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Samenvatting

Lopende robots zijn complexe systemen, vanwege hun niet-lineaire dynamica en
interactiekrachten met de grond. Traditionele regelmethoden, gebaseerd op het
volgen van een referentiesignaal, kunnen wel worden toegepast, maar gebruiken
vaak een grote hoeveelheid energie. Lopen op zich vraagt weinig energie, en er
bestaan veel energiezuinige lopende robots die dat bewijzen. Jammer genoeg is
de regeling van veel van deze robots gebaseerd op ingenieursintuitie en ad hoc
oplossingen, en ontbreken algemene analyse- en regelmethoden.

Dit proefschrift presenteert een raamwerk voor het modeleren, analyseren, en
efficiént regelen van lopende robots. Een poort-Hamiltoniaanse systeembeschrij-
ving maakt het mogelijk om de dynamica van algemene rigide mechanismen
and hun interactie met de grond te beschrijven. De structuur van deze modellen
vormt de basis om algemene analyse- en regelmethoden te ontwikkelen.

Het modeleringsraamwerk is een uitbreiding van bekende modeleringsme-
thoden naar een brede klasse van rigide mechanismen met configuratieruimte be-
schreven door een willekeurige combinatie van Euclidische delen, Lie groep de-
len (zoals balgewrichten) en niet-holonome delen (zoals niet-slippende wielen).
Het afleiden van de modelvergelijkingen is een systematisch en modulair proces,
en dus geschikt voor software-implementatie. Twee soorten 3D contactmodellen
worden beschreven: een zacht contactmodel, beschreven door een veer en een
demper — vooral geschikt voor simulatie, en een hard contactmodel, beschreven
door een impulsprojectie tijdens de impact — vooral geschikt voor analyse. Alle
resultaten zijn gebaseerd op codrdinaat-vrije concepten en beschrijvingen.

Met behulp van de structuur van de modellen wordt het probleem om ef-
ficiénte loopritmes te vinden geformuleerd als een numeriek optimalisatiepro-
bleem. Op deze manier kunnen niet alleen de gewrichtsbewegingen maar ook
de mechanische structuur van een robot worden geoptimaliseerd. Ter illustratie
worden de meest efficiénte loopritmes uitgerekend voor drie verschillende robots.
Hieruit blijkt, dat de loopsnelheid van een simpele planaire passieve robot op een
heuvel kan worden veranderd door de massaverdeling aan te passen, en dat een
driedimensionale robot met bovenlichaam het meest efficiént loopt als de massa
van het bovenlichaam zo laag mogelijk wordt geplaatst.

Tenslotte worden drie efficiénte regelmethoden besproken. De eerste methode



gebruikt de berekende optimale trajecten om nieuwe codrdinaten te definiéren,
die expliciet de prestatie uitdrukken. De uiteindelijke regelaar is vermogenscon-
tinu, volgt de trajecten asymptotisch, en reageert alleen om verstoringen te com-
penseren, dus niet tijdens de nominale loopbeweging. De tweede regelmethode
stabiliseert het loopgedrag van een experimentele robot met knieén door middel
van een enkele PD regelaar in het heupgewricht van de robot. De derde regel-
methode gebruikt voetplaatsing om de robuustheid van een driedimensionale
lopende robot te vergroten, en om de robot een referentiepad te laten volgen.

ii



Summary

Walking robots are complex systems because of their nonlinear dynamics and
interaction with the ground. Although traditional control methods, based on the
tracking of a reference signal, can be applied, they generally require a significant
amount of energy. On the other hand, research has shown that walking in itself
requires little energy, and many experimental robots have been built that walk
with high efficiency. General analysis and control tools for such efficient walkers,
however, are lacking, and many results are based on engineering intuition and ad
hoc solutions.

This thesis aims to provide a framework for modeling, analysis, and efficient
control of walking robots. The framework uses a port-Hamiltonian system de-
scription to express the dynamics of rigid mechanisms and their interaction with
the ground. The structure of the resulting models forms the basis for the devel-
opment of general analysis and control techniques.

The proposed framework extends well-known modeling methods to a broad
class of rigid mechanisms with a configuration space described by any combi-
nation of Euclidean components, Lie group/algebra components (such as ball
joints), and nonholonomic components (such as non-slipping wheels). The deriva-
tion of the corresponding model equations is a systematic, modular process, and
hence suitable for software implementation. Two different 3D contact models are
presented: a compliant contact model, described by a spatial spring/damper and
mainly suitable for simulation, and a rigid contact model, characterized by a mo-
mentum projection on impact and mainly suitable for analysis. All results are
based on coordinate-free concepts and descriptions.

Using the structure of the models, the problem of finding efficient walking
gaits is cast as a numerical optimization problem. This setting allows one to opti-
mize not only the joint trajectories but also the mechanical structure of a walking
robot. The approach is illustrated by computing the most efficient gaits for three
different walking robots. It is shown how the walking speed of a simple planar
passive (i.e. unactuated) robot on a slope can be changed by adjusting its mass
distribution, and how a three-dimensional robot with a trunk walks most effi-
ciently if the mass on the trunk is located as low as possible.

Finally, three control techniques for efficient walking are presented. The first
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control technique uses the computed optimal trajectories to define new coordi-
nates that explicitly reveal the tracking performance. The resulting controller is
power-continuous, tracks the trajectory asymptotically, and acts only to compen-
sate for disturbances — not during nominal, natural walking. The second con-
trol technique stabilizes the walking behavior of a kneed experimental robot by
means of a single PD controller on the hip joint. The third control technique uses
foot placement to increase the robustness of a three-dimensional walking robot,
and to control it to follow a reference path.
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Chapter 1

Introduction

The main goal of engineering research is to find general methods to build real-
world physical objects that solve real-world problems. The real-world problem
studied in this thesis is the energy-efficient control of walking robots, and the gen-
eral method that is used is based on the port-Hamiltonian framework for model-
ing and control.

1.1 Walking robots

1.1.1 Humanoid robots

Robots are cool. Whether it is their smooth controlled motion, the detailed preci-
sion mechanics, or the appearance of intelligence, there is something that attracts
people. In the last decades, industry has realized this and has begun building
and selling robots for personal and entertainment purposes. An important, but
so far rather expensive market segment is being filled by humanoid robots: robots
that are designed in the image of humans. Though still in their relatively infant
stages, current humanoid robots already have a human-like appearance and be-
havior, see for example the robots in Figure 1.1: Asimo (Sakagami et al. 2002) by
Honda, Qrio (Geppert 2004) by Sony, and Hubo (Kim et al. 2005) by the Korea
Advanced Institute of Science and Technology (KAIST).

Reasons for building robots with human characteristics are manifold. From a
practical point of view, if robots are ever to work inside a house that was built for
humans, then obviously they need to be able to move and reach where humans
can move and reach (walk up the stairs, grab something from a shelf), and these
requirements are trivially met if the robots are shaped and articulated like hu-
mans. For similar reasons, NASA is developing Robonaut (Ambrose et al. 2000),
an astronaut-size robot with arms, hands, fingers, a head, and a torso, to assist in
space missions, both indoors and outdoors during space walks, without the need
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2 CHAPTER 1. INTRODUCTION

(a) KAIST’s Hubo. (b) Sony’s QRIO. (c) Honda’s Asimo.

Figure 1.1: Three examples of modern humanoid robots.

for the special grappling hooks used in more conventional robot systems.

As a second reason, various studies indicate that people are more likely to
accept robots in their environment if they appear natural, i.e. human-like. See for
example the interesting field experiment by Kanda et al. (2004) on introducing
robotic playmates and tutors for children, or the research by Breazeal (2003) on
developing interactive robots with facial expressions.

Thirdly, from an engineering point of view, humanoid robots can be designed
not just for the purpose of having human-like features, but because human shapes
have evolved to be the optimal solution for certain problems. Moving around in a
rocky outdoor environment, for example, is much easier for humans than for cars,
because humans have very articulate legs that can cross high obstacles, whereas
the wheels on cars can not. Instead of trying to cook up solutions from scratch
and reinvent the wheel, it is much easier to take a design that has been under
development for millions of years.

Humanoid robots themselves can be useful research objects, but also the many
parts and spin-off results can be fruitful in various areas. Taking this literally,
robotic arms and legs with dimensions and properties similar to humans may be
used, for example, as artificial arms and legs for disabled people (Harwin et al.
1995), or as an exoskeleton to increase human capabilities towards the super-
human (Pratt et al. 2004). But more indirectly, the process of building robotic
arms and legs can help in understanding how human arms and legs work. This
knowledge can then help in the design of other robotic systems that assist human
arms and legs, for example the robotic rehabilitation aid for people recovering
from a stroke (Ekkelenkamp et al. 2005).
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1.1.2 Research on walking robots

One of the most interesting aspects of a humanoid robot is its locomotion tech-
nique: walking. Contrary to most, if not all, traditional mobile robots, which are
based on rolling wheels, a humanoid robot has legs. Although wheeled loco-
motion is easier to control and highly efficient for moving on hard, flat terrain,
legged locomotion can be useful in rocky or soft terrain, and it can be efficient as
well.

Walking can be defined as a locomotion gait of a biped, in which the feet are
lifted alternately, while at least one foot is on the ground at all times. If both feet
(temporarily) leave the ground, the gait is called running. From a mechanical
point of view, walking is the process in which periodic internal shape changes of
the mechanical structure, combined with reaction forces from the ground, result
in an overall displacement.

The main way in which walking locomotion is implemented in robots is based
on so-called static walking. From the definition of walking, we see that at least
one foot is always on the ground. If we now construct a fully actuated robot, and
ensure (by means of active control) that the center of mass is always located above
the foot area, then if the robot is moving slowly enough (hence the name static), it
is always stable. If we then command the joints to move periodically such that the
rear foot is lifted, moved forward, and put down, then we obtain a stable walking
motion: the robot walks without falling over. The control problem of walking is
thus reduced to traditional joint tracking control of a rigid mechanism, and all
standard control techniques from this field can be applied.

Starting from the basic idea of static walking, we can tune the joint trajec-
tories such that a human-like motion appears. In addition, the static analysis
of the center of mass can be extended to an analysis of the Zero Moment Point
(ZMP), in which the center of pressure (resulting from both gravitational and in-
ertial effects) is required to remain strictly inside the foot area. A more detailed
description of ZMP-analysis can be found in Vukobratovié¢ (2004).

Many walking robots, such as the humanoids of Figure 1.1, are based on static
walking, and these robots are generally highly versatile: they can walk up stairs,
walk at various speeds, and use sensory information to plan the next steps. On
top of that, the motion generally looks quite human-like. The one big remaining
problem, however, is energy consumption. Even with huge battery packs, these
robots can only operate for maybe an hour.

One of the reasons for this large energy consumption is that, although the
walking motion of the robot may look natural and human-like, it may not be nat-
ural at all for the robot to walk in this way. Humans walk with a certain leg and
joint motion because it is efficient for their specific mechanical structure to do so.
This does not at all mean that the same leg and joint motion is also efficient for
a robot with a different mechanical structure. Hence, simply using human joint
trajectories as reference trajectories for walking robots may result in motion that
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(a) Close copy of McGeer’s passive dynamic (b) Three-dimensional passive dynamic walker,
walker, by Garcia et al. (1998). by Collins et al. (2001).

Figure 1.2: Two examples of unactuated passive dynamic walking robots.

looks good, but there is no reason to assume that it is efficient as well.

Fortunately, energy-efficient trajectories for walking robots do exist. McGeer
(1989, 1990a) showed in his remarkable work on passive walking robots, that cer-
tain mechanical systems indeed have a natural tendency to walk. More precisely,
these mechanisms, such as the ones in Figure 1.2, can walk down a shallow hill
without actuation, only powered by a little bit of gravity. The center of mass of
these robots does not always remain above the stance foot, and hence they are not
statically stable. Nevertheless, it has been shown, both in theory and in practice,
that the walking cycles of these robots are dynamically stable, hence the name
dynamic walking.

Inspired by passive dynamic walkers, researchers have looked at various ways
of adapting and augmenting the passive dynamic motions in order to obtain
more robustness, walk on different slopes (including a level floor), and to attain
other design goals. Many of these strategies are biologically inspired. For ex-
ample, van der Linde (2000) used McKibben muscles in the design of a stepping
robot, and Wisse & van Frankenhuyzen (2003) extended McGeer’s original pas-
sive dynamic walking with McKibben muscles to obtain stable, robust, level-floor
walking. Alexander (1990) showed how locomotion can be made more efficient
by using springs at locations where animals have (elastic) tendons. Kuo (1999)
gave several examples to control the unstable lateral motion in three-dimensional
walking, one of which being the use of a trunk (upper body). Finally, Pratt & Pratt
(1999) described how the use of compliant ankles and kneecaps can help to obtain
better controllable and more efficient walking.
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Others have focussed more on the energy conserving properties of passive
walkers, and designed their controllers to adjust the energy balance. Spong &
Bullo (2005) describe a control law that effectively rotates the apparent gravita-
tional field, thus making the controlled robot move with the same gait on differ-
ent slopes. Asano et al. (2004) define various control laws that control the energy
level of a walking robot. Yamakita et al. (2000, 2001) apply the method of Passive
Velocity Field Control (Li & Horowitz 1995) to the control of walking robots.

Unfortunately, no matter what control technique is used, the behavior of (al-
most) passive walkers remains difficult to understand, due to the highly nonlin-
ear, coupled, and generally unstable dynamics, together with the hybrid aspects
of switching between left and right foot, and between contact and no-contact.
Controller design of almost-passive dynamic walkers has therefore been based
mainly on engineering intuition, biological inspiration, and physical tinkering
with experimental robots. Such methods have always been the basis of new de-
sign, and this author believes that they will always remain valuable in nonlinear
control, mainly because the class of general nonlinear systems is so large and di-
verse: the optimal controller cannot just be computed from scratch. However,
once a certain direction or type of solution has been determined by intuition or
biological analogy, systematic and automated methods are valuable methods for
specific quantitative design and fine-tuning. For example, although Alexander
(1990) found useful locations for springs in walking robots based on observation
of biological systems, the optimal stiffness value of such a spring cannot be easily
deduced from biology, whereas it can be determined by a systematic optimization
procedure, as shown in Section 5.1 of this thesis.

1.2 Port-Hamiltonian modeling and control

1.2.1 Port-Hamiltonian modeling

Engineering systems are becoming increasingly complex. Although this may be
due partially to the yearning of researchers and engineers for new challenges and
more difficult problems (Tanie 2005), the main reason is that society demands en-
gineering systems to solve more complex problems. The complexity is caused
by many aspects, for example the demand for better performance, smaller scale,
faster response, lower cost, or lower weight. Such demands generally require
the use of physical components that exhibit more complex behavior. For exam-
ple, when a lighter metal bar is used to achieve less weight and higher speed, it
can exhibit flexibility and oscillatory behavior that is not present with a heavier
bar at a lower speed. These components can then result in nonlinear behavior
and stronger dynamic coupling between the different parts of the system. If the
higher-order dynamics occur on a much smaller time-scale than the leading-order
dynamics, it may even lead to an apparent hybrid, or switching, behavior.
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As the complexity of the problem (and its solution) increases, controlling the
system and improving its behavior become more difficult. A detailed under-
standing of the behavior of the system is then required to be able to solve the
problem. A common and sensible approach in engineering research is to ‘divide
and conquer’, i.e. to think of the system as an interconnection of simpler subsys-
tems. The interconnection is required since the subsystems are generally coupled
in some way, but hopefully some of the coupling is weak or simple enough to
allow the subsystems to be studied separately.

The process of deciding how to structure a system as an interconnection of
basic elements is called modeling. As argued, for example, by Breedveld (2004),
this decision process is highly dependent on the goal of the analysis, i.e. whether
a basic qualitative understanding of the workings of the system is required, or
a more detailed description that quantitatively predicts its behavior. It also de-
pends on the operating conditions that are considered, and hence the decisions
and the resulting model are only valid under those conditions; extrapolation to
different conditions can easily lead to incorrect predictions.

Example 1.1 (bungee jump). Figure 1.3 shows an example of two models for a
perfectly vertical bungee jump, in which a 91 kg person is attached to a 9 kg rope
with measured stiffness & = 30 N/m and damping d = 1 Ns/m. In the first
model (middle figure) the choice is made to concentrate the mass of the person
in a point at the end of the rope and assume the rope to be a perfect linear spring
plus damper, thus neglecting its mass. In the second, more complex, model (right
figure), the rope is modeled as a more distributed interconnection of n (we choose
n = 10) small masses, dampers, and springs, with still the person as a point mass
at the end.

Simulation (bottom figure) shows that the behavior of the two models is more
or less the same: when started from a height of 60 m with gravity pulling down,
the vertical position of the person is a damped oscillation. For the purpose of
getting a rough idea of how a bungee jump works and what velocities and ac-
celerations are experienced by the jumper, the results of the two models are close
enough, and hence the simplest model can be chosen. On the other hand, when
the goal is to determine whether it is safe to jump from this height with this rope,
the two models are clearly not equal: the lumped model shows a (barely) safe os-
cillation, while the distributed model shows the jumper crashing into the ground.
The difference between these models is significant, and hence the simplest model
does not suffice for the modeling goal. A

The result of the modeling process is an abstract model. In order to perform
computer simulations of this model, it needs to be described as a set of equations,
expressing the relations between variables, and, for dynamical systems, their time
derivatives. Once the model has been determined, the relations between the vari-
ables are fixed, and all sets of equations that describe the model are essentially
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Figure 1.3: Two models of a vertical bungee jump (left figure): the middle fig-
ure shows a model where the mass, stiffness, and damping are assumed to be
lumped, whereas the right figure shows a model with mass, stiffness, and damp-
ing distributed in n parts. Simulations of the two models for n = 10 (bottom
figure) show that they behave similarly, but that the details are different.

equivalent. However, since the dynamic equations of complex systems are gen-
erally too complex to work with for analysis purposes, it is beneficial to structure
them in a certain way, or even better, to represent them graphically. The models
of Figure 1.3 already show examples of such a graphical representation. They are
depicted as interconnections of standardized mechanical elements (mass, spring,
damper), and these figures can be translated directly into equations.

Depicting nonlinear and multi-dimensional elements as standardized icons is
less easy, however, and instead, several frameworks have been developed that
allow such more general elements. The most well-known framework is that of
block diagrams, which is based on causal information flow between subsystems.
General systems are described as a set of subsystems (up to the desired level of
detail) that are interconnected by signal lines. Each line is connected between the
output of one subsystem and the input of another, and the subsystems themselves
are described by functions that compute the output variables from the input vari-
ables.
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Block diagrams are very general and can describe all kinds of systems, but
they are limited by causality: once a causal direction has been chosen, signals
can only travel in one direction and not in the opposite direction. This gives a
problem for re-usability, since the same element may allow several equivalent
descriptions. For example, the damper of Figure 1.3 can be described equiva-
lently as F' = dv and v = F/d (with F the force and v the velocity). As a block
diagram, only one of these formulations can be used, depending on what is the
input signal and what is the output signal.

As an alternative to the block diagram framework, Willems (1991) introduced
the behavioral framework (see Polderman & Willems (1998) for a complete in-
troduction). In this framework, the signals between subsystems are not fixed to
be uni-directional, but only their relation is fixed, i.e. that they are equal. Also
the subsystems themselves are not described as functional assignments from in-
put to output, but only as relations between the connected variables. This solves
the problem of requiring multiple formulations of the same equation. Of course,
for computer simulation, the equations need to be written as sequential assign-
ments, but this can be done automatically by software tools, once the complete
model has been described.

Both the block-diagram and the behavioral framework can be used to describe
pretty much any type of system that exchanges any type of signal. This thesis,
however, focusses mainly on physical (sub)systems that exchange energy. For
example, the models of walking robots developed in Chapter 4 are described as
an interconnection of two subsystems: one describing the kinetic and potential
energy of the mechanical structure, and one describing the contact forces of the
robot with the ground. These two subsystems interact by exchanging energy, i.e.
some of the kinetic energy of the mechanism is transferred to the ground contact
and then stored as deformation energy or dissipated through friction.

The framework of port-Hamiltonian systems is tailored to represent physical
systems as an interconnection of energy-exchanging subsystems. External vari-
ables to a port-Hamiltonian subsystem only appear in pairs of collocated power-
variables, i.e. variables that, when multiplied, give the physical power associated
with these variables. Such an input structure is called a power-port. For ex-
ample, in mechanical systems, the two power-variables could be the torque on
a joint, and the collocated angular velocity of that joint. Physics demands that
the computational directions of these variables are opposing, but which variable
travels in which direction is not determined a priori. More detailed information
on port-Hamiltonian systems can be found in Appendix B.1.

Example 1.2 (bungee jump model representations). Before reflecting more on
the aspects of the different frameworks, let us first discuss an example of how
the various model representations look for the bungee jump system of Exam-
ple 1.1. Figure 1.4 shows the block diagram, behavioral, and port-Hamiltonian
representations of the fully lumped parameter model of the bungee jump. An
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(c) Port-Hamiltonian representation, together with the equivalent bond graph.

Figure 1.4: Three different model representations of the lumped bungee jump
model of Figure 1.3: block diagram, behavioral, and port-Hamiltonian.
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explanation of the symbols in the bond graph (bottom right figure) can be found
in Appendix B.2.

All representations express the same model, so when simulating the three
representations in a suitable simulation package, the results are exactly equal.
However, for interpretation and analysis of the model structure by a designer
or researcher, the models are clearly different. The block diagram (Figure 1.4(a),
shown here in a non-standard way to allow better comparison with the other
representations) is probably the most efficient implementation in terms of fewest
variables and simplest blocks. However, the different parts of the model (spring,
damper, mass, gravity, all marked by a dark box) have been tailor made and
connected specifically for this model. For other models, the equations inside the
parts may need to be rewritten with different causality or a change of sign.

The behavioral framework in Figure 1.4(b), on the other hand, is clearly built
from separate components with separate variables (e.g. the force and velocity
variables Fy; and vgq of the damper). These components can be interconnected
in different ways to other elements to model different physical interconnections
(e.g. series or parallel connection for the damper), without the need to rewrite the
equations inside the components themselves. The equality signs in the compo-
nent expressions should be taken as real mathematical equality relations, not as
assignment operators as used in programming languages.

Finally, the port-Hamiltonian representation of Figure 1.4(c) is similar to the
behavioral representation, but the equations and interconnections are structured
to represent power and energy flow. Each element is connected by two variables,
which, when multiplied, give the power flow and hence form a power port. Fur-
thermore, some elements have an internal energy E that is a function of a state
variable, and it can be seen that the rate of change of internal energy for these
elements precisely equals the power flow associated with the power port. A

From the example, we can see that the different modeling frameworks each
have their own positive and negative aspects. For a software engineer who needs
to implement the model in a sequential programming language, probably the
block diagram representation is most valuable, as it directly shows how the value
of one variable can be computed from the values of the other variables. For a
researcher trying to understand the physics of the system, however, the port-
Hamiltonian implementation may provide most insight, as its structure directly
shows energy flows inside the system.

1.2.2 Port-Hamiltonian control

A control system can often be described as an addition to a physical system, usu-
ally electronic, that measures certain signals (outputs of the physical system),
processes them in some way, and then produces the appropriate control signals
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Figure 1.5: Stabilization of a cart at a certain setpoint (left): solution as a standard
PD controller (middle), and its interpretation as a spring-damper (right).

(inputs of the physical system). Such a description is highly suitable for repre-
sentation by a block diagram, as it clearly shows the signal flows.

When looking at a port-Hamiltonian representation, on the other hand, such
an implementation is not very immediate: signals can only be accessed in pairs
(one in, one out) of collocated power variables. To accommodate for this de-
ficiency, port-Hamiltonian systems are usually augmented with elements from
block diagrams, for example, to measure internal variables (such as state vari-
ables in the energy functions) and actuate other variables. As long as these addi-
tions only change the energy in the elements through the power ports (and not
through the signal channels), they do not destroy the power-flow interpretation
of the representation and actually provides a nice differentiation between infor-
mation flow and energy flow.

Suppose, however, that we do not want to use these additional block diagram
elements, but only act through the power ports. This suggests that the controller
itself should be represented as a physical system, with associated power ports,
internal energy, and dissipation. Such an interpretation was used, for example,
by Takegaki & Arimoto (1981), who proposed a controller for mechanical systems
that basically mimics a potential field. Hogan (1985) generalized these ideas to
describe controllers as impedances, and even postulates that any controller will
make a controlled system indistinguishable from a physical system (the postulate
of physical equivalence). Stramigioli (2001), in turn, generalized Hogan's ideas
to general spatial robotic systems.

Although these approaches are partially again just a matter of representation
(any port-Hamiltonian system can be rewritten as a block diagram), thinking of
control in terms of interacting physical systems has several advantages. First,
physics may suggest a solution for control. For example, when a cart needs to be
stabilized at a certain position (Figure 1.5), a physical solution would be to place a
spring and damper between the cart and the desired position. This is fully equiv-
alent to PD control, but provides a physical interpretation and motivation to use
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such a controller. Secondly, a port-interconnection of physical systems is again a
physical system, and hence it inherits properties of physical systems, such as pas-
sivity (for lower-bounded energy functions). These properties can directly prove,
for example, stability and boundedness of state trajectories and control inputs.
Thirdly, the resulting controllers not only behave like physical systems, they may
also be partially implemented as real physical systems. If this is possible, it can
save considerably in efficiency, as well as sensing and computing requirements.

1.2.3 The European project GeoPlex

So far, we have mainly focussed on controlled mechanical systems, but the con-
cept of energy is present in all physical domains. This raises the question of
whether port-Hamiltonian model representations can be useful across the bound-
aries of different physical domains. Is it possible to formulate existing results and
concepts in these domains in port-Hamiltonian terms? And if so, does this add
anything to the understanding of the problem, by providing a different, fresh
look? And suppose problems in different domains can be formulated in the same
port-Hamiltonian framework, can specific solutions for problems in one domain
be transformed to solutions for similar problems in a different domain?
Questions like these form the research basis of the European sponsored project
called Geometric Network Modeling and Control of Complex Physical Systems, Geo-
Plex for short. The consortium for this project consists of researchers from dif-
ferent European universities working on problems in different physical domains,
ranging from robotics through electrical power systems to chemical engineering.
In addjition, the software company Control Lab Products takes part in the consor-
tium. The goals of GeoPlex are to address the aforementioned issues and ques-
tions about port-Hamiltonian systems, and, as the name of the project suggests,
to attempt to use the port-Hamiltonian framework to model, analyze, and control
complex physical systems, i.e. systems for which direct equation analysis is not
feasible. Finally, the results are to be implemented in useable software tools. More
information about the project is available on the website http:/ /www.geoplex.cc.

1.3 Goals of this thesis

The research described in this thesis has been conducted as part of the GeoPlex
project. As such, the goal is to attempt to apply the port-Hamiltonian framework
to a specific complex physical system, in this case to walking robots. As argued in
Section 1.1, walking robots, and especially passively walking robots, are complex
systems to analyze, understand, and control efficiently. Especially two-legged
walking robots are complex, since they often do not rely on static stability, con-
trary to robots with four or more legs.
The specific goals of this thesis are as follows.
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o To develop a systematic way to construct port-Hamiltonian models for gen-
eral rigid walking robots, i.e. mechanisms that can be approximated accu-
rately as rigid bodies interconnected by ideal kinematic constraints, and
that can interact with another mechanism through general contact forces
and torques in three dimensions;

o To use this systematic method to construct port-Hamiltonian models of sev-
eral walking robots, and analyze these models to obtain a better under-
standing of how and why these robots walk;

¢ To use the knowledge obtained from the model analysis to design energy-
efficient controllers for walking robots.

Since this research is part of the GeoPlex project, we use the common inter-
domain language of port-Hamiltonian systems to describe the models and main
results. However, we do not stick to this framework dogmatically, and choose
more appropriate representations when they are clearly better suited for the spe-
cific situation. The idea of thinking in terms of power-ports and interconnection
by energy flows, though, is used throughout this thesis.

1.4 Thesis Outline

To describe the development of a systematic modeling technique for walking
robots, and to apply these models for analysis and control, this thesis is struc-
tured as follows.

Chapters 2 and 3 describe a systematic way to model general rigid mechan-
ical structures, possibly in contact with other mechanical structures. Chapter 2
generalizes earlier work on models of rigid mechanisms to a more general class
of systems, including joints with configuration space unequal to R and nonholo-
nomic joints. Chapter 3 describes a general way to model the contact kinematics
and dynamics between rigid mechanisms, both for compliant and rigid contact.

Chapter 4 then applies these techniques to obtain port-Hamiltonian models of
three examples of walking robots: a simple two-dimensional compass-gait robot,
a planar experimental walking robot with knees, and a three-dimensional walk-
ing robot. Models at different levels of detail are derived, suitable for either sim-
ulation, analysis, or control. The models of these robots are analyzed in a system-
atic way to draw conclusions about the influence of their mechanical structure on
their ability to walk, and efficient (or even passive) walking trajectories for these
robots are derived.

Chapter 5 presents several techniques, based on the port-Hamiltonian mod-
els, to develop controlled energy-efficient walking. It discusses both control by
passive adjustments of the structure, and control by active steering to increase ro-
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bustness. It also shows preliminary results for the control of a planar experimen-

tal walker, and the use of foot-placement to control a three-dimensional walker.
A Several results in this thesis can be interpreted in terms of differential ge-

ometry or other more advanced mathematics. In order not to scare readers with

limited knowledge of these topics, such interpretations have been carefully de-

limited by the triangle marks shown next to this paragraph. These paragraphs
A are not needed to understand the rest of the text, and can be safely skipped.



Chapter 2

Modeling of Rigid Mechanisms

The goal of this chapter and the next is to obtain building blocks that can be used
to construct mathematical models of the mechanical behavior of general walk-
ing robots. This chapter contains the necessary ingredients for the description of
mechanisms comprised of a finite number of rigid links interconnected by ideal
joints, possibly moving freely in space. Chapter 3 discusses models for collisions
and contact of rigid mechanisms with their environment.

A rigid link (or rigid body) is defined as a finite volume of point masses, all of
which have fixed relative distances. The most common example is a piece of solid
material (e.g. aluminum) in which the point masses are the atoms of the material
with constrained relative distances due to the structure of the solid.

An ideal joint is defined as a constraint between two rigid links that allows
only certain relative velocities and prevents others, independently of the forces
and torques applied to the links. An example is an (ideal) door hinge, which
constrains the velocity of the door to be a rotation around the vertical hinge axis,
relative to the building, even though gravitational forces may try to translate it
vertically.

These definitions show that rigid links and ideal joints are idealizations of
practical objects. Real links always have a certain stiffness, i.e. with a large
enough force or a large enough operating frequency they will bend considerably
or even break. Similarly, when real joints are subjected to large enough forces in
the constrained directions, they will break. For the purpose of practical walking
robots, however, the assumption of rigidity of links and idealness of joints is rea-
sonable: robot links and joints are designed to be stiff (rigid) and strong (ideal) to
increase their lifetime, and also to simplify modeling and control of these robots,
which is much harder if the links are flexible. The frequencies of the motion and
magnitudes of the forces are low enough to allow this design. However, as in all
modeling tasks, models should be tested against the real practical realizations to
check if the modeling assumptions are justified.

15
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In this chapter, we develop a dynamic model of a general rigid mechanism
in several steps. We first look at the description and analysis of the kinematics of
rigid mechanisms (Sections 2.1 and 2.2), then at the description of the dynamics of
the mechanisms in the framework of port-Hamiltonian systems (Section 2.3), and
finally at methods to deal with kinematic loops and nonholonomic constraints
(Section 2.4).

2.1 Kinematics of rigid bodies

The objective of a kinematic study is to obtain insight in the possible configura-
tions and velocities that a mechanical system can have, without looking at the
physical causes for these configurations and velocities. In other words, we study
and try to describe the possible motions of a mechanical system without looking
at the forces acting on it.

2.1.1 Configuration of a rigid body

As a first step, we consider a single rigid body, freely moving in space. The con-
figuration of this rigid body could be described by the positions of all the point
masses that are part of the body. If, for example, we consider a one kilogram
slab of aluminum, we could describe its configuration (expressed in some coordi-
nate frame) by the positions of all the atoms; this would amount to roughly 1026
variables.

Fortunately, the assumption of rigidity can reduce the dimension of the state
space enormously. The point masses are constrained to have certain fixed relative
distances, and so the positions of three fixed non-collinear points of the body are
enough to determine the positions of all the other points. To be more precise,
we prove the following lemma, using the definitions of the various spaces from
Appendix A.3.

Lemma 2.1. The space of all possible configurations of a rigid body in three-
dimensional space, relative to some reference frame, is the six-dimensional space
SE(3), which is topologically equivalent to the set R! x R! x R! x §? x S!.

Proof. We prove the lemma geometrically by considering Figure 2.1. Suppose
we have a rigid object with three non-collinear reference points on it. How many
degrees of freedom do we have to place this object in a three-dimensional world?
Starting in Figure 2.1a, we see that the first reference point (labeled p;) can be po-
sitioned freely in space, i.e. there are three degrees of freedom for this point. Then,
following Figure 2.1b, there are only two degrees of freedom in positioning the
second reference point ps, since the rigidity constraint forces p, to be somewhere
on a sphere with center p; and radius 712 (r,— denotes the distance between p,
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Figure 2.1: Three non-collinear points on a rigid body determine its configuration.

and py). Finally, Figure 2.1c shows that the last reference point p; must be both on
a sphere centered around p; and on a sphere centered around ps, i.e. , on the in-
tersection of the two spheres: a circle. The position on this circle has one degree of
freedom, making a total of six degrees of freedom. With all three reference points
positioned, the object can be constructed using the other rigidity constraints.

The resulting space is thus indeed the six-dimensional space R! x R! x R! xS? x
S': an element of R! x R! x R! to fix the position of p;, subsequently an element
of S? to fix the position of py, and finally an element of S! to fix the position of
ps and hence the whole body. Grouping together the translation parts and the
rotation parts, we obtain the equivalent group T'(3) x SO(3). T(3) is the group
of translations in three dimensions, and SO(3) is the special orthogonal group in
three dimensions, i.e. the group of 3D rotations. The space S? x S! is called the
Poincare sphere and is a representation of SO(3), as shown in Marsden & Ratiu
(1999).

Combining the two resulting groups 7'(3) and SO(3), we obtain the group
known as SE(3), the special Euclidean group in three dimensions, which hence
is the space of all possible 3D configurations of a rigid body, relative to a certain
frame. O

In numerical computations and simulations, instead of describing the relative
configuration of a rigid body as an abstract element of SE(3), we would like to
use coordinates, i.e. real numbers. Since SE(3) is a six-dimensional space, we
would like to use six real numbers to describe it, just like we would to describe
the six-dimensional Euclidean space.

Unfortunately, SE(3) is topologically different from the Euclidean space, and
it is hence not possible to continuously and globally cover it using six coordinates.
Instead, several representation methods exist to describe SE(3) either only locally
continuously using six numbers, or globally continuously using more than six
numbers. Selig (2005) discusses representation theory in the context of robotics.

Examples of locally continuous descriptions are the often-used methods of
Euler angles. In these methods, the rotation part is parameterized by three con-
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secutive rotations about local axes (which axes depends on the precise variation
of the method). The amounts of rotation provide three numbers (angles), which,
together with three coordinates for translation, give a parameterization of SE(3).
For every element of SE(3) there exist such coordinates, so the covering is global.
However, whatever variation is chosen, there are always rotations that are de-
scribed by only two coordinates with the third arbitrary (when using consecutive
rotations around =z, y, and z, for example, the coordinates (a — 0, 5, 6) describe
the same rotation for all §). The result of this is that, during a smooth, continuous
change of rotation, the coordinates can have non-smooth discontinuities! Since
we want to take time-derivatives of rotations, these artifacts are undesired.

An example of a globally continuous but redundant representation is by a
vector of the form ¢ = [cos(£), ny sin(), no sin($), ng sin(4)] with n?+n3+n? = 1.
The three numbers n; define the unit axis of rotation in three-dimensional space,
and the number 6 the angle of rotation around this axis. The vector ¢ is usually
thought of as a unit quaternion (Selig 2005). Together with three numbers for
translation, this quaternion can be used as a representation of SE(3). However,
the quaternion g is constrained to have unit norm, and there is a double covering
of the space of rotations (a 360° rotation around a certain axis is the same as a
0° around that axis, but the quaternion representation for these two rotations is
different).

In this thesis, we choose to use a representation method that uses so-called
homogeneous matrices to describe the relative configuration (translation and ro-
tation) of two coordinate frames in three-dimensional space. Homogeneous ma-
trices have the advantage of being globally continuous and being easy to perform
calculations with, i.e. using basic matrix multiplications. Homogeneous matrices

are defined as follows.

Definition 2.2 (Homogeneous Matrices). A homogeneous matrix H is a matrix
of the form

H :[R p]: Rye Ry Bys Pyl ¢ gaxa (2.1)
0 1 RZI Rzy RZZ : pZ
0 0 0 1

with R~ = RT € R3*3, det(R) = 1, and p € R3*1,

Using the same notation as Stramigioli (2001), we can use homogeneous matrices
in the following way to describe the configuration (position and orientation) of a
rigid body.
1. Choose a right-handed coordinate frame ¥; as a reference frame, in which
the configuration of the rigid body will be expressed;
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2. Rigidly attach another right-handed coordinate-frame ¥ to the body, where
‘rigidly attaching’ means that the coordinates of all points of the body, when
expressed in ¥;, are constant in time, independently of the motion of the
body;

3. Define p;- as the 3 x 1 column vector of coordinates of the origin of ¥; ex-
pressed in ¥;;

4. Define R as the 3 x 3 matrix with the columns equal to the coordinates of
the three unit vectors along the frame axes of ¥; expressed in ¥;;

5. Construct the matrix H} using (2.1) with R = R’ and p = p,.

We first prove that this definition of H} gives a proper homogeneous matrix, i.e.
that it satisfies the required properties on R. Let us denote by a the unit vector in
the direction of coordinate axis a and compute

o JaT Tz 2Ty 27Tz 1 00
(RO'Ry = 9" [z 9 2= 1|92 979 972 =(0 1 0 (2.2)
3T T 2T5 373 0 0 1

where the last step follows since the axes of a coordinate frame are orthogonal to
each other and the vectors Z, , and 2 have unit length. This proves that (R;)T =
(R%)~*. Now, to prove det(R}) = 1, we compute

det(R)) =det([Z § 2])=(x7,2) =1 (2.3)

where the last step follows since the vectors have unit length and since the frame
is right-handed, hence the cross product of & and ¢ by definition equals 2. So
indeed, the matrix H? defined in this way is a proper homogeneous matrix of the
form (2.1).

However, although the matrix may be homogeneous, it remains to be shown
how it describes the configuration of the rigid body, which was its purpose. To
this end, we need the following definitions of the augmented coordinates of a
(free) vector and of a point.

Definition 2.3 (Coordinates of a Vector). The (augmented) coordinate vector V*
corresponding to a (free) vector v in space is the vector

xv

} i i
Vii= m = ‘Z eR? (2.4)

0

with x!, ye, i the orthogonal projections of v on the respective axes of a right-handed
coordinate frame W, i.e. the conventional coordinates v* of the vector v.
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Definition 2.4 (Coordinates of a Point). The (augmented) coordinate vector Q)
corresponding to a point q in space is the vector

A &
P ' R 4
Q' = [1] = €ER (2.5)
1

with x}, yi, z; the coordinates of the vector from the origin of the right-handed frame
U, to the point q.

The coordinates of a single point g, expressed in different coordinate frames V;
and ¥, are related by the homogeneous matrix H; as constructed before, namely
in the following way.

Q= HiQY (2.6)

This can be proved as follows: for a point ¢ with coordinates (Y when expressed
in ¥, its coordinate vector ¢’ is the vector from the origin of ¥; to the origin
of ¥; plus the vector from the origin of ¥; to the point ¢ expressed in V;, or
mathematically

q = p;— + (227 25 + 997 &5 + 227 25) @l + (&:27 95 + 9:97 95 + 227 05) qi
+ (#2725 + 007 2 + 257 2) @l = Pl + Rig! (2.7)

which can be written conveniently as the matrix multiplication (2.6).

When the coordinates Q° of a point ¢ are expressed in a frame ¥; that is rigidly
attached to the body to which also ¢ is rigidly attached, these coordinates are
often called body-coordinates. Similarly, when the coordinates Q° are expressed in
a frame U that is considered a reference frame, the coordinates are called world-
coordinates.

The property of defining a coordinate transformation by a simple matrix mul-
tiplication can be used for various purposes. Knowing the relative homogeneous
matrix between two coordinate frames means that quantities computed numer-
ically in one of these frames can be transformed to the other frame by a matrix
multiplication. Furthermore, when rigid bodies are moving around over time,
we can describe this motion by a time-varying homogeneous matrix, and use it
to describe the time-evolution of the position of any point attached to the body
by a multiplication of the body-coordinates of that point. These properties show
that indeed, the homogeneous matrix, constructed as before, describes the con-
figuration (position and orientation) of a rigid body.

Homogeneous matrices have another nice property, which follows from the
interpretation as a coordinate transformation. Since coordinate transformations



2.1. KINEMATICS OF RIGID BODIES 21

Figure 2.2: A body with frame V; translated and rotated relative to a frame .

must be invertible, we have

1 — (1) (ij)‘l —(R§1)‘1p§} _ [(Ré)T —(R%)Tp;i 2.8)

which defines the matrix H/ as a simple combination of the elements of H L

Remark. The representation using homogeneous matrices is highly redundant;
the matrix contains sixteen numbers, whereas SE(3) is only six-dimensional.
Definition (2.1) constrains the structure of a homogeneous matrix: the bottom
row mustbeequalto [0 0 0 1], and R mustbe an orthogonal matrix with de-
terminant 1. When homogeneous matrices are used in theoretical developments
and proofs (as they are in this thesis), these constraints are automatically satisfied
by the operations allowed on them. However, when they are used in numerical
computations and simulations, in which roundoff errors and other approxima-
tions occur, it should be checked whether the matrices remain homogeneous and
whether a numerical correction is necessary. A

Example 2.5. As an example of the described approach, consider Figure 2.2,
which shows a rigid ellipsoid with coordinate frame ¥; and a plane with frame
¥, (the symbol ¥ is usually taken as the reference frame). To describe the rela-
tive configuration of the ellipsoid with respect to the plane, we can compute the
matrix H) as

cos(0)
(2.9)

N
|
w0
.
=
—~
>
~
o o = O
Q
o
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— o Qe O
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Suppose we are interested in the point @) on the ellipsoid which has body-fixed
coordinates, say, ' = 0, y* = 2, z* = 1 (these are independent of the configuration
of the ellipsoid). Then to find the coordinates of the point () relative to the plane,
i.e. expressed in ¥, we compute

cos(d) 0 sin(d) 0] [0 sin(6)
0 __ 0 _ 0 1 O a 2 . 2 + a
Q= HQ = _ sin() 0 cos(d) b| |1]| — |cos(d)+b (2.10)
0 0 0 1|1 1
A

2.1.2 Velocity of a rigid body

The next aspect in the kinematic analysis of a rigid body is the description of its
possible velocities. As in the case of configuration, there is a mixture of linear
velocities and angular velocities, and we seek to describe these two aspects as
one mathematical object.

Since we want to use a time-varying homogeneous matrix H(t) to describe
the position and orientation of a rigid body, it would be straightforward to use
a matrix H(t) = 4 H(t) to describe its velocity. However, at all times the ma-
trix H(¢) is constrained to be a homogeneous matrix, and so also the degrees of
freedom of H (t) are constrained, depending on the current value of H (t).

In order to find a better representation of velocity, we look more closely at the
constraints on H. From (2.1), we have

H(t):[R(()t) pg)} with RORT(t) = RT(OR() =1  (2.11)

If we compute the time-derivative of the constraint on R, we obtain
. . AN\T .
0=RTR+RTR = (RTR) +RTR 2.12)

which shows that the constraints on [ can be translated into the constraint that
RT R must be a skew-symmetric matrix (plus the constraint that the bottom row
of H must be all zeros). This leads us to the notion of a twist and its use as a
representation for the velocity of a rigid body.

First, we define the tilde operator acting on elements of R? as the bijective
linear mapping from R3 to the space of 3 x 3 skew-symmetric matrices such that

0 —wW, Wy Wy
W= | w, 0 -—w,| Yw=|w,| cR® (2.13)
—Wy Wy 0 Wy
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With this definition and following the notation of Stramigioli (2001), we can for-
mulate the definition® of a twist.

Definition 2.6 (Twists). Let H}(t) be a time-varying homogeneous matrix repre-
senting the relative configuration of a rigid body j relative to a body i. We define the

twist Tf " (twist expressed in coordinate frame Uy, of the rigid body as the vector

(t)

k,i
TH(t) = [ji 0 € RS (2.14)
J

such that at all times t we have

s ki ki e k( pi piypi ki pkpi i
Thi = {“’6 " } — HYHIH] = [Rz (RJORz)Rk RiD; ORzRapk (2.15)

where we omitted the explicit time-dependencies for clarity.

Since the tilde operator is a bijective mapping and since homogeneous matrices
are invertible, the space of allowed matrices H} is bijectively parameterized by
the twists. The matrix H; can be simply recovered from the twist as

Hi=H.TMHY (2.16)

The problem of constraints on the allowed velocities is thus avoided if velocities
are represented by twists instead of time-derivatives of a homogeneous matrices.

As demonstrated in Appendix A.3, the space SE(3) is a Lie group, and homo-

geneous matrices can be used as matrix representation of the elements of SE(3).
The lie algebra se(3) of the group is defined as the tangent space to the identity
of the group. From Definition 2.6, we see that the twist is just the element of the
algebra se(3) corresponding to the translation of the tangent element H at H to
the identity. The right and left translation correspond to the choice ¥}, = ¥; and

A VU, =¥, respectively.

Apart from being a mathematically attractive representation of a constrained

higher-dimensional space, twists also have a clear geometric interpretation. To
see this, let us return to the use of a matrix H ZQ to compute the world coordinates
of a point g attached to a rigid body. We can compute the (linear) velocity Q° of
the point g as the rigid body moves in space by using the twist:

0 4 0 0 i 0.0 170 i 20,00 _ |000q0 + 0
Q=2 (HPQ) = Q" = T) HQ' = T;7Q" = |77 7 T 7 (2.17)

ISometimes, such as in Murray et al. (1994), twists are defined as [UT wT] T, so with w and v

ordered differently. This notation is not arbitrary, but depends on choosing either ray coordinates or
axis coordinates, as defined in screw theory, see e.g. Lipkin (1985).
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where the second equality follows from Q' = 0, since ¢ is rigidly attached to the
body and hence its coordinates relative to W; are constant. The twist 7" is often
called the twist in world-coordinates, since it directly relates the positions Q° and
velocities QO of points, i.e. when expressed in the world-fixed coordinate frame
Wy. Similarly, the twist 7" is called the twist in body-coordinates as it directly
relates positions and velocities of points expressed in the body-fixed frame V.

The previous discussion shows how the twist can be interpreted as a combina-
tion of a linear velocity and an angular velocity: w;"’ defines a vector of rotation
through the origin of ¥, and v\"° defines a vector of linear velocity, such that a
point ¢ on the rigid body has a velocity relative to ¥y equal to ¢° = w?"* A% +v."°.

However, the choice of splitting between rotation and translation depends on
the choice of the reference frame ¥ ; if we move the reference frame to a differ-
ent location, both the rotation and translation part may change, even though the
velocity of the rigid body is still the same. An interpretation of a twist that is in-
dependent of the choice of reference frame is given by Charles” Theorem, which
is based on the notion that every rigid motion can be decomposed uniquely in a
rotation around an axis plus a translation along the same axis.

Theorem 2.7 (Charles” Theorem). Every twist T' can be written as the sum of a
rotation around an axis and a translation along the same axis.

