
CONSISTENCY IN
MULTI-VIEWPOINT
ARCHITECTURAL
DESIGN

R
E

M
C

O
 D

IJK
M

A
N

C
O

N
S

IS
T

E
N

C
Y

 IN
 M

U
L
T

I-V
IE

W
P

O
IN

T
 A

R
C

H
IT

E
C

T
U

R
A

L
 D

E
S

IG
N

This publication is a collaborative
result of the Telematica Instituut
and the Centre for Telematics and
Information Technology. It is published
as a part of the Telematica Instituut
Fundamental Research Series.

Parts of the research presented in this
thesis were done in the context of two
projects: A-MUSE and ArCo. A-MUSE
is a BSIK Freeband project, sponsored
by the Dutch Government. It aims at
developing an advanced methodology,
comprising architectures, methods,
techniques and tools, to facilitate
the development and provisioning of
services. ArCo is a Telematica Instituut
project. It aims at developing concepts
for service-oriented design.

Telematica Instituut (www.telin.nl)
is a unique partnership between the
business community, research centres
and government, to perform research
in the field of telematics for the public
and private sectors. The emphasis is
on rapidly translating fundamental
knowledge into market-oriented
applications. The institute’s objective is
to strengthen the competitiveness and
innovative strength of Dutch business,
as well as improving the quality of our
society through the proper application
of telematics. To achieve this, the
institute brings together leading
researchers from various institutions
and disciplines. The Dutch government
supports Telematica Instituut under
its `leading technological institutes’
scheme. Participation in the Telematica
Instituut Consortium is open to other
companies and research centres.

The Centre for Telematics and
Information Technology (www.ctit.
utwente.nl) is one of the key research
institutes of the University of Twente
(UT), Enschede, The Netherlands.
It conducts research on the design
of complex ICT systems and their
application in a variety of domains.
Over 300 researchers actively
participate in the CTIT programme. In
addition, CTIT closely co-operates with
many public and private organizations,
including industrial companies.REMCO DIJKMAN

U

IT
N

O
D

IG
IN

G

Hi

er
bi

j n
od

ig
 ik

 u
 u

it
vo

or
 h

et
 b

ijw
on

en
 v

an
 d

e

op

en
ba

re
 v

er
de

di
gi

ng
 v

an
 m

ijn
 p

ro
ef

sc
hr

ift

C
O

N
S
IS

T
E
N

C
Y

 I
N

M

U
LT

I-
V

IE
W

P
O

IN
T

A

R
C
H

IT
E
C
T

U
R

A
L

D

E
S
IG

N

op
 v

rij
da

g
3

fe
br

ua
ri

om
 1

6.
45

 u
ur

 in
 za

al
 2

 v
an

ge
bo

uw
 ‘d

e
Sp

ie
ge

l’
va

n
de

 U
ni

ve
rs

ite
it

Tw
en

te
.

Vo
or

af
ga

an
d

aa
n

de
 v

er
de

di
gi

ng
 za

l i
k

om
 1

6.
30

 u
ur

ee
n

to
el

ich
tin

g
ge

ve
n

op
 d

e
in

ho
ud

 v
an

 h
et

 p
ro

ef
sc

hr
ift

.

Na
 a

flo
op

 b
en

t u
 v

an
 h

ar
te

 w
el

ko
m

 o
p

de
 re

ce
pt

ie.

RE

M
CO

 D
IJ

KM
A

N

M

ar
sk

an
t 3

1-
3

75

51
 B

S
He

ng
el

o

E-

m
ai

l:
r.m

.d
ijk

m
an

@
ut

we
nt

e.n
l

Te

le
fo

on
: +

31
 (0

)5
3

48
9

44
54

CONSISTENCY IN
MULTI-VIEWPOINT
ARCHITECTURAL
DESIGN
Remco Dijkman

The design of large-scale distributed
applications involves the viewpoints of many
different stakeholders, such as business analysts,
software architects and end-users. Each of these
stakeholders uses his own design languages and
tools to construct a part of the design from his
viewpoint. This presents us with major challenges
in maintaining the consistency between the
designs of the different stakeholders. The
framework presented in this thesis helps to
maintain this consistency.

Using our framework, consistency is preserved
through inter-viewpoint relations and consistency
rules that must be specified by the stakeholders.
The framework supports the specification of such
relations and rules by providing: (i) a set of basic
concepts that stakeholders can use as a common
basis to understand each others concepts; (ii)
pre-defined relations and consistency rules
that stakeholders can re-use to specify inter-
viewpoint relations and consistency rules; and
(iii) an architecture for a tool-suite that supports
enforcing these relations and rules.

We demonstrate the applicability of our
framework by applying it to the viewpoints that
are defined by the Reference Model for Open
Distributed Processing.

About the author
Remco Dijkman has a master’s

degree, with high distinction, from
the Computer Science department
of the University of Twente in The
Netherlands.

After completing his master’s
degree he joined Anaxagoras
Procesarchitecten, a part of Ordina,
as a business process architect. At the
same time he started research towards
a Ph.D. at the Open University of The
Netherlands. After a year he joined
the University of Twente to become a
full-time researcher. Here, he worked
from 2001 until 2005. During this
period, he has participated in the
ArCo and in the A-MUSE research
projects, and developed his Ph.D.
research, which resulted in this thesis.
He has been a visitor at the Business
Process Management group of the
Queensland University of Technology
in Australia.

He authored many international
publications, including conference
papers, journal papers and book
contributions. He served as a reviewer
for several international workshops,
conferences and journals, and he
served as an organizing committee
member of the 9th IEEE EDOC
conference.

IS
B

N
 9

0-
75

17
6-

 8
0-

5

Consistency in Multi-Viewpoint
Architectural Design

Remco M. Dijkman

Enschede, The Netherlands, 2006

CTIT Ph.D.-Thesis Series Number 06-80
Telematica Instituut Fundamental Research Series Number TI/FRS/17

Cover Design: Studio Oude Vrielink, Losser and Jos Hendrix, Groningen
Book Design: Lidwien van de Wijngaert and Henri ter Hofte
Printing: Universal Press, Veenendaal

Graduation Committee:
Chair, secretary: prof. dr. ir. A.J. Mouthaan (Universiteit Twente)
Promotor: prof. dr. ir. C.A. Vissers (Universiteit Twente / Telematica Instituut)
Assistant promotor: dr. ir. D.A.C. Quartel (Universiteit Twente)
Members: prof. dr. ir. W.M.P. van der Aalst (Technische Universiteit Eindhoven)
 prof. dr. ir. S.M.M. Joosten (Open Universiteit Nederland / Ordina)
 prof. dr. P.F. Linington (University of Kent)
 dr. ir. M.J. van Sinderen (Universiteit Twente)
 prof. dr. R.J. Wieringa (Universiteit Twente)

ISBN 90-75176-80-5
ISSN 1381-3617 (CTIT Ph.D.-Thesis Series Number 06-80)
ISSN 1388-1795 (Telematica Instituut Fundamental Research Series Number 17)

Copyright © 2006, R.M. Dijkman, The Netherlands

All rights reserved. Subject to exceptions provided for by law, no part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the prior written permission of the copyright owner. No part of
this publication may be adapted in whole or in part without the prior written permission of the author.

