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1.1 Introduction  

Many patients with neurological injuries, like stroke or spinal cord injury (SCI), suffer from 

muscle weakness, loss of independent joint control and spasticity, resulting in reduced 

walking ability. For many of these patients, relearning to walk is an important goal during 

the rehabilitation process. The ability to walk also positively affects other activities of daily 

living and improves general psychological and psychosocial wellbeing. The high demands 

placed on the therapist during manually assisted gait training has led to the introduction 

of robotic devices that can provide the required assistance. Robotic gait trainers have the 

potential to deliver longer, and more intensive, training sessions than that can be 

achieved during conventional therapies, and enable objective monitoring of the patients’ 

progress. Over the past two decades robot-aided gait training has slowly found its way 

into the clinics. However, to date, these robotic gait trainers have not fulfilled the high 

expectations that were raised.  

In this introduction the two topics of this thesis are outlined: 1) how can robot-aided gait 

training be improved to increase its clinical effectiveness, and 2) how can robotic gait 

trainers be utilized to quantitative measure physiological properties of the patient. The 

chapter starts with a short introduction on stroke, SCI, body weight supported treadmill 

training and the rationale for robotic gait training. Next, it provides an overview of the 

different types of gait trainers and their effectiveness so far. Subsequently, the different 

control regimes that are currently being developed will be addressed, together with the 

challenges that they introduce. Finally, the concept of neurological assessment with 

robotic gait trainers is introduced and the chapter concludes with the aims and outline of 

this thesis. 

1.2 Stroke  

Stroke or cerebrovascular accident (CVA) is the third most frequent cause of death 

worldwide and the second leading cause of death in developed countries [1]. It is among 

the leading causes of long-term disability in industrialized countries [2-4] and typically 

affects the elderly population. The age-dependency of stroke is reflected in a progressive 

increase of incidence with each decade of life. For example, the incidence rate of stroke 

for those aged <45 years ranges from 0.1-0.3 per 1000 individuals per year, whereas for 

those aged 75-84 years the rate increases to 12-20 [5]. Similarly, the overall prevalence 

ranges from 5-10 per 1000 individuals, whereas >65 years it ranges from 46.1-73.3. The 

prevalence of stroke is higher among men up to the age of approximately 85 years, after 

which it becomes higher in women [6]. The incidence of stroke has decreased over the 

past years due to preventive measures but the lifetime risk has not declined to the same 

degree, perhaps due to improved life expectancy [7-9]. Thus, despite these preventions, 

the burden of stroke on the healthcare system has not substantially diminished.  
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 Strokes occur due to problems with the blood supply to the brain. Between 70-90% of 

strokes are ischemic strokes [5,10]. Ischemic strokes are caused by an obstruction in a 

blood vessel (thrombotic or embolic), which reduce (or block) the blood flow to the brain. 

The other 10-30% are hemorrhagic strokes, caused by a ruptured blood vessel. Blood 

accumulated in the surrounding brain tissue will damage the cells, and the brain cells 

beyond the leak get deprived of oxygen and nutrients. Disrupting the blood supply to the 

brain for too long can result in loss of specific functions on the contralateral side of the 

body. 

The severity and the kind of function loss depend on the severity of the stroke and on the 

affected brain region. A typical stroke patient has hemiplegia (paralysis of one side of the 

body), but loss of sensation, difficulties with speech or visual impairment are also often 

seen in stroke survivors. The majority of these patients initially lose the ability to walk 

independently or create abnormal (typically asymmetric) gait patterns, due to muscle 

weakness and spasticity [11-15]. Partial recovery can be expected within the first 3-6 

months. Still, 30-50% of surviving patients do not regain independent walking [16-18]. 

1.3 Spinal cord injury 

Spinal cord injury (SCI) affects between 10.4 and 83 people per million individuals per year 

(for the developed countries), which leads to an estimated prevalence between 223 and 

755 per million inhabitants [19]. The incidence of SCI is relatively high amongst men 

(men/women: 3.8/1) [19]. The average age of patients sustaining their injury is relatively 

young (33 years) [19], compared to other neurological disorders like stroke (70 years) [5], 

[10]. To improve the quality of life of SCI patients, and reduce the financial burden over 

the remainder of their lifetime, it is therefore important to optimize the recovery process 

after SCI.  

A spinal cord injury is a defect to the spinal cord, resulting in temporary or permanent 

changes in muscle strength, sensation and other body functions. The cause of spinal cord 

injuries can be traumatic or non-traumatic. Non-traumatic causes include tumors, 

ischemia, hemorrhages, or infections to the spinal cord. A lesion to the cervical spinal cord 

affects all four extremities (quadriplegia), while lesions below that level affect the legs 

only (paraplegia). Roughly one-third of SCI patients is quadriplegic and two-thirds are 

paraplegic [19,20]. SCI can be classified using the ASIA scale, which ranges from a 

complete loss of motor and sensory function in the sacral segments S4-S5 (ASIA A) to a 

complete restoration of sensation and motor function (ASIA E)[21].  

Depending on the extent and the position of the damage, partial or complete loss of 

motor, sensory, and vegetative function can occur. Symptoms vary widely and may 

include loss of sensation, (partial) paralysis, incontinence, spasticity or neuropathic pain 

[22]. Although patients with incomplete lesions [23] have a good prognosis with regard to 

walking function, they are usually unable to walk at the early stages of recovery due to 

muscle weakness. For patients with incomplete lesions, one-half to two-thirds of the one-
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year motor recovery occurs within the first two months, but recovery can continue up to 

two years after injury [24,25], or even longer [26]. The recovery of walking in terms of 

ambulatory function varies from 50% for ASIA B to over 75% for ASIA D classified patients 

[27,28]. Still, many SCI patients experience limited hip flexion during the swing phase and 

insufficient knee stability during the stance phase. Consequently, these individuals have 

reduced ambulation [29], walk slower, with reduced cadence and stride length [30], and 

often remain reliant on the use of assistive devices [31]. 

1.4 Neural plasticity 

Losing the ability to walk is a major disability for individuals who suffered a SCI or stroke. 

For most patients, regaining mobility is one of the most important goals during recovery, 

since walking is a key factor for greater independence [32-35]. Although the location of 

the trauma obviously differs between stroke and SCI, it is believed that the underlying 

mechanisms that accompany regaining locomotor function are similar. For stroke, as well 

as SCI, recovery of function can largely be attributed to spontaneous- and activity-based- 

neural plasticity [36-39]. Neuroplasticity is defined as the ability of the nervous system to 

reorganizing its neuronal circuits to compensate for the injury. This emphasizes the need 

to establish training conditions, such that the nervous system receives the appropriate 

signals to drive activity-based plasticity. It is believed that, to promote neural plasticity, 

gait training should be task-specific, repetitive, meaningful, intensive, should start as soon 

as possible [40-53], and should provide appropriate afferent feedback [54]. For example, 

afferent feedback from hip extensors, and load receptors in the foot soles, proved to be 

critical for the generation of rhythmic muscles activation patterns during locomotion [55-

57].  

1.5 Body weight supported treadmill training  

To improve gait performance Body Weight Supported Treadmill Training (BWSTT) has 

been used for over a decade as a regular form of therapy for neurological patients. BWSTT 

is a form of training where the patient walks on a treadmill with (partial) support of his 

body weight, while physiotherapists manually assist the leg movements. It is highly task-

specific and repetitive, and allows a greater number of steps to be performed within a 

single training session compared to conventional physiotherapy. During BWSTT the 

therapists generally try to guide the legs (where required) towards a “normal” gait pattern 

[58]. BWSTT has become a well-accepted training approach, and has shown to be 

successful in improving gait function after SCI [58-61] as well as stroke [48,62-65]. 

Although several reviews concluded that the effects of BWSTT are equivalent to other 

training [27,66-68] approaches, or even somewhat smaller [69], it is still considered a 

valuable tool for locomotor training in neurological patients, as it provides a safer and 

more convenient way of gait training and enables gait training in the early stages of 

recovery.  
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 Despite these benefits, BWSTT for SCI patients generally requires two physiotherapists to 

assist leg movements on both sides of the body. In some cases, even a third therapist is 

required to stabilize the movement of the trunk [58]. Consequently, it required substantial 

experience from these therapists to coordinate their movement. Also, the need for 

multiple therapists might not be financially feasible for every clinic [70]. Although the 

weight of the patient is partially supported, BWSTT remains a very labour intensive 

practice, and the position of the therapist, who is seated beside the treadmill, tends to be 

ergonomically unfavourable. Especially for severely affected SCI or stroke patients, where 

motor impairments can impede the performance of even a single movement, providing 

appropriate manual support is physically demanding for the therapist. As a result, the 

training duration (or the amount of steps practiced) may be limited by the physical fitness 

of the therapists themselves, and may end up being similar to the amount of steps 

practices during overground walking sessions [71].  

1.6 Rationale for robotic gait training 

The repetitive behaviour and task specificity of conventional therapy has stimulated the 

development of robotic systems that can assist locomotor training for individuals who 

suffered a SCI or stroke. These robotic systems are attached to the limbs of the patients 

and can assist locomotion by exerting forces on the limb, much like the manual assistance 

provided by a therapist. The most important advantage of robotic devices is the ability to 

increase training intensity and duration, while reducing the workload and discomfort of 

the therapist [72]. They also enable objective monitoring of the patients performance and 

progress [73], reduce the number of therapists required to assist the patient [74] and can 

eliminate the between-trainer variability in terms of the applied supportive forces [75].  

Several studies have investigated the adaptive capacity of the nervous system in animals 

and humans. However, the amount of task-specific repetitions performed during 

conventional post-stroke therapy is generally substantially smaller than in these studies 

[76]. By reducing the labour intensive demands (and therapist discomfort) the number of 

steps can be increased. For example, Schmidt et al. [71] estimated that with robotic gait 

training up to 1000 steps are performed, whereas during manually assisted training only 

+/- 100 steps were performed. Regarding training time, Colombo et al. [77] reported that 

automated gait training could be extended up to 60 minutes, while manually assisted 

therapy lasted only for about 10-15 minutes. Noteworthy, the limiting factor for the 

manually assisted training was the therapist, whereas during automated gait training 

usually the patient became exhausted. In this respect, robotic gait training can provide a 

safe environment where patients can perform as many step repetitions as they are 

physically capable of.  
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1.7 Existing robotic gait trainers 

Since the start of the millennium, various robotic gait training devices have been 

developed. The majority of the robotic gait trainers can roughly be characterized as: 1) 

exoskeletons, 2) end-effector based systems, or 3) mobile robotic devices that support 

overground walking (figure 1). 

1.7.1 Exoskeletons 

In exoskeleton-type robotic gait trainers a mechanical exoskeleton is attached to the limbs 

and moves in parallel with the patient. These types of gait trainers are usually combined 

with a treadmill and BWS system. Examples include the Lokomat (Hocoma) [77] and the 

 
Figure 1: Different types of robotic gait trainers. The majority of the robotic gait trainers can roughly 

be characterized as exoskeletons (top), end-effector based systems (middle), or mobile robotic 

devices that support overground walking (bottom). 
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 AutoAmbulator (Healthsouth)/ReoAmbulator (Motorika), which are both commercially 

available. In addition, many experimental exoskeleton-based robotic gait trainers are used 

at various research institutes, such as the ALEX (Active Leg Exoskeleton) [78], the KNEXO 

[79], and the LOPES (Lower Extremity Powered Exoskeleton) [80]. These exoskeletons are 

under continuous development, which has led to new prototypes like the ALEX III [81] and 

the LOPES II [82] with additional (actuated) degrees of freedom and modified structures to 

allow arm swing. 

1.7.2 End-effector-based systems 

Alternatively to the exoskeleton-type robotic gait trainers, which are connected to the 

patient’s leg at multiple points, end-effector-based robotic gait trainers are coupled only 

to the patient’s feet. The harness-secured patient is positioned on a set of footplates, 

which simulate the stance and swing phases of walking. An example of such a gait trainer 

is the Gait Trainer 1 (GT1, Reha-Stim), which is commercially available. Compared to 

exoskeletons, end-effector-based gait trainers lack the ability to control poor joint 

stability. Also, they modify the sensation at the foot soles that normally occurs during the 

swing and stance phase. In contrast, they require less time to adjust to the subject’s 

anthropometry, take little time to put on and take off, and do not suffer from the 

consequences of joint misalignment [83]. Newer versions have fully programmable 

footplates that allow training of other gait related tasks. Gait trainers like the 

HapticWalker [71] (commercialized as the GEO, Reha Technologies) or the Gait Master 

[84] have been developed to assist stair climbing or walking on different terrains. A 

different type of end-effector gait trainer is the LokoHelp (Woodway) [85], which is fixed 

onto a motorized treadmill and converts the treadmill movement into a stepping pattern 

(figure 1). 

1.7.3 Mobile robotic devices that support overground walking 

Overground walking can be assisted by gait trainers like the KineAssist (Kinea Design), 

which has a mobile base and provides partial body weight support to the pelvis, whilst 

leaving the patient’s legs unobstructed to allow the therapist to manually support the legs. 

There are also more complicated mobile systems like the WalkTrainer [86], which consists 

of a mobile base in combination with a leg and pelvic orthosis to actively assist leg 

movements. Overground walking can also be assisted by wearable exoskeletons, which 

can focus on a single joint like the AnkleBOT [87] and the PK100 Bionic Leg Orthosis 

(Tibion), or which can assist multiple joints like the Ekso (Ekso Bionics), the HAL 

(Cyberdyne), ReWalk (Argo Medical Technologies) or the Rex (Rex Bionics). These devices 

were initially designed to assist the users in their daily activities, but can also be used as 

therapeutic devices, in which patients can practice walking. As these systems provide 

limited balance- and trunk-support, additional support from a BWSS may be required for 

more severely impaired patients.  
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1.8 Robotic gait training after stroke and SCI 

Despite the large amount of gait trainers that are under development, so far most of the 

studies that assessed the effectiveness of robot-aided gait training for patients with SCI or 

stroke have been performed using the commercially available gait trainers. Despite the 

reduction in labour intensity, the therapeutic efficacy of these robotic gait trainers is still 

at an early, rather inconclusive state.  

Several studies showed improvements in walking ability between pre- and post-training in 

acute and chronic SCI patients who trained with the Lokomat [88-92], the Gait Trainer 

[91,93] or the Lokohelp [85]. However, only a limited number of randomized controlled 

trials (RCTs) [61,74,94,95], or other study designs [91,96], have been performed to 

investigate if these improvements are superior to those obtained using conventional 

approaches. The RCTs that have been performed show contradictory results. Field-Fote et 

al. [61] concluded that Lokomat training was the only training modality that did not result 

in significant improvements in walking ability, while others [74,95,96] found no significant 

differences in functional ambulation between different rehabilitation approaches. Benito-

Penalva et al. [91] trained patients with SCI in the LOKOMAT and the Gait Trainer and 

compared the results with data obtained from the European Multicenter Study about 

Human Spinal Cord Injury. They reported a significant improvement compared to patients 

receiving conventional therapy without a robotic systems. Noteworthy, no significant 

difference in effectiveness of the LOKOMAT and the Gait Trainer was found.  

Similar contradicting results have been reported for stroke survivors. Several RCTs 

demonstrated a significant improvement in overground gait speed, endurance or 

functional ambulation in the group that used the Gait Trainer [97-99] or the Lokomat 

[100], compared to conventional physiotherapy. Again, other studies found no significant 

difference between robotic support and manually assisted treadmill training [101,102] or 

conventional physiotherapy [103-106]. Hornby et al. [107] even reported that manual 

support is superior to robotic support. A large multicenter RCT, perfomed by Hidler et al. 

[108], also concluded that conventional therapy is more effective than robotic-assisted 

gait training. They also suggested that this may be caused by the diversity of conventional 

gait training.  

A recent meta-analysis by Mehrholz et al. [109] revealed that the observed differences in 

effectiveness of robotic gait training for stroke patients is most likely due to the types of 

intervention and the included patient groups. They concluded that robotic gait training in 

combination with physiotherapy increased the odds of participants becoming 

independent walkers, compared to robotic gait training alone. They also suggested that, 

for robotic gait training, greatest benefits with regard to independence in walking can be 

achieved in participants who are non-ambulatory at the start of the intervention, and in 

those for whom the intervention is applied early post-stroke. For SCI patients, so far, such 

trends have not been observed [35,110,111]. These data demonstrate the need to 
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 improve robotic gait training for the less severely affected and chronic patients, so they 

can also benefit from robot-aided gait training. 

1.9 Optimizing robotic gait training 

The fact that the therapeutic effect of the “first generation robotic gait trainers” was 

somewhat disappointing might have been related to the way they were controlled. These 

early robotic systems used position control to ensure that the patient followed the desired 

“normal walking pattern” as closely as possible, and did not take the participant’s 

volitional effort into account. This approach proved well suited for patients who are in the 

early phase of rehabilitation, or who are severely affected, but may not provide the ideal 

training circumstances for less impaired patients. Although these robotic gait trainers 

facilitated gait training that was task-specific, repetitive, meaningful, and provided the 

user with the appropriate afferent feedback, they did not encourage the patient to 

actively participate. Furthermore, the fixed pattern imposed by the robot reduced the 

ability to make, and correct, movement errors. Both active participation and movement 

variability are considered crucial for motor recovery and may play an important role in 

optimizing robotic gait training. 

1.9.1 Active participation 

Active patient participation has proven to be an essential component to maximize motor 

learning and functional improvements in general [112-115], and is suggested to have a 

strong impact on almost all of the elements of gait recovery in neurological patients as 

well [116]. However, so far, the voluntary contribution of patients during robot-assisted 

walking has been rather limited [117]. In SCI patients, moving the legs in a rigid fashion, 

especially in individuals with some ability to walk, has shown to reduce volitional activity 

(EMG and VO2), compared to therapist-assisted BWSTT [74,118,119] or walking without 

assistance [120]. This phenomenon is also referred to as “slacking”, meaning that the user 

may relax his efforts learns to rely on the support [121,122]. That a patient contributes 

less than he/she is actually capable of is even seen in manually assisted gait training [117]. 

Motor learning experiments have confirmed that humans are excellent in minimizing their 

efforts when given a chance by an assisting robot [122,123]. When active participation is 

not promoted “the robot may become an analogy of training wheels that will not come off 

a bicycle” [124].  

1.9.2 Movement variability  

With position-controlled gait trainers, the consistency of the performed steps is superior 

to that provided during manually assisted support. However, these trainers also eliminate 

the natural kinematic variability in the gait pattern and diminish the possibility to make, 

and correct, movement errors [83]. The problem solving nature associated with learning a 

new task, or relearning a lost task, is considered the key component for motor learning 
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[125-127]. In other words, effective practice requires more than just movement 

repetitions. Animal studies have shown that training with a variable stepping pattern 

results in higher levels of recovery than walking with a fixed stepping pattren [128,129]. 

Although recovery mechanisms in mice and rats may not be representative for humans, 

similar benefits of movement variability are seen in neurological patients, suggesting that 

training with kinematic variability is advantageous. In line with this, a recent study by 

Lewek et al. [130] showed that intra-limb coordination after stroke was improved by 

manually assisted training that allowed natural kinematic variability. In contrast, position-

controlled training, which reduced the kinematic variability to a minimum, did not alter 

intra-limb coordination. 

1.10 Assistive controllers 

In response to these findings most current robotic gait trainers are designed to make the 

assistance compliant, either by using impedance- or admittance-control algorithms. They 

guide the leg by applying a force rather than imposing a trajectory. These strategies allow 

a certain level of variation in gait kinematics and require active participation of the 

patient, while still providing sufficient guidance and support to ensure successful walking. 

In addition, this type of control may increase the patient’s motivation, as he/she sees and 

feels the results of a decreased (and increased) effort. Furthermore, the assistance allows 

the patients to be more successful with their movement attempts, which encourages 

them and keeps them interested [131]. Impedance or admittance controllers try to mimic 

the skills of a trained therapist, who is likely to be compliant, motivational and adaptive to 

the needs of the patient. Controllers based on this principle are referred to as “assist-as-

needed” (AAN), “cooperative” or “interactive” controllers [124,132-135]. 

1.10.1 Technical implementation 

Technical implementation of these control strategies often consists of a predefined 

reference trajectory (or path) in combination with a “virtual wall” or force field. The 

stiffness of the virtual wall determines the amount of supportive force that is applied 

when the individual deviates from the predefined movements (impedance control). These 

predefined trajectories can be defined in joint space [124,133,136] or in Cartesian space 

(figure 2) [132,135,137,138]. Impedance (or admittance) control can make the robot’s 

behavior adaptive to the user’s needs. That is: the stiffness of the virtual wall/force field 

can be adapted to the capabilities, progress and current participation of the patient [133]. 

This allows individuals to benefit from robot-aided gait training throughout the different 

stages of recovery. At the initial stages of recovery, when the patient is not capable of 

generating any appropriate activity, the robot will take charge (high impedance) and 

practically enforce a gait pattern. At the later stages of recovery, when the patient can 

generate a large part of the required movement himself, the robot will just move along 

(low impedance).  
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Spatial variation in the gait pattern, and the possibility to make small movement errors, 

can be increased by lowering the impedance levels or by creating a “virtual tunnel” [135], 

a “dead band” [134,138] and/or a nonlinear force field [134,135] around the reference 

trajectory (figure 2). Within the tunnel free movement is allowed, but once the patient 

hits the wall, supportive forces are applied to assist the patient towards the center of the 

tunnel. For the Lokomat, the width of the tunnel is a function of the gait phase. It is 

designed to allow increased spatial variation during the late swing and early stance phase, 

to account for the large variability in knee flexion at heels strike that was observed in their 

subjects [134]. Their nonlinear force field enables soft contact with the wall and strong 

corrections for larger deviations. 

In addition to spatial variation, temporal variability can also be implemented, but this 

requires synchronization between the reference trajectory and the actual trajectory. To 

account for alterations in cadence, the reference trajectory can be accelerated or 

decelerated, based on the difference between the current gait phase of the subject and 

the state of the robot. This may be done continuously [124,134] or on a step-by-step basis 

[139]. If patients have difficulties initiating the stepping pattern, supportive torques can 

be applied to assist the patient along the desired path [134]. In some cases a “moving back 

wall” is introduced, to assist in the timing of the stepping pattern when a patient “falls 

behind” [134,135]. In most applications, the forward support is related to the deviation 

from the path, such that the forward force is only applied when the leg is close to the 

desired path [134,135].  

1.10.2 Effectiveness of AAN strategies  

While these AAN strategies enable more active patient participation, evidence for better 

functional outcomes is still limited. In mice and rats it has been demonstrated that 

locomotor training with AAN algorithms is more effective than position-controlled training 

[138,140]. In addtition, Cai et al. [138], also concluded that adding a moving back wall, 

which facilitated alternating inter-limb coordination, was more effective than AAN alone. 

 
Figure 2: Predefined trajectories in Cartesian and joint space. Left: Predefined trajectories in 

Cartesian space, adapted from Banala et al. [135]. The solid line represents the desired trajectory of 

the ankle, the distance between the dached lines represent the tunnel. Right: Predefined trajectories 

in joint space, adapted from Duschau-Wicke et al. [134]. The solid black line represents the desired 

trajectory of the hip and knee, the dark gray area represents the tunnel.  
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The effect of these AAN algorithms in neurologically impaired humans however, is unclear, 

although some promising results have been reported. In SCI patients, the “patient-

cooperative approach” of the Lokomat resulted in increased temporal and spatial 

variability and increased muscle activation levels, compared to non-cooperative position-

controlled training [134,141]. Krishnan et al. [142] added a motor learning task, which 

required a greater hip and knee motion during the swing phase, on top of this approach, 

which resulted in a further increase in muscle activation levels. Schück et al. [143] 

combined the “patient-cooperative approach” with their “Generalized Elastic Path 

Control” approach, to allow more free movement within the tunnel. They trained two 

patients with a SCI and two stroke survivors for four weeks (four times per week). 

However, only one stroke survivor gained a significant and relevant increase in gait speed 

after training. Krishnan et al. [144] compared the same combination of controllers with 

conventional (position controlled) robotic gait training in a single stroke subject. The 

participant trained for four weeks (three times per week) with position-controlled robotic 

gait support, followed by four weeks of patient-cooperative robotic support. The position-

controlled gait training did not produce any meaningful changes in the measured clinical 

outcomes, whereas the four weeks of cooperative control training resulted in substantial 

improvements in gait velocity and 6-minute walking distance. In another study by Banala 

et al. [135] the ALEX was used to train two stroke survivors over 15 sessions (spread over a 

6 week period). They used the tunnel approach in combination with the moving back wall 

and found that, at the end of the training, the gait pattern of the patients became closer 

to a healthy subject’s gait pattern. Also, the patients’s walking speed on the treadmill 

increased. Whether the increased walking speeds translated to an increase in walking 

speed overground was not reported. Although these data are promising, none of these 

studies performed a follow-up to see if the participants retained their training-induced 

functional improvements. Therefore, there is no clinical evidence that these concepts will 

actually lead to improved walking function in the long term.  

1.11 Challenges of AAN strategies 

In order to maximally benefit from AAN strategies, a number of new challenges have to be 

solved first.  

1.11.1 Reference trajectories 

Although AAN strategies apply supportive forces rather than enforcing a predefined gait 

pattern, they still require a predefined trajectory to determine the amount of support. 

Consequently, an important question remains; what should this predefined gait pattern 

look like. The most common strategy to determine the desired trajectory is based on pre-

recorded trajectories from unimpaired volunteers walking on a treadmill or walkway 

[86,136,145,146]. Alternatively, they can be recorded while unimpaired volunteers walk in 

the device while it is operated in a transparent mode [124,135,137,139] or with the 

motors removed [77]. While the reference trajectories are often recorded in the device 
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 out of convenience, in some cases this is done deliberately, to obtain gait patterns that 

take into account gait modifications that may result from restrictions of the orthosis 

during walking [77]. 

In most cases, gait trajectories are recorded at multiple walking speeds, to account for 

their speed dependency [147,148]. Still, it often remains unclear how to adjust these 

patterns when the training speed of the patient does not match the speed of one of the 

pre-recorded patterns. Also, most systems define the reference gait trajectory without 

considering the patient’s anthropometry, although in some cases a healthy control subject 

is selected, whose dimensions match with the patient receiving the support [135].  

Although it is possible to generate gait trajectories that resemble an average pattern, they 

will never form a perfect match for every individual patient. To modify the reference 

trajectories to the preferences, and current capabilities, of the patient, different strategies 

are employed. Some create patient specific patterns by recording the gait trajectory while 

the patient walks with manual assistance [124,139], while others try to reconstruct gait 

patterns based on the movements of the unimpaired limb [149]. The reference trajectory 

can also be personalized by slowly scaling each patient’s pre-training gait pattern towards 

a heathy reference trajectory [135]. Others use reference trajectories that are scalable in 

time, amplitude and offset [133,136], which allows them to modify the gait pattern based 

on the subject’s height, and range of motion at the joints (e.g. less hip extension when 

tight hip flexors are present) [83]. Alternatively, the reference trajectories can be 

optimized online by estimating the human-robot interaction torques and minimizing these 

by changing certain parameters of the reference trajectory [150,151]. Regretfully, these 

parameterizations do not take into account the relative timing of the extremes in the gait 

patterns, which are known to change with walking speed [148].  

1.11.2 Setting the proper support level 

The majority of the assistive control algorithms discussed above require the therapist to 

predefine the controller settings. This allows the therapist to modify the impedance level 

based on qualitative observations of the patient’s capabilities and progress, but also 

introduces challenges. Setting the support levels too low may result in dangerous 

situations, whereas too much assistance might induce slacking. In fact, Duschau-Wicke et 

al. [134] experienced that some SCI patients showed slacking behavior by “leaning” on the 

tunnel wall to keep their legs extended during the stance phase. This limitation may be 

overcome by adapting the controller settings real time, based on the patient’s 

performance or needs. So far, automated adjustment of the support levels can be 

achieved in two ways: 1) based on an estimation of the overall patient effort (detected 

with force sensors) or 2) based on kinematic errors. The first was described by Riener et al. 

[133], who implemented an algorithm that increases the overall impedance when there is 

little patient effort detected and vice versa. Emken et al. [139] developed an error-based 

controller with a forgetting factor. The algorithm systematically reduces the impedance 

levels when kinematic errors are small, whereas the impedance levels are increased when 
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the errors are large. The latter algorithm has the advantage that the assistance can be 

automatically tuned to the participant's individual needs, over the course of the 

rehabilitation process, but also throughout the gait cycle. They showed that, after 

convergence of the support levels, each subject obtained a unique set of support levels, 

which varied with the phase of the gait cycle and correlated with the subjects’ needs. 

Furthermore, it was demonstrated that SCI patients trained with more variability when 

they used their impedance-shaping algorithm.  

1.11.3 Transparency 

When these AAN algorithms reduce the support levels, the transparency of the device 

largely determines the amount of movement variability. Transparency refers to the ability 

of the robot to “get out of the way” [152], meaning that the robot moves along and does 

not intervene with the movements of the patient. The transparent mode is essential at the 

final stages of recovery, when patients only require little support. In that case, a perfectly 

transparent robot would induce no forces at all, and walking in the robot would resemble 

normal walking. This transparent mode is also key in training patients with hemiparetic 

gait, where the paretic-leg needs support, whereas the unaffected leg should be able to 

move freely. The same applies to specific joints that may not require support.  

The overall transparency of a device depends on several properties. Firstly, the device 

should have sufficient degrees of freedom (DoFs) to move in an unobstructed way. For 

example, in a perfect transparent robot the patient would have to maintain its own 

balance. The lack of balance training in most robotic gait trainers is suggested to be one of 

the contributing factors why robot-aided gait training has not been proven superior to 

manually assisted treadmill training [153]. When providing manual support an 

experienced therapist would allow the subject to balance himself as much as possible, 

providing just enough assistance. Balance training in many robotic gait trainers, however, 

is not possible due to the constraints on the pelvis that these devices impose. Different 

studies have shown that constraining the pelvis affects foot placement [154], trunk 

motion [155], joint kinematics [83], and muscle activation patterns [156]. It also strongly 

decreases the efforts that subjects have to put in keeping their body upright [157], 

whereas the goal of the transparent mode is to increase patient participation. Even when 

sufficient DoFs are provided at the pelvis, the inability to perform sufficient hip abduction 

in some robotic gait trainers inhibits proper balance training, since lateral foot placement 

is used to control balance during gait [158]. Consequently, pelvic motions and hip 

abduction should be incorporated in the device to allow normal walking. These DoFs are 

incorporated in most experimental gait trainers like the PAM and POGO [124], ALEX III [81] 

and the LOPES [80], but can also be added to existing gait trainers by adding a dedicated 

module [159]. 

The second determinant of the possible level of transparency is the weight of the device. 

Adding addition mass to the legs (especially at the more distal locations) is known to 

increase metabolic rate and affect swing and stride times [160,161]. Consequently, bulky 
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 robotic gait trainers will not be able to provide sufficient transparency, and thus, will not 

be suitable for training patients who require little support. Therefore, in newly designed 

robotic gait training systems, developers attempt to keep the exoskeleton as lightweight 

as possible to ensure sufficient transparency [137]. However, mass reductions are often 

limited when additional degrees of freedom are preferred, or when heavier actuators are 

required to assist severely impaired patients. In the LOPES, for example, the latter is 

solved by detaching the motors from the robot frame to decrease the weight and the 

inertia of the robot [162].  

The transparency of the robot can also be increased by means of control algorithms. For 

the LOPES we use closed-loop force control [162], which allows the robot to be controlled 

in zero-force control. This enables the subject to move freely with minimal resistance from 

the robot. Therefore, the LOPES is considered a close-to-transparent robot, and induces 

only small changes in the kinematic and muscle activation patterns compared to normal 

walking [163]. These small differences, like a decreased knee range of motion and small 

changes in muscle activation levels are due to the inertia and mass after the actuators. 

When the exoskeleton is attached to the leg, not only the mass of the leg has to be 

accelerated (and decelerated), but also the mass of the exoskeleton leg itself.  

The extent to which the dynamics of the robot, in particular its inertia, can be 

compensated for by means of control algorithms is very limited. Compensating its 

dynamics would require a precise model for the exoskeleton, accurate torque control and 

proper estimates of the positions, velocities and accelerations of the subject. However, in 

most devices, this information is not available in real-time, and the torque tracking is not 

sufficiently accurate. Attempts have been made to compensate for gravity and/or friction 

[134,164,165]. However, for the LOPES we experienced that the robot is more transparent 

without gravity compensation. The exoskeleton legs of the LOPES and the human leg have 

similar eigenfrequencies. As a result, during the swing phase, the human and robot leg 

swing in parallel with minimal interaction forces. When the gravity acting on the 

exoskeleton is compensated, the robot legs tend to continue their swing motion due to 

the remaining inertia. To end the swing phase, the human has to decelerate the 

exoskeleton legs without the help of gravity, which actually increases the undesired 

interaction forces between the robot and user. Similar counterproductive results of 

gravity compensation, in terms of interaction forces, have also been reported for the 

LOKOMAT [166]. For position-controlled gait trainers that cannot employ the passive 

dynamics of the robot, the transparency can also be increased by adapting the predefined 

gait patterns in real time, such that interaction between the robot and the patient is 

minimized. This way the robot “yields” to the voluntary exerted patient forces [150], 

[151]. Alternatively, a certain level of assistive forces can be applied to compensate for the 

robot dynamics and make it more transparent [142,167]. More recently the concept of 

“Generalized Elasticities” has been introduced [168]. Here conservative force fields are 

used that emulate the behavior of optimized passive components. These force fields 

compensate the mass and inertia of the device when the user moves according to the 

expected trajectories. A potential limitation of the proposed method is that, since the 
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force fields are optimized for the expected trajectories, the interaction torques probably 

increase when the patient moves in an unexpected way.  

Despite these efforts most robotic gait trainers that have a dedicated mode for 

transparent walking still show increased levels of muscle activity in the exoskeleton, 

compared to “free” treadmill walking [163,167]. Apparently, the transparency of these 

robots is not sufficient for the user to experience the dynamics of free walking. It is 

believed that the nervous system must experience such dynamics in order to learn to 

control them [169]. Improved transparency, therefore, will likely make locomotor training 

more efficient and facilitate the transfer of the learned abilities to overground walking. 

1.11.4 Both recovery and compensation contribute to functional improvements 

Kinematic studies have shown that neurological patients that recover towards a normal 

walking pattern not necessarily reach faster walking speeds, compared to patients that 

create atypical patterns [13]. This suggests that these patients are able to improve their 

gait function using behavioural compensation strategies. Here, recovery is characterized 

as the restitution of pre-injury movement patterns, whereas compensation refers to the 

appearance of new movement patterns resulting from the adaptation of remaining motor 

functions [39,170]. For example, SCI patients may walk with greater forward tilt of both 

trunk and pelvic segments to compensate for a certain degree of instability due to lower-

limb deficits [171]. In stroke survivors, these compensatory strategies are very common 

and well defined. Stroke survivors with reduced knee flexion during the swing phase of the 

paretic leg (stiff-knee gait) usually show compensatory movements such as pelvic hiking, 

hip circumduction or vaulting [172,173]. These patients may also create abnormal 

movements on the non-paretic side in an attempt to compensate for the decreased 

capabilities of the paretic side [52,174-176]. Although these different compensatory 

strategies do not contribute to a more symmetric walking pattern, they can increase 

walking ability.  

Thus, functional gains can be achieved by recovery as well as compensation. Despite, all 

robotic gait trainers focus on recovery, as they impose healthy joint-based reference 

trajectories. Additionally, imposing symmetrical reference trajectories on both legs also 

limits the flexibility of the non-paretic leg to compensate for the deficiencies of the paretic 

leg. Therefore, to facilitate the use of these compensatory strategies, the control of the 

robot should allow the patient to move with sufficient freedom. Lowering the impedance 

levels allows such freedom, but also reduces the possibility to support severely affected 

patients. In fact, when using joint-based reference trajectories, alternative movement 

strategies can only be used if these movements are defined in the predefined reference 

trajectories. Although the number of observed compensatory strategies is limited, there is 

still considerable variation between patients, which complicates a proper definition of 

such reference trajectories for alternative movement strategies.  

Besides the variation in these compensatory strategies and problems with their 

implementation in reference trajectories, most robotic gait trainers do not have the 
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 appropriate DOFs at the pelvis and hip to allow compensatory strategies. For example, 

stroke survivors who trained in a robotic gait trainer without hip abduction, showed 

considerable abduction torques in their impaired leg to overcome their lack of knee 

flexion during swing [177]. Although the robot enforced a gait pattern that facilitated a 

save walking pattern, the subjects tried to over-power the robot with their hip 

circumduction. As highlighted before, restricting important DOFs leads to a situation 

where training in the robot does not resemble free walking, where the patient can freely 

employ their compensatory strategies. Overruling these compensatory strategies during 

gait training may affect the potential increase in walking ability. Thus, to increase the 

efficacy of robot-aided gait training, the training should not only focus on restoring a 

normal walking pattern but also allow, and possibly even train, these compensatory 

strategies.  

1.12 Robotic assessment of joint properties 

As mentioned before, robotic gait trainers can be used in a wider sense than just for the 

support of leg movements during treadmill training. Because the majority of the robotic 

gait trainers are instrumented with sensors that can measure joint angles and forces, 

these parameters can also be used to objectively monitor the patient’s performance and 

recovery. In addition, well-designed and quantifiable training methods may even reveal 

some of the mechanisms behind movement recovery and the effects of different types of 

specific rehabilitation regimes. Eventually, this may lead to the development of more 

effective treatments [178].  

So far, most robotic gait trainers monitor the patient’s performance throughout the 

training sessions by recording gait parameters like stride length, cadence, gait symmetry, 

joint excursions [135] or joint moments [133,179]. However, gait kinematics and kinetics 

are not the only important measures in rehabilitation. For example, in current 

rehabilitation practice the (Modified) Ashworth Scale (AS/MAS) is the most popular clinical 

measure of spasticity. Spasticity is defined as an unusual tightness of the muscle due to 

increased tone and reflexes. Spasticity becomes more apparent at faster movements, and 

is a major source of gait disability in neurological patients [180]. Categorical scales like the 

MAS are clinically convenient measures, but they rely on the subjective assessment and 

experience of the clinician. Consequently, the inter- and intra-tester reliability is relatively 

low [181] and some even suggest that the validity and reliability of the AS is insufficient to 

be used as a measure of spasticity [182]. Therefore, different types of devices have been 

suggested for a more objective and quantitative measure of joint spasticity, ranging from 

simple hand-held dynamometers to automated isokinetic dynamometers, like the KinCom 

(Isokinetic International) or the BioDex systems (Biodex Medical Systems). There is also a 

large body of research in which more sophisticated devices are used to study the 

mechanical abnormalities associated with neuromuscular disorders like SCI [183] or stroke 

[184]. These systems measure the torques evoked by randomly perturbing the joint. 

System identification techniques and muscular models are then used to determine the 
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relative contribution of the intrinsic stiffness (from the spastic muscles) and the apparent 

stiffness due to reflex behavior. These studies have shown, for example, that SCI and 

stroke patients have abnormal passive ankle stiffness caused by and increased reflex 

stiffness [183,184]. 

Such quantitative measures provide valuable information about the condition of the 

patients and have demonstrated to have an intra-subject reliability which was as good as, 

or better than, most clinical measures [185,186]. However, performing such tests during 

each training session would add time-consuming procedures to existing rehabilitation 

protocols. Instead, integration of joint assessment within robotic gait trainers would allow 

convenient testing of joint properties as part of robotic gait training protocols. Tracking 

joint properties over the course of gait therapy may yield direct insight into how changes 

in joint properties affect gait function. Promising results of robotic assessment of joint 

properties like spasticity, muscle strength or joint range of motion have been reported for 

the Lokomat. To measure the mechanical joint stiffness, Lunenburger et al. [187] applied 

sine-squared angular motions to the joint, while the subject was suspended in the air. The 

measured joint torques were compensated for the dynamics of the orthosis and used to 

calculate the joint stiffness. Generally, a higher mechanical stiffness was observed for 

joints with higher spasticity levels (MAS 2 to 4), whereas for lower MAS scores the 

measured stiffness did not vary significantly. A similar setup was used by Bolliger et al. 

[188] to record maximum voluntary force. Here, subjects were asked to push against the 

orthosis, while the system recorded the forces acting on the force transducers. They 

showed that their developed assessment method provides a reliable tool for measuring 

isometric torques in subjects with and without neurological movement disorders. 

Although the development of joint assessment tools for robotic gait trainers is in a very 

early stage, these results demonstrate that it is feasible to obtain objective measures of 

joint properties in a repeatable and convenient manner.  

1.13 Thesis objectives and goals 

The goal of this thesis is twofold. The first goal is to develop and evaluate the effectiveness 

of different controllers based on the assist-as-needed (AAN) principle. The second goal of 

this thesis is to assess the feasibility of using the LOPES as a measurement tool to quantify 

joint properties.  

Many robotic control strategies require reference trajectories to determine the amount of 

support. In Chapter 2 we present and evaluate a novel method to reconstruct body-height 

and speed-dependent joint trajectories based on regression models for kinematic key 

events.  

Impedance-controlled robotic gait training, where the support is provided on a joint level 

and the assistive torques are proportional to the deviation from a reference trajectory, 

can be considered as assist-as-needed. In Chapter 3, we evaluate the effectiveness of this 
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 approach in a group of chronic incomplete SCI patients and assess to what extent the 

participants retain their training-induced functional improvements. 

As discussed above, gait training with control on a joint level aims at functional 

improvements due to restitution of function rather than compensation. To allow the use 

of compensatory strategies, we developed a method that supports the patient on a 

subtask level, rather than a joint level. The selection of subtasks that are supported is 

based on the capabilities and progress of the patient. In this respect subtask-support can 

be seen as an extension of the AAN principle. In Chapter 4, we evaluate this approach in 

chronic stroke survivors for one specific subtask; toe clearance. By defining the reference 

trajectory in the coordinate system of the ankle instead of joint angles, the subjects can 

choose their own strategy to reach sufficient toe clearance. To minimize the patient’s 

reliance on the provided support, we also implemented an adaptive control algorithm that 

reduces the support levels when kinematic errors are small. 

To effectively implement AAN strategies the robot should be able to provide the necessary 

assistance, but also requires the robot to be transparent when no assistance is needed. In 

Chapter 5 we exploit the cyclic behavior of walking to develop two controllers that 

improve the transparency of the LOPES. The first controller improves the (zero)-torque 

tracking mode. The second controller compensates for the passive dynamics of the 

exoskeleton to reduce the interaction forces between the LOPES and the user. 

Regular assessment of the patient’s joint properties enables objective monitoring of the 

patient’s recovery and may yield direct insight into how changes in joint properties affect 

gait function. So far, most of these measures are recorded with dedicated equipment and 

focus on a single joint. In Chapter 6 we introduce a new method to quantify joint 

properties using the LOPES. The method is based on Multi Input Multi Output (MIMO) 

system identification techniques and can be used to estimate multi-joint-impedance. 

Chapter 7 includes a general discussion, based on the results of this thesis, followed by 

recommendations for future developments. 

 

 



General introduction 

 

29 

C
h

a
p

te
r 1

 

References 

[1] “The World Health Report 2002,” vol. 16, no. 2, pp. 1-204, 2003. 

[2] M. a. Foulkes, P. a. Wolf, T. R. Price, J. P. Mohr, and D. B. Hier, “The Stroke Data Bank: 

design, methods, and baseline characteristics,” Stroke, vol. 19, no. 5, pp. 547-554, 1988. 

[3] D. Lloyd-Jones, R. J. Adams, T. M. Brown, M. Carnethon, S. Dai, G. De Simone, T. B. 

Ferguson, E. Ford, K. Furie, C. Gillespie, A. Go, K. Greenlund, N. Haase, S. Hailpern, P. M. 

Ho, V. Howard, B. Kissela, S. Kittner, D. Lackland, L. Lisabeth, A. Marelli, M. M. McDermott, 

J. Meigs, D. Mozaffarian, M. Mussolino, G. Nichol, V. L. Roger, W. Rosamond, R. Sacco, P. 

Sorlie, R. Stafford, T. Thom, S. Wasserthiel-Smoller, N. D. Wong, and J. Wylie-Rosett, 

“Heart disease and stroke statistics--2010 update: a report from the American Heart 

Association.,” Circulation, vol. 121, no. 7, pp. e46-e215, 2010. 

[4] C. J. L. Murray and C. Stein, “The Global Burden of Disease 2000 project: aims, methods 

and data sources,” 2001. 

[5] V. L. Feigin, C. M. M. Lawes, D. A. Bennett, and C. S. Anderson, “Stroke epidemiology: a 

review of population-based studies of incidence, prevalence, and case-fatality in the late 

20th century,” Lancet Neurol., vol. 2, no. 1, pp. 43-53, 2003. 

[6] R. E. Petrea, A. S. Beiser, S. Seshadri, M. Kelly-Hayes, C. S. Kase, and P. a Wolf, “Gender 

differences in stroke incidence and poststroke disability in the Framingham heart study.,” 

Stroke., vol. 40, no. 4, pp. 1032-7, 2009. 

[7] P. Thorvaldsen, M. Davidsen, H. Bronnum-Hansen, and M. Schroll, “Stable Stroke 

Occurrence Despite Incidence Reduction in an Aging Population : Stroke Trends in the 

Danish Monitoring Trends and Determinants in Cardiovascular Disease (MONICA) 

Population,” Stroke, vol. 30, no. 12, pp. 2529-2534, 1999. 

[8] R. Carandang, A. Beiser, M. Kelly-hayes, C. S. Kase, W. B. Kannel, and P. A. Wolf, “Trends in 

Incidence, Lifetime Risk, Severity, and 30-Day Mortality of Stroke Over the Past 50 Years 

Raphael,” vol. 296, no. 24, pp. 2939-2946, 2014. 

[9] P. M. Rothwell, a J. Coull, M. F. Giles, S. C. Howard, L. E. Silver, L. M. Bull, S. a Gutnikov, P. 

Edwards, D. Mant, C. M. Sackley, a Farmer, P. a G. Sandercock, M. S. Dennis, C. P. Warlow, 

J. M. Bamford, and P. Anslow, “Change in stroke incidence, mortality, case-fatality, 

severity, and risk factors in Oxfordshire, UK from 1981 to 2004 (Oxford Vascular Study).,” 

Lancet, vol. 363, no. 9425, pp. 1925-33, 2004. 

[10] M. Brainin, N. Bornstein, G. Boysen, and V. Demarin, “Acute neurological stroke care in 

Europe: results of the European Stroke Care Inventory.,” Eur. J. Neurol., vol. 7, no. 1, pp. 5-

10, 2000. 

[11] S. J. Olney and C. Richards, “Hemiparetic gait following stroke. Part I: Characteristics,” Gait 

Posture, vol. 4, no. 2, pp. 136-148, 1996. 

[12] A. L. Hsu, P. F. Tang, and M. H. Jan, “Analysis of impairments influencing gait velocity and 

asymmetry of hemiplegic patients after mild to moderate stroke,” Arch Phys Med Rehabil, 

vol. 84, no. 8, pp. 1185-1193, 2003. 

[13] C. M. Kim and J. J. Eng, “Magnitude and pattern of 3D kinematic and kinetic gait profiles in 

persons with stroke: relationship to walking speed,” Gait Posture, vol. 20, no. 2, pp. 140-

146, 2004. 

[14] A. R. Den Otter, A. C. Geurts, T. Mulder, and J. Duysens, “Abnormalities in the temporal 

patterning of lower extremity muscle activity in hemiparetic gait,” Gait Posture, vol. 25, no. 

3, pp. 342-52, 2006. 

[15] N. Arene and J. Hidler, “Understanding motor impairment in the paretic lower limb after a 

stroke: a review of the literature.,” Top. Stroke Rehabil., vol. 16, no. 5, pp. 346-56, 2009. 



Chapter 1 

 

30 

C
h

a
p

te
r 

1
 

[16] Skillbeck C.E., Wade D.T., Hewer R.L., and Wood V.A., “Recovery after stroke,” Neurol 

Neurosurg Psychiatr, vol. 46, pp. 5-8, 1983. 

[17] D. T. Wade and R. L. Hewer, “Functional abilities after stroke: measurement, natural 

history and prognosis.,” J. Neurol. Neurosurg. Psychiatry, vol. 50, no. 2, pp. 177-82, 1987. 

[18] H. S. Jørgensen, H. Nakayama, H. O. Raaschou, and T. S. Olsen, “Recovery of walking 

function in stroke patients: the Copenhagen Stroke Study.,” Arch. Phys. Med. Rehabil., vol. 

76, no. 1, pp. 27-32, 1995. 

[19] M. Wyndaele and J.-J. Wyndaele, “Incidence, prevalence and epidemiology of spinal cord 

injury: what learns a worldwide literature survey?,” Spinal Cord, vol. 44, no. 9, pp. 523-529, 

2006. 

[20] J. C. Furlan, M. G. Fehlings, C. H. Tator, and A. M. Davis, “Motor and sensory assessment of 

patients in clinical trials for pharmacological therapy of acute spinal cord injury: 

psychometric properties of the ASIA Standards.,” J. Neurotrauma, vol. 25, no. 11, pp. 1273-

301, 2008. 

[21] S. C. Kirshblum, W. Waring, F. Biering-Sorensen, S. P. Burns, M. Johansen, M. Schmidt-

Read, W. Donovan, D. Graves, A. Jha, L. Jones, M. J. Mulcahey, and A. Krassioukov, 

“International Standards for Neurological Classification of Spinal Cord Injury.,” J. Spinal 

Cord Med., vol. 34, no. 6, pp. 547-54, 2011. 

[22] M. P. Jensen, C. M. Kuehn, D. Amtmann, and D. D. Cardenas, “Symptom burden in persons 

with spinal cord injury.,” Arch. Phys. Med. Rehabil., vol. 88, no. 5, pp. 638-45, 2007. 

[23] R. L. Waters, R. H. Adkins, and J. S. Yakura, “Definition of complete spinal cord injury.,” 

Paraplegia, vol. 29, no. 9, pp. 573-81, 1991. 

[24] J. W. Fawcett, A. Curt, J. D. Steeves, W. P. Coleman, M. H. Tuszynski, D. Lammertse, P. F. 

Bartlett, A. R. Blight, V. Dietz, J. Ditunno, B. H. Dobkin, L. A. Havton, P. H. Ellaway, M. G. 

Fehlings, A. Privat, R. Grossman, J. D. Guest, N. Kleitman, M. Nakamura, M. Gaviria, and D. 

Short, “Guidelines for the conduct of clinical trials for spinal cord injury as developed by 

the ICCP Panel: clinical trial inclusion/exclusion criteria and ethics.,” Spinal Cord, vol. 45, 

no. 3, pp. 190-205, 2007. 

[25] Consortium for Spinal Cord Medicine., “Outcomes following traumatic spinal cord injury: 

clinical practice guidelines for health-care professionals.,” J Spinal Cord Med, vol. 23, no. 4, 

pp. 289-316, 2000. 

[26] S. Kirshblum, S. Millis, W. McKinley, and D. Tulsky, “Late neurologic recovery after 

traumatic spinal cord injury,” Arch. Phys. Med. Rehabil., vol. 85, no. 11, pp. 1811-1817, 

2004. 

[27] J. Mehrholz, J. Kugler, and M. Pohl, “Locomotor training for walking after spinal cord 

injury.,” Spine (Phila. Pa. 1976)., vol. 33, no. 21, pp. E768-E777, 2008. 

[28] J. J. van Middendorp, a J. F. Hosman, M. H. Pouw, and H. Van de Meent, “ASIA impairment 

scale conversion in traumatic SCI: is it related with the ability to walk? A descriptive 

comparison with functional ambulation outcome measures in 273 patients.,” Spinal Cord, 

vol. 47, no. 7, pp. 555-60, 2009. 

[29] K. S. Crozier, L. L. Cheng, V. Graziani, G. Zorn, G. Herbison, and J. F. Ditunno, “Spinal cord 

injury: prognosis for ambulation based on quadriceps recovery.,” Paraplegia, vol. 30, no. 

11, pp. 762-7, 1992. 

[30] A. Pépin, K. E. Norman, and H. Barbeau, “Treadmill walking in incomplete spinal-cord-

injured subjects: 1. Adaptation to changes in speed.,” Spinal Cord, vol. 41, no. 5, pp. 257-

70, 2003. 

