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1
Introduction

1.1 Deforming drops

Liquid drops are everywhere around us. We encounter them in many situ-
ations in our daily lives - sometimes desirable, sometimes undesirable - and
we make them play a dominant role in numerous industrial applications. Two
obvious daily life examples are raindrops (Fig. 1.1a) and the drops falling from
a dripping faucet (Fig. 1.1b). Examples of how we make use of drops are spray
coating or spray painting (Fig. 1.1c), inkjet printing (Fig. 1.1d) [1], and spray-
ing/sprinkling in agriculture or gardening (Fig. 1.1e) [2]. In all of the three
latter examples, the generation, flight, impact, and spreading of the drops are
separate stages of the corresponding industrial or agricultural processes, which
researchers are trying to understand in full detail.

The shapes of falling drops through air has been thoroughly studied for
many years [3–6]. Contrary to popular belief, drops that fall through the
atmosphere do not have a pointy tear shape like a sessile drop sliding over a
solid surface (inset of Fig. 1.1a). In the case of small raindrops with radius
smaller than about 1 mm, surface tension keeps the drop spherical. Larger
drops deviate from this spherical shape, and evolve towards a ‘pancake’ shape,
due to the flattening drag forces working on the drop during its fall. Very
large falling drops are unstable and break into smaller drops, which is the

1
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((a)

(b) (c) (d)

(e)

(a)

Figure 1.1: Five examples of drops in our daily life. (a) Rain-
drops; taken from Villermaux et al., 2009 [6]; inset: the ‘popu-
lar’ idea of the shape of a raindrop, which is incorrect; taken from
http://www.wikipedia.com. (b) Drops dripping from a faucet; taken
from http://www.popularmechanics.com/home/improvement/electrical-
plumbing/5-steps-to-fix-a-leaky-faucet-15470175. (c) Spray painting; taken
from http://www.dudhopecoachworks.co.uk/Car-Spray-Painting.html. (d)
Inkjet printing; taken from http://www.igraphicinc.com/how-do-inkjet-
printers-work. (e) Spraying in agriculture - a common image in Twente;
taken from http://natuurlijkgezondenmooi.blogspot.nl/2012/11/meest-en-
minst-bespoten-groente-en-fruit.html (web links as found on September 4
2014)
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scenario observed in the experiments of Fig. 1.1a. Raindrops are a perfect
example of the fact that drops are highly susceptible to external forces, such
as a surrounding airflow. The larger the drop, the more easy it is to deform
the drop from its spherical equilibrium shape. This is what we will focus on
in large part of this thesis: what is the influence of the external forces, in
particular the flow of a surrounding gas, on the shape of the drop, within the
context of impact onto a solid surface or a liquid pool? We will in particular
look at the final stage of the impact: the stage just before the drop touches
and starts to wet the surface on which it impacts. This stage turns out to
be particularly interesting, because the influence of the flowing air between
the drop and the surface strongly increases as soon as the air layer becomes
narrow.

The title of this thesis, Dynamics of Deforming Drops, is now explained in
a way in which the word ‘deforming’ is meant in a passive sense: drops can be
deformed, and we will investigate the response of drops to external influences.
We can also ‘invert’ the phenomenon of deformation and ask ourselves what
happens with a liquid pool impacted by a liquid drop, or by a train of liquid
drops (in the context of spray painting), just before and just after touch-down
of the drop(s). In that case, the role of the word ‘deforming’ is meant in an
active sense: the moving and impacting drops deform another liquid surface.
This scenario will also be considered in this thesis.

1.2 Impact phenomena and the influence of the sur-
rounding air

The most well-known impact phenomena are probably splashing and jet for-
mation. However, the world of impact phenomena is much richer than these
two effects, and Rein has given an extensive overview of a lot of possible
impact scenarios [7]. Examples of other impact phenomena besides splashing
and jetting are spreading and rim instability (for impact on a solid surface, i.e.
wetting behavior) [8, 9], cavity formation and air bubble entrapment [10–13],
and bouncing or partial coalescence [14, 15]. These phenomena are influenced
by several factors, such as the size of the impacting drop/object, its impact
velocity, the liquid properties and inner flow, the solid properties (such as
wettability and roughness), and the shape of the drop and the surface on the
moment of impact.

Besides these obvious dependencies, one of the most striking discoveries
in the field of drop impact is that the influence of the surrounding gas on
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(a) (b)

Figure 1.2: The crucial influence of the surrounding gas during impact of
a liquid drop on a solid surface. (a) A decreased pressure in the surround-
ing gas completely suppresses a splash; taken from Xu et al., 2005 [16].
(b) Small air bubble entrapment caused by air film rupture; taken from
Van Dam & Le Clerc, 2004 [12]).

the impact phenomena is highly significant. Xu et al. found that, counter
intuitively, decreasing the pressure of the surrounding gas can totally suppress
splashing, as shown in Fig. 1.2a [16, 17]. The precise mechanism of this effect
is still debated [18, 19]. Another important effect of the surrounding gas is
that it leads to a build-up of a localized pressure in the narrow layer of air (air
film) in between the drop and the bottom surface, resulting in a very local
deformation at the bottom of the drop [12, 20–22]. The rupture of the air
film then leads to a small bubble entrapment at the front of the drop/object,
as shown in Fig. 1.2b. Note that there are a number of other air bubble
entrapment mechanisms for drop impact on a liquid pool, of which the most
famous one is the so-called ‘regular bubble entrainment’. The term ‘regular’
refers to the reproducibility of the effect [10, 11]. Here, colliding small surface
waves running over the cavity surface result in micrometer-sized bubbles, of
which the pinch-off leads to the characteristic sound of raindrops impacting
on a liquid surface. This well-known sound is thus not caused by the first
impact of the drop on the water surface. Note that these ‘regular’ bubbles are
typically left inside the liquid at the back of the impacting drop, i.e. at the
bottom of the cavity.

Understanding the mechanisms of air bubble entrapment and the predic-
tion of the sizes of the air bubbles left in the liquid are of great importance for
many industries. In many applications, these bubbles are unwanted [12, 23].
In this thesis we will reveal the mechanism for bubble entrapment caused by
air film rupture. How important is the surface tension of the liquid for this
phenomenon? How do the drop size and impact speed influence the size of
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the entrapped bubble? How do the physics change when the impacting drop
is replaced by an impacting (undeformable) solid sphere? In addition we will
investigate the impact of a train of micrometer sized drops on a deep pool.

1.3 Leidenfrost drops

Next to impact, another example where drops are deformed by the surround-
ing gas is encountered for the Leidenfrost effect [24–26]. This arises when
drops are levitated above a heated surface without touching it: at sufficiently
large temperature, the drops are levitated by their own thin layer of vapor
(Fig. 1.3b). This results in a highly increased lifetime of the drop (Fig. 1.3a)
and these Leidenfrost drops are very mobile. The former is due to the de-
creased heat transfer from the plate to the liquid, since the vapor layer acts as
a good insulator. The latter is due to the fact that there is no friction between
the liquid and solid surface, which also implies that the drop is very suscepti-
ble to several kinds of instabilities. One of these instabilities is an air pocket
breaking upwards through the liquid. This is called the ‘chimney’ instability,
typically occurring at ‘puddles’ and drops larger than about 10 mm [25]. The
threshold for chimneys is determined by an interplay between the viscosity
of the gas layer, hydrostatics, and surface tension; the influence of the gas
flux on the chimney threshold appears to be only small [27]. Remarkably in
some sense, temperature is not explicitly included in the preceding list (it is
implicitly, because the temperature gradients influence the evaporation rate,
and thus the gas flow rate). Indeed, the chimney instability is a purely hy-
drodynamic instability, that can be reproduced by making the drops levitate
above an airflow at room temperature [27, 28].

Another instability observed at Leidenfrost drops and levitated drops is
the star drop instability (Fig. 1.3c) [28]. In particular large drops levitated
by a large gas flux (or, in terms of Leidenfrost drops, with high evaporation
rate) can spontaneously start to oscillate and break symmetry: they form os-
cillating star drops (Fig. 1.3c). The preferred mode number and frequency
of the oscillation depends on the size of the drop, the gas flow velocity, and
the liquid/gas properties. The fact that the star drop instability is also ob-
served for levitated drops at room temperature again gives rise to the question
how important the influence of temperature or heat transfer is for this phe-
nomenon. Knowing the typical geometry of the drop and the gas layer below
the drop from experiments, can we then also resolve the mechanism of the
star drop instability by doing hydrodynamic simulations? The geometry of
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(a)

(b) (c)

TT
L

Figure 1.3: Levitated drops (Leidenfrost drops) and star drops. (a) The life-
time of an evaporating drop, the time it takes till the drop is completely
evaporated, against the plate temperature T . At the ‘Leidenfrost tempera-
ture’ TL, the lifetime of the drop suddenly increases significantly. Below the
Leidenfrost temperature, drops remain ‘sessile’ (touching the surface), above
the Leidenfrost temperature, drops are lifted from the surface by their own
vapor layer. Taken from Biance et al., 2003 [25]. (b) A visualization of a
‘medium sized’ Leidenfrost drop. Taken from Quéré, 2013 [26]; courtesy of
Raphaële Thévenin and Dan Soto. (c) Star drops levitated by an external
airflow at room temperature. Taken from Brunet et al., 2011 [28].
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the Leidenfrost problem is strongly reminiscent of the small air gap situations
at drop impact in the preceding section. Again the gas exerts a local force on
the drop - at its bottom, in particular - and an important question is whether
this is sufficient to explain the instability towards Leidenfrost stars.

1.4 Drop deformation by laser-pulse impact

Apart from ‘mechanical’ impact, this thesis will also address the translation
and deformation of a liquid drop impacted by a high-energy laser pulse. Be-
sides the fact that this is very interesting from a fundamental point of view,
and leads to beautiful visualizations (Fig. 1.4c), the research on this topic has
its direct origin in industry. The link with industry is Extreme Ultraviolet
(EUV) nanolithography, which we briefly introduce in this section.

Semiconductor manufacturing is all about reducing the size of the features
that make up integrated circuit (IC) designs. Smaller features allow for faster
and more advanced ICs that consume less power and can be produced at lower
cost [29]. Over the years all electronic devices that we use, of which an obvious
example is our mobile phone (Fig. 1.4a), became faster & more sophisticated,
and contained more and more data. To continue this trend, the world-leading
company ASML in Veldhoven, The Netherlands, intensively works on the im-
provement of the IC resolution. In the latest technology, a laser-produced
plasma source is used to generate EUV-light with a wavelength 13.5 nm, which
transfers a pattern from a mask to a light-sensitive chemical photo-resist on
a semiconductor wafer [29, 30]. The use of such a small wavelength further
decreases the size of the smallest features on ICs. The plasma emitting the
EUV results from falling liquid tin drops impacted by a nanosecond laser-
pulse, deforming the falling drop into a thin sheet, subsequently ionized by
a second laser-pulse [29, 31] (Fig. 1.4b). A multilayer collector collects and
focuses the light from the plasma onto the wafers. Maximizing the conversion
of laser power to EUV power and minimizing the liquid tin debris requires
a precise control of the drop shape, that is, understanding the fluid-dynamic
response of a drop hit by a laser-pulse. This asks for a detailed understanding
of the mechanism by which the laser moves or deforms the drop. To optimize
the process of EUV generation, it is crucial to know how the translation, ex-
pansion, and fragmentation of the drop depend on the laser energy and the
position of the drop with respect to the laser focus.
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(a) (b) (c)

CO
2
 laser

Sn droplets

Near-normal multilayer collector

Laser-produced plasma 

Plasma

Figure 1.4: Generation of plasma by impact of a laser-pulse on a liquid drop
and one of its applications. (a) A smart-phone, released April 2014. In the
current society, phone electronics need to be faster and faster & more and more
sophisticated. Courtesy of Maarten Kok. (b) Sketch of an EUV source for
lithography applications. Taken from Wagner and Harned, ASML, 2010 [29].
(c) Impact of a laser-pulse (wavelength 532 nm) on a magenta-dyed water drop
of radius 0.9 mm, leading to a white plasma glow [32]. Courtesy of Alexander
Klein.

1.5 The relevance of wetting properties

We have already introduced several impact scenarios. We also raised the ques-
tion whether there is an equivalence between these scenarios. An equivalence
between solid-liquid impact and liquid-liquid impact can not exist after the
moment of touch-down between the liquid and the object: the wetting of a
solid is a different process then a coalescence process. Thus, another rele-
vant property determining the way a sphere impacts on a liquid or a drop
impacts on a wall is the interaction between the solid and liquid surface. We
distinguish between hydrophilic (water-attracting) surfaces and hydrophobic
(water-repellent) surfaces, where hydrophobicity can be induced by chemical
interactions or roughness on the scale from nanometer to micrometer. This
roughness can have a natural origin [33, 34], but it can nowadays also be repro-
duced in industry - there are several examples of applications at which contact
between a liquid and a solid needs to be avoided as much as possible (such as
anti-corrosion, anti-icing, self-cleaning, and drag reduction). The wettability
of a solid can be defined by the contact angle between the liquid and the solid,
which quantifies how much a liquid drop at equilibrium tends to spread on a
substrate [35, 36].
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It has been found that the impact of a hydrophilic sphere on a pool is
completely different from the impact of a hydrophobic sphere on a pool. This
is shown in Fig. 1.5a and b [37]. For otherwise identical experimental con-
ditions, a hydrophilic impacting sphere smoothly sinks into the pool, while a
hydrophobic sphere creates a huge splash. This difference is remarkable, since
the behavior of the liquid on the millimeter scale of the object - and larger - is
significantly influenced by the structures and interactions of the solid on scales
that are smaller by orders of magnitude (nanometer to micrometer, as men-
tioned). The impact of a hydrophobic sphere on a pool has been investigated
extensively [37, 38].

(a) (b)

(c) (d)

Figure 1.5: The relevance of wetting properties. (a), (b) Impact of a hy-
drophilic sphere (static contact angle about 15 degrees) and of a hydrophobic
sphere (static contact angle about 100 degrees), respectively. The impact ve-
locity is 5 m/s. The difference on the macro-scale is enormous; (a), (b), and
corresponding data taken from Duez et al., 2007 [37]. (c) The ‘teapot’ effect:
water trickling down the spout of a teapot. (d) Overcoming the teapot effect
by using a hydrophobic surface; (c) and (d) taken from Duez et al., 2010 [41].
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We will spend one chapter of this thesis on a similar phenomenon where
the influence of small scale structures plays a crucial role, the so-called ‘teapot
effect’. We all know the - quite annoying - tendency of a poured liquid to follow
a curved solid surface, and trickle down the spout of a teapot or bottle, to
land on a different place than where it should (Fig. 1.5c). The reason for this
trickling is the so-called Coanda effect: for fast streaming, the flow velocity
just above the solid is larger than at the top of the liquid flow, which sets a
Bernoulli pressure difference over the film, pushing back the liquid along the
spout [39–41]. Duez et al. found that by using a hydrophobic surface at the
spout, this effect could be completely suppressed [41] (Fig. 1.5d). A qualitative
explanation and scaling law, including the huge separation of length scales, was
included - the contact angle acts like a very local boundary condition, indeed
influencing the large scale flow - but a more detailed theory was missing.
For example, there exists a critical flow speed, below which all liquid trickles
down the spout, and no stable jet can exist [41], but the transition was not
predicted. We will investigate the dependence of the trickling transition on
the flow speed, film thickness, and contact angle.

1.6 Guide through the thesis

In Chapters 2-5, we will focus on impact. In Chapter 2, we address the
mechanism of small air bubble entrapment for impact of a liquid drop on a
solid surface, and we show how to predict the size of the small air bubble left
in the liquid after impact. In Chapter 3, we make the step to the other two
impact scenarios: impact of a liquid drop onto a pool, and impact of a solid
sphere onto a pool, and point out the equivalences/symmetries between the
air bubble entrapment in these different situations. In Chapter 4, we consider
the very first deformations of a pool surface, approached by a solid sphere.
These deformations can be predicted analytically, and we identify different
regimes where either viscosity or inertia of the gas plays a crucial role. In
Chapter 5, we leave the small bubble entrainment and study the impact of a
train of droplets on a pool, focusing on the shape and dynamics of the cavity
that emerges during the impact.

In Chapter 6, we show how we reproduce the star-drop instability of lev-
itated drops and Leidenfrost drops using hydrodynamic simulations, without
any influence of temperature and heat transfer. Chapter 7 will focus on the
dynamical response of drops exposed by a laser, or, more generally, the dy-
namics of drops due to a localized forcing. In Chapter 8, we step out of the
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world of drops, to investigate inertial pouring flows and the trickling transition
observed in, for example, teapot flow.

Finally, Chapter 9 contains our overall conclusions and gives an overview
of possible future studies.
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2
Maximal air bubble entrainment at

liquid drop impact ∗ †

At impact of a liquid drop on a solid surface an air bubble can be entrapped.
Here we show that two competing effects minimize the (relative) size of this
entrained air bubble: for large drop impact velocity and large droplets the iner-
tia of the liquid flattens the entrained bubble, whereas for small impact velocity
and small droplets capillary forces minimize the entrained bubble. However,
we demonstrate experimentally, theoretically, and numerically that in between
there is an optimum, leading to maximal air bubble entrapment. For a 1.8
mm diameter ethanol droplet this optimum is achieved at an impact velocity
of 0.25 m/s. Our results have a strong bearing on various applications in
printing technology, microelectronics, immersion lithography, diagnostics, or
agriculture.

∗Published as: W. Bouwhuis, R.C.A. van der Veen, T. Tran, D.L. Keij, K.G. Winkels, I.R.
Peters, D. van der Meer, C. Sun, J.H. Snoeijer, D. Lohse, “Maximal air bubble entrainment
at liquid-drop impact”, Phys. Rev. Lett. 109, 264501 (2012).

†The numerical simulations in this chapter are part of the present thesis. The experi-
mental work is due to Roeland van der Veen.
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16 CHAPTER 2. MAXIMAL AIR BUBBLE ENTRAINMENT

2.1 Introduction

The impact of liquid droplets on surfaces is omnipresent in nature and tech-
nology, ranging from falling raindrops to applications in agriculture and inkjet
printing. The crucial question often is: how well does the liquid wet a surface?
The traditional view is that it is the surface tension which gives a quantita-
tive answer. However, it has been shown recently that an air bubble can
be entrapped under a liquid drop as it impacts on the surface [1–6]. Also
Xu et al. [7, 8] revealed the important role of the surrounding air on the im-
pact dynamics, including a possible splash formation. The mechanism works
as follows [3–6]: the air between the falling drop and the surface is strongly
squeezed, leading to a pressure buildup in the air under the drop. The en-
hanced pressure results in a dimple formation in the droplet and eventually
to the entrapment of an air bubble (Fig. 2.1a). The very simple question we
ask and answer in this chapter is: for which impact velocity is the entrapped
bubble maximal?

2.2 Interferometry experiments

Our experimental setup is shown in Fig. 2.1b and is similar to that of Refs. [9,
10] where it is described in detail. An ethanol drop impacts on a smooth glass
surface after detaching from a needle, or for velocities smaller than 0.32 m/s,
after moving the needle downwards using a linear translation stage. A high-
speed side view recording is used to measure the drop diameter and velocity.
The experiment is carried out at room temperature. A synchronized bottom
view recording by a high-speed color camera is used to measure the deformed
shape of the liquid drop. Colored interference patterns are created by high-
intensity coaxial white light, which reflects from both the glass surface and
the bottom of the droplet. Using a color-matching approach in combination
with known reference surfaces, the complete air thickness profile can be ex-
tracted (shown in Fig. 2.1c). For experiments done at larger impact velocities
(U > 0.76 m/s), we use a pulse of diffused laser light triggered by an optical
switch. The thickness of the air film at the rim is assumed to be zero, and
the complete air thickness profile can then be obtained from the monochro-
matic fringe pattern. From these measurements we can determine the dimple
height, Hd, and the volume of the entrained bubble, Vb, at the very moment
of impact. This moment is defined by the first wetting of the surface. This
is the moment when the concentric symmetry of the interference rings is lost,
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since due to unavoidable tiny tilts of the glass plate the wetting in general is
non-axisymmetric. To calculate the bubble volume Vb, we integrate the thick-
ness profile of the air layer trapped beneath the drop. Note that the dimple
profiles and the volume of the entrained bubble are obtained before the wet-
ting occurs, such that we do not have to take into account the properties of
the surface (e.g., contact angle or roughness, which is of the order of 10 nm).
Alternatively, we can also measure the volume of the trapped bubble after
impact when the liquid already wets the surface. Both measurements provide
the same results. In the present chapter, we use the first approach.
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Figure 2.1: Experimental characterization of air bubble entrapment. (a)
Sketch of dimple formation (not drawn to scale) just prior to impact. (b)
Schematic of the experimental setup used to study droplet impact on smooth
surfaces. An ethanol droplet of typical radius R = 0.9 mm falls on a glass
slide of average roughness 10 nm. The impact velocity is varied by varying
the falling height of the droplet. For very small velocities below 0.31 m/s,
the droplet is fixed at the tip of 0.4 mm-diameter capillary that is vertically
translated downwards at a constant velocity. The bottom view is captured
by a high-speed color camera (SA2, Photron Inc.). The camera is connected
to a long working-distance microscope and a 5× objective to obtain a 2 mm
field of view. (c) An example of an interference pattern and the extracted air
thickness profile. Note the difference in horizontal and vertical length scales.
The exposure time was 1/15000 s and the typical frame rate of the recordings
is 5000 frames per second.
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The results are shown in Fig. 2.2. Clearly, both dimple height at impact
and the size of the entrained bubble have a pronounced maximum as function
of the impact velocity U . The corresponding impact velocity for which the air
entrainment is maximal is in the regime U0 = 0.1 − 0.25 m/s for an ethanol
droplet of radius R = 0.9 mm (or the Stokes number St0 = 0.3×104 −1×104).
While length scales are given in multiples of the droplet radius R, following
Brenner et al. [3, 6] we express the impact velocity U in terms of the Stokes
number St, defined with the dynamic air viscosity ηg = 1.82 × 10−5 Pa·s and
the liquid density ρl = 789 kg/m3 as St = ρlRU/ηg = ρl/ρgRe, where Re =
ρgRU/ηg is the standard Reynolds number of the gas. A further relevant
parameter of the system is the surface tension γ = 22 mN/m, which can be
expressed in terms of the Weber number We = ρlRU2/γ or in terms of the
capillary number Ca = ηgU/γ = We/St.

1 2 4 5 6
−4

−3

−2

3
 

 

Experiments
Simulations

1/2
−2/3

1 2 3 4 5 6
−7

−6

−5

−4

−3

−2

 

 

Experiments
Simulations

1
−4/3

 R U / η

lo
g

1
0
 (

 H
d
 /

 R
 )

lo
g

1
0
 (

 V
b
 /

 V
d
 )

log
10 

( St ) = log
10 

( ρ
l g

 )

−1

0

−3 −2 −1 0 1 −3 −2 −1 0 1

log
10

U (m/s)

0

1

2

3

4

lo
g

1
0

( 
H

d
(μ

m
) 

)

lo
g

1
0

( 
V b

(p
L

) 
)

log
10

U (m/s)

log
10 

( St ) = log
10 

( ρ
l
 R U / η

g
 )

(a) (b)

Figure 2.2: Maximum entrapment of air bubbles. (a) Dimple height Hd and
(b) entrained bubble volume Vb as functions of the impact velocity U (upper
axes) and the Stokes number St (lower axes). The shape of the air layer can
be characterized by the dimple height Hd and the lateral extension L. Red
squares correspond to high-speed color interferometry measurements, green
dots correspond to numerical simulations. The straight lines correspond to
the derived scaling laws in the capillary regime (solid) and inertial regime
(dashed) with the respective scaling exponents.
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2.3 Boundary Integral simulations

We compare and supplement our experimental findings on the dimple height
at impact and the entrained bubble size to numerical results. The numerical
simulation consists of an axisymmetric boundary integral (BI) simulation for
the liquid droplet in which the droplet is assumed to obey potential flow,
coupled to a lubrication approximation of the Stokes equation

∂Pg

∂r
∼ ηg

∂2ur

∂z2
, (2.1)

that describes the viscous, incompressible gas flow under the droplet [3, 11–
14]. Here, z is the vertical direction, Pg(r, t) is the gas pressure, while ur

is the radially outward velocity in the gas parallel to the surface (Fig. 2.1a).
Note that the gas flow under the droplet is indeed viscous: an upper bound
for the Reynolds number relevant for the lubrication flow gives UHd/νg ∼ 0.1
for the highest impact velocity, and is typically much smaller for most of our
experiments.

We now give more details on the numerical simulation: the velocity field
inside the droplet is described with a scalar velocity potential φ, obeying
the Laplace equation ∇2φ = 0. The axisymmetric droplet contour is de-
scribed using cylindrical coordinates r, z and is solved numerically by using
the BI method; the simulations are based on the numerical code described
by Refs. [15–17]. This BI simulation is an alternative way of solving the sys-
tem of equations, compared to the method applied by Mani et al., 2010 [11],
in which case a Hilbert transform method was applied. In contrast to Eg-
gers et al., 2010 [14], we do not solve the complete Navier-Stokes equations,
but do include dynamics of the air layer below the drop. The dynamic bound-
ary condition valid on the droplet contours is given by the unsteady Bernoulli
equation,

(
∂φ

∂t
+

1
2

|∇φ|2
)

= −gz − γ

ρl
κ(r, t) − Pg(r, t) − P∞

ρl
. (2.2)

Here t is time, g the acceleration of gravity, z the absolute height, κ(r, t)
the interface curvature, and P∞ the far-field pressure. The key dynamical
quantities in (2.2) are the gas pressure Pg(r, t) and the interface curvature
κ(r, t). The curvature is related to the dimple profile H(r, t) by the geometric
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relation

κ(r, t) =
∂2H(r,t)

∂r2(
1 +
(

∂H(r,t)
∂r

)2
)3/2

+
∂H(r,t)

∂r

r

(
1 +
(

∂H(r,t)
∂r

)2
)1/2

. (2.3)

To close the problem, an additional equation is provided by the lubrication
approximation for the viscous gas flow at the bottom of the droplet,

∂H(r, t)
∂t

− 1
r

∂

∂r

[
r (H(r, t))3

12ηg

∂Pg(r, t)
∂r

]
= 0, (2.4)

with boundary condition Pg|r=R = P∞; the gas pressure at the top of the
droplet is set to atmospheric. Contrarily to Mani et al., 2010 [11], we do not
incorporate effects of compressibility of the gas, since, following the analysis of
Hicks et al., 2011 [13], there is little influence of compressibility in the regime
that is studied here. The initial conditions for the simulations consist of a
spherical droplet with radius R having a downward velocity U . The initial
height is taken sufficiently high for the pressure induced by the radial velocity
profile to be still negligible as compared to the ambient pressure (∼ 10 μm).
The number of nodes on the droplet surface for which the BI equations are
solved is of order 100, with node density increasing for r → 0. The number of
nodes and the size of the time steps vary during the simulation as a function
of the local gap height and velocity of the droplet contour. The size of a time
step is of order 10 ns. For any number of nodes, the coupling between gap
height and pressure profile breaks down for some small value of H, since the
pressure diverges at vanishing thickness of the air layer. Consistent with the
experimental resolution we continue our simulations until the minimum gap
thickness reaches 0.4 μm, while ensuring that our algorithm remains accurate.
This is the moment at which the values for Hd and Vb are extracted, which,
as we will show below, have already achieved their final value much earlier.

Figure 2.3 shows the evolutions of the simulated ethanol droplets (blue
lines). The two panels correspond to U = 0.361 m/s and U = 0.763 m/s (both
at the right side of the maximum in Fig. 2.2) and are compared directly with
the one-frame-results from experiment (red line). The comparison involves
no adjustable parameters and reveals an excellent agreement for the dimple
height. Given these satisfactory results, we can use the simulations to obtain
further information of the time evolution of the air layer. Figure 2.4 shows
the dimple height Hd (solid line) and the minimum gap height d (dashed line)
as a function of time. Here, t = 0 is defined by the moment at which the drop
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Figure 2.3: BI time evolution (solid blue lines) and an experimental profile
(dashed red line) for ethanol droplet impact at (a): U = 0.32 m/s (St =
1.25 × 104) and (b): U = 0.76 m/s (St = 2.97 × 104).
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Figure 2.4: Time evolution of the height Hd of the dimple (solid line) and
the distance d between the closest point of the liquid surface and the solid
surface (dashed line) for the impact velocities (a): U = 0.32 m/s and (b):
U = 0.76 m/s. For both cases it is visible that the final dimple height is
achieved way before the simulation is stopped at the cut-off d = 0.4 μm.
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passes Hd = 10 μm. The separation of the solid and dashed lines marks the
moment at which the center height, H(r = 0), no longer represents a minimum
but has turned into a local maximum. This feature can also be inferred from
the drop profiles shown in Fig. 2.3. The dimple height remains approximately
constant at the later stages of Fig. 2.3. This implies that it is not critical
to know the exact time at which the experimental profile is determined: the
value of Hd is not expected to vary much in this stage of the experiment.
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Figure 2.5: Comparison of experimental (blue) and numerical (red) dimple
profiles for two different impact velocities; (a): U=0.2 m/s (St=7.8 × 103;
crossover regime) and (b): U=0.7 m/s (St=2.7 × 104; inertial regime).

The results of the numerical calculations of the dimple height and bubble
volume are shown in Fig. 2.2, together with the experimental data, showing
very good agreement: in particular, we observe pronounced maxima in the
dimple size and in the entrained bubble volume. In the numerically obtained
dimple height (and volume, to a lesser extent), we observe a jump exactly
at the crossover regime. This jump originates from a change in the shape of
the dimple. We focus on this in Fig. 2.5, which compares the experimental
and numerical dimple profiles for an impact velocity at the crossover regime
(U=0.2 m/s) and an impact velocity in the inertial regime (U=0.7 m/s) (these
are parameters different from the ones chosen in Fig. 2.3 and Fig. 2.4). While
the profiles are in excellent agreement within the St regime (both volume
and dimple height), the numerical profile develops a “double dimple” at the
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crossover impact speed. Within the low St regime, we do not observe this
double dimple, but the dimple is typically much broader. The variation in
dimple shape results in the jump observed for the numerical dimple heights in
the crossover regime (see Fig. 2.2a). In all cases, however, the dimple height
Hd and the entrapped bubble volume Vb are in quantitative agreement without
any adjustable parameters.

2.4 Scaling laws

Numerical and experimental results together suggest scaling laws Hd/R ∼
St−2/3 for larger Stokes numbers, while Hd/R ∼ St1/2 for smaller Stokes
numbers. We will now theoretically derive these scaling laws. For large
St we follow and extend Refs. [6, 12, 18]: the horizontal length scale L of
the dimple extension (see Fig. 2.1a) follows from geometrical arguments as
L ∼ √

HdR, and ur from mass conservation as ur ∼ UL/Hd. The Stokes
equation (2.1) suggests Pg ∼ Lηgur/H2

d as estimate for the gas pressure be-
low the falling drop at touch-down. The liquid pressure Pl can be estimated
from the unsteady Bernoulli equation: dimensional analysis gives the decel-
eration timescale Hd/U and the potential in the liquid ∼ UL, resulting in
Pl ∼ ρlU

2L/Hd. Since the liquid drop will be deformed when Pg ∼ Pl, one
finally obtains the scaling for the dimple height and the bubble volume:

Hd ∼ RSt−2/3, Vb ∼ L2Hd ∼ R3St−4/3. (2.5)

This describes the air bubble in the inertial regime, i.e. large impact velocities,
in agreement with our experimental and numerical findings.

For small St, corresponding to small impact velocity and small droplet
radius, capillarity will take over and try to smoothen the dimple out. Then
the pressure inside the gas must be balanced with the Laplace pressure γκ
that is imposed at the liquid-air interface, where κ ∼ Hd/L2 is the curvature
of the dimple. Using once more that the gas pressure Pg ∼ Lηgur/H2

d , one
obtains

Hd

R
∼

√
Ca ∼

√
We/St ∼ ηg√

γρlR
St1/2,

Vb

R3
∼ η2

g

γρlR
St,

(2.6)

as scaling in the capillary regime. Again, this is consistent with the experimen-
tal and numerical findings. The crossover between the regimes, corresponding
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to the maximal air bubble entrainment, occurs at

Sto ∼ Ca−3/4
o or Uo ∼ η

1/7
g γ3/7

ρ
4/7
l R4/7

. (2.7)

Using prefactors obtained from our experimental data in Fig. 2.2, for an
ethanol droplet of 0.9 mm radius, this translates to an impact velocity Uo =
0.25 m/s.