Centre for Telematics and Information Technology,
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
Telephone: +31 (0)53 489 8031; Fax: +31 (0)53 489 1070

CONSISTENCY IN MULTI-VIEWPOINT
ARCHITECTURAL DESIGN

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof. dr. W.H.M. Zijm,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op vrijdag 3 februari 2006 om 16.45 uur

door
Remco Matthijs Dijkman

geboren op 30 december 1976
te Amsterdam

Dit proefschrift is goedgekeurd door:
prof. dr. ir. C.A. Vissers (promotor)
dr. ir. D.A.C. Quartel (assistent-promotor)

Abstract

This thesis presents a framework that aids in preserving consistency in
multi-viewpoint designs. In a multi-viewpoint design each stakeholder con-
structs his own design part. We call each stakeholder’s design part the view
of that stakeholder. To construct his view, a stakeholder has a viewpoint. This
viewpoint defines the design concepts, the notation and the tool support
that the stakeholder uses.

The framework presented in this thesis focuses on architectural multi-
viewpoint design of distributed systems.

A distributed system is a system of which the parts execute on different
physical system nodes. Interaction between the system parts plays an im-
portant role in such systems. An example of a distributed system is a mobile
communication network. In such a network, the parts of the system exe-
cute on e.g. the mobile telephones of the clients, the desktops of the em-
ployees of the network operator and the mobile access points.

Architectural design is the area of design that focuses on higher levels of
abstraction in the design process. The lowest level of abstraction that we
consider is the level at which the system parts correspond to parts that can
be deployed on communication middleware.

Using our framework, consistency is preserved through inter-viewpoint
relations and consistency rules that must be specified by the stakeholders.
The stakeholders use inter-viewpoint relations to specify how one view re-
lates to another and they use consistency rules to specify what rules must at
least be satisfied in a consistent design.

To aid in preserving consistency, our framework defines:
– a common set of basic design concepts;
– pre-defined inter-viewpoint relations;
– pre-defined consistency rules;
– a language to represent inter-viewpoint relations and consistency rules.
The basic design concepts that the framework defines have been adopted
from earlier work. These concepts were developed by carefully examining

VI ABSTRACT

the area of distributed systems design. Using our framework, viewpoint-
specific design concepts must be defined as compositions or specializations
of these basic concepts. Hence, the basic concepts form a common vocabu-
lary that the different stakeholders can use to understand each other’s de-
signs.

The framework pre-defines inter-viewpoint relations that can be re-
used to specify how one view relates to another. The two main types of in-
ter-viewpoint relations that it pre-defines are: refinement relations and
overlap relations. Refinement relations exist between views that (partly)
consider the same design concerns at different levels of abstraction. Overlap
relations exist between views that (partly) consider the same design con-
cerns at the same level of abstraction. We derived the pre-defined relations
by examining existing frameworks for multi-viewpoint design and extracting
frequently occurring relations between viewpoints in these frameworks.

If a pre-defined inter-viewpoint relation exists between two views, this
implies that certain consistency rules must be satisfied. Specifically, if two
views have a refinement relation, this implies that one must preserve the
system properties specified by the other. If two views have an overlap rela-
tion, this implies that the two views must be equivalent with respect to the
overlap that they have. Our framework pre-defines consistency rules that
can be re-used to verify these properties.

We define an architecture for tool-support to aid in specifying view re-
lations and consistency rules and to check whether the specified consistency
rules hold. The architecture contains the pre-defined relations and consis-
tency rules, such that they can be re-used.

As a case study for the framework we define adapted versions of the
RM-ODP enterprise, computational and information viewpoints, using our
framework. We define the concepts from these viewpoints as compositions
of the basic concepts. Also, we define the relations between views from
these viewpoints, as well as the corresponding consistency rules, using the
relations and consistency rules that are pre-defined by the framework. The
results of the case study support the claim that our framework aids in pre-
serving consistency in multi-viewpoint designs.

Acknowledgements

This thesis marks the end of a four-year period, during which I met many
people that have contributed to my development as a researcher. Some of
these people I want to mention here especially.

First of all, I want to thank Chris, Dick and Marten for their supervision
and especially Dick, for reading, and re-reading, my thesis several times.
Also, I want to thank Luís, who was one of my supervisors during the first
year.

I want to thank Stef, who inspired me to do research in the first place.
The ideas on which this thesis is based are also for a large part due to him.

I want to thank the members of my promotion committee: professor
Linington, professor Wieringa, professor van der Aalst (Wil) and the people
mentioned above. I am deeply impressed by the work that each of you has
done in his particular area of research. Therefore, I feel honoured that you
agreed to be members of the committee.

I want to thank the people of the Business Process Management group
at the Queensland University of Technology, and especially Marlon and
Arthur, for providing me with the opportunity of working with them. The
time with you was very productive and I learned a lot from you. Thanks for
that.

To my colleagues and former colleagues, I realize that our group pro-
vides very pleasant working environment that will be difficult to find any-
where else. You are the ones to thank for that. Some of you I spend more
time with, drinking coffee or something stronger or even doing some work
together; I especially want to thank you.

Finally, I want to thank my family and friends and especially Martine for
their company and support outside of the office.

Remco Dijkman
Hengelo, 4 January 2006

Contents

Abstract v

Acknowledgements vii

Contents ix

1. Introduction 1
1.1 Multi-Viewpoint Design 1
1.2 Role of Design Concepts in Multi-Viewpoint Design 2
1.3 Consistency in a Multi-Viewpoint Design 5
1.4 Research Goals and Scope 6
1.5 Research Approach 7
1.6 Thesis Structure 9

2. Frameworks for Multi-Viewpoint Design: an Overview 11
2.1 The GRAAL Framework 11
2.2 ArchiMate 13
2.3 RM-ODP 14
2.4 SEAM 16
2.5 The ViewPoints Framework 16
2.6 OpenViews 17
2.7 Conclusions 18

3. Framework for Multi-Viewpoint Design 19
3.1 Principles of Multi-Viewpoint Design 19
3.2 Tool-Support for Multi-Viewpoint Design 35

4. Basic Design Concepts 55
4.1 System Structure and Structural Concepts 55
4.2 System Behaviour and Behavioural Concepts 74

X CONTENTS

4.3 Information and Information Concepts 96

5. Pre-Defined Viewpoint Relations 107
5.1 Textual Concrete Syntax for Basic Concepts 107
5.2 Pre-Defined Refinement Relations and Consistency Rules 120
5.3 Pre-Defined Overlap Relations and Consistency Rules 160

6. Enterprise, Computational and Information Viewpoint 165
6.1 Goal and Scope of the Case Study 165
6.2 Enterprise Viewpoint 167
6.3 Computational Viewpoint 187
6.4 Relations between Enterprise and Computational Views 203
6.5 Information Viewpoint 210

7. Conclusions and Future Work 221
7.1 Main Conclusions 221
7.2 Considerations for Applying the Framework 222
7.3 Contributions 224
7.4 Future Work 225

