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Abstract

Embedded devices are used pervasively in a wide range of applications some of
which require cryptographic algorithms in order to provide security. Today’s
standardized algorithms are secure in the black-box model where an adversary
has access to several inputs and/or outputs of the algorithm. However, sensitive
information, such as the secret key used in the algorithm, can be derived from
the physical leakage of these devices in the so called gray-box model. In a
passive, non-invasive attack scenario, this physical leakage can be execution
time, power consumption or electromagnetic radiation. The most common
attack based on these leakages is differential power analysis (DPA) since the
equipment required for such an attack is relatively cheap and the success rate of
the attack is high on unprotected implementations. DPA exploits the correlation
between the instantaneous power consumption of a device and the intermediate
results of a cryptographic algorithm.

Different countermeasures applied on various levels of the circuit have been
proposed to prevent DPA. Some of these countermeasures focus on limiting
the amount of power traces gathered from the cryptographic algorithm under
attack using the same key. Some others aim at decreasing the signal-to-noise
ratio in order to make the aforementioned correlation invisible. The final
countermeasure group, which we study, randomizes the leakage depending
on the sensitive information by randomizing the intermediate values of an
algorithm in order to break the correlation. This powerful approach, which is
called masking, provides provable security under certain leakage assumptions
even if infeasibly many number of traces are analyzed. In standard masking,
the model requires that there is no occurrence of unintended switching at
the input or output of logic gates, the so called glitch. However, glitches are
unavoidable in circuits using standard cells based on, for example, the most
common hardware technology CMOS. This glitchy behavior typically results in
the leakage of unintended information. There exist only two masking schemes
that are proven secure even in the presence of glitches so far, namely by Nikova et
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viii ABSTRACT

al. from ICICS’06 and by Prouff et al. from CHES’11. The former, named
threshold implementation, requires significantly smaller area and uses much less
randomness compared to the method by Prouff et al.

Threshold implementation (TI) is based on secret sharing and multi-party
computation in which sensitive variables and functions using these variables
are divided into s > d shares, such that knowledge of d of these shares does
not reveal the secret information. An analysis using a nonlinear combination
of leakages derived from d of these shares or their calculation is called a dth-
order DPA. TI relies on four properties, namely correctness, non-completeness,
uniformity of the shared variables and uniformity of the shared functions. It
provides provable security even in the presence of glitches given the assumption
that the overall leakage of the device is a linear combination of leakages caused
by different shares and their calculation. This is both a common and realistic
assumption made by most of the masking schemes. Achieving all four properties
of TI for linear functions is straight-forward. On the other hand, it can be a
challenging task when nonlinear functions, such as the S-boxes of symmetric
key algorithms, are considered. Satisfying all the properties can impose using
extra randomness or increasing the number of shares. Both of these solutions
imply an increase of resources required by TI.

The contribution of this thesis is two-fold. In the first part of the thesis, we
introduce the theory for generating dth-order TI which can counteract dth-
order DPA. The early works of TI provide security against first-order DPA
attacks. However, it has been shown that second-order attacks are also feasible
even though the amount of traces required for a successful attack increases
exponentially in the noise standard deviation. Therefore, increasing the security
using higher-order TI is valuable. In addition, we confirm the claimed security
by analyzing a second-order TI of the block cipher KATAN.

The resource requirements form a limiting factor for countermeasures especially
on lightweight devices. In the second part of the thesis, we examine area-
randomness-security trade-offs during a TI. In order to do that, we first
investigate all 3× 3 and 4× 4, and some cryptographically significant classes of
5× 5 and 6× 6 invertible S-boxes. We use the gathered knowledge to choose
S-boxes during the designs of the authenticated encryption algorithms Fides
and PRIMATEs such that the area footprints of their TIs are small. Then, we
extend our research to the TIs of standardized symmetric-key algorithms AES
and SHA-3 with detailed investigation on the trade-offs.



Beknopte samenvatting
Geïntegreerde elektronica wordt tegenwoordig gebruikt in een breed scala
aan toepassingen. Sommige van die toepassingen vereisen cryptografische
algoritmes voor beveiliging. Gestandaardiseerde cryptografische algoritmes die
tegenwoordig gebruikt worden zijn veilig in het zwarte doos model, waarbij een
aanvaller enkel toegang heeft tot de inputs en/of outputs van het algoritme.
Gevoelige informatie, zoals de geheime sleutel die door het algoritme wordt
gebruikt, kan echter afgeleid worden uit de fysisch gelekte informatie van
een apparaat in het zogenaamde grijze doos model. In een passief, niet-
invasief aanvalsscenario, kan deze fysische informatie bestaan uit bijvoorbeeld
uitvoeringstijd, vermogensverbuik of elektromagnetische straling. De meest
voorkomende aanval die gebruikt maakt van zulke lekken is differentiële
vermogensanalyse (DPA), omdat de toestellen die nodig zijn om zo een aanval
uit te voeren relatief goedkoop zijn. DPA maakt gebruik van de correlatie tussen
het ogenblikkelijk vermogensverbruik van het toestel en de tussenresultaten in
het cryptografisch algoritme.

Er zijn verschillende voorstellen voor tegenmaatregelen toegepast op verschei-
dene circuitniveaus om DPA tegen te gaan. Sommige van deze methodes
trachten de hoeveelheid vermogensmetingen te beperken, terwijl het algoritme
een en dezelfde sleutel gebruikt. Andere trachten de signaal-ruisverhouding van
het circuit te verlagen, zodat de eerder vermelde correlaties niet meer meetbaar
zijn. De laatste groep bestudeerde tegenmaatregelen doet de tussentijdse
resultaten van het algoritme willekeurige waardes aannemen afhankelijk van
de gevoelige informatie, om zo de correlaties te verbreken. Deze krachtige
methode, die masking genoemd wordt, kan bewijsbaar veilige bescherming
bieden onder bepaalde aannames in verband met de lekken, zelfs indien een heel
groot aantal metingen op het circuit gedaan worden. Bij standaard masking
gaat men er in het model van uit dat logische poorten in het circuit geen
ongewenste overgangen maken, zogenaamde glitches. Glitches zijn echter niet te
voorkomen met standaard cellen gebaseerd op, bijvoorbeeld, de meest gebruikte
hardware technologie, CMOS. Deze glitches zorgen er doorgaans voor dat
er ongewenste informatie uitlekt. Momenteel zijn er slechts twee masking
schema’s die bewijsbaar veilig zijn zelfs bij het voorkomen van glitches, namelijk
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door Nikova et al. van ICICS ’06 en door Prouff et al. van CHES ’11. Dat
eerste schema, zogenaamde threshold implementatie, vereist significant minder
oppervlakte en gebruikt veel minder willekeurige data vergeleken met het schema
van Prouff et al.

De threshold implementatie (TI) is gebaseerd op het delen van geheimen en
meerdere partijen berekeningen, waarbij gevoelige variabelen en functies die
deze gebruiken gesplitst worden in s > d delen, op zo een manier dat kennis
van maximum d delen niet vrijgeeft wat de geheime informatie is. Een analyse
die gebruik maakt van niet-lineaire combinaties van lekken afgeleid van d
delen of hun berekeningen wordt dde orde DPA genoemd. TI is gebaseerd
op vier eigenschappen, zijnde correctheid, niet-compleetheid, uniformiteit van
de gedeelde variabelen en uniformiteit van de gedeelde functies. Het biedt
bewijsbare veiligheid, zelfs in de aanwezigheid van glitches, gegeven de aanname
dat de gelekte informatie van het apparaat een lineaire combinatie van de
lekken van de verschillende delen en hun berekening. Dit is een standaard-
, en realistische, aanname die voor de meeste masking schema’s gemaakt
wordt. Het is makkelijk om aan de vier eigenschappen van TI te voldoen
voor lineaire functies. Voor niet-lineaire functies, zoals S-boxes in symmetrische
sleutelalgoritmes, kan het echter moeilijk zijn. Om aan al deze voorwaarden
te voldoen kan het nodig zijn om het aantal delen te verhogen of extra
toevalbits te gebruiken. Deze beide oplossingen vereisen extra middelen voor de
implementatie van TI.

De bijdrage van deze thesis is tweeledig. In het eerste deel van de thesis
introduceren we de theorie nodig om een dde orde TI te genereren die dde orde
DPA kan weerstaan. Eerder gepubliceerde versies van TI kunnen eerste orde
DPA weerstaan. Het is echter aangetoond dat zulke implementaties vatbaar zijn
voor tweede orde aanvallen. Het benodigde aantal metingen voor een succesvolle
aanval stijgt in dat geval wel exponentieel in de standaardafwijking van de ruis.
Het heeft dus zin om de veiligheid te verhogen door middel van hogere orde TI.
Daarenboven bewijzen we de beloofde veiligheid door analyse van een tweede
orde TI implementatie voor het blokcijfer KATAN.

De benodigde middelen, zoals bijvoorbeeld oppervlakte, zijn een beperkende
factor voor tegenmaatregelen, vooral voor geïntegreerde elektronica. In het
tweede deel van de thesis onderzoeken we trade-offs tussen oppervlakte,
toevalsbits en veiligheid in TI. Om dat te kunnen doen, onderzoeken we eerst alle
3×3, 4×4 en enkel cryptografisch belangrijke 5×5 en 6×6 inverteerbare S-boxes.
We gebruiken de vergaarde kennis bij het uitkiezen van S-boxes voor het ontwerp
van de geauthentiseerde encryptie algoritmes Fides en PRIMATEs, zodat de
grootte van de TI implementatie klein is. Daarna breiden we ons onderzoek uit
naar TIs voor de gestandaardiseerde symmetrische sleutel algoritmes AES en
SHA-3, met een gedetailleerd onderzoek naar de trade-offs.
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“If you can’t explain it simply, you
don’t understand it well enough."

— Albert Einstein

1
Introduction

There exist about 30 embedded devices per person [50] in a developed country.
Each car and electronic household alone possess more than 20 such devices in
addition to computing devices, phones and payment cards. Predictions show that
the use of embedded devices will increase 10% every year parallel to the increase
in commercial use of smart objects. Some of these embedded devices such
as Radio-Frequency IDentification (RFID) tags are wireless. Moreover, these
devices can become extremely lightweight by being low-powered and very small in
area. Smart cards, for instance NXP Semiconductors’ Mifare SmartCard series
(Mifare Classic, Mifare DESFire) which celebrated its twentieth anniversary
last year with over 5 million components sold [78], are only one lightweight and
battery-less example.

Depending on the application, these cards can provide confidentiality, privacy,
data integrity, authentication and many other security functions. For example,
the secure series of smart cards chips are used in ID cards, passports, smart
meters, key cards; and can handle micro-payments. Moreover, RFID tags are
widely used for medical and military purposes, and for tracking commercial
products and even people. The security backbone of these these devices is
the ancient art of cryptology (hidden word) which dates back to 2000BC [57].
Its subfields cryptography (hidden writing) and cryptanalysis act as the Yin
and Yang of modern security. Advancement in one brings the necessity of
advancement in the counter party.

1



2 INTRODUCTION

Modern cryptographic algorithms can be viewed as mathematical functions
which use an input text mostly together with an input key in order to produce
a random looking string that can not be correlated with the inputs. If these
algorithms use at most one (secret) key, they are called symmetric (secret)-key
algorithms. On the other hand, if they require a second (public) key in addition
to the secret key which complements it, then they are referred to as asymmetric
(public)-key algorithms. Throughout this thesis, we consider symmetric-key
algorithms.

1.1 Adversary Models

A cryptographic algorithm provides security even if all the details except the
secret key is known to an adversary as suggested by the Kerckhoffs’ principle [60].
Hence, the key space should be big enough to make an exhaustive search
infeasible for revealing this key. The attacker’s goal is to find the key which
he can use to deceive the system about his identity or to capture confidential
information. He can also attempt to break the system without recovering the
key, however such attacks are out of the scope of this thesis.

We can classify the adversaries depending on the amount of information
they have access to. In the first adversary model, the attacker approaches
a cryptographic algorithm as a purely mathematical object which gives the
name black-box to the adversary model. The attacker can use the knowledge
about the algorithm together with several of its inputs and/or outputs, in order
to find a weakness and reveal the key with less complexity than an exhaustive
key search. This oldest adversary model, unlike the others, is independent of
the implementation of the algorithm and its platform. This attack strategy, of
which differential and linear cryptanalysis are famous examples [55], is a wide
and still evolving research area that is not considered in this thesis. However,
we note that the standardized algorithms which we work with are secure against
this model with today’s knowledge.

The second adversary model assumes that an attacker has access to the software
implementation and has control over the platform. All the information except
the secret key is transparent to the attacker naming the model white-box
cryptography. It is even assumed that the adversary has the ability to observe
the exact intermediate values of the algorithm in addition to the capability to
access the memory where the secret-key is stored. This model which dates back
to only 2002 [34] is out of the scope of this thesis.

In the last adversary model, the attacker targets the implementation by analyzing
the device behavior during a cryptographic operation. This gray-box attack
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model dates back to 1965 [100] and assumes that the attacker has physical
access to the device. The analysis can range from tampering with the device,
by temperature or voltage changes [7], or making permanent changes on the
circuit [64], to simply observing the physical behavior such as timing, power
consumption or electromagnetic (EM) emission [51, 62, 63]. Many modern
devices include sensors to detect the former active and/or (semi)-invasive
techniques upon which they kill the chip or revoke the key. An attack using
the latter passive non-invasive analysis, which is called Side-Channel Analysis
(SCA) [62], is relatively hard to detect, hence advantageous from the attacker’s
point of view. In this thesis, we mainly consider power analysis attacks with the
note that this work can be extended to study timing and EM analysis under
similar leakage assumptions.

Adversary Models

Black-box Gray-box White-box 

Non-invasive

Active Passive

(Semi)-invasive

Active Passive
-Temperature
or voltage change
- … 

-Side channel 
analysis

-Light attacks
-Laser cutters
- … 

-Photonic inspection
-Probing
- … 

Timing EM, Power Analysis

Simple Differential

Figure 1.1: Overview of adversary models

If an adversary analyses power trace(s) from the cryptographic device collected
using the same input, it is called a Simple Power Analysis (SPA) [63]. An
adversary, using this strong model against a symmetric-key algorithm, requires
a high signal-to-noise ratio (SNR) hence, can only tolerate minimal noise.
Furthermore, this attack is typically impractical on hardware without a profiling
phase generated from the exact device under attack prior to analysis. An
alternative approach is using analysis techniques from the black-box model
together with SPA [87]. However, that would require an off-line phase using
complex problem solvers.
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Differential Power Analysis (DPA), which was introduced in 1999 [63], requires
a set of power traces collected from the device using several different inputs.
In the simplest attack scenario, the attacker finds an intermediate value that
depends on only a small part of the secret key, referred to as the sub-key,
and the input. Then, he guesses this sub-key and calculates the hypothetical
values of the chosen intermediate value for each known input. The power traces
are grouped depending on these hypothetical values. Next, the mean trace is
calculated for each group by taking the average of the traces within the group.
If the guessed sub-key is incorrect, the mean traces looks similar, i.e. differs
only by the factor of the noise. In contrast, if the guessed sub-key is correct,
the attacker can distinguish a difference between these mean traces at the
time the intermediate value is executed on the device. This particular DPA
method is called difference of means (DoM). It can be improved by observing
a correlation between the instantaneous power consumption of a device and
and (hypothetical) intermediate values. Moreover, an attacker can also examine
the power traces using higher statistical moments such as the variance and the
skewness. DPA is applied widely today due to the simplicity of its application
on an unprotected cryptographic device.

DPA of the KeeLoq key-less remote entry system, which is used in many car
and garage doors [48], is a famous example of a DPA on a commercial product.
The attack had a big impact since the attacker not only reveals the secret key
from the remote control but also the manufacturer key which allows creating
any number of valid new remote controls in less than a day. Similarly, NXP
decided to discontinue MIFARE DESFire MF3ICD40, which is used in several
payment and public transportation systems including the Clippercard in San
Fransisco, in 2011 after being informed about a successful attack [79, 81]. In
2012, Balasch et al. showed that it takes less than half an hour to recover the
secret authentication key from an Atmel CryptoMemory device that is used
even for military applications [6]. Once the authentication key is revealed, an
adversary can read protected contents, clone devices, or manipulate the memory.
None of these examples are platform dependent. Any implementation without
a countermeasure against DPA is vulnerable to similar attacks.

1.2 Motivation

The efficacy of DPA brings the necessity to find countermeasures against it.
These countermeasures can be applied from the highest system level with
minimum assumptions on the specific implementation of the symmetric-key
algorithm to the lowest cell/instruction level. Independent of the application
level, all these countermeasures try to make one or more of the ingredients to
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DPA, which are power traces of computations using the same key and several
different inputs, information derived from these power traces and the correlation
between this information and the intermediate values of the algorithm, invisible.

The first set of countermeasures, which is typically applied at the system level,
focuses on limiting the number of iterations of an algorithm using the same key
attempting to make DPA impossible. However, generating and synchronizing
a new secret key is highly impractical. A technique called leakage resilience
relocates this problem to the protocol level [47] by introducing an algorithm to
generate these keys. This countermeasure is extended, such that several different
keys (chunks) are used with the same input text, confusing an attacker [69].
Nevertheless, both of these approaches drastically decrease the performance of
a system.

The second set of countermeasures, which focuses on decreasing the information
gathered from a power trace, offers several approaches. Targeting a constant-
power implementation is one approach which typically requires special cells.
There exists exceptions, such as Wave Dynamic Differential Logic (WDDL)
cells [95], which can be constructed using standard CMOS logic cells. This
complementary technique will not be considered as it requires cell-level
investigation.

There are several ad-hoc approaches that aim to increase the noise hence decrease
the SNR for the attacker to make the information therefore the correlation less
visible. Introducing external noise in the side-channel, shuffling the operations or
inserting dummy operations until an attack is not feasible are typical examples.
Ultimately, these countermeasures become insecure with increasing computation
power and attack time [46, 97].

The third set of countermeasures aims to break the correlation between the
power traces and the intermediate values of the computations. Unlike ad-hoc
approaches, countermeasures in this set follow the masking method which
provides provable security in a specified model even if a large number of traces
are analyzed. We study this powerful method which achieves security by
randomizing the intermediate values using secret sharing. A standard dth-order
masking is based on representing a sensitive variable by d + 1 randomized
variables called shares such that an adversary who knows at most d of these
shares cannot reproduce the sensitive information.

In the early works of masking, the circuit and variables are split into two shares
in a randomized manner. This randomized splitting causes the average power
consumption for calculations depending on the shares of a variable to be the
same for all the values of the variable. Hence, a DPA using the means of
the traces as described at the end of Section 1.1 gives no information on the
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particular value of the secret since the averaged traces only differ by noise in this
masked scenario. This analysis is called first-order DPA since it uses first-order
moments (means) of information gathered from the power traces. Increasing the
information order to d produces a dth-order DPA. Attacking the same two-share
masked implementation using the variances of the traces generated for each
intermediate value, hence the second-order moment information, reveals the
secret if operations on the shares are performed at the same time. This derivation
of second-order moment information is equivalent to combining information
from the two shares in a nonlinear manner. This reveals information from both
of the shares eliminating the effect of first-order masking. It is possible to
avoid second-order attacks by splitting the variable into three shares. On one
side this would increase the implementation cost even more. On the other side
an attacker performing a third-order DPA can still reveal the key. However,
such an attack would require much more traces decreasing the feasibility of the
attack.

To generalize, given the above discussion, an adversary using (d + 1)st-order
DPA can successfully derive the secret information from a dth-order masking
since he uses a nonlinear combination of information gathered from all d+ 1
shares and reveals the secret. This randomized dth-order masking hides the
correlation between the sensitive variable and the power consumption for a
dth-order adversary. We note that DPA attacks using mutual information [8],
which exploit information from all possible orders together, can reveal the
sensitive information from a masked implementation. Even though in theory
such attacks are always successful given enough traces, in practice it becomes
impractical to collect the required number of traces with increasing orders of
the countermeasure. Therefore, they are out of the scope of this thesis.

If shared operations are performed at different times, combining information
from those particular times nonlinearly also reveals the secret information.
Combining information from t different times would produce a t-variate attack.
The attack order in a t-variate attack still depends on the number of shares
combined nonlinearly. An analysis where information from two shares are
gathered from different times is referred to as bivariate second-order DPA in
this thesis. This categorization allows us to further classify the DPA adversaries
by their variant and order. Note that in practice it is hard to pinpoint the exact
times when operations depending on each share are performed, which increases
the complexity of such an attack. The DPA adversary described in this thesis
is limited to univariate since shared operations are performed at the same time
in all of the mentioned implementations.

Our ultimate goal is to provide a countermeasure that resists all known (and
possibly unknown) attacks with minimum increase in resource requirements.
However, achieving this goal is very hard due to the attack diversity. Typically,
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a cryptographer takes the path to design a countermeasure against specific
type of attacks with some pre-defined assumptions on the capabilities of the
attacker or on the behavior of the device. Therefore this countermeasure might
be insecure when the device behavior or the attack is out of the presumed
model. The cryptographer usually takes a gradual approach to advance the
countermeasure in order to provide security against a stronger attacker scenario
or a wider range of devices.

In standard masking, both on the cell/instruction level [56, 96] and on the
algorithmic level [32, 53, 71], the assumption is that there is no occurrence of
unintended transition of a signal, the so called glitch which can reveal information
from more than the expected amount of shares. The glitch-freeness, imposed by
the masking model, limits the applicability of masking to different platforms. For
instance, standard masking is insecure in the most common hardware circuitry
CMOS (Complementary Metal Oxide Semiconductor) using standard CMOS
cells, since glitches are unavoidable in CMOS circuits. Unfortunately, glitches
can deteriorate the secret sharing by causing unwanted leakage depending on
all shares, hence the shared sensitive variable. There exist only two masking
schemes that are proven secure even in the presence of glitches so far, namely
by Nikova et al. from ICICS’06 [75] and by Prouff et al. from CHES’11 [86].
The former, named Threshold Implementation (TI), can be implemented with a
significantly smaller gate count1 and requires much less randomness compared
to the latter.

We choose TI which also splits the sensitive variable into several shares from
this wide range of countermeasures mainly for three reasons. Firstly, unlike the
ad-hoc approaches TI provides provable security hence is secure even with a large
number of traces. Secondly, its provable security covers many platforms including
the ones using CMOS-like cells that are problematic for some countermeasures.
This is achieved by using s ≥ d+ 1 shares against a dth-order DPA such that
no more than s− 1 of these shares are leaked to a dth-order adversary even in
the presence of glitches. It can be applied using standard tools; furthermore,
circuit-level investigation is unnecessary. And finally, the increase in resource
requirements is low compared to other equivalent countermeasures. Even though
TI is a very young countermeasure, before the beginning of this research, it
has already been applied to standardized symmetric-key algorithms, namely
PRESENT [83] and AES (Advanced Encryption Standard) [73] algorithms and
a part of the noekeon [76] algorithm. The PRESENT and AES TIs showed
that the timing overhead is negligible and area overhead is manageable.

1Even though the gate count of a circuit is not necessarily equal to its area, these words
are used synonymously in cryptography, which we inherit throughout the thesis.
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1.3 Research Questions

By the time this research has started, provable security of TI was shown against
an adversary performing only first-order DPA. Existing TIs mentioned at the
end of Section 1.2 use three shares such that no more than two of these shares
are leaked to the adversary hence keeping the secret non-constructible. They
have already been tested against such an adversary and shown to be secure
as the theory suggests. As mentioned in Section 1.2, the ultimate goal is that
the countermeasure resists a wide range of attacks and has minimum overhead.
Our research questions are aligned with this statement. First of all, we would
like to improve TI such that it provides provable security against a stronger
adversary model than the suggested one. Following the step by step approach,
we seek an answer to the following research question.
Question 1. How can TI be improved to provide provable security against
higher-order DPA which exploits higher-order statistical moments (variance,
skewness, etc.)?

Our goal, is not only to provide secure implementations against attack scenarios
that are feasible with today’s knowledge, but also to progress for future-proof
implementations decreasing the reproduction cost.

Previous TIs show that if the building blocks of the symmetric-key algorithm is
complex, a re-randomization of the shares might be necessary which requires
random values. This re-randomization can be avoided if more shares are used
which increases the area. Moreover, using more shares might increase the
security of the system. This observation brings the following research question.
Question 2. How does the decision of number of shares affect the area-
randomness-security trade-off of TIs?

Suggesting trade-offs between area, randomness and security adds flexibility to
TI increasing the usability and the application range. We acknowledge that
the area dimension can also include the randomness dimension if we consider
the additional circuit required to generate the random numbers. However, a
given device might already have a random number generator with a predefined
throughput. In order to differentiate the area required by the countermeasure
and the random number generator, we observe them in different dimensions.

Modifying the unprotected implementation to counteract DPA typically brings
extra requirements especially on area. Therefore, a protected implementation
is lower bounded by its unprotected version in terms of resource requirements.
Combined with the previous motivational statement on minimizing the overhead
this perception instigates the following question.
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Question 3. How close can the resource requirements of the TI get to the
resource requirements of the unprotected implementation of the same algorithm?

TI, enhanced by the answers to the above questions, is expected to become one of
the main countermeasures to consider against DPA. Thus, an increasing number
of secure embedded devices will more likely use this lightweight construction.
That is why we also choose to exemplify our findings on standardized algorithms
such as AES and SHA-3.

1.4 Thesis Overview

This dissertation studies theoretical and practical aspects of threshold
implementations. Chapter 2 starts with the notation presentation used
throughout this thesis. Before introducing our contributions, we provide basic
information on symmetric-key cryptography and its building blocks, especially
the nonlinear substitution boxes (S-boxes) in the same chapter. Moreover,
we detail the preliminaries of DPA together with the most standard Boolean
masking countermeasure. We examine the behavior of a circuit with glitches
and explain why masking fails to provide security in such circuits.

We assemble most of the theoretical aspects of threshold implementations in
Chapter 3. This theory was developed incrementally throughout this Ph.D.
procedure and published in separate papers. The main contribution of this
chapter is the answer to Question 1. A TI needs to satisfy four main properties
to counteract higher-order DPA. These properties and the consequences of
failing to satisfy these properties are discussed in this chapter.

In the following four chapters, we mainly analyze the practical aspects of
threshold implementations. We especially focus on hardware implementations
since TI differs from other masking schemes by its security in the presence
of glitches. We always try to minimize the extra resource requirements of
our threshold implementations with Question 3 in mind. In Chapter 4, we
provide TI of KATAN cryptographic algorithm, which leans on a very simple
(mathematically less complex) building block. We present resource requirements
of TI together with experiments which confirm our theory. This work is published
in [17].

Starting from Chapter 5, we analyze TI of more complex building blocks while
considering an attacker performing a first-order DPA. Our findings on S-boxes up
to size eight are are given in Chapter 5 and published in [22] and [23]. Moreover
we used this knowledge during the design of Fides [15] and PRIMATEs [4]
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algorithms. We provide tools in [20] and [21] regarding this research for future
references.

In Chapter 6 and 7, we implement several versions of Keccak and AES
algorithms such that we provide an answer to Question 2, namely area-
randomness-security trade-offs of TI. These chapters contain several methods
to reduce the area and randomness needs of a TI of a symmetric-key algorithm.
The contents of these chapters are published in [16], [18] and [19]. [18] is a
follow-up work of [73] improving it significantly. [19] is an extended version
of [18] which analyses more trade-offs.

We described the proposed designs in Verilog and verified their functionality
with ModelSim. Then we used a standard tool chain to synthesize them using
Synopsys Design Vision D-201-.03-SP4. The NAND-gate equivalence (GE) of
the circuit is taken as the area comparison metric. Unfortunately, we observed
that there is no standard library used by all researchers which makes the
comparison with previous works harder. Therefore we used several different
libraries in order to provide a fair comparison with the prior works. The exact
libraries used are provided in the beginning of the corresponding chapters. The
use (GE)

We conclude this dissertation by listing open questions for future works in
Chapter 8.

In the beginning of each chapter, we summarize in more detail which sections
are published in which papers and what is our contribution.



2
Preliminaries

We start this chapter by introducing the general notations used in this
thesis. The additional TI specific notations will be introduced in Section 3.1.
We continue by providing preliminary information about symmetric-key
cryptography in Section 2.2 which we use to exemplify our TI techniques. We
mainly focus on Substitution Permutation Networks (SPNs). Hence, we detail
their fundamental properties and building blocks. An S-box, which is usually a
permutation defined in a finite field, is the only nonlinear building block of an
SPN. In Section 2.2.1, we provide several properties of permutations since we
primarily work on them. We describe a classification, which significantly reduces
our work in the following chapters, based on affine equivalence of permutations.
In addition, we categorize these S-boxes according to their sizes and examine
size-specific properties in the rest of the section.

In order to confirm the security of our TIs of cryptographic algorithms, we play
the role of an attacker. We use several DPA techniques which target different
parts of the implementations in order to find a weakness. In the second half of
this chapter, we describe these techniques. We focus on using a first-order DPA
scenario during these descriptions in Sections 2.3.1, 2.3.5 and 2.3.6. We explain
higher-order DPA using the probing model in Section 2.3.3. Additionally, we
provide a discussion on why standard Boolean masking described in Section 2.3.2
becomes insecure on standard CMOS-circuits independent of their security
order 2.3.4.

The pieces of information provided in this chapter are well known in the field.

11
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These statements, which occur in the introductory sections of our papers [17,
18, 23] are partially written by co-authors.

2.1 Notation

We refer to a finite field F with characteristic c as Fc. We mostly use fields
with characteristic 2, namely F2n which are equivalent to GF(2n). If it is clear
from the context, we denote F2 by F for convenience. One bit refers to an
element in F2. A nibble and a byte are 4- and 8-bit elements respectively. The
size of a field is |F|.

Lower-case characters refer to elements of a finite field F , while upper-case
characters are used for stochastic variables. The probability that X takes the
value x is Pr(X = x).

The number of ones in the binary description of the value x is called as its
Hamming weight (HW). The HW of the difference between x and y is referred
to as their Hamming distance (HD). We denote these notions with HW (x) and
HD(x, y) respectively.

The bitwise addition and multiplication, which are referred to as the XOR and
the AND operations are denoted by ⊕ and � respectively. The operations
+ and × stand for the addition and the multiplication in a given field. For
convenience, the multiplication of two values x� y is sometimes described as
xy.

A function f is defined from Fn to Fm where n and m are natural numbers. If
f is a bijection and m = n, the function is a permutation, hence is invertible.
Any function f(X) can be considered as an m-tuple of Boolean functions
(f1(X), . . . , fm(X)), where X ∈ Fn, which are called the coordinate functions
of f(X). In Equation (2.1), we provide a 3-bit permutation f defined from F3 to
F3 with the input X = (W,Y,Z) where w, y, z ∈ F , the output (A,B,C) ∈ F3

and the coordinate functions f1, f2 and f3.

A = f1(W,Y,Z) = W

B = f2(W,Y,Z) = 1⊕ Y (2.1)

C = f3(W,Y,Z) = WY ⊕ Z

The degree of a function is the maximum algebraic degree of these coordinate
functions [26]. If the degree is one with zero or non-zero constants, the function
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is called a linear (f1) or an affine (f2) function respectively. Otherwise, it is
called a nonlinear (f3) function. Equation (2.1) is quadratic since the maximum
degree is two (f3).

Finally, we express a vector of elements, variables or functions with bold
characters. The dot product of x and y on Fn is denoted by 〈x, y〉.

2.2 Symmetric-key Cryptography

There are several types of symmetric-key algorithms, some of which are block
ciphers, hash functions and authenticated encryption algorithms. A block cipher
takes a secret key value key ∈ K and a block of plaintext pt ∈ P, where K
and P define the key and the plaintext space. These spaces are equal to Fk
and Fp where k is the size of key and p is the size of pt respectively. The
block cipher produces an output ciphertext ct ∈ P by using an encryption
operation E(key, pt). This operation, which provides confidentiality, is a
nonlinear permutation when the key is fixed implying invertibility. The inverse
decryption operation reproduces the plaintext by using the same key and the
corresponding ciphertext. A hash function, on the other hand, is a keyless
operation which inputs a plaintext block H(pt) and outputs a hash value
hash ∈ H where |H| < |P| hence, it is not invertible. The hash value resembles
a digital fingerprint which can be used to provide message integrity with the
help of public key cryptography. If the hash function is modified such that it
also takes a key as input, then it provides both authentication and integrity.
An authenticated encryption algorithm is a combination of all these in the sense
that it provides confidentiality, integrity and authentication. It inputs a key
and blocks of plaintext, outputs blocks of ciphertext together with a tag. The
tag resembles to a hash output.

These algorithms must provide a good confusion and diffusion of the key
and the plaintext to provide the required mathematical security and resist
cryptanalysis [92]. Confusion, which makes the relationship between the key
and the ciphertext as complex as possible, is achieved with nonlinear operations.
Linear operations assure that one bit change in the state spreads over the whole
state quickly hence, provide diffusion.

A popular way to generate a symmetric-key algorithm is to use the output of
a round, which is composed of linear and nonlinear operations, as the input
to the next round, consisting of the same operations, in a cascaded manner.
These rounds are typically formed as a layer of round-key XOR with the round
input, a layer of nonlinear substitution blocks (S-boxes) and a layer of linear
permutations. This round structure is called a Substitution Permutation Network
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(SPN) where the substitution and the permutation layers provide confusion
and diffusion respectively. The block cipher standards DES (Data Encryption
Standard) [43] and AES [80], the hash function standard SHA-3 which is a
subset of the Keccak family [13] and the lightweight block cipher standard
PRESENT [25] are examples of SPN.

2.2.1 Permutations and Affine Equivalence Relations

In Chapter 3, we will show that TI of any affine function, hence the key XOR
and the permutation layer of an SPN, are trivial. On the other hand, TI of a
nonlinear operation such as the S-box of the substitution layer can be challenging,
determining our main focus. Most of these S-boxes are permutations defined
over a small field (e.g. F24 or F28). Only a few exceptional cryptographic
algorithms use S-boxes from F2n to F2m , i.e. with n input and m output bits
referred to as an n×m S-box. In this section, we investigate the properties of
permutations.

All permutations from a set D to itself form the symmetric group on D denoted
by SD. A transposition is a permutation which exchanges two elements and
keeps all others fixed. A classical theorem states that every permutation can be
represented as a product of transpositions [89], and although this representation
is not unique, the number of transpositions needed is either always even or
always odd. The set of all even permutations form a normal subgroup of SD,
which is called the alternating group on D and denoted by AD. The alternating
group contains half of the elements of SD. Instead of AD and SD, we will write
here Am and Sm, where m is the size of the set D.

Lemma 1 ([99]). For all n ≥ 3, the n-bit affine permutations are in the
alternating group.

We classify permutations according to their affine equivalence as defined below
to reduce the working space.

Definition 1 ([40]). Two permutations f(X) and f̃(X) are affine/linear
equivalent if there exists a pair of affine/linear permutations lr(X) and ll(X),
such that f̃ = ll ◦ f ◦ lr.

Every affine permutation l(X) can be written as L · X + c with c an n-bit
constant and L an n × n matrix which is invertible over F2. It follows that
there are

2n ×
n−1∏
i=0

(2n − 2i) (2.2)
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different affine permutations.

The relation “being affine equivalent” can be used to define equivalence classes.
In Section 2.2.2, we provide lists of affine equivalence classes for 3- and 4-bit
permutations. The classes are enumerated by the lexicographical order of their
representatives’ truth tables.

Note that the algebraic degree is invariant under affine equivalence, hence all
permutations in a class have the same algebraic degree. Moreover, the maximal
algebraic degree of an n-bit permutation is n− 1 [30, 67].

In order to increase readability, we introduce the following notation Ani ,
Qnj , Cnk to denote the Affine class number i, Quadratic class number j and
Cubic class number k of permutations of Fn2 . Moreover, if a permutation is
represented with an even (resp. odd) number of transpositions, all of its affine
equivalent permutations are also represented with an even (resp. odd) number
of transpositions.

2.2.2 2-, 3- and 4-bit Permutations

It is well known that all 2-bit permutations are affine, hence there is only one
class. The set of 3-bit permutations contains 4 equivalence classes [40]: 3 classes
containing quadratic functions, and 1 class containing the affine functions. The
Inversion in F23 and the S-boxes of the PRINTcipher [61], the Threeway [38] and
the Baseking [39] algorithms, which are the only cryptographically significant
3× 3 S-boxes, belong to the quadratic class Q3

3. The notations for all the 3-bit
permutation classes together with their representatives are provided in the first
two columns of Table A.1 in Appendix A.