2.5 Conclusion

What is the physical reason for the maximum? For higher velocities inertia
dominates and flattens the droplet at impact. For lower velocities and/or
smaller droplets the capillary forces try to keep the drop spherical. In between
these two regimes the maximal air entrainment under the droplet is achieved.

For many applications air entrainment is undesirable and maximal wet-
ting must be achieved. This holds for immersion lithography, wafer drying,
glueing, agricultural applications, etcetera [19, 20]. Intriguingly, for inkjet
drops of radius R ∼ 10μm, the optimal velocity according to (2.7) is approxi-
mately 1 m/s. This lies exactly in the range at which inkjet usually operates
(typically a few m/s), and relatively large bubbles will thus be entrapped [1].
For immersion lithography the entrapment of even micron-sized bubbles can
cause practical limitations [19, 20]. This technology is based on optical imag-
ing of nanoscale structures, for which the optics is immersed in water to push
the limits of spatial resolution. Clearly, it is crucial to avoid bubbles or to
minimize their size, which also has bearing in cleaning and drying of wafers.
Ideally, one should stay as far as possible from the optimal air entrainment
impact velocity. Our findings will help to achieve this goal and thus optimal
wetting.
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3
Universal mechanism for air

entrainment during liquid impact ∗

When a mm-sized liquid drop approaches a deep liquid pool, both the interface
of the drop and the pool deform before the drop touches the pool. The build-up
of air pressure prior to coalescence is responsible for this deformation. Due
to this deformation, air can be entrained at the bottom of the drop during
the impact. We quantify the amount of entrained air numerically, using the
Boundary Integral Method (BIM) for potential flow for the drop and the pool,
coupled to viscous lubrication theory for the air film that has to be squeezed
out during impact. We compare our results to various experimental data and
find excellent agreement for the amount of air that is entrapped during impact
onto a pool. Next, the impact of a rigid sphere onto a pool is numerically in-
vestigated and the air that is entrapped in this case also matches with available
experimental data. In both cases of drop and sphere impact onto a pool the
numerical air bubble volume Vb is found to be in agreement with the theoret-
ical scaling Vb/Vdrop/sphere ∼ St−4/3, where St is the Stokes number. This is
the same scaling that has been found for drop impact onto a solid surface in
previous research.

∗Submitted as: M.H.W. Hendrix, W. Bouwhuis, D. van der Meer, D. Lohse, J.H. Snoeijer,
“Universal mechanism for air entrainment during liquid impact”.

27



28 CHAPTER 3. UNIVERSAL MECHANISM FOR AIR ENTRAINMENT

3.1 Introduction

The impact of a drop or a solid sphere onto a liquid pool can encompass
various types of air entrainment. One possibility is that air is entrained at
the top of the impacting object when the crater that is created during impact
collapses, see for example Ref. [1–4]. Another type of air entrainment may
occur at the bottom of the impacting object: the thin air film that is squeezed
out at the impact zone is accompanied by a pressure increase that deforms
the interface of the liquid before the impacting object touches the pool, which
may result in air entrapment [5–9]. The early stages of deformations can be
described analytically (Chapter 4). In case the impacting object is a drop,
also a collection of microscopic bubbles (instead of a single entrapped bubble)
may be entrapped, which can create intriguing morphologies [10]. This is
also referred to as Mesler entrainment [2, 11]. The same mechanism that is
responsible for bubble entrapment at the bottom of an impacting object on
a pool holds for air entrapment at the bottom of an impacting drop onto a
solid [12–15]. In fact, the initial geometry of the problems is identical, see
Fig. 3.1, in which the different impact scenarios and air entrapment have been
depicted. We also refer to Fig. 5 of Ref. [9], in which this analogy was first
proposed.

Previously, air bubble entrapment for drop impact onto a solid surface has
been quantified experimentally, theoretically, and numerically [13–17]. If the
effect of surface tension can be neglected we can consider the inertial regime
(see Chapter 2), for which the following scaling for the entrapped air bubble
volume was found:

Vb/Vdrop ∼ St−4/3. (3.1)

Here Vb/Vdrop is the air bubble volume normalized by the drop volume and
St is the Stokes number which is defined as St ≡ ρlRU/ηg, where ρl is the
liquid density, R the drop radius, U its impact velocity, and ηg is the viscosity
of the surrounding gas, in this case air. The Stokes number represents the
competing effect of the viscous force of the draining air film and the inertial
force of the liquid which ultimately determines the air bubble volume. The
same scaling was found experimentally for impact of a sphere onto a pool [8],
and a drop onto a pool [9]. When surface tension effects become important
the scaling must be modified to include the effect of the Laplace pressure as
we move towards the capillary regime, as described in Chapter 2.
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In this chapter we try to capture the mechanism of air entrapment during
impact onto a deep pool numerically. We will employ a Boundary Integral
method (BIM) for potential flow describing the liquid phase coupled to vis-
cous lubrication theory for the draining microscopic air film. The advantage
of using a Boundary Integral method becomes evident when the interface of
the impacting object comes close to the pool and one has to resolve the micro-
scopic air layer together with the macroscopic liquid scale. This difference in
length scale can be a thousandfold for the case of a millimeter sized drop im-
pacting onto a pool squeezing out an air film with a typical thickness of a few
micrometers. In fact, the difference in length scale in the final stages of impact
diverges to infinity as the drop is about to coalesce with the pool. Using a
Boundary Integral method guarantees excellent interface representation, since
all variables such as liquid velocity and pressure are defined at the interface.

Figure 3.1: Air bubble entrapment for different impact scenarios. Bubbles and
deformations are not drawn to scale. (a) Rigid sphere impact onto a pool. The
pool deforms due to an increase in air pressure right under the sphere before it
touches the pool, which results in an entrapped air bubble. (b) Drop impact
onto a pool. Not only the pool, but also the drop consists of a deformable
interface. As a result, the increased air pressure deforms both the pool and
the drop and an air bubble is entrapped. (c) Drop impact onto a solid. Also
here, a local increase in air pressure deforms the drop before it touches the
solid and results in an entrapped air bubble.
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At the same time, the computational cost is modest, since the Boundary Inte-
gral method allows the potential problem to be solved only at the boundaries
of the liquid domain: quantities in interior points can be calculated optionally
as a function of the solution at the boundary. To achieve the same accurate
interface representation and solving the full Navier-Stokes equations, using
for example a volume-of-fluid method (see for example Ref. [18, 19]), would
require a much larger computational cost.

In Sec. 3.2 we explain the theoretical framework together with the numeri-
cal method. In Sec. 3.3 we will present the results of the numerical simulations:
we identify details of the pressure development in the air film and the deforma-
tion of the interfaces at the impact zone. The results of the numerical model
are compared with available results regarding the entrapped bubble volume
from multiple experimental works and with the scaling law (3.1). We conclude
with Sec. 3.4 in which suggestions for further research are discussed.

3.2 Theory

3.2.1 Dimensional analysis and numerical method

The Reynolds number of the liquid drops we model, which is defined as Rel ≡
ρlRU/ηl, is assumed to be large, Rel � 1. Here ρl and ηl are respectively
the density and the dynamic viscosity of the liquid, U is the impact velocity,
and R is the radius of drop. The flow can be regarded irrotational, that is,
∇ × u = 0. Under the additional constraint of incompressible flow inside the
drop this allows the liquid dynamics to be modeled with a harmonic function
φ, to which the velocity field u is related through:

u = ∇φ (3.2)

The fact that the velocity potential φ obeys the Laplace equation ∇2φ = 0 is
used to efficiently solve the potential problem, and thus the dynamics of the
liquid, using the Boundary Integral Method (BIM). We use a BIM based on
codes which are described in detail in Refs. [20] and [21].

While the Reynolds number of the drop is large, the Reynolds number of
the thin gaseous air layer Reg ≡ ρgHdU/ηg is typically small. Here ρg is the
gas density and Hd is the air film thickness in the center of the film which
is referred to as the dimple height. When inserting typical parameters, ρg

is of order 1, Hd is of order 10−6, U is of order 1 and ηg is of order 10−5.
This results in Reg to be in the order of 10−1, which justifies the assumption.
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Figure 3.2: (a) Schematic of drop impact onto a a pool. The used methods are
indicated in the figure: both the liquid domains are modeled with potential
flow, while the air layer is described with Stokes flow. The gray arrows indicate
that the flow of the air film is coupled to the dynamics of the liquid domains
and vice versa. (b) Definition of the (n,s)-coordinate system, where s is aligned
along the drop curve and n is the unit normal with respect to the drop.

The length scale characterizing the air layer in the lateral extension of the air
film is denoted by L, see Fig. 3.2a. As shown in Chapter 2, Hd � L, which,
in combination with the low Reynolds number of the gas, allows the film to
be described with viscous lubrication theory, see for example Ref. [22]. Note
that for drops impacting with a higher speed well outside the parameter range
currently considered, lubrication theory should be extended to include the
effect of inertia of the gas. The dimensionless group reflecting the presence of
air is the Stokes number St ≡ ρlRU/ηg which compares the viscous force of the
air layer to the inertial force in the drop. This number is relevant for describing
dimple formation, since, for high enough impact velocity U , this process is
determined by two competing forces: the force of the viscous air layer trying
to deform the drop in the center and the opposing inertial force of the drop,
which must be slowed down locally in order to form a dimple. Additional
dimensionless numbers incorporating surface tension γ are the Weber number
We and the capillary number Ca based on the gas properties. Summarizing,
we thus have the following dimensionless parameters:

Rel ≡ ρlRU

ηl
Reg ≡ ρgHdU

ηg
St ≡ ρlRU

ηg
We ≡ ρlRU2

γ
Ca ≡ We

St
(3.3)



32 CHAPTER 3. UNIVERSAL MECHANISM FOR AIR ENTRAINMENT

The impact of a liquid drop onto a pool of the same liquid and the impact of a
rigid sphere onto a liquid pool can be described with the same dimensionless
numbers. As the initial geometry of the problems is identical, the difference lies
in the deformability of the object, which is zero in case of the solid. The two
effective control parameters that we will use here in our theoretical framework
are St and We. In this work the depth of the pool is considered infinite. In
case the thickness of the pool is finite, the dynamics of the pool may be altered
due to the presence of a solid boundary at the bottom of the pool. For the
impact onto a liquid film with finite thickness we refer the reader to Ref. [23],
in which the impact onto a wetted solid is discussed.

In Fig. 3.2a an illustration of the impact of a drop onto a pool, together
with the used method is shown. As is clear from this figure, the coupling
between the dynamics of the air layer and the dynamics of the liquid is essential
since the two liquid domains feel each other through the pressure build-up in
the viscous air layer. The lubrication pressure Pg acts on the liquid surface
and appears in the unsteady Bernoulli equation which serves as a dynamic
boundary condition in the BIM applied at the liquid surface:(

∂φ

∂t
+

1
2

|∇φ|2
)

= − γ

ρl
κ(s, t) − Pg(s, t)

ρl
(3.4)

Here Pg is the pressure in excess of the ambient pressure, due to lubrication.
The curvature of the interface is represented by κ(s, t) which is a function of
the curvilinear coordinate s which follows the liquid surface and time t. Note
that unlike Chapter 2 we did not include gravitation, to make sure that the
impact speed of the impacting drop stays constant during its fall. The small
deformation of the pool justifies the assumption of neglecting the pressure due
to hydrostatic gradients. As we have two liquid domains, two separate BI
equations are solved. We take the width of the pool large enough to approach
the dynamics of an infinite liquid pool. In this case a width of 4.5 times the
drop radius was found to be sufficient. We focus on quantifying the amount of
entrapped air by integrating the enclosed air pocket up to the moment the air
layer reaches a physical minimum thickness of 0.4 μm. At this point the vol-
ume of the enclosed air has converged and a subsequent rupture of the air film
will prevent further drainage which results in an entrapped air bubble [15].
As we focus on the dynamics just prior to rupture we can make use of an ax-
isymmetric framework. In Ref. [7] a similar approach was used to predict the
radius of the entrapped bubble which occurs when a solid sphere approaches
a liquid free surface. We restrict ourselves to the inertial regime [15] for which
experimental results [9] are available for a direct comparison. Since the air
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layer continually deforms and translates during the impact, lubrication equa-
tions have been developed in a moving coordinate system which is aligned with
the interface of the drop. These equations will be derived in the next section.

3.2.2 Lubrication in moving and tilted coordinate system

In this section we develop an expression for the pressure Pg in the air film based
on lubrication theory in a moving (n,s)-coordinate system which is aligned
along the drop surface, see the sketch in Fig. 3.2. The reason for doing this
(rather than using the standard (r,z)-coordinate system) is that, especially
for the drop onto pool impact, the moving (n,s)-coordinate system is not
necessarily oriented as the (r,z)-coordinate system and therefore only the first
guarantees an accurate description of the draining air film. In Appendix 3.A
a case is described which shows the difference between lubrication calculated
in both coordinate systems. The drop surface is taken as a reference, and
the curvilinear coordinate s is defined along the drop, starting at the axis
of symmetry (bottom of the drop). At some large radial coordinate s∞ we
assume atmospheric pressure. The coordinate perpendicular to s is defined to
be n. The gap thickness h(r, t) is defined as the length of the perpendicular
line from the drop projected onto the liquid pool. The two surfaces in the
impact zone are assumed to be nearly parallel (|∂sh| � 1), so we can apply
lubrication theory in the direction along s.

It can be shown (see Appendix 3.B) that the continuity equation in this
new (n,s)-coordinate system reads:

ur

r
+ ∂sus + ∂nun = 0. (3.5)

At the interface of the liquid pool (n = h) we know that the fluid particles
have to move with the interface. This is mathematically described with the
kinematic boundary condition:

∂th + (us ∂sh)|n=h = un|n=h − un|n=0. (3.6)

Here ∂th is the time derivative of h. We now integrate Eq. (3.5) along the gap
thickness h and obtain:

∫ h

0

ur

r
dn +

∫ h

0
∂sus dn = −

∫ h

0
∂nun dn = un|n=0 − un|n=h. (3.7)
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Using Leibniz integral rule for the second integral on the left hand side we
find: ∫ h

0

ur

r
dn + ∂s

∫ h

0
us dn − (us ∂sh)|n=h = un|n=0 − un|n=h. (3.8)

We now use the kinematic boundary condition formulated in Eq. (3.6) for the
third term on the LHS to obtain:

∫ h

0

ur

r
dn + ∂s

∫ h

0
us dn + ∂th − un|n=h + un|n=0 = un|n=0 − un|n=h. (3.9)

Canceling the terms un|n=h and un|n=0 on both sides gives:∫ h

0

ur

r
dn + ∂s

∫ h

0
us dn + ∂th = 0. (3.10)

We still have to describe ur within the new (s,n)-coordinate system. Therefore
we substitute ur = un cos θ − us sin θ in the preceding equation to get:

∫ h

0

1
r

un cos θ dn −
∫ h

0

1
r

us sin θ dn + ∂s

∫ h

0
us dn + ∂th = 0. (3.11)

We assume that the main flow of the air that is squeezed out from the gap
is along the s-coordinate, which implies that un is relatively small, so we
neglect the first term. The second term is an integral with respect to n con-
taining the variable r. This radial coordinate r across h is a function of n:
r = n cos θ + c(s). Here c(s) is the value of r at the drop surface (n = 0)
for some coordinate s. We thus substitute this expression for r into Eq. (3.11)
and neglect the first term to find:

−
∫ h

0

sin θ

n cos θ + c(s)
us dn + ∂s

∫ h

0
us dn + ∂th = 0. (3.12)

Flow profile within the air film

As has been previously described, the Reynolds number of the thin air film is
small, Reg � 1, and the geometry of the problem, Hd � L, allows us to use
lubrication theory. In the (n,s)-coordinate system, the Stokes equations can
then be reduced to:
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∂sPg = ηg∂2
nus. (3.13)

We can integrate Eq. (3.13) twice with respect to n, employing a no slip
boundary condition at the drop surface (us = Ud at n = 0) as well as at the
surface of the pool (us = Up at n = h), to find:

us =
(

(Up − Ud)
n

h
+ Ud

)
+

1
2ηg

∂sPg(n2 − nh). (3.14)

The first term of Eq. (3.14) can be associated with Couette flow, caused by
the movement of the interfaces. Up and Ud can be extracted by differentiating
the potential φ with respect to the tangential direction of the liquid surface.
The second term can be associated with Poiseuille flow, which is driven by the
radial pressure gradient, see also Ref. [24]. Substituting this expression for us

in our equation of mass conservation, Eq. (3.12), we get:

−
∫ h

0

sin θ

n cos θ + c

[(
(Up − Ud)

n

h
+ Ud

)
+

1
2ηg

∂s(n2 − nh)

]
dn

+∂s

∫ h

0

[(
(Up − Ud)

n

h
+ Ud

)
+

1
2ηg

∂sPg(n2 − nh)

]
dn + ∂th = 0. (3.15)

In the first integral we deal with a prefactor sin θ/(n cos θ + c). When taking
into account the geometry of the problem we note that n cos θ � c. We can
thus write sin θ/(n cos θ +c) ≈ sin θ/c. Under this assumption, performing the
integrals of Eq. (3.15) yields:

−sin θ

c

(
h

2
(Up + Ud) − h3

12ηg
∂sPg

)
+ ∂s

(
h

2
(Up + Ud) − h3

12ηg
∂sPg

)
+∂th = 0. (3.16)

If we define G(s) ≡
(

h
2 (Up + Ud) − h3

12ηg
∂sPg

)
we can transform the preceding

equation into a first order inhomogeneous linear ODE for G(s):

Ġ(s) − a(s)G(s) = f(s). (3.17)

Here a(s) and f(s) are known functions of s:
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a(s) =
sin θ

c(s)
(3.18)

f(s) = −∂th (3.19)

Solving the first order inhomogeneous ODE for G(s)

Equation (3.17) can be solved with help of an integrating factor I defined as

I(s) ≡ e−
∫

a(s) ds. Using the boundary condition G(s) = 0 for s = 0, because
we have zero pressure gradient in the center of symmetry and zero tangential
velocities, we can multiply Eq. (3.17) with I(s) and solve for G(s):

G(s) =
1

I(s)

(∫ s

0
I(s̃)f(s̃) ds̃

)
(3.20)

with I(s) = e−
∫ s

0
a(s̃) ds̃.

We can now substitute G(s) ≡
(

h
2 (Up + Ud) − h3

12ηg
∂sPg

)
back into Eq. (3.20)

to obtain an equation for ∂sPg:

∂sPg = −12ηg

h3

(
1

I(s)

(∫ s

0
I(s̃)f(s̃) ds̃

)
− h

2
(Up + Ud)

)
(3.21)

We note that we have to evaluate two numerical integrals to calculate ∂sPg.
In order to find the pressure Pg(s) we integrate Eq. (3.21) using atmospheric
pressure for some large value for s∞ well outside the thin air gap as a boundary
value.

As a check of our analysis we now orientate the (n,s)-coordinate system in
such away that s = r, to recover the lubrication equation in the conventional
(r,z)-coordinate system. In that case we have θ = −π/2, and we can write for
a(s):

a(s = r) =
sin θ

r
= −1

r
(3.22)

The integrating factor I now becomes:

I(s = r) = e−
∫ r

0
a(r̃)dr̃ = eln r = r (3.23)

Substituting Eq. (3.23) into Eq. (3.21) and using the proposition s = r and
setting Ub = 0 and Ud = 0, we can now write Eq. (3.21) as:



3.3. RESULTS 37

∂rPg = −12ηg

h3

(
1

I(r)

(∫ r

0
I(r̃)f(r̃) dr̃

)
− h

2
(Ub + Ud)

)
=

12ηg

h3

(
1
r

(∫ r

0
r̃∂th dr̃

))
. (3.24)

We inspect that Eq. (3.24) is the equation for the radial pressure gradient
for viscous lubrication theory in the conventional (r,z)-coordinate system [25],
which gives a consistency check for our analysis. This was also numerically
verified.

3.3 Results

In this section simulation results will be discussed, starting with Sec. 3.3.1
in which we treat the drop impact onto a pool. The interface deformations
and pressure development in the viscous air layer are quantified. In Sec. 3.3.2
we will focus on rigid sphere impact onto a pool. For both impact scenarios
we quantify the size of the air bubble that is entrapped and directly compare
with various experimental results [8, 9, 15]. In Sec. 3.3.3 we will compare the
dynamics of both impact scenarios and identify symmetrical behavior.

3.3.1 Drop impact onto a pool

Figure 3.3a displays a typical result for drop impact onto a pool. The results
are expressed in dimensional form to match the experimental conditions of the
work of Ref. [9], to which the numerical results in this work will be compared.
In the first frame corresponding to t = 0 ms the initial condition of the simula-
tion at the impact zone is shown. An initial separation of h0 = 50 μm is used.
Convergence tests regarding the initial release height have been conducted,
and an initial separation of h0 = 50 μm was found to be appropriate for the
lubrication pressure to be still negligible at this distance for the parameter
range which is of interest in this study. At t = 0.12 ms it can be seen that
the pool and the drop experience the increased air pressure and thus the in-
terfaces deform. In the lower panel of this frame, the increase in pressure is
indeed visible. At t = 0.15 ms the drop is getting closer to the pool, and the
interfaces have been further deformed. It can also be noted that the pressure
maximum corresponds to a location where the separation between the drop
and the pool is smallest. The location of smallest separation is now not lo-
cated in the center at r = 0 anymore. This behavior is typical for impact
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Figure 3.3: (a) Drop impact onto a liquid pool. Note the different length scales
for the r-axis and z-axis in the shape plots. The impact speed is U = 0.42 m/s
and the drop radius is R = 0.95 mm. The density and surface tension of the
liquid are respectively ρ = 916 kg/m3 and γ = 0.020 N/m. These impact
parameters correspond to St = 2.0 × 104 and We = 7.7. The simulation starts
at time t = 0 ms at a separation of hr=0 = 50 μm. Due to the approach
of the sphere, the excess air pressure Pg will increase and acts on both the
drop and the liquid pool (t = 0.13 ms). At the final stage (t = 0.17 ms)
the minimum separation of the interfaces reaches 0.4 μm and the simulation
is stopped. The bubble volume Vb can thus be determined. (b) Part of the
simulation domain with detailed snapshots of the air film at t = 0.17 ms. In
the third snapshot the actual node distribution around the smallest separation
point can be inspected. This is the most refined distribution of computational
nodes that is used. For the region outside the gap a coarser node distribution
is sufficient.
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events involving a free surface and has been experimentally observed for e.g.
drop impact onto a pool [9, 10], drop impact onto a solid surface [26], sphere
impact onto a pool [8] and bubble impact onto a wall in a liquid tank [27]. In
the final frame t = 0.17 ms we observe that the two interfaces are very close
together having a minimum separation of 0.4 μm.

We note that the interfaces up to the final stage of impact are very well
resolved, see Fig. 3.3b in which the final frame at t = 0.17 ms is shown on
various scales while keeping both axes the same length scale. In the first
frame of this panel a macroscopic view of the simulation domain is shown.
In the second frame the impact zone is selected and magnified. The slender
geometry of the microscopic air film can be noted. In the third frame the
region of closest separation is magnified. Indeed, the interfaces are very close
together; the minimum separation is 0.4 μm. The computational nodes used
for discretization of the surface are also shown in this final frame. An adaptive
grid on the fluid surface allows for local refinement at the region of closest
separation which results in the total number of nodes to be only of order 100,
while capturing both the microscopic dynamics at the impact zone and the
large scale motion of the millimeter sized drop.

We further note from the final frame in Fig. 3.3a that a microscopic air
film finds itself trapped between the drop and the pool. It is this entrapped
air that constitutes the air bubble that is dragged into the liquid when the air
film ruptures at the thinnest point and, thereafter, breaks the axisymmetry
of the problem. In this work we do not attempt to simulate the complex
rupture process of the air film itself, which is ultimately determined by surface
chemistry, see for example Ref. [28]. Instead, we focus on the dynamics up to
the rupture point, which is taken to happen at a rupture thickness of 0.4 μm.
At this point, the volume of the entrained air has converged and can thus be
determined, see the final frame of Fig. 3.3a. This procedure is in line with
previous research [15], where experimentally the volume of the air pocket just
before rupture was indeed found identical to the volume of the entrapped
bubble. In Ref. [10] the final thickness of the air film is estimated to be on the
order of ∼ 0.2 μm. The final thickness that is reached during an experiment
depends on the type of fluid and is sensitive to experimental conditions, e.g.,
how clean the fluid is [28]. Here we choose to stick to a minimum thickness
consistent with Chapter 2, which is 0.4 μm. In Appendix 3.C a figure is
included which shows that the volume of the air bubble that can be identified
numerically has indeed converged for a minimum thickness of 0.4 μm, by also
including the bubble volumes calculated for a minimum thickness of 0.2 μm.
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3.3.2 Rigid sphere impact onto a pool

The impact of a sphere onto a pool prior to coalescence is similar to the case of
a drop impacting on a pool, except that in the case of an impacting sphere the
deformability of the impacting object is zero. This scenario has been simulated
by making an undeformable sphere approach the pool. The same equations
are solved as described in Sec. 3.2, except for the fact that no BIM is needed
for the impacting sphere since the interface of the sphere is fixed. The result
is depicted in Fig. 3.4. Just as in the case of drop impact onto a pool, a
microscopic air bubble is entrapped. As can be inspected, the air bubble has a
similar shape, but its size is smaller than in case a drop impacts onto the pool
(with the same impact parameters), as can be inferred from a comparison to
Fig. 3.3a.

The size of the air bubble can be quantified from the numerical simulation
and is compared for both drop impact and sphere impact onto a pool with
various experimental results in Fig. 3.5a. We see that the numerical results of
both drop and sphere impact onto a pool are in quantitative agreement with
experimental work. We deduce from the numerical results that the air bubble

Figure 3.4: Rigid sphere impact onto a pool. The impact speed is U =
0.42 m/s and the radius is R = 0.95 mm. The density and surface tension of
the liquid are respectively ρ = 916 kg/m3 and γ = 0.020 N/m. These impact
parameters correspond to St = 2.0 × 104 and We = 7.7.
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volume is indeed larger when a drop instead of a sphere impacts onto a pool
for all St, which is supported by experiments of Ref. [9]. Furthermore, we
observe that numerical results are in agreement with the scaling law presented
in Eq. (3.1), Vb/Vdrop ∼ St−4/3. As experiments have shown, in this regime,
the viscosity of the liquid is not important for the final bubble volume that is
entrapped, see Ref. [8, 9], which is again confirmed by the current modeling
technique which captures the essential physics determining the air bubble vol-
ume: a potential flow calculation that does not involve liquid viscosity coupled
to viscous lubrication theory for the intervening air layer.

3.3.3 Deformations of interfaces: symmetrical behavior

We will now further investigate the fact that the bubble volume for drop im-
pact onto a pool is larger compared to the case where we deal with only one
deformable interface during impact as is the case with rigid sphere impact
onto a pool. In Fig. 3.6 a closer inspection of the drop impact onto a pool is
depicted. In this figure we track the relative deformation of both the pool and
the drop, denoted by δdrop and δpool respectively. Here δdrop is defined as the
deformation of the drop relative to an undeformed sphere impacting with con-
stant speed U and δpool is defined as the deformation of the pool relative to the
horizon z = 0. Interestingly, both interface deformations behave identically.
One may indeed expect that two deformable interfaces which react similar to
an external pressure deform in an identical way, but note that the upper do-
main (drop) and the lower domain (pool) do not have the same unperturbed
geometry, owing to the radius of curvature of the drop. Since both media
respond identically to the pressure pulse, the weak curvature with respect to
the width of the localized pressure has a negligible influence: on the scale of
the pressure pulse, both domains are essentially flat. We therefore expect to
recover a symmetric response in the upper and lower domains. To illustrate
this further, we compute the kinetic energy and the velocity inside the drop
and the pool using a technique described in Ref. [29] to evaluate quantities
close to the interface which need special attention as the singular behavior
of the Green’s function in the Boundary Integral equation becomes apparent
for these points. Figure 3.7a shows the result in the frame of the pool. To
highlight the symmetry, we also evaluate these quantities in a frame moving
at a speed U/2 in an upward direction, which results in a frame of reference
in which both the drop and pool move with a speed U/2 towards each other.
Indeed, the velocity fields and kinetic energies are now identically distributed,
see Fig. 3.7b.
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Figure 3.5: Figure adapted from Ref. [9]. BIM results are superimposed in
yellow symbols. (a) Various experimental data for the normalized bubble
volume Vb/Vsphere/drop are shown. Excellent quantitative agreement was found
with numerical results. (b) The data, both numerical and experimental, was
found to collapse on one single curve by normalizing Vb as Vb/(nVsphere/drop)
with n the number of free interfaces involved during impact. This number is
2 instead of 1 in case of drop impact onto a liquid pool.
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δ
pool

δ
drop

Figure 3.6: Drop impact onto a pool with a corresponding plot of the relative
deformation δ of both the pool and the drop. In the final frame of the upper
panel the definition of δ is shown. We observe excellent overlap between the
relative deformations, which is emphasized in the lower panel where Δ =
δdrop − δpool, the difference between the two relative deformations, is shown.
The same impact conditions as for the case described in Fig. 3.3 are used:
The impact speed is U = 0.42 m/s and the radius is R = 0.95 mm. The
density and surface tension of the liquid are respectively ρ = 916 kg/m3 and
γ = 0.020 N/m, which corresponds to St = 2.0 × 104 and We = 7.7.
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Figure 3.7: Kinetic energy monitoring during drop impact onto a pool, with
impact parameters as described in Fig. 3.3. (a) In the left half, the kinetic
energy K is gray scale coded: black is zero kinetic energy, white is maximum
kinetic energy in the system which is K = 1

2ρU2. (b) The kinetic energy is
recalculated in a moving reference frame moving upwards at 1

2U . This results
in a frame of reference in which both the pool and drop move with a speed
of 1

2U towards each other. Again the left half of the figure shows the kinetic
energy. We observe a symmetric behavior which supports the hypothesis that
the pool and drop react in a symmetric way to the local pressure increase.
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This implies that there will be a bigger entrapped air bubble as compared
to the case where only one of the interfaces is able to deform. To quantify this
hypothesis we compare the bubble sizes of drop and sphere impact onto a pool
and find a factor 2 difference, see Fig. 3.5b. Here half the air bubble volume
of drop impact onto a pool was found to collapse onto the experimental and
numerical results incorporating only one deformable interface, i.e. the sphere
impact onto a pool, but also the drop impact onto a solid. Ref. [9] contained
another approach to collapse the data of bubble volumes of drop impact onto
a pool by correcting the corresponding impact St number by a factor 2, which
also collapses the data. In this present work it is shown that an approach
based on considering the number of deformable interfaces (either 1 or 2) can
also serve to obtain a unifying view on the air bubble entrapment.

3.4 Conclusion

In this work air entrapment during liquid drop and rigid sphere impact onto a
deep liquid pool has been numerically investigated using a Boundary Integral
Method (BIM) for potential flow for the liquid phase coupled to the viscous
lubrication approximation for the subphase air which is squeezed out during
impact. Excellent agreement with experimental work was found when com-
paring the amount of air that is entrained during impact. When considering
drop impact onto a pool both liquid interfaces were found to deform identically
relative to their undeformed shape. This leads to an explanation as to why
bubble volumes in case of drop impact onto a pool were found to be exactly
twice the size of those that are found, both experimentally and numerically,
in impacts events involving only one deformable interface, that is, rigid sphere
impact onto a pool and drop impact onto a solid.