Appendix A. Consistency Rules in OCL 227

A.1 Enterprise Roles and Computational Behaviour 227
A.2 Enterprise Processes and Computational Behaviour 230

References 233

Index 239

Samenvatting 243

Telematica Instituut Fundamental
Research Series

001 G. Henri ter Hofte, Working apart together: Foundations for component groupware

002 Peter J.H. Hinssen, What difference does it make? The use of groupware in small groups

003 Daan D. Velthausz, Cost-effective network-based multimedia information retrieval

004 Lidwien A.M.L. van de Wijngaert, Matching media: information need and new media
choice

005 Roger H.J. Demkes, COMET: A comprehensive methodology for supporting telematics
investment decisions

006 Olaf Tettero, Intrinsic information security: Embedding security issues in the design process
of telematics systems

007 Marike Hettinga, Understanding evolutionary use of groupware

008 Aart T. van Halteren, Towards an adaptable QoS aware middleware for distributed objects

009 Maarten Wegdam, Dynamic reconfiguration and load distribution in component
middleware

010 Ingrid J. Mulder, Understanding designers, designing for understanding

011 Robert J.J. Slagter, Dynamic groupware services: modular design of tailorable groupware

012 Nikolay K. Diakov, Monitoring distributed object and component communication

013 Cheun N. Chong, Experiments in rights control expression and enforcement

014 Cristian Hesselman, Distribution of multimedia streams to mobile Internet users

015 Giancarlo Guizzardi, Ontological Foundations for Structural Conceptual Models

016 Mark van Setten, Supporting People in Finding Information: Hybrid Recommender
Systems and Goal-based Structuring

See also: http://www.telin.nl/publicaties/frs.htm

Chapter 1
1. Introduction

This chapter presents the background of our research towards a framework
for distributed systems design from different, but related, viewpoints. The
framework itself is presented in the remainder of this thesis. This chapter
motivates the need for the framework. It presents the goals of the research
that led towards the framework and the approach chosen to achieve these
goals. Also, it describes the contributions that the research has with respect
to other research in the area of distributed systems design. Finally, this
chapter explains the structure of the remainder of the thesis.

1.1 Multi-Viewpoint Design

In any large-scale design, different people with different interests are in-
volved. These people, or stakeholders as we call them, have their own way
of looking at a system, for which they use their own modelling languages,
techniques and tools. Informally, we call the way in which a stakeholder
looks at a system: the viewpoint of that stakeholder.

A stakeholder in a design is a person with a particular interest in that design and his
own viewpoint on that design.

From his viewpoint, each stakeholder constructs his own design part, or
view. However, because views are parts of the same multi-viewpoint design, we
must maintain the consistency between the different view.

The task of maintaining the consistency between views in a multi-
viewpoint design is especially complex, because the different stakeholders
may use different terminology and different tools to construct their views.
The use of a different terminology presents us with a communication prob-
lem in maintaining the consistency in a multi-viewpoint design. This prob-
lem manifests itself in different stakeholders using the same terms to mean

Definition 1-1 Stake-
holder

2 CHAPTER 1 INTRODUCTION

different things and using different terms to mean the same thing. The use
of different tools presents us with a technology problem when maintaining
the consistency in a multi-viewpoint design. This problem lies therein that,
if we want to support consistency checks between different tools, we must
be able to extract the models from these tools and relate them in a uniform
way.

The framework for multi-viewpoint design that we propose aids in
maintaining the consistency between views in a multi-viewpoint design.
Especially, it addresses the communication and technology problems out-
lined above. The framework focuses on maintaining the consistency in the
design of distributed systems that support administrative business proc-
esses.

Figure 1-1 illustrates a multi-viewpoint design, in which two stakeholders are involved: a
manager and an application developer. A manager typically has, among other things, a financial
interest in the design. This interest could be represented from a viewpoint that covers the
difference in costs of performing business activities manually and automatically with the system
under design. The manager could model his interest as a table. An application developer has an
interest in the functional specifications of the applications that are part of the distributed system;
these functional specifications can be represented from another viewpoint than the viewpoint of
the manager. The application developer could model his interest as a UML class diagram.
Although the manager and the application developer have different viewpoints, their viewpoints
are related. For example, the costs of performing a business activity depend on the level of
automated support of that activity by software applications.

1.2 Role of Design Concepts in Multi-Viewpoint Design

Stakeholders construct a design (from their viewpoint) by combining in-
stances of design concepts.

A design concept is an abstraction of some common and essential property of distrib-
uted systems.

Hence, a design concept represents some element in the Universe of Dis-
course (UoD). An example of a concept is the ‘remote invocation’ concept,
which is an abstraction of a communication pattern in which one entity
sends a request to another entity and a related response is sent in the oppo-
site direction, or an error in the underlying communication mechanism is
notified to the requesting party. Another example of a concept is the ‘com-
ponent’ concept, which is an abstraction of an entity that encapsulates cer-
tain functionality. It makes this functionality available to its environment via
communication mechanisms, such as the remote invocation mechanism.

Application Developer

Manager

Figure 1-1 Example of a
multi-viewpoint Design
with Two Stakeholders

Example 1-1 A Multi-
Viewpoint Design

Definition 1-2 Design
Concept

 ROLE OF DESIGN CONCEPTS IN MULTI-VIEWPOINT DESIGN 3

Hence, a design can be constructed from instances of the ‘component’ and
‘remote invocation’ concept.

Often, a set of concepts is implicitly agreed upon by some stakeholders
as part of the design culture.

A design culture is an environment of methods, procedures, tools and skills (Vissers,
Ferreira Pires, & van de Lagemaat, 1995).

We say that design concepts are implicitly agreed upon in a design culture if
they are used, but not explicitly defined. We argue that, for various reasons,
the set of design concepts used in a design culture should be made explicit
and defined precisely. These reasons include that:
– the explicit definition of the set of design concepts helps to understand

those concepts unambiguously. If a design concept is not explicitly
agreed upon, different people may have a different interpretation of it.
For example, some people may interpret the aforementioned ‘compo-
nent’ concept as an Enterprise Java Bean that only has two interfaces,
others may interpret it as a more generic software component that can
have any number of interfaces and still others may interpret it as a part
of some whole that is not necessarily a software system;

– precisely defined design concepts can be used for validation and verifica-
tion. For most realistic designs, it is unfeasible to assess the validity or
evaluate certain properties of that design by hand. Therefore, we use
automated tools to support validation and verification. The use of auto-
mated tools implies that the concepts that we use in a design must be
implemented and therefore that we need to develop a precise enough
understanding of these concepts to implement them.

In prior work (Quartel, 1998; Quartel, Ferreira Pires, van Sinderen,
Franken, & Vissers, 1997; van Sinderen, 1995; Ferreira Pires, 1994) we
developed a set of basic design concepts that is aimed towards the design of
distributed systems across different viewpoints (focusing on structural, be-
havioural and information aspects of such systems).

A basic design concept is an abstraction of some common, essential and elementary
property of distributed systems.