@ 0
T=a [r /\w] + 3 L} (2.18)
where @ is the unit vector in the direction of the axis, r is any vector from the origin

of the reference frame to that axis, o is the magnitude of the rotation, and [ is the
magnitude of the translation.

Proof. Consider a general twist 7. We can distinguish three situations:

o w=1v = 0: choose « = f = 0 and @ and r arbitrary (& and r have no

physical meaning here, since there is no motion).

o w=0,0%0: choosex =0, = |jv]|, ® = oy and r arbitrary (r has no
physical meaning here, since a translational motion is fully defined by its
direction @ and magnitude 3).

e w # 0: choose a = |jw||, & = 1 Lon(w—aT T

o r=a0A(v—0 vw),and 8 = &' w.

With these choices of «, 3, &, and r, any twist can be expressed in the form of the
theorem. O

With a twist expressed in the form of Theorem 2.7, we can make a coordinate-
independent distinction between a purely translational motion (o« = 0), a rota-
tional motion (5 = 0), or a general so-called screw-motion (a # 0, 5 # 0). The
ratio of the numbers o and 3 is called the pitch.
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Wi
Figure 2.3: Three rigid bodies with several attached coordinate frames.

Finally, let us present some useful identities about twists and homogeneous
matrices that are used later in this thesis.

Lemma 2.8. Given the setup of Figure 2.3 with V; and U ; rigidly attached to one
rigid body (the plane), ¥y, and V; rigidly attached to another rigid body (the sphere),
and U, attached to the final rigid body (the cube). Then the following identities hold

(ﬂ) T]z,l _ j—vlk,k: -0
(b) T = HP T |,
s ik _ R 0 _|R p
(c) T} _AdHimTjZ with Adg = LﬁR R} for H = [0 1]
-
(d) T} = —T;
(e) T3 =T)7 + T3}

(f) % Adek = Adek adTii,k with adp := [Lg g] fOT = [‘::|

Proof. We prove each of the properties separately, using Definition 2.6 and the

rigidity of the objects.
(a) The twist T; " is defined in tilde form as T; = H ;HZ . Since the frames
V¥; and ¥, are attached to the same body, we have H; = 0, and hence also

T]” = 0. The same holds for le’k.
(b) We can directly write

Fm,k mr j m Iyt I Ragh mAt,k rri
T = H'HYH), = H"HH H] H},, = H"T" H], (2.19)



26 CHAPTER 2. MODELING OF RIGID MECHANISMS

which gives a coordinate transformation rule for twists in tilde form.
(c) Expanding the expression obtained in (b), we find

ok = kg = {Rz’-” p?} [%k ”jk] [an —Rinp?]

0 1 0 0 0 1
_[Rrey*Ri, —RratRLpr - Rrv;i”“]
B 0 0
_ | (Bret) —(Brept)pr + Ryt
0 0
_ ((Bres) Ryt + Rt 220)
0 0

where the third line follows since for all z € R? we have

—_

(Rw)z = (Rw) Az = RR" ((Rw) Az) = R (R Rw) A (R"z))
=R(wA (R"2)) = RoR"x (2.21)
and hence (RA;) = RoRT. Comparing the expression for T;n’k to the tilde
representation of Adgm T; " we see that they are equal.
(d) From the time-derivative of the identity H} H ¥ = I, we immediately obtain
0=H{HF + H/HF =T + T/* (2.22)
(e) Looking at the tilde-form of the equation, we see
cid _ idgm — S (gigkgl \ gm
Ty = iy = & (HHb )
i 77k j £7k 7l j 771 m
- (H,@Hm +HEFH + H{Hm) H!
= H{H} + H]HfH! + H] H. H"H!
=T +0+13 (2.23)
where the zero follows since ¥, and ¥, are attached to the same body.
(f) By definition of Ady, we have

(2.24)

d Ri 0] _ REQVY 0
dt

ZAdy = | e P A A .
T e v ptRE R T R 4 RN REG

which can be written in the proposed form.
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2.2 Kinematics of rigid mechanisms

We define a rigid mechanism as a (finite) number of rigid bodies, interconnected
by ideal joints. Rigid bodies have been discussed in the previous section, and now
we proceed to discuss the mathematical formulation of ideal joints using the same
concepts of homogeneous matrices and twists. We then combine rigid bodies and
ideal joints to obtain a kinematic description of general rigid mechanisms.

As described before, an ideal joint (sometimes also called a kinematic pair) is a
purely kinematic relationship between the motion of two rigid bodies; some rela-
tive velocities are allowed and some are not, independently of the forces applied
to the bodies. The following definition characterizes the class of joints considered
in this thesis.

Definition 2.9 (Globally Parameterized Rigid Joint). A globally parameterized
rigid joint is a kinematic restriction of the allowed relative twist of two rigid bodies i
and j to a linear subspace of dimension k, where the relative motion of the bodies is
described by two sets of states, namely

e amatrix Q € Q, parameterizing the relative configuration as H: = H(Q)

e avector v € R¥, parameterizing the relative twist as T; = X(Q)w

where X (Q)) depends smoothly on Q and v = Vg (Q) with Vi invertible and linear
in Q. Furthermore, there exists a mapping Fo : R¥ — Q satisfying

e (o) assigns local coordinates ¢ € R¥ to a neighborhood of every Q € Q.
o Fy(9) is twice continuously differentiable in ¢

e I9(0)=@Q

The function Fy(¢) defines a local coordinate patch with coordinates ¢ around
every allowed configuration parameterized by Q. If the configurations around ()
are described by coordinates ¢, the velocity v can also be expressed as

v="Vq(Q) = VEo(e) (aFngM) (2.25)

i.e. in terms of the time derivatives of the local coordinates. This property is used
in the derivation of the dynamic equations in Theorem 2.17.

Note that the linearity of the subspace implies that no end-stops or speed-
bounds are considered. Furthermore, since the dimension of the vector ¢ is equal
to the dimension of v, we consider only joints for which the space of allowed
relative configurations (described by ¢) has the same dimension as the space of
instantaneously allowed velocities (described by v). This type of joint is called a
holonomic joint. Section 2.4 discusses an extension of the results to nonholonomic
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joints, i.e. joints for which the space of allowed instantaneous velocities has a
smaller dimension than the space of allowed configurations.

The technical conditions on the mapping F' are trivially satisfied if ) can be
chosen as a k-vector (in which case we can take F(¢) = Q + ¢). Thus, the
often encountered rotational and prismatic joints are part of the class of globally
parameterized rigid joints, as is shown in Example 2.10 below.

Another case for which the conditions on local coordinates are satisfied is
when the space of allowed configurations of the joint is a Lie group, with @ the
matrix-representation of the Lie group and v the vector representation of the cor-
responding Lie algebra. The global mapping F' can then be chosen as the map-
ping of exponential coordinates ¢ around (). More details about exponential co-
ordinates can be found in Appendix A.3.

Example 2.10. As examples, we show how the commonly encountered joints of
Figure 2.4 can be described in the form required by the definition above, i.e. in
terms of parameterized twists and homogeneous matrices. For each joint, we do
not consider possible mechanical end-stops, even though the figures may suggest
their existence.

(a) The rotational joint is frequently used in robotics modeling, as robots often
contain several rotational joints. For the joint in the figure, the frames ¥,
and ¥, differ by a consecutive fixed translation a along y, variable rotation
of ¢ about z, and fixed translation b along y, which can be written as

1 0 0 0

0 cos(q) —sin(q) a4+ bcos(q)
0 sin(q) cos(q) bsin(q)

0 0 0 1

Hj(q) = (2.26)

in which we chose simply () = ¢ to parameterize the allowed configura-
tions. The relative twist is a pure rotation around z displaced over a dis-
tance a along y, or in vector form

T3l =X(qv=[1 0 0 0 0 —da]'g (2.27)

which shows that we choose v = ¢. Since the configuration parameter ¢ is
just an unconstrained scalar, the local coordinate mapping can be chosen
Fy(¢) =q+ ¢

(b) The prismatic joint is a simple 1 DoF joint that allows only translation along
one axis, in this case x. If we denote by ¢ = 0 the situation that ¥; and ¥,
are coincident, then the relative configuration can be written as

1 0 0 ¢
010 0

H(@D=15 0 1 o (2.28)
000 1
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(a) Rotational joint (one DoF). (b) Prismatic joint (one DoF).

(c) Planar motion (three DoF). (d) Two-gear system (one DoF).

z

(e) Free motion (six DoF). (f) Ball joint (three DoF).

Figure 2.4: Examples of globally parameterized rigid joints.



30

CHAPTER 2. MODELING OF RIGID MECHANISMS

()

(d)

The corresponding relative twist is a simple linear velocity, or
T =X(qv=1[0 0 0 1 0 0]"g (2.29)
So also for this joint, we can choose ) = ¢ and v = ¢, and hence again

Fy(9) =q+ 9.

A planar joint is used to describe free translation in a plane plus free ro-
tation around the axis perpendicular to that plane. We can choose three
coordinates as in the figure to describe the relative configuration as

cos(¢?) —sin(¢®) 0 ¢
: 3 3 0 2

Q) = [PM) ol 0 a (2.30)
0 0 0 1

such that in this case Q = [¢* ¢* ¢*] T The corresponding relative twist
can be described as

T .

000 1 0 0] [q¢
T,'=X@Quw|0 00 0 1 o0 |¢ (2.31)
001 ¢2 —g* 0 g3

which shows again a choice v = ¢. Thus, also for planar joints, we can use
the coordinate mapping Fg(¢) = Q + ¢ with ¢ € R3.

The two-gear system is an example of a system with a kinematic loop: the
two gearwheels are connected by rotational joints to a common frame, but
also to each other by the constraint that the linear velocity of the contact
point is equal on both gearwheels (ideal gear systems have no flexibility
or backlash). If we assume for conciseness that the gearwheels have unit
radius, we obtain as the constraint of the contact point p that

Ty' Pt =Ty P! (2.32)
0 0 —¢2 0][o0 0 —¢# 0 0]fo0
00 0 of|-1] & o0 0 of]|-1
@2 0 0 ofl|1| "o 0o o0 o0]]1 (2.33)
00 0 o0f]1 0 0 0 of]|1

where we expressed the velocity of the contact point using the twists as in
(2.17). From this equation, we find ¢*> = —¢?, i.e. that the angular speed of
V5 must be equal but opposite to that of ¥5. Taking as parameter ¢ = ¢* =
—g?® and as initial condition the configuration shown in the figure, we can
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(e)

(®)

describe the relative configurations as

[0 cos(q) —sin(g) O
S P 0 -1
H(9) = 0 sin(g) cos(q) O (2.34)
00 0 1
[ cos(g) sin(g) 0 0
—sin cos 0 0
Hy(q) = | o) costa) 00 (2.35)
0 0 01
and the relative twists as
3= -1 0 0 0 0]"g (2.36)
TH'=0 0 -1 0 0 0]"¢ (2.37)

hence just two rotational joints as in (a), but now both depending on the
same states ¢ and ¢. In a similar way, this approach can be used for systems
of more than two gears.

Free (6 DoF) relative motion of two rigid bodies can be seen as a degen-
erate joint (since in fact nothing is joined), but can still be described as a
globally parameterized rigid joint. We can just take Q = H} and v = ",
and hence X (Q) = I, and V(Q) as the vector representation of QQ~'. As
global mapping Fo(¢), we can use the exponential coordinates described
in Appendix A.3.

The spherical joint allows two bodies to have a fixed relative displacement,
but arbitrary rotation. If we choose a rotation matrix R to describe the free
relative rotations of the two concentric spheres defining the joint, and if we
assume for conciseness that ¥; and ¥, are displaced by vectors p; and p»
from the centers of rotation, respectively, then their relative configuration
can be described by

1 I pi| |R O (I p2| |R Rp2+p1
H(R) = [0 1o 1o 1]7]o 1 238)
while the relative twist can be written as
N . ST  _ ppT
T = HlH? = [Rff o pl} or TH = Lﬂ w (2.39)
1

where @ := RRT. For this joint, we choose Q = R, v = w, VQ(Q) the vector
representation of RR”, and for the global mapping F(¢) we choose again
exponential coordinates.
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Figure 2.5: Example of a system and its kinematic graph. The graph can be made
loop-free, e.g. by removing (in first instance) the joint between B4 and Bs.

The examples show how general kinematic relations between rigid bodies can be
represented as globally parameterized rigid joints. A

We can now describe the kinematics of a rigid mechanism as an interconnec-
tion of ideal joints attached to rigid bodies. Provided with a practical mechanism
(or its preliminary design), it is up to the modeler to decide what parts of the
mechanism will be considered rigid and what joints will be considered ideal.

The topology of the idealized mechanism can be represented by a so-called
kinematic graph (more on graphs in Appendix B.2), in which each vertex repre-
sents a rigid body, and each edge represents an ideal joint; Figure 2.5 shows an
example. If the graph contains loops (cyclic paths), this means that the mech-
anism contains kinematic loops. Unfortunately, the kinematics and dynamics
descriptions of this section and the following are only suitable for mechanisms
without kinematic loops. Therefore, the graph should be made loop-free, either
(if possible) by formulating the mechanism in a different loop-free way, such as
was done for the two-gear system in the example, or by initially removing a joint
to break the loop, and modeling it in a later phase in terms of a constraint force
(see Section 2.4).

For a loop-free kinematic graph, we use the following labeling conventions.
First, the vertex labeled B, represents the reference frame. Second, a vertex B;
represents a rigid body with coordinate frame ;. Third, an edge E} denotes an
ideal joint that connects body j to body ¢, where B; is an element of the path from
Bj to By (i.e. in the graph, B; is closer to By than B;).

In order to obtain a mathematical description of the kinematics of the mech-
anism, we use the techniques described before to parameterize every matrix H
corresponding to an edge E} using joint coordinates (7. Furthermore, we write

the relative twist as T; S X3(Q7)v’ with v/ the coordinates for the velocities.
We combine the local descriptions of the individual joints to obtain an expression
for the configuration and twist of each rigid body with respect to the reference
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frame. This is presented in the following lemma, which is a generalization of the
geometric Jacobians as defined for example by Stramigioli (2001) and by Murray
et al. (1994) — in the latter reference, it is called the spatial manipulator Jacobian.

Lemma 2.11 (Geometric Jacobian). Given a loop-free rigid mechanism comprised
of rigid bodies B; with coordinate frames V,;, and n globally parameterized rigid
joints E with associated relative twists T" = X{(Q7)v. The twist of a body B;
relative to the reference frame W can then be written as

TP = Ji(Qv = [0} Adgy XP(QY) -+ of Adgy X2(QM)] | | (240)

(2

,UTL

where J; is called the (geometric) Jacobian of body i, and where o? is defined as

o; =

i { 1 if joint E is in the path from B; to By, for some x € {1,...,n}

0 otherwise

Proof. The proof follows directly from Lemma 2.8, parts (c) and (e), since for a
general body in the mechanism, we can write its twist as the sum of all the twists
of the consecutive joints between that body and the reference frame, which can
be expressed mathematically in the form of the lemma. The variables o/ define
the topological structure of the mechanism: only the twists of the joints in the
path from B; to By influence the twist of B;, not the joints further away from the
reference body or joints in different branches of the mechanism. O

Example 2.12. As an example of the proposed techniques, consider the (pla-
nar) mechanism of Figure 2.6, containing a horizontal prismatic joint, a rotational
joint, a gear system, and another prismatic joint. With the labels and coordinate
frames as indicated in the figure, the kinematic graph can be drawn as shown
(where the two gear wheels should be considered one joint). Assuming unit-
radius gearwheels, the relative configurations can be described as

1 0 0 O 1 0 0 0
70 01 0 —¢* ol 0 cos(q?) —sin(g?) 0
710 01 0 2710 sin(¢?) cos(¢®) 1
0 0 0 1 0 0 1
- - (2.41)
1 0 0 0 1 0 0 0
ol 0 cos(¢?) sin(¢?) 0 3 _ 01 0 0
3710 —sin(¢?) cos(¢?) 3 4710 0 1 ¢
10 0 0 1 0 0 0 1
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i

and the relative twists can be described as

Figure 2.6: Example of a rigid mechanism and its kinematic graph.

™= 0 0 0 —1 0] ¢
T“ 1000 10
2 = | ] - (2.42)
l—[-1 0 0 0 -3 0]
Tj’?’ 0 o000 14
which results in the following Jacobian matrix for the end effector Uy:
0 1 -1 0 0 -1 0
0 0 0 0 0 O 0
0 0 0 0 0 0 0
Jo= 1| ol o I+ o il =10 0 0 | eed
-1 1 -3 sin(q?) -1 -3 sin(q¢?)
0 ql g" cos(q?) 0 ¢b cos(q?)

such that T"° = Jyu, with v = ' ¢ ¢° " The Jacobians of the other links
can be constructed in a similar way. A
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2.3 Dynamics of open rigid mechanisms

Now that we have a suitable mathematical description language for the kine-
matics of a rigid mechanism, we can proceed to describing its dynamics, i.e. the
relation between the forces acting on a mechanism and its motion.

2.3.1 Forces on rigid mechanisms

We first look at the effect of forces on rigid bodies. We want to describe these
forces in such a way, that the power P associated with the action of forces on
a rigid body with a twist T can be formulated as P = WTT, just like we have
P = {7y for point masses with velocity v and force f. Thus, we look for an
expression W describing somehow the forces as a vector which, when paired
with the twist, gives the power.

Consider a rigid body with attached coordinate frame ¥; and relative twist
T;"* relative to some body &, and a single arbitrary force f acting on it. Let f;
denote the 3 x 1 column vector expressing the force magnitude in ¥;, and let r*
denote the 3 x 1 column vector with the coordinates of the point on the body at
which the force acts, expressed in ¥;. Then we can compute the power associated
with the force as the (dual) product of the force f; and the velocity v* (expressed
in ¥;) of the point at which the force acts, or

i Fik | T ~ i rt
e WU
ik ] ~i T
=fl[-# 1] [i‘jk] =fr -7 11" = {7’ ff’] Tt (2.44)
The final step shows how we obtain the desired expression of power as P =
WTT by taking W to be the wrench in the following definition. It is also the only
possible solution for W, as the equation for power should hold for all possible
twists.

Definition 2.13 (Wrenches). Let f7 for j = 1...k bea system of k forces acting
on a rigid body i with attached coordinate frame W;. Let f] be the coordinates in ¥,
of the force f7, and let ' be the coordinates in W; of the point of attachment of the

force on the body. The wrench W** associated with this system of forces is defined as
the 6 x 1 column vector

k ~i r] k '3 j
wii =3 {wﬂ -y [Tj Ajff} (2.45)
j=1 fi j=1 fi

where the first superscript denotes the coordinate frame in which the wrench is ex-
pressed, and the second superscript denotes the body on which the wrench is applied.
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The expression for power (2.44) is linear in the forces, and this allows to take
linear combinations of wrenches and obtain again a valid wrench. A special ex-
ample of this is when the term )" f7 is zero, while the term ) 7; f7 is nonzero.
This corresponds to a system of forces where the total force is zero while the total
moment is nonzero, i.e. to the case of a pure torque on a body.

To obtain a method for changing the coordinates of a wrench (i.e. expressing
the same system of forces on the same body in a different coordinate frame V),
we again look at the expression for power. Since power is a physical quantity
independent of the coordinates, we should have

P = (Wj’i)TTij’k — (Wi,i)TTii,k

= (Wii)T (AdH;; Tﬁ*’“) - (Adﬂ; Wi’i)TTii’k (2.46)

and since this should hold for all twists 77", we find the following coordinate
transformation rule for wrenches.

Wit = Adf, W (2.47)
J

Wrenches are linear operators on twists, as can be seen by the construction
of a wrench using the expression for power. In Lie-group terms (Appendix A.3),
since twists are elements of the lie algebra se(3), wrenches are elements of the
dual space of se(3), denoted se*(3). When an element of the dual space (a wrench)
is applied to an element of the space itself (a twist), the result is a coordinate-
independent real number (the power).

When considering rigid mechanisms, we have seen how the twist of a rigid
link in the mechanism can be expressed more efficiently in terms of coordinates v
together with the Jacobian (Lemma 2.11). We can also represent wrenches on rigid
mechanisms efficiently by using a vector 7 (commonly called the joint torques)
which is collocated with v, i.e. such that 77v equals the power associated with
the forces 7 acting on the mechanism with velocity v. We can relate the external
wrenches to the joint torques as in the following lemma.

Lemma 2.14. For a mechanism with kinematics described by Lemma 2.11, an exter-
nal wrench W% acting on body i has the same effect on the mechanism as a collection
of joint torques T equal to T = JT W%, where J; is the Jacobian of body i and T is
collocated with v.

Proof. The power associated with the wrench should be independent of whether
it is expressed in joint variables (v and 7) or work space variables (I" and W), and
hence the following equality holds.

o = (WONTT)? = (WO T Jiw = (T W) T (2.48)
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(a) common practical implementation (b) implementation for this example

Figure 2.7: A linear actuator attached to a rotational joint.

Since this should hold for all v, we have the expression for 7 in the theorem. [

Note that the mapping of Lemma 2.14 is in general not injective, since the
Jacobian can have a kernel, i.e. certain wrenches are projected to zero and have
no effect on the mechanism. Physically, the wrenches in the kernel of J! are
precisely those cancelled out by the constraint forces in the joints.

As an example, consider the effect of gravity on a rigid body of mass m. If we
assume gravity to act in the negative z direction of ¥ and have magnitude g, the
wrench W' associated with the gravitational force on body i equals

~ ~ % 0
Wg’i _ [Tgfg} = —mg [Tg(}fo)ez} with e, = |0 (2.49)
fo 06z 1

where R is the rotation part of Hj and r, is the location of the center of mass
of body ¢ expressed in U; (often equal to zero). The equivalent joint torque 7, is
then given by 7, = JI Adql;é W', This expression can be used in the dynamics
equation for a rigid mechanism, discussed later on in this thesis.

As another example, consider Figure 2.7, showing a rotational joint (with an-
gle ¢) and linear actuator (force f) attached to it. We can compute the equiv-
alent torques by computing the effect of the wrenches on both bodies i and j.
The practical implementation of the actuator would be as in Figure 2.7(a), but to
avoid having to deal with the resulting kinematic loop, we implement it as in Fig-
ure 2.7(b): we neglect the mass of the actuator and consider it a pure force source,
with equal forces f acting in opposing directions on the two connected links.

In this case, the mechanism does not have kinematic loops, and since the two
connected links are part of the same branch in the kinematic tree (they are still
connected by the rotational joint), their Jacobians are almost equal, except for one
extra nonzero column in one of the Jacobians, corresponding to the link that is
furthest away from the reference body. Without loss of generality, we assume
that J; has an extra column, which by definition equals Adgo X]” The Jacobian
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J; can then be expressed as
JLi=Ji+[0 - 0 Adgo X 0 - 0} (2.50)

Using this expression, we can compute the torques equivalent to the actuator
forces as follows.

T=J WO 4 JIwoI

- i T T
J,;TAdEé{_f}Jr(JiTJr{OmO Adgo X7 o.-.o] )Adgé{f]

f i
=10---0 Adgo X" 0---OTAd7}}i rf

b 5| f
o e o [

This shows that for internal wrenches acting on two bodies connected by a single
joint ¢*, the equivalent torque is zero except for 7;. Furthermore, the torque 7; is
equal to the inner product of the wrench and the matrix describing the relative
motion allowed by the joint.

2.3.2 Kinetic co-energy of rigid mechanisms

Let us now proceed to define the kinetic co-energy of a rigid body. Again, we
want to express this energy in terms of the twist of the body instead of the ve-
locities of all its comprising points. Since we later want to apply Newton’s law
to describe the dynamics, we should express the kinetic co-energy in terms of
velocities relative to an inertial frame, i.e. a coordinate frame (denoted W) that
is moving at a constant velocity relative to the distant stars. In this thesis, we
make the common approximation that ¥y is rigidly attached to the earth and we
neglect the absolute motion of the earth.

In the formal definition described in Appendix B.1, energy is a function of the
state of a dynamic element, not a function of one of the port variables. However,
it is often more convenient to describe the storage in terms of a port variable, in
which case the storage function is properly called co-energy to distinguish it from
the real energy. As the kinetic storage function above is expressed as a function
of the twist, i.e. a port variable, it is called the kinetic co-energy.

Given an inertial frame ¥y and a rigid body ¢ with attached frame ¥;, we can
write the kinetic co-energy U}’ of a point p on the body with body-coordinates P,
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. @ .
velocity v, expressed in ¥y, and mass m,, as

. T .
1 1 =0 | D" =0 | P
UF = a7 = gomy (97201} w70 1

st T

7

1 e o] [7 O] [((ROTRY  (ROTY! 1[5 1] [w;”
=gme [T [T g DR 1+ @) ] L0 0f [urf

X ~i\T ~ 3
=ymww$@g ﬂﬂﬂ (252)

which shows that the kinetic co-energy of a point mass can be expressed as a
quadratic function of the twist in body coordinates that is independent of the
relative configuration H? of the body. If we sum (by means of an integral) the
kinetic co-energy of all the point masses of the body, we obtain an expression for
the total kinetic co-energy of a rigid body equal to

1 o
Uy, = i(EZ’Q)TIZ’ZEZ"D (2.53)
with I*% called the inertia matrix of the rigid body, defined as

i [ [E@)T @) p@)
I '7/3 (){ (7)) ;] d (2.54)

and m(z) and p’(x) the mass density and body-fixed coordinates of the point x,
respectively, and where the integral is taken over the volume B of the rigid body.

By construction, the inertia matrix is positive semi-definite. Furthermore, if a
rigid body has a finite volume and mass distribution, then the inertia matrix will
be strictly positive-definite, meaning that for every non-zero twist the body has
nonzero kinetic co-energy.

If the coordinate frame on the body is chosen to be in the center of mass of
the body with the axes of the frame aligned with the principle directions of the
inertia ellipsoid of the rigid body, then the inertia matrix is a diagonal matrix of
the form

v =diag[J, J, J. M M M| (2.55)

with M the total mass of the body, and J;, J,, and J, the moments of inertia
around the axes z, y, and z of ¥;. The parameters in this matrix are often easy to
measure or compute for a given rigid body, and therefore the body-fixed frames
are often chosen in this way.
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If the inertia matrix is known in one coordinate frame, it can also be expressed
in a different coordinate frame by using a suitable transformation rule. Since the
kinetic co-energy of a body does not depend on the chosen coordinate frame, we
have
1

ST =

(T Adgy I Ay, T/ (2.56)

Lo 0T riimi 0
= (TINT il
Ur = 5(T77) i 5

and since this should hold for all twists, we obtain the following transformation
rule for inertia matrices.

= AdL, 1 Ady; (2.57)

With the kinetic co-energy of one rigid body known, we can express the kinetic
co-energy of a rigid mechanism as the sum of the kinetic co-energies of all the
rigid bodies in the mechanism. This is expressed formally in the following lemma.

Lemma 2.15 (Kinetic Co-Energy of a General Rigid Mechanism). Given a
rigid mechanism consisting of m rigid links and n globally parameterized rigid joints
as defined in Definition 2.9, and with kinematics described by a loop-free kinematic
graph and corresponding Jacobians as in Lemma 2.11. The kinetic co-energy of the
mechanism is equal to

U, = EvTM(Q)v (2.58)

where v = [v* v"]T with v* the velocity state of link i, and where the mass

matrix M (Q) is defined as

m

M(@Q) = Z I Q) Adgé(@) I Adpyi(q) Ji(Q) (2.59)

i=1

with J;(Q) the Jacobian of link i and I** the body-fixed inertia matrix of link i.

Proof. The kinetic co-energy of a mechanism of several rigid bodies is equal to
the sum of the kinetic co-energies of the bodies. The kinetic co-energy of body ¢
can be written as (2.53), which, using the Jacobian, can be expressed as

1 g 1 g
(U): = 5 (Ady, TP I (Ad gy T) = 50" (J,f (Q) Adfy, I Ady, Ji(Q)) v

Summing this expression for all rigid bodies gives the total kinetic co-energy of
the mechanism. O
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2.3.3 Dynamic equations of rigid mechanisms

For the derivation of the dynamics of a rigid mechanism, we start from the Euler-
Lagrange equations (Goldstein 1980). For a mechanical system with generalized
coordinates ¢ and ¢, kinetic co-energy Ui (g, ¢) = %qTM (¢)g with M invertible,
potential energy U,(q), and input forces u collocated with y = B%(q)q, the time-
evolution of ¢ is described by the differential equation

d (0L oL
4 (8q> - 50 = Bla (2.60)

with the Lagrangian £(q,q) = Ui(g,4) — Up(q). If we define p := %—2 = M(q)q,

this can be written equivalently in port-Hamiltonian form as
Oq
+ u
5= {B (Q)]

il = ) |

y=[0 BT(q)] [%3

OH 0

(2.61)

with the Hamiltonian equal to H(q,p) = p"¢ — L(q,q) = :p" M (q)p + Up(q),
and (u,y) defining a power port.

These equations can be generalized to what are known as the Boltzmann-
Hamel equations, as described for example by Whittaker (1998). Instead of us-
ing ¢ to describe the velocity, we use a general vector v of the form v = S(q)q
with S(¢) a continuously-differentiable invertible matrix. Using these coordi-
nates (sometimes called quasi-coordinates), the dynamics can be written as fol-
lows.

Lemma 2.16 (Boltzmann-Hamel Equations). Given a mechanical system with
generalized coordinates q, velocities v = S(q)q (with S invertible and continuously
differentiable), inputs w collocated with v, potential energy U,(q) and kinetic co-
energy expressed as Uy(q,v) = v M(q)v. If we define p := M (q)v, we can write
the dynamics as

+ m u (2.62)

d [q 0 S—1 %_ZI
E L)] T |_gT §-T (3 ({;Sz;‘( p) _ 3(3(]?)) g1 OH

-0 1[§ @p

op

where the energy equals H(q, p) = 1p" M~ (q)p + Up(q).
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Proof. The kinetic co-energy U}, can be written as a function of ¢ instead of v
simply by substituting the relation between v and g:

LiTST(g)M (9)S(a)d (2.63)

Ui = *’UTM( ) 2

2

Using this expression, we can write the Lagrangian as a function of ¢ and ¢ as

= LTS ()M (9)5(0)i — Uy (0) (2.64)

L(q,q) 5

and its partial derivatives with respect to ¢ and ¢ can be computed as

oL 1 (3(¢"S"(9)p) | O " M(q)v) | d(p"S(9)q)\ Uy(q)
dq 2 ( dq T 7T &g ) Y (269
L _ §7(q)M(9)S(a)i = ST (a)p (2.66)

dq

where we used the definition of p in the theorem, and where we explicitly de-
noted the variables depending on ¢. Substituting these expressions in the Euler-
Lagrange equations (2.60) (with B = ST since u is collocated with v), we obtain

6Ty — %(ST ) - ; <3(QT§Z(q)p) N 3(0T2i(q)v) N 3(pT5q(q)d)> 31{9(}( 7)
a(s a((] D)\ o1y 3T(5;](Q)p)q _ éa(ng{](Q)v) . 5{%
_ (%i((}q)p)q L ST 6T(S;(q)p)q N ;a(pTJ\g:(q)p) N %
_ 8(5’2C(Iq)p)q. 1smp- S @) aTq @p) ;4 %—Z (2.67)

where the third equality follows from the identity

—1 —1
O _oX'X) 90X, 0X

0:%_ da T da Oa

(2.68)

which holds for any invertible matrix X and any variable a. The resulting dy-
namic equation can be written directly in the form of (2.62). O

The Boltzmann-Hamel equations serve as a basis for the derivation of the dy-
namic equations for general rigid mechanisms as presented in the following the-
orem. This theorem gives the dynamic equations for general rigid mechanisms
without kinematic loops, comprised of rigid links and interconnected by globally
parameterized rigid joints.
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Theorem 2.17 (Dynamics of a General Rigid Mechanism). Given a rigid
mechanism as in Lemma 2.15 with total energy equal to kinetic plus potential energy,
and with power-port (u, v). Its dynamics are described by the following equations.

0 =V5'() (2.69)
. _pO0H . (9T(STp) 0(STp) i

__g T_+5T< _ >‘ Sy'Mpru @270
p 0 8¢ 0 8¢ a(b P 0 p U ( )
v=M(Qp @71

with the energy function H(Q,p) = p" M~*(Q)p + U,(Q) and where we defined

Q0 = Vi (P00 ) V3 )
5(Q.6) = ding [S,(@16) - Su@.em] @7
So = 5(Q, 0) (2.74)
OH _ 0H _0F,
o5 = 5w oFl,, V¢ 2.75)

with F;(¢*) the local coordinate function of the globally parameterized rigid joint i
with local coordinates ¢*.

Proof. First, consider an arbitrary (fixed) state (Q,p) of the system, with p =
M(Q)v. Then, by definition of a globally parameterized rigid joint, the functions
F;(¢*) define local coordinates ¢ around Q' for all joints i. With @ fixed and
only ¢ changing, time derivatives of the configuration can locally be expressed
as a 5 - (97 )gf)z (where, for joints with more than one DoF, summation over all
components of ¢’ should take place). Joint velocities can be expressed using the
mappings V* for each joint, but instead of expressing them as functions of Q"
and Q°, we express them as functions of ¢ and $', as shown in (2.25). Since by
definition, V' is linear in @, the expression V' can be written as a matrix-vector
product S;(Q7, (;Sz)gb’ as in (2.72). Collecting the matrices \S; in the matrix S as
defined in (2.73), we obtain an expression for the velocities as S(Q, qb)qb

Second, we can write the dynamic equations for the system locally around Q
in port-Hamiltonian form by using (2.62) with coordinates ¢ (and parameterized
by Q). The momentum can locally be written as

pi=M(Fqg($))S(Q.¢)d (2.76)

giving a Hamiltonian equal to 1p” M~ (Fg(¢))p+U,(Q). The Boltzmann-Hamel
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equations in port-Hamiltonian form then become

6 =S5""M"(Fo(e))p (2.77)
T QT T
p= —S‘T%—g +5°7 (8 (aS¢> P _ 6(§¢p)> STIM TN (Fg(e)p+u  (278)

where we abbreviated S = S(Q, ¢) and where the partial derivative of H with
respect to ¢ should be taken as

ZICH N MRl
opt " 0Q" loope) 99

(2.79)

with the concatenation operator (o) meaning a sum over all elements of the matrix
Q' times the partial derivative of F;(¢") with respect to ¢.

Finally, we obtain the dynamics at a certain point () with pseudo-velocity v by
evaluating the equations at ¢ = 0. By definition, for ¢ = 0 we have F;(0) = Q’
and S(Q, O)¢ = v, which results in the dynamic equations (2.69)-(2.71) given in
the theorem. The conditions on F; given in Definition 2.9 ensure the existence
and uniqueness of the partial derivatives of F; and STp with respect to ¢. O

The equations in the theorem are basically just the Boltzmann-Hamel equa-
tions, but formulated in such a way that the local coordinates ¢ and é do not
appear (except in the partial derivatives of S; and F;, evaluated at ¢ = 0). Thus,
the equations in the theorem are valid globally, for all (), and they can be readily
implemented in simulation, by means of two ordinary differential equations for
the states  and p plus an equation for the intermediate variable v.

Moreover, the structure of the mass matrix and the Jacobians can be used to
write the partial derivative of the Hamiltonian to ¢ in a compact form. This can
be seen from the definitions (2.40) and (2.59), which can be written as

o [oHXeT(QY) Ad,
M=) : I o} Adgs XP(QY) - o Adys X2(QM)]

= Lor(XG)T(Q) Adgy
(2.80)

This shows that the mass matrix (and hence the Hamiltonian) only depends on
#" indirectly and locally, i.e. only through the matrix X;(Q*) defining the relative
degrees of freedom of joint ¢ and through the homogeneous matrix H; defining
the relative configuration of joint i. The partial derivatives of these terms to ¢’ can
be easily obtained (looking only locally at the joint description), and hence the
partial derivative of the mass matrix follows by the chain rule for differentiation.

Example 2.18. As a first example, we consider the dynamics of a single rigid
body with frame Wy, freely floating in space (we ignore gravity in this example).
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This system can be described as a (degenerate) mechanism with one rigid link
and one free 6-DoF joint as in Figure 2.4(e), using Q = HY and v = T} ¥ From
Appendix A.3, we find that the twist can be expressed locally around a certain @)
with exponential coordinates ¢ as Tg Y=g (Q, (b)(b with

SQ.¢) =)
k

1 1
adf =1 - iadqﬁ-gadi—... (2.81)
=0

(=DF
(k+1)!
where ad is as defined in Lemma 2.8. From the expression, we can see that
S(Q,0) = I, and we can evaluate the partial derivative with respectto ¢ at ¢ =0
as follows.

T
AT @) Dy Ly Ly )]
$=0

¢ d¢ ¢=0
_ O ([T 0] [pa] , 1[0a @] [Pa
B a¢><[0 1] [m]U {0 @j [m]*"')h_o
~5s o -3l B8] )
9o \ [0 I} |p] 2[p O][%] )],
__1 Z~)a p~b_
= 2|;5b 0 (2.82)

where the subscripts a and b denote the first three and second three components
of a vector, respectively, and where the third equality follows from the identity

TYy=crxANy=—-yAx=—gyx (2.83)

which holds for all vectors z,y € R3. Since we used the twist in body coordinates
and ignored gravity, the inertia tensor I°? and the Hamiltonian do not depend
on @, and hence not on ¢ either. So if we substitute the expressions for S and its
partial derivative into Theorem 2.17, we obtain

H9 _ 0700 (2.84)
d Pa| _ 1 ~£ ﬁbT 1 Da Db 0,0
dt {pb] a <_2 [ﬁbT 0 *2lm of)lo

[ fve

as the equations describing the dynamics of a rigid body in body-coordinates.
Instead of using a momentum in body coordinates, we can also use the mo-
mentum py in world coordinates, defined as

po = I""T7 = Adfye 10 Adprg Ad o T5* = Adjpg 17T = Adfye p - (2.86)
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Figure 2.8: Example setup of a rigid mechanism for which @ is a vector.

Its time derivative can be obtained from the expression for p as follows

d : .
B = —(Adjop) = o (Adgg )P+ Adje p = adim,o Adje p + Adjy p

0,0
<0, |+ Adg, woo

(:)0’@ ,60,@
0 500 [ ] + w0
Wy Db

d
= ﬁ(Adﬁg) Adgg po + Adgo ad;(),@ Adgg po + W0

= L (Ado)p+ AdD, [Po P
dt( )p+ L?b }

d T T
= G (Adfp - Adf

d
= —(AdTo) AdT@ po + AdHo AdH@)p@ + woo

ﬁ(
< 7 (AdL )AdTw +AdHo a(Ad )) pg + WO
= Wwoo (2.87)

where we used property (f) of Lemma 2.8 and where the last equality follows
from (2.68). The resulting equation is a generalization of Newton’s second law
to the case of a rigid body: the time-derivative of the momentum of a rigid body
(when expressed in inertial coordinates) is equal to the forces (wrenches) applied
to it, and hence the momentum is conserved if no external forces are applied. A

Example 2.19. As a second example of the general result of Theorem 2.17, we
consider the dynamics of a class of mechanisms for which the allowed relative
configuration @ of all joints can be described by a vector, such as the mechanism
shown in Figure 2.8, with full direct actuation 7. In this case, we can choose @) = ¢
and v = ¢, as well as Fp(¢) = Q + ¢, and hence we obtain S(Q, ¢) = I and the
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corresponding dynamics

dlgl _ [0 I

dt \p| — |-I O
with H(q,p) = 3p" M~ (q)p + Up(q), i.e. the normal Euler-Lagrange equations in
port-Hamiltonian form. The equation for p can be expanded as

OH
Jq
OH
Oop

0
+ [ 1] T (2.88)

9 )
5= gt = 04 g
_ OH 1 a(¢TM(q)q) OU,
*787q+77§78q fa—qp+7 (2.89)
which can be written as
o(M 10T (M(q)q oU,
g+ (20D _ 1IN0, 2
= M(q)j+Clq,9)q+V(g) =7 (2.90)

which is the formulation of the dynamics of this class of mechanisms as com-
monly encountered in textbooks. The matrix C(g, ¢) describes the centrifugal and
Coriolis effects. A

2.4 Kinematic loops and nonholonomic constraints

The previous sections have shown how to obtain a set of explicit differential equa-
tions for general mechanisms with ideal holonomic joints and a loop-free kine-
matic graph, i.e. for systems without kinematic loops and for which the space of
allowed configurations has the same dimension as the space of allowed instanta-
neous velocities. In this section, we look at more general mechanisms, possibly
containing kinematic loops and nonholonomic constraints.

For conciseness reasons, we choose to start here from systems described by co-
ordinates ¢ € R" and p € R", with Hamiltonian equal to H(q, p) = 1p" M ~1(¢)p+
Up(g) and described by the differential equations (2.61). The results from this sec-
tion can be extended to more complex descriptions such as in Theorem 2.17; the
equations just become a little longer.

We consider constraints that can be expressed in the form

AT(¢)g=0 (2.91)

with A(g) a continuously differentiable n x m matrix. Furthermore, the associ-
ated constraint forces \ are collocated with A”§. This formulation means that
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we consider position-varying velocity constraints that are linear in the velocities
with constraint forces that do not influence the energy of the system (since the
power equals AT (AT ) = 0 if the constraints are satisfied).

Under these conditions, the mechanical system with constraints can be repre-
sented by the implicit set of differential equations

dilgl _[0 I n 0 0 A
dt [p| — [-1 0 Alg) Bla)] [u
-6 #[8
= T a
vy 10 BN |5
where ) is to be determined such that the output zero constraint is and remains
satisfied.

Several approaches can be taken in the simulation of systems of the form
(2.92). First, it could be left to a numerical solver to obtain the correct A at each
simulation step. We do not further pursue this direction, but refer to Ascher &
Petzold (1998) for an introduction to numerical techniques for dealing with these

sets of algebraic and differential equations.
A second approach is to obtain A by differentiation of the constraint:

T -1
0 da (ATaH> _4a (ATM'p) = MQ+ATM71P

OH
Oq
OH
op

(2.92)

Q)

Tt op ) dt dq
Tar—1
= Ma—H+ATM*1 —6—H+A>\+Bu (2.93)
Jq op dq
from which ) can be solved as
Tar—1
(ATM™'A) A = ATy 108 gty OATMTp) OH (2.94)
dq Jq dp

which has a unique solution for A if the matrix A has full column rank. This
solution gives the necessary force A that keeps the velocities A ¢ constant (since
we looked at the derivative of the constraint). This means that if the constraint
(2.91) is satisfied at some time, then applying this A ensures that (2.91) remains
satisfied. The approach can be extended to avoid numerical drift (which may
cause AT to become nonzero), by changing the differential equation as follows

4 (o _ 4 (g0
dt(A ap)‘o dt(A ap>‘ 5<A ap> (2:55)

with 8 > 0 a damping coefficient. We apply this method in Section 3.3, where
we discuss the computation of contact forces for rigid contact between two rigid
bodies.
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A third approach (presented by Duindam, Blankenstein & Stramigioli (2004),
based on results by van der Schaft & Maschke (1994)) is to find new coordinates
for the momentum such that satisfying the constraints is equivalent to some of
these coordinates being zero. This approach can be taken if the rank of A is
constant (say, m) for all ¢, by defining an n x (n — m) matrix S(q) satisfying
AT(q)M~*(q)S(q) = 0, i.e. such that the columns of S span the space of mo-
menta compatible with the constraints. The dynamics can then be described by
the explicit differential equations of the following theorem.

Theorem 2.20 (Dynamics of Nonholonomic Systems). Given a system with
nonholonomic constraints, described by (2.92) and let A(q) have constant rank m
for all q. If we can find a continuously differentiable n x (n — m) matrix S(q)
satisfying AT ()M ~1(q)S(q) = 0, then the dynamics of the constrained system can
be described equivalently by the following port-Hamiltonian system
d q| = % 0
a |:C¥:| —J(q,O&) OH + MsTM—l u
dor § (2.96)
~ [em
y=[0 M~'sM] |5
Do
with ocan (n — m)-vector, and M, H, and J defined as
— _ -1
M(q) = (ST(@)M*(2)S(a)) (2.97)
_ 1 -
H(g, o) := H(g, S(q)a) = 50" M+ V(q) (2.98)
- 0 M=1SM
H@) = | _rerar-1 §rsTa-t (%ﬁ@ _ a%a)) u-sir| @99

Proof. The vector « is the new reduced-order coordinate vector for the momen-
tum satisfying p = S(q)a. By definition of S(q), the constraints 0 = ATM~1p =
AT M~!Sa are automatically satisfied for all a. Furthermore, the definition of the
new Hamiltonian H is just H with S(q)a substituted for p. From this definition
we find

OH 0H 97(S(q)a) OH

o = B 4 — % o (2.100)
oOH ., OH

= = e 2.101
90— 0 (@) o (2.101)
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Figure 2.9: Commutation diagram for a system with position coordinates g,
pseudo-velocities v, and momenta « allowed by the nonholonomic constraints.

Furthermore, we can write the differential equations for ¢ and p as

q= of _ M Yp=M1Sa=M'1SMM ta= M*lsMa—H (2.102)
op Oa

. d o(Sa) . . OH

D o (S(q)a) a4 g+ Sa 34 + AN+ Bu (2.103)

Pre-multiplying the last equation with M ST M ~! gives

d(Sa) OH

MSTM T2 M ISM—— + &
dq da
[7 T
_ arstart (297089 el ) L ST AN + A1ST M Bu
N 5
[7 va
=-—MSTM1 of _ wJ\rlsa (2.104)
Jdq dq

which, together with the equation for ¢, can be formulated as in the theorem. O

The results of Theorem 2.20 are an extension of the Boltzmann-Hamel equa-
tions (2.62), with the S~! replaced by a pseudo-inverse M ~1S(STM~15)~!. How-
ever, the mass matrix M of the system without kinematic constraints is necessary
for the definition of the new system in reduced coordinates, and hence it is useful
to distinguish the holonomic joints (where S is invertible) from the nonholonomic
joints (where S is not invertible).

To illustrate the precise difference between the Boltzmann-Hamel equations
of Lemma 2.16 and the equations for nonholonomic systems of Theorem 2.20,
consider a combination of both systems, i.e. a system with coordinates ¢, pseudo-
velocities v = Su(¢g)¢ (with Sy invertible), corresponding momentum variables
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Figure 2.10: Schematic (top) view of the snakeboard.

p = Mwv, and nonholonomic constraints expressed by reduced-order coordinates
«a satisfying p = Sy (q)a (with Sy not invertible).

The relation between the various variables is illustrated in Figure 2.9. Apart
from the relations mentioned above, the definitions of H(q, p) and H(q,«) allow
to construct the other relations in the diagram. From the diagram, we can see that
¢ can be obtained from % just by multiplication with S3;'. However, since S

is not invertible, v can be obtained from % by going via the variables o and p,

ie.asv=M"1SyM %. This illustrates the difference between Lemma 2.16 and
Theorem 2.20.

Example 2.21. Figure 2.10 shows the snakeboard, an interesting mechanical sys-
tem with nonholonomic constraints. It is a commercially available locomotion
device (Snakeboard U.S.A. 2005), very similar to the skateboard, but with extra
degrees of freedom that allow rotation of the front and rear wheel bases around
the vertical axis, such that the direction of motion of the wheels can be changed.
Using certain combinations of motion of the feet (to control the wheel base an-
gles) and of the upper body, the person riding the snakeboard can increase the
total forward momentum, without touching the ground or directly driving the
wheels.

The snakeboard is a relatively simple system that still has many scientifically
interesting properties, and it is hence used in numerous studies on modeling,
analysis, and control of nonholonomic mechanical systems. Lewis et al. (1994)
and Bullo & Zefran (2001) used Lie-bracket analysis, Vela (2003) applied averag-
ing analysis, and Ostrowski & Burdick (1998), Bloch (2003), Bloch et al. (1996),
Ostrowski (1999), and Blankenstein (2003) used principle bundles and momen-
tum maps. These studies have revealed many interesting physical and geometri-
cal properties and interpretations, and provide general tools to analyze nonholo-
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nomic systems.