De Cannière [24, 40] uses an algorithm to search for the affine equivalent classes
which guesses the effect of the affine permutation lr for as few input points
as possible, and then uses the linearity of lr and ll (as given in Definition 1)
to follow the implications of these guesses as far as possible. This search is
accelerated by applying the next observation, which follows from linear algebra
arguments (change of basis):

Lemma 2 ([66]). Let f be an n-bit permutation. Then f is affine equivalent
to another permutation f̃ with f̃(X) = X, for X ∈ {0, 1, 2, 4, 8, . . . , 2n−1}.

In the case n = 4, this observation reduces the search space from 16! ≈ 244 to
11! ≈ 225.

De Cannière lists the 302 equivalence classes for the 4-bit permutations [40]:
the class of affine functions, 6 classes containing quadratic functions and the
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remaining 295 classes containing cubic functions. The classes are listed in the
first two columns of Tables A.2–A.6 in Appendix A.

There are many cryptographically significant 4-bit permutations. First Leander
and Poschmann [66] and later Saarinen et al. [90] classify all 4× 4 invertible
S-boxes up to affine equivalence and provide 16 “golden” S-box classes that
provide optimal differential and linear properties which is helpful to design a
secure and efficient algorithm. Tables A.10–A.12 in Appendix A list some of
the S-boxes used in the design of cryptographic algorithms together with golden
S-boxes (depicted as Optimal Gi) and the classes to which they belong.

Note that f−1, the inverse permutation, is not necessarily affine equivalent to f
and in this case may not have the same algebraic degree. We know however, that
the inverse of an affine permutation is always an affine permutation. In the case
of 3-bit permutations it follows that the inverse of a quadratic permutation is
again a quadratic permutation. Moreover, it can be shown that the 3 quadratic
classes in S8 are self-inverse, i.e. f−1 belongs to the same class as f . In the
case n = 4, we can apply the following lemma.

Lemma 3 ([26]). Let f be a permutation of GF(2n), then deg(f−1) = n− 1 if
and only if deg(f) = n− 1.

Since the inverse of an affine permutation is affine, and, when n = 4, the
inverse of a cubic permutation is cubic, it follows that in this case the inverse
of a quadratic permutation is quadratic. The Keccak S-box (n = 5) [13],
which is a permutation, is an example where the algebraic degree of the inverse
S-box (deg(f−1) = 3) is different from the algebraic degree of the S-box itself
(deg(f) = 2).

We have observed that there are 172 self-inverse classes in the symmetric group
S16. The remaining 130 classes form 65 pairs, i.e., any permutation f of the
first class has an inverse permutation f−1 in the second class (and vice versa).
Table 2.1 gives the list of the pairs of inverse classes.

2.2.3 5- and 6-bit Permutations

The number of classes increase exponentially when bigger permutations are
considered. There exist roughly 261 and 2215 different affine equivalent classes
for 5-bit and 6-bit permutations respectively [40]. They have been used in
cryptographic primitives. An important example is the 5-bit quadratic function
of Keccak [13] as mentioned in Section 2.2.2. 5-bit almost bent permutations
and 6-bit almost perfect nonlinear permutations are also well studied since they
have a particular importance in cryptography.
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Table 2.1: 65 pairs of inverse classes that are not self-inverse; the remaining 172
classes are self-inverse

(C4
29,C4

30),(C4
33,C4

34),(C4
39,C4

40),(C4
43,C4

44),(C4
47,C4

48),(C4
49,C4

50),(C4
52,C4

53),(C4
58,C4

59),
(C4

60,C4
61),(C4

63,C4
64),(C4

66,C4
67),(C4

68,C4
69),(C4

70,C4
71),(C4

73,C4
74),(C4

79,C4
80),(C4

85,C4
86),

(C4
87,C4

88),(C4
90,C4

91),(C4
93,C4

94),(C4
95,C4

96),(C4
97,C4

98),(C4
103,C4

104),(C4
105,C4

106),
(C4

108,C4
109),(C4

110,C4
111),(C4

112,C4
113),(C4

114,C4
115),(C4

116,C4
117), (C4

120,C4
121),

(C4
123,C4

124),(C4
126,C4

127),(C4
128,C4

129),(C4
130,C4

131),(C4
132,C4

133),(C4
143,C4

144),
(C4

147,C4
148),(C4

150,C4
151),(C4

152,C4
153),(C4

154,C4
155),(C4

156,C4
157),(C4

158,C4
159),

(C4
161,C4

162),(C4
164,C4

165),(C4
166,C4

167),(C4
169,C4

170),(C4
171,C4

172),(C4
181,C4

182),
(C4

183,C4
184),(C4

185,C4
186),(C4

190,C4
191),(C4

199,C4
200),(C4

201,C4
202),(C4

203,C4
204),

(C4
206,C4

207),(C4
209,C4

210),(C4
211,C4

212),(C4
214,C4

215),(C4
226,C4

227),(C4
229,C4

230),
(C4

233,C4
234),(C4

241,C4
242),(C4

243,C4
244),(C4

256,C4
257),(C4

259,C4
260),(C4

296,C4
297).

Definition 2 ([31]). The permutation f is said to be almost perfect nonlinear
(APN) if all the equations

f(X)⊕ S(X ⊕A) = B, A,B ∈ GF(2n), A 6= 0,

have either 0 or 2 solutions.

Definition 3 ([31]). The permutation f is said to be almost bent (AB) if the
Walsh transform

µf(A,B) =
∑

X∈GF(2n)

(−1)〈B,f(X)〉⊕〈A,X〉,

is equal to either 0 or ±2 n+1
2 when A,B ∈ GF(2n) and (A,B) 6= (0, 0).

It is known that all AB permutations are also APN. An APN permutation
provides optimum resistance only against differential cryptanalysis whereas
an AB permutation provides optimum resistance against both differential and
linear cryptanalysis [31]. Unfortunately, AB permutations exist only when n is
odd [31].

Up to affine equivalence there are only four AB permutations of dimension five,
all of which can be represented as a power function [28]. A representative of
each class is provided in Table 2.2. We note that AB4 and AB3 are the inverse
of AB1 and AB2, respectively.



18 PRELIMINARIES

Table 2.2: Representatives of AB permutations in GF(25) [28]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
AB1 0 1 2 4 3 8 16 28 5 10 25 17 18 23 31 29 6
AB2 0 1 2 4 3 8 16 28 5 10 26 18 17 20 31 29 6
AB3 0 1 2 4 3 8 13 16 5 17 28 27 30 14 24 10 6
AB4 0 1 2 4 3 8 13 16 5 11 21 31 23 15 19 30 6

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 deg.pow.
AB1 20 13 24 19 11 9 22 27 7 14 21 26 12 30 15 2 x3

AB2 21 24 12 22 15 25 7 14 19 13 23 9 30 27 11 2 x5

AB3 19 11 20 31 29 12 21 18 26 15 25 7 22 23 9 3 x7

AB4 28 29 9 24 27 14 18 10 17 12 26 7 25 20 22 3 x11

There is only one known affine equivalence class of 6-bit APN permutations [44].
A representative of this APN permutation, which has degree 4, is provided in
Table 5.5 in Section 5.2 for convenience.

2.2.4 8-bit Permutations

The full list of all affine equivalent classes of 8-bit permutations is not generated
yet since no efficient algorithm to produce such a list is known. However,
Rijndael [37] and its standardized version AES [80], both of which use a
substitution layer composed of 8-bit permutations with strong cryptographic
properties to resist cryptanalysis, inspired many symmetric-key algorithms.
Similar to AES, most of these algorithms use an S-box based on a multiplicative
inversion in F28 followed by an affine transformation. Namely, the S-box can
be represented as f(X) = L ·X−1 ⊕ c where the specific values for the matrix
L and the constant c change from design to design.

There exist other systematic ways to generate 8-bit permutations, e.g. combining
several smaller permutations [54], or using genetic algorithms [33]. The former
type of S-boxes can be examined by the properties of the permutations they are
composed of. The latter method is not yet widely adopted by cryptographic
algorithms, therefore they are out of the scope of this thesis. Here, we will
mainly focus on the AES S-box of which the details can be found in [80].

A polynomial-based implementation and table look-up of the AES S-box are
not preferred for lightweight applications since they are big in area. Moreover,
the algebraic degree of the S-box is seven and produces very complex coordinate
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Figure 2.1: Schematic of AES S-box using tower field approach

functions that are not preferable on hardware. Instead the tower field approach is
used [29] to achieve optimal area on hardware. With this approach, the inversion
in F28 is implemented as inversion, multiplication and some linear operations
in F24 . Similarly, the multiplication and inversion in F24 can be implemented
by using building blocks from F22 . The diagram for a small unprotected tower
field description reported by Canright is described in Figure 2.1. l1, l2 and l3
correspond to the linear operations square scaling, squaring and inversion in
F22 .

2.3 Differential Power Analysis and Masking

Differential power analysis (DPA) uses multiple power traces collected from
iterating an (encryption) algorithm with different plaintexts and the same key.
It is assumed that the instantaneous power consumption is a linear combination
of the outputs of noisy leakage functions L(.), each of which takes a subset of
intermediate operations/variables happening at the same time as inputs and
produces linear translations of them with additional Gaussian independent noise.
Hence, the leakage from each encryption differs depending on the intermediate
values generated during an encryption.

To clarify, consider a 1-bit intermediate variable X and assume that L(0) 6= L(1);
e.g. the device under test leaks the HW of X (L(X) = HW(X)). Given enough
traces, this difference reveals the value x. If the intermediate variable depends
on the sensitive variable, it helps the attacker to recover the sensitive value.

Early works on DPA, such as DoM described in Section 1.1, consider the leakage
from the input or the output of a combinational operation. In this thesis, we
use a more sophisticated version of this attack called correlation power analysis
(CPA) [27] which is described in Section 2.3.1.
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2.3.1 Correlation Power Analysis

CPA exploits the correlation between power traces and key dependent
intermediate values. There are two aspects of a successful CPA. The first
one is to identify the leakage behavior of the device under test as accurately
as possible. The HW leakage of an intermediate value is typically considered
to be a good estimation for DPA. For operations such as register and memory
transitions, this is translated into the HD between two intermediate states that
use the same resources one after another. We note that, statistically, the HD
leakage is equivalent to the HW leakage if and only if one of the two intermediate
states is fixed to a constant value or completely random. Otherwise, it might
cause a decrease in the hypothesized security [5]. During CPA, the target
resource is typically taken as a memory element in which intermediate values of
a round, such as the key XOR, substitution layer or one round output lie. Even
though it is also possible to consider the combinational operations, such a CPA
might provide inadequate results, since projecting combinational operations to
a leakage model is difficult even with a deep knowledge on the device and the
particular implementation. If the intermediate states used for HD calculation
depend on different key chunks, the number of bits of the key that needs to be
guessed during the attack, and hence the complexity of the attack increases.

The second aspect of a successful CPA is choosing the target state such that
the information becomes easier to exploit. In theory, any key dependent
intermediate state can be the target since power consumption depends on every
single operation in the device. On the other hand, the information from the
output of a cryptographically strong S-box is more profitable than the output
of an affine operation, such as the key addition itself since a wrong key guess is
more distinguishable from the correct one in the former case [84].

During the attack phase, the attacker generates a p × t matrix T which
corresponds to p power traces of length t representing encryptions with different
plaintexts under the same key. The attacker also computes a p× k matrix L
where each column corresponds to hypothetical leakages of the targeted state
during the encryption of all plaintexts with a different key hypothesis. The
Pearson correlation of the sample sets (the jth column of) T and (the lth column
of) L using the following formula in which T̄ and L̄ correspond to the mean
values, reveals the correct key hypothesis.

rj,l =
∑p
i=1(Ti,j − T̄j)(Li,l − L̄l)√∑p

i=1(Ti,j − T̄j)2
√∑p

i=1(Li,l − L̄l)2
(2.3)

More specifically, the attacker constructs a matrix R from the rj,l values where



DIFFERENTIAL POWER ANALYSIS AND MASKING 21

each column corresponds to the correlation coefficients of a key hypothesis on
all the time samples. The index(es) corresponding to the absolute maximum of
the elements of R reveals the specific time sample(s) where the hypothetical
leakage takes place with a particular key hypothesis indicating a correct guess.

CPA-like attacks that use the first-order moment of information triggered the
development of different countermeasures (Section 1.2) some of which can be
gathered under the set of masking as described below.

2.3.2 Masking

A conventional first-order Boolean masking scheme splits the intermediate
variable X in two randomized variables X1 and X2 such that X1 ⊕X2 = X. In
Table 2.3, we demonstrate the leakage L(X) = HW(X1, X2) depending on these
variables. It can be seen that this masking does not reveal any information
on the value of x when a first-order analysis is performed since the mean of
the leakages given at the fourth column is constant for different x. However, a
second-order analysis can reveal the difference of variances for x = 0 and x = 1
provided in the fifth column given enough traces.

Table 2.3: Leakage behaviour of 1-bit split into two shares

x x1 x2 L(x) Mean(L(x)) Var(L(x))

0 0 0 0 1 11 1 2

1 0 1 1 1 01 0 1

Higher-order Masking

To generalize, a dth-order masking countermeasure aims randomizing an
intermediate sensitive variable X by splitting it into d+ 1 uniformly distributed
variables X1, . . . , Xd, Xd+1, such that the following equation holds under the
group operation ⊥.

X = X1 ⊥ X2 ⊥ . . . ⊥ Xd ⊥ Xd+1 (2.4)
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Aforementioned ⊥ operation can be multiplication or addition generating a
multiplicative and additive masking respectively. The special form of additive
masking where the group operation is bitwise XOR is called Boolean masking.
Hereon, the latter scheme is the main consideration and the terms Boolean
masking and masking are used interchangeably. Each variable Xi is referred
to as a secret share and the secret sharing is typically done by generating
(without loss of generality) d uniformly distributed random shares X1, . . . , Xd

and calculating Xd+1 such that it satisfies Equation (2.4).

Given an input sharing, all the operations within an algorithm, such as the
linear transformations and the S-box calculations, must also be carried out
using these shares. Performing an affine transformation l on shared variables is
straightforward since Equation 2.5 holds implying that we can apply the affine
transformation to each share individually using d+ 1 iterations/instantiations
of l.

l(X) = l(X1 ⊕ · · · ⊕Xd+1) = l(X1)⊕ · · · ⊕ l(Xd+1) (2.5)

Nonlinear operations for which the above equation is incorrect, are more
challenging. Equation 2.6 provides one sharing of f(X,Y ) = Z ⊕ XY with
two shares (for each input and output) that is secure against first-order DPA
attacks if the circuit is glitch-free.

f1(X1, Y1) = Z1 ⊕X1Y1

f2(X1, X2, Y1, Y2) = ((Z2 ⊕X1Y2)⊕X2Y1)⊕X2Y2 (2.6)

The order of operations specified with the parentheses is important not to
unmask a sensitive variable which is hard to achieve even with time consuming
cell level investigation of a circuit in hardware. As a trivial example of breaking
the order of operations, assume that (X2Y1 ⊕X2Y2) is calculated. Equality of
this XOR to X2Y reveals the unmasked information Y .

Subsequently, we first analyze the security of a higher-order masking scheme
under the ideal glitch-free leakage assumption. We then discuss how these
idealized assumptions fail when standard CMOS gates are used in the circuit.

2.3.3 Higher-order DPA

As mentioned in Section 2.3.1, the leakage function L(.) is ideally assumed to
depend on the input or the output of a shared function since it is difficult to
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provide a more accurate leakage function without considering each intermediate
transition in the circuit which would require a deep cell level investigation. In
this section, we assume that the attacker is limited to such an idealized leakage
function for analysis.

A DPA using a nonlinear combination of d intermediate variables is called a
dth-order DPA. A CPA-like analysis exploiting the information difference in a
dth-order moment can be used to observe a nonlinear combination of d shares
of an intermediate variable if all its shares are updated simultaneously. We will
apply this adaptation by centering and taking the dth power of the traces for
each time sample before performing CPA described in Section 2.3.1.

Note that any masking scheme using d + 1 shares to represent a variable is
vulnerable against (d+ 1)st-order DPA since an information depending on all
the shares nonlinearly is leaked. An example is given in the first-order masking
and second-order analysis case at the beginning of Section 2.3.2.

In a related passive-invasive adversary model, the attacker can observe the
values of up to d intermediate wires of the circuit per bit during the computation
within a certain time. The correspondence between this model which is called
the d-probing model and the dth-order DPA attack model with the noisy leakage
function is shown [36, 49, 88]. Moreover, this d-probing model is used [45] to
prove security against dth-order DPA. We make use of the following result.
Lemma 4. The attack order in a higher-order DPA corresponds to the number
of wires that are probed in the circuit (per unmasked bit).

This lemma implies that if a circuit is perfectly secure against d probes, then
combining d power consumption points nonlinearly as in a dth-order DPA will
reveal no information. If the operations that correspond to the probed wires are
in parallel, this is equivalent to security against DPA exploiting the dth-order
statistical moment.

We note that the d-probing model is a stronger notion compared to higher-order
DPA. Namely, if a system is secure against d-probing adversary, it is also secure
against a dth-order DPA if the noisy leakage function L(.) behaves as described
in the first paragraph of Section 2.3 [56]. But the inverse argument is not
necessarily correct. Hereon, we discuss the security of the masking scheme
against a d-probing adversary using Lemma 4.

2.3.4 Security on a Glitchy Circuit

In an ideal circuit implemented using standard CMOS logic, each gate exhibits
at most one transition per clock cycle. However, physical repercussions, such as
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propagation delays can cause a node to transition more than once if the node
allows. An unintended double transition is called a glitch and is very common in
unbalanced CMOS circuits [58]. Below we discuss the negative effect of glitches
on securing the circuit performing the shared operation in Equation (2.6) of
which the second-share circuit is described in Figure 2.2.

X1Y2 X2Y1Z2 X2Y2

Figure 2.2: One share
of the Boolean masked
AND/XOR gate

y y1 y2 x2 z2 ⊕ x1y2 AND XOR

0 0 0 0 0 0+0 0+0
0 1 1 0 0 0+0 0+0
0 0 0 1 0 0+0 0+0
0 1 1 1 0 0+2 0+1
0 0 0 0 1 0+0 2+0
0 1 1 0 1 0+0 2+0
0 0 0 1 1 0+0 2+0
0 1 1 1 1 0+2 2+1
1 0 1 0 0 0+0 0+0
1 1 0 0 0 0+0 0+0
1 0 1 1 0 0+1 0+1
1 1 0 1 0 0+1 0+2
1 0 1 0 1 0+0 2+0
1 1 0 0 1 0+0 2+0
1 0 1 1 1 0+1 2+1
1 1 0 1 1 0+1 2+2

Table 2.4: The number of AND/XOR transitions
on a glitchy circuit caused by the delay of X2

Assume that the input values of the given circuit change from the constant zero
initial state to a random value and that the input X2 is slightly delayed due to a
prior propagation delay. The amount of AND and XOR gate transitions resulting
from this operation is given in the last two columns of Table 2.4 respectively.
The values Z2 and X1 are ignored during this investigation since they do not
have a joint effect on transitions when X2 arrives late and the value Z2 ⊕X1Y2
is uniformly distributed. The plus sign is used to separate the transitions before
and after the late arrival of the value x2. Note that these transitions reflect the
power consumption of the device directly1. Moreover, some of these transitions
combined cause glitches, e.g. the case where y1 = x2 = z2 ⊕ x1y2 = 1 and
y2 = 0.

Observe that the average XOR gate transitions vary for different unmasked
values of Y . Therefore, the average power consumption when y = 0 and y = 1
are different revealing unintended secret information on Y .

Note that the counting in Table 2.4 refers to only one possible transition
1Even though the power consumption of a transition from 1 to 0 and from 0 to 1 is usually

different in reality, we treat them as equal to simplify the example. A more sophisticated
analysis where these consumptions are threated differently gives a similar result.
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assuming that two inputs of the last (rightmost) XOR gate arrive at the same
time. It is also possible that they arrive in different times causing that gate
to glitch when (Y1, Y2) = (1, 1). In that scenario, the late arrival of X2 is
considered safe since it does not reveal any information on the unmasked values.
However, such an examination on the circuit level for every possible gate is
time consuming and expensive. Note also that a misbehavior in one share of an
element does not reveal information on that element but reveals information on
another element that is nonlinearly combined with it.

Hereon, we modify the the probing model introduced in Section 2.3.3 [56] slightly
in order to include the effect of glitches as follows. By probing a wire calculating
a function, the attacker gets information on each input of the function (Y1, Y2,
etc.), each intermediate value of the function (X2Y1, X2Y2, etc.) and the output
of the function. This relation also shows that the probing adversary is stronger
than that of DPA.

Predicting the exact timing of a device, and hence its leakage under these
circumstances is difficult which makes the usage of CPA to recover the key
from the combinational behavior highly challenging. On the other hand, the
following analysis technique can be used to reveal information on the sub-key
without any estimation on the leakage of the device.

2.3.5 Correlation-Enhanced Power Analysis Collision Attack

Correlation-enhanced power analysis collision attack (CEPACA) [72] inherits
“divide and conquer" attack strategy similar to CPA. It is especially preferable
if the exact leakage model is unknown to the attacker or hard to estimate (e.g.
leakage from the combinational logic). Below we describe the attack for the
first-order DPA model. It can be modified to perform higher-order analysis by
using dth-order moments of traces, such as the variances for the second-order
case, instead of the mean traces described below.

The attack focuses on exposing the occurrences of collisions in two different
intermediate values, typically in the S-box inputs or outputs using the same
circuit. Specifically, consider two S-box inputs pti ⊕ keyi and ptj ⊕ keyj , where
i 6= j. If these S-box inputs are equal, the S-box circuit behaves similarly during
the calculations depending on these values. The equality of these intermediate
values implies that pti ⊕ ptj = keyi ⊕ keyj . Hence, the input difference ∆i,j

between the plaintext chunks is equal to the difference between the sub-keys.
The attack is performed on several i, j pairs revealing different collisions hence
relations between different sub-keys. Note that CEPACA significantly reduces
the key space without detecting the exact sub-key values.
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The attacker works on average power traces Mα
i and Mα

j generated by grouping
the collected power traces for different α values of pti and ptj respectively then
taking their mean. The correlations between the mean traces corresponding to
Mα
i and Mα⊕∆i,j

j are calculated for all possible ∆i,j values. The correlation
converges to zero for a wrong ∆i,j value whereas the right ∆i,j reveals itself as
a peak when these correlation traces are plotted.

Even though CPA and CEPACA like attacks are valuable in order to reveal
the sub-key, resistance against such attacks does not imply security against all
possible attacks. The failure of an attack can result from wrong leakage function
assumptions, poor intermediate value choices or the lack of the strength of the
attack. However, by using the t-test based leakage detection which is described
in the next section, we can determine the existence of any dth-order leakage.
The existence of such a leakage does not necessarily lead to key recovery since it
might be caused by an intermediate value that is independent of the key. On the
other hand, the absence of leakage given enough traces strongly supports the
claimed security. Similar to the CPA and CEPACA, we describe the technique
only for first-order DPA.

2.3.6 T-test Based Leakage Detection

Contrary to previous DPA techniques t-test based leakage detection [35] analyses
differences of leakages without focusing on key recovery. The attacker collects
traces from chosen inputs to generate two sets of measurements for which
intermediate values in the implementation have a certain difference. A safe
choice is to keep the intermediate values fixed for one set of measurements, while
they take random values for the second set without making an assumption about
how the implementation leaks. The test is specific, if particular intermediate
values or transitions in the implementation are targeted (e.g. S-box input, S-box
output, HD in a round register, etc.). This type of testing requires knowledge
of the device key and carefully chosen inputs. On the other hand, the test is
non-specific if all intermediate values and transitions are targeted at the same
time. This type of testing only requires to keep all inputs to the implementation
fixed for one set of measurements, and to choose them randomly for the second
set. Obviously, the non-specific test is extremely powerful.

The attacker computes t-test statistics to determine if the two sets of
measurements S0 and S1 are significantly different. We compute Welch’s
(two-tailed) t-test

t = µ(S0)− µ(S1)√
σ2(S0)
|S0| + σ2(S1)

|S1|
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(where µ() is the sample mean, σ2() is the sample variance and | · | denotes
the sample size) to determine if the samples in both sets were drawn from
populations with the same mean (or from the same population). The null
hypothesis is that the samples in both sets were drawn from populations with
the same mean. The alternative hypothesis is that the samples in both sets
were drawn from populations with different means.

In the final phase, the attacker computes the p value to determine if there is
sufficient leakage to reject the null hypothesis at a particular significance level
(1− α). At each point in time, the test statistic t together with the degrees of
freedom ν, computed with the Welch-Satterthwaite equation

ν = (σ2(S0)/|S0|+ σ2(S1)/|S1|)2

(σ2(S0)/|S0|)2/(|S0| − 1) + (σ2(S1)/|S1|)2/(|S1| − 1) ,

allow to compute a p. The p value expresses the probability of observing the
measured (or a greater) difference by chance if the null hypothesis was true. In
other words, small p values give evidence to reject the null hypothesis.

2.4 Conclusion

The symmetric-key algorithms which we work with are SPNs formed from a
layer of key XOR, a layer of substitution boxes and a layer of permutations.
The S-boxes within the substitution layer are typically nonlinear permutations
preferably on the small side for lightweight considerations. In this chapter,
we provided foundations for nonlinear permutations up to size 8. We listed
all the affine equivalence classes of 3- and 4-bit permutations to be able to
analyze them systematically in the following chapters. We discussed AB and
APN permutations together with the Keccak S-box which are 5- or 6-bit
permutations. We concluded the discussion on permutations by describing AES
S-box of size 8 and its tower-field implementation for lightweight constructions.

In the second part of the preliminaries, we explained the basics of DPA. We
described that a device leaks information from storing intermediate values to
memory elements, from combinational operations to calculate these intermediate
values and from the control logic. We mentioned that we use three types of
DPA, namely CPA, CEPACA and t-test based leakage detection and argued
that each of them has its advantages in different scenarios. We use CPA when
we know the exact leakage model especially on memory elements, CEPACA
when the leakage model is hard to predict such as gate-level combinational
operations that can produce glitches on hardware and t-test based leakage
detection to detect any leakage without the consideration of revealing the key.
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It is important to state now that as the order of DPA increases, the required
number of traces increases exponentially due to noise [68].

Finally we showed that the security against dth-order DPA can be proven using
the dth-order probing model. Namely, to be able to prove dth-order security,
we must show that an attacker observing d intermediate values never gets the
sensitive information. We explained that standard masking fails to provide
security in a circuit with glitches due to shared functions which possibly take
all the shares as input.



“Experience is what you get when
you didn’t get what you wanted."

— Randy Pausch

3
Threshold Implementations

In this chapter, we theorize generating a threshold implementation (TI) of any
function in order to use it as a dth-order DPA countermeasure on a device that
reveals a linear combination of the intermediate values’ noisy leakages. Hence,
we answer the theoretical aspects of Question 1 in this chapter. We use the
modified d-probing model adversary described in Section 2.3.4 in our proofs.

A TI, which is based on multi-party computation and secret sharing, satisfies
four properties in order to achieve the mentioned security. In Section 3.1, we
provide two of these properties which are common in all the masking schemes,
namely correctness and uniform masking. Moreover, we introduce specific
notations in that section. The threshold implementation technique, which
inherits its name from threshold cryptography, is based on the observation that
if an attacker probing d wires can not get information from all the shares then
he can not reveal the secret information. The third property non-completeness
describing this feature is given in Section 3.2 together with a discussion on
how many shares are necessary to satisfy it. Early works of TI considers only
one wire probing and proves that at least t+ 1 shares are necessary where t is
the algebraic degree of the function under consideration. We present the last
property, that is uniform sharing of a function, following a discussion on the
consequences of uniformity failure in Section 3.3. Even though the uniform
sharing of a function was given as an important requirement in the early works,
neither the consequences of abandoning this property, nor suggestions on how

29
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to achieve uniformity was discussed by the time we started this research causing
possible insecure implementations. We conclude that section by proposing
several methods to fix such a uniformity failure. Finally, we explain the TI
behavior under affine equivalence relations.

This chapter forms the core of the theoretical work done during this Ph.D. We
make use of this theory in the following practical chapters. We note that the
information provided in this chapter can be used to implement many other
algorithms that are not considered in this thesis. The material treated here
accumulated in collaboration with several co-authors [17, 18]. The discussion
on TI of nonlinear functions using d+ 1 input shares is a part of an ongoing
work in collaboration with O. Reparaz, B. Gierlichs, S. Nikova and V. Rijmen.

3.1 Notation

In order to implement a function f(X) = A from Fn to Fm with TI, we first
split each variable x into sx shares xi, where i ∈ {1, 2, . . . , sx}, by means of
Boolean masking. In order to do that, without loss of generality, we randomly
choose the shares x1, . . . , xsx−1 from a uniform distribution then calculate xsx

so that the XOR sum of these shares is equal to the variable itself (x =
⊕

i xi).
We refer to a valid share vector x = (x1, . . . , xsx) and this splitting operation
into shares as a sharing or masking of the unshared value x. Moreover we use
the term sx-sharing of x to emphasize the number of shares.

For all values x with Pr(X = x) > 0, let Sh(x) denote the set of valid share
vectors x for x:

Sh(x) = {x ∈ Fnsx |x1 ⊕ x2 ⊕ · · · ⊕ xsx
= x} .

Pr(X = x|X = x) denotes the probability that X = x when the unshared input
value of the masking equals x, taken over all auxiliary inputs of the masking. We
use the same notation for the output a ∈ Fm, and corresponding sa,a,Sh(a).

The masking X also satisfies the following.

Property 1 (Uniform masking). A masking X is uniform if and only if there
exists a constant p such that for all x we have:

if x ∈ Sh(x) then Pr(X = x|X = x) = p, else Pr(X = x|X = x) = 0

and ∑
x∈Sh(x)

Pr(X = x) = Pr(X = x) .
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In words, we call a masking uniform if for each value x, the corresponding
vectors with masked values occur with the same probability.

We start with a lemma proving that uniformity of a masking implies the
independence of the combination of any sx − 1 shares from the unmasked value
hence, satisfying an (sx, sx) secret sharing scheme. A (t, n) secret sharing [91]
is defined as distributing parts of a secret x among n players such that the
information from at least t players are required to calculate the secret. Let Xī

denote the vector obtained by removing Xi from X.

Lemma 5. If the masking X of X is uniform, then xī and x are independent
(for any choice of i).

Proof. Two stochastic functions are independent if and only if their joint
distribution equals the product of their marginal distributions. Hence, we
have to show for all i that

∀xī, x : Pr(X = x,Xī = xī) = Pr(Xī = xī) Pr(X = x).

Since Pr(A,B) = Pr(B) Pr(A|B), it suffices to show that ∀xī, x : Pr(Xī =
xī|X = x) = Pr(Xī = xī). We start from

Pr(X = x|X = x) = Pr(Xī = xī, Xi = xi|X = x)

= Pr(X = x,Xī = xī, Xi = xi)
Pr(X = x)

= Pr(X = x,Xī = xī, Xi = xi)
Pr(X = x,Xī = xī)

Pr(X = x,Xī = xī)
Pr(X = x)

= Pr(Xī = xī|X = x) Pr(Xi = xi|X = x,Xī = xī) .

We know that the last factor equals 1 when x ∈ Sh(x) and zero otherwise.
Hence, we obtain

∀x : Pr(Xī = xī|X = x) = p. (3.1)
Now we can write (Bayes’ Theorem):

Pr(Xī = xī) =
∑
x

Pr(Xī = xī|X = x) Pr(X = x)

= p
∑
x

Pr(X = x) = p. (3.2)

The equality of Equations (3.1) and (3.2) proves the claim.
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It follows that p = |F|n(1−sx).

Hence, the knowledge of up to sx − 1 shares of a masking defined in Property 1
does not reveal any information on x.

In a TI, f is implemented as a vector of functions f = f1, . . . , fsf
that takes

x as input and outputs a. Each function in this vector is called a component
function and represented by fi where i ∈ {1, . . . , sf}. From now on, we use the
term (sf )-sharing of the function to describe f . f must satisfy the following
property for a correct implementation.

Property 2 (Correctness). For all a ∈ Fm2 , A = f(X) implies that a =∑
i ai =

∑
i fi(x) for all x satisfying

∑
i xi = x and x ∈ Fn2 .

It is clear that the number of output shares sa is equal to the number of
component functions sf from this property. From now on, we refer to sx as
the number of input shares sin and sf as the number of output shares sout. If
sin = sout, they are denoted by s.

Correctness of a sharing and the uniform masking of the input to this sharing
are standard properties for all masking schemes. To achieve higher-order
DPA security on hardware where glitches occur, one needs to follow two other
properties given in the following sections. Failing to achieve any one of these
properties can result in leakage of sensitive information. The non-completeness
property given in Section 3.2 is the main difference compared to standard
masking schemes and provides protection against DPA in a circuit with glitches.
In Section 3.2.1, we discuss how many input and output shares are necessary
to achieve the non-completeness property. To build TI on a big circuit that
has cascaded or parallel operations, e.g. the whole block cipher, one needs the
uniformity property which is defined in Section 3.3. After discussing several
methods to achieve that, we conclude with some remarks and extensions.

3.2 Non-completeness

As mentioned in Section 2.3.2, most of the masking schemes use all sin input
shares jointly in at least one of their component functions. Therefore, an attacker
probing the corresponding wire can observe all the information required to solve
the (sin, sin) secret sharing. The threshold implementation technique aims that
an attacker probing d wires can only observe information from at most sin − 1
shares, which is independent of the sensitive information making a dth-order
DPA infeasible by Lemma 4. Hence, if the input is a uniform masking and the
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following property is satisfied, the shared function f achieves security against
dth-order DPA.

Property 3 (dth-order non-completeness). Any combination of up to d
component functions fi of f must be independent of at least one input share.

Property 3, which we shortly refer to as the non-completeness property in the
rest of the thesis, is more general than the non-completeness property defined
in the early works of TI [76] for first-order DPA resistance when d = 1. We
define a sharing that satisfies correctness and non-completeness properties as
dth-order TI and prove its security with the following theorem.

Theorem 1. If the input masking X of the shared function f is a uniform
masking and f is a dth-order TI then the dth-order analysis on the power
consumption of a circuit implementing f does not reveal the unmasked input
value x even if the inputs are delayed or glitches occur in the circuit.

Proof. By Lemma 4, it is sufficient to prove that an adversary who can probe
d wires does not get any information about x. By construction, if X is a
uniform masking and f satisfies correctness and non-completeness properties,
an adversary who probes d or less wires will get information from all but at
least one input share, which is independent of the input by Lemma 5.

Note that the only required assumption on the physical behavior of the hardware
or software implementation of f is that the component functions can be
implemented such that their leakages are independent of each other hence
satisfying Property 3. In other words, the cross-talk between implementations
of different components should be negligible. Note that this is a common and
realistic assumption required for all masking schemes.

3.2.1 Number of Shares

An affine function f(X) = A can be implemented with s ≥ d+ 1 component
functions to thwart dth-order DPA. Without loss of generality, one can generate
f by defining the first component function to be f1(X1) = A1 = f(X1) and
the rest of the component functions to be fi(Xi) = Ai where fi is equal to f
without constant terms and 2 ≤ i ≤ s. To give an example f(X) = 1⊕X can
be implemented with the following component functions:

f1(X1) = 1⊕X1 and fi(Xi) = Xi, where i ∈ {2, . . . , s}.
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Since every component function depends on only one share, it is clear that the
non-completeness property is satisfied with sin = d+ 1.

However, the minimum number of shares required increases together with
the degree of the function and the number of variables effecting this degree.
Let’s take the quadratic function A = f(X,Y, Z) = 1⊕X ⊕XZ ⊕ Y Z where
X,Y, Z ∈ F2. The Equation (3.3) with sin = 2 and sout = 4 is a first-order TI
if the inputs X, Y and Z are independent of each other since probing any wire
gives information from at most one share of each input.