Basic design concepts form the most elementary building blocks for distrib-
uted systems design. Since the basic design concepts are aimed towards the
design of distributed systems across different viewpoints, an important cri-
terion for selecting them is their general applicability to these viewpoints.
Moreover, because, in our approach, each available concept is either a basic
concept or a composition of basic concepts, the basic concepts determine
the expressive power of the set of all available concepts. Hence, the basic

Definition 1-3 Design
Culture

Definition 1-4 Basic
Design Concept

4 CHAPTER 1 INTRODUCTION

concepts should be complete with respect to the viewpoints they aim to ad-
dress. Observing the generality and completeness criteria, the basic con-
cepts should be expressive enough to construct designs from the viewpoints
they aim to address.

Although the basic concepts may be expressive enough to address the
selected viewpoints, it may be hard for stakeholders to accept such a general
and elementary set of concepts, because the concepts may not be intuitively
clear to the stakeholders or may be hard to apply. There are two reasons for
this. Firstly, each stakeholder focuses on a specific part of the overall design.
Therefore, each stakeholder considers a subset of the properties that are
addressed in the overall design and a subset of the basic concepts that ad-
dress these properties. Hence, the stakeholder may be confused by the
other concepts that address properties that he or she does not consider.
Secondly, stakeholders do not (only) consider elementary system proper-
ties. They consider properties that are specializations of elementary proper-
ties, like labour costs and administrative costs, which are specializations of
the general property costs. Also, stakeholders consider properties that are
compositions of elementary properties, like business processes, which are
compositions of activities and goals, and stakeholders consider properties
that are derived from elementary properties, like overall costs of performing
a business process which are derived from the costs of individual activities.
Since these properties can be expressed as compositions of basic concepts,
there are no concepts that match them in a one-to-one fashion. Hence, the
stakeholder may be confused, because the properties that he or she ad-
dresses are not represented by the available concepts in a one-to-one fash-
ion.

For these reasons we develop a set of concepts for each stakeholder,
such that there is an intuitive match between the properties that that stake-
holder considers and the set of concepts that the stakeholder can use. To
maintain the relation between the stakeholder-specific (or viewpoint-
specific) concepts and the basic concepts, we define the stakeholder-
specific concepts as specializations of basic concepts or as composite con-
cepts. We can do that, provided that our set of basic concepts is expressive
enough to represent the properties that the stakeholder considers.

A composite design concept is a composition of basic design concepts or other composite
design concepts.

Our basic design concepts include an ‘interaction’ concept that represents the successful
completion of an activity that is performed by two or more behaviours in collaboration. However,
an application developer may use his own set of concepts, including concepts like the
‘component’ and ‘remote interaction’ concepts mentioned above. Based on the basic
‘interaction’ concept, we can define the ‘remote interaction’ concept as a composition of a

Definition 1-5 Compos-
ite Design Concept

Example 1-2 Basic
Concepts and View-
point-specific Compos-
ite Concepts

 CONSISTENCY IN A MULTI-VIEWPOINT DESIGN 5

‘request’, an ‘indication’, a ‘response’, a ‘confirm’ and an ‘error notification’ basic interaction.
The ‘request’ interaction represents a basic interaction between the requestor and the underlying
communication layer, used to pass the remote invocation request to the communication layer.
The ‘indication’ represents the indication of the request to the receiving party, while the ‘error
notification’ represents the notification of an error in the communication layer. The ‘response’
and ‘confirm’ interactions represent the passing of the response from the receiving party to the
communication layer and from the communication layer to the requestor, respectively. Similarly,
we can define the ‘component’ concept as a specialization of the basic ‘entity’ concept that
represents a carrier of behaviour.

1.3 Consistency in a Multi-Viewpoint Design

To maintain the consistency in a multi-viewpoint design, we must define
the relations between the viewpoints and corresponding rules to verify the
consistency between designs from these viewpoints. We use consistency
rules as more precise versions of the viewpoint relations. Where the view-
point relations only allow us to specify the relation between viewpoints, the
corresponding consistency rules provide the techniques to verify whether
that relation holds for designs from those viewpoints. For example, if a
viewpoint has a refinement relation to another viewpoint, the correspond-
ing consistency rules allow us to verify whether a design from the first view-
point is a correct refinement of a design from the second.

We claim that a set of basic concepts can play an important role in
maintaining consistency between the viewpoints, because:
1. all stakeholder specific concepts either are basic concepts or are defined

as compositions of the basic concepts. Therefore, the basic concepts
provide the different groups of stakeholders with a common basis,
which they can use to relate their respective sets of concepts and
thereby their designs;

2. design relations and consistency rules can be defined on the basic con-
cepts (as they are defined on the basic concepts, we also call them basic
relations and basic consistency rules). The basic design relations and
their corresponding consistency rules are automatically inherited by
concepts that are defined as compositions of the basic concepts. There-
fore, they can then be re-used to verify the consistency between differ-
ent sets of viewpoints.

For these reasons we propose the use of a set of basic concepts. Figure 1-2
illustrates the relation between the basic concepts and viewpoint specific
concepts. It also shows how the relation between two viewpoints can be
defined as a composition of basic relations. For example a viewpoint can
have a relation to another viewpoint that is the composition of the ‘refine-

6 CHAPTER 1 INTRODUCTION

ment’ and the ‘part of’ relation (and hence be a refinement of a part of that
viewpoint).

basic concepts

composition of composition of

basic relations

between

composition of

defined on

composition of

between

viewpoint relations

viewpoint
specific
concepts

viewpoint
specific
concepts ...

1.4 Research Goals and Scope

The goal of this thesis is to develop a framework that supports the design of
distributed systems from different, but related, viewpoints. For reasons out-
lined above, the framework proposes the use of a set of basic design con-
cepts on which basic viewpoint relations and corresponding consistency
rules can be defined. Viewpoint specific concepts can then be defined as
compositions of basic concepts and relations between viewpoints can be
defined as compositions of the basic relations.

To define viewpoints and relations between viewpoints in this way, the
framework consists of the following parts:
1. a set of basic concepts that is sufficiently expressive to construct designs

from the viewpoints that we consider (see the scope of the research be-
low);

2. a technique to define viewpoint specific concepts as compositions of the
basic concepts;

3. re-usable basic viewpoint relations on the basic concepts that can be
used to define the relations between the viewpoints;

4. re-usable basic consistency rules, that correspond to the basic viewpoint
relations, which can be used to verify the consistency between view-
points that have a particular relation;

5. a technique to define viewpoint relations and the corresponding consis-
tency rules as compositions of the basic viewpoint relations that are de-
fined on the basic concepts.

The development of these parts are sub-goals of this thesis.
We limit ourselves to the behavioural, structural and information as-

pects of distributed systems design. Hence, we do not concern ourselves
with aspects such as system performance and security. Also, because our

Figure 1-2 Basic Con-
cepts, Relations and
Viewpoints

 RESEARCH APPROACH 7

research is embedded in the area of distributed systems design for adminis-
trative enterprises, we limit ourselves to the levels of detail that are con-
cerned with enterprise design in the form of business processes, to the de-
sign of services of distributed applications that support such business proc-
esses and to the design of the internal structure and behaviour of these ap-
plications. We address the internal structure of applications, up to (but not
including) a level of detail at which they can be transformed to code in
some programming language. We leave it to other modelling languages,
such as the Unified Modelling Language (UML) (Object Management
Group, 2004a; Object Management Group, 2003b), to address these levels
of detail.