In this example, we show how an explicit model of the snakeboard can be
obtained by choosing new coordinates for the momentum, as described by The-
orem 2.20. The advantage of this formulation is not only the possibility of fast
simulation using straight-forward ODE algorithms, but also that the resulting
equations turn out to be very simple and allow clear interpretation in terms of
energy flows. More information about the use of this model for controller design
can be found in (Duindam & Stramigioli 20044) and (Duindam, Blankenstein &
Stramigioli 2004).

To construct a model of the snakeboard, we assume that it consists of three
rigid parts (body, torso and wheels), each with its own mass m, and inertia J..
We can write the total mass and inertia as follows

m = mp + my + My total mass

J = Jy+ Jp + Jy 4+ myr? total inertia around (z, y)
and we make the simplifying assumptions that (i) the wheels rotate at equal but
opposite angles (only one coordinate ¢ is used) and (ii) the parameters are such
that J = mr?. These assumptions are standard in the analysis of the snakeboard

and simplify the equations without affecting the essential geometry of the prob-
lem. We choose the states of the system as positions and momenta

g=[z y 0 ¢ ¢
T
p=1[pe Py Po Py Do)

]T
(2.105)

and the Hamiltonian of the system is just the kinetic energy H = 1p” M ~'p with

m 0 0 0 0
0O m 0 0 0

M={0 0 J J 0 (2.106)
0 0 J J, 0
00 0 0 J,

We furthermore assume to have direct torque control on the torso and the wheels,
which can be described by the input mapping

T
00010
B_[O 000 J (2.107)

Finally, the (nonholonomic) kinematic constraints are that the wheels are not al-
lowed to slip sideways. This can be represented by the matrix A as

_ sin(@ — d)) — COS(0 — ¢) rcos(¢) 0 0 T
A= [sm(o +¢) —cos(d+¢) —rcos(¢) 0 0} (2.108)
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which has rank 2 for all g, except for ¢ = i%w, i.e. when the wheels are turned
completely sideways. The two elements of A describe the sideways velocities
of the two wheel pairs (front and rear).

We can find an example of a suitable matrix S(g) describing the allowed mo-
menta as follows

T

5 cos(0) cos(¢) 75 sin(6) cos(¢) MT_L sin(¢) 0 0
S(q) = 0 0 1 10 (2.109)
0 0 0 0 1

with B(¢) := \/mr2 — J;sin?(¢). Duindam, Blankenstein & Stramigioli (2004)
show how different choices of S(g) lead to the different models available in liter-
ature. If we use this matrix S(¢) in Theorem 2.20, we obtain the following explicit
differential equations that describe the dynamics of the constrained snakeboard.

[ cos(f) cos(p) 0 0
d zsin(f) cos(¢) 0 0 [ay
4= 3 sin(o) 00 [?] (2.110)
—% sin(¢) 1 of L5
L 0 0 1
Lsin(¢) 0
%a |7 o] [Z;] 2.111)
0 1

with H = Jo”M~'aand M =diag [I J; J,|. The mass matrix M is constant
and diagonal, which is due to the choice of S: the matrix M —1 defines a metric on
the space of momenta, and the columns of S are chosen to be mutually orthogonal
and of constant norm in that metric.

The resulting dynamic equations turn out to be very simple, expressing the
total kinetic energy of the system as the sum of three terms, each depending on
only one momentum coordinate: a3 represents the energy in the wheels, «s the
energy stored in the torso, and «; the energy stored in the other motions of the
snakeboard, in particular the forward momentum of the board (a quantity that
may be important for control).

Since the energy function depends only on « and not on ¢, we can represent
the energy flows in the snakeboard as in Figure 2.11 in terms of a bond graph
(bond graphs are explained in detail in Appendix B.2). From the bond graph,
we see that the wheels do not have an energy coupling to the rest of the snake-
board; they only influence the system indirectly through modulation of the MTF.
Furthermore, the input port (u;,1)) can exchange energy with the torso (I element
with parameter J;) as well as the forward motions (I element with parameter 1),
but only if sin(¢) # 0. All of this is clear from intuitive physical reasoning about
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Figure 2.11: Bond graph of the snakeboard in reduced momentum coordinates.

the snakeboard (e.g. if the wheels are straight (¢ = 0), exerting a torque u; only
makes the torso rotate, not the rest of the snakeboard); the reduced equations and
the corresponding bond graph prove this reasoning and quantify it. A



Chapter 3

Modeling of Compliant and Rigid
Contact

The second building block for dynamic models of walking robots is a model of
the contact between the feet of the robot and the ground. Contacts are important
in the analysis and control of walking motions for two main reasons. First, the
dynamic behavior of a walking robot is strongly influenced by whether or not
the feet have contact with the ground: making and breaking contact results in
strong nonlinearities (or even switching behavior) in the dynamics. Secondly,
impacts determine to some extent the efficiency of a walking cycle: large impacts
(stamping) cause large energy losses during the walking cycle.

In the development of a contact model suitable for walking robots, two goals
need to be balanced. First, the model should (obviously) give an accurate enough
representation of physical contact behavior. But secondly, the model should not
be too complex, in order to allow quick simulation, tractable analysis, and con-
troller design. To balance between these conflicting modeling goals (which are
present in some form in all modeling tasks), we discuss two contact models in
this section: one compliant model, which is most suited for accurate simulation,
and one rigid model, which is most suited for analysis and controller design.

The compliant model has the advantage of being more generally applicable
as it can be represented as a standard finite port-Hamiltonian system that can be
interconnected between bodies to model possible contact between these bodies.
If more bodies can come into contact, more copies of the model can be added
without any other special requirements or adjustments. Disadvantages of the
compliant model are that it results in stiff differential equations when the con-
tacting surfaces are relatively stiff, and that it is very hard to analyze a walking
robot with a compliant contact model, due to the presence of both single-support
and double-support phases during walking.

The rigid contact model has the advantage of being easy to simulate and an-
alyze, since impacts can be represented by a simple step in the momentum, pos-

55
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sibly completely eliminating the need for a double-support phase (this depends
on the exact mechanical structure of the walking robot). The disadvantage is that
this model needs to be implemented as an integrated part of the mechanism in
contact, instead of a separate, more or less independent port-Hamiltonian system.
Furthermore, it is much more difficult to generalize to multiple contact points; we
only discuss an extension to two contacting points in this thesis.

In the rest of this chapter, we first discuss models of the kinematics of contact,
i.e. the equations that describe when and where bodies come into contact, and
then describe the two contact models, first the compliant model, and then the
rigid model.

3.1 Contact kinematics

The purpose of contact kinematics is to detect collisions between rigid bodies,
based on the kinematic information of these bodies. The kinematic contact analy-
sis should detect both when (at what simulation time) and where (at which points
of the two rigid bodies) a collision occurs. This means that it continuously needs
to monitor the positions and velocities of the bodies in a mechanism and, using
information about the surfaces of these bodies, check for collisions.

In the literature, especially in the field of computer graphics, we can find
many ways to handle collision detection. The main objective of these approaches
is to be able to detect, in real-time, possible contact between many objects in a
virtual 3D environment. This objective is motivated by applications in interac-
tive haptic virtual environments as well as computer games. A common way to
speed up the detection process is to use rough approximations of objects when
they are still far away from each other, and more detailed surfaces models as they
get closer. Various shapes and volumes can be used as rough approximation,
such as bounding boxes (Cohen et al. 1995, Suri et al. 1999), bounding spheres
(Hubbard 1996), and convex polytopes (Klosowski et al. 1998). Jiménez et al.
(2001) provide a survey of the various related problems and existing solutions.

When modeling walking robots, or multibody systems in general, the number
of rigid bodies that may come in contact is usually limited. For a bipedal robot,
contact normally only occurs between the feet and the ground; if other parts of
the robot touch the ground, walking has clearly failed, and there is usually no
need for accurate simulation of the robot falling down and breaking to pieces.

Therefore, it is not necessary for our purposes to have these demands of real-
time detection of contact between many objects. Instead of judging a collision-
detection mechanism on these aspects, focus can be put on accuracy of the detec-
tion, as well as ease of implementation in standard simulation software, without
the need for extra iterative numerical techniques.

In this section, we consider collision detection and monitoring between two
specific rigid bodies. These bodies may be part of a rigid mechanism or freely
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floating; this aspect does not influence the kinematic analysis. We use a descrip-
tion of the surfaces of the two bodies as well as their kinematic state (relative
configuration and twist) to solve the generalized contact kinematics problem: to
compute the positions and velocities of two points (called generalized contact
points) on the two bodies that are closest to each other.

We use the Euclidean metric to define closest distance of the points on the
surface, as these distances are measured in the three-dimensional world in which
we live. Technically, the metric is not important for collision detection, though,
as a distance zero in the Euclidean metric implies distance zero in any positive-
definite metric.

We discuss two approaches that solve the generalized contact kinematics prob-
lem, and that are suitable for use in the modeling of multibody systems. We start
with several examples of commonly encountered situations for which the contact
kinematics can be derived directly, due to the elementary surface shapes or other
simplifying assumptions. Then, we show a more general indirect (differential)
approach, suitable for a broader class of surfaces.

3.1.1 Direct derivation for simple cases

We give four examples of common situations where the contact kinematics can be
obtained directly due to simplifying assumptions or simple contacting surfaces.
The objective is to obtain the positions and velocities of the closest points (labeled
po and p;) on two surfaces, given the shape of the surfaces and their relative
configuration HY and twist 77"°.

Example 3.1 (fixed point on a rigid body over a plane). Consider first the situa-
tion of Figure 3.1(a), with an object over a plane. In some situations, for example
a walking robot with point feet, it can be assumed that the rigid body can only
come in contact with the plane at one specific point on the body, such that the
contact point p; has fixed coordinates Pl1 (expressed in ¥;). In this case, the coor-
dinates P of the contact point p, follow easily as

Py = HYP} (3.1)

S O O
o O = O
o O oo
— o O O

that is, we compute the coordinates of p; in ¥q (by the multiplication P = H) P})
and then project the point onto the horizontal (z, y)-plane along the z-axis. From
these expressions for Pl1 and Pg, we can compute the velocities of the contact
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(a) Fixed point on a rigid body. (b) Flat disc over a plane.

Figure 3.1: Two simple examples for which the contact kinematics can be derived
directly from the kinematics of the contacting bodies.

points as

Py = Ty HY P} Pl =0 (32)

oS O o
[ )
o O oo
_— o o o

where P! = 0 since p, is fixed to body 1. We thus obtain a direct expression of
the contact kinematics in terms of the relative configuration H{ and the relative
twist 7" of the two bodies. A

Example 3.2 (flat disc over a plane). Consider as a second example Figure 3.1(b),
showing a flat disc of radius r over a plane. If we assume the disc to be above
the plane at all times and choose ¥; to have its origin in the center of the disc
and its z-axis normal to the disc, then the coordinates of the contact points can be
expressed as

—TZg

A /zg-&-zi-‘re

H?Pll P11 = | /72 +zite (33)
0
1

P =

o O o
o o= O
o O oo
_— o o o

where P{ isas in (3.1), z, := H}[1, 3], z, := Hj[2,3] are the x and y coordinates in
W of the z-axis of ¥y, and € > 0 is a small number added for numerical reasons,
to avoid division by zero when the disc is exactly horizontal, which would lead
to simulation problems. From these expressions we can find the velocities of the
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(a) Ellipse over a line with closest points pg (b) Non-uniform scaling turns the ellipse
and p1. into a circle.

Figure 3.2: Direct contact kinematics of an ellipse over a line using a non-uniform
scaling operation.

contact point as follows.

1 0 0 0
. 01 0 0 ~ :
B=10 o o ol (E0HP+HP) (3.4)
0 0 0 1
2t zazys
. . zmzyz'm-‘&-zzz} > ~
Pl— |G| win || =T0H || 65)
z
VAT e 8 0 1

which again expresses the contact kinematics directly in terms of the kinematics
of the two rigid bodies. A

Example 3.3 (ellipse over a flat floor). Consider the case of an ellipse over a line
as depicted in Figure 3.2(a). To obtain the coordinates of the contact point for this
system, we apply the following procedure, illustrated in Figure 3.2(b).

First, note that the tangent line to the ellipse at the contact point p; is parallel
to the ground (this is proved later on in Theorem 3.6). Second, we can assume
without loss of generality that the coordinate frame ¥, is chosen in the center
of the ellipse with coordinate axes in the directions of its principle axes. Third,
we apply a non-uniform scaling of the setup along the axes of ¥, in such a way
that the ellipse is transformed into the unit circle. As Figure 3.2(b) shows, this
scaling affects the angles between lines, but parallel lines remain parallel, and
hence the tangent line at p; is still parallel to the ground. Fourth, we compute
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Figure 3.3: Ellipsoid over a plane and the two closest points py and p;.

the line normal (in the Euclidean sense in the distorted figure) to the ground, and
hence also to the tangent line to the circle at the contact point: by definition of a
circle, this line connects the contact point to the center of the circle. Finally, the
results are transformed back to the original undistorted figure by reversing the
scaling operation.

This approach can be described mathematically as the following equation,
which gives the coordinates of contact points pg and p;.

g (St x(S 5

P = HYP} Pl = |<slzé)1x<51zé>|] (3.6)

o= OO
_= o O O

oo o+
o O oo

where S = diag [r, r, 1]isthe scaling matrix containing the radii of the ellipse
in the (z,y) coordinate directions, and z} and 2} are the coordinates of the unit
vectors along the x and z directions of ¥y, when expressed in ¥, (the z-direction
of both frames is outward perpendicular to the page, such that the frames are
orthonormal and right-handed). The velocities of the contact points can then be
computed as in the two examples before, by taking the time-derivatives of the
expressions (3.6). A

Example 3.4 (ellipsoid over a flat floor). As a final example, we consider an
ellipsoid over a plane, as depicted in Figure 3.3. To obtain the coordinates of the
contact points for this system, we can directly extend the procedure described in
Example 3.3 for the planar case. Again, we apply a non-uniform scaling, now by
amatrix S = diag [r, r, 7.],ie with theradiiof the ellipsoid in the coordinate
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directions of ¥;. The contact points follow immediately by generalizing (3.6) to

G (57l x(S~ )
u<s—1zé>1x<s—1ys)n (3.7)

Py = HY P} Pl =

SO O
o o = O
O O OO
_— o O O

Again, the velocities of the contact point can be found by computing the time-
derivatives of the expressions (3.7). VAN

3.1.2 Indirect derivation for general case

In case the contacting surfaces are too complex to allow a direct contact kinemat-
ics description, we can take an indirect differential approach. This approach uses
a differential equation to describe the evolution of the contact points over the sur-
face, and requires several functions that describe the surfaces of the bodies. To
be precise, we denote by S; C R3 the (oriented) surface of body i and define the
following functions

¢ a twice continuously differentiable function
fi:Di = Siy ui— fiu,)
that maps local coordinates u; € D C R? to a point on the surface.
o the tangent mapping of f;
fir(wi) :R? = TS;; iy — fiulug)ty

mapping coordinate velocities to contact point velocities tangent to the sur-
face, depending on the coordinates u;. We assume f; to be a well-defined
coordinate mapping such that f;, has full column rank at all points ;.

o the Gauss map
9i:8i =% q+ gi(a)

mapping a point on the surface to a point on the unit sphere representing
the direction of the outward normal to the surface. One way to obtain this
function is by taking the cross-product of the two columns of f. and nor-
malizing the resulting vector.

e the tangent mapping of g;
9ix(q) : TS; = TS%; 4+ gi(q)d

that relates velocities tangent to the surfaces to the change of the normal
vector to the surface, depending on the surface point q.
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Figure 3.5: Sinus-shaped surface with frame ¥, and local coordinates u.

For an interpretation of the mappings, consider Figure 3.4. It shows the coordi-
nate space D;, the surface S;, and the sphere S2. The invertible mapping f; relates
coordinates (two real numbers) in D; to an element of the surface, and maps for
example the point p € D; to the point ¢ = f;(p) € S;. The Gauss mapping g; re-
lates the point ¢ on the surface to the point » = g;(¢) on the sphere, in such a way
that the (outward) normal vector to the surface at ¢ touches the sphere at r, when
placed at the center of the sphere. Note that the Gauss mapping is in general not
invertible, since several points on the surface can have the same normal vector
(an extreme case is the plane, for which all points of the surface have the same
normal vector).

The tangent mappings f;. and g;. relate tangent elements in the various spaces.
If, for example, the (differentiable) curves in the figure are point-wise related by
the mappings f; and g;, then the velocity vectors are related as ¢; = fi.(p)p and
7 = g;+«(p)p. The mapping g;. also describes the curvature of the surface: it quan-
tifies how the direction of the normal vector changes when moving along the
surface. If the surface S; is highly curved, then the normal vector will change
direction quickly and g;, will be large.

Example 3.5. Consider as an example surface the sinusoidal ground presented
in Figure 3.5. If we use coordinates u; and us as in the figure, we can represent
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points on the surface by the mapping

U1
U
fi(ula UQ) = A Sll’l(22’/TfU2) (38)
1
with tangent mapping
1 0
0 1
Finlua, up) = 0 27Af cos(2m fuz) (39)
0 0
The Gauss mapping and its derivative can be chosen as
0
1 —2wAf cos(2m fy)
i\ T, Y, 2) = 310
9:(@:9,2) V1 +4m2A2f2 cos? (27 fy) 1 (3.10)
0
0 0 0 0
4 Af? 0 —sin(2m 0 0
gix(T,y,2) = / 710 rAf ( (4f?)) 0 0 (3.11)
(14 4n2A2f2 cos?(27 fy))?2 0 g m(l) ™Y 0 0

which only have physical meaning for points (z,y, 2, 1) on the surface and veloc-
ities (&, 9, £, 0) tangent to the surface. A

For simple analytically defined surfaces, the mappings f; and g¢; and their
tangent mappings can be easily computed. However, this may not be so easy for
more involved surfaces, such as those obtained from CAD software or measure-
ment data. The shapes of such surfaces are usually available as point clouds or
large sets of triangles. In this case, the surface can be approximated by software
analysis and interpolation of the surface data. Ambrosius (2005) shows an algo-
rithm that constructs the necessary surface functions by approximating the data
obtained as the output of commonly used CAD packages.

Remark. The Gauss mapping g; is defined here as mapping points on the surface
to points on the sphere, independently of the coordinate mapping f;. This is
useful for the theoretical results in Theorem 3.6, which are stated in a general
coordinate-independent way.

However, to perform calculations in practice, it is convenient to define a func-
tion g;(u) := g;(fi(u)) as mapping from the coordinates u directly to the sphere,
in which case the mappings g; and g;. should be replaced by

9i(a) — 4:i(f; 1 (a)) 9i(q) = G f12"(0) (3.12)
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where f;.! is only valid for vectors tangent to the surface and can be implemented
e.. as pseudo-inverse (fZ fi.) 1 fL (since the matrix f. is not square, and hence
not invertible in the usual sense). Since f;. has full column rank, its pseudo-
inverse exists and can be computed in this way. A

When the two surfaces under consideration have been described by the func-
tions f;, gi, fix, and g;« (for i = 1,2), we can formulate the differential contact
kinematics as in the theorem below. The results are based on Duindam & Strami-
gioli (20034), and form a coordinate-independent extension to the work of Mon-
tana (19894, 1989b), Pfeiffer & Glocker (1996), and Visser et al. (2002).

Theorem 3.6 (Differential contact kinematics). Given two rigid bodies with
coordinate frames U, and V; and relative twist T; " with surfaces described by the
invertible and continuously differentiable coordinate mappings f; and f; and the
continuously differentiable Gauss mappings g; and g;. If the points p; and p; on the
two surfaces that have smallest relative Euclidean distance are uniquely defined and
move smoothly over the surfaces, then the time-evolution of their coordinates P} and

P/ is given by the equations
(gi* + Higp HI (I + Agi*)) Bi = Thg, 4 Hig; (Agj — T ij) (3.13)
(950 + Hl g HJ(I + Aga)) B = T97g; + Hlgi, (Agi — T3'F)  (3.14)
where A is the distance between p; and p; given by

A = (g, HiP] - Pi) = (g;, HIP} - P}) (3.15)

Proof. We prove the theorem in two steps. First, we show that the line con-
necting the closest points is normal to both surfaces, as illustrated by Figure 3.6.
Assume that the two points p; and p; have indeed the smallest relative distance
(left figure). This means that if we look for points of body j in a sphere of in-
creasing radius around p; (middle figure), that p; will be the first point of body j
that is encountered. Furthermore, since by assumption p; is the only point at this
distance from p;, the surface of body j is locally tangent to the sphere at p;. By
definition of a normal vector, this means that the normal vector g; to the surface
at p; is also normal to the sphere, and by definition of a sphere, the line along this
normal passes through the center of the sphere, i.e. the point p;. In the same way
it follows (right figure) that the line along the normal at p; passes through p;.
The result can be written mathematically, for example, as

P+ Ag; = H'P;
{ g 3t (3.16)

gi = —Hlg,
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Figure 3.6: Geometric proof that the closest points on two surfaces are connected
by a line collinear with the normals to the surfaces.

with A € Ris as in (3.15). The first equation states that when starting from p;,
moving a distance A along the normal vector g; results in arriving at p;. The
second equation states that the normal vectors g; and g; are equal but opposite
(when expressed in the same coordinate frame).

The distance A becomes negative if the bodies penetrate each other, and hence
the zero-crossing of A can be used to detect contact. We can compute the time-
derivative of A as

A= <g,-,H;iR;' - P;'> + <gi, HiP! + HiP] - P;’>
—0+ <gi, H}?Pj> +040= <gi, T;’iH;ij> (3.17)
where we used the fact that the normal vector g; is perpendicular to the velocities

Pi and HiP? of the contact points over the surface, and that gi is perpendicular
i it p perp

to g; (and hence to H ij + Pf) since it is a unit vector.
As a second step, we compute the time-derivatives of (3.16) as follows.

{ P} + Agi + Ag; = H}P! + H P}
§i=—Hlg; — Hig;
Pl = H (p;‘ + Agi + Agi PP — H?P?)
o o 7 (3.18)
9P =1;"gi — Hjgju P}
where we used the definition of a tangent mapping to write ¢; = g;. P/ as well as

g; = gj*Pj . If we substitute the first line of (3.18) into the second, we obtain

9is P} =T}"g; — Hig;, H! (P;’ + Ag; + Agi P — H;Pj) (3.19)



66 CHAPTER 3. MODELING OF COMPLIANT AND RIGID CONTACT

which can be rewritten as (3.13). If we interchange the labeling of the bodies ¢
and j and repeat the analysis, we obtain (3.14), thus completing the proof of the
theorem. a

Theorem 3.6 gives a differential equation which the contact points satisfy if the
contact points move smoothly over the surfaces (which, for example, is the case
if both surfaces are convex). Still, two problems remain. First, the initial contact
points are not given by the theorem and need to be determined, for example, by
a numerical search at the start of the simulation or by choosing initial configura-
tions for which the contact points are easily computed by hand. Second, as with
all open-loop integrators, the solutions for the contact point coordinates are sus-
ceptible to numerical drift, which cause the integrated coordinates of the contact
points to be less accurate over time. To avoid these problems, it may be possi-
ble to have a combined method of using global collision detection methods (such
as used in computer graphics) for initialization and occasional re-calibration to
avoid numerical drift, and the fast differential approach of Theorem 3.6 for the
time-steps in between.

3.2 Compliant contact

This section describes an approach to model compliant contact between rigid
bodies, or between rigid mechanisms in general. In compliant contact model-
ing, the interaction forces between objects in contact are assumed to be due to the
compression and deformation of the surfaces of the objects. As the objects come
in contact and push further into each other, the elasticity and damping of their
surfaces result in increasing forces (the contact forces) that oppose the deforming
motion and cause the objects to ‘bounce back’. The amount of bounce depends
on the relative elasticity and damping.

As discussed by Chatterjee & Ruina (1998), compliant contact of rigid bodies
is an oxymoron: the bodies are assumed to be rigid, yet the contact forces are
caused by the deformations of their surfaces. Fortunately, if the deformations
are small relative to the size of the bodies, the dynamics can still be accurately
described by the equations for rigid bodies in addition to an appropriate model
of the compliant contact forces.

The most accurate way to model the forces resulting from surface deforma-
tion is by a (rather complex) finite element analysis of the objects in contact. For-
tunately, if the deformation of the objects is small compared to the size of the
objects, it is often accurate enough to model the contact forces as a lumped com-
bination of an elastic element and a dissipative element, both possibly nonlinear.
Finally, when the surface deformation is negligible (since the objects are relatively
stiff) and when the ‘bounce back’ is also negligible, it can be more appropriate to
consider the contact as rigid; this situation is discussed in Section 3.3.

As an example, consider modeling the contact of the feet of a walking robot
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Figure 3.7: Modeling compliant contact as a port interconnection of contact forces
between two bodies in contact, modulated by the contact kinematics.

with the ground. If the feet are padded with rubber and the robot is walking on
a thick carpet, we can assume the deformations to be small but not negligible,
and hence a compliant contact model can be used, such as discussed in this sec-
tion. When harder materials are used, such as aluminum feet on a stone floor, the
contact may better be modeled as rigid.

From a modeling point of view, the main advantage of compliant contact
modeling over rigid contact modeling is in the implementation. Compliant con-
tact can be implemented as a port-interconnection of the contact dynamics with
the rigid bodies that are in contact. Rigid contact, on the other hand, needs to
act directly on the state variables of the bodies in contact, due to the impulsive
forces acting on impact (see Section 3.3), and it is not possible to implement us-
ing a port-interconnection, unless impulsive forces or time-varying causality is
allowed.

Figure 3.7 shows the port-based implementation structure of compliant con-
tact between two possibly contacting rigid bodies. It consists of two parts: the
dark-colored part marked ‘contact forces’, in which the deformation energy is
stored and/or dissipated and the corresponding contact forces are computed,
and the light-colored parts which determine the interconnection structure, i.e.
how the relative motion of the bodies is turned into deformation motions, and
how and where the contact forces act on the bodies in contact. These two parts
are discussed in the following sections.
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(a) free motion, A > 0 (b) impact, A =0 (c) contact, A <0

Figure 3.8: Evolution of the kinematic contact points during free motion, on im-
pact, and during contact.

3.2.1 Interconnection structure of compliant contact

The first purpose of the interconnection structure in Figure 3.7 is to determine
whether or not contact forces should act on the bodies, i.e. whether the bodies
are in contact or not. We can use one of the contact kinematics approaches from
Section 3.1 to determine this: using the relative configuration and twist of the
bodies, together with the description of their surfaces, we monitor the contact
points moving over the body, as well as their relative distance A. As Figure 3.8
shows, positive delta indicates that the bodies are not in contact, A equal to zero
means that the bodies just come into contact (impact occurs), and negative A
means that the bodies have penetrated (the contact points p; and p; are then the
points with maximum penetration equal to |A|).

Using these variables, a possible implementation of the interconnection block
could be

wor 0 0 1—sign(A) 7 [1°
wo2| = 3 0 0 —1 +sign(A) | | 720 (3.20)
! —1+sign(A) 1 —sign(A) 0 WO

where (T7°, W01) is the power port on body 1, (T5"°, W2) the power port on
body 2, and (T3"", W) the power port connected to the ‘deforming motions’
block. This is a power-continuous interconnection block, as shown by the skew-
symmetry of the matrix in (3.20).

The second purpose of the interconnection structure is to transform the rel-
ative twist 75" of the bodies into a twist that models the surface deformation
occurring in the contact area. This is a necessary transformation, since not every
relative motion of the bodies causes the surfaces to deform: penetrating, sliding
and twisting motions do increase the deformation (until slip occurs), but pure
rolling motions do not.
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We can decompose Ty into rolling, twisting, sliding, and penetrating us-
ing the tangent plane to the contacting surfaces; rolling and sliding are rotation
around and translation along axes in this plane, while twisting and penetration
are rotation around and translation along the axis perpendicular to this plane.
More details on the group-theoretical aspects of this decomposition can be found
in Stramigioli & Duindam (2004).

Unfortunately, the tangent plane to the contacting surfaces is not clearly de-
fined, since we do not consider the precise deformed surfaces. As an approxi-
mation, we take the tangent contact plane to be a plane perpendicular to the line
connecting the two kinematic contact points p; and p,. Furthermore, the location
of the plane is between p; and p, at a position that depends on the relative stiff-
nesses of the bodies, such that it is closest to the stiffest body (this is based on
the idea that the stiffest body deforms the least and that hence the real contacting
surface is closest to that body). We can compute the following homogeneous ma-
trix H{, which describes the transformation from body frame ¥, to a frame ¥, on
the tangent contact plane with z-axis perpendicular to the contact plane:

1 00 0
o1 0 0 .
Hl(t)_ 00 1 kl_flzcz|A(t)| Hy (t) (3.21)
0 00 1

where k; and k, are the (normal) stiffnesses of bodies 1 and 2, H{i¢ is the trans-
formation between ¥; and ¥, and ¥, is a frame at the contact point p; with
z-axis equal to the surface normal vector g;. The origin of ¥, is hence located

between p; and p, at a distance kl’ff,@ |A| from p;, or equivalently, at a distance
k1

T |A| from py. So indeed, it is located closest to the stiffest body. For example,
for ks — 0and k; > 0, ¥, is located at p;.

With U, defined, we can express the relative twist in the contact plane as

c,1
TS = [‘521} = Adgy Adyy T3 (3.22)
2

and we can use the coordinate components of this twist to describe the various
motions as follows. The x and y components of w3 are rolling, its = component
is twisting, the 2 and y components of v are sliding, and its z component is
penetration.

From 75!, we can compute a deformation twist T (a twist describing only the
deforming motions) in several ways, depending on the model assumptions we
make. Probably the simplest one is to assume deformation for twisting, sliding,
and penetrating motions, no deformation for rolling motions, and no slipping. In
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that case, the deformation twist can be written as

wd 000000 (wS’i)x
wd 000000 (wg’l)y
d c
e |wl| el |00 1 0 0 0f |(wg)s
Ti= ve =Xz =19 0 0 1 0 0 (5, (3:23)
d c,
v 0000 1 0@,
v? 0000 0 1] |,

i.e. just by ignoring the rolling parts. We use the notation T to indicate that the
coordinates of the twist are in frame V¥, and that the projected twist describes the
deformation, not the relative velocity of bodies 1 and 2. This twist then becomes
the input for the ‘contact forces’ block, where it can be integrated to a homoge-
neous matrix H, that describes the deformation. We show in Section 3.2.2 that
the resulting matrix Hy has the following form

cos(fg) —sin(fg) 0 x4
in(6 0 0
H(r) = |00 costba) 0 v (3.24)
0 0 0 1

The structure of the matrix shows that indeed only twisting (nonzero 6;), sliding
(nonzero x4, yq), and penetrating (nonzero z4) deformations are possible.

We can extend the deformation twist to include slipping behavior, where for
larger deformations in x4, ¥4, and 6,4, the deformation saturates to a certain max-
imum value. Furthermore, we can argue that rolling motion reduces the amount
of sliding deformation, as the new contacting surface of the objects (the ones they
roll onto) has not been slided and hence the effective surface sliding deformation
reduces. An example of how these effects can be implemented is given by the
matrix below, which should replace the diagonal matrix X in (3.23):

0 0 0 0 0 0

0 0 0 0 0 0

0 0 fslip(ed) 0 0 0
. c 3.25
—Bzgsign(ws'), 0 X 0 faip(@a) 0 0 (329

0 —Byasign(wy )y 0 0 fstip(ya) 0

0 0 0 0 0 1

in which 8 > 0 is a parameter, and
, a
Jaip(a) :=1 = (1 + sign(vea)) 2‘ | (3.26)
QAmax

is an example of a function that describes the slipping behavior in the direction a,
with maximum deformation am.x > 0 and v, the element of T 'L in the direction
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Figure 3.9: Effect of the slipping function (3.26) on the deformation. The figure
shows fq;p and deformation a when the velocity v, is a block signal.

of a. The effect of the slipping function is illustrated in Figure 3.9: it shows how,
under constant velocity v,, the deformation a increases as the integral of v, for
deformations much smaller than amax, and then saturates as a approaches amax.

Example 3.7. An example of the effect of this extended choice for the deformation
twist is given in Figure 3.10. The figure shows three consecutive motions of a ball
in contact with a plane (first penetrating, then sliding, then rolling), and its qual-
itative effect on the deformation matrix Hy, indicated by the frames in the lower
figures (exaggerated). The dotted frame denotes the initial and undeformed con-
figuration, and the frames in darkers shades of grey show the configuration Hy
relative to the initial frame at increasing time steps along the motion.

The first motion shows that after remaining initially undeformed (when the
ball is still in free motion), H; shows increased vertical deformation in the direc-
tion of penetration. The second motion shows additional horizontal deformation,
with saturation (slipping) as the deformation approaches its maximum. The third
motion shows that rolling reduces the horizontal deformation until the surfaces
are almost undeformed (the exact amount of reduction depends on the parameter
B; larger (3 result in faster reduction). A

The previous discussion has shown possible choices for transformations and
computations of the deformation twist, and of course different choices are possi-
ble. However, it is important to ensure that whatever transformation Xy for the
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£

Figure 3.10: Penetrating, sliding, and rolling motions of two objects, and their
effect on the deformation matrix Hy.

(TIO)Oﬂ WO,I)
Lol MTF—— 11 MTFt 11 MTR— (Tg,Wg)
1 1 —sign(A) (791 | Adgg TSl Xaq !
. || interconnection L deforming motions |
A
(75", Wo?)

Figure 3.11: Bond graph of the interconnection structure of Figure 3.7 (the contact
kinematics block has been left out for conciseness).

twists is chosen, the collocated wrenches should be transformed in the same but

transposed way, i.e. as
TS| | 0 Xg| [Wg
e =5 W] [zt 627

such that the transformation itself is power-continuous. After all, the energy
properties of the compliant contact are to be modeled only by a passive spring
and damper (to be described next), and hence its interconnection to the two bod-
ies should not by allowed to generate or dissipate extra energy.

To emphasize the power-continuity of the parts discussed in this section, Fig-
ure 3.11 shows a bond graph representation of the interconnection structure in
Figure 3.7. The bond graph is a port-interconnection of only power-continuous
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elements (junctions and modulated transformers) and hence it is itself power-
continuous.

3.2.2 Compliant contact forces

The power-continuous parts described in the previous section transform the indi-
vidual twists of the contacting bodies to a twist T that describes (approximately)
the deforming motion of the contacting surfaces. The contact forces, described by
the wrench W, are transformed back (in the dual way) to wrenches acting on the
contacting bodies.

This section describes an approach to compute the wrench W7 from the defor-
mation twist 7);. We decompose this wrench in an elastic part (i.e. the energy that
is reversibly stored in the deformation of the bodies’ surfaces) and a dissipative
part (i.e. the energy that is irreversibly transformed into heat due to the friction
in the deformation process).

We first describe the elastic part, which, like all elastic elements, is fully de-
fined by a state and an energy function V. The state should describe the deforma-
tion of contacting surfaces, and V' the energy that is stored for this deformation.

Since we have the deformation twist T available to describe the deformation
velocities, the state should somehow be the integral of this twist. As we have
seen in Definition 2.6, a twist can be integrated to a homogeneous matrix as H; =
H ,QTJMH ¥, i.e. not by direct integration, but by pre- and post-multiplication with
certain homogeneous matrices, depending on which coordinate frame the twist
is expressed in. The problem with T is that it is not directly obvious what twist
(i.e. between what frames ¢ and j) it represents. Due to the projection operation,
it does not just represent the relative motion of bodies 1 and 2 anymore, but only
part of it (namely the motion without rolling). The question is hence: where do
we need to attach the spring?

Figure 3.12 illustrates the effect of choosing different coordinate frames and
integrating the twist in these frames. First, Figure 3.12(a) shows what happens
if we choose to integrate T as H,; = Tng, so with ¥, being the ‘world-frame’.
The resulting Hy will then be the transformation matrix from Hy to the end of
the spring, i.e. the spring will be placed at the location indicated in the figure.
Similarly, if we choose ¥, to be the ‘body-frame’ and integrate H,; = Hdec, the
spring would be placed on the other side of V..

Both situations are clearly undesired: the spring should be placed somehow
around V. such that it is approximately attached between the two surfaces as
shown in Figure 3.12(b). This can be accomplished by choosing ¥ as an ‘average’
location of the spring, in the following way: we split the deformation twist 75 in
two parts, each describing (approximately) the deformation of one of the two
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(a) Using ¥, as end-frame (b) Using ¥ as ‘average’ frame

Figure 3.12: Effect on the spring location for different choices of integration of 7.

surfaces relative to ¥.. Mathematically, we choose to decompose the twist as

k k
c ,1d c, 2, 2 c 1 c
T =Ty =T + Ty = P T + P T; (3.28)
N——— N———

deformation of surface 1 ~ deformation of surface 2

where k; and ko are the relative stiffnesses of the two surfaces, as used when
defining V¥, in (3.21). The two twists can then be integrated to obtain the homo-
geneous matrices describing the deformation of each surface, and these can be
combined to give the total deformation matrix Hy, i.e.

d d o d(4\rhe,1d _ ka d(4\c

() = HU 0T () = 2 - HA (T (1) (3.29)

d e ki ,

g Ma(t) = T3 (0 H5a(0) = 7= =T () Hsa(1) (3:30)
H(t) = Hyi(t) = H2 (1) Hgy(1) (3.31)

with initial conditions H}¢(ty) = HS,(to) = I with t; the moment of impact
(when there is no deformation and the frames V14 = V94 = ¥, coincide). Since
wd and w{ (the rolling components of Ty in (3.23)) are zero, both H}¢ and Hg,
contain only a rotation component around z (and the z-axes of the two frames
are parallel). Therefore, also their product contains only rotation around z, and is
hence indeed of the form (3.24).

The previous discussion shows how to obtain a homogeneous matrix Hy that
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describes the deformation of the surfaces. Using this state!, we can now de-
fine a spring by any suitable positive energy function V(H;) with minimum
V(I) = 0 (no deformation). Such elastic elements acting on SE(3) are called
spatial springs, as introduced by Loncari¢ (1985) and further studied by Fasse
(1997) and Zefran & Kumar (2002). Visser & Stramigioli (2006) describe a gen-
eral approach to defining spatial springs, and how this approach can be used to
obtain the various types of springs that are described in literature.

Spatial springs are used, for example, in spatial impedance control (Stramigioli
2001), 3D telemanipulation (Stramigioli et al. 2002, Secchi et al. 2001), and in the
modeling of spatial visco-elastic couplings (Fasse 2000). Stramigioli & Duindam
(2001) show extensions to port-controlled spatial springs with variable length and
stiffness, and Stramigioli & Duindam (2004) discuss anisotropic spatial springs.

Defining a general spatial spring in a coordinate-independent way is not easy,
since it should somehow be a suitable function of the homogeneous matrix H,.
Fortunately, in our case the homogeneous matrix Hy has the special structure
(3.24), and it is hence usually easier to express the energy as a function of the
variables (84, %4, yd, z4). The time-evolution of these coordinates can be derived
from (3.29)-(3.31). A simple example of an energy function of the coordinates
(0a, x4, ya, zq) is the quadratic function

1 1
V(Z‘d7 Yd, Zd, 0q) = §Kt (l‘z + yfl + 2’3) + §KT6§ (3.32)
with linear stiffness K; > 0 and rotational stiffness K, > 0. This means that

the spring can be implemented as a port-Hamiltonian system with differential
equation for the deformation parameters

04 0 0 1 0 0 0
d |zq| _ [0 0 —zgsin(fy) —yacos(fy) cos(#y) —sin(fy) O ¢ (3.33)
dt |ya| |0 0 ax9cos(fy) —yosin(fy) sin(fy) cos(dy) O "¢ N
Zd 0 0 0 0 0 1
and output equation for the contact wrench
0 0 0 0
0 0 0 0 |K.04
e |1 —xzgsin(f1) —yacos(f1) wmacos(f1) —y2sin(br) 0| |Kizq
Wi = 0 cos(fy) sin(6;) 0| | Kiya (3.34)
0 —sin(6) cos(61) 0| | Kiz2q
0 0 0 1

where (01,21,y1,21) and (62,22, ys, 22) are coordinates for H!¢ and HS§, as in
(3.24). This expression follows from expanding the time-derivative of (3.31), and
can be directly coupled to the interconnection structure of Figure 3.11.

1We choose here to define one spatial spring as a function of the total deformation Hy. Another,
more detailed, option would be to choose two springs with states H1¢ and HS,.
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[
(a) (b) (© (d) (e)

Figure 3.13: Illustration of remaining deformation on second impact after release
of the first contact: after the first impact (a), the surface of the square deforms
horizontally (b). Then, on release of the first contact (c), the deformation reduces
(d), but some deformation still remains when the second impact occurs (e).

In addition to elastic contact forces, dissipative contact forces can be modeled
by any relation between the twist T); and wrench W such that the corresponding
power is always non-negative, i.e. the resistive element can only dissipate energy,
not generate or store it. A very simple dissipative relation would be W§ = 7T
with r > 0 a parameter. The combination of this linear dissipative relation with
the quadratic elastic energy function (3.32) (and both equal to zero if the bodies
are not in contact) is known as the Kelvin-Voigt model (Fliigge 1975).

Instead of the simple linear models for elastic and dissipative contact forces,
existing contact models in the literature can be formulated as functions of Hy
or the coordinates (04, x4, ya, 2¢) and then applied to the same interconnection
structure. Examples of commonly used contact models are the Hertzian contact
model (Johnson 1985), the micro-slip model (Johnson 1985), the Hunt-Crossley
model (Hunt & Crossley 1985), and the LuGre model (Canudas de Wit et al. 1995).

Remark. Note that by construction of the interconnection structure, the first two
elements of T are zero and hence the rolling motions are dissipation-free. This
can be changed, if desired, by connecting a dissipative element to a different part
of the interconnection structure, e.g. at the point marked 75! in Figure 3.11. A

Remark. Apart from the dissipation of energy due to friction, energy is also ‘lost’
due to breaking of contact. When contact is made, the initial deformation is set
to zero (Hy = I) with corresponding energy V() = 0. Then, during contact,
the deformation and the corresponding stored energy V' increase, partially due to
penetration (described by z4) and partially due to sliding and twisting (described
by x4, ya, 64). When the contact is released, the penetration z4 necessarily crosses
zero, but the sliding and twisting deformations may still be nonzero and (de-
pending on the energy function) may have stored energy! When the next impact
occurs, however, the deformations are reset to zero, and this stored energy is lost.
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The physical motivation for this implementation is that for most practical sur-
faces and contact situations, any remaining surface deformations after detach-
ment will indeed be quickly restored to the undeformed configuration, and the
corresponding energy will be transformed into heat. However, for some mate-
rials or for fast contact switching, this remaining deformation energy may still
be (partially) stored, in which case the deformation reset on impact should be
adapted. Figure 3.13 shows an example how this situation could occur. After
impact (a) and deformation (b) during a first contact phase, the deformed surface
is released (c). During the subsequent brief no-contact phase, the surface starts
to settle towards its undeformed shape (d), but it has not completely regained its
undeformed shape, when already a second impact occurs (e). A

3.3 Rigid contact

The compliant contact model of the previous section allows for a wide range of
surface properties and other situations. However, for the purpose of modeling
walking robots, it has two main problems.

The first problem is that as the surfaces in contact become stiffer, the dynamics
in the collision phase become faster. This leads to a dynamic model described by
stiff differential equations; a model with relatively fast dynamics (the collision
dynamics) as well as relatively slow dynamics (the other motions of the system).
Simulation of such system requires special integration methods in order to ensure
the accuracy of the results as well as acceptable simulation speeds, and simulation
of the collision phase will be relatively slow.

The second problem relates to the analysis of the models. A walking cycle of
a robot consists of a single-support phase, in which one foot is more or less fixed
to the ground and one foot is above the ground, and a double-support phase, in
which both feet are on the ground and support is transferred from one foot to
the other. Of these two phases, the single support phase is generally the longest,
and for some walking configurations, the double-support phase completely dis-
appears as the surface stiffness increases. However, the compliance in the contact
model prevents the stance foot from being exactly fixed to the ground, and the
double-support phase from being exactly instantaneous, thus making the analy-
sis of the overall cycle overly cumbersome.

For these two reasons, we present in this section a simpler contact model.
This model is suitable for contact situations in which the stiffness and damping
are large enough to permit approximating them by an instantaneous dissipation
of energy on impact. The advantage of this model is that the analysis becomes
simpler, especially for certain types of walking robots where the double support
phase becomes a simple momentum reset between consecutive steps.

In general, it is not so easy to replace compliant contact by instantaneous im-
pulsive contact. Aspects that are unimportant in compliant modeling (such as the
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exact order in which points of the bodies come in contact with each other) sud-
denly change the outcome of the simulation significantly in the case of impulsive
contact modeling (Acary & Brogliato 2003). Furthermore, the presence of finite
friction and slip requires various extra modeling assumptions to ensure a single
deterministic solution of the dynamic equations (Glocker 2001, Glocker 2004).

To avoid such problems, we choose to restrict ourselves to the following class
of contact situations: we assume instantaneous and fully plastic contact (zero
restitution), no simultaneous collisions, and no sideways slipping. These as-
sumptions are a reasonable approximation for most walking robots.

3.3.1 Model setup

As the starting point for the rigid contact model, we take a mechanical system of
the form (2.92), repeated here.
g

bl =L ol 4] Lo sta] L

o= sl (%

OH

(3.35)

In the model, the matrix A(q) describes the directions of the (possibly) constrained
velocities, or equivalently, the directions of the contact forces, and A are the mag-
nitudes of the contact forces. As in Section 2.4, we do not take the general form
of Theorem 2.17 for the mechanism, in order for the equations to remain concise.
Still, the results of this section extend directly to general mechanisms as well.

The columns of the matrix A(q) describe the direction of the contact wrenches
and contain information from the contact kinematics, in order to know when and
at what position the contact forces act. The number of constraint forces should be
determined by the modeler, for example whether only tangential forces should
be used or also torsional constraints around the vertical axis.

To avoid confusion over plus and minus signs, we always take the positive
direction on the vertical axis to be the direction of motion of the object away from
the contacting surfaces, e.g. when modeling a robot walking on level ground, the
positive vertical contact direction is upward, not downward.

Example 3.8. Consider as an example Figure 3.14, showing a mechanism with
three degrees of freedom (¢', ¢%, ¢*). We can express the coordinates of the tip of
the end effector in ¥ as

x4 Thase sin(q') cos(q?) —sin(qt) sin(¢® + ¢*)
Y| = | Yoase | + 12 | —cos(qt)cos(q®)| +13 | cos(qh)sin(q? + ¢%) (3.36)
2 Iy —sin(¢?) —cos(q® + ¢*)
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Y ¥y

Figure 3.14: Example of a mechanism with the tip in contact with the ground
plane.

where [; is the length of link 4, (Zpase, Ybase, 0) are the fixed coordinates of the base
plate, and the zero configuration is with link 2 horizontal and pointing towards
the zz-plane and link 3 vertically downward.

If we consider the possible contact of the tip of the end effector, we can define
for example the indicated force directions as

-1 0 0
i=10 fo= (1| f3=|0 (3.37)
0 0 1

which act on the tip at the point r = [z; O]T. Depending on the type of
contact surface to be modeled, we can consider only the vertical force f3 (while
allowing possible sliding along the surface), or also the tangential forces f; and
f2 (in which case no sliding is allowed).

If we consider all three contact forces, and J3 denotes the Jacobian of link 3
relative to ¥, then we can compute the joint torques equivalent with the contact
forces as follows, using the expressions of Definition 2.13 and Lemma 2.14.