In this study (inertial and) compressibility effects of the air have been ne-
glected. It can be expected that at higher impact velocity the compressibility
of the intervening air will become important, see for example Ref. [17]. In
addition, the current modeling technique is limited to an axisymmetric 2D
framework. To account for 3D impact problems, for which experimental data
starts to emerge [30], the modeling technique needs to be extended to 3D.
With a 3D model also oblique collisions can be investigated. Furthermore, the
crossover towards the capillary regime (see Chapter 2) is not within the scope
of the present work. Herein lies a possibility for future research.
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3.A Comparison (r,z)-system with (n,s)-system

The advantage of the use of the moving (n,s)-coordinate system to calculate
the lubrication pressure becomes evident when the interfaces start to deform
and the thin air film is not aligned with the (r,z)-coordinate system anymore.
To illustrate this, we selected a case for drop impact onto a pool as shown and
described in Fig. 3.8. In Fig. 3.8a we inspect that the two different lubrication
methods yield similar results from a macroscopic point of view. But when
focusing on the film thickness h between the two interfaces, shown in Fig. 3.8b,
the difference between the two methods becomes apparent. We note that in
the first stages of impact (up to t = 0.50 ms) the air film is still aligned with
the (r,z)-coordinate system, and the two lubrication methods yield similar
results. But in the final stages of impact the drop sinks deeper into the pool
and the air film is not aligned anymore with the (r,z)-coordinate system. The
(r,z)-coordinate system therefore is now no longer adequate, which reflects in
the thinning behavior which starts to differ from the results obtained with
the (n,s)-coordinate system that moves with the drop. In the final stage
(t = 3.00 ms) the conventional (r,z)-coordinate system clearly shows a wrong
film profile, as the minimum gap thickness is now located at the center r = 0,
while it should be located off center as shown by many experiments [7, 9,
10, 26]. This underpins the need for an appropriate moving (n,s)-coordinate
system, from which the conventional (r,z)-coordinate system is a special case
which is recovered when the lubrication gap is aligned with the (r,z)-axes.
While upfront it was not clear whether the interfaces would deform to such an
extent that a moving coordinate system was needed, the generalized coordinate
system guarantees accurate lubrication calculations in any scenario.

3.B Continuity in curvilinear coordinates

To derive Eq. (3.5) in a (n,s)-coordinate system that moves along with the drop
surface (see Fig. 3.2) we start from the continuity equation in axisymmetric
(r,z)-coordinates:

ur

r
+

∂ur

∂r
+

∂uz

∂z
= 0 (3.25)

We now want to write the last two terms of the LHS of Eq. (3.25) in terms of
the (n,s)-coordinate system, that is:
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Figure 3.8: Drop impact onto a liquid pool. The impact speed is U = 0.14 m/s
and the drop radius is R = 0.95 mm. The density and surface tension of the
liquid are respectively ρ = 916 kg/m3 and γ = 0.020 N/m. These impact
parameters correspond to St = 6.7 × 103 and We = 0.85. (a) The macroscopic
drop shape together with the pool shape is shown. The solid line corresponds
to calculations done in the moving (n,s)-coordinate system. The dashed line
shows the result for the same case with the only difference that lubrication is
now calculated in a conventional (r,z)-coordinate system. (b) To illustrate the
different behavior of the two approaches the corresponding film thicknesses are
shown (note the smaller length scale of the vertical axes). It can be seen that
in the final stage of impact the draining of the film behaves differently.
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The two coordinate systems are related as follows (see also Fig. 3.2):

ds = −dr sin θ + dz cos θ (3.27)

dn = dr cos θ + dz sin θ (3.28)

Using the preceding relation we can write Eq. (3.26) as:
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(3.29)

We now have to express ur and uz as function of (s,n), that is:

ur(n, s) = un(n, s) cos θ − us(n, s) sin θ (3.30)

uz(n, s) = un(n, s) sin θ + us(n, s) cos θ (3.31)

Substituting the above expressions for ur and uz into Eq. (3.29) and simplifying
we find:
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(3.32)

3.C Sensitivity of the entrapped bubble volume to
the rupture thickness

The physics of the rupture of the air film, which is dependent on the surface
chemistry of the impacting object and the pool, is not captured in the nu-
merical model. As a result, a minimum thickness at which the film ruptures
has to be imposed, which is referred to as the rupture thickness. In our work
the rupture thickness is taken to be 0.4 μm (consistent with Chapter 2). In
Fig. 3.9 it is shown that the volume of the air bubble has already converged
for this value of the rupture thickness. Taking the rupture thickness twice as
small, 0.2 μm, does not significantly change the amount of air trapped. We
thus conclude that a minimal rupture thickness of 0.4 μm suffices to describe
the results.
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Figure 3.9: Sphere impact onto a pool, with impact parameters as described
in Fig. 3.4. The bubble volume calculated for different rupture thicknesses
hmin is shown. At a rupture thickness hmin of 0.4 μm the air bubble volume is
converged, as taking the rupture thickness twice as small to a value of 0.2 μm
does not significantly alter the result.
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4
Initial surface deformations during

impact on a liquid pool ∗

A tiny air bubble can be entrapped at the bottom of a solid sphere that impacts
onto a liquid pool. The bubble forms due to the deformation of the liquid sur-
face by a local pressure buildup inside the surrounding gas, as also observed
during the impact of a liquid drop on a solid wall. Here, we perform a per-
turbation analysis to quantitatively predict the initial deformations of the free
surface of a liquid pool as it is approached by a solid sphere. We study the nat-
ural limits where the gas can be treated as a viscous fluid (Stokes flow) or as
an inviscid fluid (potential flow). For both cases we derive the spatio-temporal
evolution of the pool surface, and recover some of the recently proposed scaling
laws for bubble entrapment. On inserting typical experimental values for the
impact parameters, we find that the bubble volume is mainly determined by the
effect of gas viscosity.

∗Published as: W. Bouwhuis, M.H.W. Hendrix, D. van der Meer, J.H. Snoeijer, “Initial
surface deformations during impact on a liquid pool”, J. Fluid Mech. 771, 503-519 (2015).
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4.1 Introduction

The phenomena resulting from solid-body impacts on liquid surfaces are widely
studied because of their omnipresence in nature and industry [1–8]. These
involve splashing, jet formation, cavity formation, and air bubble entrapment.
The entrapment of tiny micrometer-sized air bubbles between a solid object
and a pool is due to a mechanism similar to that of the impact of a liquid drop
on a solid surface [9–15] or of a drop onto a liquid pool [16–19]. The air that
surrounds the falling object is squeezed out between the solid and the pool
surface during the final stages of impact, resulting in a local pressure build-up
in the gas. This pressure will induce a small deformation of the liquid surface
(Fig. 4.1b), which will finally result in the entrapment of a tiny air bubble by
the rupture of the enclosed air film (Fig. 4.1c). For many applications these
air bubbles are undesirable, and hence, the prediction of their size is of great
importance.

There are two main types of theoretical approach to determine the defor-
mations of the liquid surface and predict the size of the entrapped air bubble,
namely full numerical solutions of the problem and scaling arguments [7, 13–
15, 17]. Combined with experiments, these have led to the observation that
the size of the air bubble for impact of a liquid drop on a flat solid surface
is determined by either the inertia of the liquid or the surface tension, as de-
scribed in Chapter 2 of this thesis. For increasingly high impact velocities,
liquid inertia dominates and reduces the size of the air film at impact (‘iner-
tial regime’), while surface tension dominates for lower velocities or smaller
drop sizes (‘capillary regime’). The case of a solid sphere impacting on a pool
leads to similar bubble entrapment, and, moreover, in the inertial regime the
same scaling law (including the multiplicative prefactor) as for the impact of
a drop on a solid has been observed [6, 19]. Here, the final center height dif-
ference between the two surfaces, which is called the dimple height Hd, and
the entrapped bubble volume Vb respectively scale as

Hd ∼ R St−2/3, Vb ∼ R3 St−4/3. (4.1)

Here, St is the Stokes number, St = ρlUR/ηg, in which ρl is the density of
the liquid, R is the radius of the drop, U is the impact velocity and ηg is the
dynamic viscosity of the air. This scaling has been confirmed experimentally
and numerically [6, 7, 13, 14, 17, 19]. On the other hand, in the capillary
regime (small velocities or small drops), the scaling analysis predicts [14, 16]
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Hd ∼ R Ca1/2, Vb ∼ R3 Ca, (4.2)

where Ca = ηgU/γ is the capillary number based on the gas properties and sur-
face tension γ. The crossover between the two regimes, at which the size of the
entrapped air bubble is maximal, is found by equating the predictions for Hd

from Eqs. (4.1) and (4.2). Then, one finds U0 ∼ η
1/7
g γ3/7/

(
ρ

4/7
l R4/7

)
, where

U0 is the crossover impact velocity, leading to maximal bubble entrapment.
For an impacting water drop having a radius of 1 mm, this gives 0.07 m/s. In-
deed, this is of the same order of magnitude as was observed experimentally,
where the maximum bubble size was found at approximately 0.25 m/s (for
ethanol drops) (see Chapter 2 of this thesis). Generically, for drops or spheres
falling at their terminal velocity of a few meters per second, the impact thus
takes place in the inertial regime, where the effect of surface tension can thus
be neglected when focusing on the air bubble entrapment. Note that surface
tension will enter during the rupture of the air film, which, however, appears
to be on a different time scale. In Chapter 2 it was experimentally found that,
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Figure 4.1: (a) A solid sphere (radius R) approaches a liquid surface with
velocity U . The gap height between the bottom of the sphere and the undis-
turbed water level (z = 0) is h(r, t), r and t being the radial coordinate and
time, respectively, with h(0, t) = h0(t). (b) While the sphere moves down-
wards, the pool deflects by a small amount δ(r, t), as a result of the local
pressure build-up in the air that is squeezed out. In the limit where δ � h0,
which typically is valid up to very close to the impact time, the profiles are
computed analytically. (c) This mechanism will finally result in air bubble
entrapment.
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in the inertial regime, the bubble volume was fixed before the rupture of the
air film.

In this chapter, we analytically compute the initial deformations due to
sphere impact onto a liquid pool in the inertial regime, where the deflection
of the liquid is limited by its inertia rather than by its surface tension. In ex-
periments, there is generally not enough resolution to accurately detect these
initial deformations, and therefore we use numerical simulations, which also
provide a bridge towards larger deformations. By restricting ourselves to small
deformations of the pool surface, we obtain detailed spatio-temperal informa-
tion on the deflection as well as the dependence on experimental parameters.
This provides a natural bridge between scaling theory, which lacks detailed in-
formation on the structure of the interface deflection, and profiles obtained by
direct numerical simulations. Similar calculations were previously performed
by Yiantsios et al., 1990 [16] in the capillary regime, recovering the scaling
(4.2). Hence, such a small-deformation theory gives an analytical foundation
to the scaling laws, as well as detailed predictions of the shape of the defor-
mation. Although the problem of a cushioning air layer has been solved by
Wilson et al., 1991 [20] for an ‘inertial’ air layer, a similar insightful similarity
analysis for the inertial (liquid) regime has not yet been attempted.

This chapter is organized as follows. Sec. 4.2 starts with a dimensional
analysis of the problem and shows the limiting cases when the gas can be
described as a potential flow or as a viscous lubrication flow. This section
also outlines the formalism based on which the interface deformations are
computed. In Sec. 4.3 we present the results for both viscous gas flow and
potential gas flow. The analytical results are illustrated for a representative
case of impact on a pool of water, with a sphere of radius R = 1 mm and
velocity U = 5 m/s, surrounded by air, as is typical in experiments (iner-
tial regime). Here we also provide a detailed comparison of our results with
numerical simulations based on the Boundary Integral (BI) method, to vali-
date our analysis and to investigate when the results start to deviate from the
small-deformation regime. In Sec. 4.4 we conclude on the results in terms of
air bubble entrapment.

4.2 Formulation

The geometry of the problem is sketched in Fig. 4.1: we consider a solid sphere
(radius R) moving downwards towards a pool with a velocity U (Fig. 4.1a).
The velocity of the sphere during its fall is assumed to be constant, i.e. we
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neglect the acceleration of gravity and the possible deceleration due to the
gas flow. The movement of the air induces an increase of the gas pressure
at the bottom of the sphere, which will then deflect the pool surface by a
distance δ(r, t) (Fig. 4.1b). The deformation δ is defined as positive when
the pool deflects downwards. For as long as the interface deflection is small
with respect to the height of the gap i.e. |δ| � h, the problem can be solved
by a perturbation analysis. In this section we first address the problem by
dimensional analysis, and then provide the linearized formalism that allows
computation of the spatio-temporal evolution of the deflection δ(r, t).

4.2.1 Dimensional analysis

Let us first consider the gas flow induced by the motion of the sphere. In the
regime where the height of the gap is much larger than R, the sphere does
not experience any influence of the pool. In this case, the Reynolds number of
the gas flow is Reg = ρgUR/ηg, where ρg is the density of air (1.204 kg/m3).
However, as soon as the gap height becomes small, h0/R � 1, the airflow
will be oriented mainly in the radial direction. As is typical for lubrication
flows [21], one then has to consider a different Reynolds number which is
obtained from the radial component of the Navier Stokes equation. In terms
of scaling laws this gives ρgu2

r/L ∼ ηgur/h2
0, where ur is the typical radial gas

flow velocity, and L =
√

Rh0 is the length scale in the radial direction [7, 13–
15]. Application of mass conservation on the air gives UL ∼ urh0, and after
elimination of ur one thus finds the relevant Reynolds number Reg, lubr. =
ρgUh0/ηg. In the thin-gap regime, the relative influence of the viscosity and
the inertia of the gas thus involves the gap thickness h0 instead of the sphere
radius R.

It is instructive to evaluate these parameters for typical experimental val-
ues, such as spheres falling in air (ρg = 1.204 kg/m3, ηg = 1.82 × 10−5 Pa s)
with R = 1 mm and U = 5 m/s. The crossover from inertial to viscous gas
flow, Reg, lubr. ∼ 1, arises when h0 ∼ 3 μm. This implies that there exists an
“inertial thin-gap regime", where h0/R < 1 and Reg, lubr. > 1 at the same time.
Only for the final stages of the impact, h0 < 3 μm, can the gas be described by
a purely viscous flow. In the remainder of this chapter, we therefore consider a
potential flow analysis during two parts of the trajectory: the large-gap stage
h0/R � 1, and the thin-gap stage h0/R � 1. The viscous flow is treated only
in the final stages of impact, for which h0/R � 1 and it is thus justified to
reside to lubrication theory. The various limits will be worked out separately
in Sec. 4.3.



58 CHAPTER 4. INITIAL DEFORMATIONS DURING IMPACT

The liquid pool is assumed to be a low-viscosity liquid and is treated for
small-amplitude deformations. These are essentially the same assumptions as
for the propagation of linear surface waves [22], where the amplitude is small
with respect to the length scales of the problem. We focus on the “inertial
regime” of impact, where the deformation is limited by the acceleration of the
liquid and not by the surface tension of the liquid-air interface. The influence
of gravity will also be neglected in the theory; the Froude number based on
the impact parameters, Fr = U2/ (gR), is much larger than 1.

4.2.2 From gas pressure to interface deflection

The first step of the analysis is to compute the response of the liquid on a gas
pressure Pg for the different limiting cases (viscous/inertial gas), as discussed
above. Since we set out to compute the initial deformation, we can compute
Pg assuming that the liquid pool is undeformed – the influence of a finite
deflection is a correction at higher order in δ/h. We assume axisymmetry and
solve the equations in cylindrical coordinates (r, z) (see Fig. 4.1). The gas
pressure will provide the boundary condition at the liquid pool, generating a
liquid flow as described by the linearized Euler equation:

∂�v

∂t
= − 1

ρl

�∇Pl, (4.3)

where �v(r, z, t) is the velocity field in the liquid and Pl(r, z, t) is the pressure
inside the liquid. The advection terms in the Euler equation are quadratic
in velocity and therefore of higher order in δ/h, in analogy to the wave anal-
ysis [22]. Without surface tension, the gas pressure provides the boundary
condition for the liquid pressure,

Pl(r, z =−δ, t) � Pl(r, z =0, t) = Pg(r, t), (4.4)

with the first equality again due to taking into account only leading order
terms in δ/h. The resulting deflection is given by the kinematic boundary
condition:

∂δ

∂t
= −vz|z=−δ − vr|z=−δ

∂δ

∂r
� −vz|z=0, (4.5)

where vz|z=0 is the vertical velocity at the pool surface (to the lowest order in
δ/h). Substitution of condition (4.5) into the vertical component of Eq. (4.3)
gives
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∂2δ

∂t2
=

1
ρl

∂Pl

∂z

∣∣∣∣
z=0

. (4.6)

The above equation shows that in order to compute δ(r, t), one requires
a spatial derivative ∂Pl/∂z. Hence, we need to find the pressure distribution
inside the liquid that is induced by Pg at the free surface. For an incompressible
liquid this can be achieved by taking the divergence of Eq. (4.3), which due to
�∇ · �v = 0 reduces to ∇2Pl = 0. As the boundary condition is axisymmetric, it
is natural to express the pressure as the axisymmetric solution of the Laplace
equation:

Pl(r, z, t) =
∞∫

0

P̂g(k, t)J0(kr)ekzkdk, (4.7)

where the integration variable k is the wave number, and J0(kr) is the Bessel
function of the first kind with order ν = 0. The amplitude of the ‘modes’
J0(kr)ekz is given by the Hankel transform of order 0 of the gas pressure
Pg(r, t),

P̂g(k, t) =
∞∫

0

Pg(r, t)J0(kr)rdr. (4.8)

Substitution of this expression for the pressure into Eq. (4.6) gives

∂2δ

∂t2
(r, t) =

∞∫
0

P̂g(k, t)
ρl

J0(kr)k2dk, (4.9)

where we note an additional factor k coming from the derivative of ∂Pl/∂z.
The basic procedure for determining ∂2δ/∂t2 from the gas pressure is now

clear: one needs to find the Hankel transform of the gas pressure (Eq. (4.8)),
subsequently take the derivative of the result in the z-direction and evalu-
ate the expression at z = 0, and finally take the inverse Hankel transform
(Eq. (4.9)). In the following section we will perform these steps for the gas
pressure computed in the limits of Stokes gas flow and inviscid gas flow.
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4.3 Results

4.3.1 Stokes gas flow

We now turn to the Stokes flow in the lubrication limit, which is valid for
Reg, lubr. � 1 and h0/R � 1. In the case of vanishing interface deformation,
the gas pressure building up below an impacting sphere becomes [16, 23]

Pg(r, t) =
3ηgUR

h2
0

(
1 + r2

2Rh0

)2 =
3ηgU

R

(
R

L

)4

F1(u). (4.10)

Here, we factorized the result in dimensional parameters determining the mag-
nitude of the pressure and a dimensionless function F1(u) that contains the
spatial information on the pressure profile. For this, we introduced L(t) =√

Rh0(t) as the relevant radial length scale, while the geometrical function
reads

F1(u) =
1(

1 + 1
2u2
)2 ; u(t) =

r

L(t)
. (4.11)

Note that in the limit of vanishing thickness h0, the pressure tends to diverge,
Pg ∼ h−2

0 , while the width of the peak becomes increasingly small, L ∼ h
1/2
0 .

These singular tendencies are regularized when the deformations of the surface
become comparable to h0, but still set the characteristic scales for the enclosed
bubble volume.

We continue the analysis by inserting the gas pressure profile in Eq. (4.9),
and find a closed form expression:

∂2δ

∂t2
(r, t) =

3ηgU

ρlRL

(
R

L

)4

G1(u). (4.12)

Once more we recognize a dimensional prefactor that determines the scale of
the acceleration, while the time dependence follows from L(t) and u(t), and
the spatial dependence through G1(u). The additional factor 1/L appearing
in (4.12) originates from the scaling u = r/L. The spatial similarity profile is

G1(u) =
∞∫
0

F̂1J0(ku)k2dk, where F̂1(k) is the Hankel transform of F1(u). The

analytical expression for F̂1(k) is found to be

F̂1(k) =
√

2kK1(
√

2k), (4.13)
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where K1(k) is the modified Bessel function of the second kind with order
ν = 1, and the analytical expression for G1(u) is

G1(u) =
−8K

(
u√

u2+2

)
− E
(

u√
u2+2

)
+ 14E

(
u√

u2+2

)
(u2 + 2)5/2

. (4.14)

K and E are the complete elliptic integrals of the first and second kind respec-
tively.

To illustrate and validate our analysis, we compare the predicted profiles
with the results obtained by Boundary Integral (BI) simulations [24–26]. The
simulation method is the same as in Chapter 2 of this thesis: the liquid within
the pool is described as a potential flow, while the pressure along the pool
surface is explicitly calculated from the viscous lubrication equation for the
gas flow. To be able to confirm our theoretical predictions in the inertial
regime without the influences of surface tension and hydrostatics (which are
both very small, as mentioned in the Introduction), γ and g are equal to zero
in our simulations. In the limit of small deflection, the simulations should thus
recover Eq. (4.12).

Figure 4.2a shows the configuration on the scale of the sphere, for typical
impact parameters for a sphere in air (R = 1 mm, U = 5 m/s). The interface
deflection δ is shown in Fig. 4.2b, at the moment when the sphere is at a height
h0 = 100 μm. At this time, δ � h0 � R, for which we expect agreement be-
tween the BI results and our prediction from Eq. (4.12). Figure 4.2c shows
the acceleration ∂2δ/∂t2 versus r. The solid line is the result from the BI sim-
ulations and indeed gives perfect agreement with the prediction, represented
by the dots.

The actual deflection profile δ(r, t) can not be integrated explicitly from
(4.12), due to the time dependence through L and u. However, we can derive
δ|r=0, the deflection of the pool surface on the axis, which does not involve
L(t). Using that ∂/∂t = −U∂/∂h0, we find

∂2δ|r=0

∂h2
0

=
3ηgG1(0)

ρlUR2

(
R

L

)5

=
3ηgG1(0)

ρlUR2

(
R

h0

)5/2

, (4.15)

where (4.14) implies G1(0) = 3
8

√
2π. The solution of Eq. (4.15) for δ|r=0 is

subject to start-up effects as long as h0 ∼ hs, where hs is the initial height of
the gap. If we let the initial height hs → ∞, we find

δ|r=0 � 3
2

√
2π

ηg

ρlU

(
R

h0

)1/2

. (4.16)
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Figure 4.2: Deflection of the pool interface for Stokes gas flow; R = 1 mm,
U = 5 m/s, starting height of the (bottom of the) sphere hs = 0.5 mm, current
height: h0 = 0.1 mm. (a) Global view of the sphere and pool contours, (b)
the pool deflection δ as a function of r, and (c) ∂2δ/∂t2 as a function of r.
The solid red lines result from the Boundary Integral (BI) simulation. The
theoretical result from Eq. (4.12) has been superimposed in panel c (blue dots).
Note the difference in scales on the vertical axes of panel a and b. The BI
results agree perfectly with the theoretical predictions, as long as |δ| � h.
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Figure 4.3: Deflection of the pool interface on the axis, δr=0, plotted against
h0(t), for Stokes gas flow; R = 1 mm, U = 5 m/s, starting height hs = 0.5 mm.
The solid red line is the result from the BI simulation. The theoretical result
from Eq. (4.15) has been superimposed. After a start-up regime for large
h0, the deflection δ|r=0 converges towards a -1/2 power-law. The BI results
perfectly agree with the theoretical predictions, until δ and h0 become of
comparable magnitude, pointed out by the crossing with the solid gray line
δ|r=0 = h0. At that moment δr=0 saturates to a constant value, which is the
‘dimple height’ Hd of Chapter 2 of this thesis.
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This predicts that the central height increases dramatically when h0 decreases,
as δ ∼ h

−1/2
0 . Figure 4.3 shows the BI result for δ|r=0 against h0 (solid line),

superimposed with the theoretical predictions (dashed line, taking into ac-
count the finite initial height hs). Indeed, as soon as h0 � hs, δ|r=0 converges
to a −1/2 power law. As expected, the simulation results depart from the
analytical prediction when δ ∼ h0 (indicated by the solid gray line) and the
lubrication approximation ceases to be valid. At this point, the deflection con-
verges to a constant, which will be the final dimple height Hd. As stated in the
Introduction, this will determine the dimple volume, and thus the entrapped
air bubble volume, independently of the air film rupture process.

The current analysis provides a rigorous foundation for the scaling results
obtained previously in Refs. [6, 7, 13, 14, 17]. There, the ‘dimple height’ Hd was
observed to approach a constant value during the final stages of the impact.
Figure 4.3 shows that this height can be estimated from δr=0 ∼ h0 ∼ Hd.
Using (4.16), this immediately gives

Hd ∼ ηgR1/2

ρlUH
1/2
d

∼ R St−2/3, (4.17)

where St = ρlUR/ηg is the Stokes number. The corresponding volume of the
entrapped bubble volume then scales as

Vb ∼ L2Hd ∼ RH2
d ∼ R3St−4/3, (4.18)

where we use the common estimate that L sets the lateral scale of the bubble.
These are precisely the scaling predictions for the inertial regime (for Stokes
gas flow) where the assumptions Hd ∼ δ and L ∼ (HdR)1/2 were further
validated [6, 7, 13, 14, 17, 19].

4.3.2 Potential gas flow

As motivated in Sec. 4.2.1, the inertial phase of the impacting sphere consists
of two distinct stages: the large-gap regime h0 � R and the thin-gap regime
h0 � R. Below we separately treat both limiting cases analytically. We
furthermore perform a numerical potential flow calculation for the full range
of h0/R, to validate the analysis and to show how the two stages are connected.
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Large-gap regime: h0 � R

When the sphere is very far from the pool surface, the flow field can be de-
scribed by the well-known potential flow field around a moving sphere of radius
R. The introduction of the (undeformed) pool surface, however, requires that
the gas velocity has no vertical component, or vz|z=0 = 0. This boundary
condition can be satisfied using the ‘method of images’, corresponding to two
approaching spheres having radius R with approaching velocity U towards
a mirroring horizontal line (z = 0). By applying the superposition of the
potentials for the two moving spheres, one obtains the potential

φ(r, z, t) =
UR3

2

⎡⎢⎣ (z − R − h0)(
r2 + (z − R − h0)2

)3/2
− z + R + h0(

r2 + (z + R + h0)2
)3/2

⎤⎥⎦ .

(4.19)
It is important to realize that the introduction of the second moving sphere
not only influences the flow around z = 0, but also gives a small unwanted
velocity on the boundary of the original sphere. In the limit of very large gaps,
R/h0 � 1, this correction becomes negligible and (4.19) gives the asymptoti-
cally correct potential.

We now extract the gas pressure profile on the level of the pool surface
z = 0, by applying the unsteady Bernoulli equation:

Pg(r, t) = ρgU2

[(
R

ζ

)3

F2(u) +
9
2

(
R

ζ

)6

F3(u)

]
� ρgU2

(
R

ζ

)3

F2(u). (4.20)

Here, ζ(t) = R+h0(t) = R+hs−Ut, the radial direction is scaled as u(t) = r/ζ,
while the spatial profiles are

F2(u) =
2 − u2

(1 + u2)5/2
; (4.21)

F3(u) =
−u2

(1 + u2)5 . (4.22)

Since (4.19,4.20) are only valid for h0 � R, we only keep the dominant first
term in (4.20). Note that the width of the pressure peak is now set by the
scale ζ = h0 + R. This can be contrasted with the width in the thin-gap limit,
L =

√
Rh0, which becomes very narrow.
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Next, from (4.20) we can compute the induced acceleration profile using
(4.9):

∂2δ

∂t2
(r, t) =

ρgU2

ρlζ

(
R

ζ

)3

G2(u). (4.23)

One recognizes a dimensional prefactor that is separated from the spatio-

temporal dependence. The function G2(u) =
∞∫
0

F̂2J0(ku)k2dk is the spatial

similarity profile, where F̂2(k) is the Hankel-transform of F2(u). For G2(u) we
did not find any analytical expression, but one can numerically calculate the
given integral (cf. Fig. 4.4).

Once again, we can analytically compute the behavior of the central de-
flection, δ|r=0:

∂2δ|r=0

∂h2
0

=
ρgG2(0)

ρlR

(
R

ζ

)4

. (4.24)

Recalling that ∂/∂h0 = ∂/∂ζ and ζ → 2R for h0 → R, this implies that the
final δr=0 scales as ρgR/ρl. In contrast to the result for viscous flow, the typical
deformation depends only on the density ratio ρg/ρl, and not on the impact
velocity. While the density ratio is typically small, we anticipate that the
resulting deflection for a millimeter-sized sphere can be a few microns. This
is actually comparable to typical deflections in the viscous lubrication phase.
However, the pool is not deformed locally over a small width

√
Rh0, but over

the scale of the entire sphere, and therefore it will be of little consequence for
the formation of the dimple and the size of the entrapped air bubble.

Thin-gap regime: h0 � R

In the inertial thin-gap limit, the gas is squeezed out mainly in the radial
direction. To predict the pressure profile for this stage of the impact, we use
the depth-integrated continuity equation [27, 28]

∂h

∂t
+

1
r

∂

∂r
(rhur) = 0, (4.25)

where ur(r, t) is the height-averaged radial gas velocity in the gap. Assuming
a plug flow that does not depend on the z-coordinate, this average simply
gives ur(r, t) = ur(r, t). This analytical description is similar to that of Wil-
son et al., 1991 [20], where cushioning air-layers at solid-liquid impact in the
inertial regime are also studied, although in 2D Cartesian coordinates, for
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general shapes of the impacting solid. In the present case, the bottom of the
impacting solid sphere can be described as h = h0(t) + r2/ (2R), and thus
∂h/∂t = ∂h0/∂t = −U . Hence, we can integrate (4.25) to find

ur = ur =
Ur

2h0

(
1 + r2

2Rh0

) . (4.26)

The velocity profile (4.26) has a local maximum at r =
√

2Rh0, and vanishes
for r = 0 and r = ∞. Substitution of the profile into the radial component of
the Euler equation and integration over r gives the gas pressure:

Pg(r, t) =
ρgU2R

2h0

⎛⎜⎝ 1 + r2

4Rh0(
1 + r2

2Rh0

)2

⎞⎟⎠ =
ρgU2

2

(
R

L

)2

F4(u), (4.27)

with L(t) =
√

Rh0(t), u(t) = r/L, and

F4(u) =
1 + 1

4u2(
1 + 1

2u2
)2 . (4.28)

Note that the geometry of the thin-gap again gives rise to a highly localized
pressure profile of width

√
Rh0. The gas pressure again tends to diverge as

h0 → 0, but more slowly than in the viscous case: the inertial gas pressure
in the thin-gap-limit is proportional to 1/h0, in contrast to the more singular
scaling for the viscous gas flow scenario, 1/h2

0.
From (4.9) we deduce the pool surface acceleration

∂2δ

∂t2
(r, t) =

ρgU2

2ρlL

(
R

L

)2

G4(u), (4.29)

where G4(u) =
∞∫
0

F̂4J0(ku)k2dk, with F̂4(k) the Hankel-transform of F4(u).

At the origin r = 0, this reduces to

∂2δ|r=0

∂h2
0

=
ρgG4(0)

2ρlR

(
R

L

)3

. (4.30)

Just like in the case of the large-gap regime, the central deflection has no
dependence on the impact velocity. Solving gives δr=0 ∼ h

1/2
0 + integration

constants. From this we conclude that in the inertial thin-gap limit, the pres-
sure tends to diverge for h0 → 0, but the deflection δ converges. Contrarily
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to the final stages in the case of viscous gas flow, the inertial gas pressure
is not sufficiently singular to induce a strongly enhanced deflection. The in-
tegration constants depend on the full history of the impact process, which
thus involves the dynamics during the preceding large-gap regime. To pre-
dict the actual deflection during the final stages of sphere impact, it is thus
not sufficient to consider the large-gap or thin-gap regime of the potential gas
flow problem: numerical simulation of the full impact process over all h0/R is
required.

Numerical simulations

Simulation of the potential gas flow impact process using the BI technique calls
for a different approach with respect to the case of Stokes gas flow. The reason
is that we require the gas pressure over the full range of gap thickness, including
h0 ∼ R, for which no analytical solution for the gas pressure is available that
can serve as a boundary condition for the liquid pool. As a consequence,
the gas phase must also be computed numerically, which we achieve using
the BI code. We thus need to run two separate simulations. The process is
started by a BI simulation of a solid sphere impacting towards an undeformed
surface, with a potential gas flow in between. From this simulation, the gas
pressure profile along the pool surface (z = 0) is extracted. In the second BI
simulation, this pressure is applied on a deformable pool surface, from which
we eventually determine the resulting pool deflections. This is again a valid
method as long as δ/h � 1. The pressure data are transmitted from the first
simulation to the second simulation through an extensive data file. Note that
in performing two separate simulations, one needs to take into account the
different length scales during the impact process (for h0 = 10 mm → 100 nm),
implying very sensitive local node spacings and time dependencies. This was
achieved by adapting the node spacing and time steps to ensure convergence
of the numerical results.