The basic concepts that we introduce are aimed towards design of as-
pects at levels of detail in the scope of our research. They may be expressive
enough to address other aspects, such as security, or other levels of detail,
such as application implementation modelling. However, we do not explic-
itly test them for these aspects and levels of detail.

It is the goal of this thesis to describe a framework, not a complete de-
sign process. Therefore, the framework that we propose is neutral with re-
spect to the viewpoints that may be chosen in a particular design process
and it does not define criteria for selecting viewpoints or viewpoint specific
concepts. Also, the framework is neutral with respect to the order in which
design steps are performed (top-down, bottom-up, waterfall, …) and
therefore it is neutral with respect to the order in which designs are consid-
ered from the viewpoints. Since our framework is neutral with respect to
the design process that is used, it can be used to complement any design
process in which particular viewpoints (that are in the scope of the aspects
and levels of detail that we consider) have already been chosen.

1.5 Research Approach

We use the following approach to achieve our goals.
Firstly, we survey the use of viewpoints in distributed systems design in

literature. In the survey, we focus on the relations that may exist between
viewpoints, techniques for enforcing and verifying the consistency between
designs from these viewpoints and techniques for defining viewpoints and
viewpoint specific concepts. Inspired by this survey and by the design rela-
tions that we defined in previous work (Quartel, Ferreira Pires, & van
Sinderen, 2002; Quartel, Ferreira Pires, Franken, & Vissers, 1995), we
identify re-usable basic viewpoint relations and develop consistency rules
accordingly. Also, inspired by this survey, we develop a technique for defin-
ing viewpoint specific concepts as compositions of basic concepts and view-
point relations as compositions of basic relations.

8 CHAPTER 1 INTRODUCTION

Secondly, we define the concepts from the enterprise, computational
and information viewpoint of the Reference Model for Open Distributed
Processing (RM-ODP) (ITU-T, & ISO/IEC, 1999; ITU-T, & ISO/IEC,
1995) as extensions of the general set of concepts that we defined in previ-
ous work (Quartel, 1998; Quartel et al., 1997; van Sinderen, 1995;
Ferreira Pires, 1994). In the process of doing this, we propose some im-
provements to the RM-ODP viewpoints, such that the resulting viewpoints
are not fully RM-ODP compliant. Therefore, we name the resulting view-
points the enterprise, computational and information viewpoints (and not
the RM-ODP enterprise and computational viewpoints). In accordance with
the scope of this thesis, the enterprise viewpoint focuses on enterprise de-
sign in the form of business processes, the computational viewpoint focuses
on the design of services of distributed applications that support such busi-
ness processes and on the design of the internal structure and behaviour of
these applications. The information viewpoint details the information as-
pects that are considered in business process and distributed application
design. Also in accordance with the scope of this thesis, we restrict the use
of the viewpoints to the concepts that address behavioural, structural and
information aspects.

The definition of the enterprise, computational and information view-
point concepts as extensions of the general set of concepts serves as a case
study. We use this case study to evaluate whether the basic concepts are
expressive enough to address the aspects and abstraction levels mentioned
above. We also use this case study to evaluate the technique for defining
viewpoint specific concepts in terms of basic concepts. We claim that the
enterprise, computational and information viewpoints play an important
role in the area of distributed systems design for administrative enterprises,
because they address business process design, application service design and
design of internal application structure and behaviour. Also, we claim that
the RM-ODP enterprise, computational and information viewpoints are
representative and that, therefore, they form a representative case study.

Figure 1-3 Steps in the
Research Approach and
Chapter Structure

basic concepts
(chapter 4)

composition of composition of

basic relations
(chapter 5)

between

composition of

defined on

chapter 3 describes our framework in more detail

composition of

between between

viewpoint relations
(chapter 6.4 and 6.5)

enterprise
concepts

(chapter 6.2)

computational
concept

(chapter 6.3)

information
concept

(chapter 6.5)

 THESIS STRUCTURE 9

Thirdly, we define the relation that exists between the enterprise, com-
putational and information viewpoints in terms of basic viewpoint relations
that we discovered in step 1. This exercise serves to evaluate our basic rela-
tions.

Figure 1-3 shows how our research approach addresses the research
goals that are represented in Figure 1-2.

1.6 Thesis Structure

The structure of this thesis follows the research approach that we used to
develop the framework. Figure 1-3 illustrates this. The remainder of this
thesis is structured as follows:

Chapter 2 – frameworks for multi-viewpoint design: an overview – surveys existing
frameworks for multiple-viewpoint design. The survey focuses on
frameworks that target (at least) the behavioural, structural and infor-
mation aspects of distributed systems design from the levels of detail
that are concerned with business process design, application service de-
sign and design of internal application structure and behaviour.

Chapter 3 – framework for multi-viewpoint design – presents the actual frame-
work. It explains the principles for multi-viewpoint design, namely how
a design can be constructed from the viewpoints of multiple stake-
holders and how consistency between viewpoints can be preserved in
such a design. Also, it describes techniques that support the principles
and that can be supported by tools.

Chapter 4 – basic design concepts – introduces the basic concepts of the
framework. The set of concepts is partitioned into a set of concepts
concerning the structure of the system, a set of concepts concerning
the behaviour of the system and a set of concepts concerning the in-
formation handled by the system.

Chapter 5 – pre-defined viewpoint relations – Defines the basic viewpoint rela-
tions more precisely. Also, it defines reusable rules to verify the consis-
tency between different views.

Chapter 6 – enterprise, computational and information viewpoint – presents the
enterprise, computational and information viewpoints, which we de-
rived from the RM-ODP viewpoints. It presents concepts to construct
designs from the viewpoints and a notation to graphically represent
these concepts. The concepts of the viewpoints are defined as composi-
tions of basic concepts. Chapter 6 also defines the relations between

10 CHAPTER 1 INTRODUCTION

the viewpoints and rules for verifying consistency between designs that
are constructed from the viewpoints.

Chapter 7 – conclusions and future work – discusses the merits and extent of
the framework. It presents the conclusions of our work and directions
for future work.

Chapter 2
2. Frameworks for Multi-Viewpoint

Design: an Overview

This chapter presents an overview of existing frameworks for multi-
viewpoint design. It addresses frameworks that discuss the relations be-
tween and consistency of different viewpoints and that consider both com-
putational and enterprise viewpoints.

Service Quality

Business
Environment

Business

Business
Systems

Software
Infrastructure

Physical
Infrastructure

Business
Services

System
Functions

Transaction
Services

Software
Execution

Aspects

Ag
gr

eg
at

io
n

Lifecycle

Conception Acquisition Usage and
Maintenance

Disposal

Refinement

2.1 The GRAAL Framework

The goal of the GRAAL framework (van Eck, Blanken, & Wieringa, 2004;
Wieringa, Blanken, Fokkinga, & Grefen, 2003) is to align parts of an overall
system design. To this end, it presents dimensions according to which

Figure 2-1 Dimensions
in the GRAAL Framework

12 CHAPTER 2 FRAMEWORKS FOR MULTI-VIEWPOINT DESIGN: AN OVERVIEW

viewpoints in a system design can be classified. In its most extended form,
the GRAAL framework consists of four orthogonal dimensions. Figure 2-1
illustrates these dimensions. The fourth dimension is drawn separately to
overcome difficulties with four-dimensional drawing.