A1 = 1⊕X1 ⊕X1Z1 ⊕ Y1Z1

A2 = X1Z2 ⊕ Y1Z2

A3 = X2 ⊕X2Z1 ⊕ Y2Z1 (3.3)

A4 = X2Z2 ⊕ Y2Z2

On the other hand, if we look at the more complex function A = f(X,Y, Z) =
1⊕X⊕XY ⊕XZ⊕Y Z, we observe that we can not achieve the non-completeness
property with only four component functions. Note that the difference between
these two unmasked equations is the term XY of which the sharings should
be added to Equation (3.3) for a correct implementation. Even if we place the
additional terms X1Y1 and X2Y2 from the sharing of XY to the first and the
last statement in Equation (3.3) respectively, the rest of the terms X1Y2 and
X2Y1 can not be placed in these four component functions without breaking the
non-completeness property. Hence, we need to increase the number of shares.
One option to obtain non-completeness is increasing the number of output
shares as shown in the equation below.

A1 = 1⊕X1 ⊕X1Y1 ⊕X1Z1 ⊕ Y1Z1

A2 = X1Z2 ⊕ Y1Z2

A3 = X2 ⊕X2Z1 ⊕ Y2Z1

A4 = X2Y2 ⊕X2Z2 ⊕ Y2Z2 (3.4)

A5 = X1Y2

A6 = X2Y1

Applying this option to permutations with more output bits causes an undesired
increase in the number of output shares. Another option, on the other hand,
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is to increase the number of input shares to provide a three-share alternative
given in Equation (3.5) which is presented in the early works of TI [76].

A1 = 1⊕X2 ⊕ (X2Y2 ⊕X2Y3 ⊕X3Y2)⊕ (X2Z2 ⊕X2Z3 ⊕X3Z2)

⊕ (Y2Z2 ⊕ Y2Z3 ⊕ Y3Z2)

A2 = X3 ⊕ (X3Y3 ⊕X3Y1 ⊕X1Y3)⊕ (X3Z3 ⊕X3Z1 ⊕X1Z3)

⊕ (Y3Z3 ⊕ Y3Z1 ⊕ Y1Z3) (3.5)

A3 = X1 ⊕ (X1Y1 ⊕X1Y2 ⊕X2Y1)⊕ (X1Z1 ⊕X1Z2 ⊕X2Z1)

⊕ (Y1Z1 ⊕ Y1Z2 ⊕ Y2Z1)

Observe that with the latter approach, the number of input and output shares
for a first-order TI is the same which can be advantageous in some applications.

The first-order TI sharing of a quadratic function where the linear terms
with indices i, the quadratic terms with indices both i and i + 1 and the
quadratic terms with only the indices i appear in the same component function
fi−1 in a cyclic manner is called a first-order direct sharing with three shares
(Equation (3.5)).

It is possible to extend the first-order sharing to higher degree functions by
increasing the number of shares. Similar to the previous argument on sharing a
quadratic function with two input shares, one way to achieve this is to increase
the number of output shares as in Equation (3.6) which is given for the function
f(X,Y, Z) = 1⊕X ⊕XY ⊕XY Z.

A1 = 1⊕X1 ⊕X1Y1 ⊕X1Y1Z1

A3 = X1Y2 ⊕X1Y2Z1

A5 = X2 ⊕X2Y1 ⊕X2Y1Z1

A7 = X2Y2 ⊕X2Y2Z1

A2 = X1Y1Z1

A4 = X1Y2Z2

A6 = X2Y1Z2

A8 = X2Y2Z2

(3.6)

A similar limitation observed for Equation (3.3) also exists for this sharing if
the number of distinct high-degree terms in the unshared function increases.
In this case the alternative sharing given in Equation (3.7) can be used for the
same function. This sharing, comparable to the one in Equation (3.5), has the
same number of input and output shares, i.e. sin = sout = 4. TI of functions of
up to degree three of which all the shared linear, quadratic and cubic terms are



36 THRESHOLD IMPLEMENTATIONS

distributed as in Equation (3.7) is referred to as first-order direct sharing with
four shares.

A1 = 1⊕X2 ⊕ (X2Y2 ⊕X2Y3 ⊕X2Y4 ⊕X4Y3)⊕ (X2Y2Z2 ⊕X2Y3Z2 ⊕X2Y2Z3

⊕X2Y3Z4 ⊕X2Y4Z3 ⊕X2Y2Z4 ⊕X2Y4Z2 ⊕X2Y4Z4 ⊕X2Y3Z3 ⊕X4Y3Z2

⊕X3Y4Z2 ⊕X4Y2Z3 ⊕X3Y2Z4 ⊕X4Y3Z3 ⊕X4Y4Z3 ⊕X4Y3Z4)

A2 = 1⊕X3 ⊕ (X3Y3 ⊕X3Y4 ⊕X3Y1 ⊕X1Y4)⊕ (X3Y3Z3 ⊕X3Y4Z3 ⊕X3Y3Z4

⊕X3Y4Z1 ⊕X3Y1Z4 ⊕X3Y3Z1 ⊕X3Y1Z3 ⊕X3Y1Z1 ⊕X3Y4Z4 ⊕X1Y4Z3

⊕X4Y1Z3 ⊕X1Y3Z4 ⊕X4Y3Z1 ⊕X1Y4Z4 ⊕X1Y1Z4 ⊕X1Y4Z1)

A3 = 1⊕X4 ⊕ (X4Y4 ⊕X4Y1 ⊕X4Y2 ⊕X2Y1)⊕ (X4Y4Z4 ⊕X4Y1Z4 ⊕X4Y4Z1 (3.7)

⊕X4Y1Z2 ⊕X4Y2Z1 ⊕X4Y4Z2 ⊕X4Y2Z4 ⊕X4Y2Z2 ⊕X4Y1Z1 ⊕X2Y1Z4

⊕X1Y2Z4 ⊕X2Y4Z1 ⊕X1Y4Z2 ⊕X2Y1Z1 ⊕X2Y2Z1 ⊕X2Y1Z2)

A4 = 1⊕X1 ⊕ (X1Y1 ⊕X1Y2 ⊕X1Y3 ⊕X3Y2)⊕ (X1Y1Z1 ⊕X1Y2Z1 ⊕X1Y1Z2

⊕X1Y2Z3 ⊕X1Y3Z2 ⊕X1Y1Z3 ⊕X1Y3Z1 ⊕X1Y3Z3 ⊕X1Y2Z2 ⊕X3Y2Z1

⊕X2Y3Z1 ⊕X3Y1Z2 ⊕X2Y1Z3 ⊕X3Y2Z2 ⊕X3Y3Z2 ⊕X3Y2Z3)

These ideas can also be carried to higher-order TIs. In Equation (3.8), we provide
a second-order example for the function A = f(X,Y, Z) = 1⊕X ⊕XZ ⊕ Y Z
with sin = 3 and sout = 9 shares.

A1 = 1⊕X1 ⊕X1Y1 ⊕ Y1Z1

A3 = X1Z3 ⊕ Y1Z3

A5 = X2 ⊕X2Z2 ⊕ Y2Z2

A7 = X3Z1 ⊕ Y3Z1

A9 = X3 ⊕X3Z3 ⊕ Y3Z3

A2 = X1Z2 ⊕ Y1Z2

A4 = X2Z1 ⊕ Y2Z1

A6 = X2Z3 ⊕ Y2Z3

A8 = X3Z2 ⊕ Y3Z2

(3.8)

Similar to the first-order TI case, this equation can not be extended to the
function A = f(X,Y, Z) = 1⊕X⊕XY ⊕XZ⊕Y Z with sin = 3 shares without
breaking the non-completeness property. If this is the case, the following
equation with sin = 5 and sout = 10 provided for the function A = f(X,Y, Z) =
1⊕X ⊕Y Z can be used. We refer to a sharing of a quadratic function of which
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all the shared linear and quadratic terms are distributed as in Equation (3.9)
as second-order direct sharing with five input shares.

A1 = 1⊕X2 ⊕ Y2Z2 ⊕ Y1Z2 ⊕ Y2Z1

A3 = X4 ⊕ Y4Z4 ⊕ Y1Z4 ⊕ Y4Z1

A5 = Y2Z3 ⊕ Y3Z2

A7 = X5 ⊕ Y5Z5 ⊕ Y2Z5 ⊕ Y5Z2

A9 = Y3Z5 ⊕ Y5Z3

A2 = X3 ⊕ Y3Z3 ⊕ Y1Z3 ⊕ Y3Z1

A4 = X1 ⊕ Y1Z1 ⊕ Y1Z5 ⊕ Y5Z1

A6 = Y2Z4 ⊕ Y4Z2

A8 = Y3Z4 ⊕ Y4Z3

A10 = Y4Z5 ⊕ Y5Z4

(3.9)

These examples show how the degree and the function representation of an
S-box change the required number of shares. Moreover, the number of input
and output shares have an important role on the cost of the TI. Namely, the
number of ANDs and XORs hence, the area of the combinational logic increase
together with the number of input shares and the number of registers increase
together with the number of input/output shares. Therefore, we will provide
the minimum number of required input shares for a TI.

Lemma 6. The minimum number of input shares required for implementing a
dth-order TI of a function with independent inputs is

sin ≥ d+ 1.

Proof. Consider the product(s) Xj1Xj2Xj3 . . . Xjt of t variables where Fn 3
X = (X1, X2, . . . , Xn) and Xj ∈ F . We represent the sharing of each variable
Xj as Xj

i where i ∈ {1, . . . , sin}. Then,

Xj1Xj2Xj3 . . . Xjt = (Xj1
1 +Xj1

2 + · · ·+Xj1
sin

) . . . (Xjt
1 +Xjt

2 + · · ·+Xjt
sin

)

= (Xj1
1 Xj2

1 . . . Xjt
1 ) + (Xj1

1 Xj2
1 . . . Xjt

2 ) + . . .+ (Xj1
sinX

j2
sin . . . X

jt
sin ).

Consider a correct sharing where each term in the above sum belongs to a
different component function. Given the independence of the inputs, each
component function carries information from at most one share of each input
variable. Hence, any combination of up to d component functions carries
information from at most d shares of an input. To achieve the non-completeness
property, sin > d which implies the equation sin ≥ d+ 1 for the number of input
shares.

However, choosing sin = d+ 1 causes a huge increase of the number of output
shares as the number of terms in the function representation of a function
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increases since each component function uses only one share of each variable.
Moreover, the independence of each input variable can be a limiting factor.
Namely, without the independence limitation, the second output share A2 in
Equation (3.3) can reveal information from all the shares of its inputs. On the
other hand, we show in the following theorem that there is always a structured
way to generate the component functions using more than one input share hence
possibly decreasing the number of output shares. This sharing additionally
eliminates the independence of the unshared inputs limitation.

Theorem 2. There always exist a dth-order TI of a function of degree t that
requires sin ≥ t× d+ 1 input and sout ≥

(
sin
t

)
output shares.

Proof. Consider the product(s) Xj1Xj2Xj3 . . . Xjt of t variables where Fn 3
X = (X1, X2, . . . , Xn) and Xj ∈ F . We represent the sharing of each variable
Xj as Xj

i where i ∈ {1, . . . , sin}. Then,

Xj1Xj2Xj3 . . . Xjt = (Xj1
1 +Xj1

2 + · · ·+Xj1
sin

) . . . (Xjt
1 +Xjt

2 + · · ·+Xjt
sin

)

= (Xj1
1 Xj2

1 . . . Xjt
1 ) + (Xj1

1 Xj2
1 . . . Xjt

2 ) + . . .+ (Xj1
sinX

j2
sin . . . X

jt
sin ).

To satisfy the correctness each term in the above sum should belong to at
least one component function. This can be done in the following way. Let
each component function use only t different shares (indices) such that any
t combination of sin shares is used by only one component function. Hence,
any combination of up to d component functions carries information from at
most t× d shares. To achieve the non-completeness property, sin > t× d which
implies the equation sin ≥ t× d+ 1 for the number of input shares. With the
given sharing, there exist

(
sin
t

)
different ways of choosing t combination of sin

shares and placing them in component functions. Hence, this sharing needs
sout ≥

(
sin
t

)
component functions.

Remark 1. Each component function of a dth-order TI that is defined as in
the proof of Theorem 2 uses at most t input shares where t is the degree of
the function. Hence, each component function is independent of sin − t input
shares.

The required number of input and output shares given in Theorem 2 correspond
to the number of shares provided in the earlier works [76] for d = 1. Hence, the
property of each component function being independent of at least one input
share defined in [76] is also satisfied.

The sharings provided in Equations (3.5) and (3.9) are examples of first- and
second-order TI applied to a quadratic Boolean function using the technique
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described in Theorem 2. We will use the same structure to generate component
functions unless stated otherwise. We point out that the theorem does not
imply that the number of input, output shares or their sum are minimized. A
second-order TI with six input and seven output shares (hence the sum of input
output shares is 13 instead of 15) is given for A = 1⊕X⊕Y Z in Equation (3.10)
as a counter example. It is still an open question to find a lower bound for
sin + sout. We leave the analysis of TIs with t× d+ 1 > sin ≥ d+ 1 as a future
work.

A1 = 1 +X2 + Y2Z2 + Y1Z2 + Y2Z1 + Y1Z3 + Y3Z1 + Y2Z3 + Y3Z2

A2 = X3 + Y3Z3 + Y3Z4 + Y4Z3 + Y3Z5 + Y5Z3

A3 = X4 + Y4Z4 + Y2Z4 + Y4Z2 + Y2Z6 + Y6Z2

A4 = X5 + Y5Z5 + Y1Z4 + Y4Z1 + Y1Z5 + Y5Z1 (3.10)

A5 = Y2Z5 + Y5Z2 + Y4Z5 + Y5Z4

A6 = X6 + Y6Z6 + Y3Z6 + Y6Z3 + Y4Z6 + Y6Z4

A7 = X1 + Y1Z1 + Y1Z6 + Y6Z1 + Y5Z6 + Y6Z5

3.3 Uniformity

So far, we have shown that a function f can be implemented in a way that it
is secure against dth-order DPA with the requirement that uniform masking,
correctness and non-completeness properties are satisfied. In the following we
will discuss the consequences of having a non-uniform masking in the input.

3.3.1 Analyzing the Lack of Uniformity

Let (X,Y ) ∈ F2
2 and F2 3 A = f(X,Y ) = XY . Define f corresponding to

first-order TI of f as follows:

A1 = f1(X2, X3, Y2, Y3) = X2Y2 ⊕X2Y3 ⊕X3Y2

A2 = f2(X1, X3, Y1, Y3) = X3Y3 ⊕X1Y3 ⊕X3Y1 (3.11)

A3 = f3(X1, X2, Y1, Y2) = X1Y1 ⊕X1Y2 ⊕X2Y1.
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If the masking of the input (X,Y ) is uniform, then the masking ofA is distributed
as shown in Table 3.1. In order to satisfy the uniformity of masking definition
for the output A, we would need that the 16 non-zero values in the table were
equal (specifically to 22(3−1)−1(3−1) = 4 as will be defined in Property 4).

Table 3.1: Number of times that a masking a1, a2, a3 occurs for a given input
(x, y)

a1, a2, a3
(x, y) 000 011 101 110 001 010 100 111
(0, 0) 7 3 3 3 0 0 0 0
(0, 1) 7 3 3 3 0 0 0 0
(1, 0) 7 3 3 3 0 0 0 0
(1, 1) 0 0 0 0 5 5 5 1

Theorem 1 implies that there is no leakage of information in this circuit. However,
if A is used as input of a second circuit, then Theorem 1 does not apply anymore
to the second circuit (because its inputs are not uniform) and potentially the
second circuit might leak information.

Let B = g(Z,A) = ZA and let this multiplication be implemented by similar
formulas as above. For example, Equation (3.11) becomes:

B1 = g1(Z2, Z3, A2, A3) = Z2A2 + Z2A3 + Z3A2 . (3.12)

Assume that the masking of Z is uniform but the masking of A has the
distribution given in Table 3.1. Then the masking of B will be distributed
as shown in Table 3.2. Remember from Section 2.3.3 that a first-order DPA
exploits information from first-order statistical moment, namely the deviations
in the mean values of leakages corresponding to different inputs. Without loss of
generality1, we can assume a HW leakage model as described in Section 2.3. The
average HW of B1, B2, B3 in the seventh row ((x, y, z) = (1, 1, 0)) equals 33/32,
whereas it equals 27/32 in the first six rows. This implies that some hardware
implementations might show a different average power consumption when
(x, y, z) = (1, 1, 0). Observe also that cor(Bi, B) = 0.125. Hence, in the part of
the circuit implementing Equation (3.12), the average of the leakage L can be
correlated to B, since both B2 and B3 are correlated to B. Similar arguments
would follow for a nonuniform higher-order TI if higher-order statistical moments

1We assume that each component function has its own circuit. If the component functions
are the same and one single circuit is used for all shared calculations, transition based leakages
such as HD model can cause a decrease in the security order [5].
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Table 3.2: Number of times that a masking b1, b2, b3 occurs for a given input
(x, y, z)

b1, b2, b3
(x, y, z) 000 011 101 110 001 010 100 111
(0, 0, 0) 37 9 9 9 0 0 0 0
(0, 0, 1) 37 9 9 9 0 0 0 0
(0, 1, 0) 37 9 9 9 0 0 0 0
(0, 1, 1) 37 9 9 9 0 0 0 0
(1, 0, 0) 37 9 9 9 0 0 0 0
(1, 0, 1) 37 9 9 9 0 0 0 0
(1, 1, 0) 31 11 11 11 0 0 0 0
(1, 1, 1) 0 0 0 0 21 21 21 1

such as the variance distribution of a leakage is considered leading to a possibly
successful second-order DPA.

Notice that if the function g following the nonlinear operation f was linear and
it is shared as defined in the beginning of Section 3.2.1, the output distribution
of f would be carried to the output of g and would still be secure. Hence,
we face this problem only when the input sharing of a nonlinear function is
not uniform. Therefore we need to make sure that the input of a sharing g
of a nonlinear function g which follows f is also a uniform masking. This is
equivalent to saying that f should be a uniform sharing of the function f as
defined by the following property.

Property 4 (Uniform sharing of a function). The dth-order sharing f is uniform
if and only if

∀x ∈ Fn,∀a ∈ Fm with f(x) = a,∀a ∈ Sh(a) and sout ≥ d+ 1 :

|{x ∈ Sh(x)|f(x) = a}| = |F|n(sin−1)

|F|m(sout−1) .

If sin = sout and n = m, this simplifies to:

∀x, a ∈ Fn with f(x) = a,∀a ∈ Sh(a) : |{x ∈ Sh(x)|f(x) = a}| = 1 .

It follows that a uniform circuit f with sin = sout is invertible if and only if
f is invertible. Moreover if n < m, then uniformity can be achieved only if
sin > sout. We now prove that the uniform circuit condition is sufficient to
achieve a uniform distribution at the output.
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Theorem 3. If the masking X is uniform and the circuit f is uniform, then
the masking A of A = f(X), defined by A = f(X) is uniform.

Proof. In order to prove that A is uniform, we need to show that Pr(A =
a|A = a) is equal to a constant p if a ∈ Sh(a) and 0 otherwise by Property 1.
Considering a = f(x) and a = f(x), we obtain:

Pr(A = a|A = a)

=
∑

x∈Sh(x),
x,f(x)=a

Pr(A = f(x)|A = f(x)) Pr(X = x, X = x).

Using the equality

Pr(X = x, X = x) = Pr(X = x|X = x) Pr(X = x)

and Property 1, the second factor becomes p′ Pr(X = x). The proof of Lemma 5
implied that p′ = |F|−n(sin−1). Property 4 implies that the first factor equals
|F|n(sin−1)−m(sout−1) for all a ∈ Sh(a). We obtain

Pr(A = a|A = a) =
∑

x∈Sh(x),
x,f(x)=y

|F|−m(sout−1) Pr(X = x) = |F|−m(sout−1).

Hence, Pr(A = a|A = a) is equal to a constant p = |F|−m(sout−1) if a ∈ Sh(a)
and 0 otherwise satisfying a uniform masking.

We call a dth-order TI that is a uniform sharing a uniform dth-order TI.

Assume that the sharing B = g(A) is taking the output of the uniform
sharing A = f(X). We still need to be careful to satisfy the non-completeness
(Property 3) in the cascaded function h = g ◦ f . As an example we can assume
that f and g are uniform first-order 3-sharings where A1 = F1(X1, X2) and
A2 = f2(X2, X3). The function g1(A1, A2) can also be written as g1(X1, X2, X3).
In that case, a glitch in that function can produce a leakage that depends on all
the shares of the value X. We can avoid this by dividing these two nonlinear
operations with a register which disallows the propagation of a glitch that effects
all the shares of an unmasked value. Hence, a leakage will still be independent
of the unmasked value.

Remark 2. If the output of a nonlinear function is used as an input to a
nonlinear function, it is important to separate these shared functions by means
of a register even if the functions have uniform TIs.
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Achieving Property 4 is important not only for the cascaded functions, but also
for functions that are acting in parallel on (partially) the same input. If no
special care is taken, then “local uniformity” of the distributions of the outputs
of the individual functions will not lead to “global uniformity”, i.e. for the
joint distributions of the outputs of all blocks. For example, let f ,g be two
functions acting on the same uniform input X. Then, even if f ,g are uniformly
shared functions, producing uniform A = f(X) and A′ = g(X), this does not
imply that (A,A′) is uniform. Like with cascaded functions, if each of the
parallel blocks satisfies Properties 1, 2 and 3, there will be no leakage of signals
within the parallel blocks, but the lack of uniformity in the joint distribution of
the masking of the outputs can lead to information leakage if the outputs are
combined as inputs to a next function.

Unfortunately, we do not know a straightforward way to generate the component
functions so that Property 3 and 4 hold jointly (unlike the other properties
individually) for any Boolean function. Hence, each dth-order non-complete
sharing, should be checked in order to assure the uniformity property. Moreover,
practice shows that adding the uniformity requirement to a sharing tends to
blow up the mathematical complexity of the sharing, as well as the cost of
implementation. We can take different types of actions to remedy these problems
which we will discuss in the following section.

3.3.2 Achieving Uniformity of a Shared Function

As discussed in the previous subsection, uniformity has a particular importance
for TI of the entire algorithm which is possibly composed of several layers
of linear and nonlinear functions. It is known that a linear function would
carry the input distribution to its output not requiring a further investigation.
Unfortunately, satisfying uniformity of the sharing is not trivial when nonlinear
functions are considered. In the following, we suggest several options to treat
this problem.

Re-masking

Re-masking is a technique to make a nonuniform sharing of a value uniform by
introducing extra fresh randomness in the circuit. It is initially used by Moradi
et al. [73] in the first-order TI context on a three-share implementation as given
below.
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If the sharing A = (A1, A2, A3) that is the output of the nonuniform sharing f
is followed by the re-masking operation r provided in Equation (3.13) that uses
two random masks M1,M2, then the output sharing B is uniform.

B1 = r1(A1,M1) = A1 ⊕M1

B2 = r2(A2,M2) = A2 ⊕M2 (3.13)

B3 = r3(A3,M1,M2) = A3 ⊕M1 ⊕M2.

This re-masking can be extended to any number of shares to generate uniform
sharings.

Definition 4 (Re-masking). The shared function r that takes a sharing A with
sout shares, which can be a result of a non-uniform TI, and sout − 1 randomly
generated numbers (masks) (M1,M2, . . . ,Msout−1) as input and is defined as
follows without loss of generality produces a uniform sharing B.

B1 = r1(A1,M1) = A1 ⊕M1

B2 = r2(A2,M2) = A2 ⊕M2

...

Bsout−1 = rsout−1(Asout−1,Msout−1) = Asout−1 ⊕Msout−1

Bsout = rsout (Asout ,M1,M2, . . .Msout−1) = Asout ⊕
⊕

Mi

This function and this operation is called re-masking.

Even though re-masking is a technique that can be used when finding
uniform sharings is unattainable otherwise, it should not be considered as
a straightforward approach since generation of good masks can be a burden.

The following theorem allows to reduce the amount of random bits used by
re-masking steps of threshold implementations: under certain circumstances,
only a fraction of the shares needs to be re-masked.

Theorem 4. Let (X1, X2, . . . , Xs) be a sharing of a (stochastic) variable X ∈
Fn, where Pr(X1 = x1, . . . , Xt = xt) = |F|−tn,∀(x1, . . . , xt) for some t with
1 ≤ t ≤ s. Then the sharing (A1, . . . , As), defined by Ai = Xi for 1 ≤ i ≤ t and
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Ai = Xi⊕Mi for t < i ≤ s, is a uniform sharing for X provided that the masks
Mi, i = t + 1, . . . , s − 1 are independently and uniformly distributed random
variables and that Ms = Mt+1 ⊕ · · · ⊕Ms−1.

Proof. Showing

Pr(A1 = a1, A2 = a2, . . . , As = as|X = a1 ⊕ a2 ⊕ · · · as) = |F|n(1−s)

proves that the described re-masking produces a uniform sharing. We have:

Pr(A1 = a1, . . . , As = as|X = a1 ⊕ a2 ⊕ · · · ⊕ as)

= Pr(A1 = a1, . . . , At = at|X = a1 ⊕ a2 ⊕ · · · ⊕ as) (3.14)

·Pr(At+1 = at+1, . . . , As = as|X = a1 ⊕ a2 ⊕ · · · ⊕ as, A1 = a1, . . . , At = at) .

Since Ai = Xi for 1 ≤ i ≤ t, the first factor equals |F|−tn. For the second factor
we recall the definition of At+1to obtain that:

Pr(At+1 = at+1) =
∑
xt+1

Pr(Xt+1 = xt+1) Pr(Mt+1 = at+1 ⊕ xt+1)︸ ︷︷ ︸
|F|−n

.

The same holds for At+2, . . . , As−1 and since the Mi have independent
distributions, we can equate the second factor of (3.14) to:

|F|(1−s−t)n
∑

xt+1,...,xs−1
Pr(Xt+1=xt+1,...,Xs−1=xs−1,As=as|X=a1⊕···⊕as,X1=x1,...,Xt=xt) .

Recalling the definition of As completes the proof.

Clearly, the extra randomness required by the re-masking approach may be a
worse problem than the blow-up in gate count caused by the uniform sharing
approach in some cases. However, we want to stress the following.

Observation 1. An implementation that uses re-masking, does not need
uniform sharings in order to resist DPA attacks.

Theorem 1 can be proven using only Properties 1, 2 and 3. For example,
Property 4 is needed if several circuits are cascaded (pipelined), and even then
it can be ignored if re-masking is used. In other words, there is no need to
demand uniformity of a circuit that is followed by a re-masking step anyway.
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By relinquishing the uniformity, it is often possible to reduce the number of
shares and the size of the circuit.

Note also that this re-masking operation can be used to increase the number of
shares if more than the required amount of masks are used. Specifically, each
extra mask creates a new share while the XOR of these extra masks are added
to one of the shares of a uniform sharing existed before the re-masking.

Increasing the Number of Input Shares

In both Lemma 6 and Theorem 2, we provide a lower bound on the number
of required input shares implying that it is possible to increase the number of
input shares without breaking the non-completeness requirement. The entropy
introduced in the system increases together with the number of input shares. The
increase of entropy can be beneficial during the search for a uniform TI. The first
example of this argument is given in [75] on the function A = f(X,Y ) = XY .
Remember from Section 3.3.1 that the direct three-share TI of this function is
not uniform. It has been shown in [75] that Equation (3.15) with four input
and output shares satisfies all TI properties.

A1 = (X3 ⊕X4)(Y2 ⊕ Y3)⊕ Y2 ⊕ Y3 ⊕ Y4 ⊕X2 ⊕X3 ⊕X4

A2 = (X1 ⊕X3)(Y1 ⊕ Y4)⊕ Y1 ⊕ Y3 ⊕ Y4 ⊕X1 ⊕X3 ⊕X4 (3.15)

A3 = (X2 ⊕X4)(Y1 ⊕ Y4)⊕ Y2 ⊕X2

A4 = (X1 ⊕X2)(Y2 ⊕ Y3)⊕ Y1 ⊕X1

In addition, first-order direct sharing with four shares also provides a uniform
TI for the mentioned function. We note that the number of output shares in
Equation (3.15) is less than the suggested amount in Theorem 2. We remind
again with this example that the construction in the theorem is not necessarily
the optimal one.

Decreasing the Number of Output Shares

With the constructions described in Section 3.2.1, we see that the number of
output shares can become greater than the number of input shares. It can be
useful to decrease the number of shares to achieve Property 4. Moreover, we
also avoid further increase in shares and hence in area by decreasing the number
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of shares after nonlinear operations. This decrease can be done by combining
different shares with an affine function as described in the following theorem.

Theorem 5. Given sin ≥ d + r input shares, where r ≥ 1, that are not
necessarily uniform but secure against (d+ r − 1)st-order DPA, any sharing g
that combines any r of the input shares linearly in one component function and
keeps the rest of the input shares unchanged, is secure against dth-order DPA.

Proof. We represent the shared variable A which is not necessarily a uniform
masking using sin ≥ d+ r shares for a given d. Assume that this initial masking
of A is secure against (d+ r− 1)st-order DPA. That implies that combining any
d+r−1 shares does not reveal the unmasked value A. Consider sin−1 component
functions: the first component function combines, without loss of generality,
the first two input shares linearly; each of the other component functions takes
one share as input and outputs it unchanged, i.e. B1 = g1(A1, A2) = A1 ⊕A2
and Bi−1 = gi−1(Ai) = Ai for 3 ≤ i ≤ sin. This construction satisfies both
Property 2 and Property 3 for (d + r − 2)nd-order security and one needs
sin − 1 ≥ d + r − 1 shares to reveal the unmasked variable. Moreover, the
component function g1 only uses a balanced gate. Namely, a 2× 1 XOR gate
whose output changes with probability 1 for any input bit change, independent
of the input value. Hence, even though the input is not uniform, this circuit g
will not leak information. A mere r − 1 iterative repetition of this procedure
gives a sharing C with d+ 1 shares that satisfies Property 2 and Property 3 and
that is hence dth-order DPA secure. Moreover, since there are only balanced
gates involved, one can combine this repetitive construction in one step.

Remark 3. To satisfy Property 3, the nonlinear operation generating the
sharing (C mentioned in the proof of Theorem 5) and the operation to decrease
the number of shares should be separated by registers.

Note that the statement being secure against (d + r − 1)st-order DPA in
Theorem 5 is very important. Consider the following sharing with two input
and four output shares for A = XY ⊕ Z.

A1 = X1Y1 ⊕ Z1

A2 = X1Y2

A3 = X2Y1 ⊕ Z2

A4 = X2Y2
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Even though the value A is a 4-sharing, it is secure against first-order DPA only.
Hence, the shares of A can not be combined using Theorem 5. Therefore any
reduction of number of shares should be done with extreme care not to unmask
a sensitive value and reveal information. If the reduction function output B is
defined as B1 = A1⊕A3 and B2 = A2⊕A4, the sharing B would leak first-order
information since B2 = XY2 reveals the unmasked value X. On the other hand
if the reduction function is defined as B1 = A1 ⊕ A2 and B2 = A3 ⊕ A4, the
sharing B would be first-order secure.

Given the above discussion, for Equation (3.9) which represents a second-order
TI of a quadratic function, one possible way to decrease the shares such that X
and B are represented with the same number of shares is given below.

Bi = Ai, where i < 5 and B5 = A5 +A6 +A7 +A8 +A9 +A10. (3.16)

With both of these TIs, it is important to make sure that Remark 3 is applied
by using registers after the nonlinear operation f .

As mentioned before, there are many ways to achieve uniformity of the output
of a shared function. So far we have discussed the options where we change the
number of shares to achieve this property or we used extra randomness. We can
also modify the component functions that we have provided in Section 3.2.1.

Using Correction Terms

The use of correction terms (CT) as defined below has initially been proposed
in [75].

Definition 5 (Correction terms). Terms that can be added in pairs to more
than one share, such that they satisfy the non-completeness property are called
correction terms. Since the terms in a pair cancel each other, the sharing still
satisfies Property 2.

Let’s take the example provided in Equation (3.5) for the first-order TI of
the quadratic function A = f(X,Y, Z) = 1 ⊕ X ⊕ XY ⊕ XZ ⊕ Y Z where
X,Y, Z and A ∈ F2 that is not a uniform sharing. If we apply the CT to the
previous equation as highlighted in Equation (3.17), we get a sharing that is
uniform.

By varying the CT one can obtain all possible sharings of a given function.
Consider a Boolean quadratic function with n variables (X,Y, . . . , Z) (1 output
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bit), which we want to share with three shares similar to the Equation (3.5)
against first-order DPA. Note that the only terms which can be used as CT
without increasing the degree of the component functions are degree 1 terms
(e.g. Xi) or degree 2 terms (e.g. XiYi) for i = 1, 2, 3. Indeed terms like XiYj
for i 6= j cannot be used in the ith and jth share of the function because of the
non-completeness property, i.e. such a term can be used in only one out of three
shares, hence it cannot be used as a CT. We can also use higher degree terms
such as XiYiZi as CT if we do not limit the CT to the function degree.

A1 = 1⊕X2 ⊕ (X2Y2 ⊕X2Y3 ⊕X3Y2)⊕ (X2Z2 ⊕X2Z3 ⊕X3Z2)

⊕ (Y2Z2 ⊕ Y2Z3 ⊕ Y3Z2)⊕X2 ⊕ X3

= 1⊕X3 ⊕ (X2Y2 ⊕X2Y3 ⊕X3Y2)⊕ (X2Z2 ⊕X2Z3 ⊕X3Z2)

⊕ (Y2Z2 ⊕ Y2Z3 ⊕ Y3Z2)

A2 = X3 ⊕ (X3Y3 ⊕X3Y1 ⊕X1Y3)⊕ (X3Z3 ⊕X3Z1 ⊕X1Z3) (3.17)

⊕ (Y3Z3 ⊕ Y3Z1 ⊕ Y1Z3)⊕X3 ⊕ X1

= X1 ⊕ (X3Y3 ⊕X3Y1 ⊕X1Y3)⊕ (X3Z3 ⊕X3Z1 ⊕X1Z3)

⊕ (Y3Z3 ⊕ Y3Z1 ⊕ Y1Z3)

A3 = X1 ⊕ (X1Y1 ⊕X1Y2 ⊕X2Y1)⊕ (X1Z1 ⊕X1Z2 ⊕X2Z1)

⊕ (Y1Z1 ⊕ Y1Z2 ⊕ Y2Z1)⊕X1 ⊕ X2

= X2 ⊕ (X1Y1 ⊕X1Y2 ⊕X2Y1)⊕ (X1Z1 ⊕X1Z2 ⊕X2Z1)

⊕ (Y1Z1 ⊕ Y1Z2 ⊕ Y2Z1)

Counting the linear, quadratic and cubic CT and ignoring the constant terms,
which will not influence the uniformity, we obtain

3(n+
(
n

2

)
+
(
n

3

)
)

CT. Taking into account all possible positions for the CT we get

23(n+(n
2)+(n

3))

different sharings. For example, for a quadratic function of 3 variables, which
we want to have a first-order three-sharing starting from the direct sharing,
there are 221 possible CT.
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If we start from a sharing which is not a direct sharing as in Equation (3.4),
counting the amount of CT and using them becomes more demanding than
direct sharing due to the limitations derived from the Boolean function structure.
Therefore throughout this thesis, we will not consider CT for those sharings.

Virtual Variable and Virtual Shares

So far, we always assumed that if the domain of f is Fn, then the domain of
its s-sharing f would be Fns. In the following, we provide an example in which
the number of input variables of the function f is increased in order to find a
uniform sharing.

Consider the first-order direct sharing of multiplication of two variables
(A=f(X,Y ) = XY ) with three shares which does not satisfy Property 4.
We call the extra variable Z which is introduced to f without influencing the
output of the function a virtual variable. We refer to the shares of this variable
as virtual shares. Together with the uniform sharing of Z, we re-define the
sharing of f as follows:

A1 = X2Y2 ⊕X2Y3 ⊕X3Y2 ⊕X2Z2 ⊕X3Z3 ⊕ Y2Z2 ⊕ Y3Z3

A2 = X3Y3 ⊕X1Y3 ⊕X3Y1 ⊕X3Z3 ⊕X1Z1 ⊕ Y3Z3 ⊕ Y1Z1 (3.18)

A3 = X1Y1 ⊕X1Y2 ⊕X2Y1 ⊕X1Z1 ⊕X2Z2 ⊕ Y1Z1 ⊕ Y2Z2.