[31] R. L. Waters, R. H. Adkins, J. S. Yakura, and I. Sie, “Motor and sensory recovery following 

incomplete tetraplegia,” in Archives of Physical Medicine and Rehabilitation, 1994, vol. 75, 

no. 3, pp. 306-311. 



General introduction 

 

31 

C
h

a
p

te
r 1

 

[32] I. G. L. van de Port, G. Kwakkel, V. P. M. Schepers, and E. Lindeman, “Predicting mobility 

outcome one year after stroke: a prospective cohort study.,” J. Rehabil. Med., vol. 38, no. 

4, pp. 218-23, 2006. 

[33] K. D. Anderson, “Targeting recovery: priorities of the spinal cord-injured population.,” J. 

Neurotrauma, vol. 21, no. 10, pp. 1371-1383, 2004. 

[34] P. L. Ditunno, M. Patrick, M. Stineman, and J. F. Ditunno, “Who wants to walk? Preferences 

for recovery after SCI: a longitudinal and cross-sectional study.,” Spinal Cord, vol. 47, no. 3, 

pp. 500-506, 2008. 

[35] C. Tefertiller, B. Pharo, N. Evans, and P. Winchester, “Efficacy of rehabilitation robotics for 

walking training in neurological disorders: A review,” J. Rehabil. Res. Dev., vol. 48, no. 4, 

pp. 387-416, 2011. 

[36] S. C. Cramer, M. Sur, B. H. Dobkin, C. O’Brien, T. D. Sanger, J. Q. Trojanowski, J. M. Rumsey, 

R. Hicks, J. Cameron, D. Chen, W. G. Chen, L. G. Cohen, C. deCharms, C. J. Duffy, G. F. Eden, 

E. E. Fetz, R. Filart, M. Freund, S. J. Grant, S. Haber, P. W. Kalivas, B. Kolb, A. F. Kramer, M. 

Lynch, H. S. Mayberg, P. S. McQuillen, R. Nitkin, A. Pascual-Leone, P. Reuter-Lorenz, N. 

Schiff, A. Sharma, L. Shekim, M. Stryker, E. V Sullivan, and S. Vinogradov, “Harnessing 

neuroplasticity for clinical applications.,” Brain, vol. 134, no. Pt 6, pp. 1591-609, 2011. 

[37] B. H. Dobkin, “Motor rehabilitation after stroke, traumatic brain, and spinal cord injury: 

common denominators within recent clinical trials,” Curr Opin Neurol, vol. 22, no. 6, pp. 

563-569, 2014. 

[38] A. Curt, H. J. A. Van Hedel, D. Klaus, and V. Dietz, “Recovery from a spinal cord injury: 

significance of compensation, neural plasticity, and repair.,” J. Neurotrauma, vol. 25, no. 6, 

pp. 677-685, 2008. 

[39] G. Kwakkel, B. Kollen, and E. Lindeman, “Understanding the pattern of functional recovery 

after stroke: facts and theories,” Restor Neurol Neurosci, vol. 22, no. 3-5, pp. 281-299, 

2004. 

[40] H. Barbeau, S. Nadeau, and C. Garneau, “Physical Determinants, Emerging Concepts, and 

Training Approaches in Gait of Individuals with Spinal Cord Injury,” vol. 23, no. 3, pp. 571-

585, 2006. 

[41] A. Pollock, G. Baer, P. Langhorne, and V. Pomeroy, “Physiotherapy treatment approaches 

for the recovery of postural control and lower limb function following stroke: a systematic 

review.,” Clin. Rehabil., vol. 21, no. 5, pp. 395-410, 2007. 

[42] R. P. S. Van Peppen, “Towards evidence-based physiotherapy for patients with stroke,” 

Dissertation, 2008. 

[43] N. A. Bayona, J. Bitensky, K. Salter, and R. Teasell, “The role of task-specific training in 

rehabilitation therapies,” Top Stroke Rehabil, vol. 12, no. 3, pp. 58-65, 2005. 

[44] C. L. Richards, F. Malouin, S. Wood-Dauphinee, J. I. Williams, J. P. Bouchard -, and D. 

Brunet, “Task-specific physical therapy for optimization of gait recovery in acute stroke 

patients,” Arch. Phys. Med. Rehabil., vol. 74, no. 6, pp. 612-620, 1993. 

[45] B. H. Dobkin, “Strategies for stroke rehabilitation,” Lancet Neurol, vol. 3, no. 9, pp. 528-

536, 2004. 

[46] B. French, T. Lh, L. Mj, S. Cj, J. Mcadam, A. Forster, P. Langhorne, A. Walker, W. Cl, L. 

Connell, J. Coupe, and N. Mcmahon, “Repetitive task training for improving functional 

ability after stroke ( Review ),” Cochrane Database Syst Rev., no. 4, 2014. 

[47] G. Kwakkel, R. C. Wagenaar, J. W. Twisk, G. J. Lankhorst, and J. C. Koetsier, “Intensity of leg 

and arm training after primary middle-cerebral-artery stroke: a randomised trial,” Lancet, 

vol. 354, no. 9174, pp. 191-196, 1999. 

[48] K. J. Sullivan, D. A. Brown, T. Klassen, S. Mulroy, T. Ge, S. P. Azen, and C. J. Winstein, 

“Effects of task-specific locomotor and strength training in adults who were ambulatory 



Chapter 1 

 

32 

C
h

a
p

te
r 

1
 

after stroke: results of the STEPS randomized clinical trial,” Phys Ther, vol. 87, no. 12, pp. 

1580-1602, 2007. 

[49] H. Barbeau, “Locomotor training in neurorehabilitation: emerging rehabilitation concepts,” 

Neurorehabil Neural Repair, vol. 17, no. 1, pp. 3-11, 2003. 

[50] A. L. Behrman, M. G. Bowden, and P. M. Nair, “Neuroplasticity after spinal cord injury and 

training: an emerging paradigm shift in rehabilitation and walking recovery.,” Phys. Ther., 

vol. 86, no. 10, pp. 1406-1425, 2006. 

[51] R. Teasell, J. Bitensky, K. Salter, and N. A. Bayona, “The role of timing and intensity of 

rehabilitation therapies,” Top Stroke Rehabil, vol. 12, no. 3, pp. 46-57, 2005. 

[52] G. Kwakkel and R. C. Wagenaar, “Effect of duration of upper- and lower-extremity 

rehabilitation sessions and walking speed on recovery of interlimb coordination in 

hemiplegic gait,” Phys Ther, vol. 82, no. 5, pp. 432-48, 2002. 

[53] R. W. Teasell, N. C. Foley, S. K. Bhogal, and M. R. Speechley, “An evidence-based review of 

stroke rehabilitation.,” Top. Stroke Rehabil., vol. 10, no. 1, pp. 29-58, 2003. 

[54] L. Lunenburger, M. Bolliger, D. Czell, R. Muller, and V. Dietz, “Modulation of locomotor 

activity in complete spinal cord injury,” Exp Brain Res, vol. 174, no. 4, pp. 638-646, 2006. 

[55] V. Dietz, R. Muller, and G. Colombo, “Locomotor activity in spinal man: significance of 

afferent input from joint and load receptors,” Brain, vol. 125, no. Pt 12, pp. 2626-2634, 

2002. 

[56] S. J. Harkema, S. L. Hurley, U. K. Patel, P. S. Requejo, B. H. Dobkin, and V. R. Edgerton, 

“Human lumbosacral spinal cord interprets loading during stepping.,” J. Neurophysiol., vol. 

77, no. 2, pp. 797-811, 1997. 

[57] J. Duysens, F. Clarac, and H. Cruse, “Load-regulating mechanisms in gait and posture: 

comparative aspects.,” Physiol. Rev., vol. 80, no. 1, pp. 83-133, 2000. 

[58] A. L. Behrman and S. J. Harkema, “Locomotor training after human spinal cord injury: a 

series of case studies,” Phys Ther, vol. 80, no. 7, pp. 688-700, 2000. 

[59] A. L. Hicks, M. M. Adams, K. Martin Ginis, L. Giangregorio, a Latimer, S. M. Phillips, and N. 

McCartney, “Long-term body-weight-supported treadmill training and subsequent follow-

up in persons with chronic SCI: effects on functional walking ability and measures of 

subjective well-being.,” Spinal Cord, vol. 43, no. 5, pp. 291-8, 2005. 

[60] B. Dobkin, H. Barbeau, D. Deforge, J. Ditunno, R. Elashoff, D. Apple, M. Basso, A. Behrman, 

S. Harkema, M. Saulino, M. Scott, and S. C. I. L. Trial, “The evolution of walking-related 

outcomes over the first 12 weeks of rehabilitation for incomplete traumatic spinal cord 

injury: The multicenter randomized Spinal Cord Injury Locomotor Trial,” Neurorehabil. 

Neural Repair, vol. 21, no. 1, pp. 25-35, 2007. 

[61] E. C. Field-Fote and K. E. Roach, “Influence of a locomotor training approach on walking 

speed and distance in people with chronic spinal cord injury: a randomized clinical trial.,” 

Phys. Ther., vol. 91, no. 1, pp. 48-60, 2011. 

[62] H. Barbeau and M. Visintin, “Optimal outcomes obtained with body-weight support 

combined with treadmill training in stroke subjects,” Arch Phys Med Rehabil, vol. 84, no. 

10, pp. 1458-1465, 2003. 

[63] K. J. McCain, F. E. Pollo, B. S. Baum, S. C. Coleman, S. Baker, and P. S. Smith, “Locomotor 

treadmill training with partial body-weight support before overground gait in adults with 

acute stroke: a pilot study,” Arch Phys Med Rehabil, vol. 89, no. 4, pp. 684-691, 2008. 

[64] Y. Laufer, R. Dickstein, Y. Chefez, and E. Marcovitz, “The effect of treadmill training on the 

ambulation of stroke survivors in the early stages of rehabilitation: a randomized study.,” J. 

Rehabil. Res. Dev., vol. 38, no. 1, pp. 69-78, 2001. 

[65] S. Hesse, M. Konrad, and D. Uhlenbrock, “Treadmill walking with partial body weight 

support versus floor walking in hemiparetic subjects.,” Arch. Phys. Med. Rehabil., vol. 80, 

no. 4, pp. 421-7, 1999. 



General introduction 

 

33 

C
h

a
p

te
r 1

 

[66] A. M. Moseley, A. Stark, I. D. Cameron, and A. Pollock, “Treadmill training and body weight 

support for walking after stroke.,” Stroke., vol. 34, no. 12, pp.1-3, 3006 

[67] J. Mehrholz, M. Pohl, and B. Elsner, “Treadmill training and body weight support for 

walking after stroke ( Review ),” Cochrane Database Syst Rev., 2014 

[68] T. Lam, J. J. Eng, D. L. Wolfe, J. T. Hsieh, and M. Whittaker, “A systematic review of the 

efficacy of gait rehabilitation strategies for spinal cord injury.,” Top. Spinal Cord Inj. 

Rehabil., vol. 13, no. 1, pp. 32-57, 2007. 

[69] M. Wessels, C. Lucas, I. Eriks, and S. De Groot, “Body weight-supported gait training for 

restoration of walking in people with an incomplete spinal cord injury: a systematic 

review.,” J. Rehabil. Med. Off. J. UEMS Eur. Board Phys. Rehabil. Med., vol. 42, no. 6, pp. 

513-519, 2010. 

[70] S. A. Morrison and D. Backus, “Locomotor training: is translating evidence into practice 

financially feasible?,” J. Neurol. Phys. Ther., vol. 31, no. 2, pp. 50-54, 2007. 

[71] H. Schmidt, C. Werner, R. Bernhardt, S. Hesse, and J. Kruger, “Gait rehabilitation machines 

based on programmable footplates,” J Neuroengineering Rehabil, vol. 4, pp. 1-7, 2007. 

[72] S. Freivogel, D. Schmalohr, and J. Mehrholz, “Improved walking ability and reduced 

therapeutic stress with an electromechanical gait device.,” J. Rehabil. Med. Off. J. UEMS 

Eur. Board Phys. Rehabil. Med., vol. 41, no. 9, pp. 734-739, 2009. 

[73] J. Hidler, D. Nichols, M. Pelliccio, and K. Brady, “Advances in the understanding and 

treatment of stroke impairment using robotic devices,” Top Stroke Rehabil, vol. 12, no. 2, 

pp. 22-35, 2005. 

[74] T. G. Hornby, D. D. Campbell, D. H. Zemon, and J. H. Kahn, “Clinical and quantitative 

evaluation of robotic-assisted treadmill walking to retrain ambulation after spinal cord 

injury,” Top Spinal Cord Inj Rehabil, vol. 11, pp. 1-17, 2005. 

[75] J. A. Galvez, A. Budovitch, S. J. Harkema, and D. J. Reinkensmeyer, “Trainer variability 

during step training after spinal cord injury: Implications for robotic gait-training device 

design.,” J. Rehabil. Res. Dev., vol. 48, no. 2, pp. 147-160, 2011. 

[76] C. E. Lang, J. R. Macdonald, D. S. Reisman, L. Boyd, T. Jacobson Kimberley, S. M. Schindler-

Ivens, T. G. Hornby, S. a Ross, and P. L. Scheets, “Observation of amounts of movement 

practice provided during stroke rehabilitation.,” Arch. Phys. Med. Rehabil., vol. 90, no. 10, 

pp. 1692-8, 2009. 

[77] G. Colombo, M. Joerg, R. Schreier, and V. Dietz, “Treadmill training of paraplegic patients 

using a robotic orthosis,” J Rehabil Res Dev, vol. 37, no. 6, pp. 693-700, 2000. 

[78] S. K. Banala, A. Kulpe, and S. K. Agrawal, “A Powered Leg Orthosis for Gait Rehabilitation of 

Motor-Impaired Patients,” in Proceedings of the IEEE International Conference on Robotics 

and Automation, pp. 4140-4145, 2007. 

[79] P. Beyl, M. Van Damme, R. Van Ham, R. Versluys, B. Vanderborght, and D. Lefeber, “An 

exoskeleton for gait rehabilitation: Prototype design and control principle,” in Proceedings 

of the I IEEE International Conference on Robotics & Automation, pp. 2037-2042, 2008. 

[80] J. Veneman, “Design and evaluation of the gait rehabilitation robot lopes," Disseration, 

2007. 

[81] D. Zanotto, P. Setgal, and S. K. Agrawal, “Adaptive Assist-As-Needed Controller to Improve 

Gait Symmetryin Robot-Assisted Gait Training,” in Proceedings of the IEEE International 

Conference on Robotics & Automation, pp. 724-729, 2014. 

[82] J. Meuleman, E. H. F. Van Asseldonk, and H. Van Der Kooij, “Novel actuation design of a 

gait trainer with shadow leg approach,” in Proceedings of the IEEE International 

Conference on Rehabilitation Robotics, 2013. 

[83] J. Hidler, W. Wisman, and N. Neckel, “Kinematic trajectories while walking within the 

Lokomat robotic gait-orthosis,” Clin Biomech (Bristol, Avon), vol. 23, no. 10, pp. 1251-1259, 

2008. 



Chapter 1 

 

34 

C
h

a
p

te
r 

1
 

[84] H. Iwata, H. Yano, and F. Nakaizumi, “Gait Master: a versatile locomotion interface for 

uneven virtual terrain,” Proc. IEEE Virtual Real. 2001, pp. 131-137, 2001. 

[85] S. Freivogel, J. Mehrholz, T. Husak-Sotomayor, and D. Schmalohr, “Gait training with the 

newly developed ‘LokoHelp’-system is feasible for non-ambulatory patients after stroke, 

spinal cord and brain injury. A feasibility study.,” Brain Inj., vol. 22, no. 7-8, pp. 625-32, 

2008. 

[86] Y. Stauffer, Y. Allemand, M. Bouri, J. Fournier, R. Clavel, P. Metrailler, R. Brodard, and F. 

Reynard, “The WalkTrainer--a new generation of walking reeducation device combining 

orthoses and muscle stimulation,” IEEE Trans Neural Syst Rehabil Eng, vol. 17, no. 1, pp. 

38-45, 2009. 

[87] A. Roy, H. I. Krebs, D. J. Williams, C. T. Bever, L. W. Forrester, R. M. Macko, and N. Hogan, 

Robot-Aided Neurorehabilitation: A Novel Robot for Ankle Rehabilitation, IEEE Trans. 

Robot., vol. 25, no. 3. IEEE, 2009, pp. 569-582. 

[88] P. Winchester, R. McColl, R. Querry, N. Foreman, J. Mosby, K. Tansey, and J. Williamson, 

“Changes in supraspinal activation patterns following robotic locomotor therapy in motor-

incomplete spinal cord injury.,” Neurorehabil Neural Repair, vol. 19. no. 4, pp. 313-24, 

2005. 

[89] T. G. Hornby, D. H. Zemon, and D. Campbell, “Robotic-assisted, body-weight-supported 

treadmill training in individuals following motor incomplete spinal cord injury.,” Phys. 

Ther., vol. 85, no. 1, pp. 52-66, 2005. 

[90] M. Wirz, D. H. Zemon, R. Rupp, A. Scheel, G. Colombo, V. Dietz, and T. G. Hornby, 

“Effectiveness of automated locomotor training in patients with chronic incomplete spinal 

cord injury: A multicenter trial,” Arch. Phys. Med. Rehabil., vol. 86, no. 4, pp. 672-680, 

2005. 

[91] J. Benito-Penalva, D. J. Edwards, E. Opisso, M. Cortes, R. Lopez-Blazquez, N. Murillo, U. 

Costa, J. M. Tormos, J. Vidal-Samsó, J. Valls-Solé, and J. Medina, “Gait training in human 

spinal cord injury using electromechanical systems: effect of device type and patient 

characteristics.,” Arch. Phys. Med. Rehabil., vol. 93, no. 3, pp. 404-12, 2012. 

[92] M. van Nunen, “Recovery of walking ability using a robotic device,” Dissertation, 2013. 

[93] S. Hesse, C. Werner, and a Bardeleben, “Electromechanical gait training with functional 

electrical stimulation: case studies in spinal cord injury.,” Spinal Cord, vol. 42, no. 6, pp. 

346-52, 2004. 

[94] C. F. Nooijen, N. Ter Hoeve, and E. C. Field-Fote, “Gait quality is improved by locomotor 

training in individuals with SCI regardless of training approach,” J. Neuroeng. Rehabil., vol. 

6, no. 6, pp. 1-11, 2009. 

[95] M. Alcobendas-Maestro, A. Esclarín-Ruz, R. M. Casado-López, A. Muñoz-González, G. 

Pérez-Mateos, E. González-Valdizán, and J. L. R. Martín, “Lokomat robotic-assisted versus 

overground training within 3 to 6 months of incomplete spinal cord lesion: randomized 

controlled trial.,” Neurorehabil. Neural Repair, vol. 26, no. 9, pp. 1058-63, 2012. 

[96] I. Schwartz, A. Sajina, M. Neeb, I. Fisher, M. Katz-Luerer, and Z. Meiner, “Locomotor 

training using a robotic device in patients with subacute spinal cord injury,” Spinal Cord, 

vol. 49, no. 10, pp. 1062-1067, 2011. 

[97] G. Morone, M. Iosa, M. Bragoni, D. De Angelis, V. Venturiero, P. Coiro, R. Riso, L. Pratesi, 

and S. Paolucci, “Who may have durable benefit from robotic gait training?: a 2-year 

follow-up randomized controlled trial in patients with subacute stroke.,” Stroke., vol. 43, 

no. 4, pp. 1140-2, 2012. 

[98] M. Pohl, C. Werner, M. Holzgraefe, G. Kroczek, J. Mehrholz, I. Wingendorf, G. Hoolig, R. 

Koch, and S. Hesse, “Repetitive locomotor training and physiotherapy improve walking and 

basic activities of daily living after stroke: a single-blind, randomized multicentre trial 

(Deutsche GangtrainerStudie, DEGAS),” Clin Rehabil, vol. 21, no. 1, pp. 17-27, 2007. 



General introduction 

 

35 

C
h

a
p

te
r 1

 

[99] R. K. Tong, M. F. Ng, and L. S. Li, “Effectiveness of gait training using an electromechanical 

gait trainer, with and without functional electric stimulation, in subacute stroke: a 

randomized controlled trial,” Arch Phys Med Rehabil, vol. 87, no. 10, pp. 1298-1304, 2006. 

[100] A. Mayr, M. Kofler, E. Quirbach, H. Matzak, K. Frohlich, and L. Saltuari, “Prospective, 

blinded, randomized crossover study of gait rehabilitation in stroke patients using the 

Lokomat gait orthosis,” Neurorehabil Neural Repair, vol. 21, no. 4, pp. 307-314, 2007. 

[101] K. P. Westlake and C. Patten, “Pilot study of Lokomat versus manual-assisted treadmill 

training for locomotor recovery post-stroke,” J Neuroeng Rehabil, vol. 6, pp. 1-11, 2009. 

[102] C. Werner, S. Von Frankenberg, T. Treig, M. Konrad, and S. Hesse, “Treadmill training with 

partial body weight support and an electromechanical gait trainer for restoration of gait in 

subacute stroke patients: a randomized crossover study,” Stroke, vol. 33, no. 12, pp. 2895-

2901, 2002. 

[103] B. Husemann, F. Muller, C. Krewer, S. Heller, and E. Koenig, “Effects of locomotion training 

with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a 

randomized controlled pilot study,” Stroke, vol. 38, no. 2, pp. 349-354, 2007. 

[104] I. Schwartz, A. Sajin, I. Fisher, M. Neeb, M. Shochina, M. Katz-Leurer, and Z. Meiner, “The 

effectiveness of locomotor therapy using robotic-assisted gait training in subacute stroke 

patients: a randomized controlled trial.,” PM R, vol. 1, no. 6, pp. 516-23, Jun. 2009. 

[105] M. van Nunen, K. H. L. Gerrits, M. Konijnenbelt, T. W. J. Janssen, and A. de Haan, “Recovery 

of walking ability using a robotic device in subacute stroke patients: a randomized 

controlled study,” Inf. Healthc., pp. 1-8, 2014. 

[106] S. H. Peurala, O. Airaksinen, P. Huuskonen, P. Jäkälä, M. Juhakoski, K. Sandell, I. M. Tarkka, 

and J. Sivenius, “Effects of intensive therapy using gait trainer or floor walking exercises 

early after stroke.,” J. Rehabil. Med., vol. 41, no. 3, pp. 166-73, 2009. 

[107] T. G. Hornby, D. D. Campbell, J. H. Kahn, T. Demott, J. L. Moore, and H. R. Roth, “Enhanced 

gait-related improvements after therapist- versus robotic-assisted locomotor training in 

subjects with chronic stroke: a randomized controlled study,” Stroke, vol. 39, no. 6, pp. 

1786-1792, 2008. 

[108] J. Hidler, D. Nichols, M. Pelliccio, K. Brady, D. D. Campbell, J. H. Kahn, and T. G. Hornby, 

“Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in 

subacute stroke,” Neurorehabil Neural Repair, vol. 23, no. 1, pp. 5-13, 2009. 

[109] J. Mehrholz, B. Elsner, C. Werner, J. Kugler, and M. Pohl, “Electromechanical-assisted 

training for walking after stroke ( Review ),” Cochrane Database Syst Rev., 2013 

[110] J. Mehrholz, J. Kugler, and M. Pohl, “Locomotor training for walking after spinal cord injury 

(Review ),” Cochrane Database Syst Rev., 2012. 

[111] E. Swinnen, S. Duerinck, J.-P. Baeyens, R. Meeusen, and E. Kerckhofs, “Effectiveness of 

robot-assisted gait training in persons with spinal cord injury: a systematic review.,” J. 

Rehabil. Med., vol. 42, no. 6, pp. 520-6, 2010. 

[112] H. I. Krebs, J. J. Palazzolo, L. Dipietro, B. T. Volpe, and N. Hogan, “Rehabilitation robotics: 

Performance-based progressive robot-assisted therapy,” Auton. Robots, vol. 15, no. 1, pp. 

7-20, 2003. 

[113] N. Hogan, H. I. Krebs, B. Rohrer, J. J. Palazzolo, L. Dipietro, S. E. Fasoli, J. Stein, R. Hughes, 

W. R. Frontera, D. Lynch, and B. T. Volpe, “Motions or muscles? Some behavioral factors 

underlying robotic assistance of motor recovery,” J Rehabil Res Dev, vol. 43, no. 5, pp. 605-

618, 2006. 

[114] M. Lotze, C. Braun, N. Birbaumer, S. Anders, and L. G. Cohen, “Motor learning elicited by 

voluntary drive,” Brain, vol. 126, no. Pt 4, pp. 866-872, 2003. 

[115] A. Kaelin-Lang, L. Sawaki, and L. G. Cohen, “Role of voluntary drive in encoding an 

elementary motor memory,” J Neurophysiol, vol. 93, no. 2, pp. 1099-1103, 2005. 



Chapter 1 

 

36 

C
h

a
p

te
r 

1
 

[116] M. A. Perez, B. K. Lungholt, K. Nyborg, and J. B. Nielsen, “Motor skill training induces 

changes in the excitability of the leg cortical area in healthy humans,” Exp Brain Res, vol. 

159, no. 2, pp. 197-205, 2004. 

[117] A. Wernig, “‘Ineffectiveness’ of automated locomotor training.,” Arch. Phys. Med. Rehabil., 

vol. 86, no. 12, pp. 2385-6; 2005. 

[118] J. F. Israel, D. D. Campbell, J. H. Kahn, and T. G. Hornby, “Metabolic costs and muscle 

activity patterns during robotic- and therapist-assisted treadmill walking in individuals with 

incomplete spinal cord injury,” Phys Ther, vol. 86, no. 11, pp. 1466-1478, 2006. 

[119] T. G. Hornby, C. R. Kinnaird, C. L. Holleran, M. R. Rafferty, K. S. Rodriguez, and J. B. Cain, 

“Kinematic, Muscular, and Metabolic Responses During Exoskeletal-, Elliptical-, or 

Therapist-Assisted Stepping in People With Incomplete Spinal Cord Injury,” Physical 

Therapy, vol. 92, no. 10. pp. 1278-1291, 2012. 

[120] P. Coenen, G. Van Werven, M. P. M. Van Nunen, J. H. Van Dieën, K. H. L. Gerrits, and T. W. 

J. Janssen, “Robot-asisted walking vs overground walking in stroke patients: An evaluation 

of muscle activity,” J. Rehabil. Med., vol. 44, no. 4, pp. 331-337, 2012. 

[121] D. J. Reinkensmeyer, O. M. Akoner, D. P. Ferris, and K. E. Gordon, "Slacking by the human 

motor system: Computational models and implications for robotic orthoses," in 

Proceedings of the IEEE International Conference of the Eng Med Biol Soc, pp. 2129-32, 

2009 

[122] J. L. Emken, R. Benitez, A. Sideris, J. E. Bobrow, and D. J. Reinkensmeyer, “Motor 

Adaptation as a Greedy Optimization of Error and Effort,” J Neurophysiol, vol. 97, no. 6, pp. 

3997-4006, 2007. 

[123] J. L. Emken, R. Benitez, and D. J. Reinkensmeyer, “Human-robot cooperative movement 

training: Learning a novel sensory motor transformation during walking with robotic 

assistance-as-needed,” J Neuroengineering Rehabil, vol. 4, pp. 1-16, 2007. 

[124] D. Aoyagi, W. E. Ichinose, S. J. Harkema, D. J. Reinkensmeyer, and J. E. Bobrow, “A robot 

and control algorithm that can synchronously assist in naturalistic motion during body-

weight-supported gait training following neurologic injury,” IEEE Trans Neural Syst Rehabil 

Eng, vol. 15, no. 3, pp. 387-400, 2007. 

[125] J. L. Emken and D. J. Reinkensmeyer, “Robot-enhanced motor learning: accelerating 

internal model formation during locomotion by transient dynamic amplification,” IEEE 

Trans Neural Syst Rehabil Eng, vol. 13, no. 1, pp. 33-39, 2005. 

[126] R. A. Scheidt, J. B. Dingwell, and F. A. Mussa-Ivaldi, “Learning to move amid uncertainty.,” 

J. Neurophysiol., vol. 86, no. 2, pp. 971-985, 2001. 

[127] R. Shadmehr and F. A. Mussa-Ivaldi, “Adaptive representation of dynamics during learning 

of a motor task.,” J. Neurosci., vol. 14, no. 5 Pt 2, pp. 3208-3224, 1994. 

[128] L. L. Cai, A. J. Fong, C. K. Otoshi, Y. Q. Liang, J. G. Cham, H. Zhong, R. R. Roy, V. R. Edgerton, 

and J. W. Burdick, “Effects of consistency vs. variability in robotically controlled training of 

stepping in adult spinal mice.,” in Proceedings of the IEEE International Conference on 

Rehabilitation Robotics, 2005. 

[129] M. D. Ziegler, H. Zhong, R. R. Roy, and V. R. Edgerton, “Why variability facilitates spinal 

learning.,” J. Neurosci., vol. 30, no. 32, pp. 10720-6, 2010. 

[130] M. D. Lewek, T. H. Cruz, J. L. Moore, H. R. Roth, Y. Y. Dhaher, and T. G. Hornby, “Allowing 

intralimb kinematic variability during locomotor training poststroke improves kinematic 

consistency: a subgroup analysis from a randomized clinical trial.,” Phys. Ther., vol. 89, no. 

8, pp. 829-839, 2009. 

[131] D. J. Reinkensmeyer and S. J. Housman, “‘If I can’t do it once, why do it a hundred times?’: 

Connecting volition to movement success in a virtual environment motivates people to 

exercise the arm after stroke,” Virtual Rehabilitation, pp. 44-48, 2007 



General introduction 

 

37 

C
h

a
p

te
r 1

 

[132] J. L. Emken, J. E. Bobrow, and D. J. Reinkensmeyer, “Robotic movement training as an 

optimization problem: designing a controller that assists only as needed,” in Proceedings 

of the IEEE International Conference on Rehabilitation Robotics, 2005 

[133] R. Riener, L. Lunenburger, S. Jezernik, M. Anderschitz, G. Colombo, and V. Dietz, “Patient-

cooperative strategies for robot-aided treadmill training: first experimental results,” IEEE 

Trans Neural Syst Rehabil Eng, vol. 13, no. 3, pp. 380-394, 2005. 

[134] A. Duschau-Wicke, J. von Zitzewitz, A. Caprez, L. Lunenburger, and R. Riener, “Path control: 

a method for patient-cooperative robot-aided gait rehabilitation,” IEEE Trans Neural Syst 

Rehabil Eng, vol. 18, no. 1, pp. 38-48, 2010. 

[135] S. K. Banala, S. H. Kim, S. K. Agrawal, and J. P. Scholz, “Robot Assisted Gait Training With 

Active Leg Exoskeleton (ALEX),” IEEE Trans Neural Syst Rehabil Eng, vol. 17, no. 1, pp. 1-8, 

2009 

[136] S. Hussain, S. Q. Xie, and P. K. Jamwal, “Adaptive impedance control of a robotic orthosis 

for gait rehabilitation.,” IEEE Trans. Cybern., vol. 43, no. 3, pp. 1025-34, 2013. 

[137] M. Wu, T. G. Hornby, J. M. Landry, H. Roth, and B. D. Schmit, “A cable-driven locomotor 

training system for restoration of gait in human SCI.,” Gait Posture, vol. 33, no. 2, pp. 256-

60, 2011. 

[138] L. L. Cai, A. J. Fong, C. K. Otoshi, Y. Liang, J. W. Burdick, R. R. Roy, and V. R. Edgerton, 

“Implications of assist-as-needed robotic step training after a complete spinal cord injury 

on intrinsic strategies of motor learning,” J Neurosci, vol. 26, no. 41, pp. 10564-10568, 

2006. 

[139] J. L. Emken, S. J. Harkema, J. A. Beres-Jones, C. K. Ferreira, and D. J. Reinkensmeyer, 

“Feasibility of manual teach-and-replay and continuous impedance shaping for robotic 

locomotor training following spinal cord injury,” IEEE Trans Biomed Eng, vol. 55, no. 1, pp. 

322-334, 2008. 

[140] C. Lee, D. Won, M. J. Cantoria, M. Hamlin, and R. D. de Leon, “Robotic assistance that 

encourages the generation of stepping rather than fully assisting movements is best for 

learning to step in spinally contused rats.,” J. Neurophysiol., vol. 105, no. 6, pp. 2764-71, 

2011. 

[141] A. Duschau-Wicke, A. Caprez, and R. Riener, “Patient-cooperative control increases active 

participation of individuals with SCI during robot-aided gait training,” J. Neuroeng. 

Rehabil., vol. 7, no. 43, pp. 1-13, 2010. 

[142] C. Krishnan, R. Ranganathan, Y. Y. Dhaher, and W. Z. Rymer, “A pilot study on the feasibility 

of robot-aided leg motor training to facilitate active participation.,” PLoS One, vol. 8, no. 

10, p. e77370, Jan. 2013. 

[143] A. Schück, R. Labruyère, H. Vallery, R. Riener, and A. Duschau-Wicke, “Feasibility and 

effects of patient-cooperative robot-aided gait training applied in a 4-week pilot trial.,” J. 

Neuroeng. Rehabil., vol. 9, no. 1, pp. 1-14, 2012. 

[144] C. Krishnan, D. Kotsapouikis, Y. Y. Dhaher, and W. Z. Rymer, “Reducing robotic guidance 

during robot-assisted gait training improves gait function: a case report on a stroke 

survivor.,” Arch. Phys. Med. Rehabil., vol. 94, no. 6, pp. 1202-6, 2013. 

[145] H. Yano, K. Kasai, H. Saitou, and H. Iwata, “Development of a gait rehabilitation system 

using a locomotion interface,” J. Vis. Comput. Animat., vol. 14, no. 5, pp. 243-252, 2003. 

[146] S. Hesse, H. Schmidt, and C. Werner, “Machines to support motor rehabilitation after 

stroke: 10 years of experience in Berlin,” J Rehabil Res Dev, vol. 43, no. 5, pp. 671-678, 

2006. 

[147] J. L. Lelas, G. J. Merriman, P. O. Riley, and D. C. Kerrigan, “Predicting peak kinematic and 

kinetic parameters from gait speed.,” Gait Posture, vol. 17, no. 2, pp. 106-12, 2003. 



Chapter 1 

 

38 

C
h

a
p

te
r 

1
 

[148] G. Stoquart, C. Detrembleur, and T. Lejeune, “Effect of speed on kinematic, kinetic, 

electromyographic and energetic reference values during treadmill walking,” Neurophysiol 

Clin, vol. 38, no. 2, pp. 105-116, 2008. 

[149] H. Vallery, E. H. van Asseldonk, M. Buss, and H. van der Kooij, “Reference trajectory 

generation for rehabilitation robots: complementary limb motion estimation,” IEEE Trans 

Neural Syst Rehabil Eng, vol. 17, no. 1, pp. 23-30, 2009. 

[150] S. Jezernik, R. Scharer, G. Colombo, and M. Morari, “Adaptive robotic rehabilitation of 

locomotion: a clinical study in spinally injured individuals,” Spinal Cord, vol. 41, no. 12, pp. 

657-666, 2003. 

[151] S. Jezernik, G. Colombo, and M. Morani, “Automatic Gait-Pattern Adaptation Algorithms 

for Rehabilitation With a 4-DOF Robotic Orthosis,” IEEE Trans. Robot. Autom., vol. 20, no. 

3, pp. 574-582, 2004. 

[152] A. Duschau-wicke, T. Brunsch, S. Felsenstein, H. Vallery, and R. Riener, “Patient-

Cooperative Control : Adapting Robotic Interventions to Individual Human Capabilities,” 

pp. 271-274, 2009. 

[153] T. G. Hornby, D. J. Reinkensmeyer, and D. Chen, “Manually-assisted versus robotic-assisted 

body weight-supported treadmill training in spinal cord injury: what is the role of each?,” 

PM R, vol. 2, no. 3, pp. 214-21, 2010. 

[154] C. E. Bauby and A. D. Kuo, “Active control of lateral balance in human walking,” J Biomech, 

vol. 33, no. 11, pp. 1433-1440, 2000. 

[155] J. F. Veneman, J. Menger, E. H. F. van Asseldonk, F. C. T. van der Helm, and H. van der 

Kooij, “Fixating the pelvis in the horizontal plane affects gait characteristics.,” Gait Posture, 

vol. 28, no. 1, pp. 157-63, 2008. 

[156] J. M. Hidler and A. E. Wall, “Alterations in muscle activation patterns during robotic-

assisted walking,” Clin Biomech (Bristol, Avon), vol. 20, no. 2, pp. 184-193, 2005. 

[157] J. M. Donelan, D. W. Shipman, R. Kram, and A. D. Kuo, “Mechanical and metabolic 

requirements for active lateral stabilization in human walking,” J Biomech, vol. 37, no. 6, 

pp. 827-835, 2004. 

[158] A. L. Hof, “The ‘extrapolated center of mass’ concept suggests a simple control of balance 

in walking.,” Hum. Mov. Sci., vol. 27, no. 1, pp. 112-25, 2008. 

[159] Hocoma, “Lokomat® Pro with FreeD.” [Online]. Available: 

http://www.hocoma.com/fileadmin/user/Dokumente/Lokomat/fly_L6freeD_140128_en.p

df. [Accessed: 10-Sep-2014]. 

[160] T. D. Royer and P. E. Martin, “Manipulations of leg mass and moment of inertia: Effects on 

energy cost of walking,” Med. Sci. Sports Exerc., vol. 37, no. 4, pp. 649-656, 2005. 

[161] R. C. Browning, J. R. Modica, R. Kram, and A. Goswami, “The Effects of Adding Mass to the 

Legs on the Energetics and Biomechanics of Walking,” Med. Sci. Sport. Exerc., vol. 39, no. 3, 

pp. 515-525, 2007. 

[162] J. F. Veneman, R. Ekkelenkamp, R. Kruidhof, F. C. T. van der Helm, and H. van der Kooij, “A 

Series Elastic- and Bowden-Cable-Based Actuation System for Use as Torque Actuator in 

Exoskeleton-Type Robots,” Int. J. Rob. Res., vol. 25, no. 3, pp. 261-281, 2006. 

[163] E. H. F. van Asseldonk, J. F. Veneman, R. Ekkelenkamp, J. H. Buurke, F. C. T. van der Helm, 

and H. van der Kooij, “The Effects on Kinematics and Muscle Activity of Walking in a 

Robotic Gait Trainer During Zero-Force Control.,” IEEE Trans. Neural Syst. Rehabil. Eng., 

vol. 16, no. 4, pp. 360-370, 2008. 

[164] J. L. Emken, J. H. Wynne, S. J. Harkema, and D. J. Reinkensmeyer, “A robotic device for 

manipulating human stepping,” IEEE Transactions on Robotics, vol. 22, pp. 185-189, 2006 

[165] R. Ronsse, B. Koopman, N. Vitiello, T. Lenzi, S. M. M. De Rossi, J. van den Kieboom, E. van 

Asseldonk, M. C. Carrozza, H. van der Kooij, and A. J. Ijspeert, “Oscillator-based walking 



General introduction 

 

39 

C
h

a
p

te
r 1

 

assistance: a model-free approach.,” in Proceedings of the IEEE International Conference 

on Rehabilitation Robotics, 2011. 

[166] H. Vallery, A. Duschau-wicke, and R. Riener, “Optimized Passive Dynamics Improve 

Transparency of Haptic Devices,” in Proceedings of the IEEE International Conference on 

Robotics and Automation, pp. 301-306, 2009. 

[167] K. Van Kammen, A. Boonstra, H. Reinders-Messelink, and R. den Otter, “The Combined 

Effects of Body Weight Support and Gait Speed on Gait Related Muscle Activity: A 

Comparison between Walking in the Lokomat Exoskeleton and Regular Treadmill 

Walking.,” PLoS One, vol. 9, no. 9, p. e107323, Jan. 2014. 

[168] H. Vallery, A. Duschau-Wicke, and R. Riener, "Generalized elasticities improve patient-

cooperative control of rehabilitation robots," in Proceedings of the IEEE International 

Conference on Rehabilitation Robotics, pp. 535-541, 2009 

[169] D. J. Reinkensmeyer, D. Aoyagi, J. L. Emken, J. A. Galvez, W. Ichinose, G. Kerdanyan, S. 

Maneekobkunwong, K. Minakata, J. A. Nessler, R. Weber, R. R. Roy, R. de Leon, J. E. 

Bobrow, S. J. Harkema, and V. R. Edgerton, “Tools for understanding and optimizing 

robotic gait training,” J Rehabil Res Dev, vol. 43, no. 5, pp. 657-670, 2006. 

[170] M. F. Levin, J. a Kleim, and S. L. Wolf, “What do motor ‘recovery’ and ‘compensation’ mean 

in patients following stroke?,” Neurorehabil. Neural Repair, vol. 23, no. 4, pp. 313-9, 2009. 

[171] A. Leroux, J. Fung, and H. Barbeau, “Postural adaptation to walking on inclined surfaces: II. 

Strategies following spinal cord injury.,” Clin. Neurophysiol., vol. 117, no. 6, pp. 1273-82, 

2006. 

[172] G. Chen, C. Patten, D. H. Kothari, and F. E. Zajac, “Gait differences between individuals with 

post-stroke hemiparesis and non-disabled controls at matched speeds,” Gait Posture, vol. 

22, no. 1, pp. 51-56, 2005. 

[173] D. C. Kerrigan, E. P. Frates, S. Rogan, and P. O. Riley, “Hip hiking and circumduction: 

quantitative definitions,” Am J Phys Med Rehabil, vol. 79, no. 3, pp. 247-252, 2000. 

[174] I. A. K. DeQuervain, S. R. Simon, S. Leurgans, W. S. Pease, and D. McAllister, “Gait pattern 

in the early recovery period after stroke,” J. Bone Jt. Surgery-American Vol., vol. 78A, no. 

10, pp. 1506-1514, 1996. 

[175] M. G. Bowden, C. K. Balasubramanian, R. R. Neptune, and S. A. Kautz, “Anterior-posterior 

ground reaction forces as a measure of paretic leg contribution in hemiparetic walking,” 

Stroke, vol. 37, no. 3, pp. 872-876, 2006. 

[176] J. H. Buurke, A. V Nene, G. Kwakkel, V. Erren-Wolters, M. J. IJzerman, and H. J. Hermens, 

“Recovery of Gait After Stroke: What Changes?,” Neurorehabil. Neural Repair, vol. 22, no. 

6, pp. 676-683, 2008. 

[177] N. D. Neckel, N. Blonien, D. Nichols, and J. Hidler, “Abnormal joint torque patterns 

exhibited by chronic stroke subjects while walking with a prescribed physiological gait 

pattern.,” J. Neuroeng. Rehabil., vol. 5, pp. 1-11, 2008. 

[178] D. J. Reinkensmeyer, J. L. Emken, and S. C. Cramer, “Robotics, motor learning, and 

neurologic recovery,” Annu Rev Biomed Eng, vol. 6, pp. 497-525, 2004. 

[179] J. Hidler, “Robotic-assessment of walking in individuals with gait disorders.,” in 

Proceedings of the IEEE International Conference of the Eng Med Biol Soc, pp. 4829-31, 

2004. 

[180] A. Lamontagne, F. Malouin, and C. L. Richards, “Locomotor-specific measure of spasticity 

of plantarflexor muscles after stroke,” Arch Phys Med Rehabil, vol. 82, no. 12, pp. 1696-

1704, 2001. 

[181] J. Mehrholz, K. Wagner, D. Meißner, K. Grundmann, C. Zange, R. Koch, and M. Pohl, 

“Reliability of the Modified Tardieu Scale and the Modified Ashworth Scale in adult 

patients with severe brain injury: a comparison study,” Clin. Rehabil., vol. 19, no. 7, pp. 

751-759, 2005. 



Chapter 1 

 

40 

C
h

a
p

te
r 

1
 

[182] Fleuren JF, G. Voerman, C. Erren-Wolters, G. Snoek, J. S. Rietman, H. J. Hermens, and N. 

AV., “Stop using the Ashworth Scale for the assessment of spasticity,” J Neurol Neurosurg 

Psychiatry, vol. 81, no. 1, pp. 46-52, 2009. 

[183] M. M. Mirbagheri, H. Barbeau, M. Ladouceur, and R. E. Kearney, “Intrinsic and reflex 

stiffness in normal and spastic, spinal cord injured subjects.,” Exp. Brain Res., vol. 141, no. 

4, pp. 446-59, 2001. 

[184] L. Galiana, J. Fung, and R. Kearney, “Identification of intrinsic and reflex ankle stiffness 

components in stroke patients,” Exp Brain Res, vol. 165, no. 4, pp. 422-434, 2005. 

[185] R. E. Kearney, P. L. Weiss, and R. Morier, “System identification of human ankle dynamics: 

intersubject variability and intrasubject reliability.,” Clin. Biomech. (Bristol, Avon), vol. 5, 

no. 4, pp. 205-17, 1990. 

[186] M. Boiteau, F. Malouin, and C. L. Richards, “Use of a Hand-held Dynamometer and a Kin-

Com Dynamometer for Evaluating Spastic Hypertonia in Children : A Reliability Study,” pp. 

796-802, 1995. 

[187] L. Lunenburger, G. Colombo, R. Riener, and V. Dietz, “Clinical assessments performed 

during robotic rehabilitation by the gait training robot Lokomat,” in Proceedings of the  

IEEE International Conference on Rehabilitation Robotics, pp. 345-348, 2005. 

[188] M. Bolliger, R. Banz, V. Dietz, and L. Lünenburger, “Standardized voluntary force 

measurement in a lower extremity rehabilitation robot.,” J. Neuroeng. Rehabil., vol. 5, p. 

23, 2008.  

 

 

 



  

  

Chapter 2

Speed-dependent reference joint trajectory 

generation for robotic gait support 

Published as: 

B. Koopman, E. H. F. van Asseldonk, H. van der Kooij, "Speed-dependent reference joint 

trajectory generation for robotic gait support", J. Biomech., vol. 47, pp. 1447-1458, 2014.



Chapter 2 

 

42 

C
h

a
p

te
r 

2
 

  

Abstract 

For the control of actuated orthoses, or gait rehabilitation robotics, kinematic reference 

trajectories are often required. These trajectories, consisting of joint angles, angular 

velocities and accelerations, are highly dependent on walking speed. We present and 

evaluate a novel method to reconstruct body height- and speed-dependent joint 

trajectories. First, we collected gait kinematics in fifteen healthy (middle) aged subjects 

(47-68), at a wide range of walking speeds (0.5-5 km/h). For each joint trajectory multiple 

key-events were selected (among which its extremes). Second, we derived regression-

models that predict the timing, angle, angular velocity and acceleration for each key-

event, based on walking speed and the subject’s body height. Finally, quintic splines were 

fitted between the predicted key-events to reconstruct a full gait cycle. Regression-models 

were obtained for hip ab-/adduction, hip flexion/extension, knee flexion/extension and 

ankle plantar-/dorsiflexion. Results showed that the majority of the key-events were 

dependent on walking speed, both in terms of timing and amplitude, whereas the body 

height had less effect. The reconstructed trajectories matched the measured trajectories 

very well, in terms of angle, angular velocity and acceleration. For the angles the RMSE 

between the reconstructed and measured trajectories was 2.6°. The mean correlation 

coefficient between the reconstructed and measured angular trajectories was 0.91. The 

method and the data presented in this paper can be used to generate speed-dependent 

gait patterns. These patterns can be used for the control of several robotic gait 

applications. Alternatively they can assist the assessment of pathological gait, where they 

can serve as a reference for “normal” gait. 
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2.1 Introduction  

During the last decade a lot of effort has been put in the development of actuated 

orthoses. They can enable neurological patients to walk again, assist physical therapy, or 

increase human performance above normal levels [1-4]. Independent of whether these 

devices are position or force controlled they often require reference trajectories to define 

the motion, or determine the amount of assistance. 

Generally, these reference patterns are based on pre-recorded trajectories from 

unimpaired volunteers walking on a treadmill or walkway [5,6], or based on walking in the 

device while it is operated in a transparent mode [7,8] or with the motors removed [11]. 

Others create patient specific patterns by recording the gait trajectory while the patient 

walks with manual assistance [9,10], or by reconstructing joint patterns based on 

movements of the unimpaired limb [12].  

Most methodologies however, have certain considerations that limit the use of the 

recorded trajectories to specific applications. Firs, due to the mass and inertia of a device 

and/or imperfections of the transparent mode, gait patterns recorded in the device might 

not match with the ones recorded during free walking [13,14]. Second, the recorded 

patterns obtained during manual assistance will only be valid for that specific subject (and 

speed) and still require initial manual support from the therapist. Third, coupling the 

movement of the disabled leg to the movement of the unimpaired leg is only applicable to 

patients with one affected leg, which is often true for stroke survivors, but not for many 

other neurological injuries. Thus, obtaining pre-recorded trajectories from unimpaired 

volunteers seems the most suitable approach to create a set of reference patterns that 

can be used in a variety of gait-support applications.  

Still, their use is constrained to the limited number of speeds they are recorded on. Most 

studies include slow, normal and fast walking [15-17], while the progress of the patients’ 

preferred walking speed can be as small as 0.1 km/h. Additionally, even the slow walking 

speeds of healthy controls, ranging from 0.9 to 1.4 m/s [16,17], are typically higher than 

the preferred walking speed of patients with neurological injuries like stroke, ISCI or 

Parkinson (0.5-1.1 m/s) [18-22].  

To eliminate the need to record joint trajectories at a high number of different walking 

speeds a method is required that can reconstruct joint trajectories for any given speed. 

Several studies already tried to quantify the speed-dependencies of joint trajectories for 

some key features like peak sagittal plane parameters [15,16,23,24].  

However, for robotic control purposes these peak parameters, consisting of one or two 

specific key-events per joint, are not sufficient to reconstruct a full gait cycle. Information 

about the velocity and acceleration of these key-events, which are never reported, would 

also allow for more accurate joint trajectory reconstruction. Additionally, the relative 

timing of these peak parameters, which is not included in most regression-models, is also 

shown to be largely dependent on speed [25]. Finally, all studies that provide regression-
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models for the speed-dependency of kinematic gait parameters are limited to the sagittal 

plane kinematics, whereas also hip ab-/adduction is incorporated in the more advanced 

orthoses. 

The objective of this study was to present and evaluate a novel method for reconstructing 

body height and speed-dependent angular trajectories (sagittal and frontal). We propose 

to use piece-wise quintic spline fitting between different key-events. The key-events 

consist of a selection of extreme values in position and velocity data. The timing, angle, 

angular velocity and acceleration of these key-events are predicted, based on walking 

speed and body height, using regression-models. The presented method and data provide 

a reference for generating speed-dependent joint trajectories for several robotic gait 

applications. 

2.2 Methods  

2.2.1 Subjects 

Fifteen healthy (middle) aged subjects in the age range 47-68 (age 59.3 ± 6.4, seven men, 

eight women, weight 74.0 kg ± 11.0, body height 1.69 m ± 0.10, BMI 25.8 ± 2.4) 

participated in this study. No subject had symptoms of orthopedic or neurological 

disorders and all gave informed consent, according to the recommendations of the 

declaration of Helsinki. 

2.2.2 Experimental protocol and recordings 

Subjects walked on a treadmill, starting with a familiarization period of 3 min followed by 

a 3 min walking trial. This was repeated for seven different speeds (0.5, 1, 1.5, 2, 3, 4 and 5 

km/h) with 1-min breaks between trials. No specific instructions on how to walk on the 

treadmill were given. Gait kinematics were recorded with an optical tracking system 

(Vicon Oxford Metrics, Oxford, UK) at a frequency of 120 Hz. To track the motion of the 

subject, 21 passive reflective markers were attached to bony landmarks and segments on 

the legs and trunk (figure 1).  

2.2.3 Data analysis 

Conventional methods that determine normative gait patterns take the average across 

individual subjects. This may result in an underestimation of the extremes in the gait 

pattern, when subjects have a different distribution of the extremes throughout the gait 

cycle [26,27]. Therefore, we developed a method where the pattern is parameterized with 

different key-events (minima, maxima etc.). This way, the extreme value in the 

reconstructed pattern is actually the mean of the extreme values of the individual 

patterns, even when the extremes occur at another percentage in the gait cycle. A piece-

wise quintic spline is fitted between the different key-events to create subject- and speed-
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dependent reference patterns. The following paragraphs describe these different steps in 

more detail. 