Figures 4.4a and b show the configuration on the length-scale of the sphere
and the interface deflection δ(r, t) respectively, for R = 1 mm, U = 5 m/s and
h0 = hs = 10 mm (i.e., the large-gap regime). Figure 4.4c shows the acceler-
ation profile at the corresponding time, and it is observed to agree very well
with the asymptotic result of Eq. (4.23) (blue dots). The very small difference
between the BI result and the theoretical predictions can be explained by the
fact that hs/R = 10, implying an expected difference of approximately 10%
between the theory and the numerical simulations. We remark that the corre-
sponding deformation (Fig. 4.4b) is very small, as we look at the very initial
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Figure 4.4: Deflection of the pool interface for potential gas flow in the limit
h0 � R; R = 1 mm, U = 5 m/s, h0 = hs = 10 mm (thus, h0/R = 10).
(a) Global view plot of the sphere and pool contours, (b) δ against r, and
(c) ∂2δ/∂t2 against r. The solid red lines result from the BI simulation. The
theoretical result from Eq. (4.23) has been superimposed in panel c (blue dots).
Note the difference in scales on the vertical axes of panel a and b. The BI
results are nicely agreeing with the theoretical predictions, until h0/R becomes
of order 1.
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to a constant. The BI results perfectly agree with the large-gap predictions in
the regime h0 � R. In the regime h0 � R, δr=0 deviates from this prediction,
but the difference is relatively small. The dashed gray line points out the
crossover h0 = R; the solid gray line points out δ|r=0 = h0.

deformations in the start-up regime. The requirement h0/R � 1 implies a
large initial gap height, which, for the parameter values chosen in Fig. 4.4
to validate the asymptotics, correspond to nonphysically small deflections.
The sensitiveness of the very small pool deflection gave rise to switch-off the
smoothing procedure normally used within the simulations [25], such that a
tiny instability remained visible around the axis, r = 0. We confirmed that
this instability has a numerical origin and that it does not influence the re-
sult on the scale of the deformations. The thin-gap regime is analyzed in
Fig. 4.5. We again find very good agreement between the analytical gas ve-
locity profile (panel a) and the pressure profile (panel b) and the BI results
(here, h0 = 100 nm).

The crossover between the large-gap and thin-gap limits is illustrated in
Fig. 4.6, showing the gas pressure on the symmetry axis r = 0. As pre-
dicted, in the limit h0/R � 1 the pressure calculated by BI (blue line) equals
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2ρgU2 (R/ζ)3 (red dashed line), and in the limit h0/R � 1 the pressure equals
ρgU2R/(2h0) (green dashed line). This confirms the validity of the analytical
approaches. Finally, we investigate the deflection of the pool that is induced
by the numerically obtained gas pressure. Figure 4.7 shows the deflection at
r=0, the inertial (gas) counterpart of Fig. 4.3. As expected, δr=0 deviates
from the large-gap prediction in the small-gap regime, though the deviation is
not very large. This means that, despite the fact that the gas pressure tends
to diverge for h0 → 0, the influence of the inertial thin-gap limit remains rel-
atively small. For this particular example, it enhances the deflection by less
than a factor of 2. This is also one of the reasons why we do not show the
corresponding theoretical profile for ∂2δ/∂t2, which in principle could again be
directly calculated from the pressure profile. A second reason is that, in the
numerical simulations, the very small gap height of 100 nm needs a very high
local node density on both the pool surface and the sphere surface; the differ-
ence in length scales of R and h0 is four decades, which is very challenging.
This necessitates very small time steps to be able to calculate a fair second
derivative of the deflection profile in time. In addition, the pressure along the
pool surface needs to be extracted from a prior solid-sphere-on-solid-surface
simulation (through an extensive data file), which makes the discretization
more complicated.

The large-gap prediction for the final δr=0 is thus satisfactory, and we
conclude with the following scaling law for the resulting dimple height Hd for
the inertial gas scenario as was concluded from Eq. (4.24):

Hd ∼ R
ρg

ρl
. (4.31)

This dimple height is independent of the impact velocity of the sphere. Since
the surface deformation is the sum of the deformations in both the large-gap
and the thin-gap limit, it is unclear what the correct radial and axial length
scales are that lead to the volume of the pinched bubble.

4.4 Conclusion

We performed a perturbation analysis to investigate the initial deflections of
a liquid surface, induced by the approach of an impacting solid sphere. The
analysis assumed that the deflection is limited by the inertia of the liquid pool
(i.e., not by its surface tension), and we considered two natural limits for the
surrounding medium: Stokes gas flow and potential gas flow. We obtained
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a quantitative prediction for the pool surface deflection, which was validated
numerically, and recovered previously proposed scaling laws for bubble entrap-
ment.

While the ‘cushioning’ of an inertial gas layer had been analyzed before [20],
most recent work on liquid or solid impact assumes a viscous gas layer. Sur-
prisingly, our analysis reveals that inertial and viscous cushioning both lead
to a pool deflection of the order of 1 μm, for typical experimental conditions.
However, the Stokes gas pressure tends to diverge strongly for h0 → 0, much
more strongly than during the inertial gas phase. In addition, this viscous lu-
brication pressure profile is very localized, while most of the inertial deflection
is generated during the initial phase where the pool deflection is spread over
the entire width of the sphere. This explains why the experimental results
on bubble entrapment are in close agreement with the scaling law (4.18) [19],
while in addition (4.17) was validated for the case of a liquid drop impact on a
solid [6, 7, 13, 14, 17, 19]: all these results are based on the viscous lubrication
regime.

For completeness, we will summarize the possible scenarios for impact
of a sphere onto a pool, which can be achieved for different experimental
parameters. Assuming an initially high Reynolds number based on the size
of the impacting object R, the dynamics will exhibit two different types of
crossover: a geometric crossover based on the relative thickness of the gap,
h/R, and a crossover from inertial to viscous gas flow. The order in which these
crossovers occur depends on the parameters of the problem. In our numerical
examples we assumed that one first reaches the thin-gap regime, before the
lubrication Reynolds number (based on the gap thickness h) becomes smaller
than unity. This order can be reversed for impact at smaller velocities or for a
sphere sinking in a more viscous medium. In that case, however, one needs to
bear in mind that the influence of the pool surface tension will become more
important, corresponding to the capillary impact regime. In this case, the thin
film potentially has time to drain out before a bubble is formed, making the
entrapment process more complex [29, 30].

In this work, we have elaborated on the impact of a solid sphere on a liquid
surface. Similar perturbation analysis can be performed for drop impact on
a solid, or drop impact on a pool, although the details will be different (see
Chapter 3 of this thesis). This explains why the same scaling laws are observed
in all these cases.
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5
Impact of a high-speed train of
microdrops on a liquid pool ∗ †

A train of high-speed microdrops impacting on a liquid pool can create a very
deep and narrow cavity, reaching depths more than one thousand times the
size of the individual drops. The impact of such a droplet train is studied
numerically using Boundary Integral simulations. In these simulations, we
solve the potential flow in the pool and in the impacting drops, taking into
account the influence of liquid inertia, gravity, and surface tension. We show
that for microdrops the cavity shape and maximum depth primarily depend on
the balance of inertia and surface tension and discuss how these are influenced
by the spacing between the drops in the train. Finally, we derive simple scaling
laws for the cavity depth and width.

∗To be submitted as: W. Bouwhuis, X. Huang, C.U. Chan, P.E. Frommhold, C.D. Ohl,
D. Lohse, J.H. Snoeijer, D. van der Meer, “Impact of a high-speed train of microdrops on a
liquid pool”.

†The numerical simulations and analytical work in this chapter are part of the present
thesis. The experimental work is due to Xin Huang and Chon U Chan.
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5.1 Introduction

5.1.1 Background and motivation

The impact of mm-sized objects on surfaces has been investigated in great
detail. Examples are the study of single drop impact onto a liquid pool [1–7]
(focusing on typical terminal velocities of order 1 m/s), multiple drop impact
on a pool [8] or impact of a solid object onto a pool [9–12]. Another exam-
ple is the impact of a continuous water mass, thus a liquid column or a jet,
onto a pool [13–19]. These studies focused on the bubbles resulting from the
hydrostatic collapse of the generated cavity. Only recently the focus shifted
to the impact of much smaller drops, with a radius of a few tens of microm-
eters, corresponding to the typical size of drops coming from, e.g., an inkjet
nozzle [20, 21]. Microdrop impact is highly relevant for many rapidly devel-
oping applications, such as immersion lithography [22], extreme ultraviolet
(EUV) lithography [23], and 3D-printing [24, 25], spray painting, and spray
coating. Very recently it has been found that the phenomena for microdrops
impacting on a solid surface are similar to those of larger (mm-sized) impact-
ing drops [26]. In contrast, for impact on a pool on these small length scales,
capillary effects are expected to be much more significant when compared to
the impact of mm-sized drops, or even dominating over gravity [27]. Capil-
lary effects on the small air bubbles resulting from the air-film rupture have
been investigated [7, 28–30], but air bubbles due to the collision of surface
waves within the cavity (called ‘regular bubble entrapment’, as described in
Ref. [1–4] for mm-sized drops) for single impacting microdrops is still ongoing
research. Impacting microjets and microdrop trains on liquid pools have not
yet been studied in detail.

In this chapter, we will look to the impact of a high-speed train of uniformly
distributed microdrops on a deep liquid pool. In general, the high-energy im-
pact onto a pool creates a deep cavity (Fig. 5.1a). We will focus on the shape
and collapse of the cavities as a function of the relevant impact parameters
(drop size, velocity, frequency). By performing Boundary Integral (BI) simula-
tions, where we treat the liquid within the pool and within the impacting drop
as potential flow [12, 28], the independent modification of these parameters
is much more easy than in the experiments (see Sec. 5.1.2). We subsequently
connect the numerical results to simple theoretical analysis from which we
deduce scaling laws, revealing the key features of the cavity dynamics. Our
work thus forms a major step towards understanding multiple drop impact,
which plays a role in all the industrial applications mentioned above.



5.1. INTRODUCTION 79

(a) (b)

Figure 5.1: (a) Experimental snapshots of a cavity created by a train of ∼40 μm
diameter water drops, which impacts with ∼30 m/s on a deep pool of water.
The scale bar is 200 μm, and the interframe time is 40 μs. The cavity reaches
a depth of order one thousand times the size of a single drop. (b) Sketch of
the impacting train of microdrops.

5.1.2 Experiments: the creation and impact of a high velocity
microdrop train

Here we briefly describe the experiments reported in Fig. 5.1. More details
of the set-up can be found in Refs. [26, 31–34]. A mono-disperse train of
droplets is generated at the exit of 20 μm diameter nozzle brought into mild
vibrations with a piezoceramic transducer. The nozzle is fed from a reservoir
filled with deionized water and pressurized at 8 bar using a nitrogen bottle.
Applying about 70 V at 100 − 400 kHz to the transducer perturbs the thin
jet exiting the nozzle and leads to its regular break up due to a Rayleigh-
Plateau instability. Figure 5.1a) shows an experimental result for a frequency
of 290 kHz, which gives a temporal droplet spacing of ∼3.5 μs, a velocity of
∼30 m/s, and a diameter of ∼40 μm. The length of the train (number of drops)
can be controlled by two electric fields. Briefly, the droplet train first passes
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through a metallic aperture. By applying a short burst of 800 V, individual
and multiple droplets can be charged. Then the droplets pass through a pair
of deflection plates, which is held at a constant electric field of ∼1.5 MV/m.
The undeflected/uncharged droplets are collected, while the deflected droplets
pass and impact onto the pool.

In the experimental time sequence of Fig. 5.1a, one recognizes the typical
deep and narrow cavity shape, on top of which one can discern a wavy pattern
at the lower end of the cavity, caused by the subsequent impact of the individ-
ual drops, as indicated in the sketch of the phenomenon provided in Fig. 5.1b.
The downward growth speed of the cavity is approximately constant during
the impact of the drop train. The collapse of the cavity typically occurs at
the top, near the pool surface.

5.1.3 Objectives

This chapter will focus on several key questions: What is the shape of the
cavity and does there exist a similarity profile? What is the dominant collapse
mechanism and what is the depth of the cavity at the time of its collapse?
Finally, we will demonstrate the role played by the drop frequency and spacing
in the answers to these questions.

The chapter is structured as follows: In Sec. 5.2, we will introduce the
problem, the assumptions we make in the simulations and in our theoretical
modeling, as well as some details of the numerical method. In Sec. 5.3, we
discuss the results of our simulations, and develop a scaling theory to account
for these results. Finally, in Sec. 5.4, we conclude, discuss the limitations of
our predictions, and give suggestions for future work.

5.2 Problem statement and numerical method

In this section, we formulate the problem and conduct a parameter analy-
sis for the typical orders of magnitude in the experiments described in the
Introduction (Sec. 5.2.1), and show the numerical method (Sec. 5.2.2).

5.2.1 Parameters and assumptions

The geometry of the problem is sketched in Fig. 5.2. We assume cylindrical
coordinates (�r, �z), with �z pointing upwards and z = 0 located at the undis-
turbed surface. In the numerical simulations and in our theoretical analysis we
will assume a mono-disperse axisymmetric drop train which consists of drops
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Figure 5.2: Definition sketch of the parameters. The drop train that constists
of drops with radius R0 and downward velocity U0 impacts vertically on a pool
surface (z = 0). The drop frequency is f , and the distance between the drops
is U0/f . The resulting cavity has a width R(z, t) and a depth H(t), where
t is time (from the first impact). We assume axisymmetry. Inset: numerical
recombination; at the instant at which the (minimum) gap height between the
pool and the drop surface becomes (smaller than) a distance d, we recombine
the drop surface and the pool surface by connecting the pool curve and the
drop curve on a radial distance s.
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falling down at a frequency f . The drops have radius R0 and velocity U0,
and impact on an initially quiescent pool surface. The liquid of both the pool
and the drops is water, with density ρ = 998.1 kg/m3 and air-liquid surface
tension γ = 72.8 mN/m. The multiple drop impact on the pool results into a
cavity with a time-dependent central depth H(t), where t is the time from the
first impact (H(0) = 0). The depth- and time-dependent radius of the cavity
is R(z, t).

We can express the control parameters in dimensionless form as the We-
ber number We = ρR0U2

0 /γ and the ratio f̃ between the drop diameter
2R0 and the center-to-center spacing U0/f in between successive drops, i.e.,
f̃ = 2fR0/U0. The limit f̃ → 0 is the limit of ‘successive’ single-drop-
impacts: in this limit, the cavity will fully collapse, and the pool surface will
re-equilibrate and become flat again, before the next drop impacts. The other
limit is f̃ → 1, which is the theoretical maximum frequency (if f̃ > 1, the
drops would overlap). In the limit f̃ = 1, the supply of downward momentum
onto the pool is continuous, which is reminiscent of an impacting jet. One
could also call f̃ a Strouhal number, comparing the time needed for the drop
to move over its own diameter and the time between two subsequent impacts.
In the experiments, f̃ is of course smaller than 1, but still typically of order
1; the spacing between the drops is approximately equal to the drop size.

Further important dimensionless parameters of the system are the Rey-
nolds number of the liquid, Re = ρR0U0/η (where η is the dynamic viscosity
of the liquid), which is of order 1000 and the Bond number Bo = ρgR2

0/γ
(where g is the acceleration by gravity), which is of order 10−3. This implies,
respectively, that the viscosity of the liquid can be neglected, and that the
effect of surface tension dominates over the effect of gravity. The latter should
be contrasted to the plunging disks studied in Ref. [9–12] and the impacting
water masses studied in Ref. [14], where the collapse of the cavity was mainly
determined by the hydrostatic pressure. One can also express the effect of
gravity in terms of the Froude number Fr = U2

0 /(gR0). Typically we have
Fr ∼ 105, such that we can neglect the effect of gravity during the trajectory
of the drops. Since the Reynolds number, the Froude number, and the Weber
number are all much larger than 1, we conclude that the behavior of the
cavity is mainly determined by inertial effects: the cavity collapse occurs at
large times. The cavities created by microdrop train impact can thus indeed
grow enormously deep, relative to the size of the drops.

Although the Bond number of a single impacting drop may be small, the
Bond number based on the length scale of a deep cavity, Bo′ = ρgR0H/γ, will
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be a lot larger, such that the hydrostatic pressure becomes non-negligible at
the latter stages of the cavity development [27]. A hydrostatic collapse is a
‘deep collapse’, in the sense that the cavity walls touch the symmetry-axis far
below the surface of the pool - a mechanism completely different from a surface
tension driven cavity collapse. In our analysis, we will at first instance neglect
the effect of hydrostatics, because the collapse of the cavity will be initiated
by surface tension, as concluded from the above dimensional analysis, which
determines the time scales of the collapse. Note that in the Boundary Integral
simulations, we can easily switch on and off the effect of hydrostatics, which
is how we confirmed these statements.

We do not simulate the airflow inside the cavity resulting from the move-
ment of both the drop train and the cavity walls. This implies, firstly, that
we neglect any small bubble entrapment caused by the increased gas pres-
sure between the pool and the lowest drop, which is a valid assumption, as
the length scale of the air bubble entrapment is much smaller than the drop
size [7, 28, 30] and will not influence the flow dynamics on the length scale of
the cavity. Secondly, the neglect of the airflow implies that the spherical drops
within the train all fall down undecelerated and undeformed (as depicted in
Fig. 5.2). It appeared from the experiments that this is a reasonable assump-
tion to implement, except for at the beginning and the end of the drop train.
We will come back to these effects at Sec. 5.3.1.

5.2.2 Numerical method

Boundary Integral simulations

The liquid within the pool is treated as incompressible, irrotational, and in-
viscid. The Laplace equation, ∇2φ = 0, for the flow potential φ, is solved
along the liquid interface, using the axisymmetric Boundary Integral (BI)
method [7, 10, 12, 14, 28, 30, 35–37]. The dynamic boundary condition at the
interface is the unsteady Bernoulli equation, which includes both hydrostatic
pressure and surface tension. Gravity can easily be switched off; the effect of
surface tension can also be switched off, in principle, but in that case one needs
a strong artificial smoothing (regridding) procedure, because local strong cur-
vatures and movements will be undamped [36]. The node distribution and
time steps vary during the simulation as a function of the instantaneous local
curvatures and velocities. The total number of nodes along the pool and cav-
ity surface varies between ∼50 for a flat pool and ∼600 for a deep cavity. The
simulation is stopped at the time when the cavity walls touch the axis of sym-
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metry, i.e., we do not simulate the collapse of the cavity and the oscillations
of the enormous bubble.

In practice, we only need to simulate the lowest drop of the train as it
coalesces with the pool. As soon as the drop and the pool touch, we recombine
the corresponding drop and the pool, and add the next drop, above the just
reconnected drop, on a distance U0/f (see Fig. 5.2).

The coalescence

One subtlety remains in the recombination, namely the successive coalescence
events between the lowest drop of the train and the pool. Simulating the
coalescence stage is a fundamental numerical problem if one assumes potential
flow liquids and treats the air as a void [38–41]. More specifically, the inertial
coalescence dynamics lead to (successive) bubble entrapment, and from the
instant that the interface above the gap and the interface below the gap touch
each other (after reconnection), numerical instabilities can not be excluded and
further results depend on the local node spacing. However, since we focus on
the behavior on the length scale of the cavity, we can choose a recombination
threshold distance d; as soon as the (minimum) gap height becomes smaller
than d, we connect the instantaneous pool and lowest drop curve. We also
choose a radial cutoff distance s; smaller radial distances will be defined to
belong to the liquid phase after the reconnection (see inset of Fig. 5.2 for a
clarification of both d and s). At the time of reconnection, two interfaces which
were initially disjoint are merged, which implies that we have to subtract the
difference in potentials between the most inner node on the former pool surface
and the most inner node on the former drop bottom surface. Further, the large
local curvatures which might result from the reconnection are immediately
smoothed by the local effect of surface tension, such that the interface shape
of the reconnected pool and drop indeed looks as what is suggested by the
inset of Fig. 5.2.

We have confirmed convergence of the results as a function of both d and s,
and as long as d � R0 and s � R0/2, we found that our results are independent
of these parameters on the length scale of the drops. In our simulations, we
choose d = R0/10. Note that if we choose d much smaller, this decreases
the minimal numerical time step to a value less than d/U0, during the final
stages before the defined touch-down, which strongly increases the simulation
run-time without adding any valuable information.

Note that, independently of the convergence for varying recombination
threshold d and radial cutoff distance s (within reasonable limitations), f̃ → 1
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always remains a special limit, because in the case f̃ = 1, the drops touch each
other. Numerically, it implies that at every single iteration a drop will merge
with a next drop. This is why we will not include simulations for f̃ larger than
about 0.7, for which we will show to already recover the results reminiscent
from a continuously impacting jet [14].

5.3 Results

We will now present our BI simulation results and reveal the key features of
the cavity dynamics. Section 5.3.1 contains a quantitative comparison between
our numerical results and the experimental results; in Sec. 5.3.2 we turn to
the shape of the cavity, and Sec. 5.3.3 describes the cavity dynamics, and will
provide an answer to the question of how deep the cavity can become. Our
numerical results are complemented by scaling arguments.

5.3.1 Comparison to experiments

To quantitatively compare the experimental and numerical cavity contours,
Fig. 5.3 shows a time sequence of snapshots during the formation and collapse
of the cavity, for the parameters R0 = 20 μm, U0 = 26.75 m/s, and f =
290 kHz. This comparison has been applied for a finite drop train which
contains about 85 drops. To do a good comparison for the deep cavities also,
the influence of hydrostatics is also involved in the simulations (which only
makes a difference in the latter stages, see Sec. 5.2.1). The red lines represent
the experimental results; the superimposed blue lines show the results of the
BI simulation. The agreement between the experiment and the simulations is
very good up to about 0.275 ms. After that, we observe substantial differences,
though the downward growth speed of the cavity and the depth of the cavity at
the time of its collapse continue to match very well. This is further illustrated
in Fig. 5.4, where we plot the cavity height versus time.

However, there are also significant differences between the experimental
and numerical results. First of all, the red dots in Fig. 5.3 reveal that the
drop train in the experiments was not as uniformly aligned as implemented
in the numerical simulations. In particular, in the beginning (lowest part) of
the train, drops were bunched up and were slowed down with respect to the
‘average’ velocity of the train, whereas at the top of the train, the spacing in
between the drops was found to be increased. These effects are caused by the
drag induced by the air which surrounds the falling drops. This is why the
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Figure 5.3: Direct comparison between experimental and numerical (BI) re-
sults of the cavity contours, for drop radius R0 = 20 μm, impact velocity
U0 = 26.75 m/s, and frequency f = 290 kHz. The downward growth speed of
the cavity Uc and the final depth Hm match very well (also see Fig. 5.4), but
there are also differences between the experiments and the simulations. The
most obvious difference is that after t ∼ 0.275 ms, the width of the cavity in
the experiments is significantly smaller than the cavity width resulting from
simulations, and, related to this, the collapse of the cavity occurs much faster
in the experiments than in the numerical simulations. We attribute this to
the influence of the streaming air.
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sults of the cavity depth versus time, for drop radius R0 = 20 μm, impact
velocity U0 = 26.75 m/s, and frequency f = 290 kHz (also see Fig. 5.3). The
downward growth speed of the cavity Uc and the final depth Hm match very
well.

last part of the train in experiments does not have a significant influence on
the formed cavity, and we account for this by a decreased number of drops in
the simulated drop train (70 instead of ∼85). For the same reason, we are
only able to fairly compare experiments and simulations for rather long drop
trains, such that the mentioned effects are the least pronounced.

Secondly, it can be observed that the width of the cavity in the experiments
is significantly smaller than the cavity width in the simulations, particularly at
later times. This effect also leads to a somewhat earlier collapse of the cavity
in the experiments compared to the simulations, and the slow decrease of H
over time after the end of the drop train (t ∼ 0.5 ms) for the experimental
result (red line) shown in Fig. 5.4. We mainly attribute these effects to the
influence of the streaming air within the cavity. Here it is good to note that
for the case of a disk plunging onto a pool, where the influence of air was
included in the BI simulations, the effect of the airflow was only visible for the
very final stages of the cavity collapse [11, 12]. It is however plausible that the
small length scale of our problem, together with the presence of the high-speed
falling drops within the cavity, significantly increase the influence of the air.
Namely, if we assume that the air flows with the speed of the falling drops,
26.75 m/s, this results in a Reynolds number of the gas Reg = ρgR0U0/ηg of
order 10−100. Here, ρg and ηg are the density and viscosity of air, respectively,
1.204 kg/m3, and 1.82 · 10−5 Pa s. Thus, neglecting the effects of the air
viscosity, the dynamic pressure drop with respect to the pressure at the cavity
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walls is of order ρgU2
0 ∼ 1000 Pa. This pressure drop sucks in the liquid with

ρgU2
0 ∼ ρU2

l , where Ul is the induced inward speed of the liquid cavity walls,
which gives an estimation for the liquid velocity of order 1 m/s. Since the
process of cavity formation takes ∼1 ms, the deviation of the cavity shape is
expected to be of order 1 mm, which is indeed consistent with the difference
between experiment and simulation. Also consistent with this reasoning is that
the width of the experimental cavity and that resulting from the simulations
deviate the most at the top of the cavity, where the suction of the flowing air
has had its influence for the largest time interval. Note, once again, that this
deviation is particularly visible in the latter stages, after t ∼ 0.275 ms. In the
beginning of the cavity development, experiment and simulation agree.

5.3.2 Cavity shape

The robustness of the slender shape of the cavity is evidenced by Fig. 5.5, which
contains two more time sequences resulting from the BI simulations, now for
two different Weber numbers. Here we used R0 = 100 μm, U0 = 8.5 m/s
and 85.4 m/s, and f = 30 kHz, corresponding to We ∼ 100 and 10000, and
f̃ = 0.70 and 0.07, respectively.

Figure 5.6a is a doubly logarithmic plot of the resulting cavity shapes for
three different simulations with We = 100, 1000 and 10000 (including those of
Fig. 5.5). Figure 5.6a shows that for large enough Weber number, the cavity
profile is parabolic: R ∼ (z + H)1/2, where we corrected for the instantaneous
depth of the cavity: (z + H) is the vertical coordinate measured from the
bottom at z = −H(t). This parabolic similarity profile is valid between the
lower part of the cavity, where there are traveling surface waves resulting from
the separate drop-pool collisions, and the top part of the cavity, where the
surface tension driven collapse takes place (as we will discuss in Sec. 5.3.3).
The larger the Weber number, the more clearly the parabolic shape can be
recognized - for the smallest Weber number plotted, the asymptotic stage is
not reached, because surface tension makes the collapse behavior at the top of
the cavity too dominant. Fig. 5.6b shows the profiles for We = 10000 at three
different times. Together, the panels of Fig. 5.6 show that the parabolic profile
can be observed for large enough Weber number and at sufficiently long time
after the first impact.

We can understand the parabolic shape of the cavity as follows. Since
the cavity has a slender geometry, the fluid flow is predominantly oriented in
horizontal slices. Hence, we can apply the two-dimensional Rayleigh equa-
tion in cylindrical coordinates. Neglecting the influence of hydrostatics, one
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Figure 5.5: Time sequences from BI simulations for two different Weber num-
bers: (a) We = ρR0U2

0 /γ = 100, f̃ = 0.7 (for U0 = 85 m/s), and (b)
We = 1000, f̃ = 0.07 (for U0 = 8.5 m/s) (in both cases R0 = 100 μm
and f = 30 kHz). The profiles are shown at times t = 0.6 ms, 1.8 ms, and
3 ms. Obviously, the larger velocity drops create a cavity with larger depth
and width.
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Figure 5.6: Cavity shapes for several Weber numbers We = ρR0U2
0 /γ at several

times after the first impact (t = 0), shown on doubly logarithmic scale. (a)
U0 = 8.5 m/s, 27.0 m/s, and 85.4 m/s (different times). (b): We = 10000
at three different times. For both panels R0 = 100 m/s and f = 30 kHz.
We find that for large Weber-number and large times after the first impact,
the cavity shape approaches a parabola, i.e. (z(r) + H) ∼ r2. For smaller
Weber-numbers this asymptotic stage is not reached, because surface tension
makes the collapse behavior at the top of the cavity too dominant.

obtains [9, 42]:

(
R

d2R

dt2
+
(

dR

dt

)2
)

log
(

R

R∞

)
+

1
2

(
dR

dt

)2

= −γκ

ρ
≈ γ

ρR
, (5.1)

where R∞ is an external length scale of the problem that has a weak (logarith-
mic) influence on the analysis below [9, 11, 42, 43]. In the last approximation
we neglected the axial contribution to the curvature; the axial curvature is
much smaller than the radial curvature due to the slenderness of the cavity.
At large We, we may neglect the right hand side during the first instances of
the cavity formation, i.e. at small distance z + H. Hence, since R∞ � R,

the dynamics are determined by Rd2R
dt2 +

(
dR
dt

)2 ≈ 0, which has the solution
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R(t) ∼ (t − t0)1/2, where t = H/Uc is the time after the first impact on the ini-
tially flat pool (t = 0) at which the cavity reaches depth H, t0 = −z/Uc (recall
that z is negative below the pool surface), and Uc = dH/dt is the (constant)
downward growth speed of the cavity. This implies

R(z, t) ∼
√

R0 (z + H) =
√

R0 (z + Uct) (5.2)

This is the similarity profile, to which the curves of Fig. 5.6 converge, for large
Weber number, sufficiently long after the first impact, and away from the
bottom and top of the cavity. The dashed line represents the prediction (5.2),
with a fitted prefactor of 1.5.

5.3.3 Cavity dynamics

Two important questions arise from the preceding analysis: what is the down-
ward expansion speed of the cavity Uc as a function of the impact parameters,
and when does surface tension start to act against the expansion of the cavity?

Figure 5.7 shows Uc/U0 as a function of the ratio f̃ = 2fR0/U0. The five
different data-sets show the results for five drop frequencies f = 10−30 kHz, for
varying impact velocities U0 = 7 − 13 m/s. Thus, the Weber number strongly
varies over the data points shown in the figure; every data point belongs to
a different set of (We,f̃), which is why we choose to mention the dimensional
frequency in the legend, while we show dimensionless plots. As explained in
Sec. 5.2.2, close to the limit f̃ → 1, the number of reconnections per time unit,
and thus the relative importance of the corresponding numerical artifacts, is
large, which is why we do not show our results for f̃ > 0.7. Interestingly, Uc/U0

converges to 1/2 for f̃ → 1. f̃ = 1 would be the situation of a drop train with
zero spacing, which corresponds to the special case in which momentum is
continuously applied to the pool/cavity bottom. This is reminiscent of the
continuously impacting jet onto a pool, like described in Ref. [14]. One of the
results for the continuously impacting jet scenario described in this work is
that the downward expansion speed of the cavity is exactly one half of the
impact speed of the jet, Uc/U0 = 1/2. This ratio 1/2 is indeed approached in
our simulations. At smaller frequencies, the net momentum transfer per time
unit decreases, and the downward expansion speed of the cavity will thus be
smaller, giving a qualitative explanation of our findings in Fig. 5.7.

The Weber number strongly varies over the data in Fig. 5.7, but the re-
lation between Uc/U0 and f̃ appears to be universal, in the sense that it is
independent of We. The superimposed experimental result, shown by the open
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Figure 5.7: The downward cavity growth velocity Uc divided by the drop
impact speed U0 plotted against the ratio f̃ = 2fR0/U0 for several values
of the Weber number We and the drop frequency f . Simulation results for
R0 = 100 μm. As long as f � 1/tc, which is the case for all these simulations,
we find that Uc/U0 universally depends on f̃ , i.e., Uc/U0 is independent of
We, and converges to 1/2 for f̃ → 1, where the droplet train turns into a
continuous jet. The experimental result, shown by the circle, corresponds
to the time sequence of Fig. 5.3, i.e. R0 = 20 μm, U0 = 26.75 m/s, and
f = 290 kHz.

circle, corresponds to the time sequence and parameters of Fig. 5.3, where R0

was 20 μm instead of 100 μm. This experimental data point is in line with the
independence of We. However, this universality will only hold if the collapse
time of the small cavity created by the single drop impact is much larger than
the time it takes till the next drop impacts, which is generally true for our
impact parameters. Otherwise, obviously, since the surface tension influences
the local cavity collapse, the relation between Uc/U0 and f̃ will have a Weber
dependence.

