
reduction is a consequence of both changes in the electron and the phonon density of
states.

• The critical temperature is more sensitive to (100) strain than (110) strain, because
both the electron and phonon density of states are more strain sensitivity to (100) than
to (110) strain.

• The strain sensitivity of Tc is more pronounced when lmfp is larger, because both the
degree of strain sensitivity in the electron and the phonon density of states increases
with increasing lmfp.

A detailed comparison of the calculated and experimentally observed strain dependence of
Tc is given in section 5.5.4.
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Figure 5.15: Calculated critical temperature Tc as a function of (100) and (110) strain (top
and bottom figures) for various lmfp.

142 Chapter 5



(100) strain

lmfp = 2.8 nm
lmfp = 2.5 nm
lmfp = 2.2 nm
lmfp = 1.8 nm
lmfp = 1.3 nm

U
pp

er
 cr

iti
ca

l f
ie

ld
 μ

0H
c2

 [T
]

5

10

15

20

25

30

In-plane longitudinal εip,long [%]
−1.5 −1 −0.5 0 0.5

(110) strain

lmfp = 2.8 nm
lmfp = 2.5 nm
lmfp = 2.2 nm
lmfp = 1.8 nm

U
pp

er
 c

rit
ic

al
 fi

el
d 

μ 0
H

c2
 [T

]

15

20

25

30

In-plane longitudinal strain εip,long [%]
−1.5 −1 −0.5 0 0.5

Figure 5.16: Upper critical field µ0Hc2(0) as a function of (100) and (110) strain (top and
bottom figures), for various lmfp.
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5.3.8 Upper critical field µ0Hc2(0)
The upper critical field at 0 K is calculated as a function of strain and mean free path.
The approach used to calculate µ0Hc2 is the ‘best-effort’ approach as discussed in section
4.8.3, which takes strong coupling corrections into consideration for a superconductor in
the intermediate to dirty limit (i.e. a reduced collision frequency between 1.5 and 17.5),
under the assumption of a spherical Fermi surface, without spin-orbit coupling and with
Pauli paramagnetic limiting. µ0Hc2(0) is calculated following:

µ0H+
c2(0) = ηHc2

(
CO1

T 2
c (1+λ )2

v2
F

+CO2
Tc (1+λ )

vFlmfp

)
, (5.20)

CO1 =
0.766×24π2k2

B
7ζ (3) h̄e

= 2.433×108, (5.21)

CO2 =
0.608×12πkB

7ζ (3)e
= 2.349×10−4, (5.22)

ηHc2 = 1+

(
πkBTc

〈ω2〉0.5

)(
0.6ln

(〈
ω2
〉0.5

kBTc

)
−0.26

)
, (5.23)

µ0Hp(0) = 1.86Tc (1+λ ) , (5.24)

(µ0Hc2 (0))
−2 =

(
µ0H+

c2 (0)
)−2

+2
(
µ0Hp (0)

)−2
, (5.25)

where µ0H+
c2 is the upper critical field at 0 K without Pauli paramagnetic limiting in [T],

µ0Hp(0) is the Pauli paramagnetic field at 0 K in [T], Tc is the critical temperature in [K],
λ is the electron-phonon coupling constant, vF is the rms Fermi velocity in [ms−1], CO1
and CO2 are constants in [Tm2K−2s−2] and [Tm2K−1s−1] respectively, ηHc2 is the strong
coupling correction factor, kB is the Boltzmann constant in [eVK−1], <ω2>0.5 the charac-
teristic phonon frequency in [eV], and µ0Hc2(0) is the upper critical field at 0 K with Pauli
paramagnetic limiting in [T]. The upper critical field at various mean free paths and strains
is shown in figure 5.16. The following conclusions can be drawn:

• µ0Hc2(0) is more strain sensitive at longer mean free paths and less strain sensitive at
shorter mean free paths.

• µ0Hc2(0) is more strain sensitivity than Tc. This is to be expected: µ0Hc2(0) is
proportional to Tc in the dirty limit but proportional to T 2

c in the clean limit. Moreover,
µ0Hc2(0) is proportional to (1+λ ) in the dirty limit and (1+λ )2 in the clean limit. From
this simple argument, it is clear that µ0Hc2(0) is expected to be more sensitive to strain
than Tc, which is also consistent with experimental observations (figure 3.11).

• The upper critical field is more sensitive to (100) strain in comparison to (110) strain.

A detailed comparison of calculated and experimental results is found in section 5.5.4.
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5.3.9 Conclusion
A series of calculations were performed to determine the strain dependence of the supercon-
ducting and normal state properties of Nb-Sn at various strains and degrees of disorder. The
experimental boundary conditions of the U-spring were used in the model, thus allowing a
comparison between calculated results and experimental observations. The following can
be concluded:

• Under the influence of strain, the niobium ions are rearranged inside the crystal, a
phenomenon which is referred to as sublattice distortion.

• The electron density of states is suppressed when the crystal is deformed.

• The strain dependence of vF is dependent on the direction in which an electron travels
relative to the strain direction. As a result, the strain dependence of ρn in the direction
transverse to the strain direction is different from the strain dependence of ρn parallel
to the strain direction, i.e. compressive strain results in a decrease of the in-plane
longitudinal resistivity in comparison to the transverse resistivity.

• The vibrational modes shift towards higher frequencies when the crystal is strained.

• λ is decreased when the crystal is strained, while <ω2>0.5 is increased.

• Forcing the crystal into non-cubic symmetry results in a reduction in Tc and µ0Hc2(0),
a result that is in part due to a reduction in the electron density of states and a shift in
the phonon density of states towards higher frequency.

• The degree of strain sensitivity of Tc and µ0Hc2(0) decreases with decreasing Tc and
µ0Hc2(0).

5.4 Relation between sublattice distortion and strain sensi-
tivity of the normal state resistivity and superconduct-
ing properties of Nb-Sn

5.4.1 Introduction
The relation between sublattice distortion, the strain dependent ρn and the strain dependent
superconducting properties of Nb3Sn will be discussed in more detail. The strain sensitivity
of the superconducting properties, which is also observed in other A15 materials (Nb3Au,
Nb3Al, V3Ga, and V3Si) by Flukiger et al. [193], is significantly larger than the strain
sensitivity of bcc materials such as Nb and Nb-Ti (also see Ekin [109]).

An obvious difference between A15 Nb3Sn and bcc niobium is that bcc niobium does not
contain sublattices, i.e. the characteristic niobium chains present in A15 Nb3Sn (figure 5.3).
If sublattice distortion is the dominant mechanism that explains the strain sensitivity of ρn,
Tc, and µ0Hc2(0) in Nb3Sn, one would expect that ρn and the superconducting properties
are only weakly affected by strain in bcc Nb.

Another difference is that unlike A15 Nb3Sn, bcc niobium does not undergo a spontaneous
cubic-to-tetragonal transformation. This is both a computational statement (i.e. the stability
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of the cubic phase was evaluated and found to be consistently stable, regardless of the degree
of disorder) and an experimental statement. While it was speculated that the martensitic
transformation does occur in bcc Nb by Bollinger et al. [195], a subsequent evaluation of
the temperature dependent lattice parameters by Francoual et al. [196] showed that this
prediction is not correct.

The following questions are answered:

• Is the strain sensitivity of Nb3Sn mainly due to the effect of strain on the electronic
properties, on the vibrational properties, or on both?

• How would strain affect the properties of Nb3Sn if the sublattice distortion would not
occur?

• How does strain affect the properties of bcc Nb?

• Is sublattice distortion the origin of strain sensitivity in Nb3Sn?

• How does the strain sensitivity of Nb3Sn compare to that of Nb3Al, NbTi, and Nb?

5.4.2 Strain sensitivity: electronic and vibrational properties
It was demonstrated in section 2.4.6 that the residual resistivity is affected by strain. This
implies that the electronic properties are changing as a function of strain, as the residual
resistivity is not related to the vibrational properties of the crystal.

It is less straightforward to determine whether the strain sensitivity of the superconducting
properties is caused by changes in the electronic properties, the vibrational properties, or
both. In order to determine whether the effect of strain on Tc and µ0Hc2 is related to the
effect of strain on the electronic properties, the vibrational properties, or both, an academic
exercise is performed: what if strain affects the electronic properties but the phonon density
of states is fixed?

To answer this question, a calculation is performed in which the electronic properties are
calculated as a function of strain, while the phonon density of states is fixed. The result
is shown in figure 5.17. A comparison is made between the ‘just electronic’ case, where
changes in the phonon density of states are neglected and the ‘electronic + phonon’ case,
where both cases are considered. It is clear that in the case of (100) strain at a mean free
path of 2.8 nm, strain sensitivity is mainly a result of changes in the electronic properties. To
quantify this, the fraction f of strain sensitivity due to changes in the electronic properties
is calculated following:

felectronic =
µ0Hc2

(
εip,long = 0%

)
−µ0Hc2,elec

(
εip,long =−1.5%

)
µ0Hc2

(
εip,long = 0%

)
−µ0Hc2,elec+ph

(
εip,long =−1.5%

) , (5.26)

where µ0Hc2,elec is the upper critical field which includes the effect of strain on the electronic
but not the vibrational properties, and µ0Hc2,elec+ph includes the effect of strain on both
the electronic and the vibrational properties. If only the change in electronic properties is
considered then this explains 85% of the total strain sensitivity of µ0Hc2(0) and 80% of the
total strain sensitivity of Tc in the case of (100) strain at lmfp = 2.8 nm. With decreasing
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Figure 5.17: Calculated upper critical field as a function of strain. One calculation consid-
ers only the strain sensitivity of the electronic properties, i.e. the phonon density of states is
fixed, while the other is a (regular) calculation that considers both strain sensitivity of the
electronic and vibrational properties.

mean free path, the fraction of total strain sensitivity that is due to changes in the electronic
properties decreases. At lmfp = 1.3 nm in the case of (100) strain, the change in electronic
properties with strain explains 55% of the total strain sensitivity of µ0Hc2(0) and 53% of
total the strain sensitivity of Tc. Also, in the case of (110) strain at lmfp = 2.8 nm, the
strain sensitivity of the electronic properties explains 76% of the total strain sensitivity of
µ0Hc2(0) and 77% of the total strain sensitivity of Tc.

In summary, the results indicate that changes in both the electronic and the vibrational prop-
erties of the crystal contribute to the strain sensitivity of Tc and µ0Hc2(0), but changes in
the electronic properties play a larger role than changes in the vibrational properties, in
particular in less disordered Nb3Sn.

This conclusion is consistent with the investigation of a number of authors, including Lim
et al. [147] who investigated the stress dependence of Tc, µ0Hc2(0), and ρn, Welch [197]
who investigated the strain sensitivity of Tc relative to µ0Hc2, and Cohen et al. [198], who
constructed a simple model to account for the temperature dependent normal state resistiv-
ity and the elastic constants, which according to McEvoy [199] can explain the pressure
dependence of Tc as well. It was argued by Godeke et al. [200] that strain affects the elec-
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tron diffusion constant, which was one of the main reasons for performing experiments in
which both the superconducting properties and the normal state resistivity is measured as a
function of strain in this thesis.

Though the conclusion here is consistent with the observation by De Marzi et al. that strain
sensitivity affects both the electronic and the vibrational properties, a conclusion that is also
based on DFT calculations, De Marzi and our investigations are in many ways very different.
For instance, they do not discuss disorder, suppress sublattice distortion after assuming that
sublattice distortion is irrelevant for strain sensitivity, and their calculation indicates a degree
of strain sensitivity that strongly deviates from the experimentally observed strain sensitivity.

There are a number of authors (Testardi [201], Taylor et al. [84], Oh et al. [203], Markiewicz
[98]), who attribute the strain sensitivity of Nb3Sn entirely to the strain sensitivity of the
vibrational properties of the material.