The sharing defined uses 3× 3 = 9 elements including the virtual shares for one
multiplication. On the other hand, the same function f has a uniform first-order
TI with four shares as shown in Equation (3.15), hence with 2× 4 = 8 elements.
Therefore using the virtual variable as suggested above does not necessarily
provide a sharing that uses less elements even though it can be advantageous
depending on the implementation.

We can also introduce less than three virtual shares since they are unrelated to
the real input of the function and do not need to be taken into account during
the non-completeness check of the sharing. The previous multiplication can be
shared using only one virtual share as:

A1 = X2Y2 ⊕X2Y3 ⊕X3Y2 ⊕ Z

A2 = X3Y3 ⊕X1Y3 ⊕X3Y1 ⊕X1Z ⊕ Y1Z (3.19)

A3 = X1Y1 ⊕X1Y2 ⊕X2Y1 ⊕X1Z ⊕ Y1Z ⊕ Z.
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It is important to ensure that this virtual variable (or its shares) is unpredictable
to an attacker similar to the input shares, i.e. virtual variable (and shares) has
to be random.

This approach can be seen as introducing additional randomness to the shared
function f . Notice that if we consider the term Z and the term X1Z ⊕ Y1Z
in Equation (3.19) as two different masks, this equation becomes equivalent
to re-masking as in Equation (3.13) which uses 8 elements. Therefore, using
virtual variables can be viewed as a clever way of re-masking that requires
only 7 elements in this case. This improvement in the number of elements is
very small when only one multiplication is considered. On the other hand, a
cryptographic algorithm typically uses much more than one multiplication.

Varying the Number of Shares

Until now we only considered sin ≤ sout. Here we will shortly illustrate in a
first-order scenario that it is possible to have a uniform TI with sin > sout. Take
the product A = XY , such that sin = 4 and sout = 3. The following sharing of
the function satisfies all TI properties.

A1 = (X2 ⊕X3 ⊕X4)(Y2 ⊕ Y3)⊕ Y4

A2 = (X1 ⊕X3)(Y1 ⊕ Y4)⊕X1Y3 ⊕X4

A3 = (X2 ⊕X4)(Y1 ⊕ Y4)⊕X1Y2 ⊕X4 ⊕ Y4.

Even though this approach does not decrease the number of elements used, it
can be considered as a clever way of reducing the number of shares without
losing a clock cycle that is inherited from the need of using registers before
decreasing the number of shares as mention in Remark 3. Hence, this approach
gives flexibility when several blocks are combined with each other.

Decomposition

Last but not least, we can also decompose nonlinear equations into lower degree
nonlinear equations to achieve Property 4, to be able to use less shares or to be
able to have more freedom in sharing. We will discuss several examples of this
approach in Sections 5.1.1, 5.2.1 and 7.2.2.
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3.4 TI and Affine Equivalence

In the previous sections, we discussed several methods to generate shared
functions such that the sharing satisfies correctness and non-completeness
properties. In Theorem 2, we provided a systematic way to generate the
component functions of a sharing with which these properties are satisfied
automatically. We also showed that generating a dth-order TI that also satisfies
the uniformity property is not trivial however, there are several options to
remedy this problem. This wide range of possibilities makes the search space
too big. Hence, trying all the options for a given function is sometimes
infeasible. On the other hand, we can use the knowledge of the affine equivalent
classes (Definition 1) to relatively reduce the work since we mostly work with
permutations in this thesis.

If a uniform TI for a permutation f is known, any of its affine equivalents
f̃ = ll ◦ f ◦ lr can trivially be implemented uniformly in a cascaded manner.
This observation reveals the interesting question of generating a uniform TI
of f̃ , given both f̃ = ll ◦ f ◦ lr and the uniform TI of f , without the need of
cascaded operations. We show that the answer is positive when sharings are
defined as in the proof of Theorem 2 with the following theorem. Note that we
mostly restrict ourselves to this kind of sharings and deviate from it only when
we can not go further with this approach or that there is a trivial alternative
solution. Therefore the following theorem has a particular importance.

Theorem 6. If we have a uniform dth-order TI as described in the proof of
Theorem 2 for a representative of an affine equivalence class (as in Definition 1),
then we can derive a uniform dth-order TI for all permutations from the same
class.

Proof. Let f be an n-bit permutation which has a uniform, non-complete and
correct sharing f with sout shares fj . Denote the input vector of f by X, and
its sin shares by Xi. Each fj contains n shared coordinate functions depending
on at most t of the input shares Xi, where t is the maximum degree of these
functions, such that the non-completeness property is satisfied (Remark 1).
Without loss of generality, we denote by X̄j the vector (Xα1 , Xα2 , . . . , Xαt

)
where 1 ≤ αi ≤ sin which contains the t inputs of fj .

We now construct a uniform, non-complete and correct sharing for any
permutation f̃ which is affine equivalent to f . By Definition 1, there exist
two n-bit affine permutations lr and ll s.t. f̃ = ll ◦ f ◦ lr. In order to lighten the
notation, we give the proof for the case that lr and ll are linear permutations.
We define lr, ll as the nsin × nsin and nsout × nsout permutations that apply lr
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and ll respectively, to each of the shares separately:

lr(X1, X2, . . . , Xsin) = (lr(X1), lr(X2), . . . , lr(Xsin)),

ll(X1, X2, . . . , Xsout) = (ll(X1), ll(X2), . . . , ll(Xsout)).

Denote Ai = lr(Xi), 1 ≤ i ≤ sin and without loss of generality define
Āj as the vector Aα1 , Aα2 , . . . , Aαt containing only t shares where 1 ≤
αi ≤ sin which we need to compute fj . Consider f(lr(X1, X2, . . . , Xsin)) =
(f1(Āα1), f2(Āα2), . . . , fsout(Āαsout

)). By slight abuse of notation we can write
Āj = lr(X̄j) and see that the non-completeness of the fj is preserved in f ◦ lr.
Since lr is a permutation, it preserves the uniformity of the input and since f is
uniform so will be the composition f ◦ lr. The correctness follows from the fact
that f is a correct sharing and that

A1 ⊕A2 ⊕ · · · ⊕Asin = lr(X1)⊕ lr(X2)⊕ · · · ⊕ lr(Xsin ) = lr(X1 ⊕X2 ⊕ . . . Xsin ) = lr(X).

Consider now ll(f(lr(X))) = (ll(f1(Ā1)), ll(f2(Ā2)), . . . , ll(fsout(Āsout))). Since
ll is a permutation, it preserves uniformity of the output and since f is uniform,
the composition ll ◦ f is uniform. The composition is non-complete since the fj
are non-complete and ll does not combine different shares. Correctness follows
from the fact that f is a correct sharing and hence

ll(f1(Ā1))⊕ ll(f2(Ā2))⊕ · · · ⊕ ll(fsout(Āsout))

= ll(f1(Ā1)⊕ f2(Ā2)⊕ · · · ⊕ fsout(Āsout)) = ll(f(lr(X))).

3.5 Conclusion

The aim of this chapter was to discuss all the theoretical aspects of TI. We
started with the generic properties, correctness and uniformly distributed input
shares, which any masking scheme needs to follow.

Afterwards we moved to the non-completeness property which distinguishes TI
from other masking schemes. We showed that a dth-order TI can be generated
with d+ 1 input shares under certain conditions. However, it is not preferable
due to the increase of number of output shares when complex functions are
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considered and its limitation of the input behavior. Moreover, such a sharing
requires attention in many stages during an implementation such as reducing the
number of shares which is not preferable in a TI. The goal of TI is to produce a
dth-order secure sharing that can be applied to any function with minimum effort
and resource requirements. With that motivation we provided a systematic
way to generate a dth-order TI of a degree t function with sin ≥ t× d+ 1 input
shares and sout ≥

(
sin
t

)
output shares. We proved its security and discussed

reducing the number of shares back to sin following such a sharing.

We argued that when parallel or cascaded operations are considered such as
several layers and rounds following each other in a symmetric-key algorithm,
the uniformity of a shared function becomes important since its output will be
the input of the following function. Even if the first three properties of a TI are
satisfied, the uniformity of the shared function is not directly assured thus, each
sharing should be individually checked. For the situations where the test reveals
that the shared function is nonuniform, we suggested several options to remedy
this problem providing flexibility during the implementation process. We believe
each option has its advantages and disadvantages. Hence, we avoid to argue
one is better than the other. We note that the area-randomness trade-off must
be examined before making a decision.

Finally, we showed that if we have a TI of a function, we can generate a TI for
all of its affine equivalents which we will especially use in Chapter 5.



4
Threshold Implementations

of KATAN-32

In the previous chapter, we discussed the theoretical aspects of applying TI to
an arbitrary function. Hereon, we examine TI’s behavior in practice, especially
on hardware since TI claims security even in the presence of glitches. The
goal of this work is twofolds. Firstly, we examine the effects of TI without any
optimization on area and timing. We choose the block cipher KATAN [42] due
to the simple structure of its nonlinear block with only a few AND gates as
described in Section 4.1. We implement an unprotected version in addition to
first-, second- and third-order TIs which are provided in Section 4.2. We provide
the area requirements of these implementations using the Faraday Standard Cell
Library FSA0A_C_Generic_Core which is based on UMC 0.18µm GenericII
Logic Process with 1.8V voltage.

The second goal is to analyze the claimed security against a strong adversary.
We provide an analysis of our second-order TI in Section 4.3. The analysis is
performed on a Field-Programmable Gate Array (FPGA) using the leakage
detection test as explained in Section 2.3.6. Our implementations with different
orders follow the same strategy hence, showing the security on second-order
implementation implies first- and third-order TI’s security.

With this chapter, we complete the answer to Question 1, namely extension

55
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of TI to counteract higher-order DPA. This work is published in [17]. We
provide the analysis section which is performed and written by B. Gierlichs for
completeness. We start this chapter with a brief description of the algorithm.

4.1 Introduction to KATAN

KATAN is a family of block ciphers that is designed to be efficient in hardware.
The family has three variants with 32-, 48- or 64-bit state size. All these variants
use an 80-bit key, hence provide the same security level. A plaintext block,
of the same size as the state, is loaded into the state to start an encryption.
After 254 rounds, the content of the state is taken as the ciphertext. The round
operation is very similar for all variants and has only a few AND and XOR
gates. We implement the smallest variant of KATAN with 32-bit state size and
focus on encryption.

.
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AND/XOR 
IR

1

1
1
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k2i+1
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1 1 1
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Figure 4.1: Schematic of one round of KATAN-32

The schematic of one round KATAN-32 is provided in Figure 4.1 where each
block represents one bit. 32-bit plaintext is divided into two chunks of 13 and
19 bits and written to the registers L1 and L2 respectively. In every round,
several bits are used to update the first bits of the registers together with a one
bit shift to the right for L1 and to the left for L2. The bit depicted by IR is
the last bit of a round counter that decides irregularly if the fourth bit of L1
is used for the round update or not. k2i and k2i+1 are the 2ith and (2i+ 1)st

bits of the 80-bit key for rounds i ≤ 40. For the rest of the rounds they are
generated from the original key by an LFSR. For more details, we refer to [42]



IMPLEMENTATIONS 57

4.2 Implementations

The threshold implementations are based on the unprotected implementation,
thus we first explain this plain version.

4.2.1 Unprotected Implementation

The module responsible from the KATAN encryption takes 32-bit plaintext and
80-bit key as input. We use 32-bit register divided into L1 and L2 in order to
store the intermediate state as defined in 4.1. We output the 32-bit content of
this register after 254 clock cycles. We update two bits of this state per cycle
without any unrolling. We define the nonlinear function as four instantiations
of the same one AND and one XOR gate block each of which can be described
with the function A = f(X,Y, Z) = X ⊕ Y Z. The particular choice for this
nonlinear block is given in Section 4.2.2.

The leading area cost is the key-schedule LFSR with 444 GE which is mainly
caused by the 80-bit register. The state register and the nonlinear function cost
170 GE and 54 GE respectively. The implementation is extremely lightweight
with only 1002 GE.

4.2.2 Threshold Implementations

In all the TIs, we assume that the plaintext shares, which are generated from
the unshared plaintext by a uniform masking, are provided from an outside
source. For simplicity, we use an unshared key and key schedule. The key XOR
is performed only on the first shares of the state. We focus on the sharing
of the state and its nonlinear round function. Even though there exists DPA
techniques specifically targeting the unmasked key schedule, we do not consider
such analysis since the main goal of this work is to show the security of the TI
construction. The key schedule, being linear, can be implemented easily using
several shares and the reflected area cost can be calculated trivially.

We start by finding first-, second- and third-order TIs for the nonlinear block of
KATAN since it is the most challenging part. We then decide the number of
state shares.
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First-Order Threshold Implementation

It has been described in the early works of first-order TI [75] that a uniform
first-order three-share TI of one AND gate does not exist even with CTs. On the
other hand, there exists a uniform TI of the function A = f(X,Y, Z) = X⊕Y Z
with three shares. Therefore, we always group an AND gate with an XOR gate
in our implementations for consistency. For all the AND/XOR blocks except the
one that receives IR, we use the direct sharing provided in Equation (4.1). This
sharing for the quadratic function follows Theorem 2 with sin = t× d+ 1 = 3
input and sout =

(
sin
t

)
= 3 output shares.

A1 = X2 ⊕ (Y2Z2 ⊕ Y2Z3 ⊕ Y3Z2)

A2 = X3 ⊕ (Y3Z3 ⊕ Y3Z1 ⊕ Y1Z3) (4.1)

A3 = X1 ⊕ (Y1Z1 ⊕ Y1Z2 ⊕ Y2Z1)

For the AND/XOR block that receives IR we use the sharing

Ai = Xi + IR× Yi where i ≤ sin (4.2)

because we do not share the round counter (and hence IR).

The number of state shares is chosen to be three following the sharing of the
nonlinear function. Hence, the state is defined as three 32-bit registers. Our first-
order KATAN TI module takes three shares simultaneously that are uniformly
distributed following Property 1. We write the output of the nonlinear function
to the shared state right after this operation fulfilling all the TI requirements.

The timing of this implementation is the same as the unprotected implemen-
tation. The main differences between the area requirements of these two
implementations are the costs of the state register and the nonlinear blocks.
The overall cost of this three-share implementation is 1720 GE.

Second-Order Threshold Implementation

Similar to the previous version, the TIs of the nonlinear AND/XOR gates
are chosen to be the direct sharing with sin = 5 and sout = 10 shares
following Theorem 2, which is provided in Equation (3.9). After the nonlinear
operation, the number of output shares are decreased back to five as described
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in Equation (3.16) in order to satisfy all four TI properties. We use sin shares
for most of the state and use Equation (4.2) if IR is an input to the AND/XOR
block. The shared output XOR of Equation (4.2) to Equation (3.9) is performed
only on the first five shares of the latter equation.

Figure 4.2: Schematic of second-order TI of one round of KATAN-32

One round of this implementation is depicted in Figure 4.2 where the z coordinate
refers to sin different shares of the state. Note that each shared register
corresponding to the updated bits uses an additional 5-bit register to store the
extra sout − sin bits. In the clock cycle following a nonlinear operation, the
sout shares in the first bits of the L1 and L2 registers are first reduced to sin
shares, then written as the second bits. This preserves the non-completeness
property as pointed out in Remark 3. This implementation which also has the
same timing as the previous versions costs 2556 GE.

Third-Order Threshold Implementation

This implementation which uses a nonlinear block with sin = 7 input and
sout = 21 output shares given in Equation (4.3) resembles to the second-order
TI. The state is composed of seven 32-bit registers together with two additional
14-bit registers to store the extra bits (shares) of the nonlinear operations. The
seven output shares of Equation (4.2) are XORed only to the the first seven
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output shares of Equation (4.3).

A1 = X2 + Y2Z2 + Y1Z2 + Y2Z1

A2 = X3 + Y3Z3 + Y1Z3 + Y3Z1

A3 = X4 + Y4Z4 + Y1Z4 + Y4Z1

A4 = X5 + Y5Z5 + Y1Z5 + Y5Z1

A5 = X6 + Y6Z6 + Y1Z6 + Y6Z1

A6 = X1 + Y1Z1 + Y1Z7 + Y7Z1

A7 = Y2Z3 + Y3Z2

A8 = Y2Z4 + Y4Z2

A9 = Y2Z5 + Y5Z2

A10 = Y2Z6 + Y6Z2

A11 = X7 + Y7Z7 + Y2Z7 + Y7Z2

A12 = Y3Z4 + Y4Z3

A13 = Y3Z5 + Y5Z3

A14 = Y3Z6 + Y6Z3

A15 = Y3Z7 + Y7Z3

A16 = Y4Z5 + Y5Z4

A17 = Y4Z6 + Y6Z4

A18 = Y4Z7 + Y7Z4

A19 = Y5Z6 + Y6Z5

A20 = Y5Z7 + Y7Z5

A21 = Y6Z7 + Y7Z6

(4.3)

In Table 4.1, we provide the area requirements of all four implementations.
The results reflect a linear increase of area parallel to the linear increase of the
number of input shares of the nonlinear function. This is due to the number of
registers being the dominating cost. The key register is included in the gate
count of the key schedule together with the LFSR update.

Table 4.1: Synthesis results for plain and TI of KATAN-32

Design Unprotected First-order Second-order Third-order

State Ar. 170 510 900 1330
Key Ar. 444 444 444 444
Round Func. 54 135 341 760
Control 64 64 64 64
Other 270 567 807 941

Total 1002 1720 2556 3539
Cycles 254 254 254 254

4.3 Power Analysis

We implement our second-order TI of KATAN-32 on a SASEBO-G board [3]
using Xilinx ISE version 10.1 to evaluate its leakage characteristics in practice.
The board features two Xilinx Virtex-II Pro FPGA devices: we implement
the second-order TI of KATAN-32 in the crypto FPGA (xc2vp7) while the
control FPGA (xc2vp30) handles I/O with the measurement computer and
other equipment including the random number generation. We use the “keep
hierarchy” constraint when we generate the bitstream for the crypto FPGA to
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prevent the tools from optimizing over module boundaries. This is to prevent the
tools from merging component functions and to reduce the chance for crosstalk.
The key is hard-coded in the KATAN-32 implementation. The pseudo-random
number generator (PRNG) on the control FPGA is implemented as AES-128
in CTR mode. To start an encryption, we share the plaintext in five shares
using random numbers from the PRNG and send the shares to the KATAN-32
implementation. When the PRNG is turned off, it outputs zeros.

We measure the power consumption of the crypto FPGA during the first 12
rounds of KATAN-32 encryption as the voltage drop over a 1Ω resistor in the
FPGA core GND line. The output of the passive probe is sampled with a
Tektronix DPO 7254C digital oscilloscope at 1GS/s sampling rate and 1mV/div
amplitude resolution. We provide the FPGA with a stable 3 MHz clock signal
and use synchronized clocks to obtain high-quality measurements.

The main goal of our evaluation is not to demonstrate that the implementation
resists state-of-the-art attacks that exploit the first or second statistical moment
of the leakage distributions, but beyond that to demonstrate that there is no
evidence of leakage in these moments of the leakage distributions, exploitable
by state-of-the-art attacks or not. Obviously achieving this goal is much more
demanding than resistance to known attacks, but it directly corresponds to
our claims regarding provable security. We narrow the evaluation to univariate
attacks because our implementation processes all component functions in parallel.
For our purpose we use the non-specific t-test based fixed versus random leakage
detection methodology of [35, 52], which is briefly introduced in Section 2.3.6.

For all tests we obtain two sets of measurements. For the first set, we fix
the plaintext to some chosen value. We denote this set S0. For the second
set, the plaintexts are uniformly distributed and random. We denote this set
Srandom. We obtain the measurements for both sets interleaved and in a random
order, i.e. before each measurement we flip a coin, to avoid any deterministic or
time-dependent external and internal influences on the test result.

While this evaluation methodology relieves us from choosing certain parameters
such as targeted intermediate value, power model and distinguisher, it does
not resolve all such issues. As in any evaluation, the tests are limited to the
number of measurements at hand and one has to choose a threshold to decide
if an observed difference is statistically significant or not. Nevertheless, as we
demonstrate below this type of evaluation is very data-efficient, i.e. a small
number of measurements is required to provide evidence of leakage, and a
decision threshold can be motivated with some basic experiments.

To calibrate our threshold value we apply the test methodology to two groups
of 10 000 measurements each for which we know that the null hypothesis is true.
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For the first group of measurements we switch off the PRNG and use the same
fixed plaintext for both sets, i.e. all measurements in both sets are samples from
the same population and the only cause of variance is noise. We compute the t
statistic, record its greatest absolute value and repeat the experiment 100 times
on a random split of the measurements in this group. The highest absolute t
value we observed was 4.7944. For the second group we switch on the PRNG
and use random plaintexts for both sets, i.e. the measurements in both sets are
samples from distributions with the same mean and high variance. We repeat
the analysis and the highest absolute t value we observed was 4.8608. Based on
these results and the recommendation in [35] we select the significance threshold
±4.5. For large sample sizes, observing a single t value greater/smaller than
±4.5 roughly corresponds to a 99.999% probability of the null hypothesis being
false.

To confirm that our setup works correctly and to get some reference values we
first evaluate the implementation with the PRNG switched off. Figure 4.3 shows
the t values of fixed versus random tests with two different fixed plaintexts
(left and right) and for the first, second and third statistical moment of the
distributions (for the higher-order moments we pre-process the traces to expose
the desired standardized moment before we apply the t-test, e.g. for the second
moment we center and then square the traces). Horizontal lines mark the ±4.5
thresholds.

The plots clearly show that there is sufficient evidence of leakage in all cases,
as there are multiple and systematic crossings of the thresholds. Comparing
the plots on the left hand side with the plots on the right hand side, we see
that the “shape” of the t curve depends on the fixed plaintext value. This is
no longer true when we switch on the PRNG, because all shares of the input
are random. We used 1 000 measurements (500 for fixed and 500 for random
plaintext) to generate these plots, but less than 100 measurements are required
to see evidence of leakage in the 1st statistical moment.

Now we switch on the PRNG and repeat the evaluation with a randomly
chosen fixed plaintext using 300 million measurements (150M for fixed, 150M
for random, done in a temperature controlled environment). Figure 4.4 (top
left and right) shows plots of the t values for the first and second moment. As
expected there is not sufficient evidence of leakage. But as mentioned earlier,
one may always wonder if the number of measurements at hand is sufficient. For
completeness, we also provide evaluation results of the third and fifth moment.
The third moment is the smallest moment for which our implementation does
not provide provable security in the combinational logic (Property 3) and the
fifth moment is the smallest moment for which our implementation does not
provide provable security in the memory elements (the state is shared in at
least five shares). Therefore we may be able to detect leakage in these moments.
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Figure 4.3: Fixed versus random t-test evaluation results with PRNG switched
off; left: for fixed plaintext 0x00000000, right: for a randomly chosen fixed
plaintext; from top to bottom: 1st, 2nd and 3rd-order statistical moment; 1 000
measurements

Figure 4.4 (bottom left and right) shows plots of the t values.
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Figure 4.4: Fixed versus random t-test evaluation results with PRNG switched
on for a randomly chosen fixed plaintext; from top left, top right, to bottom
right: first, second, third and fifth statistical moment; 300 million measurements

While there is not sufficient evidence of leakage also in the third moment, we
can see multiple and systematic crossings of the threshold in the fifth moment.
This result suggests that we use enough measurements, and that we should be
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able to detect leakage in the lower-order moments, if there was any. Together,
the results support our claim regarding provable second-order DPA resistance.

One may wonder why we do not detect leakage in the third moment. Several
explanations are possible. We leave the careful investigation as future work.

4.4 Conclusion

Due to the strength of HO-DPA attacks, it is desirable to provide a
countermeasure that counteracts these attacks at any order on any device.
Therefore, we worked on an answer to Question 1 of which the theoretical
solution is provided in Chapter 3. Prior works in the area show that it is
important to perform analysis to examine the claimed security on practice.
Thus, we implemented the block cipher KATAN-32 with second-order TI which
is then tested with first-, second-, third- and fifth-order DPA. Our examination
using 300 million traces aligns with the claimed security since we observe no
leakage with first- and second-order DPA. To observe the increase in number
of shares which affects the area requirement, we additionally provided first-
and third-order TI of KATAN. For a fair comparison, we also implemented an
unprotected version then compared all these increasing order implementations.
We observed that the area cost of the nonlinear block is low compared to the
cost of the state register. Hence, the number of shares of the state decides the
increase of area with higher-order implementations of KATAN. We acknowledge
that the nonlinear block of KATAN is very simple. Hence, we will move to
more complex S-boxes in the following chapters.



“Try not. Do or do not! There is
no try."

— Yoda

5
Threshold Implementations

of Small S-boxes

We observed in the previous chapters that TI of the nonlinear blocks have a
particular importance since the number of shares used in the system are chosen
accordingly. S-boxes, as defined in Section 2.2, are nonlinear blocks defined
on a finite field that bring confusion to symmetric key algorithms. Typically,
these S-boxes are more complex than the the nonlinear AND/XOR gate block
discussed in Chapter 4. The input and output size of these S-boxes can vary
as in DES block cipher [43] which uses a 6 × 4 S-box. However, most of the
S-boxes used in cryptographic algorithms are permutations of at least size three,
i.e. n × n S-boxes (n-bit permutations with good cryptographic properties).
We refer to S-boxes where n < 8 as small S-boxes. In this chapter, we aim to
provide uniform TIs for a wide range of small S-boxes and explore their area
requirements. We use the affine equivalence relations described in Section 2.2
for a systematic work.

Considering that all 2-bit permutations are affine and that TI of affine operations
are trivial (Section 3.3), we do not discuss them any further. 4-bit permutations
inherit some properties from 3-bit permutations. That is why they are
investigated together in Section 5.1. 5- and 6-bit permutations are not used as
widely as 4-bit permutations, however some of them provide good cryptographic
properties which are discussed in Section 2.2.3. TIs of these S-boxes are
examined in Section 5.2.

65
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For both 3- and 4-bit permutations, and 5- and 6-bit permutations, we first
discuss how to find uniform TIs in Sections 5.1.1 and 5.2.1 respectively. We
mainly provide first-order TI of these permutations as defined in Theorem 2.
Therefore the number of input shares are defined as sin ≥ t+ 1 where t is the
algebraic degree of the permutation. Moreover, we fix sout = sin = s during
this chapter.

In the second part of each section, we provide a fair comparison and prediction
of the area cost using 45nm NanGate standard cell library [74]. We used compile
ultra command in Synopsis to optimize each component function (resp. unshared
function). Then we combined these to get the cost of TI (resp. permutation).
The results are shown in Sections 5.1.2 and 5.2.2.

In Section 5.1.3, we provide a possible extension to higher-order TI of quadratic
3- and 4-bit permutations and leave the rest to the reader.

The work presented in this chapter is published in [22, 23]. Moreover, we
used this information during the designs of Fides [15] and PRIMATEs [4]
authenticated encryption algorithms. Algorithm 1 is mainly the work of
N. Tokareva and V.Vitkup. The toolbox [20] produced by S. Nikova and
V. Nikov can be used to generate the work presented in Section 5.1.

5.1 3- and 4-bit Permutations

Before any further discussion on TI of these permutations, we hereby provide a
relation between 3-bit permutations and some classes of 4-bit permutations.

Lemma 7. There exists a transformation which expands Q3
1, Q3

2 and Q3
3 (in

Table A.1) into Q4
4, Q4

12 and Q4
300 (in Table A.2-A.6) correspondingly.

Proof. Starting from a 3-bit permutation f and adding a new variable we can
obtain a 4-bit permutation f̃ . Namely, the transformation is defined as follows:
let f(Y, Z,W ) = (A,B,C) and define f̃(X,Y, Z,W ) = (A,B,C,X). It is easy
to check that this transformation maps the former three classes into the latter
three classes.

The relation from Lemma 7 explains why having a uniform TI for a permutation
in some class in F3

2 leads to having a uniform TI for the corresponding S-box in
the corresponding class in F4

2 and vice versa using the same amount of correction
terms. Therefore, if we cannot provide uniform TI for any permutation from
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a given class then none of the permutations in the corresponding class can be
implemented uniformly with TI using the same set of CT.

5.1.1 Finding Uniform Threshold Implementations

We can always find a first-order TI of a permutation with sin ≥ t+ 1 shares as
defined in Theorem 2, i.e. a quadratic permutation needs at least three shares
and a cubic permutation needs at least four shares. The main question is finding
a uniform TI. In the following, we apply several ideas from Section 3.3.2 to find
uniform TIs for all 3- and 4-bit affine equivalence classes.

Direct Sharing

Recall that the uniformity of a direct sharing produced as given in Section 3.2.1
is not guaranteed. It has to be verified separately. On the other hand, it is
enough to find a uniform direct sharing for one permutation within the class to
judge if permutations that belong to the same class have a TI by Theorem 6.
Therefore, we run a search algorithm that goes through all permutations within
a class to find a permutation that has a direct uniform sharing. With this
search, we find three-share TIs of several permutations in Q3

1, but none in Q3
2

and Q3
3. We also find three-share TIs of many permutations in Q4

4, Q4
294 and

Q4
299, but none in Q4

12, Q4
293 and Q4

300. So, unfortunately half of the quadratic
permutations lack a uniform TI when shared directly with three shares. Note
that direct sharing of a cubic S-box using three shares is unrealizable due to
the s ≥ t+ 1 limitation requiring at least four shares.

We can increase the number of shares to find a uniform sharing for quadratic or
cubic permutations. When we use four shares, we observe that all quadratic
classes have at least one permutation that has a uniform TI with direct sharing.
We also find uniform TIs for the permutations in cubic classes C4

1 , C4
3 , C4

13 and
C4

301 from S16 \ A16 using direct sharing with four shares.

On the other hand, a uniform TI of at least one permutation from all classes can
be found if all the shared linear and quadratic terms of component functions are
distributed as in Equation (5.1) which is given for the function A = f(X,Y, Z) =
1 ⊕ X ⊕ Y Z. We call such a sharing as a first-order direct sharing with five
shares. Being able to find uniform TIs for all classes is a big improvement
compared to the situation with four shares.
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A1 = 1⊕X2 ⊕ Y2Z2 ⊕ Y2Z3 ⊕ Y3Z2 ⊕ Y2Z4 ⊕ Y4Z2

A2 = X3 ⊕ Y3Z3 ⊕ Y3Z4 ⊕ Y4Z3 ⊕ Y3Z5 ⊕ Y5Z3

A3 = X4 ⊕ Y4Z4 ⊕ Y4Z5 ⊕ Y5Z4 ⊕ Y4Z1 ⊕ Y1Z4 (5.1)

A4 = X5 ⊕ Y5Z5 ⊕ Y5Z1 ⊕ Y1Z5 ⊕ Y5Z2 ⊕ Y2Z5

A5 = X1 ⊕ Y1Z1 ⊕ Y1Z2 ⊕ Y2Z1 ⊕ Y1Z3 ⊕ Y3Z1.

Sharing Using Correction Terms

As mentioned in Section 3.3.2, the number of correction terms defined for 3-bit
permutations is significantly large and when we consider 4-bit permutations,
trying all possible CT exhaustively becomes infeasible. Here we describe an
algorithm which can provide a negative result in case no uniform TI with CT
exists, with a complexity less than the exhaustive search.

Consider an s-share TI f of an n-bit permutation f (if it exists). The uniformity
property implies that the vectorial Boolean function f : Fns2 → Fns2 , f =
(f1, ..., fs) is a balanced function. Recall some properties of the balanced
vectorial functions [30].

Lemma 8. Let f = (f1, . . . , fn) be a vectorial Boolean function from Fn2 to
Fn2 . f is a bijection if and only if for any k (1 6 k 6 n) and for any tuple
of indices i1, . . . , ik (1 6 i1 6 . . . 6 ik 6 n) the vectorial Boolean function
(f i1 , ..., f ik ) is balanced.

Let f = (f1, . . . , fn) be a vectorial Boolean function such that f : Fn2 → Fn2
and f = (f1

1 , . . . , f
n
1 , . . . , f

1
s , . . . , f

n
s ) be the direct sharing of f with s shares

fi = (f1
i , . . . , f

n
i ). We say that the function cf = (c11, . . . , cn1 , . . . , c1s, . . . , cns ),

where cij : Fns2 → F2 are CT, is a correction function for f , if the function
f ⊕ cf satisfies all the properties of a TI.

Let k ∈ {1, . . . , ns} and let (i1j1, ..., ikjk) be a k-tuple from the set
{11, . . . , n1, . . . , 1s, . . . , ns}. Denote the set

Cki1j1,...,ikjk
= {cf | (f i1j1

⊕ci1j1
, . . . , f ikjk

⊕cikjk
) is a balanced function from Fns2 to Fk2 }.

Then consider the set

C =
⋂
k

⋂
i1j1,...,ikjk

Cki1j1,...,ikjk
.
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Theorem 7. The function f ⊕ cf is a bijection if and only if cf ∈ C.

Proof. (Sufficient condition) By the definition of C, for any function cf ∈
C, the function f ⊕ cf is such that for any k ∈ {1, . . . , ns} and for any
tuple (i1j1, ..., ikjk), from {11, . . . , n1, . . . , 1s, . . . , ns} the vectorial sub-function
((f i1j1

⊕ ci1j1
, . . . , f ikjk

⊕ cikjk
) is balanced. Hence, it follows from the lemma that the

function f ⊕ cf = (f1
1 ⊕ c11, . . . , fn1 ⊕ cn1 , . . . , f1

s ⊕ c1s, . . . , fns ⊕ cns ) is a bijection.

(Necessary condition) Let the function f ⊕ cf be a bijection. Then for any k ∈
{1, . . . , ns}, for any tuple (i1j1, ..., ikjk) from the set {11, . . . , n1, . . . , 1s, . . . , ns},
the vectorial function ((f i1j1

⊕ ci1j1
, . . . , f ikjk

⊕ cikjk
) is balanced. Hence, the

function cf belongs to the set Cki1j1,...,ikjk
by construction. Therefore, due

to the arbitrariness of k and (i1j1, ..., ikjk), the function cf belongs to the set
C =

⋂
k

⋂
i1j1,...,ikjk

Cki1j1,...,ikjk
.

This theorem allows us to use Algorithm 1 to search for a TI for the permutation
f = (f1, . . . , fn) s.t. F : Fn2 → Fn2 .

Input: Direct sharing f = (f1
1 , . . . , f

1
s , . . . , f

n
1 , . . . , f

n
s ) of f with s shares

fi = (f1
i , . . . , f

n
i ) and the sets Jk containing all k-tuples (i1j1, ..., ikjk),

from {11, . . . , n1, . . . , 1s, . . . , ns} for 1 ≤ k ≤ ns.
Output: The set C s.t. for each function cf ∈ C the sharing

f ′1 = (f1
1 ⊕ c11, . . . , fn1 ⊕ cn1 ), . . . , f ′s = (f1

s ⊕ c1s, . . . , fns ⊕ cns ) is
uniform.

for k = 1 to ns do
while Jk 6= ∅ do

Choose a tuple of indices (i1j1, ..., ikjk) ∈ Jk.
Assign Jk := Jk\(i1j1, ..., ikjk).
Construct the set
Cki1j1,...,ikjk

= {cf | (f i1j1
⊕ ci1j1

, . . . , f ikjk
⊕ cikjk

) is balanced function}.
C :=

⋂
k

⋂
i1j1,...,ikjk

Cki1j1,...,ikjk
.

if C 6= ∅ then
break;

end
end
if C = ∅ then

break;
end

end
Algorithm 1: Algorithm searching for a uniform TI
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With this algorithm, we can conclude that there does not exist a uniform TI with
correction terms if C = ∅, which is likely to happen faster than the exhaustive
search. Observe also that for any k, if the set Cki1j1,...,ikjk

= ∅ then C = ∅.
Moreover, since the goal is to satisfy C 6= ∅ for k = ns, we can start the for
loop from any k s.t. 1 ≤ k ≤ ns. If for any k, we have C 6= ∅ at the end of the
while loop, it implies that C 6= ∅ for all k′ ≤ k.