The aspects dimension. The aspects dimension classifies viewpoints ac-
cording to externally observable properties of the system that viewpoints
address. It considers that a system offers services with a certain quality and
classifies viewpoints according to these two aspects and further into sub-
aspects. It addresses sub-aspects like: the behaviour aspect that presents
possible ordering of service offerings and the service quality expected by the
user.

The level of aggregation dimension. The level of aggregation dimen-
sion orders viewpoints according to the level of aggregation (of system
parts) that viewpoints consider. At each level of aggregation some interact-
ing system parts are represented. These interacting system parts provide
services to the higher level of aggregation. The framework addresses levels
of aggregation like:
– the physical infrastructure level that consists of physical system parts

(e.g. PC, network, …) and provides services that allow higher levels of
aggregation to execute;

– the business level that consists of parts of a business (e.g. actors, roles,
…) and provides business services to an environment of clients.

The refinement dimension. The refinement dimension orders view-
points according to the level of detail at which viewpoints describe the sys-
tem. Adding detail to a viewpoint is said to refine the viewpoint. The
framework does not consider decomposition a form of refinement, because
the aggregation dimension deals with decomposition of a system into parts.
Instead, each part in a system can be refined independently, by describing
more information about it. For example, we can describe each part by de-
scribing its goal and we can refine it by describing how the part achieves its
goal.

The lifecycle dimension. The lifecycle dimension orders viewpoints ac-
cording to the stages in the lifecycle of the system that viewpoints address.
The lifecycle dimension considers stages like: the conception of the system,
the usage and maintenance of the system and the disposal of the system.

Relations between viewpoints. The GRAAL framework defines relations
between viewpoints in terms of methodological guidelines. It describes
guidelines like:

 ARCHIMATE 13

– define a software component for each business service that must be de-
livered;

– specify how business functions contribute to the business goal; and
– define how software applications fulfil roles in business processes and

support business functions.
Guidelines are derived from relations between viewpoints that were found
in case studies. The GRAAL framework presents relations at a high level of
abstraction irrespective of the concepts to which they apply, because de-
signers can freely choose the concepts that they use in each viewpoint. The
GRAAL framework does not define means for verifying consistency.

Business

Application

Technology

Aspects

La
ye

rs

Active
Structural BehaviouralPassive

Structural

Internal

External

Internal

External

Internal

External

2.2 ArchiMate

The goal of ArchiMate (Lankhorst, 2005; Lankhorst, van Buuren, van
Leeuwen, Jonkers, & ter Doest, 2004) is to describe the relations among
different viewpoints (which they call domains) in a system design. To this
end it presents concepts that can be used for design from these different
viewpoints. It also presents relations that can be used to relate (instances
of) concepts from the same and from different viewpoints. ArchiMate cate-
gorizes viewpoints according to which layers (business, application or tech-
nology) and which aspects they address. Figure 2-2 shows the different as-
pects and layers in a system design according to ArchiMate.

Architectural layers. Similar to the GRAAL framework, ArchiMate dis-
tinguishes levels of aggregation, which it calls layers, such that each layer
provides services to the higher layers. It distinguishes three layers:
– the business layer that offers services to the client of the business;
– the application layer that offers application services to support the busi-

ness;

Figure 2-2 Layers and
Aspects in ArchiMate

14 CHAPTER 2 FRAMEWORKS FOR MULTI-VIEWPOINT DESIGN: AN OVERVIEW

– the technology layer that offers services that allow applications to exe-
cute.

Aspects. ArchiMate distinguishes aspects that are addressed in each layer.
It distinguishes structural and behavioural aspects, where structural aspects
are further classified into active and passive structural aspects. The active
structural aspect represents parts that take initiative in performing activities
(e.g. business actors or active software components). The passive structural
aspect represents parts that do not take initiative (e.g. information objects
or conference rooms). In the structural and behavioural aspects we can dis-
tinguish external and internal aspects. External aspects represent aspects
that are observable by the users of a layer. Internal aspects represent aspects
that are not.

Concepts and relations. ArchiMate presents abstract concepts and rela-
tions (Jonkers, Lankhorst, van Buuren, Hoppenbrouwers, Bonsangue, van
der Torre, 2004) that can be used to construct a design for each of the lay-
ers. Abstract concepts and relations can only be used for design at high lev-
els of abstraction. To construct more detailed designs, ArchiMate relies on
viewpoint-specific languages. This is in line with the philosophy of Archi-
Mate, in which stakeholders can use their own languages and tools to con-
struct designs from their viewpoints. Designs from the different viewpoints
can be imported in ArchiMate at a high level of abstraction, therewith ab-
stracting from details that are represented in the viewpoint specific lan-
guages. Subsequently, ArchiMate can be used to define relations between
the viewpoints at a high level of abstraction. For example, a business proc-
ess design can be imported in ArchiMate. The result is a design that repre-
sents activities and flow relations between these activities, but no details
about the flow relations (e.g. whether they are OR-split or AND-splits).
Subsequently, we can use ArchiMate to relate business process activities to
the application services that support them, which are imported from some
other language and tool.

2.3 RM-ODP

The Reference Model for Open Distributed Processing (ITU-T, &
ISO/IEC, 1999; ITU-T, & ISO/IEC, 1995) (RM-ODP), which is currently
being revised (ISO/IEC/JTC1/SC7, 2004), presents a reference model to
define standards for the design and development of open distributed sys-
tems. It consists of concepts and functions that can be used to define RM-
ODP compliant standards. Such standards include (but are not limited to):

 RM-ODP 15

standards for modelling open distributed systems and standards for open
distributed processing components.

The RM-ODP concepts are structured into five viewpoints:
– the enterprise viewpoint, which defines concepts and concept relations

to specify the role of an ODP system in an environment;
– the computational viewpoint, which defines concepts and concept rela-

tions to specify a functional decomposition of an ODP system;
– the information viewpoint, which defines concepts and concept rela-

tions to specify the structure of information in an ODP system and basic
operations that can be performed on that information;

– the engineering viewpoint, which defines concepts and concept relations
to specify the mechanisms and functions that support distributed inter-
actions between ODP system parts;

– the technology viewpoint, which defines concepts and concept relations
to specify the technology onto which an ODP system is implemented.

RM-ODP defines basic concepts that are used as a basis for defining the
viewpoint concepts. A viewpoint concept is either a specialization of a basic
concept or is defined in terms of basic concepts. For example, the ‘compu-
tational object’ concept is a specialization of the ‘object’ concept and a ‘sig-
nal’ is an ‘atomic shared action’, where ‘atomic’ and ‘shared action’ are
basic concepts.