The strain sensitivity of V3Si was investigated by Testardi [201], and it was argued that the
strain sensitivity is mainly related to changes in the vibrational properties of the crystal. In
order to investigate the possibility that strain affects the electronic properties of the crystal,
the author relies on a simple rigid band model. In using this rigid band model it is assumed
that strain does not affect the band structure of the material, but simply raises of lowers
the Fermi energy. One of the main insights of the research presented in this thesis is that
strain affects the ion configuration and by extension the band structure in a profound way.
Thus, a rigid band model is too simple to investigate the strain sensitivity of the electronic
properties. The author relates the strain sensitivity of the superconducting properties to the
strain induced change in the vibrational properties, after making the assumption that the
change in the linear expansion term α with strain is small relative to the change in Tc.
However, it is subsequently concluded that longitudinal strain does in fact affect α , so that
only an upper limit due to the contribution of changes in vibrational properties could be
determined. This is consistent with the analysis here: the calculated results indicate that the
strain sensitivity of the phonon density of states contributes to the strain sensitivity of Tc
and µ0Hc2(0), even though it is not the dominant factor.

In summary, Testardi’s analysis is consistent with this research insofar as attributing the
strain sensitivity of the superconducting properties in part to the strain sensitivity of the
vibrational properties, but the author relies on an oversimplified rigid band model approach
to argue that the strain sensitivity of the electronic properties does not play a role.

There are a number of additional investigations that attribute strain sensitivity solely to
changes in the vibrational properties.

• It was argued by Taylor et al. [84] that the change in superconducting properties
is a result of changes in the vibrational properties after assuming that the electronic
properties are not affected by strain. For instance, it was assumed that the normal state
resistivity is not affected by strain, which is inconsistent with experimental evidence,
see section 2.4.6.

• In similar fashion, it was argued by Oh et al. [203] that the strain sensitivity is a
result of phonon anharmonicity after making the implicit assumption that the electron
density of states and Fermi velocity are independent of strain. Oh’s investigation
points to a ‘case I’ in which the change in λ is large relative to <ω2>0.5, which is
consistent with the notion that strain affects the electronic properties of the crystal.
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Subsequently, it is speculated that this case implies that phonon anharmonicity is the
dominant cause of the strain sensitivity in the superconducting properties, which is
inconsistent with this research.

• Markiewicz [98] argued that strain sensitivity is a result of changes in the phonon
density of states, but his analysis utilizes the experimentally observed δTc/δP depen-
dence on the unverified assumption that this is result of changes in the vibrational
properties. In addition, an implicit assumption was made that strain does not affect
the electron density of states.

While these investigations are useful and instructive (in particular the work by Markiewicz),
it has to be pointed out that there is a certain circular logic to these arguments: as Nb3Sn is
a phonon-mediated superconductor, one will invariably conclude that strain sensitivity must
be a result of changes in the vibrational properties after making the incorrect starting as-
sumption that changes in electronic properties do not play a part. The observation of a large
degree of strain sensitivity in the residual resistivity (figure 2.20) is compelling evidence
that the electronic properties are affected by strain, and therefore the strain sensitivity of the
electronic properties cannot be ignored.

In summary, the present model indicates that changes in the superconducting properties as
a function of strain are a result of changes in both the electronic and the vibrational proper-
ties. However, in low-resistivity cubic Nb3Sn the strain sensitivity of the superconducting
properties is mainly a result of a strain-induced change in the electronic properties.

5.4.3 Effect of sublattice distortion on the superconducting properties
As the strain sensitivity of the normal state resistivity at 0 K is entirely due to changes in the
electronic properties and the strain sensitivity of Tc and µ0Hc2 is mostly due to changes in
the electronic properties, emphasis is placed on the effect of strain on the electronic proper-
ties. In this chapter, the concept of niobium sublattice distortion was introduced. It seems
reasonable to assume that the large strain sensitivity of Nb3Sn is a direct result of this sub-
lattice distortion.

To determine the validity of this assumption, a calculation was performed as an academic
exercise in which the sublattice distortion does not occur, i.e. δ ≡ 0. The electronic band
structure of cubic Nb3Sn, strained Nb3Sn with δ ≡ 0, and strained Nb3Sn in which sublattice
distortion is allowed to occur (here denoted with δ 6= 0) is shown in figure 5.18. Note that
for δ 6= 0, the calculated values of δ are shown in figure 5.5.

In figure 5.18, the electronic band structure is plotted along high-symmetry directions where
the three-dimensional k-point coordinate indicates the relative distance to the Brillouin zone
boundary along the in-plane longitudinal, in-plane transverse, and out-of-plane transverse
directions, respectively. For instance, k = 000 indicates the center of the Brillouin zone,
while k = 001 indicates the Brillouin zone edge. The three indices denote the in-plane
longitudinal, the in-plane transverse, and the out-of-plane transverse directions, respectively.

In the cubic case and the case with δ ≡ 0, a large number of electronic bands are observed
near the Fermi energy. In the case of δ 6= 0 these bands are spread out over a larger energy
range. For instance, bands are spread out over approximately double the energy range at
k = 111 in comparison to the cubic case and the case with δ ≡ 0. Figure 5.19 shows N(EF)
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Figure 5.18: Calculated electronic band structure of cubic (top) and (100) strained (bottom)
Nb3Sn with δ ≡ 0 and δ 6= 0.
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Figure 5.19: Calculated electron density of states as a function of strain of A15 Nb3Sn with
sublattice distortion, A15 Nb3Sn without sublattice distortion, A15 Nb3Al with sublattice
distortion, bcc Nb, and bcc NbTi.

in the cases of δ ≡ 0 and δ 6= 0. Unsurprisingly, the effect of strain on N(EF) is much more
pronounced in the case of δ 6= 0. The electron-phonon coupling constant λ is proportional
to N(EF), which means that the strain sensitivity of the superconducting properties would be
dramatically reduced if the sublattice distortion could be prevented.

A more physically applicable analysis is to evaluate the effect of strain on bcc niobium.
Because bcc niobium does not have the characteristic niobium chains that A15 Nb3Sn has,
sublattice distortion cannot occur. If the sublattice distortion is the main cause of the large
strain sensitivity in the electron density of states, then it stands to reason that the strain
sensitivity of the electron density of states is dramatically less than that of A15 Nb-Sn.
Indeed, the calculated results indicate that strain only weakly affects N(EF) in bcc niobium
(figure 5.19). Note that the mean free paths at which the calculations are performed differ
between A15 Nb3Sn and bcc Nb. This is done for two reasons. Firstly, the Fermi velocity
of niobium is nearly three times higher in the case of bcc niobium than in A15 Nb3Sn, so
that the mean scattering time is nearly identical for the two calculations. Secondly, the mean
free paths at which these calculations were performed are representative for measurements
on these two sample types, so that calculated results and experimental observations can
be compared. Note that in the preferentially cubic regime, the effect of strain on N(EF)
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Figure 5.20: Calculated degree of sublattice distortion as a function of longitudinal (100)
strain at lmfp = 2.8 nm in Nb3Sn and Nb3Al, also see section 5.3.1.

increases with increasing lmfp, which means that the different degree of strain sensitivity is
not due to a different lmfp.

In addition to Nb3Sn and bcc niobium, calculations on Nb3Al and bcc NbTi are performed.
As with Nb3Sn, it is found that the application of strain causes sublattice distortion in Nb3Al.
However, the effect is less pronounced in comparison to Nb3Sn at lmfp = 2.8 nm, as is
shown in figure 5.20. Moreover, the effect of strain on the electronic density of states is less
pronounced in comparison to Nb3Sn (figure 5.19). At εip,long = −1.5% and lmfp = 2.8 nm,
N(EF) is reduced by 8% in the case of Nb3Al, but 18% in the case of Nb3Sn, in comparison to
εip,long = 0%. As the strain sensitivity of N(EF) is the main determinant of strain sensitivity of
the superconducting properties of Nb3Sn, this implies that the superconducting properties of
Nb3Al are less strain sensitivity that Nb3Sn, which is consistent with experimental evidence
by Takeuchi et al. [204, 205].

The effect of strain on bcc NbTi is very similar to the effect of strain of bcc Nb: sublattice
distortion does not occur as a result of strain, because neither material has sublattices, i.e.
the distinctive niobium chains on the faces of the A15 unit cell (figure 5.3). In both cases,
the application of strain only weakly affects N(EF): in the case of bcc Nb at lmfp = 6.5 nm,
N(EF) is 1.7% lower at εip,long = −1.5% in comparison to εip,long = 0%, while it is 0.2%
higher in the case of NbTi.

In summary, it is found that sublattice distortion is the cause of the strongly strain dependent
N(EF). Suppression of sublattice distortion dramatically reduces the strain sensitivity of the
electron density of states. Moreover, the results indicate the degree by which strain affects
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Figure 5.21: Calculated normalized normal state resistivity as a function of εip,long.

the electronic properties of A15 Nb3Sn and Nb3Al is large in comparison to bcc Nb and
NbTi, which can be ascribed to the absence of sublattice distortion in bcc Nb and NbTi.

5.4.4 Effect of sublattice distortion on the normal state resistivity
The calculated results indicate that the normal state resistivity, like the strain dependent
superconducting properties, is affected by strain (figure 5.9).

As shown in figure 5.21, the suppression of sublattice distortion (i.e. δ ≡ 0) results in a
dramatic reduction in the strain sensitivity of the normal state resistivity. Furthermore, it is
shown that the magnitude of the strain sensitivity of ρn of bcc Nb is even smaller than both
Nb3Sn cases, and that the anisotropy of the normal state resistivity is close to negligible, a
result that is consistent with experimental observations (2.20). A more detailed comparison
is presented in the next section.

5.4.5 Conclusion
The contribution of strain induced changes in the electronic and vibrational properties to
the strain sensitivity of the normal state resistivity and the superconducting properties is
discussed.
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It is argued that any experimental observation of strain sensitivity in the normal state resis-
tivity is almost entirely a result of changes in the electronic properties, because the residual
resistivity dominates the low temperature resistivity in the normal state resistivity regime in
which the model is applicable.

Moreover, it is argued that both changes in the electronic and the vibrational properties con-
tribute to strain sensitivity in the superconducting properties, but that in slightly disordered
Nb3Sn, strain sensitivity is mainly a result of changes in the electronic properties.

A number of investigations reported in literature are discussed. While a number of investi-
gations are consistent with the conclusions that are presented here, other investigations at-
tribute the strain sensitivity of the superconducting properties entirely to the effect of strain
on the vibrational properties of the crystal, after assuming that strain does not affect the
electronic properties. The experimental observation that the normal state resistivity changes
as a function of strain (figure 2.19) invalidates this assumption, as the vibrational properties
of the crystal does not affect the residual resistivity.

The calculations indicate that the changes in the electronic properties are primarily a result
of sublattice distortion. If sublattice distortion is suppressed, then the strain sensitivity of
the electronic properties is dramatically reduced. Moreover, the calculation indicates that
the strain sensitivity of the electron densities of states of bcc Nb and NbTi are only weakly
affected by strain, which implies that strain affects the superconducting properties to a much
smaller degree than in A15 Nb3Sn. The calculation show that the strain sensitivity of Nb3Al,
another A15 material, is significantly larger than bcc Nb and NbTi, but smaller than Nb3Sn,
which is consistent with experimental evidence. The strain sensitivity of the normal state
resistivities of Nb3Sn and Nb is calculated, and the result indicates that unlike Nb3Sn, the
strain sensitivity of the normal state resistivity of Nb is close to negligible.

5.5 Comparison of calculated and experimentally observed
strain sensitivity of A15 Nb-Sn and bcc Nb

5.5.1 Introduction
In section 5.4, the relation between sublattice distortion and the superconducting and normal
state properties was discussed. Calculations were performed in the regime where the crystal
is preferentially cubic, i.e. where the normal state resistivity exceeds 27 µΩcm.