2.2.4 Kinematics 

Custom-written Matlab software was used to convert the marker positions into hip ab-

/adduction, hip flexion/extension, knee flexion/extension and ankle plantar-/dorsiflexion 

(figure 2). This program can be seen as a variant of the Conventional Gait Model. It uses 

the minimum number of markers possible to determine 3-dimensional kinematics. All 

joints are modeled as potential ball-hinges, with three independent rotational degrees of 

freedom. The model is hierarchical, indicating that the proximal segments have to be 

detected before the distal segments can be defined. Joint positions are based on the 

location of some anatomical landmarks and regression equations. In the software 

additional constrains, primarily during the double stance phase, and optimization routines 

are used to reduce measurement errors [28].  

To prevent habituation from affecting the gait patterns, only the last minute of each trial 

was selected for data analysis. The joint angular data was split into individual strides, and 

normalized as a percentage of the gait cycle, 0% corresponding to heel contact of the 

concerned leg. Heel-contact and toe-off events were detected with a phase detection 

method developed by Zeni et al. [29] that used the local maxima in the anterio-posterior 

position of the heel marker. Outliers, due to missing marker data, bad interpolation or a 

misplaced step by the subject, were removed. A step was defined as outlier when the 

whole trajectory, or part of it, fell outside the boundaries, which was set at 3 times the 

interquartile range away from the 25 and 75 percentile. Because the intra-subject 

 
Figure 1: Marker placement. To track the motion of the subject, twenty one passive reflective 

markers (gray circles) were attached to bony landmarks and segments on the legs and trunk. Joint 

angles are defined according to the classical method used in clinical examination, where (dorsi-) 

flexion and abduction are defined positive. 
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variation (in amplitude and timing) was small we calculated average trajectories for each 

individual subject. Still, average trajectories were calculated for the left and right leg 

separately.  

The detected heel-contact and toe-off events were also used to calculate other 

spatiotemporal parameters like cadence, stride length and relative gait phases. Although 

one can walk with infinite combinations of stride lengths and cadences, Sekiya et al. [30] 

demonstrated that step-length divided by step-rate (“step-ratio”) is relatively constant 

over a wide range of walking speeds. Therefore we used this ratio as a simple descriptor 

for temporal and spatial co-ordination.  

 
Figure 2: Selected key-events for the different joint trajectories. Example of the average trajectories 

of a typical subject at 0.5, 1, 3 and 5 km/h, together with the extracted key-events. We selected 6 

key-events that described the individual’s gait pattern. The key-events include the start of the gait 

cycle (heel contact) and its extreme values. Between some extreme values additional key-events 

were placed at maxima/minima in velocity data to obtain an adequate distribution of key-events 

throughout the gait cycle. The key-events of the average left and right joint trajectories were 

extracted separately.* At lower walking-speeds this key-event is not present for every subject. If this 

is true for the majority the subjects (at a specific speed), then this particular key-event is not included 

in the spline fitting procedure at that speed (Table 2). ** Key-event added to improve spline fitting. 

This key-event does not represent a maxima or minima in position or velocity, but is defined at the 

middle of the stance phase. 
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The step-ratio is calculated according to: 

1

4

step length (m) stride length 
step ratio=

steps stride frequency 
step frequency ( )

s

= ⋅  [1] 

2.2.5 Key-events 

From each joint trajectory we extracted 6 key-events, including the start of the joint 

trajectory (heel contact) and a selection of extreme values in position and velocity data 

(figure 2). We parameterized each key-event with an x parameter, representing the 

percentage of the gait cycle at which the key-event occurred, its angle (y), angular velocity 

(dy/dx) and acceleration (d
2
y/dx

2
). 

2.2.6 Regression-models 

The extracted parameters of the key-events were used to construct a set of regression-

models. These models were used to predict the parameter values for each key-event, 

based on a set of predictor variables. We used the following regression formula.  

2

0 1 2 3
Y v v lβ β β β= + + +  [2] 

Where v represents walking speed, l body height and Y represents the x, y, dy/dx, or 

d
2
y/dx

2
 parameter of a particular key-event. Both v and v

2
 are included in the regression 

formula, since Lelas et al. [15] already showed that most common peak sagittal plane 

parameters have a linear and/or quadratic relationship with walking speed. We used 

stepwise regression [31] to test the statistical significance of the predictor variables, using 

entrance/exit tolerances with p<0.01. After selecting the appropriate predictor variables 

for the regression-model, we used robust regression [32], with a 'bisquare' weighing 

function, to retrieve the final set of regression coefficients (βx). Regression-models (figure 

3) were derived for all 4 parameters of all 6 key-events, creating 24 regression-models for 

each joint. We also obtained regression-models for the step-ratio and the relative 

duration of the different gait phases, using the same predictor variables.	 

2.2.7 Spline fitting 

The obtained regression-models were used to reconstruct the reference patterns (for each 

subject and walking speed). First, the x, y, dy/dx, or d
2
y/dx

2
 parameters of the key-events 

(for a certain speed and body height) were calculated. Subsequently, a quintic spline was 

fitted between every pair of consecutive key-events, resulting in 6 (5
th

 order) polynomials 

(figure 4 and Supplementary material A). Piece-wise quintic spline fitting was used 

because it creates continuous trajectories (in terms of position, velocity and acceleration), 

which is preferable for robotic control.  
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2.2.8 Validation 

To determine the accurateness of the spline fitting procedure we evaluated the Root 

Mean Square Error (RMSE) and the correlation coefficient (r) between the actual (left and 

right) joint trajectories and the reconstructed spline, using the leave-one-out method of 

cross-validation (or rotation estimation) [33,34] (figure 5). Next, the results were averaged 

over left and right trajectories and across subjects (RMSEact-rec and ract-rec) and reported for 

every walking speed (figure 6). To assess the quality of the fit during the different gait 

phases, the RMSE between the actual and reconstructed trajectories was also expressed 

 
Figure 3: Typical example of speed- and body height-dependency of the parameters of a key-event. 

Relation between walking speed and the relative timing (A), angle (B), and angular acceleration (C) 

of the “max. swing” key-event of the knee joint, referring to the maximum knee flexion during the 

swing phase. Each circle represents the parameter value of the key-event at a specified walking 

speed for one subject. The solid line indicates the fitted regression-model. Since this key-event 

represents a maximum in the joint angular data, the angular velocity parameter is zero by definition, 

and is not shown. For the parameters of this key-event the body height did not significantly add to 

the predictability of the regression-model (table 3). 

Figure 4: Reconstruction of the joint trajectories. Typical example of the reconstruction of a joint 

trajectory using piece-wise quintic splines. Here a trajectory for the knee joint is reconstructed. Six 

quintic splines are fitted between the 7 key-events. The values for the x, y, dy/dx or d2y/dx2

parameter of the first 6 key-events are calculated for a specific speed and body height with the 

regression equations provided in table 3. To ensure continuity in the reconstructed trajectory the y,

dy/dx and d2y/dx2 parameter of the 7
th

 key-event (at 100% of the gait cycle) is equal to the first 1
st

key-event (at 0 % of the gait cycle). The resulting trajectory is continuous in the position (A), velocity 

(B) and acceleration (C).  
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as a percentage of the gait cycle. As a reference for the obtained model error, we 

calculated the natural deviation (RMSDl-r) and correlation coefficient (rl-r) between the left 

and right joint trajectories. Another reference for the model error was provided by the 

inter-subject variability, which was calculated by the standard deviation (STD) across 

subjects, for every percentage of the gait cycle.  

2.3 Results 

2.3.1 Regression-models 

Most key-events showed a dependency on walking speed, whereas body height 

influenced the parameters of the key-events to a lesser extent (table 1-4). For the angle (y) 

only 7 of the 24 key-events were dependent (p<0.01, see “Regression-models”) on body 

height, whereas 19 key-events were linearly and/or quadratically dependent on speed. For 

the timing (x), only 10 key-events were dependent on body height, whereas 15 key-events 

were linearly and/or quadratically dependent on speed.   

 
Figure 5: Cross-validation of the reconstructed trajectories. Example of the results of one round of 

cross-validation for a typical subject. It shows the left (thin light gray line) and right (thin dark gray 

line) joint trajectories, together with the reconstructed trajectories (thick black line). Here the key-

events for the splines are based on regression-models that do not include data from this particular 

subject. Subsequently, the RMSEact-rec and correlation coefficient (ract-rec) are calculated for every 

speed. This procedure was repeated 15 times (once for each subject), and the results were averaged 

over the rounds.  
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Table 1: Regression equations and RMSE for the parameter values of the key-events of the hip ab-

/adduction. 

 Key-event β0 (intercept) β1 (speed) β2 (speed
2
)

 β3 (body height) RMSE 

Index 

(� parameter) 

heel contact 1 - - -  

min. stance
 

33,360 - - -7,319 4,206 

min. dy/dx stance 30,158 -2,038 - 11,832 4,494 

max. dy/dx swing 52,727 -1,613 - 9,393 3,704 

max. swing 83,318 -6,031 0,762 - 2,840 

min. dy/dx swing 68,490 -1,847 - 10,898 3,523 

  β0 (intercept) β1 (speed) β2 (speed
2
) β3 (body height) RMSE 

Angle 

(� parameter) 

 

heel contact -0,783 - 0,056 - 1,457 

min. stance -1,641 -0,879 - - 1,129 

min. dy/dx stance
 

0,121 -0,652 - - 1,403 

max. dy/dx swing 3,090 - - - 1,419 

max. swing 4,441 0,557 - - 1,820 

min. dy/dx swing 1,860 0,657 - - 1,674 

  β0 (intercept) β1 (speed) β2 (speed
2
) β3 (body height) RMSE 

Velocity 

(
��

��
 parameter) 

heel contact -0,689 - -0,010 0,424 0,119 

min. stance 0 - - -  

min. dy/dx stance -0,015 - - - 0,092 

max. dy/dx swing 0,350 0,075 - - 0,215 

max. swing 0 - - -  

min. dy/dx swing -0,399 - - - 0,153 

  β0 (intercept) β1 (speed) β2 (speed
2
) β3 (body height) RMSE 

Acceleration 

(
���

���
 parameter) 

heel contact 0,019 - - - 0,047 

min. stance 0,043 - 0,002 - 0,027 

min. dy/dx stance 0 - - -  

max. dy/dx swing 0 - - -  

max. swing -0,082 - - - 0,039 

min. dy/dx swing 0 - - -  

 

Here the regression formulas are shown that include the data from all 15 subjects.  

Speed is defined in km/h and body height in m. 

1 one by default (% of gait cycle of heel contact key-event). 

0 zero by default (minimum or maximum in joint angle or angular velocity). 

- no significant contribution to the regression-model. 
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Table 2: Regression equations and RMSE for the parameter values of the key-events of the hip 

flexion/extension. 

 Key-event β0 (intercept) β1 (speed) β2 (speed
2
)

 β3 (body height) RMSE 

Index 

(� parameter) 

heel contact 1 - - -  

max. stance
* 

-10,809 - - 11,762 1,755 

x=50% stance
**

 24,512 -2,021 0,195 5,109 1,017 

min. 48,879 -3,854 0,355 9,891 1,943 

max. dy/dx swing 80,562 -6,432 0,885 - 2,058 

max. swing 94,280 -0,601 - - 2,183 

 
 

β0 (intercept) β1 (speed) β2 (speed
2
) β3 (body height) RMSE 

Angle 

(� parameter) 

 

heel contact 20,354 1,934 - - 2,424 

max. stance
*
 18,917 2,583 - - 2,022 

x=50% stance
** 

4,845 1,718 - - 1,964 

min. -2,026 -2,090 - - 2,328 

max. dy/dx swing 20,030 - - -7,732 2,508 

max. swing 21,447 2,318 - - 2,388 

 
 

β0 (intercept) β1 (speed) β2 (speed
2
) β3 (body height) RMSE 

Velocity 

(
��

��
 parameter) 

heel contact -2,062 - - 1,112 0,234 

max. stance
*
 0 - - - 

 
x=50% stance

**
 -0,240 -0,224 - - 0,149 

min. 0 - - - 
 

max. dy/dx swing 0,472 0,096 - 0,633 0,246 

max. swing 0 - - - 
 

 
 

β0 (intercept) β1 (speed) β2 (speed
2
) β3 (body height) RMSE 

Acceleration 

(
���

���
 parameter) 

heel contact -0,068 0,031 - - 0,059 

max. stance
*
 -0,112 - - - 0,041 

x=50% stance
**

 0,026 -0,010 - - 0,024 

min. -0,117 0,059 -0,007 0,098 0,036 

max. dy/dx swing 0 - - - 
 

max. swing -0,083 - -0,002 - 0,044 

 

* For walking speeds below 3.5 km/h this key-event is not included in the spline fitting procedure. 

** Key-event added to improve spline fitting. This key does not represent a maxima or minima in position or 

velocity, but is defined at the middle of the stance phase. 
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Table 3: Regression equations and RMSE for the parameter values of the key-events of the knee 

flexion/extension. 

 Key-event β0 (intercept) β1 (speed) β2 (speed
2
)

 β3 (body height) RMSE 

Index 

(� parameter) 

heel contact 1 - - -  

max. stance
 

17,103 - - - 2,487 

min. stance 48,542 -0,998 - - 2,789 

max. dy/dx swing 68,947 -6,096 0,611 5,967 1,623 

max. swing 85,816 -4,480 0,519 - 1,301 

min. dy/dx swing 92,489 - - - 1,553 

 
 

β0 (intercept) β1 (speed) β2 (speed
2
) β3 (body height) RMSE 

Angle 

(� parameter) 

 

heel contact 31,595 -4,311 0,494 -13,050 3,596 

max. stance 5,995 3,028 - - 3,481 

min. stance
 

-10,037 - - 7,594 2,291 

max. dy/dx swing 29,618 3,803 -0,486 - 3,556 

max. swing 38,110 9,744 -1,105 - 4,354 

min. dy/dx swing 24,631 -0,967 - - 3,866 

 
 

β0 (intercept) β1 (speed) β2 (speed
2
) β3 (body height) RMSE 

Velocity 

(
��

��
 parameter) 

heel contact -3,581 - - 1,977 0,525 

max. stance 0 - - - 
 

min. stance 0 - - - 
 

max. dy/dx swing 3,276 - - - 0,447 

max. swing 0 - - - 
 

min. dy/dx swing -0,446 
 

-0,032 -1,696 0,629 

 
 

β0 (intercept) β1 (speed) β2 (speed
2
) β3 (body height) RMSE 

Acceleration 

(
���

���
 parameter) 

heel contact 0,301 0,073 - - 0,171 

max. stance -0,094 - -0,005 - 0,051 

min. stance 0,042 - 0,004 - 0,029 

max. dy/dx swing 0 - - - 
 

max. swing -0,784 0,225 -0,026 - 0,125 

min. dy/dx swing 0 - - - 
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Table 4: Regression equations and RMSE for the parameter values of the key-events of the ankle 

plantar-/dorsiflexion. 

 Key-event β0 (intercept) β1 (speed) β2 (speed
2
)

 β3 (body height) RMSE 

Index 

(� parameter) 

heel contact 1 - - -  

min. stance
 

8,145 0,331 
 

- 1,915 

min. dy/dx stance 12,005 - - 13,754 4,307 

max. 67,686 -5,469 0,493 - 3,333 

min. swing 73,460 -6,699 0,744 6,463 1,673 

max. swing 87,621 - 0,132 - 3,150 

 
 

β0 (intercept) β1 (speed) β2 (speed
2
) β3 (body height) RMSE 

Angle 

(� parameter) 

 

heel contact 18,645 0,554 - -13,246 2,357 

min. stance 17,309 - - -14,173 2,517 

min. dy/dx stance
 

0,836 0,812 - - 2,328 

max. -15,523 - - 14,494 2,494 

min. swing 21,984 -3,425 - -12,522 4,848 

max. swing 4,860 -0,655 - - 2,687 

 
 

β0 (intercept) β1 (speed) β2 (speed
2
) β3 (body height) RMSE 

Velocity 

(
��

��
 parameter) 

heel contact -0,145 - -0,020 - 0,267 

min. stance 0 - - - 
 

min. dy/dx stance -0,991 - - 0,620 0,172 

max. 0 - - - 
 

min. swing 0 - - - 
 

max. swing 0 - - - 
 

 
 

β0 (intercept) β1 (speed) β2 (speed
2
) β3 (body height) RMSE 

Acceleration 

(
���

���
 parameter) 

heel contact 0,145 -0,137 0,015 - 0,109 

min. stance -0,556 - - 0,492 0,111 

min. dy/dx stance 0 - - - 
 

max. 0,055 -0,019 - -0,089 0,059 

min. swing 0,433 - - - 0,235 

max. swing 0,412 0,087 -0,012 -0,425 0,098 

 

Table 5: Regression equations and RMSE for spatiotemporal parameters. 

 
 

β0 (intercept) β1 (speed) β2 (speed
2
)

 β3 (body height) RMSE 

Spatiotemporal 

parameters 

Step-ratio  -0.532 0,020 -  0,47 0,073 

Relative double 

support phase (%)
 26,485 -7,230 0,795  - 1,771 
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Table 6: RMSE for the reconstructed trajectories and the estimated key-events. 

 RMSEy key-event 
1
 RMSEact-rec

3
 RMSDl-r

3
 STD

4 
ROM

3
 

Hip ab-adduction 

Hip flexion/extension 

1.48 1,46 1,35 1.41 9,94 

2.27
 

2,42 1,64 2.34 34,22 

Knee flexion/extension 3.52 3,49 2,82 3.42 52,76 

Ankle plantar-/dorsiflexion 2.87 2,84 2,60 2.79 20,04 

Average 2.53 2.55 2.10 2.49  

 RMSEx key-event
2
 ract-rec

3
 rl-r

3
   

Hip ab-/adduction 3.75 0,87 0,88   

Hip flexion/extension 1.79 0,98 0,99   

Knee flexion/extension 1.95 0,97 0,98   

Ankle plantar-/dorsiflexion 2.88 0,80 0,84   

Average 2.59 0.91 0.92   
 

1
 RMSEy key-event = Mean RMSE between measured y-parameters of the key-events and the y-parameters estimated 

with the regression-models (Table 1-4). The RMSEy key-event is averaged over the 6 key-events for every joint. 
2
 RMSEx key-event = Mean RMSE between measured x-parameters of the key-events and the x-parameters estimated 

with the regression-models (averaged over the 6 key-events). 
3
 These measures are averaged over the different walking speeds. 

4
 The standard deviation (STD) is averaged across the gait cycle and subsequently over the different walking 

speeds. 

 
For instance, the maximal knee flexion during swing, which is a commonly reported gait 

feature, showed a decrease in relative timing at higher walking speeds, whereas the 

maximum angle itself, and its acceleration, increased with speed (figure 3). Stepwise 

regression showed that these effects are nonlinear and that the body height has no 

significant contribution to the predictability of any of the parameters of this key-event. 

Therefore, the regression-models for the x, y, and d
2
y/dx

2
 parameter of this particular key-

event only include coefficients for the walking speed and walking speed squared (table 3). 

The regression-models for the parameter values of the individual key-events for the 

different joints are presented in table 1-4. Generally, different subjects show similar 

dependencies. However, there was considerable variation between subjects in the 

parameter values of the key-events (figure 3), as reflected by the RMSE of the prediction 

of the different parameter values of the key-events (table 1-4). 

To determine the time in which a reference trajectory needs to be replayed (for robotic 

control), or transform the relative duration of the different gait phases (% of gait cycle), to 

absolute timing (s), the cycle time is required. The cycle time can be obtained from the 

regression-models for the step-ratio (table 5) according to:  

2 2
3 6

step ratio
cycle time = step time = 

v / .
⋅ ⋅  ,    (with v in km/h) [3] 
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2.3.2 Validation 

With the obtained regression-models a set of reference trajectories was reconstructed for 

every subject (at each walking speed). The reconstructed patterns matched the measured 

data well (figure 5). Generally, the largest errors are found at the lower walking speeds, 

and are located during the parts of the gait cycle where the joint excursions are largest or 

where joint angles change rapidly (figure 6A). The quality of the fit was also reflected in 

the calculated RMSE (figure 6B). For the hip abduction the RMSEact-rec (averaged over all 

walking speeds) was smallest (±1.5°). This joint also had the smallest range of motion of 

the considered joints (±10°, table 6). Reversely, the knee joint, which has the largest 

 
Figure 6: Validation of the reconstructed reference trajectories. A: RMSE between actual and 

reconstructed trajectories for the different joints (“act-rec”, bottom part of the graphs), expressed as 

a function of the gait cycle for every walking speed. As a reference for the model error the natural 

deviation between the left and right joint trajectories are also provided (“l-r”, top part of the graphs). 

B: RMSE between actual and reconstructed trajectories (RMSEact-rec black lines) and natural deviation 

between the left and right joint trajectories (RMSDl-r gray lines). Both measures are averaged across 

subjects for each walking speed. The error bars indicate the standard deviation. C: Correlation 

coefficients between actual and reconstructed trajectories (ract-rec black lines) and correlation 

coefficients between the left and right joint trajectories (rl-r gray lines). 
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range of motion (±53°), shows the highest average RMSEact-rec (±3.5°). The RMSEact-rec 

results are in line with the RMSE values of the predicted angles of the key-events. That is; 

the RMSE in the predicted angles (y) of the key-events (RMSEy key-event) is very similar to the 

RMSEact-rec for all joints (table 6). Additionally, the correlation coefficient was used to 

quantify the similarity between the reconstructed and actual patterns. For hip- and knee 

flexion the ract-rec was above 0.93 at low walking speeds, with even larger correlations for 

higher speeds (figure 6C). For hip abduction and ankle flexion, the ract-rec was lowest, 

ranging from 0.69 at 0.5 km/h to 0.89 at 5 km/h. The ract-rec of the different joints are in 

line with the RMSE values in predicting the relative timing of the key-events. That is; the 

RMSE in the predicted timing (x) of the key-events (RMSEx key-event) is also highest for the 

ankle flexion and hip abduction (table 6). As a reference for the obtained fitting quality, 

we compared the model error with the natural deviation between the left and right leg. 

 
Figure 7: Validation of the reconstructed reference velocity trajectories. A: RMSE between actual and 
reconstructed angular velocity profiles (RMSEact-rec black lines) and natural deviation between left 
and right angular velocity profiles (RMSDl-r gray lines). Both measures are averaged across subjects 
for each walking speed. The error bars indicate the standard deviation. B: Correlation coefficients 
between actual and reconstructed angular velocity profiles (ract-rec black lines) and correlation 
coefficients between the left and right joint angular velocity profiles (rl-r gray lines). 
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Here the model error (RMSEact-rec) was only slightly higher than the left-right deviation 

(RMSDl-r) and the ract-rec was only slightly lower than the rl-r (figure 6, table 6). Both 

measures indicates that the error in the reconstructed spline is only marginally larger 

compared to the error when the trajectory of one leg is taken as a reference for the other. 

Similar results were obtained for the reconstructed angular velocity (figure 7) and 

acceleration profiles (figure 8), though the correlation measures decrease for the velocity 

and acceleration. Another reference for the model error was provided by the inter-subject 

variability (STD). Generally, the model error is close to the natural variability between 

subjects (table 6). 

The spline fitting methodology was also compared to the traditional averaging method, 

where we calculated the average trajectories across subjects. Generally, the amplitude of 

 
Figure 8: Validation of the reconstructed reference acceleration trajectories. A: RMSE between actual 
and reconstructed angular acceleration profiles (RMSEact-rec black lines) and natural deviation 
between left and right angular acceleration profiles (RMSDl-r gray lines). Both measures are 
averaged across subjects for each walking speed. The error bars indicate the standard deviation. B: 
Correlation coefficients between actual and reconstructed angular acceleration profiles (ract-rec black 
lines) and correlation coefficients between the left and right joint angular acceleration profiles (rl-r
gray lines). 



Chapter 2 

 

58 

C
h

a
p

te
r 

2
 

the average trajectories was smaller than the amplitude of the reconstructed trajectories 

(figure 9), especially for the hip abduction and ankle flexion.  

2.4 Discussion and conclusion 

In this study we present a method to parameterize joint trajectories and generate walking 

speed- and body height dependent reference joint trajectories. The generated trajectories 

are continuous in terms of position, velocity and acceleration, and especially suitable for 

the control of robotic gait applications. The method is based on fitting quintic splines 

between different key-events, which are estimated with regression-models. The 

reconstructed trajectories matched the measured trajectories very well. The obtained 

regression-models also show that: 1) the majority of the key-events are speed-dependent, 

both in terms of amplitude and timing, 2) walking speed has a larger effect on the key-

events than body height, 3) there is considerable inter-subject variability in the extracted 

key-events, especially at lower walking speeds. This section discusses these findings in 

further detail.  

 
Figure 9: Reconstructed trajectories versus averaged trajectories. The reconstructed trajectories 

(solid line) are based on the predicted key-events and the average trajectories are averaged across 

subjects (dashed line). The trajectories are presented at 3 different speeds. Averaging over multiple 

subjects has a dampening effect on the extreme values in the average pattern, especially for the hip 

abduction and ankle flexion. The reconstructed trajectories are generated for a subject with a body 

height that equals the mean body height of our subject population (1.69 m). 
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2.4.1 Extreme values in joint angles  

Previous studies on speed-dependencies in joint trajectories mainly focused on the 

extreme values. In this study we observed similar changes in all commonly reported 

extreme values [15,17,24,25,35-37]. For the knee joint we found a speed-dependent 

increase in knee flexion during the swing phase, as well as during the loading response. 

Maximum hip flexion and extension also increased with walking speed, in a similar manner 

as reported by others. The ankle joint also contained multiple extreme values that 

changed with walking speed, like an increase in maximum plantar flexion and a reduction 

in dorsiflexion during swing. Generally, the effect of speed on these kinematic changes 

was largest at lower walking speeds [38]. An in-depth comparison between our findings 

and related studies, for all commonly reported extreme values, is provided in 

Supplementary material B. For the extreme values in the hip ab/adduction we observed 

an increase with speed. Schwartz et al. [39] are one of the few reporting hip ab/adduction 

angular patterns at different speeds. Although they focused on growing children, rather 

than elderly, they report similar changes in terms of angular amplitude at increasing 

speeds. 

2.4.2 Timing of extreme values in joint angles 

The relative timing of the majority of the extreme values showed a clear dependency on 

walking speed. They occurred earlier during the gait cycle with increasing speed. These 

changes in timing are strongly related to changes in the duration of the different gait 

phases. At higher walking speeds the relative duration of the double support phase 

decreases (table 5), shifting most extreme values forward. Stoquart et al. [25] are one of 

the few who reported the relative timing of the maximum hip extension, maximum knee 

flexion and maximum ankle plantar flexion, and demonstrated similar changes 

(Supplementary material B). Van Hedel et al. [38] did not quantify the changes in timing, 

still their normalized joint trajectories showed very similar trends in relative timing at 

increasing speeds. 

2.4.3 Inter-subject variability in the extracted key-events 

We clearly demonstrated the speed-dependency of the key-events, but the RMSE 

between the measured and predicted key-events was considerable, up to 15% of the 

mean ROM for the hip abduction. This is primarily caused by the high inter-subject 

variability, which was also reported by others [15-17,23,24]. For most key-events the 

variation in the parameters decreased with walking speed, suggesting a more consistent 

walking pattern at higher speeds. Nonetheless, most key-events show significant 

correlations with walking speed, underlining the need to adjust angular trajectories to 

walking speed.  
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2.4.4 Influence of body height on key-events 

In accordance with other studies we found that body height has a limited effect on the 

key-events, compared to walking speed. Hanlon et al. [16] did not demonstrate any 

improvement in the correlation between gait patterns and walking speed when using 

normalized walking speed (normalized to leg length), compared to using absolute speed. 

Additionally, Lelas et al. [15], who performed regressions with normalized walking speed, 

and multiple regression with walking speed and leg-length, did not show overall 

improvement compared to regressing on walking speed only. Finally, Kirtley et al. [24] did 

not find significant correlation between body height and any of their reported kinematic 

parameters. Still, it should be mentioned that, in most studies, including ours, the 

variability in body height is much smaller than the variability in walking speed. If a wider 

range of body heights were included, for instance by including extremely short or tall 

persons, the effect of body height may be larger.  

2.4.5 Comparison with traditional averaging methods 

As mentioned before, most studies that report normative gait patterns take the average 

of individual normalized datasets. Molloy et al. [26] and Sadeghi et al. [27] showed that 

averaging over subjects can have a dampening effect on the extremes in the gait pattern, 

when the datasets have a different distribution of the extremes throughout the gait cycle. 

Figure 8 demonstrates that the method proposed here compensates for this effect, which 

is most noticeable in joint trajectories that have large inter-subject variability in the timing 

of the key-events (hip abduction and ankle flexion, table 6). Molloy et al., who did not 

assess hip abduction, also reported that the largest errors were found for the ankle joint 

(maximum plantar flexion).  

2.4.6 Limitations 

This study is not without limitations. Due to the small number of subjects (15), we did not 

derive separate regression equations for male and female subjects, although small gender 

differences have been reported. Females are reported to have a moderately increased hip 

flexion [17,40], and less knee flexion during swing [17] and loading response [17,41]. Here, 

we focused on (middle) aged subjects, since many neurological gait disorders occur in this 

group. Studies on age-related gait alterations demonstrated a moderate increase in knee 

flexion at mid-stance, a decrease of the maximum knee flexion [17], reduced hip extension 

[35,42], and reduced ankle plantar flexion [35,36]. Others, however, reported no clear 

effect of age [43]. Although most of the reported changes in gait kinematics in elderly are 

related to aging per se, and not to reduced walking speed, they are small and inconsistent. 

Therefore, we suggest that, in practice, the same reference data can be used for all adults. 

In future studies (including more subjects), all these variables can be added to the 

regression-models in order to investigate their potential contribution towards more 

accurate joint trajectory estimations.  



Speed-dependent reference joint trajectory generation for robotic gait support 

 

61 

C
h

a
p

te
r 2

 

In this study 6 key-events were selected for every joint. These key-events (figure 2) were 

chosen based on the experience of the authors. Visual comparison of the reconstructed 

patterns and the measured patterns showed that these key-events sufficed to capture the 

main characteristics of the joint trajectories. We did not perform an optimization on the 

number of key-events to achieve the best possible fit. Consequently, another set (or 

amount) of key-events could possibly produce a better fit. However, based on the high 

correlation coefficients and low RMSE values, we do not see much room for improvement.  

Another potential limitation of this study is that the gait kinematics were recorded on a 

treadmill. Although small kinematic (and spatiotemporal) differences have been recorded 

in the past [44,45], more recent studies show that these differences are typically smaller 

than 3°, and fall within the normal variability and repeatability of these kinematic 

parameters [46-48]. They concluded that humans do not make any significant gait 

adjustments when walking on a treadmill, taking into account an appropriate 

familiarization period [49,50]. Therefore, we suggest that, in practice, the same reference 

data can be used for overground- and treadmill-walking.  

2.4.7 Utility 

The obtained regression-models (table 1-4) can be used to reconstruct subject- and speed-

dependent reference trajectories, within the provided range (0.5-5 km/h). For the control 

of robotic orthoses, the trajectories can be replayed with a user specific cycle time, or with 

an estimate of the cycle time (table 5). The fitted splines also provide continuous angular 

velocity and acceleration patterns, which can be used for friction and/or inertia 

compensation of a robotic device. Although our primary goal was to create reference 

trajectories that can be used for robotic gait applications they can also serve a clinical 

purpose. They can help discriminating between gait changes due to a reduction in self-

selected walking speed and effects actually caused by underlying pathologies. 

Supplementary material C discusses the clinical and robotic applications (and limitations) 

in more detail. 
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Supplementary material 

Supplementary material A: Spline fitting procedure 

This appendix summarizes the reconstruction procedure of the reference trajectories. 

Between each consecutive pair of key-events a quintic spline is formulated. Each spline is 

based on 6 constrains (initial and final position, velocity and acceleration) and requires a 

fifth order polynomial:  
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where S(x) represents the spline (between key-event i and key-event i+1) and A-F its 

coefficients. Filling in these equations for 2 subsequent key-events yields: 
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which can be written as:  
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where xi, yi, dy/dxi, and d
2
y/dx

2

i represent the x, y, dy/dx, and d
2
y/dx

2 
parameters of the i

th
 

key-event. These parameters are calculated for a specific speed and body height with the 
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regression equations provided in table 1-4. For example: the x parameter of the 6 key-

events for the knee joint trajectory are calculated according to: 

1 1

2 2

3 32

4 4
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6 6

1 0 0 0 1.00

17,103 0 0 0 17.10

48,542 0,998 0 0 45

68,947 6,096 0,611 5,9067
3 km/h

85,816 4,480 0,519 0
1.75 m

92,489 0 0 0

x x

x x

x x
l v v

x x
v

x x
l

x x

    
    
    
    −

 = =⇒      −     =    −
     =

        

i

.55

66.60

77.04

92.49

 
 
 
 
 
 
 
 
  

  [4] 

where v represents the walking speed and l the body height. Here the x parameters are 

calculated for a walking speed of 3 km/h and for a subject with a body height of 1.75 m. 

The y, dy/dx, and d
2
y/dx

2
 parameters are calculated in a similar way (table 3). To ensure 

continuity of the spline we define the angle, velocity and acceleration at the end of the 

sixth last spline to be equal to the start of the first spline: 

2 2

7 7 1 2 2
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Filling in the obtained x, y, dy/dx, and d
2
y/dx

2 
parameters in a pairwise fashion in equation 

3 yields the coefficients for the 6 splines. 
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for 1 17.1x≤ ≤  
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for 17.1 45.5x≤ ≤  

etc. 

Combining these splines creates the reference trajectory as shown in figure 4. The same 

approach is used to generate the trajectories for the others joint (table 1-4). 

The method described above is also provided in matlab code (see 

“createRefTrajectories.m”) in the online version of this supplementary material, which can 

be found at doi:10.1016/j.jbiomech.2014.01.037. 
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Supplementary material B: Peak sagittal parameters: comparison with literature 

As mentioned before most studies on speed-dependencies in joint trajectories mainly 

focused on the extreme values. The goal of this supplementary material is to provide a 

quantitative comparison between our findings and previous studies. This is done for all 

commonly reported extreme values for the knee, hip and ankle joint. The study 

characteristics of the studies included in this comparison are summarized in table 7.  

Similar to previous studies we observed a speed-dependent increase in maximum hip 

extension and flexion (figure 10 B, D). At higher walking speeds the step size increases [24, 

37, 38, 51] (figure 12 B), and an increased hip angular range is a requirement to make 

larger steps. The percentage of the gait cycle at which the maximum hip extension occurs 

decreased at higher walking speeds (figure 10 A, C), which is related to the reduction of 

the double support phase at higher walking speeds (figure 13 C). 

The maximum knee flexion during the swing phase and the loading response are also well-

documented extreme values. The increased knee flexion during the loading response 

(figure 11 B) is suggested to be due to the need for greater shock absorption at higher 

speeds [15,37]. The maximum knee flexion during the swing phase also increased with 

walking speed, and occurred earlier in the gait cycle, similar to data reported by several 

authors (figure 11 C, D). The swing phase is often described as “ballistic”, and is achieved 

passively [52]. Consequently, the increased knee flexion during the swing phase is thought 

Figure 10: Comparison with literature for the peak sagittal parameters of the hip joint. Relative 

timing and amplitude of the maximum hip extension (A, B) and hip flexion (C, D). Each black circle 

represents the parameter value of the key-event at a specified walking speed for one subject,  

whereas the black line indicates the regression model. The shaded area indicates the fitted 

regression model for the range of body heights that are included in this study (1.52-1.86 m). The 

colored lines indicate regression models, and the circles mean values, for different studies. 
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to be related to a larger knee angular velocity at toe-off at higher walking speeds [53].  

The ankle joint also contains multiple extreme values that have been studied before. In 

this study the peak plantar flexion increased with walking speed and occurred earlier in 

the gait cycle, which is as also reported in previous studies (figure 12 A, B). This increase is 

suggested to be associated with an increased ankle power, in order to produce adequate 

push-off at higher speeds [15,25,36]. For the peak dorsiflexion during the stance phase we 

did not find a correlation with walking speed, whereas others reported a mild reduction 

(figure 12 D). For the peak dorsiflexion during swing we observed a modest reduction with 

walking speed, similar to others (figure 12 F). 

The majority of the studies used in this comparison (table 7) also provide mean values, or 

regression equations, for common spatiotemporal parameters like cadence, step length or 

the relative duration of the different gait phases. Similar to previous studies, the increase 

in walking speed is achieved by increases in both cadence and step length (figure 13 A, B). 

Since this was anticipated we calculated the step-ratio. Sekiya et al. [30] found this 

parameter to be relatively constant over a wide range of walking speeds. Others also 

showed a linear relationship between step frequency and step length [54]. Compared to 

our results Sekiya et al. [30] reported higher values for the step-ratio (figure 13 A, B). This 

might be explained by the difference in age. Elderly are known to walk with a higher 

cadence and shorter step length at similar speeds, resulting in a lower step-ratio [55]. The 

regression analysis revealed a small positive dependency of the step-ratio on walking 

 
Figure 11: Comparison with literature for the peak sagittal parameters of the knee joint. Relative 

timing and amplitude of the maximum knee flexion during the stance phase (A, B) and the swing 

phase (C, D). Each black circle represents the parameter value of the key-event at a specified walking 

speed for one subject, whereas the black line indicates the regression model. The colored lines 

indicate regression models, and the circles mean values, for different studies. 
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speed and body height. In contrast, Zijlstra et al. [54] reported a reduction in step-ratio at 

higher speeds. However, their reduction in step-ratio is seen at walking speeds that 

exceed our maximum speed. A reduction of the step-ratio at extreme speeds may be 

caused by biomechanical factors limiting a further increase in step length. At higher 

walking speeds the relative double support phase decreased (figure 13 C) and, 

consequently, the swing phase increases. As mentioned above, the swing phase is often 

assumed to be achieved passively and maintains approximately the same duration at 

different speeds, leading to an increase in the relative duration at higher walking speeds 

(where the cycle time decreases). At even higher walking speeds the double support 

phase will continue to decrease until the subject starts running and the double support 

phase becomes absent [56].  

 
Figure 12: Comparison with literature for the peak sagittal parameters of the ankle joint. Relative 

timing and amplitude of the maximum plantar flexion (A, B), maximum dorsiflexion during the 

stance phase (C, D) and maximum dorsiflexion during swing (E, F). Each black circle represents the 

parameter value of the key-event at a specified walking speed for one subject, whereas the black line 

indicates the regression model. The shaded area indicates the fitted regression model for the range 

of body heights that are included in this study (1.52-1.86 m). The colored lines indicate regression 

models, and the circles mean values, for different studies. 
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Figure 13: Comparison with literature for spatiotemporal parameters. Cadence (A), step length (B) 

and relative double support phase duration (C). Each black circle represents the spatiotemporal 

parameter at a specified walking speed for one subject, whereas the black line indicates the 

regression model. The shaded area indicates the fitted regression model for the range of body 

heights that are included in this study (1.52-1.86 m). The colored lines indicate regression models, 

and the circles mean values, for different studies. 
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Table 7: Study characteristics and reported parameters of related studies on speed-dependent gait 

characteristics. 

Study Type of data Provided data
1 

joints/spatio-

temporal data  

Age range 

(mean ± std) 

Subjects 

men-

women 

Treadmill

/Walkway 

Walking 

speeds
3
 

Kirtley et 

al. [24] 

Regression 

lines 

Knee flexion 

Cadence 

Step length 

Gait phases 

18-63 

(37) 

10-0 Walkway Normal 
3
, 2 

below 

normal, 2 

above 

normal 

Oberg et 

al. [51] 

Mean values Cadence 

Step length 

10-79 116 - 117  Walkway Slow, normal 

and fast 

Note: Parameters averaged over the age groups 50-59 and 60-69. 

Oberg et 

al. [17] 

Regression 

lines  

Mean values 

Hip flexion 

Knee flexion 

 

10-79 116 - 117 Walkway Slow, normal 

and fast 

Note: Regression lines are only provided for the total subject population. Values used here 

are averaged over the age groups 50-59 and 60-69. Corresponding walking speeds are not 

reported for the different age groups. The used values are the means of all subjects. For 

the hip only the ROM is provided, and not the peak flexion/extension separately. 

Kerrigan et 

al. [35] 

Mean values 

Mean 

trajectories 

Hip flexion 

Knee flexion 

Ankle flexion 

Cadence 

65 - 84 

(72.7±5.5) 

14 - 17  Walkway Normal and 

fast. 

Van Hedel 

et al. [38] 

Mean 

trajectories 

Cadence 

Step length 

Gait phases 

19-32 

(23.8±3.4) 

 

10 - 10 Treadmill 10 pre-

defined 

speeds (0.5-

5 km/h) 

Note: Mean values for the cadence, step length and gait phases obtained from figure 2. 

Normalized step length is reported. Here the step length is calculated for a subject with a 

body height of 1.69m. 

Lelas et al. 

[15] 

Regression 

lines 

Hip flexion 

Knee flexion 

Ankle flexion 

19 -40 

28.1±5.9 

64 (un-

known 

gender) 

Walkway Normal, fast, 

slow and 

very slow 

Stansfield 

et al. [23]
2 

Regression 

lines 

Hip flexion 

Knee flexion 

Ankle flexion 

Cadence 

Step length 

Gait phases 

7 – 12 

 

8 - 8  Walkway 

 

 

Normal  

Note: Prospective 5-year study. Regression formulas are expressed in normalized speed. 

The reported spatiotemporal parameters are also normalized to dimensionless quantities. 

Here the parameters are calculated for a subject with a body height of 1.69m. 

Stoquart et 

al. [25] 

Mean values 

Mean 

trajectories 

Hip flexion 

Knee flexion 

Ankle flexion 

Cadence 

Gait phases Timing 

of key features 

23±2 4 - 8  Treadmill 6 pre-

defined 

speeds (1-

6km/h) 

Silder et al. 

[36] 

Mean values Hip flexion 

Ankle flexion 

Young  

18–35 

Young  

9 - 11  

Walkway 80%, 100%, 

and 120% of 
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Cadence 

Step length 

Gait phases 

Elderly  

65 - 85  

Elderly 

7 - 13  

normal  

Note: Only the data from the elderly is used for comparison. Normalized step length is 

reported. Here the step length is calculated for a subject with a body height of 1.69m. 

Pepin et al. 

[37] 

Mean values 

Mean 

trajectories 

Hip flexion 

Knee flexion 

Ankle flexion 

Cycle time 

Step length 

Gait phases 

28 -40  7-0 Treamill 0.1, 0.3, 0.5 

and 1.0 m/s 

Sekiya et 

al. [30] 

Mean values Step-ratio Males 

22.4±3.7 

Females 

22.5±3.9 

8-17 Walkway Slowest, 

slow 

preferred 

fast, fastest 

Note: Step-ratio used to calculate step length and cadence. Values are averaged over male 

and females. 

Koopman 

et al. 

Regression 

lines 

Hip abduction 

Hip flexion 

Knee flexion 

Ankle flexion 

Cadence 

Gait phases 

47-69 

(59.4±6.3) 

7 - 8  Treadmill 7 pre-

defined 

speeds (0.5-

5 km/h) 

 
1

 Only the reported data that is used for the comparison with this study is mentioned in the table. 
2 

Although this study present data for growing children it is shown that the change in self-selected speed, not age, 

is the primary determinant of kinematic and kinetic changes observed in growing children and elderly [35,57-59]. 

Therefore the provided normalized parameters (and walking speed) are scaled to a subject with a body height of 

1.69m. 
3 

Normal refers to the self–selected walking speed.  
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Supplementary material C: Clinical and robotic applications and limitations 

Clinical applications 

Although our primary goal was to create reference trajectories that can be used for 

robotic gait applications they can also serve a clinical purpose. Our results clearly show 

that walking speed should be taken into account when judging whether a reduction in 

joint excursions can be considered pathological. Stroke survivors, for example, often show 

a reduced hip extension and a reduction in knee flexion during swing [60]. These patients 

are also known to walk at reduced speeds. Reversely, when patients, during their 

rehabilitation process, increase their knee flexion, this could (partly) be explained by their 

increase in walking speed. Similarly, in ISCI it has been shown that observed gait 

alterations are related to both their reduced walking speed and to their neural deficits 

[37]. 

Consequently, gait patterns of neurological patients should be compared with healthy 

subjects walking at matched speeds in order to differentiate between gait adaptations 

that are due to a reduced walking speed and gait adaptations that are a direct 

consequence of the injury. The reference patterns presented in this study can be used for 

this purpose. Traditionally, reference patterns are recorded at a limited number of speeds. 

The obtained regression models in this study allow the reconstruction of reference 

patterns for any speed, within the given range (0.5-5 km/h). This is crucial for the 

kinematic comparison of patients who are less capable of walking at a gait speed that 

differs from their ‘preferred’ or ‘comfortable’ one [37,61]. During the actual gait therapy, 

the speed dependent trajectories can also provide the therapist with kinematic references 

(maximum joint excursions) that are appropriate, and achievable, for the patient (taking 

into account his current walking speed). 

To employ the provided reference patterns in a meaningful manner a measure of the 

model error is required. In this study the model error (defined by the RMSE between the 

model prediction and the actual joint trajectories) is 2.6 degrees (table 6). This is very 

close to the inter-subject variability, which is 2.5 degrees (table 6). This indicates that the 

model error is equally large as the error that occurs when average trajectories (averaged 

across subjects) are used. Generally, the largest model errors are found at the lower 

walking speeds, and are located during the parts of the gait cycle where the joint 

excursions are largest, or joint angles change rapidly. At 0.5 km/h the RMSE (averaged 

over the different joint) is 2.8 degrees. Still, this is only marginally larger than the inter-

subject variability at that speed (2.7 degrees). At low walking speeds the subjects also 

showed more variability in cadence. This indicates that the subjects chose different 

walking strategies at lower speeds, resulting in variability in their angular trajectories. The 

agreement between the model error and the inter-subject variability was expected since 

the reconstructed trajectories greatly resemble the average trajectories (figure 9). Thus, 

for clinical use the reconstructed trajectories can be used in the same way as average 

trajectories are being used. 
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Throughout the literature several methods are proposed to quantify gait deviations and 

detect actual gait deviations [62-64]. Here the relatively large inter-subject variability 

indicates that a patient has to deviate considerable from the average trajectory (or 

reconstructed trajectories) in order to fall outside the range of natural variability. Still, an 

actual gait deviation does not necessarily reflect a clinical relevant gait impairment. 

Consequently, results from quantitative gait data analysis still require the clinician to make 

an objective assessment of the functional impact of the observed gait alterations. In this 

process the gait patterns provided in this study can highlight parts of the gait cycle where 

problems are dominant or determine whether treatment, directed at those problems, 

show improvements in the right direction. 

When the provided reference patterns are used for kinematic comparisons, one should 

keep in mind that small differences can occur due to different experimenters, gait analysis 

systems, biomechanical models and testing protocols [65,66]. Still, we believe that these 

differences are small. Supplementary material B shows kinematic parameters that are 

reported in different studies, using different protocols, biomechanical models etc. 

Although there exists some variability, most results fall within the variability observed in 

our study, indicating that the experimental factors do not affect the generalizability of our 

results. 

Finally, this study shows that one should be careful when comparing mean extreme values 

and observed extremes in averaged joint trajectories. Most studies present a limited 

number of specific gait features (often angular extremes) to quantify the effect of 

different pathologies, whereas other present average joint trajectories. This study shows 

that these angular extremes usually have a slightly different distribution throughout the 

gait cycle between subjects, causing lower extreme values in the averaged joint 

trajectories, compared to the averaged peak values themselves. 

Robotic gait applications 

Because the model error is in the same order as the natural variability between subjects 

we concluded that the accuracy of the reconstructed reference trajectories was 

acceptable. However, for the implementation of these trajectories in robotic gait 

applications there remain some considerations.  

First, some patients might feel hindered when the applied trajectories are slightly 

different from their own trajectories. Also, applying a “normal gait pattern” might not be 

feasible (or preferable) for some patients. However, because of the natural variability 

between subjects it is practically impossible to create a 100% match for every individual 

patient a priori. Therefore, we consider the reconstructed trajectories as an initial guess of 

the patient’s walking pattern. When the therapist observes that the reference trajectory is 

not adequate for the patient, it can easily be modified by changing some key-events. For 

instance; if a patient requires more knee flexion, this can be accomplished by increasing 

the y parameter of the “max. swing” key-event (figure 2) and reconstructing a new 

trajectory. In fact, this “reference pattern tuning” approach is implemented in the control 
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software of a robotic gait trainer that is developed at our department. Currently, this 

robotic gait trainer (LOPES) is getting installed into two Dutch rehabilitation centers, and 

therapists have indicated that they greatly value this approach. They also value that the 

reference trajectories are automatically adjusted to the current walking speed. 

Second, robots can potentially harm the user when the reference trajectories (and 

consequently the robot and user) reach angles that are not within the user’s range of 

motion. In this study the reconstructed reference trajectories are all within the normal 

range of motion of the different joints.  

Finally, the reference trajectories have to be checked to ensure that there does not exists 

a combination of angles where the feet will hit the treadmill, or each other. This is more 

crucial in certain phases (in this case the swing phase). Whether or not the feet will hit the 

treadmill during the swing phase is a bit more difficult to assess because it depends on the 

degrees of freedom of the device. If, for instance, the device allows natural pelvis motions 

(normal lateral pelvic tilt etc.), the patterns are not expected to pose any problems. 

However, in some robotic gait trainers pelvis motions are restricted or limited. Then, the 

reference patterns will need a more thorough check before being used. Still, most robotic 

gait trainers already have (device-) specific safety implementations which will prevent 

stumbling or other unsafe situations. 
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Abstract 

There is increasing interest in the use of robotic gait-training devices in walking 

rehabilitation of incomplete spinal cord injured (iSCI) individuals. These devices provide 

promising opportunities to increase the intensity of training and reduce physical demands 

on therapists. Despite these potential benefits, robotic gait-training devices have not yet 

demonstrated clear advantages over conventional gait-training approaches, in terms of 

functional outcomes. This might be due to the reduced active participation and step-to-

step variability in most robotic gait-training strategies, when compared to manually 

assisted therapy. Impedance-controlled devices, that allow more freedom of movement 

and only intervene when the movement cannot be performed independently, can 

increase active participation and step-to-step variability. The aim of this study was to 

assess the effect of impedance-controlled robotic gait training on walking ability and 

quality in chronic iSCI individuals. A group of 10 individuals with chronic (mean: 47 months 

post injury) iSCI participated in an explorative clinical trial. Participants trained three times 

a week for eight weeks using an impedance-controlled robotic gait trainer (LOPES: LOwer 

extremity Powered ExoSkeleton). Primary outcomes were the 10-meter walking test 

(10MWT), the Walking Index for Spinal Cord Injury (WISCI II), the six-meter walking test 

(6MWT), the Timed Up and Go test (TUG) and the Lower Extremity Motor Scores (LEMS). 

Secondary outcomes were spatiotemporal and kinematics measures. All participants were 

tested before, during, and after training and during a follow-up (eight weeks after the 

training). Participants experienced significant improvements in walking speed (0.06 m/s, 

p=0.008), distance (29m, p=0.005), TUG (3.4, p=0.012) and LEMS (3.4, p=0.017) after eight 

weeks of training with the LOPES. At the eight-week follow-up, participants retained the 

improvements measured at the end of the training period. Significant improvements were 

also found in spatiotemporal measures and hip range of motion. Robotic gait training 

using an impedance-controlled robot is feasible in gait rehabilitation of chronic iSCI 

individuals. It leads to improvements in walking ability, muscle strength, and quality of 

walking. Improvements observed at the end of the training period persisted at the eight-

week follow-up. Slower walkers benefit the most from the training protocol and achieve 

the greatest relative improvement in speed and walking distance. 
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3.1 Introduction 

Spinal cord injury (SCI) affects 10.4 [1] to 83 [2] per million individuals per year (in 

developed countries), leading to an estimated prevalence that ranges between 223 and 

755 per million inhabitants [3]. Learning to walk again is a major goal during SCI 

rehabilitation [4,5]. Generally, more than 50 percent of patients have motor incomplete 

lesions (iSCI) [3], of which around 75 percent regain some ambulatory function [6]. Still, 

many iSCI individuals experience limited hip flexion during swing phase and insufficient 

knee stability during the stance phase. Consequently, these individuals walk slower and 

often remain reliant on assistive devices. Over the last decades, many rehabilitation 

strategies have been explored to improve functional outcomes. Most are based on 

evidence suggesting that task-specific and intensive training, consisting of repetitive active 

movements and providing appropriate afferent feedback, engages spinal and supraspinal 

circuits, promoting neural plasticity (cortical reorganization) and increasing functional 

improvement [7-14]. 