We consider the permutation f = (XY ⊕ Y Z ⊕XZ,X ⊕ Y ⊕XY ⊕ Y Z,X ⊕
Z ⊕ Y Z) from the class Q3

3 and apply the above algorithm with initialization of
k = 4. We choose the tuple of indices as (11, 12, 13, 21) ∈ Jk and construct the
set C1 = C4

11,12,13,21 using linear and quadratic CTs. We obtain that the set C1
is empty. Therefore, the set C from the theorem is empty, hence, there is no
uniform sharing for the given permutation. The algorithm terminated after a
computation with complexity 235. This proves the following:

Corollary 1. There does not exist a quadratic uniform sharing with three
shares for permutations from Q3

3.

Recall that by Lemma 7, the class Q3
3 corresponds to the class Q4

300. Moreover,
if there is no uniform sharing for 3-bit permutations from a class, then there
does not exist a uniform sharing for 4-bit permutations from the corresponding
class with the same amount of CT.

Corollary 2. There does not exist a quadratic uniform sharing with three
shares for permutations from Q4

300.

Recall that, we could not find a uniform sharing for many classes with direct
sharing. However, sharing linear and quadratic terms as in Equation (3.17) by
using CT, we found uniform three-share TIs for permutations from the classes
Q3

2, Q4
12, Q4

293.

So all 3- and 4-bit quadratic classes except Q3
3 and Q4

300 have a uniform TI
with three shares.

Sharing Using Decomposition

We will show in Section 5.1.2 that the area requirements of an implementation
of a cryptographic algorithm increase with the number of shares. This is only
natural since more shares implies more AND and XOR gates even for small
circuits. Therefore, it is desirable to keep the number of shares as low as possible.
To this purpose, we can decompose a permutation into other, possible lower
degree, permutations that have uniform TIs. Examples of such decompositions
have been presented for noekeon [76, 77] and PRESENT [83] S-boxes in earlier
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works. These three realizations decompose the S-box with algebraic degree three
into two permutations with algebraic degree two. For the PRESENT S-box,
decompositions sbox(X) = f(g(X)) with g(0) = 0 have been found [83] where
f(X) and g(X) are quadratic permutations. By varying the constant term g(0)
the authors found all possible decompositions of sbox(X) = f(g(X)). Both
permutations, f(X) and g(X), have been shared with direct sharing with three
shares, (f1, f2, f3) and (g1, g2, g3), that are correct, non-complete and uniform.
Moreover, the output of g is stored in the registers before it is taken as input
to f to force the non-completeness property when the functions are cascaded as
emphasized in Remark 2.

Now we consider all 4-bit permutations, and investigate when a cubic
permutation from S16 can be decomposed as a composition of quadratic
permutations. We refer to the minimum number of quadratic permutations in
such a decomposition as decomposition length.

Lemma 9. If a permutation p can be decomposed into a sequence of t quadratic
permutations, then all permutations which are affine equivalent to p can be
decomposed into a sequence of t quadratic permutations.

Proof. Let p be a cubic permutation which can be decomposed as a composition
of quadratic permutations q1 ◦ q2 ◦ . . . ◦ qt−1 ◦ qt with length t. Let w be a
permutation which is affine equivalent to p. By definition, there exist affine
permutations lr and ll s.t. w = ll◦p◦lr, therefore w = ll◦q1◦q2◦. . .◦qt−1◦qt◦lr.
Now, by defining two quadratic permutations q′1 = ll ◦ q1 and q′t = qt ◦ lr, we
obtain that w = q′1 ◦ q2 ◦ . . . ◦ qt−1 ◦ q′t has a decomposition with quadratic
permutations and that its length is t.

Before investigating which permutations can be generated by combining the
affine and the quadratic permutations, we prove the following two lemmas.

Lemma 10. All 4-bit quadratic permutations belong to the alternating group
A16.

Proof. Since all affine permutations are in the alternating group (Lemma 1),
two permutations which are affine equivalent, are either both even or both
odd. We have taken one representative of each of the 6 quadratic classes Q4

i for
i ∈ {4, 12, 293, 294, 299, 300} and have verified that their parities are even.
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Lemma 11. Let qi be one of the 6 arbitrarily selected representatives of the
6 quadratic classes Q4

i (hence i ∈ {4, 12, 293, 294, 299, 300}). Then all cubic
permutations p that have decomposition length 2, are affine equivalent to one of
the cubic permutation that can be written as

p̃i×j = qi ◦ l ◦ qj , (5.2)

where l is an affine permutation and i, j ∈ {4, 12, 293, 294, 299, 300}.

Proof. Assume that p = qa◦qb. Then we know that there are affine permutations
lra, lla, lrb, llb such that p = (lla ◦ qi ◦ lra) ◦ (llb ◦ qj ◦ lrb), where qi, qj are two
of the representatives defined above. We choose lr = lra ◦ llb and p̃i×j =
lla
−1 ◦ p ◦ lrb−1.

It follows that we can construct all cubic classes of decomposition length two
by running through the 36 possibilities of i× j and the 322560 invertible affine
transformations in Equation (5.2). This approach produces 30 cubic classes.
Hereon, we denote the permutations p̃i×j by i × j and refer to them as the
simple solutions. Tables A.7-A.9 in Appendix A list the simple solutions for
all 30 decompositions with length two. Note that if qi ◦ l ◦ qj = p, i.e. p can
be decomposed as a product of i × j, then q−1

j ◦ l−1 ◦ q−1
i = p−1. Since for

n = 4 all quadratics are affine equivalent to their inverse, it follows that p−1 is
decomposed as a product of j× i. Thus any self-inverse class has decomposition
i× j and j × i as well. For the pairs of inverse classes we conclude that if i× j
belongs to the first class, then j × i belongs to the second class.

To obtain all decompositions with length three we use a similar approach as
for length two but the first permutation qi is cubic (instead of quadratic) and
belongs to the already found list of cubic classes decomposable with length two.
It turns out that we can generate in this way the 114 remaining elements of
A16.

Summarizing, we can prove the following theorem and lemma (stated without
proof in [41]).

Theorem 8. A 4-bit permutation can be decomposed using 4-bit quadratic
permutations if and only if it belongs to the alternating group A16 (151 classes).

Proof. (⇒) Let p be a permutation which can be decomposed with quadratic
permutations, say q1 ◦ q2 ◦ . . . ◦ qt. Since all qi ∈ A16 (Lemma 10) and the
alternating group is closed it follows that p ∈ A16.
(⇐) Lemma 9, Lemma 11 and the discussion following it imply that we can
generate all elements of the alternating group using quadratic permutations.
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The three left-hand-side columns of Table 5.1 list the number of classes with
a quadratic decomposition from a given length for all 4-bit permutations.
Theorem 8 implies that the classes which are not in the alternative group i.e.
in S16 \ A16, cannot be decomposed as a product of quadratic classes. Now we
make the following simple observation:

Lemma 12. Let p̃ be a fixed permutation in S16\A16 then any cubic permutation
from S16 \ A16 can be presented as a product of p̃ and a permutation from A16.

Proof. By definition, all permutations in S16 \A16 are odd permutations, and if
p̃ ∈ S16 \A16, then p̃−1 ∈ S16 \A16. Since the product of two odd permutations
is even, we have: ∀p ∈ S16 \ A16 : p ◦ p̃−1 ∈ A16. It follows that ∃t ∈ A16 :
p ◦ p̃−1 = t, i.e. p = t ◦ p̃.

Now that we know the possible decompositions of 3- and 4-bit permutations, we
attempt to find uniform TIs for quadratic permutations by using less than four
shares, trading off with the decomposition length. However, this problem is more
restrained than the basic problem, since we can use only the permutations for
which we already have a uniform sharing. It turns out that the decompositions
for Q3

3 are 1× 2 and 2× 1, i.e., we obtain a sharing with three shares for Q3
3 at

the cost of decomposition length two (instead of length one). Similarly Q4
300 can

be decomposed as 4× 12, 4× 293, 12× 4, 12× 294, 293× 4, 293× 294, 294× 12
and 294× 293. So, again we obtain a sharing with three shares with length two.
With this result, we find TI for all 3- and 4-bit quadratic permutations with
three shares.

Recall from Theorem 8 that one can find decompositions into quadratic
permutations for cubic permutations in the alternating group. Therefore these
permutations have a TI with three shares. However, the three-share TI of
permutations outside the alternating group cannot be generated with this
method. By using Lemma 12 and the sharings in Equations (3.17) and (5.3) for
each linear, quadratic and cubic (when necessary) term, we obtain a TI with
four shares for all 4-bit permutations.
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f(X,Y, Z) = X ⊕ Y Z ⊕XY Z

gives:

f1 = X2 ⊕ (Y2 ⊕ Y3 ⊕ Y4)(Z2 ⊕ Z3 ⊕ Z4)

⊕ (X2 ⊕X3 ⊕X4)(Y2 ⊕ Y3 ⊕ Y4)(Z2 ⊕ Z3 ⊕ Z4)

f2 = X3 ⊕ Y1(Z3 ⊕ Z4)⊕ Z1(Y3 ⊕ Y4)⊕ Y1Z1 ⊕X1(Y3 ⊕ Y4)(Z3 ⊕ Z4)

⊕ Y1(X3 ⊕X4)(Z3 ⊕ Z4)⊕ Z1(X3 ⊕X4)(Y3 ⊕ Y4)⊕X1Y1(Z3 ⊕ Z4)

⊕X1Z1(Y3 ⊕ Y4)⊕ Y1Z1(X3 ⊕X4)⊕X1Y1Z1 (5.3)

f3 = X4 ⊕ Y1Z2 ⊕ Y2Z1 ⊕X1Y1Z2 ⊕X1Y2Z1 ⊕X2Y1Z1 ⊕X1Y2Z2

⊕X2Y1Z2 ⊕X2Y1Z1 ⊕X1Y2Z4 ⊕X2Y1Z4 ⊕X1Y4Z2 ⊕X2Y4Z1

⊕X4Y1Z2 ⊕X4Y2Z1

f4 = X1 ⊕X1Y2Z3 ⊕X1Y3Z2 ⊕X2Y1Z3 ⊕X2Y3Z1 ⊕X3Y1Z2 ⊕X3Y2Z1.

We provide all possible decompositions for all 4-bit permutations in [21]. The
total length of the sharing depends on the cubic class we use (C4

1 , C4
3 , C4

13 and
C4

301) and also on the class from the alternating group, which is used for the
decomposition. For example, it can be seen in [21] that the class C4

7 can be
decomposed using C4

1 with length four but with classes C4
3 and C4

13 it can be
decomposed with length three. Note also that the number of solutions differs.
We have found 10, 31 and 49 solutions when using C4

1 , C4
3 and C4

13 classes,
correspondingly. Table 5.1 summarizes these results.

Table 5.1: Overview of the numbers of classes of 4-bit permutations that can
be decomposed and shared using 3 shares, 4 shares and 5 shares uniformly; the
numbers are split up according to the decomposition length of the permutations
(1, 2, 3, or 4), respectively their shares

unshared 3 shares 4 shares 5 shares remark
1 2 3 1 2 3 4 1 2 3 1
6 5 1 6 6 quadratics

30 28 2 30 30 cubics in A16
114 113 1 114 114 cubics in A16

– – 4 22 125 151 cubics in S16\A16
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In Tables A.1–A.6, the column Sharing (Sh.) describes the length of the found
TI with three and with four shares, separated by a comma. Since all classes can
be shared with five shares uniformly with length one, we omit this fact in these
tables. Recall that for the permutations in S16 \ A16 no three-share solution
exists due to the degree of the permutations which is indicated in the table by
a −.

We leave here a question for further research: Why is it the case that for all 4-bit
permutations, the TIs with four shares do not improve the results significantly
compared to three shares and suddenly with five shares we can share all classes
uniformly with length one?

Recall that decompositions sbox(X) = f(g(X)) have been found in [83] for the
PRESENT S-box which belongs to C4

266 ∈ A16 as shown in Table A.11. The
authors made an observation that exactly 3

7 sharings out of the decompositions
automatically satisfy the uniformity condition (i.e. without any correction
terms). Recall that with the direct sharing method without CT we (as well as
the authors of [83]) were able to share only three quadratic classes uniformly: Q4

4,
Q4

294 and Q4
299. The PRESENT S-box has 7 simple solutions (see Table A.8) but

only 3 of them can be shared uniformly with direct sharing, namely 294× 299,
299× 294, 299× 299, which explains the authors’ observation.

Sharing Using Factorization

The work on decompositions presented in the previous subsection is extended
by Kutzner et al. in [65]. The extension introduces factorization technique to
enable three-share TI for the invertible 4-bit permutations not belonging to
A16. In fact, factorization uses a combination of decomposition and XOR of
quadratic functions which are not necessarily permutations, i.e. a permutation
p ∈ S16 \ A16 is represented as p(X) = f(g(X)) ⊕ h(X) where g ∈ A16 and
h and f are defined from F4

2 to F4
2 . This implementation is typically bigger

in area when only a single permutation is considered. However, for the whole
symmetric key algorithm, this brings a trade-off between the number of registers
and the cascaded operations together with the cost of registers. Therefore, the
overall cost should be examined depending on the case and the requirements.

5.1.2 Implementations

In the previous subsection, we detailed finding a uniform TI for 3- and 4-bit
permutations. We observed that all 3-bit permutations have a three-share
TI where the permutations from Q3

3 need to be decomposed. None of the
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permutations needs decomposition for four- and five-share TI hence can be
implemented in one clock cycle. Similar observations are made in Table 5.1
for 4-bit permutations where decomposition length can be considered as the
number of cycles required for the implementation. Here, we investigate the area
requirements of permutations within each class using different number of shares.

The area results listed consider a set of input or output registers. The cost
of a permutation is the cost of the combinational logic required to calculate
the (shared) permutation, the cost of the pipelining registers if it is required
(i.e. if it is decomposed) as described in Section 5.1.1 and the cost of the n-bit
(resp. n × s-bit if shared) input or output register. The formulas for three
shares are generated using Equations (3.5) and (3.17). For four shares, we use
a variation of these equations for quadratic functions. For cubic permutations
with four shares and for all permutations with five shares, we use a variation of
Equation (5.3).

Table 5.2: Area comparison for randomly selected quadratic permutations in
S16

3-bit Sharing Unshared Shared
Permutations Length Original Decomp. 3 shares 4 shares 5 shares

Class # (L) 1 reg L reg L reg 1 reg 1 reg

Q3
1 1 23 - 120 189 176
Q3

2 1 24 - 129 193 184
Q3

3 2 24 67 243 196 190

For 3-bit permutations, we choose a permutation randomly from each class
and observed the cost as shown in Table 5.2. We observe that for these small
permutations, the sharing used has a big effect on area. That is why four-
share implementations that use Equation (3.17) are bigger than the five-share
implementations that use Equation (5.3) even though they require less registers.

Since the wide-range of S-boxes used in cryptography are from the set of 4-bit
permutations, we deepen our research for these permutations. Moreover, since
we use quadratic or cubic classes with length one for decomposing permutations,
we concentrated our efforts on these classes and implemented 1000 permutations
chosen randomly per each class. Area distributions in Figure 5.1 and the average
areas in Table 5.3 show that it is advantageous to use permutations from Q4

4
and to avoid using permutations from Q4

299 if possible for a more area efficient
implementation.

A similar argument can also be made for cubic permutations with decomposition
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Figure 5.1: Area (x-axis) distribution of permutations from Q4
4 (—), Q4

12 (-
-), Q4

293 (..), Q4
294 (—), Q4

299 (- -) with unshared (top, left), 3-share TI (top,
right), 4-share TI (bottom, left) and 5-share TI (bottom, right) where y-axis
refers to the number of permutations

Table 5.3: Average area comparison for quadratic permutations in A16 and
cubic permutations in S16\A16 which have decomposition length 1 with 3 and
4 shares respectively

4-bit Permutations Original Shared
Class # S-box 3 shares 4 shares 5 shares

Q4
4 31 131 165 199

Q4
12 32 151 182 223

Q4
293 34 176 182 244
Q4

294 33 159 191 233
Q4

299 36 190 216 259

C4
1 31 - 254 322
C4

3 33 - 291 361
C4

13 34 - 285 349
C4

301 36 - 298 360
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Figure 5.2: Area (x-axis) distribution of permutations from C4
1 (—), C4

3 (- -),
C4

13 (—), C4
301 (- -) with unshared (top), 4-share TI (bottom, left) and 5-share

TI (bottom, right) where y-axis refers to the number of permutations

length one with four shares. Namely, by Figure 5.2 and Table 5.3, we can
conclude that it is more efficient to use C4

1 especially compared to C4
301 where

the difference becomes more visible.

For classes with decomposition length more than one (Tables 5.2 and 5.4),
we randomly select a class representative i.e. a permutation. For each class
representative, we first list all its decompositions, analyze how many AND
and XOR gates are required for these decompositions and estimate their area.
Then we choose the smallest decomposition by comparing these estimations
and implement it. This methodology allows us to find the decomposition with
the minimum GE when a straight-forward implementation is considered. We
acknowledge that the ordering and hence the smallest decomposition can change
if special cells and synthesis options are used to minimize the GE. We saw that,
classes Q3

3, Q4
300, C4

150, C4
151, C4

130, C4
131, C4

24, C4
204, C4

257 and C4
210 give relatively

small results when decomposed as 2× 1, 12× 4, 12× 293, 293× 12, 12× 4× 299,
299× 12× 4, 299× 12× 4× 299, 3× 294, 3× 12 and 3× 293× 12 respectively.
Observe that we use permutations from Q4

299 to decompose permutations from
C4

130, C4
131 and C4

24 since there does not exist a decomposition with the same
length that does not require a permutation from Q4

299. On the other hand,
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Table 5.4: Area comparison for randomly selected quadratic and cubic
permutations in A16 and cubic permutations in S16\A16 which have
decomposition more than one for 3 and 4 shares respectively

4-bit Sharing Unshared Shared
Permutations Length Original Decomp. 3 shares 4 shares 5 shares

Class # (L, L′) 1 reg (L, L′) reg L reg L′ reg 1 reg

Q4
300 ∈ S16 2, 1 45 63, 41 301 266 314
C4

150 ∈ S16 2, 2 38 66, 66 284 408 399
C4

151 ∈ S16 2, 2 38 64, 64 267 396 490
C4

130 ∈ S16 3, 2 40 88, 65 375 360 506
C4

131 ∈ S16 3, 2 43 88, 62 370 404 517
C4

24 ∈ S16 4, 3 41 126,102 627 678 524

C4
204 ∈ S16\A16 -, 2 39 -, 65 - 495 466
C4

257 ∈ S16\A16 -, 2 41 -, 67 - 498 492
C4

210 ∈ S16\A16 -, 3 38 -, 115 - 750 518

several possibilities for decomposing a permutation Q4
300 exist as described in

Section 5.1.1 and the smallest decomposition we find also matches with the
findings in Figure 5.1.

Table 5.4 also shows that depending on the decomposition length and the
permutation class, a five-share TI can give smaller results than a three- or
four-share TI if only the S-box is considered. The optimal invertible S-boxes
used in cryptography have decomposition lengths (2,2), (3,3) or (-,3) for which
an estimation can be deduced from the same table.

5.1.3 Extensions

We briefly introduce two extensions of this section. The first extension is using
sin = 2 shares to achieve first-order DPA security of a quadratic permutation.
The second extension, on the other hand, is increasing the security level by
considering second-order TI.

First-Order TI of Quadratic Permutations with sin = 2 shares

Even though quadratic permutations are typically undesirable as an S-box, they
can be used as a building block during decomposition as discussed in Section 5.1.1.
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Based on this observation, we discuss here sin = 2 share implementations of these
permutation classes and leave the work on cubic classes without decomposition
as future work.

In Section 3.2.1, we have already provided sharings with sin = 2 as in
Equations (3.3) and (3.4) for first-order TIs of quadratic functions. However,
the mentioned sharings output sout ≥ 2 shares which causes a blow-up of output
registers. Moreover, when only one S-box is considered the implementation
becomes slower since the output shares must be written to the register before
decreasing the number of shares back to two as suggested in Remark 3. On the
other hand, the cost of initial masking, and hence generating randomness for
it, becomes smaller especially when the full algorithm is studied. Our research
shows that there exists at least one permutation that has a uniform first-order
TI with sin = 2 shares in all quadratic 3- and 4-bit classes. More specifically,
permutations in Q3

1, Q3
2, Q3

3, Q4
4, Q4

12, Q4
293, Q4

294, Q4
299 and Q4

300 have a TI
satisfying the first three properties when the sharing of the linear and quadratic
terms are generated as in Equation (3.3). In Equation (5.5) we provide an
example for the representative of Q4

294 (Table A.6) which has the algebraic form
in Equation (5.4).

A = f1(W,X, Y, Z) = W

B = f2(W,X, Y, Z) = X (5.4)

C = f3(W,X, Y, Z) = WX ⊕ Y

D = f4(W,X, Y, Z) = WY ⊕ Z

A1 = W1

A2 = W2

B1 = X1

B2 = X2

C1 = W1X1 ⊕ Y1

C2 = W1X2

C3 = W2X1

C4 = W2X2 ⊕ Y2

D1 = W1Y1 ⊕ Z1

D2 = W1Y2

D3 = W2Y1

D4 = W2Y2 ⊕ Z2

(5.5)

Notice that the first two output bits have sout = 2 shares whereas the last two
output bits have sout = 4 shares. We decrease the number of shares of the
latter two as C1 ⊕ C2 (resp. D1 ⊕ D2) and C3 ⊕ C4 (resp. D3 ⊕ D4). The
two-share output of the permutation is uniform. Similar sharings apply for
permutations from the other aforementioned classes of which the examples for
4-bit permutations are given in Appendix B.1.
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Constructing Second-Order TI of Some Quadratic Permutations

As stated in Section 5.1.1, all quadratic 3- and 4-bit permutations have uniform
first-order five-share TIs with direct sharing. More precisely, consider the sharing
in Equation (5.1) which is given for the function A = f(X,Y, Z) = 1⊕X ⊕ Y Z.
If all of the shared linear and quadratic terms in the component functions of
the analysed permutation are distributed to the output shares similar to the
sharings of X and Y Z respectively, the generated TI is both first-order DPA
resistant and uniform (up to affine equivalence).

In order to generate a uniform second-order TI of a permutation, we start with
this first-order uniform TI. We distribute each shared linear and quadratic
term to component functions as in Equation (5.6) (given for the aforementioned
function). This new sharing with sin = 5 and sout = 10 shares satisfies
correctness (Property 2) and second-order non-completeness (Property 3).
Hence, given Property 1, this sharing provides security against second-order
DPA by Theorem 1.

A1 = 1⊕X2 ⊕ Y2Z2 ⊕ Y2Z3 ⊕ Y3Z2

A3 = X3 ⊕ Y3Z3 ⊕ Y3Z4 ⊕ Y4Z3

A5 = X4 ⊕ Y4Z4 ⊕ Y4Z5 ⊕ Y5Z4

A7 = X5 ⊕ Y5Z5 ⊕ Y5Z1 ⊕ Y1Z5

A9 = X1 ⊕ Y1Z1 ⊕ Y1Z2 ⊕ Y2Z1

A2 = Y2Z4 ⊕ Y4Z2

A4 = Y3Z5 ⊕ Y5Z3

A6 = Y4Z1 ⊕ Y1Z4

A8 = Y5Z2 ⊕ Y2Z5

A10 = Y1Z3 ⊕ Y3Z1

(5.6)

In order to satisfy the uniformity of the sharing (Property 4), we reduce the
number of shares from sout to sin using the following equation where B is the
five-share output.

Bi = A2i−1 ⊕A2i for i ≤ 5

The final sharing of the permutation (or one of its affine equivalent) is uniform
since it becomes equal to the sharing given in Equation (5.1) after this reduction.
Hence, we can construct uniform second-order TI of all 3- and 4-bit quadratic
permutations.

The area requirement of this second-order TI can be calculated by adding the
register cost required by Remark 3 to the first-order five-share TI cost of the
particular permutation.
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5.2 5- and 6-bit Permutations

In this section, we discuss the first-order TI of 5- and 6-bit permutations. Due
to the high amount of affine equivalence classes of these sizes, we limit our
analysis to the AB and APN permutations which have a particular cryptographic
significance as stated in Section 2.2.3. We leave the arguments about 5-bit
Keccak S-box which also has high importance to Chapter 6.

5.2.1 Finding Uniform Threshold Implementations

Similar to the 3- and 4-bit permutations in Section 5.1, we use sin ≥ t + 1
shares where t is the degree of the permutation and fix sout = sin. The algebraic
degrees of AB permutations are provided in Table 2.2, namely AB1 and AB2
are quadratic whereas AB3 and AB4 are cubic. The algebraic degree of the
permutations from the only known APN permutation class is four.

The direct sharing with three shares given in Equation (3.5) for linear and
quadratic terms fails to produce a uniform TI for AB1 and AB2. Furthermore,
it is unfeasible to go through all CT in order to find a uniform sharing with our
current methods. Unfortunately, our limited search did not reveal a TI that
satisfies all the properties. However, we find uniform four-share TIs using CT
for those permutations which can be generated by applying Equation (5.3) for
linear and quadratic terms of the coordinate function.

For AB3 and AB4, we could not find a uniform sharing up to five shares with
our current methods. However, it is possible to use TIs with four shares with
the cost of re-masking. Note that these results do not imply that a uniform
TI with three shares for AB1 and AB2 or with four shares for AB3 and AB4
(resp. for their affine equivalents) is nonexistent since we abstain from going
through all the CT due to its complexity.

The findings for AB permutations, namely the difficulty of finding uniform TIs
even for 5-bit cubic permutations, lead us to work on a decomposition for this
degree four APN permutation. Dillon shows in [44] that this permutation can
be decomposed into two permutations of degree three and two. An example
of an APN permutation with the decomposition APN(X) = f(g(X)), where
f is cubic and g is quadratic, is provided in Table 5.5. Unfortunately, with
our current methods it is unfeasible to find uniform sharings for f and g.
However, with this decomposition, it is possible to have a 4-share uniform TI
with re-masking.

As the S-box becomes bigger and more complicated, we observe that finding a
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Table 5.5: Representative of the known APN permutation in GF(26)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
APN 0 16 60 54 17 14 23 59 29 62 63 10 39 8 49 51
f 0 13 63 50 2 15 48 61 54 58 22 26 38 42 11 7
g 0 48 37 8 19 18 41 42 39 21 2 45 26 40 17 33

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
APN 45 37 61 48 47 5 12 20 36 57 40 46 26 56 43 55
f 46 49 14 17 33 62 12 19 24 6 39 57 5 27 55 41
g 32 60 7 6 51 28 22 59 43 27 61 16 11 57 46 30

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
APN 11 31 24 6 27 13 53 19 15 30 1 4 33 34 28 35
f 45 51 1 31 34 60 3 29 8 23 59 36 21 10 43 52
g 14 35 24 25 29 1 56 23 5 53 34 62 20 36 49 50

48 49 50 51 52 53 54 55 56 57 58 9 60 61 62 63
APN 21 52 58 3 9 7 18 32 25 22 41 50 44 2 38 42
f 16 28 35 47 18 30 44 32 53 56 25 20 37 40 4 9
g 44 47 9 38 63 15 52 55 58 10 31 3 54 4 12 13

uniform sharing becomes much more difficult and the search for CT becomes
unfeasible. At this point, we leave the problem of finding TIs for APN
permutations of size 6 and AB permutations of degree three of size 5 as an
open question and suggest re-masking to satisfy uniformity.

The only known examples of using 5-bit AB or 6-bit APN permutations of size
6 are the authenticated encryption algorithms Fides [15] (AB1 and APN) and
PRIMATEs [4] (AB1), which are designed to provide provable security against
first-order DPA attacks. The selection of particular permutation is done by
observing the number of AND and XOR gates required for each permutation in
a class and finding a trade-off of this gate count between the unshared and the
shared implementations.

Another example of using S-boxes with 6-bit inputs is the Data Encryption
Standard (DES) [43]. A 6× 4 S-box used by DES can be implemented as four
4×4 invertible S-boxes followed by a cubic selection function (4-to-1 multiplexer).
The selection function can be implemented uniformly with direct sharing with
four shares and we have TI for all 4 × 4 invertible S-boxes. However, the
distribution of the input of the selection function, which combines the outputs
of 4× 4 S-boxes as input is not necessarily uniform. To avoid first-order leakage,
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the input of the selection function should be checked carefully and should be
re-masked when necessary.

5.2.2 Implementations

Since we failed to find TIs for cubic 5-bit AB permutations with 4 shares
as described in Section 5.2.1, we chose to implement only the quadratic AB
permutations. For each class we provide area results for a randomly selected
representative with the library and conditions given in the beginning of this
chapter. We observe that the cost of the TI is a little bit over four times the
cost of the unshared version.

On the other hand, we implement the APN permutation in Table 5.5 with the
given decomposition even though the sharing is not uniform since that is the only
known class. Therefore for that implementation, an extra cost of re-masking
should be added. We observe that even the unshared-implementation cost is
high as a result of the high degree and with decomposition this cost might
reduce. This four-share implementation is 3, 5 times the cost of the unshared
version. We summarize the results for 5- and 6-bit permutations in Table 5.6.

Table 5.6: Quadratic AB and APN S-boxes’ sharing

Permutation Sharing Unshared Shared
Length Original Decomposed 4 shares

Class (L) 1 reg L reg L reg

AB1 1 68 - 303
AB2 1 64 - 274
APN 2 224 192 795

5.3 Conclusion

In this chapter, we mainly discussed finding uniform sin ≥ t+ 1, sout = sin first-
order TIs for 4-bit permutations which form the majority of the small S-boxes
used in cryptographic algorithms. Our findings cover all 3-bit permutations
due to the relationship between them and some of the 4-bit permutations given
in Lemma 7. We showed that all these permutations have uniform TIs with
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sin = sout = 5 shares that can be implemented in a single clock cycle. Since
generating uniformly shared inputs to a nonlinear function requires randomness,
we performed methods such as decomposition and using correction terms in order
to decrease the number of shares. We showed that all 3- and 4-bit permutations
have uniform 4-share TIs with different decomposition lengths as displayed in
Figure 5.1. We used permutations from Q4

1, Q4
3, Q4

13 and Q4
301 in addition to

the quadratic classes to decompose 4-bit permutations. Therefore, we focused
on the area requirements of implementing permutations from these classes which
are used as building blocks. We emphasized the use of registers in between
functions in order to achieve security when implementation is decomposed then
reflected their costs in our calculations. We showed that half of the classes from
4-bit permutations and all the 3-bit permutations are in A16 and A8 respectively
which can be implemented using 3-shares. For both all the cubic classes in
A16 and the special classes Q3

3 and Q4
300, we used decomposition into quadratic

permutations in order to find a uniform three-share TI. For the rest of the
classes in A16 and A8, we used direct sharing or sharing with CT. We left it as
an open question to find why Q3

3 and Q4
300 behave different that the rest of the

quadratic permutations.

By using the information provided in this chapter, in the tool-box [20] and
in the decomposition list [21], we can apply the TI technique to any 3- or
4-bit permutation. Such a TI can be generated with high flexibility by using
different number of shares or clock cycles. To generalize, a cubic 4-bit S-box
with good cryptographic properties requires approximately five times the area
of its unshared implementation when a five-share TI is used. Depending on
the decomposition length, its four-share implementation is four to seven times
bigger and up to three times slower than its unprotected implementation. A
three-share TI can become up to four times slower and its area requirement is
three to six times more than its plain implementation.

When 5- and 6-bit permutations are considered, the number of affine equivalent
classes is too high to examine them all. Therefore, we choose to investigate
the TI of AB and APN permutations only. Generating uniform TIs for these
permutations which have cryptographic significance is challenging due to their
relatively complex algebraic representations. We could only find uniform
sharing for two out of four of the AB classes. These uniform sharings for
these permutations which use four shares are approximately four times bigger
than their unshared versions. For the rest of the 5-bit AB and 6-bit APN
permutations, we are forced to use re-masking. We leave finding uniform TIs
for these permutations as an open question. Note that we used these findings
during the designs of Fides and PRIMATEs authenticated encryption algorithms.
Their S-boxes are chosen from the AB1 and the mentioned APN class such that
both the unshared and the four-share TI have low area requirements compared
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to their affine equivalents.

We believe that this work on small S-boxes is only complete after discussing
first-order TI with two input shares and higher-order TIs. We used only 3- and
4-bit permutations for this discussion. We showed that there exists at least one
permutation from all 3- and 4-bit quadratic classes that has a uniform TI with
sin = 2 shares. However, such an implementation requires extreme care not to
unmask the sensitive information as discussed in Section 3.3.2 and is secure
only if the input sharings are independent of each other. Therefore, we do not
suggest this as a first option to consider unless the implementor is experienced
and the nonlinear function is deeply analyzed.

Higher-order implementations are relatively new compared to the rest of the
information provided in this thesis. Here, we only provided uniform second-
order TIs of quadratic 3- and 4-bit permutations with sin = 5 and sout = 10
shares. This sharing is generated from the five-share first-order TI of these
permutations. We leave the more detailed analysis as a future work.



6
First-Order Threshold

Implementations of Keccak

Chapter 4 dealt with TI of a simple block cipher that uses only an AND/XOR
gate to achieve nonlinearity whereas Chapter 5 employed uniform TIs of
single small permutations that form the nonlinear substitution layer of many
cryptographic algorithms. Neither of these chapters considered special properties
of the cryptographic algorithm in hand. In this chapter, we investigate the
Keccak algorithm of which a subset is defined as the new hash function
standard SHA-3. The goal of this chapter is to look beyond a single (5-bit)
nonlinear permutation during a TI. We first discuss TI of the permutation layer
composed of several of this permutation then extend TI to the full algorithm. We
discuss several implementation trade-offs starting with Question 2, i.e. achieving
uniformity of the nonlinear layer by using extra registers with increased area
or by using re-masking with extra randomness requirements. We also provide
algorithm specific optimizations to decrease the random bit usage. Even though
we only discuss first-order TI with the same number of input and output shares,
this work can be extended to higher-orders as will be discussed in Section 6.6.

Before moving further with the details, we first provide a brief introduction to
Keccak in Section 6.1. The first TI of Keccak is suggested by its designers
in [9]. Unfortunately, that three-share TI fails to satisfy Property 4 leading
to possible insecure implementations. We start Section 6.2 with an off-the-
shelf three-share TI of Keccak using re-masking, which is then followed by

87
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optimized versions to decrease the amount of required random bits. On the
other hand, the four-share implementation provided in Section 6.3 satisfies
all TI properties. In Section 6.4, we examine the performances of these
implementations and their unprotected version using both serialized and parallel
architectures. We use Faraday, FSA0A-D and FSC0H-D libraries which are
standard cell libraries tailored for UMC 0.18µm and UMC 0.13µm logic processes
respectively to observe and compare the size (GE) and the maximum frequency
(MHz) accurately with the previous works. In addition we provide results from
45nm NanGate standard cell library for future comparison.

We conclude this chapter by suggesting a TI of Keccak which uses only
two shares for the affine transformations and three shares for the nonlinear
permutations in order to further decrease the area with additional randomness
needs.

This work is published in [16]. The work of reducing the randomness of three-
share TI in Section 6.2 is mainly suggested by the coauthors Joan Daemen and
Gilles Van Assche.

6.1 Introduction to Keccak

Keccak is a function with variable-length input and arbitrary-length output
based on the sponge construction [10]. In this construction (Fig. 6.1), a b-bit
permutation f , which is typically an SPN, is iterated. First, the input is padded
and its blocks are absorbed sequentially into the state, with a simple XOR
operation. Then, the output is squeezed from the state block by block. The size
of the blocks is denoted by r and called the bit-rate. The remaining number
of bits c = b− r is called the capacity and determines the security level of the
function.

Figure 6.1: Sponge function construction [1]
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The simplest use case of a sponge function is to use it as a hash function.
However, a MAC function can be built by taking the concatenation of a secret
key and a message as input. It is also possible to use a sponge function as a
stream cipher. To this purpose, it suffices to use the secret key and a nonce as
input so that the resulting output can be used as a key stream. More modes of
use are described in [14].

Seven permutations, denoted by Keccak-f [b], are defined with width b = 25w
ranging from 25 to 1600 bits, with w increasing in powers of two. The state
of Keccak-f [b] is organized as a 5× 5× w bit array with (x, y, z) coordinates
each bit of which is denoted by X(x,y,z). Coordinates are taken modulo 5 for x
and y and modulo w for z. A row is a set of 5 bits with given (y, z) coordinates,
a column is a set of 5 bits with given (x, z) coordinates and a lane is a set of w
bits with given (x, y) coordinates. Moreover, the set of 5× 5 bits with given z
coordinates is called a slice.

x

y z z

Figure 6.2: Steps of the round function; from top left picture, clock-wise, θ, ρ,
χ and π [1].