A1
_ r@ANfi r(@Nfa (@A fs

where )\; indicates the magnitude of the contact force along f;. The transpose of
the matrix A(q) can be used to compute the velocities AT(q)%—I; collocated with
the contact forces, i.e. the linear velocities of the tip of the end effector in the
directions of f;. If the tip is in contact, the contact forces A should be such that
these velocities are zero. If the tip is not in contact, A (or A) can be taken zero, and

the velocity constraints should be ignored. A
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Due to the structure and assumptions of this contact model, the contact forces
will contain an impulsive component on impact (to satisfy the constraints instan-
taneously) as well as a finite component during the contact phase. These two
aspects are discussed in the next two sections. After that, the conditions on con-
tact release are discussed, as well as extensions to multiple contact situations.

3.3.2 Momentum reset on impact

As a first step of a rigid contact model, we describe what happens on impact, i.e.
when impulsive constraint forces X set the velocities AT%—II’JI of the contact point
to zero.

We define ¢; as the time of impact, and ¢_ and ¢, as the time instants just
before and just after impact, i.e. mathematically ast_ :=¢, —eand ty :=1; + ¢
with e | 0. Using this notation, we can indicate the velocity constraint of (3.35) as

OH

0= AT

= AT (q)M " (q)p(t4) (3.39)

t=ty

where we used ¢ (the time just after impact), since the momentum is discontin-
uous at impact ¢t = ¢; and hence not well-defined.

We can integrate the dynamic equations (3.35) over the impact phase, i.e. from
t_ to t4, which results in the following.

/ p= / (— + A(QA + B(q)u) dt (3.40)

p(ts) — plt-) = Aq) / At (3.41)

where we assumed that the terms %—Ij and B(q)u have finitely large magnitude

and hence zero integral between ¢_ and ¢, . If we substitute the expression (3.41)
for p(t4) into (3.39), we obtain an expression for \ as

0=A"(g)M'(q) <p(t) + Alq) / ' Adt) (3.42)

/t At = — (AT(QM ) A@) T AT@QM N p(ts)  (343)

The inverse of the matrix AT M ! A exists if and only if the columns of A are
linearly independent, i.e. if the constraint force magnitudes A are uniquely deter-
mined. This aspect is discussed further in Section 3.3.5 when we discuss multiple
contact points.
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Figure 3.15: Illustration of the projection operator P, projecting p(t_) onto the
plane ATM~1p = 0.

Instead of explicitly computing and using A\, we can also substitute (3.43) into
(3.41) to obtain an expression for the momentum after impact p(¢, ) as

p(ty) =P(g)p(t-) = (I ~A(ATM )T ATM’l) p(t-) (3.44)

i.e. as a projection P along the columns of A of the momentum before impact
p— onto the plane defined by AT M ~!p = 0, as illustrated in Figure 3.15.

Expression (3.44) is more suitable for simulations than (3.43), as it does not
require dealing with the impulsive constraint forces A directly. Unfortunately,
it requires a state jump in the momentum and can hence not be implemented
directly as a port interconnection.

Using (3.44), we can compute the energy loss on impact. Since the position
variables are continuous, the potential energy does not change on impact, only
the kinetic energy. We can compute AUj, as follows

AUk = Uk(t+) - Uk(t_)

= 3P (M pley) = 5p" ()M ()

2
= %pT(t_) (I—MTAATM AT AT) M
(I—AATM A TTATM Y pto) - %pT(t_)Mflp(t_)
= DA M () — p ()M AAT M A) AT ()
o7 (M AATM T A) AT M () — LT )M )
= f%pT(t_)M’lA(ATM’lA)’1ATM’1p(t_) (3.45)

This expression can be used, for example, to determine the efficiency of walking.
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3.3.3 Constraint forces during contact

After impact, the velocity of the contact point is set to zero, such that the con-
straints are satisfied. During the contact phase that follows, the constraint mag-
nitude A should be such that these constraints remain satisfied until contact is bro-
ken (see Section 3.3.4). For finite external forces, the constraint forces themselves
will also be finite.

In Section 2.4, we briefly discussed several methods to deal with the implicit
set of the equations (3.35). Since the constraints are time-varying (contact can be
on or off), they can be implemented in the easiest way using the second method
discussed in Section 2.4, i.e. by computing the required constraint forces explicitly
from the time derivative of the constraint equations. This results in an expression
for A given by (2.94), repeated here:

H ATM~1p) OH
(AT Ay A= AT O g py, QAT M) 01
dq dq dp

(3.46)
Simulations using reasonable integration step sizes have shown that the numeri-
cal drift on implementation of these equations leads to non-negligible simulation
errors. Therefore, we include the extra term discussed in Section 2.4 in order to
reduce these problems, leading to the following equation

(ATMPA) A =

H OH ATM~'p) OH
_par 8 qrp 90 g, OATMTP)OH

Ip dq dq Ip
with 8 > 0 a damping factor, i.e. (3.46) with an extra term to drive numerical
errors in the constraint velocity to zero. Simulations with this improved model
show to be accurate enough for walking motions, i.e. when contacts do not last

long enough to make drifting noticeable.

Remark. In both expressions for the contact forces A, the partial derivative of
A(q) with respect to ¢ appears. The matrix A(g) contains information about the
location of the contact point, and hence its partial derivative with respect to ¢’
describes how the contact point would move if the mechanism moved in the di-
rection ¢'.

In practice, this partial derivative is hard to express, and instead, it is often
easier to use the equivalent formulation

(AT M~1p) OH
dq Op

(M ~'p) OH

— AT 1p 4 AT
Pt dq dp

(3.48)

The time-derivative of A can be expressed using the velocity of the contact point,
which is available directly from the contact kinematics of Section 3.1. A
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Figure 3.16: Example of a one-dimensional system, in which the left cart is con-
strained to have either positive = or positive F.

Figure 3.17: Example of a two-dimensional system in which contact release con-
ditions should not be expressed in terms of the force directions.

3.3.4 Conditions for contact release

The contact forces A in the previous section are computed such that the velocity
of the contact point remains zero, irrespective of what these forces should be. Ob-
viously, under certain conditions, the contact should be released, i.e. the contact
forces set to zero, and the algebraic constraint equation discarded. The aim of this
section is to determine these conditions for contact release.

For one-dimensional systems, such as the system shown in Figure 3.16, the
conditions are often formulated in terms of the direction of the required con-
straint force. With the sign conventions of Figure 3.16, such a condition would
be formulated as: contact is broken whenever the constraint force F' (acting on
the left cart) becomes negative. This condition for contact release is based on the
intuitive idea that the wall can only push on the object, it cannot pull.

Based on this formulation for one-dimensional systems, it seems easy to ex-
tend this to multi-dimensional systems, namely just as a similar condition on the
component of A corresponding to the direction normal to the contacting surface
(e.g. A3 in the example of Figure 3.14). This, however, leads to unphysical behav-
ior, as proved by the following example.

Example 3.9. Figure 3.17 shows a two-link robot in contact with the ground. If
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we take (for simplicity) the links to have unit length and unit mass, we can find
the mass matrix M and the Jacobian matrix J of the second link relative to the
reference frame as

S

T
0 0 1 0 0 O] (3.50)

J(Q)_{o 0 1 cos(¢') sin(¢') 0

If we now use the two directions f; and f, indicated in the figure, we can write
the constraint matrix A(q) as

A= JT {T/\fl r/\fz}

fi fa
_ [—cos(q") = cos(¢* +¢*) —sin(q") — sin(¢" + ¢?) (3.51)
- —cos(q¢ + ¢?) —sin(qt + ¢?) ’

with r the position vector to the tip of the second link. The constraints are satisfied
for AT M~1p = 0 and the constraint forces A act on p through the columns of A.
Consider now the static situation depicted in the figure, with ¢* = 7, ¢*> = %,
and p = 0. We apply a constant force v = 1N to the center of the second link in
the positive x direction, with the equivalent joint torque 7 given as
4

= (o)) =

with r, the coordinates of the actuation point expressed in the reference frame.
Suppose we now compute the required constraint forces A to keep the second link
from slipping and penetrating. If we ignore other forces such as gravity, we can
compute A from (3.46) as

—1./9

(3.52)

A= (ATMA) T ATM = {_i] (3.53)
4

where all other terms drop out since p = 0. The resulting A has a negative second
component, i.e. a negative component in the f; direction. If we used the contact-
release condition based on the direction of forces, we would now conclude that
for this A, the ground would be “pulling’ the object down, and hence contact
should be broken.

However, if we then compute the acceleration a of the tip of the second link
(which is just the time derivative of the constraint equation), we find

. . 7
a=ATM Yo+ ATMp+ ATM p=0+0+ATM 7 = {53] (3.54)
5
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that is, the second link is accelerating to the right as well as into the ground! A

The example shows that judging contact release on the basis of the direction
of the constraint force gives incorrect results, namely possible penetration of the
ground. Although the use of the force direction appears to be physically motivated
(the ground cannot pull on the object), it clearly leads to unphysical behavior.

Instead, we propose the following condition. Given a system of the form (3.35)
with active unilateral contact constraints represented by the equation A7 M ~!p =
0. As shown in the example, the acceleration a of the contact point in the uncon-
strained case is equal to the time-derivative of the constraint equation:

a= % (A"M'p)|,_, = %(ATM_I)p + AT (—8321 + Bu> (3.55)
Contact should be released (i.e. the A set to zero and the constraint equations
discarded) as soon as the normal component of a (the component in the direction
normal to the contacting surfaces) becomes larger than zero, that is, as soon as the
states (¢, p) and the input u are such that the acceleration a of the unconstrained
system is directed away from the contacting surfaces.

This condition ensures (by definition) that no penetration of the objects in
contact occurs. Furthermore, it provides minimum sticky behavior, since contact
is released as soon as possible (as soon as no penetration will occur), even though
the contact force may still be directed downward.

Remark. The unconstrained acceleration a and the constraint force A are related
as (AT M~1A)\ = —a, which can by seen by comparing (3.46) and (3.55). This
shows why no similar problem occurs in one-dimensional systems (or systems
with only one constraint force): for such systems, the matrix A7 M ~! A reduces to
a (positive) scalar, so a > 0 is exactly equivalent to A < 0. A

3.3.5 Extension to two contact points

To be able to model a bipedal walking robot with rigid contacts with the ground,
it is necessary to consider two possible contact locations (the two feet of the robot
with the ground). During the motion of the robot, the two contacts can become
both active (for the robot having two feet on the ground), both inactive (for the
robot to be free in the air), and one active and one inactive (for the robot to have
either the left or the right foot on the ground).

For compliant contact as discussed in Section 3.2, it is straightforward to ex-
tend the results to multiple contacts: just add extra spring-damper models acting
between the appropriate parts of the robot and the ground. For rigid contact
models, however, it is not so simple, since both the impact forces and the contact
release conditions become more involved. Hence, in this section, we discuss only
the extension to two contact points, which should be sufficient to model bipedal
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walking. A more general solution for larger numbers of contact points is the sub-
ject of ongoing research, e.g. in the field of complementarity problems (Pfeiffer &
Glocker 1996).

We start again from a system of the form (3.35), but now with two possible sets
of contact forces (A\; and A2) and contact directions (4; and As), corresponding to
the contact forces acting at the first and the second contact point. Both can contain
several components, both in the direction normal to the contacting surface as well
as in tangential and rotational directions. We can write the implicit differential
equations for these systems as follows

% m N LOI é} %g * [AIO(Q)} At [Azo(q)] Azt {B(()q)] u
0 0 AT(q)] rom (3.56)
0f = [0 AZ(q) l(%l
y 0 BT(q)] Low

where the constraint equations and forces should be ignored if the corresponding
contact is not active.

Generally speaking, if only one of the constraints is active, the computations
of the constraint forces can be done as in the previous sections, with the matrix
A replaced by either A; or A,, depending on which contact is active. If both
contacts are active, the matrix A should be taken as A = [Al Ag] such that both
constraints are satisfied.

However, the combination of the contact states and especially the changing
from contact to no contact (or partial contact) should be handled with care. Specif-
ically, we discuss the following aspects of two-point contact modeling that make
it different from the single-point contact models discussed in the previous sec-
tions: linear dependency of contact forces, two impulsive forces on single impact,
and finally the contact-release conditions for two-point contact.

Linear dependency of contact forces

If both contacts are active, the directions of the constraint forces are described by
the matrix A = [A; A]. This matrix is used in the expression (AT M~1A)~!
in the computation of both the impulsive forces (3.43) on impact and the finite
forces (3.46) during contact.

The matrix AT M 1A is invertible if the columns of A are linearly indepen-
dent, i.e. if A has full column rank. Physically, this means that the contact forces
are statically determined: there is only one solution ) that satisfies the constraints.
Dually and equivalently, it means that the velocity constraints (described by the
rows of AT) are independent.

The matrix A can be rank deficient when the two contacts are active at the
same time, or when extra constraint directions are defined which are constrained
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(a) Choice of coordinates ¢! — g. (b) Constraint force directions f1 — fs.

Figure 3.18: Example of a system for which the six constraint forces f; through
f6 (when active in the double contact phase) can be represented equivalently by
only three forces.

by the mechanism kinematics already. An example of both situations is shown in
Figure 3.18: the forces f; and f; are both canceled out by the kinematics (math-
ematically speaking, the corresponding wrench is in the kernel of J7), since the
mechanism is essentially planar, and furthermore f> and f5 are linearly depen-
dent, since when the horizontal motion of the left pole is fixed (by f2) as well as
the vertical motions of both poles (by f3 and fs), then also the horizontal motion
of the right pole is fixed.

If the matrix A is rank deficient, the inverse of AT M ~!A does not exist, and
hence a different solution technique needs to be applied to solve A from (3.43) and
(3.46). Since we are not interested in a specific solution for A, but just any solution
that satisfies the constraints, we can use a pseudo-inverse of A”M !4 instead
of a regular inverse, such that a solution A is obtained that is minimal in some
metric. In fact, if we choose this metric to represent the relative compliances of
the different contact points, then the resulting components of \ (the contact forces
in the different directions) will be relatively large for contacts that are relatively
stiff, which is a result that makes physical sense.

Two impulsive forces on single impact

A second aspect of two-point contact that needs attention, is when one point is in
contact and the second point has an impact. The effect of this impact can cause
the contact velocity of the first constraint to be violated, namely if

0> ATM 'p(ty) = ATM ™' (I — Ay(AT M~ " Ay) " ATM Y p(t)  (357)
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Figure 3.19: Example of a tall object that continues to move after an impact, and
a wide object that comes to a standstill.

In this case, the impact on the second contact point causes a simultaneous impact
on the first contact point, such that the momentum after impact should be com-
puted as (3.44) with A = [A; A3 (or possibly a full column rank equivalent).

If the constraint of the first joint is not violated after a single impact, i.e. (3.57)
does not hold, then this means that, on impact, not only the second contact be-
comes active, but instantaneously also the first contact becomes inactive. In walk-
ing robots, this corresponds to the often-made assumption of instantaneous trans-
fer of support from one foot to the next.

Example 3.10. To illustrate these ideas, consider Figure 3.19, showing a closet
of a certain width 2w and height 2h as it rotates around one (left) contact point
and then contacts the ground with a second (right) contact point. We know from
practical experience that depending on the height and width of the closet, it will
either continue to rock over the second contact point (for tall closets) or come to
a complete stop (for wide closets). The aim of this example is to show for what
parameters w, h these different behaviors occur.

First, let us write down the dynamic equations of the system. We use three
coordinates as indicated in the figure to be able to handle all possible configu-
rations (both free-floating, only left contact, only right contact, both contacts). If
the closet has a certain mass m and inertia J around its center, as well as gravity
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acting in the negative y-direction, we can write the total energy of the system as

1 m~! 0 0 p1
H(q,p)=mgq*+ 5[ p2 ps] | 0 m™" 0 | Ips (3.58)
-1
0 0 J' |ps

with p := M¢q as usual. Possible contacts are assumed to occur at the left and
right foot at the points r; and r, given by

q' — wcos(g?®) + hsin(qg®) q' +wcos(g®) + hsin(g®)
r = |q*> —wsin(¢®) — hcos(q®) rr = |¢* +wsin(qg®) — hcos(q?) (3.59)
0 0

We assume both vertical constraint forces and horizontal constraint forces at the
contact points, such that no sideways sliding of the closet is allowed. We can
compute the constraint matrices 4; and A, as in the example of Section 3.3.1,
using the expression for the Jacobian of the planar joint given in the example of
Figure 2.4(c).

0 0 0 1 0 O
Ar=10 0 0 O 1 0
001 ¢ —¢* 0
0 0
0 0
—q® +wsin(¢®) + heos(¢®) ¢! — wcos(¢®) + hsin(g?)
1 0
0 1
0 0
- ) 0 -
= 0 1 (3.60)
|wsin(¢®) + hcos(¢®)  —wcos(¢®) + hsin(¢®) |
- ) 0 .
A= 0 1 (3.61)
| —wsin(g®) + hcos(¢®)  wcos(¢®) + hsin(¢?) |
The total dynamics can now be written as
Gg=M""p
0H
)= — + Ai(qQ) M + A (@ N,
b=, T A@NT A (3.62)

0=Af(¢)M 'p
0=A7(g)M 'p
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where )\; and A, are the left and right constraint forces, we assumed no additional
input ports, and where the constraints may be active or not, depending on the
contact situation.

Let us now consider the situation that the left foot is in contact with the ground
and the object is rotating clockwise around the contact point. This means that the
momentum of the system can be written as

muw sin(q?) + mh cos(q®)
p= |—mwcos(¢®) + mhsin(¢®) | w (3.63)
—J

for some w > 0 (the angular velocity), since the two other degrees of freedom are
forced to zero by the constraint forces A;.

Consider now the situation that the right foot hits the ground (i.e. ¢ — 0).
This results in an impact on the right foot, and if necessary also on the left foot.
We can compute the momentum projection P(g) in (3.44), corresponding to the
right impact, as follows.

P= (I—-A.(AfM™TA) P AT M|

q3=0
1 mh?® mhw —mh
2
= 5> |mhw mw* —muw (3.64)
J +m(h? 4+ w?) “Th  —Jw J

If only this impact occurs (and not one on the left foot), then the velocity of the
left foot can be calculated as

] —1 0
S =AM TP = | ow(J4m(h2—w?)) | W (3.65)
Y J+m(h24w?)

with p as in (3.63). The fact that #; = 0 is as expected, since the horizontal con-
straint on the right foot is the same as the horizontal constraint on the left foot.

Whether the resulting velocity is compatible with the constraints, i.e. whether
g1 > 0, depends on the parameter values. For a valid velocity (and hence rocking
behavior of the closet), we should have

. 2w(J +m(h? —w?))
W= T mh? + w?)
J+m(h? —w?) >0

w>0

J
h?—w? > -=— (3.66)

m

where we used the fact that all parameters as well as w are strictly positive. This
shows that rocking behavior will occur if the height h of the closet is large enough.
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For smaller h, the single right impact results in violation of the left constraints,
and hence an extra left impact is needed, which sets the total momentum to zero
and brings the closet instantaneously to a standstill.

Practical limit values for h can be found by specifying the mass distribution of
the closet. For example, if all mass is concentrated in the center (J — 0), rocking
will occur for h > w. Similarly, if the mass is homogeneously distributed over the
closet (J = 5m(4h? + 4w?)), rocking will occur for h > 1v/2w. A

Contact-release conditions for two-point contact

The final aspect of two-point contact that needs attention is the condition for con-
tact release. In case only one of the contact points is active, the single-contact con-
ditions can be directly applied (with A replaced by A; or A, obviously). How-
ever, when both contacts are active, the situation is a little more involved.

The decision process for two-point contacts is depicted in Figure 3.20. It is
based on the same idea as in Section 3.3.4, namely that contact should be released
as soon as the acceleration of the contact point for A = 0 is away from the con-
tacting surfaces. This means that first the accelerations are computed for the case
A1 = A2 = 0. If these are both positive (away from the contacting surfaces), then
both contacts are released.

If at least one of the accelerations is non-positive, then one of the contacts is
activated, and the corresponding A is computed, as well as the acceleration of the
remaining free point. If only a; < 0 (a2 < 0), it is most likely that A; (A2) needs to
be activated, and hence we compute this situation first. If both accelerations are
non-positive, then either A; or A\; can be chosen as active first (in the figure, \; is
chosen).

If the acceleration of the remaining free contact point is positive, then that
contact is released and the first one remains active. If the remaining acceleration is
non-positive, then the computations are repeated with the free and active contacts
reversed.

If both choices result in non-positive acceleration, then one contact force is not
enough but both contacts are needed, so the required A; and A, are computed and
applied to the mechanism, and both contacts remain active.

Example 3.11. To illustrate the procedure of Figure 3.20, we discuss the systems
shown in Figure 3.21. We only describe the results intuitively, without actually
computing the accelerations and constraint forces. In each example, the gravita-
tional force is equal to f, = 10N downward, and where applicable, the external
force equals v = 11.N. Furthermore, the ‘1’ and ‘2’ below each supporting triangle
indicates the contact point number.

(@) The first system shows a bar resting on two triangular support blocks on
each side of the bar. To show that the bar remains resting on the blocks,
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start ﬁ

compute free | a; >
a1§01a2>0 aq andag

CLZSO a1>0,a2§0
as > 0f compute \; compute A\ [a1 >0
and new a» and new a;
a2 <0 a; <0
a1 > 0| compute \p compute A\; |a2 >0
and new a; and new ao

aﬁ\y '%
compute
)\1 and )\2

Figure 3.20: Diagram to determine possible (partial) contact release for two-point
contact. The symbols C; (C2) indicate that contact 1 (contact 2) is active, whereas
‘free’ denotes that neither is active. The symbol a; (a2) denotes the vertical accel-
eration of contact point 1 (contact point 2), possibly with Ay # 0 (A1 # 0).
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Figure 3.21: Examples of two-point contact situation with various contact re-
leases. Black triangles mark active contact points.

(b)

(©

we follow the diagram of Figure 3.20. If we determine the accelerations
of the contact points in the absence of constraint forces, clearly they are
both negative (the block would fall straight down through the triangles).
Following the left side of the diagram, if contact 1 is assumed active and
we compute the acceleration of point 2, we see that still it is downward.
Similarly, if we assume contact 2 to be active, the acceleration of point 1 is
downward. Hence, the only solution is that both constraints are active, as

is clear intuitively.

The second system is equivalent to the first, except that an extra external
force u = 11N acts on the system. If we compute the accelerations of the
contact points in the absence of the constraint forces, we see that both are
positive (since the net force on the center of mass is upward), and hence
both contacts are released, as is clear intuitively.

The third system shows a bar resting on two support blocks, both located
on the left side of the center of mass. Following the diagram, we see that the
contact point accelerations without contact forces are both negative, hence
we follow the left path in the diagram. If we assume the first contact to be
active and compute the acceleration of the second contact point, it turns out
to be downward (since the block starts rotating clockwise around the first
support block). If we then assume only the second contact to be active, we
can see that the acceleration of the first contact point is positive, and hence
this contact situation is chosen; only the second contact is active, and the
block starts rotating clockwise around this point.
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(d) Finally, the fourth system shows the same system as in example (c), except
for the external force . In this case, both free accelerations are again neg-
ative, but if we assume the first contact to be active, the acceleration of the
second body is positive (since the body starts rotating counter-clockwise)
and hence this contact situation is chosen.

A



Chapter 4

Modeling and Analysis of Walking
Robots

Chapters 2 and 3 have developed the building blocks that are necessary to con-
struct mathematical models of the dynamics of walking robots. This chapter
discusses how to use these building blocks to obtain models for simulation and
analysis, and the next chapter describes the use of models for controller design.
These three goals (simulation, analysis, and control) generally require different
mathematical models, with a different balance between accuracy and complexity.
Models for analysis and controller design should be simple enough to show only
the most prominent features, while simulation models should be detailed enough
to represent the behavior in practice as accurately as possible.

For this reason, we construct walking robot models at several levels of detail.
We start from a highly detailed level (suitable for simulation) and consider walk-
ing robots as freely floating (possibly planar) rigid mechanisms that can come in
contact with a fixed ground with zero, one, or two feet. In the models in this
chapter, we assume the ground to be a perfect plane, possibly tilted, and we con-
sider only point feet. Generalizations to different ground and foot shapes are
possible. Based on these detailed simulation models, we then derive simplified
models for analysis under extra simplifying and restricting assumptions, for ex-
ample by looking only at symmetric periodic walking cycles and assuming an
instantaneous double-support phase. In the next chapter, further simplifications
are made to obtain models suitable for controller design.

In order to study walking behavior, we have to find walking gaits of a mech-
anism: periodic motions of the links of the mechanism that, together with inter-
actions with the ground, produce a net overall displacement along the ground.
Section 4.1 describes a technique to find efficient walking gaits using numerical
optimization. The following sections then describe the modeling and analysis of
three examples of walking robots: a simple planar straight-legged walking robot
(used as an illustration of the modeling and analysis approach), a more complex

95
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kneed planar walking robot (based on a real experimental robot), and finally a
three-dimensional walking robot with a trunk.

As the complexity of the robots increases, the size of the corresponding equa-
tions increases as well, to the point that manual analysis of the equations is im-
possible, or at least not very insightful. For this reason, many of the model equa-
tions are not shown in the text of this thesis, but instead are available electroni-
cally (Duindam 2006) as equations in Mathematica (Wolfram Research 2005) and
Matlab (The Mathworks 2005), and simulation models in 20-Sim (Control Lab
Products 2005).

4.1 Gait search as an optimization problem

The simplified analysis models that are developed in the next three sections all
have a similar structure: a set of differential equations that describe the contin-
uous dynamics of the time from the start of a step to the end of a step, plus a
projection and relabeling operation that link the positions and velocities at the
end of a step to the positions and velocities at the beginning of the next step. The
model of Section 4.3 contains an additional impact at some point during the step,
but otherwise it has the same structure.

Figure 4.1 illustrates this structure for a planar bipedal walking robot with
knees. The top figure shows a certain periodic walking cycle for the robot, con-
sisting of two steps: one with the left foot and one with the right foot. This cycle
is repeated in time (restarting from posture A after posture H), and is also sym-
metric with respect to the left and right leg. If we use certain coordinates ¢(t)
to describe a motion of the robot with the left foot on the ground, then we can
use a mapping S(q(t)) to describe the symmetric motion with the right foot on
the ground (details of this mapping follow in the next sections). The total motion
cycle A-E-A can then also be represented by two motions A-E, once with and
once without the mapping S(g). This is illustrated in the bottom figure, showing
a continuous curve in coordinate space that describes the motion from posture A
(with coordinates g(A)) to posture E (with coordinates ¢(E)), as well as the mo-
tion from E (with coordinates S(¢(E))) to A (with coordinates S(¢(A))). The jump
from ¢(E) to S(¢(FE)) and from S(¢(A)) to g(A) is a combination of the momen-
tum projection on impact (causing a change in the velocity) and the relabeling of
the coordinates (affecting both position and velocity).

An important aspect of the research on passively walking robots is the search
for passive gaits, that is, the search for natural, unactuated, periodic motions of a
mechanism (also called passive limit cycles) that result in some net overall dis-
placement. Depending on the configuration of the robot, its mass distribution,
and the presence and direction of gravity, such limit cycles may exist or not, and
they may be attractive (stable) or not (unstable).

Since only unactuated (passive) motions are considered, the dynamics of the
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JINAARD

Figure 4.1: Illustration of the idea of a Poincaré map for walking motions: a peri-
odic symmetric walking cycle (top figure) can be represented by a closed curve in
coordinate space (bottom figure) where left/right symmetry is expressed by the

mapping S(q).

system are autonomous, and hence the initial conditions completely determine
the motion. The deterministic function that maps the initial conditions at the be-
ginning of one step to the initial conditions at the beginning of the next step (so
the combination of the integrated continuous dynamics plus the impact momen-
tum projection and the left/right relabeling operation) is called the stride func-
tion (McGeer 1990b) or return map (Koditschek & Biihler 1991), and it serves as
a Poincaré map (Wiggins 2003) of the system. The problem of finding a passive
walking gait can then be formulated as finding a fixed point of the Poincaré map,
i.e. the initial conditions that map to themselves. Since the Poincaré map in-
volves integration of nonlinear differential equations, it is usually not available
symbolically, and searching for fixed points is hence a numerical problem. As an
example, see Goswami et al. (1998) for a detailed study of the Poincaré map of
the compass-gait walker.

The approach of searching for fixed points of the Poincaré map is very useful
in passive dynamic walking, as it has few degrees of freedom (just the initial con-
ditions of the system, which are often partially fixed due to the choice of the start-
ing point of a cycle). However, it relies on the restriction to autonomous systems,
i.e. systems with zero control input, or at least an input that is chosen a priori.
When walking down a slope, zero-input limit cycles have been shown to exist
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for various walking mechanisms. However, for walking on level ground, purely
passive walking cycles generally do not exist, since the kinetic energy lost during
impact cannot be recovered from gravity. Some ideal walking mechanisms can be
found that touch the ground with zero velocity (Gomes & Ruina 2005) and hence
do not loose energy on impact, but these are exceptions.

For walking on general surfaces (whether level, downhill, or uphill), we do
not search necessarily for purely passive motions, but only for natural efficient
motions. If we consider the robot to be directly and fully actuated by ideal back-
driveable motors (i.e. pure torque sources), then natural efficient motions of the
robot are those for which little actuator torque is necessary. Purely passive mo-
tions are the limit case for which no torque is needed, but if such motions do not
exist, then the best we can do is find the motions which require the least possible
torque.

In order to properly define a measure for the amount of torque, we need to de-
fine a function on the space of torques that represents the cost of actuation in the
various directions. For convenience, we consider functions of the form 77 Q(t)r,
i.e. as a quadratic metric on the torque space, possibly time or configuration de-
pendent. We then define the efficient gait search problem as the following mini-
mization problem.

Definition 4.1 (Efficient Gait Search Problem). The efficient gait search prob-
lem is the problem of finding the joint trajectories q(t) that solve

T
min /0 T OQE)T()dt 1)

with positive semi-definite cost metric Q(t), subject to the constraints

7(t) = 7(q(?),4(1), G(¢))
q0 = S(qr)
Go = ﬁ?(QT)M_l(QT)P(QT)M(qT)QT

where 7(q, 4, §) are the dynamics of the system, S(q) describes the coordinate relabel-
ing, and P(q) is the momentum projection due to impact.

The problem is hence to find the joint trajectories ¢(t) for one step (between ¢t = 0
and ¢ = T) such that the total integrated torque 7 is minimized in the metric Q(t),
and such that the initial conditions (qo, §o) are compatible with the projected and
relabeled final conditions (gr, ¢r). The relation between ¢ and ¢t is a consecutive
projection P of the momentum M (¢r)¢r due to impact, and a relabeling of the
projected velocity by the differential of S(¢). Additional constraints can be added,
for example to force a certain desired walking speed, or to force 7" > 0.
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Finding the optimal trajectory ¢(¢) that solves (4.1) is an infinite dimensional
problem, and we use an approximation when searching for walking gaits. We
parameterize the joint trajectories as polynomial functions of time, i.e. as

k
q'(t) =D bijt! =big + bt + bt + ... + byt (4.2)
=0

for each coordinate ¢‘(t) and for some constant integer k& > 0. Different basis
functions than polynomials can be taken, but polynomials have the advantage of
being easy to differentiate (to obtain parameterizations of ¢(¢) and ¢(t)), and they
are suitable for approximating relatively slow-varying signals, which we expect
q(t) to be, since fast variations generally imply large torques. We also replace the
integral over time by a finite Riemann sum. This leads to the following numerical
approximation of Definition 4.1.

Definition 4.2 (Approximate Efficient Gait Search Problem). The approximate
efficient gait search problem is the problem of finding the parameters b;; that solve

min% > 7 () Qtm ) (tm) (4.3)

with positive semi-definite cost metric Q(t) and positive integer N, and subject to
the constraints

7=0
9 = S(qr)
io = Z2 (4r) 0 (ar)Plar) M (ar)ir

where 7(q, 4, §) are the dynamics of the system, S(q) describes the coordinate relabel-
ing, and P(q) is the momentum projection due to impact.

Using this parameterization results in an optimization problem with (k¥ + 1)n
degrees of freedom (for a mechanism with n DoFs). This is generally a lot more
than when searching for fixed points of the Poincaré map numerically, since then
only 2n initial conditions need to be found. However, the problem formulated as
(4.1) is much more general as its solution ¢(¢) is the most natural trajectory. This
means it can also be used to find efficient (in the metric Q(t)), natural walking
gaits on level floor, uphill, or other circumstances in which passive gaits do not
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Figure 4.2: Setup and choice of coordinates and parameters for a planar straight-
legged walking mechanism on an inclined flat floor.

exist. Furthermore, the optimization problem (4.1) can be extended, for example
to include extra adjustable passive elements, which is exploited in Chapter 5.

The resulting gaits, obtained from either the Poincaré method or the optimiza-
tion procedure, are periodic solutions to the dynamics equations. Whether these
solution are stable or not, and how large the region of attraction of stable so-
lutions is, is not determined by either gait search method. Especially for pure
passive dynamic walking (in which case no control is available to stabilize the
system), the region of attraction is very important: it determines whether a setup
will actually be able to walk in practice, under the influence of disturbances and
modeling errors.

4.2 A planar compass-gait walker

As a first example of the modeling and analysis techniques for walking robots,
we consider the planar mechanism shown schematically in Figure 4.2. It consists
of two legs with a point mass m at their centers, joined by a hip joint of mass
m. The feet ¢; and ¢, can come in contact with the ground, which is tilted at an
angle v as shown in the figure. This robot is often called the compass-gait walker,
because its mechanical structure is like that of a compass used for drawing circles.

The compass-gait walker has been studied by many different people in liter-
ature, mainly because it is the simplest possible mechanism that can still exhibit
walking behavior. Its continuous dynamic equations are simple enough to be
managed by hand, yet the total dynamics including impacts and contact switch-
ing possesses very interesting behavior involving stable passive limit cycles and
bifurcations (see Goswami et al. (1998) for a presentation of these aspects). In this
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chapter, the mechanism serves as an example system to illustrate the basic model-
ing and analysis techniques that are used later on for more complex mechanisms.

421 Dynamic models of the compass-gait walker
Simulation model

We start by constructing a general dynamic model of the setup of Figure 4.2,
suitable for all contact situations, for any number of feet on the floor (we assume
that only the feet can contact the floor, no other parts of the mechanism). We use
the coordinates shown in the figure to parameterize all possible configurations of
the mechanism: two prismatic joints (¢' and ¢?) describe the position of the foot
c1, and two rotational joints (¢* and ¢*) describe the orientation of the legs. The
coordinates in ¥, of the foot ¢z can be expressed in terms of g as

Conp 0
Coy | = q' —sin(¢®) + sin(¢® + ¢*) (4.4)
Cos q¢* + cos(q®) — cos(q® + ¢*)

The geometric Jacobians J3 and Jy of the two legs relative to ¥ can be con-
structed as in (2.40) to obtain

00 1 0 00 1 1
00 0 0 00 0 0
00 0 0 00 0 0
1 0 ¢ 0 1 0 ¢* ¢*+cos(¢®)
01 —¢" 0 0 1 —¢' —q'+sin(¢?)

Using these Jacobians, the mass matrix (2.59) of the mechanism can be constructed
as the sum of three components due to the three point masses. The resulting mass
matrix is of the form

*
*
mu + 3m —mcos(¢*)  im(1—2cos(q?))

1m(1 — 2cos(q*)) im

M(q) = (4.6)

* X X X
* X ¥ KX

where * indicates components not represented here for conciseness. The kinetic
co-energy of the system is Uy (q,q) = %qTM (¢)g, and the potential energy V' (q)
equals the sum of the three gravitational energies of the point masses, that is,

V(q) = mg(—¢*sin(y) + ¢* cos(y) + %cos(q3 -9))
+mpg(—q*sin(y) + ¢ cos(v) + cos(q3 — )

. 1
+ mg(—q" sin(y) + ¢° cos(y) + cos(¢* — ) — 3 cos(¢®* +¢* —7))  (47)
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The next aspect of the model is to include the possible contact forces by using the
methods of Section 3.3 for rigid contact. The contact forces act on the feet ¢; and
¢2, and are assumed to contain both vertical and horizontal components, in the
sense that both the normal and tangential velocity components of ¢; and ¢, are
set and kept to zero by the contact forces (if the corresponding contact is active).
These velocity components can be expressed as a linear combination of the joint
velocities ¢, namely as

é1y 10 0 0 q'

G| _ |01 0 0 | _ [AT(q) i (48)
Cay 1 0 cos(¢®+q*) —cos(q®) cos(q® +q*)| |¢® Al (q) )
Coy 0 1 sin(¢®+q¢*) —sin(¢®) sin(¢® +¢*) | [¢*

where the last two rows are obtained by differentiation of (4.4). Depending on
which foot is in contact with the ground, none, either, or both of the constraints
AT§ = 0 and AT¢ = 0 should be satisfied. The complete model can now be
constructed in port-Hamiltonian form as (2.92), repeated here.

=1 8]+ [ st [

o-p el

with H(q,p) = $p"M~'(q)p + V(g), mass matrix (4.6), potential energy (4.7),
momentum variables p := M(q)q, input power port (7,y), input matrix B = I,
constraint matrix A = [A1 Ag] as in (4.8), and constraint forces A such that the
active constraints are satisfied.

Analysis model

The model described in this way is suitable for simulation, since it can handle
all contact situations. For analysis of a walking gait, however, it is still quite
complex, and not yet in the form of Figure 4.1.

We therefore restrict our analysis to the situation of having exactly one foot on
the ground, such that either ¢; or ¢; is and remains in contact with the ground. In
the case that ¢; remains in contact, the mechanism is constrained to have ¢! con-
stant and ¢? zero, and hence this situation can be modeled as an unconstrained
dynamical system with coordinates ¢® and ¢*, and extra parameter ¢*. If, instead,
only c; is in contact with the ground, we can use the symmetry of the mechanism
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with respect to the two legs to relabel the coordinates as

q" q' —sin(¢*) +sin(¢® + ¢*)
2 2 3 4
q ¢ + cos(q®) — cos(¢® + ¢*)
= S = 4.10
e q — (9) @+ ¢t ( )
q* —q*

and use the relabeled coordinates S(g) to express the constrained system as the
same unconstrained dynamical system with new relabeled coordinates ¢* and
q* and extra parameter ¢'. For both situations, the continuous dynamics can be
represented for example by the Euler-Lagrange equation (2.90) as

oV T
% ] = [Tj (4.11)
dq*

with M the bottom right 2 x 2 block of the mass matrix defined in (4.6), and
C the corresponding Coriolis and centrifugal terms. We use the Euler-Lagrange
equation here since it states the dynamics in terms of velocities ¢ and acceler-
ations ¢, rather than p and p: this is useful since we use relabeling operations
acting on the velocities, and since polynomial approximations for the joint trajec-
tories (as used in the optimization routine described in Section 4.1) can be easily
differentiated to obtain expressions for the velocities and accelerations. The port-
Hamiltonian formulation (2.88) is, mathematically speaking, strictly equivalent,
but for the purpose discussed here, it is not as convenient as the Euler-Lagrange
formulation.

— 3 a4 @ ~ 3 4 .3 oy |G
M(q,Q)[qz;}rc(q,q,q,q)[q@}r

The reduced model is valid as long as the constrained foot remains constrained
(this should be checked in simulation), and until the free foot hits the ground,
which is the case when ¢* = —2¢® or ¢* = 0 (this last condition is usually ig-
nored, see the remark at the end of this section). If the free foot hits the ground,
the full model with configuration state ¢ can be used to compute the contact sit-
uation after impact; if the constrained foot releases contact instantaneously on
impact of the free foot, then the situation after impact can again be described by
the reduced model (in relabeled coordinates).

The relation between the momenta before and after impact is given by the
projection operator P(q) defined in (3.44). The equivalent relation between the
velocities before and after impact can be computed immediately as

q(ty) = M'"PMg(t_) = (I — M "A(ATM A AT §(to) (4.12)

Since ¢; is assumed to be fixed to the ground just before impact, we have ¢! (t_) =
¢(t-) = 0, and hence only the last two columns of M ~'PM are of interest. For
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the compass-gait walker, (4.12) can be computed as

G(ts) = M~ (q)P(q)M(q)q(t-) =

2(m+mp)(cos(5¢%)—cos(¢*))
3m+4m g —2m cos(4¢3)

—m cos(3¢>)

3m+4mpg —2m cos(4q3)

2(2m g cos(2¢) —m~+2(m4my) cos(4¢>)) sin(q>) —msin(3¢®) .3
3m-+4m g —2m cos(4q3) 3m—+4m g —2m cos(4¢3) q (t,) (4 13)
—m—2m COS(2q3)+4(m+mH)cos(4q3) —2m cos(2q3) q4(t7) :

3m~+4m g —2m cos(4q3)
8(m~+mp) (142 cos(2¢>)) sin? (¢®)
3m-+4mpg —2m cos(4q3)

3m+4myg —2m cosg4q3)
—m~+2m cos(2¢°)

3m+4m g —2m cos(4q?)

where we used the fact that ¢* = —2¢* on impact. It can be checked that (¢, )
is such that ¢, = ¢z, = 01in (4.8) as required by the fully inelastic impact of c;.
Whether ¢; instantaneously releases on impact of c¢; depends on ¢2(t;.) = ¢1,. If
it is positive (c; starts moving upward), then indeed ¢; looses contact instanta-
neously when c; makes contact, and the double support phase is instantaneous.
Expanding the expression for ¢2(t..) from (4.13), we find that this is the case if

>0
t=t_

(2(5111(5(]3) —sin(¢*))¢® — %mH sin(3¢%)(2¢° + q4)> (4.14)

m

It hence depends on the model parameters, as well as the configuration and ve-
locity on impact, whether the assumption of an instantaneous double support
phase is valid. For example, for m — 0 and negative 4>, the angle of impact ¢3
must satisfy —¢® < & for this assumption to be true.

If indeed the double stance phase is instantaneous, then we can use the re-
duced model for the dynamics, both before and after impact. The coordinates
¢® and ¢* before and after impact are related by the relabeling S(q) defined in
(4.10). Similarly, the velocities before and after impact are related by consecutive
projection (4.12) and relabeling (4.10), which together can be represented by the
equation

3 m—2(m+2my) cos(2¢°)
q _ —3m—4mpyg+2m cps(4q3g
q4 T | 8(m4mu)(1+2 cos(2¢)) sin

+ —3m—4mp+2m cos(4¢3)

(¢*) 2m cos(2¢>)—m
—3m—4mp+2m cos(4¢3)

m . 53
“3m—4mp+2m cos(4q3)] |:q4:| (415)

where the subscript minus (plus) indicates the value of the variables before (after)
momentum projection and coordinate relabeling. This reset equation, together
with the relabeling operation (4.10) and the reduced dynamic equations (4.11)
together form a complete model for the behavior of the compass-gait walker for
motions with one foot in contact with the ground and only instantaneous double-
stance phases.

Remark. The reset map should be applied when contact occurs, which is techni-
cally whenever ¢y, becomes zero, or, whenever g* = —2¢3 or ¢* = 0. This last con-
dition is due to the kinematics of the mechanism (the fact that it has two straight



4.2. A PLANAR COMPASS-GAIT WALKER 105

Figure 4.3: Experimental setup of a compass-gait walker that uses stepping stones
to avoid toe stubbing of the swing leg.

legs), and results in foot scuffing whenever the swing leg passes the stance leg. In
practice, this would prevent the mechanism from walking; it would never be able
get one leg in front of the other. In simulations, this problem can be circumvented
by relaxing the impact detection mechanism, e.g. by only detecting impact if c;,
becomes zero and ¢* is larger than some positive minimum angle (when walking
left to right in Figure 4.2). In practical setups, the problem can be solved e.g. by
using a retractable leg or by placing stepping stones at the expected foot place-
ment locations, thus allowing the swing leg to pass below ground level (this is
used in the experimental setup of Figure 4.3). A

4.2.2 Analysis of impact energy loss

The efficiency of a walking cycle is partly determined by the mechanical energy
loss during the cycle, and partly by the non-idealness of the actuators in the sys-
tem, ie. the fact that actuators generally cannot absorb energy, and dissipate
electrical power even if they do not supply mechanical power. The first aspect
is analyzed in this section, the second aspect in Section 4.2.3. More precisely, we
focus here on the energy loss due to the impact of the feet with the ground at the
end of each step. Other mechanical losses, such as friction, are ignored.

As was shown in Section 3.3, the kinetic energy lost on impact is given by
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(3.45), which can be written in terms of velocities as

AUy = —=pt (t )M P AAT M A) T AT M~ p(t )

= =Tt )AATM T A) T AT (¢ )

DN = DN =

= 5" )Pi(t) (4.16)

where we defined the symmetric positive semi-definite matrix D(q) as
0 < D(q) == AlQ)(AT ()M (9)A(a)) " AT (q) (4.17)

The kinetic energy loss on impact is hence a quadratic function of the impact
velocities ¢(T') depending generally on the inertial properties of the system as
well as the configuration ¢(7") on impact.

If we consider the compass-gait walker and assume a symmetric walking cy-
cle with instantaneous double-stance phase (as in the previous section), we can
write the energy loss as a quadratic function of only ¢* and ¢*, with D(q) a posi-
tive semi-definite 2 x 2 matrix. For general m and m g, the symbolic representation
of D(q) is too large to fit here, but for m — 0 it is simply

20 4
D(q)],y 0 = [mH 0 (@) 8} 4.18)
This makes sense intuitively: for m = 0, the velocity ¢* does not influence the
energy loss, since the inertia of the swing leg around the hip is zero and hence
no energy is stored in the swing leg. Furthermore, as illustrated in Figure 4.4,
the velocity of the hip mass changes from being tangent to a circle around one
leg to tangent to a circle around the other leg, and the impulsive force on impact
removes the part of the pre-impact velocity that is not along the post-impact cir-
cle. Hence, if the circles are close to each other, little is removed and hence little
energy is lost, whereas if the circles are orthogonal® to each other, the remaining
velocity is zero and hence all energy is lost. This also follows from (4.18), where
for ¢* = Z we have AUy, = 1mpy(¢°)?, which is equal to the kinetic energy Uy, for
m = 0, and hence indeed all kinetic energy is lost on impact.

For general nonzero m, the matrix D(g) is too complex to study directly. In-
stead, we study its generalized principle directions, i.e. the velocity directions
that result in minimal and maximal energy loss on impact, as given by (4.16).

The principle directions of a real symmetric matrix X are given by the singular

10rthogonality of the velocities is well-defined here, since the system is essentially just a point
mass, with a Euclidean state space and metric m/.
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Figure 4.4: Comparison of the hip velocity before (¢_) and after (¢+) impact for
two impact angles ¢*. For ¢* = 7 (right figure), the velocity after impact is zero.

value decomposition (Trefethen & Bau 1997), i.e. the decomposition of X as

g1 0
X=vuxvl =uxvuT =U Ul with oy >...>0,>0 (419)

0 On

with U an orthogonal matrix, and U = V since X is symmetric. The numbers o;
are called the singular values of X. The matrix X can act as a quadratic form on
vectors z, ie. it can map a vector z to a number 27 X z. When this quadratic form
is applied to the unit sphere (all vectors satisfying 27z = 1), the resulting set of
vectors (27 X )z forms an ellipsoid, and the radii of this ellipsoid are precisely
equal to the singular values ;. Furthermore, the principle axes of the ellipsoid
are given by the columns of the matrix U7, e.g. the first column of U7 is the
vector that is enlarged most by the quadratic form, and the last column of U7 is
the vector that is enlarged least.