Robotic gait-training devices have the potential to provide training sessions that support 

these key components. These devices reduce the labour-intensive demands on therapists 

and their discomfort, compared to manually assisted body-weight-supported treadmill 

training (BWSTT) [15]. They also enable objective monitoring of a patient’s performance 

and progress and reduce the between-trainer variability in terms of the applied supportive 

forces [16]. In the last decade, different robotic gait-training devices have been developed 

that are also used for other motor impairments, like stroke or multiple sclerosis. These 

robotic devices consist of a driven exoskeleton orthosis, like the Lokomat (Hocoma AG, 

Switzerland) or Auto/ReoAmbulator (HealthSouth/Motorika, USA) that drives the hip and 

knee joint, or driven footplates that facilitate a stepping motion like the Gait Trainer 

(Reha-Stim, Germany), G-EO (RehaTechnologies) or LokoHelp (LokoHelp Group, Germany).  

Although these robotic gait-training devices have been on the market for more than a 

decade, research on their efficacy is still at an early and rather inconclusive state. On the 

one hand several studies showed improvements in walking ability between pre- and post-

training in acute and chronic iSCI individuals who trained with the Lokomat [14,17-20] or 

Gait Trainer [19,21]. On the other hand, only very few randomized controlled trials (RCTs) 

[22-25] or other study designs [19,26], were performed to investigate whether these 

improvements are superior to those obtained using conventional approaches. Results 

from these studies, however, show contradictory results. Recent reviews have also 

concluded that robotic gait-training devices have not yet demonstrated clear advantages 

over conventional gait-training approaches in terms of clinical effectiveness [27-29].  

The limited effectiveness of the first-generation robotic gait-training devices could be 

attributed to some inherent limitations of these devices, which were mainly position-

controlled. This type of assistance may promote “slacking”, where the user starts to rely 

on the robot to perform the movement and reduces his muscular activity [30,31]. In iSCI 

individuals, position-controlled robotic guidance, especially in individuals with some ability 
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to walk, has been shown to actually reduce volitional activity (EMG and VO2) compared to 

therapist-assisted BWSTT [25,32]. For motor learning in general, active subject 

participation is considered a very important factor [33,34]. If, conversely, participants are 

encouraged to actively participate, they could be resisted by the position-controlled robot, 

causing abnormal alternations in muscle-activation patterns [35].  

Another limiting factor of position-controlled robots is that they reduce movement 

variability to a minimum [36]. Kinematic variability, and the possibility to make movement 

errors is necessary to (re)learn any new task [37,38]. In this respect, traditional robotic 

gait-training devices only partly meet the requirement for task-specific, intensive, active, 

and variable training. In other words, they do not resemble the manual assistance 

provided by a therapist who is likely to be compliant, motivational, and intuitively 

adaptive to the needs of the individual and who inherently introduces a natural sense of 

variability.  

This situation demonstrates the need to develop and improve control approaches that 

increase active participation and natural movement variability. This can be achieved by 

only providing assistance when needed, and not supporting the subject’s movements that 

are unimpaired. Technical implementation of this strategy often consists of controlling the 

interaction forces between the robot and the patient. Generally, these control strategies 

use a healthy control spatial path to define the desired motion, in combination with a 

“virtual wall”/force field that determines the amount of supportive force when the 

individual deviates from the template (impedance control). In some cases a “moving back 

wall” is introduced to assist the timing of the stepping pattern [39,40]. 

This kind of control strategy can overcome the main criticisms against robot-aided gait 

training by making the robot’s behavior more flexible and adaptive to the user’s needs. 

That is, the stiffness of the “virtual wall”/force field can be adapted to the capabilities, 

progress, and current participation of the user. This allows individuals to benefit from 

robot-aided treadmill training throughout the different stages of their recovery. At the 

initial stages of recovery, the robot can take charge (high impedance), whereas at the 

concluding stages of recovery, the user must contribute more to the prescribed motion 

(low impedance). To reduce the chance of the user becoming reliant on the support, some 

robotic gait-training devices use adaptive (“impedance shaping”) algorithms that reduce 

the stiffness of the virtual wall when kinematic errors are small [41,42]. Flexibility between 

steps and the possibility of making small movement errors can be increased by lowering 

the impedance levels or by creating a “virtual tunnel,” “dead band,” or nonlinear force-

field around the healthy control template [39,40].  

Lowering impedance levels might also increase motivation during training sessions. At 

lower impedance levels, the user has more control over his gait pattern, and additional 

effort/voluntary movement is reflected in the gait pattern. This way, individuals are aware 

of their increased activity, a sensation that can positively contribute to their active 

involvement. These types of controllers, that 1) provide more freedom of movement, 2) 

only focus on the impaired aspects of gait, 3) promote active participation and 4) allow 
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online modification of the amount of assistance (either manually or automatically), are 

referred to as “assist-as-needed” (AAN), “cooperative,” “adaptive,” or “interactive” 

controllers [39-47] 

Despite the potential of AAN strategies, the superiority of this approach for iSCI individuals 

has not been demonstrated. In animal studies, Cai et al. and Ziegler et al. showed that 

AAN control algorithms allow more variation between steps and result in larger walking 

recovery than position-control algorithms [48-50]. Despite numerous experimental robotic 

gait-training devices that have been developed [51], very few of the new compliant-

control strategies have been tested on iSCI individuals in multisession training protocols. 

In single-session experiments, Emken et al. [41] showed that iSCI individuals trained with 

more variability when they used their “impedance-shaping algorithm”. Duschau-Wicke et 

al. [40] evaluated their “patient-cooperative approach” in a single training session and 

showed that iSCI individuals trained with larger kinematic variability, and with larger 

muscle activity, compared to non-cooperative position-controlled training. Schück et al. 

[52] evaluated this approach in a multisession training protocol. They used the Lokomat to 

train two iSCI (and two stroke) individuals for four weeks, with four training sessions of 45 

minutes per week, However, they did not find a relevant increase in gait speed for iSCI 

individuals.  

Most studies on robotic gait training only assess walking ability. They report functional 

outcome measures and clinical scales, like walking speed (10-Meter Walking Test), 

distance (Six-Minute Walking Test), or walking ability (WISCI II). Only a few studies assess 

the effect of robotic gait training on walking quality, in terms of spatiotemporal and 

kinematic measures [23,25]. Assessment of walking quality can provide useful insights into 

whether gait training restores walking function by restoration of function (using more 

normal movement patterns) or by compensatory strategies.  

The aim of this study was to evaluate the feasibility and effect of an eight-week, multi-

session training protocol using an impedance-controlled gait trainer. The effect of training 

was assessed in terms of walking ability and walking quality. Individual assessments were 

used to determine which individuals were most likely to benefit from the training 

protocol. To evaluate if training effects were retained post-training, we performed follow-

up testing eight weeks after completion of the training protocol. 

3.2 Methods 

3.2.1 Participants 

Subjects with chronic, motor-incomplete SCI (iSCI) were recruited from Het Roessingh 

Centre for Rehabilitation in Enschede, The Netherlands. Inclusion criteria were iSCI 

sustained at least a half year prior to enrolment, age above 18 years, a stable medical 

condition, a physical condition that allows for three minutes of supported walking, the 

ability to bear their own body weight while standing, not currently enrolled in gait training 
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therapy, and a stable dose of anti-spastic medicine during the study. Exclusion criteria 

were current orthopedic issues causing problems in walking or balance, the presence of 

other neurological disorders, a history of cardiac conditions that interfere with physical 

load, the absence of independent ambulation prior to SCI, chronic joint pain and 

inappropriate/ unsafe fit of the robotic trainer due to the participant’s body size 

(bodyweight > 100 kg) and/or joint contractures. All subjects provided written informed 

consent including permission for publication, prior to admittance to the study. The study 

protocol was approved by the local medical ethics committee, METC Twente (Enschede, 

The Netherlands). 

3.2.2 Experimental apparatus  

Rehabilitation device  

Gait training was done with the prototype of the LOPES gait rehabilitation robot (figure 1). 

The LOPES consists of a bilateral exoskeleton-type rehabilitation robot above an 

instrumented treadmill. It is lightweight and impedance controlled using Bowden-cable-

driven series-elastic actuators. The exoskeleton offers a freely translatable (3D) pelvis, 

where the sideways and forward/backward motion is actuated. Furthermore, it contains 

two actuated rotation axes in the hip joints and one at the knee (abduction/adduction of 

the hip and flexion/extension of hip and knee). Passive foot lifters can be added to induce 

ankle dorsiflexion, if required. An external bodyweight-support system can relieve a 

definable percentage of body weight via a harness. A more detailed description of the 

exoskeleton design is presented in [53]. 

Joint-trajectory controller  

In this study, the amount of assistance that the participant receives is proportional to the 

deviation from a template or “reference walking pattern”. This reference walking pattern 

is derived from speed-dependent walking patterns in healthy participants. Details about 

the derivation of these reference patterns can be found in [54]. In short, the patterns 

were derived in the following way. Joint trajectory data from 15 healthy participants was 

parameterized by defining different key events (minima, maxima in angular position or 

velocity) that were extracted from the individual patterns. Next, the walking speed and 

body-height dependency of these parameters were determined by regression equations.  

These regression equations form the basis to reconstruct a desired joint trajectory pattern 

for every walking speed, and for participants with different body heights. First, the 

regression equations are used to estimate the different key events for a specific 

participant height and the selected walking speed. Next, quintic splines are fitted through 

the predicted key events to create a joint-trajectory. This is done for the hip and knee 

joint, creating the reference walking pattern (figure 2). This method was implemented 

such that, when the therapist changed the treadmill speed, the joint trajectories were 

automatically adjusted to that specific walking speed. 
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The amount of robotic support was adjusted by changing the stiffness of the impedance 

controller. The impedance levels were set to a participant-specific percentage of the 

maximum stiffness that could be controlled by the LOPES (300 Nm/rad). In this study, the 

same percentage was used for hip and knee joints and for the left and right leg. To enable 

the participant to stay in control of his cadence, the reference walking pattern is not 

replayed as a function of time but is synchronized to the cadence of the participant [43].  

3.2.3 Training protocol 

Subjects participated in an eight-week training program. Participants trained three times 

per week, for a maximum of 60 minutes per session. The training period was divided in 

two four-week periods, with one week scheduled for clinical tests in between. During 

training sessions, rest intervals were introduced if required by the participant or suggested 

by the therapist. The first training session was used to 1) fit the LOPES to the subject, 2) let 

participants get used to walking in the device and 3) select their preferred walking speed.  

To fit the LOPES to the subject, different anthropometric measurements were taken to 

adjust the exoskeleton segment lengths. Next, the subject was positioned into the LOPES 

 
 

Figure 1: The LOPES robotic gait trainer. 

 
Figure 2: Hip and knee reference trajectories for the different walking speeds [54].  



Chapter 3 

 

84 

 

C
h

a
p

te
r 

3
 

and the trunk and lower extremities were secured. Three adjustable cuffs (one at the 

thigh, two at the shank) attached the lower extremities to the LOPES frame. Final 

adjustments were made to the cuffs to align the subject’s hip and knee joints with the 

axes of the exoskeleton joints. Bodyweight support was set at a minimal amount for each 

participant, preventing excessive knee flexion during stance phase or toe dragging during 

swing phase. Foot lifters were used in case of insufficient ankle dorsiflexion during swing 

phase.  

During all training sessions, the LOPES operator was paired with an experienced physical 

therapist. Over the training period, different parameters were adjusted to increase 

training intensity. Walking speed was the first parameter to be increased when possible. 

Subsequently, the total training time per session was increased and BWS levels were 

decreased. To promote active patient participation, the impedance levels of the LOPES 

were reduced when possible. This controller could vary between very stiff (robot-in-

charge) to very flexible (patient-in-charge). Lower impedance levels also allowed more 

variability in the stepping trajectory (figure 3) [41].  

 

 
Figure 3: Typical example of hip and knee reference trajectories and actual joint trajectories for a 

healthy subject walking at 2 km/h using different impedance levels. Increasing the impedance levels 

results in a closer approximation of the reference trajectory and a reduction in the movement 

variability between steps. Here, the reference knee angle is enlarged by 10 percent to ensure that the 

robot provides support (since the healthy subject is expected to walk according to the healthy 

reference trajectory). 
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Adjustments of training parameters were done by the physical therapist based on the 

quality of walking (adequate step height during swing phase and adequate knee stability 

during stance phase), current physical condition (observation of breathing rate and degree 

of transpiration), and motivation (as verbally indicated by the participant). All changes 

were made in agreement with the participant. All training parameters were stored for 

later analysis.  

3.2.4 Outcome measures 

Primary outcome measures  

To assess changes in muscle strength and walking ability, clinical tests were performed 

before (pre), during (mid), and after (post) eight weeks of training. To examine whether 

the training effects were retained, we also performed a follow-up, eight weeks after the 

completion of the training protocol. 

Walking speed was measured using the 10-Meter Walk Test (10MWT). Participants were 

instructed to walk in a straight line at their own comfortable speed. Distance/endurance 

was tested with the Six-Minute Walk Test (6MWT), where participants ambulated for six 

minutes at their self-selected speed. The Timed Up and Go (TUG) test assessed the 

combination of balance during walking, gait speed, and sit-to-stand transitions. In this 

composite test, the patient must get up from a chair, walk 3 meters, return, and sit down 

again. For these three tests, participants were permitted to use braces and walking 

devices. The Walking Index for Spinal Cord Injury II (WISCI-II) was used to quantify the 

amount of assistance required during over-ground ambulation and to assess the use of 

assistive devices and/or orthoses. Category 0 indicates the participant could not walk or 

stand, category 20 indicates the participant could walk at least 10 m without assistance or 

use of assistive devices. All of these measures were taken according to van Hedel et al. 

[55]. Muscle strength was determined by the Lower Extremity Motor Scores (LEMS), 

utilized by the American Spinal Injury Association (ASIA). The strength of five key muscles 

are graded from 0 to 5 (0 indicates absence of muscle contraction and 5 is a normative 

active movement with full range of motion against full resistance). The cumulative score 

for lower extremities is between 0 and 50 [56]. All measures were recorded by an 

experienced physical therapist, not involved in the training. 

Secondary outcome measures  

To assess changes in gait quality, kinematic data and spatiotemporal measures were taken 

pre- and post-training. Gait kinematics were recorded using an optical tracking system, 

consisting of six infrared cameras (Vicon PlugIn Gait Model, VICON, Oxford Metrics, 

Oxford, UK) and reflective markers. Participants walked at their preferred speed across a 

7-meter walkway approximately 10 times and were allowed to rest between rounds. 

Kinematic data from right and left limbs of each participant were extracted and averaged 

over at least 10 steps, using custom-written software (MATLAB, Mathworks Inc., Natick, 
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MA, USA). The use of assistive walking devices and orthotic devices for safe over-ground 

walking was allowed (and kept constant during the pre- and post-measurements).  

A total of nine parameters were extracted from the kinematic data: walking speed, cycle 

time, step symmetry index, step length, step width, relative stance phase duration, 

maximum knee flexion during the swing phase, range of motion (ROM) of the knee during 

the stance phase (initial- and mid-stance) and hip ROM. These parameters were used for 

comparison between pre- and post-training. 

Cycle time was defined as the time between two consecutive heel strikes of the same leg. 

Range of motion of the knee during the stance phase was used to assess knee stability 

during the stance phase. Step width was determined as a measure of gait stability [57]. 

The step symmetry index was calculated according to equation 1. 

100
SLs-SLw

SI= %
0.5(SLs+SLw )

⋅  [1] 

SLs represents the step length of the stronger leg and SLw the step length of the weaker 

leg. Here, a symmetry index of zero indicates perfect symmetry between the two legs. 

Similarly to Nooijen et al. [23] the stronger leg was defined as the leg that, on average, 

made the largest steps during the pre-test. In all participants, the weak leg during the pre- 

and post-training remained the same. 

The step length, relative stance phase duration, maximum knee flexion during the swing 

phase, ROM of the knee during the stance phase and the hip ROM were also separately 

calculated for the weaker and stronger leg.  

3.2.5 Statistics  

Measurements of walking ability were assessed pre-, mid-, and post-training and at 

follow-up. Because of the lack of normally distributed data (determined by Shapiro-Wilk 

test) and the relatively small number of participants, nonparametric statistical tests were 

used to detect changes throughout the training period. Statistical analysis was done on 

the absolute values for all measurements. To assess the effect of the training protocol on 

functional outcome (10MWT, 6MWT, WISCI II, TUG and LEMS), the Friedman analysis of 

variance by ranks was used, with P<0.05. Post-hoc comparisons were performed using the 

Wilcoxon signed-rank test, with a Bonferroni correction to account for multiple 

comparisons (P<0.017). To assess retention of the functional level at follow-up, a Wilcoxon 

signed-rank test was performed to detect changes between post-training and follow-up 

with significance P<0.05. Spearman correlation coefficients were calculated to identify 

possible correlations between the initial performance on the walking ability tests and the 

absolute change in these measures (P<0.05). Measurements of walking quality (kinematic 

and spatiotemporal measures) were only assessed pre- and post-training. Changes in 

walking quality between pre- and post-training were determined with the Wilcoxon 

signed-rank test (P<0.05) All statistical tests were performed with SPSS Statistics (IBM 

Corp., Armonk, NY, USA). 
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3.3 Results  

3.3.1 Participants  

A total of 12 participants with iSCI were included. Participant characteristics are listed in 

table 1. Two participants dropped out (subjects 6 and 12). They did not complete the 

training due to medical reasons not related to the gait training.  

3.3.2 Training parameters 

Over the eight-week period, a mean number of 20.2 (range, 18-24) training sessions were 

completed by the 10 participants. Due to reasons unrelated to the gait training, some 

participants had to cancel some training sessions. The average time ambulated during a 

session increased from 14.5 minutes at the start of the training protocol to 22.7 minutes 

at the end. Gait speed increased from 0.43 to 0.58 m/s. BWS was only used in five 

participants, and decreased from 8.5 percent to 7.4 percent. The average impedance 

levels/support levels decreased from 56.9 percent to 37.4 percent. Individual changes in 

the training parameters over the course of the training period are shown in figure 4.  

3.3.3 Primary outcome measures 

Training period 

The Friedman analysis showed a significant training effect in all walking ability and 

 
Table 1: Descriptive information of participants. 

Subject Age Gender 
Motor level  

of injury* 
ASIA class 

Post-injury time 

(months) 

1 37 F Th9 C 14 

2 50 M Th4 D 22 

3 29 F L2 B ** 36 

4 60 F Th1 C 16 

5 48 F L2/ Th12 D 122 

6*** 61 M C5 D 14 

7 56 F L1/ L2 C 14 

8 31 M C5 C 120 

9 63 M C3/ C2 C 16 

10 46 F C5 D 41 

11 51 M Th12 D 62 

12*** 53 M Th12 C 84 

Mean 48,75 ± 11.3    46,75 ± 41.03 

 

*Levels separated by a “/” indicate a difference in right and left level of injury. It is noted Right/Left. 

**Diagnosed with a cauda equine syndrome. 

***Dropout. 
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Figure 4: Training parameters as a function of the training duration. Training sessions are normalized 

to the total training time (0 percent start of training, 100 percent completion of training). Training 

duration refers to the actual total training time per session (excluding setup time and rest periods). 

Support levels are expressed as a percentage of the maximum stiffness that could be controlled by 

the LOPES (300 Nm/rad). BWS was only required in five of the 10 participants. The bars indicate the 

mean training parameters, averaged across participants, at the start of the training (0-10 percent) 

and at the end of the training period (90-100 percent). The error bars indicate the standard 

deviation. 

Table 2: Statistical results of primary outcome measures. 

 
Improvement 

in % of 

subjects 

(pre-post) 

   Post-hoc comparison 

 
Pre mean 

(median) 

Post mean 

(median) 

Main 

effect of 

time 

p 

Pre-mid 

p 

Mid-post 

p 

Pre-post 

p 

Post-

follow up 

p 

Walking 

speed (m/s) 
90 

0.61  

(0.64) 

0.67 

(0.67) 

χ
2
(2)=8.7 

0.013* 
0.411 0.023 0.008* 0.797 

Walking 

distance (m) 
100 

184.4 

(184) 

212.9 

(216) 

χ
2
(2)=12.8 

0.002* 
0.022 0.012* 0.005* 0.507 

TUG 
1 

(s) 100 
19.5 

(14.5) 

16.1 

(12.4) 

χ
2
(2)=10.8 

0.005* 
0.017* 0.208 0.012* 0.779 

WISCI-II 30 
13.5 

(13) 

14.4 

(14.5) 

χ
2
(2)=6.5 

0.039* 
0.046 0.317 0.083 0.157 

LEMS 90 
34.4 

(34.5) 

37.8 

(39) 

χ
2
(2)=6.9 

0.032* 
0.210 0.258 0.017* 0.365 

 

*
 Significant difference. The Friedman analysis of variance by ranks was used, with P<0.05. Post-hoc comparisons 

were performed using the Wilcoxon signed-rank test and a Bonferroni correction was used to account for multiple 

comparisons (P<0.017). 
1 

The TUG was assessed in eight of 10 participants. Participants 7 and 9 were unable to stand up from the chair 

independently during the entire study. 
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strength scores (table 2). Subsequent post-hoc pairwise comparisons between the 

different evaluation periods showed that significant improvements were primarily found 

between pre- and post-training. The post-hoc test between pre- and post-training 

revealed that eight weeks of LOPES training resulted in significant improvements in 

walking speed (10MWT), distance (6MTW), TUG score, and LEMS (table 2). No significant 

difference was found for the WISCI II score between pre- and post-training. Figure 5 shows 

the individual changes in the primary-outcome measures at the different evaluation 

periods. 

Follow-up 

All participants retained the functional level reached at completion of their training. No 

significant differences were found between follow-up and post-training in any of the 

primary outcome measures (table 2). 

Relationship between initial impairment levels and absolute increase 

There were no significant correlations between the initial performance on walking ability 

tests and the absolute increase in test performance. Still, for walking speed and distance, 

for example, assuming an equal increase in absolute performance suggests that slower 

 
Figure 5: Primary outcomes. Measurements of walking ability were assessed pre-, mid-, and post-

training and at follow-up. TUG could not be measured for subject 7 and 9. The bars indicate the 

mean clinical measures, averaged across participants, at each period. The error bars indicate the 

standard deviation. 
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ambulators experience the greatest relative improvement. Indeed, the relative 

improvement in 10 MWT (ρ =-0.68, p=0.04) and 6 MWT (ρ =-0.79, p=0.01) showed a 

significant negative correlation with the initial score on these tests. The initial score on the 

TUG, WISI-II and LEMS did not prove to be an indicator of the relative increase in the 

corresponding score.  

3.3.4 Secondary outcome measures 

Significant changes were observed in most spatiotemporal parameters (table 3). The 

maximum knee flexion during swing, the knee ROM during the stance phase, and the step 

width did not show significant changes. For the step length and hip ROM, the mean 

changes in the weak leg exceeded the changes observed in the strong leg.  

3.4 Discussion 

The aim of the present study was to examine the effects of an eight-week training 

program on the walking ability and quality in iSCI individuals, using an impedance-control 

Table 3: Statistical results of secondary outcome measures. 

 
 

Increase in % of 

subjects (pre-post) 

Pre mean 

(median) 

Post mean 

(median) 
Pre-post p 

Walking speed (m/s)  89 0.49 (0.57) 0.56 (0.64) 0.015* 

Cycle time (s)  11 2.24 (1.79) 2.04 (1.58) 0.032* 

Step symmetry index (%) 22 8.46 (6.92) 4.38 (3.28) 0.021* 

Step width (m)  33 0.11 (0.11) 0.10 (0.11) 0.114 

Step length (m) 

Strong and weak 89 0.44 (0.44) 0.47 (0.44) 0.017* 

Strong 78 0.46 (0.46) 0.48 (0.47) 0.027* 

Weak 100 0.42 (0.42) 0.46 (0.44) 0.007* 

Rel. stance phase 

duration (%) 

Strong and weak 11 74.5 (70.6) 72.3 (68.8) 0.011* 

Strong 11 74.6 (71.2) 73.0 (69.6) 0.028* 

Weak 0 74.4 (70.6) 71.5 (68.4) 0.008* 

Maximum knee 

flexion (swing) (deg) 

Strong and weak 56 48.6 (49.1) 48.4 (48.9) 0.859 

Strong 56 49.3 (48.5) 50.7 (51.2) 0.314 

Weak 33 47.8 (52.2) 46.0 (47.9) 0.374 

Knee ROM (initial 

and mid stance) 

(deg) 

Strong and weak 67 22.5 (21.0) 23.5 (23.2) 0.441 

Strong 78 23.6 (26.8) 26.0 (22.8) 0.110 

Weak 67 21.5 (19.2) 21.8 (14.8) 0.953 

Hip ROM (deg) 

 

Strong and weak 100 36.7 (34.9) 38,8 (38.9) 0.008* 

Strong 67 37.0 (38.2) 39.0 (37.5) 0.051 

weak 89 36.4 (34.5) 38.7 (40.3) 0.011* 

 

* Significant difference, Wilcoxon signed-rank test (P<0.05) 

Participant 7 was excluded for analysis of kinematic and spatiotemporal data because of the use of orthotic 

devices, limiting accurate 3D kinematic data collection. 
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strategy. In this study, we used a prototype of the LOPES gait trainer. The training protocol 

was tolerated well by all 10 participants and was performed without difficulties for eight 

weeks. Participants improved significantly on functional outcomes, muscle strength, 

kinematics, and spatiotemporal measures after eight weeks of LOPES training. Subsequent 

follow-up evaluations revealed that participants retained their training-induced functional 

improvements. The main improvement in kinematics occurred at the hip. The range of 

motion of the hip joint increased, whereas the different measures for the knee joint were 

unaffected by the training protocol. Participants with the most limited initial walking 

function showed the largest relative improvements.  

3.4.1 Functional outcomes 

Our main findings were a significant functional improvement and an increased muscle 

strength. Comparing our results with those of others is hampered because of differences 

in robotic devices, protocols, patient characteristics, outcome measures, and the number 

of individuals. Furthermore, most robotic gait-training devices are rapidly evolving with 

increasing functionalities, making robotic gait-training strategies hard to categorize.  

We found significant changes in 10MWT, 6MWT, and TUG performance that were 

relatively small compared to other studies (table 4). A likely explanation for this difference 

is the included participants. Both Alcobendas et al. [24] and Benito-Penalva et al. [19] 

included acute iSCI individuals. Benito-Penalva et al., [19] who included a very wide range 

of participants, showed that the greatest rate of improvement was seen when training 

started early in rehabilitation, defined as less than six months post-injury. It is very likely 

that the improvements in these participants are partly due to underlying spontaneous 

recovery [58], rather than therapy effects. These findings agree with other pilot studies, 

showing that individuals with the smallest time since onset of injury show the largest 

improvements in over-ground walking ability [14,17,21]. Additionally, most studies that 

include sub-acute iSCI individuals also allow their participants to receive additional gait-

related therapies [19,20,24], whereas these therapies for chronic individuals have 

stopped, effectively increasing the intensity of the training protocol. 
 

Table 4: Overview of studies using robotic gait training in patients with spinal cord injury. Part 1 

 

Participants  

Time since onset 

Device 

ASIA  

C/D (%) 

Training parameters 

(average number of sessions) 

10 MWT speed 

(m/s) 

(pre - post) 

Wirz et al. [18] 

 

N= 20 (4) 

Chronic  

Average: 70.8 months 

Lokomat 

45/55 
8 weeks; 45 min; 3-5 x/wk; 

(26 sessions) 
0.38 - 0.49* 

Field-Fote et al. [22] 

 

N = 14 

Chronic 

≥ 12 month 

Lokomat 

C and D 
12 weeks; 45 min; 5 x/wk;  

(49 sessions) 
0.17 - 0.18  

Alcobendas-Maestro N = 37 (23) 68/32 8 weeks; 30 min; 5 x/wk; 0.3 - 0.4
5
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et al. [24] Sub-acute 

Average: 4 months 

Lokomat 

(40 sessions)
 3

  

Benito-Penalva et  

al. [19] 

N = 105  

Sub-acute 

<6 month N=81 

6-12 month N=8 

>12 month N=16 

Lokomat (N=39)  

GT (N=66) 

42/48 

 

(10% A or B) 

8 weeks; 45 min; 5 x/wk;
 

(40 sessions)
 3

 
0.08 - 0.26* 

Van Nunen et al. [20] 

N=18 (9) 

Sub-acute and chronic 

<12 month N=7 

>12 month N=11 

Median: 28.8 months 

Lokomat 

44/39 

 

(17% B) 

12 weeks; 60 min; 2 x/wk;
 

(24 sessions) 

(20-45 min)
2,4

 

0.09-0.15* 

Fleerkotte et al.  

N = 10 

Chronic  

Average: 45.3 months 

LOPES 

50/40 

 

(10% B) 

8 weeks; 60 min; 3 x/wk; 

(20 sessions) 

(19 min)
 2

 

0.61 - 0.67* 

 

 

Table 4: Part 2 
    

 
6MWT Distance (mtr)  

(pre - post) 

TUG (sec) 

(pre - post) 

WISCI II 

(pre - post) 

LEMS 

(pre - post) 

Wirz et al. [18] 

 
121 - 165* 61 - 36* 

No significant 

increase 

32 - 35* 
(N=10) 

 

Field-Fote et al. [22] 

 
50.4 - 53.7

1
 - - 

Left leg  

12.7 - 13.9 

 

Right leg  

12.9 - 14.1* 

Alcobendas-Maestro 

et al. [24] 
110 -169

5

 - 4 - 16
5

 33 - 40
5

 

Benito-Penalva et al. 

2012 [19] 
- - 4.0-9.2* 22.1-30.6* 

Van Nunen et al. [20] - 

No significant 

increase  

(N=6) 

No significant 

 increase - 

Fleerkotte et al.  184.4 - 212.9* 24.4 - 20.2* 13.5 - 14.4 34.4 - 37.8* 

 

* Indicates a significant change. 

N indicates the number of participants, (..) the number of individuals initially unable to walk over the full 10 m 

walkway. 

Median, mean. 
1

 Actually performed a 2MWT, here linearly extrapolated to six minutes. 
2

 Average/range of the pure training time (excluding setup time and rest periods). 
3

 Also received standard daily therapy (except for over-ground gait training). 
4

 Also received other gait related therapies (including over-ground gait training). 
5

 Not tested for significant differences between pre and post, only for significant differences in gains obtained 

with Lokomat or conventional therapy. 
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From the studies including chronic iSCI individuals, Nunen et al. [20] reported similar 

improvements in walking speed. Wirz et al. [18], who also included only chronic iSCI 

survivors, observed larger improvements in walking speeds. Possible explanations for their 

higher gains are a greater number of training sessions (26 vs. 20) , longer session durations 

(45 vs. 19 min), and lower initial walking speeds (0.38 vs. 0.61 m/s). A lower initial walking 

speed possibly allows more room for improvement. Although not discussed by Nunen et 

al., [20] their results indicate that participants with initial walking speeds around 0.4 m/s 

show the largest improvements in walking speeds. Therefore, it seems reasonable to 

assume that the greater effect sizes found by Wirz et al., [18] can be explained by the 

initial functional level of their participants [18]. Field-Fote et al. [22], who trained chronic 

iSCI individuals with very low initial walking speeds, did not find any significant effects of 

robotic gait training on walking speed. Apparently, iSCI individuals must have a certain 

level of initial walking speed/function to benefit from robotic gait training. Their subjects 

also have lower initial LEMS scores. 

Although the Friedman analysis showed a significant training effect on the WISCI II score, 

there was no significant improvement in WISCI II scores between pre-and post-training. 

This is in line with other studies, taking into account the types of participants. It is known 

that the WISCI II is more sensitive in monitoring recovery of walking capacity in iSCI 

subjects during the acute stage of recovery rather than the chronic stage [59]. Similar to 

Wirz et al. [18], Nunen et al. [20] and others [14,17,21], we did not find an increase in 

WISCI II score in chronic individuals, whereas Alcobendas et al. [24] and Benito-Penalva et 

al. [19] reported significant increases in acute patients. Improvement in LEMS scores are 

similar to the results found in other studies among chronic iSCI individuals [18]. 

3.4.2 Retention 

Follow-up measurements revealed that participants in our study retained the level of 

functional improvement measured at the end of the training period. Studies on robotic 

gait training in iSCI individuals rarely include a follow-up. Field-Fote et al. [22] did perform 

a follow-up among 10 individuals whose improvements exceeded 0.05 m/s to assess their 

retention of relearned gait abilities. They concluded that walking speeds declined between 

the conclusion of the training and follow-up, but remained above pre-training levels. 

However, their follow-up group included only two chronic iSCI participants who received 

robotic gait training, hampering a fair comparison.  

It is important to note the timing of follow-up, which was, on average, 20.3 months in 

their study and only eight weeks in ours. Although Field-Fote et al. [22] did not find a 

correlation between time since the conclusion of training and the decline in walking 

speed, it seems likely that participants lose some of their relearned walking abilities over 

time, especially if they do not exploit their relearned walking abilities in daily life [60,61].  

In future studies that assess the efficacy of different rehabilitation strategies, it is 

important to include follow-up testing. For example, in stroke survivors, it has been shown 

that at six months, a specific intervention seemed superior, whereas at one year, all 
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participants reached the same levels of functional walking [62]. This emphasizes the 

importance of long-term follow-up measurements to prevent incorrect conclusions. 

3.4.3 Spatiotemporal and kinematic measures 

To our knowledge, this is the first study reporting significant changes in spatiotemporal 

and kinematic measures associated with increased walking ability due to robotic gait 

training. We found significant changes in most spatiotemporal and kinematic measures 

after robotic gait training. Previous studies showed small increases in cadence, step and 

stride length, and step-length symmetry [23] or sagittal plane excursions [25], but these 

were not significant. In this study, most of these measures were significantly higher after 

training. It is important to note that Nooijen et al. [23] and Hornby et al. [25] used the 

LOKOMAT without the option to decrease guidance forces, as this option was unavailable 

on the device at the time of their study. Although both studies encouraged participants to 

"walk with the machine," they both state that constant guidance may minimize the 

voluntary effort during training and subsequently limit improvements in gait function.  

In this study, improvements in spatiotemporal and kinematic measures were greater in 

the weaker leg. For the step length and hip ROM, the improvements were larger for the 

weaker leg, which resulted in significant increases in symmetry between the two legs. This 

may indicate that gait training restores walking function by restoration of function using 

more normal movement patterns, rather than compensation.  

Improvements in walking speed were caused by improvements in step length as well as 

cadence. The increased walking speed might explain some of the observed changes in 

other spatiotemporal measures. Here, the increase in walking speed probably explains the 

decrease in stance phase duration [63] and the decrease in step width [64]. Also, whether 

the increased hip flexion is enabled by an increased hip flexion strength (mean increase in 

LEMS score of 3,4), or is simply a consequence of the increased walking speed [65] cannot 

be answered. 

3.4.4 Intensity 

Most current rehabilitation strategies focus on recovery through intense practice of a 

specific task. In BWSTT training, intensity depends on a combination of duration (time or 

number of steps), speed, training frequency, and the amount of BWS. In this study training 

intensity was maximized by increasing training speed and duration, and lowering the BWS 

levels when possible. With the development of robotic gait trainers that can potentially 

support the whole movement, the amount of robotic support is also an important 

parameter that affects training intensity. Often the precise setting of these parameters is 

based on a therapist’s clinical judgment and not on experimental evidence [22]. For some 

parameters, the effects on training outcome are known, but for many they are not. 

Furthermore, the interaction among the different parameters is not being investigated. 

For example, reducing the amount of BWS and training at higher treadmill speeds 

increases efferent input. This is known to affect the neural control of stepping and is 
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suggested to promote functional recovery [66, 11]. Still, the interactive effect of BWS and 

walking speed in individuals following SCI is unknown. Also the tradeoff between training 

duration and frequency remains unknown.  

For robotic gait training, the optimal amount of support also remains unclear, although 

reducing the amount of support according to the AAN principle seems most suitable. 

Here, one might follow the concepts provided in the “Challenge-Point Framework” [67]. 

This framework states that, for each skill level, there exists an optimal level of task 

difficulty. When skill levels increase, further learning will be best facilitated by increasing 

task difficulty. In this study, task difficulty was increased by lowering theimpedance levels.  

To gain a better understanding of the combined effect of training duration, speed, 

frequency, the amount of BWS and robotic support levels, these intensity parameters 

should be carefully reported in future studies [68]. For example, average walking speed 

and BWS levels in the robotic device are rarely reported in robotic gait-training studies. 

Additionally, often only the total session duration is reported, which does not represent 

the actual training time (excluding setup time and rest periods). With the increasing 

interest in robotic gait-training devices that have (adaptive) impedance levels, it is also 

advised to also report impedance levels of the robot.  

The importance of properly quantifying and reporting and intensity is also pointed out in a 

reported discussion between Hornby and Reinkensmeyer [69]. Hornby suggests that 

improvements seen in many clinical studies involving robot-assisted, manual-assisted, and 

even over-ground therapy strategies may, in fact, be largely attributed to the relatively 

high levels of training intensity of these forms of therapy, which are not typically provided 

in more traditional forms of therapy.  

Among the different robotic gait-training studies, there is a great diversity in training 

frequency, ranging between three to five sessions per week, and duration, ranging from 

30-45 minutes per session (table 4). These parameters are often based on financial and 

practical reasons [20]. In this study, training frequency fell within this range but the mean 

training duration (19 minutes) was considerably lower. The relatively low training duration 

is thought to be the result of the use of the impedance control. By lowering the 

impedance levels when possible, the active contribution required from participants was 

relatively high. As a result, some participants, especially the slowest walkers, could not 

train for the same duration as seen in other position-controlled gait-training studies. Still, 

we showed that similar gains in walking ability can be accomplished with less training 

time. Actually, the biggest gains in walking ability were observed in slow walkers with the 

lowest training duration, suggesting that active participation is equally important as 

training duration. 

3.4.5 Clinical relevance 

In this study, 90 percent of participants increased their walking speed on the 10MWT, 100 

percent increased their distance on the 6MWT, and 100 percent reduced their TUG. 
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Although this resulted in an average significant change of 0.6 m/s, 29 m and 3.4 s (figure 

5), it should be noted that there was considerable variation among subjects. Also, whether 

these improvements represent a detectable (and clinically relevant) change is debatable. 

The minimally detectable change (MDC), which defines the minimal amount of change 

required to distinguish (with 95 percent confidence) a “true” performance change from a 

change due to variability in performance or measurement error, is reported to be around 

0.13 m/s, 45.8 m, and 10.8 s [70]. Criteria for what clinicians define as “clinically relevant” 

or “meaningful” can be even higher. Although MDC criteria for detecting “true” 

improvements are conservative, according to them, only one participant showed a “true” 

improvement on the 10MWT, 6MWT and TUG tests. Still, small gains in functional 

improvement that can lead to reduced reliance on assistive devices could be of great 

personal relevance to these individuals [71]. 

Additionally, walking function may not be the only appropriate outcome measure for iSCI 

individuals. Hicks et al. [72] suggest that whole-body upright exercise has additional 

physiological and psychological benefits beyond improvements in functional ambulation, 

especially for wheelchair-dependent individuals. It may decrease the risk of secondary 

health complications, such as cardiovascular disease, diabetes, or depression. Although we 

did not systematically assess these physiological and psychological benefits, some patients 

indicated they had reduced occurrence of urinary tract infections or mentioned that they 

experienced positive psychological effects from the training. Thus, to assess the full 

potential of robotic gait training and other forms of therapy, additional measures of 

functional performance should be used, rather than just walking ability and quality [73].  

3.4.6 Limitations and future perspectives 

The major limitation of this pretest-posttest study is the lack of a control group, or the use 

of a crossover design. The rationale for not including a control group was that this “stage 1 

pilot study” was set up to assess the possible effect of impedance-controlled robotic gait 

training, how well it can be applied, the utility of the outcome measures chosen, and the 

variability in patient responses [68]. It was not intended to afford a basis on which to claim 

that this kind of training can produce greater functional improvements than those 

achieved through manually assisted gait training or other forms of conventional therapy. It 

only shows that chronic iSCI individuals still have the capacity to improve their walking 

function when provided with an intensive robotic gait-training program. Pretest-posttest 

study design are considered a useful step before setting up large scale RCTs [68].  

This was the first explorative study using an impedance-controlled robotic gait trainer in a 

multi-session training protocol for chronic iSCI individuals. Improvements in functional 

outcomes and walking quality were similar to improvements found in position-controlled 

robotic gait-training devices. As mentioned before comparing different studies is difficult 

because of differences in robotic devices, protocols, patient characteristics, and outcome 

measures. Therefore, future studies should focus on direct comparisons between both 

control strategies to determine whether one method is clearly superior.  
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Patients and therapists will probably benefit the most from robotic gait-training devices 

during acute stages of recovery [19]. Still, in this study, all participants were chronic 

individuals. We included only chronic individuals (>12 months) because they typically have 

reached a stable level of recovery [58]. The average time since onset was 46 months, 

suggesting that observed improvements can be attributed to the intervention rather than 

spontaneous recovery. That the participants reached a stable level of recovery was also 

confirmed by a lack of correlation between the time since onset of the injury and the 

relative (or absolute) increases in walking speed. Thus, to investigate the true potential of 

impedance-controlled gait training, acute and sub-acute individuals should also be 

included in future studies. However, these trials will require larger patient numbers to 

reach significance due to the potential for underlying spontaneous recovery [58].  

Apart from time since injury [19,20,58,71,74], previous studies also showed that ASIA 

levels [6,19,71,75], LEMS scores [25,75,76] (for recent injuries, for chronic results vary 

[18,20,22]), sensation [75,77], and age [6,75] are distinguishing factors for the degree of 

ambulatory capacity after gait rehabilitation. Several of these studies purely focus on 

increased walking speed, which is considered to be closely related to functional 

ambulation [78]. Patients who start rehabilitation programs early after injury, have higher 

ASIA/LEMS/sensory scores, or are younger generally show greater improvements. Factors 

like ethology, levels of injury, or sex seem to be less predictive [19,75]. Because of the 

relatively small number of participants in this study, we did not perform an analysis to 

relate clinical improvement to patient characteristics. Future studies should carefully 

document these characteristics, or stratify study participants, to determine which iSCI sub-

population responds better to robotic gait training. These predictors might be different for 

robotic gait training where age or sensation, for instance, do not seem to have a clear 

effect on functional outcomes [19,74].  

3.5 Conclusion 

This first explorative study using an impedance-controlled robotic gait trainer shows 

significant improvements in functional and qualitative walking parameters after an eight-

week training program in chronic iSCI individuals. The training program did not 

significantly reduce the amount of assistance/assistive devices during over-ground 

ambulation. We were able to provide task-specific and intensive training sessions, even 

for severely affected individuals, with a minimal workload on the therapist. Compared to 

position-controlled robotic gait-training strategies, the training duration was relatively 

short, whereas improvements in functional outcomes were similar. Additionally, 

improvements observed at the end of the training period persisted at the eight-week 

follow-up. The most impaired ambulators, based on their initial walking speed, benefitted 

most from the training protocol, showing the greatest relative improvements in walking 

speed and distance.  
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Abstract 

Robot-aided gait training is an emerging clinical tool for gait rehabilitation of neurological 

patients. This paper deals with a novel method of offering gait assistance, using an 

impedance controlled exoskeleton (LOPES). The provided assistance is based on a recent 

finding that, in the control of walking, different modules can be discerned that are 

associated with different subtasks. In this study, a Virtual Model Controller (VMC) for 

supporting one of these subtasks, namely the foot clearance, is presented and evaluated. 

The developed VMC provides virtual support at the ankle, to increase foot clearance. 

Therefore, we first developed a new method to derive reference trajectories of the ankle 

position. These trajectories consist of splines between key events, which are dependent 

on walking speed and body height. Subsequently, the VMC was evaluated in twelve 

healthy subjects and six chronic stroke survivors. The impedance levels, of the support, 

were altered between trials to investigate whether the controller allowed gradual and 

selective support. Additionally, an adaptive algorithm was tested, that automatically 

shaped the amount of support to the subjects’ needs. Catch trials were introduced to 

determine whether the subjects tended to rely on the support. We also assessed the 

additional value of providing visual feedback. With the VMC, the step height could be 

selectively and gradually influenced. The adaptive algorithm clearly shaped the support 

level to the specific needs of every stroke survivor. The provided support did not result in 

reliance on the support for both groups. All healthy subjects and most patients were able 

to utilize the visual feedback to increase their active participation. The presented 

approach can provide selective control on one of the essential subtasks of walking. This 

module is the first in a set of modules to control all subtasks. This enables the therapist to 

focus the support on the subtasks that are impaired, and leave the other subtasks up to 

the patient, encouraging him to participate more actively in the training. Additionally, the 

speed-dependent reference patterns provide the therapist with the tools to easily adapt 

the treadmill speed to the capabilities and progress of the patient. 
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4.1 Introduction 

Many patients with neurological injuries, like stroke or spinal cord injury (SCI), suffer from 

muscle weakness, loss of independent joint control, and spasticity, often resulting in gait 

disorders. To regain functional mobility, these patients require task-oriented, high-

intensity, and repetitive training [1-3]. Robotic gait-training devices are increasingly being 

used to provide this kind of training. They can provide highly repetitive, more frequent, 

and intensive training sessions, while reducing the workload of the therapist, compared to 

more conventional forms of manual-assisted (and body-weight-supported) gait training. 

Additionally, the assessment of the progress of the patient becomes more objective with 

the integration of different sensory systems, which can record interaction forces and gait 

kinematics [4]. 

Despite the reduction in labor intensity, the therapeutic effect of the different types of 

gait trainers is inconsistent. Pohl et al. [5] and Mayr et al. [6] reported a significant 

improvement in gait ability in subacute stroke patients, compared to conventional 

physiotherapy. Other studies found no significant difference between robotic support and 

manual treadmill training [7,8], or conventional physiotherapy [9], although robotic gait 

training did show improvements in gait symmetry [7,9]. Some results even indicate that 

manual treadmill training is superior to robotic assistance [10]. Recently, a large 

multicenter randomized clinical trial suggested that the diversity of conventional gait 

training elicits greater improvements in functional recovery than robotic-assisted gait 

training [11]. These contradicting results emphasize that robot-aided training needs to be 

further optimized to increase therapeutic outcome. 

One of the most important factors that promotes therapeutic outcome is active 

participation. Active patient participation has been proven to be beneficial for motor 

learning in general [12-14] and is suggested to be important for rehabilitation of gait 

disorders [15]. The “first- generation” devices, like the Lokomat (Hocoma AG, Switzerland) 

or AutoAmbulator (HealthSouth, USA), were initially developed based on the approach of 

enforcing gait upon a patient by moving the legs through a prescribed gait pattern. This 

diminishes the need for the patients to actively contribute to the required motion. Moving 

the legs in a rigid fashion is known to reduce [16] and affect [17] voluntary muscle activity 

compared to manual assistance, possibly making the patient reliant on the support. Rigid 

trajectory control also limits the natural gait variability and the possibility to make small 

movement errors. These small errors have been suggested to promote motor learning in 

mice [18] as well as humans [19,20]. 

To encourage active participation, and allow natural gait variability, more and more 

robotic devices control the interaction forces by using impedance or admittance control 

algorithms [21-29]. They guide the leg by applying a force rather than imposing a 

trajectory. Impedance (or admittance) control can also make the robot’s behavior more 

flexible and adaptive to the patient’s capabilities, progress, and current participation. 

Depending on the impedance levels, small errors are still possible, promoting motor 
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recovery. Patients might also increase their motivation, since additional effort by the 

patient is reflected in their gait pattern. Controllers based on this principle are referred to 

as “assist-as-needed” (AAN), “cooperative,” “adaptive,” or “interactive” controllers. In 

mice, these AAN algorithms have been shown to be more effective than position-

controlled training [30]. 

Using impedance control instead of position control, however, introduces new challenges. 

First, low impedance levels increase the risk that the subject and robot start to walk out of 

phase. Consequently, the robot will resist, rather than support, the subject. Different 

algorithms have been proposed to avoid synchronization problems. To account for 

alterations in cadence, the reference pattern of the robotic controller can be accelerated 

or decelerated, based on the difference between the current gait phase of the subject and 

the state of the robot. This can be done continuously [21] or on a step-by-step basis [27]. 

Second, the impedance level needs to match the patient’s capabilities and progress, which 

can vary widely due to different levels of increased muscle tone, muscle weakness, or loss 

of coordinated control. This makes choosing the appropriate setting a priori a difficult 

process for the operator. In most applications, the amount of support is set by the 

operator on a trial-and-error basis. Setting the support levels too low can result in a 

dangerous situation, whereas too much assistance might reduce active participation of the 

patient. Roughly two strategies can be distinguished to automate the process of setting 

the support levels. The support levels can be adjusted based on increased patient effort 

(detected with force sensors) [24], or based on kinematic errors [27]. Emken et al. [27] 

developed an error-based controller with a forgetting factor. The algorithm systematically 

reduces the impedance levels when kinematic errors are small, whereas it increases the 

impedance when the errors are large. When the subject (unconsciously) reduces his 

effort, he will experience no support. Only when the subject fails to commit to the 

reference pattern for a longer duration of time, the support will be increased. This should 

prevent the patient from becoming reliant on the support. In parallel, it allows normal gait 

variability by lowering the impedance levels, when possible. Others use a deadband or a 

non-linear stiffness to allow normal variability, without causing the robot to increase its 

assistive forces [25,29]. 

Third, even when the impedance levels are adaptive, the whole movement is still 

potentially supported. This implies that the patient receives support during gait phases 

where his performance decreases, making no distinction between the patient’s 

incapability, reliance, or fatigue. This also limits the possibility to focus the therapy on 

specific aspects of the walking pattern that require special attention. 

Fourth, despite that impedance control does not rigidly impose a fixed reference pattern, 

it still requires some sort of reference pattern to determine the supportive force. These 

patterns are mostly based on pre-recorded trajectories from unimpaired volunteers. The 

major limitation of these patterns is that they are not publically available. Additionally, 

most patterns are recorded at a limited number of speeds, while the progress of the 

patients’ preferred walking speed can be as small as 0.1 km/h. 
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In this paper, we extend the support strategy that we currently use in out gait trainer 

LOPES [31]. Within this strategy, patients are supported based on the execution of their 

gait subtasks, rather than their complete leg movement. Recent simulation and 

experimental studies [32,33] showed that the muscle activity during walking can be 

decomposed in different “modules.” Each of these modules can be associated with a 

specific subtask of walking (e.g. body weight support, forward propulsion or foot 

clearance). In stroke survivors, each of these subtasks can be impaired to some degree 

without automatically affecting others. Selectively supporting these subtasks, based on 

the capabilities and progress of the patient, can be seen as an extension of the “assist-as-

needed” principle. Also, the subtasks of both legs can be regarded separately, since in 

most stroke survivors the paretic leg will be more affected than the non-paretic leg. 

Controlling gait subtasks, rather than joint angles, also implies that compensatory 

strategies, like hip circumduction to create more foot clearance, can still be used. 

Imposing a symmetrical joint-angular reference pattern also limits the possibility of the 

non-paretic leg to compensate for the deficiencies of the paretic leg. 

For the foot-clearance subtask, we developed a controller based on the Virtual Model 

Control framework [34]. This kind of control provides an elegant way to prevent 

synchronization problems by only controlling a specific subtask during the corresponding 

phase of the gait cycle. Using Virtual Models for different subtasks also allows straight-

forward adaptation of the support to the subject’s specific needs by only turning on the 

controllers for impaired subtasks. A pilot study on a small number of healthy subjects 

already showed that this method allows selective control of foot clearance, while leaving 

the remaining walking pattern largely unaffected [31]. However, also within a specific 

subtask, the amount of support needs to match the specific needs of the patient. The 

support should be such that 1) large errors are prevented, 2) safe walking is guaranteed, 

3) small errors and variation over steps are allowed and 4) reliance is minimized. In 

another pilot study we incorporated the adaptive algorithm, that shaped the impedance 

as a function of tracking performance, and that was introduced by Emken et al. [27]. With 

that pilot study we showed that the stiffness profile converged to a subject-specific 

pattern, that varied over the gait cycle and matched the subject’s needs [35]. During the 

varies pilot experiments, we also experienced that visual feedback, based on basic gait 

parameters like foot clearance, is easier to interpret for patients and therapists than 

feedback in terms of joint angles or interaction torques. 