The round function of Keccak-f [b] consists of the following steps, which are
only briefly summarized here and pictured in Figure 6.2. For more details, we
refer to the specifications [11].

• θ is a linear mixing layer that adds a pattern depending solely on the
parity of the columns of the state.
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• ρ and π displace bits without altering their value.

• χ is a nonlinear quadratic mapping that processes each row independently.
It can be seen as the application of the following function for each output
bit in a row in order to generate a 5-bit quadratic permutation (S-box)
per row:

A(x,y,z) = X(x,y,z) ⊕ (X(x+1,y,z) ⊕ 1)X(x+2,y,z).

• ι adds a round constant.

The linear operations θ, ρ and π together is represented as λ. The number of
rounds in Keccak-f is determined by the width b of the permutations. It is
12 for Keccak-f [25] and increases by two for each doubling of the size. So
Keccak-f [1600], which we work with throughout this chapter, has 24 rounds.

6.2 Three-share Threshold Implementation

The first three-share TI of Keccak is proposed in [9] by the Keccak designers.
In that document, given the uniform three-sharing X = (X1, X2, X3) for a row
of bits (X is a 5-bit element), where Xx = (Xx

1 , X
x
2 , X

x
3 ) represents one bit of

the row, the sharing for the nonlinear χ operation is defined as in Equation (6.1).

Ai
1 = χi

1(X2, X3) = Xi
2 ⊕ (Xi+1

2 ⊕ 1)Xi+2
2 ⊕Xi+1

2 Xi+2
3 ⊕Xi+2

2 Xi+1
3

Ai
2 = χi

2(X3, X1) = Xi
3 ⊕ (Xi+1

3 ⊕ 1)Xi+2
3 ⊕Xi+1

3 Xi+2
1 ⊕Xi+2

3 Xi+1
1

Ai
3 = χi

3(X1, X2) = Xi
1 ⊕ (Xi+1

1 ⊕ 1)Xi+2
1 ⊕Xi+1

1 Xi+2
2 ⊕Xi+2

1 Xi+1
2

(6.1)

This sharing maps a 15-bit vector (X1, X2, X3) to a 15-bit vector (A1, A2, A3).
Moreover, the sharing is a direct three-share TI where the component functions
are equal, i.e. generated in a cyclic manner; and the sharing highly resembles to
the first-order sharing of the AND/XOR gate of KATAN (Section 4.2.2). From
now on, we use the notation χ′ to represent χi1, χi2 and χi3 to ease the notation.

Upon inspection, we find that this three-share TI is not invertible and hence,
not uniform. Similar to the 5-bit AB permutations’ case in Section 5.2, it is
infeasible to try all CT to find a uniform TI and our research with a limited
number of CT did not reveal a positive result. Hence, we propose re-masking
as defined in Equation (3.13) to remedy this problem.
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Keccak-f [1600] has 320 rows. For a three-share TI, this implies the application
of Equation (6.1) together with the application of Equation (3.13) 320 times
per round at an extra cost of 2 uniformly distributed random bits per state bit.
Although from a theoretical point of view this re-masking method solves the
uniformity issue raised above, the solution is unsatisfactory since it requires a
random number generator (RNG) which generates many high-quality random
bits at each clock cycle.

In the following subsections, we decrease the number of extra random bits
required initially by each nonlinear operation, followed by a discussion on the
whole substitution layer.

6.2.1 Less Randomness per Row

In this subsection, we reduce the number of required fresh random bits per χ
operation by using specific properties of its sharing in Equation (6.1).

Lemma 13. Let (A1, A2, A3) be a (not necessarily uniform) three-sharing of
the n-bit value A and (B1, B2, B3) be a uniform three-sharing of the m-bit value
B. Let (C1, C2, C3) be uniform three-sharing of the n-bit value C statistically
independent of (A1, A2, A3) and (B1, B2, B3). Then, ((A1 ⊕ C1, B1), (A2 ⊕
C2, B2), (A3 ⊕ C3, B3)) is a uniform three-sharing of the n+m-bit value (A⊕
C,B).

Proof. First, since A1 ⊕A2 ⊕A3, B1 ⊕B2 ⊕B3 and C1 ⊕C2 ⊕C3 take a fixed
value with probability one, so does (A1⊕A2⊕A3⊕C1⊕C2⊕C3, B1⊕B2⊕B3).
Then, it suffices to verify that for each fixed value a1 ⊕ c1, b1, a2 ⊕ c2, b2:

Pr(A1 ⊕ C1 = a1 ⊕ c1, A2 ⊕ C2 = a2 ⊕ c2, B1 = b1, B2 = b2)

=
∑
c1,c2

Pr(C1 = c1, C2 = c2)←↩

↪→ Pr(A1 = (a1 ⊕ c1)⊕ c1, A2 = (a2 ⊕ c2)⊕ c2, B1 = b1, B2 = b2)

= 2−2n
∑
c1,c2

Pr(A1 = (a1 ⊕ c1)⊕ c1, A2 = (a2 ⊕ c2)⊕ c2, B1 = b1, B2 = b2)

= 2−2n Pr(B1 = b1, B2 = b2)

= 2−2(n+m).



92 FIRST-ORDER THRESHOLD IMPLEMENTATIONS OF KECCAK

The function χ in Keccak operates on 5-bit rows. It can be seen as a specific
case of a convolutional mapping operating on an n-bit circular array with
updating function Ai = Xi ⊕ (Xi+1 ⊕ 1)Xi+2. Next lemma is a general result
that holds for any value n.

Lemma 14. If the input (X1, X2, X3)0...n−1 to the shared function of χ is an
n-bit uniform masking, the output truncated to any n− 2 consecutive bits, e.g.,
(A1, A2, A3)0...n−3, is shared uniformly.

Proof. First, consider (An−3
1 , An−3

2 , An−3
3 ) which is calculated as in Equa-

tion (6.1). It is the result of summing (Xn−3
2 , Xn−3

3 , Xn−3
1 ) with bits computed

from X1, X2 and X3 in positions n− 2 and n− 1. As (Xn−3
2 , Xn−3

3 , Xn−3
1 ) is

a uniform sharing of Xn−3 independent of input bits in positions n − 2 and
n− 1, Lemma 13 applies and hence (An−3

1 , An−3
2 , An−3

3 ) is a uniform sharing.

Assuming (A1, A2, A3)i+1...n−3 is a uniform sharing, we can prove that
(A1, A2, A3)i...n−3 is a uniform sharing as follows. (Ai1, Ai2, Ai3) is the result
of summing (Xi

2, X
i
3, X

i
1) with bits computed from (X1, X2, X3)i+1...i+2. As

(Xi
2, X

i
3, X

i
1) is a uniform sharing of Xi and is independent of input bits

in positions i + 1 and i + 2 and of (A1, A2, A3)i+1...n−3, Lemma 13 applies
and hence (A1, A2, A3)i...n−3 is a uniform sharing. This can be extended till
(A1, A2, A3)0...n−3.

Further (cyclic) extensions to include (A1, A2, A3)n−1 or (A1, A2, A3)n−2 is not
possible as (Xn−2

2 , Xn−2
3 , Xn−2

1 ) is not independent of (A1, A2, A3)0...n−3 and
Lemma 13 no longer applies.

Lemma 14 says that the truncated output with two successive bits removed is
uniform. As a consequence, one can repair uniformity using only 4 fresh random
bits Mn−2

1 ,Mn−2
2 ,Mn−1

1 ,Mn−1
2 . In particular, we just apply Equation (3.13)

with M i
1 = M i

2 = 0 for 0 ≤ i < n− 2.

We decreased the number of fresh random bits per round from 10 to 4 bits
per row. However, for Keccak-f [1600] this is 320 × 4 = 1280 bits, still too
expensive in practice.

6.2.2 Jointly Satisfying Uniformity

In this subsection, we consider uniformity of the full state rather than of the
individual rows. We propose a TI of χ with interaction between the rows that
achieves almost uniformity at the level of the full state, greatly reducing the
required number of fresh random bits per round.
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Let us for convenience refer to the number the rows with index j = y+ 5z. The
idea is to make the sharing at the output of row j + 1 uniform by using input
at row j. In straightforward way, we add (X1 ⊕ X2, X1, X2) at the input of
row j to the output (A1, A2, A3) of row j + 1. This is again a straightforward
application of Lemma 13. Note that to satisfy the independence required by
Lemma 13, the last row still requires injection of four fresh random bits for
achieving uniformity, as in Equation (3.13). The circuit complexity can be
reduced greatly by combining this with Lemma 14. As a matter of fact, we
have to add (X1 ⊕X2, X1, X2) at the input of row j to the output (A1, A2, A3)
of row j + 1 in only two successive bit positions. Care must be taken in the bit
positions used in each row so as to be able to rely on Lemma 14.

The above reasoning points out that each row individually can become uniform.
The key point, however, is to show that the joint application on the entire state
yields a uniform realization of χ. This is what the theorem below shows.

We denote the three shares of the whole state by (X1, X2, X3), and a 5-bit row
of the state as (X1[j], X2[j], X3[j]) with j ∈ Z5w. Then, the implementation of
χ becomes:

A1[j]i = χ′(X2[j], X3[j])⊕X1[j − 1]i ⊕X2[j − 1]i,

A2[j]i = χ′(X3[j], X1[j])⊕X1[j − 1]i,

A3[j]i = χ′(X1[j], X2[j])⊕X2[j − 1]i,

(6.2)

if j > 0 and i ∈ {3, 4}. Otherwise, Equation (3.13) applies when j = 0, and
Equation (6.1) suffices for positions i ≤ 2.

Theorem 9. If the (whole state) input (X1, X2, X3) to Equation (6.2) when
j > 0 and i ∈ {3, 4}, to Equation (3.13) when j = 0 and i ∈ {3, 4} and to
Equation (6.1) when i ≤ 2, is shared uniformly, then the (whole state) output
(A1, A2, A3) is shared uniformly.

Proof. We can apply Lemma 13 recursively, with j starting at j = 5w − 1
and going down to j = 0. Every time, the reasoning is to show that if
(A1[j + 1 . . . 5w − 1], A2[j + 1 . . . 5w − 1], A3[j + 1 . . . 5w − 1]) is uniform, then
it is also uniform for rows j to 5w − 1.

Following Equation (6.2), the sharing (A1[j], A2[j], A3[j]) is obtained by
adding (χ′(X2[j], X3[j]), χ′(X3[j], X1[j]), χ′(X1[j], X2[j]) and (X1[j−1]⊕X2[j−
1], X1[j − 1], X2[j − 1]) for bit positions i ∈ {3, 4}. The latter expression is a
uniform sharing of 0 and independent of the rows with indexes j and higher.
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From Lemma 14, (χ′(X2[j], X3[j]), χ′(X3[j], X1[j]), χ′(X1[j], X2[j]) is already
uniform when restricted to bit positions 0 to 2. The conditions of Lemma 13 are
thus satisfied and (A1[j + 1 . . . 5w− 1], A2[j + 1 . . . 5w− 1], A3[j + 1 . . . 5w− 1])
is uniform

If j = 0, the same reasoning applies, except that bit positions i ∈ {3, 4} are
obtained as in Equation (3.13).

The new cost is four fresh random bits per round, some additional XORs,
registers and extra routing. As far as randomness is concerned, this amounts to
96 bits for the 24 rounds of Keccak-f [1600], which is small compared to the
3200 random bits needed to represent the input state in three shares with the
naive re-masking approach.

6.3 Four-share Threshold Implementation

Similar to the quadratic almost bent permutations, we find a uniform sharing
of χ with four shares. Unlike the representation in Equation (6.1), this sharing
is not cyclic. For i = 0, 1, 2, 4, we have:

Ai1 = Xi
2 ⊕Xi+2

2 ⊕ ((Xi+1
2 ⊕Xi+1

3 ⊕Xi+1
4 )(Xi+2

2 ⊕Xi+2
3 ⊕Xi+2

4 ))

Ai2 = Xi
3 ⊕Xi+2

3 ⊕ (Xi+1
1 (Xi+2

3 ⊕Xi+2
4 )⊕Xi+2

1 (Xi+1
3 ⊕Xi+1

4 )⊕Xi+1
1 Xi+2

1 )

Ai3 = Xi
4 ⊕Xi+2

4 ⊕ (Xi+1
1 Xi+2

2 ⊕Xi+2
1 Xi+1

2 )

Ai4 = Xi
1 ⊕Xi+2

1 ,

(6.3)

and for the remaining (third) coordinate function we have:

A′3 = X3
2 ⊕X0

2 ⊕X0
3 ⊕X0

4 ⊕ ((X4
2 ⊕X4

3 ⊕X4
4 )(X0

2 ⊕X0
3 ⊕X0

4 ))

B′3 = X3
3 ⊕A0 ⊕ (X4

1 (X0
3 ⊕X0

4 )⊕X0
1 (X4

3 ⊕X4
4 )⊕X0

1X
4
1 )

C ′3 = X3
4 ⊕ (X4

1X
0
2 ⊕X0

1X
4
2 )

D′3 = X3
1 .

(6.4)
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We found this sharing by using Theorem 6. Namely, we first searched through
all affine equivalent S-boxes of χ, i.e., χ̄ = χ(l(X)), where l(X) is an affine
permutation and we found the ones that can be shared with a direct sharing.
Next, we applied the corresponding inverse affine transformation to the found
direct sharing to generate a uniform sharing for the function χ. We chose the
one that has the smallest area over all the candidates. Therefore, this uniform
sharing (although derived and close to direct) is not a direct sharing and that
is why the shares can not be computed in a circular manner.

6.4 Implementations

There are several reports on different implementations of unprotected Keccak-f
that use different platforms, architectures and libraries [2]. We provide
unprotected (plain) implementations of Keccak-f with a round-based (parallel,
Fig. 6.3) and a slice-based (serial, Fig. 6.4) architecture and build TIs on them
for fair comparison. The D flip-flops (DFFs) that take the output of a 2 × 1
multiplexer (MUX) as input are implemented as scan flip-flops (SFFs) to reduce
the area.

6.4.1 Unprotected Implementations

Parallel Implementation

The rate of this version is fixed to be at most 1024 bits as depicted by Figure 6.3.
It is assumed that the inputs are the 1600-bit state from the previous iteration
of the Keccak-f together with one message block.

State

λ

χ and ι

1600

out1024

absorb&rnd0inp

1600
1024

1600

ready&squeze

1600∼ reset

Figure 6.3: Schematic of the round-based implementation of Keccak-f
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The architecture of the round function Keccak-f is straightforward with 320
parallel instances of χ. The function θ is implemented in a slice-based manner.
Namely, the 5-bit XOR of every row in each slice (i.e., the column parity) Pi,
where i ∈ {0, . . . , 63} is calculated in parallel [12]. For each slice, the rotated
values of Pi and Pi−1 are XORed. This new value is concatenated five times to
generate a 25-bit value which is then XORed to its corresponding slice. With
this method, the θ function can be calculated with a low cost. The rest of the
linear layer, i.e., ρ and π, are executed on the whole 1600-bit state as a simple
wiring and the output in each round is written to a 1600-bit register. Hence,
one iteration of Keccak-f [1600] takes 24 clock cycles.

Serial Implementation

This version, of which the schematic is given in Figure 6.4, operates on 25-bit
slices. Namely, it takes 25 bits in each clock cycle starting from slice 0 as input.
The column parity Pi of each input slice is calculated and written to a five
bit register to be used in the following clock cycle. The θ calculation is also
performed in the same clock cycle for each input slice using its parity and the
parity from the previous slice that was stored in the register with the exception
of the first slice. The output of θ is first stored in the register R63, then shifted
from Ri+1 to Ri for i ∈ {0, . . . , 62}. θ for the first slice is completed in the 64th

clock cycle together with the last slice. ρ and π are simple wirings executed
on the 64th clock cycle as well. We can consider this one round of 64 cycles as
the initialization round. For the following rounds, the input to θ is the output
of the five χ functions executed in parallel on the slice R0 followed by the
XOR of the round constant. The output is taken from the output of the round
constant injection starting from the first clock cycle of the 25th round. With
this implementation, one iteration of Keccak-f [1600] takes 64 × 25 = 1600
clock cycles and costs around 10kGE in area.

inp

θ χ

R0R63 R62 R61

· · ·

ρ and π

· · ·

rcon

25

25

25
255

5

5

5

25 25

out

rnd0&absorb

∼ reset∼ reset

ready&squeezeready&squeeze

25

25

25

Figure 6.4: Schematic of the slice-based implementation of Keccak-f
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We note that it is possible to have implementations that operates on two or four
slices per cycle to make the implementation faster by trading-off area. Here, we
aim a small implementation.

Both of these unprotected implementations are noticeably smaller than the
implementations reported so far which use standard cell libraries for state
storage and still provide a high frequency. On the other hand, the smallest
design so far, that is proposed in [82] uses RAM macros and requires more clock
cycles for one iteration. More detailed comparison for after synthesis results is
given in Table 6.1.

6.4.2 Threshold Implementations

We propose two different TIs for each architecture. The first one uses as few
random bits as possible while operating on three shares. Namely, except for
the initial sharing, we use at most four bits of fresh randomness per round as
described in Section 6.2.2. In the second one, however, we relax the restriction
on using minimum amount of shares and operate on four shares without the
need of extra fresh randomness.

In both of these versions, we assume that the input shares are provided from an
outside source, such that the sum of the shares is the unshared message and the
masking satisfies Property 1. The usage of three (resp. four) shares throughout
the entire implementations requires three (resp. four) times the registers
compared to the unprotected implementations. The linear layers are also tripled
(resp. quadrupled), such that each works on one share only. During the χ
operations, these shares are used together as described in Section 6.2.2 (resp.
Section 6.3). The round constant is introduced to only one share. The parallel
and the serial implementations differ mainly for the masks storage of three-
share implementation. The details of the re-masking and the implementations
requirements are detailed as follows.

Parallel Implementation

We store the XOR of the masksM i
1⊕M i

2 used for each row calculation in registers
as shown in Figure 6.5(i) and suggested in [73] for three-share implementations.
Therefore, we need 640-bit extra registers to store these mask XORs (two bits
per row, 320 rows). Moreover, the output is ready one clock cycle after the last
χ calculation is complete due to this re-masking. Therefore, one Keccak-f
takes 25 clock cycles.
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Table 6.1: Synthesis results for different implementations of Keccak-f

Area (kGE) Rand. bit Clock FrEquation
Design State θ χ ANDs/XORs Other TOTAL per round Cycles MHz

UMC 0.18µm standard cell library

Parallel 9.0 9.3 7.0 8.1 0.1 33.5 - 24 572
Parallel-3sh 27.2 27.8 55.4 31.4 3.5 145.3 4 25 516
Parallel-4sh 36.3 37.1 68.8 31.9 0.1 174.2 - 24 513
Serial 10.1 0.1 0.1 0.2 0.3 10.8 - 1600 555
Serial-3sh 30.4 0.4 0.8 0.7 0.8 33.1 4 1625 553
Serial-4sh 40.5 0.6 1.0 0.7 0.3 43.1 - 1600 572

UMC 0.13µm standard cell library

Parallel 8.0 8.6 6.4 7.5 0.1 30.6 - 24 855
Parallel-3sh 24.0 25.7 52.8 29.4 3.3 135.2 4 25 746
Parallel-4sh 32.0 34.2 61.6 29.7 0.1 157.6 - 24 735
Serial 10.0 0.1 0.1 0.2 0.2 10.6 - 1600 752
Serial-3sh 30.0 0.4 0.8 0.7 0.7 32.6 4 1625 820
Serial-4sh 40.0 0.5 0.9 0.7 0.3 42.4 - 1600 775

NANGATE 45nm standard cell library

Parallel 9.0 6.4 5.6 7.0 0.1 28.1 - 24 690
Parallel-3sh 27.2 19.2 40.6 25.9 3.7 116.6 4 25 592
Parallel-4sh 36.3 25.6 48.7 28.7 0.1 139.4 - 24 588
Serial 12.2 0.1 0.1 0.2 0.2 12.8 - 1600 775
Serial-3sh 36.8 0.3 0.6 0.5 0.8 39.0 4 1625 645
Serial-4sh 49.0 0.4 0.8 0.6 0.3 51.1 - 1600 633

UMC 0.18µm standard cell library

Parallel-[94] N/A N/A N/A N/A N/A 56.7 - 25 488

STM and UMC 0.13µm standard cell library

Parallel N/A N/A N/A N/A N/A 48.0 - 24 526Keccak team
Serial-[59] N/A N/A N/A N/A N/A 20.0 - 1200 N/A
Serial-[82]1 N/A N/A N/A N/A N/A 5.9 - 15427 61
1: Uses RAM macros

The costs of the combinational logics exceed the costs of the registers as expected,
since there are too many instances of θ and χ (Table 6.1). Even though these
implementations are fast, the parallel TIs are quite big and can no longer be
called lightweight implementations, when applied to bigger versions of Keccak.

Serial Implementation

For the three-share serialized implementation, we need one 4-bit register to
keep the random bits from the previous χ function to the next (as described in
Section 6.2.2) in addition to one 10-bit register (two bits per row, 5 rows) to store
the mask XORs after the χ operation. Similar to the parallel implementation,
this re-masking costs an extra clock cycle per round.
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The register costs are the dominant costs in these architectures whereas the θ
and χ layers together are only 4% of the overall implementation. The three-
share TI of the serial architecture has the same size as the unprotected parallel
implementation.

6.5 Using Two Shares for λ

Keccak-f has an unavoidable 1600-bit state due to its construction. Therefore,
a three or four share implementation which triples or quadruples the state
automatically requires a big area. Furthermore, the cost of the linear θ layer is
very close to the register cost as we converge to the parallel implementation
(Table 6.1) because of multiple XORs per bit which also has a multiplied effect
with sharing.

Here, we propose using two shares for the whole linear part λ to reduce the
area at the cost of extra random bits. Using two shares for the linear parts
implies increasing or decreasing the number of shares for the nonlinear layer
since we need at least three-shares for a secure χ calculation. The re-masking
from two to three shares can be done as in Fig. 6.5(ii). This expansion must be
done one clock cycle before the χ computation as these three new shares need
to be written to the registers to avoid leakage (Remark 3). Note, that we do
not need a uniform χ implementation anymore since this expansion also serves
as the re-masking the nonlinear function input (Observation 1). Therefore, we
only consider the χ implementation with three shares and direct sharing in
Equation (6.1). Moreover, reducing the number of shares from three to two can
be done by only a single XOR as shown in Fig. 6.5(iii) since linear layers do
not require uniform input shares.

m1⊕m2
a3
a2
a1m1

m2 b3
b2
b1

(i)

m1⊕m2

a2

a1m1

m2
b3

b2

b1

(ii)

a3

a2

a1

b2

b1

(iii)

Figure 6.5: Re-masking (i) to make the masking uniform (ii) to increase the
number of shares from two to three and (iii) to decrease the number of shares
from three to two.

With this approach, we need 1 more clock cycle per round for the round-
based architecture and 10 extra bits of randomness for each instance of the
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χ function. Applying the method in a straightforward way costs 3200 bits of
extra randomness. However, it is possible to use the idea of Section 6.2.2 and
borrow randomness from the input of the previous instances of the χ function.

For the parallel implementation, this approach decreases the cost of the linear
layer and the ANDs and XORs only. We need to put a register between the
2-to-3 re-masking and the χ layer, in order to safeguard against the possibility
that some of the masks do not arrive on time. Moreover, there is the extra cost
of the XORs during the re-masking to compensates for the area saved in the
linear layer. In the end, such a parallel implementation does not save area and
moreover it needs more randomness which is not preferable.

For the serial architecture, this approach is more efficient. When our slice-
based implementation is considered, we need to increase the number of shares
when we shift the data in the register R1 to the register R0 and decrease the
number of shares during the shift from R63 to R62. Even though the θ layer is
still performed on three shares, the registers from R1 to R62 only require two
instances. Besides, the extra cost of re-masking is small since we only need to
increase or decrease the number of shares of one slice. As a result, such an
implementation requires approximately 30% less area.

6.6 Conclusion

We devoted this chapter to the first-order secure implementations of Keccak
that satisfy all the TI properties. We built these TIs on our own parallel and
serial architectures which are significantly smaller than prior works using the
same type of memory elements as shown in Table 6.1. At the moment, it
seems that at least four shares are required in order to satisfy all TI properties
simultaneously without the need of extra fresh random bits. Our efforts to fix
the prior three-share TI [9], which fails to satisfy Property 4, lead to a solution
using four fresh random bits per round. This number is only 0.125% of the
randomness required if a straight forward re-masking would have been applied.

When Keccak-f with wide states (b ≥ 400) are considered, it is advantageous
to implement a (pseudo) random number generator in order to use a three-share
TI instead of four-share TI due to the 33.3% increase in shared state size in the
latter option. In parallel implementations, each linear and nonlinear operation
requires at least the area of the state which makes the parallel applications very
big for practice. On the other hand, serial implementations in which the state
occupies the majority of the area can be considered for near future lightweight
applications. We acknowledge that when (b ≥ 400), it is hard to consider
Keccak-f as lightweight with today’s technology, however using the detailed
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area analysis provided in Table 6.1, we can estimate the cost of smaller versions.
Moreover, the information in the table combined with the knowledge from
Chapter 4 can be used to design and estimate the requirements of higher-order
secure implementations of Keccak-f since the nonlinear layer χ resembles to
the AND/XOR block of KATAN as mentioned in Section 6.2.

With this chapter, we have started the discussion of area/randomness trade-off.
In addition, we provide a discussion on using two shares for the linear parts
of the algorithm with additional randomness needs in order to keep the area
as close as possible to the unprotected implementation. Before stating strict
arguments on these matters, we will analyze similar trade-offs for the AES
algorithm in the following chapter.





“It SHOULD be easy"
— Anonymous

7
First-Order Threshold

Implementations of AES

In this chapter, we investigate the first-order TI of one of the most widely used
block ciphers, namely AES. A first-order TI which uses three shares throughout
the algorithm is applied to AES by Moradi et al. [73]. It is based on an
unprotected implementation which is presented in the same paper and known
to be the smallest AES implementation so far. Therefore we also build our
implementations based on this unprotected version.

Similar to Keccak in Chapter 6, we investigate the trade-offs between circuit
area and randomness requirements by changing the number of shares in different
blocks of the algorithm. As mentioned in Section 2.2.4, the AES S-box has very
complex coordinate functions to be implemented on hardware and typically
tower field approach is used instead. We also follow the same approach with
increased design flexibility. With this structure, we can vary the number of
shares more frequently compared to the prior implementations in order to
achieve compactness or different levels of security. Unlike the previous chapters
where we did not provide a key revealing power analysis, in this chapter, we
investigate the provided security of this first-order TI against high-order analysis
using CPA and CEPACA described in Section 2.3.1 and 2.3.5 respectively. In
addition, we question the effect of changing the number of shares in the linear
layer to the security in terms of required traces.

103
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In the following section, we first provide a very brief description of the AES
algorithm and its building blocks for which the detailed information can be
found in [80]. We suggest three different TIs in Section 7.2 each of which focus
on a different trade-off. We used a standard tool chain to synthesize them with
Faraday Standard Cell Library FSA0A_C_Generic_Core, which is based on
UMC 0.18µm GenericII Logic Process with 1.8V voltage. We conclude this
section by providing the performances of our designs and comparing them with
the previous work in [73]. We should note that [73] uses a similar standard
cell library based on UMC 0.18µm logic process with 1.8V voltage. Finally, we
provide detailed analysis of these implementations in Section 7.3. We leave the
extension of this work to higher-order as future work.

This work is published in [18] and [19]. The analysis in Section 7.3 is performed
and mainly written by Benedikt Gierlichs. We provide it here for completeness.

7.1 Introduction to AES

AES processes 128-bit plaintext blocks in order to output 128-bit ciphertext
blocks using an encryption algorithm and 128, 192 or 256-bit key. The main
difference between these versions is the key schedule. Here we only focus on the
version using a 128-bit key. The state can be considered as a 4× 4 matrix of
8-bit elements. The plaintext is inserted to the state in the top to bottom, left
to right manner.

The encryption algorithm is an SPN composed of ten rounds. The algorithm
starts with the XOR of the plaintext and the secret key and repeats the following
steps for each round in order.

• SubBytes (SB) is the nonlinear substitution layer composed of sixteen
8-bit permutations each of which is described in Section 2.2.4 and is based
on multiplicative inversion in the given field.

• ShiftRows (SR) is a part of the linear layer that rotates the elements on
row i by i − 1 elements to the left. Hence, the first row is not altered,
second row is rotated to the left by one block etc.

• MixColumns (MC) completes the diffusion by mixing the elements of each
column with the help of the affine transformation which is defined by a
4× 4 matrix.

• AddRoundKey (ARK) takes the round key that went through the key-
scheduling function and combines it with the state by means of an XOR.
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Key schedule, which transforms the round key nonlinearly in each round, is
composed of linear operations and four S-boxes, which are equal to the S-boxes
in SB, substituting only four elements of the round key.

7.2 Implementation

We discuss three different TIs of AES which we refer to as raw, adjusted and
nimble implementations. All implementations share the same data flow and
timing. The implementations differ mostly in the S-box calculation and/or the
number of shares that are used in different blocks of the algorithm. The raw
implementation forms the basis of the other two implementations. Hence, we
mainly describe the raw implementation and point out the differences with
the other two. The main feature of the raw implementation is that it uses
the smallest possible number of shares for each function, except the linear
transformations in the S-box, provided that the shared functions are uniform.
In other words, all nonlinear operations are performed with s > 2 shares such
that the circuits are uniform and s is as small as possible. The linear operations
outside the S-box are performed with two shares, whereas the linear operations
in the S-box use two, three or four shares (see Sect. 7.2.2).

The adjusted implementation on the other hand ensures that at least three shares
are used in every operation, including the linear ones. With this implementation
we intend to observe the effect of moving from at least two shares to at least
three shares in linear operations on the resistance against higher-order DPA,
and to quantify the associated cost.

We observe that in both raw and adjusted implementations, we need to use
extra fresh randomness to achieve uniformity due to parallel operations in the
S-box that uses the same input as discussed in Section 3.3.2. In the nimble
implementation the number of shares is always minimal, i.e. s = t+ 1 where
t is the degree of the unshared function (d = 1), even if the resulting shared
function is not uniform. The uniformity of the circuit is satisfied by re-masking
(Observation 1).

We first describe the general data flow of our implementations in Section 7.2.1.
In Section 7.2.2 we introduce different approaches to apply the TI to the AES
S-box. Finally, we provide performances of our implementations which are
described by separating component functions in modules in order to satisfy
non-completeness.
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7.2.1 General Data Flow

We use a serial implementation for round operations and key schedule as
proposed in [73] for area efficiency which requires only one S-box instance
and loads the plaintext and key byte-wise in row-wise order. We also use one
MixColumns instance that operates on the whole column and provides an output
in one clock cycle. Due to this extreme serialization, one round requires at
least 21 clock cycles even for the unprotected implementation [16]. All our TIs
execute one round in 23 clock cycles. In the first 16 clock cycles, the plaintext is
XORed with the key and sent to the S-box. Its output is taken from the 3rd to
the 18th clock cycles and stored in the state registers, i.e. the S-box is executed
in three clock cycles. The ShiftRows operation is performed in the 19th clock
cycle followed by four cycles of the MixColumns calculation. The S-box takes
its input from the key schedule for four cycles starting from the 18th cycle. In
the 17th, 22nd and 23rd clock cycles the S-box inputs and unused random bits
are set to 0. Therefore, the calculation of AES takes 23× 10 + 16 = 246 clock
cycles, including 16 cycles to output the ciphertext.
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Figure 7.1: Schematic of the serialized TI of raw AES-128

Raw Implementation

We use two sets of state registers, each consisting of sixteen 16-bit registers,
corresponding to the two shares of the state. MC and ARK operations are also
performed with two shares. This can be seen in Figure 7.1, as the key and the
state registers are 256 bits implying the two shares.
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This TI of the S-box (details will be given in Section 7.2.2) requires four input
shares, therefore we initially share the plaintext in four shares. We share the
key in two shares and XOR them with two of the plaintext shares before the
S-box operation. More details about the key scheduling will be given later in
this section. Besides the shared input, the S-box needs 20-bits of randomness
r. The first output share sbout1,2 is written to the state register P3 whereas
the remaining two shares are written to register S33 (Fig. 7.2). The data in
the state registers are shifted to the left for the following 16 cycles so that the
next output of the S-box can be stored in the same registers. During this shift,
the data in P3 (pout in Fig. 7.1) is XORed with the second share of the S-box
output, which is in the state register S33, to reduce the number of shares from
three to two. To achieve this, signal sig2 is kept active from the 4th to the 19th

clock cycle.

sbin1,2

sbin3,4

||m1
P
mi m2||m3

sig1

sig2
mcini

sbout1,2

sbout3

mcouti

S00
S01 S02 S03

S11 S12 S13S10

S21 S22 S23S20

S31 S32
S33S30

P0

P3

Figure 7.2: Schematic of the state array for our raw implementation where Si,
and P0 hold two shares and P3 holds one share; the registers P0 and P3 are
used by the state and the key array; the XOR of the value in P3 and S33 is
on one share of the value in register S33 whereas all the other combinational
operations are on two shares

The ShiftRows operation is performed in the 19th clock cycle with an irregular
horizontal shift. In the next four clock cycles, the data in the registers S00, S10,
S20 and S30 are sent to the MixColumns operation, the rest of the registers are
shifted to the left horizontally and the output of the MixColumns operation is
written to the registers S03, S13, S23 and S33. The MixColumns operation is
implemented column-wise as in [73] and with two shares working in parallel.
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The registers except S10, S11 and S12 are implemented as SFFs in order to
operate with two inputs at reduced area cost. A single 2-to-1 MUX costs 3.33
GE and one-bit register costs 5.33 GE whereas one-bit SFF costs 6.33 GE in
our library.

In the following AES rounds, we increase the number of shares of the S-box
input from two to four, using 24 bits of randomness (three bytes each of which is
referred to as mi in the figures), one clock cycle before the S-box operation. To
achieve this, signal sig1 is kept active for sixteen clock cycles, starting from the
last clock cycle of each round. We separate the increase of the number of shares
and the nonlinear operation with registers to achieve the non-completeness
property. The two additional shares are stored in P0. The two shares in S00
are XORed with the two shares of the corresponding round key byte and sent
to the S-box together with the two shares in P0.

The registers P0 and P3 are used for both the round transformations and the
key scheduling.

sbin1,2

sig3

sbout1,2
sbout3

K00 K01 K02 K03

K11 K12 K13K10

K21 K22 K23K20

K31 K32 K33K30
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m2||m3
sig4

sig5

sbin3,4

sig6

rcon

rndkeyi

rndkeyi

Figure 7.3: Architecture of the key arrays for our raw implementation where
Ki and P0 hold two shares and P3 holds one share; the registers P0 and P3 are
used by the state and the key array; the XOR of the value in P3 and K30 is
on one share of the value in register K30 whereas all the other combinational
operations are on two shares

Similar to the state array, the key array also consists of sixteen 16-bit registers,
implemented as SFFs, each corresponding to the two shares of a byte in the
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key schedule (Fig. 7.3). The round key is inserted from the register K33 in
the first sixteen clock cycles of each round. For the next three clock cycles,
the registers except the last column (K03, K13, K23 and K33) are not clocked.
The registers K03, K23 and K33 are also not clocked in the 17th clock cycle. In
that clock cycle, we increase the number of shares in the register K13. In the
following three clock cycles this re-sharing is done during the vertical shift from
the register K23 to K13, i.e. the re-sharing signal sig4 is active from the 17th

to the 20th clock cycle. Signal sig5 is active from the 18th to the 21st clock
cycle to reduce the number of shares back to two. The registers K03, K13, K23
and K33 are not clocked in the remaining two clock cycles of each round. We
choose this way of irregular clocking to avoid using extra MUXes in our design.
Two shares of the S-box output are XORed to the data in K00 in the last four
clock cycles of each round. In the 20th clock cycle the round counter rcon is
additionally XORed to one of these shares. The number of shares is reduced
back to two by XORing the share in P3 to one of the shares in K30. Signal sig3
is active in the first sixteen clock cycles except the 4th, 8th, 12th and 16th clock
cycles. The round key is taken from the register K00 to be XORed with the
corresponding plaintext before going to the S-box operation.