With this result of Uc as a function of the frequency f̃ , we basically know
all the dynamic details of the downward translating parabolic cavity, and we
are able to predict its collapse. The time at which surface tension will start
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to pull back the cavity walls can be predicted by solving Eq. (5.1) without
neglecting the influence of the surface tension. This can be done analytically,
as shown in the appendix, but can also be appreciated from a dimensional
argument that will be provided below. For this one must introduce a velocity
scale, for which we choose the downward speed of the cavity Uc instead of U0.
This defines a ‘modified’ Weber number Wem as

Wem =
ρR0U2

c

γ
= We

(
Uc

U0

)2

, (5.3)

and in the remainder of this section we will plot our results as a function of
Wem.

We will show how the collapse of the cavity depends on Uc and the other
parameters. For this, we need to separate two cases, which are basically short
and long drop trains. More specifically, we distinguish trains for which the
collapse of the cavity occurs after the full drop train has impacted, like in our
experimental comparison (Figs. 5.3 and 5.4), and trains for which the collapse
of the cavity occurs before the end of the drop train impact. In the first case,
the cavity depth at the moment of its collapse, Hcoll, is determined by the
number of drops N in the train, Hc = Hcoll ∼ NUc/f ; in the second case, this
depth is determined by the time at which the cavity walls touch the symmetry
axis (or drops). Note that in the second case, Hc is in general larger than Hcoll;
experiments show that after the cavity walls hit the symmetry axis, the drops
within the entrained bubble will still continue impacting on the bubble bottom,
an effect that could further increase the depth of the bubble. In that case, to
predict Hc, one needs to take into account the bubble deformation dynamics,
which we leave for the moment. Thus, we focus on the prediction of Hcoll. The
time at which surface tension is able to influence the cavity walls, tcoll, can be
predicted by comparing the dynamic pressure of the radially expanding cavity
(which decreases in time, and is the smallest at the top of the cavity, where
the parabola that describes it is the widest) and the Young-Laplace pressure
based on the azimuthal curvature of the cavity:

ρ

(
dRz=0

dt

)2

∼ γ

Rz=0
, (5.4)

where Rz=0 is the cavity radius at the pool surface, z = 0. Substituting the
dynamic profile for the cavity found in Sec. 5.3.2, Rz=0(t) ∼ √

R0H(t) =√
R0Uct, from which dRz=0/dt(t) ∼ √R0Uc/t, gives a prediction of the time

at which Rz=0 reaches the maximum expansion radius of the cavity, which we
call tcoll:
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tcoll ∼ ρ2R3
0U3

c

γ2
= tcWe

3

2
m. (5.5)

When we insert tcoll in the similarity profile we can calculate the maximum
radius Rc of the cavity:

Rc ∼
√

R0Uctcoll ∼ R0Wem. (5.6)

Combining Eqs. (5.5) and (5.6), we find that the typical time at which the
cavity starts to collapse is the capillary time based on the maximum radius of
the cavity (tcoll ∼ √ρR3

c/γ), as previously found by Ref. [27] for the collapse
of a cavity generated by the impact of a solid sphere. The depth of the cavity
at the time of its collapse, Hcoll can now be predicted by multiplying the
expansion velocity by the collapse time:

Hcoll ∼ Uctcoll ∼ UctcWe
3

2
m ∼ R0We2

m. (5.7)

From Fig. 5.8a and b, which show the BI simulation results of our param-
eter scan for Rc and Hcoll, respectively, one can appreciate that the above
scaling results agree with the BI results. The curves seem to be universal,
independent of the drop frequency f̃ , but note that the f -dependence is taken
into account by means of Uc. This confirms that Wem, and not We is the
proper dimensionless parameter to analyze the maximum cavity radius and
the cavity collapse. Note that Wem naturally varies over a smaller range than
We, due to its definition (5.3), setting a limit on the range in Fig. 5.8.

5.4 Discussion

Summarizing, we found that the expansion of the cavity resulting from a mi-
crodrop train impact can be described as a purely inertial mechanism, except
for the collapse region that is a result of the capillary forces. From solving the
2D Rayleigh equation, we concluded that the cavity shape is a parabola, which
translates downward with a constant velocity Uc. We showed that Uc/U0 only
depends on the aspect ratio f̃ of the drop train, i.e., the ratio of drop diameter
to drop distance in the train. In addition, we were able to predict the collapse
duration tcoll, and the cavity depth Hcoll at the moment of the collapse.

There are a few limitations of this theory. The most important difference
is that the width of the cavity in the experiments, at later times, is much
smaller than the width in the numerical simulations, due to, most likely, the
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Figure 5.8: (a) Maximum radius of the cavity Rc, and (b) depth of the cavity
Hcoll at the moment of its collapse, plotted against the modified Weber number
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and f . R0 = 100 μm. We find a universal behavior with respect to Wem,
independent of f̃ . Superimposed are the scaling predictions: Rc/R0 ∼ Wem,
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m, with which we find very good agreement.
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influence of the streaming air, which has been neglected. The fact that our
predictions for the depth of the cavity are still accurate for the experiment
originates from the fact that the dynamics at the bottom of the cavity, in
particular Uc, is hardly influenced by the airflow. Thus, the collapse in experi-
ments occurs earlier than predicted, but after that collapse, the bottom of the
cavity keeps expanding with the same Uc till the end of the drop train, and
the instantaneous depths are predicted correctly, as shown in Fig. 5.4. Our
simulation method appears to be a very efficient way to simulate drop train
impact, if one focuses on the depth of the cavity, neglecting the influence of
air. Since the BI code solves the Laplace equation only along the pool surface
we are able to account for the many different length scales in the problem,
ranging from the cavity size, through the drop dimension, to the scale of the
recombination of the free surfaces of the drop and the cavity. This would pose
difficulties for most other simulation methods. However, an advantage of the
use of a two-phase simulation method will be the ability to solve correctly
for the influence of the local airflow, in particular the airflow induced by the
falling drops, which shows possible future work on this subject.

Other possible future work on this subject focuses on different mechanisms
of the cavity collapse and bubble formation processes. In fact this has been
described in detail in Ref. [27], but this is based on sphere impact on the pool.
Our case, the impact of a collection of liquid onto a pool, gives rise to the
following question for future research: how does the mass distribution and the
time scale of the impact influence the cavity shape, and thus the collapse?
We already found that the impact of a jet is from qualitative point of view
not different from the impact of a drop train, except that the frequency is
an explicit parameter for the latter case. We found that, besides the total
amount of volume which impacts onto the pool, the length- and timescale of
the total impact is highly determinative for the cavity behavior, because it
determines the relevance of hydrostatics vs. surface tension. This is a new
aspect with respect to all previous work on impact mentioned in the beginning
of the Introduction of this chapter.

5.A Solution of the cylindrical Rayleigh equation
including the influence of surface tension

Here, we analytically solve Eq. (5.1), including the Young-Laplace pressure
based on the azimuthal curvature of the cavity. We start from Eq. (5.1), which
we non-dimensionalize using the drop radius R0 and R0 over the downward
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cavity speed Uc as a typical time scale. This gives(
d

dt̃

(
R̃

dR̃

dt̃

))
log

(
R̃

R̃∞

)
+

1
2

(
dR̃

dt̃

)2

=
1

Wem

1

R̃
, (5.8)

where R̃ = R/R0, R̃∞ = R∞/R0, t̃ = tUc/R0, and Wem = ρR0U2
c /γ. In the

remainder of this appendix we will drop the tildes.
Writing U = dR/dt we first note that

d

dt
(RU) = U2 + R

dU

dt
= U2 +

1
2

R
d

dR

(
U2
)

, (5.9)

where we used that dU/dt = dU/dR dR/dt = U dU/dR. With this, Eq. (5.8)
becomes:

U2 log
(

R

R∞

)
+

1
2

R
d

dR

(
U2
)

log
(

R

R∞

)
+

1
2

U2 =
1

Wem

1
R

. (5.10)

Now let x = R
R∞

and y =
(

dR
dt

)2
. Then the above equation reads

1
2

x log (x)
dy

dx
+
(

log (x) +
1
2

)
y =

1
Wem

1
R∞x

. (5.11)

This is an ordinary linear differential equation of which the solution consists
of a homogeneous part and a particular part. The homogeneous solution of
(1/2) x log (x) dy/dx + (log (x) + 1/2) y = 0 is yH(x) = K/

(
x2 log (x)

)
, where

K is an integration constant. A particular solution of the shape yP (x) =
Cxa/ log (x) gives a solution for a = −1 and C = 2/ (WemR∞), so the full
solution to Eq. (5.11) is:

y(x) =
K

x2 log (x)
+

2
WemR∞x log (x)

. (5.12)

Going back to the original variables we have(
dR

dt

)2

=
(

2 +
K ′

R

)
1

WemR log
(

R
R∞

) , (5.13)

with K ′ = KR2∞Wem. If we scale back to the dimensional variables and
substitute the initial conditions R(t = 0) = AR0 and dR/dt(t = 0) = BUc

(with A and B positive real numbers), the solution reads
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(
dR

dt

)2

=
R0U2

c

R log
(

R
R∞

)
⎡⎣ 2

Wem
+

B2A2R0 log
(

R0

R∞

)
− 2AR0

Wem

R

⎤⎦ . (5.14)

For Wem → ∞, this implies

RdR
dt

R0Uc
= AB

√√√√√ log
(

AR0

R∞

)
log
(

R
R∞

) , (5.15)

which is real and positive as long as R and R0 are smaller than R∞.
Finally, to find the maximum expansion radius of the cavity, Rc, one uses

dR/dt = 0 in Eq. (5.14), which leads to

Rc = R0

⎛⎝A +
A2B2Wem log

(
R∞

R0

)
2

⎞⎠ . (5.16)

For large Wem, we thus expect Rc ∼ R0Wem, which agrees with the scaling
law found on dimensional grounds (Eq. (5.6)).
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6
Oscillating and star-shaped drops

levitated by an airflow ∗ †

We investigate the spontaneous oscillations of drops levitated above an air
cushion, eventually inducing a breaking of axisymmetry and the appearance of
‘star drops’. This is strongly reminiscent of the Leidenfrost stars that are ob-
served for drops floating above a hot substrate. The key advantage of this work
is that we inject the airflow at a constant rate below the drop, thus eliminating
thermal effects. We perform experiments with drops of different viscosities and
observe stable states, oscillations and chimney instabilities. We find that for
a given drop size the instability appears above a critical flow rate, where the
latter is largest for small drops. All these observations are reproduced by nu-
merical simulations, where we treat the drop using potential flow and the gas
as a viscous lubrication layer. Our results demonstrate that thermal effects are
not important for the formation of star drops, and strongly suggest a purely
hydrodynamic mechanism for the formation of Leidenfrost stars.

∗Published as: W. Bouwhuis, K.G. Winkels, I.R. Peters, P. Brunet, D. van der Meer,
J.H. Snoeijer, “Oscillating and star-shaped drops levitated by an airflow”, Phys. Rev. E 88,
023017 (2013).

†The numerical simulations in this chapter are part of the present thesis. The experi-
mental work is due to Koen Winkels.
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104 CHAPTER 6. LEVITATED DROPS

6.1 Introduction

Drops of water can levitate above a very hot plate due to the so-called ‘Lei-
denfrost’ effect [1, 2]. In this situation, drops float on a thin layer of water
vapor that results from evaporation between the hot substrate and the drop.
The shape and dynamics of the vapor layer can be quite complex [3] and
can be used to move liquid along a surface with the help of unevenly tex-
tured substrates [4–6]. Under some conditions, drops spontaneously start to
oscillate and develop ‘star-shapes’ or ‘faceted shapes’ [7–11]. Recently, it has
been found that this phenomenon occurs not only in the case of Leidenfrost
drops, but also for drops levitating on a steady and ascending uniform air-
flow at room temperature [12]. Figure 6.1 shows examples of levitating star
drops obtained with water, taken from Brunet et al., 2011 [12]. The origin of
the oscillatory instability has remained unclear, but the striking similarities
with the Leidenfrost stars suggest a common mechanism for both, based only
on hydrodynamics and free surface dynamics, without invoking any thermal
effects.

Figure 6.1: Star drops levitated by a steady (i.e., non-pulsating) airflow. Top:
mode n=3; bottom: mode n=4. Figure from Brunet et al., 2011 [12].

Drops with faceted shapes have been observed in various systems with a
periodic forcing of frequency close to the eigenmodes of the drop. Such drop
shapes arise for drops on vertically vibrated hydrophobic substrates [13, 14],
acoustically levitated drops with low-frequency modulated pressure [15], liquid
metal drops subjected to an oscillating magnetic field [16], or drops on a
pulsating air cushion [17, 18]. Using simple arguments [19], the appearance of
these stars can be explained by the temporal modulation of the eigenfrequency
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of the drop, due to the external forcing, thus inducing a parametric instability.
This suggests the following scenario for the formation of stars in a steady
ascending airflow: a first instability leads to a vertical oscillation of the drop,
which through a secondary, parametric instability leads to the formation of
(period doubled) oscillating stars.

Rayleigh and Lamb [20] already predicted that for small enough deforma-
tions and for inviscid spherical drops, the resonance frequencies of the drops
are given by:

fn =
1

2π

(
n(n − 1)(n + 2)γ

ρlR3

)1/2

, (6.1)

where fn stands for the resonance frequency of the nth mode of oscillation, R
is the radius, γ and ρl are the liquid surface tension and density, respectively.
When the drop shape is different from the ideal spherical case, the resonance
frequencies are modified with much more complex expressions, but in the case
of a liquid puddle of radius R much larger than the averaged drop height Hd,
the eigenfrequencies take the following simple expression [19]:

fn =
1

2π

(
n(n2 − 1)γ

ρlR3

) 1

2

, (6.2)

where n is now the number of lobes on the drop in the azimuthal direction.
Note that in practice, the frequencies predicted by Eq. (6.1) and (6.2) are
very similar. Thus it becomes clear that a parametric instability should occur
when the drop radius is modulated in time. The same happens when due
to a periodic external forcing, the drop stands in a time-periodic acceleration
field. In that case the height of the cylindrical liquid puddle Hd also varies
periodically, and for a non-wetting condition (contact-angle close to 180◦) this
height is simply equal to twice the effective capillary length �c =

√
γ/(ρla),

a being the instantaneous acceleration (without forcing, a is equal to the
acceleration of gravity g). By volume conservation, a time dependence of Hd

results into an oscillation of the radius R. Assuming small deformations, R
will have the same time-periodicity as the external forcing. Then, star-shaped
oscillations by parametric forcing typically display a frequency equal to half
of the driving (vertical oscillation) frequency [19].

In the case of a steady, non-pulsating air cushion or Leidenfrost levitation,
the key question is to identify the origin of the vertical oscillations: what is
the mechanism that induces a time-periodic instability, which in turn gives
rise to vertical oscillations of the drop center-of-mass and shape? Once the
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origin of this instability is explained, the appearance of star drops is likely to
originate from the parametric instability as stated above. Recent experiments
with star drops levitated on a continuous flow air cushion (Fig. 6.1) suggest
that these star drops do not result from a temperature gradient-induced in-
stability, contrary to what was previously hypothesized [21]. Apart from the
oscillatory instability, a levitated drop can develop a ‘chimney’, for which an
air bubble develops below the drop and pierces the center of the drop [22]. This
phenomenon has been explained theoretically from a breakdown of steady so-
lutions [23, 24]. Interestingly, the numerical simulations for very viscous drops
did not display any oscillatory instability. Therefore, the determination of the
mechanisms for oscillations requires a more complex numerical scheme than
those of Refs. [23, 24].

In this chapter, we experimentally and numerically study drops levitated
by an air-cushion, focusing on the instability to chimney formation, oscillations
and star drops. The experiments consist of a significantly improved variant of
that in Brunet et al., 2011 [12], where we now can determine the threshold of
instabilities with good accuracy. For the numerical simulations, the proximity
of the cushion to the drop calls for a method capable of accurately describing
the gas-liquid interface, which leads us to employing an inviscid Boundary
Integral method for the description of the drop. Inspired by the success of
lubrication models in providing steady solutions for the drop shape we use
a lubrication approximation for the airflow below the drop (Fig. 6.2). This
coupling has also been applied to simulate the impact of liquid drops on solid
plates, and appeared to be successful in the regimes of both small and large
impact velocities (see Chapter 2 of this thesis). The numerical implementation
of the drop is completely axisymmetric and aims to explain the appearance of
up-down oscillations for the drop.

The chapter is organized as follows: in Sec. 6.2, we present the setup we
used to obtain the oscillating levitated drops experimentally, for liquids of
different viscosities. Results of these experiments are shown in Sec. 6.3. Then,
we describe the numerical scheme in detail (Sec. 6.4), and show the different
regimes exhibited by the model (Sec. 6.5). In the last section, we conclude on
these results.

6.2 Experimental setup

It is well known that in case of Leidenfrost drops, the drops are levitated by a
vapor layer. The vapor, coming directly from the drop, generates a cushioning
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Figure 6.2: Numerical implementation of the drop levitated by an airflow
with uniform upward flow velocity Ug. The numerical simulations consist of a
coupling between the Boundary Integral method for the inviscid drop, and the
lubrication approximation for the airflow beneath the drop. The flow inside
the drop is assumed to be a potential flow; the flow at the bottom of the drop
is a viscous flow, in which inertial effects are neglected.

layer for levitation due to the build up of a lubrication pressure between the
lower part of the drop and the substrate. To avoid temperature effects and
to directly control the gas flux in the layer, another experimental method
was introduced in Brunet et al., 2011 [12]. In this experimental method the
air cushion is created by an ascending airflow (Fig. 6.3). The airflow is forced
through a porous glass medium (Duran Group, Filter Funnel, porosity 3, inner
diameter 56 mm) that is covered by a coarse grid. The bronze grid is made
super-hydrophobic (electroless galvanic deposited metal [26] and humid low-
surface energy molecular deposition) to avoid imbibition of the hydrophilic
porous medium. The large pressure load on the porous medium creates an
approximately homogeneous outflow, which is assumed to be hardly affected
by the small pressure load of the drop. Consequently, if the airflow Q is large
enough, a lubricating layer (air cushion) can emerge and support the complete
weight of the drop. There exists a threshold drop size R and gas flow rate Q
at which the drops become unstable and start to oscillate, i.e., the instability
threshold. The airflow is measured with an Aalborg flow meter (range: 0 - 60
liters/min). Since the drop is very mobile in the levitated state, it is necessary
to hold it using a needle. This fixates the drop at a constant location on the
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substrate. The same needle is used to supply and subtract liquid from the drop
via a syringe. To study the drop behavior for various flow rates Q and drop
sizes R, the drop motions are recorded from a top view, with a high-speed
camera at 1000 fps (Phantom V9). Using a macro lens (Nikon Aspherical
Macro, 1:2) with extension tubes, a resolution of 42 μm/pixel is obtained (see
Fig. 6.3). Reflective illumination (IDT, LED light source) is realized via a 45
degrees tilted beam splitter.

R

beamsplitter

Q

camera

porous 

medium

drop

superhydrophobic

grid

needle

Figure 6.3: Sketch of the experimental setup. Illumination and camera view
are obtained using a beamsplitter. A flow rate Q is prescribed through a
porous medium. Since the levitated drop is very mobile, it is held in position
by a needle, which also supplies the liquid.

The aim of this work is to study the instability threshold (appearance
of drop oscillations) for levitated drops. To verify reproducibility of the ex-
periment, each measurement is repeated multiple times and by two different
procedures. In the first method, each measurement starts with a new constant
flow rate Q = Qt and a small drop size R. Then the drop volume is slowly
increased by pumping liquid into it. The feeding is continued until the drop
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reaches a floating state (R < Rt) which finally becomes unstable once the drop
size equals the threshold size Rt for flow rate Qt. The volume increase of the
drop is directly stopped and subsequently, the dynamics of the unstable drop
at the threshold value are recorded with the camera. Note that the threshold
for levitation and that for the appearance of oscillations are very close to each
other. A second method to determine the instability threshold is measurement
of Qc, obtained after drops have turned unstable. For a drop starting in the
unstable state at Q = Qt, the airflow is slowly reduced until a value is reached
which results in a stable state: Q = Qc. This second threshold Qc turns out to
be slightly smaller than Qt. However, the difference is comparable to the ac-
curacy of the measurements of Qc, so we cannot make any definite statements
on whether or not the instability is hysteretic. In what follows we therefore
plot the average threshold Qm, obtained upon increasing the drop size and
variation of the flow rate. Qm is determined as: (Qt + Qc)/2. The error bar
indicates the difference between the two measurement procedures.

After measurement of Qc the flow rate is further reduced, which finally
results in a sessile drop state again. A snapshot is made at this zero flow
rate (i.e., sessile drop; Fig. 6.5a), and the drop size R is determined as the
maximum radius of the sessile drop in top view. To reduce as much as possible
the influence of any possible airflow fluctuations coming from e.g. variations
in the substrate or hydrophobic grid fixation, all data points are measured at a
fixed position on the substrate. To study the influence of viscosity on the drop
dynamics, two liquids are used: water (1 mPa s) and a water-glycerine mixture
(60 mPa s). The resulting dynamics are characterized by liquid viscosity ηl,
drop size R, flow rate Q and oscillation frequency f .

6.3 Experimental results

6.3.1 Low-viscosity drops

In this section we study the stability and dynamics of levitated water drops
(ηl = 1 mPa s). This is reminiscent to the classical Leidenfrost drops, levitated
above a hot substrate [22]. By varying the drop radius R and airflow rate Q,
the threshold for drop oscillations (Rt,Qm) is determined. Results for water
are plotted in Fig. 6.4, as circles. The open circles are oscillations without
detachment from the needle. In these cases, the size of the drop is measured
in a sessile state. The solid circles correspond to violent oscillations or a
chimney, which can lead to the detachment from the needle. The size is then
approximated in the unstable levitated state. Clearly, the threshold drop size
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R decreases with flow rate. The smallest drops investigated here are stable
up to very high flow rate, while the largest drops destabilize even at very
small Q. A chimney was, for example, observed for the smallest flow rate
and largest drop size R � 9.6mm (top blue solid circle in Fig. 6.4). This
point is indeed close to the blue dashed line that indicates the onset of the
chimney instability for water drops, as determined for thermal Leidenfrost
drops by Biance et al. [22] (Rc � 4.0�c, where �c is the capillary length).
Interestingly the chimney instability was predicted to occur even at vanishing
flow rate [24]. However, constraints in the control of extreme small flow rates
limited measurements in this range of parameters.

0 10 20 30 40 50
0

2

4

6

8

10

Q (l/min)

R
 (

m
m

)

0 0.1 0.2 0.3 0.4 0.5 0.6

Ugas (m/s)

Figure 6.4: Measured instability threshold Qm, for levitated drops. The upper
axis gives the gas velocity, estimated by dividing the total flow rate by the area
of the porous medium. Data represents all data points for water- and water-
glycerine drops, in circles (◦ and •) and squares (� and �), respectively. Since
for the smallest flow rate the drop size could not be measured (it detaches from
the needle), R is measured in levitated state instead of sessile state. These
points are therefore indicated by a solid symbol (• and �). Note that point
� corresponds to the chimney instability from Fig. 6.7b. The theoretical
prediction of the critical radius for chimney instability is indicated by the blue
dashed line and red dotted line for the used water and water-glycerine mixture,
respectively.
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For all levitated drops, the oscillating motion is recorded at the threshold
flow rate Qt. Typical images obtained in the experiments are shown in Fig. 6.5.
Fig. 6.5a is a sessile water drop, with Q = 0, while snapshots (Fig. 6.5c-h)
correspond to oscillating drops at non-zero flow rates. Once the water drops
are unstable, the oscillations appear to be rather chaotic, i.e., a combination
of modes (Fig. 6.5c). However, in a few cases as well one distinct mode was
observed ranging from mode n = 2 to n = 6, as is shown in Fig. 6.5d-h.

In case of these well-defined modes, the oscillation frequency can be deter-
mined and compared to the prediction of Eq. (6.2). The results are shown in
Fig. 6.6. For mode n = 3, frequencies are measured for seven different drop
sizes R = 3.2 − 6.1 mm. Rescaling from Eq. (6.2) indeed collapses the data.
Additionally the magnitude and trend are in quite good agreement with the
inviscid theory (red solid line) for all modes.

6.3.2 High-viscosity drops

The viscosity of the drop is increased to investigate whether damping of the
inner drop flow indeed suppresses star oscillations. Experiments shown in
this section are carried out with liquid drops of a water-glycerine mixture
(ηl = 60 mPa s). Again the drop size R and flow rate Q are varied to determine
the instability threshold for drop oscillations. The results are included in
Fig. 6.4. The data points for large liquid viscosity are indicated with red
squares (�, �). For the solid red squared data points, a chimney instability
is observed, for which an air bubble pierces the center of the drop. Such
a chimney is shown in Fig. 6.7b. The size of the drop could therefore be
determined only from a drop in levitated state.

Comparing the threshold of high-viscosity drops with water drops, we ob-
serve a clear increase of the threshold. However, the dependence on viscosity
is relatively weak, given that the liquid viscosity was increased by a factor
of about 60. By contrast, the dynamics are strongly affected by the liquid
viscosity. While the oscillations of water drops at threshold is chaotic and
non-axisymmetric, the viscous drops display only axisymmetric oscillations:
we observe clear ‘breathing’ modes (symbol with error bars in Fig. 6.5b), for
which the levitated drop remains circular in top view while oscillating. The
large viscosity of the liquid drop apparently damps all higher mode oscillations,
and the formation of star drops is completely suppressed. A more detailed pic-
ture illustrating this dynamics is shown in Fig. 6.7a. Consecutive snapshots
(top row) all depict circular drops and a space-time diagram of the drop edge
illustrates the radial oscillating motion. This regular dynamics make it rel-
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Figure 6.5: Examples of levitated drop instabilities. All images show water
drops, except for (b) which is a water-glycerine drop. (a) Sessile water drop.
(b) Levitating water-glycerine drop. (c) Chaotic mode water drop oscillation.
(d) Water drop, mode n = 2 (R = 4.1 mm, f = 13.8 Hz). (e) Water drop,
mode n = 3 (R = 6.1 mm, f = 14.2 Hz). (f) Water drop, mode n = 4 (R = 5.2
mm, f = 17.8 Hz). (g) Water drop, mode n = 5 (R = 8.6 mm, f = 14.3 Hz).
(h) Water drop, mode n = 6 (R = 6.1 mm, f = 30.9 Hz).
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Figure 6.6: The frequency measured for faceted drops as shown in the images
of Fig. 6.5. Each data point ◦, corresponds to one water drop measurement.
The red solid line is the prediction from the corresponding eigen mode for a
puddle, given by Eq. (6.2).
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Figure 6.7: (a) Top row: an image sequence of the breathing mode oscillation
of a large-viscosity drop (water glycerine, 60 mPa s). As the oscillation am-
plitude is rather small, a space-time diagram is shown as well, which is built
from slices similar to the white boxes indicated in the images. (b) For larger
drop sizes we observe the formation of a chimney.
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atively easy to measure the main oscillation frequency for all data along the
threshold curve (see Fig. 6.8). Note that in this measurement the frequency
therefore is a function of R(Qt). Hence, a small radius in this figure automat-
ically also means a relative large flow rate Qt and vice versa (see Fig. 6.4).
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Figure 6.8: Measured oscillation frequency at threshold for high-viscosity
drops (see Fig. 6.4) (blue dots with error bars), combined with numerical
results. For the numerical simulations, the measured oscillation frequency
(excitation frequency) as a function of the drop top view radius with airflow
velocity 1 and 5 m/s, at three different liquid viscosities is shown. In the nu-
merical simulations, frequency appears to be independent of liquid viscosity,
decreases with increasing drop radius, and decreases with increasing airflow
velocity.

Apart from this large contrast in shape deformations, also the measured
oscillation frequencies are different from those measured with low-viscosity
water drops. Frequencies for high viscosity drops are considerably higher, by
a factor two or more, than the lowest mode (n = 2) of the inviscid Rayleigh
and Lamb frequency for a drop of the same size, but compare rather well
with numerical results for axisymmetric oscillations of an (inviscid) drop on
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an air cushion (see Secs. 6.4 and 6.5). One possible interpretation is that the
gas flow and the liquid flow act as a coupled dynamic system that oscillates.
In the case of water this oscillation, acting as a parametric forcing, directly
leads to star oscillations which are well described by Eq. (6.1). However,
viscosity affects or even suppresses star oscillations in high viscosity drops. As
a result one essentially observes the frequency of this axisymmetric oscillation
of the coupled system, which in contrast to that of the star oscillations only
weakly depends on drop size. In summary, due to the suppression of star
oscillations viscous drops reveal the underlying axisymmetric oscillation from
which the stars originate. It is this axisymmetric oscillation that we will study
numerically in the next sections.

Finally, we again observe chimneys when the drop size becomes too large,
R ≈ 8 mm (see right panel of Fig. 6.7). Since the capillary length for the used
water-glycerine mixture is, �c ∼ 2.3 mm, the chimney occurs at about 3.5�c.
This is consistent with earlier experiments on water drops [22] and theory [24]
for which the critical radius Rc ≈ 4.0�c (Rc for the water-glycerine mixture is
indicated by the red dotted line in Fig. 6.4).

6.4 Numerical method

We now investigate the dynamics of drops on an air cushion by numerical sim-
ulations. Since previous work, where drops were modeled by Stokes flow, did
not result into any oscillation [24], inertia inside the drop must be important,
and we now consider the opposite limit: potential flow. The latter is coupled
to a viscous airflow, modeled in the lubrication approximation. The model is
similar to that in Chapter 2 of this thesis, where it was used for simulating
drop impact.

6.4.1 Parameters & dimensional analysis

Similar to the experiments, the main parameters that will be varied are the
drop volume V and the gas flow, here denoted by the upward gas velocity Ug.
Other parameters are the gas viscosity ηg (lubrication approximation), liquid
density ρl (potential flow), and the surface tension γ. These can be combined
into three dimensionless numbers. A measure for defining the drop size is
the Bond number, Bo, taking into account gravity influence against surface
tension influence:
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Bo =

√
ρlR

2
0g

γ
=

R0

�c
, (6.3)

where R0=
(

3V
4π

) 1

3 is the radius of the unperturbed spherical drop with volume
V , and g is the acceleration of gravity. �c is the capillary length, as defined in
the Introduction. Secondly, we define the capillary number

Ca =
ηgUg

γ
, (6.4)

in which Ug is a constant if we assume a uniform upward flow beneath the
drop. Ca measures the influence of gas viscosity against surface tension and
can be interpreted as the dimensionless gas velocity.

By setting a balance between the viscous forces of the gas flow and the
square root of the inertial forces induced by the drop times the surface tension
force, we finally introduce a dimensionless quantity which we will call the
Ohnesorge number:

Oh =
ηg√
ρlγ�c

. (6.5)

Note that this definition of Oh deviates from the standard definition, since it
combines the viscosity of the gas and the density of the liquid.

Then, using �c,
γ
ηg

, and γ
�c

as the relevant length, velocity and pressure
scales, the radial positions r, vertical positions h, velocities u, times t, and
pressures P are non-dimensionalized as, respectively

r̃ =
r

�c
;

h̃ =
h

�c
;

ũ =
ηg

γ
u;

t̃ =
γ

�cηg
t;

P̃ =
�c

ηg

ηg

γ
P =

�c

γ
P.