The main contribution of this paper is to show the effectiveness of selective-subtask-

support, in conjunction with adaptive support levels, in stroke survivors. Young healthy 

subjects will be used as a control group. Secondly, a new method to quantify reliance will 

be tested. Since reliance, or “slacking,” is known to be present in upper-limb robotic 

support [36], and is considered to be an undesired effect, we try to investigate this 

phenomena using catch trials. Catch trials are often used in motor learning experiments to 

evaluate human behavior during prolonged exposure to external stimuli. To our 

knowledge, this type of methodology, to quantify reliance in lower-limb robotic gait 

training for stroke survivors, has not been used before. Because reliance is closely related 
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to the feedback that the patient receives, we also developed a system to provide the 

patient with visual feedback about his performance. Thirdly, we will investigate the use of 

compensatory strategies in the robotic gait trainer. Since LOPES [28] allows hip abduction, 

patients are allowed to employ their compensatory strategies in the device. This puts us in 

the unique position to evaluate whether patients reduce their compensatory strategies 

when they receive robotic support. Before testing the VMC framework, we will also 

present a new method, and results, of constructing reference trajectories for the ankle 

movement at different speeds. First, the pattern is parameterized by defining different 

key events (minima, maxima etc.), which are extracted from the individual patterns. Next, 

the walking speed and body-height dependency of the parameters are determined by 

regression models. These regression models can be used to reconstruct patient-specific 

ankle movement patterns at any speed. 

4.2 Methods 

4.2.1 Reference patterns 

Subjects 

Eleven healthy elderly subjects (five male, six female, age 57.3 ± 5.9, weight 74.9 kg ± 11.9, 

length 1.70 m ± 0.11) volunteered to participate in an experiment that was setup to collect 

the reference patterns that are required for VMC of the step height. All subjects had no 

symptoms of orthopedic or neurological disorders and gave informed consent before 

participating in the experiments. 

Experimental protocol 

Gait kinematics were recorded using an optical tracking system (Vicon Oxford Metrics, 

Oxford, UK) at a frequency of 120 Hz. To track the motion of the subject, twenty-one 

passive reflective markers were attached to bony landmarks on the legs and trunk. The 

subjects were asked to walk on a treadmill at seven different speeds: 0.5, 1, 1.5, 2, 3, 4 

and 5 km/h. After a general familiarization period of three minutes, the subjects walked 

for three more minutes at each selected speed. During each trial, the subjects did not 

receive any specific instructions about how to walk on the treadmill. After each trial, the 

subject had a one-minute break. 

Data analysis 

Different steps were taken to derive the regression models. 

Kinematics 

Only the last minute of each trial was used for data analysis. The recorded marker 

positions were processed using custom-written MATLAB software [37]. Since the 
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proposed VMC approach is end-point based, we do not require the hip and knee angular 

reference patterns, but only the ankle pattern in Cartesian space. 

Key events and predictor variables 

The kinematic data was split up into individual strides of the right ankle, based on a phase-

detection method developed by Zeni et al. [38], that used the local maxima in the 

anterior-posterior position of the heel marker. Each individual stride was parameterized 

by defining points that corresponded to key events in the gait cycle. For the vertical ankle 

position, from now on referred to as “ankle height,” these key events included the ankle 

height at the heel-contact of the contralateral leg (start of the double stance), and a 

selection of extreme values in position and velocity data. Each key event was 

parameterized by an index, representing the percentage of the gait cycle at which the key 

event occurred, and its position and velocity. The median index, position and velocity of 

the key events were computed for each subject at each walking speed. Figure 1 shows the 

selected key events for the reference ankle-height pattern. 

Predictor variables 

The median index, position, and velocity of the key events were used to construct the 

regression models. These regression models require a set of predictor variables. We used 

the following regression formula: 

2

0 1 2 3
Y v v lβ β β β= + + +  [1] 

where v represents the walking-speed and l body-height. Y represents the index, position 

or velocity of a particular key event. Stepwise regression [39] was used to test the 

statistical significance of the predictor variables, using entrance/exit tolerances of 0.05 on 

the p-values. 

 
Figure 1: Selection of key events for the reference ankle-height pattern. The key events are a 

selection of extreme values in position and velocity. HC CL represents the key event that is located at 

heel contact of the contralateral leg. 
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Regression coefficients 

After selecting the appropriate predictor variables for each regression model, robust 

regression [40] is used to retrieve the final set of regression coefficients (βx). Robust 

regression is an iterative linear regression procedure that uses a tuning function to 

downweight observations with large residuals. Figure 2 shows an example of how the 

index, position, and velocity of one key event changes for different walking speeds. The 

relative position of the key event (the index) decreases at higher walking speeds, whereas 

the position and velocity of the key event increase. It also shows that these effects are 

nonlinear. Therefore, the regression models for the index, position, and velocity of this 

particular key event contain coefficients for the walking speed and walking speed squared. 

The stepwise regression showed that the body height has no significant contribution to 

the predictability of the index and position of the key event, whereas for the velocity of 

this key event it did contribute to the predictability. This indicates that some of the 

variability in the third figure could be attributed to differences in body height. The lists 

with the actual values for β0, β1, β2 and β3, can be found in the results section. 

Spline fitting 

Now that the regression models for the key events are known, a reference pattern can be 

reconstructed for each walking speed (in the range of 0.5-5.0 km/h). First, the index, 

position, and velocity of the key events, for a certain speed and body height, are 

calculated. Next, a cubic spline is fitted between every pair of consecutive key events, 

resulting in 6 (3rd order) polynomials describing the ankle-height pattern. By definition 

the position and velocity of the first key event (at 0 percent of the gait cycle) and the end 

of the last spline (at 100 percent) are equal. The resulting set of splines are merged to 

construct the reference pattern over the complete gait cycle.  

 

 

 
Figure 2: Relation between walking speed and the index, position, and velocity of a particular key 

event. The figure shows the index (A), position (B), and velocity (C) of the “1st local maximum 

velocity” key event at different walking speeds. Each circle represents the median value at a specified 

walking speed for one subject. The timing of the key event (the index) decreases at higher walking 

speeds, whereas the position and velocity of the key event increase. The solid line represents the 

fitted regression model. Stepwise regression showed that the velocity (C) of this key event is also 

dependent on the body height. Here the fitted regression model for the average body height (1,7 m) 

is shown. 
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Validation 

To determine the accurateness of the spline-fitting procedure, we compared the 

constructed splines (based on data from the right ankle of all subjects) with the left ankle 

pattern of each subject. First, we reconstructed the reference patterns for the set of 

walking speeds (0.5-5 km/h) for each subject, taking into account the subject’s individual 

body height. Next, their average left ankle pattern, during the last minute of walking at 

the different speeds, was calculated and the Root Mean Square Error (RMSE) between 

both signals was calculated. The resulting RMSE was averaged across subjects, for each 

speed. 

Additionally, the correlation coefficient was used to quantify the similarity between the 

left ankle pattern and the reconstructed pattern. Both comparisons were performed for 

the ankle-height profile and the ankle-height velocity profile. 

4.2.2 Selective support of subtasks 

Subjects 

Six elderly stroke survivors (five male, one female, age 57.8 ± 6.4, weight 88 kg ± 12.2, 

length 1.81 m ± 0.05) volunteered to participate in an experiment that was setup to 

validate the VMC for the step height. Table 1 lists the clinical description of the stroke 

survivors in more detail. As a control group, twelve healthy young subjects (six male, six 

female, age 25.8 ± 2.2, weight 70.3 kg ± 10.9, length 1.77 m ± 0.10) also volunteered to 

participate in the experiments. All healthy subjects had no symptoms of orthopedic or 

neurological disorders. Both groups gave informed consent before participating in the 

experiments. 

 

Table 1. Clinical description of patient group. 

 
Age 

(years) 
Gender 

Weight 

(kg) 

Length 

(m) 

Time since 

stroke 

(month) 

Type of stroke 
Paretic  

side 
FAC DE TBT 

Proprio-

ception 

(P/NP) 

MI 

leg 

A1 57 male 89.2 1.79 26 Infarction left 4 1 4 8/8 14 

A2 69 female 71.6 1.74 30 Haemorrhage right 4 2 4 8/8 33 

A3 50 male 96.4 1.89 5.5 Infarction left 5 2 5 8/8 66 

A4 59 male 105.5 1.78 72 Haemorrhage left 4 1 3 7/8 42 

A8 54 male 87.1 1.81 12 Infarction right 4 3 3 8/8 33 

A9 58 male 78.0 1.85 7 Infarction left 5 3 5 8/8 83 

 

FAC = Functional ambulation categories (max = 5). 

DE = Duncan Ely test (min = 0, indicating normal tonus, max = 4, indicating rigidity). 

TBT = Timed balance test (max = 5). 

Proprioception = Outcome of lower extremity proprioception part of Nottingham sensory assessment, paretic (P) 

vs. non-paretic (NP) (max = 8). 

MI leg = Motricity Index score, of the lower extremity (max = 99). 
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Experimental apparatus and recordings 

For the VMC experiments, the prototype of the gait rehabilitation robot LOPES was used 

(figure 3). The system is comprised of a bilateral exoskeleton-type rehabilitation robot 

above an instrumented treadmill. It is lightweight and actuated by Bowden-cable-driven 

series-elastic actuators [28]. The robot is impedance controlled, which implies that the 

actuators are used as torque sources [41]. The exoskeleton offers a freely translatable 

(3D) pelvis, where the sideways and forward/backward motion is actuated. Furthermore, 

it contains two actuated rotation axes in the hip joints and one at the knee 

(abduction/adduction of the hip and flexion/extension of hip and knee). A more detailed 

description of the exoskeleton design is provided in [28]. 

Linear and rotary potentiometers measured translations and angular rotations of all 

degrees of freedom. Kinematics were used to detect heel contact (HC) and toe-off (TO) 

events. HC and TO were used as triggers to switch the robotic support on and off, and 

used to segment the data into individual strides. 

xPC Target was used for real-time control at 1000 Hz. From the measured exoskeleton 

joint angles, and the human segment lengths, the ankle position is calculated at each 

instant of time. Data is collected on the target computer in real-time and then transferred 

to a host machine, where it was sampled at 100 Hz and stored for off-line analysis, using 

custom software (MATLAB, Mathworks Inc., Natick, MA, USA). For all subjects we 

measured joint kinematics (angles and Cartesian positions), the torques applied by the 

LOPES, and the gait phases. 

Virtual Model Control 

Virtual Model Control was used to selectively support the step-height subtask. The basis of 

this control method is to define physical interactions with the patient that would assist the 

gait subtasks. These interactions are then translated into a set of Virtual physical Models 

(VMs), such as springs and dampers, that can be switched on and off at appropriate times 

in the gait cycle. The virtual forces, that would be exerted by the VMs, are translated into 

 
 

Figure 3: The LOPES robotic gait trainer.  
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joint torque commands for the joint actuators. Here we want to support the foot 

clearance. Therefore, we define a virtual spring (with stiffness Kz) between the actual 

ankle height and the reference ankle height (figure 4). If the actual ankle height (z) 

deviates from the reference ankle height (zref), a virtual force (Fz) is exerted at the ankle, 

which mimics a therapist lifting the ankle. 

( )
z z ref

F K z z= −  [2] 

Initial testing showed that no damping was needed, since the human limbs provide a kind 

of natural damping to the system. The reconstruction of the reference ankle-height 

pattern is explained in next section. 

The required vertical force is delivered by applying a combination of knee and hip joint 

torques to the human. The forces of the virtual spring are mapped to joint torques by: 

h xa T

h

k z

F
J

F

τ

τ

   
=   

  
 [3] 

where τ  represents the joint torques at the hip and knee, that offers the virtual force in 

Cartesian coordinates, and ��
�

�  is the transpose of the Jacobian that maps the hip (��� ) and 

knee (��� ) angular velocities to the velocities of the ankle in Cartesian coordinates. 

( ) ( ) ( )
( ) ( ) ( )

u h l h k l h ka

h

u h l h k l h k

L cos L cos L cos
J

L sin L sin L sin

θ θ θ θ θ

θ θ θ θ θ

 + − − −
=  

+ − − − 

 [4] 

For foot-clearance support, only support in vertical direction is required, therefore Fx is 

zero. The symbols are defined in figure 4.  

 

 

 
Figure 4: Schematic representation of the VMC approach. z represents the absolute ankle height and  

zref the reference ankle height. Lu and Ll represent the upper and lower leg length, and �h and �k the 

knee and hip angle. Kz indicates the virtual spring stiffness. 
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Reference pattern reconstruction 

For the patient group, the reference pattern is reconstructed in the way described before, 

using the obtained regression models (see spline fitting). In order to investigate the 

effectiveness of the VMC approach for healthy subjects, we chose to increase the 

reference pattern, since the subjects were expected to already walk according to the 

pattern. The shape of the reference pattern is calculated similarly as in the patient group, 

but the obtained pattern was multiplied such that the maximal ankle height of the 

reference pattern reached a 15-percent increase with respect to their nominal maximum 

ankle height. The nominal ankle height of each subject was obtained from a walking trial 

in the LOPES where no support was provided. 

Synchronization 

To prevent synchronization problems a specific subtask is only supported during the 

phases in which the subtask should be performed. For the step-height support, this 

indicates that the controller is only active during the double stance (with the contralateral 

leg in front) and the swing phase. Heel contact and toe-off events were detected in real 

time based on a phase-detection method developed by Zeni et al. [38]. To account for 

alterations in cadence the speed at which the reference trajectory is replayed is scaled to 

the previous cycle time, and the timer is reset at the contralateral heel contact. 

Impedance shaping 

To adapt the level of support within the step-height subtask, we adopted the error-driven 

adaptation algorithm of Emken et al. [27]. The algorithm modifies the virtual spring 

stiffness, at each percentage of the gait cycle, based on the recorded error in the previous 

steps: 

( ) ( ) ( ) ( )( )1 1i i i

z z refK t f K t g z t z t− −

= ⋅ + ⋅ −  [5] 

where the superscript i denotes the i
th

 step cycle, f is a forgetting factor set to 0.9, g is an 

error-based gain set to 1800, Kz is the resulting stiffness profile for the ankle height, and t 

indicates the percentage of the gait cycle, which is estimated based on the previous cycle 

time. The stiffness was constrained to positive values, since the support is intended to lift 

the ankle, and not push the ankle downwards, when the ankle is above the reference. 

4.2.3 Experimental protocol 

Before positioning a subject in the LOPES, different anthropometric measurements were 

taken to adjust the exoskeleton segments lengths. Next, the subject was positioned into 

the LOPES and the trunk, thigh, and upper- and lower shank were strapped to the 

exoskeleton. 
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After a general familiarization period, the preferred walking speed was determined for 

each stroke survivor individually. During this familiarization period, the LOPES was 

operated in the zero-impedance mode. In this mode the impedance of every joint is set to 

zero, so the robot provides minimal resistance/assistance to the stroke survivor [42]. All 

patient trials were performed at the same predefined preferred walking speed. All healthy 

control subjects walked at 3 km/h. 

Next, the stroke survivors, and healthy control subjects, were exposed to selective control 

of the step height with a compliant (600 N/m), stiff (1200 N/m) and adaptive virtual spring 

(see impedance shaping). The stiffest of these springs was chosen as having the maximum 

stiffness that was comfortable for subjects during pilot experiments. For the healthy 

control subjects all conditions were tested on the right leg only, while the left leg was 

operated in zero impedance. The stroke survivors were supported on their impaired side. 

For the patient group, we intended to use visual feedback to maximally motivate the 

subjects in taking higher steps. To investigate if subjects are capable of translating the 

information from a simple visual feedback system into the appropriate action, the visual 

feedback system was first tested on the healthy control group. The visual feedback system 

consisted of a screen, showing bars that represented the maximum ankle height of their 

most recent step. Also, the target height was displayed. Preliminary results showed that 

healthy subjects were able to use this visual feedback to reach the target height very 

accurately. Therefore, it was decided to provide this kind of visual feedback to the patient 

group in almost all conditions. 

All conditions were randomized to minimize the effects of fatigue or motor -learning 

effects. Table 2 lists the different conditions. To evaluate if the robot is influencing the 

steps without anticipation of the subject, we decided to use catch blocks, where the 

subject did not receive any support. 7 catch blocks were randomly interspersed among the 

first 115 steps of support. Each catch block consisted of three steps. Some patients could 

not walk for 115 consecutive steps because of the severity of their stroke. For these 

patients the last 10 steps of their trial are discarded, and only fully accomplished catch 

blocks and exposure blocks are included in the data analysis. To evaluate the effect of

 
Table 2: List of the tested conditions 

 Stiffness (N/m) Supported leg Visual feedback Abbreviation 

Healthy controls 

0 - off HZ 

600 right off HC 

1200 right off HS 

1200 right on HSV 

Adaptive right off HA 

Stroke survivors 

0 - on PZV 

1200 paretic on PSV 

Adaptive paretic on PAV 

Adaptive paretic off PA 
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prolonged exposure, the trials in the healthy subjects were concluded with 50 steps of 

continuous exposure. 

4.2.4 Data analysis 

In general, the effectiveness of the step-height controller was assessed by determining 

how well the set reference values were attained, and how the support affected other 

aspects of walking. First, the data was segmented into separate steps based on the heel 

contact events [38]. Next, different spatiotemporal gait parameters were extracted from 

the ankle trajectories: the maximal ankle height (step height), the step length, and the 

cycle time. The maximum ankle height is the maximum vertical displacement of the ankle 

during swing. The step length is the relative horizontal displacement of one ankle with 

respect to the opposite ankle at the moment of heel contact. All gait parameters were 

normalized with respect to their nominal values. This allowed for comparison across 

subjects and conditions. For the healthy subjects, as well as the stroke survivors, the 

nominal values were recorded during a trial in which they walked in the zero impedance 

mode. Additionally, the relative duration of the different gait phases were calculated. All 

parameters were obtained for the exposure, as well as the catch blocks. Group averages 

were calculated for the stroke survivor and healthy control group. 

To investigate the reduction of compensatory strategies, we also determined the 

maximum knee flexion, maximum hip abduction, and maximum pelvic height for the 

stroke survivors during the different conditions. Stroke survivors, with stiff-knee gait, for 

example, often fail to reach enough toe clearance and use different compensatory 

strategies to overcome their reduced knee flexion. Common strategies are a 

circumduction strategy, pelvic hiking, and vaulting. Vaulting is caused by an increase of the 

plantar flexion of the non-paretic leg, pushing the pelvis upward and creating more foot 

clearance on the paretic size. We hypothesize that, when stroke survivors experience 

step-height support, they reduce their compensatory strategies. Thus, assisting one 

subtask might automatically correct gait kinematics elsewhere. 

4.2.5 Statistical analysis 

To investigate the selectivity of the VMC support, we first used a one sample t-tests to 

determine whether the percentage change in the spatiotemporal parameters differed 

from 0 percent. If the step-height support significantly influenced one of the defined 

spatiotemporal parameters, we used a paired t-tests to assess whether there was a 

statistically significant difference between the conditions with the compliant and stiff 

virtual spring. For each patient an independent two-sample t-test was used to test 

whether there was a statistically significant difference in maximum hip abduction and 

maximum pelvic height between 10 steps of zero impedance walking and the last 10 steps 

of the last exposure block of the condition with the stiff controller. All statistical tests were 

performed with SPSS Statistics (IBM Corporation , Armonk, NY, USA). The level of 

significance was defined at 5 percent. 
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4.3 Results 

4.3.1 Regression models for the reference patterns 

The timing, position and velocity of the key events were highly dependent on the walking 

speed (figure 5). Generally, the different subjects showed the same dependencies. 

However, there was considerable variation between the subjects in the timing, position 

and velocity of the key events at a specific walking speed (figure 2). The stepwise 

regression, and subsequent robust regression, showed that most key events were linearly 

and/or quadratically dependent on speed (table 3). The body height did not influence the 

timing (index) of the key events. Of all positions it only influenced the “maximal height” 

key event and it influenced the velocity at three of the six key events. The Root Mean 

Square Error (RMSE), in the prediction of the timing of the key events, was <2 percent of 

the gait cycle (except for the timing of the “minimal height”). The RMSE, in the prediction 

of the position, was maximally 1.44 cm and was maximally 0.11 cm/%gait cycle for the 

velocity. Figure 5 also shows that the key events could be predicted well using the 

regressions equations.  

  

Table 3: Regression equations and RMSE for the parameter values of the key-events. 

 Key-event β0 (intercept) β1 (speed) β2 (speed
2
)

 β3 (body-height) RMSE 

Index 

 

HC CL 0 - - - 0 

1
st

 local max vel.
 

32.0 −7.79 0.826 - 1.92 

max height 34.4 −5.27 0.579 - 1.70 

2
nd

 local max vel. 47.3 −0.609 0.0725 - 1.09 

2
nd

 local min vel. 52.4 - - - 1.26 

min height 88.2 −13.3 1.55 - 4.87 

 
 

β0 (intercept) β1 (speed) β2 (speed
2
) β3 (body-height) RMSE 

Position 

HC CL −0.387 x10
-2

 0.768 x10
-2

 - - 0.572x10
-2

 

1
st

 local max vel. 7.41 x10
-2

 1.73 x10
-2

 −0.165 x10
-2

 - 1.36 x10
-2

 

max height
 

−2.63 x10
-2

 3.57 x10
-2

 −0.362 x10
-2

 6.64 x10
-2

 1.44 x10
-2

 

2
nd

 local max vel. 1.49 x10
-2

 - 0.0221 x10
-2

 - 0.345x10
-2

 

2
nd

 local min vel. 1.05 x10
-2

 - - - 0.231x10
-2

 

min height 0 - - - 0 

 
 

β0 (intercept) β1 (speed) β2 (speed
2
) β3 (body-height) RMSE 

Velocity 

 

HC CL 2.79 x10
-3

 0.732 x10
-3

 - −1.75 x10
-3

 0.466 x10
-3

 

1
st

 local max vel. −6.22 x10
-3

 1.54 x10
-3

 −0.207 x10
-3

 7.95 x10
-3

 1.08 x10
-3

 

max height 0 - - - 0 

2
nd

 local max vel. −3.31 x10
-3

 - 0.0307 x10
-3

 2.35 x10
-3

 0.970 x10
-3

 

2
nd

 local min vel. −2.57 x10
-3

 - - - 0.628 x10
-3

 

min height 0 - - - 0 

 

Speed is expressed in km/h and body height in m. 

HC CL = Heel contact contralateral leg. 

“–“ indicates that that particular predictor variables does not contribute to the predictability of the key event. 
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Figure 5: Typical example of the reconstructed ankle-height patterns. Graph A shows the individual 

steps (gray lines), together with the detected key events (gray circles), at different walking speeds, 

for a specific subject. The black filled circles represent the predicted key events for this particular 

subject, based on the obtained regression models. The black line represents the spline, which is fitted 

through the predicted key events. Graph B shows the velocity profile. 

 

 
Figure 6: Validation of the reconstructed ankle-height patterns. A: RMSE between the left ankle-

height pattern and the reconstructed spline (black line), and the RMSE between the left ankle-height 

pattern and the right ankle-height pattern (gray). Both measures were averaged across subjects for 

each walking speed. The error bars indicate the standard deviation. B: Correlation between the left 

ankle-height pattern and the reconstructed spline (black line), and the correlation between the left 

ankle-height pattern and the right ankle-height pattern (gray line). Graph C and D show similar 

figures for the validation of the velocity profile. 
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From the predicted key events, a reference ankle-height pattern was reconstructed for 

every subject and walking speed. We validated these patterns by comparing them with 

the measured patterns of the left leg (NB the regression equations were fitted on data of 

the right leg). The reconstructed patterns fitted the measured data well (figure 6). The 

RMSE, averaged across subjects, was around 1 cm for all walking speeds and the average 

correlation coefficient was larger than 0.95, for the low speeds, and showed even larger 

values for higher walking speeds. Since the error in predicting the key events is reflected 

in the reconstructed patterns, these RMSE values were close to the average RMSE in the 

prediction of the position of the key events (table 3, average position RMSE = 0.79 cm). 

The large correlation coefficients are in line with the small RMSE in the prediction of the 

timing of the key events. Also, the reconstructed velocity profiles matched the measured 

velocity profiles well (figure 6), though the correlations were a bit lower, especially for the 

lower velocities. 

As a reference, we also calculated the RMSE and correlation coefficient between the 

measured right and left ankle patterns. These values provide an indication of the 

achievable fitting quality (figure 6). The correlations between the reconstructed spline and 

left leg data were very close to the correlations between the left and right leg data, 

whereas the RMSE values were approximately twice as large. 

4.3.2 Healthy control group 

Selective and gradual support  

One of the goals of this study was to show the feasibility of selectively and gradually 

supporting step height during gait training. Providing step-height support resulted in a 

selective support of this specific subtask. It significantly increased the right step height, 

whereas it did not significantly affect the other basic gait parameters, like the left step 

height, step length, cycle time, or the relative duration of the different gait phases (figure 

7). Analyzing the gait kinematics showed that the increase in step height was primarily 

caused by an increase in knee flexion. For the stiff controller, the average knee angle 

increased with 4.9 degrees at the moment of maximum ankle height, whereas the hip 

angle at that moment increased with only 1 degree (figure 8). The average maximum joint 

torques, that causes these changes, were 10 Nm hip extension and 9.6 Nm knee flexion. 

The support was also gradual, since the use of the stiff controller resulted in a significant 

increase in step height compared to the compliant controller.  

Non-adaptive support does not induce reliance 

We did not find any evidence for reliance of the subjects on the provided support, when 

they are exposed to continuous non-adaptive support. No significant difference between 

the initial exposure (first steps of the exposure blocks) and prolonged exposure (last steps 

of the exposure block) was found (figure 9). The step height during the first step of the 

catch block also revealed no signs of reliance. It shows that the subjects drop back to their 
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Figure 7: Selective and gradual foot-clearance support in the healthy control subjects and stroke 

survivors. A: Mean normalized gait parameters for the trials in which the healthy subjects walked 

with the compliant (HC) and stiff (HS) step-height VMC. The mean parameters are calculated during 

the last 10 steps of the last exposure block. C: Mean relative contribution of the different gait phases 

to the cycle time for both tested conditions. As a reference, also the relative gait phases during 

walking in the zero impedance mode (HZ) are shown. B: Mean normalized gait parameters for the 

trials in which stroke survivors walked with the compliant (PCV) and stiff (PSV) step-height VMC, in 

combination the visual feedback. Mean parameters are calculated during last five steps of the 

longest exposure block. D: Mean relative gait phases for both tested conditions. The error bars 

indicate the standard error of the mean. *p < 0.05. ǂ indicates a significant difference between the 

compliant and stiff VMC. 

 
Figure 8: Increase in hip and knee angle during foot-clearance support for the healthy control 

subjects. Mean absolute changes in the hip and knee angle for the trials in which the healthy 

subjects walked with the compliant step-height VMC (HC), stiff VMC (HS), and with the stiff VMC in 

combination with the visual feedback (HSV). Then mean parameters are calculated during the last 10 

steps of the last exposure block. The error bars indicate the standard error of the mean. *p < 0.05. 
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 baseline, without any significant undershoot, which was to be expected when reliance 

would occur (figure 9). This holds for the compliant as well as the stiff controller. Even 

when the subjects received continuous support for a longer period of time (50 steps of 

continuous exposure), the step height did not significantly differ from the initial exposure. 

Visual feedback enhances performance and active participation 

With visual feedback, the healthy subjects reached an average increase of 14.5 percent in 

step height during continuous exposure, while the reference was set to 15 percent. This 

demonstrates that they can easily translate the simple information displayed on the 

screen into the appropriate hip and knee angular response. The visual feedback resulted in 

an additional increase in hip and knee flexion compared to the stiff controller (figure 8). 

The results also demonstrate that the subjects use the feedback to actively increase their 

step height within one step after the support has switched off (figure 10). After the 

support is switched on, unexpectedly, they receive additional support, which creates an 

overshoot. The subjects easily adapt to the additional support and reach the target value 

again within two steps.  

4.3.3 Stroke survivors 

Selective and gradual support 

Providing step-height support to the stroke survivors resulted in a selective increase in 

step height, without significantly affecting the other basic gait parameters, including the 

 
Figure 9: Effect of non-adaptive support on reliance. A: Mean normalized step height during different 

steps of the trial in which the healthy subjects walked with the compliant (HC) and stiff (HS) step-

height VMC. Mean parameters are calculated during the first step of the exposure block, during the 

last step of the exposure block, during the first step of the catch block and during continuous 

exposure. Continuous exposure is based on the last 10 steps of the last exposure block. B: Mean 

normalized step height during different steps of the trial in which the stroke survivors walked with 

the compliant (PCV) and stiff (PSV) step-height VMC, in combination with visual feedback. Mean 

parameters are calculated during the first step of the exposure block, during the last step of the 

exposure block, and the first step in the catch block. The last exposure block, with 50 steps of 

continuous exposure, was not included in the protocol of the stroke survivors. The error bars indicate 

the standard error of the mean. *p < 0.05. 
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 relative duration of the different gait phases (figure 7). The support was also gradual, since 

the use of the stiff controller resulted in a significant increase in step height compared to 

the compliant controller. The stroke survivors show a larger standard error of the mean of 

the paretic step height, compared to the right step height of the control group. For the 

compliant controller the increase in nominal step height ranged between 0 and 26 

percent, whereas the increase in step height due to the stiff controller ranged between 0 

and 44 Percent. For the stiff controller the average maximum joint torques were 21.0 Nm 

hip extension and 17.4 Nm knee flexion. The stroke survivors also show an asymmetry in 

stance phase (figure 7), which is often observed in stroke survivors [43]. 

Impedance shaping 

The experiments showed that the impedance-shaping algorithm was effective in adapting 

the amount of support to the stroke survivor’s individual capabilities on a step-by-step 

basis (figure 11). Starting from the initial stiffness (1200 N/m), the adaptive algorithm 

causes a gradual increase in stiffness where a kinematic error persists, and a clear 

reduction in stiffness where the ankle is above the reference (i.e., a negative deviation 

from the reference in the figure 11B). After ± 30 steps, the stiffness profile reached a 

steady state, where the forgetting factor and the deviation of the ankle from the 

reference pattern are in equilibrium. Figure 11B demonstrates that the stiffness can be 

greatly reduced without automatically compromising the overall kinematic error. That is, 

the difference between initial stiffness (1200 N/m) and final stiffness is much clearer than 

the change in kinematic error. With the impedance-shaping algorithm, the spring stiffness 

was shaped such that it reflected the initial deviation of the ankle from the reference 

trajectory for all patients (figure 12). Although the stiffness converged to a personal 

profile for each patient, the highest stiffness occurred at the start of the swing phase for 

all patients. 

  

 
Figure 10: Influence of adding visual feedback to the support. Mean normalized step height during 

different steps of the trial in which the healthy subjects walked with the stiff VMC in combination 

with the visual feedback (HCV). The step height is calculated during the first, second, and third step 

of the catch block, during the first, second, and third step of the exposure block, and during the last 

step of the exposure block. The error bars indicate the standard error of the mean. *p < 0.05. 
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Non-adaptive support does not induce reliance 

Similar to the healthy control group, we did not find any evidence that indicated that the 

stroke survivors started to rely on the support. We did not find a significant difference 

between the initial exposure and the end of the exposure blocks (figure 9). This is also 

confirmed by the catch blocks, which show that during support (with the compliant or stiff 

VMC) the stroke survivors drop back to their baseline, without any significant undershot. 

Visual feedback enhances performance and active participation 

To evaluate if stroke survivors can utilize the visual feedback, we compared the trials 

where the stroke survivors received adaptive support combined with visual feedback 

 
Figure 11: Typical example of the working principle of the impedance-shaping algorithm in a stroke 

survivor. Graph A demonstrates how the stiffness shapes from a constant stiffness of 1200 N/m to a 

personal stiffness profile after around 30 steps for stroke survivor A3. Note that the step-height VMC 

is only active during the double stance, with the non-paretic leg in front, and the paretic swing phase 

(approximately 50–100 percent of the gait cycle), and that the stiffness has a lower limit of 0. Graph 

B shows the course of the deviation from the reference pattern over multiple steps. The black area 

shows the error before the controller is switched on. 

 
Figure 12: Shape of the stiffness profile after convergence. The figure shows the initial deviation of 

the ankle from the reference trajectory (gray) together with the converged stiffness profile (black). 

For all patients, the stiffness shaped according to the initial deviation from the reference. 
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(PAV), with the trials where the stroke survivors received adaptive support only (PA). For 

this comparison, data from only four patients was available, since the PA condition could 

not be tested on two patients due to fatigue. In three of the four patients, the mean 

stiffness over the last five steps of the last exposure block was significantly lower when 

the patients received visual feedback (figure 13). This indicates that 1) these patients 

improved their performance with the help of the visual feedback and 2) the impedance-

shaping algorithm lowered the impedance when the patients improved their 

performance. 

No reduction of compensatory strategies 

During the experiments, the stroke survivors showed different combinations, and degrees, 

of compensatory strategies to overcome their reduced knee flexion. All patients showed a 

larger paretic hip abduction range (hip circumduction) and an increased pelvic height 

during the paretic swing phase (vaulting). Figure 14 shows two typical examples of stroke 

survivors with stiff-knee gait, who use a vaulting strategy and/or a hip circumduction 

strategy. None of the patients reduced their compensatory strategies during the 

assistance of the stiff controller. Although the use of the stiff controller resulted in an 

average increase of 8.8 degrees in the maximum paretic knee flexion, and all patients 

reported that they felt the assistance in their paretic leg, we did not find a significant 

reduction in the hip abduction of the paretic leg, or a decrease in pelvic height during the 

paretic swing phase.  

 

 
Figure 13: Adding visual feedback to adaptive support. Mean stiffness over the course of the walking 

trial in which four stroke survivors (A1, A4, A8, and A9) walked with the impedance-shaping 

algorithm with (PAV) and without visual feedback (PA). In three patients, the mean stiffness over the 

last five steps of the last exposure block was significantly lower when the patients received visual 

feedback. This indicates that 1) these patients improved their performance with the help of the visual 

feedback and 2) the impedance-shaping algorithm lowered the impedance when the patients 

improved their performance. *p < 0.05. 
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4.4 Discussion 

The purpose of this study was to assess the effectiveness of selectively supporting the step 

height during the swing phase. First, we derived regression models for the key events of 

the reference ankle-height pattern. These models can be used to reconstruct patient-

specific reference patterns at any speed. The proposed step-height VMC was tested on 

healthy subjects and chronic stroke survivors, and proved effective in selectively 

influencing the step height. Additionally, the step height could be manipulated easily by 

changing the impedance levels. Incorporation of an impedance-shaping algorithm resulted 

in an adaptation of the impedance to the specific needs of every individual stroke survivor. 

Catch trials were used to investigate whether healthy subjects, or stroke survivors, would 

start to rely on the robotic support, but revealed no signs of reliance. The step height 

parameter was used to provide intuitive visual feedback. Both groups were able to utilize 

this feedback. We did not find evidence that the stroke survivors reduced their 

compensatory strategies when support was provided. 

 
Figure 14: Two typical examples of gait adaptations seen in stroke survivors. Both patients (left: A4, 

right: A1) show one or more compensatory strategies to overcome a reduced foot clearance due to 

stiff-knee gait (A and B). They show an increase in hip abduction (D), and an increased pelvic height 

during the paretic swing phase, compared to the non-paretic swing phase (E and F). 
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4.4.1 Reference pattern reconstruction 

A large part of this paper concerns the reconstruction of the reference patterns. 

Throughout the literature, different strategies exist to determine these reference 

patterns. Most reference patterns are based on pre-recorded trajectories from 

unimpaired volunteers walking on a treadmill [24,29,44,45], or based on walking in the 

device while it is operated in a transparent mode [21,27], or with the motors removed 

[46]. Patient-specific patterns can be obtained by recording the gait trajectories while the 

patient walks with manual assistance [21,27], or by defining joint patterns based on 

movements of the unimpaired limb [47]. Most methodologies, however, have certain 

considerations that limit the use of the recorded trajectories to a specific application. 

A major limitation of most of these reference patterns is that it is unknown how to correct 

for changes in speed. Most pre-recorded trajectories are recorded at a limited number of 

speeds, while the progress of the patients’ preferred walking speed can be as small as 0.1 

km/h. The coupling between the right and left leg [47] will change at different speeds and 

the recorded pattern, obtained during manual assistance [21,27], will only be valid for that 

specific speed. Scaling algorithms can be used to compensate for changes in speed or 

cadence [48]. Most scaling algorithms, however, apply scaling in time, amplitude and 

offset, whereas also the (relative) timing of the maximum joint angles changes at different 

speeds. 

For the patterns recorded in the gait trainer itself, another limitation should be noted. Due 

to the mass and inertia of the device, and/or imperfections of the transparent mode, 

these patterns might not match with the ones recorded during free walking. Emken et al. 

[22] found that the added inertia resulted in a slightly higher stepping pattern compared 

to free walking, while others found a significant and relevant decrease in knee angular 

range due to the device [42]. 

Most pre-recorded trajectories are obtained by rescaling the gait pattern to a percentage 

of the gait cycle, and taking the mean across subjects. This introduces another issue. 

Averaging normalized data can result in an underestimation of the extremes in the gait 

pattern, when the subjects have a different distribution of the gait events throughout the 

gait cycle [49]. 

Therefore, we developed a method where the gait pattern is parameterized by defining 

different key events (minima, maxima etc.), which all have a timing, position, and velocity. 

Next, the walking speed and body-height dependency of the parameters are determined 

by regression models. This way, the extreme value in the reconstructed pattern is actually 

based on the extreme values of the individual patterns, even when the extremes occur at 

another percentage in the gait cycle. 

Another advantage of the proposed method, compared to other available methods, is that 

it can be used to construct a reference ankle-height pattern at each particular walking 

speed between 0.5 and 5.0 km/h, for persons with different body heights. This allows the 

physical therapist to easily increase the training speed, even within a single walking 
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session. Speed-dependent reference pattern adjustments are also essential when the 

patient is in control of the walking speed, either manually or with intuitive speed-

adaptation algorithms [50]. 

The proposed method is also generally applicable and can be applied to reconstruct 

speed-dependent reference patterns for joint angles. Different studies have already 

shown that peak joint kinematics are dependent in a linear and/or quadratic way on 

walking speed [51], and that its occurrence (timing) is also speed dependent [52]. 

There were some limitations in deriving the regression equations, which are related to the 

relatively low number of subjects (11) in this study. Due to this small number, we did not 

derive separate equations for male and female subjects, whereas systematic effects of 

gender of kinematics have been reported [53]. The range of body heights in this group of 

subjects was limited (1.52 m to 1.86). However, this range is expected to be sufficient for 

the majority of the elderly population. 

4.4.2 Selective and gradual support 

The results from the stroke survivors and healthy control group showed that the step-

height VMC could selectively influence the step height. Supporting the step height did not 

significantly affect other spatiotemporal gait parameters, like non-supported step height, 

step length, or relative gait phase duration. Although the subjects were free to adapt their 

cadence, no change in cycle time was observed. As expected, the support was also 

gradual, a higher stiffness resulted in a closer approximation of the target values. 

On average, the stroke survivors received more supportive hip and knee torque. At 

baseline, the stroke survivors walked more below the reference than the healthy subjects, 

resulting in more supportive torque. 

The stroke survivors also showed a larger standard error of the mean of the paretic step 

height, compared to the right step height of the control group. For the healthy subjects, 

the reference ankle-height pattern was scaled such that is reached a 15-percent increase 

with respect to their nominal maximum ankle height. For the stroke survivors, the 

reference pattern was purely based on the regression formulas. The stroke survivors who 

were less affected, and almost reached their target value without support, showed a 

relative smaller increase in step height compared to the patients that performed less 

without the support. 

4.4.3 Impedance shaping 

Selective-subtask-support already allowed us to focus the robotic support on the subtasks 

that are impaired. However, also within a subtask, the amount of support needs to be 

minimized to the personal needs of the patient. Aoyagi et al. [21] already suggested that 

by scheduling the impedance as a function of the gait cycle, the assistance can be further 

personalized. This, however, is impossible for the operator to manually adjust. Therefore, 
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we chose to adopt an adaptive algorithm, that shaped the impedance based on the 

tracking performance, that was suggested by Emken et al. [27]. 

Emken et al. [27] reported that the impedance converged repeatedly over separate trials. 

Although we only performed one trial with the adaptive algorithm per patient, the 

impedance profile shaped according to the initial error between ankle and the reference 

trajectory for all patients. This indicates that the shaped impedance was directly related to 

the patient’s incapabilities. 

All stroke survivors converged to a stiffness profile where the stiffness was highest at 

swing initiation. This is in agreement with the trials where a constant stiffness was used. 

There, most of the assistive torques were exerted during swing initiation, indicating that 

that phase requires most of the support. Because of the provided torques during initial 

swing, the leg was propelled upward with a higher velocity, and required less support 

during the remainder of the swing phase. Anderson et al. [54] already demonstrated the 

importance of knee angular velocity at swing initiation in normal gait. They showed that 

the knee angular velocity at heel off was the main determinant for the maximal knee 

angle, and foot clearance, during swing. Reduced angular velocity, and foot clearance, in 

stiff-knee gait is suggested to be caused by an abnormal knee flexion during swing 

initiation. Kerrigan et al. [55] and Riley et al. [56] found an inappropriate activity in at least 

one of the quadriceps muscles during the pre-swing or initial swing phase, which inhibit a 

normal knee flexion. Kerrigan et al. [55] also reported that patients with delayed heel rise 

achieved less peak knee flexion. The patients included in this study also showed a delayed 

heel rise. So, providing support during this phase seems like a natural, and the most 

effective, way to increase the maximum knee angle, and subsequently foot clearance. 

Apart from shaping the impedance to the patient’s individual needs, minimizing the 

impedance also allows more variability within the stepping pattern, which has been shown 

to promote motor learning in mice [18]. Emken et al. [27] reported an increase in 

variability in maximum step height and step length, but could not verify whether 

increasing the variability during gait training had a positive effect on EMG activity levels. In 

our study, we did not investigate the variability within the gait pattern. We did see a clear 

reduction in the impedance levels where the stroke survivors required less support, which 

allows them to vary their steps in a more natural way compared to walking with a stiff 

controller. The possibility to make small gait variation was also promoted by using a 

unidirectional spring that only provided support in taking a higher step, thus not 

constraining the ankle when it reached above the reference. 

4.4.4 Reliance 

Based on previous pilot experiments [35], and computational models of movement 

training [57], we hypothesized that the stroke survivors and healthy controls would start 

to rely on the support, such that when assistance is no longer provided, their performance 

becomes worse. Previous studies, that let subjects adapt to external force fields, already 

showed that the human motor system can be modeled as a process that greedily 
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minimizes a cost function, consisting of a weighted sum of kinematic error and effort 

[58,59]. In these studies, a forgetting factor is introduced in the human effort, which 

models that the human continuously tries to accomplish the prescribed movement with 

reduced effort. 

In this study, however, we did not find patients, or healthy subjects, who started to rely on 

the support. A likely explanation for the patient group could be the visual feedback, which 

we did not use in the pilot experiment [35]. The visual feedback provided them with 

information about their performance on a step-by-step basis, increasing their motivation 

and reducing the changes of reliance. 

Also in the healthy control group, who did not receive visual feedback in most trials, we 

did not observe reliance. To evaluate the effects of prolonged exposure, the trials were 

concluded with 50 steps of continuous exposure. This block might have been too short for 

the subjects to explore the benefits of the support and start to rely on it. The relative low 

impedance levels might contribute to this effect. 

Also the task instruction and type of support might explain our findings. In most motor 

learning experiments, a disturbing force field is applied and the subjects are asked to 

reduce the error. To reduce the error, the subjects have to produce additional effort to 

overcome the disturbance. During this process, they continuously try to minimize the 

trade-off between reducing their effort and increasing the error [58,59]. In our 

experiments, the subjects experience a force field that decreases, rather than increases, 

the performance error. Here, the subjects are not challenged to provide additional effort, 

which might not elicit them to reduce their effort. 

The fact that a relatively small movement error can cause the subjects to trip might also 

have contributed to the fact that these subjects did not start to rely on the support. This 

would indicate that the weight of the error in the cost function increases compared to the 

reduction in effort. Bays et al. [60] already suggested that humans can change the 

weighting of different costs, according to the task and type of the movement. 

Although the chances that reliance will occur are reduced by minimizing and localizing the 

support, like we tried to do with the impedance shaping algorithm, there remain two 

issues. First, the algorithm cannot distinguish between a decrease in effort due to reliance 

or due to fatigue. In both cases, the algorithm will increase its support. Second, subjects 

might still, consciously or unconsciously, reduce their effort over time and consequently 

receive more support. Emken et al. [59] showed that, to effectively assist-as-needed, the 

robot must reduce its assistance at a rate that is faster than that of the learning human. 

They stated that reliance can be prevented by setting the forgetting factor to a lower 

value than the learning rate of the subjects. They also state that determining the learning 

rate for neurological patients can be difficult because of their impaired motor control due 

to spasticity, muscle weakness, and synergies. Therefore, we chose to set the forgetting 

factor based on a stable convergence of the stiffness pattern within approximately 30 

steps. 
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Finally, one might argue that to eliminate reliance one should apply resistive forces rather 

than supportive forces. In fact, error-enhancing therapy is suggested to be more effective 

than assistive therapy [20,61]. For some training exercises, where movement errors do not 

impose serious safety issues, this might be true. For robotic treadmill training, where small 

movement errors can have large consequences, this strategy may be inappropriate. 

4.4.5 Visual feedback 

In this study, very simple visual feedback was provided in the form of the step-height 

parameter. We showed that both the stroke survivors and the healthy controls were 

capable of utilizing this information effectively. Providing visual feedback to the healthy 

controls led to a very close approximation of the reference values. Adding visual feedback 

to the trials, in which the stroke survivors received adaptive support, led to lower 

impedance levels in three of the four patients, indicating that these patients are 

additionally motivated by the visual feedback. 

The key element of any form of feedback is that it displays the subject’s effort in an 

intuitive manner. Different forms of feedback are available. A review performed by Teasell 

et al. [62] concluded that there is a positive effect of EMG feedback in patients after 

stroke. Others use the subject’s kinematics to display their performance [25,29] or the 

interaction force between user and robot, like in the Lokomat [63]. 

Disadvantage of the latter approach is that it is only applicable to position-controlled gait 

trainers. In these type of gait trainers, the additional effort of the subject is reflected on 

the screen, but is not reflected in their gait pattern. This might decrease the motivation of 

the subject. Thus, to optimize visual feedback, the gait trainer needs to be compliant. In 

more recent versions of the Lokomat, Duschau-Wicke et al. [25] introduced a more 

patient-cooperative strategy, effectively making the robot more compliant. In their study, 

they used body kinematics as visual feedback. 

To optimize the feedback, factors like the amount of information and its frequency need 

to be investigated. Also the complexity of the feedback is important - do we need detailed 

information from every joint, or combined information from several joints, like the ankle 

position? Banala et al. [29] only displayed the ankle position in the sagittal plane. Our 

results suggest that only showing the maximum ankle height of the last step is already 

sufficient to control the hip and knee joint such that the subject takes a higher step. Also, 

for the therapist himself, we expect that feedback in the form of basic gait parameters will 

be easier to interpret, compared to joint angles or ankle trajectories. 

The primary goal of visual feedback is, of course, to contribute to the long-term changes in 

relearned gait kinematics. Kim et al. [26] used the ALEX to induce gait modification in 

healthy adults. They reported that a combination of visual and force guidance resulted in 

larger modification in step height that maintained longer, persisting up to two hours, 

whereas only visual guidance or only force guidance evoked changes that did not last 

beyond the 10-min retention test. Although we did not investigate retention, our 
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experience with visual feedback is encouraging, and can serve as a starting point in the 

investigation about how to optimize gait training in such a way that short-term gait 

adaptation can become long-lasting gait modification. 

4.4.6 Compensatory strategies 

The VMC approach, used in this study, is an end-point-based-control strategy. This implies 

that within a certain subtask there is more freedom to walk, or choose a certain strategy. 

For example, different patients might choose different strategies to accomplish 

appropriate foot clearance. With the step-height VMC, the patients are left free in the 

strategy they use to clear their foot and will only receive support when this task is not 

executed successfully. This means that compensatory strategies [64,65], like pelvic hiking, 

hip circumduction, or vaulting [66,67], which are seen in most stroke survivors, can still be 

employed. Joint control limits the use of these strategies. Additionally, imposing a 

symmetrical joint-angle pattern limits the possibility of the non-paretic leg to compensate 

for the deficiencies of the paretic leg. Although these compensatory strategies do not 

contribute to a more symmetric walking pattern, they do increase basic gait function 

[68,69]. Some even advocate teaching compensatory strategies because of time and 

financial limitations [70]. Thus, because it is still largely debated whether the focus of 

robotic gait training should be on restitution of a normal walking pattern or on these 

compensatory strategies, they should not be overruled. 

The use of these compensatory strategies might even become redundant when support is 

provided on the impaired subtask that evokes these compensatory strategies. We 

hypothesized that providing support on one subtask, i.e. foot clearance, would reduce the 

need for the patient to employ his compensatory strategies. Although all our stroke 

survivors showed compensatory strategies without support, none of them reduced their 

compensatory strategies with support. During the experiments, the stroke survivors 

received no specific instructions about how to walk on the treadmill. Therefore, they 

might not have been triggered to reduce their compensatory strategies. Also, the limited 

time that the stroke survivors walked in the LOPES during the experiments, in combination 

with the amount of time it would take to un-teach their adapted strategies, might be a 

reason for the unchanged kinematics. In the future, we might even develop special VMC 

modules that suppress compensatory strategies to promote restitution of a symmetrical 

walking pattern. 

4.4.7 Related work 

Different support methods have been suggested to correct the gait pattern of neurological 

patients. However, none of the compliant, or interactive, support methods has been 

evaluated in large-scale clinical trials. To guide potential clinical trials, the differences 

between our and other approaches will be explained. The method presented in this paper 

can be best compared to the “virtual tunnel” approach. Banala et al. [29] implemented 

this virtual tunnel approach, which was previously described by Cai et al. [30], and trained 
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two chronic stroke survivors with the ALEX [29]. Their tunnel consisted of a healthy-

control template and the assistance was composed of a normal force, that simulated the 

virtual walls, and a tangential force that helped the ankle move along the trajectory. A 

similar virtual tunnel strategy is implemented in the Lokomat to train iSCI patients. 

Duschau-Wicke et al. also implemented a “moving window” that limits free movement to 

a region of the tunnel, similar to the tangential force in the ALEX [25]. In contrast to 

Banala et al. [29] they defined a torque field in joint space rather than a force field in 

Cartesian space. There are three main differences between the above-mentioned control 

strategies and the control strategy presented in this study. 

First, both the ALEX and the Lokomat use some sort of support that potentially helps the 

ankle, or joint, move along the trajectory. The tangential force, used by Banala, et al. [29], 

decreases when the ankle deviates from the trajectory, thus the ankle is only pushed 

along the path when the ankle is close to the desired trajectory. Duschau-Wicke, et al. [25] 

use the moving window, that is synchronized with the user’s cadence [71], to assist the 

user. In our study, no tangential force, or moving window, is used. Within the subtask-

support strategy, step timing and foot clearance are two separate subtasks. Here, we only 

supported foot clearance. This allowed the subjects to freely change their timing, if they 

wished to do so. Still, subjects did not adapt their timing. For bilateral affected iSCI 

patients, who experience difficulties during swing initiation, or gait initiation in general, 

gait-timing assistance might be useful. In that case an additional VMC in the horizontal 

plane can be added. Our experience with stroke survivors suggests that the non-paretic 

leg can take care of the gait timing and the paretic leg will follow. Second, both studies use 

a virtual tunnel that lifts the ankle [29], or increases joint angles [25], but can also do the 

opposite when the subject performs above the reference. In this study, a unidirectional 

spring was used, because the support is intended to support the subject in taking higher 

steps, and not push the ankle downwards, when the ankle is above the reference. Third, in 

contrast to the Lokomat, the support of subtasks is an end-point-based-control strategy, 

rather than a joint-angle-based-control strategy. As mentioned before, joint-angle-based-

control strategies exclude the use of compensatory strategies. 

4.4.8 Future applications of selective support 

The key goal of future research is to expand the concept of subtask support. Support in 

taking higher steps is an important part of the rehabilitation process, but other subtasks 

might also require assistance. A new VMC, that assists patients in taking more symmetric 

steps, is currently under development, and its interaction with other subtask controllers is 

being investigated. 