We cannot use this singular value decomposition directly to study the singu-
lar values of D, since the unit sphere ¢”'¢ = 1 has no physical meaning and would
give coordinate-dependent results. Instead, we study the effect of D on vectors
satisfying ¢7 M (q)¢ = 1, i.e. directions with constant kinetic energy. To adapt the
singular value decomposition to this situation, we use the Cholesky factorization
M(q) = G"(g)G(q) (which exists since M is positive definite and symmetric),
and determine the singular value decomposition of X = G~TDG~!. This de-
composition again provides the principle directions of the quadratic form when
applied to the unit sphere 27z = 1. In addition, if we parameterize the vectors
x as v = (3¢, we see that this decomposition gives the principle directions of the
quadratic form

I Xz = (G))T(GTDG™H(G§) = ¢TDg (4.20)



108 CHAPTER 4. MODELING AND ANALYSIS OF WALKING ROBOTS

1.0———"7

¢“‘

'

P

AN
h
:\\\\\\
e gy "8y loss on impact for

0.84—

0.64-

/

q"(T)

when applied to the space
v'w = (G4 (Gq) = 4" Mg (421)

and hence the singular value decomposition, constructed in this way, describes
physically meaningful principle values o; and corresponding principle directions,
given by the columns of G™'U”. Note that the singular values must be between
zero and one, since no more than 100% and no less than 0% of the kinetic energy
can be lost on impact.

Figure 4.5 shows a plot of the singular values for the compass-gait walker
with varying mass ratio my : m and impact angle ¢*(T). Figure 4.6 shows the
singular values and lists several principle directions for the impact velocity ¢,
with the parameters fixed at m = 1 kg and my = 5 kg, just as they are used in
Section 4.2.3.

The figures show the singular values describing the energy loss, i.e. the ex-
treme cases of maximum possible loss and minimum possible loss. For general
velocities not aligned with any of the principle directions, the energy loss will
be somewhere between the singular values, i.e. between the two surfaces in Fig-
ure 4.5 and in the darker area between the two curves in Figure 4.5. For a given
angle of impact, the velocity could then be chosen closer to the ‘efficient’ direction
to minimize energy loss. However, for some configurations (namely ¢* = /2 or
mpy = 0) the two singular values are the same, and hence the energy loss is con-
stant for all velocity directions.
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Figure 4.6: Plot of the singular values describing the energy loss on impact for
m = 1kg, my = 5 kg, and varying ¢*(T'), with several principle directions (¢°, ¢*)
listed.

The singular value analysis provides bounds on the energy loss during im-
pact, and indicates efficient velocity directions for the end of a step. In this way; it
can help suggest efficient walking strategies. For example, looking at Figure 4.6,
it is efficient for small impact angles ¢*(T) to have an impact velocity that has
large ¢* and small ¢ (i.e. moving the stance leg more than the swing leg), since
then, the energy loss will be close to the lowest singular value. Note that the effi-
ciency of the continuous dynamics is not taken into account yet (this is discussed
in the next section), so the gaits that are most efficient overall may still have less
efficient impact angles and velocities.

Besides for efficiency studies, the energy loss computed in (4.16) can be used
in the search for purely passive dynamic walking motions. For such motions, the
gravitational energy converted to kinetic energy during a step must be equal to
the kinetic energy lost on impact at the end of a step. For the compass-gait walker,
this gives the following equation

AU, = AU
Uy (t-) = Up(0) = Uk(ts) — Un(t-)
1

~2g(2m + ) sin()sin(34*(0-) = —3d"(D@i(-)  (422)
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Figure 4.7: An unstable passive gait for the compass-gait walker.

which any passive (or otherwise energy-continuous) gait must satisfy. This equa-
tion also gives bounds on the minimally and maximally achievable speeds of the
robots. If we choose for example m = 1 kg, myg = 5 kg, g = 9.81 m/s?, v = 3°
and ¢*(t_) = 0.5 rad, we obtain that AU, = —1.78 ], such that also, by (4.22), the
energy loss on impact must be 1.78 J per step. Since the singular values of D are
1.0 and 0.22, it means that the kinetic energy on impact must be at least 1.78 J and
at most 1.78/0.22 = 8.08 J. No passive limit cycles can exist for velocities outside
this range (at least for this choice of parameters).

4.2.3 Analysis and simulation of passive dynamic walking

The energy balance (4.22) gives a necessary condition that the initial and final
conditions of a walking cycle must satisfy in order for it to be a passive motion,
but this condition is by no means sufficient. First, it is only one equation whereas
two initial velocity variables need to be specified (assuming the initial config-
uration is fixed). But more importantly, it may not be true that the initial and
final conditions that are compatible with the energy equation are connected by
a natural passive motion of the system, i.e. that when started from the specified
initial conditions, the system will end up at final conditions that are mapped to
the same initial conditions again. To take these aspects into account, an analysis
of the continuous part of the motion is necessary.

Given the reduced model (4.11) of the compass-gait walker for a single step,
together with the projection and relabeling mappings (4.10) and (4.15), we can
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Figure 4.8: A stable passive gait for the compass-gait walker.

search for efficient trajectories using the approach outlined in Section 4.1. As a nu-
merical example, we choose the parameters m = 1 kg, my = 5kg, g = 9.8 m/ s2,
~v = 3° for the dynamic model, Q(t) = I for the cost function, and k£ = 10 and
N = 20 for the numerical approximation in Definition 4.2 of the minimization
problem. As constraints, we specify the constraints in Definition 4.2, i.e. the com-
patibility conditions between the end and the beginning of a step, as well as the
constraint ¢*(0) = —2¢3(0), i.e. the constraint that both feet are on the ground at
the start of a step (and hence also at the end of a step by the compatibility condi-
tions). As a numerical optimization routine, we use the sequential quadratic pro-
gramming (SQP) method implemented in Matlab (The Mathworks 2005), with
initial guesses for the trajectories and step time equal to ¢(t) =0and 7' = 1s.

Running the optimization routine produces a solution with cost 0.0004. Fig-
ure 4.7(a) shows snapshots of the resulting walking gait, which looks quite nat-
ural. However, when we simulate the passive system using the extended model
equations (4.9), the robot falls down after three steps. Figure 4.7(b) shows a plot
of the angles ¢ and ¢*: although the simulation (solid lines) starts exactly like the
optimized polynomial trajectories (dashed lines), the curves diverge after a few
seconds, until the swing leg is not swung high enough anymore and the robot
falls. Apparently, although the computed gait is natural (indeed, the uncontrolled
robot initially follows the computed trajectory perfectly), it is not stable.

The results suggest that stable walking may be obtained by raising the swing
leg higher above the ground, in order to ensure that the foot makes contact and
the next step can start. We can add an additional constraint to the optimization
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problem to enforce this, for example, a constraint that forces the final downward
velocity of the swing foot (just before impact) to be larger than some positive
number v. The downward velocity (towards the ground) is given by the time-
derivative of (4.4), from which we find a suitable extra inequality constraint

éo. = —sin(¢®)@ + sin(¢® + ¢)(@® + ¢*) < —v (4.23)

for some large enough v > 0 (we choose v = 0.5 m/s). Running the optimization
routine (starting with the solution of Figure 4.7 as initial guess) gives a result with
cost 0.0010, so higher than before (as expected, since we have added a constraint),
and the trajectory shown in Figure 4.8(a). Feeding the initial conditions into the
passive simulation gives the stable behavior shown in Figure 4.8(b), where the
computed optimal gait is practically on top of the simulated behavior.

The results in this section show that, at least for this simple example, passive
walking gaits can be found. The fact that there is still a nonzero cost is due to the
approximation of the trajectories by polynomials. This approximation does not
impede the search for stable passive limit cycles, since if the limit cycle is stable
with some practical region of attraction, it should attract the solution obtained by
this polynomial approximation.

For control purposes, the question whether an efficient limit cycle is stable
or not is not so important; the controller can stabilize the cycle in case of dis-
turbances anyway (provided that the system has enough control inputs). The
important aspect of the optimized cycles is that nominally, little or no energy is
required to follow them, and hence that nominal walking is efficient.

4.3 A planar walking robot with knees

The compass-gait walker from the previous section served as a simple example
of how to construct simulation and analysis models of walking robots using the
tools from Chapters 2 and 3. As a practical walking mechanism, though, it serves
very little purpose: the straight unbendable legs require a special floor with step-
ping stones for it to be able to walk without stubbing its toes.

From nature, we now that a different way to prevent toe stubbing is to use
bendable legs, i.e. using a knee joint that raises the foot some distance from
the ground during the swing phase, but remains approximately straight during
the stance phase. As argued for example by Pratt & Pratt (1999), adding a me-
chanical kneecap (an end stop) simplifies the control problem of keeping the leg
straight during the stance phase, as it is only required to push the knee against
the kneecap, not to position it exactly in the center.

In this section, we discuss modeling and analysis of an experimental robot
which behaves like a planar robot with knees and kneecaps. Although it is de-
signed to be used as a controlled robot walking on level ground, here we consider
the problem of passive dynamic walking down a slope.
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4.3.1 The walking robot Dribbel

Figure 4.9 shows ‘Dribbel’, the kneed walking robot developed by Dertien (2005),
Beekman (2004), and van Oort (2005) at the University of Twente. It is a mech-
anism consisting of four legs, which are connected in pairs, such that both the
two outer legs and the two inner legs move together. This construction was first
used by McGeer (1991), and provides an easy way to construct a physical three-
dimensional robot that behaves essentially two-dimensional; the leg pairs pre-
vent it from falling sideways.

The leg pairs are joined in two concentric aluminum tubes, which contain
most of the electronics as well as a motor and a torque sensor. The knees of the
robot have mechanical kneecaps that prevent them from hyper-extending. They
also contain electromagnets that can be actuated in order to hold the leg straight.
The feet of the robot are small U-shaped metal plates that are kept aligned with
the leg by simple elastic bands. They contain switches that are activated when
the feet touch the ground. Finally, all joints are equipped with rotational encoders
that measure the joint angles.

Inspired by human locomotion, we choose to activate the magnets on the
knees during the whole stance phase, such that knee buckling is prevented. When
the stance foot releases the ground (as detected by the contact switch), the magnet
is deactivated and the knee is free to flex during the swing phase. Then, before
the lower leg hits the kneecap on its forward swing, the magnet is reactivated in
order to catch and hold the lower leg straight for the subsequent stance phase.

Dribbel is similar to planar kneed robots developed before by e.g. McGeer
(1990b), Garcia et al. (2000), and Wisse & van Frankenhuyzen (2003). One of
the main differences with this robot is, however, the use of an electric hip mo-
tor (McGeer and Garcia did not use actuators at all, and Wisse used McKibben
muscles). Furthermore, Dribbel has (approximately) point feet, whereas other
robots have some type of curved feet. Although curved feet have been proved
to allow more efficient walking (McGeer 1990a), the use of point feet simplifies
analysis, position sensing, and control.

4.3.2 Dynamic models of Dribbel
Simulation model

To develop a simulation model of Dribbel, we make the assumption that the links
of the robot are rigid and the joints ideal. We also assume that the legs move
in pairs, meaning that the inner legs move together and the outer legs move to-
gether, in particular the lower legs. These assumptions imply that the mechanism
essentially consists of four rigid bodies: the outer upper legs (joined by the inner
hip tube), the inner upper legs (joined by the outer hip tube), the outer lower legs
(not joined, but assumed to move together), and the inner lower legs (not joined,
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Figure 4.9: Experimental kneed walking robot ‘Dribbel’.
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Table 4.1: Measured parameters of Dribbel.

part amount unit

upper leg length (l,,) 47 cm

lower leg length (/;) 43 cm

hip mass (excl. batteries) 4.0 kg

upper leg mass 240 g

knee mass 540 g

lower leg mass 240 g

foot mass 280 g

4.0kg 1.0kg 2.0kg 1.0kg
240 g 240 g
I T I T — 280g () ) C

240 g 240 g

200 OO 200 OO

Figure 4.10: Schematic frontal view of Dribbel, showing the reassignment of mass
to transform measured data (left) to equivalent model parameters (right).

but assumed to move together).

We estimate the mass, center of mass, and inertia of these four rigid bodies as
follows. We first measure the mass of the mechanical parts of the robot, and we as-
sume the mass of the links to be distributed uniformly, and the mass of the joints
to be concentrated in a point. The results are shown in Table 4.1. Then, we reas-
sign the masses to an equivalent mass distribution on the model parts as shown
in Figure 4.10: the point masses at the knees are divided between the upper and
lower legs, and the point mass at the hip is divided between the outer and inner
legs. With this redistribution, the mass and inertia are equally distributed for the
inner and outer legs, and we can compute the parameters as

upper legs: m, =3.0kg J, = 0.108 kgm? (4.24)
lower legs: m; = 1.6kg J; = 0.059 kgm? (4.25)
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Figure 4.11: Setup and choice of coordinates and parameters for a planar walking
mechanism with knees on an inclined flat floor.

where the inertias J, and J; are around the lateral axis through the centers of
mass. The center of mass of the lower leg is (by construction) in the middle of the
leg, and the center of mass of the upper leg is at a point

2-0.240-0.47/2+4+2.0-0.47+2-0.260- 0
2+2-0.240+2-0.260

from the knee upward, so some distance above the center of the upper leg.

Since the robot was constructed to behave like a planar walker, we construct a
simulation model that only represents the lateral behavior of the robot. Further-
more, we model the feet as point feet, and possible contact with the ground as
rigid contact. Finally, we model the knees as rotational joints with stiff spring-
damper combinations for hyper-extending angles, combined with tight control
loops that fix the knee angles if the knee-locking electromagnets are active.

Figure 4.11 shows the resulting setup, with coordinates ¢' through ¢° as in-
dicated. The springs and actuators in the knees are implemented as external ele-
ments and are connected to the mechanism through power-ports. The resulting
model can be used for simulation of the planar behavior of Dribbel.

=0.35m (4.26)

Zcomu —
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Figure 4.12: A single step of Dribbel is split into two phases: the first phase from
foot lift-off until knee strike (modeled as a three-link mechanism), and the second
phase from knee strike until foot strike (modeled as a two-link mechanism).

Analysis model

To obtain a model of Dribbel that is suitable for analysis, we make the same as-
sumptions as for the compass-gait walker of Section 4.2, namely that only one
foot is on the ground at the same time, that the gait is symmetric, and that the
motion of the mechanism is such that that foot remains on the ground through-
out the whole step. However, additional assumptions and model modifications
are needed, since the fast dynamics resulting from the stiff spring and damper
modeling the kneecap can not be adequately approximated by a smooth polyno-
mial function of reasonably low order.

Therefore, we replace the stiff spring and damper by another impact equation,
which sets the velocity of the knee joint instantaneously to zero. Furthermore, we
assume the walking cycle to be of the form shown in Figure 4.12: a step starts at
t = 0 with the release of the new swing leg (due to the impact at the end of the
last step), followed immediately by a release of the knee-lock. This implies that
the initial conditions for the swing knee-joint are: position and velocity equal to
zero. Then, the walking motion continues smoothly until the swing leg passes
the stance leg and, at some time ¢ = Tinee > 0, the knee hits the kneecap and the
swing knee is locked for the rest of the step. Finally, the mechanism continues to
move (with locked knees) until the swing leg hits the ground at ¢t = 7" > Tinee,
marking the start of the next step.

Under these assumptions, the analysis model of a step of Dribbel can be split
into two continuous phases: between t = 0 and ¢t = Tine, it behaves like an
unconstrained three-link serial mechanism (with coordinates ¢3, ¢° and ¢%), and
between t = Tinee and ¢ = T, it behaves like an unconstrained two-link serial
mechanism (with coordinates ¢* and ¢°). The transitions between the phases oc-
cur when the lower leg hits the kneecap (at ¢ = Tinee) and when the swing foot
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hits the ground (at ¢ = 7). The first impact is assumed not to affect the veloc-
ities ¢', ¢%, and ¢* (this is discussed in Section 4.3.3), and the second impact is
assumed not to affect ¢* and ¢°, which requires the electromagnets on the knees
to be strong enough to resist the impact forces.

The impact at t = T is modeled by a ground contact force equal to the force
computed in Section 4.2.1 for the compass-gait walker; in fact the model is exactly
the same, since the knees are assumed to be fixed both before and (just) after
impact. The impact of the knee at ¢ = Tjnee is implemented as the momentum
projection defined in (3.44), or the equivalent velocity projection (4.12). We use
the equations of the three-link mechanism in coordinates ¢, ¢°, and ¢°, compute
the corresponding mass matrix and impact direction A” = [0 0 1], and take
the model parameters as obtained before, to finally obtain the relation between
the velocities before and after knee impact as

.3 10 0.0516 cos(q°) .3

q 3.2544-cos(g®) q

@l =g 1 =%999+0.0516c05(4°)+0.237cos(2¢%) | | ¢° (4.27)
-6 (—1.803+cos(g°))(1.804+cos(q°) -6

1y o 0 0 1

The structure of this matrix is as expected: the knee velocity ¢$ after impact
equals zero, independently of the pre-impact velocities. Furthermore, if the knee
hits the kneecap with zero velocity (¢¢ = 0), there is no impact and the velocities
before and after t = Tynee are the same.

4.3.3 Impact analysis and efficient walking

The impact of the knee at Tine. Was assumed not to affect ¢!, ¢, and ¢*. This
means that the configurations and velocities on impact should be such that the
ground constraint remains satisfied and that the stance knee remains locked.

The first condition can be characterized by considering the vertical velocity ¢
of the stance leg in the case that ground contact forces are not applied, i.e. by con-
sidering the projection operation (4.12) for a mechanism with free coordinates ¢',
7% ¢*, ¢°, and ¢5, and with impact force in the direction AT = [0 0 0 0 1].
The post-impact velocity ¢2 (with 4> = 0) can be computed from this projection
operator as

2= 0.106 sing()q;gI q52);8(;.0378 Si;l((]S +q°) & (4.28)
.391 — 0.488 cos(2¢?)

The assumption that ground contact is maintained on knee impact is correct if
¢3 < 0in the absence of contact forces, i.e. for ¢2 as in (4.28). Figure 4.13 shows a
plot of the region in which ¢ < 0 as a function of the configuration ¢* and ¢° on
impact (where we took ¢° > 0 since the swing knee is being locked). From the fig-
ure, we see that for most configurations, and certainly for practical configurations
¢® < 0and ¢° > 0, the first condition is satisfied.
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Figure 4.13: Postures for which the stance foot remains fixed on knee impact.

Assuming that ground contact is maintained, we can check the second condi-
tion (i.e. whether the stance knee remains locked) by computing the post-impact
velocity ¢} of the stance knee in absence of locking forces. We now compute the
projection operator for the mechanism with coordinates ¢%, ¢*, ¢°, and ¢° and
swing knee constraint defined by A" = [0 0 0 1], giving

0.111cos(¢®) .4
3.071 — cos?(g®) 1=

it =

which results in ¢* > 0 for ¢° > 0 and for hip angles satisfying |¢°| < 7/2. Hence,
for practical hip angles, the kneecap on the stance leg does not prevent knee buck-
ling on impact of the swing knee, and the additional knee locking mechanism
(using the electromagnets) needs to be strong enough to prevent buckling during
the stance phase.

The previous discussion shows that the assumptions for the analysis model
are valid for practical walking motions and if the knee locking mechanism is
strong enough. We can hence use the analysis model to search for efficient walk-
ing gaits. We again follow the procedure outlined in Section 4.1, but now one
step of the robot is split into the two phases shown in Figure 4.12. Since the tran-
sition between the two phases is marked by a jump in the velocities due to the
knee impact, the joint trajectories cannot be approximated accurately by single
polynomials for all 0 < ¢t < T' of reasonably low order. Instead, we use separate
polynomial approximations for the two phases, with three polynomials (for ¢?,
¢°, and ¢f) for the first phase and two polynomials (for ¢* and ¢°) for the second
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phase, and then concatenate them by specifying suitable compatibility conditions
for the trajectories before and after impact.

More precisely, the compatibility conditions for two polynomials are described
by the two impacts at ¢t = Tinee and ¢ = T in the following way. The configura-
tions ¢3, ¢°, and ¢° are continuous during the knee impact, and the velocities ¢>,
¢°, and ¢° before and after impact are related by (4.27). Furthermore, the config-
urations ¢ before and after the foot impact are related by a mapping S(g), in this
case described by

a ¢" — 0.9sin(¢?) + 0.9sin(¢? + ¢°)
2 2 3 3 5
q q* +0.9cos(q?) — 0.9 cos(q® + ¢°)

3 S(a) := ; 429
qf q — (q) PR ( )
q’ g

and ¢* = ¢® = 0 throughout the impact, and the relation between the velocities
g before and after impact is again described by a consecutive projection P due to
impact plus a relabeling according to the derivative of S(q) with respect to ¢. The
symbolic expression for P is too large to include here, but it is computed as in
(4.12), with M(q) the mass matrix of the mechanism with free coordinates ¢, ¢,
¢3,and ¢° (and ¢* and ¢° fixed and equal to zero).

In addition to the compatibility constraints, extra constraints should be added
to ensure that no foot-scuffing occurs, which was the reason for including knees
in the first place. The allowed motion of the swing foot can be described by the
condition

li cos(q®) + 1, cos(¢®) — 1, cos(¢® + ¢°) — licos(¢® + ¢° + ¢°) > €5 (4.30)

with parameters {; and [,, as in Table 4.1 and foot clearance ¢; > 0, and where we
used the fact that ¢* = 0 throughout the step. Although this equation describes
exactly the desired behavior (i.e. foot clearance), it depends in a highly nonlinear
way on the coordinates ¢ and is hence not suitable for use in a global optimization
search. Solutions can be found more easily by using a simpler but approximate
constraint, such as ¢%(Tinee/2) < —¢i, to force knee bending. Then, when the
optimal solution under this constraint has been found, the more exact constraint
(4.30) can be used locally to further optimize the trajectories.

When the trajectories and constraints have been parameterized, we can solve
the optimization problem (4.3) to obtain efficient walking trajectories for Dribbel.
Since the parameterization as well as the dynamic equations for Dribbel are much
more complex than for the compass-gait walker, the optimization does not just
converge for all initial guesses for the solution. Instead, it is better to impose
some extra artificial constraints (such as fixed initial angles and fixed T), opti-
mize under these constraints, and then remove the extra constraints and further
optimize the solution.
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(a) Snapshots of a single step.  (b) Simulation of the gait; solid lines indicate the simulated
unstable motion, dashed lines the optimized gait.

Figure 4.14: An efficient but passively unstable gait for the kneed robot Dribbel.

As an optimization goal, we choose to search for passive walking trajecto-
ries for Dribbel on a 3° slope (controlled walking on level ground is discussed
in Section 5.3). As parameters in the numerical approximation (4.3), we choose
k =10, N = 20, and Q(t) = I for both phases of the walking cycle. The total cost
is then the sum of the cost of the individual two phases. The optimization pro-
duces the gait shown in Figure 4.14(a), with an associated cost J = 0.0122. This
cost is considerably larger than the cost for the passive gait of the compass-gait
walker (which was J = 0.0010), and hence it is unlikely that the computed gait
for Dribbel can be approximated by a completely passive motion.

Indeed, simulation of the robot with the optimal initial conditions and zero
control effort (except knee-locking) shows that the computed gait is not fully
passive, see Figure 4.14(b): while the ankle and hip joints passively follow the
computed gait quite closely, at least in the initial phase, the knee joint deviates
severely. Still, despite this difference, the computed gait is a fair approximation
of a passive (or at least efficient) motion of the walker, and indeed the uncon-
trolled robot takes a few steps before falling over.

4.4 A three-dimensional walking robot
As a final example of a walking robot, we consider the mechanism shown in

Figure 4.15: a three-dimensional robot with two unit-length straight legs and a
unit-length trunk, interconnected by three 2-DoF joints. The mechanism has six
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Figure 4.15: Mechanical setup of a 3D walker with trunk.

internal degrees of freedom and can move in three-dimensional space. The free-
dom of moving in 3D allows the walker to avoid foot-scuffing by swinging the
swing-leg out and upward. Furthermore, the trunk provides additional degrees
of freedom that, for example, may help in improving efficiency of the walking
motions.

To simplify modeling and analysis of the robot, we assume that all joints are
concentrated in one point (the hip) and that all mass is concentrated in points in
the feet (mass m), the hip (mass my), and the head (mass mr). This results in
the simplified setup of Figure 4.16, which also shows the precise definition of the
coordinates q.

The goals of the analysis in this section are to find efficient walking gaits for
this mechanism that avoid foot-scuffing, and to investigate whether the trunk
can help in increasing efficiency of the gait. A similar study, but of a planar robot
with straight legs and a trunk, has been described in earlier research (Duindam
& Stramigioli, 2005a, 2005b).
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Figure 4.16: Choice of coordinates for the walker of Figure 4.15.

4.4.1 Dynamic models of the three-dimensional robot

The coordinates for the robot in Figure 4.16 have been chosen in a slightly dif-
ferent way than for the planar robots in Sections 4.2 and 4.3. The position of one
of the feet is still specified directly (in this case in terms of the coordinates ¢, ¢2,
and ¢*), but the orientation of the other limbs is specified relative to the reference
frame W, as opposed to relative to the first coordinates, as was done for the other
examples.

The choice for these coordinates was made to allow easier intuitive interpre-
tation of the coordinates; the definition of angles in 3D can quickly lead to am-
biguities and mistakes. Another option would be to take ¢' through ¢ to be the
coordinates of the hip point and leave the other coordinates as in the figure. This
leads to a completely symmetrical formulation, but then the constraint of one foot
being fixed to the ground is not easily translated into a constraint on the coordi-
nates. Whatever coordinates are chosen, the modeling approach of Chapters 2
and 3 can be used in all cases to describe the dynamics of the system.
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Simulation model

The dynamics of the mechanism can be described again in terms of the joint co-
ordinates ¢. The legs are rigid bodies with mass m concentrated at the foot, so the
center of mass is at the foot and the moments of inertia around all axes through
the foot are zero. The point masses of the hip and the head can be combined into
one rigid body, with mass M = my + my, center of mass at a position z¢om (from
the hip along the trunk) equal to

mr

= - 4.31
Zcom mr +mpy ( )

and moments of inertia around the center of mass equal to

mygmr

Jo=Jy = mHZc20m +mr(l - zcom)2 = J,=0 (4.32)

my + mrp
where the local z-axis is along the trunk.

These three rigid bodies (two legs and one trunk) can be interconnected by the
joints to obtain a model of the dynamics of the mechanism. Note that although
this model can freely move in three dimensions, we did not use a homogeneous
matrix to describe its absolute position and orientation. Instead, we used coor-
dinates ¢* through ¢® to describe the position of a point on the mechanism (i.e.
a foot) plus the other coordinates to describe the relative orientation of the legs
relative to that point. The disadvantage of this approach is the coordinate singu-
larities (for example, ¢° = 7/2 makes ¢* a redundant coordinate), but the advan-
tage is that we obtain a set of dynamic equations in terms of a simple vector ¢
of unconstrained coordinates. Since in practical walking motions, the configura-
tions are expressed by coordinates that are not close to singularity, this approach
is indeed advantageous.

The next part of the simulation model describes the contact between the (point)
feet and the ground. The generalized contact points Pr and P;, on the right and
left foot can be expressed directly in terms of the coordinates g as

q" q' +sin(g*) cos(¢®) — sin(¢°) cos(q")
2 2 (5 ¢
o _ |a 0_ q° —sin(g”) + sin(q")
Pr = g3 Pr= ¢ + cos(q*) cos(g®) — cos(q®) cos(q") (4.33)
1 1

and the corresponding generalized contact points on the ground are equal but
with zero z-component.

To simplify the simulation model, we choose to model the contact as rigid. We
choose the contact forces and torques to be linear forces both along the normal
direction (z-axis in frame ¥() and along the tangential directions (z and y-axes),
acting at the contact points. We do not model possible contact torques around the
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vertical axis, since the feet are in point contact with the ground. The matrices Ar
and Ay, that define the directions of the constrained velocities of the right and left
foot, respectively, (and hence the directions of the collocated contact forces) are
given by

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

0 0O cos(q*) cos(q®) 0 —sin(g*) cos(¢°)
Ap= 10 0 0| Ap=|-sin(¢*)sin(¢?) —cos(¢®) - cos(q*)sin(q®)

00 0 —cos(q®) cos(q") 0 sin(q®) cos(q")

0 00 sin(q%) sin(g") cos(q") cos(q®) sin(q")

0 0 O 0 0 0

0 0 0 I 0 0 0 ]

which are obtained directly by taking the transpose of the partial derivative of
(4.33) with respect to g. With the force directions defined by these matrices, we
can implement the velocity projection (4.12) on impact as well as the finite contact
forces (3.46) during contact, as described in Section 3.3.

Analysis model

For analysis purposes, we can simplify the model equations under some addi-
tional assumptions. If only the right foot is in contact with the ground (¢* = 0),
then we can describe the system by the free coordinates ¢* through ¢° and with
parameters ¢ and ¢*. By symmetry of the mechanism, we can use the same dy-
namic equations when, instead, only the left foot is in contact with the ground, if
we relabel the coordinates as S(g), with

ST(q):=[¢® —¢" ¢* —-¢® & —¢°] (4.34)

where the relabeling of ¢' through ¢* has been left out.

For the analysis model, we assume that only one foot is on the ground at the
same time, and that hence the double support phase on impact is instantaneous.
We also consider only walking gaits that are symmetric with respect to the left
and right leg, such that only half a walking cycle needs to be found.

These assumptions imply that we only consider walking in a straight line
here, since walking along a curve necessarily implies an asymmetry in the gait
(the inner leg moves less than the outer leg). They also imply that this analysis
model is only valid if the slope of the ground is directed in the direction of walk-
ing, i.e. only for walking straight up or down a slope. To study more elaborate
walking motions, the analysis model should be a concatenation of two steps, one
with each foot, just like the analysis model of the kneed biped of Section 4.3 is the
concatenation of two phases, one before knee lock and one after knee lock.
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Under these assumptions, the dynamics of the mechanism can be described
by the (possibly relabeled) coordinates ¢* through ¢°, together with a velocity
projection when the swing leg hits the ground, i.e. when

cos(q*) cos(q®) — cos(q®) cos(¢”) = 0 (4.35)

When the double support phase is instantaneous, the system after impact is de-
scribed in relabeled coordinates S(¢), and hence the (projected) velocity variables
need again be relabeled by the partial derivative of S(g) with respect to g.

4.4.2 Efficient walking on level ground

With the analysis model as presented before, we can use the procedure of Sec-
tion 4.1 to look for efficient walking gaits. This time, we look for efficient gaits on
level floor, and take again as the cost function the sum of all the torques squared,
integrated (by means of a Riemann sum) over a step. Although most of the joint
angles in Figure 4.16 are relative to the fixed world, and hence do not define suit-
able locations for actuators, it is not really clear from the figure how the actuators
should be attached (collocated with what angles). For real control of this robot,
the extended system of Figure 4.15 should be used, where the possible locations
of the actuators are well-defined. For the simplified setup used for the analysis
here, we choose the cost metric equal to the identity, and hence assume the actua-
tion torques to be collocated with the velocities ¢. We conjecture that the resulting
optimal motion is also efficient (though perhaps not optimal) for a slightly differ-
ent choice of cost metric.

As constraint equations in the optimization routine, we take the standard
compatibility equations for the configurations and velocities at the beginning and
end of a step, the condition (4.35) for ¢t = T to force the foot to be on the ground
at the end of a step, as well as the constraint

cos(q*(t)) cos(q®(t)) — cos(q®(t)) cos(q” (1)) > € O<ti<t<ta<T (4.36)

to obtain a ground clearance ¢ > 0 of the swing foot for ¢; < ¢ < ¢ and suitable
t1 > 0and t; < T'. Since we look for gaits on level ground, we also need to add a
speed constraint of the form

sin(¢°(0)) cos(¢"(0)) — sin(q*(0)) cos(¢°(0))
T

= Udes (4.37)

where vqes is the desired average forward walking speed. The expression on the
left hand side of (4.37) equals the step length divided by the step time, and is
hence indeed the average walking velocity. This extra constraint is necessary,
since otherwise the optimal zero-cost motion would be to stand perfectly still
with all limbs vertical. The parameters are fixed at vges = 0.5 m/s, € = 0.01 m,
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Table 4.2: Effects of the variation of mass distribution on the optimal walking
gaits for the three-dimensional walker of Figure 4.16.

mpy (kg) mr (kg) T (s) Tstep (m) Ystep (m) J Prech (W)

1.0 5.0 0.52 0.26 0.20 4.18 1.82
2.0 4.0 0.63 0.31 0.18 3.12 1.35
3.0 3.0 0.68 0.34 0.15 2.56 1.11
4.0 2.0 0.73 0.37 0.15 2.18 0.99
5.0 1.0 0.77 0.39 0.14 191 0.90

ti1 =T —ty = 0.17T, m = 1 kg, and my + mr = 6 kg, and the mass distribution
between m7 and my is varied.

Due to the complexity of the robot and the constraints, the Matlab algorithms
cannot find a solution if we run the optimization routine straight from a zero
initial estimate with all constraints enabled. Instead, we start with the initial
estimate ¢ = 0, T = 1 and add a constraint that fixes the initial configuration
att =0as

¢(0) = [<0.25,-0.1,0.25,0.1,0,0] " (4.38)
We then optimize the cost function using only 6%'-order polynomials for the joints.
After this first optimization, the resulting optimized trajectories are used as initial
estimate for the second optimization run, now with 10*-order polynomials and
without the fixed initial configuration (4.38).

The results of this procedure for varying mass distribution m¢ to my are
shown in Table 4.2 and Figures 4.17 and 4.18. Table 4.2 shows for various mass
distributions the values of the optimal step time 7, step length z.p, step width
Ystep, COst J, and average mechanical power supply

T
Prect = = / T (8)g(t)dt (4.39)
0

T

The step length zgep and step width ysiep are defined as the distance on impact
between the feet in the = and y direction, respectively. The step length can be
computed as Tsep = vdes I = 0.57". Figure 4.17 shows a top view of the trajectories
traced out by the point masses at the feet, the hip, and the head for a number
of steps. Finally, Figure 4.18 shows stick figure snapshots of three steps of the
optimal gait for mp = mpy = 3 kg.

From the table and figures, we can see that concentrating the mass at the hip
instead of the head results in the following;:

e The strides become slower and longer, i.e. both T" and wsep increase.
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o Sideways hip swinging decreases, which is to be expected, since more mass
is concentrated at the hip. The amount of sideways swinging of the head,
on the other hand, is constant for all mass distributions.

o The step width decreases, but the sideways motion of the swing foot in-
creases. This can be explained by looking at the hip swinging: for larger
hip mass, hip swinging is decreased, and hence the foot needs to swing out
more to obtain the required ground clearance.

e Both the mechanical power demand Ppecn and the cost are J reduced.

We discuss the cost and energy aspects in more detail. From Table 4.2, we clearly
see that increasing the hip mass while decreasing the head mass results in de-
creased cost and decreased mechanical energy supply. Duindam & Stramigioli
(2005a) showed that also for a planar straight-legged walker with trunk, the low-
est cost is achieved when the mass is located at the hip instead of the head. In
that paper, the cost was computed as the squared required internal torques be-
tween the links, as opposed to the torque relative to the fixed world, as was done
here. These results suggest that, although energy loss on impact may be reduced
by locating the mass at the head and striking with low swing foot velocity, the
optimal joint trajectories that connect these initial and final conditions are unnat-
ural and require more actuation, even though some mechanical energy may be
saved on impact. Also note that we assumed here that the trunk was connected
to the legs through two freely moving rotational joints. If the trunk is connected
through a constrained mechanism, the results may very well be different: Wisse
(2004) showed that walking with a trunk connected through a constrained bisect-
ing mechanism actually improves the energy efficiency.

Instead of looking at the mechanical power to judge energy efficiency, re-
searchers often use a quantity called specific resistance (McGeer 1993) or specific
cost of transport, which takes into account both mechanical power and walking
speed. It is defined as

o energy dissipated _ average dissipated power
= weight x distance travelled ~ weight x average walking speed

(4.40)

Sometimes the dissipated power only contains the mechnical power lost on im-
pact (in which case 7 describes the specific mechanical cost of transport, denoted
¢mt), and sometimes it contains the total energy dissipated in the system, i.e. in-
cluding the electronics and actuator losses. If we only look at mechanical power
loss, we can compute ¢, for the three-dimensional walker here as

Pmech Pmech
mt = = — 0.0255P, 441
= om + mr + mu)gudes 8- 9.81-0.5 mech (441)
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For the mass distributions of Table 4.2, this leads to a specific mechanical cost be-
tween 0.023 and 0.046. This is lower than for humans (0.05), and hence the com-
puted motions can be really said to be efficient. Whether implementation results
in a system with high overall efficiency depends on the location and efficiency of
the actuators, and hence cannot be determined at this point.

The question remains whether it is useful to have a trunk or whether just a
heavy hip is better. From the results in this section, it seems that for efficiency of
walking it is better to have a mechanism without a trunk. However, these results
are based on the assumption of full actuation (including ankle joints), which may
not be true in practice. In the case of underactuation, it might be useful to have
extra degrees of freedom in a trunk to obtain better or more efficient control pos-
sibilities. Furthermore, the cost function was chosen quite arbitrarily to be the
summed square of the torques on the joints defined in Figure 4.16. Optimization
of a comparable planar robot with a different choice of coordinates (Duindam
& Stramigioli 2005b) gives the same conclusion and hence support the idea, but
it still depends on the actual actuator configuration and efficiency whether the
overall cost is reduced when no trunk is used. Finally, although the trunk by it-
self may not increase efficiency, it may be beneficial to have a trunk together with
freely movable arms. This should be checked by analysis of an extended system
including arms.



Chapter 5
Control of Walking Robots

The previous chapters described modeling and analysis techniques for walking
robots, and showed how to find energy-efficient, natural gaits for several walking
robots. By construction, these trajectories require little torque, and hence they
could be implemented quite efficiently by putting local controllers (for example
PID controllers) on the joints that force the joint angles to track the computed
reference trajectories as time-varying setpoints. The global control problem is
thus split into local one-dimensional tracking problems.

Unfortunately, this direct approach has several problems. First, the control
tasks are specified by desired joint angles as a function of time, although the time
aspect is not directly important in walking. Second, it is implicitly assumed that
disturbances can best be compensated for by driving each joint individually back
to its time-varying setpoint, whereas this may not be the case at all. Thirdly, the
energy balance in the system is completely neglected, meaning e.g. that energy in-
jected during disturbances may be dissipated by the controllers, whereas it could
also be used to compensate for friction or other energy losses.

The idea behind the control techniques described in this chapter is to take into
account these problems, and to approach control not as a forced exact trajectory
tracking problem, but as an interactive process. Instead of trying to torture the
mechanical structure into doing something externally specified, we try to follow
its natural motions as much as possible, while suggesting (not forcing) a certain
trajectory, and correcting only if necessary. As a first part of this approach, we de-
scribe in Section 5.1 how the natural dynamics of the mechanism can be shaped
to attain a certain control goal, using an extension of the optimization techniques
of Section 4.1. Then, in Section 5.2, we show a ‘minimally invasive’ approach
to trajectory tracking, taking into account the aspects discussed before. Finally,
Sections 5.3 and 5.4 discuss preliminary results in the control of Dribbel, the ex-
perimental robot introduced in Section 4.3, as well as a foot-placement control
strategy for a simple three-dimensional walking robot.

131
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5.1 Passive Mechanical Control

The use of actuators (whether electrical, hydraulic, pneumatic, or other) costs
energy, even if no actual mechanical energy is supplied to the system: it costs en-
ergy due to dissipation in the actuators themselves, in the controlling circuitry, or
because the actuators generally cannot absorb energy retrieved from the mech-
anism. This extra energy directly reduces the efficiency of the system, and it is
hence beneficial to reduce the need for actuators as much as possible.

One way of reducing actuators requirements has been discussed in Chapter 4,
where the reference trajectories of walking robots were chosen to be the ‘most
natural’ motions of the system, i.e. the motions that require the least actuator
torque (in some metric). Another way to reduce the actuator needs is to adapt
the mechanical structure of the robot to simplify reaching certain control goals.
The natural walking motion of a robot depends, for example, on its mass distri-
bution and the presence and strength of other passive elements, such as springs.
Changing the value of these parts of the mechanical structure changes the natural
motions.

In the true spirit of the mechatronic design philosophy (van Amerongen &
Breedveld 2003), we can thus change the mechanical structure in order to sim-
plify actuator requirements and control action. This can be done during the con-
struction phase of a robot, say, to design the mechanics most suitable for walking
at a certain speed. But in addition, the mechanical structure can be adapted dur-
ing walking, in order to optimize it for the desired walking speed at a certain time.
Figure 5.1 shows an example of how this could be implemented in practice: the
mass distribution m( on the lower legs can be adjusted by rotating the spindles
Zm, and the (effective) stiffness of the spring at the hip joint can be changed by ro-
tating the spindles z;. An actual practical actuator with mechanically adjustable
stiffness has been designed by Hurst et al. (2004). Obviously, we can treat these
dynamically adjustable structures as structures with adjustable parameters only if
the adjustments are made quasi-statically (i.e. very slowly), since otherwise the
adjustment process itself introduces extra dynamics.

Van den Bogert (2003) showed how a system of exotendons, attached to a me-
chanical system, can be optimized to reduce torque requirements for a certain
fixed walking gait of that mechanism. Here, we optimize both the mechanical
structure and the walking gait at the same time. We include the adjustable me-
chanical structure in the optimization procedure of Section 4.1, by extending the
set of degrees of freedom for the optimization routine to include the parame-
ters describing how the mechanical structure can be adjusted. For example, the
robot in Figure 5.1 has the extra free parameters x,, and z, and possibly m and
ko, although these last two can only be changed off-line. The designer still has
to choose what mechanical parameters to optimize: he/she has to decide what
parts of the mechanism should be adjustable, for example, what degrees of free-
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Figure 5.1: Example of the implementation of a robot with adaptable mass distri-
bution on the lower legs and adaptable spring at the hip joint.

dom the force-displacement relationship of the spring should have. Some parts
may be unsuitable for adjustment because of practical reasons, and some because
adjusting them has little or no effect on the natural motions of the system.

The extra degrees of freedom in the optimization routine can result in achiev-
ing control goals at a lower cost. As an example, we show how the mechanical
structure of the compass-gait walker can be adjusted to obtain highly efficient
downbhill walking at a range of speeds.

Example 5.1. We consider again the compass-gait walker of Section 4.2, in partic-
ular Figure 4.2, but now we consider the mechanical structure to be adjustable in
the following three different ways:

1. an adjustable linear spring (stiffness k) and damper (damping factor d) are
attached between the legs of the robot;

2. the mass distribution between the point masses my and m is adjustable,
while the total weight of the robot m g + 2m equals 7 kg;

3. both the mass distribution and the spring-damper combination between the
legs can be adjusted.

Note that, for simplicity, we vary the mass distribution by directly changing the
parameters m and my, i.e. not using a pulley system such as in Figure 5.1. For the
three situations outlined above, plus for the nominal case in which the structure
is fixed at m = 1 kg and my = 5 kg (and no spring or damper), we search
for natural walking gaits down a 3° slope at various average walking speeds
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Table 5.1: Optimized cost at several walking speeds for the compass-gait walker
with different degrees of freedom in the mechanical structure.

nominal spring-damper mass mass-spring-damper

Udes (M/'S) cost cost cost cost
0.5 1.4 1.4 0.062 0.037
0.6 0.44 0.44 0.011 0.0029
0.7 0.032 0.032 0.0023 0.0017
0.8 0.0059 0.0038 0.0032 0.0014
0.9 0.025 0.0030 0.0071 0.0016
1.0 0.28 0.0065 0.012 0.0027
1.1 0.82 0.015 0.016 0.0042
1.2 1.7 0.032 0.011 0.0054
1.3 2.8 0.061 0.011 0.0099

vdes- The required average walking speed constrains the relationship between the
initial conditions and the step time as

sin(¢*(0)) _ sin(¢*(0))

= 7 (5.1)

Udes = 2

We add this constraint to the optimization routine of Section 4.2.3, as well as the
practical constraints that the stiffness, damping, and both m and m g must be pos-
itive. Then, we search for the most efficient trajectories and the corresponding op-
timal parameters of the mechanical structure. The results of these optimizations
are shown in Tables 5.1 and 5.2, as well as Figure 5.2.

From the tables and the figure, we see that the nominal robot with fixed me-
chanical structure has a small cost only at a speed around 0.8 m/s (indeed, the
average walking speed of the passive motion in Figure 4.8 is 0.76 m/s); walking
motions at lower and higher speeds require significantly more control effort.

We also see that adding an adjustable spring and damper at the hip joint can
help reduce the cost for higher walking speeds, but not for lower speeds. This
makes sense intuitively: if we add a spring between the legs, it increases the nat-
ural oscillation frequency between the kinetic energy of the legs and the potential
energy of gravity plus spring, which in turn increases the natural walking speed.
It can, however, never decrease the natural frequency, since only positive spring
values are allowed.

By adjusting (only) the mass distribution on the legs, it is possible to obtain
natural low-cost walking in the full range of speeds. For low speeds, more mass
should be located on the legs (up to 3.5 kg per leg, leaving no mass at the hip
joint), while for high speeds the mass should be transferred to the hip joint. For
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Table 5.2: Optimized parameters at several walking speeds for the compass-gait
walker with different degrees of freedom in the mechanical structure.

spring-damper mass mass-spring-damper

Vdes k d m m k d
(m/s) (Nm/rad) (Ns/rad) (kg) (kg) (Nm/rad) (Ns/rad)

0.5 0.0 0.0 25 35 0.0 0.78
0.6 0.0 0.0 1.8 26 0.0 0.14
0.7 0.0 0.0 1.3 1.7 0.0 0.048
0.8 0.012 0.047 0.85 0.99 0.0051 0.047
0.9 0.63 0.038 0.86 0.86 0.0083 0.49
1.0 2.9 0.034 0.57 0.56 0.023 0.064
1.1 6.0 0.030 0.38 0.37 0.0 0.070
12 10 0.026 0.19 0.25 0.0 0.071
1.3 16 0.022 013 0.17 0.0 0.080

most speeds, the cost for walking using the optimal mass distribution is lower
than when using the optimal spring/damper configuration.

Finally, if both the mass distribution and the spring/damper combination are
adjustable, we obtain the lowest cost for walking. This is clearly to be expected,
since optimizing only the mass distribution or only the spring/damper combi-
nation are special cases. From the values of the parameters, we see that in this
general case, the spring at the hip joint is really not necessary; it has a very low
stiffness value. Using only the mass distribution and the damper results in mo-
tions at more or less zero cost; the remaining cost is due to the approximation of
the trajectories by polynomials. A

5.2 Port-based curve tracking

As discussed before, the joint angle trajectories computed in Chapter 4 as well as
the extension in Section 5.1 are formulated as explicit functions of time. The time
aspect in itself, however, is artificial and does not influence the dynamics or the
efficiency of walking; only the relation between the joint angles is important.
One approach to remove the explicit time-dependency in the joint trajecto-
ries is to use what is sometimes called ‘virtual time’, as used for example by
Chevallereau (2003). This virtual time is an extra variable that indexes what point
(time instant) of the trajectory the current set point for the joint angles is. Depend-
ing on the current state of the robot, the virtual time may accelerate or decelerate
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in order to let the robot ‘catch up” with the trajectory. This approach solves the
problem of time-dependency to a certain extend, but still requires approximately
proper initial conditions (the initial virtual time) to start off smoothly.

Instead of using an extra virtual-time variable, we propose to use fewer vari-
ables by describing the desired trajectory as a subspace of the configuration space,
namely as the subspace @4 of all configurations that are on the trajectory for
some time ¢. For a single curve, this subspace is one-dimensional (since it can be
parameterized by one variable), but the approach can be generalized to higher-
dimensional subspaces, for example if the goal is to obtain convergence to a sur-
face instead of a curve. The control objective can thus be better described in a
time-independent way as ‘convergence to ()4'. Another, equivalent, formulation
is to require certain outputs to become zero, as used in the (hybrid) zero dynamics
approach of Westervelt et al. (2003).

A second problem with control of the individual joint angles is the implicit
assumption on how to converge in the case of disturbance. Instead of return-
ing straight (with ‘straight’ requiring the definition of a suitable metric) to Qg, it
may be more reasonable to converge in a different way, for example to avoid toe
stubbing on the way, or to minimize energy loss.