A very important result is that application of strain on A15 Nb-Sn causes displacement
of the niobium ions within the crystal, which is referred to as sublattice distortion. This
phenomenon is identical to the sublattice distortion resulting from the martensitic transfor-
mation. The analyses, which apply to the preferentially cubic regime, show the following:

• Due to sublattice distortion in A15 Nb-Sn, the normal state resistivity at 0 K is affected
by strain in an anisotropic manner. Conversely, in bcc Nb where sublattice distortion
does not occur, the calculations indicate that the change in normal state resistivity is
close to negligible.

• The effect of strain on the normal state resistivity at 0 K of A15 Nb-Sn is disorder
dependent: at a higher normal state resistivity, both the magnitude of the strain sensi-
tivity and the degree of anisotropy are lower.
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• Like the normal state resistivity, the strain sensitivity of the superconducting proper-
ties Tc and µ0Hc2(0) of Nb-Sn is a direct result of sublattice distortion. Therefore,
in bcc niobium where sublattice distortion does not occur, the magnitude of the strain
sensitivity of the superconducting properties is much lower in comparison to A15
Nb-Sn.

• The degree of strain sensitivity of the superconducting properties of A15 Nb-Sn is
related to the degree of disorder: in samples with more disorder and thus a higher
normal state resistivity, the strain sensitivity of the superconducting properties is less
severe.

• The strain sensitivity of the superconducting properties is larger when strain is applied
along the (100) direction in comparison to the (110) direction.

As presented in sections 2.4.6 and 2.4.9, the superconducting properties and the normal state
resistivity of Nb-Sn and Nb thin films were determined, so that the accuracy of the calcula-
tion can be validated with experimental data. In addition, measurements of commercial high
Jc Nb-Sn conductors are included.

5.5.2 Normal state resistivity of Nb-Sn and Nb thin films
It was experimentally (section 2.4.6) and computationally (section 5.3.4) demonstrated that
strain affects the normal state resistivity in an anisotropic manner. Here, a comparison be-
tween the experimental and computational results is given.

ρn(ε) curves are generated by finding the optimal value of lmfp at which the calculated
normal state resistivity matches the measured normal state resistivity at 0%. In other words,
a single free parameter lmfp is used per unique sample that determines both the magnitude
and the strain dependence of the normal state resistivity. The experimental observations
indicate that the strain state of the Nb-Sn is 0.07±0.04% after cool down (subsection 2.4.2),
and in the comparison between the calculated results and the experimental observations, this
slight offset is added to the experimental curve.

Figures 5.22 and 5.23 show the measured and calculated normal state resistivities in the in-
plane longitudinal and transverse directions at various normal state resistivities between 32
and 92 µΩcm. Consistent with the calculated result, the experimental observations indicate
that the degree of strain sensitivity of the normal state resistivity in the experimental strain
range decreases with increasing normal state resistivity within the experimentally investi-
gated strain regime. Of particular interest is figure 5.23, because it validates the result that
the normal state resistivity of non-hydrostatically strained Nb-Sn is anisotropic: the applica-
tion of compressive strain along the in-plane longitudinal direction lowers the normal state
resistivity in the in-plane longitudinal direction and raises the normal state resistivity in the
in-plane transverse direction.

The largest deviation between the calculated and measured normal state resistivities is ob-
served at ρn = 33 µΩcm. This deviation is likely due to the slightly different composition
of this particular sample. While all other samples only contain Nb-Sn in which the cu-
bic phase is stable, this particular sample also contains a small fraction of preferentially
tetragonal Nb3Sn, as is evidenced by the onset of superconducting behavior at 17.7 K. As
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Figure 5.22: Comparison of experimentally observed and calculated normal state resistiv-
ities as a function of applied strain along the longitudinal direction, at ρn = 33 (top) and
50 µΩcm (bottom). In the calculations, both (100) and (110) strain are considered.

the model only accounts for Nb-Sn in which the cubic phase is stable, the presence of this
small deviation is not surprising.
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Figure 5.23: Comparison of experimentally observed and calculated normal state resis-
tivities as a function of applied strain along the in-plane longitudinal (top) and transverse
(bottom) directions, at ρn = 74 (top) and 91 µΩcm (bottom). Both (100) and (110) strain
are considered in the calculations.
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Figure 5.24: Calculated and measured normal state resistivities of bcc Nb as a function of
in-plane longitudinal strain.

Figure 5.24 shows the calculated and measured normal state resistivities of bcc Nb. It should
be noted that the calculation is a somewhat poor approximation of the Nb thin film, as the
calculations assume that strain is applied along the (100) direction of the crystal, while the
in-plane orientation of the bcc niobium thin film is strictly speaking unknown. Moreover,
the dominant (110) out-of-plane crystal orientation indicates that other in-plane orientations
are present in this film. The effect of (100) strain was calculated as this allows for a clear
comparison with Nb3Sn (figure 5.21). Even though this calculation is less representative for
the bcc niobium thin film than it is for the Nb3Sn thin films, the calculation result is correct:
the application of strain on the longitudinal and transverse normal state resistivities is close
to negligible.

Figure 5.25 provides an overview of the experimental data and the calculated results of the
normal state resistivity. As discussed in section 2.4.6, the average strain dependence of ρn
was determined at various temperatures and from this the average slope ρ−1

n δρn/δεip,long

and the extrapolated ρ
−1
0 δρ0/δεip,long were determined. ρn(ε) was also calculated within a

strain range of εip,long = −0.25 to 0.25% and the slope was extracted. This strain range is
representative of the experimentally observed strain range, after accounting for an additional
small thermal pre-strain term after cool down (section 2.4.2).

The calculated slope of A15 Nb-Sn was determined over a wide resistivity range, for two dif-
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Figure 5.25: Calculated and measured ρ−1
n δρn/δεip,long as a function of ρn of A15 Nb-Sn

and bcc Nb, where ρn is measured and calculated parallel (‘long’) and perpendicular (‘tr’)
to the longitudinal strain direction. The measurements are indicated with the open and grey
symbols, while the calculated results are indicated with the lines and the black symbols.

ferent crystal orientations and for the in-plane longitudinal and transverse directions, leading
to four distinct lines. In the case of bcc niobium, however, only one crystal orientation was
determined in a narrow resistivity range close to 6 µΩcm and the degree of strain sensitivity
of the normal state resistivity in the longitudinal and transverse directions overlaps, so that
the calculated result is a single point rather than a line in this case.

It is evident from figure 5.25 that the consistency between the calculated and measured strain
dependence of the normal state resistivity of A15 Nb-Sn and bcc Nb is very good. This is
a confirmation that the understanding of the underlying causes is correct: the application of
strain strongly affects the electronic properties of A15 Nb-Sn and by extension the normal
state resistivity, and only weakly affects the electronic properties and normal state resistivity
of bcc niobium.

5.5.3 Superconducting properties of high-Jc Nb3Sn conductors
A particular problem with the Nb-Sn thin films which were deposited on the R-plane sap-
phire substrate is that the accessible strain range is limited by the strain tolerance of the

5. Computational Investigation and Experimental Observation of Strain Sensitivity 159



lmfp = 2.85 nm

Average of (100), (110)

(110) strain

PIT
VAC
EM-LMI
FUR
OST
OKSC
OSCI
RRP

(100) strain

N
or

m
al

iz
ed

 u
pp

er
 c

rit
ic

al
 fi

el
d 

μ 0
H

c2
(0

) [
T]

0.4

0.5

0.6

0.7

0.8

0.9

1

In-plane longitudinal strain, εip,long [%]
−1.5 −1 −0.5 0 0.5

Figure 5.26: Normalized µ0Hc2(0) as a function of strain. The experimental measurements
are after Lu et al. [90, 209].

substrate. This means that while this research was done partly for better understanding the
strain behavior of Nb3Sn conductors, the accessible strain range of the thin films is signifi-
cantly smaller than that used in experiments on the Nb3Sn wires.

An issue with high-Jc conductors is that a thorough understanding of the mechanical prop-
erties is complicated by the geometrical and compositional inhomogeneity. The conductors
comprise Nb-Sn with various tin concentrations as well as voids, a copper and/or copper
bronze matrix, and additional metals such as pure niobium, tantalum and titanium. Finally,
the strands are twisted as well.

To understand the strain state of Nb3Sn wires in cryogenic condition, a low temperature
XRD investigation was performed by Muzzi et al. that allowed for the determination of the
local longitudinal and transverse strains as a function of macroscopically applied tension.
Two wire types were investigated: a high-Jc RRP internal-tin-type Nb3Sn strand (OST-RRP,
strand billet #8712) and an internal-tin strand (OST-I #7567). Both the longitudinal and
transverse strains were determined by evaluating the lattice parameter as a function of ap-
plied strain. It was demonstrated that within the elastic regime, the externally applied strain
is transferred to the local microstructure in a 1-to-1 ratio between the local longitudinal
strain and the externally applied strain, while the ratio between the local transverse strain
and the externally applied strain was shown to be 0.38. This observation implies that the
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Figure 5.27: Calculated µ0Hc2(εip,long) as a function of calculated Tc(εip,long). The data
points are connected with the power law approximation.

(shallow) twist pitch of the filaments does not appreciable influence the strain state of the
Nb3Sn. Some thermal pre-strain was observed, but it was also shown that when some strain
was applied to counteract the thermal pre-compression, the crystal state was cubic. More-
over, in this cubic strain state, the longitudinal and transverse lattice parameters of the two
investigated un-jacketed wires are equal to 0.5277 and 0.5280 nm, very close to the strain
free lattice parameter of 0.5280 nm as observed by Mailfert et al. above the martensitic
transformation temperature of binary Nb3Sn, which implies that the degree of hydrostatic
strain is very small.

The strands investigated by Muzzi et al. [58] comprised a substantial amount of (100)
oriented Nb3Sn, but also other orientations such as (210), (211), (320), and (321) along
the length of the wire. In contrast, it was shown by Scheuerlein et al. [206] that the grain
orientation along the length of a powder-in-tube (PIT) conductor (B215) is preferentially
(110) oriented. More recently, an investigation by Scheuerlein et al. [207] once again
showed that the grain structures of two OST-RRP (billets #7419 and #11976) wires is mainly
(100) aligned along the length of the wire, while the grain structure of a PIT wire (B215) is
mainly (110) aligned.

In an analysis of the Nb-Sn composition spread in an SMI-PIT wire by Godeke [33], see
figure 1.2, it was shown that the dominant composition in the fine-grain Nb3Sn is between
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23 and 24 at.% Sn. Similar work was published elsewhere by Lee et al. [208], which showed
that the average tin content of the Nb-Sn of two RRP strands (RRP6445-2 and RRP6555)
and a Modified Jelly Roll (MJR) strand (Ore110) after heat treatment is 24.0, 23.3 and 23.7
at.% Sn, respectively.

An extensive characterization of various Nb3Sn conductors was performed which included
measurements across a wide temperature range (2.35 K ≤ T ≤ 14 K), magnetic field range
(up to 28 T), and strain range (-1.6 to 0.45% strain) by Lu et al. [90, 209] and Taylor et
al. [84]. The measurements were performed on a Walters spring made of Ti-6Al-4V, the
same material as the sample holder on which the Nb-Sn thin films were measured. While
the investigation by Muzzi et al. [58] showed a strong indication that the longitudinal strain
is applied to the microstructure in a 1-to-1 ratio, it is not fully obvious that the transverse
strain from the sample holder is transferred to the microstructure as well. In particular, the
copper in the strands behaves plastically, which could relax the transverse stress state of the
Nb3Sn. However, the Poisson’s ratio of the Nb3Sn was determined as 0.38 [58], fairly close
to the Poisson’s ratio of the sample holder which of 0.342 [79], which means that even if
the transverse strain is not fully transferred to the Nb3Sn, the Nb3Sn naturally assumes a
transverse strain that is very close to the externally applied transverse strain.