For severely affected patients, body weight support systems (BWSS) are often used. 

Alternatively, VMC can also be used to partially support the body weight by attaching a 

vertical virtual spring to the hips. In that case, the forces, required to bear your own body 

weight, are provided in terms of hip and knee torques, rather than lifting the body 

externally. This allows normal sensory input from the foot soles, which is essential in order 
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to generate natural gait kinematics [72,73]. VMC for body weight support also allows easy 

modulation of the amount of support between the different legs, since stroke patients 

primarily need support during the stance phase of the affected leg. It also enables 

separate control of body weight support and balance support, which can be considered as 

two separate subtasks, either of which can be impaired to a certain degree. BWSS, with an 

overhead harness, not only provide a force in the pure vertical direction, but also in the 

horizontal plane that stabilizes the body. Pilot experiments have shown the feasibility of 

body weight support with VMC [74]. The possibilities of VMC for balance support are now 

being investigated. 

Finally, we started preliminary tests with an intuitive speed-adaptation algorithm, in which 

the patient can move freely over the treadmill and the speed is automatically adapted 

when the patient deviates from the center of the treadmill. In conjunction with the 

obtained speed-dependent reference patterns, this will provide the therapist and patient 

with the tools to easily adapt the treadmill speed to the capabilities and progress of the 

patient, without the need to manually change the control settings. 

4.5 Conclusion 

In this study we implemented, and evaluated, a VMC strategy for selective and gradual 

support of gait subtasks. Here we focused on one specific subtask, i.e. increasing foot 

clearance. Initially, we derived and provided regression models that can be used to 

reconstruct patient-specific ankle movement patterns based on body height and walking 

speed. The RMSE between the predicted and actual trajectory was around 1 cm for all 

walking speeds. The proposed method can also be applied to reconstruct speed-

dependent reference patterns for joint angles. Experiments with healthy subjects, and 

chronic stroke survivors, showed that with the proposed VMC approach, the step height 

could be selectively and gradually influenced, without affecting other spatiotemporal gait 

variables. In conjunction, we tested an impedance-shaping algorithm, which shaped the 

impedance to the patient’s individual needs. The provided support did not result in 

reliance on the support for both the stroke survivors as well as the healthy control groups. 

Providing visual feedback to the user resulted in an increased active contribution in all 

healthy subjects and three of the four stroke survivors. The presented VMC approach, and 

impedance shaping, can be crucial for the development of new rehabilitation strategies 

and robotic gait trainers. It allows automatic localization and minimization of the support, 

which increases active patient contribution and promotes functional recovery. 
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Abstract 

To promote active participation of neurological patients during robotic gait training, 

controllers, such as “assist as needed” or “cooperative control”, are suggested. Apart from 

providing support, these controllers also require that the robot should be capable of 

resembling natural, unsupported, walking. This means that they should have a transparent 

mode, where the interaction forces between the human and the robot are minimal. 

Traditional feedback-control algorithms do not exploit the cyclic nature of walking to 

improve the transparency of the robot. The purpose of this study was to improve the 

transparent mode of robotic devices, by developing two controllers that use the rhythmic 

behavior of gait. Both controllers use adaptive frequency oscillators and kernel-based non-

linear filters. Kernel-based non-linear filters can be used to estimate signals and their time 

derivatives, as a function of the gait phase. The first controller learns the motor angle, 

associated with a certain joint angle pattern, and acts as a feed-forward controller to 

improve the torque tracking (including the zero-torque mode). The second controller 

learns the state of the mechanical system and compensates for the dynamical effects (e.g. 

the acceleration of robot masses). Both controllers have been tested separately and in 

combination on a small subject population. Using the feed-forward controller resulted in 

an improved torque tracking of at least 52 percent at the hip joint, and 61 percent at the 

knee joint. When both controllers were active simultaneously, the interaction power 

between the robot and the human leg was reduced by at least 40 percent at the thigh, 

and 43 percent at the shank. These results indicate that: if a robotic task is cyclic, the 

torque tracking and transparency can be improved by exploiting the predictions of 

adaptive frequency oscillator and kernel-based nonlinear filters. 
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5.1 Introduction 

Robot-aided gait training is an emerging clinical tool for gait rehabilitation of neurological 

patients. These patients benefit form task oriented, high intensity, and repetitive training, 

to regain functional mobility [1-4]. Due to the repetitive behavior of gait training, 

rehabilitation robots are introduced. Robots can be used to provide more frequent, and 

more intensive training sessions, while reducing the workload of the therapist, compared 

to conventional forms of manual assisted (and body weight supported) gait training. 

Despite the mentioned advantages of robotic-assisted gait training a large multicenter 

randomized clinical trial among stroke survivors suggested that the diversity of 

conventional gait training results in greater improvements in functional recovery than 

robotic-assisted gait training [5]. This emphasizes that robotic-assisted training needs to 

be further optimized in order to improve therapeutic outcome. Active patient 

participation is thought to be the key in achieving this improvement.  

To encourage active participation, more and more robotic devices control the interaction 

forces with impedance or admittance control algorithms. Control strategies that promote 

active participation are often referred to as: “assist-as-needed” (AAN), “cooperative”, 

“adaptive” or “interactive” controllers, and make the robot’s behavior more flexible and 

adaptive to the patient’s capabilities, progress and current participation. These types of 

controllers potentially increase the motivation of the patient since additional effort by the 

patient is reflected in their gait pattern. Additionally, depending on the impedance levels, 

small errors are still possible, which have been suggested to promote motor learning in 

mice [6,7] as well as humans [8,9]. 

A prerequisite of these control strategies is that the robot should have a transparent 

mode. When the patient does not require any support during specific subtasks or gait 

phases of walking, or when he increases his capabilities or effort, the robot should reflect 

normal unassisted walking. Due to the mass and inertia of the device, and/or 

imperfections in the controller for the transparent mode, unassisted walking is often 

different from free walking [10,11].  

In a perfect transparent mode there are no interaction forces between the subject and the 

robot. In our gait rehabilitation robot Lopes (figure 1), the transparent mode consists of a 

zero-torque mode, where torques at the robot joints are controlled to zero. This does 

however not result in a perfect transparent mode and causes small gait alterations [11]. 

These imperfections are partly due to sensor noise and friction in the actuation that limit 

the gains of the PI-controller, resulting in torque tracking errors. Additionally, the forces 

that occur due to joint friction, gravity, and inertias of the moving segments of the Lopes, 

are not compensated for in the current implementation. It is possible to compensate for 

these forces by an additional controller [12]. 

As mentioned before, the Lopes, like many other rehabilitation robots, is specifically 

designed to assist a cyclic task, in this case walking. Robotic performance of cyclic tasks 
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can be improved by repetitive control or adaptive control [13]. The latter has been 

implemented on the Lokomat rehabilitation robot in order to increase the compliance and 

transparency of this robot. One of the proposed controllers for this robot minimizes 

human-robot interaction forces by on-line optimization of a limited number of gait 

characteristics (angle offset, amplitude, and cycle time) of the reference angle trajectory 

used by their impedance controller [14]. Thus, the robot motion gets entrained with the 

desired human motion. In this paper we present a more general framework for improved 

torque control, and improved transparent control. Therefore we developed two new 

controllers. Both controllers use a framework of adaptive frequency oscillators and kernel-

based non-linear filters to learn a control signal [15,16].  

The first controller is intended to improve the limited torque tracking of the currently 

implemented PI-controller. As suggested by Kuo the control of rhythmic movements can 

be improved by combining feedback and feed-forward control [17]. In general, feed-

forward control requires a precise model of the dynamic system. To establish this model, 

precise system identification is required which is, for many applications, a limitation to 

implement feed-forward control strategies. In this special case however we can use the 

information from previous cycles to learn the feed-forward signal in a model-free manner, 

and gradually learn the feed-forward signal over multiple cycles. 

The second controller compensates for the passive dynamics of the system that exist 

between the actuator and the user. This includes: gravitational, inertial and frictional 

forces. Forces that emerge from these effects are not sensed, and therefore not 

compensated, in the zero-torque mode. Compensation of these forces is achieved by the 

implementation of an inverse model, which in this case is an inverse dynamical model of 

the Lopes exoskeleton legs. The forces calculated by the inverse model are opposite to the 

existing forces. Application of the calculated forces should, theoretically, cancel out the 

interaction forces between the robot and the human. 

Both controllers are tested separately and in combination on a small group of healthy test 

subjects (N=4). To evaluate the performance of both control strategies the applied 

torques, the human-robot interaction forces, as well as the joint angles, are tracked. Here 

the suggested control strategies are specifically applied and tuned for the Lopes gait 

rehabilitation robot, but both approaches can be applied to other applications as well, as 

long as it concerns cyclic movement.  

5.2 Experimental setup and methodology 

5.2.1 Subjects 

Four healthy subjects (4 males, age: 28 ± 2 years, height: 1.80 ± 0.03 m, weight: 74.5 ± 

11.2 kg) participated in this experiment. All subjects gave written informed consent prior 

to participation.  
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5.2.2 Experimental apparatus and recordings 

To test both controllers the Lopes was used. The Lopes (figure 1) is a treadmill-based 

lower-limb exoskeleton type robotic gait trainer. The Lopes is impedance-controlled and 

has eight actuated degrees of freedom (DoFs) (flexion/extension at the hip and knee, hip 

abduction/adduction and horizontal pelvis translations). The robot was initially designed 

to provide supported treadmill training for stroke patients. Torque control was achieved 

by Bowden-cable-driven, PI-controlled, series-elastic actuators [18]. The actuators 

themselves were controlled with an inner velocity feedback loop [19]. Every DoF of the 

Lopes was fitted with potentiometers that record the kinematics, and potentiometers on 

the springs of the SEA that record the applied torque. Matlab xPC (Mathworks, Natick, 

Mass., USA) was used to control the applied torques by the exoskeleton joints at 1000 Hz. 

The performance of the used PI controller is described in [19].  

Additionally the interface between the subject’s legs and the exoskeleton legs was 

sensorized using three (six DoFs) force sensors (ATI-Mini45-SI-580-20, ATI Industrial 

Automation, Apex, N.C., USA, figure 1). The cuffs (Hocoma, Volketswil, Switzerland) used 

in the Lopes were made of a rigid carbon fiber shell with Velcro straps and secure the 

subject’s legs to the robot. One cuff connected to the upper leg and two cuffs connected 

to the lower leg of the subject. Only the interface of the right leg was fitted with force 

sensors. The analog signals coming from the force sensors were sampled at 1000 Hz using 

a data acquisition system (NI usb-6259, National Instruments, Austin, Texas, USA) and sent 

to the computer, where the data was stored for further processing. For clarity, the force 

sensors were only used to quantify the human-robot interaction forces, which were used 

as a measure for the transparency, and not as an input to the controller.  

  

   

    
 

Figure 1: Left: The LOPES robotic gait trainer. The Lopes is a bilateral exoskeleton with eight degrees 

of freedom. The actuators are detached from the exoskeleton and connected to the joints via 

Bowden cables and springs. The robot is impedance controlled via series elastic actuation. Right: Six 

DoF force sensors (encircled). The force sensors are, via carbon shells and Velcro straps, attached to 

the human at one side and to the robot on the other side. Interaction forces are measured at the 

thigh (1 connection) and the shank (2 connections, high, and low). 
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5.2.3 Controller design 

For the controllers that are presented in the next sections, an estimate of the position 

signals and their first and second order derivatives are required. To learn these signals the 

approach as suggested by [15] was used, which uses adaptive frequency oscillators in 

combination with kernel-based non-linear filters.  

Adaptive frequency oscillator  

Positions and their time derivatives can be expressed as a function of the gait phase. To 

acquire the gait phase, an adaptive frequency oscillator [20] matches a sinusoidal signal to 

an input signal. The phase of the sinusoidal signal was used as the gait phase (ϕ ) that runs 

from 0 to 2 π In our application the right and left hip angle were used as input signals, 

since they show a sinusoidal like profile. The right and left hip angle (�right and �left) were 

estimated with the following sinusoidal functions: 

( ) ( )right left
ˆ ˆ( t ) k a sin ( t ) , ( t ) k a sin ( t )θ ϕ θ ϕ π= + ⋅ = + ⋅ +  [1] 

Of which k, a and ϕ  are the offset, amplitude and the phase of the signal respectively and 

t is the time in seconds, the circumflex (
^
) denotes a signal estimate by the adaptive 

frequency oscillator. The left and right hip motions were assumed identical, with only a 

phase shift of π. The signal parameters were continuously updated using two error 

functions (e). 

right right right

left left left

ˆe ( t ) ( t ) ( t )

ˆe ( t ) ( t ) ( t )

θ θ

θ θ

= −

= −

 [2] 

The following differential equations are governing the update process of the sinusoidal 

signal parameters: 

right left

right left

right left

right left

( t ) ( e ( t )cos( ( t )) e ( t )cos( ( t ) ))

( t ) ( e ( t )cos( ( t )) e ( t )cos( ( t ) ))

a( t ) ( e ( t ) sin( ( t )) e ( t ) sin( ( t ) ))

k( t ) ( e ( t ) e ( t ))

ϕ ω ε ϕ ϕ π

ω ε ϕ ϕ π

η ϕ ϕ π

η

= + + +

= + +

= + +

= +

ɺ

ɺ

ɺ

ɺ

 [3] 

The parameter ω (rad s
-1

) estimated the frequency of the stride. Constants ƞ and Ɛ were 

used to regulate the learning rate of the signal. Pre-trials showed that with a ƞ and Ɛ of 

respectively 0.4 and 2 the adaptive frequency oscillator was synchronized within 

approximately ten steps. 

Kernel-based non-linear filters 

Subsequently, the position signals and their first and second order time-derivatives were 

estimated. The obtained gait phase of the adaptive frequency oscillator was used to learn 

the joint angles and the motor angles as a function of the phase. We used kernel-based 
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non-linear filters as presented by [15] to learn the signal as a sum of n Gaussian functions  

( ( t )ψ ): 

( )( )( )1 1
i i
( t ) exp h cos ( t ) c i ..nψ ϕ= − − =  [4] 

with 

2

i

i
c

n

π

=  [5] 

where h is a parameter that determines the width of the Gaussian function. Pre-trials 

showed that with n is 20 and an h of 15 the learned signal matched the angular pattern of 

the hip and knee well. The learned signal (��) was estimated on time (t) with:  

1

1

n

i ii

n

ii

w ( t ) ( t )
( t )

( t )

ψ
θ

ψ

=

=

=

∑

∑
ɶ  [6] 

The tilde (~) denotes the signal estimated by the non-linear filter. The weights (w) were 

adapted according to: 

( )w( t ) P ( t ) ( t )ψ θ θ= −
ɶɺ  [7] 

where P had a value of 3 and is the learning gain, determining how fast the filter adapted 

its prediction. When the non-linear filter had learned the characteristics of the signal the 

filter can be locked by setting ��  to zero. A nice feature of this filter is that analytical 

derivatives of the signal estimate can be obtained, which provided the velocity and 

acceleration estimate that was needed for the improved torque tracking and the 

improved transparency. The frequency and weights were only changing relatively slow 

and therefore assumed constant: 

( t )ϕ ω=ɺ and 0w( t ) =ɺ  [8] 

Additionally it was assumed that: 

( )1
0

n

ii

d
( t )

dt
ψ

=

=∑  [9] 

This is approximately true if a sufficient large number of kernels is chosen. The first time 

derivative is: 

1

1

n

i ii

n

ii

w ( t ) ( t )

( t )

ψ
θ

ψ

=

=

=

∑

∑

ɺ
ɶɺ  [10] 

with 

( )
i i i
( t ) ( t )h sin ( t ) cψ ψ ω ϕ= − −ɺ  [11] 

and the second time derivative is: 
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1

1

n

i ii

n

ii

w ( t ) ( t )

( t )

ψ
θ

ψ

=

=

=

∑

∑

ɺɺ
ɶɺɺ  [12] 

with 

( ) ( )2

i i i i i
( t ) ( t )h sin ( t ) c ( t )h cos ( t ) cψ ψ ω ϕ ψ ω ϕ= − − − −ɺɺ ɺ  [13] 

Feed-forward velocity learning controller 

In the Lopes the series-elastic actuators were originally PI-controlled. Within this setup 

sensor noise and friction in the actuation limited the maximal feedback gains that can be 

used, resulting in tracking errors. The cyclic behavior of walking provides the possibility to 

estimate a feed-forward signal. The feed-forward signal was obtained with a non-linear 

filter. This filter learned the motor angles, ( motor, from the motor encoder) as a function of 

the phase, according to eq. 0.6. The analytical derivative (eq. 0.10) of the estimated signal 

( motor) was used as the feed-forward signal in the Lopes torque control loop (which is 

velocity controlled). This signal was added to the motor-velocity command ( PI) from the 

PI-controller and was sent to the actuators. Figure 2 shows this control strategy.  

Dynamics compensation controller 

In the original transparent mode the joint torques were regulated to zero (zero-torque 

mode). Even if this control works perfectly this does not mean that the human, who walks 

in the Lopes, does not experience any interaction forces (F). Friction, gravity and inertia 

will still result in reaction forces that are felt via the connections with the Lopes. An 

inverse dynamics module can be used to calculate the torques (τID) required to cancel 

these interaction forces. The inverse dynamics module described two planar double 

pendulums. Each double pendulum represented one leg of the Lopes in the sagittal plane, 

 
Figure 2: Schematic overview of the implemented controllers on the Lopes rehabilitation robot. The 

dynamics compensation module and the velocity learning module can be switched off so their output 

becomes zero. In the experiments described here the transparent mode was evaluated so the 

reference torque is set to zero. 
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consisting of an upper and lower leg segment. Each segment of the pendulums had a mass 

(located at a certain distance from the proximal joint) and inertia. Additionally, each joint 

had rotational damping, which represented friction in each joint. The parameters 

corresponding to the different Lopes segments were estimated using multi-input-multi-

output (MIMO) system identification [21]. Table 1 provides an overview of the system 

parameters. The input of the inverse model consisted of the hip and knee angle, angular 

velocity, and angular acceleration. The Lopes was not fitted with accelerometers that 

measure the required signals directly. Therefore, the joint angles and their first and 

second order derivatives were also obtained with the non-linear filter. Figure 2 shows this 

control strategy. 

5.2.4 Experimental protocol 

Before the subject was positioned in the Lopes, different anthropometric measurements 

were taken to adjust the exoskeleton segment lengths. Additionally, the positions of the 

cuffs were adjusted to align the subject’s knee and hip axis with the exoskeleton joints. 

Next, the subject was positioned into the Lopes and the trunk, thigh, and upper- and lower 

shank were strapped to the exoskeleton (figure 1).  

After a 5 minute familiarization period, to get used to walking in the Lopes, each subject 

performed two trials. The trials were performed at a slow walking (0.5 m/s) and fast 

walking speed (1.0 m/s). First the subjects walked for ninety seconds in the device using 

only the PI-controller (the conventional zero-torque mode). During this period the 

subject’s cadence was recorded. The interaction forces scale with the cadence and the 

walking speed. At higher walking speeds the exoskeleton legs are accelerated and 

decelerated more, resulting in higher interaction forces. To cancel this effect out, the 

different controllers were tested at a fixed treadmill speed and a fixed cadence. The fixed 

cadence was achieved by asking the subjects to synchronize their walking tempo with a 

metronome that was set to the average of the subjects’ pre-recorded cadence. This first 

condition (90 seconds of PI-controller) was also used to learn the signals that were 

required for the dynamics compensation. After 90 seconds the non-linear filters, that 

learn the hip and the knee angle (and their derivatives), were locked. Subsequently the 

different controllers were tested. The non-linear filter for the feed-forward controller was 

Table 1: Dynamic properties of the Lopes. 

 Thigh Shank 

Mass [kg] 5.9 4.2 

Inertia [kg m
2
] 0.079 0.044 

Length [m] 0.44 -- 

Centre of mass [m]
1 

0.2 0.2 

Damping [Nm
2
s
-1

] 0.98 0.54 

Strap position [m]
1 

0.32 0.15 and 0.29 
 

1

Measured from the proximal joint. 
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not locked. The different walking conditions and their duration are listed in table 2. All 

conditions (at one speed) were evaluated directly after each other at the same cadence, 

without interruptions. In the second trial this protocol was repeated for the fast walking 

speed. 

5.2.5 Data analysis  

All signal processing was done with custom-written software in Matlab (Natick, Mass., 

USA). The measured forces from the three force sensors were resampled at 100 Hz and 

synchronized with the potentiometer data from the Lopes. 

Of all the recorded conditions only the last 60 seconds were used for data processing. 

Performance of the controllers was calculated based on the root mean square (RMS) of 

different signals. The evaluated signals were: 1) the torque tracking error, 2) the 

interaction force in the sagittal plane (perpendicular to the exoskeleton legs), and 3) the 

interaction power. The interaction power was calculated by taking the product of the 

moment of the interaction forces around their proximal joint and the velocity of their 

proximal joint. Results for the upper and lower shank force were summed. The power 

provides a measure for the flow of energy between robot and human, that is: it shows 

how much the robot is supporting, or resisting, the movement of the human.  

Average steps were calculated by splitting the data into individual strides, based on the 

heel-contact event. Next, the different data blocks were normalized as a percentage of the 

gait cycle and averaged. Paired t-tests were performed to test for significant differences 

between the conditions. The level of significance was defined at p=0.05. 

5.3 Results 

5.3.1 Torque tracking  

The torque tracking was improved by the feed-forward controller. The RMS of the torque 

tracking error (RMSE) significantly reduced (table 3, figure 3). Reductions in tracking error 

were similar in the zero-torque mode and with the dynamics compensation switched on 

(table 3). The small standard deviation indicates that all subjects showed similar 

reductions. In general the knee joint had the largest reduction in RMSE. No clear effect of 

the walking speed on the tracking error was observed. A typical example of the tracking 

Table 2: Tested conditions. 

Condition Duration for each speed (s) 

PI 90 

PI + velocity learning 90 

PI + dynamics compensation 90 

PI + velocity learning + dynamics compensation 90 
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Table 3: Reductions in RMS torque error. 

 Dynamics compensation off Dynamics compensation on 

 Slow Fast Slow Fast 

Hip 52% (49%-56%) 59% (51%-60%) 56% (53%-64%) 58% (51%-62%) 

Knee 61% (55%-68%) 64% (55%-70%) 65% (63%-67%) 62% (61%-63%) 

 

Reductions in RMS of the difference between desired and recorded torque (tracking error), averaged over the 

subjects. All reductions were significant with p < 0.01 (paired t-test). The values between brackets show the range 

of the data over the different subjects.  

 
Figure 4: Top: difference between the desired and the measured torque without dynamics 

compensation (zero-torque mode). Note that the desired torque is zero. Bottom: difference between 

both signals with dynamics compensation. The figure shows the results for a typical subject. All 

signals are presented as a function of the gait cycle, starting at heel strike. Left: results for the hip. 

Right: results for the knee. 

 
Figure 3: RMS of the tracking error at the hip (left) and knee (right). The bars are the results, 

averaged over the subjects. The error bars denote the standard deviations. 
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error as a function of the gait cycle, with and without the dynamics compensation, is 

shown in figure 4. 

5.3.2 Interaction forces  

For the thigh, the interaction forces were reduced when the feed-forward controller was 

switched on, compared to the zero-torque mode (figure 5). The dynamics compensation 

also resulted in a reduction in thigh interaction forces compared to the zero-torque mode. 

An additional decrease was observed when the feed-forward controller was switched on 

in combination with the dynamics compensation, leading to a total reduction of 

interaction forces of 39% (p = 0.001) for slow walking and 35% (p = 0.009) for fast walking. 

Walking at higher speed showed the same trends. In general: a higher walking speed 

resulted in higher interaction forces between subjects and robot.  

For the interaction forces on the lower leg (shank high and shank low) the dynamics 

compensation did not result in a reduction of the forces, compared to the zero-torque 

mode (figure 5). In fact: the interaction forces increased slightly. In contrast, the feed-

forward controller did reduce the interaction forces. When it was switched on in the zero-

torque mode, as well as in combination with the dynamics compensation, it resulted in 

reduced interaction forces.  

5.3.3 Interaction power  

The interaction power (figure 6) showed the same trends as observed in the interaction 

forces (figure 5). At the thigh the dynamics compensation resulted in a reduction in power 

compared to the zero-torque mode. An additional decrease was observed when the feed-

forward controller was switched on (figure 6). Combining both controllers led to a total 

reduction of interaction power of 40.9% (p = 0.002) for slow walking and 40.2% (p = 0.007) 

for fast walking. Looking solely at the effect of walking speed, walking at higher speeds 

resulted in larger powers.  

For the lower leg the dynamics compensation alone did not result in a clear reduction of 

the interaction power, compared to the zero-torque mode (figure 6), but the feed-forward 

controller did reduce the interaction power. In contrast to the interaction force (figure 6), 

combining both controllers resulted in a large reduction in the power at the shank (slow 

walking 45.3%, fast walking 43.2%). Figure 6 also shows that the dynamics compensation 

resulted in a larger reduction in interaction power during the swing phase than during the 

stance phase. 

5.3.4 Kinematics 

The recorded joint angles are compared for the different controllers in figure 7. Gait 

kinematics show only subtle differences. The most prominent difference is the increase in 

knee flexion angle. If the feed-forward controller and the dynamics compensation are on 

simultaneously the maximal knee ankle is 5.8 degrees larger than the condition where 
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Figure 5: RMS of the interaction forces at the thigh and shank. The bars are the results, averaged 

over the subjects. The error bars denote the standard deviations. 

 
Figure 6: RMS of the power at the thigh (top) and shank (bottom) over the total gait cycle (left) and 

divided in stance (middle) and swing phase (right). The bars are the results, averaged over the 

subjects. The error bars denote the standard deviations. 

 
Figure 7: Gait kinematics averaged over the subjects (flexion is positive), and presented as a function 

of the stride, starting at heel strike. Shaded areas show the standard deviations between the 

subjects. 
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both controllers are off (p = 0.003). 

5.4 Discussion 

The purpose of this study was to investigate how the cyclic nature of many rehabilitation 

tasks could be exploited to improve the control and transparency of rehabilitation robots. 

The results for the two tested controllers are discussed below. 

5.4.1 Feed-forward velocity learning controller  

The RMS of the torque tracking error showed a large improvement. Still, our approach can 

only filter out errors that are cyclic, with the same cycle time as the gait cycle (figure 4). 

Errors that are not a function of the gait phase cannot be captured by the non-linear filter. 

The remaining error in the torque tracking is partly due to tracking errors that are not 

cyclic. However, in our study the cyclic effects were dominant and the RMSE could be 

reduced by more than half. 

5.4.2 Dynamics compensation 

The effect of the dynamics compensation was measured by the interaction power. When 

the dynamics compensation was switched on the interaction power reduced, especially 

for the thigh (figure 6). Our results also indicate that the effect of the dynamics 

compensation controller is larger if the feed-forward velocity controller is active in 

parallel, which clearly improved the torque tracking (figure 3). This indicates that a good 

torque tracking is a prerequisite for the dynamics compensation controller to work, 

especially since the desired torques are relatively small (figure 4). 

In general the dynamics compensation controller showed a larger reduction in interaction 

power during the swing phase than during the stance phase (figure 6). This might be due 

to larger joint accelerations during the swing phase, than during the stance phase. Larger 

accelerations correspond to larger forces that can be compensated for with this controller. 

Indeed, figure 6 shows higher interaction powers during the swing phase compared to the 

stance phase. 

An additional possible explanation is that the interaction forces, during the stance phase, 

have a source that cannot be compensated for by either one of the controllers. As a safety 

measure the Lopes has a mechanical end-stop at the knee joint to prevent 

hyperextension. At initial heel contact, at the beginning of the stance phase, the subject is 

likely to hit that end-stop and the Lopes cannot reduce the interaction forces by further 

extending.  

Some of the remaining interaction forces might emerge from a misalignment between the 

human and the robot leg. This cannot be compensated for by the controllers, but can only 

be solved with a more ergonomic design. 
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Evaluation of the kinematics showed an increase in maximum knee angle during the swing 

(figure 7). This suggest that, in our specific case, the previous observed reduction in knee 

flexion [11] (in de zero-torque mode) was compensated for by our controllers. This might 

indicate that the subjects have a more natural gait when the controllers are switched on. 

Up to this point we did not investigate the changes in human performance in terms of the 

kinematic resemblance of natural walking, energy expenditure or muscle activation. This 

will be part of further research. 

5.5 Conclusion 

If a robotic task is cyclic, the performance of this task can be improved by exploiting the 

predictions of adaptive frequency oscillator and kernel-based nonlinear filters. These 

filters predict signals for the upcoming steps. This prediction can be used to compose a 

feed-forward signal to increase robotic control accuracy. We showed that for our 

rehabilitation robot we improved the torque tracking and reduced the interaction forces 

between the robot and the human, and thereby improved the transparency of our robot. 

Still we need to evaluate how the controllers react to sudden gait changes and irregular 

gait patterns.  
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Abstract 

In this study we present and evaluate a novel method to estimate multi-joint leg 

impedance, using a robotic gait training device. The method is based on Multi Input Multi 

Output (MIMO) system identification techniques and is designed for continuous torque 

perturbations at the hip and knee joint simultaneously. Eight elderly subjects (age 67-82) 

performed relax- and position-tasks in three different leg orientations. Multi-joint 

impedance was estimated non-parametrically and subsequently modelled in terms of

inertia and (inter) joint stiffness and damping. The results indicate that all stiffness and 

damping parameters were significantly higher during the position task compared to the 

relax task. The majority of the stiffness and damping parameters were not significantly 

affected by leg orientation. The results also emphasize the importance of considering the 

visco-elastic coupling between joints when modeling multi-joint dynamics. Measuring 

joint stiffness with the same device that is used for robotic gait training allows convenient 

testing of joint properties as part of robotic gait training protocols. These measures might 

serve as a good basis for quantitative assessment and follow up of patients with abnormal 

joint stiffness due to neurological disorders and may reveal how changes in these joint 

properties affect their gait function. 



Estimation of human hip and knee multi-joint dynamics using the lopes gait trainer 

 

 

161 

C
h

a
p

te
r 6

  

6.1 Introduction 

Our ability to resist perturbations during postural control, or coordinated movements like 

walking, greatly depends on our mechanical joint properties. Joint properties can be 

characterized by their mechanical impedance, which (in biomechanics) is often defined as 

the dynamic behavior between joint torque and angular displacement [1]. Experiments to 

quantify joint impedance typically involve mechanically perturbing the joint in a controlled 

manner, measuring the motions and torques and applying system identification 

techniques. These experiments have been performed on a wide variety of joints, including 

the ankle, wrist, elbow and knee and revealed that, for small displacements, the joint 

impedance could be described by inertial, viscous and elastic properties [2]. 

Often, a distinction is made between the impedance measured in a passive joint (passive 

impedance) or in a joint with a certain level of muscle contraction (active impedance). The 

passive component is ascribed to the inertia of moving segments and the dynamic 

properties of anatomical structures like joint capsules, ligaments, connective tissues and 

inactive muscles. The active impedance is caused by properties of activated muscle groups 

acting around a joint. Others try to decompose the impedance into an intrinsic and 

reflexive part. Here the intrinsic part arises from the mechanical properties of passive 

tissues and active muscles, whereas the reflexive part arises from reflexes, which lead to 

changes in muscle activation levels and consequently contribute to joint impedance. 

Joint perturbation experiments on non-disabled subjects showed that the impedance 

depends on several factors, such as muscle contraction levels [3-5], joint angle [6,7], 

movement amplitude [5,8,9] and perturbation bandwidth [10,11]. These dependencies 

can be explained by several underlying physiological mechanisms. For example, the 

angular dependency is likely to be related to non-linear behavior of passive structures 

[12], the change in the overlap between the myosin and actin filaments [13] and changes 

in muscle moment arm [14]. The increase with contraction level is ascribed to the 

summation of the stiffness of parallel arranged cross bridges [15]. Cross-bridges are 

thought to cause a high stiffness during low amplitude perturbations, due to elastic 

stretch during the initial stages of the stretch, and a lower stiffness during large amplitude 

perturbations, due to detaching and reconnecting muscle filaments [16]. The bandwidth 

dependency is related to our capability to modulate our reflexive activity. For low 

bandwidth perturbations, humans increase their spinal reflexes (muscle spindles and golgi 

tendon organs) and effectively increase their joint impedance. At higher frequencies this is 

limited due to instabilities arising from reflexive time-delays [17]. These reflexes have also 

demonstrated larger gains for small amplitude perturbations, compared to larger 

perturbations [18]. 

A thorough understanding of joint stiffness and its variation with posture, muscle 

activation levels, environmental circumstance or diseases might prove useful for several 

applications. Knowledge about the way we modulate our joint impedance during different 

functional tasks like locomotion, running or balance control can benefit the design of 
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activated prostheses or orthoses [19] and can be used to improve the control of paralyzed 

limbs using functional electrical stimulation [20]. Additionally, joint impedance 

measurements can serve as a good basis for quantitative assessment and follow up of 

patients with ligament injuries [21], or abnormal joint stiffness (spasticity) due to 

neuromuscular disorders like SCI, stroke, cerebral palsy or Parkinson [22,23]. Quantitative 

impedance measures were also demonstrated to have an intra-subject reliability which 

was as good as or better than most clinical measures [24], which makes them also suitable 

as an objective indicator of the effectiveness of different types of rehabilitational 

interventions. 

As mentioned above, several factors influence joint impedance. Still, the main factor is 

task instruction [25]. Task instruction is inherently linked to the applied perturbation type; 

force tasks are used during position perturbations and position tasks during force 

perturbations [26]. So far, most studies use position perturbations in combination with a 

torque/force task and focus on the effect of muscle contraction levels on joint stiffness. 

We believe that torque/force perturbations present a more natural disturbance, since the 

effort of the subjects is reflected in their performance, whereas during a position 

perturbation the subject has no influence on the performed movement. Therefore, in this 

study we will use torque perturbations in combination with relax- and position-tasks to 

determine the range of joint impedance.  

Conventional methods for measuring joint impedance typically have been applied to a 

single joint. However, due to the presence of bi-articular muscles and heteronymous 

reflexes [27] the joint impedance of one joint is also influenced by the angular position or 

movement of the adjacent joint. Several studies have illustrated the effect of bi-articular 

muscles by the change in the hip-torque versus hip-angles curves, for different 

orientations of the knee joint and vice versa [28,29]. They are often used to describe how 

these elastic elements can serve as an energy storage and release mechanism, rather than 

quantifying the joint mechanics in terms of stiffness and damping [30]. Also, these studies 

are only performed for passive movements where the joints are slowly moved through its 

range of motion rather than applying perturbations. For the upper extremities this multi-

joint characteristic of joint impedance has been acknowledged, and Multi Input Multi 

Output (MIMO) techniques have been used for the estimation of multi-joint stiffness (or 

endpoint stiffness) [31, 32].  

The goal of this study is to use similar MIMO techniques to develop and evaluate an 

approach to assess multi-joint leg impedance using a robotic gait training device. The hip 

and knee joint will be mechanically perturbed simultaneously and its effect on both hip 

and knee angular displacement will be measured. Subsequent MIMO system identification 

techniques in the frequency domain will be used to distinguish between single joint and 

multi-joint effects. Significant coupling between both joints is expected due to their 

mechanical connection and the existence of bi-articular muscles and heteronymous 

reflexes. We used closed-loop identification techniques, which are appropriate when 

continuous torque disturbances are used. We also investigated the effect of task 

instruction (relax and positions tasks) and leg posture on the hip and knee stiffness. 
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6.2 Methods 

6.2.1 Subjects 

Eight elderly subjects between the age of 67 and 82 (age 74.8 ± 5.3, seven males, one 

female, weight 81.9 ± 11.6 kg) participated in this study. No subjects had symptoms of 

neurological or orthopedic dysfunction and all gave informed consent before participating 

in the experiments. The protocol was in accordance with the Declaration of Helsinki. 

6.2.2 Apparatus 

To apply hip and knee perturbations, the LOPES (Lower Extremity Powered ExoSkeleton) 

was used. The LOPES (figure 1) is an exoskeleton type robotic gait trainer with eight 

actuated Degrees of Freedom (DoF) and was initially designed to provide supported 

treadmill training for stroke patients. It is torque controlled by means of series elastic 

actuation (SEA) [33]. Matlab xPC (Mathworks, Natick, Mass., USA) is used to control the 

applied torques by the exoskeleton joints at 1000Hz. Potentiometers fitted to the LOPES 

joints record the joint angles. The applied joint torques are calculated from the deflection 

of the springs of the SEA. The exoskeleton knee and hip angle and exerted joint torques 

were sampled at 100Hz and stored for later processing. 

6.2.3. Electromyography 

Muscle activity was recorded (Porti 16-5, supplier: TMS International, Enschede, The 

Netherlands) from seven muscles acting about the knee and hip joint. We measured EMG 

levels of the mono-articular, vastus lateralis, gluteus maximus and bi-articular rectus 

femoris, semitendinosis, biceps femoris, gastrocnemius. Seniam guidelines [34] were 

followed for skin preparation and placement of the disc-shaped solid-gel Ag/AgCl-

electrodes (in a bipolar configuration). The analog signals were sampled at 1024 Hz and 

 

 
 

Figure 1: Left: The LOPES robotic gait trainer. It comprises a bilateral exoskeleton series elastic joints, 

actuated via Bowden cables and capable of applying torque perturbations to the hip and knee joint. 

Right: Experimental setup. During the perturbation experiments the subjects stood with the non-

perturbed leg on a box such that the perturbed leg could move freely. 
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digitally stored for further processing. A sync signal was used to synchronize the EMG and 

LOPES data. All recordings were performed on the left leg only. As a reference for the 

EMG levels maximum voluntary contraction (MVC) levels were collected according to the 

Seniam guidelines [34]. Some of the cuffs of the LOPES were placed over the electrodes. 

To account for any changes in EMG levels due to the compression of the skin under the 

cuffs the MVC levels were recorded in the LOPES. The obtained MVC levels were used to 

scale the EMG levels during the different conditions. 

6.2.4 Experimental protocol 

Before positioning the subject in the LOPES, different anthropometric measurements were 

taken to adjust the exoskeleton segments lengths. Additionally, the position of the cuffs 

was adjusted in two DoFs to align the subject’s knee and hip axis with the exoskeleton 

joints. Next, the subject was positioned into the LOPES and the trunk, thigh, and upper- 

and lower shank were strapped to the exoskeleton. To let the subject become familiar 

with the device, every subject was allowed 5 minutes to freely move in the device while it 

was operated in zero-impedance mode [35]. During the perturbation experiments the 

subjects stood with the non-perturbed leg on a box, while holding onto two parallel bars 

for support (figure 1). The height of the box was 15 cm, which was sufficient to clear the 

foot of the perturbed leg. 

Experimental conditions  

Subjects were asked to perform two different tasks: a relax task and a position task. While 

performing each task, the LOPES applied continuous torque perturbations to the knee and 

hip. During the position task the hip and knee angles were displayed on a screen in real 

time and the subject was instructed to keep the deviations as small as possible. During the 

relax task the subjects were asked not to interfere with the applied perturbations and the 

screen was turned off to prevent any distraction. To study the effect of leg orientation on 

the joint impedance, the position and relax tasks were performed at three different leg 

orientations (hip/knee angles of 5/-55, 25/-35 and 25/-15 degrees). These three leg 

orientations represent the leg orientation during natural gait, just after toe off, during 

swing and prior to heel strike. All conditions were randomized, with a resting period of at 

least two-minutes in between conditions. Since the active impedance does not differ 

between dominant and non-dominant limbs in healthy subjects [36], all perturbations 

were applied to the left leg. To obtain the dynamic properties of the exoskeleton, which 

are required for the estimation of the human dynamical properties, a similar set of 

experiments was performed without a subject in the LOPES.  

Perturbation signal 

Quasi random torque perturbations were used to prevent anticipatory muscle 

contractions. The perturbation signal was composed of multiple sinusoids. This multisine 

signal had a duration of 20 seconds, and contained power at 35 specified frequencies 
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(0.05-10 Hz, logarithmically spaced). They were generated off-line and allowed for a well-

defined frequency domain analysis. As we used linear system identification techniques 

large movement amplitudes should be avoided. Therefore the phases of the different 

sines of the perturbation signal were optimized by using crest optimization [37]. To enable 

comparison of the different conditions and to justify a linear modeling approach, the 

amplitude of the multisine torque disturbance was adjusted for every subject and 

condition so that that the peak-to-peak amplitude of the resulting knee or hip angle did 

not exceed 15 degrees. These adjustments were made prior to the actual experiments. 

A general requirement to identify a MIMO system is that for each degree of freedom an 

independent perturbation is required. This implies that the system needs to be perturbed 

in two different manners. In the first trial, the perturbations on the hip and knee had the 

same sign, whereas in the second trial, the perturbations had opposite signs. For each trial 

the multisine was repeated 7 times (140 seconds). To minimize the effect of fatigue, each 

trial during a position task was split up in 2 parts of 80 seconds, with a one minute resting 

period in between. 

During all conditions a bias torque was superimposed on the multisine. The bias torque 

was used to compensate the gravity of the leg and exoskeleton. This allowed the subject 

to passively keep the knee and hip joint in the desired testing angle and prevented 

unwanted muscle contractions (especially during the relax task). The bias torque was set 

for every subject individually.  

6.2.5 Data processing 

All signal processing was done with custom-written software in Matlab (Natick, Mass., 

USA). 

Muscle contraction levels 

The raw EMG recordings were band-pass filtered (10-400 Hz) with a second-order zero-lag 

Butterworth filter to remove movement artifacts, full-wave rectified, and low-pass filtered 

with a low-pass second-order zero-lag Butterworth filter (5 Hz) to smooth the signal. The 

EMG was resampled to 100 Hz and synchronized to the LOPES data. Mean EMG levels 

were calculated for all the cycles of the perturbation cycle. Next these mean EMG levels 

were averaged for every condition to provide a single measure of muscle activity level per 

condition. Also the standard deviation of the mean EMG levels per condition was 

calculated to provide a measure for the variability in EMG levels over the different cycles.  

Non-parametric MIMO system identification, Frequency Response Functions  

The first cycle of the multisine was discarded, to eliminate possible transients at the start 

of each trial. The data from the remaining six cycles were Fourier transformed, and 

averaged over the six cycles to reduce the effects of noise. Note that only the Fourier 

coefficients at the frequencies of the multisine that contained power were used for 
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further processing. Next, MIMO frequency analysis techniques were used to obtain the 

non-parametric identification of the overall admittance. Although the admittance, and its 

inverse, the impedance, technically refers to the relationship between force and velocity, 

in many studies on joint properties these terms refer to the relationship between force 

and position [1]. Here the admittance is defined as the causal dynamic relationship with 

torque as input and angle as output.  

The overall admittance of the system is defined according to: 

( s ) T( s ) H( s )Θ = ⋅  [1] 

where (s) and T(s) denote the Fourier transforms of the exoskeleton joint angles and 

applied joint torques respectively and s is the Laplace variable. For the sake of simplicity, 

(s) is omitted from this point forward. Since the total system (human+LOPES) represents a 

multivariate system with two inputs and two outputs the admittance Frequency Response 

Function (FRF) consists of a 2-by-2 matrix with FRFs. The FRFs are calculated according to: 

1
H  T

−

= ⋅Θ  [2] 
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 [3] 

where Thip and Tknee represent the Fourier transforms of the hip and knee torque. hip and 

knee represent the Fourier transforms of the exoskeleton joint angles. Superscript 
-1

 

denotes the inverse, subscript 1 and 2 indicate the Fourier transforms obtained during the 

first and second trial and the circumflex ^ denotes an estimate. Note that matrix T 

requires to be invertible. Therefore the hip and knee were excited with the same periodic 

excitation in the first trial, whereas during the second trial the sign of the second 

perturbation was changed. �����→�����
 denotes the calculated FRF between applied hip 

torque and knee angle etc.	 

Noise-to-signal ratio  

To determine whether it is justified to use time-invariant system-identification methods, 

we calculated the noise-to-signal ratio (NSR) in the frequency domain [38]. The NSR is the 

ratio of the remnant and the periodic response. Remnant can result from time-variant 

behavior and/or noise. Consequently a small NSR indicates a consistent response of the 

system to the applied perturbation over the different cycles. It also indicates that the 

system is appropriately perturbed. 

2

2

hip

hip

hip

NSR
σ Θ

=

Θ

  [4]  
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where σ
2

hip represents the variance of the remnant (i.e. the variance of the Fourier 

transforms of the exoskeleton hip angle over the different cycles) and hip the periodic 

response (i.e. the mean of the Fourier transforms of the exoskeleton hip angle over the 

different cycles). The NSR of the knee angular response is calculated in a similar way. The 

NSR is only calculated for the excited frequencies (that is; the frequencies where the 

multisine disturbance contained power) and averaged over the frequencies. 

Standard deviation  

Another measure that reflects the consistency of the response was provided by the 

standard deviation of the hip and knee angular response. The standard deviation (std) was 

calculated over the different cycles of the perturbation signal. Next, the std was averaged 

over the recorded time instances (20 seconds/2000 samples) to obtain one representative 

parameter of the variability of the cycles in the time domain.  

Model fit  

To estimate the hip and knee impedance in terms of physiological relevant parameters, a 

linear model was constructed. In this model, the mechanical behavior of the complete 

system is represented by two double pendulums, one representing the 

exoskeleton/LOPES leg (LOPES pendulum) and one representing the subject’s leg (human 

pendulum) (figure 2A). Both double pendulums are connected by means of parallel spring 

damper combinations (Kelvin body), which represent the cuffs of the LOPES and the soft 

tissue of the legs. Each segment of the human pendulum has a mass (located at a certain 

distance from the joint) and a radius of gyration (figure 2B). Additionally, it has a very 

simplified muscle model consisting of two mono-articular muscles and one bi-articular 

muscle (figure 2C), which represent the lumbed behavior of the different mono- and bi-

articular muscles of the hip and knee. No attempt was made to discriminate between the 

individual properties of the different muscles and tendons. In terms of rotational visco-

elastic properties the two mono-articular muscles and one bi-articular muscle effectively 

add rotational stiffness and damping to the hip (Kh, Bh), knee (Kk, Bk) and introduces a 

symmetric visco-elastic coupling between both joints (Kc, Bc). The definition of the model 

parameters is listed in table 1. See supplementary material for a detailed description of 

the model and the parameterized impedance Transfer Function (TF) of the human 

pendulum model (Hmodel). The best model fit was obtained by minimization of the 

following criterion function:  

�

�

2

human model 

f human 

log( H ( f )) log( H ( f ))
model error = 

log( H ( f ))

 −
 
  
 

∑
 [5] 

where Hmodel represents the TF of the human pendulum model. ��human represents the 

impedance FRF of the human leg and is calculated from the total admittance (��tot), see 

supplementary material. 



Chapter 6 

 

 

168 

C
h

a
p

te
r 

6
 

 

The optimization was performed with an unconstrained nonlinear optimization routine, 

and on all 4 FRFs that comprise ��human simultaneously. The criterion function is only 

evaluated for the excited frequencies. Since the NSR was relatively high at the frequencies 

above 3 Hz it was decided to only include all frequencies up to 3 Hz (25 frequencies in 

total). 

To reduce the amount of model parameters that require fitting, the position of the center 

of mass, the radius of gyration, and the masses of the lower and upper leg were taken 

from empirical relations found in the literature [39]. To account for some subject 

variability we introduced a scaling factor (c) that scaled the mass of the upper and lower 

leg equally (assuming that subjects with an above-average lower leg mass also exhibit 

equally enlarged upper legs). 

For each subject a total of seven parameters (Kh, Bh, Kk, Bk, Kc, Bc and c) had to be 

estimated for each condition. The most reliable estimates for the inertia are obtained at 

rest, when the contribution of joint stiffness and damping is small [31]. Therefore the 

scaling factor for the segment masses was first estimated for the three passive conditions 

(relax tasks) simultaneously. During the optimization, the stiffness and damping 

 
Figure 2: Model representation of the human leg that is attached to the LOPES exoskeleton.

A: Schematic presentation of the dynamic model that is used for parameter estimation. It represents 

the human leg that is attached to the LOPES. Both the LOPES and the human are modelled as a 

double pendulum, which are connected by means of a parallel spring damper combinations at the 

thigh and shank. B: Fixed model parameters of the double pendulum that represents the human leg. 

C: Very simplified muscle model that is added to the double pendulum that represents the human 

leg. The model consists of two mono-articular muscles and one bi-articular muscle. Each muscle has

a linear stiffness (K) and damping component (B). Subscript m(h) refers to the mono-articular muscle 

around the hip, m(k) to the mono-articular muscle around the knee, and b to the bi-articular muscle 

crossing both joints 
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parameters were free for all three conditions, whereas the scaling factor was taken 

equally across the conditions. Also, for all three active conditions (position tasks) the 

model parameters were optimized simultaneously. Here the previously determined 

scaling factor was used for all conditions. This resulted in a total set of 37 parameters. 

Model validation  

To obtain a measure for the estimated model prediction we calculated the “goodness of 

fit” (GOF) in the frequency domain, where 100% reflects a perfect model fit.  

�

�

2

2

log( ( )) log( ( ))

1 100

log( ( ))

model human 

f

human 

f

H f H f

GOF

H f

 
− 

 = − ⋅
 
 
 

∑

∑

  [6] 

The GOF was calculated for all 4 FRFs that comprise ��human separately. Since we used a 

logarithmic criterion function we also calculated a logarithmic based GOF. 

Perturbation evoked reflex mechanisms  

In our model we do not attempt to decompose the stiffness into its reflexive and non-

reflexive components. To determine the possible contribution of reflexive behavior to the 

joint stiffness we calculated the NSR (in the frequency domain) of the EMG signal at the 

Table 1: Model parameters. 

 Description Unit Parameterization 

Kh Hip stiffness Nm/rad Optimized 

Kk Knee stiffness Nm/rad Optimized 

Kc Multi-joint stiffness due to bi-articular effect Nm/rad Optimized 

Bh Hip damping Nms/rad Optimized 

Bk Knee damping Nms/rad Optimized 

Bc Multi-joint damping due to bi-articular effect Nms/rad Optimized 

c Scaling factor for mul and mll dimensionless Optimized 

lul Length of the upper leg m Fixed (True value) 

mul Mass of the upper leg kg Fixed (0.115·body mass)
4
 

pul Position of the center of mass of the upper leg
2
 m Fixed (0.425· upper leg length)

4
 

rul Radius of gyration of the upper leg m Fixed (0.29· upper leg length)
4
 

lll Length of the lower leg
1
 m Fixed (True value) 

mll Mass of the lower leg
1
 kg Fixed (0.061·body mass)

4
 

pll Position of the center of mass of the lower leg
1,3

 m Fixed (0.525· lower leg length)
4
 

rll Radius of gyration of the lower leg
1
 m Fixed (0.365· lower leg length)

4
 

 

1

 The parameters for the lower leg included the shank and foot. 
2

 With respect to hip joint. 
3

 With respect to knee joint. 
4

 Parameters according to the list compiled by Stein et al. [39] (table II.For some parameters they reported a 

range, in those cases we used the mean. 
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perturbed frequencies. This provides a measure for the consistency of the muscle 

activation levels at the perturbed frequencies. The raw EMG recordings were band-pass 

filtered (30-400 Hz) with a second-order zero-lag Butterworth filter, full-wave rectified, 

and synchronized with the LOPES data. The lower bound of the filter was set at 30Hz to 

ensure that all movement artefacts, due to the perturbation (which has frequencies up to 

10Hz) are removed. Since this is done before rectifying the EMG signal this does not 

remove the actual muscle activation at the lower frequencies. The first cycle of the 

perturbation signal was discarded, to eliminate possible transients at the start of each 

trial. The EMG data from the remaining six cycles were Fourier transformed and the NSR 

was calculated for each muscle (in a similar way as described in eq.4). 

6.2.6 Statistics  

Stiffness and damping parameters were estimated in different leg postures. A Mixed 

Model Analysis of repeated measures was used for every model parameter to test the 

effect of leg orientation (3 levels) and task instruction (2 levels) on the estimated model 

parameters, at an alpha of 0.05. Post-hoc pairwise comparisons were performed with a 

Bonferroni correction to account for multiple comparisons. All statistical tests were 

performed with SPSS Statistics (IBM Corp., Armonk, NY, USA). 