From now on we will drop the tildes and all variables will be dimensionless,
unless stated otherwise.
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6.4.2 Boundary Integral method coupled to lubricating gas
layer

The drop is assumed to consist of an incompressible and irrotational fluid, and
can therefore be described by potential flow. The velocity field inside the drop
is the gradient of a scalar velocity potential φ. The Laplace equation,

∇2φ = 0, (6.6)

is valid throughout the whole drop including its surface contours. The Bound-
ary Integral method is a way to solve this equation for φ, with the proper
boundary conditions [27–29]. For the levitated drop setup, the entire drop
surface is a free surface, and the dynamic boundary condition for that surface
is the unsteady Bernoulli equation:

1
Oh2

(
∂φ

∂t
+

1
2

|∇φ|2
)

= −z − κ − Pg, (6.7)

where t is time, z is the absolute height, and κ is the local curvature at a
point of the drop surface. The left-hand side describes the inertial effects of
the drop, balanced by gravitational effects, the Young-Laplace pressure, and
the influences by the airflow on the right-hand side. Pg is the external pressure
which is varying over the lower drop surface after introducing the gas flow.
For this, the drop surface has been divided into two parts: the top of the
drop where the surrounding pressure is atmospheric; and the bottom of the
drop, where we deal with the lubrication pressure induced by the gas flow.
The separation point between these two parts is taken at r = R, where R is
the topview radius, but results are unaffected by the precise location of the
division [23, 24]. The gas flow is mainly determined by the viscosity of the
gas (Stokes flow). We assume that R � h. Note that the gas is defined
to flow upwards from z = 0 with uniform gas flow velocity Ca, which will
result in a predominantly radial gas flow below the drop with velocity u(r, z).
For deriving the axisymmetric lubrication approximation, we start with mass
conservation of the incompressible gas flow

∇ · u = 0. (6.8)

Boundary conditions are

uz|z=0 = Ca;

uz|z=h = ḣ,
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where ḣ is the vertical velocity of the drop surface. Furthermore, at the free
fluid-air-interface, z(r) = h(r), there is a kinematic boundary condition

∂h

∂t
= uz|z=h − ∂h

∂r
ur|z=h,

which is the unsteady part of the problem setting. Integrating the continuity
equation (6.8) along z (between 0 and h), applying Leibniz integral rule, sub-
stituting the boundary conditions, defining the average (radial) flow velocity
u = 1

h

∫ h
0 urdz, and multiplying the equation with r gives [24]

∂

∂r
(rhu) + rḣ = rCa. (6.9)

Applying the Stokes equation for this axisymmetric lubrication flow with
zero velocity boundary conditions at z=0 and z=h gives

u = 6u

(
z

h
− z2

h2

)
⇒ ∂Pg

∂r
= −12u

h2
, (6.10)

in which Pg is the pressure in the gas layer. Combining (6.10) and (6.9), and
performing one integration leads to

∂Pg

∂r
=

12
rh3

(
− Γ

2π
+
∫ r

0
r̂ḣdr̂

)
, (6.11)

where

Γ = 2π

∫ r

0
r̂Cadr̂ = πCar2. (6.12)

is the radius-dependent volume-airflux. The first term on the right-hand-side
of (6.11) is the gas flow term; the second term concerns the motion of the drop
interface. Γ is radially increasing, since the gas is accumulating beneath the
drop.

6.4.3 ‘Artificial’ viscous damping

Since viscous effects inside the drop are neglected, all motions (waves, oscilla-
tions, vertical translations, ...) will be undamped, as long as we do not apply
any form of damping. Indeed, simulations with realistic input parameters (ra-
dius and airflow velocity) lead to a quick blow-up of surface wave amplitudes
or the drop receiving a pressure pulse from below (when h becomes too small
at some point). In particular, we were unable to produce any steady solutions
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without the implementation of damping. We therefore need to introduce a
damping term in Eq. (6.7). We opted to follow a physically motivated way
using ‘viscous potential flow’ (VPF) [30]. Applying VPF to a free surface
generally leads to an additional term in the unsteady Bernoulli equation valid
on this surface, operating as pure damping term. The additional term is the
local normal stress, 2ηl

∂2φ
∂n2 [31], ηl being the liquid viscosity, such that (6.7)

transforms into:

1
Oh2

(
∂φ

∂t
+

1
2

|∇φ|2
)

= −z − κ − Pg + 2Λ
∂2φ

∂n2
, (6.13)

where

Λ =
ηl

ηg
. (6.14)

We have to make some remarks on this ‘artificial’ damping method. First,
it is unclear to what extent the model represents a true viscous drop, since
viscosity in general induces vorticity in the flow, which, of course, is absent
in the simulation. It turned out that the liquid viscosity required to obtain
stable numerical solutions is quite large, about 100 times the viscosity of water.
Consequently, we will treat Λ as a numerical damping constant, rather than
a physical viscous effect of the liquid. Secondly, for too large damping, this
method amplifies numerical deviations in the code: the normal stress term
contains numerical approximations to derivatives, which are now multiplied
by a large factor. Summarizing, both requirements together set a narrow
window for our liquid viscosity:

0.10 Pa · s ≤ ηl ≤ 0.30 Pa · s.

Outside this range we were unable to generate reliable and stable numerical
results.

6.4.4 Numerical details

In the numerical process, the Laplace equation is solved every time step, sim-
ilar to Bergmann et al., 2009 [29]. The size of a time step varies over the
simulation, and depends on the instantaneous drop dynamics. The time step
is small enough to prevent neighboring nodes from crossing each other. For
a steady drop, or a falling drop, the time step may be of order 0.001 time
units (typically of order 1 ·10−2 ms), while an oscillatory scenario, with strong
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curvatures and large nodal velocities, could end up with time steps of order
1 · 10−5 ms.

In general, the simulation is initiated by a spherical drop falling from
small starting height in the order of 0.10 capillary length. However, close to
the chimney instability (see Sec. 6.5.1), it is necessary to start with a more
‘gentle’ initial shape (i.e., closer to the expected ‘Leidenfrost’ shape for these
kind of drop sizes), such that the drop does not get unstable due to the impact
of the drop after the free fall.

The drop contour is characterized by r and z for r > 0. For the initial
spherical drop (in the first time steps of the simulation), this surface line
consists of about 60 nodes, depending on the size of the drop (a smaller drop
results in a smaller number of nodes). The number of nodes will vary during
the simulation, set by the (maximum) local curvatures on the line and the
closeness to the symmetry axis r=0; the largest node density is set around the
bottom and top center of the drop. It has been checked that further increasing
the number of nodes does not change the results significantly.

6.5 Numerical results

To easily compare with experiments, the figures in this section are in SI units.

6.5.1 Steady shapes & chimneys

The numerical scheme described above can indeed lead to steady levitated
drops, chimneys, or oscillatory states, depending on the model parameters.
Here we first focus on steady shapes, an example of which is shown in Fig. 6.9.
For two different initial conditions (top left panel), the drop relaxes to the
same final shape (bottom right panel). In all cases, the drop shape depends
only on Bo and Ca, and is independent of Oh and Λ.

The pressure profile at the bottom of the drop has a similar shape for
every drop size and airflow velocity, from the moment the steady shape has
been reached. An example is shown in Fig. 6.10. The largest pressure is at
r = 0, and it decreases to atmospheric pressure for r → R. The pressure
gradient is largest at the neck radius, r = rn, such that the pressure profile
resembles a plateau. The minimal gap height in this example is of the order
of 100 μm.

Figure 6.11 shows an example of a chimney instability. The respective
volumes of the red and blue curves differ by a small amount. Yet, the bigger
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Figure 6.9: Two different initial drop shapes (one spherical, one elliptical) of
equal volume, converging to the same steady end shape. Bo=1, Ca=2.5·10−4,
Λ=11·103. See Fig. 6.10 for the corresponding pressure profile.
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Figure 6.10: Pressure profile (Pg) at the bottom of a steady levitated drop.
The largest pressure gradient is typically at the neck, r = rn, such that the
profile resembles a plateau. Bo=1, Ca=2.5·10−4, Λ=11·103
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Figure 6.11: Chimney instability. Shown is the evolution of two drops, with
almost equal volumes. The largest drop apparently has a radius just above
the chimney threshold, which appears to be about 2.7�c, or 7.3 mm, while the
smallest has a radius just below. The large drop does not remain stable, due
to the gas pocket breaking through; the small drop keeps its steady shape.
Bo=2.25 and 2.5, Ca=2.5·10−5, Λ=11·103.

drop develops a chimney instability, while the smaller one exhibits a steady
state. The limit of drop size for the chimney instability agrees with expec-
tations from Snoeijer et al., 2009 [24]. We deduce from Fig. 6.11 a threshold
neck radius of about 2.7�c for a gas flow velocity of 0.1 m/s. The dimension-
less airflux χ which is introduced in Snoeijer et al., 2009 [24] is in our case
χ = 6Γ(rn)

πrn
= 6π·Ca·r2

n

πrn
∼ 6π0.1(2.7�c)2

π(2.7�c) = 4.42 · 10−3. Extrapolation in Fig.
12 of Snoeijer et al., 2009 [24] shows that this 2.7�c agrees with the theoreti-
cal prediction coming from the lubrication approximation. The threshold for
chimneys is at smaller drop size than the experimentally observed threshold
(Fig. 6.4), which can be explained by the smaller incoming airflow velocity
in the experiments, compared to numerical simulations. According to Snoei-
jer et al., 2009 [24], for increasing χ, the threshold for chimneys is at smaller
drop size, and χ in the numerical simulations is indeed large with respect to
χ in the experiments.

6.5.2 Drop oscillations

Observations

The second scenario of interest we studied is drop instability leading to oscil-
lations. An example is shown in Fig. 6.12, showing the drop contours during
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Figure 6.12: Time sequence from the evolution of the oscillatory instability
of a levitated drop. The simulation is initiated by a spherical drop, released
from small height (0.27 mm) (top-left). The top panel row shows the process
from the spherical drop shape to an intermediate steady shape. The bottom
panel row shows the oscillatory behavior of the drop at a later point in time.
Bo=1, Ca=2.5·10−4, Λ=8.2·103.
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the evolution of the oscillations for an unstable scenario. The first three panels
(top row) show the process of the drop converging towards the ‘Leidenfrost’
shape. It takes about 75 ms for the drop to adopt a nearly steady shape (top-
right), but in the next phase surface oscillations with increasing magnitude are
visible (bottom sequence). The drop oscillates in both radial and vertical di-
rection. The two states between which the drop ‘bounces’ are clearly visualized
in the last two frames of Fig. 6.12, and in Fig. 6.13, supplemented with velocity
profiles. The velocity profiles show that the liquid velocity, and therefore the
oscillations and momentary liquid flows are mainly in the vertical direction.
Air is released from the gas-pocket at the bottom of the drop around one of
the extremes and is gathered again towards the other: the system ‘breathes’.
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Figure 6.13: Drop contours during the final stages of the simulation in an
unstable scenario (see Fig. 6.12). Blue contours are the two extremes, red
lines are intermediate. The bottom two plots show the velocity profile inside
the drop for the extremes. Note that the liquid velocities, and therefore the
oscillations as well, are mainly in the vertical direction. Bo=1, Ca=2.5·10−4,
Λ=8.2·103.

Similarly to experiments, there exists a drop size threshold and a gas flux
threshold above which the surface oscillations appear. In Fig. 6.14a, no drop
oscillations are visible. In Fig. 6.14 we plot the time dynamics R(t) for differ-
ent parameters. In Fig. 6.14b, the oscillation amplitude visibly saturates at
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Figure 6.14: Top view radius as a function of time for (a) a stable drop, (b) a
case around the transition, and (c) an unstable drop. In the first part of each
plot (up to about 100 ms) the initial, spherical shape of the drop stabilizes
towards the ‘Leidenfrost’ state. After this stabilization the oscillations become
visible which typically have a much larger frequency (see insets). (a) Bo=0.75,
Ca=2.5·10−5; (b) Bo=0.80, Ca=5·10−5; (c) Bo=0.80, Ca=5·10−4. Λ=5.5·103

in all three cases.
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some small level. The threshold for oscillations is determined for the smallest
asymptotically detectable oscillation. In Fig. 6.14c, the oscillation amplitude
starts to grow after some time and the drop does not reach any asymptotic
state, which is clearly an unstable situation. This explosive scenario is ob-
served at some distance beyond the oscillatory threshold. The growth rate of
the instability depends on the gas flux and the drop size, but especially on the
damping coefficient Λ.

Stability diagram

We investigated the threshold for obtaining surface oscillations by varying the
drop size and the gas flow velocity for ηl=0.20 Pa · s, resulting in the stability
diagram shown in Fig. 6.15. We observe a decreasing transition line, similar
to the experimental results in Fig. 6.4 with larger drops becoming unstable
at smaller airflow velocity. An important observation is that the threshold
is at much larger values (approximately a factor of 10 larger) for the ascend-
ing airflow velocity (factor of about 10), compared to the experiments (see
Fig. 6.4). The relative shape of the transition line is similar in all numerical
stability diagrams obtained for different ηl and ρl, but for decreasing damping
factor and/or increasing liquid density, the line moves in both the left and the
downward direction. In experiments, the influence of the liquid viscosity on
the threshold of the instability turned out to be very small. Obviously, our
artificial implementation of damping is a plausible reason for the discrepancy
between experiments and numerical simulations concerning the threshold.

Frequency analysis

In Fig. 6.8, we show the measured drop oscillation frequencies from the simu-
lations against the drop radius, for different ηl and Ug, and compare them to
the experimental values for a water-glycerine drop. The oscillation frequen-
cies decrease with increasing drop size, and decrease slightly with increasing
gas flow velocity. The observed frequencies appear to be independent of the
damping factor.

The frequencies extracted from numerical simulations are compared to
those measured experimentally on axisymmetric oscillations for highly viscous
drops: the agreement is good for the large radii (R from 5 to 7 mm), but there
are some discrepancies for smaller drop radius. To understand this overesti-
mation from the simulations, it should be pointed out that the magnitude of
oscillations can be much larger in experiments than in the simulations. Non-
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Figure 6.15: Top view radius R versus airflow velocity Ug stability diagram
for Λ=11·103. Black dots point out stable configurations: the drop has no
tendency to oscillate; white squares indicate oscillating drops.

linear effects at finite amplitude generally lead to a decrease of the response
frequency of drops [32], which is especially prevalent for small drops.

6.6 Discussion

In this chapter we investigated the dynamics of drops levitated by a gas cushion
with constant and uniform influx. Various dynamics are observed, in both
experiments and numerical simulations: drops either exhibit stable shapes,
oscillate, or, undergo a ‘chimney’ instability in which the gas pocket breaks
through the center of the drop.

Our experimental results show that for both high-viscosity and low-visco-
sity drops, the threshold flow rate for oscillatory instability continuously in-
creases when decreasing the drop size. At very low Q, we do not reach the
oscillatory state, since there is a maximum drop size beyond which the chim-
ney instability sets in, as predicted by Snoeijer et al. [24]. The trends are
very similar for both viscosities, but the threshold is slightly higher at high
viscosity. This dependence on viscosity is relatively weak in our experiments;
whereas the viscosity was increased by a factor 60, the threshold flow rate only
increased by less than 50%. By contrast, the drop dynamics are strongly in-
fluenced by viscosity. Non-axisymmetric modes and chaotic oscillations could
be observed near the threshold in oscillating water drops, while in the high
viscosity case, only the ‘breathing’ mode is observed. From this observation
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we infer that axisymmetric modes rather than the breaking of the azimuthal
symmetry constitute the origin of the spontaneous appearance of oscillations.

All these features have been reproduced numerically, by coupling inviscid
Boundary Integral code for the drop to a viscous lubrication model for the gas
flow. Because potential flow without any damping was unstable in the inter-
esting time range for the evolution of drop oscillations, an artificial damping
needed to be introduced, which enabled the observation of both stable drop
shapes and oscillations. The idea of a coupling between potential flow liquid
and Stokes gas flow proved to be very useful to study the equilibrium shapes
of Leidenfrost drops and deforming dynamics of these drops, or (the dimple
formation of) impacting drops at room temperature [25] and impacting evap-
orating drops. Interestingly, for the impacting drop simulations, no damping
needed to be involved (because the time range in which we are interested was
much shorter).

In the numerical simulations of Leidenfrost drops it is observed that, within
a certain range of the parameter space, initially stable (steady) drop shapes
gradually start to oscillate. Frequencies of the oscillations are in reasonable
agreement with experimental results, especially for large drops. The most
important difference between our numerical simulations and the experiments
is that the threshold strongly depends on the amount of damping (the larger
the numerical damping constant Λ, the larger the threshold drop radii and flow
velocities). Furthermore, the threshold velocity lies an order of magnitude
away from the experimental one, for simulations with Λ = 11 · 103. The
minimal value of Λ is about 5.5 · 103, at which almost all drop sizes and flow
velocities led to unstable scenarios. Therefore, a more realistic way of damping
needs to be implemented to investigate the position of the threshold.

In both experiments and simulations, the air is injected from below. This
is different from Leidenfrost drops, which float on their own vapor, but their
dynamics are very similar. Hence, it is verified that the phenomenon of star
oscillations does not require any thermal driving, contrarily to previous sugges-
tions [21]. This confirms the preliminary experimental observation [12] that
the origin of drop oscillations are purely governed by fluid dynamics. The
picture that emerges is that the oscillations appear due to an instability of
the coupled system of the lubricating gas flow and the deformable drop. In
the experiments, once the oscillations appear, ‘stars’ naturally develop as a
parametric instability for low-viscosity drops, in a way similar to water drops
placed on an oscillating plate [19]. At higher viscosity, the star formation is
suppressed by viscous damping and only axisymmetric modes appear. This is



REFERENCES 129

similar for the onset of Faraday waves, induced by periodic forcing of a hori-
zontal free surface [33]. Indeed, a large viscosity suppresses the appearance of
the parametric instability that leads to Faraday waves. Therefore, this con-
firms that faceted star shapes are a result of parametric excitation that can
only appear at sufficiently small damping (i.e., liquid viscosity).

Though the exact mechanism that leads to oscillations remains to be ex-
plained, our study unveiled interesting clues to understand the phenomenon
and could dismiss other mechanisms. Interestingly, the Reynolds number for
the high viscosity drops in experiments is relatively small Rel ∼ ŨlRρl/ηl ∼
0.1RfRρl/ηl ≈ 1 (where we estimate the oscillation amplitude as 10% of R)
and still spontaneous oscillations are observed above a threshold radius and
gas flow rate. Previous numerical simulations based on Stokes flow for both
the drop and the gas displayed no oscillations [24]. This raises the question of
whether oscillations indeed cease to exist when further reducing the Reynolds
number, i.e., by increasing the liquid viscosity. It will be a challenge to in-
vestigate this regime experimentally due to practical difficulties of working
with such a highly viscous liquid. Other valuable information could also be
provided by flow visualization inside the drop and the gas, since the results
suggest a crucial coupling between the drop flow and the gas flow. The latter
method applies not only to the experiments, but also to the simulations.
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7
Drop shaping by laser-pulse impact ∗ †

We show how the deposition of laser energy induces propulsion and strong
deformation of an absorbing liquid body. Combining high-speed with strobo-
scopic imaging we observe that a millimeter-sized dyed water drop hit by a
milli-Joule nanosecond laser-pulse propels forward at several meters per sec-
ond and deforms until it eventually fragments. The drop motion results from
the recoil momentum imparted at the drop surface by water vaporization. We
measure the propulsion speed and the time-deformation law of the drop, com-
plemented by boundary integral simulations. The drop propulsion and shaping
are explained in terms of the laser-pulse energy, the drop size, and the liq-
uid properties. These findings are, for instance, crucial for the generation of
extreme ultraviolet (EUV) light in nanolithography machines.

∗Published as: A.L. Klein, W. Bouwhuis, C.W. Visser, H. Lhuissier, C. Sun, J.H. Snoeijer,
E. Villermaux, D. Lohse, H. Gelderblom, “Drop shaping by laser-pulse impact”, Phys. Rev.

Appl. 3, 044018 (2015).
†The numerical simulations in this chapter are part of the present thesis. The experi-

mental work is due to Alexander Klein.
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7.1 Introduction

Laser-induced phase change in liquids can lead to a violent response: deforma-
tion and disruption of the liquid body followed by the ejection of matter. The
complete vaporization or even explosion of micrometer-sized drops can result
from the linear absorption of laser energy [1–3]. Self-focusing and dielectric
breakdown may lead to plasma formation in transparent drops [4–7]. Laser
impact has been used to generate liquid motion by vaporization or plasma
formation in confined geometries [8–10], sessile drops [11], and biological mat-
ter [12–14].

Here, we show how the absorption of laser energy by an unconfined liquid
drop induces a rapid phase change (see Fig. 7.1), which in turn controls the
propulsion, expansion, and fragmentation of the drop. A key application of the
drop shaping by laser impact is found in laser-produced plasma light sources
for extreme ultraviolet (EUV) nanolithography [15, 16]. In these sources the
shape, position, and stability of a liquid tin body directly affect the conversion
efficiency of liquid tin to a plasma that emits EUV light.

The detailed understanding of the hydrodynamic response of an opaque
liquid drop to laser impact poses two fundamental challenges. First, one needs
to resolve how momentum is transferred from the laser to the drop. Second, the
subsequent deformation dynamics and fragmentation of the drop after impact

a) b)

Figure 7.1: Laser-pulses (λ = 532 nm) impacting from the left on magenta-
dyed water drops of radius R0 = 0.9 mm. Images are taken 30 μs after impact
with a color camera and diffusive backlight illumination. (a) White plasma
glow [17] and violent ablation from the drop induced by a focused laser beam.
(b) Fluorescence of the dye and ablation at the drop surface due to local
boiling induced by a uniform laser irradiation.
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have to be quantified. Although drop impact onto a solid substrate has been
studied thoroughly (for a selection, see e.g. Refs. [18–24]), no consensus on the
deformation dynamics has yet been reached and only few studies [19, 20, 25–
27] focused on the fragmentation.

7.2 Experimental methods

Our model system consists of a highly-absorbing drop that is hit by a pulsed
laser beam. In Fig. 7.2 an overview of the experimental setup is shown. The
drop detaches from a capillary, falls, and relaxes to a spherical shape with
radius R0 = 0.9 mm. While it falls down, the drop masks a photodiode that
then generates a reference trigger for the pulsed laser, cameras, and light
source. The �ez-axis of the laser beam is aligned orthogonally to the �ey-axis
defined by the falling drop and the �ex-axis of the imaging optics. The xz-plane
in which the laser beam propagates is below the plane of the trigger laser and
the pinch-off point at the capillary tube.

The drop consists of dyed water with a density ρ = 998 kg/m3 and surface
tension γ = 72 mN/m assumed to be equal to the properties of pure water.
The typical penetration depth of the laser light into the dyed drop is δ ∼
10 μm � R0 [10], which ensures that the laser energy is absorbed in a thin
layer close to the drop surface. The laser-pulse energy is varied between 0 and
120 mJ by an optical attenuator based on a half-wave plate and a polarizing
beam-splitter. The relation between the laser-pulse energy at the drop location
and the settings of the attenuator is determined in separate measurements, for
which the top beam dump shown in Fig. 7.2 is replaced by an energy meter.
A focusing lens decreases the beam diameter to twice the drop size in order to
achieve a uniform but high-intensity illumination of the drop. To ensure the
drop is placed at the center of the laser beam, the drop position is optimized
such that the drop-shape evolution is axisymmetric with respect to �ez and the
propulsion speed is maximum.

The energy E that is actually absorbed by the drop is computed from a
beam-profile measurement and ray-tracing. The typical beam fluence 1 J/cm2

is well below the dielectric breakdown and self-focusing thresholds reported for
water with focussed nanosecond laser-pulses [8, 17]. Consistently, we observe a
plasma only when the laser beam is tightly focused inside the drop (Fig. 7.1a,
see also [12, 13]), but not for a uniform irradiation (Fig. 7.1b). To visualize
the wavelengths in the visible spectrum that are emitted by the drop shown
in Fig. 7.1 we use a magenta-colored ink as a dye and a color camera. For
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Figure 7.2: Sketch of the experimental setup in top view. The drop
(black/magenta ink, IJC-5900/5920 by Sensient) is generated with a capil-
lary tube connected to a syringe pump (PHD2000 by Harvard Apparatus, not
shown). A continuous-wave laser (CWL, CPS196 by Thorlabs) and a photo
diode (PD, PDA36A by Thorlabs) serve as light barrier to trigger on the falling
drop. The lab equipment is synchronized by a high-precision pulse delay
generator (BNC575 by Berkeley Nucleonics) according to the indicated sig-
nal path. The pulsed laser is a frequency-doubled Nd:YAG laser (Evergreen
140 by Quantel) with a pulse duration τp = 10 ns emitting at a wavelength
λ = 532 nm. Attenuation of the laser energy is accomplished by a zero-order
half-wave plate (λ/2), a polarizing beam splitter (PBS), and a beam dump
(BD). The laser-pulse energy is measured by an energy meter (EM, QE12 by
gentec-eo). The circle and arrow symbols along the optical axis respectively
indicate the S- and P-component of the linearly-polarized laser beam that is
focused by a plano-convex lens with a focal length of f = 125 mm. Side-
view images (yz-plane) are taken with a long-distance microscope (LDM, 12x
Zoom by Navitar), a CMOS camera (FASTCAM SA-X2 by Photron), and
a continuous light source (LS-M352A by Sumita). Stroboscopic images are
acquired by a CCD camera (PCO1300 by PCO AG) combined with a light
source (NANOLITE KL-K by HSPS) that delivers a high-intensity light pulse
of 8 ns. A notch filter protects the imaging equipment from scattered laser
light.
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all experiments leading to quantitative results we use a black-colored ink to
suppress fluorescence.

The post-impact dynamics of the drop (Fig. 7.3a) is observed from a side
view (�ez-axis in Fig. 7.2) with a long-distance microscope, a high-speed camera
operated at a frame rate of 20 000 frames per second and a continuous light
source. Detailed information in the first microseconds after impact is obtained
by operating a camera in stroboscopic mode with a flash lamp that delivers
a high-intensity light pulse of 8 ns (Fig. 7.3b). We record stroboscopic videos
by performing a single impact experiment per video frame while changing the
time delay between the laser impact and the pulsed light source. For both
cameras used the size of the field of view is 16 x 10 mm2, which yields a pixel
resolution of 16 μm per pixel.

7.3 Results & interpretation

The drop dynamics for different pulse energies is shown in Fig. 7.3. On im-
pact, the surface of the drop hit by the laser emits a shock wave into the air
(Fig. 7.3b). The shock wave is followed by the ejection of a mist cloud of small
drops that is visible as a gray-to-black haze in the images and persists for sev-
eral microseconds. Subsequently, the mist is expelled while the drop propels
in the opposite direction (Fig. 7.3a). At the same time the drop flattens and
expands in the radial direction before it either retracts, for low pulse energy,
or fragments, for large energy.

We quantify the drop motion by measuring the displacement Z(t) of the
drop center-of-mass and the drop radius R(t) (defined in Fig. 7.3a) for the
first milliseconds after impact. As Fig. 7.4a shows, the drop is propelled at a
constant speed U that increases with increasing pulse energy up to 2.0 m/s.
The accompanying deformation of the drop occurs on the inertial time-scale
τi = R0/U ∼ 10−4 to 10−3 s (Fig. 7.4b) and is eventually slowed down by

surface tension on the capillary time-scale τc =
√

ρR3
0/γ = 3.5 ms. Both the

initial deformation rate τ−1
i and the maximal extension Rmax increase with

increasing pulse energy. We emphasize the clear separation of time-scales

τp � τe � τi < τc (7.1)

between the successive steps, namely, the laser-pulse, the ejection of matter (on
time scale τe ∼ 10−5 s), the initial deformation of the drop, and its capillary
retraction.
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Figure 7.3: Side-view of a dyed water drop with initial radius R0 = 0.9 mm hit
at t = 0 by a laser-pulse propagating from left to right (�ez). (a) Drop shape
dynamics for pulse energies increasing from bottom to top. E is the energy
that is actually absorbed by the drop, We is the Weber number of the propelled
drop (see text). The images are taken at a frame rate of 20.000 frames per
second (τc =3.5 ms). As the laser ablates the front of the drop a mist cloud
is ejected backward (-�ez) while the remainder of the drop is propelled forward
(�ez) and expands radially (�er). For small E the drop retracts after the initial
expansion and no break-up occurs. For E = 24 mJ the edge destabilizes before
it retracts and the drop fragments. (b) Close-up view of the drop surface for
E = 24 mJ revealing the shock wave in the air and the mist cloud development
at early times (increasing from top to bottom).
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Figure 7.4: Center-of-mass displacement Z (along �ez, see Fig. 7.3) (a) and ra-
dial expansion R (b) as a function of time for different absorbed energies. The
corresponding image sequences are shown in Fig. 7.3. Each point is averaged
over two experiments and the shaded area indicates the difference between
the two. The apparent acceleration in Z for t/τc < 0.2 is an artifact of the
method used to determine the center-of-mass position. The large deviation in
R for E = 24 mJ illustrates the statistical nature of the fragmentation. For
E = 15 mJ events of drop ejection from the edge are visible at t/τc = 0.24,
0.36 and 0.63.

To explain the relation between the drop propulsion speed, the radial ex-
pansion, and the laser energy one needs to understand the mechanism that
propels the drop. Surely, both the optical radiation pressure from the laser
and the thermal radiation pressure caused by the heating of the drop surface
are insignificant [28, 29]. The motion actually results from the recoil due to
the partial vaporization of the drop: since the highly-absorbent dye ensures
that the laser energy is absorbed in a superficial layer on one side of the
drop, the vapor expulsion is mainly unidirectional and consequently transfers
momentum to the remainder of the drop.

The light energy is absorbed by a liquid mass ∼ ρR2
0δ set by the penetration

depth of the laser. On the time scale τe, both diffusive and radiative heat
transfers are negligible (the thermal diffusion length is much smaller than
δ [30]). Since the beam profile is flat, and neither the focusing due to the
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drop interface curvature nor nonlinear optical effects (self-focusing or electric
breakdown) are significant, we consider the energy deposition in the superficial
layer to be close to uniform. This energy is sufficient to heat the liquid from
the ambient temperature T0 = 293 K to the boiling temperature Tb � 393 K,
but not to vaporize all of it: only a certain fraction β actually vaporizes.
The energy balance therefore reads E ∼ ρR2

0δ[cv(Tb − T0) + βΔH], where
cv = 4.0 kJ/(kg K) and ΔH = 2.25 MJ/kg are, respectively, the specific heat
capacity and latent heat of vaporization of the liquid.

In all our experiments a mist cloud is observed, which is a clear signal of a
local boiling of the drop. We therefore assume that to get propulsion, a thresh-
old energy Eth ∼ ρR2

0δcv (Tb−T0) ≈ 3 mJ has to be absorbed by the superficial
layer to heat the liquid to the boiling point, which is in good agreement with
the threshold for propulsion observed in our experiments (Fig. 7.5a). Any ad-
ditional energy deposited in the superficial layer is used to vaporize a mass of
liquid m ∼ βρR2

0δ ∼ (E − Eth)/ΔH. An upper limit for the proposed scaling
is given by E/Eth ∼ 1 + ΔH/[cv(Tb − T0)] ≈ 8, in which case the absorbed
energy is sufficient to evaporate the entire heated liquid layer (i.e. β = 1). Any
increase in E beyond this point would lead to a superheated or even a critical
phase, in which case the opaque mist cloud would not be observed [13].

For 0 < β < 1, which is the case of our experiments, the remaining part
of the heated layer that is not vaporized is expelled as a mist of small drops.
We assume that the liquid vaporizes at Tb and that the vapor is expelled at
the thermal speed u =

√
kbTb/μ ≈ 400 m/s, where kb � 1.38 × 10−23 J/K

is the Boltzmann constant and μ = 2.99 × 10−26 kg is the molecular mass of
water. This expelled vapor propels the remainder of the drop. Momentum
conservation mu = ρR3

0U yields

U ∼ E − Eth

ρ R3
0 ΔH

u, (7.2)

that is, an increase in U proportional to that in E. Figure 7.5a shows that
this scaling argument, with a prefactor of 0.4, is in good agreement with our
experimental data.