In a recent publication on the parameterization of 112 different Nb3Sn wires by Godeke et al.
[210], it was determined that the typical Tc and µ0Hc2(0) of Nb3Sn conductors is 16.7 K and
28.5 T respectively. As model input, the mean free path lmfp is set to 2.85 nm, resulting in a
critical temperature of 16.7 K and an upper critical field of 28.1 T. The calculated results also
indicate that the normal state resistivity at this particular mean free path is 31.4 µΩcm. The
equivalent tin concentration in binary Nb-Sn is 23.75±0.25 at.% Sn according to Godeke et
al. [41], where an uncertainty of 5 µΩcm is assumed in the normal state resistivity.

The strain sensitivity of Tc and µ0Hc2(0) in the case of (100) and (110) strain is calculated
using no additional free parameter besides lmfp and compared to the experimentally observed
strain dependence in µ0Hc2(0) of Nb3Sn wires [90, 209] (figure 5.26). In the case of PIT
strands, a parameterization was published by Lu et al. [209] in which µ0Hc2(0) is deter-
mined through extrapolation from lower magnetic field data, in contrast with the high field
measurements of various other strands by Lu et al. [90], which is why the strain dependence
of µ0Hc2(0) of the PIT strand is indicated with dashed lines. It is clear that the magnitude
of the calculated strain sensitivity is consistent with the experimentally observed strain sen-
sitivity in µ0Hc2(0), and that various features in the calculated results are also present in the
experimental observations, such as the parabolic behavior near εip,long = 0% and the upturn
at high compressive strain.

The calculation indicates a much larger strain sensitivity from (100) strain in comparison to
(110) strain. Indeed, the PIT strands, which are known to be predominantly (110) oriented,
are the least strain sensitive of all the wires, but the difference is subtle. No clear experimen-
tal evidence is found that the strain sensitivity of (100) oriented Nb3Sn is significantly larger
than (110) oriented Nb3Sn, but the larger stress sensitivity of the (100) strain orientation
was demonstrated by Pulver [211] in V3Si, another A15 superconductor: in two samples
with nearly the same Tc, the sensitivity of Tc to uni-axially applied pressure in the (100)
oriented V3Si sample was roughly twice as large as the (110) oriented sample. The much
smaller variation in strain sensitivity in the Nb3Sn wires (figure 5.26) could be related to the
fact that none of the wires contain a single crystal orientation (although the prevalence of
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particular crystal orientations varies between the wires), so that the strain sensitivity of the
critical current density depends of details such as the distribution of the crystals with vari-
ous alignment in the cross-section of the filaments, the homogeneity of the crystal alignment
along the length of the wire, etcetera. Further investigation of this topic would be beneficial.

The relative degree of strain sensitivity in Tc and µ0Hc2(0) is typically described using a
power law, with:

µ0Hc2 (0,ε) ∝ Tc(ε)
ω , (5.27)

where w is a free parameter with a value that is between 2 and 3 (figure 3.11) depending on
the degree of disorder. This description is applied to the calculated Tc and µ0Hc2(0). Indeed,
equation 5.27 is highly consistent with the calculated results, and the optimal value of w is
determined to be equal to 2.24 (figure 5.27). This value is consistent with experimental
observations in section 2.4.9, where it was shown that in a binary Nb-Sn thin film with a
Tc of 16.4 K, the optimal value of w is 2.3±0.3. It was also shown by Taylor et al. [84]
that the optimal value of w as determined from resistivity measurements of various Nb3Sn
conductors is 1.9±0.3 and 2.5±0.3 for a Bronze route and a modified jelly-roll (MJR) wire,
respectively, while 2.2±0.1, 2.6±0.1, and 2.0±0.5 were found through scaling of Jc from a
Bronze route, MJR and an Internal-tin wire respectively. According to Lu et al. [90], the
optimal value for a group of 7 different Nb3Sn wires is w = 2.2. However, these results
are not consistent with analysis by Ekin [89], who argued that the optimal value of w is
3.0±0.1. It is clear from figure 3.11 that both Lu and Ekin might be right, but their results
hold in different regimes: the optimal value of w is below 2.5 for Tc < 17 K, i.e. the regime
where the crystal structure is preferentially cubic and close to 3 for Tc > 17.5 K, i.e. the
regime where the crystal structure is preferentially tetragonal.

5.5.4 Superconducting properties of A15 Nb-Sn and bcc Nb thin films
The critical temperature and upper critical field of various samples were experimentally
determined as a function of applied strain through resistivity measurements (section 2.4.9)
and critical current density measurements (section 3.7.3). The samples include Nb-Sn bulk
samples and thin films, as well as bcc Nb thin films.

A key result of the model calculations presented in this chapter is that the strain sensitivity
of the superconducting properties of Nb-Sn is a direct result of the sublattice distortion that
occurs in the material when it is strained. As this phenomenon does not occur in bcc Nb,
it is expected that the strain sensitivity of the superconducting properties of A15 Nb-Sn is
significantly higher than that of bcc Nb. The experimental observations indeed confirm this
hypothesis. Figure 5.28 shows a comparison between the normalized critical temperature
and upper critical field of a bcc Nb thin film and an A15 Nb-Sn thin film. The application of
0.3% compressive uni-axial strain increases Tc and µ0Hc2(0) by less than 0.5% in the case
of bcc niobium, and decreases Tc and µ0Hc2(0) by 2.5% and 6.7% in the case of Nb3Sn
respectively.

Figure 5.29 shows a comparison of the calculated and experimentally observed Tc and
µ0Hc2(0) as a function of strain, where the average of (100) and (110) strain is taken.
The strain dependence of Tc and µ0Hc2(0) was calculated at various lmfp, while the mea-
surements were performed on binary Nb-Sn with various composition. It is clear that the
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Figure 5.28: Experimentally observed strain sensitivity in Tc and µ0Hc2(0) of a bcc Nb
thin film (dep 2-12-13) and a Nb-Sn thin film (dep 3-17-11, strip 3). At εa = 0%, the Tc
and µ0Hc2(0) of the Nb thin film are 9.27 K and 2.6 T respectively. The maximum Tc and
µ0Hc2(0) of the Nb-Sn thin film are 15.8 K and 27.9 T. The grey symbols represent µ0Hc2(0)
measurements and the open symbols represent Tc measurements. The lines are guides to the
eye.

measurement on deposition 3-17-11, strip 3 is quantitatively consistent with the calculated
results, both in terms of Tc and µ0Hc2(0) . Furthermore, consistent with the calculation, the
experimentally observed strain sensitivity decreases with decreasing Tc and µ0Hc2(0) val-
ues. However, the experimentally observed strain sensitivity of the other depositions with
lower critical temperatures and upper critical fields is of larger magnitude than the calculated
results.

The deviatoric strain description, used for parameterizing experimental data (section 2.4.9),
is once again used to parameterize the calculated results, and the deviatoric strain model
parameters from experimental data and calculation results are then compared to each an-
other (figure 5.30). It is clear that while the magnitude of the calculated strain sensitivity
is consistent with experimental observations near stoichiometry (at a Tc of about 17 K and
a µ0Hc2(0) of about 28 T), the calculated strain sensitivities of Tc and µ0Hc2 are of lower
magnitude in the off-stoichiometric limit (at a Tc of about 12 K and a µ0Hc2(0) of about 16
T). This discrepancy will be discussed further in section 5.6.
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Figure 5.29: Tc (top) and µ0Hc2(0) (bottom) as a function of strain. Comparison of experi-
mentally determined (open markers) and calculated (black markers) results.

The model was used to calculate the properties of the preferentially cubic regime, but not the
preferentially tetragonal regime. A particular problem with preferentially tetragonal Nb3Sn
is that the manner in which externally applied strain is transferred to the microstructure is
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Figure 5.30: Strain sensitivity parameters Ca,T c as a function of Tc (top) and Ca,Hc2 as a
function of µ0Hc2(0) (bottom), determined from deviatoric strain parameterization of ex-
perimental and calculated results. The dotted line indicates the onset of the tetragonal
transformation.
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Substrate
Preferentially tetragonal Nb3Sn

εa < 0%

Preferentially cubic Nb3Sn

→ realignment affects ρn,ip

→ ρc, ρa, Tc unaffected

→ Tc(εa < 0%) < Tc(0%)
→ ρn,ip(εa < 0%) < ρn,ip(0%) ρn,ip(εa)

Strain → realignment c-axis
Preferentially tetragonal Nb3Sn:

ρn,ip = ρc

ρa

Tc = 18 K

ρc

Preferentially cubic Nb3Sn:

Sideview

ρn,ip = ρa

Tc = 18 K

Strain → crystal distortion

εa = 0%

Out-of-plane

In-plane

ρn,ip(0%)

Tc(εa) = 15 KTc(0%) = 16 K

Figure 5.31: Schematic representation of the effect of strain on preferentially cubic and
preferentially tetragonal Nb3Sn.

very different from preferentially cubic Nb3Sn. To paraphrase Testardi [201]: ‘An applied
stress may first cause (in part) domain rotation which can lead to ‘macroscopic’ sample
strains but little or no microscopic strains’.

The martensitic transformation results in a local change in strain state, while the macroscopic
strain state remains fixed, because the Nb3Sn is fixed to a substrate. The result of these
boundary conditions is a tweed pattern: the Nb3Sn is organized in regions in which the
(shorter) c-axis of the tetragonally distorted Nb3Sn is aligned along different directions.
Thus, a tweed pattern is formed, a phenomenon that is discussed by Kartha et al. [145].

Testardi’s insight is that the manner in which strain affects preferentially cubic and tetragonal
Nb3Sn is very different: applying macroscopic strain to preferentially cubic Nb3Sn results
in a distortion of the crystal which in turn affects the microscopic properties of the material,
such as Tc (figure 5.29, top), µ0Hc2(0) (figure 5.29, bottom), and ρn,ip,long (figures 5.22 and
5.23). However, applying macroscopic strain to a preferentially tetragonal Nb3Sn can result
in a change in the tweed pattern rather than a distortion of the crystal. The implications
of this can be illustrated with a simple two-dimensional model (figure 5.31). Applying in-
plane compressive strain to a region of preferentially tetragonal Nb3Sn in which the c-axis
is aligned out-of-plane results in a reorientation of the c-axis from out-of-plane to in-plane
(figure 5.31, bottom).
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In this manner, the externally applied strain results in a realignment rather than a deforma-
tion of the Nb3Sn microstructure. As the microstructure is not deformed, the microscopic
properties (Tc, µ0Hc2(0), ρn along the a-axis and the c-axis) are not affected. However, in a
resistivity measurement the current which initially flowed along the a-axis now flows along
the c-axis. In a tetragonal crystal the resistivity along the c-axis is lower than along the
a-axis (figure 5.9, where the c-axis corresponds to the longitudinal direction, and the a-axis
corresponds to the transverse direction). Thus, the application of strain results in a reduction
in the normal state resistivity measured along the in-plane direction due to the realignment
of the c-axis in the tetragonally distorted Nb3Sn (figure 5.31), but not a reduction in Tc and
µ0Hc2(0).

This is consistent with experimental observations: the change in normal state resistivity of
low-resistivity (i.e. ρn < 27 µΩcm) and thus preferentially tetragonal (section 4.4.5) Nb3Sn
is large (figure 5.9) relative to the preferentially cubic Nb-Sn, while the strain sensitivity of
Tc and µ0Hc2(0) of the preferentially tetragonal Nb3Sn is small relative to the preferentially
cubic Nb3Sn (figure 5.30).

5.6 Discussion
A discrepancy between the calculated results and the experimental observations is the mag-
nitude of strain sensitivity in Tc and µ0Hc2(0) in strongly disordered Nb3Sn compared to
the larger experimentally observed strain sensitivity in Tc and µ0Hc2(0) in off-stoichiometric
Nb-Sn. There are four possible explanations for the discrepancy:

5.6.1 Disorder versus off-stoichiometry
The most likely explanation is that excess niobium affects the microscopic properties of Nb-
Sn in a manner that is not captured by the model, and results in the observed discrepancy.
This explanation is deemed the most likely because the evaluation of supercell configura-
tions (see 4.3.3) indicates that excess niobium ions not only lower N(EF) by acting as scat-
tering centers, but also affect the band structure directly, resulting in an additional reduction
in N(EF).