RM-ODP defines consistency rules that aid in keeping viewpoint speci-
fications consistent. The consistency rules consist of correspondences that
specify which concepts from one viewpoint ‘correspond to’ which concepts
from another viewpoint. If concepts from one viewpoint correspond to
concepts from another viewpoint, then specifications from those viewpoints
must make correspondence statements. Correspondence statements specify
which concept instances from one viewpoint specification correspond to
which concept instances from another viewpoint specification. RM-ODP
leaves it to other standards to define what is meant by concepts from one
viewpoint ‘corresponding to’ concepts from another. For example, the en-
terprise object concept from the enterprise viewpoint corresponds to the
computational object concept from the computational viewpoint. Hence, in
an ODP specification, a correspondence statement must relate enterprise
objects from the enterprise specification to corresponding computational
objects from the computational specification.

As is To be

Business

Operation

Technology

Le
ve

ls

Figure 2-3 Organiza-
tional Levels in SEAM

16 CHAPTER 2 FRAMEWORKS FOR MULTI-VIEWPOINT DESIGN: AN OVERVIEW

2.4 SEAM

The Systemic Enterprise Architecture Methodology (SEAM) (Wegmann,
2003) proposes an approach to align an enterprise’s strategies, processes
and supporting systems. To this end it presents:
– organizational levels from which the enterprise can be designed;
– concepts for designing the enterprise from each of these levels;
– a method for designing the enterprise, proposing some design activities.

Organizational levels. SEAM proposes the organizational levels that are
illustrated in Figure 2-3 to organize an overall design. Each of these levels
considers a system of interacting entities. However, at each level the kind of
entities that is considered differs. The business level is used to represent the
business in its value chain, considering the business and its clients and pro-
viders as entities. The operation level is used to represent the operations of
the business itself, considering the actors in the enterprise (including soft-
ware applications) as entities. The technology level is used to represent the
technical infrastructure of the business, considering software components as
entities. Each of the levels can be represented as-is or to-be.

Concepts. SEAM uses the concepts from RM-ODP for design. Naumenko
(Naumenko, 2002) defines an abstract syntax for RM-ODP in a language
called Alloy (Jackson, 2002) that uses a set theoretic formal semantics.
Balabko and Wegmann (2003) explain the abstract syntax for designing
behaviour in more detail. They also explain how behaviour in RM-ODP can
be represented in different modelling languages.

Traceability. SEAM aids in maintaining consistency by defining traceability
relations. Traceability relations can be used to relate concept instances from
different organizational levels. SEAM does not define rules for checking
consistency between organizational levels. It relies on the designer to main-
tain the consistency.

2.5 The ViewPoints Framework

The ViewPoints framework (Finkelstein, Gabbay, Hunter, Kramer, &
Nuseibeh, 1994; Nuseibeh, Kramer, & Finkelstein, 1994; Nuseibeh,
Kramer, & Finkelstein, 1993) is one of the first and one of the most influ-
ential works on multi-viewpoint design and consistency. It is the first at-
tempt to shift from the idea of views as abstractions of existing information
to views that are developed separately by different stakeholders.

 OPENVIEWS 17

In the ViewPoints framework, each viewpoint is defined by five ele-
ments:
– a domain that specifies the universe of discourse of the viewpoint;
– a style that defines the modelling language used to construct a design

from the viewpoint;
– a work plan that defines the process according to which a design can be

constructed from the viewpoint;
– a specification that represents the design from the viewpoint, using the

modelling language defined by the style;
– a work record that represents the information about the current state

and history of the specification.
A complete system design consists of viewpoints and rules that define re-
quirements for consistency between these viewpoints. Each rule defines a
condition that must hold in a consistent specification and defines an action
that must be taken if that condition is violated. The rules are specified as
queries on the database that contains the design.

To verify consistency the ViewPoints framework assumes that the view-
point specifications and the consistency rules are mapped onto a database
that supports reasoning with first-order logic. The database will then per-
form the consistency check.

2.6 OpenViews

OpenViews (Boiten, Bowman, Derrick, Linington, & Steen, 2000) presents
an approach to maintain consistency in RM-ODP based designs, although it
can be applied in a more general context.

OpenViews defines that two views are consistent if a design can be
found that is a refinement of both views. The views can be modelled using
different modelling languages, in which case one of the views must be trans-
formed, such that the views are represented in the same language. Specifi-
cally, OpenViews describes in more detail how to relate views that are rep-
resented in LOTOS (van Eijk, Vissers, & Diaz, 1989) and Object-Z (Smith,
2000). For that purpose Derrick, Boiten, Bowman, and Steen (1999) de-
fine how to transform a view represented in LOTOS into a view repre-
sented in Object-Z.

OpenViews differs from the approaches above, which rely on view rela-
tions and consistency rules. Also, it differs from the approaches above in
that it defines when two views are consistent (namely when a common con-
sistent refinement can be found). The approaches above define when two
views are not consistent (namely when consistency rules are not satisfied).

18 CHAPTER 2 FRAMEWORKS FOR MULTI-VIEWPOINT DESIGN: AN OVERVIEW

ArchiMate

GRAAL

ODPSEAM

ViewPoints/
OpenViews

Conceptual Support

Expressiveness of
Relations

none

Abstract Concepts

Common Abstract
Concepts

Common Basic
Concepts

Relations Guidelines Consistency Rules

2.7 Conclusions

Figure 2-4 illustrates the different levels of support that the frameworks
above have for defining view relations and for checking consistency between
views. The figure classifies the support according to two criteria: expres-
siveness of view relations and conceptual support.

The expressiveness criteria distinguishes the frameworks according to
the support that they have for defining consistency rules. At the lowest level,
a framework supports the definition of relations between views, but not the
(consistency) rules that apply to these relations. At the next level a frame-
work supports the definition of consistency rules. However, advanced con-
sistency rules, such as refinement, are not supported. At the highest level, a
framework fully supports the definition of consistency rules.

A framework supports view relations conceptually, if it provides con-
cepts for the views considered in the framework. These concepts provide a
frame of reference that helps designers to think about relations between
views. First, designers must define the relation between viewpoint-specific
concepts and the framework’s concepts. Second, they must define the rela-
tion between concepts from different viewpoints, using the relations be-
tween the framework’s concepts. A framework can provide conceptual sup-
port to a varying degree.

Abstract concepts provide abstractions of concepts that may be used in
each of the views (covered by the framework). Since they are abstractions,
they may not cover all design properties in detail. Common abstract con-
cepts have the additional property that they are shared between the views,
where regular abstract concepts are different for each of the views. (Com-
mon) basic concepts cover all design properties in detail.

We aim to support the definition of view relations at the level of expres-
siveness that fully allows for the definition of consistency rules. Also, we aim
to support the view relations by providing common basic concepts.

Figure 2-4 Consistency
Verification Support of
Frameworks

Chapter 3
3. Framework for Multi-Viewpoint

Design

An earlier version of the work presented in this chapter was published in (Dijkman,
Quartel, Ferreira Pires, & van Sinderen, 2003)

This chapter presents our framework to support multi-viewpoint design
and maintain consistency between different views in such a design. The
framework allows stakeholders to use their own design concepts, tools and
modelling languages for their view.