To encode these aspects in the control task, we extend the desired behavior
from a subspace to a vector field, i.e. a vector w(q) at each point g, such that the
integral curves of this vector field describe the path in coordinate space that the
system should follow. This means that Q4 should be one of the integral curves,
and hence that w(g) should be tangent to Q4 for all ¢ € (4. Finally, the control
laws defined in the following section require w(q) # 0 (which makes sense, since
otherwise the desired direction is undefined), hence the vector field should be
designed such that it is nonzero for as large a region as possible. It is generally
not possible to have nonzero w(g) for all ¢, due to either the shape of )4 or the
shape of the configuration space. For example, on the sphere S?, this is the famous
“hairy ball theorem’ (Milnor 1978). Therefore, from now on, we only consider the
system in the open subspace D C @, defined as

D:={qe@Q|w(q) # 0} (5.2)

i.e. the space of all points ¢ € Q) where the vector field is nonzero.

When the control objective has been encoded as a vector field w(g), we can
construct a controller that realizes convergence to this vector field. The next
section describes an approach based on the representation of the system as an
interconnection of port-Hamiltonian subsystems, with one representing the de-
sired behavior (with associated energy), one the undesired behavior (with as-
sociated energy), and one the power-continuous interconnection structure be-
tween the two and the input port. The results can also be found in (Duindam
& Stramigioli, 2003, 2004b), and are based on earlier work (Duindam, Stramigi-
oli & Scherpen 2004). The idea of describing the control objective as a vector field
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is also used in the method of Passive Velocity Field Control, introduced by Li &
Horowitz (1995, 1999) and used in the control of walking machines by Yamakita
et al. (2000, 2001).

5.2.1 System representation encoding desired behavior

We start the derivation of the controller from a system representation in port-
Hamiltonian form, and, for simplicity, we consider a system of the form (2.61)
with direct and full actuation, such that it can be represented as

JRCE et

y=[0 I [aaz‘fr
Jdp

OH
Oq
OH
op

(5.3)

with Hamiltonian H(q,p) = 2p"M~'(¢)p + V(g) and control port (u,y). The
desired behavior is assumed to be encoded by a suitable vector field w(g) on the
configuration space D. This desired behavior can be described equivalently by
the co-vector field M (q)w(q), since M (q) is invertible for all ¢ € Q.

We now proceed to write the dynamics equations in coordinates that explicitly
encode the desired behavior, i.e. movement along the vector field w. For this
purpose, we choose new coordinates « for the momentum as p = ST (q)a, with
ST (g) an invertible n x n matrix, smoothly varying in g, such that

e Sw=[x 0 ... O]Tforallqu;
e M := SM~1ST is diagonal and independent of q.

These conditions imply that the first column of ST (¢) is a nonzero scalar multiple
of Mw(g), and that the columns of ST (q) are orthogonal to each other (in the
metric M ') and have constant length (in the metric M ~!). We also define the
Hamiltonian H (g, ) in new coordinates as

H(q,0) : = H(q, ST (q)r) = %aTS(q)M‘l(Q)ST(q)a +V(q)

I p—y ~1 -,
=5 M O‘+V(Q):;§Mii a; +V(q) (5.4)

where M;; " is the inverse of the (i, i)th element of the diagonal matrix M. Hence,
the total energy can be written in coordinates (g, «) as the sum of the potential
energy (a function of ¢) and the energies in the directions defined by the columns
of ST, each of which is a function only of the corresponding coordinate ;. In
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particular, the kinetic energy associated with the velocity in the direction of the
vector field is fully determined by the coordinate a;. The other coordinates «;
indicate the kinetic energy in the directions perpendicular (in the metric M) to
the vector field. Hence, the control objective ‘follow the vector field” can now be
expressed as ‘keep all coordinates a; through «, equal to zero’.

v Readers familiar with the concepts of Riemannian geometry may wonder
whether it is always possible to find a matrix ST that induces a constant diag-
onal metric M. Indeed, in Riemannian geometry it is shown how coordinate
transformations can give such an induced metric only if the original metric is dif-
ferentially flat, which is in general not the case. However, in this case we use a
transformation S only on the momentum variables, that is, it is not induced by
a transformation on the ¢ variables as is the case in the aforementioned Rieman-
nian context. Here, we just want to find a transformation S7 (smoothly varying
in g) that transforms a symmetric positive matrix M (smoothly varying in ¢) to a

A constant diagonal matrix, which is indeed always possible.

As was explained in the commutation diagram of Figure 2.9, choosing coor-
dinates p = ST (g)« is equivalent to choosing coordinates v = S(g)¢. Hence, fol-
lowing Lemma 2.16, the dynamic equations of the system (5.3) can be expressed
in coordinates (g, «) instead of (¢, p) as

d q 0 S-1 %ﬂ 0
dt [a] T -8 T 5T (8T<5Ta> _ a(sTa>> o1 lon |+ [ST} u
9q dq o
ol (5.5)
_ —17 | 9q
y=[0 S w‘?{}
Ja

which are the same equations as in Lemma 2.16, modulo the renaming of the
variables o, M, and H, plus that the input u is collocated with ¢, not with S(g)g.
For conciseness, we can structure these equations in the following form

0H

g [a 0 Sit S | e 0
—on| =[=-S77 0 X |||+ | u
dt -7 T U -r
a2 _52 _X Y aaH SQ
[65)
o (5.6)
9q
y=[0 st s |5
OH
6042

where Y is skew-symmetric, subscripts 1 and 2 denote the first and other compo-
nents, respectively, and where the Hamiltonian can be written as

_ 1
H(q,oq,a2) = §a1TM1 Yag +

1

502 My "oz + V(q) (5.7)
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S7q)

%1:l MTFﬁ%ﬂH:Ml
port V(q) Zwo V(g):: C=0 MGY : X(q, )
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MGY : —Y(q, )

Figure 5.3: Graphical representation of the system (5.5) with Hamiltonian (5.4) as
an abstract system (left) and a concrete bond graph (right).

The real benefit of representing the dynamics in the form (5.6) reveals itself when
we look at its representation as a port-interconnection of energy-storing subsys-
tems, as shown in Figure 5.3. Since the energy is the sum of three terms (5.7),
each having its own state variables, we can think of the energy being stored in
three separate buffers: one for the potential energy (with state ¢), one for the ki-
netic energy in the direction of w (with state o), and one for the other kinetic
energy (with state a). The internal energy flow between the three buffers, and
the energy flow from the input port (u,y) is described by the power-continuous
junction structure described by (5.6), which can be directly translated to the bond
graph of Figure 5.3.

The bond graph and the equations (5.6) show how the energy flows between
the different parts of the network. In particular, it explicitly shows how well the
system is performing its control task: if there is perfect tracking of the vector field
w, then ay (and hence the energy in the corresponding I-element) is zero. In this
way, the control task (and the control performance) is explicitly encoded into the
system description. It is almost trivial to derive a tracking controller from this
system description, as will be shown in the next section.

Example 5.2. As a simple example, we consider the motion of a point mass m in
the plane, shown in Figure 5.4. The dynamic equations of the point mass can be
written as (5.3) with the mass matrix being the 2 x 2 diagonal matrix M = mI.

As the desired vector field w(g), we choose a vector field describing all the
circles around the origin, i.e.

w(q) = {_?Q] (5.8)

This vector field is zero for ¢ = 0, and hence we only consider pointsin D = @ \ 0.
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Figure 5.4: Two dimensional motion of a point mass with velocity v, and a vector
field w describing the desired motion.

From this vector field, we can find a suitable coordinate transformation S7(¢) as

oy L= ¢
ST = 1 [q1 A 5.9)

in which the first column describes the direction along the vector field, and the
second column describes the direction perpendicular (in the metric mI) to the

vector field. The second column, in fact, describes motion along lines through
the origin. The mass matrix in new coordinates can be computed as

v 1T —1 _ m O
M = (SM~*S") "[0 WJ (5.10)
which is diagonal and independent of g, so indeed, the two columns of ST are

orthogonal and have constant norm, as required. With the transformation (5.9),
we can compute the dynamic equations (5.5) in new coordinates (g, o) as

" 00

1 0 [0 0 0
i ¢ 0 0 O 1 0 +i 0 0 [m]
di fon| |10 0= S T gl | = a| fuz
o 0 1 % 0 | o2 " ¢

(5.11)

These equations describe the same system with input forces u; and us acting
in the x and y direction, but just expressed in different coordinates that show
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explicitly (through the coordinate o) how much the point mass is moving along
the vector field w. In particular, when no forces are acting on the system, the mass
moves in a straight line with constant kinetic energy. For example, when v = 0
and a; = 0 (the mass is moving along a line through the origin), then & = 0, and
hence a; remains zero: the systems keeps moving along the same line through
the origin. A

5.2.2 Port-based asymptotic control

With the system represented in new coordinates, we now derive a controller that
asymptotically stabilizes it to motion along the vector field w(g). We initially
assume the potential energy to be zero and deal with kinetic energy only. After-
wards, we discuss how to handle potential energy.

The controller we derive is a cascade port-interconnection of sub-controllers,
each with a specific goal in terms of energy flows. The controllers are represented
in port-Hamiltonian form and graphically as a bond graph.

Input transformation and decoupling

As the first part of the controller, we propose a power-continuous controller with
the goal to decouple the two kinetic energy storage elements (with states a; and
a) such that no energy can flow between them. Furthermore, since we want to
build the controller as a cascade port-interconnection, it provides two new input
ports, one for each storage element.

Theorem 5.3 (Decoupling control). For the mechanical system described by (5.3)
or in transformed coordinates by (5.5) with V (q) = 0, the following controller is
power-continuous and, for u = 0, keeps the kinetic energy separated in the two
storage elements as defined by ST

u STXS, — STXTS, + 5728, ST ST [~y
Y| = —S1 0 0 Uy (512)
.7?2 _S2 0 0 U2

In this expression, Z is any skew-symmetric matrix, and (uy,y1) and (Ge, §a) are
new control ports, one connected directly to each energy storage element.

Proof. To prove power-continuity, we compute the power P, going into the con-
troller as well as the power Py, coming out:

P =11 51 + U3 §o = U S1y + U252y (5.13)
P =u"y=y" (93 XS — STXTSy — ST ZS)y+ui Siy+ujSay  (5.14)
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(a) Bond graph of the controller (5.12). (b) Interconnected system.

Figure 5.5: Bond graphs of the decoupling controller (5.12) and its port-
interconnection with the plant of Figure 5.3 with V(¢) = 0.

which are equal, since the first term of (5.14) is zero by skew-symmetry, proving
power-continuity.

To prove the energy separation property, we can compute the interconnected
system as

4[4 0o S;tost 0q 0 0]
— | =|-S7" 0 0 (§H+10{1]
dt T O‘—l Uz
a2 -85 0 Y+Z7] |22 0 I
, @z (5.15)
oH
M[o 1 0] ot
T day
7 0 0 If|o
80[2

Since V (q) = 0, we have 9H /dq = 0, so the equations for ¢/ 5 and 7 » reduce to

(5.16)

which shows that indeed the two storage elements with states «; and a5 are de-
coupled, and the two ports (@1, %1) and (u2, §2) act separately and directly on the
two storage elements. The matrix Z can be any skew-symmetric time-varying
matrix and can be used, for example, to minimize actuator torques. O

Figure 5.5 shows the bond graph of the controller (5.12) as well as the port-
interconnection of this controller to the plant (5.5) for V(¢) = 0. The bond graph
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Figure 5.6: Two methods to achieve asymptotic tracking: by dissipating the en-
ergy in g, and by irreversibly transferring the energy from o to ;.

of the closed loop system can be seen to have no power-coupling (i.e. no bonds)
between the two storage elements, hence the energy between the storage ele-
ments is really decoupled. This means that if there are no disturbances, and if the
system is following the vector field (a1 # 0, as = 0), then the system will keep
following the vector field. This shows that the controller of Theorem 5.3 provides
nominal curve tracking.

Asymptotic convergence

The next part of the controller has the purpose of making the tracking behavior
asymptotic, i.e. extending the nominal (marginal) tracking behavior to a behavior
that attracts motions towards the curve. From the bond graph of Figure 5.5 and
the interpretation of tracking in terms of two energy storages, this clearly means
that a (and its associated kinetic energy) should be driven asymptotically to
zero.

A first naive option would be to simply dissipate this energy to drive it to zero,
i.e. by so-called damping injection. In bond graph terms, this means attaching an
R element to the port (@2,y2) and zero force to the port (@1, %), as shown in
Figure 5.6(a). This controller can then be written in port-Hamiltonian form as

up| 0 0 -1

-l Al o1
with R > 0. It can be shown trivially that this controller is passive (because of
the dissipative element), and that whenever o, # 0, it decreases monotonically to

zero since R is strictly positive definite. Hence, indeed this results in asymptotic
tracking.
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Unfortunately, all kinetic energy associated with «; is dissipated by the con-
troller, which is not a very efficient way to deal with this energy. Instead, we can
construct a (power-continuous) controller that transfers the energy from the a,
storage to the o storage in an irreversible way, for example as

U1 0 —aoy ag -1
= .1
o] = oo 5 5 19
for some parameter a > 0. The power balance for this controller can be shown
to give Pn = Poyut, proving that this controller is power-continuous. More in-

terestingly, we can compute the change of the kinetic energy in the two storage
elements when this controller is connected:

d (1 _ - -

& (3ama) = a(af¥haw) (o Maas) .19
d (1 — - v

T <2a2TM2a1> =—a (oleMmq) (OLQTMQOQ) (5.20)

which shows that whenever both «; and a, are nonzero, the energy in the a»
storage will decrease, and the energy in the oy storage will increase. So, if the
initial oy is nonzero (i.e. if the system is moving at least a little bit in the desired
direction), then it will converge asymptotically to motion along w(g) while keep-
ing the total kinetic energy in the system constant. Figure 5.6(b) shows the bond
graph of the controller connected in cascade to the system of Figure 5.5(b).

Remark. The nonlinear transformer described by (5.18) implements irreversible
transformation of energy from one side to the other. It is irreversible, since no
matter what port variables are applied to the two sides, power can only flow
from one side to the other, and never back. In this respect, it is very similar to the
RS element (Thoma 1975) in bond graphs, which describes the irreversible trans-
duction of energy to the thermal domain, for example to describe the (incorrectly
named) dissipation in an electrical resistor due to current flow. A

Remark. The particular controller parameterization (5.18) gives slow conver-
gence, because it is quadratic in as: as oy approaches zero, the control force
approaches zero even faster. This can be improved, for example, by replacing
the parameter a by the expression

(5.21)

ap
aQ— —F——
\/ a2TM2a2 —+ a1
for ag > 0 and some small a; > 0. A

Example 5.4. We return to the planar point mass of Example 5.2 and compute
the nominal and asymptotic controllers (5.12) and (5.18). With the choice for S(q)
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as before, we obtain as the nominal controller

uq 0 o —¢* ¢ [-m
Ug 1l |—aqn O N T
= — - 5.22
i |q| q2 _ql O O i ( )
72 —¢' —¢ 0 0] | a

which ensures that the energy remains separated in the two energy reservoirs. In
particular, when the point mass is moving along the vector field w(q) (o1 # 0,
ap = 0), it can be shown that the control effort u for & = 0 equals

<12 1
u= mlglz BQ] (5.23)

i.e. the well known expression for the centripetal force necessary for making a
point mass m move along a circle at distance |q| with velocity |g|.

To obtain asymptotic tracking of the vector field, we add the asymptotic con-
troller (5.18), which results in the cascaded controller that can be described as

u 0 —%—041042 Y
[t 5l e

] T 010 0 Y2
which is power-continuous by skew-symmetry of the matrix. This controller
drives the point mass asymptotically to move along the circles defined by the
vector field w(q), always with constant kinetic energy. A

Dealing with potential energy

The combination of the nominal and asymptotic controllers discussed so far re-
sults in asymptotic convergence to the vector field w for the case of V(¢) = 0. We
now discuss how to deal with potential energy.

In general, the potential function V' has no specific structure, unlike the kinetic
energy, which is quadratic in the momenta. This is the main reason that in most
research on passive controllers, the total potential energy is simply compensated
for by simulating the inverse potential field in the controller and applying the
corresponding potential forces to the system, thus effectively cancelling out the
potential energy. Under certain conditions on the potential field and the mea-
surements, this approach is passive (Ortega et al. 2001).

Although such an approach may be passive, it is generally not efficient, in the
sense that the potential forces (e.g. gravity) can be quite large, and that hence
large control forces are necessary to compensate for them. Furthermore, for the
application of efficient walking, the trajectories computed in Chapter 4 are only
efficient and natural in the presence of potential energy. After all, the natural
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Figure 5.7: Decomposition of the differential of ' in the desired and undesired
directions defined by ST and S7.

oscillatory motion of the legs is due to the power flow between kinetic energy
and gravitational energy. If the gravitational energy is compensated for (i.e. the
robot is effectively walking in zero g), then the computed trajectories are certainly
not natural anymore.

Instead, we propose to compensate for only part of the potential field, namely
the part that changes the undesired momentum «,. We can compute this part
by a projection, illustrated in Figure 5.7, namely the orthogonal projection (in
the metric M) of the differential of V' onto the space of undesired momenta,
described by the columns of S7. This projection is described by the equation

Upot = SZ,T(SQM*sQT)*lsQM*%‘; = ST MySoM 1

ov
— 2
34 (5.25)
where we used the definition of M from Section 5.2.1. The effect of this torque,
together with the torque from the potential field, on the components « can be
computed from (5.5) as follows.

ov
} =(-)- SfTafq + 5™ T upo

=()— S*T(STMSM*)%‘; + S*lsQTMQSQM*%‘q/

d d |:a1

Attt o

) ) . OV 0
=(-)-87"T (S;‘FM1S1 + 52TM2SZ> M 137q + |:M252M_1%‘;:|
_ —18V
= ( . ) — [%121%133
2199 3q
— () - [MlslMlg“;]
0

0
+ |:M252M_1 %‘g:|
(5.26)

So indeed, with the additional control law (5.25), the effect of the potential energy
on «; is not changed, but the effect on o is cancelled out. Furthermore, if the
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vector field describes a natural efficient trajectory for the system with potential
energy, then the sum of the nominal control action (5.12) and the partial potential
energy compensation (5.25) should be (close to) zero, and hence the total actual
torque that is computed and applied by the motors is (close to) zero as well. This
will be shown in the application to walking robots in Section 5.2.3.

One problem in this approach remains: the control law (5.25) is generally not
passive, i.e. it is possible for a finite energy disturbance to extract infinite energy
from the controller. This aspect needs to be taken into account in the higher-level
energy management, discussed next.

High-level energy management

In addition to the direct low-level controllers of the previous sections, a higher-
level controller is necessary to ensure that the energy balance is held at a desired
level. This approach is similar to the Intrinsically Passive Control (IPC) plus su-
pervisory control discussed by Stramigioli (2001). With the exception of the par-
tial potential energy compensation, the controllers discussed so far are power-
continuous and hence intrinsically passive. The energy management controller
discussed here is a form of supervisory control, in that it is not intrinsically pas-
sive but can add energy to the system.

Energy management is required for several reasons. A first reason is to com-
pensate for any energy introduced by the non-passive potential energy controller,
hence to ensure stability of the closed-loop system. A second reason is to com-
pensate for friction and other losses, which would (in the case of only power-
continuous controllers) reduce the energy in the system to zero and make it stop.
Finally, a third and very important reason, especially in the context of following
efficient trajectories, is to ensure that the system is moving along the trajectories
at the speed prescribed in the optimization routine. Not only simply because the
control goal is to move at this speed, but also because the trajectories are only
efficient (or optimal) when they are being followed at a specific speed.

When the desired, possibly time varying, energy level Eg4c is known, an extra
torque uenergy can be added to the system to regulate the mechanical energy to-
wards Fg4es. This torque should be applied in the direction of the desired vector
field w, in order not to increase the undesired momentum «,. The magnitude
of the correcting torque can be computed for example as a simple linear propor-
tional controller

Uenergy = Kp (Edes - %pTM_l(Q>p - V(Q)) w(Q) (527)

for some K, > 0. This simple controller works fine for some applications, such as
steady walking down a certain slope, as discussed in the next section. For more
difficult tasks, such as walking uphill, in which case the desired energy level is
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constantly increasing, extra control action such as integral control may be needed
to stabilize to this energy level.

5.2.3 Application to walking robots

The results in this section have so far been formulated for general mechanical
systems moving along general trajectories. We now apply them to the problem of
walking robots, more specifically, to the compass-gait walker of Section 4.2 with a
mass distribution equal to m = 1 kg and my = 5 kg. The results are an extended
version of earlier work (Duindam & Stramigioli 2005c).

We already showed how the compass-gait walker can passively walk down a
3° slope if we start it at the initial conditions corresponding to the trajectory of
Figure 4.8. This trajectory was shown to be stable, at least in the sense that the
estimated initial conditions (using polynomial functions for the joint angles) con-
verged to a limit cycle. The region of attraction of this passive motion is, however,
not very large, as can be seen in Figure 5.8(a): when there is a disturbance in the
floor (a 5 cm step down), the robot falls.

The goal of this section is to use the port-based tracking approach described
before to increase the region of attraction of the passive walking cycle and hence
increase the robustness against external disturbances. The controller should only
act in case of disturbances, and otherwise just let the robot move along its nat-
ural passive walking trajectory. Thus, it is expected that the controlled system
is still very efficient, and only uses actuator energy when a disturbance occurs.
Of course, this only holds under the assumption that the actuators are back-
driveable.

From the previous consideration, we can conclude that the desired behavior
for the system should be a motion along the natural trajectory. This natural tra-
jectory is taken as the computed trajectory of Figure 4.8, and it is shown as the
solid half of the eight-figure in Figure 5.9(a). The dotted half is the motion of the
angles ¢* and ¢* when the stance and swing legs are exchanged. As discussed in
Chapter 4, we can use a coordinate relabeling to describe a walking cycle of two
steps (one with each foot) as the concatenation of two equal single steps, once
with and once without coordinate relabeling. We can use the same approach here
in control, by computing the desired control behavior for half of a cycle and ap-
plying it either to one leg (ankle and hip) or to the other (ankle and negative hip),
depending on which leg is on the ground. Thus, we can use only half of the cycle
(the solid line) as the nominal curve @4, and construct a vector field towards this
curve. When the swing foot impacts the ground, the (measured) coordinates are
relabeled, and the computed torque is applied to the appropriate joints.

From this half of the trajectory, we compute a suitable vector field as follows,
illustrated in Figure 5.9(b). Since the length of the vectors in the vector field is not
important, it is sufficient to parameterize a vector at a point by only one variable;
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(a) Stick figure animation of the uncontrolled walking motion.
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(b) Evolution of the various energies during the walking motion.

Figure 5.8: Simulation of the compass-gait walker walking passively down a
small step and falling.
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(a) Nominal trajectory and vector field. (b) Constructing curves for the vector field.

Figure 5.9: Construction of a suitable desired vector field w(q) for downhill walk-
ing of the compass-gait walker. Based on the angle 6 of the velocity vectors of a
curve (half a walking cycle), a surface with other velocity angles is computed.

we take this variable to be the angle! 6 between the vector and the vertically up-
ward direction. We can then plot the velocity directions along ()4 as a curve in the
three-dimensional (¢3, ¢*, 0) space (the dotted line in the figure). From this curve,
we can construct other curves roughly parallel to it, and we take the desired ve-
locity to be roughly parallel and towards ()4. This means that for points to the
right of Qq, ¢ is larger, and for points to the left of ()4, 6 is smaller. We construct
two parallel curves and three orthogonal curves, as shown in Figure 5.9(b). We
then fit a fourth-order polynomial surface of the form

4 i
0(a*,q") = Z Z aij(¢*) 7 (¢") = aoo + arog® + aong" + . .. (5.28)
i=0 j=0

with 6 the approximated angle of the velocity vector at (¢, ¢*), and a; the fifteen
parameters describing the surface. We fit this surface to the data in the six refer-
ence curves, in such a way that the error between § and § over all data points is
smallest in the least square sense. The resulting surface describes a vector field,
which is plotted in Figure 5.9(a). We use this vector field as the desired vector
field w(q). This approach can be generalized to higher dimensions, by construct-
ing the desired vector w(q) at ¢ as the sum of the velocity vector at the closest
point of )4 and a vector directed towards this point on the curve.

Using this vector field and the orthogonal direction (in M), we can find a
suitable coordinate transformation S(g) that decomposes the momentum of the

Iwe implicitly and shamelessly use the Euclidean metric here in the definitions of angle, parallel,
and orthogonal. Even though the Euclidean metric has no physical meaning in (g3, ¢*) space, it is
easy to work with and provides good results.
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(a) Stick figure animation of the controlled walking motion.
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(b) Evolution of the various energies during the walking motion.

Figure 5.10: Simulation of the port-based tracking controller interconnected to
the compass-gait walker, walking down a 5 cm step.

system in a desired component «; and an undesired component «. If we analyze
the velocity components of the passive motion of Figure 5.8(a), we obtain that the
o component of the motion is roughly zero during nominal walking, and then
becomes nonzero when the robot falls. This is to be expected, of course, since the
passive trajectory was used as a reference to define the desired motion.

Figure 5.8(b) shows the decomposition of the energy of the system in potential
energy and the two kinetic energies associated with «; and a». Here, the potential
energy is taken to be equal for the beginning of each step, such that the total
energy is constant during the walking motion (until the step down), instead of
piecewise constant with steps down at each foot impact. This makes it easier
to compare the different steps, and to implement the energy controller (5.27).
During nominal walking, all kinetic energy is in the ; direction, while after the
step down (the last second of the simulation), it oscillates wildly between the o
and aw directions.

From the transformation S(g), we can compute the nominal controller (5.12),
the asymptotic controller (5.18), the potential energy compensation (5.25), and
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(b) Asymptotic (solid) and energy-regulating (dashed) torque on the ankle (left) and hip (right).

N
|V

—_
o

S

torque (Nm)
—_
o (e
<
1
torque (Nm)

1
B

‘P’V\]\['\/\P’"
8

9

(@)}

6 7 8 9 7
t (s) t(s)

(c) Total control torque on the ankle (left) and hip (right).

Figure 5.11: Simulated control torques for the port-controlled walking motion of
Figure 5.10, for 6 < ¢t < 9. The left figures show the various torques for the ankle

joint, the right figure for the hip joint.
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the energy management controller (5.27). As control parameters, we chose a pro-
portional energy gain K, = 1.0, and convergence parameter ¢ as in (5.21) with
ap = 0.1 and a; = 0.001. Figure 5.10 shows a simulation of the interconnection of
this controller to the compass-gait walker, and Figure 5.11 shows the correspond-
ing control torques.

With the port-based controller, the robot walks down the step without falling
over. If the parameters K, and a¢ are further tuned, steps up to roughly 11 cm
(i.e. 11% of the leg length) can be taken without falling over. The uncontrolled
walker can only walk down steps up to 2 cm. Hence, the controller really helps to
increase the robustness of the walking motion to disturbances in the floor profile,
and the performance is actually quite admirable: try walking down an unex-
pected 11 cm step with a blindfold on!

The reason for the limitation on performance (even though e.g. the point mass
of Example 5.4 converges from any ¢ # 0) is due to the limited conditions under
which the simplified model is valid. In the controller design, the biped walker
is assumed to behave like a two link manipulator fixed to the ground, and this
assumption is only valid while the stance foot remains on the ground. In the
case of large disturbances, e.g. in the ground profile, the control torques are large
enough to cause a liftoff of the stance foot, which results in falling down.

If we look at the control torques in Figure 5.11, we see that the nominal torque
and the partial potential-field compensating torque are the largest components,
and that they mostly cancel each other out. This shows that, indeed, the potential
forces are partially responsible for shaping the natural trajectory of the mecha-
nism; without them, the controller would have had to supply the large nominal
torques to keep the system on the trajectory.

Despite the nominal and potential torques canceling each other out, the re-
quired control torque w is still nonzero, even though the system is moving roughly
on a natural passive trajectory, i.e. no torques should be required. The reason for
the nonzero torques is that, although the vector field at each point is roughly di-
rected along the natural curve or towards it, the integral curves of the vector field
oscillate a little around the natural trajectory. So if the system perfectly follows
the integral curves of the vector field, a small extra torque is needed to make this
oscillation possible, and this oscillatory torque can be seen in the figures. The
design of an accurate vector field is hence essential for low-torque requirements,
and better methods than the crude least-squares approximation used here could
improve the performance.

Finally, let us pose probably the most dreaded question for people in non-
linear control theory: why not use PID control? This is directly related to the
earlier remark about limitations on performance due to the stance foot lifting off.
During nominal walking, roughly along the reference trajectory, a PD controller
tracking a time-varying setpoint performs very well, requiring very low torque
(lower than for the port-based controller) to keep the system walking. This is not
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an amazing accomplishment, since the system by itself already remains close to
the reference trajectory. However, when a step down occurs, the large position
error causes the PD controller to respond with a large torque directed towards
the setpoint. Many settings for the controller gains were tried, but either they
were to small to stabilize the system, or too large and causing liftoff of the stance
foot. This shows that, at least in this example, using a mild, energy-considerate
controller that acts in the right direction works better than a traditional controller
that applies a force directly towards the setpoint.

5.3 Planar stability using one actuator

The previous sections show how to compute efficient trajectories and control laws
for fully actuated robots. Control laws such as these are very general and al-
low provable stability and asymptotic convergence. On the hand, many practical
robots are not fully actuated. This can be for practical reasons (attaching motors
on all degrees of freedom may not be feasible), but also because many walking
robots can actually be controlled quite well using only a few actuators. However,
many of the control laws for these underactuated systems are based on intuition,
and may not be as general as the control laws for fully actuated systems. A no-
table exception is the class of robots with only one unactuated degree of freedom,
for which some general approaches exist, see for example Shiriaev et al. (2005).

These last two sections of this chapter describe control laws for very specific
underactuated walking robots. In this section, we consider the control of Dribbel,
the experimental robot introduced in Section 4.3. The results described here are
preliminary and mostly aimed at the conceptual testing of the experimental robot:
whether it can walk at all, and how well the model developed in Section 4.3 re-
sembles the real system. Most simulations and experimental results are based on
work by Beekman (2004) and Dertien (2005).

In its current form, Dribbel has only one actuated joint (the hip), and it is
hence severely underactuated. The power-continuous controller of Section 5.2
is designed for fully actuated systems, and adapting it to a system with one ac-
tuator is impossible: the only intrinsically power-continuous controller with a
one-dimensional power-port is the controller v = 0. In addition, practical bound-
ary conditions greatly reduce the design freedom: the stance leg is required to be
kept straight, and the swing foot is required to have some ground clearance. This
implies that the swing knee has to bend a decent amount during the swing phase
(to provide ground clearance), but it also needs to stretch with enough speed
before the end of the step (to lock it into place for the subsequent stance phase).

We propose a relatively simple hip controller that results in stable walking on
a level floor. We show both simulation and experimental results.
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5.3.1 Simulation of a stabilizing hip controller

We design the controller using the simulation model of Section 4.3, but extended
with a model of the hip motor and reduction stage, and a compliant contact
model (for easier simulation). Preliminary studies for a suitable motor were con-
ducted, taking into account the maximum required torque and velocity, and the
maximum allowed physical dimensions. Based on these studies, the choice was
made to use the Maxon RE40 brushed DC motor, together with the Maxon GP42c
gearbox. Detailed models of these components were taken from the 20sim motor
library and added to the model of the mechanism. The maximum input current
for the motor is 8 A, and hence any controller that is computed should require
less than 8 A maximum current.

This extended model is used for controller simulation, to check whether the
current remains within the limits, and to estimate the required mechanical power
and efficiency. The total required power, including the power used for the elec-
tronics and the knee joint locking mechanism, cannot be estimated, since no mod-
els of the electronics or the knee locking actuator have been implemented.

As described before, the hip controller needs to ensure that the knee bends
enough for ground clearance during the swing phase, but also stretches enough
to lock into place for the stance phase. In addition, the hip controller should
ensure that the forward velocity is large enough to prevent falling backwards.
Finally, it should regulate the energy, such that the robot walks with a certain
constant speed. As a first attempt to accomplish all this, we propose a simple PD
controller of the form

Imotor = Kp(qsit - q5) - qu5 (529)

where ¢° is the hip angle, ¢5, is the setpoint for the hip angle, and K,,, K4 > 0
are controller gains. The magnitude of the setpoint ¢3, is a (constant) control
parameter, but its sign is switched depending on what foot is on the ground. As
soon as the swing foot touches the ground, the sign is reversed, such that the
proportional control term produces a large control torque on the hip, causing
the new swing leg to quickly swing forward while the inertia of the lower leg
causes the swing knee to bend as required. Then, as the swing leg approaches the
setpoint, the upper leg decelerates, and the swing knee locks back into place. The
forward speed and energy can be regulated by changing the setpoint, similarly to
the foot placement strategy discussed in Section 5.4.

To determine suitable control parameters, we perform simulations for vari-
ous settings of the parameters, with setpoint ¢3,, varying between 0.1 and 0.5,
proportional gain K, between 2 and 18, and derivative gain K; between 0 and
0.5. The initial conditions for these simulations are the same for each simulation:
the swing legs slightly backward, and a small initial forward velocity of the hip
joint. The gait is considered stable if the robot does not fall within ten seconds of
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Figure 5.12: Simulation results for a parameter sweep on the control parameters
a5, Kp, and K,. The black dot indicates the chosen parameters for the simulation
of Figure 5.13 and the experiment of Figure 5.15.

simulation time. During the last five seconds of the simulation (i.e. after possi-
ble transients have settled down), the following variables are measured: average
forward hip velocity, average power consumption by the motor, and average foot
clearance of the swing foot.

The results of the parameter sweep are shown in Figure 5.12. The first figure
shows the region of control parameters which result in stable walking for at least
ten seconds. Clearly, any choice of parameters should be inside this region, and
not too close to the edge in order to allow for some modeling inaccuracies. Com-
parison of the power consumption for different setpoints ¢2,, shows that the re-
quired power increases for increasing setpoints. We therefore choose the setpoint
at g5, = 0.3 rad, such that it requires relatively little power, while still resulting
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Figure 5.13: Simulation of the joint angles for steady state walking with control
settings K, = 10 A/rad, K; = 0 C/rad, and ¢5,, = 0.3 rad.

in stable walking for a broad range of controller gains K, and K.

Figures 5.12(b)-(d) show the influence of the control gains on the average for-
ward walking velocity, the average ground clearance, and the specific cost of
transport 1, which is computed as in (4.40)

_ Pmech _ Pmech (5 30)
T gUas 927981 Upg '

with m = 9.2 kg the total mass, and Ppech and vayg the average mechanical power
and velocity obtained from the simulation data. Note that Py includes the me-
chanical power dissipated by the actuator. The figures show that the mechanical
cost increases for higher proportional gain and lower derivative gain, but that
also the average foot clearance and forward velocity increase. For efficiency, the
mechanical cost of transport should be small, while for stability, the average foot
clearance should be large. We choose here the parameters K, = 10 and Ky = 0,
which give rise to a relatively low mechanical cost ( = 0.22) with still reasonable
foot clearance. The peak current requirement is 7.5 A, which is still within the
allowed range.

Figure 5.13 shows the joint angles corresponding to steady state walking for
this choice of control settings. One of the interesting things to note in this figure
is that the gait is not symmetric with respect to the two legs: the inner knee does
not bend as much during the swing phase as the outer knee, and the step length
(which is related to the stance foot angle) is shorter when the inner feet are on
the ground than when the outer feet are on the ground. This asymmetry also
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Figure 5.14: Communication channels in the Dribbel setup: two-wire interface
(TWT) bus between the modules, and wireless Bluetooth to an external PC.

occurs for other control parameter values, and is due to a slight asymmetry in the
definition of the controller: it determines the setpoint at -0.3 rad when only the
outer feet are on the ground and +0.3 rad in all other cases (including the case
that both the inner and outer feet are on the ground). Since the simulation model
uses a compliant contact model, the double-stance phase is not instantaneous and
hence the setpoint remains longer at +0.3 than -0.3, causing the slight asymmetry
in the gait.

5.3.2 Experimental implementation and results

The electronics on Dribbel have been implemented as illustrated in Figure 5.14.
Each joint of the robot features a small controller board that handles actuation
(locking on the knees, motor control on the hip) and sensing (joint angles on all
joints, contact switches on the feet). In addition, a larger control board has been
inserted in the hip tube that handles computation of the steering value for the mo-
tor as well as communication with an external PC. Data is transferred between the
modules through a two-wire interface (TWI) bus, and between the main control
board and an external PC by wireless Bluetooth communication or a wired serial
interface.

The PD controller (5.29) described in the previous section has been imple-
mented on the main controller board, running on a 16 MHz ATMEL ATmega128
microcontroller. The control loop (sense, compute, actuate) runs at 100 Hz, while
measurement data (such as joint angles and foot switch states) is transferred to
the external PC at roughly 25 Hz. The setpoint and gains of the PD controller can
be adjusted from the external PC through a terminal interface.

Figure 5.15 shows the measured joint angles for the control parameters as set
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Figure 5.15: Measured joint angles during experimental walking with control set-
tings K, = 10 A/rad, K; = 0 C/rad, and ¢2,, = 0.3 rad.

in the simulations of Figure 5.13, i.e. ¢3, = 0.3, K, = 10, and K4 = 0. The
figure shows the measured hip and knee angles, as well as the measured foot
angles during stance phase (the foot angles are undefined and set to zero during
the swing phase). With these parameters, Dribbel can walk stably, but is very
sensitive to initial conditions and floor flatness.

Power consumption was measured in standby mode (with the motor turned
off), as well as during walking. The electronics boards consume roughly 11.2 W
in standby mode, while the knee locking magnets each consume 3.74 W when
active. During a walking cycle, the two stance knees are active constantly, and the
swing knees are active only 60% of the time. Together, this results in an average
power consumption by the electronics and knees of 23.2 W. The total average
power consumption during walking is 30.0 W, which means that the average
mechanical power consumption is 6.8 W. From the power consumption and the
average velocity (about 0.32 m/s), we estimate the specific cost of transport (5.30)
toben = 0.23.

If we compare the measurements with the simulation, we see that both the
knee, hip, and foot angles are smaller in practice than in the simulation. The
hip angle in the experiment nicely damps towards the setpoint, while the hip
angle in the simulation oscillates with a large overshoot. This can be explained
by friction in the joints of the experimental robot, which is not modeled in the
simulation. Another likely cause is the non-idealness of the mechanism, meaning
that on impact of the feet, internal vibrations in the links and mechanical play
in the joints result in higher energy loss than for an ideal rigid mechanism. This
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would account for the lower joint velocities, and the tendency for the robot to
fall backward occasionally. Accurate velocity measurements on the joints could
be used to compute the difference between the actual velocities after impact and
the ideal velocities in case of a fully rigid impact (using the velocity projection
discussed before). Finally, even though both the measured mechanical power
and velocity are lower than the simulated ones, the specific cost of transport is
very close: 0.23 in practice versus 0.22 in simulation.

It may come as a surprise that the practical cost of transportation is only
slightly higher than the simulated cost, even though the experimental setup suf-
fers from dissipation not included in the simulation model. The main reason for
the relatively low cost in the experiment is the lower walking speed (0.32 m/s
in practice versus 0.54 m/s in simulation). Lower speeds tend to require much
less power than higher speeds. In fact, simulations show that the specific cost
of transport can actually be decreased to zero by decreasing the speed towards
zero: even though the speed appears in the denominator of (5.30), the required
power for a certain speed decreases to zero faster. This is clear if we consider
only the energy lost on impact: as shown by (3.45), the kinetic energy loss on
impact is quadratic in the joint velocities, whereas the walking speed is linear in
the joint velocities. Hence, if the joint velocities decrease to zero linearly (because
of increasingly slower walking), the energy loss decreases to zero quadratically,
and hence the specific mechanical cost converges to zero. This effect leads to the
question whether the specific cost of transport is a good measure for comparison
for robots walking at different speeds.

Overall, the comparison demonstrates that the simulation and experiment
show similar behavior, but that more detailed models of the dissipation are re-
quired to make accurate predictions about angle trajectories. Still, the simulated
model has been used to successfully predict controller values that result in sta-
ble experimental walking, which, at this point, was the main goal. Future work
should adapt the model parameters to match the experimental results, such that
a more precise prediction can be made and numerical optimization of the control
parameters becomes meaningful.

5.4 3D stability by foot placement

As the final topic of this chapter, we consider the control of the three-dimensional
robot of Section 4.4, but we assume all mass to be concentrated at the hip joint.
This means that the motion of the trunk has no influence on the motion of the
rest of the walker, and hence we leave it out. It also means that the swing leg
only influences the walking motion by determining the time and position of the
next impact with the ground; its motion between liftoff and touchdown does not
influence the motion of the mass at the hip joint.

We first describe a model of this simplified system, and then discuss how foot
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Figure 5.16: Control model of a simple three-dimensional walker with coordi-
nates ¢* through ¢” and mass my concentrated at the hip.

placement can be used as a control method to stabilize it and to perform motion
planning. The results in this section are largely based on the work of van Oort
(2005), but reformulated in the port-Hamiltonian framework and extended to-
wards motion planning.

5.4.1 Simplified model of the 3D walker

Figure 5.16 shows a representation of the simplified walker, using the coordinate
choices of Figure 4.16, but leaving out the trunk. As indicated, we no longer
assume the robot to be fully actuated, but instead control it by two means. First,
we control the swing leg in order to control the time and location of the next
impact, i.e. we implement a form of foot placement control. In addition, we
compensate for the energy loss on impact by pushing off the stance leg just before
touch-down of the swing leg. Without loss of generality, we assume the leg with
coordinates ¢* and ¢° to be the stance leg, and the leg with coordinates ¢® and ¢”
to be the swing leg. The results can be applied directly to the mirrored case, by
using the coordinate relabeling (4.34).

The first control layer (foot placement) requires that we define control inputs
on the position of the swing leg, i.e. control inputs on ¢° and ¢”. Since the swing
leg is massless, we cannot use torque inputs collocated with these angles, but
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instead, we use direct velocity input. This results in the following set of equations
describing the dynamics of the walker:

e 0O 0 0010 0 0

7 0O 0 00 0 1 0 0
d.quOOOOOOWIlO{ul]
@l T lo 0 00 0 ol a0 1] |u

m 1 0 000 0 00 (5.31)

pol L0 -1 00 0 0 0 0

w] Jo 01 0 0 0]0H
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with energy function equal to

w3 ol [ T

The dynamics of the simplified walker can hence again be formulated as a port-
Hamiltonian system, with input ports (ui,y1) and (u2,y2) to control the swing
leg. Since the Hamiltonian does not depend on ¢° and ¢, the output variables
y1 and y; (the forces collocated with the input velocities u; and us) are zero at all
times.

The second control layer (instantaneous push off) can be implemented to-
gether with the impact equations. Since we consider walking on level ground,
and since the control ports in (5.31) do not change the energy of the system, the
impact losses during walking will monotonously reduce the energy of the walker
until it falls over. So, additional energy input is required. We include this by al-
lowing the stance leg to instantaneously push off just before the impact of the
swing leg. This idea is an approximation of the push-off actions of humans, who
can flex their stance foot just before impact of the swing foot, thus adding me-
chanical energy to the walking cycle.

To illustrate the idea of the approach, consider the planar case, depicted in
Figure 5.17. The velocity v_ of the hip mass before impact is tangent to a circle
around the stance foot. Due to the collision, this velocity will be projected? to a
velocity tangent to a circle around the new stance foot. Since it is a projection, it
reduces the velocity of the mass, and hence reduces its kinetic energy. If, however,
we inject kinetic energy by means of adding an instantaneous push-off velocity
Upo in the direction of the stance leg, we change the magnitude and direction of
the velocity vector to v;, such that the final resulting velocity v after projection is
as desired. Here, we search for the push-off velocity such that the kinetic energies
before and after push-off and impact are exactly equal, but the results can be
generalized to regulate the energy to some other desired level.

+ mygcos(¢*) cos(q®)  (5.32)

2Since the dynamics of the walker are essentially those of a (constrained) point mass, we can think
of this projection in the usual Euclidean way.
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(a) (b) (©

Figure 5.17: Just before collision of the swing foot (a), the velocity v_ of the hip
is along a circle around the stance foot. Then (b), the stance leg pushes off, and
increases this velocity by v,,,. Finally (c), the velocity is projected by the collision
to a vector vy along a circle around the new stance foot.

5.4.2 Energy conservation by ankle push-off

To compute the required push-off velocity v, as well as the new velocity v after
push-off and impact, we first describe the position and velocity of the hip mass in
polar coordinates around the stance foot. This coordinate transformation relates
the coordinates (x,, yn, z5) of the hip expressed in ¥ to the angles ¢*, ¢°, and the

leg length r as follows.
T, rsin(q*) cos(q®)
yn| = —7rsin(g®) (5.33)

2 rcos(q*) cos(q®)
from which we find the velocity of the hip mass in linear coordinates as

T rcos(q*) cos(¢®)  —rsin(q¢?)sin(¢®) sin(¢*) cos(¢®)] [¢*

Un| = 0 —rcos(q°) — sin(q®) @ (5.34)
Zh —rsin(g?) cos(q®) —rcos(q?)sin(¢®) cos(q?) cos(g®)| |7

Instead of polar coordinates around the (old) stance foot, we can also express the
hip velocity in polar coordinates around the new stance foot, i.e. the swing foot.

Th rcos(q%) cos(¢”)  —rsin(¢®)sin(¢”) sin(q®) cos(q”)] [¢°
Un | = 0 —rcos(q") —sin(q") q"| (5.35)
Zn —rsin(q®) cos(q’) —rcos(¢®)sin(q”) cos(q®)cos(q”)| |74

For non-singular configurations (r # 0 and ¢°,q" # 0), the coordinate transfor-
mations are invertible, and hence we can express the velocity in polar coordinates

in terms of the velocity in linear coordinates.
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The radial velocity 7_ before impact is precisely the magnitude of the push-
off velocity v,,, and the velocity projection due to impact just means setting 7
to zero. Since r_ is only nonzero just before impact, and since 7, is zero immedi-
ately after impact, the leg length equals r = 1 both before and after impact (s is
essentially a finitely high pulse with vanishing width, hence zero integral). The
final velocity after both push-off and impact can be computed by the sequence

q* q* Ty, q° ¢’

h off - | - 7 | Impact
g7 | Boshoff, f s | O30, | ) Inverse G35 7| impact 7 (5.36)
0 r_ Zh It 0

The kinetic energy increases during push-off by an amount imyr2, and de-
creases during impact by an amount $my7% (the two coordinate changes ob-
viously do not change the kinetic energy). From the setup and the sketch of Fig-
ure 5.17, we can see that 7_ should be positive to increase the forward energy,
and that the radial velocity 7 just before impact is negative (the leg is trying to
push into the ground). From these two considerations, we can compute the re-
quired push-off speed as 7 = —r ;. The velocity 7} can be expressed in terms of
the pre-impact angles and velocities through (5.36), from which finally 7*_ can be
solved as

_ @°cos(q* — ¢%) cos(q") sin(q°) + cos(q®) (¢ cos(q") sin(¢* — ¢°) — ¢°sin(q"))

- 1+ cos(g°) cos(g* — ¢°) cos(q7) + sin(¢°) sin(g")

(5.37)

where all variables should be evaluated just before impact. When this push-off
velocity is applied just before impact, the kinetic energy before push-off is the
same as the kinetic energy after impact.