As both Tc and µ0Hc2(0) are strongly dependent on N(EF), one can hypothesize that the
presence of excess niobium results in an additional reduction in Tc and µ0Hc2(0), with-
out reducing the strain sensitivity in Tc and µ0Hc2(0), which would explain the observed
discrepancy. This would further imply that while disorder (as measured by ρn) uniquely
determines Tc and µ0Hc2(0), regardless of whether the material is stoichiometric or off-
stoichiometric, disorder does not uniquely determine the degree of strain sensitivity in Tc
and µ0Hc2(0).

In principle, the model could be improved by evaluating the effect of strain on supercells
(containing excess niobium) rather than single unit cells, and the approach that is presented
in this chapter could be used as a recipe to do exactly that. However, the computational
cost of this approach would far exceed the computational cost of a single unit cell approach,
which is why the calculation of the effects of strain on supercells was not attempted.

Conversely, one could evaluate the effect of strain on stoichiometric Nb3Sn in which disorder
is introduced. There are a number of methods by which this can be done. For instance,
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low temperature depositions of stoichiometric Nb3Sn can be performed to achieve anti-site
disorder (see Orlando et al. [42]), or stoichiometric Nb3Sn thin films could be irradiated
(see Ghosh et al. [146]). If the discrepancy is a result of the presence of excess niobium,
then the strain sensitivity of these disordered Nb3Sn samples would be much closer to the
calculated result.

5.6.2 Inaccuracy in the α2(ω) expression
A second option is that the empirical description that relates α2F to the phonon density of
states breaks down in the off-stoichiometric limit. This is also a verifiable hypothesis. It
is in principle possible to calculate α2F entirely from first principles, although this comes
with a number of limitations (section 4.6). Alternatively, one could attempt to strain an
off-stoichiometric tunnel junction and directly determine the strain dependent α2F using a
method that was previously used by Rudman et al. [168]. As part of this research, such an
investigation was attempted by Dollekamp [192]. However, the fabricated tunnel junctions
were of insufficient quality to determine the strain dependent Eliashberg spectrum.

One might wonder if the three global constants µ∗, α2
IM,eff, and ω0 should truly be consid-

ered independent of strain. However, there are compelling reasons for why this approach
is justified. First of all, the composition dependence of µ∗ was investigated by Rudman et
al. [168] (figure 4.15) and it was established that within the experimental uncertainty µ∗

is constant over the entire investigated composition range. Low-resistivity Nb3Sn is prefer-
entially tetragonal while high-resistivity Nb3Sn is preferentially cubic (figure 4.5). In spite
of this crystal distortion, µ∗ is found to be the same in the preferentially cubic and tetrago-
nal regimes within the experimental uncertainty (figure 4.15), which implies that the strain
sensitivity of µ∗ is minimal. Moreover, the electron-phonon coupling constant λ is signifi-
cantly larger than µ∗, which indicates that the influence of any strain dependence in µ∗ on
the superconducting properties is marginal.

Parameter ω0 is introduced to take into account the relatively large contribution of the inter-
mediate frequency range to the superconducting properties relative to the low and high fre-
quency range in the phonon density of states (section 4.6.2, also see Schweiss et al. [158]).
As strain affects the phonon density of states, it is not implausible that might also be ω0
affected. However, the strain sensitivity of slightly off-stoichiometric Nb3Sn (the most tech-
nologically relevant composition) is predominantly related to the strain dependence of the
electronic properties (section 5.4.2), which implies that the contribution of any strain depen-
dence in ω0 to the overall strain sensitivity is minimal.

Finally, the parameter α2
IM,eff is related to the effective ion mass M and the mean squared

electronic matrix element
〈
I2
〉
. It is demonstrated in chapter 4 that treating this parameter

as a disorder-independent constant results in a calculation result that is closely consistent
with experimental observations in terms of the disorder dependence of λ , Tc and µ0Hc2(0)
(figures 4.14, 4.17, and 4.19), even though both the electronic and the vibrational properties
change as a function of disorder. As α2

IM,eff is not affected by the changes in the electronic
and vibrational properties due to the introduction of disorder, it seems reasonable to assume
that it is also not affected by changes in these properties due to strain. A second argument
is that, especially in slightly off-stoichiometric Nb3Sn, the degree of strain sensitivity in Tc
and µ0Hc2(0) is qualitatively consistent and with experimental results and of the right order
of magnitude, which implies that the relevant physics is captured when α2

IM,eff is taken as a
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global constant.

5.6.3 Mechanical inhomogeneity due to compositional inhomogeneity
A third option is that strain inhomogeneity enhances the observed strain sensitivity in the
samples: resistivity measurements probe the fraction with the highest Tc and µ0Hc2 in the
sample, rather than the average of the sample. If the mechanical properties vary between
compositions, and the resistivity measurement only probes the properties of a particular
composition, then it is possible that the strain state of the probed composition is enhanced,
leading to a larger observed strain sensitivity. This problem would mainly affect the off-
stoichiometric samples since the nearly-stoichiometric samples are more homogeneous (sec-
tion 2.4.7). However, this argument would also imply that the degree of strain sensitivity
varies with the degree of inhomogeneity, which is not observed in the experiment. In spite
of being more inhomogeneous (figure 2.21, top), the observed strain sensitivity of deposition
3-17-11 is closely consistent with that of depositions 8-22-11 and 9-14-10 (figure 2.24, top),
which implies that the observed discrepancy in the calculated and experimentally observed
strain sensitivity cannot be attributed to mechanical inhomogeneity.

5.6.4 Averaging of the contributions of (100) and (110) strain
A fourth explanation is that the discrepancy is related to an averaging issue: it is assumed
that the strain sensitivity of the Nb-Sn thin films is the average of the calculated results
of (100) and (110) strain. If (100) dominates the strain dependence of Tc and µ0Hc2(0),
then the observed strain sensitivity is enhanced relative to the average of (100) and (110)
strain. Even if (100) strain entirely dominates the strain dependence, this still would not
fully explain the difference between the calculated results and the experimental observations
(figure 5.30). Therefore, this argument does not explain the observed discrepancy.

5.7 Conclusion
The model presented and validated in chapter 4 was used to determine the effect of strain
and disorder on the normal state resistivity ρn, the critical temperature Tc, and the upper
critical field µ0Hc2(0) of preferentially cubic Nb3Sn at 0 K.

Using the strain boundary conditions of the U-spring test rig, and the crystal alignment of
the Nb-Sn thin films as input for the model, various structural, electronic, and vibrational
properties, as well as Tc, µ0Hc2(0), and the direction dependent ρn were calculated as a
function of applied strain and disorder. The calculations indicate that, as in the phenomenon
that occurs during the martensitic transformation, the application of strain results in a rear-
rangement of the niobium ions inside the crystal, which is known as sublattice distortion.
An implication of this effect is that strain affects the normal state resistivity in an anisotropic
manner.

Sublattice distortion affects both the electronic and the vibrational properties of the crystal,
in a manner that is detrimental to superconductivity. In slightly disordered Nb3Sn with a
mean free path of 2.8 nm, approximately 80% of the strain sensitivity of Tc and µ0Hc2(0)
can be explained in terms of changes in the electronic properties of the crystal, while the
remaining part is caused by changes in the vibrational properties of the crystal. In highly
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disordered Nb3Sn the contribution to strain sensitivity from the electronic and vibrational
properties is about equal.

In addition to Nb3Sn, the strain dependent properties of Nb3Al, Nb, and NbTi are investi-
gated in a limited fashion. Bcc Nb and NbTi do not contain sublattices, i.e. the characteristic
chains that are present on the faces of the A15 crystal structure, so sublattice distortion does
not occur. As a result, the electron density of states of bcc Nb and NbTi is only weakly
dependent on strain, which means that ρn, Tc, and µ0Hc2(0) are also only weakly dependent
on strain. The degree of sublattice distortion is calculated to be less pronounced in Nb3Al
in comparison to Nb3Sn, which results in a lower strain sensitivity in N(EF) in comparison
to Nb3Sn, and implies that overall the degree of strain sensitivity of the superconducting
properties of Nb3Al is smaller than in Nb3Sn, a results that is consistent with experimental
observations.

Finally, from the calculations it is found that the degree of strain sensitivity is strongly
dependent on the degree of disorder, which implies that the strain sensitivity of ρn is lower
when ρn is higher, that the strain sensitivity of Tc is lower when Tc is lower, and that the
strain sensitivity of µ0Hc2(0) is lower when µ0Hc2(0) is lower. This in turn is related to the
decreasing amount of sublattice distortion with increasing disorder.

The various calculated results are compared to experimental observations, and a high degree
of consistency is demonstrated.

• Both the calculated result and the experimental observations of ρn indicate that the de-
gree of strain sensitivity in ρn is dependent on the magnitude of ρn and the
angle along which ρn is measured. The calculations and experimental observations
are quantitatively consistent.

• The calculated strain dependencies of Tc and µ0Hc2(0) of slightly disordered Nb3Sn
are compared to the experimentally observed strain dependencies of Nb3Sn wires,
where the degree of disorder (through parameter lmfp) in the calculation is chosen so
that the magnitude of Tc and µ0Hc2(0) matches the properties of Nb3Sn wires. The
calculated strain dependencies of both Tc and µ0Hc2(0) are shown to be quantitatively
consistent with the experimental observations, both for Tc and µ0Hc2(0).

• The calculated strain dependencies of Tc and µ0Hc2(0) of Nb3Sn at various degrees
of disorder are compared to composition dependent strain dependencies of Tc and
µ0Hc2(0) of the Nb-Sn thin films. Consistent with the calculated results, the degree of
strain sensitivity in both Tc and µ0Hc2(0) decreases with decreasing Tc and µ0Hc2(0)
in the preferentially cubic regime. While the degree of strain sensitivity is closely con-
sistent with experimental observations in slightly off-stoichiometric Nb-Sn, the calcu-
lated degree of strain sensitivity is lower than the experimentally observed strain sen-
sitivity when the composition of the Nb-Sn is more off-stoichiometric. The accuracy
of the calculations could be improved by evaluating the strain dependent properties
of off-stoichiometric supercells as opposed to a single unit cell, but the evaluation of
supercells would result in a dramatic increase in the amount computational resources
used.

• As expected and experimentally observed, the ρn, Tc, and µ0Hc2(0) of bcc niobium
are only weakly dependent on strain. This is a strong indication that sublattice distor-

5. Computational Investigation and Experimental Observation of Strain Sensitivity 171



tion, a phenomenon that occurs in the A15 crystal structure but not in the bcc crystal
structure, is the underlying cause of the strain sensitivity in the normal state resistivity
and superconducting properties of Nb3Sn. This statement is validated with additional
investigations of the strain sensitivities of bcc NbTi and A15 Nb3Al.

The microscopic properties of preferentially tetragonal Nb3Sn could not be evaluated due to
tweed modulation which occurs in preferentially tetragonal Nb3Sn (section 4.4.6). Instead, a
simple model is presented to account for tweed modulation. The key insight of this model is
that while the application of strain to preferentially cubic Nb3Sn results in a distortion of the
crystal, the application of strain to preferentially tetragonal Nb3Sn result in a realignment of
tetragonally distorted Nb3Sn. Through this realignment, the degree of crystal deformation
is reduced, which further implies that the degree of strain sensitivity in Tc and µ0Hc2(0) is
reduced.