Adjusted Implementation

This version works on three shares for both the state and the key schedule
which increases the area significantly. The S-box still requires four input shares
and outputs three shares, hence the register P0 is reduced to 8-bits (one share)
and the register P3 is not required. Similar to the raw implementation, we use
24-bits of randomness to increase the number of shares from three to four one
cycle before the S-box, i.e. each of the existing three shares is XORed with a
random byte and the sum of these random bytes is taken as the fourth share.
This also ensures uniformity of the S-box input. Together with the state, the
number of shares for the MixColumns and the Key XOR operations increases
to three.

Nimble Implementation

Similar to the raw implementation, this one also uses two shares for the state
and key arrays. The main difference is that the S-box needs three input shares
instead of four. Hence, the size of the register P0 is reduced to 8-bits (one
share). As a result, we need only 16-bits of randomness to increase the number
of shares from two to three before the S-box operation, i.e. each share is XORed
with one byte of randomness and the XOR of the random bytes is taken as the
third share. The S-box requires 16-bits of extra randomness per iteration and
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outputs three shares. Hence, the logic of the register P3 to reduce the number
of shares back to two stays the same.

7.2.2 TI of the AES S-box

The S-box implementations in [73] use the tower field approach up to GF(22)
for a small implementation as given in Figure 2.1. Therefore, the only nonlinear
operation is GF(22) multiplication which must be followed by registers and
re-masking to avoid first-order leakages.

We also chose to use the tower field approach. However, we decided to go until
GF(24) instead of GF(22). With this approach, the GF(24) inverter (coordinate
functions provided in Appendix B.2.2) can be seen as a 4-bit permutation and
the GF(24) multiplier (coordinate functions provided in Appendix B.2.1) as a
4-bit multiplication both of which are well studied in Chapter 5. Therefore, we
can find uniform TIs for each of these nonlinear functions. This might allow
us to reduce the number of fresh random bits needed since we will have fewer
nonlinear blocks compared to [73] possibly requiring less re-masking in order to
use their outputs. Moreover, with this approach the S-box calculation takes
three clock cycles instead of five.

Raw implementation (Fig. 7.4)

The uniformity of each function is individually satisfied. The uniform sharing
with four input and three output shares that is used to share each term in the
multiplication is provided in Appendix B.2.3. For inversion, which belongs to
class C4

282 (Table A.12), we consider two options. Either using four shares which
is the minimum number of shares necessary for a uniform implementation in that
class (Table A.6) and decomposing the function into three uniform sub-functions
as Inv(x) = F (G(H(x))), or using five shares without any decomposition. We
remind that all 4-bit permutations including C4

282 have a uniform five-share TI as
described in Section 5.1.1. Our experiments show that both versions have similar
area requirements but need a different number of clock cycles. To reduce the
number of cycles, we chose the version with five shares, generated by applying
the formula in Appendix B.2.6 to each term of the inversion. This sharing is
found by using the method described in Theorem 6 which is slightly different
from the direct sharing. Namely, we found a permutation from C4

282 which has
a uniform direct sharing. Then we adapted this direct sharing using the affine
relation between the found permutation and the specific permutation we want
to implement. We chose this sharing instead of cascaded affine-nonlinear-affine
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transformation. Moreover, for our specific permutation this sharing can be
implemented in hardware with less logic gates compared to the direct sharing.
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Figure 7.4: The S-box of the raw implementation

Even though it is enough to use only two shares for linear operations, we
sometimes chose to work on more than two shares to avoid the need of extra
random bits. The linear map of the tower-field S-box operates on four shares
since the multiplication needs four input shares. The inverter requires five input
shares and the multiplication outputs only three shares, therefore we use two
shares for the square scalar to have five shares in the beginning of the 2nd phase.
We use three shares for the inverse linear map of the tower-field S-box since the
multiplication outputs three shares. For all the linear operations, the shared
functions are created as instantiations of the unshared function for the first
share and as unshared function without the constant term for the other shares.

During the combination of these uniform circuits, we face the challenges
described at the end of Section 3.3.1 to keep the uniformity in the pipeline
registers. We apply re-masking on the first pipeline register where we combine
the two output shares of the square scaler and the three output shares of the
multiplier to generate five shares. Note that this combination also acts as the
XOR of the outputs of the square scaler and the multiplier. By Theorem 4, it
is enough to re-mask only the output shares of one of the functions to achieve
uniformity. We choose to re-mask the output of the square scaler since it
operates on less shares, hence requires less random bits. The correction mask,
i.e. the XOR of the masks, is XORed to one of the output shares of the multiplier
to achieve correctness.

Another challenge is to satisfy the uniformity of the circuit as we increase or
decrease the number of shares. This is achieved by introducing new masks
before the S-box operation to increase from two to four shares and at the end
of the 2nd phase to decrease from five to four shares. The output of the 3rd

phase is not uniform when the three shares are considered together. However,
we verified by simulation that each share individually is uniform, which implies
that there is no first-order leakage in the following registers. We combine the
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first two shares with an XOR and keep the third share as it is to go back to
two shares. We also verified that, after we decrease the number of shares to
two, the output shares are uniform.

We always keep the XOR of the masks in the pipeline registers and complete the
re-masking in the next clock cycle as in [73] for a fair comparison. Overall, we
need 44 fresh random bits per S-box operation including increasing the number
of shares of the S-box input.

Adjusted implementation (Fig. 7.5)

As mentioned in the earlier sections, the only difference between the raw and
the adjusted implementation is that the adjusted implementation requires at
least three shares for all the blocks including the linear operations in the S-box.
For that reason, the shared square scaler circuit is instantiated with three shares.
This S-box also requires 44 bits of randomness per iteration.
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Figure 7.5: The S-box of the adjusted implementation

Nimble implementation (Fig. 7.6)

As can be observed in Figures 7.4 and 7.5, we use fresh randomness at the end of
the 1st phase to satisfy uniformity during the combination of the square scaler’s
and the multiplier’s outputs, and after the inverter to break the dependency
between the inputs of the multipliers in the 3rd phase. Since these re-masking
steps conserve the uniformity property and the security of each block is achieved
only by the correctness and non-completeness properties (Observation 1), we
can discard the uniformity property and implement these nonlinear functions
with the smallest number of shares n s.t. n > d, i.e. n = d+ 1, where d is the
degree of the unshared functions. We use the sharing with three input and
output shares provided in Appendix B.2.4 for each term of the multiplier and
the sharing with four input and output shares provided in Appendix B.2.5 for
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each term of the inverter. With this new construction, it is enough to have
three input shares to the S-box since the multiplier block requires only three
shares. We need to reduce the number of shares from five to four at the end of
the 1st phase for the inverter and from four to three at the end of the 2nd phase
for the following multipliers. This construction requires only 32 bits of extra
randomness per S-box calculation, including increasing the number of shares
for the S-box input.
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Figure 7.6: The S-box of the nimble implementation

7.2.3 Performance

Like any other DPA countermeasure, TI also allows trade-offs between area,
randomness and the resistance against DPA. In Table 7.1, we provide the
area costs (GE) and randomness requirements (bits) for the different S-box
implementations. For all the implementations, we performed two different
compilation methods. The first one is a regular compilation with the compile
command, that does not optimize or merge modules, performed on the whole
implementation. The second method on the other hand uses the compile_ultra
command for each module to let the tool optimize each of them individually
and combine the result. It is very important that the modules are not merged
for area optimization in this step, to not violate the non-completeness property.

The total area results in Table 7.1 show that using non-uniformly shared
functions as in the nimble implementation reduces the area cost significantly
compared to the uniformly shared raw and adjusted implementations. This
reduction is caused by the decreased number of shares used in the nonlinear
blocks. Moreover, the required number of random bits per S-box also decreases
together with the reduced number of shares since less shares need to be re-masked
to satisfy uniformity.

In Table 7.2, we show the area, randomness requirements and timings of
our AES implementations and compare them with the results in [73]. We
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Table 7.1: Synthesis results for different versions of S-box TI with compile
/ compile_ultra commands

S-box Raw Adjusted Nimble
Lin.Map. 168 / 120 168 / 120 126 / 90
Sq.Sc. 18 27 18
Multiplier 625 / 458 625 / 458 418 / 308
Inverter 618 / 490 618 / 490 594 / 375
Inv.Lin.Map 99 / 72 99 / 72 99 / 72
1st Ph. 919 / 704 916 / 701 646 / 500
2nd Ph. 690 / 562 702 / 574 654 / 435
3rd Ph. 1374 / 1013 1374 / 1013 959 / 713
Registers* 725 661 576
Total 3708 / 3004 3653 / 2949 2835 / 2224
Random. 44 44 32
*: including the registers P0 and P3

again provide our results using the same compilation techniques as the S-box
implementations. The area costs for the state and the key arrays include the
ANDs and XORs that are shown in Figures 7.2 and 7.3. As expected, in the raw
and nimble implementations the cost of the state and key arrays together with
the MixColumns are reduced by one third compared to [73] and the adjusted
implementation, since we use two shares instead of three. All our versions have
the same timing and use the same control module.

In our implementations, the S-box occupies 30% to 40% of the total area.
Compared to the implementation in [73] our S-boxes with uniform blocks are
13% smaller and our S-box with non-uniform blocks is 33% smaller. These
results show a significant area and randomness improvement for the nimble
implementation, indicating that using nonuniform shared functions can be
advantageous if the uniformity of the circuit is satisfied by re-masking.

7.3 Power Analysis

To evaluate the security of our designs in practice we implement them on a
SASEBO-G board [3] using Xilinx ISE version 10.1. The Verilog descriptions of
the designs are the same as for the ASIC evaluations, but we replaced all SFFs by
DFFs and MUXes because SFFs are not available. We use the “keep hierarchy”
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Table 7.2: Synthesis results for different versions of AES TI with compile
/ compile_ultra commands

Design [73] Raw Adjusted Nimble
State Ar. 2529 1698 2473 1687
Key Ar. 2526 1890 2762 1844
S-box 4244 3708 / 3004 3653 / 2949 2835 / 2224
MixCol. 1120 770 / 544 1156 / 816 770 / 544
Control1 255 242 242 242
Key XOR 64 48 72 48
MUXes 376 746 853 693
Total 11114 / 11031 9102 / 8172 11221 / 10167 8119 / 7282
Cycles 266 246 246 246
Random.2 48 44 44 32
1 including round constant and other 2 per S-box

constraint to prevent the tools from optimizing over module boundaries (see the
paragraph before Sect. 3.2.1 and the last sentence before Table 7.1). Apart from
that we use the standard tool chain. The board features two Xilinx Virtex-II Pro
FPGA devices: we implement the TI AES and a PRNG on the crypto FPGA
(xc2vp7) while the control FPGA (xc2vp30) handles I/O with the measurement
computer and other equipment. The PRNG that generates all random bits is
implemented as AES-128 in CTR mode.

We measure the power consumption of the crypto FPGA during the first 1.5
rounds of TI AES as the voltage drop over a 1Ω resistor in the FPGA core
GND line. The output of the passive probe is sampled with a Tektronix DPO
7254C digital oscilloscope at 1GS/s sampling rate.

7.3.1 Methodology

We define two main goals for our practical evaluations. First, we want to verify
our implementations’ resistance against first-order attacks. But in practice
adversaries are of course not restricted to applying such attacks. Therefore, our
second goal is to assess the security that our implementations provide against
other, e.g. higher-order, power analysis attacks.

Since there is no single, all-embracing test to evaluate the security of an
implementation against key recovery attacks, we test its resistance against
state-of-the-art attacks. We narrow the evaluation to univariate attacks because
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our implementations process all shares of a value in parallel. Estimating the
information-theoretic metric by Standaert et al. [93] is out of reach. It would
require estimation of at least 248 Gaussian templates.

We make several choices that are in favor of an adversary and make attacks
easier. First, to minimize algorithmic noise the PRNG and the TI AES do
not operate in parallel, i.e. the PRNG generates and stores a sufficient number
of random bits before each TI AES operation. In practice, running them in
parallel will increase the level of noise and thus the number of measurements
needed for an attack to succeed. Second, we provide the crypto FPGA with a
stable 3MHz clock frequency to ensure that the traces are well aligned and the
power peaks of adjacent clock cycles do not overlap (this would also help to
assign a possibly identified leak to a specific clock cycle). In practice, clocking
the device at a faster or unstable clock will make attacks harder. Third, we let
the adversary know the implementation. Specifically, if the PRNG was switched
off the adversary would be able to correctly compute bit values and bit flips
under the correct key hypothesis. In practice, obscurity is often used as an
additional layer of security. Fourth, we use synchronous (over-)sampling [70] to
avoid clock drift and achieve the best possible alignment. In practice, secure
devices use an internal (and unstable) clock source which prevents synchronous
sampling and increases the number of measurements needed for an attack to
succeed.

7.3.2 PRNG Switched Off

To confirm that our setup works correctly and to get some reference values we
first attack the implementations with the PRNG switched off. We expect that
the implementations can be broken with many first-order attacks. As example,
we used CPA attacks (Section 2.3.1) that use the HD of two consecutive S-box
outputs as power model. The attacks require 2 · 28 key hypotheses. To reduce
the computational complexity we let the adversary know one key byte and aim
to recover the second one. The results for the raw implementation are shown in
Figure 7.7

Since the adversary knows the implementation, he can choose to compute the
HD over three 8-bit registers (all versions; S33 and P3; output of the S-box in
three shares), two 8-bit registers (raw and nimble; S32; one cycle later; two
shares) or ignore the details and compute the distance over a single 8-bit register
as if it was a plain implementation. For all versions, only a few hundred traces
are required to recover the key with any of these attacks. It is worth noting that
the highest correlation peaks do not occur at the S-box output registers, but
three resp. two clock cycles later when the same bit-flips occur in register S30.
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Figure 7.7: Results of CPA attacks using HD model over 3/2/1 registers with
PRNG off; left: correlation traces for all key hypotheses computed using 50 000
power traces, correct hypothesis in black, and a scaled power trace; right: max.
correlation coefficient per key hypothesis (from the overall time span) over
number of traces used.

This register drives the MixColumns logic and therefore has a much greater
fanout.

We also applied CEPACA (Section 2.3.5) that targets combinational logic. The
attacks compute two sets of mean traces for the values of two processed plaintext
bytes and shift the mean traces in the time domain to align them. They aim
to recover the linear difference between the two key bytes involved. To do so,
they permute one set of mean traces according to a hypothesis on the linear
difference and then correlate both sets of mean traces. The results show that
this attack is successful with a few thousand measurements for all versions. The
ones regarding the raw implementation are given in Figure 7.8.

Figure 7.8: Result of CEPACA with PRNG off; left: correlation traces for all
hypotheses on the linear difference computed using 50 000 power traces, correct
hypothesis in black, and a scaled power trace; right: max. correlation coefficient
per hypothesis on the linear difference (from the overall time span) over number
of traces used.



118 FIRST-ORDER THRESHOLD IMPLEMENTATIONS OF AES

7.3.3 PRNG Switched On

Next we repeat the evaluation with the PRNG switched on, i.e. the TI AES
uses unknown and unpredictable random bits. For the CPA attacks using the
HD over two or three registers as power model, we suppose these bits were zero.

Raw implementation

Figure 7.9 shows the results of the first-order attacks against the protected
implementation using 10 million measurements. The results show that the
attacks fail.

Figure 7.9: Results of first-order CPA and CEPACA on raw implementation
with PRNG on computed using 10 million traces; top, left: HD over 1 register;
top, right: HD over 2 registers; bottom, left: HD over 3 registers; bottom, right:
CEPACA

We proceed with higher-order attacks to assess the level of security this
implementation provides. For our second-order CPA attacks we use the same
power models as before but center and then square the traces (for each time
sample) before correlating (Section 2.3.3 [32, 85, 98]). Second-order CEPACA
work as above with mean traces replaced by variance traces as described in
Section 2.3.5.
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Figure 7.10 (top, left) shows the results of the second-order CPA attack that uses
the HD in a single register as power model (as if it was a plain implementation)
using 10 million measurements. We note that the highest correlation peak
occurs again when the same bitflips happen in register S30, similar to when the
PRNG was switched off. The attack requires about 600 000 traces to succeed, as
shown in Figure 7.10 (top, right). Second-order CPA attacks using the HD over
two resp. three registers as power model failed to recover the key, presumably
because we do not know the masks’ values and assume they are zero.

Figure 7.10 (bottom, left) shows the results of the second-order CEPACA using
10 million measurements. The attack requires about 3.5 million traces to succeed
as shown in Figure 7.10 (bottom, right).

Figure 7.10: Results of second-order CPA (top) and CEPACA (bottom) on
raw implementation with PRNG on computed using 10 million traces; right:
min./max. correlation coefficient per hypothesis (from the overall time span)
over number of traces used

Adjusted implementation

We performed the same analysis as on the raw implementation. Figure 7.11
shows that neither the first-order CPA attack that uses the HD in one register
as power model nor the first-order CEPACA work with 10 million traces as
expected.
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Figure 7.11: Results of first-order CPA (left) and CEPACA (right) on adjusted
implementation with PRNG on computed using 10 million traces

Unlike our result for the raw implementation, we observe that second-order CPA
does not work even with 10 million traces as shown in Figure 7.12 (top). This
result is natural since the adjusted implementation uses three shares instead
of two in register S33 (and the entire state array). We expect a 3rd-order CPA
attack that exploits the third standardized moment of the traces to be possible,
however the available 10 million traces were not enough.

Figure 7.12: Results of second-order CPA (top) and CEPACA (bottom) on
adjusted implementation with PRNG on computed using 10 million traces;
right: min./max. correlation coefficient per hypothesis (from the overall time
span) over number of traces used
On the other hand, a second-order CEPACA still succeeds, indicating leakage
from possible glitches in the S-box, as shown in Figure 7.12 (bottom, left).
Recall that the adjusted implementation uses at least three shares in every
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operation. Compared to Figure 7.10 (bottom, left) the second correlation peak
does not show. This might be the reason why the attack becomes harder as
shown in Figure 7.12 (bottom, right). It is successful with about 4 million traces
but the separation of the correct key from the wrong keys is poor, even using
10 million traces. This observation indicates that the leakage that leads to the
first correlation peak is almost linear and therefore harder to exploit.

Nimble implementation

We performed the same analysis as on the raw implementation and the results
are similar. First-order CPA and CEPACA fail with 10 million traces. Both
second-order CPA and CEPACA show peaks (Fig. 7.13, left) in the same clock
cycle as for the raw implementation. They succeed with about 600 000 and
8.5 million traces, respectively, as shown in Figure 7.13 (right). However, we
observe that the CEPACA requires more traces to be successful than for the
the raw implementation. We suspect that this is due to the simpler component
functions of the nimble implementation which cause less glitches in the circuit.

Figure 7.13: Results of second-order CPA (top) and CEPACA (bottom) on
nimble implementation with PRNG on computed using 1 million and 10 million
traces, respectively; right: min./max. correlation coefficient per hypothesis
(from the overall time span) over number of traces used
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7.3.4 Discussion

The first goal of our evaluation is to verify our implementations’ resistance
against first-order attacks. But this goal is always limited by the number of
measurements at hand. It is simply not possible to demonstrate resistance
against attacks with an infinite number of traces. We have shown that our
implementations resist state-of-the-art first-order attacks with 10 million traces
in conditions that are strongly in favor of the adversary (no algorithmic noise
from the PRNG, knowledge of the implementation, slow and stable clock, best
possible alignment). Given the theoretical foundations of TI and the correctness
of our implementations, we are convinced that our implementations resist
first-order attacks with any number of measurements, but we have no way to
demonstrate that.

The second goal of our evaluation is to assess the level of security our
implementations provide against higher-order attacks and to relate the results
to the area and randomness requirements. In the same adversary-friendly
conditions, the most trace-efficient second-order attack in our evaluation requires
about 600 000 traces for the raw and the nimble implementations. The attack
exploits that the state array is in two shares, which is common to both
implementations that mainly differ in the S-box implementation. Since the
nimble implementation requires less resources and provides a similar level of
security, it is preferable over the raw implementation.

As expected, the adjusted implementation with at least three shares in all
operations provides better security than the raw implementation it is based
on. The same second-order CPA attack that succeeded with 600 000 traces
against the raw implementation fails against the adjusted implementation even
with 10 million traces. Also a third-order CPA attack against the adjusted
implementation fails with 10 million measurements. The trace requirement for
a successful second-order CEPACA increases only slightly from 3.5 million to
about 4 million, but the separation of the correct key from the wrong keys is
much poorer. The price of this increase in security is a roughly 23% larger
circuit (randomness requirements and timings are identical).

7.4 Conclusion

In this chapter, we provided first-order implementation of AES using the theory
provided in Chapter 3. During our implementations, we had two main questions
in mind, namely Question 2 and Question 3. In order to investigate answers, we
implemented three different versions each of which have a specific purpose. The
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raw implementation satisfies all TI properties in every step and uses two to five
shares for different blocks of the algorithm. This implementation is faster, is
18% smaller (9 kGE) and requires less randomness compared to [73]. It is secure
against first-order DPA and can only be broken with second-order DPA using
600 000 in our adversary friendly setup. Showing that changing the number of
shares can be advantageous even if we need five shares in particular blocks is
the main contribution of this implementation.

The adjusted implementation, which needs 11 kGE area similar to [73], trades-
off area for security. The usage of at least three shares in each block of the
implementation provides additional security against second-order DPA which
can be profitable depending on the application.

The main goal of the nimble implementation was a small area implementation
on the direction of Question 3. We initially expected to observe the area-
randomness trade-off by using building blocks that fail to satisfy Property 4 but
have smaller area. On the other hand, we have observed that using less shares
for many of the building blocks have the side-effect of requiring less randomness
for re-masking. This implementation, which benefits from Observation 1 can
be considered lightweight with 8 kGE (7 kGE when optimized) and requires
28% less randomness than the raw implementation. We acknowledge that the
randomness expectations can be demanding for some applications and leave
further improvements as an open question. We note that this implementation
provides similar security compared to raw implementation therefore is preferable.





8
Conclusion

In this chapter, we summarize the contributions of this thesis and discuss the
answers to the research questions provided in Section 1.3. Then we propose
directions for future research.

8.1 Summary

Increased usage of embedded devices brought the necessity of using cryptographic
algorithms to provide security. New cryptographic algorithms are constantly
developed in order to improve different aspects of former algorithms. The
security claims of these algorithms in the black-box model need to be evaluated
using several cryptanalysis techniques. Today’s standardized algorithms, such
as AES and SHA-3, have gone through detailed cryptanalysis which confirms
their security in the black-box model with today’s knowledge. However, straight-
forward implementations of these algorithms leak secret information due to
the behavior of the device in the gray-box adversary model. In this thesis,
we consider an attacker capable of performing higher-order differential power
analysis (DPA), which has minimum requirements, is hardly detectable and is
realistic, in order to reveal the secret.

Several countermeasures are suggested to counteract DPA. In this thesis, we
considered the threshold implementation (TI) method which provides security
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on various platforms with minimal assumptions. In addition, it does not require
a cell level investigation and is compatible with standard design flows and
libraries.

Originally, TI was proposed to provide security against first-order DPA. In this
thesis, we provide the theory of dth-order TI that counteracts dth-order DPA
which was proposed as the first research question in Section 1.3. Such a TI
relies on four properties; namely uniform masking, correctness, dth-order non-
completeness and uniform sharing of a function. We explained the particular
contributions of each property to the claimed security and discussed several
methods to achieve them. Specifically, uniform masking brings a proper
randomization of intermediate values whereas correctness is required for a
valid implementation.

Satisfying dth-order non-completeness is especially important to provide security
of a glitchy circuit. We showed that this property can be satisfied by using at
least d+ 1 input shares. However, minimizing the number of input shares might
blow up the number of output shares and must be applied with extreme care.
On the other hand, there always exists a sharing of a function with algebraic
degree t using sin = t× d+ 1 input and sout =

(
sin
t

)
output shares which can

be applied with less considerations.

Uniform sharing of a function is required when the design comprises of functions
of which the outputs together become the input to a nonlinear function or
cascaded operations in the design. Our priority was to satisfy the first three
properties and then work on the sharing in order to satisfy its uniformity. This
becomes challenging on nonlinear functions. We investigated how to achieve all
these properties for an AND/XOR gate; all 3× 3 and 4× 4 permutations; 5× 5
AB and 6× 6 APN permutations; and Keccak and AES S-boxes.

During our investigation, we always started with a directly shared nonlinear
function where each shared term is assigned to a specific component function
such that the sharing satisfies correctness and dth-order non-completeness. If
given a uniform masking this shared function fails to satisfy uniformity, we used
one or more of the following approaches to solve the problem: shuffling the terms
in each component function by using correction terms, splitting the unshared
function using decomposition or tower field approach and increasing the number
of shares. Re-masking was applied in order to satisfy all the properties for
the rare occasions where non of the mentioned methods revealed a solution or
was feasible. We leave as an open question if more performant solutions exist
and can be found efficiently. For KATAN, Keccak and AES we extended our
research from the nonlinear layer to the full block cipher implementation.

We always tested our implementations using simulated traces. We acknowledge
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that simulations do not necessarily represent the exact behavior of the device
hence, can be misleading. Therefore, for KATAN and AES implementations,
we also performed analysis using the power traces gathered from an
FPGA implementation. Several DPA confirm the claimed security of our
implementations. We note that this evaluation process must be performed for
all the suggested countermeasures since it can reveal inaccurate assumptions on
the behavior of the device.

Security

Area Randomness

Chapter 4

Chapter 7 
(raw vs. adjusted)

Chapter 7 
(raw vs. nimble)

Chapter 7 
(raw vs. adjusted)

Chapter 5
Chapter 6

Figure 8.1: Overview of the trade-offs considered in this thesis

Minimizing the extra resource requirements arising from having a counter-
measure is suggested as a research question in Section 1.3. We changed the
number of shares in order to find the implementation with minimum resource
requirements which produced several trade-offs answering the final research
question concerning to area-randomness-security trade-offs. In Figure 8.1, we
summarize which chapters focus on which trade-offs. Precisely, in Chapter 4,
we observed the increase in area with increased security using up to third-order
TIs of the block cipher KATAN. In Chapters 5 and 6, we fixed the security
to first-order then investigated the area-randomness trade-off. In Chapter 5,
we observed that decomposing a nonlinear function in order to use TI with
less shares or to reduce the additional re-masking can have an area overhead
due to the additional pipelined registers. On the other hand, we showed
in Chapter 6 that the cost of re-masking can be reduced significantly using
algorithm dependent optimizations. In Chapter 7, we first described a raw first-
order TI of AES. We then increased the number of shares in order to increase the
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security against second-order DPA. This adjusted implementation showed the
area-security and randomness-security trade-offs. Finally, we omit Property 4
and provided security using re-masking to observe the area-randomness trade-off.
This smaller nimble implementation requires less additional random bits for
re-masking compared to the adjusted implementation caused by the decreased
number of shares.

A somewhat surprising result of our work is that that using less shares does
not necessarily imply smaller implementations. Similarly, using more shares
and/or uniformly shared functions do not imply requiring less random bits in
addition to the initial masking. Using two shares for linear layers and changing
the number of shares when necessary should be considered as an option to
decrease the area which sometimes trades-off security. It is possible to re-use
the randomness in certain cases in order to decrease the need of additional
random bits. However, this method should be applied with extreme care. The
trade-offs differ for each algorithm and application therefore should be carefully
examined for each particular implementation.

To conclude, we introduced a countermeasure against higher-order DPA which
provides provable security on a wide range of platforms including the ones
where glitches occur. A serial implementation of a cryptographic algorithm
which provides security against first-order DPA following this methodology
requires approximately three times the area of an unprotected implementation
with negligible time increase. Precisely, the smallest first-order TIs of the
standardized AES and SHA-3 algorithms need approximately 8kGE and 30kGE
respectively. Moreover, the increase of area in order to implement a function
securely is approximated to depend linearly on the order of security. The
moderate increase in resources combined with the provided security and a
detailed investigation on different functions and trade-offs makes this technique
a valuable candidate to be used in practice.

8.2 Directions for Future Research

In addition to the open questions provided in different chapters of this
dissertation, our main considerations for future research are as follows.

Analyzing TI on Different Platforms

Embedded systems can be constructed using ASICs (application-specific
integrated circuit) or FPGAs each of which has its advantages. FPGAs are more
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expensive; however, their reconfigurability is advantageous. On the other hand,
ASICs which are relatively cheap per piece when a large number of them are
taped-out are unchangeable. Hence, a mistake or an unforeseen weakness can
cause loss of millions. Therefore, there are several steps to follow before an ASIC
tape-out with a cryptographic algorithm that claims DPA resistance. Namely,
the claimed security should be confirmed initially by the simulated traces
followed by traces gathered from an FPGA implementation before investing a
lot of resources on an ASIC implementation. In this dissertation, we stopped
after confirming security of our implementations on FPGA.

Moreover, we mainly considered hardware implementations since TI differs from
other masking schemes by providing security even on glitchy circuits, leaving
the software implementations uncovered. On the other hand, implementations
on co-designed systems which require hardware and software interactions or
high-end devices also require security against DPA.

Even though our security claims should be reflected to a well designed
ASIC or a software implementation, such designs might come with their own
challenges. Completing the investigation of the claimed security and the resource
requirements of TI on different platforms increases the applicability of the TI
method and closes the gap between research and industry.

Changing the Leakage Model

TI assumes that the total leakage of the device is a linear combination of
leakages gathered from different operations. Even if there is cross-talk between
wires (shares), it is assumed that leakages from these shares are not combined
nonlinearly. This is a common assumption for low-end CMOS technologies.
That is why we used SASEBO-G board with Virtex-II Pro FPGAs on board,
which is known to leak in that model, in our experimental setup.

The semiconductor industry is decreasing the process size and increasing the
performance exponentially following Moore’s law. The smaller process sizes
such as 22 or 14nm processes bring a higher possibility of cross-talk between
wires. Experiments on these high-end platforms which will often be used in the
near future brings us one more step closer to future-proof implementations.

Strengthening the Adversary Model

As mentioned in Section 1.2, our ultimate goal is to have a countermeasure that
is secure against all known (and possibly unknown) attacks. In this dissertation,
we limit our adversary to perform passive-noninvasive dth-order DPA. This DPA
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adversary model can be extended by considering mutual information analysis.
Observing the strength that TI provides against this adversary when higher-
order implementations are considered completes the investigation of security
against DPA.

It has been shown that the higher-order DPA model has a direct correspondence
with the passive-(semi-)invasive dth-order probing model. However, neither
active adversaries nor combined adversaries are considered so far in TI context.
Improving TI such that it is secure against the mentioned stronger adversaries
completes a bigger portion of the ultimate goal. Finding inspiration from
multi-party computation protocols which deal with faulty results could be the
starting point.
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Tables

A.1 3-bit Permutations
Table A.1: The 4 classes of 3-bit permutations

Class Truth table Sharing
A3

0 01234567 1,1
Q3

1 01234576 1,1
Q3

2 01234675 1,1
Q3

3 01243675 2,2

A.2 4-bit Permutations

Table A.2: The 302 classes of 4-bit permutations

Class Truth table Sh. Class Truth table Sh.
A4

0 0123456789ABCDEF 1,1 C4
5 0123456789ACDBFE -,2

C4
1 0123456789ABCDFE -,1 C4

6 0123456789ACBDFE 3,3
C4

2 0123456789ABCEFD 3,3 C4
7 0123456789ACBEFD -,3

C4
3 0123456789ABDEFC -,1 C4

8 0123456789ACDEFB 3,3
Q4

4 0123456789ABDCFE 1,1 C4
9 0123456789ACDEBF -,3
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Table A.3: The 302 classes of 4-bit permutations cont’d

Class Truth table Sh. Class Truth table Sh.
C4

10 0123456789BCAEFD 3,3 C4
48 012345786AC9EDFB -,3

C4
11 0123456789BCEFDA -,2 C4

49 012345786A9CDEBF 3,3
Q4

12 0123456789CDEFAB 1,1 C4
50 012345786A9CFDBE 3,3

C4
13 0123456789CDEFBA -,1 C4

51 012345786ABCDE9F -,3
C4

14 0123456879CDEFBA 3,3 C4
52 012345786ACBDE9F 3,3

C4
15 012345687A9CBEFD -,3 C4

53 012345786ACBDFE9 3,3
C4

16 012345687A9CDFBE 3,3 C4
54 012345786A9BCEFD -,2

C4
17 0123456879CDEFAB -,2 C4

55 012345786AB9CFDE 3,3
C4

18 0123456879ACDBFE 3,3 C4
56 012345786AC9BFDE -,3

C4
19 0123456879ACDFBE -,3 C4

57 012345786A9CBEFD 3,3
C4

20 0123456879ACDEBF 3,3 C4
58 012345786ACFDE9B -,3

C4
21 0123456879ACBDFE -,3 C4

59 012345786ACEDFB9 -,2
C4

22 0123456879ACFEDB 3,3 C4
60 012345786ACFB9DE 3,3

C4
23 0123456879BCEFAD -,3 C4

61 012345786ACFDEB9 3,3
C4

24 012345687A9CFBDE 4,3 C4
62 012345786A9CBFED -,3

C4
25 0123456879ABCEFD -,3 C4

63 012345786AC9DEFB 3,3
C4

26 0123456879BCDEFA 3,3 C4
64 012345786ABCED9F 3,3

C4
27 012345687ABCDEF9 -,3 C4

65 012345786A9CFDEB -,3
C4

28 0123456879BCEAFD 3,3 C4
66 012345786ACB9EFD 3,3

C4
29 012345687ABCEFD9 -,3 C4

67 012345786ACF9DBE 3,3
C4

30 012345687ABCE9FD -,3 C4
68 0123457869ACDFEB -,3

C4
31 0123456879ACBEFD 3,3 C4

69 0123457869ACDEBF -,3
C4

32 0123456879ACFBDE -,3 C4
70 012345786ACBF9ED 3,3

C4
33 0123456879BCEFDA 3,3 C4

71 012345786ACEBD9F 3,3
C4

34 0123456879BCFEAD 3,3 C4
72 012345786ACDF9EB -,3

C4
35 0123456879CEAFDB -,3 C4

73 012345786ACDF9BE 3,3
C4

36 0123456879CEAFBD 3,3 C4
74 012345786ACDE9FB 3,3

C4
37 0123456879ACDEFB -,3 C4

75 012345786AC9FBED -,3
C4

38 0123456879ABDEFC 3,3 C4
76 012345786ACEBFD9 3,3

C4
39 012345768A9CBEFD -,3 C4

77 012345786A9CEFDB -,3
C4

40 012345768A9CBFDE -,2 C4
78 0123457869ACBEDF 3,3

C4
41 012345768A9CBFED 3,3 C4

79 0123457869ACBFDE -,3
C4

42 012345786ACBED9F -,3 C4
80 0123457869ACBEFD -,3

C4
43 012345786ABCF9DE 3,3 C4

81 0123457869ACEFDB 3,3
C4

44 012345786AC9BFED 3,3 C4
82 0123457869ACEBDF -,3

C4
45 012345786A9CFBDE -,3 C4

83 0123457869ACEBFD 3,3
C4

46 012345786ABCDEF9 3,3 C4
84 012345786ACF9EBD -,3

C4
47 012345786AC9DEBF -,3 C4

85 012345786A9CEBDF 3,3
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Table A.4: The 302 classes of 4-bit permutations cont’d