5.4.3 Lateral stabilization and control by foot placement

We can combine the continuous dynamics (5.31), impact condition (4.35), push-
off velocity (5.37), and impact projection (5.36) into one set of equations that rep-
resents the simplified 3d walker with a first layer of control: energy regulation
by push-off. The second control layer is to implement foot placement, i.e. to find
control inputs u; and wug that position the swing leg in such a way that stable
walking is attained. From the model equations (5.31), we see that the dynamics
of the swing leg are just simple integrators
i® =w

.7
q = U2

(5.38)

which can be easily controlled to some setpoint ¢’ for i = 6,7, for example
by a proportional controller u; = K,(q’; — ¢') with K,, > 0 large enough. Of
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Figure 5.18: Top view of a repetitive walking motion with stance leg and swing
leg aligned in a vertical plane on impact. The hip mass alternatively over a sphere
around the current stance foot: for solid segments, one foot is the stance foot
(odd numbers) and for dashed segments, the other foot is the stance foot (even
numbers).

course, the swing leg should move to its desired position without touching the
ground, which requires some kinematic planning. For the purpose of control by
foot placement, though, this aspect is not very relevant, and we do not discuss it
further in this thesis.

As a first step in foot placement control, we need to choose a nominal tra-
jectory, i.e. a nominal stepping motion that we want the robot to converge to.
We restrict our choices here to a trajectory such that, on impact, the stance leg
and the swing leg define a vertical plane, which means that in a top view, they
are aligned. In terms of coordinates, this means that on impact ¢ = —¢* and
q" = —¢°. Even with this restriction, the system still allows many cyclic motions,
as can be seen from Figure 5.18. We can, within reasonable limits, freely choose
the step length and step width (which determine the configuration on impact), as
well as the forward velocity of the hip mass on impact. If this forward velocity is
large enough, we can find a corresponding lateral velocity on impact, such that
touch-down of the swing leg occurs exactly when

"(T) = —¢*(T) = —¢*(0)
¢ (T)=—q"(T) = ¢°(0)

at the impact time 7'. Since the two legs are aligned on touch-down, the effect of
push-off plus impact is that &, 9, are unchanged during impact, and 2, is equal
but mirrored. So, the configuration and velocity at the beginning of the second
step is equal to the mirrored configuration at the beginning of the first step, thus

(5.39)
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Figure 5.19: Fixed set-points for the swing leg result in unstable walking.

creating a cycle.

Unfortunately, most of the trajectories constructed in this way are unstable,
in particular the practical trajectories for which the step length is larger than the
step width. This can be seen for example in the simulation of Figure 5.19, where
we chose ¢8; = —0.3, ¢°; = 0.1, p = 2, and p» = 0.1, which is close to a cycle.
For the first few steps, the motion of the hip mass oscillates between the two feet,
but then it falls over to one side. This instability can be proved, as was done by
van Oort (2005), by computing the eigenvalues of the linearization of the Poincare
mapping discussed in Section 4.1. One of these eigenvalues has norm larger than
one. Similar results were obtained by Kuo (1999) for a straight-legged 3D walker
with curved feet. Note that by construction, the robot can only be unstable in the
lateral (sideways) direction. It cannot fall backward if enough kinetic energy is
given to push it over its highest point, and it cannot fall forward since the swing
leg is assumed to be controlled quickly enough to be at the required position
before touch-down.

To enhance the foot placement controller to stabilize the nominal trajectories,
we first consider again the trajectory of Figure 5.18. Since the kinetic energy is
constant throughout the push-off and impact phase, and since the gravitational
force is conservative, the trajectories are symmetric around the midpoint of the
step, i.e. when ¢* = 0, the hip mass should be at its highest point and we should
have ¢° = 0. Deviations from the nominal trajectory can thus be found by mea-
suring ¢° when ¢* = 0. If ¢° > 0 at the midpoint, it means that the hip mass is
moving too much over the stance leg, and the robot is threatening to fall to its
right, i.e. in the —y direction. If, on the other hand, G®> < 0, then the robot is
threatening to fall to its left side, i.e. in the +y direction.

The foot placement controller can be extended to stabilize these motions. Plac-
ing the foot at a different lateral position will change the lateral acceleration on
the hip mass in the next step, due to the impact and normal forces on the stance
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Figure 5.20: Simulation of walking using the foot placement controller (5.40), with
a lateral disturbance in the —y direction at ¢ = 2.
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foot, which are roughly proportional to sin(¢®). If ¢° < 0 in a step (towards the
—y direction), then the stance foot should be placed more outward, such that the
lateral acceleration is more towards +y, thus stabilizing the system. From this
principle, we can construct a simple control law for the swing leg as

6 6

Qr7ef ) q?om - (540)
Qref = Gnom — K g ‘,14:0

where K; > 0 is a control gain, and ¢/, are the nominal angles, which can be

derived from the desired step length and step width.

Figure 5.20 shows a simulation of this control law, where we chose the nom-
inal angles as ¢, = —0.3, ¢’,,, = 0.1, and the control gain K; = 0.3. After a
few steps (at ¢ = 2), we introduce a disturbance in terms of an impulsive push at
the hip mass in the —y direction. The figure shows that the robot recovers from
the disturbance and converges to walking along a different line in the = direction.
Furthermore, the disturbance introduces extra energy (after ¢ = 2), and since
the push-off controller keeps the energy constant, the robot walks with a higher
speed after the disturbance.

The robot converges to motion in the x direction, but the exact y position is
determined by the initial condition and possible disturbances. We can control the
y position indirectly, by extending the controller in order not to make ¢° at the
midpoint equal to zero, but equal to some reference value, which is computed
to steer the walker up or down in the y direction. For example, we can define a
reference signal

Gt = Kp (Yn — Ynret) + Kaiin (5.41)

which is a form of proportional plus derivative control for the y position of the hip
mass, with controller gains K, K; > 0. Note the positive feedback in the signals
y, and g, since motion in the positive y direction requires ¢° to be negative. We
can then build a controller by first limiting (5.41) between some minimum and
maximum lateral velocity (such that the system does not become unstable), and
then extending (5.40) to

6 _ 6
Gref = Ynom

5.42
Qr78f = qr710m + K (qfef - q5|q4:()> ( )
Simulations of this controller are shown in Figures 5.21 and 5.22. Figure 5.21
shows the behavior for a reference signal equal to zero for all times, and the same
lateral disturbance as in Figure 5.20. As expected, the walker still recovers from
the disturbance, but now also walks back to the reference trajectory y = 0. Fig-
ure 5.22 illustrates the behavior for a non-trivial reference signal (but no lateral
disturbance). For both simulations, we chose parameters K, = 1, K; = 1.5, and
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Figure 5.21: Reference trajectory (dotted), hip trajectory (solid), and foot prints
(dots) when walking using the foot placement controller (5.42), and with a lateral
disturbance in the —y direction around x = 4 m.
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Figure 5.22: Reference trajectory (dotted), hip trajectory (solid), and foot prints
(dots) when walking using the foot placement controller (5.42).

the reference velocity (5.41) was limited to maximally 0.3 rad/s in either direc-
tion.

Another extension in this direction would be to implement following a refer-
ence heading: walking along a different line than the fixed « direction. This can
be implemented by evaluating ¢° not when ¢* = 0, but when ¢* and ¢® are such
that the stance leg is perpendicular to the line describing the desired heading.
Furthermore, the nominal angles need to be computed from the step length and
step width relative to the desired heading instead of relative to the z-axis.

All foot placement controllers presented here only require choosing a nominal
stepping pattern, as well as some controller gains. They do not require knowl-
edge about the exact cycle, and they are invariant to changes in the hip mass.
This makes them very robust against parameter variations. For use on practical
robots, the effect of legs with nonzero mass should be investigated, as well as the
possibly positive effect of adding a trunk: by swinging the trunk in the opposite
direction as the swing leg, the effects of the leg swinging on the motion of the hip
mass may be reduced.



Chapter 6

Conclusions

6.1 Conclusions

The goals of this thesis, as formulated in Section 1.3, were to develop a port-
Hamiltonian modeling framework for walking robots, to use this model to ana-
lyze several walking robots, and to use the knowledge obtained to design energy-
efficient controllers for these robots. In this section, we discuss to what extent
these research goals have been accomplished.

Develop a port-Hamiltonian modeling framework for walking robots

Chapters 2 and 3 developed a set of modeling tools, based on port-Hamiltonian
formulations and ideas, that can be used to describe general rigid mechanisms,
possibly in contact. Approximating walking robots as ideal rigid mechanisms
is useful to study the simplified, essential properties of walking, and these ap-
proximations can also be used to design and test controllers. If more accurate
simulation models of walking robots are needed, and especially in the case of
stiff impacts, then the model should be extended to include non-rigid aspects,
such as flexibility and mechanical play.

The results of Chapter 2 are an extension of classical results for serial mech-
anisms to the case of mechanisms with joints with more general configuration
manifolds, such as Lie groups. This generalization is useful for systems that re-
quire singularity-free parameterizations of these joints, e.g. systems that are mov-
ing freely in three-dimensional space, such as walking robots. Since the deriva-
tion of the dynamics is a modular, joint-based process, it can be easily automated,
and some of the results and ideas have been implemented in the 3D mechanics
toolbox of the simulation program 20sim (Control Lab Products 2005).

Chapter 3 developed general models for two types of contact: compliant and
rigid. Compliant contact models can be implemented as port-Hamiltonian sub-
systems and interconnected to the contacting bodies through power ports. As
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such, they are highly suitable for modular modeling purposes. A model of a
walking robot, for example, is obtained simply by taking a model of the free
mechanism and placing contact models between the feet and the ground. Rigid
contact models are more suitable for analysis than simulation, as they simplify
the fast dynamics of compliant contact to a state projection at one single time
instant. However, practical implementation of rigid models requires direct mod-
ification of the equations of the mechanism, as well as cumbersome conditional
checks to describe the contact release conditions, which become especially com-
plex for multiple contacts. As such, rigid contact models are not modular and
hence, at this stage, not suitable for inclusion in a model library or implementa-
tion in automatic modeling tools.

During the development of the modeling framework, no experimental tests
were conducted to verify whether the various modeling assumptions were true.
This approach was taken since the goal was to develop a framework, i.e. a set of
tools that can be used to model a whole class of mechanisms, possibly in contact
with other mechanisms or with a fixed world. The assumption of rigidity restricts
the class of systems that can be considered, or at least reduces the accuracy of
the predictions (as was seen in the comparison of simulation and experiment in
Section 5.3), but it allows to draw general conclusions about the remaining class
of systems, and the resulting models for these systems are simple enough to be
used in calculations. Without the simplifying assumptions, the models just would
not be manageable.

Analyze models of several walking robots

Three different walking robots were analyzed in Chapter 4: the standard planar
compass-gait walker, an idealized rigid model of the experimental robot Dribbel,
and a straight-legged three-dimensional walking robot with a trunk. Simulation
and analysis models of these robots were developed using the tools of Chapters 2
and 3.

It was shown how the problem of finding natural, energy-efficient walking
gaits can be formulated as an optimization problem. For the compass-gait robot
walking down a small slope, the optimized motions were found to be purely pas-
sive motions, i.e. they require zero torque. The stability of these gaits, however,
can not be determined from the optimization routine. For the experimental robot
Dribbel walking down a slope, no stable passive motions could be found. For the
three-dimensional robot, the most efficient fixed-speed level ground walking gait
was computed, with the mass of the trunk distributed in different ways between
the head and the hip. From these optimizations, it was seen that placing more
mass at the hip joint results in more efficient motion. Hence, from a purely me-
chanical perspective, adding a directly actuated trunk to a straight-legged walker
does not improve its efficiency.
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The modeling framework developed in this thesis proved useful for simula-
tion of walking robots, as well as analysis of their efficiency and prediction of
efficient walking cycles. The analysis of the impact projection by itself allows es-
timation of the mechanical energy losses and suggests energy-efficient postures
and velocities. However, impact is only part of the walking cycle, and hence these
postures and velocity may very well be sub-optimal for the overall efficiency of a
gait.

Design energy-efficient controllers for walking robots

Chapter 5 demonstrated that the mechanical structure of a walking robot can
greatly influence and optimize its energy-efficiency. It showed how the compass-
gait walker can passively walk down a certain slope at a whole range of walking
speeds, simply by choosing the right mass distribution on the robot, or by adding
an extra spring and damper.

The general control problem of tracking a certain desired curve can be sim-
plified by choosing coordinates that reflect this control goal. It was shown that,
once the coordinates have been chosen to encode this control goal system, de-
signing the control law itself becomes almost trivial. Formulating the dynamics
as a port-Hamiltonian system also allows an intuitive interpretation of the control
objective as transporting energy from one storage location to another.

Walking robots can not only be stabilized by trajectory tracking control meth-
ods, but also by simple intuitive control algorithms, e.g. based on a simple PD
controller on the hip joint (for Dribbel) or foot placement (for a three-dimensional
walker). Formal proof of stability and convergence for such controllers, however,
is much harder.

Overall conclusions

The research described in this thesis has been conducted as part of the GeoPlex
project, and as such, another purpose was to investigate the advantages and dis-
advantages of using the port-Hamiltonian framework. A more commonly used
framework for analyzing mechanical systems such as walking robots is the La-
grangian framework, meaning (roughly) the framework in which the state vari-
ables are positions and velocities, as opposed to positions and momenta.

For most mechanical systems, the momentum variables are related to the ve-
locity variables by multiplication of an invertible mass matrix. For these systems,
the two frameworks are mathematically equivalent, meaning that any model or
controller expressed in one framework can be translated to a completely equiva-
lent model or controller in the other framework. In particular, all modeling and
control results in this thesis can be formulated equivalently in terms of velocities
instead of momenta. As such, using either of the frameworks seems to be more a
matter of personal taste than mathematical necessity.



174 CHAPTER 6. CONCLUSIONS

However, since mathematical models are to be used not only in numerical
computations by a computer, but also in manual analysis by a real person, the
frameworks do have very distinct properties. As shown in this thesis, the struc-
ture of a port-Hamiltonian framework separates mechanical systems in energy-
exchanging subsystems, and variables are considered in pairs of collocated power-
variables. This structure can help in both the analysis and the controller design,
especially when intrinsically passive or power-continuous controllers are to be
designed. This was shown, for example, in the controller design in Section 5.2.
For practical implementation, however, the Lagrangian framework is often better
suited: in the polynomial approximation of the joint trajectories, for example, it is
much easier to express the velocities in terms of the parameters of these polyno-
mials than the momenta. Furthermore, specifying initial velocities is much more
intuitive than specifying initial momenta.

Eventually, this author believes that the ideas from port-Hamiltonian frame-
work, such as emphasis on energy flows, collocation of variables, and power-
continuity of controllers, are indeed very useful and should be kept in mind when
analyzing and designing physical systems, especially when energy-efficiency or
passivity plays a role. Whether the final dynamic equations are better formulated
in port-Hamiltonian or Lagrangian terms, however, depends on the particular
task and is less important.

The modeling framework developed in this thesis allows for rapid prototyp-
ing of models of complex three-dimensional robotic mechanisms. Furthermore,
the analysis method using parameterizations of both reference trajectories and
mechanical structure is general, and can be applied to all kinds of walking robots.

General analytical tools, such as the ones developed in this thesis, should form
a rigorous mathematical backup to verify, explain, generalize, and optimize ideas
based on engineering intuition. Thus, results from one specific example can be
extended to a class of systems, which, in the end, is what distinguishes science
from ad hoc solutions.

6.2 Recommendations for future work

The answers to the research questions of this thesis have led to more questions,
and hence several directions for future research. We briefly discuss these direc-
tions here, organized by topic.

Modeling framework and tools

e The most general joint types (including nonholonomic joints) still need to
be implemented in software, e.g. in the 20sim 3D mechanics toolbox. Al-
though the general definition of these joints might be mathematically quite
involved, specific examples such as spherical joints can be implemented as
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just another joint type in the editor, with the mathematical details hidden
from the user.

e Identifying the parameters in a port-Hamiltonian model generally involves
estimating physical parameters, such as the mass of a body, or the stiffness
and damping of the ground. It would be beneficial to have a solid iden-
tification method for port-Hamiltonian systems, i.e. a robust method that
determines the parameters based on measurement data. Similarly to exist-
ing identification methods for classes of linear systems, a port-Hamiltonian
identification method would compute the ‘best fitting” port-Hamiltonian
system of a certain order from measurement data.

o The local, differential approach to contact kinematics, as presented in this
thesis, should be combined with global approaches from the field of com-
puter graphics. These global approaches can then be used to give the con-
tact positions on initialization and occasional resets to avoid drift, while
the local approach tracks the contact positions and velocities continuously
between resets.

o The problem of multiple rigid contact points can be formulated and ana-
lyzed as a linear complementarity problem (Cottle et al. 1992). This ap-
proach should be investigated, as it may suggest efficient ways to determine
which contact constraints are active and which should be released. How-
ever, multiple impacts remain a delicate and sometimes even ill-defined
problem, and hence, in the end, attempting to approximate multiple com-
pliant impacts as rigid impacts may not even be possible.

e The experimental results with Dribbel showed that approximating a practi-
cal robot by a rigid mechanism can be a rather crude approximation, espe-
cially during rigid impacts. Flexibilities in the links and mechanical play in
the joints result in larger energy loss on impact; as if a shock wave travels
through the mechanism. It may be possible to implement this extra energy
loss as another instantaneous projection operation on impact.

Analysis of walking robots

o The analysis of the three-dimensional walker with a trunk, as well as a simi-
lar study on a planar robot with trunk, demonstrate that least control torque
is required when the trunk is not present and all its mass is concentrated at
the hip joint. This begs the question why humans do have a trunk, and
future research should investigate this. Perhaps the trunk is only useful
when the system is underactuated (providing a counter weight for motion
of the swing leg). It may also be useful in three-dimensional robots as a
location to attach arms that counter swing the leg motion, thus avoiding



176

CHAPTER 6. CONCLUSIONS

rotation around the vertical axis. And maybe the only use of the trunk is
to store computers and other equipment on it, i.e. it may be more efficient
to have mass on the trunk instead of on the legs. Finally, efficiency may be
improved by mechanically constraining the motion of the trunk, as done
by Wisse (2004), such that no extra torques are required to keep the trunk
upright.

Continuing in this direction, more detailed models of human proportions
should be investigated, i.e. three-dimensional models with human masses
and inertias, a trunk, arms, and kneed legs. As discussed in Chapter 1, ana-
lyzing the mechanics of walking in nature can provide insight and suggest
improvement for both natural and robotic walking. Thus, the results from
the analysis of human-like mechanisms may explain how and why people
walk the way they do, and can help in the rehabilitation of people who
do not walk that way anymore. Furthermore, the actuation locations and
strategies for humans could provide useful suggestions for the actuation of
robotic walkers.

The optimization technique for finding efficient gaits of a robot produces
nominal trajectories, but tells us nothing about the stability of these tra-
jectories. To describe the stability of a cycle in a practical way, a physically
intuitive and coordinate-free definition of the region of attraction is needed,
i.e. some way to measure the volume of the region in state space from which
the system converges to this nominal trajectory.

The numerical optimization for efficient trajectories at this point requires
some human input to discard solutions if the optimization gets stuck in a
local minimum with too high a cost. Suitable initial estimates for the opti-
mization also need to be chosen manually. Online implementation is hence
not yet possible, although it would be useful to adapt a reference trajectory
to the particular circumstances. Future research should make the optimiza-
tion more robust and reliable to allow this.

One of the problems that prevent the automated search for efficient trajec-
tories is the number of degrees of freedom in the optimization procedure.
Especially for more complex robots, this large search space makes the opti-
mization problem hard to solve. This complexity may be tackled by using
lower-order polynomials first, in order to get a rough initial estimate of the
efficient motion, and then using these estimates as initial guess for higher
order polynomials. Another option would be to use a type of ‘morphologi-
cal expansion’, as illustrated in Figure 6.1: a complex robot is approximated
by simpler robots with fewer degrees of freedom, but with dynamic prop-
erties (mass and inertia) as close as possible to the complex robot. First, the
motion of the simplest robot (left-most figure) is optimized to be as efficient
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Figure 6.1: Idea of morphologically expanding the optimized solution for a sim-
ple walker to a more complex walker.

as possible. The resulting motion is then used as initial estimate for the op-
timization of a robot that is slightly more complex. This iteration continues
until the optimal motion for the most complex robot is obtained.

Control of walking robots

o For specific practical robots for which actuators have been chosen, the cost
function should be adapted to reflect these choices. In other words, the cur-
rent, rather arbitrary, cost function of summed squared torque components
should be replaced by something that really reflects the energy cost of actu-
ation torques in certain directions.

e Similarly, it should be investigated whether underactuation can be included
in the numerical search. Underactuated joints may be thought of as very in-
efficient motors with a very high associated cost. Optimal trajectories with
a low cost hence will be such that little to no torque is required from these
joints. It remains to be seen, though, whether subsequently approximat-
ing these little-torque actuators by zero-torque unactuated joints results in
stable motion.

o Instead of computing the optimal torques as polynomial functions of time,
it should be checked whether they can be described as polynomial (or other)
functions of the joint angles. If this is possible, then the resulting functions
can be thought of as caused by a certain potential field, namely the integral
of the forces over the joint space. This gives a direct parameterization of the
optimal stiffness distribution.

e Given the optimal spring, mass, and damper configuration for a certain
speed, these mechanical elements should somehow be implemented in the
mechanical structure. Several suggestions for implementation have already
been given, but practical feasibility and efficiency still has to be proved.
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e An automatic procedure should be devised to construct the desired vector

fields as used in port-based asymptotic curve tracking. The current vector
field for the simple compass-gait walker, based on manual extension from a
single nominal curve, is already reasonably complex to construct manually.
For higher-dimensional systems, this construction process becomes down-
right impossible. The automated method should take a desired curve as
input, and construct a vector field directed towards this curve, for example
by using a weighted combination of the Euclidean shortest distance vector
to the curve and the velocity vector at the closest point of the curve. This lo-
cal approach for points that are reasonably close to the desired curve, could
then be augmented with global motion planning techniques, for example to
avoid regions of the state space that correspond to toe stubbing.

Concerning research on Dribbel, the experimental results presented in this
thesis were very preliminary, using only a fixed-parameter switching PD
controller on the hip joint. Although this results in stable walking (most
of the time), the robustness against disturbances and initial conditions is
not very high. Future work should investigate the possibilities of using
the torque sensor on the hip motor, as well as extra inertial sensors. Based
on measurements from the torque sensor, the control gains on the hip con-
troller can be adapted (on or off-line). The measurements of the inertial
sensors can be used online to adapt the setpoint for the hip angle. This ef-
fectively implementing a form of foot placement control, which can be used
to control the forward speed and increase robustness against disturbances.

The mechanical construction of Dribbel is based on a very crude knee-
locking mechanism that accounts for more than a third of the total power
consumption. Better mechanisms should be investigated, possibly using
mechanical instead of magnetic locking forces. Furthermore, the use of dif-
ferent foot shapes (curved feet instead of the current point feet) can reduce
the energy losses on impact, at the cost of more difficult foot angle mea-
surement. Finally, the idea of using additional tunable passive mechanical
elements to change the natural motion, demonstrated conceptually in Sec-
tion 5.1 of this thesis for the compass-gait walker, should be implemented
on Dribbel to see whether this is also a feasible control method in practice.

The control method of foot placement has been demonstrated on a simple
walker with massless legs. Future work should extend these results to legs
with nonzero mass. In this case, the presence of a trunk and arms may be
beneficial to counteract the inertial effects from the swing leg, i.e. the trunk
could move such that the combined motion of trunk and swing leg least
disturbs the hip mass from its trajectory as a three-dimensional inverted
pendulum.
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e Sideways position control by foot-placement should be augmented with
horizontal speed control and adaptable push-off velocities. By placing the
feet more forward or backward, the horizontal velocity can be increased or
decreased. In this way, the robot can also be started and stopped by means
of foot placement.
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Appendix A

Mathematical Background

This appendix presents a short intuitive overview of the mathematical concepts
used in this thesis. More detailed, precise, and extended treatments can be found
in many textbooks, such as Lay (2002) and Trefethen & Bau (1997) for linear alge-
bra, Dubrovin et al. (1984, 1985) and Burke (1985) for differential geometry, and
Gilmore (1974) and Selig (2005) for Lie groups.

A.1 Linear algebra

We start with two basic definitions of mappings and some possible properties.
These properties are illustrated in Figure A.1.

Definition A.1 (mappings). A mapping f between two sets A and B associates
exactly one element of B to each element of A. We denote it abstractlyas f : A — B,
and its action on an element a € A as f(a) — bwith b € B. The set A is called the
domain of f, and the set B its co-domain. The set of all b € B such that there exists
an a € Awith f(a) — bis called the range of f.

Definition A.2 (surjective, injective, bijective). A mapping f : A — B is
surjective (or onto), if its range is equal to its co-domain. It is injective (or one-to-
one) if for every b in its range, there is exactly one a € A such that f(a) — b. A
mapping is bijective (or one-to-one and onto) if it is injective and surjective.

In addition, a diffeomorphism is a mapping between R™ and R" that is injective,
continuously differentiable, and has a continuously differentiable inverse.

Some examples of different types of mappings f : R — R are the functions
f(z) — z? (not surjective, not injective), f(z) — tan(z) (surjective, not injective),
f(z) — €® (not surjective, injective), and f(z) — 2 (bijective).
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(a) not surjective and not injective. (b) surjective and not injective.

(c) not surjective and injective. (d) surjective and injective.

Figure A.1: Examples of mappings f : A — B with different properties.

Definition A.3 (vector space). A real vector space V' is a set of elements (called

vectors), one element called the identity (or zero-vector 0), and two operations @
(addition of two vectors) and - (multiplication of a vector by a scalar), such that

o for all two elements vi,vy € V, also vy D vg € V;
o forall elementsv € Vand z € R alsoz-v € V;
e for all elements v € V, there exists a v=' € V such that v ® v=! = 0;

and such that the following properties hold for all vi,vs,v3 € V and x1,x2 € R.

—

v1D 0 =v; (v1 B v2) B vz =v1 & (v2 D v3)
]."Ul:’l)l (1’1-}-1’2)"01:(xl'vl)®($2'01)
x1 - (@2 - v1) = (122) - 1 z1 - (v1 B ve) = (21 -v1) B (1 - v2)

where x1 + x4 and x1x4 are standard addition and multiplication of real numbers.

The abstract definition of a vector space includes many different spaces with a
linear structure. Not only an obvious example like the space of all velocity vectors
of a point mass is a vector space, but, for example, also the space of all 2 x 3
matrices, if we take element-wise addition as the & operator and the zero-matrix
as the identity element.

Since a vector space is closed under addition and scalar multiplication, we
can search for the smallest number of elements e; € V such that any element of
V can be constructed by addition and scalar multiplication of the elements e;. If
we can find n < oo elements e; that accomplish this, then the vector space is said
to be n-dimensional, and the e; elements are called a basis of the vector space.
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The dimension n of a vector space is unique, but the choice of basis e; is not. By
definition, we can express any element v € V' as a linear combination of the basis
elements, i.e. as

n
v = Zviei =vle; +v2es + ...+ 0", (A1)
i=1

the n numbers v € R can serve as coordinates for V, as they define a bijective
mapping between R™ and V.

Definition A.4 (Lie algebra). A Lie algebra is a vector space together with a binary
operator [,] : V. x V. — V (called Lie bracket or commutator), that satisfies the
following properties for all vi,ve,v3 € V and a1,as € R

bilinearity: [a1v1 + agv2, v3) = aq[v1, v3] + az v, vs] (A2)

[v1, a1v2 + aov3] = ai1[v1, va] + aslvi, vs]
skew-symmetry: [v1,v2] = —[va, V1] (A.3)
]ﬂCObi’S identity: [’Ul, [’02, ’U3]] + [’Ug, [’Ug, ’Ul]] + [’Ug, [’Ul, ’1)2]] =0 (A4)

An example of a Lie algebra is the vector space V of all n x n matrices with the
Lie bracket defined as [A, B] := AB — BA for A,B € V. The concept of a Lie
algebra is used in the context of Lie groups in Section A.3.

Definition A.5 (dual vector space). The dual space V* of a vector space V is
the space of all linear mappings (called co-vectors) from V to R, i.e. all mappings
f:V — Rsuch that forall v; € V and x; € R.

fzr-v)@...® (xk-vk) =x1f(v1) + ... + 2 f (k) (A.5)

Definition A.6 (dual product). The dual product is the natural pairing of an
element v € V and an element f € V* as (f|v) := f(v) € R

If we choose a basis e; for V, we can express any element v € V as (A.1), and
hence from (A.5) we see that the mapping of v by an element f € V* can be
written as

(floy=fv)=f (Z Ui@i) = Zvif(ei) (A.6)
i=1 i=1

i.e. as a linear combination of the mappings of the basis elements. This shows
that a dual element f is fully defined by how it maps the basis elements, and,
since each element f(e;) is a single real number, it shows that the dimension of
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V* is equal to the dimension of V, i.e. the number of basis elements e;. It also
suggests a basis for the dual space V*, which we denote by ¢’ and is defined by
the condition

1 wheni=j

(ef]e;) = el (e;) = &7 = {0 when'i £ j (A7)

where 6/ is the Kronecker delta. Any f € V* can then be written as a linear
combination of the basis elements e’

F=Y_fied = fie' + fo€® + ...+ fre” (A.8)

with the numbers f; € R again defining coordinates for V* in the basis e/. With
these choices of bases, computing the dual product (A.6) becomes

(flv) = Zf;ej <Zviei>=zz,fvef (e:) Zfz (A9)
i=1

=1 j=1

so, for these choices of bases, computing the dual product of a vector and a co-
vector simply means summing the pair-wise products of their coordinates.

Vector spaces and their duals define an interesting mathematical structure,
but they can also be used to represent a physical structure, namely as follows.
Consider a robotic mechanism with n joints, for example the system of Figure 2.8
on page 46 for n = 4. The space of velocities ¢ (at a point ¢) forms a vector space
V, and we can choose a basis for example as e; = ¢', i.e. each basis element
describes the unit-velocity of one joint, and zero velocity of the other joints.

This vector space V' automatically induces a dual space V* of abstract linear
operators mapping a velocity to a real number. We can just ignore this dual space,
but we can also think of it as the space of all collocated joint torques, i.e. the n-
dimensional space with elements 7 and basis elements ¢’ = 7;. From the structure
of the vector space and its dual, we can pair elements as

T|¢) = Z TG (A.10)
i=1

such that applying 7 to ¢ produces a real number. The reason for choosing this
interpretation of a vector space and its dual becomes clear when we interpret also
this real number: the dual product represents the mechanical power flowing into
the system when it is moving with velocity ¢ and with applied torques .
Associating the abstract mathematical concept of (dual) vector spaces to the
practical physical concept of collocated power variables (force and velocity) can
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help reasoning about the physical concepts. The mathematical structure con-
strains computations to make sense. For example, computing the power as (A.10)
only makes sense when 7 and ¢ are collocated, which is equivalent to V" and V*
having dual bases as defined in (A.7). In this way, keeping the mathematical
structure between physical variables in mind can help to avoid mistakes.

Definition A.7 (tensor). Given a vector space V and its dual V*, a tensor T is a
mapping of the form

T:V*x--xXV*xVx---xV->R (A.11)

p times q times

that is linear in all its arguments. The tensor T is said to have order p + q, order p
contra-variant and order q co-variant, and is called a type (p, q) tensor.

Tensors are linear operators that map vectors and co-vectors to R, and as such,
are generalizations of the concepts of vectors and co-vectors. In fact, a co-vector
is a type (0, 1) tensor, since it maps a vector (an element of one copy of V) to R.
Similarly, a vector is a type (1, 0) tensor, since it maps a co-vector (an element of
one copy of V*) to R. Both mappings are defined by the dual product.

Basis elements and the corresponding coordinates for tensors can be con-
structed from coordinates for vectors and co-vectors, simply by taking the ap-
propriate coordinates for each of the arguments. The (i1, ..., iy, j1, - - -, jg)th co-

ordinate of a type (p, ¢) tensor T, i.e. the result of applying T to the basis vectors

. D1 yeeesl . .
el,...,eP and co-vectors eq,...,e,, is denoted by T . This convention of
) ) b) b q ]1 ]q

writing the contra-variant indices as superscripts and the co-variant indices as
subscripts can be useful to quickly assess the type of tensor from its representa-
tion in coordinates.

A metric tensor, often denoted by g, is a symmetric positive-definite type (0, 2)
tensor. It is symmetric in the sense that g(v, w) = g(w, v) for any two vectors v, w,
and positive-definite in the sense that g(v,v) > 0 for all vectors v except the zero-
vector (in which case it returns zero by linearity of tensors). With a metric-tensor,
we define the inner product between two vectors v and w as

v-w = glv,w) = g(w,v) = Zgijviwj (A.12)
0,J

the length of a vector v as

[v] == Vv-v=1/g(v,v) = Zgijvivj (A.13)
2
and the cosine of the angle between two nonzero vectors v and w as
cos(L(v,w)) = —2 (A.14)

~ [ofwl
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When v - w = 0, the vectors v and w are said to be orthogonal in the metric g.

We can again relate the mathematical concept of a metric to physical variables.
In this case, we take e.g. again the space of velocities ¢ as the vector space V,
and now the mass matrix M as a metric tensor, since it is indeed symmetric and
positive definite. Then, when we apply the tensor M to two copies of ¢, that
is, we multiply the matrix with the vectors as ¢’ M, we obtain a number that
represents the physical quantity of twice the kinetic co-energy associated with
the velocity .

We can also define a new tensor by applying the metric tensor only to one
copy of V. The resulting tensor maps one tangent vector to R, and is hence a ten-
sor of type (0,1) — a co-vector. If we again take the physical example of a robot
with velocity ¢ and mass matrix M, the new tensor is M ¢ — the generalized mo-
mentum (co) vector. Hence, we have seen two interpretations of the dual vector
space: one as the space of forces, and one as the space of generalized momenta.

The distinction between the different types of tensors allow to assess what
operations between them are possible. For example, a metric tensor is an oper-
ator mapping two vectors to R, and hence it does not make mathematical sense
to apply them to co-vectors, even though the coordinates of a metric tensor (rep-
resented by an n x n matrix) can be multiplied by the coordinates of a co-vector
(represented by an n-dimensional column vector).

A.2 Differential geometry

“But how can you take such a map seriously,” the poet snickered, “when
it shows the earth flat, and you claim it’s a sphere?” “What arqument
is that?” Abdul was indignant. “Could you depict a sphere in such a
way that you could see everything on it? A map must serve to point
out the way, and when you walk, you see the earth flat, not round.”

— Umberto Eco, ‘Baudolino’

The configuration space of a joint (or of a robot) is generally represented by an
abstract space that is not directly equal to R™ for some suitable n. For example,
Section 2.1.1 shows how the configuration of a rigid body is described by an ele-
ment of SE(3), and how using RS (six numbers, e.¢. including Euler angles) leads
to singularities and other numerical problems that are not present in physics.

Differential geometry is a field of mathematics that makes exact the global
properties of a configuration space such as SE(3), while still allowing to do com-
putations locally using real numbers. In this section, we give a very brief intuitive
overview of the idea of differential geometry and how it can help to use some
concepts from this field.

The central concept in differential geometry is the concept of a manifold. For
the purpose of this thesis, we can think of a manifold as some kind of abstract
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space (such as SE(3)) that locally looks like R™. More precise, if we take a point
in the abstract space, then the space around this point can locally be described by
coordinates in an open subset of R™. An example of such a manifold is the surface
of the earth, which globally is (more or less) a sphere, and locally (at each point)
can be described by coordinates in RZ?, i.e. aflat chart. These charts, unfortunately,
are not global, due to the topology of the sphere.

Once it becomes clear that a space is a manifold, i.e. once we have found
enough local coordinate charts to R" to cover the whole space, we can define
global objects on the manifold (such as functions) by defining them first locally
for each chart, and then checking certain compatibility conditions between the
charts. These compatibility conditions ensure, for example, that a certain point
in the abstract space, with two different coordinates in two different local charts,
still has the same function value.

A manifold is called differentiable, if the mappings that change coordinates
between different charts are diffeomorphisms. At each point p of a differentiable
manifold M, the space of all tangent vectors is called the tangent space, denoted
T, M. This space is a linear vector space of dimension n, and describes all possible
directions around p. The union of the tangent spaces over all points of M is called
the tangent bundle, denoted T'M. An element of the tangent bundle consists of a
point p € M plus a vector in 7}, M: the tangent bundle is hence 2n dimensional.

The fact that the tangent space is a vector space allows to generalize the lin-
ear algebra concepts from Appendix A.1 to the setting of differential geometry.
Since the tangent vector space at every point p has a dual, denoted by T; M, we
can define the co-tangent or dual tangent bundle 7*M as the union of all dual
tangent spaces. The concept of a tensor can be generalized to a tensor field, which
is an object, defined on the manifold, that at each point p maps copies of the tan-
gent space T, M and dual tangent space 7; M to a real number, and that varies
smoothly over M. Note that tensor fields only operate on vectors and co-vectors
that are elements of tangent and co-tangent space at the same point p.

An example of a tensor field is a vector field, which is a tensor field of type
(1,0) that assigns to each point of the manifold a tangent vector. Figure A.2(a)
shows an example. It also shows how, from a vector field, we can define its inte-
gral curves as the curves with velocity vector at all points equal to the value of the
vector field at those points. Integral curves can be interpreted as the trajectories
of a particle flowing along the vector field.

Given a function f : M — R of the points of the manifold, this function is
obviously also defined for the points of the integral curves. If the function is
differentiable, we define its Lie derivative along the vector field X at a point p as

d

(o) =5 (o)) (A15)

t=0
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a) Vector field X and one of its inte- (b) A function f and its Lie derivative along X. The curve
g
gral curves ¢(t). ¢(t) is parameterized by ¢ with ¢(0) = p.

Figure A.2: A vector field X on a manifold defines integral curves and Lie deriva-
tives of functions at each point.

where ¢(t) is an integral curve of X with ¢(0) = p. It can be shown that this
expression is independent of the choice of integral curve. An example of a Lie
derivative is shown in Figure A.2(b).

From two vector fields X and Y, we can also define a third vector field Z as
the unique vector field such that for all functions f

Lzf=Lixy1f=Lx(Lyf)—Ly(Lxf) (A.16)

This new vector field is called the Lie bracket of the two vector fields. It roughly
represents the velocity when moving a little along X, then a little along Y, then a
little along — X, and finally a little along —Y".

Another example of a tensor field is a metric tensor field, which assigns to
each point of the manifold a metric tensor, i.e. a symmetric positive definite type
(0,2) tensor. Such a tensor defines the metric concepts (dot-product, length, and
angle) for tangent vectors at all points of the manifold.

Like the concept of a tensor, manifolds are mathematical structures that can be
used to describe physical relations between variables. In this thesis, as in many
works on robotics, the configuration space of a mechanism (describing all possi-
ble angles and positions of the joints in a mechanism) is thought of as a manifold
@ . This means that, although almost all results are expressed in local coordinates
q" € R, it is realized that the global structure of the configuration space is not
equal to R". Similarly, the velocities ¢ are thought of as belonging to the tangent
space T,Q, even though these two are usually expressed in coordinates ¢* € R™.
The mass matrix M (q) is used as a metric field on @ and thus defines concepts
like norms and orthogonality for velocity vectors. It also transforms velocities ¢
to generalized momenta p = Mg, elements of the co-tangent space. Remember-
ing that these physical variables are part of a mathematical structure is important,
as it can help to avoid performing physically meaningless operations..
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A.3 Lie groups

A.3.1 Definition and examples

Definition A.8 (group). A group G is a set S together with a binary operator
o: S5 xS — Sandanelement I € S, such that for all s1, s2, s3 € S we have

identity element: siel =105 =35 (A17)
associativity: (s1052) @53 =251 (52 @53) (A.18)
inverse element: JIs;' € Ssuchthat s, es7' =s;'es; =1 (A.19)

Ifalso s; @ sy = s9 ® 51 (commutativity property), the group is called abelian.

A simple example of a group is theset Z = {...,—2,—1,0,1,2,...} together with
the standard addition operator and identity element 0. It can be checked that this
is indeed a group: adding zero to any element of the set indeed gives that same
element, addition is associative, and for each element, the inverse is simply the
negation of that element. Since summation is even commutative, this group is
also abelian.

Definition A.9 (Lie group). A Lie group G is a manifold that is also a group, i.e.
it has a binary operator @ : G X G — G and an identity element I € G that satisfy
the group properties.

A Lie group is basically a group with a differentiable structure, which allows to
talk about curves, velocities, tangent spaces, etcetera. We discuss a few examples
of Lie groups that are useful for robotics, i.e. examples that describe positions
and orientations in space. Since these groups are generally abstract, we also dis-
cuss matrix representations, i.e. sets of matrices with certain properties, which,
together with the usual matrix multiplication as binary operator and the identity
matrix as identity element, can be related one-to-one to abstract elements of the
group. The matrix representations can be used in numerical computations as a
type of singularity-free (though redundant) set of coordinates.

Example A.10 (translation). The group of all translations in n dimensions is de-
noted by T'(n), e.g. the group of translations in three dimensions is denoted by
T'(3). Clearly these groups can be directly identified with R”, and so a matrix
representation of 7'(n) would be the space of n-dimensional column-vectors p,,,
together with vector addition as the the binary operator, and the zero vector as the
identity element. Another possible representation is as the set of all (n+1xn+1)
dimensional matrices structured as

I, pn
o) a0)
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with p,, the translation vector, together with matrix multiplication as binary oper-
ator and the identity matrix as identity element. This method looks cumbersome
and the matrix representation is highly redundant, but it proves useful when
translations are combined with rotations. A

Example A.11 (fixed-axis rotation). The space of rotations around a fixed axis
forms a group under the binary operator of combining rotations by performing
one rotation after the other. The group is denoted by SO(2) and can be identified
with the circle S!. The group is one-dimensional, and in practice, it is often de-
scribed by a single real number (the angle of rotation). This, however, neglects
the fact that a full 360° rotation does not change the group element, although it
does change the angle; this is the difference between a circle and a straight line.
Instead, the group of rotations can be described by the set of special orthogonal
2 x 2 matrices (whence the name SO(2)), meaning 2 x 2 orthogonal matrices with
determinant +1. These matrices have the form

_ |cos(¢) —sin(¢)
R= sin(¢)  cos(¢) (A.21)

where ¢ is the angle of rotation. Together with matrix multiplication as the binary
operator, and the identity matrix (¢ = 0) as the identity element, these matrices
form a complete representation of the group of fixed-axis rotations. A

Example A.12 (spatial rotation). The space of free rotations around any axis in
three dimensions forms a group, and is denoted by SO(3). The group is three-
dimensional, and is often represented locally by three angles, called the Euler
angles, that describe three consecutive rotations around three (local) axes. Such
a parameterization, however, has singularities, which results in non-smooth be-
havior of the coordinates around singularities. Instead, rotations can be fully and
uniquely identified with the set of all special orthogonal 3 x 3 matrices (whence
the name SO(3)), meaning 3 x 3 orthogonal matrices with determinant +1.

Another representation of the group of spatial rotations, not used in this the-
sis, is by unit quaternions. In this representation, a vector of the form

q=[cos(§) nisin(§) nosin(§) ngsin($)] (A.22)

is used to describe rotation around an axis n = [nl N9 nd] with angle 6. The
axis n is constrained to have unit norm (in the Euclidean sense), which means
that also the vector ¢ has unit norm. This representation is singularity free, but it
doubly covers SO(3), since the rotation angles « and « + 360° (for some «) define
the same rotation, but are represented by different vectors g.

Instead of thinking of ¢ as a unit vector in R?, it can also be thought of as a
unit quaternion, which allows to use the mathematical structure of the space of
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unit quaternions. However, quaternions are not as easy to use in computations as
rotation matrices, whence the choice for the matrix representation in this thesis.
Still, quaternions are highly suitable for numerical implementation, and could be
used when implementing the results from this thesis in software. A

Example A.13 (planar motion). We can combine the group of two-dimensional
translations, i.e. translations in a plane, with the group of fixed-axis rotations and
take the fixed axis to be orthogonal (in the Euclidean sense) to the translational
plane. The resulting object is again a Lie group, and it describes all planar mo-
tions, that is, the set of all possible ways that an object can be positioned in a
plane. This group is called the special Euclidean group of dimension two, de-
noted SE(2).

As representation of this group, we can simple use a combination of a two-
dimensional vector p to describe translation and a matrix R of the form (A.21)
for the translation. This choice is often made in literature, but computations in
this representation are cumbersome, since two consecutive motions need to be
combined as

Ri3 = Rz Ria D13 = P23 + Razpio (A.23)

which leads to long and tedious equations for multiple consecutive motions. In-
stead, we combine translation and rotation in one so-called homogeneous matrix
of the form

R p
u-[? ] a2

where R is the rotation matrix (A.21). Consecutive planar motions can now be
represented by simple matrix multiplications of the corresponding homogeneous
matrices. The matrix representation of a translation as (A.20) is a special case of
(A.24) for zero rotation, R = I. A

Example A.14 (three-dimensional motion). Similar to the planar situation, we
can combine the group of translations in three dimensions 7'(3) with the group
of free-axis rotations SO(3). The result is the special Euclidean group in three
dimensions, or, SE(3), that describes the space of all possible relative positions
and orientations in three-dimensional space. It can also be represented by a ma-
trix of the form (A.24) but now with R a three-dimensional rotation matrix, and
p a three-dimensional translation vector. Again, consecutive motions are simply
represented by matrix multiplication of the appropriate homogeneous matrices.

A
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The examples show how many useful transformations are actually Lie groups,
and that these can be represented globally and without singularities by matrices
with the appropriate properties. The realization that these transformations are
Lie groups allows to perform certain useful operations on them.

First, because of the group structure, we can take an element of the group and
combine it with another element of the group. This is called (left or right) transla-
tion, since effectively it transports one element of the group to another place, by
means of group multiplication. In particular, since every element of a group has
an inverse, we can transport a group element to the identity of the group. This
transport can be done in two ways, either by pre- or post-multiplication with the
inverse.

Secondly, since a Lie group has a differentiable manifold structure, we can talk
about continuous and differentiable curves in the group, which represent smooth
consecutive transformations, i.e. smooth motions of an object. The derivatives of
these curves represent the (angular, linear, or combined) velocities of the moving
objects.

Combining these two aspects (the group aspect and the manifold aspect), we
can transport a curve «(t) near an element A € G to a curve near the identity by
applying A~! to every element of the curve. We can then take the derivative of
the transformed curve to obtain an element of the tangent space 77G at the iden-
tity. Depending on whether left or right translation is chosen, different velocity
vectors are obtained. Since in this way, velocity vectors at any point A € G can
be transported to the tangent space at the identity, this tangent space provides
a common vector space which allows to compare and add different velocities.
Furthermore, the tangent space at the identity can be given the structure of a
Lie algebra by defining the appropriate Lie bracket on it. The tangent space to
the identity of a group is thus usually called the Lie algebra of the group, and
is denoted by g := T7G. Finally, as shown in Chapter 2, the tangent vectors at
the identity of a group can have a clear physical interpretation, much more than
tangent vectors at general points A € G.

A.3.2 Exponential coordinates

As a final property of Lie groups, we discuss exponential coordinates. These
coordinates provide a general means to find local coordinates around any point
on the Lie group. Since Lie groups allow to transport curves and tangent spaces
between any points, we describe here only exponential coordinates around the
identity element. The results can be directly translated to other points on the
manifold.

We construct exponential coordinates using the approach illustrated in Fig-
ure A.3. As a first step, note that transporting tangent vectors from a point on the
manifold to the identity can also be turned around: given a tangent vector v € g,
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(a) Two basis vectors at the group identity. (b) Construction of exponential coordinates.

Figure A.3: Exponential coordinates are constructed by the integral curves of left-
invariant vector fields defined by basis elements at the group algebra.

we can define a vector field on the whole manifold by translating the vector to
all points on the manifold. If this is done by left (right) translation, the resulting
vector field is called a left (right) invariant vector field. If we focus only on left
translation, and if the Lie group has a representation using square matrices, then
the tangent vector (represented by a square matrix V') expands to a vector field
XV atall elements x € G with matrix representation X.