With a description of the propulsion at hand, we now turn to the drop
deformation. The expansion dynamics is directly affected by surface tension,
which promotes the retraction and possibly the fragmentation of the drop.
The key parameter describing the expansion is therefore the Weber number
of the motion induced by the laser We = ρR0U2/γ, which compares the drop
displacement kinetic energy to its surface energy. In our experiments 1 ≤
We ≤ 60. The impulsive acceleration of our drop from 0 to U is similar to the
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impulsive stop of a drop impacting a solid with velocity U . We therefore use
the momentum-based scaling derived by [18, 20] for drop impact on solids to
express the maximal radial expansion

Rmax − R0

R0
∼ We1/2 ∼

√
ρR0u2

γ

E − Eth

ρ R3
0 ΔH

, (7.3)

in which the expression in terms of E directly comes from (2). Expression (3),
with a prefactor of 0.6, is in good agreement with our experimental data up
to We ∼ 40, when the drop starts fragmenting and the maximum expansion
saturates (see Fig. 7.5b). The scaling (3) has already been observed for drop
impact onto solid substrates with negligible friction [20]. The present setup is
however fundamentally different since, as mentioned above, the typical impact
timescale, during which the drop accelerates, is decoupled from the inertial
timescale: τe � τi.

7.4 Numerical results

To confirm that the interaction of the laser-pulse with the drop can be mod-
eled as a short recoil-pressure pulse exerted on the drop surface, we perform
Boundary Integral (BI) simulations [31–33]. We assume that the flow inside
the drop is inviscid, irrotational, and incompressible, and solve the resulting
Laplace equation for the flow potential. The method assumes axisymmetry
and therefore cannot be used to study the eventual fragmentation of the drop,
but it does capture the initial phase of the drop deformation.

The laser-pulse is modeled by applying a pressure boundary condition at
the drop surface for a time duration τe � τi. We use a Gaussian pressure profile
with a length-scale based on the measured laser-beam profile and a pressure
scale set to match the propulsion velocity observed in the experiment. This
pressure scale is prescribed by the momentum conservation pR2

0τe ∼ ρR3
0U (the

prefactor can be obtained analytically [34]). From (7.2) this recoil pressure
can readily be expressed in terms of the absorbed energy.

The numerical drop shape evolution is shown in Fig. 7.6. It illustrates the
added value of the simulations: not only the two-dimensional projection of the
drop shape, but also the spatial and temporal evolution of the sheet thickness
can be extracted, which is crucial when it comes to study fragmentation [20].
Moreover, Fig. 7.6 shows that the BI model quantitatively predicts the radial
drop expansion observed for different Weber numbers. This confirms that a
pressure pulse applied at the drop surface for a time much shorter than the
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Figure 7.5: (a) Propulsion speed of the drop as a function of the absorbed laser
energy. Each point represents at least four experiments, the error bars indicate
the standard deviation. The solid line is equation (7.2) with a prefactor of 0.4.
(b) Maximal relative expansion Rmax/R0 − 1 for individual experiments as a
function of the Weber number in linear and logarithmic (inset) scales. The
solid line is equation (7.3) with a prefactor of 0.6. For large Weber numbers a
saturation is observed due to the fragmentation of the sheet.
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Figure 7.6: Radial expansion of the drop: experiments (markers) and BI simu-
lations (solid lines). The corresponding image sequences are shown in Fig. 7.3.
The inset shows the drop shape evolution from BI for We = 60 with an ex-
aggerated center-of-mass displacement to separate the successive shapes. The
simulations are stopped when the local sheet thickness becomes too thin to
resolve the dynamics accurately.



144 CHAPTER 7. DROP SHAPING BY LASER-PULSE IMPACT

t/τc= 0.021 t/τc= 0.064

t/τc= 0.0021 t/τc= 0.013t/τc= 0.0064t/τc=0

σ=π/8

t/τc=0

σ=π/6

t/τc=0

σ=π/4

t/τc=0

σ=π/3

t/τc= 0.010

t/τc= 0.011t/τc= 0.0053 t/τc= 0.022

t/τc= 0.21t/τc= 0.11t/τc= 0.052

Figure 7.7: Drop contours obtained from the BI simulations at different points
in time showing the drop shape evolution for four different pressure-pulse
widths (top to bottom): σ = π/3, π/4, π/6, and π/8, for We = 790. To clearly
illustrate the drop shape evolution for each pulse width each sequence of drop
contours is plotted at different times, owing to the differences in expansion
speeds.
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hydrodynamic time scales (τi and τc) is indeed sufficient to describe the hydro-
dynamic response of a drop to the impact of a laser-pulse. For completeness
we also show the results for different widths σ of the Gaussian pressure pulse.
Fig. 7.7 shows the drop contours for σ = π/3, π/4, π/6 and π/8 for We = 790.
Clearly, a smaller σ (focussed laser beam) leads to a larger expansion speed,
thinner sheet with non-uniform thickness and a more curved drop shape.

7.5 Conclusions

We have shown that an opaque free-falling drop hit by a laser-pulse propels
and expands until fragmentation occurs. In the present case the laser energy
is absorbed in a superficial layer of the drop such that the deposited energy
per unit mass E/ρR2

0δ ∼ 0.1 to 1 MJ/kg is comparable to the specific latent
heat of vaporization. As a consequence, drop motion is induced by the recoil
due to vaporization on the face of the drop that is hit by the laser. This
results in a propulsion speed and a maximal radius of expansion that are both
proportional to the pulse energy. The expansion dynamics is limited by surface
tension and is similar to that of a drop impacting a solid, although with a laser-
pulse momentum transfer takes place on a much shorter time scale. Laser-
induced drop fragmentation and the influence of the beam focusing require
detailed studies and are left for future work [34]. All results reported here
should transpose directly to the shaping of liquid tin drops in EUV light
sources. In a regime where a plasma is generated the propulsion mechanism
may change, however, the Weber number remains the key parameter governing
the hydrodynamic response.

7.A Measurement of energy absorption

We first measure the laser beam profile at the drop location (Fig. 7.8). To
avoid saturation of the beam profiler we attenuate the laser energy by a factor
of 106 with two wedged windows and a reflective neutral-density filter. To
determine the fraction of the light that is refracted into the drop at the air-
liquid interface we use ray tracing (valid for R0 � λ = 532 nm). Since the dye
is highly absorbent (δ � R0), we neglect any light transmission through the
drop. The initial condition of the ray tracing is set by the focal length of the
focusing lens and the position of the drop in the laser beam (see Fig. 7.2 of this
chapter). The distribution of rays in space and the energy attributed to each
ray is chosen such that the set of rays resembles the measured beam profile.
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Figure 7.8: Normalized fluence of the laser beam measured at the drop location
by a CCD beam profiler (BC106-VIS by Thorlabs). The profile depicted is the
mean result of 10 single measurements. The dotted line indicates the position
of the drop during the laser-impact experiments.

As a result, we estimate that in our experiments 20 % of the laser-pulse energy
is absorbed by the drop.

7.B Measurement of drop displacement

For each recorded image we determine the center-of-mass position assuming
rotational symmetry of the two-dimensional drop shape. Thereby, we ignore
the concavity of the drop shape, which introduces an error in the determination
of the centre-of-mass position. This causes an apparent acceleration on the
time-scale τi in Z (visible in Fig. 7.4).

To confirm that this acceleration is an artificial result of our algorithm,
we use the results from the BI simulations. In BI the full three-dimensional
axisymmetric shape of the drop is known, and hence the exact centre-of-mass
displacement can be determined (dashed, blue line in Fig. 7.9). In addition,
we compute the centre-of-mass displacement based on the two-dimensional
projection of the BI data using the same procedure as we apply to the ex-
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Figure 7.9: Center-of-mass displacement Z of the drop (along �ez, see Fig. 7.2)
as a function of time in the BI simulation for E = 24 mJ. The blue dashed line
represents the actual centre-of-mass displacement, whereas the red solid line
is the centre-of-mass displacement based on the two-dimensional projection of
the simulated drop shape, which shows an artificial deceleration.

perimental side-view images (solid, red line in Fig. 7.9). The centre-of-mass
determined from the two-dimensional projection shows an artificial decelera-
tion as soon as the drop shape becomes concave. However, Fig. 7.9 also shows
that the final speed of the deforming drop is not affected by the apparent ini-
tial deceleration. Therefore, the error introduced by considering the projected
drop shape only affects the initial deceleration of the centre-of-mass, not its
final speed.
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8
Effect of surface wettability on inertial

pouring flows ∗

A liquid poured from a curved solid surface can separate as a steady jet or
sheet, or trickle down along the solid surface. It was shown by Duez et al.
[Phys. Rev. Lett. 104, 084503 (2010)] that surface wettability controls the
separation of an inertial flow from a solid surface to an unexpected degree,
which was further motivated by an inertial-capillary adhesion model. In this
chapter we extend the analysis by a control volume calculation that takes into
account the velocity profile within the flowing layer, supported by Boundary
Integral potential flow simulations, and the detailed capillary forces induced
by the local curvatures of the sheet. Our analysis captures the appearance
of a critical Weber number below which no steady separated solutions can be
sustained. We investigate the dependence of the critical Weber number on the
wettability and sharpness of the edge of the curved solid, and recover the key
experimental trends.

∗Submitted as: W. Bouwhuis, J.H. Snoeijer, “Effect of surface wettability on inertial
pouring flows”.

151



152 CHAPTER 8. INERTIAL POURING FLOWS

8.1 Introduction

The so-called ‘teapot effect’ is a daily life phenomenon that will be recognized
by everyone. When a liquid is poured too slowly from the (hydrophilic) nose of
a teapot, a bottle or a beaker, the liquid has the tendency to run down along
the underside of the spout, as depicted in Fig. 8.1a. This remarkable effect
already received attention in the 1950s [1, 2], and was explained by Keller and
Vanden-Broeck as a purely hydrodynamic (Bernoulli) principle [2–4]. Since
there is a difference in flow velocity between the top and bottom of the liquid
film, the pressure is lowest directly above the spout lip; sufficiently low that
the flow is pushed further down along the convex solid. In this situation
the liquid film completely ‘trickles’ around the solid, and exact potential flow
solutions were found in which the edge of the solid was treated as perfectly
sharp [3, 4]. After trickling, a possible separation from the solid could be
induced by gravity.

(b)(a)

Figure 8.1: Problem sketch. (a) Water flow trickling around the curved (hy-
drophilic) solid surface, known as the ‘teapot effect’. (b) The water repellence
of the solid (or the flow speed of the liquid) overcomes the trickling behavior.

However, one can overcome the trickling scenario by increasing the flow
speed, such that the liquid jet or sheet separates from the solid with an an-
gle, as is sketched in Fig. 8.1b. Simulations of pouring flows have revealed
complicated dynamics, particularly when the Reynolds number of the flow
becomes of order unity [5, 6]. Moreover, Duez et al. [7] found that surface
wettability controls the flow separation to an unexpected degree, also at large
Reynolds numbers. This was also confirmed by recent experiments that aim
to develop controlled overflow by surface manipulation [8]. Since wettability is
determined on a microscopic scale, this highlights the importance of multiple
length scales in the problem of pouring flows. In some sense, the experiments
and analysis by Duez et al. have revealed a relatively simple framework for



8.2. MODEL 153

understanding the various regimes of pouring flow. The experiments were per-
formed using an axisymmetric set-up that is the top part of the ‘liquid bell’
geometry [9–11], for which the relevant parameters are the flow speed, the
wettability of the solid, and the radius of curvature at the edge of the im-
pacter. The transition between inertia-induced sheet separation and trickling
appeared at well-defined Weber numbers, whose critical values depend on the
contact angle and sharpness of the solid edge. Using a scaling argument for
the horizontal momentum balance, Duez et al. predicted a dependency on the
flow speed of the liquid and the wettability and sharpness of the solid surface,
capturing the main experimental trends – though surprisingly, the experimen-
tal trends by Dong et al. [8] suggest a different dependence on the curvature
of the edge (linear instead of quadratic). The modeling approach has so far
been limited to a force balance in the horizontal (not in the vertical) direction
and it has remained a challenge to explicitly capture the origin of the trickling
transition. In addition, it is not clear how these results relate to the analytical
potential flow solutions [3, 4], which excluded the effect of surface tension and
finite edge-curvature.

In this chapter, we will perform a control volume analysis for inertial pour-
ing flows over a solid edge of finite curvature, by taking into account the capil-
lary forces induced by the shape of the meniscus and the velocity profile within
the liquid. By releasing some geometric constraints imposed in [7], this will
allow for a force balance in the horizontal and vertical direction. The model
is solved for varying flow parameters and geometric parameters, and we show
how this indeed leads to the appearance of a critical Weber number for the
trickling transition. In Sec. 8.2, we will introduce the relevant parameters in
the problem and the basic assumptions. This results into a set of coupled equa-
tions that provide a prediction for the separation angle. Our main findings
will be presented in Sec. 8.3, where we give both numerical and asymptotic
predictions for the critical Weber number. The results will be summarized
and compared to experiments in Sec. 8.4.

8.2 Model

8.2.1 Definitions and assumptions

A sketch of the problem and the relevant parameters is given in Fig. 8.2a.
Like Ref. [7], we treat the flow as two-dimensional and define a horizontal x
direction, and a vertical y direction. We assume a steady, laminar, irrotational
flow with high Reynolds number. In that case the flow can be considered
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uniform both at the inflow above the solid and within the separated sheet,
with velocity U and the film thickness is h. The edge of the solid has a
circular shape, characterized by the radius of curvature ri. We assume the
sheet separates at an angle α with respect to the horizontal direction, and an
important part of the analysis is to determine this angle. The sheet separates
from the solid at the position angle β defined with respect to the vertical
axis. Note that, in general, α �= β and we treat these angles as independent
parameters. At the separation point, a small capillary meniscus is formed,
which has a radius of curvature rm, which is set by the Young-Laplace pressure
difference over the free surface [12, 13]. Locally, the circle formed by the
meniscus crosses the ri-circle with the contact angle θ0, which is how the
surface wettability enters the analysis. Note that rm is typically much smaller
than ri (Fig. 8.2 not drawn to scale).
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Figure 8.2: Flow around the edge of a solid and two different definitions of
the Control Volume (CV), indicated by the gray area. (a) Definition sketch
and the Control Surface (CS) located just inside the liquid. A liquid film with
thickness h, which has a uniform flow velocity U , bends around a solid surface
with radius of curvature ri. θ0 is the solid-liquid contact angle. α is the global
deflection angle of the separated liquid sheet with respect to the horizontal
(x) direction, and β is the angular width of the wetted fraction of the solid.
α and β are a priori independent. rm is the radius of curvature of the circle
formed by the meniscus. The figure is not drawn to scale, typically rm � ri.
The value of the marked angle ∗ is π−θ0 −β+α. (b) The force balance and
the CS located just outside the liquid. The forces, indicated by the arrows,
respectively are the capillary forces acting in the interface (denoted by γ),
and the resultant force Fd induced by the pressure difference over the sheet
(PA−PB).
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Assuming inviscid flow, the introduced parameters can be expressed by
three dimensionless control parameters, which are the Weber number We =
ρU2h/γ, where ρ and γ are the density and liquid-gas surface tension of the
liquid, respectively, the ratio r̃i = ri/h, and the contact angle θ0. For charac-
teristic values around U ∼ 1 m/s and h ∼ 0.1 − 1 mm, the Weber number
for water is of order 1 to 10. The corresponding Reynolds numbers are about
102 − 103, so we can indeed assume laminar flow and neglect viscosity.

Clearly, the formulation presented here closely follows Duez et al. [7],
though some notable differences appear. Importantly, we release the geo-
metric constraint that the tangent of the sheet (with angle α with respect to
the vertical direction), is also a tangent line to the edge of the solid (i.e. the
circle of radius ri). In this manner we can treat α and β as two independent
parameters, and the momentum balance can be maintained in both x and y
directions. Other minor differences appear below, when estimating the forces
acting on the control volume.

We will solve the deflection angle α of the liquid sheet as the result of the
hydrodynamic and capillary forces using linear momentum conservation. The
mechanism responsible for the liquid sheet bending is that the velocity profile
over the curved solid is not uniform, contrarily to the inflow and the outflow of
the control volume indicated in Fig. 8.2. This velocity profile implies a pressure
difference across the film, which induces a hydrodynamic force, Fd, exerted by
the solid on the liquid, pulling the liquid along the curved edge. This is
sometimes referred to as the Coanda effect [14]. The resultant capillary force
in the small meniscus is denoted as Fmen, while the effect of surface tension
over the top of the curved sheet yields Ftop. Importantly, we can define the
CV in two ways, indicated by Fig. 8.2a and b, respectively. In Fig. 8.2a, the
Control Surface (CS), is located just inside the liquid; in Fig. 8.2b the CS
is located just outside the liquid. In the first case, the capillary force can be
evaluated by integrating the Young-Laplace pressure over the control surfaces;
in the second case, there is no normal force working on these surfaces, but the
surface tension acts parallel on the edge of the liquid domain. Both points of
view of course result into the same final equations and the resultant forces are
indicated by the arrows in Fig. 8.2b. The resulting momentum balance for the
x direction reads

ρU2h (cos α − 1) = Fd,x + Fmen,x + Ftop,x, (8.1)

while for the y direction we have:
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−ρU2h sin α = Fd,y + Fmen,y + Ftop,y. (8.2)

Here we used that the Control Volume (CV) contains the full bending of the
stream, such that the left and right boundary of the CV are located where the
flow is uniform.

It is instructive to consider the momentum balance in the context of the
exact solutions by Keller & Vanden-Broeck [2–4]. These are obtained by treat-
ing the solid as a perfectly sharp edge in the absence of capillary effects. This
effectively corresponds to We = ∞, r̃i = 0, while the angles θ0 and β are
not defined in this limit. It was found that analytical solutions exist for each
value of α; one could use the momentum balance (8.1,8.2) without the capil-
lary forces (Fmen = Ftop = 0) to determine the dynamical force Fd, for each
value of α. Importantly, however, this analysis does not lead to a selection of
α. A selection of α does appear at finite values of We and r̃i, one thus needs
explicit expressions for all terms in Sys. (8.1,8.2), as will be developed below.
In Sec. 8.2.2, we investigate the velocity profile and the pressure distribution
in the liquid, from which we compute the various forces in Sec. 8.2.3. The
resulting set of equations will be presented in Sec. 8.2.4.

8.2.2 Flow profiles and pressures

To compute the pressure distribution in the liquid we require the velocity
profile inside the flowing liquid, for a given geometry characterized by r̃i.
Here, we focus on the case r̃i � 1 for which the flow will evolve towards
concentric ‘circular’ streamlines around the circular edge of the solid [10].
Under the assumption of potential flow, this corresponds to a free vortex with
a tangential flow velocity u ∼ 1/r. Such a profile is quite different from the
corner solutions for r̃i � 1, and the resulting pressure distribution is expected
to be quite different.

We therefore verified the 1/r profiles for an experimentally relevant case,
r̃i = 4, We = 55, using potential flow simulations using an axisymmetric
Boundary Integral (BI) routine [15–18]. We solve the Laplace equation ∇2ϕ =
0 for the flow potential ϕ in the domain indicated in Fig. 8.3a, containing a
small inlet region before the circular bend, ending with a separated sheet. In
the simulations the contact line is pinned at a fixed position angle β. Note
that the BI simulations are only used for the confirmation of the presumed
velocity profile – we have not succeeded in creating perfectly steady sheets in
the simulations, except for trivial solutions.
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Figure 8.3: Potential flow simulation of the velocity profile in the flowing layer.
(a) Sketch of the simulation domain. The red lines are undeformable solid
boundaries, while blue edges are deformable and exhibit capillary pressure.
The dots are nodes of the boundary integral simulations. Parameters are
taken r̃i = 4, We = 55. The simulated setting is in fact axisymmetric, like the
experiment using an impacter of radius Rimp [7]; here we adapted a typical
experimental value Rimp/h = 26. (b) Velocity profiles (normalized by the
average Uave), measured across the liquid film for different locations around
the curved solid. The velocity profile quickly evolves towards the expected 1/r
profile (dash-dotted line).
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The result is shown in Fig. 8.3b, where we plot the normalized velocity
profile across the film for various locations ψ along the curved edge (defined
in Fig. 8.3a). The initially uniform inflow indeed rapidly evolves towards a
1/r profile, indicated as the dash-dotted line. The entrance/exit effects are
quite small: for the example of Fig. 8.3 it is not more than a few degrees at
the beginning of the bend, and about 10 degrees at the bottom part where the
liquid separates from the solid. This shows that a 1/r profile for r̃i � 1 is a
valid approximation.

Thus, we base our further calculations on the velocity profile u = A/r,
were the constant A is determined from mass conservation,

Uh =
∫ ri+h

ri

udr =
∫ ri+h

ri

A

r
dr, (8.3)

so that

u = U

(
1

r
h ln(1 + 1

r̃i
)

)
. (8.4)

The flow velocity directly above the solid surface is larger than at the top of
the liquid sheet, so the pressure difference PA − PB (cf. Fig. 8.2a) is indeed
positive from the steady Bernoulli equation:

ΔP = PA − PB =
1
2

ρ
(
u|2r=ri

− u|2r=ri+h

)
= ρU2

⎡⎢⎣ 1
2 + r̃i

r̃2
i (1 + r̃i)

2
(
ln(1 + 1

r̃i
)
)2

⎤⎥⎦ . (8.5)

Computing PA (gauge) using the Young-Laplace pressure difference as

PA =
γ

h

[
1

1 + r̃i

]
, (8.6)

we obtain

PB =
γ

h

[
1

1 + r̃i

]
− ρU2

[G(r̃i)
r̃i

]
. (8.7)

Here we introduced a dimensionless geometrical factor

G(r̃i) =
1
2 + r̃i

r̃i (1 + r̃i)
2
(
ln(1 + 1

r̃i
)
)2 , (8.8)
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which encodes all relevant information of the velocity profile.
Using that PB = −γ/rm, we also extract an expression for rm:

rm

h
=

1 + r̃i

We
(
1 + 1

r̃i

)
G(r̃i) − 1

. (8.9)

Thus, the size of the meniscus rm adapts to accommodate the low pressure
PB. Note that We is typically large, and hence rm � ri.

8.2.3 Calculating the forces

We can now proceed to the evaluation of the several terms in the momentum
balances (8.1,8.2) by integrating the local pressures along the different sections
of the CS of Fig. 8.2a, which is located just inside the liquid. Along the solid,
we find for the force induced by the pressure difference projected in x direction,
Fd,x:

Fd,x =
[∫

PBdAwet

]
x

=
∫ β

0
PBri sin ψdψ

=
[
ρU2hG(r̃i) − γ

(
r̃i

1 + r̃i

)]
(cos β − 1) , (8.10)

where the integration variable ψ is the angle with respect to the vertical (see
Fig. 8.3a). Similarly, we find for Fd,y:

Fd,y =
[∫

PBdAwet

]
y

= −
∫ β

0
PBri cos ψdψ

= −
[
ρU2hG(r̃i) − γ

(
r̃i

1 + r̃i

)]
sin β. (8.11)

The capillary forces are induced by the Young-Laplace pressures over the
free surface of the meniscus (Fmen,x and Fmen,y), and over the top free surface
of the film (Ftop,x and Ftop,y). For the capillary force induced by the curvature
of the top of the sheet, projected in the x direction, we find

Ftop,x = −
∫ α

0
PA (ri + h) sin ψdψ

= −
∫ α

0

(
γ

ri + h

)
(ri + h) sin ψdψ

= γ [cos α − 1] , (8.12)
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and

Ftop,y = −γ sin α. (8.13)

Note that the expressions for Ftop,x and Ftop,y are more easily interpreted by
considering the explained equivalent picture of the force balance in Fig. 8.2b:
the separate terms are the x and y projections of the capillary forces along the
free surfaces of the CV. A similar observation holds for the capillary forces in
the meniscus, which can be obtained by integrating the pressure PB over the
meniscus circle with radius of curvature rm

Fmen,x =
∫ α

−(π−β−θ0)
PBrm sin ψdψ

=
∫ α

−(π−β−θ0)

(
− γ

rm

)
rm sin ψdψ

= −γ [cos(−(π − β − θ0)) − cos α]

= γ [cos(β + θ0) + cos α] , (8.14)

and

Fmen,y = γ [− sin(β + θ0) − sin α] . (8.15)

Here we used the fact that the meniscus angle, ∗ in Fig. 8.2, is equal to
π − θ0 − β + α, as follows from the geometry.

8.2.4 Resulting system of equations

The momentum balance (8.1,8.2) combined with the computed forces finally
yield the key equations of the model:

[
We − WeG(r̃i) − 1

(1 + r̃i)

]
+ [2 − We] cos α

+
[
WeG(r̃i) − r̃i

(1 + r̃i)

]
cos β + cos(β + θ0) = 0; (8.16)

[2 − We] sin α +
[
WeG(r̃i) − r̃i

(1 + r̃i)

]
sin β + sin(β + θ0) = 0, (8.17)

with We = ρU2h/γ, as previously defined. This system should be seen as
equations for the angles α and β, which can be solved for given values of We,
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r̃i, and θ0. Note that by imposing a contact angle θ0, we by definition consider
only separated sheets.

Before we proceed to the numerical solutions of (8.16,8.17) in Sec. 8.3, we
can already analyze a few interesting limits. The limit We → ∞ gives as only
solution α = β = 0, corresponding to the perfect horizontal sheet, for every
value of θ0. Interestingly, the same holds for θ0 = 180o, for which there is no
capillary adhesion: if the surface is superhydrophobic, the jet/sheet will be
perfectly horizontal for any We. A third interesting case is r̃i → ∞, for which
G(r̃i) → 1 and no separated solution exists, unless θ0 = 180o. These trends
all agree with the experiments in Ref. [7]. A final special case is We = 2.
In that case, the α dependence completely drops out of the equations, and
we are left with two equations for a single unknown, β. This has no solution
unless θ0 = 180o. We can interpret We = 2 as a minimum flow speed needed
for a non-retracting sheet, as this indeed coincides with the Taylor-Culick
velocity [19, 20].

8.3 Results

8.3.1 Solutions

We now analyze the solutions of the momentum balance (8.16,8.17). In
Fig. 8.4a we report the separation angle α as a function of We for r̃i = 4.
The various curves correspond to different wettabilities, with θ0 increasing
along the arrow. It is found that solutions only exist above a critical value of
the Weber number, Wec, which we identify as the threshold for the trickling
transition. The critical point is found to coincide with α = 180◦. Above Wec,
the momentum balance admits two possible solutions. However, solutions for
α larger than 180o are not physical in the sense that the liquid would cross the
solid and we focus on the lower solution branch. As expected, the deflection
angle α increases when the fluid’s inertia is reduced, i.e. as the Weber number
is decreased. The sketches in Fig. 8.4b-d further illustrate this effect. It should
be emphasized that the deflection angle varies rapidly with We for α beyond
90◦, i.e. when the critical point is approached. The inset of Fig. 8.4a shows a
zoom around the critical point for both angles, α (blue solid line) and β (red
dashed line) for θ0 = 90o. The two angles always take similar values, with a
maximum difference of about 20o. The global minimum of β is also reached
at Wec, but has a value slightly below 180o (equal to 180o if θ0 = 0o).

The critical Weber number is thus found to depend on the wettability of
the solid. Figure 8.5 presents Wec as a function 1 + cos θ0 for several values
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Figure 8.4: (a) α vs We = ρU2h/γ for r̃i = 4 and different contact angles.
Following the arrow, θ0 increase from 0o to 150o in steps of 30o. Solutions
only exist for We larger than a critical Weber number Wec. Inset: a detailed
view of α and β as a function of We around Wec for θ0 = 90o. (b-d) Resulting
flow contours, corresponding to the marked dots in panel (a), showing the
dependence of the separation angle on the Weber number for θ0 = 150o.



8.3. RESULTS 163

0 0.5 1 1.5 2
0

5

10

15

20

1+cos( θ
0

)

W
e

c

 r
i
 / h  = 8

 r
i
 / h  = 4

 r
i
 / h  = 2
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0.5, 1, and 2 mm, and h = 0.25 mm. Solid lines are numerical solutions of the
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0.25 mm, for θ0 = 10o, 90o, 120o, and 175o. Solid lines are numerical solu-
tions of the momentum balance; dashed lines correspond to the approxima-
tion (8.19). The model is not valid below r̃i ∼ 1, where the predictions are
given by a dotted line.
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of r̃i (solid lines). The dependence is approximately linear, with a slope that
increases for increasing r̃i. The linearity no longer applies when 1 + cos θ0

is small, i.e. the superhydrophobic limit, for which all curves converge to
Wec = 2. In this case there is no adhesion by the solid and the minimal
velocity is given by the Taylor-Culick velocity of a free sheet.

Figure 8.6 shows Wec as a function of the radius of curvature of the solid
r̃i, for several values of θ0 (solid lines). For large r̃i we again find a linear
trend, reflecting that it is more difficult to separate the sheet when the edge
of the solid is not sharp. Note that the model is only valid for r̃i ≥ 1, owing to
the assumptions of the velocity field that leads to (8.8). It is still interesting to
report the model prediction for r̃i < 1: there is even a divergence that appears
when G takes the value 1 (Fig. 8.6, dotted lines). In the Discussion section we
briefly comment on the limit of small r̃i.

8.3.2 Asymptotic expansion

It is instructive to attempt an approximate solution for the critical Weber
number, based on the observation that at the critical point α = 180o and
β = 180o − ε, where ε turns out to be small (< 20o). Hence, we expand
Sys. (8.16,8.17) around up to first order in ε, replacing sin ε ∼ ε and cos ε ∼ 1.
Using sin (θ0 − ε) = sin θ0 cos ε − cos θ0 sin ε and cos (θ0 − ε) = cos θ0 cos ε −
sin θ0 sin ε, we find for ε (in radians):

ε ≈ sin θ0

G(r̃i)We + cos θ0 − r̃i

1+r̃i

, (8.18)

and

We2
c + AWec + B ≈ 0, (8.19)

with

A =
2
(

r̃i

1+r̃i

)
+ cos θ0 (3G(r̃i) − 2) + 2G(r̃i)

(
1 − r̃i

1+r̃i

)
+ G(r̃i)

(
1−r̃i

1+r̃i

)
−2G(r̃i) + 2G(r̃i)2

,

(8.20)
and

B =
−2
(

r̃i

1+r̃i

)
+ 2 cos θ0 + r̃i(r̃i−1)

(1+r̃i)
2 −
(

2r̃i−1
1+r̃i

)
cos θ0 + 1

−2G(r̃i) + 2G(r̃i)2
. (8.21)
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This gives a quadratic equation for Wec, which is superimposed as dashed
lines in Figs. 8.5 and 8.6. Indeed, this approximate solution gives a very good
description of the full solutions. The difference is largest for θ0 ∼ 90o, where
the largest values for ε are encountered.

We could even further simplify (8.19) when r̃i � 1. G(r̃i) can then be
approximated by 1−1/ (2r̃i)), and this yields

Wec ∼ r̃i (1 + cos θ0) . (8.22)

This predicts linear behavior of the critical Weber number with respect to
both the aspect ratio r̃i and to 1 + cos θ0, which is consistent with our results
in Figs. 8.5 and 8.6.

8.4 Discussion

We have performed a control volume analysis of inertial pouring flows, taking
into account the fluid inertia, surface tension, and the curvature of the edge
of the solid. The analysis explicitly recovers that steady states can only exist
above a critical Weber number Wec, and thus captures the transition to trick-
ling. The work also recovers the experimental trends that Wec decreases as the
solid is sharper and more hydrophobic, and identify a lower bound Wec ≥ 2.
Here we wish to conclude by making a direct comparison to experiments [7, 8].

Figure 8.7a reports the separation angle α against We/Wec for three dif-
ferent contact angles, θ0 = 10o, 115o, and 175o. The value of r̃i = 4 was
adapted from the experiment, and the symbols represent data from Ref. [7].
It is clear that the model captures the experimental trends, but is limited in
terms of quantitative prediction. In particular, the change of angle α close
to the critical point is underpredicted by the model. Also, the experiments
at large Weber number exhibit a sheet deflection of the order of 10◦, which
points to either dissipation in the fluid or an influence of the axisymmetric
setup – both of which are not taken into account in the model.