6.3 Results 

6.3.1 Relax task 

The angular response of the hip and knee joint to the 6 cycles of the perturbation signals 

were very consistent when subjects were instructed to relax (see figure 3 for a 

representative example). The consistent response of the subjects to the perturbation was 

also reflected in a low standard deviation and low NSR (figure 3). It also shows that the 

noise levels are low and that there is no time-variant behavior. Generally the NSR remains 

well below one and increases at the higher frequencies and lower frequency range (figure 

3). Similar results were observed during the second perturbation round (with a knee 

perturbation with revered sign, figure 3) and during the perturbation for the other leg 

configurations. The average NSR levels (averaged over all frequencies, perturbation cycles, 

subjects and leg configurations) were 0.10 for the knee angle and 0.21 for the hip angle. 

The similarity in the response to the different cycles of the perturbation signal was also 

confirmed by the low standard deviation over the 6 cycles (figure 3). The average standard 

deviations (averaged over all perturbation rounds, subjects and leg configurations) were 

0.6 and 1.3 degrees for the hip and knee respectively (table 2). For the relax tasks the 

average peak-to-peak torque amplitudes (averaged over all perturbation cycles, subjects 

and leg configurations) was 13.4 Nm for the hip, and 6.3 Nm for the knee, resulting in 

peak to peak angular displacement of 15.0 and 8.9 degrees (table 2). During the relax 

tasks the average EMG levels were 3% of the MVC (figure 4). We excluded two subjects 

from the analysis as they were not able to properly relax (EMG levels>10%MVC). 
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6.3.2 Position task 

Generally, during the position task the variability in the response to the 6 cycles of the 

perturbation signal was larger than during the relax task (figure 5 for a representative 

example). This is also reflected in higher NSR levels and higher standard deviations over 

the cycles, especially for the hip joint (table 2). This is very likely due to some drift that 

occurs when the subjects co-contract. With the help of the visual feedback subjects tried 

to compensate for this drift by small, low frequency, angular corrections. These low 

frequency angular corrections also explain the larger NSR at the lower frequencies (figure 

5). Subjects also indicated that it was easier to maintain a certain knee angle, opposed to 

keeping their hip joint in the required testing position. No consistent increase in the 

movement amplitude during the position task was found, which indicated that 1) fatigue 

was avoided and 2) a relatively constant co-contraction level was maintained. For the 

 
Figure 3: Time series and NSR during a relax task. Eight-second time series and NSR of one

representative participant during a relax task (subject 5, leg orientation: hip=25°, knee=-35°). A: time 

series for the first perturbation round. B: time series for the second perturbation round. From top to 

bottom: knee torque perturbation, knee angular response, hip torque perturbation and hip angular 

response. For the time series the mean is depicted by the solid line and the standard deviation over 

the 6 cycles by the shaded area. C: NSR of the different signals, the dashed line depicts NSR=1. The 

responses of the participant were consistent, as evidenced by small standard deviations over the 

different cycles of the perturbations and low NSRs. 
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position tasks the average peak-to-peak, angular response was similar to the relax task, 

whereas a higher peak-to-peak torque perturbation was required to evoke the 

displacement (table 2) due to the co-contraction. During the relax tasks the average EMG 

levels were 22% of the MVC levels (figure 4).During the position task, where the subjects 

were asked to keep a constant level of co-contraction, they were able to keep their co-

contraction level relatively constant. Although they did not receive any EMG feedback, the 

average variation (i.e., standard deviation) of the mean EMG levels over the different 

cycles of the perturbation signal was only 4% of the MVC levels.  

Table 2: Experimental parameters. 

 

 Relax task Position task  

 Hip Knee Hip Knee 

Peak to peak angular displacement [deg] 8.9±1.5 15.0±2.9 9.2±1.0 13.5±2.0 

Peak to peak angular torque [Nm] 13.4±1.2 6.3±1.0 19.9±0.2 10.6±0.9 

NSR 0.21±0.23 0.10±0.04 0.54±0.26 0.21±0.10 

STD [deg] 0.6±0.1 1.3±0.8 1.9±0.5 2.3±0.7 

GOF (with bi-articular effect)                 Relax task              Position task 

�����→����
                 99±0.23              99±0.95 

�����→�����
                 85±20              88±12 

������→����
                 78±13              94±5.0 

������→�����
                 84±27              94±7.3 

GOF (without bi-articular effect)                 Relax task              Position task 

�����→����
                 99±0.23              99±0.95 

�����→�����
                 74±22              62±16 

������→����
                 68±17              72±7.4 

������→�����
                 84±27              94±7.3 

 

 
Figure 4: EMG levels. Normalized EMG levels for the recorded muscles during the relax (dark gray) 

and position (light gray) tasks. The EMG levels are averaged over all perturbation rounds, subjects 

and leg configurations. The error bars indicate the standard deviation. 
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6.3.3 Non-parametric Frequency Response Functions  

From the 2 perturbation trials we calculated the FRF of the total system (human and 

exoskeleton) (eq. 2) and subsequently the impedance FRF of the human leg. As expected 

(see supplementary material), each of the four impedance FRFs resembles a second-order 

system (see figure 6 for representative example). The relatively constant gain at the lower 

frequency range is due to the stiffness, whereas the reduced gain in the mid-frequency 

range is due to the viscous properties. The increasing gain with higher frequencies is due 

to the legs’ inertia. Generally, the task instruction had a clear effect on the estimated FRF. 

The position task resulted in higher gains for the lower and mid frequency range. The task 

instruction did not affect the high frequency part of the FRFs, which is dominated by the 

leg’s inertia.  

 
Figure 5: Time series and NSR during a position task. Eight-second time series and NSR of one 

representative participant during a position task (subject 5, leg orientation: hip=25°, knee=-35°). A: 

time series for the first perturbation round. B: time series for the second perturbation round. From 

top to bottom: knee torque perturbation, knee angular response, hip torque perturbation and hip 

angular response. For the time series the mean is depicted by the solid line and the standard 

deviation over the 6 cycles by the shaded area. C: NSR of the different signals, the dashed line depicts 

NSR=1. The responses of the participant were consistent, as evidenced by small standard deviations 

over the different cycles of the perturbations and low NSRs. 
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6.3.4 Parametric identification, model fit 

The estimated FRFs of the human leg could be described very well with the human leg 

model, for the relax as well as the position task (figure 6 for representative example). That 

the model accurately captured the dynamics of the system is also reflected in a generally 

high GOF for each of the four TFs of the pendulum model (table 2).  

Adding the stiffness and damping parameters that represent the effect of bi-articular 

muscles, clearly improved the model fit. To illustrate this we also show the best model fit, 

not taking into account this bi-articular effect. If this bi-articular behavior is neglected the 

2 FRFs: �����→�����
 and ������→����

are not properly fitted by the TFs of the model (figure 7 

for representative example during a relax task). This is also illustrated by a clear reduction 

of the GOF for both TFs when the bi-articular effect was included (table 2). 

6.3.5 Parametric identification, estimated model parameters 

To avoid convergence of the fitting procedure to local minima we performed the 

optimization routine with different initial parameters. Still, all optimizations resulted in 

the same set of estimated parameters. Generally, the scaling factors, which were used to 

scale the masses of the upper and lower leg, were below 1 (0.88±0.11), indicating that the 

estimated masses are lower than reported in the literature [39].  

 
Figure 6: Model fit during relax and position task. Multiple-Input-Multiple-Output Frequency 

Response Functions (FRFs) of one representative participant during a relax task (dark gray) and 

position task (light gray) (subject 6, leg orientation: hip=25°, knee=-15°). �����→�����
 indicates the 

impedance FRF from hip angle to knee torque etc. The solid lines represent the TF of the optimized 

human leg model. The FRFs and model fit are only shown for the frequency range that is used for the 

parameter optimization (0.5-3 Hz). 
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Task instruction significantly affected all the stiffness and damping parameters. During the 

position task all stiffness and damping parameters were significantly higher than during 

the relax task (table 3). The stiffness and damping parameters were less clearly affected by 

leg orientation. Leg orientation only significantly affected the Kk and Bc parameter. Post 

hoc pairwise comparison showed that Kk was significantly lower in the second position 

(hip at 5° an knee at -55°), compared to the first position (hip at 25° an knee at -15°) and 

Bc was significantly lower in the second position, compared to the third position (hip at 25° 

and knee at -35°). For the Kh and Kc parameters there was an interaction between task 

instruction and leg orientation. Post hoc tests showed there were significant differences in 

parameter stiffness levels (especially between the second and third position), whereas 

there were no differences during the relax task (figure 8). 

6.3.6 Perturbation evoked reflex mechanisms  

The model presented in this study only considers intrinsic muscle stiffness, but some of 

this stiffness may have been caused by reflex pathways excited by the perturbation. 

During the relax tasks there did not seem to be a difference in NSR at the perturbed 

frequencies compared to the non-perturbed frequencies. During the position task there 

was a reduced NSR at the higher perturbed frequencies (see figure 9 for a representative 

example). Although there seems to be a difference in EMG response during the relax and 

position task, the NSR is high, suggesting that the contribution of the reflex pathways to 

the stiffness is limited. In an effort to quantify this difference we calculated the mean NSR 

 
Figure 7: Model fit without bi-articular stiffness and damping. MIMO FRF of one representative 

participant during a relax task (subject 6, leg orientation: hip=25°, knee=-15°). �����→�����
 indicates 

the impedance FRF from hip angle to knee torque etc. The solid lines represent the TF of the 

optimized human leg model that includes the bi-articular stiffness and damping, whereas the dotted 

line shows the results from an optimized model without bi-articular stiffness and damping.	 
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over the 10 highest perturbed frequencies (3.2-10 Hz) and the non-perturbed frequencies 

27.9±155.0 (averaged over all muscles, subjects and leg configurations) and 33.5±30.9 at 

the non-perturbed frequencies. For the position task the mean NSR at the perturbed 

frequencies was 6.07±19.2 and 30.1±37.0 at then non-perturbed frequencies.  

6.4 Discussion and conclusion 

In this study we present a method to estimate hip and knee dynamic properties during 

multi-joint leg movements, using a robotic gait trainer. The LOPES was successfully used to 

apply continuous multisine force perturbations to the hip and knee joint simultaneously. 

Table 3: Statistical results. 

 Task Position Task * Position 

Kh 
F(1, 29.927) = 158.834  

p < 0.01 

F(2, 28.788) = 4.814  

p = 0.016 

F(2, 28.788) = 5.923  

p < 0.01 

Kk 
F(1, 29.671) =77.840  

p < 0.01 

F(2, 27.540) = 2.827 

p = 0.076 

F(2, 27.540) = 5.097 

p = 0.013 

Kc 
F(1, 29.324) = 157.418 

p < 0.01 

F(2, 28.293) = 2.842 

p = 0.075 

F(2, 28.293) = 2.6234 

p = 0.089 

Bh 
F(1, 30.307) = 205.394 

p < 0.01 

F(2, 29.242) = 2.661 

p = 0.087 

F(2, 29.424) = 0.103 

p = 0.903 

Bk 
F(1, 33.473) = 80.814 

p < 0.01 

F(2, 29.988) = 8.375 

p < 0.01 

F(2, 29.988) = 0.510 

p = 0.606 

Bc 
F(1, 31.489) = 22.081 

p < 0.01 

F(2, 25.851) = 3.444 

p = 0.047 

F(2, 25.851) = 0.112 

p = 0.895 

 

 
Figure 8: Stiffness and damping parameters. Estimated stiffness and damping parameters for the 

relax and position tasks in the different leg orientations. The error bars indicate the standard 

deviation over the subjects. For all parameters there was also a significant main effect of task 

instruction (p < 0.01). Other significant main effects and interaction effects are indicated with a * for 

p < 0.05 and ** for P < 0.01. 
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Frequency-domain MIMO linear system identification techniques were used to quantify 

the hip and knee dynamic (inter) joint stiffness, damping, and limb inertia. The results 

indicate that 1) all stiffness and damping parameters were significantly higher during the 

position task compared to the relax task, 2) the majority of the stiffness and damping 

parameters were not significantly affected by leg orientation and 3) including the effect of 

bi-articular muscles clearly improves the predictability of the multi-joint leg model. This 

section discusses these findings in further detail. 

6.4.1 Estimated segment masses 

In this study we scaled segment masses found in the literature to fit the estimated FRFs. 

The scaling factor ranged between 0.74 and 1.0, with an average of 0.88, indicating that 

the estimated masses for most subjects were slightly lower than reported in the literature 

[39]. This may be related to the elderly population that we included, who may have 

relatively low upper- and lower-leg masses due to reduction in muscle mass. Preliminary 

data (not shown) on 9 young subjects (age 24.8±2.1), using the same protocol, resulted in 

an average scaling factor of 0.99±0.08.  

 
Figure 9: NSR of the EMG activity. NSR of the EMG activity for the 6 recorded muscles of one 

representative participant (subject 5) during a relax task and during a position task (leg orientation: 

hip=25°, knee=-35°). The solid dark gray circles represent the NSR at the perturbed frequencies, the 

dashed line depicts NSR=1. 
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6.4.2 Effect of task instruction 

All stiffness and damping parameters that were used to model the multi-joint leg 

dynamics were significantly higher during the position task compared to the relax task. 

During the position task subjects used co-contraction to reduce the displacement 

amplitude. Stiffness and damping are strongly related to muscle activation levels, due to a 

larger number of active cross bridges. Overall, the stiffness and damping parameters 

increased with 273% and 157% when the subjects were asked to minimize joint 

displacements.  

Knee Stiffness 

For the relax task we found an average stiffness of 15.3 Nm/rad, which seems reasonable 

taking into account the perturbation amplitude. It is known that estimates for joint 

stiffness decrease with perturbation amplitude, due to cross-bridges dynamics. Although 

these amplitude dependencies are often associated with active muscles, they are also 

observed in passive isolated muscles [40]. More recently, amplitude dependencies have 

also been reported for the human knee joint [5,9]. In the current study we evoked angular 

displacements with a peak-to-peak amplitude of 15°. Studies that used small amplitude 

perturbations reported larger stiffness levels [4,5,9]. Reversely, studies that applied pull or 

drop tests, and consequently evoked larger movement, reported lower stiffness levels 

[39]. 

Only a few studies tried to measure knee stiffness during co-contraction. Pfeifer et al. [5] 

applied small amplitude position perturbations at different co-contraction levels. Their 

highest level of co-contraction corresponded to 10% MVC and resulted in a measured 

active stiffness ranging between 50 and 130 Nm/rad. In our study the estimated stiffness 

during the position task ranged between 50 and 190Nm/rad, but corresponded to higher 

co-contraction levels (22% MVC). Note also that this included the passive stiffness, 

whereas the active stiffness reported by Pfeifer et al. is defined as the total stiffness minus 

the stiffness measured in relax condition. Tai et al. [9] performed one of the few studies 

studying stiffness during a position task as we did. They reported knee stiffness levels 

similar to ours, ranging between 130 Nm/rad (at low amplitude perturbations) to 60 

Nm/rad (for large amplitude perturbations). Regretfully they did not record the amount of 

muscle contraction. The fact that the above mentioned studies report similar stiffness 

levels, while using a wide variety of perturbation amplitudes also suggests that the 

amplitude-dependent change in knee stiffness primarily arises from passive properties of 

the joint. This has also been confirmed experimentally by Pfeifer et al. [5] who showed a 

drastic reduction in passive stiffness with increasing perturbation amplitude, whereas the 

active part of the total stiffness remained relatively constant. Similarly, Tai et al. [9] 

showed a reduction in active stiffness at larger amplitudes, which can predominantly be 

attributed to a reduction of the passive stiffness . 
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Knee damping  

Knee damping has only been determined in a limited number of studies. The passive knee 

damping found in our study (1.1 Nms/rad) is in agreement with these studies. Tai et al. 

[41] and Zhang et al. [4] and, who used small amplitude position perturbations, reported a 

passive damping parameters of around 1 and 2 respectively. During the position task we 

found a damping of 2 Nms/rad, similar as reported by Tai et al. [41]. They also showed 

that the damping parameter is not affected by perturbation amplitude (during passive 

conditions as well as co-contraction). This may explain why we found similar damping 

levels, even though we used perturbations with larger amplitudes.  

Hip stiffness and damping 

Hip dynamics were not studied as extensively as knee dynamics, and there are no studies 

where the hip joint was mechanically perturbed to estimate its stiffness and damping 

parameters. Torque-angle curves have been obtained while slowly moving the hip through 

its range of motion, but the stiffness based on the derivative of these curves is much lower 

than the stiffness during the relax task found in our study. As suggested before this may 

be related to different mechanisms, that are active when the amplitude of the movement 

increases. In this study we found that the passive hip stiffness was much larger than the 

passive knee stiffness, possibly due to a larger amount of ligaments and muscle mass 

surrounding the hip joint.  

6.4.3 Effect of leg orientation on knee stiffness 

In this study we did not find a significant effect of leg orientation on knee stiffness. For the 

knee stiffness during a relax task Zhang et al. [4] and Tai et al. [9] report that the highest 

stiffness levels are recorded in the most extended positions (<10° flexion). That we did not 

find such a dependency is most likely due to the relatively high flexion angles that we 

tested (15°, 35 and 55°). Note also that, in order to make a fair comparison between 

passive knee stiffness levels the hip angle should be taken into account, as this angle 

effects the pretention of bi-articular muscles and consequently the knee stiffness [29].  

For the knee stiffness during a position task Tai et al. [9] found that the stiffness was 

largest for the most extended positions, even after subtraction of the passive part. 

Although we did not find a significant effect of leg orientation on knee stiffness the largest 

average knee stiffness (after subtraction of the passive part) was found in the most 

extended position. The relatively large moment arm of the knee flexor muscles around 15° 

[14] might explain the increase in stiffness in the extended position. 

6.4.4 Estimating inter-joint stiffness and damping  

All previous studies that assessed joint stiffness and damping in the lower extremities 

focused on a single joint. In the current study we perturbed the hip and knee joint 

simultaneously to assess multi-joint leg impedance. To model the recorded multi-joint leg 
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impedance a simple muscle model was constructed that also included the visco-elastic 

coupling between both joints, caused by bi-articular muscles. This model simulated the 

combined effect of bi-articular muscles like the hamstrings and the rectus femoris. The 

results show that these muscles create a substantial coupling between both joints, as 

reflected in the K
c
 and B

c
 parameter.  

Hogan et al. [42] showed that for arm movements the presence of bi-articular muscles 

around the shoulder and elbow dramatically increases the ability of the central nervous 

system to modulate the so called end-point stiffness (stiffness of the hand in Cartesian 

space), through coordinated muscle activation of mono and bi-articular muscles. He 

showed that without coupling between the joints it is not possible to achieve an isotropic 

end-point stiffness (meaning that an input displacement in any direction would produce a 

proportional restoring force in exactly the opposite direction). In other words, without bi-

articular muscles the end-point stiffness cannot be modulated in all directions, whereas 

humans have shown to be capable of modulating their endpoint stiffness such that it 

specifically increases in the direction of the instability in the environment [43].  

A similar mechanism might also be present in the lower extremities, to modulate the 

stiffness of the total leg. Simple bipedal spring damper-mass models have already shown 

that the basic dynamics of walking and running can be explained by modelling the leg as 

one compliant element [44,45], whose properties can be adjusted to cope with different 

environmental condition or disturbance [46]. As with the upper extremities, the existence 

of a bi-articular coupling between the different joints increases the possibilities to 

modulate the compliance of the total leg. In fact, biped robot that are fitted with springs 

that correspond to bi-articular muscles have shown to improve the self-stabilizing 

characteristics for both walking and running gaits, compared to a setup where only mono-

articular springs are used [47]. Thus, besides the ability to transfer energy between 

different joints [48], which is often regarded as their main task, bi-articular muscles might 

also contribute to a more stable gait.  

6.4.5 Limitations 

In this study we performed perturbations during relaxed state and during co-contracted 

states. The co-contracted state was used to determine the maximum joint impedance. 

Still, this resulted in relatively low co-contraction levels (22% MVC). This is probably 

related to the duration of the experiments. Subjects had to maintain a constant level of 

co-contraction throughout the trials. Since they are aware of the 1-minute duration of the 

position tasks they may choose a relatively low co-contraction level. Still, the contraction 

levels are much higher than during the relax task (3% MVC) and have a clear effect on the 

stiffness. We also observed quite some variability in the EMG levels during the position 

task. The large inter-subject variability in the active stiffness (figure 8) could be a reflection 

of the differences caused by different co-contraction levels. During the passive trials the 

inter-subject variability in parameters was smaller.  
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In our study we did not model reflexes that may have been evoked by the perturbation. 

Several studies showed that reflex activation contributes to joint stiffness for the ankle 

[49,50]. For the knee joint Pfeifer et al. [5] reported that there was no substantial 

relationship between perturbation and EMG during the passive trials, suggesting little 

reflex contribution, whereas during the active trials it was possible to predict 15-30% of 

the EMG variance. In our study we did observe a reduced NSR of the EMG at the 

perturbed frequencies compared to the non-perturbed frequencies during the position 

task (figure 9). However, the NSR was high, suggesting that the contribution of the reflex 

pathways to the stiffness is limited. Since we used perturbation with much larger 

amplitudes, and reflex response have been shown to decrease with amplitude [18] and at 

high levels of muscle contraction [49,50], we did not expect a large contribution of reflex 

activation to the measured knee stiffness. Additionally, these reflexes have a decreased 

effect during sustained voluntary contractions [51] and have greater contributions for 

lower frequency bandwidth perturbations [52], whereas we also included higher 

frequencies. 

6.4.6 Future directions 

This study shows that the LOPES can be used to estimate multi-joint stiffness, as long as 

the equilibrium position of the joint and the levels of co-contraction remain constant. 

Measuring joint stiffness with the same device that is used for robotic gait training allows 

convenient testing of joint properties as part of robotic gait training protocols, and can 

provide direct insight into how changes in joint properties affect gait function. In order to 

gain direct insight into how humans modulate their limb stiffness during different gait-

related tasks, it would be of great benefit to estimate the joint stiffness during locomotion 

itself. Such knowledge may allow the adaptability and complexity of unimpaired gait to be 

implemented in activated prostheses or orthoses. Also, increased stiffness is reported in 

neurological patients during relax conditions, but little is known about its consequences 

and even its occurrence during gait. Finally, estimates of the joint stiffness of neurological 

patients during locomotion might be used to create a patient specific leg model and 

optimize the amount of applied torques by rehabilitation devices like the LOPES. 
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Supplementary material 

This appendix summarized the model that is used to describe the dynamics of the human 

that is connected to the LOPES. 

Figure 10 shows the linear system approximation of the non-linear model shown in figure 

2A, expressed in the frequency domain.  

The input consists of the applied knee and hip torque (T) and the output is formed by the 

exoskeleton hip and knee angle ( ). The exoskeleton dynamics (Hexo) describe the 

dynamic behavior of the exoskeleton in terms of the admittance and the human dynamics 

(Hhuman) describe the dynamic behavior of the human (admittance). The strap dynamics 

(Hstrap) describe the dynamic behavior of the connection between exoskeleton and human 

(impedance). The strap dynamics is used to model the dynamic behavior that arises from 

the fact that the LOPES cannot be rigidly connected to the human (due to soft tissue 

surrounding the legs). The admittance of the total system (Htot) becomes:  

1
1

tot exo strap human strap exoH I H I H H H H

−

−  = + + ⋅ ⋅ ⋅   
  [7] 

where I is a 2-by-2 unit matrix. Rewriting equation 4 yields the equation used to estimate 

the admittance FRF or the human leg (��human).  

� � � �
1

1 1 1

human tot exo strapH H H H

−

− − − = − −
  

 [8] 

Each part of the equation represents a 2by2 matrix with Transfer Functions (TFs) or 

Frequency Response Functions (FRFs). ��tot refers to FRFs of the estimated admittance of 

the total system, calculated according to: 

�
� �

� �

� �

� �

1 1 1 1

2 22 2
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     Θ Θ
= = ⋅    

   Θ Θ    

 [9] 

The strap dynamics (Hstrap) was modeled as a 2-by-2 matrix with the TFs of the two Kelvin 

bodies on its diagonal. The strap viscosity and stiffness were set at 500 Nm/rad and

 
Figure 10: Linear system approximation of the nonlinear system (figure 2A), relating input joint 

torque disturbances (T) output exoskeleton segment angles ( ). 
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 2Ns/rad (based on pilot experiments), and equal for hip and knee joint. These parameters 

were kept constant for all subjects and conditions. ��exo refers to the estimated FRFs of the 

admittance of the exoskeleton. These are obtained by performing the same perturbation 

experiments (and applying eq. 9), but without a subject in the LOPES.  

To obtain the 4 parameterized TFs (Hhuman), that can be fitted on the ��human, the equations 

of motions of a double pendulum are derived using Kane’s method (TMT method). Each 

segment of the double pendulum has a mass (located at a certain distance from the joint), 

a radius of gyration (figure 2B). It also contains a very simplified muscle model consisting 

of two mono articular muscles and one bi-articular muscle (figure 2C), which represent the 

lumbed behavior of the different mono- and bi-articular muscles of the hip and knee. In 

terms of rotational visco-elastic properties the two mono articular muscles and one bi-

articular muscle effectively add rotational stiffness and damping to the hip and knee and 

introduces a visco-elastic coupling between both joint according to: 

( ) ( )

( )

2 2

( )

2 2

( )

,

hip m h m h hip b b hip

m h hip hip

b hip hip knee knee

hip hip hip m h hip hip b knee knee hip b
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 [10] 

where subscript m(h) refers to the mono-articular muscle around the hip (figure 2C), m(k) to 

the mono-articular muscle around the knee, and b to the bi-articular muscle crossing both 

joints. K represents the linear stiffness and l the muscle length. rhip and rhip represent the 

moment arm of the muscles around the hip and knee respectively. For simplicity the 

moment arms will be assumed constant, which is a valid assumption when joint 

movements are small. Parameter Kh describe the rotational stiffness around the hip joint, 

Kk the stiffness around the knee joint. Kc relates the hip torque to knee displacement (and 

knee torque to hip displacement).  

The derivation above shows that this coupling (Kc) is symmetric. It is important to keep in 

mind that some of the visco-elastic behavior of the modelled muscle may be due to 

feedback action. In addition, multijoint reflexes (heteronymous reflexes) could allow the 

CNS to produce asymmetric stiffness. However, in this study we did not observe a large 
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contribution of reflexes to the stiffness (see section 3.6), therefore we did not try to model 

the reflex contribution separately.  

A similar set of relations as derived for the muscular stiffness can be derived for the 

muscular damping (Bh, Bk, and c). Thus, adding the mono- and bi-articular muscles to the 

double pendulum model effectively adds 6 parameters to the model.  

Next the equation of motions of the double pendulum model (with the muscle model), are 

linearized, written in state space notation, and transformed to the frequency domain 

(Hmodel, figure 11). Next, the model admittance is converted into impedance (by taking the 

inverse of the 2-by-two matrix at every frequency). This transformation is performed 

because it yields 4 relatively simple TF’s (figure 12). Each TF now basically consists of a 

simple mass-spring-damper system (eq. 11), which facilitates the fitting procedure.  
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 [11] 

where subscript ul refers to the upper leg and ll
 
to the lower leg. m represent the segment 

mass, l the segment length, p the position of the centre of mass, r the radius of gyration, c 

the scaling factor for the segment masses and g the gravitational acceleration (9.81m/s
2
). 

In principle, the inertia matrix I could be used to estimate the mass of the upper leg and 

lower leg separately. However, the largest component of the total inertia of the whole leg 

(I(1,1)) actually originates from the mass of the lower leg (second term of I(1,1)). 

Consequently a small error in the estimation of parameters like lul, pul, or pll can lead to 

large errors in the estimating of the mass of the upper leg. For example; a 10% 

overestimation of the length of the upper leg results in a 38% underestimation of the 

mass of the upper leg, whereas the mass of the lower leg is only 5% overestimated. 

Therefore, it is recommended to use standard estimates of the mass of the upper leg, 

relative to total body estimates [39]. Here, in order to account for some subjects 

variability we still introduced a scaling factor (c) that scaled the mass of the upper and 
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lower leg equally (assuming that subjects with an above-average lower leg mass also 

exhibit equally enlarged upper legs).  

 

 
Figure 11: Admittance TFs of the double pendulum model. Multiple-Input-Multiple-Output (MIMO) 

admittance transfer function (TF) of the double pendulum model. �����→�����
 indicates the admittance 

TF from hip torque to knee angle etc. 

 

 
Figure 12: Impedance TFs of the double pendulum model. MIMO impedance TF of the double 

pendulum model. Taking the inverse of the admittance yields the impedance TFs, which consist of 4 

relatively simple TF’s. �����→�����
		indicates the impedance TF from hip angle to knee torque etc. 
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7.1 Introduction 

The overall goal of this thesis was twofold. The first goal was to develop and evaluate the 

effectiveness of different controllers based on the Assist-As-Needed (AAN) principle. Such 

controllers enable the magnitude of the provided assistance to be gradually reduced, 

depending on the recovery stage of the patient. Such a gradual reduction in support will 

continuously challenge the patient to his maximum capacity, and will reduce the likelihood 

of the patient becoming reliant on the support. In most support strategies the amount of 

support is proportional to the deviation from a “healthy” reference trajectory. In Chapter 

2 we developed and evaluated a novel method to reconstruct such reference trajectories, 

taking into account the subject’s body-height and current walking speed. Robotic support 

is often provided on a joint level, which aims at improving motor function through 

restoration of original movement patterns. In Chapter 3 we evaluated the effectiveness of 

an impedance controller on joint level in a group of SCI patients. In Chapter 4 we used an 

alternative approach, called “selective subtask support”. Here virtual mechanical 

components (like springs) are defined to assist specific subtasks of walking, and simulate 

any interaction that a therapist would normally have with a patient. To effectively increase 

the required active contribution from the patient when the support levels are decreased, 

it is essential that robotic gait trainers are sufficiently transparent. Therefore, we 

developed two new controllers that exploit the cyclic behavior of walking to improve the 

transparency of the LOPES (Chapter 5). The second goal of this thesis was to assess the 

feasibility of using the LOPES as a measurement tool to quantify joint properties. Hence, 

we evaluated a new method to quantify passive and active multi-joint-impedance using 

Multi Input Multi Output (MIMO) system identification techniques (Chapter 6). 

These two topics will be discussed separately. First, we will discuss several control 

considerations with respect to active participation, motivation and movement variability, 

followed by a section in which we discuss the role of compensatory movement strategies 

in robot-aided gait training. In the next sections the importance of properly estimating 

reference trajectories, and the importance of robotic transparency, will be substantiated 

and the clinical effectiveness of different types of AAN control strategies will be reviewed. 

In the second part of this chapter we discuss how robotic gait trainers can be employed to 

quantify joint properties. We will conclude with some remarks and recommendations for 

future developments.  

7.2 Robotic control strategies 

Robotic gait trainers are gaining popularity in the rehabilitation of individuals who 

suffered a SCI or stroke. These robots provide promising opportunities, as they allow high 

dosage gait training, while reducing the physical demands on the therapists. Despite these 

potential benefits, superiority of robotic gait trainers over conventional gait-training 

approaches has not been demonstrated [1-4]. It is believed that this is related to the fact 
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that most robotic gait trainers were initially designed to move the patient’s legs through a 

prescribed gait pattern, irrespective of the patient’s self-generated activity. New insights 

in neural plasticity, motor learning and motor recovery, however, have resulted in a 

paradigm shift towards support strategies that encourage active participation and allow 

movement variability.  

7.2.1 Active participation 

To promote active participation, a patient should receive the minimal amount of 

assistance possible. In both controllers that were tested in this thesis, the required active 

participation can be increased by lowering the impedance level (Chapter 3), or by reducing 

the stiffness of the virtual model (Chapter 4). Although we did not explicitly study active 

participation in terms of muscle activation levels, or self-generated torque, we showed 

that both controllers were able to provide support in a gradual manner. That is; by 

increasing the support levels, the subjects were attracted more towards the reference 

trajectory and, reversely, by lowering the support levels the subjects were forced to 

contribute more actively to the prescribed movement. The possibility to modify the 

support levels raises an important question: what are the proper support levels? In 

Chapter 3 the reduction in impedance levels was based on: 1) visual inspection of the 

quality of walking (adequate step height during the swing phase and adequate knee 

stability during the stance phase), 2) the current physical condition of the patient 

(observation of breathing rate and degree of transpiration), and 3) his motivation (as 

verbally communicated). As discussed in Chapter 3, some participants, especially the 

slowest walkers, could not train for the same duration as reported in position-controlled 

gait training studies. This could be an indirect sign that training in the LOPES requires more 

active participation.  

It seems there is an inherent trade-off between increasing active participation and 

maintaining the duration of training. A similar trade-off with training duration will likely 

exist for the body weight support (BWS) level and walking speed. The progressive 

reduction in BWS level, or increase in treadmill speed, required more active participation 

from the patient but might also have contributed to the relative short training time 

observed in Chapter 3. Therefore, it is important that future research will further explore 

the interrelationships between these training parameters and training intensity. For 

example, a very recent study by Van Kammen et al. [5] showed that the typical effects of 

treadmill speed on muscle activity, and temporal gait parameters, are attenuated at high 

levels of BWS. This suggests that, when the goal is to increase training intensity, the first 

step should be to reduce the amount of BWS, as opposed to increasing treadmill speed. 

They also showed that high levels of BWS affect the temporal gait parameters, which also 

stresses that, when possible, BWS should be reduced, before increasing treadmill speed.  
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7.2.2 Adaptive support 

Manually setting the support levels, like we did in Chapter 3, requires the therapist to 

continuously monitor the patient’s capabilities and progress. Also, different joints (or 

subtasks) may require a different amount of support. Some therapists may appreciate the 

various support options, but others may find it difficult to choose the appropriate settings. 

If the support levels are set too low, dangerous situations can occur, whereas too much 

assistance possibly evokes reliance on the provided support. Consequently, some 

therapists may use relatively high support levels to assure safety, whereas others 

encourage active patient participation by using low support levels. To eliminate such 

variability in training setting we incorporated an error-driven adaptation algorithm 

developed by Emken et al. [6] (Chapter 4). The algorithm modified the virtual spring 

stiffness (at each percentage of the gait cycle) based on the experienced error in the 

previous step. In line with the findings from Emken et al. [6], the stiffness converged to a 

unique profile for every patient, with a large stiffness in the problematic areas. All stroke 

survivors reached a profile where the stiffness was highest at swing initiation. This helped 

the patients to overcome their reduced knee flexion and create enough toe clearance 

during the swing phase. Such adaptive algorithms greatly reduce the number of 

parameters that have to be set by the therapist. They also continuously challenge the 

patient, since the amount of support no longer relies on the fixed predefined setting from 

the therapist, but instead adapts to the current needs of the patient. Although we 

implemented the adaptive algorithm in our subtask support controller they can also easily 

be implemented in control strategies that provide support on a joint level. 

Still, there are some considerations when using these algorithms. Firstly, the learning gain 

and the forgetting factor determine the speed of convergence and the kinematic error 

that persists after convergence. Thus, it may still be necessary to define the model 

parameters on a subject-specific basis to allow the assistance to be more precisely tailored 

to the needs of the patient. Secondly, we did not take into account the fact that human 

movement is inherently variable. The controller responded to this variability on a step-by-

step basis, by increasing and decreasing the support level. Although these corrections 

were really small and probably went unnoticed by the patient, introduction of a deadband 

[7,8] around the reference trajectory (in which the controller does not respond to 

movement errors) can easily solve this in future applications. Finally, the algorithm does 

not dissociate between a decrease in effort due to reliance or fatigue. In both cases the 

algorithm will increase the support level. This issue is not restricted to control algorithms 

that adapt the support based on kinematic errors, but also holds for algorithms that 

modify the support levels based on estimations of the self-generated joint torques [9], 

[10]. Emken et al. [11] showed that, to prevent reliance, the robot must relax its assistance 

at a faster rate than the human motor system learns to decrement its own contributing. 

Yet, this rate is probably patient-dependent and will be difficult to measure in neurological 

patients with impaired motor control due to spasticity, muscle weakness and synergies. 

Furthermore, the occurrence of fatigue will also interfere with the determination of this 
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learning rate. Therefore, the settings of the adaptive algorithm are currently not based on 

the learning rate, but on a stable convergence of the stiffness pattern within 

approximately 20 steps. 

7.2.3 Performance feedback 

To further enhance active participation, it is important to provide patients with some sort 

of external feedback on their performance. Especially patients with neurological disorders, 

that exhibit sensory impairments (in addition to motor impairments), may benefit from 

external information. In a regular therapeutic setting, this information comes from the 

therapist, who verbally tries to motivate the patient to actively participate and perform 

the correct movements. This feedback can be based on visual observations and/or the 

amount of assistance that the therapist provides. The introduction of robotic gait trainers, 

which are generally equipped with various sensors that measure joint angles and 

interaction forces, provides new possibilities to offer both the patient and the therapist 

performance-related feedback. Several research groups have already built robots that 

display information about the kinematics of a single joint [7,12], multiple joints [8] or self-

generated joint torques [13,14]. The added value of visual feedback has been 

demonstrated in healthy subjects, where participants who trained with an assistive 

controller and visual guidance retained the evoked gait adaptations for a longer period of 

time than those who trained with either visual guidance or support alone [15]. 

The key element of any form of feedback is displaying the subject’s effort in an intuitive 

manner, without overloading him with information. To our experience not every patient 

prefers real time information about the predefined reference trajectories and their actual 

performance. In Chapter 4 we demonstrated that very basic visual feedback (consisting of 

the maximum step height of the last step) provides stroke patients with sufficient 

information to motivate and guide them in taking higher steps. Others use weighting 

functions to reduce the number of parameters that are presented to the patient [13]. 

Although all these strategies were demonstrated to lead to an instantaneous increase in 

activity (or reduced errors), so far, there is no clinical evidence that adding visual feedback 

results in better functional outcomes. Also, the impact of many characteristics of feedback 

systems remains unclear. Factors like the timing, frequency, type (auditory, sensory and 

visual) and measured parameters of the feedback require further investigation. 

Furthermore, the feedback will have to be adjusted to the patient’s type of impairments 

(cognition, vision etc.). In addition, recent developments like virtual reality [16,17] and 

computer games [18,19] also provide new opportunities to promote active participation. 

With all these different options to increase patient motivation, the type of feedback 

provided during robot-assisted training may ultimately be equally important as the 

support strategy. 



General discussion 

 

195 

C
h

a
p

te
r 7

 

7.2.4 Kinematic movement variability  

As outlined in the introduction, it is thought that training with a certain amount of 

movement variability (in terms of both joint kinematics and timing) contributes to learning 

a new task, or relearning a lost task. In the controllers tested in this thesis, the amount of 

movement variability can be increased by lowering the impedance level (Chapter 3), or by 

reducing the stiffness of the virtual model (Chapter 4). Although we did not explicitly 

measure the variability allowed by the controllers, in Chapter 3 we showed that for a 

healthy subject, increasing the impedance levels results in a closer approximation of the 

reference trajectory and a reduction in the movement variability between steps, and vice 

versa. In Chapter 4, where we implemented the impedance-shaping algorithm, we 

demonstrated that for the gait phases where the patient required little support, the 

stiffness of the virtual spring was decreased, thus allowing more movement variability.  

With most control strategies, the patient is attracted to a reference trajectory, regardless 

whether he/she is above or below the reference. This implies that, for example, walking 

with more knee flexion is corrected, while this does not necessarily have a negative impact 

on gait performance. In Chapter 4 we used a unidirectional spring that only assisted the 

patient in creating more toe clearance, but did not intervene when the patient reached 

more toe clearance. This also allowed for additional variability in gait kinematics.  

7.2.5 Temporal movement variability  

Allowing variability in timing (taking steps with different cycle times) requires 

synchronization of the reference trajectories with the movements of the subject. 

Especially when the support levels are low, there is a risk that the subject and robot start 

to walk out of phase. As a result, the robot is going to resist, rather than support, the 

subject. In Chapter 4 we adopted a controller developed by Aoyagi et al. [20], that 

continuously compares the current state of the subject to the desired state (a known 

pattern), and subsequently increases or reduces the replay speed of the reference 

trajectories, in order to align the two. In contrast to Aoyagi et al., who used a state 

consisting of 18 dimensions (9 DoFs, position and velocity), we only used 8 dimensions 

(left and right hip and knee angle and velocity), but still the controller was able to 

sufficiently estimate the state of the user and synchronize the reference trajectory with its 

motions.   

For the support of gait subtasks (Chapter 4) continuous synchronization was not required, 

since the support was gait phase dependent. The subtask was only supported during the 

swing phase, and the replay timer was reset after detection of the next foot-off event. The 

use of discrete gait events to synchronize the robot and the subject requires an accurate 

online detection of these gait events. For the LOPES we implemented two types of 

discrete phase detection algorithms; one based on the forward-backward position of the 

ankle [21] and the other based on the movement of the Center of Pressure (CoP) [22]. We 

experienced that the phase detection algorithm based on the position of the ankle was 



Chapter 7 

 

196 

C
h

a
p

te
r 

7
 

more accurate, especially at lower walking speeds. The CoP signal required significant 

filtering to obtain its characteristic “butterfly pattern” [22], and prevent the detection of 

local extremes in the CoP. Filtering such signals creates a temporal delay between peak 

identification and the true gait events.  

7.2.6 Trade-off between support levels and learning rate 

In this thesis we showed that both controllers are capable of providing support in a 

gradual manner. Kinematic errors can be reduced by increasing the impedance levels 

(Chapter 3), or by increasing the stiffness of the virtual spring (Chapter 4). Note, however, 

that reducing these errors may also slow down the learning process, since these 

movement errors are considered the key component for motor learning [23,24]. So far, 

this trade-off between learning rate and the amount of robotic support is unknown [25]. 

Consequently, future research will have to reveal the optimum between providing 

support, such that the task can be accomplished, and reducing support level to allow 

movement errors.  

7.3 The role of compensatory movement strategies in robot-aided gait 

training 

As discussed in detail in the introduction of this thesis, there is an ongoing discussion in 

rehabilitation science whether gait therapy should focus on “restitution” (reappearance of 

pre-injury movement patterns) or “compensation” (appearance of compensatory 

movement strategies). To date, no solid scientific evidence favors one mechanism over 

the other. Whether a therapist will focus his therapy on restitution or compensation will 

probably depend on the severity of, and the time since, the injury. In acute patients 

therapy will likely be focused on restitution, as this might also increase the performance of 

other functional tasks. For example, retraining knee function will probably also benefit 

other gait related tasks like stair walking or stepping over obstacles, whereas adopting a 

hip circumduction strategy to overcome reduced knee flexion will probably not. For 

patients in the chronic stage of their injury, additional improvements in knee flexion will 

probably be small and in this case, a hip circumduction strategy will likely allow them to 

walk at a faster pace.  

A fundamental difference between the two controllers that were tested in this thesis is 

whether they allow the use of these compensatory strategies. Support on a joint level 

(Chapter 3) is purely focused on restitution, as the support is directed towards restoring a 

“normal” walking pattern. In contrast, the Virtual Model approach (Chapter 4) does not 

intervene when the patient create sufficient toe clearance, regardless of the strategy they 

use. Without the support the majority of the stroke survivors showed a marked lower 

knee flexion range in the paretic leg, compared to the non-paretic leg, resulting in a 

reduced toe clearance. Most patients compensated for this with different combinations, 

and degrees, of compensatory strategies. All patients showed a larger paretic hip 
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abduction range (hip circumduction) and an increased pelvic height during the paretic 

swing phase (vaulting).  

We hypothesized that providing support on one subtask, i.e. toe clearance, would reduce 

the need for these compensatory strategies. However, despite a clear increase in knee 

flexion due to the support, none of the stroke survivors reduced their compensatory 

strategies. Similar findings have been reported by others. For example, Neckel et al. [26] 

reported that stroke patients who trained in the Lokomat still generated considerable hip 

abduction torques (hip circumduction) and hip hiking strategies, even though the Lokomat 

provided a physiological kinematic pattern that would make the use of these strategies 

unnecessary. More specifically, Sulzer et al. [27] used a robotic knee orthosis to study stiff 

knee gait in chronic stroke patients. They provided knee flexion assistance during foot-off 

and reported a small but significant increase, rather than decrease, in hip abduction.  

Such findings stand in contrast with the theory that stroke patients use hip abduction as a 

compensatory mechanism for reduced knee flexion. Possible explanations may be found 

in an abnormal torque coupling between joints, which is reported for stroke survivors [28], 

[29], or an altered stretch reflex coupling between the hip and the knee [30]. On the other 

hand it has to be noted that in the studies that did not find a reduction in compensatory 

strategies [26,27] (including ours) the patients were not given any specific instructions 

about how to walk. If the training was directed at reducing the use of compensatory 

strategies, the patient would probably require clear instructions from the therapist. In our 

study we used visual feedback, but we only showed the maximum step height, regardless 

of the employed strategy. Consequently, the patients may not have been triggered to 

reduce their compensatory strategies. In addition, these results were obtained in chronic 

stroke patients during single trial experiments. For these patients the training sessions 

may have been too short for them to alter their stereotypical compensatory strategies. 

Longer training sessions, in combination with (visual) feedback on the amount of 

compensation that is used, might reveal whether patients are truly incapable of reducing 

their compensatory strategies. Such information is valuable for further development of 

robotic support regimes. For example, when a therapist believes that regaining an 

appropriate knee flexion is not feasible (e.g. due to significant joint contractures), 

controllers can be designed that support learning a hip circumduction strategy.  

7.4 Future applications and considerations for selective support of 

subtasks 

The key goal of future research is to expand the concept of subtask support. Body weight 

support can also be regarded as one of these subtasks. Most robotic gait trainers use body 

weight support systems (BWSS) that consist of an overhead suspension system in 

combination with a harness to unload the patient. By removing a percentage of their body 

weight, patients with excessive weakness can start gait rehabilitation in the very early 

stages after their injury. However, using these overhead suspension systems has some 
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disadvantages. First, BWSS that use a counterweight or spring mechanism not only 

provide a force in the vertical direction but also in the horizontal direction, which helps to 

stabilize the human body [31]. This implies that the amount of support on weight bearing 

and balance control cannot be controlled independently. Although, in many cases, both 

balance and weight bearing have to be supported, the amount of required support for 

each of these tasks can vary widely within patients. Second, in case of a counterweight 

mechanism, the supportive forces vary because of the acceleration and deceleration of 

the counterweight during the movements of the human body [32]. Third, most systems 

provide an equal amount of BWS for the paretic and non-paretic leg, while in many cases 

hemiplegic subjects only need support during the stance phase of the affected leg. Fourth, 

reducing the body load affects spatial, temporal, and kinematic gait parameters [5],33]-

35]. Although more complex BWSS allow the support to be gait cycle (or leg) dependent 

[32], the body is still unloaded. To overcome the aforementioned disadvantages, we 

assessed the feasibility of a Virtual Model (VM) that (partially) counteracts the 

gravitational force and prevents knee buckling [36]. Similar to the VM that supported toe 

clearance (Chapter 4), the virtual force is translated into joint torques that are applied to 

the hip and knee joint. The presented approach enables selective control of BWS for the 

paretic leg, and is only active during the stance phase. The VM was tested on a single 

healthy subject. The results showed a reduction in muscle activity during initial stance, 

indicating that the algorithm was effectively providing weight support, while the 

kinematics remained close to normal. Future experiments will have to show the 

effectiveness of the proposed VM in neurological patients. 

Shifting weight from one leg to the other is also an important subtask of gait, and is 

essential in order to maintain balance. In fact, during manually assisted treadmill training a 

dedicated therapist often supports this subtask [37]. So far, the need for active balance 

control has been limited in most robotic gait trainers. It has even been suggested that 

“training stereotypical leg motions without challenging balance control may squander 

training time by focusing training on the impairment that is not the bottleneck for 

achieving a greater walking speed” [38]. Thus, adding active practice of balance to robot-

aided gait training may seem like a logical next step. In the LOPES we incorporated 

actuated pelvis translations to allow the training of balance tasks, but also other gait 

trainers like the PAM and POGO [20] and ALEX III [39] were designed to assist pelvic 

motions during stepping. Also, for the Lokomat, a separate module has been developed 

which incorporates additional degrees of freedom (DoFs) at the hip and pelvis [40]. 

However, the control strategies for these additional DoFs have not yet received a lot of 

attention. For the LOPES we developed a VM that was designed to assist weight shift and 

support balance. It consisted of a virtual spring and damper, of which the equilibrium 

position moved along a reference lateral pelvis trajectory. To specifically examine its 

effectiveness, we tested it in an experimental set-up, designed to study lateral balance 

[41]. The results indicated that the controller was able to gradually support weight shift. In 

other words, a larger stiffness resulted in a closer approximation of the reference 

trajectory. The balance controller was also selective, as the effects were mainly restricted 
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to the frontal plane. When the external stabilization was switched on, the step width and 

step width variability decreased and the “stability margin” [42] increased. The changes in 

these parameters indicate that the provided external stabilization reduced the need for 

active lateral balance control by the subject. Although we used a dedicated experimental 

setup to test the support algorithm it can easily be implemented in the LOPES or other 

robotic gait trainers.  

The rationale for the use of selective support of subtasks is that the affected subtasks can 

be supported without affecting, or supporting, the unimpaired subtasks. By selecting 

subtasks that require support, and selecting the proper support level, the robotic 

assistance can be tailored to the needs of the patient. In Chapter 4 we showed that we 

could selectively and gradually influence the step height (toe clearance), without affecting 

other spatiotemporal gait parameters like the non-supported step height, step length or 

cycle time. As expected, a higher stiffness resulted in a closer approximation of the target 

values. In another study we combined the step height VM with a VM that assisted in 

taking longer steps [43]. Providing step-length support resulted in a less selective effect. 

Here, the increase in step length was accompanied by a reduction in step height. The 

decrease in step height can be explained by the exerted hip flexion and knee extension 

torques that are applied to support the step length. These torques inhibit a normal knee 

flexion during the initial swing phase, resulting in a reduced step height. Although this can 

(partially) be compensated for by switching on the step height VM in parallel, it 

demonstrates that not every subtask can be supported without affecting the execution of 

other subtasks. 

7.5 Reference trajectories  

The two control strategies that are used in this thesis (Chapter 3 and 4), as well as many 

other control strategies [7,9,10,20,44,45], require the use of reference trajectories to 

determine the amount of support. As described in Chapter 1, these trajectories are 

generally based on pre-recorded trajectories from healthy individuals. In most cases they 

are obtained at a limited number of speeds. As a consequence, the gait trajectories have 

to be modified when the training speed of the patient does not match the speed of one of 

the pre-recorded patterns. In Chapter 2 we presented and evaluated a novel method to 

reconstruct speed-dependent joint trajectories, based on regression models for certain 

key events in the joint trajectories. In Chapter 4 we used the same methodology to 

reconstruct reference trajectories for the ankle. This method eliminates the need to pre-

record joint trajectories at numerous walking speeds, and allows the patient to transition 

between different training speeds, without manual adjustment of the reference 

trajectories. Still, for some patients it may be necessary to modify the reconstructed 

trajectories. For example, patients with severe joint pain may prefer training with reduced 

knee flexion. With the proposed method the key event that represents the maximum knee 

angle can simply be reduced and a new trajectory can be generated.  
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As discussed in Chapter 4, therapists greatly appreciate the possibility to set training goals 

in terms of parameters like step height or step length, as opposed to defining target 

values in terms of joint angles. Therefore, in the new LOPES (LOPES II) we implemented an 

algorithm that connects the key events in joint trajectories to gait parameters like step 

height or step length. This way, the therapist can define the desired step height and/or 

step length and the algorithm will generate the appropriate joint angular trajectories.  

The predefined joint trajectories essentially focus on restitution. Compensatory strategies 

can only be used if these movements are defined in the reference trajectories. Although 

the number of observed compensatory strategies is limited, there is still considerable 

variation between patients, which complicates a proper definition of the reference 

trajectories for alternative movement strategies. A possible solution would be to use 

teach-and-replay algorithms [6]. Here, the robot first records the movements of an 

alternative pattern, which is obtained when the therapist manually moves the leg through 

the desired pattern. Then, these alternative patterns can be replayed to assist the patient 

in adopting an alternative movement strategy. In Chapter 5 we used adaptive frequency 

oscillators (AFOs) and kernel-based non-linear filters (NFLs) [46,47] to learn and replay the 

joint angles of the exoskeleton during walking in the LOPES. The AFOs are used to acquire 

the gait phase, based on a sinusoidal input signal (in our case the hip angles). 