As the normal state resistivity of non-cubic Nb3Sn is dependent on the angle along which
the normal state resistivity is measured, the application of strain to preferentially tetragonal
Nb3Sn does still affect the measured ρn. Consistent with this model, the observed strain
sensitivity in Tc and µ0Hc2(0) of the various investigated samples peaks at the transition
between preferentially cubic and tetragonal Nb3Sn (i.e. Tc ≈ 17.5 K) and the degree of strain
sensitivity in ρn continuously increases with decreasing ρn, regardless of the preferentially
cubic to preferentially tetragonal transition at ρn = 27.0 ± 1.4 µΩcm.

Commercial wires, which have an average composition of about 23.5 at.% Sn, which cor-
responds to the highest observed strain sensitivity of all possible compositions. As close
to stoichiometric Nb-Sn is required for optimal Jc , there exist two means to mitigate the
strain sensitivity of wires: firstly, by aligning the Nb3Sn crystals in wires such that the (110)
direction is parallel to the load application, and secondly by finding ways to mitigate the
sublattice distortion, perhaps through alloying.
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Chapter 6
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6.1 Introduction
The main subject of this thesis is the effect of strain on the superconducting properties of
the material Nb3Sn. This phenomenon was investigated from an experimental and a com-
putational perspective. The experimental part of the research involves determining how
strain affects the superconducting properties (i.e. the critical temperature Tc, the upper
critical field µ0Hc2(0), and the critical current density Jc) as well as the normal state resistiv-
ity ρn of A15 Nb-Sn and bcc Nb under various experimental conditions. The computational
part involves constructing a model by which the effect of strain and disorder on ρn, Tc, and
µ0Hc2(0) can be derived from ab-initio calculations. The experimental and computational
sections are synergistic: a model is necessary to explain why strain influences the supercon-
ducting properties of Nb3Sn, and validation of the model is achieved through comparison to
experimental observations.

6.2 Experimental observations
6.2.1 Composition and morphology of bulk samples and thin films
The effect of strain on a variety of properties of Nb-Sn samples was determined for both bulk
samples and thin films. The bulk samples were previously fabricated by mixing powders and
reacting them at high pressure and temperature. The thin films were fabricated as part of this
research by simultaneously sputtering niobium and tin onto heated sapphire substrates.

The compositions and morphologies of the bulk samples and thin films were investigated
with a number of techniques, including scanning electron microscopy, scanning transmis-
sion electron microscopy, X-ray energy dispersive spectroscopy, X-ray diffraction, and vari-
able temperature and magnetic field heat capacity measurements. It was concluded that the
binary bulk samples and the ones with titanium and tantalum additions consist of separate
areas of stoichiometric Nb3Sn and excess niobium, while the samples with copper additions
comprise both stoichiometric and off-stoichiometric Nb-Sn. Since the investigation of the
relation between composition and strain sensitivity is of primary importance, the degree of
inhomogeneity in the bulk samples makes them less suitable.

While not perfectly homogeneous in composition, the thin film samples are single-phased
and may be prepared either stoichiometric or off-stoichiometric as desired. An exten-
sive investigation was performed to determine their composition, morphology, and three-
dimensional strain state. The Nb-Sn thin film samples are dense and polycrystalline, with
grains aligned predominantly (100) in the out-of-plane orientation and random in the in-
plane orientation. In addition, a niobium thin film was prepared, in which the grains are
aligned in the (110) out-of-plane direction.

6.2.2 Experimental technique for observing strain sensitivity
An experimental technique was developed enabling the measurement of the normal state
resistivity and various superconducting properties like Tc, µ0Hc2(0), and Jc as a function
of temperature, magnetic field, as well as longitudinal and transverse strain. The so-called
U-spring test rig, a tool previously developed for measuring the critical current of Nb3Sn
wires as function of temperature, magnetic field, and strain was used for this effort.
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6.2.3 Experimental observation of strain sensitivity in resistivity mea-
surements

The experiments indicate that the degree of strain sensitivity strongly depends on the com-
position of the material. The degree of strain sensitivity peaks at a Tc of about 17.5 K and
a µ0Hc2(0) of about 29 T, which corresponds to near-stoichiometric preferentially cubic
Nb3Sn.

It was found that the degree of strain sensitivity in ρn depends on the magnitude of ρn and of
the direction in which ρn is measured. Specifically, under the influence of strain the normal
state resistivity becomes anisotropic and the degree of strain sensitivity is strongly compo-
sition dependent, with higher degrees of strain sensitivity at lower ρn, i.e. at compositions
that are closer to stoichiometry. A variety of possible mechanisms were considered that
might explain the large degree of strain sensitivity of ρn. It was concluded that the effect of
strain on the low temperature resistivity of Nb-Sn is dominated by the effect of strain on the
residual resistivity, i.e. on ρn(0 K).

In contrast to Nb-Sn, the effect of strain on ρn of bcc Nb is isotropic and nearly negligible,
while the effect of strain on Tc and µ0Hc2(0) is weak.

6.2.4 Experimental observation of strain sensitivity in critical current
density measurements

The critical current density Jc of a superconductor determines the performance of supercon-
ducting applications, such as superconducting magnets. The manner in which temperature,
magnetic field, and strain affects Jc is discussed in chapter 3. This chapter mainly focuses
on Nb3Sn, but NbTi is discussed as well.

A review is given of the most commonly used descriptions of the critical current density,
by which similarities and differences are highlighted. It was concluded that the various
descriptions of the critical current density of Nb3Sn are nearly identical. Furthermore, it was
demonstrated that a commonly used critical current density description for Nb-Ti is nearly
identical to the ones for Nb3Sn, with the assumed temperature dependence of µ0Hc2(T )
being the sole difference.

In the critical current density descriptions, the strain sensitivity in Jc is attributed to the effect
of strain on Tc and µ0Hc2(0). To determine the validity of this statement, it is hypothesized
that (1) the strain sensitivity of Tc and µ0Hc2(0) determined from critical current density
measurements and resistivity measurements overlaps, and (2) that the effect of strain on the
critical current density is independent from the direction in which current flows relative to
the strain direction. Both hypotheses were shown to be correct, a strong indication that the
investigation of strain sensitivity of the superconducting properties should focus on Tc and
µ0Hc2(0).

6.3 Computational work
6.3.1 Microscopic origin of Tc and µ0Hc2(0)
Since the strain dependence of Jc is determined solely by the strain dependence of Tc and
µ0Hc2(0), a model is presented in chapter 4 for calculating Tc and µ0Hc2(0) as a function
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of disorder and the results are compared to experimental observations. As the experimen-
tally investigated samples comprise of various compositions which affects both the Tc and
µ0Hc2(0) values and the degree of strain sensitivity in the superconducting properties, any
model that describes the effect of strain should also consider the influence of composition.
However, calculating the effect of off-stoichiometry, i.e. with excess niobium present, in
ab-initio calculations is not practical due to the large computational cost of evaluating off-
stoichiometric supercells.

To get around this issue, the effect of disorder on the properties of stoichiometric Nb3Sn was
evaluated. It was experimentally established that in the absense of strain, Tc and µ0Hc2(0)
are determined by ρn, regardless of whether the Nb-Sn is stoichiometric or off-stoichio-
metric. Disorder is introduced into the ab-initio calculation through an electron-lifetime
broadening approximation and the Eliashberg spectrum was expressed as a function of the
electron and phonon density of states through an empirical approach. The validity of this ap-
proach was confirmed by calculating how disorder affects various experimentally observable
properties, and comparing the calculated results to experimental observations.

• It was demonstrated that consistent with experimental observations, the crystal struc-
ture of low-resistivity Nb3Sn is preferentially tetragonal and the crystal structure of
high-resistivity Nb3Sn is preferentially cubic. The transition between the preferen-
tially cubic and tetragonal regimes was calculated to occur at ρn = 27.0±1.4 µΩcm,
which is consistent with experimental observations.

• The Eliashberg spectrum was calculated at various degrees of disorder, and shown to
be consistent with measured data.

• Tc was correctly calculated as a function of ρn.

• µ0Hc2(0) was calculated as a function of Tc and shown to be consistent with experi-
mental observations as well.

• The calculations indicate that the martensitic transformation reduces µ0Hc2(0) and
thus limits the maximum µ0Hc2(0) of Nb-Sn. While there is some controversy con-
cerning this particular issue, it is argued that the presented result is in fact accurate.

In spite of the high degree of consistency between the calculated results and the experi-
mental observations, the model does come with two caveats. Firstly, supercell calculations,
which were performed on a limited scale, indicate that excess niobium ions not only act as
scattering centers (which is captured by the electron-lifetime broadening approximation) but
also influences the electronic band structure directly, further reducing the electron density
of states at the Fermi energy N(EF). This means that while the consistency between the
calculated and the experimental results is a strong indication that indeed disorder dominates
Tc and µ0Hc2(0), regardless of whether the material is stoichiometric or off-stoichiometric,
it is not clear why this statement is correct. In principle, the answer to this question can
be found by supercell calculations, using the approach presented here as a recipe, but the
computational cost of such an investigation is excessive, and at present unrealistic.

The second caveat is that the model can be used to calculate the microscopic properties of
cubic Nb3Sn, but that the properties of preferentially tetragonal Nb3Sn could not be evalu-
ated: the martensitic transformation results in the formation of a tweed pattern, in which the
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shorter c-axis is oriented in different directions throughout the sample, while in the single
unit cell ab-initio calculations it is assumed that the c-axis is aligned along a single direction
throughout the sample. Since the manner in which tweed modulation affects the microscopic
properties is unclear, the emphasis is placed on calculating the properties of cubic Nb3Sn. In
theory, this phenomenon can be evaluated with a very large supercell, but the computational
cost of such an investigation is excessive, and therefore unfeasible.

6.3.2 Calculation of the effect of strain on the microscopic properties
of Nb3Sn

The model used to calculate Tc and µ0Hc2(0) as a function of disorder in chapter 4 was
expanded for calculating Tc, µ0Hc2(0), and ρn as a function of disorder, strain, and crystal
orientation as presented in chapter 5. Ab-initio calculations are highly suitable for inves-
tigating the effect of strain, because strain can be introduced into simulations by fixing
selected lattice vectors, optimizing the crystal structure, and subsequently calculating the
microscopic properties. This approach was used to evaluate various structural, electronic,
and vibrational properties, as well as the Tc, µ0Hc2(0), and the orientation dependent ρn as
a function of disorder, crystal orientation, and strain.

The calculations indicate that the large degree of strain sensitivity in Nb3Sn is caused by
a rearrangement of the niobium ions under the influence of non-hydrostatic strain, a phe-
nomenon known as sublattice distortion. This phenomenon occurs in A15 materials as
Nb3Sn and Nb3Al, but not in bcc materials like Nb and NbTi, because these materials do not
exhibit the characteristic chains that are present in A15 materials, i.e. the niobium chains in
Nb3Sn and Nb3Al. Due to this difference, the degree of strain sensitivity in ρn and the su-
perconducting properties is much more pronounced in A15 materials than in bcc materials.
In particular, the calculations show that the effect of strain on ρn in Nb3Sn is much larger
than in bcc Nb, and that strain affects ρn of Nb3Sn in an anisotropic manner, i.e. ρn depends
on the angle between the current and the direction in which strain is applied.

In addition, it was found that the degree of strain dependence of the superconducting proper-
ties of Nb3Sn is large relative to bcc Nb. In slightly disordered, preferentially cubic Nb3Sn
the strain sensitivities of Tc and µ0Hc2(0) are mainly the result of strain induced changes in
the electronic properties of the material. Strain induced changes in the vibrational properties
of the material also contribute to the strain sensitivities of the superconducting properties,
but the degree by which this affects Tc and µ0Hc2(0) is relatively weak. This outcome is
consistent with some authors’ findings, but in contrast to various other references reporting
that the strain sensitivities of Tc and µ0Hc2(0) is mostly or entirely due to strain induced
changes in the vibrational properties. However, most of the references are based on the
a-priori assumption that strain does not affect the electronic properties of the material, an
assumption that is inconsistent with the experimental observation and well confirmed fact
that the low temperature normal state resistivity is strongly influenced by strain.