In Fig. 8.7b, we show the critical Weber number Wec as a function of
1+cos θ, for three different r̃i. The model nicely captures the linear dependence
Wec ∼ (1 + cos θ0) that is observed in experiment. In addition, the data
in Fig. 8.7b are consistent with the predicted lower bound on the critical
Weber number of Wec = 2, set by the Taylor-Culick velocity. The model
underestimates the dependence on r̃i: we predict a linear increase of Wec

with r̃i, while the experimental data are better described by r̃2
i , as was also

proposed by a scaling argument [7]. However, the recent data in Ref. [8] are
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Figure 8.7: Quantitative comparison between our model and experimental
data taken from Duez et al. [7]. (a) α vs. We/Wec for θ0 = 10o, 115o, and
175o; ri = 1 mm and h = 0.25 mm; (b) Wec vs. (1 + cos θ0) for several
r̃i = ri/h.

best described by a linear dependence on r̃i, even though their experimental
setup is in principle comparable. At present, there is thus some uncertainty
on how the sharpness of the edge affects the trickling transition. We do note
that the model predictions shown here are without adjustable parameters and
the discrepancy with, and between, various experiments is always less than a
factor of two.

The momentum balance presented in this chapter has the merit that it pro-
vides a general framework for future investigations of pouring flows. Namely,
the capillary forces are described correctly here – apart perhaps from the ques-
tion of whether θ0 can be interpreted as the equilibrium contact angle [21, 22]
– and the main assumption is on the estimate of the hydrodynamic force Fd.
As mentioned already, we only estimated this force in the case of large r̃i,
but (8.1,8.2) can in fact be used to estimate Fd based on experimental data.
The black triangles in Fig. 8.7b correspond to experiments with r̃i = 0.12,
for which Wec exhibits almost no dependence on wettability and is close to
the lower bound Wec = 2. The momentum balance suggests that Fd → 0 in
this limit, implying a vanishing hydrodynamic retention around sharp edges.
Interestingly, this is a strong departure from the exact potential flow solutions
around a perfectly sharp edge [3, 4], which do not include capillary adhesion,
for which trickling completely relies on a nonzero Fd. Future work should fur-
ther reveal how the presence of a meniscus on a sharp edge influences trickling
in inertial pouring flows.
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9
Summary and outlook

9.1 Summary

9.1.1 Small air bubble entrapment at liquid impact

In Chapters 2-4 we focus on small air bubble entrapment during the impact
of a liquid drop on a solid surface, a liquid drop on a liquid pool, and a solid
sphere on a liquid pool. There are a few different mechanisms for air bubble
entrapment that appear for these impact scenarios, and in the first chapters
of this thesis we study in detail the small scale deformations of the liquid sur-
face(s) at the bottom of the drop/object, induced by the force exerted by the
gas that is squeezed out between the falling object and the bottom surface.
In Chapter 2 we start with impacting drops onto solid surfaces. By perform-
ing interferometry experiments, we are able to visualize the micrometer scale
deformations of the drop, just before the drop touches and wets the surface.
The results of the experiments and Boundary Integral simulation confirm that
there exists a maximal entrained bubble size for some impact velocity (keeping
the drop size, and, of course, the liquid and gas properties constant). In the
simulations we assume that the liquid within the drop obeys potential flow,
and the air in the small gas layer obeys viscous lubrication flow. We explain
the maximal bubble entrapment as follows: for large drops and/or large impact
velocities, it requires a large force to locally slow down and deform the drop -

169



170 CHAPTER 9. SUMMARY AND OUTLOOK

the entrained air bubble will be small. However, for small drops and/or small
drop velocities, the surface tension of the liquid acts against the deformation
of the drop, also minimizing the size of the air bubble. In between these two
regimes, there is a cross-over, where we find maximal air bubble volumes. We
estimate this maximum from scaling theory, the interferometry experiments,
and the Boundary Integral simulations.

Once we resolved the mechanism for small air bubble entrapment for a
drop impacting onto a solid surface, the natural question arises whether the
same applies to the other impact scenarios: a sphere onto a pool, and a drop
onto a pool. This is the central question addressed in Chapter 3. Using
Boundary Integral simulations and a collection of experimental data from the
literature, we indeed find that the mechanism explained above is universal and
that the sizes of the entrained air bubbles are in fact equal for the three impact
scenarios, except for the fact that the bubbles at impact of a liquid drop onto
a liquid pool are larger by a factor of exactly 2. The equivalence between
the scenarios can be explained from the fact that the deformations are very
localized, on a length-scale much smaller than the size of the drop/sphere,
yielding a symmetry between the several cases. The factor 2 in case of liquid
drop impact on a pool can be explained by noting that in that case the air
pressure deforms two liquid surfaces instead of one.

In Chapters 2 and 3 we have been particularly interested in the final de-
formation of the involved liquid surfaces, up to the moment of touch-down.
Namely, this determines the size of the entrapped air bubble. In Chapter 4 we
take a step back and apply a perturbation expansion to find out how the ini-
tial deformations evolve over time and converge to the resulting dimple shape
just before touch-down. This is of particular interest, since the scaling laws
in Chapters 2 and 3 are based on the initial stages. It turns out that we need
to distinguish between inertial gas flow and viscous gas flow, and large-gap
gas flow and thin-gap gas flow. The two cross-overs are quantified in detail
and scaling laws for the regimes are presented. For ‘typical’ impact parame-
ters (a millimeter sized drop falling at its terminal velocity of a few meters per
second), the falling drop/object first encounters a large-gap inertial regime, fol-
lowed by a thin-gap inertial regime, and finally a thin-gap viscous flow regime.
For all cases we derive the spatio-temporal evolution of the pool surface, and,
surprisingly, our analysis reveals that inertial and viscous cushioning both lead
to a pool deflection of the order of a micrometer. However, we still find that
the bubble volume is mainly determined by the effect of gas viscosity, as the
Stokes gas pressure is highly localized and most strongly increases during the
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final stages. This explains the very good agreement we found in Chapters 2
and 3 between the experiments and the numerical simulations, where in the
latter case we neglect the inertia of the gas.

9.1.2 High-speed microdrop train impact on a pool

In Chapter 5 we consider the impact of a high-speed train of micrometer sized
drops onto a deep liquid pool. The momentum of the successive impacting
drops is large enough to create a deep and narrow cavity, with a depth of
about one thousand times the size of the individual drops. The cavity shape
and its maximal depth primarily depend on a balance between inertia and
surface tension; due to the small size of the drops, hydrostatics only has a
relevant influence if the cavity grows deep enough. The collapse of the cavity
is thus fully determined by capillary effects, and typically occurs at the top,
near the pool surface. We identify the scaling laws that characterize the shape,
time to pinch-off and maximal depth of the cavity.

9.1.3 Levitated drops

In Chapter 6 we make the step from impacting drops to levitated drops, i.e.,
drops which are completely lifted from a surface as a result of a continuous
gas flow at the drop bottom. This situation arises for example for Leiden-
frost drops, where the gas on which the drop floats comes from the drop,
which is evaporating, itself. Leidenfrost drops can spontaneously start to os-
cillate and break symmetry, and the mechanism of this behavior, called the
star-drop instability, has not yet been resolved. By injecting the gas flow
beneath the drop, we can make the drop float on an external gas layer, at
room temperature. In these experiments, we observed the very same oscillat-
ing and symmetry-breaking behavior compared to the Leidenfrost case, ruling
out the influence of temperature and heat transfer on the star-drop instabil-
ity. The oscillations thus must have a hydrodynamic origin, and in Chapter 6
we indeed reproduce the instability using (hydrodynamic) Boundary Integral
simulations. The simulations also reproduce steady levitated drops and gas
pockets breaking through the drops (the ‘chimney’ instability). We find that
the oscillatory instability consists of two stages: an axisymmetric stage, which
is an interplay between the liquid flow and the gas flow, and a symmetry-
breaking stage, where the oscillations make the drop break symmetry with
the preferred oscillation mode (the Rayleigh mode).
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9.1.4 Drop shaping by laser-pulse impact

In Chapter 7 we study the response of liquid drops impacted by a focused laser
pulse. This is motivated by Extreme Ultraviolet (EUV) lithography, which is
used for the creation of nanometer-sized patterns on electronic chips. The
role of technology in our society keeps growing at an impressively high rate.
To print the small features at high resolution, one needs small wavelength
radiation. In EUV-machines this radiation results from liquid tin sheets that
are impacted by a laser-pulse, resulting in the formation of plasma. The
sheets are created by drops impacted by a first laser-pulse. The strong local
evaporation due to the impact of the laser results in a recoil of the drop:
the drop propels and expands to a sheet till fragmentation occurs. The fluid
dynamics play a crucial role for improving the efficiency of the EUV machine.
We perform an experimental analysis and Boundary Integral simulations, in
which in the latter case the energy input is modeled by a very short pressure
pulse acting along the drop surface. We find that the propulsion speed and
the maximal radius of the expansion are proportional to the laser pulse energy
and provide scaling laws for the dependency of these parameters on the shape
of the pulse. The expansion dynamics are limited by surface tension, in a
way similar to the limitation of the spreading of a drop impacting on a solid
surface.

9.1.5 The effect of wettability on inertial pouring flows

Chapter 8 describes a study of ‘inertial pouring flows’, fast flowing liquids
separating from a curved solid surface. A typical daily life example of a pouring
flow is the flow of tea from the spout of a teapot. If the pouring velocity is
too small, the liquid does not separate from the solid, but trickles down the
spout, a phenomenon which is called ‘the teapot effect’, and which annoys a
lot of people. While a former study has shown that the angle of separation
depends on the wettability of the solid in an unexpected degree (and that the
teapot effect can even be completely beaten by using a super hydrophobic
teapot spout), a physical explanation for the trickling behavior was not yet
found. By solving the 2D linear momentum balance, taking into account the
flow profile and the capillary forces on the top and bottom of the liquid, we
analytically find that, indeed, no steady (stable) solutions exist for small flow
velocities, which leads to trickling. We quantify this minimum flow velocity as
a function of the flow parameters, and recover the main experimental trends.
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9.2 Outlook

To conclude this thesis, we now discuss some possible directions for future
work.

9.2.1 Small air bubble entrapment at liquid impact

The maximal volume of a bubble entrapped during drop impact onto a solid
surface is observed in both the experimental and Boundary Integral simulation
results and explained by scaling theory. However, if one looks more critically
to Fig. 2.2, two things catch the eye, which are left unaddressed in Chapter 2.

Firstly, the numerical results show that the maximum of the bubble volume
is located at a smaller Stokes number than the maximum of the dimple height;
the maximum in Fig. 2.2b is shifted somewhat to the left with respect to
the maximum in Fig. 2.2a. Figure 2.5a shows how this can be possible: the
numerical dimple profiles in the cross-over regime turn out to be typical ‘double
dimples’: the profiles exhibit a kink. In the Boundary Integral simulations, it
seems that, within the cross-over regime, the dimple profile is a superposition
of the narrow profile induced by the inertial behavior of the liquid, and the
typically broader (and lower) profile induced by capillary effects. In the cross-
over both play a role. It would be worth investigating these features in more
detail.

Secondly, the scaling prediction of the bubble volume in the capillary
regime does not agree quantitatively with the experimental and numerical
results. These results seem to suggest Vb ∼ R3Ca2, instead of our scaling
prediction of Vb ∼ R3Ca. In the capillary regime, where the dimple formation
process happens relatively slow, the air has much more time to ‘drain out’ af-
ter the central height of the drop bottom converged to Hd. This would indeed
decrease the bubble volume with respect to our scaling predictions. Recently,
it has been found that draining of the air possibly even changes the bubble
volumes in the inertial regime [1]. We can also imagine that, for example,
the wettability and roughness of a solid surface plays a crucial role during
the formation of a bubble from an air film [2]. The touch-down between the
two surfaces might imply the break down of our assumption of macroscopic
hydrodynamics, and one should start to take into account the mean free path
of the moving gas. A possible suggestion is to study the first contact using
Molecular Dynamics (MD) simulations, which might give interesting clues.

Besides the touch-down and rupture mechanisms, one could think of an
other kind of liquid-solid interaction at liquid impact, but before the moment of
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touch-down. Ongoing research focuses on drop impact on structured surfaces,
pillars (with diameters with the order of magnitude of the size of the impacting
drop), or on several - non-symmetric - shapes of the solid surface. Indeed,
the assumption of axisymmetry in our simulations is also a limitation on the
possible geometries. To account for 3D impact problems [3], the modeling
technique should be extended to 3D. With a 3D model also oblique collisions
can be investigated.

9.2.2 High-speed microdrop train impact on a pool

In our study of drop train impact, we observe that neglecting the airflow in
the numerical simulations causes significant deviation between the experiments
and the simulations on the width of the cavity (not on the depth). The falling
drops induce an airflow within the cavity, slowly sucking inwards the cavity
walls, which also reduces the collapse time. For the large cavities created
by the impact of a solid cylinder on a pool [4], where the cavity collapse is
dominated by hydrostatics, it turned out that the airflow only influences the
liquid dynamics during the very final stages of the collapse, which is thus
a significant difference with respect to the case of a microdrop train. We
attribute the more relevant influence of the air to the higher impact velocity
and smaller length scale of our problem. Simulating the airflow would thus
be an interesting step in the simulations. One could think of performing two-
phase Boundary Integral simulations, comparable to what has been done for
the impact of a solid cylinder on a pool, where the gas has been treated as an
inertial fluid, possibly treating the drops as falling solid masses.

Furthermore, we observe that the collapse of the cavity primarily depends
on capillary effects. This is specific to microsized drops, and very different from
the more commonly studied mm-sized drops, for which gravity is important.
However, the size of the drops is not the only parameter of interest. When
we look at the impact of finite amounts of liquid volume, the timescale of the
total impact is also expected to be highly relevant for the cavity behavior. The
cavities induced by impacting small drops with high frequency or velocity is
expected to be completely different from the cavities resulting from the impact
of large drops with low frequency or velocity. The classification of impact
phenomena of finite amounts of liquid volume would be an interesting new
aspect with respect to both the work on large water masses by, for example,
Oguz, Prosperetti & Kolaini [5], and our work presented in Chapter 5.
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9.2.3 Levitated drops

Our experiments and numerical simulations on levitated drops at room tem-
perature have demonstrated that the star-drop instability is induced by a
hydrodynamic mechanism, but we still lack a detailed description of the ori-
gin of the instability. It is now obvious that the instability is a result from the
interplay between the liquid flow and the gas flow, but why does the insta-
bility not occur for small drops and/or small flow rates? In our simulations,
we found that the threshold depends strongly on the density of the liquid,
the viscosity of the gas, gravity, the surface tension and the damping constant
(‘artificial liquid viscosity’) - together with the drop size and the airflow ve-
locity these are basically all the parameters involved in the simulations. In
the experiments, the location of the threshold does not depend on the liquid
viscosity (contrarily to the simulations), but the drop dynamics are strongly
dependent on the viscosity. In case of a large liquid viscosity, only the ax-
isymmetric (‘breathing’) modes are observed; for small viscosities, the drops
break symmetry and we observe Rayleigh oscillations. Studying the influ-
ence of liquid viscosity on the drop dynamics might be the most interesting
next step, because for simulations of pure viscous drops on viscous airflows
(i.e., assuming Stokes flow for both the drop and the gas) no oscillations were
found [6]. In the simulations, this would need for an alternative simulation
method (dropping the assumption of potential flow behavior). Furthermore,
this is a second example of a flow geometry where it would be very interesting
to drop the assumption of axisymmetry, such that it is possible to simulate
how the original axisymmetric interplay between the liquid flow and gas flow
leads to a spontaneous symmetry breaking of the drop.

9.2.4 Drop shaping by laser-pulse impact

Since the fluid dynamics are crucial for the improvement of the efficiency of
EUV lithography machines, quantifying the influence of the impact of a laser-
pulse onto a liquid drop is important future work within this subject. This
includes new modeling techniques, experiments, and simulations. Obviously,
our Boundary Integral method does not capture phase transitions (vaporiza-
tion), which is why alternative simulation methods (Lattice-Boltzmann) will
also be applied to study the interaction of the liquid with the laser. Another
limitation of our method is fragmentation and, by this, symmetry breaking.
In Chapter 7 we particularly study the dependence of the drop translation and
deformation, but another interesting dependency is the shape of the impacting
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laser-pulse, or, in more technical terms, the focal distance of the laser with
respect to the drop position. In our Boundary Integral simulations, besides
the amplitude and duration of the pressure pulse, we can also directly vary the
width of the pulse, referring to a varying focal distance of the laser. To under-
stand the influence of the pulse shape on the drop in detail, more simulations
and experiments are needed.
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Samenvatting (Nederlands)

Vallende druppels of druppels zwevend op een stromend gas (lucht of damp),
kunnen allerhande krachten ervaren, die de druppels van vorm doen verande-
ren ten opzichte van hun evenwichtsvorm, een perfecte bol. Deze vervormingen
zijn een belangrijk onderzoeksgebied binnen de vloeistoffysica, omdat ze de
landing van een druppel op een oppervlak, de vorming van een vloeistofsheet,
en/of het opbreken in kleinere druppels significant beïnvloeden. Inslag van
een vloeistof en/of op een vloeistof is alomtegenwoordig in de industrie en de
landbouw.

In Hoofdstukken 2-4 onderzoeken we kleine luchtbellen die kunnen worden
ingevangen tijdens de inslag van een vloeistofdruppel op een solide oppervlak,
een vloeistofdruppel op een vloeistofbad, en een solide bol op een vloeistofbad.
Voor invanging van een luchtbel bij deze inslagscenario’s bestaan verschillende
mechanismen. In de eerste hoofdstukken van dit proefschrift lossen we de
kleine-schaal vervorming van het vloeistofoppervlak aan de bodem van het
vallende object, als resultaat van de kracht uitgeoefend door de lucht die uit
de ruimte tussen het vallende object en het onderoppervlak wordt geperst,
in detail op. In Hoofdstuk 2 beginnen we met de inslag van een druppel
op een solide oppervlak. Door middel van interferometrie-experimenten is
het mogelijk om de vervormingen van de orde van een paar micrometer, net
voordat de druppel het oppervlak raakt, in beeld te brengen. De hoogte en
breedte van de vervorming en het volume van de ingevangen luchtbel worden
gemeten voor variërende inslagsnelheden. Zogeheten ‘Boundary Integral’ com-
putersimulaties laten samen met de experimenten zien dat er een maximaal
belvolume bestaat voor een zekere inslagsnelheid (voor constante druppel-
grootte en constante eigenschappen van de vloeistof en de lucht). We verklaren
het gevonden maximum in het belvolume als volgt: voor grote druppels en/of
grote inslagsnelheden vergt het een grote tegenwerkende kracht om de druppel
lokaal af te remmen en te vervormen, en zal de achtergebleven bel dus klein
zijn; echter, voor kleine druppels en/of kleine inslagsnelheden werkt de opper-
vlaktespanning van de vloeistof de vervorming tegen, hetgeen het belvolume
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tevens verkleint. Tussen deze regimes in bevindt zich een overgangsgebied
(‘crossover’), alwaar het volume van de ingevangen bel maximaal is. Dit
maximum wordt nauwkeurig bepaald door middel van schalingstheorie, de
interferometrie-experimenten en de simulaties.

Nu we het mechanisme van invanging van kleine luchtbelletjes voor een
druppelinslag op een solide oppervlak begrijpen, kunnen we ons afvragen of
hetzelfde geldt voor de andere inslagscenario’s: een bol op een vloeistofbad en
een druppel op een vloeistofbad. Deze vraag staat centraal in Hoofdstuk 3.
Gebruikmakend van computersimulaties en een verzameling van experimentele
data uit de literatuur vinden we inderdaad dat het bovenstaande mechanisme
universeel is en dat de grootte van de ingevangen bellen kwantitatief hetzelfde
zijn voor de drie inslagscenario’s, behalve dat de bellen voor de inslag van
een druppel op een bad groter zijn met een factor 2. De equivalentie tussen
de scenario’s kunnen we begrijpen doordat de vervormingen verantwoordelijk
voor de luchtbellen zeer gelokaliseerd zijn, typisch op een lengteschaal veel
kleiner dan de grootte van de druppel of de bol, wat duidt op een symmetrie
tussen de verschillende situaties. De factor 2 in het geval van druppelinslag
op een bad kunnen we verklaren door het feit dat de gasdruk in dat geval 2
oppervlakken vervormt, in plaats van 1.

In Hoofdstukken 2 en 3 hebben we onze aandacht gericht op de uiteindelijke
vervorming van de betrokken vloeistofoppervlakken, op het moment dat de
twee oppervlakken elkaar raken. Deze bepaalt immers de grootte van de
achtergelaten luchtbel. In Hoofdstuk 4 doen we een stap terug en passen
we een ‘verstoringsanalyse’ toe om te berekenen hoe de eerste vervormingen
groeien in de tijd en convergeren naar het uiteindelijke resultaat. Dit is van
bijzonder belang omdat de schalingsargumenten in Hoofdstukken 2 en 3 hierop
gebaseerd zijn. Deze vraag is minder makkelijk te beantwoorden dan het
allicht lijkt, omdat we onderscheid moeten maken tussen inertiële en viskeuze
luchtstroming, en tussen een grote en kleine luchtspleet (bepalend voor de
geometrie van de stroming). We kwantificeren de twee overgangen in detail
en we leiden de schalingsargumenten voor de verschillende regimes af. Voor
‘typische’ inslagwaarden (een druppel ter grootte van een millimeter die met
de limietsnelheid (terminale snelheid) van een aantal meters per seconde naar
beneden valt) vinden we dat het object eerst een fase met inertiële lucht-
stroming in een grote luchtspleet, vervolgens een fase met inertiële luchtstro-
ming in een kleine luchtspleet, en tot slot een fase met viskeuze luchtstroming
in een kleine luchtspleet ondergaat. Voor al deze fases leiden we de tijd-
en ruimte-afhankelijke profielen van het vloeistofoppervlak af. We vinden,
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verrassend genoeg, dat zowel de inertiële als de viskeuze invloeden naar een
uiteindelijke vervorming leiden in de orde van een micrometer. Echter, we
concluderen nog steeds dat het belvolume voornamelijk bepaald wordt door
de viscositeit van de lucht, aangezien de Stokes gasdruk sterk gelokaliseerd is
en het meest sterk toeneemt gedurende de laatste fase alvorens de landing.

In Hoofdstuk 5 beschouwen we een trein van microdruppels die met hoge
snelheid inslaat op een diep bad. De kracht van de herhaalde inslag is groot
genoeg om een diepe en relatief smalle holte in het bad te creëren, met een
diepte in de orde van duizend maal de grootte van de druppels zelf. De
vorm van de holte en de bereikte diepte hangen voornamelijk af van een
balans tussen massatraagheid van de vloeistof en oppervlaktespanning; door de
kleine afmeting van de druppels heeft zwaartekracht pas een relevante invloed
wanneer de holte diep genoeg is gegroeid. De ineenstorting van de holte wordt
dus volledig bepaald door capillaire effecten, en vindt typisch plaats aan de
bovenkant, bij het wateroppervlak. We identificeren de vorm van de holte, de
tijd tot ineenstorting, en de maximale diepte.

In Hoofdstuk 6 maken we de stap van inslaande druppels naar zwevende
druppels, oftewel druppels die volledig opgetild worden als resultaat van een
continue gasstroming langs de onderkant van de druppel. Een typisch voor-
beeld hiervan zijn Leidenfrost druppels, alwaar het gas waarop de druppel
zweeft afkomstig is van de druppel zelf, die langzaam verdampt. Leidenfrost
druppels kunnen spontaan beginnen te oscilleren en hun symmetrie verliezen;
het mechanisme van deze instabiliteit, genoemd de ‘ster-druppel-instabiliteit’,
is nog niet bekend. Door de gasstroming onder de druppel extern aan te drijven
kunnen we de druppel laten zweven op een gaslaag op kamertemperatuur. In
experimenten herkennen we in dit geval exact dezelfde druppeltrillingen als
voor de Leidenfrost druppels, hetgeen laat zien dat de genoemde instabiliteit
niet een gevolg is van temperatuurgradiënten of warmteoverdracht. De tril-
lingen hebben dus een hydrodynamische achtergrond, en in Hoofdstuk 6 repro-
duceren we de instabiliteit in (hydrodynamische) computersimulaties. Binnen
de simulaties zien we ook stabiele (dus niet trillende) zwevende druppels, of
groeiende gasholtes die de druppels doen breken (de zogeheten ‘schoorsteen-
instabiliteit’). We vinden dat de aanzet van de druppeltrillingen uit twee fases
bestaat: een axisymmetrische fase, die een samenspel is tussen de vloeistof- en
de gasstroming, en (afhankelijk van de viscositeit) een fase waarin de trillende
druppel symmetrie breekt met een voorname oscillatie modus, de Rayleigh
frequentie.
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In Hoofdstuk 7 onderzoeken we hoe een druppel reageert op de inslag van
een korte laserpuls. Dit werk is gemotiveerd door Extreem-ultraviolette (EUV)
lithografie, een proces dat wordt toegepast voor de creatie van nanometer-
schaal patronen op elektronische chips. De rol van technologie in onze samen-
leving blijft groeien met een indrukwekkend hoog tempo. Voor het printen van
deze patronen met hoge resolutie is straling met een extreem korte golflengte
benodigd. In EUV-machines komt deze straling van tindruppels die worden
beschoten door laserpulsen. Een eerste puls vervormt de druppel naar een
platte vorm (sheet); namelijk, de sterke lokale verdamping als gevolg van de
laserpuls resulteert in een terugslag van de druppel. De druppel transleert,
vervormt en breekt op. Vervolgens ontvangt de tindruppel een tweede laser-
puls, resulterend in de vorming van plasma. De vloeistofdynamica is cruciaal
voor het verbeteren van het rendement van een EUV-machine. We passen
experimentele analyse en computersimulaties toe, waarbij in het laatste geval
de invoer van energie gemodelleerd wordt aan de hand van een zeer korte
drukpuls werkend langs het druppeloppervlak. We vinden dat de snelheid
en de maximale grootte van de aangeslagen druppel proportioneel zijn met
de energie van de laserpuls. De expansie van de druppel wordt begrensd
door oppervlaktespanning, een mechanisme gelijkend aan de begrenzing van
de uitspreiding van een druppel die inslaat op een oppervlak.

Hoofdstuk 8 beschrijft de stromingen bij ‘gieten’, oftewel een (snelle) vloei-
stofstroom vanaf een gekromd solide oppervlak. Een typisch voorbeeld uit
het dagelijks leven is de stroming van thee vanuit een theepot. Wanneer de
stroomsnelheid van de thee te klein is, maakt de thee zich niet los van het
oppervlak, maar blijft ‘kleven’, en loopt langs de tuit omlaag. Dit ‘kleven’
is een hydrodynamisch verschijnsel dat ook wel ‘het theepot effect’ genoemd
wordt en op de zenuwen werkt van velen. Een eerder onderzoek heeft aange-
toond dat de hoek waarmee de vloeistofstraal van het solide oppervlak sepa-
reert in onverwacht sterke mate afhangt van de hydrofobiciteit van het opper-
vlak (en dat het theepot effect zelfs volledig voorkomen kan worden door een
hydrofoob oppervlak te gebruiken). Een fysische verklaring voor het ‘kleven’
zelf was echter nog niet gevonden. Door de wet van impulsbehoud op te lossen,
meenemende het precieze stromingsprofiel, de geometrie van het probleem,
en de capillaire krachten, vinden we analytisch dat, inderdaad, er voor kleine
stroomsnelheden geen stabiele stroming mogelijk is. We hebben deze minimale
stroomsnelheid gekwantificeerd, als een functie van de relevante parameters,
en vinden kwalitatieve overeenstemming met de belangrijkste experimentele
resultaten.
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Stellingen 
 

behorende bij het proefschrift 
 

Dynamics of Deforming Drops 
 

Wilco Bouwhuis, 28 augustus 2015 
 

1. De hoeveelheid lucht die wordt ingevangen in een bel tijdens de inslag van een druppel 
op een solide ondergrond, ten gevolge van de viskeuze weerstand geleverd door de 
tussenliggende luchtlaag, kent een maximum voor een bepaalde inslagsnelheid. 

Hoofdstuk 2 van dit proefschrift 
 

2. Het mechanisme voor de insluiting van een luchtbelletje als gevolg van de omringende 
lucht is hetzelfde voor de inslag van een druppel op een solide ondergrond, de inslag 
van een solide bol op een bad, en de inslag van een druppel op een bad. 

Hoofdstuk 3 van dit proefschrift 
 

3. De spontane trilling en symmetriebreking van Leidenfrost druppels hebben een 
hydrodynamische achtergrond en worden dus niet geïnduceerd door een eventueel 
temperatuurverschil binnen de druppel, of door de verdamping van de druppel. 

Hoofdstuk 6 van dit proefschrift 

4. Bij het theeschenken vindt het vervelende ‘plakken’ van de thee tegen de tuit van de 
theepot plaats bij een stroomsnelheid waarvoor er geen oplossingen bestaan voor een 
stabiele straal separerende vanaf de tuit. Dit gebeurt wanneer de gietsnelheid te klein 
is, de tuit te stomp is, of de tuit te hydrofiel is. 

Hoofdstuk 8 van dit proefschrift 
 

5. Het gebruik van een simulatiecode die een zuivere potentiaalstromingsvloeistof 
simuleert, met als doel het vinden van stabiele, niet in tijd veranderende, oplossingen, 
is dikwijls een slecht idee. 
 

6. De kwaliteit van het uitleggen, opslaan en doceren van onderzoek is minstens even 
belangrijk als de kwaliteit van het onderzoek zelf. 

 
7. Wetenschap is niet uit te drukken in werkuren. Isaac Newton was met het 

tegenovergestelde bezig van wat veel mensen definiëren als ‘werkuren maken’, toen, 
naar hoe de anekdote luidt, de vallende appel op zijn hoofd terecht kwam, met zijn 
baanbrekende gedachte betreffende zwaartekracht als gevolg. Ook in de 
tegenwoordige tijd lijken de beste wetenschappelijke ideeën eerder te ontstaan onder 
de douche of op de fiets dan achter het bureau. Les Houches in Frankrijk, gelegen aan 
de voet van de Mont Blanc, is dus een voorbeeld van een ultiem efficiënte locatie voor 
een fysische zomer- (of winter-) opleiding. Binnen dezelfde redenering moet het 
gebruik van Facebook door promovendi tijdens hun ‘werkuren’ toegestaan blijven. 

  



Propositions 
 

accompanying the thesis 
 

Dynamics of Deforming Drops 
 

Wilco Bouwhuis, August 28 2015 
 

1. The amount of air entrapped into a bubble during the impact of a liquid drop on a solid 
surface, caused by the viscous resistance delivered by the air-layer in between the 
drop and the surface, has a maximum for a certain impact velocity. 

Chapter 2 of this thesis 
 

2. The mechanism for the entrapment of a tiny air bubble due to the effect of the 
surrounding air is identical for drop impact on a solid surface, sphere impact on a pool, 
and drop impact on a pool. 

Chapter 3 of this thesis 
 

3. The spontaneous oscillation and symmetry breaking of Leidenfrost drops have a 
hydrodynamic origin, and, thus, are not induced by any temperature gradient within the 
drop, or by the evaporation of the drop. 

Chapter 6 of this thesis 

4. During the pouring of tea, the annoying ‘sticking’ of the tea against the spout of the 
teapot occurs at stream velocities at which there exists no physical solution for a steady 
separating jet. This is the case for too small pouring velocities, or for teapot spouts 
which are too blunt or too hydrophilic. 

Chapter 8 of this thesis 
 

5. The use of a numerical simulation code which assumes and simulates a pure potential 
flow liquid for finding stable, steady solutions, is often a bad idea. 
 

6. The quality of explaining, reporting, and teaching research is at least as important as 
the quality of the research itself. 

 
7. Science is not expressible in working hours. Sir Isaac Newton was doing the opposite 

of what many people define as ‘working’, when, to how the story reads, the falling apple 
landed on his head, which resulted in Newton’s groundbreaking idea about gravity. Also 
in the present tense, the best scientific ideas seem to arise during cycling or taking a 
shower, rather than during sitting behind a desk. Les Houches in France, located at the 
foot of the Mont Blanc, is thus an example of an ultimately efficient location for a 
summer (or winter) school in physics. Within the same reasoning, using Facebook 
during ‘working hours’ should remain authorized for PhD students. 

 