Class Truth table Sh. Class Truth table Sh.
C4

86 012345786A9CFBED 3,3 C4
124 0123458A69CEBDF7 3,3

C4
87 012345786ACD9EFB -,3 C4

125 0123458A69CB7EFD -,3
C4

88 012345786ACD9FBE -,2 C4
126 012345786AC9EDBF 3,3

C4
89 012345786ACD9EBF 3,3 C4

127 012345786ABC9FED 3,3
C4

90 012345786ABCF9ED -,3 C4
128 0123458A6B9CDE7F -,2

C4
91 012345786ACFBD9E -,3 C4

129 0123458A6BC7F9ED -,3
C4

92 012345786ABC9EDF 3,3 C4
130 0123458A6CBDE79F 3,2

C4
93 012345786ABC9EFD -,3 C4

131 0123458A6CE9BDF7 3,2
C4

94 012345786ACED9FB -,3 C4
132 0123458A6CBD7E9F -,3

C4
95 012345786A9CDFEB 3,3 C4

133 0123458A6C9FBD7E -,3
C4

96 012345786A9CEDFB 3,3 C4
134 0123458A69C7DEBF 3,3

C4
97 0123458A6BCEDF97 -,3 C4

135 0123458A69CDE7FB -,3
C4

98 0123458A6BCF97ED -,3 C4
136 0123458A69C7FBED 3,3

C4
99 0123458A6BC97FDE 3,3 C4

137 0123458967CEAFBD -,3
C4

100 0123458A6B9CF7ED -,3 C4
138 0123458967CEAFDB 3,3

C4
101 0123458A6BCFED79 3,3 C4

139 0123456879BCAEFD -,3
C4

102 012345786A9CDBEF -,3 C4
140 012345687ABC9FDE 3,3

C4
103 0123458A69C7DFEB 3,3 C4

141 0123458967CEBFDA -,3
C4

104 0123458A69C7FDBE 3,3 C4
142 012345786ACD9FEB 3,3

C4
105 0123458A697CBEFD -,3 C4

143 0123458A69CFB7DE -,3
C4

106 0123458A697CBFDE -,3 C4
144 0123458A69CFDEB7 -,3

C4
107 0123458A69CE7FDB 3,3 C4

145 0123458A69BCF7ED 3,3
C4

108 0123458A6C9FEB7D -,2 C4
146 0123458A69CB7FDE -,3

C4
109 0123458A6CB9F7ED -,3 C4

147 012345786ABCFDE9 3,3
C4

110 0123458A69CFD7BE 3,3 C4
148 012345786ABCE9FD 3,3

C4
111 0123458A69BC7FDE 3,3 C4

149 012345786ABCFD9E -,3
C4

112 0123458A6C7EBFD9 -,3 C4
150 0123458A6BCFDE97 2,2

C4
113 0123458A6C7FBE9D -,3 C4

151 0123458A6BCF97DE 2,2
C4

114 012345786ACFBDE9 3,3 C4
152 0123458A6BCF7E9D -,3

C4
115 012345786ACBE9DF 3,3 C4

153 0123458A6B9CEDF7 -,3
C4

116 0123458A6C9D7FBE -,2 C4
154 0123467859CFBEAD 3,3

C4
117 0123458A6C9D7EFB -,3 C4

155 0123467859CFEBDA 3,3
C4

118 0123458A6C9FDB7E 3,3 C4
156 0123458A69CFE7BD -,3

C4
119 012345786ACB9FED -,3 C4

157 0123458A69CEFB7D -,3
C4

120 0123458A6C7EBDF9 3,3 C4
158 0123458A6BCF7D9E 2,2

C4
121 0123458A6C7FBD9E 3,3 C4

159 0123458A6BCED79F 2,2
C4

122 0123458A6BCE79FD -,3 C4
160 0123468B59CED7AF -,3

C4
123 0123458A69BCE7DF 3,3 C4

161 0123458A6B7CEDF9 3,3
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Table A.5: The 302 classes of 4-bit permutations cont’d

Class Truth table Sh. Class Truth table Sh.
C4

162 0123458A6B7CDFE9 3,3 C4
200 0123458A6BCFD79E -,3

C4
163 0123468C59BDE7AF -,3 C4

201 012345786ACB9FDE 3,3
C4

164 0123458A6B7C9FDE 3,3 C4
202 012345786ACE9DFB 3,3

C4
165 0123458A6B7C9EFD 3,3 C4

203 012345786ACF9BDE -,3
C4

166 012345896ABCE7DF -,2 C4
204 012345786ACE9BFD -,2

C4
167 0123458A67BC9EFD -,3 C4

205 012345786ACDB9EF 3,3
C4

168 0123458A6CBFE7D9 2,2 C4
206 012345896ABCEDF7 -,3

C4
169 012345786ACFB9ED -,3 C4

207 0123458A67BCEDF9 -,3
C4

170 012345786ACEB9DF -,2 C4
208 0123458A69C7BFDE 3,3

C4
171 0123458A6CBF7E9D 2,2 C4

209 0123468B59CF7DAE -,3
C4

172 0123458A6C9DBF7E 2,2 C4
210 0123468A5BCF7D9E -,3

C4
173 012345786A9CBDFE -,3 C4

211 0123458A69CED7FB 3,3
C4

174 0123458A69CF7EBD 3,3 C4
212 0123458A69BC7EFD 3,3

C4
175 012345786ACDE9BF -,3 C4

213 012345896ABC7EFD -,2
C4

176 0123457869ACFEBD 3,3 C4
214 0123458A67CEB9FD 2,2

C4
177 0123457869BCEAFD -,3 C4

215 012345896ACEB7FD 2,2
C4

178 0123458A6C7DBFE9 3,3 C4
216 0123457869CDEFBA -,2

C4
179 012345786A9CEDBF -,3 C4

217 012345687ABC9EFD 3,3
C4

180 0123458A6C9D7FEB 3,3 C4
218 0123457869BCDEFA -,3

C4
181 012345896ABC7FDE -,3 C4

219 012345786ACF9BED 3,3
C4

182 0123458A67BC9FDE -,3 C4
220 0123468A59CFDE7B -,3

C4
183 012345896ACF7BED 3,3 C4

221 0123457869CEAFDB 3,3
C4

184 0123458A67CF9BED 3,3 C4
222 0123467859CFEADB -,3

C4
185 012345896ACE7BFD -,3 C4

223 0123468A5BCFDE79 2,2
C4

186 0123458A67CF9BDE -,3 C4
224 0123457869CEBFDA -,3

C4
187 012345786ACEFB9D 3,3 C4

225 0123456879CEBFDA 3,3
C4

188 012345786ACFEB9D -,3 C4
226 012345786ABC9FDE -,3

C4
189 0123457869CEFBDA 3,3 C4

227 012345786ACFD9BE -,3
C4

190 0123458A6C7DBEF9 -,3 C4
228 0123458A69BCEDF7 3,3

C4
191 0123458A6C7FB9DE -,3 C4

229 0123458A6C9DBFE7 -,3
C4

192 0123458A6C7FBED9 3,3 C4
230 0123458A6CEB7FD9 -,3

C4
193 0123458A6C7FDB9E -,3 C4

231 0123468B59CEDA7F 3,3
C4

194 012345786ACFED9B 3,3 C4
232 0123458A6C9FDBE7 -,3

C4
195 0123458A6BC7DE9F -,3 C4

233 0123458A67B9CFDE 2,2
C4

196 0123468C59BDEA7F 3,3 C4
234 012345896AB7CFDE 2,2

C4
197 0123458A6CBDE97F -,3 C4

235 0123458A69B7CEFD -,3
C4

198 0123458A69C7BEFD 3,3 C4
236 0123458A6B97CFDE 2,2

C4
199 0123458A6BCFD9E7 -,2 C4

237 0123458A69B7CFDE -,3
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Table A.6: The 302 classes of 4-bit permutations cont’d

Class Truth table Sh. Class Truth table Sh.
C4

238 0123457689CEAFBD 2,2 C4
270 0123468B5C9DEA7F 3,3

C4
239 0123457689CEAFDB -,3 C4

271 0123468B5C9DAFE7 -,3
C4

240 012345768A9CDEFB 3,3 C4
272 0123468B5CD79FAE -,3

C4
241 012345768A9CDEBF -,2 C4

273 0123458A6C7FEB9D 3,3
C4

242 012345768A9CDFEB -,3 C4
274 0123458A6BCED97F -,3

C4
243 012345768ACF9BDE 2,2 C4

275 0123458A6CF7BE9D 3,3
C4

244 012345768ACE9BFD 2,2 C4
276 0123458A6CF7BD9E -,3

C4
245 012345768ACF9BED -,3 C4

277 0123458A6BC9DE7F 3,3
C4

246 0123456879BAEFDC -,2 C4
278 0123468B5CD7AF9E 3,3

C4
247 012345687AB9DEFC 3,3 C4

279 0123458A6BC7DFE9 -,3
C4

248 0123456879CEFBDA -,2 C4
280 0123457869ACEDBF 3,3

C4
249 0123458A69CFEB7D 3,3 C4

281 0123457869ACFBDE 3,3
C4

250 0123458A69CD7FEB -,3 C4
282 0123468B5CD7F9EA -,3

C4
251 0123458A69CEF7DB -,3 C4

283 0123468B5C9DE7AF -,3
C4

252 0123458A69CEFBD7 2,2 C4
284 0123458A6BCF9D7E -,3

C4
253 0123458A69CE7FBD -,3 C4

285 0123457869CEAFBD -,2
C4

254 0123458A69BCFD7E 3,3 C4
286 0123458967CEFBDA 2,2

C4
255 012345786ABCEDF9 -,3 C4

287 012345768A9CDFBE 3,3
C4

256 012345896ACF7BDE -,3 C4
288 0123456789CEFBDA 2,2

C4
257 012345896ABCFD7E -,2 C4

289 0123456789CEBFDA -,3
C4

258 012345896ACE7BDF 2,2 C4
290 0123456789BCEAFD -,3

C4
259 012345896ACEFDB7 2,2 C4

291 012345768A9BCFED -,3
C4

260 012345896AB7CEFD 2,2 C4
292 012345768A9BCEFD 2,2

C4
261 0123458A69CEB7FD -,3 Q4

293 0123457689CDEFBA 1,1
C4

262 0123458A6C7DB9FE 2,2 Q4
294 0123456789BAEFDC 1,1

C4
263 0123458A6BC7EDF9 -,3 C4

295 0123468C59DFA7BE -,3
C4

264 0123458A6C7DFEB9 2,2 C4
296 0123468A5BCF7E9D 2,2

C4
265 0123458A6BCDE9F7 -,3 C4

297 0123468A5BCF79DE 2,2
C4

266 0123468A5BCFED97 2,2 C4
298 012345687ACEB9FD -,2

C4
267 012345786ABCE9DF -,3 Q4

299 012345678ACEB9FD 1,1
C4

268 0123458A69CFBED7 3,3 Q4
300 0123458967CDEFAB 2,1

C4
269 0123458A69CEBFD7 -,3 C4

301 0123458967CDEFBA -,1
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Table A.7: Quadratic decomposition length 2

Class # Quadratic Decomposition length 2: # simple
in A16 quadratic × quadratic solutions
C4

130 300× 299 1

C4
131 299× 300 1

C4
150 12× 293, 293× 300, 300× 12, 300× 300 4

C4
151 12× 300, 293× 12, 300× 293, 300× 300 4

C4
158 299× 293 1

C4
159 293× 299 1

C4
168 12× 300, 293× 293, 300× 12, 300× 300 4

C4
171 293× 12, 293× 300, 294× 293, 294× 300 4

C4
172 12× 293, 293× 294, 300× 293, 300× 294 4

C4
214 4 × 299, 12 × 12, 12 × 294, 12 × 299, 293 × 4, 293 ×

12, 293 × 294, 293 × 299, 294 × 12, 294 × 294, 294 ×
299, 300× 4, 300× 12, 300× 294, 300× 299

15

C4
215 4 × 293, 4 × 300, 12 × 12, 12 × 293, 12 × 294, 12 ×

300, 294× 12, 294× 293, 294× 294, 294× 300, 299×
4, 299× 12, 299× 293, 299× 294, 299× 300

15

C4
223 12×293, 293×293, 293×294, 294×293, 294×294, 299×

12, 299× 299
7

C4
233 12×12, 293×293, 293×300, 294×12, 294×300, 299×

12, 300× 293, 300× 300
8

C4
234 12× 12, 12× 294, 12× 299, 293× 293, 293× 300, 300×

293, 300× 294, 300× 300
8

C4
236 12×12, 293×293, 293×294, 293×300, 294×293, 294×

294, 299× 299, 300× 293, 300× 300
9

C4
238 12× 300, 293× 293, 300× 12, 300× 300 4
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Table A.8: Quadratic decomposition length 2 cont’d

Class # Quadratic Decomposition length 2: # simple
in A16 quadratic × quadratic solutions
C4

243 4×293, 4×294, 12×4, 12×293, 12×294, 12×299, 293×
12, 293 × 294, 294 × 4, 294 × 12, 294 × 293, 294 ×
294, 299 × 4, 299 × 293, 299 × 294, 300 × 12, 300 ×
294, 300× 299

18

C4
244 4×12, 4×294, 4×299, 12×293, 12×294, 12×300, 293×

4, 293×12, 293×294, 293×300, 294×4, 294×12, 294×
293, 294×294, 294×299, 294×300, 299×12, 299×300

18

C4
252 299× 300, 300× 299 2

C4
258 4× 12, 4×300, 12× 4, 12×12, 12× 293, 12×294, 12×

299, 12 × 300, 293 × 12, 293 × 294, 293 × 299, 294 ×
12, 294 × 293, 294 × 299, 294 × 300, 299 × 12, 299 ×
293, 299 × 294, 299 × 300, 300 × 4, 300 × 12, 300 ×
294, 300× 299

23

C4
259 4×12, 4×300, 12×12, 12×293, 12×294, 12×299, 12×

300, 293×4, 293×12, 293×294, 293×299, 294×4, 294×
12, 294 × 293, 294 × 294, 294 × 300, 299 × 12, 299 ×
293, 299×294, 299×300, 300×12, 300×294, 300×299

23

C4
260 4×293, 4×294, 12×4, 12×12, 12×293, 12×294, 12×

299, 12 × 300, 293 × 12, 293 × 294, 293 × 299, 294 ×
12, 294× 293, 294× 294, 294× 299, 294× 299, 299×
12, 299 × 293, 299 × 300, 300 × 4, 300 × 12, 300 ×
294, 300× 299

23

C4
262 12× 299, 294× 299, 299× 12, 299× 294 4

C4
264 12×294, 293×293, 293×300, 294×12, 294×300, 299×

299, 300× 293, 300× 294
8

C4
266 12×12, 293×300, 294×299, 299×294, 299×299, 300×

293, 300× 300
7

C4
286 12× 293, 12× 300, 293× 12, 293× 300, 300× 12, 300×

293, 300× 300
7

C4
288 12× 12, 293× 300, 300× 293, 300× 300 4
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Table A.9: Quadratic decomposition length 2 cont’d

Class # Quadratic Decomposition length 2: # simple
in A16 quadratic × quadratic solutions
C4

292 4× 4, 4× 12, 4× 294, 12× 4, 12× 12, 12× 293, 12×
294, 12 × 300, 293 × 12, 293 × 294, 293 × 299, 294 ×
4, 294 × 12, 294 × 293, 294 × 294, 294 × 299, 294 ×
300, 299× 293, 299× 294, 299× 300, 300× 12, 300×
294, 300× 299

23

C4
296 12×299, 293×293, 293×300, 294×12, 294×300, 299×

294, 299× 299
7

C4
297 12×294, 293×293, 294×299, 299×12, 299×299, 300×

293, 300× 294
7

Table A.10: Known S-boxes and their classes

Class Cipher
C4

39 DESL Row2, DESL Row3
C4

46 DES7 Row3
C4

59 DES7 Row1
C4

69 DES3 Row1, DES7 Row0
C4

74 DES6 Row1
C4

80 DES8 Row2
C4

85 DES1 Row0, DES1 Row1, DES1 Row2, DES8 Row3
C4

97 DES8 Row0
C4

108 Twofish q1 t1
C4

117 DES2 Row0, DES6 Row3
C4

120 Twofish q0 t3
C4

137 DES8 Row1
C4

139 DES3 Row0, DES5 Row0
C4

142 Twofish q1 t3
C4

145 Gost K6
C4

148 DES5 Row3
C4

153 Twofish q1 t0
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Table A.11: Known S-boxes and their classes cont’d

Class Cipher
C4

154 Gost K5
C4

160 Serpent3, Serpent7, Clefia2, Clefia3, HB1 S1, HB1 S3, HB2 S0,
Optimal G9

C4
163 Clefia1, HB1 S2, HB2 S1, Optimal G10
C4

166 DES2 Row1, DESL Row0
C4

172 Gost K1
C4

177 Gost K8
C4

184 DES1 Row3
C4

188 Lucifer S0
C4

190 Twofish q0 t0
C4

196 Optimal G7
C4

197 Lucifer S1
C4

203 DESL Row1
C4

204 DES2 Row2, DES3 Row2
C4

206 Gost K7
C4

208 Twofish q0 t1
C4

209 Serpent4, Serpent5, HB2 S2, Optimal G15
C4

210 Clefia0, Twofish q0 t2, HB1 S0, HB2 S3, Optimal G14
C4

220 DES6 Row0
C4

221 DES5 Row2
C4

223 Noekeon, Luffa v1, Piccolo, Optimal G8
C4

229 Twofish q1 t2
C4

231 JH S0, JH S1, Optimal G13
C4

253 Gost K3
C4

254 DES5 Row1
C4

257 DES3 Row3
C4

266 Present, Serpent2, Serpent6, Luffa v2, Hamsi, Optimal G1
C4

267 Gost K4
C4

270 Klein, KhazadP, KhazadQ, Iceberg G0, Iceberg G1, Puffin,
Optimal G4

C4
272 Optimal G6
C4

275 Gost K2
C4

278 Optimal G5
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Table A.12: Known S-boxes and their classes cont’d

Class Cipher
C4

279 DES2 Row3, DES4 Row0, DES4 Row1, DES4 Row2, DES4 Row3,
DES7 Row2

C4
281 DES6 Row2
C4

282 Inversion in GF(24), Optimal G3 mCrypton S0,S1,S2,S3
C4

283 Optimal G12
C4

295 Optimal G11
C4

296 Serpent1, Optimal G0
C4

297 Serpent0, Optimal G2



B
Equations

B.1 Equations Used for First-order TI of Quadratic
4-bit Permutations with Two Input Shares

Each permutation f(W,X, Y, Z) = (A,B,C,D) has 4 input and output bits.
The component functions f1, f2, f3, f4 outputs A,B,C,D respectively. W
(resp. A) is the most significant bit whereas Z (resp. D) is the least significant
bit. In some cases the sharing of an output variable is not uniform and requires
remasking if used as is. We also describe the two-sharing (e.g. Ā with shares
Āi) after the decrease of the number of shares such that the two sharing of f is
uniform.

B.1.1 Class Q4
4

f = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 12, 15, 14]

A = f1(W,X, Y, Z) = W

B = f2(W,X, Y, Z) = X

C = f3(W,X, Y, Z) = Y

D = f4(W,X, Y, Z) = WX ⊕ Z

141
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A1 = f1
1 (W,X,Y,Z) = W1

A2 = f1
2 (W,X,Y,Z) = W2

B1 = f2
1 (W,X,Y,Z) = X1

B2 = f2
2 (W,X,Y,Z) = X2

C1 = f3
1 (W,X,Y,Z) = Y1

C2 = f3
2 (W,X,Y,Z) = Y2

D1 = f4
1 (W,X,Y,Z) = W1X1 ⊕ Z1

D2 = f4
2 (W,X,Y,Z) = W1X2

D3 = f4
3 (W,X,Y,Z) = W2X1

D4 = f4
4 (W,X,Y,Z) = W2X2 ⊕ Z2

Ā1 = A1

Ā2 = A2

B̄1 = B1

B̄2 = B2

C̄1 = C1

C̄2 = C2

D̄1 = D1 ⊕D2

D̄2 = D3 ⊕D4

B.1.2 Class Q4
12

f = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 10, 11]

A = f1(W,X, Y, Z) = W

B = f2(W,X, Y, Z) = WY ⊕X

C = f3(W,X, Y, Z) = WX ⊕WY ⊕ Y

D = f4(W,X, Y, Z) = Z
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A1 = f1
1 (W,X,Y,Z) = W1

A2 = f1
2 (W,X,Y,Z) = W2

B1 = f2
1 (W,X,Y,Z) = W1Y1 ⊕X1

B2 = f2
2 (W,X,Y,Z) = W1Y2

B3 = f2
3 (W,X,Y,Z) = W2Y1 ⊕X2

B4 = f2
4 (W,X,Y,Z) = W2Y2

C1 = f3
1 (W,X,Y,Z) = W1X1 ⊕W1Y1 ⊕ Y1

C2 = f3
2 (W,X,Y,Z) = W1X2 ⊕W1Y2

C3 = f3
3 (W,X,Y,Z) = W2X1 ⊕W2Y1

C4 = f3
4 (W,X,Y,Z) = W2X2 ⊕W2Y2 ⊕ Y2

D1 = f4
1 (W,X,Y,Z) = Z1

D2 = f4
2 (W,X,Y,Z) = Z2

Ā1 = A1

Ā2 = A2

B̄1 = B1 ⊕B2

B̄2 = B3 ⊕B4

C̄1 = C1 ⊕ C2

C̄2 = C3 ⊕ C4

D̄1 = D1

D̄2 = D2

B.1.3 Class Q4
293

f = [0, 1, 2, 3, 4, 5, 7, 6, 8, 9, 12, 13, 14, 15, 11, 10]

A = f1(W,X, Y, Z) = W

B = f2(W,X, Y, Z) = WY ⊕X

C = f3(W,X, Y, Z) = WX ⊕WY ⊕ Y

D = f4(W,X, Y, Z) = XY ⊕ Z
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A1 = f1
1 (W,X,Y,Z) = W1

A2 = f1
2 (W,X,Y,Z) = W2

B1 = f2
1 (W,X,Y,Z) = W1Y1 ⊕X1

B2 = f2
2 (W,X,Y,Z) = W1Y2

B3 = f2
3 (W,X,Y,Z) = W2Y1 ⊕X2

B4 = f2
4 (W,X,Y,Z) = W2Y2

C1 = f3
1 (W,X,Y,Z) = W1X1 ⊕W1Y1 ⊕ Y1

C2 = f3
2 (W,X,Y,Z) = W1X2 ⊕W1Y2

C3 = f3
3 (W,X,Y,Z) = W2X1 ⊕W2Y1

C4 = f3
4 (W,X,Y,Z) = W2X2 ⊕W2Y2 ⊕ Y2

D1 = f4
1 (W,X,Y,Z) = X1Y1 ⊕ Z1

D2 = f4
2 (W,X,Y,Z) = X1Y2

D3 = f4
3 (W,X,Y,Z) = X2Y1 ⊕ Z2

D4 = f4
4 (W,X,Y,Z) = X2Y2

Ā1 = A1

Ā2 = A2

B̄1 = B1 ⊕B2

B̄2 = B3 ⊕B4

C̄1 = C1 ⊕ C2

C̄2 = C3 ⊕ C4

D̄1 = D1 ⊕D2

D̄2 = D3 ⊕D4

B.1.4 Class Q4
294

f = [0, 1, 2, 3, 4, 5, 7, 6, 8, 9, 12, 13, 14, 15, 11, 10]

A = f1(W,X, Y, Z) = W

B = f2(W,X, Y, Z) = X

C = f3(W,X, Y, Z) = WX ⊕ Y

D = f4(W,X, Y, Z) = WY ⊕ Z



EQUATIONS USED FOR FIRST-ORDER TI OF QUADRATIC 4-BIT PERMUTATIONS WITH TWO INPUT
SHARES 145

A1 = f1
1 (W,X,Y,Z) = W1

A2 = f1
2 (W,X,Y,Z) = W2

B1 = f2
1 (W,X,Y,Z) = X1

B2 = f2
2 (W,X,Y,Z) = X2

C1 = f3
1 (W,X,Y,Z) = W1X1 ⊕ Y1

C2 = f3
2 (W,X,Y,Z) = W1X2

C3 = f3
3 (W,X,Y,Z) = W2X1 ⊕ Y2

C4 = f3
4 (W,X,Y,Z) = W2X2

D1 = f4
1 (W,X,Y,Z) = W1Y1 ⊕ Z1

D2 = f4
2 (W,X,Y,Z) = W1Y2

D3 = f4
3 (W,X,Y,Z) = W2Y1 ⊕ Z2

D4 = f4
4 (W,X,Y,Z) = W2Y2

Ā1 = A1

Ā2 = A2

B̄1 = B1

B̄2 = B2

C̄1 = C1 ⊕ C2

C̄2 = C3 ⊕ C4

D̄1 = D1 ⊕D2

D̄2 = D3 ⊕D4

B.1.5 Class Q4
299

f = [0, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 11, 9, 15, 13]

A = f1(W,X, Y, Z) = W

B = f2(W,X, Y, Z) = WX ⊕WY ⊕X

C = f3(W,X, Y, Z) = WX ⊕WY ⊕WZ ⊕ Y

D = f4(W,X, Y, Z) = WX ⊕WZ ⊕ Z
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A1 = f1
1 (W,X,Y,Z) = W1

A2 = f1
2 (W,X,Y,Z) = W2

B1 = f2
1 (W,X,Y,Z) = W1X1 ⊕W1Y1 ⊕X1

B2 = f2
2 (W,X,Y,Z) = W1X2 ⊕W1Y2

B3 = f2
3 (W,X,Y,Z) = W2X1 ⊕W2Y1

B4 = f2
4 (W,X,Y,Z) = W2X2 ⊕W2Y2 ⊕X2

C1 = f3
1 (W,X,Y,Z) = W1X1 ⊕W1Y1 ⊕W1Z1 ⊕ Y1

C2 = f3
2 (W,X,Y,Z) = W1X2 ⊕W1Y2 ⊕W1Z2

C3 = f3
3 (W,X,Y,Z) = W2X1 ⊕W2Y1 ⊕W2Z1

C4 = f3
4 (W,X,Y,Z) = W2X2 ⊕W2Y2 ⊕W2Z2 ⊕ Y2

D1 = f4
1 (W,X,Y,Z) = W1X1 ⊕W1Z1 ⊕ Z1

D2 = f4
2 (W,X,Y,Z) = W1X2 ⊕W1Z2

D3 = f4
3 (W,X,Y,Z) = W2X1 ⊕W2Z1

D4 = f4
4 (W,X,Y,Z) = W2X2 ⊕W2Z2 ⊕ Z2

Ā1 = A1

Ā2 = A2

B̄1 = B1 ⊕B2

B̄2 = B3 ⊕B4

C̄1 = C1 ⊕ C2

C̄2 = C3 ⊕ C4

D̄1 = D1 ⊕D2

D̄2 = D3 ⊕D4

B.1.6 Class Q4
300

f = [0, 1, 2, 3, 4, 5, 8, 9, 13, 12, 7, 6, 11, 10, 15, 14]

A = f1(W,X, Y, Z) = WY ⊕XY ⊕W

B = f2(W,X, Y, Z) = XY ⊕W ⊕X

C = f3(W,X, Y, Z) = WX ⊕XY ⊕ Y

D = f4(W,X, Y, Z) = W ⊕ Z
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A1 = f1
1 (W,X,Y,Z) = W1Y1 ⊕X1Y1 ⊕W1

A2 = f1
2 (W,X,Y,Z) = W1Y2 ⊕X1Y2

A3 = f1
3 (W,X,Y,Z) = W2Y1 ⊕X2Y1 ⊕W2

A4 = f1
4 (W,X,Y,Z) = W2Y2 ⊕X2Y2

B1 = f2
1 (W,X,Y,Z) = X1Y1 ⊕W1 ⊕X1

B2 = f2
2 (W,X,Y,Z) = X1Y2

B3 = f2
3 (W,X,Y,Z) = X2Y1

B4 = f2
4 (W,X,Y,Z) = X2Y2 ⊕W2 ⊕X2

C1 = f3
1 (W,X,Y,Z) = W1X1 ⊕X1Y1 ⊕ Y1

C2 = f3
2 (W,X,Y,Z) = W1X2

C3 = f3
3 (W,X,Y,Z) = X1Y2

C4 = f3
4 (W,X,Y,Z) = W2X1

C5 = f3
5 (W,X,Y,Z) = X2Y1

C6 = f3
6 (W,X,Y,Z) = W2X2 ⊕X2Y2 ⊕ Y2

D1 = f4
1 (W,X,Y,Z) = W1 ⊕ Z1

D2 = f4
2 (W,X,Y,Z) = W2 ⊕ Z2

Ā1 = A1 ⊕A2

Ā2 = A3 ⊕A4

B̄1 = B1 ⊕B2

B̄2 = B3 ⊕B4

C̄1 = C1 ⊕ C2 ⊕ C3

C̄2 = C4 ⊕ C5 ⊕ C6

D̄1 = D1

D̄2 = D2
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B.2 Equations Used for AES Implementations

B.2.1 Multiplier in GF(24)

Multiplication takes two 4-bit inputs and outputs 4 bits. X (resp. K and A) is
the most significant bit whereas W (resp. N and D) is the least significant bit.

(A,B,C,D) = (X,Y, Z,W )× (K,L,M,N)

A = XK ⊕ ZK ⊕WK ⊕ Y L⊕ ZL⊕XM ⊕ YM ⊕ ZM ⊕WM

⊕XN ⊕ ZN

B = Y K ⊕ ZK ⊕XL⊕ Y L⊕WL⊕XM ⊕ ZM ⊕ Y N ⊕WN

C = XK ⊕ Y K ⊕ ZK ⊕WK ⊕XL⊕ ZL⊕XM ⊕ YM ⊕ ZM

⊕XN ⊕WN

D = XK ⊕ ZK ⊕ Y L⊕WL⊕XM ⊕WM ⊕ Y N ⊕ ZN ⊕WN

B.2.2 Inverter in GF(24)

Inverter has 4-bit input and output. X (resp. A) is the most significant bit
whereas W (resp. D) is the least significant bit.

(A,B,C,D) = Inv(X,Y, Z,W )

A = Z ⊕W ⊕XZ ⊕ Y Z ⊕ Y ZW

B = W ⊕XZ ⊕ Y Z ⊕ YW ⊕XZW

C = X ⊕ Y ⊕XZ ⊕XW ⊕XYW

D = Y ⊕XZ ⊕XW ⊕ YW ⊕XY Z

B.2.3 Sharing with 4 Input 3 Output Shares

We use this sharing with 4 input and 3 output shares for each input and output
variable respectively in order to implement shared GF(24) multiplier. This
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multiplier is composed of only quadratic terms. Therefore, here we demonstrate
how one of these quadratic terms (such as XK from the equation in B.2.1)
is implemented. Shared one-bit of multiplication output can be generated by
XORing the corresponding shared quadratic terms. Hence X and Y represent
one-bit inputs and A represents one-bit output.

A = XY

A1 = (X2 ⊕X3 ⊕X4)(Y2 ⊕ Y3)⊕ Y4

A2 = ((X1 ⊕X3)(Y1 ⊕ Y4))⊕X1Y3 ⊕X4

A3 = ((X2 ⊕X4)(Y1 ⊕ Y4))⊕X1Y2 ⊕X4 ⊕ Y4

B.2.4 Sharing with 3 Input 3 Output Shares

Here we exemplify sharing linear and quadratic terms using 3 input and output
shares for each variable. X, Y and Z represent one-bit inputs and A represents
one-bit output. Note that the sharings of Z and XY can be used separately.
Here we describe the combined sharing using one function for convenience.
Similarly, the sharing for a function using more than one linear and quadratic
term can be generated by doubling the sharing of the corresponding term with
correct inputs.

A = XY ⊕ Z

A1 = ((X2 ⊕X3)(Y2 ⊕ Y3))⊕ Z2

A2 = (X1Y3 ⊕ Y1X3 ⊕X1Y1)⊕ Z3

A3 = (X1Y2 ⊕ Y1X2)⊕ Z1

B.2.5 Sharing with 4 Input 4 Output Shares

Sharing linear, quadratic and cubic terms using 4 input and output shares for
each variable is given in follows. X, Y and Z represent one-bit inputs and A
represents one-bit output. Note that the sharings of Z, XY and XY Z can be
used separately. Here we describe the combined sharing using one function
for convenience. Similarly, the sharing for a function using more than one
linear, quadratic or cubic term can be generated by doubling the sharing of the
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corresponding term with correct inputs. Note that if the function does not have
any cubic or linear terms, the following sharing produces only 3 output shares.

A = XY Z ⊕XY ⊕ Z

A1 = ((X2 ⊕X3 ⊕X4)(Y2 ⊕ Y3 ⊕ Y4)(Z2 ⊕ Z3 ⊕ Z4))

⊕ ((X2 ⊕X3 ⊕X4)(Y2 ⊕ Y3 ⊕ Y4))⊕ Z2

A2 = (X1(Y3 ⊕ Y4)(Z3 ⊕ Z4)⊕ Y1(X3 ⊕X4)(Z3 ⊕ Z4)⊕ Z1(X3 ⊕X4)(Y3 ⊕ Y4)

⊕X1Y1(Z3 ⊕ Z4)⊕X1Z1(Y3 ⊕ Y4)⊕ Y1Z1(X3 ⊕X4)⊕X1Y1Z1)

⊕ (X1(Y3 ⊕ Y4)⊕ Y1(X3 ⊕X4)⊕X1Y1)⊕ Z3

A3 = (X1Y1Z2 ⊕X1Y2Z1 ⊕X2Y1X1 ⊕X1Y2Z2 ⊕X2Y1Z2 ⊕X2Y2Z1 ⊕X1Y2Z4

⊕X2Y1Z4 ⊕X1Y4Z2 ⊕X2Y4Z1 ⊕X4Y1Z2 ⊕X4Y2Z1)⊕ (X1Y2 ⊕ Y1X2)⊕ Z4

A4 = (X1Y2Z3 ⊕X1Y3Z2 ⊕X2Y1Z3 ⊕X2Y3Z1 ⊕X3Y1Z2 ⊕X3Y2Z1)⊕ 0⊕ Z1

B.2.6 Sharing with 5 Input 5 Output Shares

Here, we describe sharing linear, quadratic and cubic terms using 5 input and
output shares for each variable. X, Y and Z represent one-bit inputs and A
represents one-bit output. Note that the sharings of Z, XY and XY Z can be
used separately. Here we describe the combined sharing using one function
for convenience. Similarly, the sharing for a function using more than one
linear, quadratic or cubic term can be generated by doubling the sharing of the
corresponding term with correct inputs. Note that if the function does not have
any linear terms, the following sharing produces only 4 output shares. Moreover,
if the function lacks both linear and cubic terms, the sharing produces only 3
output shares.

A = XY Z ⊕XY ⊕ Z
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A1 = ((X2 ⊕X3 ⊕X4 ⊕X5)(Y2 ⊕ Y3 ⊕ Y4 ⊕ Y5)(Z2 ⊕ Z3 ⊕ Z4 ⊕ Z5))

⊕ ((X2 ⊕X3 ⊕X4 ⊕X5)(Y2 ⊕ Y3 ⊕ Y4 ⊕ Y5))⊕ Z2

A2 = (X1(Y3 ⊕ Y4 ⊕ Y5)(Z3 ⊕ Z4 ⊕ Z5)⊕ Y1(X3 ⊕X4 ⊕X5)(Z3 ⊕ Z4 ⊕ Z5)

⊕ Z1(X3 ⊕X4 ⊕X5)(Y3 ⊕ Y4 ⊕ Y5)⊕X1Y1(Z3 ⊕ Z4 ⊕ Z5)⊕X1Z1(Y3 ⊕ Y4 ⊕ Y5)

⊕ Y1Z1(X3 ⊕X4 ⊕X5)⊕X1Y1Z1)⊕ (X1(Y3 ⊕ Y4 ⊕ Y5)⊕ Y1(X3 ⊕X4 ⊕X5)

⊕X1Y1)⊕ Z3

A3 = (X1Y1Z2 ⊕X1Y2Z1 ⊕X2Y1X1 ⊕X1Y2Z2 ⊕X2Y1Z2 ⊕X2Y2Z1 ⊕X1Y2Z4

⊕X2Y1Z4 ⊕X1Y4Z2 ⊕X2Y4Z1 ⊕X4Y1Z2 ⊕X4Y2Z1 ⊕X1Y2Z5 ⊕X2Y1Z5

⊕X1Y5Z2 ⊕X2Y5Z1 ⊕X5Y1Z2 ⊕X5Y2Z1)⊕ (X1Y2 ⊕ Y1X2)⊕ Z4

A4 = (X1Y2Z3 ⊕X1Y3Z2 ⊕X2Y1Z3 ⊕X2Y3Z1 ⊕X3Y1Z2 ⊕X3Y2Z1)⊕ 0⊕ Z5

A5 = 0⊕ 0⊕ Z1
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