The model is used to determine how the degree of disorder, strain, and the crystal orientation
relative to the strain orientation affects Tc and µ0Hc2(0), as well as the anisotropic ρn.
Beyond three well-established global parameters discussed in chapter 4, no free parameters
are necessary except for the mean free path lmfp which determines the magnitude of ρn, Tc,
and µ0Hc2(0), as well as the degree of strain sensitivity in ρn, Tc, and µ0Hc2(0).
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The calculated results are compared to experimental observations, yielding a high degree of
consistency.

• The calculated orientation dependent ρn is compared to experimental observations
at various degrees of disorder. In quantitative agreement with the calculations, the
experimental data on of Nb-Sn with various compositions indicate that the magnitude
of strain sensitivity in ρn depends on the magnitude of ρn and on whether strain is
applied parallel or perpendicular to the resistivity measurement.

• The model was used to calculate the strain sensitivity of Tc and µ0Hc2(0) of Nb3Sn
wires yielding quantitatively correct results for both of these properties.

• The magnitudes of the strain sensitivity in Tc and µ0Hc2(0) were calculated as a func-
tion of disorder and compared to the measured strain sensitivity of Tc and µ0Hc2(0) in
Nb-Sn with various compositions. The results are consistent in the preferentially cu-
bic regime near the stoichiometric composition. Furthermore, the prediction that the
degree of strain sensitivity decreases with decreasing Tc and µ0Hc2(0) is qualitatively
consistent with experimental observations. However, the value of the calculated strain
sensitivities of Tc and µ0Hc2(0) is low in comparison to the experimentally observed
magnitude in off-stoichiometric Nb-Sn. A likely explanation for this discrepancy is
that the presence of excess niobium is affecting the superconducting properties in a
manner that is not fully captured by the model. In other words, even though disorder,
as measured by ρn, seems to be the main determinant for Tc and µ0Hc2(0) regard-
less of the composition of the sample, the composition influences the degree of strain
sensitivity in a way that is not fully covered in a single unit cell approach.

• Consistent with the calculated result, the degree of strain sensitivity in ρn, Tc, and
µ0Hc2(0) of bcc Nb is weak in comparison to Nb-Sn, which supports the main con-
clusion that sublattice distortion, a phenomenon that does not occur in bcc niobium,
causes the large strain sensitivity in Nb3Sn. In addition, the calculation indicates that
the degree of sublattice distortion and the strain sensitivity of Nb3Al is lower than that
of Nb3Sn, which is consistent with experimental evidence.

Due to the occurrence of tweed modulation in preferentially tetragonal Nb3Sn, the ab-initio
calculations were not used to calculate the strain sensitivity this structure. Instead, a simple
model was presented. The main insight of this model is that unlike preferentially cubic
Nb3Sn, in which the application of strain results in a distortion of the crystal structure, the
application of strain to preferentially tetragonal Nb3Sn results, in part, in a realignment
of the crystal structure. Through this realignment, the degree of distortion in the crystal
structure is reduced, which subsequently results in a lower degree of strain sensitivity in Tc
and µ0Hc2(0). Since ρn of non-cubic Nb3Sn depends on the alignment of the crystal, this
realignment does result in a change in the measured ρn. This model explains the seemingly
contradictory observation that the degree of strain sensitivity in Tc and µ0Hc2(0) peaks in
samples which are slightly off-stoichiometric and preferentially cubic, but that the degree of
strain sensitivity in ρn continues to increase with decreasing ρn, well into the preferentially
tetragonal regime.
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6.4 Recommendations for further research
For this thesis, calculations were performed on disordered stoichiometric unit cells. The
advantage of this approach is that the use of supercells is avoided, which, at present, would
require an unrealistic computation time. However, as more and more processing power
becomes available over the years, one could consider to undertake calculations on supercells
using the approach that is outlined in this research as a recipe.

• The effect of disorder on the superconducting properties in stoichiometric and off-
stoichiometric unit cells can be investigated. This can also be applied to strain sensi-
tivity, to see if the way in which off-stoichiometry affects the strain sensitivity of the
superconducting properties is different from the way it does in stoichiometric Nb3Sn
affects the superconducting properties. Such research could improve the accuracy of
the model presented here in the case of off-stoichiometric Nb-Sn.

• Instead of investigating off-stoichiometry (i.e. excess niobium), with such calcula-
tions one can also investigate the influence of various additions. Perhaps strain sensi-
tivity in the superconducting properties can be suppressed through the introduction of
a particular addition, and this addition may be found through supercell calculations.

A more straightforward line of inquiry is to see how strain affects the properties of other
(A15) materials, an investigation with both an experimental and a theoretical component.
Here, other superconductors than Nb3Sn were investigated in a limited fashion. The in-
vestigation can be extended towards a more systematic study. An interesting result is that
for Nb3Al the calculations show less strain sensitivity than for Nb3Sn. Understanding the
causes of this difference could lead to new insights on how to mitigate strain sensitivity in
Nb3Sn.

Finally, it is interesting to investigate experimentally how the crystal orientation of Nb3Sn
wires influences the strain sensitivity of the superconducting properties. The calculations
indicate that the strain sensitivity vary between crystal orientations, and indeed there is some
experimental indication that this is correct. This may imply that the strain sensitivity of
Nb3Sn wires may potentially be reduced by carefully tuning the crystal orientation inside
the filaments.
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[49] M. G. T. Mentink, M. M. J. Dhallé, D. R. Dietderich, A. Godeke, W. Goldacker,

F. Hellman, and H. H. J. ten Kate, AIP Conf. Proc. 1435, 225 (2012).
[50] F. Hellman and T. Geballe, Phys. Rev. 36B, 107 (2005).
[51] F. Hellman, Specific heat and non-equilibrium aspects of vapor deposition growth of

A15 superconductors, PhD thesis, Stanford University (1985).
[52] H. Devantay, J. L. Jorda, M. Decroux, and J. Muller, J. Mat. Sc. 16, 2145 (1981).
[53] L. J. Vieland, RCA Rev. 25, 366 (1964).
[54] M. M. M. Bilek, R. N. Tarrant, D. R. McKenzie, S. H. N. Lim, and D. G. McCulloch,

IEEE Trans. Pl. Sci. 31, 939 (2003).
[55] M. M. M. Bilek and D. R. McKenzie, Surf. Coat. Techn. 200, 4345 (2006).
[56] D. R. McKenzie and M. M. M. Bilek, Thin Solid Films 382, 280 (2001).
[57] B. Ten Haken, A. Godeke, and H. H. J. ten Kate, Adv. Cryog. Eng. 42, 1463 (1997)
[58] L. Muzzi, V. Corate, A. della Corte, G. De Marzi, T. Spina, J. Daniels, M. Di Michiel,

F. Buta, G. Mondonico, B. Seeber, R. Flükiger, and C. Senatore, Supercond. Sci.
Techn. 25, 054006 (2012).

[59] K. Watanabe, H. Oguro, K. Minegishi, S. Awaji, and G. Nishijima, IEEE Trans. Appl.
Supercond. 20, 1420 (2010).

[60] W. M. Yim and R. J. Paff, J. Appl. Phys. 45, 1456 (1974).
[61] J. W. Edwards, R. Speiser, and H. L. Johnston, J. Appl. Phys. 22, 424 (1951).

References 183



[62] C. R. Tottle, J. Inst. Met. 85, 375 (1957).
[63] H. W. Schadler, L. M. Osika, G. P. Salvo, and V. J. DeCarlo, Trans. Met. Soc. Aime

230, 1074 (1964).
[64] R. L. Barns, J. Appl. Phys. 39, 4044 (1968).
[65] ESPI Metals, http://www.espimetals.com/index.php/technical-data/170-niobium.
[66] J. Zhou, Y. Jo, Z. H. Sung, H. Zhou, P. J. Lee, and D. C. Larbalestier, Appl. Phys.

Lett. 99, 122507 (2011).
[67] S. Foner and E. J. McNiff Jr., Sol. St. Comm. 39, 959 (1981).
[68] M. C. Jewell, A. Godeke, P. J. Lee and D. C. Larbalestier, Adv. Cryo. Eng. 711, 474

(2004).
[69] M. Naus, Optimization of Internal-Sn Nb3Sn Composites, PhD thesis, University of

Wisconsin - Madison (2002).
[70] A. J. Arko, D. H. Lowndes, F. A. Muller, L. W. Roeland, J. Wolfrat, A. T. van Kessel,

H. W. Myron, F. M. Mueller, and G. W. Webb, Phys. Rev. Lett. 40, 1590 (1978).
[71] B. ten Haken, A. Godeke, and H. H. J. ten Kate, J. Appl. Phys. 85, 3247 (1999).
[72] B. ten Haken, Strain effects on the critical properties of high-field superconductors,

PhD thesis, University of Twente (1994).
[73] R. Bijman, Effects of strain on the superconducting properties of various Niobium-Tin

compounds, Internship report, University of Twente (2005).
[74] M. G. T. Mentink, Strain dependency of Nb3Sn bulk samples, M. S. thesis, University

of Twente (2009).
[75] B. L. Brandt, D. W. Liu, L. G. Rubin, Rev. Sci. Instr. 70, 104 (1999).
[76] Vishay Precision Group, http://www.vishaypg.com/docs/11013/bond610.pdf.
[77] R. Mailfert, B. W. Batterman, and J. J. Hanak, Phys. Lett. 24A, 315 (1967).
[78] Battelle Columbus Labs Ohio metals and ceramics information center, Handbook on

Materials for Superconducting Machinery, Metals and Ceramic Information Center,
Battelle (1974).

[79] Aerospace Specification Metals inc, http://asm.matweb.com/search/SpecificMate-
rial.asp?bassnum=MTP641

[80] E. D. Marquardt, J. P. Le, and R. Radebaugh, Presented at Proc. 11th Intern. Cryoc.
Conf., Keystone, Co, USA (2000).

[81] T. P. Orlando, E. J. McNiff Jr., S. Foner, and M. R. Beasley, Phys. Rev. 19B, 4545
(1979).

[82] D. A. Rudman, F. Hellman, R. H. Hammond, and M. R. Beasley, J. Appl. Phys. 55,
3544 (1984).

[83] J. W. Ekin, Cryog. 20, 611 (1980).
[84] D. M. J. Taylor and D. P. Hampshire, Supercond. Sci. Techn. 18, 241 (2005).
[85] E. S. Rosenblum, S. H. Autler, K. H. Gooen, Rev. Mod. Phys. 36, 77 (1964).
[86] A. Godeke, G. Ambrosio, G. Chlachidze, D. R. Dietderich, H. Felice, A. K. Ghosh,

M. Marchevsky, M. G. T. Mentink, S. O. Prestemon, and G. L. Sabbi, Superc. Sci.
and Techn. 26, 095015 (2013).

[87] International Thermonuclear Experimental Reactor, http://www.iter.org/.
[88] The office of High Energy Physics, U.S. Department of Energy,

http://science.energy.gov/hep/.
[89] J. Ekin, Supercond. Sci. and Techn. 23, 083001 (2010).
[90] X. F. Lu, D. M. J. Taylor, and D. Hampshire, Supercond. Sci. Techn. 21, 105016

(2008).

184



[91] L. Bottura, IEEE Trans. Appl. Supercond. 10, 1054 (2000).
[92] L. Bottura and B. Bordini, IEEE Trans. Appl. Supercond. 19, 1521 (2009).
[93] M. Tinkham, Introduction to Superconductivity, 2nd ed., McGraw-Hill, New York

(1996).
[94] J. D. Livingston and H. W. Schadler, Progr. Mater. Sci. 12, 183 (1964).
[95] E. J. Kramer, Philosophical Magazine 15, 1189 (1967).
[96] L. D. Cooley, C. M. Fischer, P. J. Lee, and D. C. Larbalestier, J. Appl. Phys. 96, 2122

(2004).
[97] W. D. Markiewicz, Cryogenics 46, 846 (2006).
[98] W. D. Markiewicz, Cryogenics 44, 767 (2004).
[99] B. Bordini, P. Alknes, L. Bottura, L. Rossi, and D. Valentinis, Supercond. Sci. Techn.