Subsequently, the NFLs learn the joint angles as a function of the phase. Such algorithms 

can also be adapted for the purpose of learning and replaying gait trajectories. It is 

expected that gait training with a personalized gait pattern, as opposed to a normative 

gait pattern, facilitates the transfer of relearned capabilities in the robot to overground 

walking. However, so far, there is no evidence that supports this hypothesis. 

Implementation of teach-and-replay algorithms provides a way to test this hypothesis. 

7.6 Transparency 

AAN can only be effectively implemented in robotic gait training if the robot is sufficiently 

transparent. In a perfect transparent mode, the robot does not hinder the motion of the 

subject when assistance is not required. This is especially important at the final stages of 

recovery. Here walking in the robot should resemble walking without the robot, to 

promote the transfer of the relearned capabilities to overground walking. For example, 

when the robot produces resistance in a certain joint, the patient will have to learn to 

overcome this resistance during training. Subsequently, during free walking, the learned 

extra muscular activity to overcome the resistance will result in unwanted movements. 

Transparency is also important when the therapist wants to focus the support on the 

impaired subtasks of gait, while leaving the execution of the unaffected subtasks up to the 

patient.  

In the introduction we stated that the overall transparency of the robot depends on: 1) 

the amount of DoFs, 2) the weight of the robot and 3) the used control strategies. In the 

LOPES, a lightweight frame (with 9 DOFs) [48] is combined with closed-loop force control 
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[49], which allows the robot to be controlled in zero-force control. Still, previous 

experiments showed that the amount of knee flexion decreases, and muscle activation 

levels increase, due to the inertia of the exoskeleton leg. In Chapter 5 we tested two 

controllers that utilize the cyclic nature of locomotion to improve the transparency of the 

current LOPES setup. Both controllers are based on a combination of AFOs and NLFs. The 

first consisted of a feed-forward controller to improve the torque tracking (including the 

zero-torque mode). The second controller learned the state of the exoskeleton and 

subsequently compensated for its dynamical effects (e.g. its inertia). When both 

controllers were active simultaneously, the interaction power between the robot and the 

human leg was reduced by at least 40 percent at the thigh and 43 percent at the shank. It 

also resulted in an increased amount of knee flexion. Although these results are 

promising, future experiments will have to demonstrate if walking with these controllers 

truly reflects free walking in terms of muscle activation levels and gait kinematics. Also, 

since both controllers rely on AFOs, they require thorough testing for their stability during 

transitions in walking velocity and/or cadence. This is particularly important for 

neurological patients, as they tend to walk with increased spatiotemporal variability [50], 

[51]. In addition, the performance of the feed-forward controller needs to be assessed 

during unpredicted movements like balance corrections. Finally, since transparency is the 

basis, on top of which any form of assistance will be added, it has to be determined how 

the proposed controllers interact with assistive controllers, such as the ones presented in 

Chapter 3 and 4. 

7.7 Recovery of walking ability using AAN strategies 

For people with chronic incomplete SCI, we studied the effectiveness of gait training using 

the impedance controller on joint level. Ten participants received gait training with the 

LOPES, three times a week for eight weeks. We found significant improvements in all gait 

related parameters. In Chapter 3 we concluded that training with the impedance control 

regime is as effective as position controlled gait training, taking into account the state of 

the patient (acute/chronic) and their initial level of ambulation. Here we discuss our 

results in relation to other studies that use AAN control regimes. 

To date, only a limited number of studies have assessed the effectiveness of AAN 

controllers in multisession training protocols. Schück et al. [52] used the Lokomat to test 

the combined effect of their “patient-cooperative” and “Generalized Elastic Path Control” 

approach. They trained two chronic incomplete SCI patients and two stroke survivors, with 

initial walking speeds comparable to our study (± 0.6 m/s). Over the course of four weeks 

their patients participated in 16 (45 min.) training sessions. Only one stroke patient 

showed a significant increase in walking speed. In line with what we already stressed 

before, the lack of improvement was suggested to be due to deeply engrained 

compensation strategies. These compensation strategies most likely reduce the 

effectiveness of robotic gait training with physiological gait pattern. In contrast, Krishnan 

et al. [53], who used the same control regimes to train a single chronic stroke survivor, did 
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find a substantial increase in walking speed. Their training protocol consisted of 12 (45-60 

min.) training sessions (three times per week for four weeks). Noteworthy, the same 

patient also participated in four weeks of conventional Lokomat training, which did not 

produce any meaningful changes in the measured clinical outcomes. Although the 

increase in walking speed (± 0.3 m/s), obtained with their cooperative control approach, 

far exceeds the mean increase in walking speed reported in Chapter 3 (± 0.06 m/s), it 

should be noted that their results are only from a single subject. Also they tested the 

effectiveness of their approach in a stroke survivor, whereas we included SCI patients.  

In another study, Banala et al. [7] used the ALEX to test their “tunnel” approach in 

combination with a “moving back wall” on two chronic stroke survivors. Over the course 

of six weeks their patients participated in 15 training sessions. They reported that, at the 

end of the training program, the patients’ gait pattern was closer to a “healthy” gait 

pattern. In addition, the tolerable treadmill speeds increased from 0.45 to 0.72 m/s and 

0.63 to 0.85 m/s. Their tunnel approach is similar to the subtask approach that we used in 

Chapter 4. They applied tangential and normal forces to the ankle path, whereas we only 

applied vertical forces to the ankle. Furthermore, Banala et al. [7] used constant stiffness 

levels, whereas we used an adaptive stiffness algorithm. In additional to the single-session 

experiments discussed in Chapter 4, our subtask approach has also been tested in a 

multiple-session experiment. Five chronic stroke survivors participated in 18 (45 min) 

training sessions, during a 6-week training program [43]. All subjects showed a marked 

increase in training speed (0,292 m/s). Yet, there was only limited transfer of increase in 

walking speed to overground walking (0.025 m/s). A similar effect was found in the study 

described in Chapter 3. Here, the average treadmill speed increased with 0.15 m/s, 

whereas overground walking speed increased with only 0.06 m/s. This demonstrates that 

the effectiveness of the support strategies cannot simply be determined purely based on 

the increase of walking speed on the treadmill.  

On the one hand, the relatively small improvements obtained with AAN controllers have 

to be placed within the context of the included patient population. In all the studies 

discussed above, the effectiveness of the control methodology was tested in chronic SCI or 

stroke patients. Chronic patients are attractive for pilot trials, because improvements can 

be attributed to the intervention rather than spontaneous recovery. However, they may 

not be the ideal candidates to evaluate the true potential of AAN controllers. The chronic 

patients included in most studies have relatively high initial walking speeds, whereas 

patients with a lower level of ambulation are more likely to benefit from robotic gait 

training [3].  

On the other hand, we may have to conclude that, even though AAN controllers are 

designed to benefit less severely affected patient, their effect is limited. A possible 

negative consequence of all AAN strategies is that they are designed to provide support 

and reduce movement errors. Several studies have shown that increasing movement 

errors [25,54-56], or applying resistive forces [57,58], can increase the learning process or 

induce potentially useful aftereffects. However, the extent to which these temporary 
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improvements, or aftereffects, may contribute to clinical improvement remains unknown. 

Also, for gait related tasks, where large kinematic errors can have serious consequences, 

the use of error augmentation or resistive forces may be limited. 

7.8 Assessment of joint properties with the LOPES  

Robotic gait trainers can be used in a wider sense than just providing support during gait 

training. Implementation of standardized assessment tools provide valuable information 

about the clinical state of the patient throughout the therapy and may also provide an 

objective measure for the effectiveness of different robotic gait training regimes. In 

Chapter 6 we used a novel method to estimate multi-joint leg impedance in elderly, using 

Multi-Input Multi-Output (MIMO) system identification techniques. Although the results 

were promising there are some limitations. Since we only performed the measurements in 

each subject once, the results do not allow conclusions about the repeatability of the 

measure. Furthermore, subsequent testing on neurological patients has to confirm its 

validity for measuring spasticity or abnormal muscle tone. Another potential limitation of 

the presented method is that we used a relatively simple model to describe the joint 

dynamics, in which we lumped the effect of the intrinsic and reflexive stiffness. As it is 

known that spasticity is caused by increased reflex gains [59,60], the proposed model may 

have to be modified to determine the separate contributions of the intrinsic and reflexive 

mechanisms in neurological patients. Also, the joint stiffness is measured under semi- 

static conditions (i.e. around a certain equilibrium position). So far, it is unknown whether 

the identified abnormal stiffness measured under these conditions also hinders walking 

capacity. This information is critical in order to understand if, and how, their impairment 

affects walking ability.  

Several methods have been proposed to estimate hip, knee and ankle stiffness during 

locomotion. Some are based on the slope of the torque-angle curve [61]. These estimates, 

however, should be distinguished from the intrinsic (and reflexive) stiffness, as they do not 

represent the instantaneous mechanical properties of the joint [62]. Also, these 

approaches are based on the net forces and, consequently, ignore possible co-contraction. 

Ideally, the joint impedance should be estimated by during gait, through the application of 

force or position perturbations. However, direct measurement of the joint stiffness is 

complex requires a device that is: 1) lightweight, 2) attaches rigidly to the limb so that 

accurate perturbations can be applied and 3) is transparent when not applying the 

perturbations. Although the LOPES fulfills these requirements to a certain extent, joint 

impedance measurement during gait will probably start at a single joint level, requiring a 

more modular approach. Examples of such modular devices that can serve this purpose 

are the Bowden-cable-driven knee actuator used by Tucker et al. [63], or the 

pneumatically actuated AnkleBot presented by Lee et al. [64]. At our department we are 

now developing a modular device, specifically dedicated to apply perturbations at the hip 

and knee, which can be used to estimate joint properties.  
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During walking the time is limited to apply stochastic perturbations. Also, the joint 

impedance varies continuously due to: 1) variations in activation levels throughout the 

different gait phases and 2) a constant change in joint angle. Consequently, different 

system identification will be required, such as the ones used by Ludvig et al. [65,66], which 

allow the estimation of time varying joint stiffness. We intent to further develop such 

methods and combine them with our method to estimate multi-joint impedance. 

Preferably small scale perturbations are used that minimally interfere with normal 

walking. Such experiments will allow us to study to what extent neurological patients also 

show increased joint impedance during gait and how it affects their walking ability.  

The results from impedance measurements during gait can also be used to validate 

models that predict joint stiffness based on EMG measurements. For example, Pfeifer et 

al. [67] developed a method to estimate knee stiffness based on EMG-to-force functions 

which are obtained from isometric tests. The estimated muscle forces are used to 

estimate the overall stiffness using a musculoskeletal model of the leg and a model for 

activation-dependent short-range muscle stiffness. Their model is capable of estimating 

joint impedance during gait, but was only validated with experimental measurements 

during isometric force-tasks. Impedance measurements during gait can provide the means 

to validate such models.  

7.9 Recommendations for future developments 

The experience gained with the LOPES has led to the development of the LOPES II [68] 

(figure 1). The LOPES II differs from the LOPES on several aspects. The LOPES II has 

additional passive DoFs at the hip and pelvis which increase its transparency. 

Furthermore, it has a non-exoskeleton structure, which attaches to the backside of the 

shank and the pelvis. This setup does not require precise joint alignment, thus minimizing 

donning and doffing time, and allows free arm swing. In addition, the LOPES II is equipped 

with ankle actuation to assist push-off and prevent drop-foot. In contrast to the LOPES, 

 

  
 

Figure 1: The LOPES II robotic gait trainer. 
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which is impedance controlled, the LOPES II is admittance controlled. Still, it will be 

controlled using the same AAN approaches as used in this thesis. 

With the introduction of the LOPES II in several rehabilitation centers in The Netherlands, 

large randomized controlled trials on the effectiveness of the different controllers will 

become feasible. If the LOPES II becomes more widely available, it may also be possible to 

tests its effectiveness in acute, and non-ambulatory patients, which are expected to 

benefit more from robotic gait training than chronic patients. Future clinical evaluations 

can also be directed at other patient groups that may benefit from robot-aided gait 

training, such as patients with multiple sclerosis, cerebral palsy, or Parkinson’s disease. 

Regarding future studies on therapy effectiveness, we recommend that these include 

long-term follow up. Reaching a certain level of ambulation at the end of the training 

regime will likely promote the continuous use of relearned capabilities after training, 

whereas reaching a level of ambulation that has no functional benefit to the patient will 

probably not. Consequently these patients might not attain their relearned capabilities. 

Thus, the recovery level at the final stages of therapy may be an indicator for the long-

term effect of the intervention. The only way to identify these levels is by long-term follow 

up. Follow up is also essential to determine the therapeutic effect in patients in the acute 

stage of their injury. For example, Duncan et al. [69] compared three different 

interventions in acute stroke survivors and found that at six months, a specific 

intervention seemed superior. However, one year after the stroke, all participants had 

reached the same ambulatory level. This may indicate that the intervention temporarily 

accelerated the recovery process, but had no added value in terms of overall effect.  

For the LOPES II we will continue the development of new assessment modules to 

quantify neurological impairment. So far we focused on joint impedance measurements, 

which allow the quantification of increased joint impedance due to spasticity and 

abnormal muscle tone. However, a properly instrumented robotic gait trainer also allows 

assessment of muscle weakness or abnormal synergies. As mentioned above, these 

measures can be used for intra- and inter-subject comparisons, which are required to 

determine the effectiveness of different types of robotic assistance. Also, this information 

might reveal which patients are more likely to benefit from a certain type of robotic 

assistance. To obtain such information from a large population of different patient groups, 

collaboration between several rehabilitation institutes is essential. This will result in a rich 

stream of objective data that can be added to a large database, which can be used to 

detect possible correlations. Since time is a limiting factor in most rehabilitation programs, 

it is critical that these measurements are performed in an efficient way and do not go at 

the expense of the training time of the patient. 

7.10 Final statement 

In this thesis the feasibility of different types of robotic assistance that are based on the 

AAN principle is demonstrated. Combining sensors and complex control regimes provides 
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an endless amount of possibilities to modify the support to the individual needs of the 

patient, but also introduces many new questions and challenges, as discussed in this final 

chapter. Further research, involving large trials, is needed to address these challenges and 

has to reveal the key elements in facilitating functional improvement. Such trials will also 

have to prove that the use of robotic gait trainers can exceed (or accelerate) the 

functional improvements obtained with more conventional forms of therapy. 
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Summary 

Many patients with neurological injuries like stroke or spinal cord injury (SCI) suffer from 

reduced walking ability. The ability to walk is a key component of independent 

functioning, and as such it represents an important rehabilitation goal for these patients. 

Repetitive practice of stepping movements has been shown to increase the effectiveness 

of the rehabilitation process. To aid the therapist in providing such training sessions, 

robotic gait trainers were introduced. These robots have the potential to deliver longer, 

and more intensive, locomotor training, compared to conventional (manually assisted) 

gait training, while relieving the therapists from physically demanding work.  

Chapter 1 provides an overview of the different types of robotic gait trainers and their 

control strategies, and summarizes the clinical results obtained with these gait trainers so 

far. Despite their potential to increase training intensity, these robotic gait trainers are not 

proven to be superior to conventional gait training approaches in terms of clinical 

effectiveness. A key factor for this may be the used control strategies. Initially, most 

robotic gait trainers used “position control” to ensure that the patient followed a pre-

specified movement as closely as possible. Position controlled gait training did not allow 

the support levels to be adapted to the activity of the patient. Guiding movement in this 

manner appeared to promote a “slacking” phenomenon, where patients start to rely on 

the robotic support instead of actively initiating and performing the movements 

themselves. Based on modern insights in neural plasticity, motor learning and motor 

recovery, it is suggested that the therapeutic benefit of robot-aided gait training can be 

increased by providing ‘assist-as-needed’ (AAN). The basic idea behind these AAN 

strategies is that the patient is supported only as much as is needed to accomplish the 

task. This way, each patient can be challenged to his maximum capacity, and reliance upon 

the assistance is prevented. While these AAN strategies require more active patient 

participation, evidence for better functional outcomes is still limited. Therefore, the first 

goal of this thesis was to develop different controllers, based on the assist-as-needed 

(AAN) principle, and evaluate their effectiveness. 

Although AAN strategies apply supportive forces rather than enforcing a pre-specified gait 

pattern, they still require a predefined reference trajectory to determine the amount of 

support. That is; the more the patients gait pattern deviates from the reference, the more 

support is provided. To support neurological patients towards a healthy gait pattern it is 

important to consider that these patterns are dependent on walking speed. Especially 

since these patients typically walk at much lower speeds, compared to healthy individuals. 

In chapter 2 we confirmed that the amplitude and relative timing of these patterns are 

highly dependent on walking speed (and body-height) and we evaluated a novel method 

to create reference trajectories for robotic gait applications. Regression-models were 

constructed that can predict the timing, angle, angular velocity and acceleration of specific 

key events in the gait pattern. Subsequently quintic splines were fitted between the 

predicted key events to reconstruct a full gait cycle. These patterns can be implemented in 
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robotic gait trainers, but can also facilitate the assessment of pathological gait, where they 

can serve as a reference for ‘normal’ gait. 

In chapter 3 we implemented a robotic support strategy based on impedance-control, 

using the derived reference angular trajectories. Its effectiveness on walking ability and 

walking quality was tested in 10 individuals with chronic incomplete spinal cord injury, 

who trained three times a week, for eight weeks. The LOPES (Lower Extremity Powered 

Exoskeleton) was used to provide the gait training. During the robot-aided gait training the 

device only intervened when the patients deviated from the specified angular trajectory. 

By reducing the impedance levels, the therapist could progressively reduce the support 

levels, depending on the capabilities and progress of the patient. At the end of the training 

period the participants significantly improved on functional outcomes, muscle strength, 

kinematics, and spatiotemporal measures. These improvements persisted at the eight-

week follow-up. We also demonstrated that the most impaired ambulators, based on their 

initial walking speed and distance, benefitted the most from the training protocol 

(showing the greatest relative improvements in walking speed and distance).  

Robotic support on joint level, as used in chapter 3, supports the complete gait pattern. In 

chapter 4 we used an alternative approach. Here we divided the control of human gait 

into different functional subtasks such as: creating sufficient foot clearance during swing, 

making a forward step, weight bearing or balance control. In neurologically impaired 

patients, each of these subtasks may be impaired to some degree without automatically 

affecting other subtasks. Partially and selectively supporting these subtasks, based on the 

patient’s individual needs, can be seen as an extension of the ‘assist-as-needed’ principle. 

Support on subtask level also leaves room for the use of ‘compensatory strategies’. 

Although these alternative movement strategies do not contribute to a more symmetric 

walking pattern, they can increase walking ability. Consequently, larger gains in motor 

function might be obtained when patients can still employ there compensatory 

movements in the robot. In chapter 4 we tested this subtask-support-strategy for one 

specific subtask: foot clearance. The foot clearance support was tested on 12 healthy 

subjects and 6 chronic stroke survivors, and proved effective in gradually and selectively 

influencing the foot clearance. That is; the foot clearance could easily be manipulated by 

changing the impedance levels, and supporting the foot clearance did not affect other 

basic gait parameters. Furthermore, we incorporated a stiffness-shaping algorithm that 

automatically shaped the amount of support to the subjects’ needs, based on the 

deviation from the reference trajectory. This algorithm clearly shaped the support level to 

the specific needs of every stroke survivor and eliminated the need for the therapist to set 

the support levels based on trial and error.  

A prerequisite for any support strategy that tries to enhance active patient participation is 

that the device can be sufficiently transparent, and thus does not hinder the motion of the 

subject when assistance is not provided. A high degree of transparency is thus needed for 

less impaired patients, who only require little support. Although the LOPES is force 

controlled, which allows the applied robotic forces to be controlled to zero when support 
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is not needed, previous experiments have shown that the amount of knee flexion 

decreases and muscle activation levels increase, due to the inertia of the exoskeleton leg. 

In chapter 5 we tried to increase the transparency with two different controllers that both 

exploit the cyclic nature of locomotion. Both controllers are based on a combination of 

Adaptive Frequency Oscillators (AFOs) and kernel-based Non-Linear Filters (NLFs), which 

can be used to learn and replay signals of cyclical movements. The first consisted of a 

feed-forward controller to improve the torque tracking (including the zero-torque mode). 

The second controller learned the state of the exoskeleton and used an inverse model of 

the LOPES to compensate for its dynamical effects (e.g. its inertia and friction). As a first 

step we evaluated the effectiveness of both controllers on 4 healthy subjects during slow 

and fast walking. Using the feed-forward controller resulted in an improved torque 

tracking of at least 52 percent at the hip joint and 61 percent at the knee joint. When both 

controllers were active simultaneously, the interaction power between the robot and the 

human leg was reduced by at least 40 percent at the thigh and 43 percent at the shank. 

These findings indicate that if a robotic task is rhythmic, the torque tracking and 

transparency can be improved by exploiting the predictions of AFOs and NFLs. Future 

experiments will have to demonstrate the effectiveness of both controllers when they are 

combined with assistive strategies, such as the ones presented in chapter 3 and 4.  

Because the majority of the robotic gait trainers are instrumented with sensors that can 

measure joint angles and forces, these variables can be used to objectively assess the 

patient’s performance and monitor their recovery. The patient’s performance throughout 

the training sessions is often monitored by recording gait parameters like stride length, 

cadence, gait symmetry, joint range of motion or joint moments. However, gait kinematics 

and kinetics are not the only important measures in rehabilitation. Often stroke survivors 

and individuals with spinal cord injury show increased joint impedance, resulting from 

spasticity or abnormal muscle tone, which affects their walking ability. The second aim of 

this thesis was to assess the feasibility of using the LOPES as a measurement tool to 

quantify such joint properties. In chapter 6 we developed a novel method to estimate 

multi-joint leg impedance in a group of 8 elderly healthy individuals. Continuous torque 

perturbations were applied to the hip and knee joint simultaneously, while the subject’s 

leg was suspended in the air. Multi-joint impedance was estimated non-parametrically 

using Multi-Input Multi-Output (MIMO) system identification techniques. Subsequently, it 

was modelled in terms of stiffness and damping around the hip and knee joint, but also 

with a visco-elastic coupling between both joints. Impedance measurements were 

performed during relax- and position-tasks. During the positon task the subjects were 

instructed to keep the deviations as small as possible, which resulted in a significant 

increase in estimated stiffness and damping parameters. The results also emphasized the 

importance of considering the visco-elastic coupling between joints when modeling multi-

joint dynamics. Further tests with neurological patients have to confirm if this method can 

be used to discriminate between different impairment levels and if such measures can 

explain improvements in walking ability. 
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Finally, implications of the presented results and areas for further study are discussed in 

chapter 8. In this thesis the feasibility of different types of robotic assistance that are 

based on the AAN principle is demonstrated. In our experiments we demonstrated how 

active participation, movement variability and motivation, which are important 

preconditions for motor (re)learning, are promoted by such controllers. Combining 

sensors and complex control regimes creates an endless amount of possibilities to provide 

support, but also introduces many new questions and challenges. For example, in all 

implementations of interactive control schemes it has to be decided how much support 

should be provided. A decrease in support requires a larger effort from the patient. Given 

that the physical endurance of the patient is limited this results in a decrease in training 

time, and thus the amount of step repetitions (see chapter 3). Therefore, it is important 

that future research will further explore if there exists an optimum in this tradeoff 

between training intensity and the amount of step repetitions. A similar tradeoff exists 

between the amount of provided support and the movement variability that is allowed. 

Movement variability enables the patient to make and correct small movement errors, 

which can strongly enhance the effect of locomotor rehabilitation. However, the optimal 

level of required kinematic variability remains to be elucidated. Also questions like, what is 

the most effective robotic rehabilitation strategy?, can robotic gait training be combined 

with other neurorehabilitation methods (functional electrical stimulation, epidural 

electrical stimulation, pharmacological interventions) to increase its effectiveness?, who 

might benefit the most from a certain type of intervention?, require answers before the 

field can effectively advance. Robotic gait trainers make it possible to test these different 

therapeutic approaches in a well-controlled and reproducible manner. At the same time 

they enable standardized and objective assessment methods (like the one presented in 

chapter 6) to evaluate the effectiveness of the different robotic gait training regimes. In 

the future, large multicenter trials have to reveal the key elements that facilitate 

functional improvement, and need to prove that the use of robotic gait trainers can 

exceed (or accelerate) the functional improvements obtained with more conventional 

forms of therapy. 
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Samenvatting 

Veel patiënten met neurologische aandoeningen, zoals een beroerte (CVA) of een 

(gedeeltelijke) dwarslaesie, hebben last van een verminderd loopvermogen. Zelfstandig 

kunnen lopen is belangrijk voor het onafhankelijk functioneren, en vormt daarom een 

belangrijk doel bij de revalidatie van deze patiënten. Tijdens het revalidatietraject is het 

van belang dat de patiënt de loopbeweging op en intensieve manier kan oefenen. Om de 

fysiotherapeut te ondersteunen tijdens het begeleiden van looptraining zijn looprobots 

ontwikkeld. Looprobots maken het mogelijk om de patiënt langer en intensiever te laten 

trainen. Daarnaast zorgen deze robots ervoor dat de fysiotherapeut fysiek minder wordt 

belast bij het ondersteunen van de patiënt.  

In hoofdstuk 1 wordt een overzicht gegeven van de verschillende looprobots en hun 

manier van aansturing, en worden de klinische resultaten die tot dusverre met deze 

robots zijn behaald beschreven. Hoewel de trainingsintensiteit kan worden verhoogd door 

het gebruik van looprobots, moet worden geconcludeerd dat ze, klinisch gezien, niet 

superieur zijn t.o.v conventionele looptraining. Een belangrijke factor hierin is mogelijk de 

manier van aansturen. Aanvankelijk werd voor de meeste looprobots gebruik gemaakt van 

“positie-aansturing”, waarbij een specifiek looppatroon aan de patiënt wordt opgelegd. 

Met deze vorm van aansturing kan de hoeveelheid ondersteuning niet worden aangepast 

aan de eigen activiteit van de patiënt. Dit lijkt te resulteren in “slacking" 

(ondersteuningsafhankelijkheid), wat betekent dat de patiënt afhankelijk wordt van de 

robot en een steeds kleinere bijdrage levert aan de beweging. Op basis van nieuwe 

inzichten op het gebied van neurale plasticiteit, bewegingsleer en bewegingsherstel, 

wordt nu gedacht dat het therapeutische voordeel van robot-ondersteunende 

looptraining kan worden vergroot, door het toepassen van “assist-as-needed” (AAN) 

principes. In tegenstelling tot de positie-aansturing, wordt in dit geval minimale 

ondersteuning geboden; net voldoende voor het uitvoeren van de beweging. Op deze 

manier wordt van de patiënt gevraagd dat hij zijn eigen capaciteiten volledig benut, wat 

het risico op slacking verkleint. Hoewel deze AAN strategieën resulteren in een grotere 

actieve bijdrage van de patiënt, is er nog weinig bewijs dat ze ook daadwerkelijk leiden tot 

een verhoogde mate van herstel. Het eerste doel van dit proefschrift was dan ook het 

ontwikkelen van verschillende aansturingsprincipes (gebaseerd op de AAN gedachte) en 

het testen van hun effectiviteit.  

Hoewel met AAN-strategieën ondersteunende krachten worden aangeboden, in plaats 

van dat een voorgeschreven looppatroon wordt opgelegd, wordt nog steeds gebruik 

gemaakt van referentie looppatronen. Hoe meer de patiënt afwijkt van het 

voorgeschreven looppatroon, des te groter de geleverde ondersteuning. Deze 

looppatronen zijn sterk afhankelijk van de loopsnelheid. Dit is vooral van belang bij de 

revalidatie van neurologisch-aangedane patiënten, omdat zij vaak langzamer lopen dan 

niet-aangedane individuen. In hoofdstuk 2 laten we zien dat de amplitude en de timing 

van het looppatroon inderdaad sterk afhankelijk zijn van de loopsnelheid (en de 
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lichaamslengte). Op basis hiervan hebben we een nieuwe methode ontwikkeld en 

geëvalueerd, die gebruikt kan worden om referentiepatronen te reconstrueren. Hiervoor 

zijn regressie modellen opgesteld, die de timing, hoek, hoeksnelheid en versnelling van 

bepaalde “key events” in het looppatroon kunnen voorspellen. Tussen de voorspelde key 

events kunnen vervolgens 5
de

 graads polynomen worden gefit. De gereconstrueerde 

referentiepatronen kunnen worden geïmplementeerd in looprobots, maar kunnen ook 

dienen als normaal referentiepatroon, op basis waarvan afwijkende looppatronen kunnen 

worden beoordeeld. 

In hoofdstuk 3 is een manier van robotische ondersteuning getest, die is gebaseerd op 

“impedantie control”, en waarbij bovenstaande referentiepatronen zijn gebruikt. De 

effectiviteit van de ontworpen impedantie controller is vervolgens getest bij 10 patiënten 

met chronische, incomplete dwarslaesie die gedurende 8 weken drie trainingssessies per 

week volgden. Hierbij werd gebruik gemaakt van de LOPES (Lower Extremity Powered 

Exoskeloton). Tijdens de training bood de LOPES alleen ondersteuning wanneer patiënten 

afweken van het vooraf gedefinieerde looppatroon. Door de impedantie van de LOPES te 

verlagen kon de fysiotherapeut, op basis van de capaciteiten en de progressie van de 

patiënt, de ondersteuning steeds verder afbouwen. Aan het eind van de training werd een 

significante verbetering gezien in loopfunctie, spierkracht, kinematica en spatiotemporele 

parameters. Bij “follow-up", 8 weken na beëindigen van de training, waren deze 

verbeteringen nog steeds zichtbaar. Daarnaast toonde dit experiment aan dat de meest-

aangedane patiënten de grootste relatieve verbetering lieten zien in loopsnelheid en 

afstand. 

Robotische ondersteuning op gewrichtsniveau, zoals gebruikt in hoofdstuk 3, ondersteunt 

de hele loopbeweging. In hoofdstuk 4 hebben we een alternatieve aanpak gekozen, 

waarbij de loopbeweging in verschillende onderdelen (subtaken) werd gesplitst. 

Voorbeelden van deze subtaken zijn: het creëren van voldoende ruimte tussen de teen en 

de grond tijdens de zwaai van het been (“foot clearance”), het maken van een 

voorwaartse stap, het dragen van het lichaamsgewicht of het controleren van de balans. 

Bij neurologisch-aangedane patiënten kan elk van deze onderdelen afzonderlijk zijn 

aangedaan, zonder dat de andere onderdelen worden beïnvloedt. Het partieel en selectief 

ondersteunen van deze subtaken, op basis van de behoefte van de individuele patiënt, 

kan worden gezien als een uitbreiding van het eerder beschreven AAN principe. Met deze 

vorm van ondersteuning behoudt de patiënt ook de mogelijkheid om zelf-aangeleerde 

“compensatie strategieën” te gebruiken. Hoewel deze compensatie strategieën niet leiden 

tot een meer symmetrisch looppatroon, kunnen ze wel bijdragen aan een verbetering van 

het algemene loopvermogen. Dus, wanneer patiënten ook tijdens de training in een 

looprobot gebruik kunnen blijven maken van hun compensatie strategieën, zou de 

training uiteindelijk kunnen resulteren in een grotere verbetering van de loopfunctie. In 

hoofdstuk 4 hebben we deze selectieve ondersteuning van subtaken getest voor één 

specifieke subtaak; foot clearance. Hieraan hebben 12 gezonde vrijwilligers en 6 

chronische CVA patiënten meegewerkt. Uit de resultaten bleek dat de staphoogte 

gradueel en selectief kon worden ondersteund. Met andere woorden; de staphoogte kon 
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gemakkelijk worden beïnvloedt door de impedantie van de robot bij te stellen, en 

ondersteuning van de staphoogte had geen effect op de uitvoering van andere subtaken. 

Ook werd een algoritme geïmplementeerd dat de mate van ondersteuning automatisch 

aanpast, op basis van de afwijking van de patiënt ten opzichte van het referentiepatroon. 

Op deze manier krijgt elke patiënt automatisch de juiste hoeveelheid ondersteuning, waar 

dit voorheen door de fysiotherapeut handmatig moest worden ingesteld, op basis van 

trial-and-error. 

Een voorwaarde voor het gebruik van AAN strategieën is dat de robot voldoende 

transparant is. Dat houdt in dat de robot de beweging van de patiënt niet mag hinderen of 

remmen, wanneer deze geen ondersteuning biedt. Vooral voor relatief zelfstandige 

patiënten, die weinig ondersteuning nodig hebben, is dus een hoge transparantie vereist. 

De LOPES is kracht gestuurd, en daarmee is het mogelijk de krachten tot nul te reduceren 

wanneer geen ondersteuning nodig is. Eerdere experimenten hebben echter aangetoond 

dat de inertia van het exoskelet toch leidt tot een afname van de maximale knieflexie en 

een toename van de spieractivatie. In hoofdstuk 5 hebben we daarom geprobeerd de 

transparantie van de robot te verhogen. Hiervoor zijn twee controllers ontwikkelt, die 

beide gebruik maken van het feit dat lopen een cyclische beweging is. Beide controllers 

zijn gebaseerd op een combinatie van Adaptive Frequency Oscillators (AFOs) en kernel-

based Non-Linear Filters (NLFs). De eerste controller bestaat uit een feed-forward 

controller, gericht op het verbeteren van de kracht-aansturing (dus ook wanneer er geen 

kracht moet worden aangeboden). De tweede controller leert de beweging van het 

exoskelet en maakt gebruik van een invers model om de dynamica van het exoskelet 

(zoals inertia en wrijving) te compenseren. De effectiviteit van beide controllers is getest 

op vier gezonde proefpersonen, tijdens langzaam en snel lopen. Het gebruik van de feed-

forward controller resulteerde in een toename van de nauwkeurigheid van de kracht-

aansturing van ten minste 52 procent voor het heupgewricht en 61 procent voor het 

kniegewricht. Wanneer beide controllers tegelijk actief waren, leidde dat tot een afname 

van de interactie energie van ten minste 40 procent op het bovenbeen en 43 procent op 

het onderbeen. Deze resultaten laten zien dat, wanneer een robot een taak moet 

uitvoeren die ritmisch is, de nauwkeurigheid van de krachtregelaar en de transparantie 

kunnen worden vergroot door gebruik te maken van de voorspellende waarde van de 

AFOs en NFLs. Toekomstige experimenten zullen moeten uitwijzen of deze controllers 

effectief kunnen worden ingezet in combinatie met de controllers die daadwerkelijk de 

ondersteuning moeten bieden, zoals degene beschreven in hoofdstuk 3 en 4. 

Het merendeel van de ontwikkelde looprobots zijn voorzien van sensoren die 

gewrichtshoeken en momenten kunnen meten. Deze variabelen kunnen worden gebruikt 

voor het objectief meten van de door de patiënt uitgevoerde bewegingen en zijn 

progressie gedurende het revalidatietraject. Tot dusver worden de prestaties van de 

patiënt tijdens de training vaak gemeten aan de hand van spatiotemporele parameters 

zoals de staplengte, cadans, stapsymmetrie, bewegingsbereik of geleverde 

gewrichtsmomenten. Echter, er zijn ook andere parameters die belangrijke informatie 

kunnen verschaffen gedurende het revalidatieproces. Patiënten met een CVA of een 
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(gedeeltelijke) dwarslaesie hebben bijvoorbeeld vaak last van een verhoogde 

gewrichtsstijfheid (impedantie) als gevolg van spasticiteit en/of verhoogde spierspanning, 

met als gevolg een verminderd loopvermogen. Het tweede doel van dit proefschrift was 

dan ook het onderzoeken van de mogelijkheden om de LOPES in te zetten als 

meetinstrument voor dergelijke gewrichtseigenschappen. In hoofdstuk 6 hebben we een 

nieuwe methode ontwikkeld voor het bepalen van de impedantie over meerdere 

gewrichten (“multi-joint impedantie”). Bij 8 oudere proefpersonen zijn continue 

verstoringen aangeboden op de knie en heup, terwijl het verstoorde been vrij kon 

zwaaien. Met behulp van “Multi-Input Multi-Output” (MIMO) systeem identificatie 

technieken kon de multi-joint impedantie van het been worden bepaald. Vervolgens is de 

multi-joint impedantie gemodelleerd in termen van stijfheid- en dempingparameters van 

de heup en knie, maar ook door het toevoegen van een visco-elastische koppeling tussen 

beide gewrichten. De gewricht-impedantie is gemeten tijdens relax- en positie-taken. 

Tijdens de positietaak werd de proefpersoon gevraagd om de beweging van het been, als 

gevolg van de verstoring, zo laag mogelijk te houden, wat leidde tot een significante 

toename van de geschatte stijfheid- en dempingparameters. Daarnaast is aangetoond dat 

er, tijdens het modelleren van beweging van meerdere gewrichten, rekening moet 

worden gehouden met de genoemde visco-elastische koppeling tussen beide gewrichten. 

Toekomstige experimenten bij patiënten met een neurologische aandoening zullen 

moeten bevestigen of de gepresenteerde methode gebruikt kan worden om onderscheid 

te maken tussen de verschillende niveaus van de stoornis, en of een afname van hun 

gewrichtsstijfheid ook daadwerkelijk een verbetering in loopfunctie kan verklaren.  

De consequenties van de gepresenteerde resultaten, en suggesties voor verder onderzoek 

worden tot slot besproken in hoofdstuk 8. In dit proefschrift is aangetoond dat robotische 

ondersteuning, gebaseerd op het AAN principe, goed bruikbaar is. In de verschillende 

experimenten hebben we laten zien dat actieve participatie, bewegingsvrijheid, en 

motivatie worden bevorderd door het gebruik van dergelijke controllers. Het gebruik van 

sensoren en gecompliceerde controllers biedt een oneindige hoeveelheid mogelijkheden 

om de patiënt te ondersteunen, maar introduceert ook veel nieuwe vragen en 

uitdagingen. Bij alle interactieve controllers moet bijvoorbeeld worden bepaald hoeveel 

ondersteuning er wordt aangeboden. Een afname van de ondersteuning vereist een 

grotere fysieke inspanning van de patiënt. Aangezien de patiënt een beperkt fysiek 

uithoudingsvermogen heeft, betekent dit dat hij minder lang kan trainen en dus minder 

stappen kan maken (zie hoofdstuk 3). Toekomstig onderzoek zal moeten uitwijzen hoe 

trainingsintensiteit en het aantal gemaakte stappen met elkaar samenhangen, en of er 

sprake is van een optimum. Een soortgelijke afweging geldt ook voor de hoeveelheid 

ondersteuning en de bewegingsvrijheid die is toegestaan. Het is al aangetoond dat de 

mogelijkheid om kleine fouten te maken, en die te corrigeren, een positieve invloed heeft 

op het effect van looptraining, maar de optimale hoeveelheid bewegingsvrijheid is (nog) 

niet bekend. Ook vragen zoals: wat is de meest effectieve robot revalidatiestrategie, kan 

robot training gecombineerd worden met andere vormen van neurorevalidatie 

(functionele elektrostimulatie, ruggenmergstimulatie, medicatie)?, en wie heeft er het 
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meeste baat bij een bepaald type interventie?, zullen in de toekomst beantwoord moeten 

worden. Met looprobots is het mogelijk om deze verschillende therapeutische 

benaderingen op een goed gecontroleerde en reproduceerbare manier te testen. 

Tegelijkertijd is het met deze robots mogelijk geworden om de effectiviteit van de 

verschillende strategieën op een gestandaardiseerde en objectieve manier te beoordelen 

(zoals bijvoorbeeld met de methode beschreven in hoofdstuk 6). In de toekomst zullen 

grote multicenter trials moeten uitwijzen welke factoren tijdens het revalidatieproces het 

belangrijks zijn om de klinische effectiviteit te vergroten. Daarnaast zullen dergelijke trials 

moeten aantonen of het gebruik van looprobots daadwerkelijk leidt tot betere (of 

snellere) resultaten. 
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Dankwoord 

In dit laatste hoofdstuk van mijn proefschrift wil ik graag een aantal mensen bedanken die 

mij hebben begeleid, hebben geholpen bij de experimenten, het proefschrift, of op 

persoonlijk vlak van onmisbare waarde zijn geweest. Ondanks dat er voor een dankwoord 

geen maximaal aantal woorden is gedefinieerd, iets waar ik bij het schrijven van de 

verschillende artikelen (tot grote frustratie) vaak tegenaan ben gelopen, ga ik nog één 

keer proberen om het kort te houden.  

Om te beginnen wil ik alle proefpersonen bedanken die, op welk moment dan ook, een 

keer in de LOPES hebben plaatsgenomen om deel te nemen aan de verschillende 

experimenten. Bedankt voor jullie geduld tijdens de soms wat vreemde testen. 

Deelnemen aan een experiment in een robot die loopbewegingen ondersteunt, om 

vervolgens een tijdlang op één been te moeten blijven staan lijkt wellicht wat 

tegenstrijdig. Mijn speciale dank gaat ook uit naar de vrijwilligers voor wie de 

experimenten een extra opgave was, als gevolg van een hersenbloeding of dwarslaesie. 

Velen van jullie zijn herhaaldelijk (soms meerdere keren per week) afgereisd naar 

Enschede om deel te nemen aan de testen. Zonder jullie inzet had ik dit proefschrift niet 

kunnen schrijven.  

Wellicht tegen de gewoonte in ga ik niet verder met het bedanken van mijn promotor, 

maar richt ik me eerst tot mijn co-promotor. Edwin, zonder jou als dagelijks begeleider 

had dit traject er waarschijnlijk heel anders uitgezien. De uitdrukking “assist-as-needed”, 

welke in dit proefschrift herhaaldelijk terugkomt, is ook direct op jou van toepassing. Jouw 

deur stond altijd open en je was altijd bereid om even van gedachten te wisselen over 

datgene waar ik op dat moment mee zat. Zeker aan het einde van mijn promotie heb je 

vaak s ’avonds nog tijd gemaakt om me via Skype van commentaar op artikelen te 

voorzien. Jouw kritische blik is van grote waarde geweest tijdens dit traject. Ondanks dat 

we het nooit eens zullen worden over wat de mooiste voetbalclub van Nederland is, 

hadden onze (werk gerelateerde) discussies meestal wél een uitkomst waar we allebei 

achter stonden en waar ik mee verder kon. Daarnaast was je op persoonlijk vlak ook altijd 

erg betrokken en wil ik je bedanken voor je gezelligheid in het lab, op congressen, 

vakgroepsuitjes en tijdens de talloze demo’s die we samen hebben gegeven. Tot slot, als je 

ooit nog eens “een beetje een nette” lange broek voor een demo, een “tijdelijke” fiets of 

een aangifte- adres nodig hebt weet je me te vinden. 

Uiteraard wil ik ook mijn promotor bedanken. Herman, jij gaf me de mogelijkheid (en de 

vrijheid) om dit onderzoek uit te voeren. Je hebt een duidelijke visie en was vaak in staat 

om me tijdens de werkbesprekingen weer op scherp te zetten, of om belangrijke knopen 

door te hakken als het onderzoek wat leek vast te lopen. Je input, kritische vragen en 

opmerkingen heb ik als zeer waardevol ervaren. Ik bewaar leuke herinneringen aan ons 

tripje door de Zwitserse Alpen na een EVRYON meeting in Lausanne. Nog bedankt dat je 

me destijds niet hebt achtergelaten terwijl ik heup-diep in de tiefschnee stond. 
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Wietse, met jou heb ik misschien wel de meeste uurtjes doorgebracht in het lab. We 

hebben samen leuke experimenten gedaan en vele proefballonnetjes opgelaten. Ik weet 

niet of het ooit gaat lukken om de EMG’s in LOPES onder die van “free walking” te krijgen, 

maar aan de hoeveelheid controllers waarmee we het hebben geprobeerd heeft het niet 

gelegen. Voor wat betreft het volume van dit proefschrift ben ik blij met onze 

gezamenlijke publicatie. In tegenstelling tot ondergetekende ben jij goed in staat om de 

zaken kort en bondig op te schrijven en zonder jou was hoofdstuk 5 waarschijnlijk net zo 

lang geworden als de rest. Verder was je een relaxt maatje tijdens de vele reisjes die we 

voor het EVRYON project hebben gemaakt. Bedankt voor de plezierige samenwerking, en 

ik wens je alle succes met het afronden van je eigen promotie. 

Er zijn meerdere mensen binnen de vakgroep Biomedische Werktuigbouwkunde die ik 

graag even wil bedanken. Jos en Gijs: hoewel ik niet direct betrokken was bij de 

ontwikkeling van de LOPES II vond ik het leuk dat ik me mocht mengen in jullie brainstorm 

sessies. Succes met de verdere ontwikkeling en ik ben ervan overtuigd dat de LOPES II een 

groot succes wordt. Ramazan and Letianl: thanks for being my roomies, and allowing me 

to spill my frustrations from time to time. I wish you both the best. Mark: hoewel de tijd 

simpelweg op was om de experimenten verder uit te bouwen wil ik je toch bedanken voor 

je hulp bij het opzetten van de pilottesten met de “pusher”. Tijdens mijn promotie heb ik 

een aantal studenten mogen begeleiden. Juliet, Marloes, Daphne, Christos; ik vond het 

leuk om jullie te mogen begeleiden. Jullie hebben alle vier een belangrijke bijdrage 

geleverd, aan dit proefschrift, of aan de ontwikkeling van de LOPES in het algemeen. Geert 

en Wouter; bedankt voor jullie technische ondersteuning. Zonder jullie had de LOPES 

zeker meer “down time” gehad. Wouter, bedankt voor de vele keren dat je me hebt 

geholpen bij het vervangen van de kabels van de LOPES. Ik moet nog zien wie ons record 

van 2 kabels vervangen (en inregelen) binnen het uur gaat verbeteren. Dan de 

secretaresse van de afdeling. Lianne; bedankt voor het regelen van allerlei zaken waar ik 

zelf nooit aan gedacht zou hebben. De vanzelfsprekendheid waarmee jij voor iedereen 

klaar staat moet zeker worden vermeld. Tijdens mijn promotie had ik natuurlijk ook de 

nodige frustratie met pc’s en toebehoren. Gedoe met harde schijven, accu’s, licenties, 

software, noem maar op. Nicolai; bedankt voor je hulp om dit altijd weer zo goed mogelijk 

op te lossen. To my other colleques: thanks to all of you, for the “vakgroepuitjes”, soccer 

matches, dinners and other get togethers, but mostly for making BW a great place to 

work. I think the majority of you participated in a LOPES experiment at some point, which 

is highly appreciated.  

This PhD was part of a larger European project. Everyone from the “EVRYON” project (the 

guys from Pisa, Rome, Lausanne, Budapest, Ljubljana and Delft): thanks! Not only for the 

scientific collaboration, but also for the good times during project meetings, review 

meetings, conferences etc. To the guys from Pisa:, I’m still not sure if the frequent visits to 

Enschede were all initiated strictly out of scientific curiosity, or just to amaze yourselves 

about the culinary concept of the Dutch kroketten. If you ever want me to send you a box 

of these frozen delicacies just let me know. Regarding the quality of the coffee in the 

machines in Enschede: I fully agree…. 
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Dan zijn er een aantal mensen van Het Roessingh die een belangrijke bijdrage hebben 

geleverd tijdens de experimenten. Bram, Leontien, Martijn: bedankt voor jullie hulp (en 

gezelligheid) met het begeleiden van de patiënten tijdens de LOPES experimenten. Bertine 

en Hans: bedankt voor de succesvolle samenwerking die heeft geresulteerd in het artikel 

dat is opgenomen als hoofdstuk 3. 

Ook zijn er twee mensen bij Abbott Medical Optics die ik graag wil bedanken. Theo en 

Klaas: bedankt voor de interesse die jullie hebben getoond en de flexibiliteit die jullie 

hebben geboden ten tijde van het afronden van deze promotie. 

Gelukkig zijn er ook een aantal clubjes buiten de UT die voor de nodige ontspanning 

hebben gezorgd. Xoun: ondanks dat mijn betrokkenheid de laatste jaren natuurlijk wat 

minder was dan tijdens mijn studie, hebben de Ardennen weekendjes, EK’s, WK’s, gala’s, 

oud en nieuw feesten en kerstdiners voor een flinke dosis afleiding gezorgd. Wat betreft 

de leden van de “nooit meer stappen in Groningen” Whatsapp-groep, misschien kunnen 

we nog een keer een uitzondering maken? Rob en Ewout: nu mijn promotie achter de rug 

is beloof ik dat ik mijn aquaria weer in volle glorie zal herstellen. Ik wacht trouwens nog 

steeds op die uitnodiging om een keer te gaan 4x4-en. Rob: mooi om te zien met hoeveel 

enthousiasme de vraag om mijn paranimf te zijn werd beantwoord, ik vind het top dat je 

erbij bent in december. Kai en Mark: het feit dat jullie altijd dichtbij waren op de UT 

maakte jullie tot de perfecte proefpersonen als er weer “eventjes” een controller getest 

moest worden of wanneer er een slachtoffer nodig was voor een demo. Ondanks de vaak 

last minute aankondiging hebben jullie deze functie vaak, en met verve, vervuld. Ik denk 

dat jullie mijn demo praatje inmiddels zo vaak hebben gehoord dat we prima een keer 

hadden kunnen ruilen. Mark: bedankt voor de overload aan spareribs en de gigantische 

gehaktballen die je mij hebt voorgeschoteld in de tijd dat we samen op de Sterrenstraat 

hebben gewoond. Het hebben van een huisgenoot met zulke culinaire gaven is echt pure 

luxe. Daarnaast was je gewoon een hele relaxte huisgenoot. Je staat altijd voor iedereen 

klaar, en bent altijd overal voor in. Bedankt dus voor je enthousiasme, bij alles. Ook dank 

aan de leden van InfusiX, voor de vele tripjes die we door de jaren heen hebben gemaakt, 

dat er nog maar vele mogen volgen. Mijn oude maatjes uit Twello, we zien elkaar te 

weinig, maar toch zijn er een paar tradities (Sinterklaas, bootje varen..) die we al jaren in 

stand houden. Bij jullie is het altijd als vanouds gezellig en ik hoop dan ook dat we deze 

tradities nog jaren in stand blijven houden. Hetzelfde geldt voor de boys van de 

Borstelweg. Ondanks soms lange periode van afwezigheid vind ik het altijd top om weer 

aan te kunnen schuiven bij een zomer bbq of een kerstdiner. 

Mijn schoonfamilie, Carin&Felix, Sander&Hilde, Remko&Nancy, en de ontelbare 

hoeveelheid oom en tantes, bedankt voor jullie oprechte interesse. Velen van jullie 

(inclusief Karin en Johan natuurlijk) hebben zelfs een constructieve bijdrage geleverd aan 

hoofdstuk 2. Toch leuk om te weten dat in de nieuwe LOPES looppatroontjes worden 

gebruikt die gebaseerd zijn op de metingen die we hebben gedaan toen jullie een dagje op 

de UT waren.  
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En dan natuurlijk mijn eigen familie. Pa, ma, bedankt voor jullie onvoorwaardelijke steun 

en interesse de afgelopen jaren. Ik kan altijd bij jullie binnenwaaien en jullie staan altijd 

voor me klaar. Pim, mijn “kleine” broertje. Als ik iets geregeld moet hebben hoef ik maar 

te bellen. Je bent een echte regelneef, iets waar ik vaak, en dankbaar, gebruik van maak. 

Bedankt dat je er voor me bent en super dat jij mijn paranimf wilt zijn. Opa, inmiddels 90+, 

en gelukkig nog altijd van de partij. Ik vind het mooi om te zien hoe fit en betrokken je nog 

bent. Ik houd een plaatsje voor je vrij op de eerste rij. 

Lieve Joyce, de waslijst aan dingen waar ik jou voor moet bedanken is zo lang dat ik hem 

niet ga opsommen (ik probeerde het immers kort te houden, weer niet gelukt….). Toch wil 

ik je in het bijzonder bedanken voor de afgelopen maanden. De komst van ons prachtige 

mannetje, twee maanden voor het afronden van mijn proefschrift maakte de laatste 

maanden bijzonder hectisch. Toch is er maar één iemand die zo goed de rust weet te 

bewaren in tijden van stress en chronisch slaapgebrek. Je bent voor mij van onschatbare 

waarde, en daar ben ik je ontzettend dankbaar voor. Nu we allebei weer in rustig 

vaarwater zitten kunnen we volop genieten van ons mooie ventje, en van een 

welverdiende vakantie. Tot slot, Sam; fantastisch dat je er bent, en dat je tijdens het 

schrijven van dit dankwoord zo lekker naast me op de bank hebt zitten giechelen. 
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