As a second step, we can consider the integral curves of this vector field, i.e.
the curves «(t) satisfying

dy(t)
=~V A2
priali0) (A.25)
with V' constant. Equation (A.25) has an analytic solution, namely
tv V)’ Lovo  Liaos
— = = I — — cen -2
v(t)=e ;:O - V4 SV VO 4 (A.26)

where we assumed without loss of generality that v(0) = I. This equation de-
scribes the integral curve (parameterized by ) to a left-invariant vector field gen-
erated by an element of the Lie algebra. Furthermore, it can be shown that the
exponential mapping provides a local diffeomorphism between elements tV' € g
around the zero vector and a neighborhood of I € G.

The third and final step to exponential coordinates is to choose a basis for the
Lie algebra (which is a real vector space, and hence it has a basis), i.e. to choose
nonzero elements V; € g such that any tangent vector V' can be expressed as a
linear combination

V=> "tV (A.27)
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for parameters t; € R. Locally around ¢ = 0, the exponential mapping then
provides a local coordinate chart, which uniquely associates an element of the
group to the set of coordinates ¢;, namely as

{ty eR" — eXimtiViegg (A.28)

These coordinates {¢;} are called exponential coordinates. Although they are only
local coordinates, and although actually computing the mapping (A.28) can be
cumbersome, exponential coordinates can still be useful in mathematical proofs,
since they provide a representation of a general Lie group locally as R". Com-
putations can be performed on the exponential coordinates (using all available
knowledge about R™) and then be transformed to the original representation in
constrained matrices.

This approach can be used in Section 2.3, more specifically in Definition 2.9,
which defines a globally parameterized rigid joint. In this definition, the joint is
required to have a twice differentiable function F(¢) assigning local coordinates
¢ € R¥ around every allowed configuration H (Q), parameterized by the matrix
Q. Furthermore, it requires that the allowed relative twists 7\ 7 (an element of the
Lie algebra of SE(3)) be parameterized as T/ = X (Q)v, with v = V(Q) a linear
function of Q.

If the configuration space of the joint can be described by a proper subgroup
of SE(3), we can use the exponential mapping (A.28) as the coordinate mapping
F', with corresponding coordinates ¢; = t; as local coordinates, and v; = (;Sl =1
as the velocities. We now consider the general case that the subgroup is in fact
SE(3) itself, and hence that H/(Q) = Q. This means that we can choose the
coordinates ¢ to be exponential coordinates around a fixed point Hy € SE(3),
and Fg(¢) the exponential mapping, such that around H

HI(¢) = HoeXon oV (A.29)

with V}, a fixed basis for se(3). For joints that are lower-dimensional Lie groups
in SE(3), we constrain some ¢y, to be zero, and thus generate only part of SE(3)
around Ho. In any case, the exponential mapping is clearly twice differentiable.
Second, we can compute the velocity F/ in terms of ¢ as

d d 1 1.
Jf A2 ~ 23
H; dt( 4) = Hodt<1+A+2A +6A +)
Hy'Hi = A+ - (AA + AA) (AA2 + AAA+ A2A) +... (A.30)

where we defined A := )", ¢V} and hence A= >k qSk Vi The expression for Hf
can hence be rewritten as a linear combination of ¢, which is invertible around
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Hy (for ¢ ~ 0), since the matrices V}, are linearly independent. Furthermore, we
can compute the twist as

TL” = H;Hf :e*AHO*lHij
1 o1 N , .
:(I—A+2A2—...> (A+2(AA+AA)+6(AA2+AAA+A2A)+...)
A 1. . .
:A—§(AA—AA)+6(AA2—2AAA+A2A)—... (A.31)

It can be proved (Rossmann 2002) that this sequence actually equals

i, = (_1)l A
T :lZ:(lH)!adAA (A.32)
=0

with adx Y = [X, Y] the matrix commutator and ad™ ¥ := [X, ad% Y], but we
only need the first few terms of this expression for Theorem 2.17, so we skip that
proof here. If we choose the basis for se(3) to be the standard Euclidean vector
basis with corresponding matrix representation by the tilde operator defined in
Definition 2.6, then we can write (A.32) in vector form as

o (D 1 [ '
Tiﬂzz(l+1)!ad¢¢: I—Gadytpadi—...)d (A.33)
=0

where ad, is now taken as in Lemma 2.8. This shows that indeed, for Lie groups
that are subgroups of SE(3), exponential coordinates provide a system of local
coordinates around an arbitrary element of the group that satisfy the require-
ments of Definition 2.9.
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Appendix B

Port-Hamiltonian Systems and Bond
Graphs

The framework of port-Hamiltonian systems is the theoretical modeling and con-
trol framework that is used mostly in this thesis. We present a brief discus-
sion of the structure and properties of port-Hamiltonian system, as well as a
brief overview of the graphical representation language of bond graphs, which
is highly suitable to represent port-Hamiltonian systems. More details on port-
Hamiltonian systems can be found, for example, in van der Schaft (2000), and on
bond graphs in Karnopp et al. (1999).

B.1 Port-Hamiltonian systems

Port-Hamiltonian systems were first introduced by Maschke & van der Schaft
(1992), then by the name of Port-Controlled Hamiltonian Systems. The frame-
work of port-Hamiltonian systems is based on the idea of modeling energy flows
inside systems, as opposed to information flows as in most traditional frame-
works. It is aimed specifically at modeling physical systems, since energy plays
an important role in these systems, and representing it explicitly can help in un-
derstanding them.

The concept of energy is present in all physical domains, and hence port-
Hamiltonian systems can be used to model systems in these domains, as well
as the interconnection of systems from different domains. In each domain, the
flow of energy is characterized by two variables, called power-conjugate vari-
ables, which are elements of a vector space V and its dual V* (see Appendix A.1),
and whose dual product is equal to a physical power flow. For example, in me-
chanics, these variables are the collocated force and velocity (or torque and angu-
lar velocity) at a certain point, and in electric circuit theory, they are the voltage
across and the current through a certain element. For a general domain, these

197
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Table B.1: Choice of effort and flow variables in several physical domains.

physical domain effort flow
mechanical, translation force velocity
mechanical, rotation torque angular velocity
mechanical, spatial wrench twist
electrical circuits voltage current
magnetic current voltage
hydraulic pressure volume flow
thermal temperature  entropy flow

variables are called effort and flow, and the standard choice of what variables are
effort and flow is shown in Table B.1.

From the two power variables in a domain, we can obtain two energy vari-
ables by integration of the power variables. If we integrate the effort, we obtain
as the energy variable the generalized momentum, by analogy of the integration
of the force on a mass which yields its momentum. If we integrate the flow, we
obtain as an energy variable the generalized displacement, by analogy of the inte-
gration of the velocity of a spring, which yields its displacement. However, the
displacement state does not exist for the thermal domain.

The integration of power variables should be done in a mathematically mean-
ingful way. On R", the integrals can be performed just by the usual integration,
but e.g. on Lie groups, where the power variables are chosen to be in the Lie al-
gebra or its dual, these power variables should first be translated to the tangent
space of the appropriate group element, before integrating them.

An energy function, now, is a mapping from the appropriate space of energy
variables to R. For example, the energy function for a point mass m is a mapping
from the momentum variable p to R as %an. This formal definition allows to
distinguish between energy functions (functions of the energy variables), and co-
energy functions (functions of the power variables). An example of a co-energy
function is the kinetic co-energy of a point mass $mv?, which is a function of the
power variable v, the velocity. The energy and co-energy functions are related by
the Legendre transformation.

Port-Hamiltonian systems are usually defined implicitly in a process depicted
intuitively in Figure B.1. The central object under consideration is a state space
manifold X. On this manifold, a smooth energy function H is defined which
assigns to each state # € X’ an energy value. Vectors and co-vectors attached to a
state = are identified with the rate of change & and the differential of the energy
function dH, respectively. The dual product between the vectors and co-vectors
hence equals the change of stored energy H.

In order to turn such a Hamiltonian system into a port-Hamiltonian system,
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Va

map Vp to T,; X Vg

map V4 to T, X

R

Figure B.1: Intuitive representation of the construction of a port-Hamiltonian sys-
tem by mapping vector and co-vectors to the tangent and co-tangent space at
x € X. Only the tangent and vector spaces is shown, not their duals.

input structures need to be defined that make the system open for interconnec-
tion. These input structures are called power-ports, and they are defined by a vec-
tor space and its dual, in such a way that the dual product between elements of
the two spaces describes physical power flow. Hence, power-ports can be defined
by choosing the appropriate vector spaces and their duals. These ports can be left
open (allowing interconnection to other systems), or they can be terminated, for
example, by a static dissipation relation that allows only certain combinations
of vectors and co-vectors, satisying (among other things) that their dual product
(the associated power) is non-negative.

Finally, in addition to the power-ports, the interconnection structure is de-
fined. This structure (called the Dirac structure) describes how the power vari-
ables at the external power-ports need to be translated to the tangent and co-
tangent space at z, and how all resulting elements in these spaces need to be
related. This structure is power-continuous, such that energy is conserved in the
system: the sum of the power coming in through all external power-ports is equal
to the change of internal energy H.

A port-Hamiltonian system described in this way contains only relations be-
tween variables, no explicit input-output formulations. This is useful to allow
arbitrary interconnection to other systems without having to worry about causal-



200  APPENDIX B. PORT-HAMILTONIAN SYSTEMS AND BOND GRAPHS

ity, but for simulation and analysis, it is often convenient to use an input-output
formulation. In this thesis, almost all port-Hamiltonian systems are formulated
explicitly, i.e. as systems of the following form.

Definition B.1 (explicit port-Hamiltonian system). An explicit port-Hamil-
tonian system is a system with state v € X, energy H(z) : X — R, power port
(u,y), and dynamic equations of the form

0H

&= (J(z) - R(x))af + g(z)u
o x (B.1)
v= 0" @D 1 (K () + S(a))u

with J(z) and K (z) skew-symmetric, and R(x) and S(z) positive semi-definite.

This explicit formulation is a special case of the general implicit formulation. The
power-port (u, y) is mapped to the tangent space at z by the mapping g(x), dissi-
pation is applied directly at the tangent and co-tangent space at « (by the matrix
R(z)) and at the input port (u,y) (by the matrix S(x)). Finally, the Dirac struc-
ture is defined by the matrices J(z), K (x), together with the mappings g(z) and
9" (x).

We discuss two properties of port-Hamiltonian systems that follow immedi-
ately from the structure of the representation (B.1). First, we can compute the
change of internal energy H as

T T
@ =2 = 20 (0 - Re) G + gl

T T

- *aafR(x)% (E)aff’(x) +ul (K(z) + S(x) - K(z) - S(x))) u
T

- *aaf R(f”)%[ —u S@uty'u (B.2)

where we used the fact that J(z) and K (x) are skew-symmetric. Equation (B.2)
shows that the increase in internal energy is equal to the power y”u supplied
through the input port, minus the power lost by dissipation through R(z) and
S(z). In particular, since R(z) and S(z) are positive semi-definite, the increase in
internal energy is always less than or equal to the supplied power. This means
that port-Hamiltonian systems are passive with respect to the supply rate y”u
and storage function H (see van der Schaft (2000) for more details on passivity).
The second important property is that the port-interconnection of two port-
Hamiltonian systems is again a port-Hamiltonian system. We can prove this sim-
ply by combining the equations for two port-Hamiltonian systems as shown in
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Un|  AYn

up + Y2

pHs 1 pHs 2

Y1 U2
Figure B.2: The power-continuous interconnection of two port-Hamiltonian sys-
tems is again a port-Hamiltonian system.
Figure B.2 and defined by the following equation.

Y1 = U2 = Yn

Uy = Unp — Y2

(B.3)

Such an interconnection is power-continuous, i.e. the external power uly, flow-
ing into the system always instantaneously equals the sum of power flowing into
the two subsystems. To avoid ill-defined interconnections and the corresponding
algebraic loops, we assume here that the first system is strictly proper, i.e. that the
two systems have the form

oOH . OH.
1= (J1 — Rl)%j + grug To = (Jz — Ro)— s +92U2
(B4)
oOH
=91 — 92, - Yo =g —— 3 + (K3 + S2)us

Manipulating (B.4) using the interconnection relations (B.3) results in the follow-
ing expression

d [zl [/ —Ri—gi(K2+S2)9f  —gi95 %Zf 4|9y
dt 9297 Jo — Ry| | 2tu ol
(B.5)
OH,
yn = [97 0] [3“
812

where H,,(x1,22) := Hi(z1) + Ha(z2) and (u,, y,) is the new input port. Equa-
tions (B.5) show that this interconnection of two port-Hamiltonian systems is
again a port-Hamiltonian system of the form (B.1), with energy equal to the sum
of the energies of the subsystems. Furthermore, the interconnection does not
change the energy balance. For example, if the two original systems had no dissi-
pation (R; = Ry = S3 = 0), then their interconnection does not have dissipation
either. Different types of power-continuous interconnections give similar equa-
tions with the same conclusions.
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Finally, we name a few special cases of port-Hamiltonian systems that are
encountered often in practical modeling tasks.

e Energy-conserving port-Hamiltonian systems are port-Hamiltonian systems
with R(x) = S(z) = 0, which means that for any state x and any input
(u,y), the power supplied by the input port is exactly equal to the increase
in internal energy;

e Strictly proper port-Hamiltonian systems are systems with K = S = 0,
which means that there is no direct coupling between input « and output
y, and the transfer functions (for linear systems) from input to output are
strictly proper;

e Power-continuous port-Hamiltonian systems are of the form y = Ku (so
without internal state or energy) that do not store or dissipate energy, but
only transform it in a power-continuous way.

B.2 Bond graphs

Bond graphs, introduced by Paynter (1961), are a graphical language for rep-
resenting power-interconnections of physical elements. For this reason, bond
graphs are a very suitable way to graphically represent port-Hamiltonian sys-
tems, as studied in detail, for example, by Golo (2002).

Definition B.2 (oriented graph). An oriented graph is a set V of vertices, together
withaset E CV x V of edges. An element (v;,v;) € E is called an (oriented) edge
joining v; to vj.

Bond graphs are a special type of oriented graph, in which the edges, now called
bonds, represent a power-interconnection between two connected nodes. Each
bond has two collocated power variables associated to it, one effort and one flow.
The edge is a single line for one-dimensional power variables, and a double line
for multi-dimensional power variables. A half-arrow or harpoon at one side of
the bond indicates the reference direction for positive power: if the dual product
of effort and flow is positive, then power flows in the direction of the half-arrow.
Furthermore, a stroke on either side of the bond indicates the direction of com-
putation, or, causality: the effort signal travels in the direction of the stroke, and
hence the flow travels in the opposite direction. Making a bond graph causal (i.e.
putting a causal stroke on each bond in a sensible way, to be discussed later) al-
lows to write down the explicit port-Hamiltonian equations corresponding to the
bond graph.

The nodes in bond graphs can represent one of several basic functions, namely
storage, dissipation, source, and power-continuous interconnection. Figure B.3
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Figure B.3: Several bond graph elements and their equivalent block diagrams.
Elements marked by (*) have more possibilities for the causality; one is shown.
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shows several often-used bond graph elements, together with their equivalent
block diagrams (when in causal form). Next to the symbol for the element, some
other expression can appear, separated by a colon or double colon. This expres-
sion indicates the value of the parameter that defines that element, or, in the case
of a double colon, the energy function associated with the element (only valid for
storage elements).

A storage element integrates one of the power variables on the connected
bond to an energy variable x (its state), and computes the other power variable as
the partial derivative of an energy function H to the state. Its dynamics are given
by the equation

r=u
_on (B)
v= or

where (u, y) defines its input power-port. If the input u is an effort (and hence the
output y is a flow), the element is denoted by the symbol I (for inertial), while if
the input is a flow (and hence the output an effort), the element is denoted by the
symbol C (for capacitor). Indeed, the inertial and capacitive element are of the
appropriate type, when the efforts and flows are chosen as in Table B.1. Storage
elements can have multiple connecting ports, even connecting multiple domains,
and their energy functions are then functions of multiple energy variables. Still,
the energy variables are computed by integrating one of the power variables on
the bond, and the other collocated power variable equals the partial derivative of
the energy function with respect to this energy variable.

A dissipative element is denoted by the symbol R (resistive) and is defined by
a static relation between the connected effort and flow such that e f > 0 at all
times. Hence, power always flows towards the R element, making it represent
dissipation, or better, irreversible transduction.

A source element determines one of the power variables on the bond, irre-
spective of the other power variable. An effort source (denoted S,) fixes the effort
value, while a flow source (denoted Sy) fixes the flow value. Sources can be used
to model systems with negligible back effect, such as the connection of a (good)
battery to a load with a high input impedance: the voltage is fully determined by
the battery, irrespective of the current that the load draws.

Power-continuous interconnections can take several forms: transformers, gy-
rators, and junctions. A transformer TF is connected by two bonds (one incom-
ing, one outgoing), and is defined by a static linear relation between the efforts
on the two bonds in one direction as well as the same but transposed relation
between the two flows in the other directions. In other words, either fo = X f;
and e; = XTey, or fi = X f, and e; = X ey, for some matrix X. In either case, it
follows immediately that the power e f; on one bond is equal to the power e? f»
on the other bond.
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A gyrator is a similarly defined power-continuous interconnection element,
and it is denoted by the symbol GY. A gyrator is also connected by two bonds
(one incoming, one outgoing), but now the effort variable on one bond is statically
related to the flow variable on the other bond. So in this case, either e; = X f;
ande; = XTfy,or fi = Xegand fo = X7e;. A gyrator can also be connected
by only one bond, in which case the effort and flow on this bond are related as
e =Y for f =Yewith Y skew-symmetric, such that the instantaneous power is
always e’ f = 0. Obviously, this only makes sense for multi-dimensional bonds.

Finally, junctions are power-continuous elements that can take any number of
bonds. The power variables on these bonds are constrained by the junction in the
following way: one power-variable must be equal on all connected bonds, and
the other power-variables on the bonds must sum up to zero, taking into account
the direction of the bond. These constraints ensure that the total instantaneous
power flowing into the junction is always zero. A 1-junction is constrained to
have the flows on all bonds equal, and a O-junction is constrained to have the
efforts on all bonds equal.

All static elements can be modulated by external signals, for example, to
change the transformation ratio in a transformer, or to represent state-dependent
centrifugal forces by a modulated gyrator. If an element is modulated, an extra
M is put on front of the symbol, such as MTF for a modulated transformer. Note
that storage elements cannot be modulated directly, since this would mean that
the stored energy can be changed even though no power is flowing through the
power-port. This would violate the whole idea of representing an energy balance
as a bond graph, and hence storage elements should only be changed through
power-ports. Stramigioli & Duindam (2001) show an example of how the rest
length and center of stiffness of a spatial spring can be changed through the ap-
propriate power-port.

If desired, e.g. to derive the explicit dynamic equations, a bond graph can be
made causal, which means that a causal stroke is placed at one side of each bond.
These strokes should be placed in such a way, that the relations corresponding to
each element can be written as explicit assignment statements. This means, for
example, that only one of the efforts at a 0-junction can be the input, and that if
one bond on a transformer has an incoming effort, then the other bond must have
an outgoing effort. Systematic (and automated) methods exist to assign causality
to a bond graph, see e.g. Golo (2002).

The bond graph of a physical system can be built up by interconnection of the
appropriate bond graph elements. A general explicit port-Hamiltonian system
of the form of Definition B.1 is given by the bond graph of Figure B.4, where
we assumed the input vector u to be an effort. Generally, though, larger physical
systems possess more structure in the energy function or the interconnection, and
this can be exploited and displayed in the bond graph.
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y:l 0 :IMTIE‘:IE::IH : H(z)

MGY : K~(z) MGY : J(z)
Figure B.4: Bond graph of the general explicit port-Hamiltonian system (B.1).



Bibliography

Acary, V. & Brogliato, B. (2003), Towards a Multiple Impact Law: the 3-Ball Ex-
ample, in ‘Actes du Sixieme Colloque National de Calculs des Structures’,
Vol. 2, pp. 337-344.

Alexander, R. M. (1990), ‘Three Uses for Springs in Legged Locomotion’, The In-
ternational Journal of Robotics Research 9(2), pp. 53-61.

Ambrose, R. O., Aldridge, H., Askew, R. S., Burridge, R. R., Bluethmann, W.,
Diftler, M., Lovchik, C., Magruder, D. & Rehnmark, F. (2000), ‘Robonaut:
NASA'’s Space Humanoid’, IEEE Intelligent Systems 15(4), pp. 57-63.

Ambrosius, F. (2005), Interpolation of 3D Surfaces for Contact Modeling. B.Sc.
report, University of Twente.

Asano, F.,, Luo, Z.-W. & Yamakita, M. (2004), Some Extensions of Passive Walking
Formula to Active Biped Robots, in ‘Proceedings of the IEEE International
Conference on Robotics and Automation’, Vol. 4, pp. 3797-3802.

Ascher, U. M. & Petzold, L. R. (1998), Computer Methods for Ordinary Differential
Equations and Differential-Algebraic Equations, Soc. for Industrial and Applied
Math.

Beekman, N. (2004), Analysis and Development of a 2D walking machine, Mas-
ter’s thesis, University of Twente.

Blankenstein, G. (2003), Symmetries and Locomotion of a 2D Mechanical Net-
work: the Snakeboard, in ‘Lecture Notes for the Euron/GeoPleX Summer
School’, Bertinoro, Italy.

Bloch, A. M. (2003), Nonholonomic Mechanics and Control, Interdisciplinary Ap-
plied Mathematics (24), Springer-Verlag.

Bloch, A. M., Krishnaprasad, P. S., Marsden, J. E. & Murray, R. M. (1996), ‘Non-
holonomic Mechanical Systems with Symmetry’, Archive for Rational Me-
chanics and Analysis 136, pp. 21-99.

207



208 BIBLIOGRAPHY

Breazeal, C. (2003), “Towards Sociable Robots’, Robotics and Autonomous Systems
42, pp. 167-175.

Breedveld, P. C. (2004), ‘Port-based Modeling of Mechatronic Systems’, Mathe-
matics and Computers in Simulation 66, pp. 99-127.

Bullo, F. & Zefran, M. (2001), ‘On Mechanical Control Systems with Non-
holonomic Constraints and Symmetries’, Systems and Control Letters
45(1), pp- 133-143.

Burke, W. L. (1985), Applied Differential Geometry, Cambridge University Press.

Canudas de Wit, C., Olsson, H., Astrém, K. J. & Lischinsky, P. (1995), ‘A New
Model for Control of Systems with Friction’, IEEE Transactions on Automatic
Control 40(3), pp. 419-425.

Chatterjee, A. & Ruina, A. (1998), “Two Interpretations of Rigidity in Rigid Body
Collisions’, Journal of Applied Mechanics 65(4), pp. 894-900.

Chevallereau, C. (2003), ‘Time-Scaling Control for an Underactuated Biped
Robot’, IEEE Transactions on Robotics and Automation 19(2), pp. 362-368.

Cohen, J. D., Lin, M. C., Manocha, D. & Ponamgi, M. (1995), -.COLLIDE: An Inter-
active and Exact Collision Detection System for Large-Scale Environments,
in ‘Symposium on Interactive 3D Graphics’, pp. 189-218.

Collins, S. H., Wisse, M. & Ruina, A. (2001), ‘A Three-Dimensional Passive-
Dynamic Walking Robot with Two Legs and Knees’, International Journal of
Robotics Research 20(7), pp. 607-615.

Control Lab Products (2005), “20sim Version 3.6'.
URL: http://www.20sim.com

Cottle, R. W,, Pang, ].-S. & Stone, R. E. (1992), The Linear Complementarity Problem,
Computer Science and Scientific Computing, Academic Press.

Dertien, E. C. (2005), Realisation of an Energy-Efficient Walking Robot, Master’s
thesis, University of Twente.

Dubrovin, B. A., Fomenko, A. T. & Novikov, S. P. (1984), Modern Geometry —
Methods and Applications, Vol. I, Graduate Texts in Mathematics 93, Springer-
Verlag.

Dubrovin, B. A., Fomenko, A. T. & Novikov, S. P. (1985), Modern Geometry — Meth-
ods and Applications, Vol. 1I, Graduate Texts in Mathematics 104, Springer-
Verlag.



BIBLIOGRAPHY 209

Duindam, V. (2006), Port-Based Modeling and Control for Efficient Bipedal Walk-
ing Robots, PhD thesis, University of Twente. ISBN 90-365-2318-4.
URL: http://purl.org/utwente/50829

Duindam, V., Blankenstein, G. & Stramigioli, S. (2004), Port-Based Modeling
and Analysis of Snakeboard Locomotion, in “Proceeding of the International
Symposium on Mathematical Theory of Networks and Systems’.

Duindam, V. & Stramigioli, S. (20034), Modeling the Kinematics and Dynamics
of Compliant Contact, in ‘Proceedings of the International Conference on
Robotics and Automation’, pp. 4029-4034.

Duindam, V. & Stramigioli, S. (2003b), Passive Asymptotic Curve Tracking, in
‘Proceedings of the IFAC Workshop on Lagr. and Hamilt. Methods for Non-
linear Control’, pp. 229-234.

Duindam, V. & Stramigioli, S. (2004a), Energy-Based Model-Reduction and Con-
trol of Nonholonomic Mechanical Systems, in ‘Proceedings of the IEEE In-
ternational Conference on Robotics and Automation’, pp. 4584—4589.

Duindam, V. & Stramigioli, S. (2004b), ‘Port-Based Asymptotic Curve Tracking
for Mechanical Systems’, European Journal of Control 10(5), pp. 411-420.

Duindam, V. & Stramigioli, S. (20054), Optimization for Mass and Stiffness Dis-
tribution for Efficient Bipedal Walking. Presented at the IROS workshop on
Morphology, Control, and Passive Dynamics.

Duindam, V. & Stramigioli, S. (2005b), Optimization for Mass and Stiffness Dis-
tribution for Efficient Bipedal Walking, in ‘Proceedings of the International
Symposium on Nonlinear Theory and Its Applications’.

Duindam, V. & Stramigioli, S. (2005c), Port-Based Control of a Compass-Gait
Bipedal Robot, in ‘Proceedings of the 16th IFAC World Congress’. Electronic
proceedings.

Duindam, V., Stramigioli, S. & Scherpen, J. M. A. (2004), ‘Passive Compensation
of Nonlinear Robot Dynamics’, IEEE Transactions on Robotics and Automation
20(3), pp. 480-487.

Ekkelenkamp, R., Veneman, J. & van der Kooij, H. (2005), LOPES : Selective
Control of Gait Functions During the Gait Rehabilitation of CVA Patients,
in ‘Proceedings of the 9th IEEE International Conference on Rehabilitation
Robotics’, pp. 361-364.

Fasse, E. D. (1997), ‘On the Spatial Compliance of Robotic Manipulators’, ASME
Journal of Dynamic Systems, Measurement and Control 119, pp. 839-844.



210 BIBLIOGRAPHY

Fasse, E. D. (2000), Some Applications of Screw Theory to Lumped-Parameter
Modeling of Visco-Elastically Coupled Bodies, in ‘Proceedings of the Ball
Symposium’.

Fluigge, W. (1975), Viscoelasticity, second edn, Springer-Verlag.

Garcia, M., Chatterjee, A. & Ruina, A. (1998), Speed, Efficiency, and Stability of
Small-Slope 2D Passive-Dynamic Bipedal Walking, in ‘Proceedings of the
IEEE Conference on Robotics and Automation’, pp. 2351-2356.

Garcia, M., Chatterjee, A. & Ruina, A. (2000), ‘Efficiency, Speed and Scaling of
Two-Dimensional Passive Dynamic Walking’, Dynamics and Stability of Sys-
tems 15(2), pp. 75-99.

Geppert, L. (2004), ‘Qrio, the Robot that Could’, IEEE Spectrum 41(5), pp. 34-37.

Gilmore, R. (1974), Lie Groups, Lie Algebras, and Some of Their Applications, John
Wiley & Sons.

Glocker, C. (2001), ‘On Frictionless Impact Models in Rigid-Body Systems’, Philo-
sophical Transactions of the Royal Society London 359(1789), pp. 2385-2404.

Glocker, C. (2004), ‘Concepts for Modeling Impacts without Friction’, Acta Me-
chanica 168, pp. 1-19.

Goldstein, H. (1980), Classical Mechanics, second edn, Addison-Wesley.

Golo, G. (2002), Interconnection Structures in Port-Based Modeling: Tools for
Analysis and Simulation, PhD thesis, University of Twente.

Gomes, M. & Ruina, A. (2005), A Walking Model with No Energy Cost. In revi-
sion, ]. of Theor. Biology.

Goswami, A., Thuilot, B. & Espiau, B. (1998), ‘A Study of the Passive Gait of a
Compass-like Biped Robot: Symmetry and Chaos’, International Journal of
Robotics Research 17(12), pp. 1282-1301.

Harwin, W. S., Rahman, T. & Foulds, R. A. (1995), ‘A Review of Design Issues in
Rehabilitation Robotics with Reference to North American Research’, IEEE
Transactions on Rehabilitation Engineering 3(1), pp. 3-13.

Hogan, N. (1985), ‘Impedance Control: An Approach to Manipulation’, Journal of
Dynamical Systems, Measurement, and Control 107(1), pp. 1-24.

Hubbard, P. M. (1996), ‘Approximating Polyhedra with Spheres for Time-Critical
Collision Detection’, ACM Transactions on Graphics 15(3), pp. 179-210.



BIBLIOGRAPHY 211

Hunt, K. H. & Crossley, F. R. E. (1985), ‘Coefficient of Restitution Interpreted as
Damping in Vibroimpact’, ASME Journal of Applied Mechanics 2(3), pp. 289—
307.

Hurst, J. W., Chestnutt, J. & Rizzi, A. (2004), An Actuator with Physically Variable
Stiffness for Highly Dynamic Legged Locomotion, in ‘Proceedings of the In-
ternational Conference on Robotics and Automation’, Vol. 5, pp. 46624667 .

Jiménez, P., Thomas, F. & Torras, C. (2001), ‘3D Collision Detection: a Survey’,
Computers and Graphics 25(2), pp. 269-285.

Johnson, K. L. (1985), Contact Mechanics, Cambridge University Press.

Kanda, T., Hirano, T. & Eaton, D. (2004), ‘Interactive Robots as Social Partners
and Peer Tutors for Children: A Field Trial’, Human-Computer Interaction
19, pp. 61-84.

Karnopp, D. C., Margolis, D. L. & Rosenberg, R. C. (1999), System Dynamics: Mod-
eling and Simulation of Mechatronic Systems, third edn, Wiley-Interscience.

Kim, J.-Y.,, Park, L.-W.,, Lee, J., Kim, M.-S., Cho, B.-K. & Oh, ].-H. (2005), System
Design and Dynamic Walking of Humanoid Robot KHR-2, in ‘Proceedings
of the IEEE Conference on Robotics and Automation’, pp. 1443-1448.

Klosowski, J. T., Held, M., Mitchell, J. S. B., Sowizral, H. & Zikan, K. (1998), ‘Ef-
ficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs’,
Transactions on Visualization and Computer Graphics 4(1), pp. 21-36.

Koditschek, D. E. & Biihler, M. (1991), ‘Analysis of a Simplified Hopping Robot’,
The International Journal of Robotics Research 10(6), pp. 587-605.

Kuo, A. D. (1999), ‘Stabilization of Lateral Motion in Passive Dynamic Walking’,
The International Journal of Robotics Research 18(9), pp. 917-930.

Lay, D. C. (2002), Linear Algebra and Its Applications, 3rd edn, Addison Wesley.

Lewis, A., Ostrowski, J., Murray, R. M. & Burdick, J. W. (1994), Nonholonomic
Mechanics and Locomotion: the Snakeboard Example, in ‘Proceedings of
the IEEE Conference on Robotics and Automation’.

Li, P. Y. & Horowitz, R. (1995), Passive Velocity Field Control of Mechanical Ma-
nipulators, in ‘Proceedings of the IEEE International Conference on Robotics
and Automation’, pp. 2764-2770.

Li, P. Y. & Horowitz, R. (1999), ‘Passive Velocity Field Control of Mechanical Ma-
nipulators’, IEEE Transactions on Robotics and Automation 15(4), pp. 751-763.



212 BIBLIOGRAPHY

Lipkin, H. (1985), Geometry and Mappings of Screws with Applications to the
Hybrid Control of Robotic Manipulators, PhD thesis, University of Florida.

Loncari¢, J. (1985), Geometrical Analysis of Compliant Mechanisms in Robotics,
PhD thesis, Harvard University, Cambridge (MA).

Marsden, J. E. & Ratiu, T. S. (1999), Introduction to Mechanics and Symmetry, Texts
in Applied Mathematics (17), second edn, Springer-Verlag.

Maschke, B. M. & van der Schaft, A. J. (1992), Port-Controlled Hamiltonian Sys-
tems: Modelling Origins and System-Theoretic Properties, in ‘IFAC Sympo-
sium on Nonlinear Control Systems’, pp. 282-288.

McGeer, T. (1989), Powered Flight, Child$ Play, Silly Wheels, and Walking Ma-
chines, in ‘Proceedings of the IEEE International Conference on Robotics and
Automation’, Vol. 3, pp. 1592-1597.

McGeer, T. (1990a), ‘Passive Dynamic Walking’, The International Journal of Robotics
Research 9(2), pp. 62-82.

McGeer, T. (1990b), Passive Walking with Knees, in ‘Proceedings of the IEEE In-
ternational Conference on Robotics and Automation’, Vol. 3, pp. 1640-1645.

McGeer, T. (1991), Passive Dynamic Biped Catalogue, in ‘Proc. 2nd Int. Symp. of
Experimental Robotics’, Springer-Verlag, pp. 465-490.

McGeer, T. (1993), ‘Dynamics and Control of Bipedal Locomotion’, Journal of The-
oretical Biology 163(3), pp. 277-314.

Milnor, J. (1978), *Analytic Proof of the Hairy Ball Theorem and the Brouwer Fixed
Point Theorem’, American Mathematics Monthly 85(7), pp. 521-524.

Montana, D. ]J. (1989a), ‘“The Kinematics of Compliant Contact and Grasp’, Inter-
national Journal of Robotics Research 7(3), pp. 17-32.

Montana, D. J. (19890), The Kinematics of Contact with Compliance, in ‘Proceed-
ings of the IEEE Conference on Robotics and Automation’, pp. 770-774.

Murray, R. M., Li, Z. & Sastry, S. S. (1994), A Mathematical Introduction to Robotic
Manipulation, CRC Press.

Ortega, R., van der Schaft, A. J., Mareels, I. & Maschke, B. M. (2001), ‘Putting
Energy Back in Control’, IEEE Control Systems Magazine 21(2), pp. 18-33.

Ostrowski, J. P. (1999), ‘Computing Reduced Equations for Robotic Systems with
Constraints and Symmetries’, IEEE Transactions on Robotics and Automation
15(1), pp. 111-123.



BIBLIOGRAPHY 213

Ostrowski, J. P. & Burdick, J. W. (1998), “The Geometric Mechanics of Undulatory
Robotic Locomotion’, International Journal of Robotics Research 17(7), pp. 683—
701.

Paynter, H. M. (1961), Analysis and Design of Engineering Systems, M.L.T. Press.

Penrose, L. S. & Penrose, R. (1958), ‘Impossible Objects: A Special Type of Visual
Mlusion’, British Journal of Psychology 49, pp. 31-33.

Pfeiffer, F. & Glocker, C. (1996), Multibody Dynamics with Unilateral Contacts, John
Wiley & Sons, Inc.

Polderman, J. W. & Willems, J. C. (1998), Introduction to Mathematical Systems The-
ory — A Behavioral Approach, Texts in Applied Mathematics (26), Springer-
Verlag.

Pratt, J. E., Krupp, B. T., Morse, C.]. & Collins, S. H. (2004), The RoboKnee: An Ex-
oskeleton for Enhancing Strength and Endurance During Walking, in ‘Pro-
ceedings of the IEEE Conference on Robotics and Automation’, pp. 2430-
2435.

Pratt, J. & Pratt, G. (1999), Exploiting Natural Dynamics in the Control of a 3D
Bipedal Walking Simulation, in ‘Proceedings of the International Conference
on Climbing and Walking Robots’.

Rossmann, W. (2002), Lie Groups: An Introduction Through Linear Groups, Oxford
University Press.

Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N. & Fujimura,
K. (2002), The Intelligent ASIMO: System Overview and Integration, in ‘Pro-
ceedings of the IEEE/RS] International Conference on Intelligent Robots and
Systems’, Vol. 3, pp. 2478-2483.

Secchi, C., Stramigioli, S. & Melchiorri, C. (2001), Geometric Grasping and Tele-
manipulation, in ‘Proceedings of the IEEE/RS] International Conference on
Intelligent Robots and Systems’, pp. 1763-1768.

Selig, ]J. M. (2005), Geometric Fundamentals of Robotics, second edn, Springer-
Verlag.

Shiriaev, A., Perram, ]J. W. & Canudas de Wit, C. (2005), ‘Constructive Tool for Or-
bital Stabilization of Underactuated Nonlinear Systems: Virtual Constraints
Approach’, IEEE Transactions on Automatic Control 50(8), pp. 1164-1176.

Snakeboard U.S.A. (2005), ‘Snakeboard’.
URL: http://fwww.snakeboard.com



214 BIBLIOGRAPHY

Spong, M. W. & Bullo, F (2005), ‘Controlled Symmetries and Passive Walking’,
IEEE Transactions on Automatic Control 50(7), pp. 1025-1031.

Stramigioli, S. (2001), Modeling and IPC Control of Interactive Mechanical Systems —
A Coordinate-free Approach, Springer-Verlag.

Stramigioli, S. & Duindam, V. (2001), Variable Spatial Springs for Robot Control
Applications, in ‘Proceedings of the IEEE/RS] International Conference on
Intelligent Robots and Systems’, pp. 1906-1911.

Stramigioli, S. & Duindam, V. (2004), ‘Port Based Modeling of Spatial Visco-
Elastic Contacts’, European Journal of Control 10(5), pp. 505-514.

Stramigioli, S., van der Schaft, A. J., Maschke, B. M. & Melchiorri, C. (2002), ‘Geo-
metric Scattering in Robotic Telemanipulation’, IEEE Transactions on Robotics
and Automation 18(4), pp. 588-596.

Suri, S., Hubbard, P. M. & Hughes, J. E (1999), ‘Analyzing Bounding Boxes for
Object Intersection’, ACM Transactions on Graphics 18(3), pp. 257-277.

Takegaki, M. & Arimoto, S. (1981), ‘A New Feedback Method for Dynamic Con-
trol of Manipulators’, ASME Journal of Dynamic Systems, Measurement, and
Control 103(2), pp- 119-125.

Tanie, K. (2005), “Lets Work More on Practical Problems!’, IEEE Robotics and Au-
tomation Magazine 12(2), pp. 3, 6.

The Mathworks (2005), ‘Matlab R14’".
URL: http://www.mathworks.com

Thoma, J. U. (1975), ‘Entropy and Mass Flow for Energy Conversion’, Journal of
the Franklin Institute 299(2), pp. 89-96.

Trefethen, L. & Bau, D. (1997), Numerical Linear Algebra, Soc. for Industrial and
Applied Math.

van Amerongen, ]. & Breedveld, P. C. (2003), ‘Modelling of Physical Systems for
the Design and Control of Mechatronic Systems’, Annual Reviews in Control
27, pp. 87-117.

van den Bogert, A. J. (2003), ‘Exotendons for assistance of human locomotion’,
Biomedical Engineering Online 2(17).

van der Linde, R. Q. (2000), Bipedal Walking with Active Springs — Gait Synthesis
and Prototype Design, PhD thesis, Delft University of Technology.

van der Schaft, A. ]. (2000), Lo-Gain and Passivity Techniques in Nonlinear Control,
Communications and Control Engineering, Springer-Verlag.



BIBLIOGRAPHY 215

van der Schaft, A. J. & Maschke, B. M. (1994), ‘On the Hamiltonian Formula-
tion of Nonholonomic Mechanical Systems’, Reports on Mathematical Physics
34, pp. 225-233.

van Oort, G. (2005), Strategies for Stabilizing a 3D Dynamically Walking Robot,
Master’s thesis, University of Twente.

Vela, P. A. (2003), Averaging and Control of Nonlinear Systems, PhD thesis, Cali-
fornia Institute of Technology.

Visser, M. & Stramigioli, S. (2006), Generalized Theory and Families of Spatial
Springs. Submitted to IEEE Transactions on Robotics.

Visser, M., Stramigioli, S. & Heemskerk, C. (2002), Screw Bondgraph Contact Dy-
namics, in ‘Proceedings of the IEEE/RS] International Conference on Intelli-
gent Robots and Systems’.

Vukobratovi¢, M. (2004), ‘Zero-Moment Point — Thirty Five years of Its Life’,
International Journal of Humanoid Robotics 1(1), pp. 157-173.

Westervelt, E., Grizzle, ]. W. & Koditschek, D. E. (2003), ‘Hybrid Zero Dynamics of
Planar Biped Walkers’, IEEE Transactions on Automatic Control 48(1), pp. 42—
56.

Whittaker, E. T. (1998), A Treatise on the Analytical Dynamics of Particles and Rigid
Bodies, fourth edn, Cambridge University Press.

Wiggins, S. (2003), Introduction to Applied Nonlinear Dynamical Systems and Chaos,
Texts in Applied Mathematics, second edn, Springer-Verlag.

Willems, J. C. (1991), ‘Paradigms and Puzzles in the Theory of Dynamical Sys-
tems’, IEEE Transactions on Automatic Control 36(3), pp. 259-294.

Wisse, M. (2004), ‘Essentials of Dynamic Walking — Analysis and design of two-
legged robots’.

Wisse, M. & van Frankenhuyzen, ]. (2003), Design and construction of Mike; a 2D
autonomous biped based on passive dynamic walking, in ‘2nd International
Symposium on Adaptive Motion of Animals and Machines’.

Wolfram Research (2005), ‘Mathematica 5.1".
URL: http://fwww.wolfram.com

Yamakita, M. & Asano, F. (2001), "Extended passive velocity field control with
variable velocity fields for a kneed biped’, Advanced Robotics 15(2), pp. 139-
168.



216 BIBLIOGRAPHY

Yamakita, M., Asano, F. & Furuta, K. (2000), Passive Velocity Field Control of a
Biped Walking Robot, in ‘Proceedings of the IEEE International Conference

on Robotics and Automation’, Vol. 3, pp. 3057-3062.

Zefran, M. & Kumar, V. (2002), ‘Geometric Approach to the Study of the Cartesian
Stiffness Matrix’, ASME Journal of Mechanical Design 124, pp. 30-38.



Index

ankle push-off, 164-165

Boltzmann-Hamel equations, 41
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bond graph, 202

causal, 202, 205

elements, 203

modulation, 205

Charles’ theorem, 24

co-vector, 183

collocation, 184, 197

compass-gait walker, 100
coordinate relabeling, 103
desired vector field, 151
efficient gait, 110-112, 133-136
impact energy loss, 106
impact velocity projection, 104
port-based control, 149-154
simulation model, 101-102
stepping stones, 105
variable structure, 133

complementarity problem, 175

compliant contact, 66
deformation energy, 73
deformation twist, 68
interconnection structure, 67
slipping, 70
spatial spring, 75

contact dynamics
compliant, 66
rigid, 77

contact kinematics, 5666

differential, 64

disc & plane, 58

ellipse & line, 59

ellipsoid & plane, 60

point & plane, 57
contact release, 83
coordinate relabeling, 96

desired vector field, 137

diffeomorphism, 181

Dirac structure, 199

dissipation, 204

Dribbel, see kneed walker

dual product, 183

dual vector space, 183
basis, 183

dynamic walking, 4

efficient gait, 98

effort, 198

energy storage, 204

Euler angles, 17, 190

Euler-Lagrange equations, 41, 47

exponential coordinates, 192-195
SE(3), 194

flow, 198
foot placement, 161, 165-170

gait, 95

gait search, 98

Gauss map, 61

generalized displacement, 198
generalized momentum, 198
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bond, 202
kinematic, 32
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group, 189
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gyrator, 204

homogeneous matrix, 18-22
humanoid robots, 1

Jacobian, 33

joint
globally parameterized, 27
holonomic, 27
nonholonomic, 28, 49

junction, 205

Kelvin-Voigt model, 76

kinematic loops, 47

kinetic co-energy, 198

kinetic energy, 198

kneed walker, 114
coordinate relabeling, 120
efficient gait, 120-121
experimental results, 160, 178
gait phases, 117
knee actuators, 113, 119
mass distribution, 115
PD hip control, 155-161
simulation model, 113-116
specific cost of transport, 158

Lie algebra, 183, 192

Lie bracket, 188

Lie derivative, 187

Lie group, 189
exponential coordinates, 192
invariant vector field, 192

manifold, 186-187

mapping, 181
mechatronic design, 132
metric tensor, 185
modeling, 6
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port-Hamiltonian, 8
momentum, 186
generalized, 198
morphological expansion, 176-177

Newton’s second law, 38
rigid body, 46
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optimal gait search, 98
approximate, 99

passive walking, 4
passivity, 200
Poincaré map, 97
polynomial parameterization, 99, 177
port-based curve tracking, 136
asymptotic control, 145
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decoupling control, 142
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port-Hamiltonian control, 10, 136
port-Hamiltonian modeling, 8
port-Hamiltonian system, 197
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explicit, 200
interconnection, 200
power-continuous, 202
power port, 8, 198
power variables, 8, 184, 197

quaternions, see unit quaternions

region of attraction, 100, 112, 176
return map, 97
rigid body, 15

dynamics, 44-46
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rigid contact, 77
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momentum projection, 81
multiple contacts, 85
non-impulsive forces, 82
release conditions, 83-85, 91-94
velocity projection, 103
rigid link, see rigid body
rigid mechanism
dynamics, 43
kinematics, 32
kinetic co-energy, 40
rocking closet, 88-91

SE(2), 191
SE(3), 16, 191
exponential coordinates, 194
singular value decomposition, 107
snakeboard, 51
SO(2), 190
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spatial spring, 75
specific cost of transport, 129, 161
specific resistance, 129
static walking, 3
stride function, 97

T(n), 189

tangent contact plane, 68

tangent space, 187

tensor, 185

tensor field, 187

three-dimensional walker, 121
coordinate relabeling, 125

efficient fixed-speed gait, 127-130

foot placement, 165-170
simulation model, 124-125
speed constraint, 126
variable structure, 127
transformer, 204
twist, 23-26

underactuated walking, 155, 177

unit quaternion, 18, 190

vector, 182
vector field, 187
vector space, 182
basis, 183
dual, 183
dual basis, 183
dual product, 183
virtual time, 136

walking, 3
dynamic, 4
passive, 4
static, 3

walking gait, 95
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Research on walking robots has shown that the process of walking, in itself, requires
little energy. Indeed, many robots have been built that walk with high efficiency. Gen-
eral analysis and control tools for such efficient walkers, however, are lacking, and
many results are based on engineering intuition and ad hoc solutions.

This thesis aims to provide a framework for modeling, analysis, and efficient con-
trol of walking robots. The framework uses a port-Hamiltonian system description
to express the dynamics of rigid mechanisms and their interaction with the ground.
The structure of the resulting models forms the basis for the development of general
analysis and control techniques.
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ball joints), and nonholonomic components (such as nonslipping wheels). Two dif-
ferent 3D contact models are presented: one for compliant contact, and one for rigid
contact.

Using the structure of the models, the problem of finding efficient walking gaits is

cast as a numerical optimization problem. This setting allows one to optimize not
only the joint trajectories but also the mechanical structure of a walking robot. Finally,
three control techniques for efficient walking are presented. The first technique uses
the computed optimal trajectories to define a power-continuous asymptotic tracking
controller. The second technique stabilizes an experimental kneed walking robot by
means of a single controller on the hip joint. The third technique uses foot placement
to increase the robustness of a three-dimensional walking robot.
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