26, 075014 (2013).
[100] M. M. J. Dhallé, Handbook of Superconducting Materials, Institute of Physics Pub-

lishing, Bristol (2003)
[101] B. ten Haken, A. Godeke, and H. H. J. ten Kate, IEEE Trans. Appl. Supercond. 5,

1909 (1995).
[102] B. ten Haken, A. Godeke, and H. H. J. ten Kate, J. Appl. Phys. 85, 3247 (1999)
[103] A. Godeke, B. ten Haken, H. H. J. ten Kate, and D. C. Larbalestier, Supercond. Sci.

Techn. 19, R100 (2006).
[104] M. G. T. Mentink, Critical surface parameterization of high Jc RRP Nb3Sn strand,

Internship report, University of Twente / Lawrence Berkeley National Laboratory
(2008).

[105] A. Godeke, M. G. T. Mentink, D. R. Dietderich, and A. den Ouden, IEEE Trans.
Appl. Supercond. 19, 2610 (2009).

[106] D. Arbelaez, A. Godeke, and S. O. Prestemon, Supercond. Sci. Techn. 22, 025005
(2009).
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Summary

The superconducting properties of Nb3Sn are strongly affected by strain. This phenomenon
is not just of interest from a fundamental perspective, but is also relevant for the performance
of high magnetic field Nb3Sn superconducting magnets, since the strain sensitivity of Nb3Sn
conductors may influence the performance of the magnet in a detrimental way.

The critical current density and resistivity of Nb-Sn bulk samples and thin films were mea-
sured as a function of temperature and applied magnetic field as well as longitudinal and
transverse strain. From the critical current density and resistivity measurements, the strain
dependent critical temperature Tc and upper critical field µ0Hc2(0) were determined. In
addition to the strain sensitivity of these superconducting properties, it is also observed that
strain affects the normal state resistivity ρn in an anisotropic manner: the strain dependence
of ρn varies with the angle between the current and the applied strain.

A detailed study of previously developed critical current scaling relations was performed,
and differences as well as similarities are discussed. The critical current density was mea-
sured as a function of temperature, magnetic field, longitudinal strain, and transverse strain
in both stoichiometric and off-stoichiometric binary thin films. It is shown how, consistent
with literature results, the strain sensitivity of the critical current density is dominated by the
strain sensitivity of Tc and µ0Hc2(0).

It is observed that the degree of strain sensitivity in Tc and µ0Hc2(0) varies with com-
position. Thus, to understand the strain sensitivity, the composition dependence of Tc and
µ0Hc2(0) needs to be understood as well. However, performing ab-initio calculations on off-
stoichiometric compositions requires the evaluation of large supercells, which is at present
not feasible due to the associated high computational load. Instead, the effect of disorder
of Tc and µ0Hc2(0) is investigated computationally, which is validated by the experimental
statement that Tc and µ0Hc2(0) is strongly dependent of ρn, regardless of composition. This
approach is combined with an empirical description of the electron-phonon coupling charac-
teristic α2(ω) and it was demonstrated that these calculations accurately capture the relation
between ρn and the Martensitic transformation, the ρn dependent Eliashberg spectrum, Tc
as a function of ρn and finally µ0Hc2(0) as a function of Tc.

The same approach is then applied to calculate the effect of strain on various microscopic
properties, including ρn, Tc, and µ0Hc2(0). The main insight obtained from the ab-initio
calculations is that the application of strain results in a distortion of the niobium chains
within the A15 crystal structure, which is referred to as sublattice distortion. Due to sublat-
tice distortion, both the electronic and the vibrational properties of Nb3Sn are affected in a
manner that is detrimental for superconductivity. In the nearly stoichiometric and preferen-
tially cubic Nb3Sn that dominates the superconducting properties of Nb3Sn wires, the strain
sensitivity of Tc and µ0Hc2(0) is mainly a result of changes in the electronic properties of
the material, although the contribution of the vibrational properties is not negligible.

The validity of the calculated results is determined through a comparison with experimental
observations:
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• The strain dependent anisotropic ρn behavior is calculated and shown to be quantita-
tively consistent with experimental observations.

• The strain dependence of Tc and µ0Hc2(0) in Nb3Sn wires is calculated and is shown
to be quantitatively consistent with experimental results.

• The strain dependence of Tc and µ0Hc2(0) in Nb-Sn thin films is calculated, and
once more the calculated results are quantitatively consistent with the experimental
observations of preferentially cubic Nb3Sn close to the stoichiometric composition.

• Consistent with the experimental observation that the strain sensitivity of Tc and
µ0Hc2(0) decreases with off-stoichiometry, the calculations indicate that the degree
of strain sensitivity in Tc and µ0Hc2(0) decreases with increasing disorder. However,
the assumption that off-stoichiometry is simply a type of disorder is likely too sim-
plistic: the magnitude of the experimentally observed strain dependence in Tc and
µ0Hc2(0) of strongly off-stoichiometric Nb-Sn exceeds the calculated strain value.
Consistent with this discrepancy, it was determined in a limited investigation of off-
stoichiometric supercells that excess niobium does not just act as scattering centers
but also affects the electron density of states directly. This implies that the accuracy
of the calculations may be improved by evaluating the properties of supercells instead
of single unit cells.

• The calculated results indicate that the strain dependence of ρn, Tc, and µ0Hc2(0) of
bcc niobium, in which sublattice distortion does not occur, is much weaker than of
A15 Nb3Sn, and this is found to be consistent with experimental observations. In
addition, the calculations indicate that Nb3Al is less strain sensitive than Nb3Sn due
to a lower degree of sublattice distortion, which is also consistent with experimental
evidence.

To summarize, the calculations and the experimental observations are for the most part con-
sistent. This is a strong indication that the main insight of the calculations, that the large
strain sensitivity in Nb3Sn is a direct result of sublattice distortion, is correct.
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Samenvatting
De supergeleidende eigenschappen van Nb3Sn zijn erg gevoelig voor rek. Dit is niet alleen
van fundamenteel belang, maar ook relevant voor de prestatie van hoog-magneetveld su-
pergeleidende Nb3Sn magneten, omdat de rektoestand van het Nb3Sn het gedrag van de
magneet beı̈nvloedt.

De kritieke stroomdichtheid en resistiviteit van Nb-Sn bulk en dunne film proefstukken zijn
gemeten als functie van temperatuur, magneetveld en longitudinale en transversale rek. Van
deze metingen zijn de rekafhankelijke kritieke temperatuur Tc en het bovenste kritieke mag-
neetveld µ0Hc2(0) bepaald. Naast de rekgevoeligheid van de supergeleidende eigenschap-
pen beı̈nvloedt rek ook de resistiviteit in de normale toestand ρn op een anisotrope manier:
De rekafhankelijkheid van ρn hangt af van de hoek tussen de stroom en de aangebrachte rek.

Verscheidende schalingsrelaties van de kritieke stroom van Nb3Sn worden beschouwd en de
overeenkomsten en verschillen tussen deze schalingsrelaties worden besproken. De kritieke
stroom van stoichiometrische en off-stoichiometrische binaire dunne films is gemeten als
functie van temperatuur, magneetveld, longitudinale rek, en transversale rek. In overeen-
stemming met de literatuur volgt dat de rekgevoeligheid van de kritieke stroom van Nb3Sn
voornamelijk het resultaat is van de rekgevoeligheid van Tc en µ0Hc2(0).

Uit de analyse volgt dat de rekgevoeligheid van Tc en µ0Hc2(0) van het materiaal samen-
stelling afhankelijk is. Daarom is het nodig om deze afhankelijkheid van Tc en µ0Hc2(0)
te berekenen om de rekgevoeligheid van Nb3Sn te begrijpen. Maar, ab-initio berekeningen
van off-stoichiometrische samenstellingen vereisen de berekening van grote supercellen, iets
dat op dit moment niet realistisch is vanwege de omvang van deze berekeningen. In plaats
daarvan zijn Tc en µ0Hc2(0) berekend als een functie van de wanorde, omdat het experi-
menteel aangetoond is dat Tc en µ0Hc2(0) sterk afhankelijk zijn van de resistiviteit en dat de
samenstelling daarbij een ondergeschikte rol heeft. Dit is gecombineerd met een empirische
beschrijving van de electron-phonon koppeling. Het is aangetoond dat deze berekeningen
met grote nauwkeurigheid de martensitische transformatie, Tc en µ0Hc2(0) als functie van
ρn beschrijven.

Dezelfde methode is vervolgens toegepast om de rekafhankelijkheid van verscheidene mi-
croscopische eigenschappen te berekenen, inclusief ρn, Tc en µ0Hc2(0). Het belangrijkste
resultaat dat volgt uit de ab-initio berekeningen is dat rek de niobium ketens in de A15
kristal structuur verstoort, iets dat ‘subrooster vervorming’ genoemd wordt. Als gevolg van
dit effect veranderen zowel de elektronische als de trillingseigenschappen op een wijze die
nadelig is voor de supergeleidende eigenschappen van Nb3Sn. In bijna-stoichiometrisch,
kubisch Nb3Sn die de kritieke stroom van Nb3Sn draden bepaald is de rekgevoeligheid van
de supergeleidende eigenschappen met name een gevolg van de rekgevoeligheid van de
elektronische eigenschappen, alhoewel de bijdrage van de rekgevoeligheid van de trillings-
eigenschappen niet verwaarloosbaar is.

De nauwkeurigheid van de berekeningen is gevalideerd door middel van een vergelijk met
experimentele observaties:

• Het is aangetoond dat de berekende rekafhankelijke ρn quantitatief consistent is met
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experimentele observaties.

• De rekgevoeligheid van Tc en µ0Hc2(0) van Nb3Sn draden is berekend en de resul-
taten zijn kwantitatief consistent met experimentele observaties.

• De rekgevoeligheid van Tc en µ0Hc2(0) van bijna-stoichiometrisch kubische Nb3Sn
dunne films is berekend en de uitkomst is kwantitatief consistent met de metingen.

• Consistent met de metingen laten de berekeningen zien dat de mate van rekgevoe-
ligheid afneemt naarmate de mate van wanorde toeneemt. Maar de aanname dat off-
stoichiometrie simpelweg een soort wanorde is, is naar alle waarschijnlijkheid te sim-
plistisch. De mate van rekgevoeligheid in Tc en µ0Hc2(0) van de off-stoichiometrische
dunne films die experimenteel waargenomen is, is hoger dan de berekende waardes.
Consistent met dit resultaat is het aangetoond in een beperkte beschouwing van off-
stoichiometrische supercellen dat het extra niobium niet alleen als verstrooiingscentra
fungeert, maar daarnaast ook de elektronische eigenschappen rechtstreeks beı̈nvloedt.
Dit betekent dat de nauwkeurigheid van de berekeningen verbeterd kan worden door
de eigenschappen van supercellen te berekenen.

• Zowel de berekeningen als de experimentele observaties laten zien dat de rekgevoe-
ligheid van ρn, Tc en µ0Hc2(0) van bcc niobium, dat niet het karakteristieke sub-
rooster van Nb3Sn bevat, veel minder sterk is dan in Nb3Sn. Daarnaast laten zowel de
berekeningen als experimentele resultaten zien dat de rekgevoeligheid van Nb3Al een
stuk lager is dan die van Nb3Sn, wat gerelateerd is aan de lagere mate van subrooster-
vervorming.

Samenvattend, de berekeningen en experimentele resultaten zijn voor het grootste deel con-
sistent. Dit is een sterke indicatie dat rekgevoeligheid in Nb3Sn inderdaad een direct gevolg
is van subroostervervorming.
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