This chapter is structured in two parts. The first part discusses the prin-
ciples of multi-viewpoint design. This part defines the viewpoint concept
precisely and explains how a multi-viewpoint design should be constructed.
It explains how we can choose the viewpoints that we want to use in a
multi-viewpoint design, such that the viewpoints are aligned with the design
methodology that is used and such that the multi-viewpoint design is com-
plete in the sense that it covers all relevant aspects. The first part also con-
siders how we can maintain the consistency between views in a multi-
viewpoint design. The second part explains how the principles for multi-
viewpoint design can be supported by tools. To this end it explains a stan-
dardized syntax for defining viewpoints and modelling languages. Also, it
explains how the principles for multi-viewpoint design can be realized by
manipulation of this syntax. This leads to requirements for tool-suites for
multi-viewpoint design.

3.1 Principles of Multi-Viewpoint Design

The principles for multi-viewpoint design include principles for: (i) defin-
ing and using a viewpoint; (ii) choosing a set of viewpoints for a multi-
viewpoint design and describing the relations between these viewpoints; (iii)

20 CHAPTER 3 FRAMEWORK FOR MULTI-VIEWPOINT DESIGN

graphically or textually representing a view (modelling); and (iv) assessing
the consistency of a multi-viewpoint design.

3.1.1 Viewpoints and Views in a Design

A stakeholder in a design has a particular interest in that design. More spe-
cifically, we say that a stakeholder focuses on certain design concerns and
considers these concerns at a certain level of abstraction or certain levels of
abstraction. This observation is shared by most of the frameworks that we
considered in chapter 2. We define design concern as follows:

A concern is a class of system properties.

For example, the behaviour concern is the class of properties that address
the behaviour of a system, such as the activities that can occur in the system
and the relations between these activities.

We define level of abstraction as follows:

A level of abstraction, also called a level of detail, is a relative position in the design
process that prescribes what design information is essential at that position in the de-
sign process.

...

add design information

more abstract
design

more concrete
design

more
implementation

freedom

less
implementation

freedom

more user
requirements-

oriented

more
implementation-

oriented

level of
abstraction

Design

Initial Design

add design information

level of
abstraction

Design

add design information

level of
abstraction

Figure 1-2 illustrates the design process and the relation between levels of
abstraction and the design process. A design process starts out with an ini-
tial design that is an initial representation of a (distributed) system that
solves a given problem. The initial design is gradually transformed into a
design that contains sufficient information to start building the system. This
transformation can be performed in successive design steps, where design
information is added in each step. Design information is represented by
concept instances. A level of abstraction prescribes what design information
should be considered in a design at the end of a design step. A level of ab-
straction is more abstract or higher than another level of abstraction, if it
prescribes less design information. It is more concrete or lower, if it pre-

Definition 3-1 Concern

Definition 3-2 Level of
Abstraction

Figure 3-1 Adding
Detail in a Design Proc-
ess

 PRINCIPLES OF MULTI-VIEWPOINT DESIGN 21

scribes more design information. Similarly, a design is more abstract than
another design if it prescribes less design information and a design is more
concrete if it prescribes more design information. Each design step takes us
from a more user requirements-oriented design to a more implementation-
oriented design, because we add design information that describes in more
detail how the system must be implemented. For that same reason imple-
mentation freedom decreases with each design step.

Note that multiple designs can address the same level of abstraction, be-
cause a level of abstraction is a prescription of design information that must
be provided. Multiple designs can satisfy this prescription.

Focusing on certain concerns and a certain level of abstraction, a stake-
holder considers only a part of an overall design and a subset of the con-
cepts that are used to construct that design. We call this combination of
concerns, levels of abstraction and concepts the viewpoint of a stakeholder.

The viewpoint of a stakeholder is the combination of the concerns and levels of abstrac-
tion that the stakeholder addresses and the set of concepts that the stakeholder uses to
construct his or her part of an overall design.

Hence, to describe the viewpoint from which a stakeholder observes a de-
sign, we must describe:
1. the concerns that are addressed from that viewpoint;
2. the level of abstraction at which those concerns must be addressed; and
3. the concepts, and rules for combining instances of these concepts, that

can be used to construct a design part from that viewpoint.
A view coincides with a part of a design that represents the interest of a
stakeholder.

The view of a stakeholder on a design is the part of a design, constructed from a view-
point, that represents the interest of that stakeholder.

A stakeholder constructs a view by combining instances of design concepts
that are defined by the viewpoint of that stakeholder. The view must repre-
sent the concerns that the viewpoint from which it is constructed prescribes

Example 3-1 Adding
Design Information to a
Design

The design that prescribes that ‘activity b must occur after activity a’ is more abstract than the
design that prescribes that ‘activity b must occur within 300 milliseconds after action a’. The
more concrete design allows for less implementation freedom, because only an implementation
that makes action b occur within 300 milliseconds after action a satisfies these requirements.
Less implementations satisfy this requirement than the requirement that b must occur after ac-
tion a. From the more abstract to the more concrete design the design information within 300
milliseconds is added.

Definition 3-3 Viewpoint

Definition 3-4 View

22 CHAPTER 3 FRAMEWORK FOR MULTI-VIEWPOINT DESIGN

at the level of detail that the viewpoint from which it is constructed pre-
scribes.

Design

View Stakeholder Viewpoint

Concern
Level of

Abstraction

Concept
Instance

System Property

Concept

consists of has

observed
from

has has

addresses at ataddresses

class of

abstraction of

consists of

instance of

defines

constructed
from

Figure 3-2 illustrates the terms that we introduced in this section and the
relationships between these terms. It shows that a design is observed from
the viewpoints that the stakeholders in that design have. Viewpoints address
concerns at a level or some levels of abstraction, where a concern is a class
of system properties. A viewpoint defines concepts that can be used to con-
struct a part of a design from that viewpoint. We call such a part of a design
a view. A view consists of instances of concepts that are defined by its view-
point. Also, it addresses the concerns that its viewpoint addresses at the
level of abstraction at which its viewpoint prescribes. Our outline of multi-
viewpoint architectural design can be used as an extension of the approach
for multi-viewpoint architectural description defined by IEEE (2000), be-
cause we also consider relations between viewpoints and concepts that can
be used for modelling from a viewpoint.

A business process viewpoint is an example of a viewpoint. This viewpoint is a way of looking at
a system for a stakeholder that is interested in the way in which work is performed in an
enterprise. This stakeholder considers the tasks that are performed in the enterprise and the
relations between those tasks. We refer to that as the process concern. The stakeholder also
considers who performs which tasks, which we refer to as the organizational concern. Both the
process and the organizational concern are considered at a level of abstraction at which we
consider the individual employees in a company. The organizational concern addresses
individual employees and the process concern addresses tasks that these individual employees

Figure 3-2 Viewpoint
Terminology and its
Relations

Example 3-2 A View-
point

 PRINCIPLES OF MULTI-VIEWPOINT DESIGN 23

have to perform. Examples of design concepts that are used from the business process viewpoint
are: task, sequence relation, choice relation and actor. Hence, according to the definition of the
business process viewpoint, a business process view consists of instances of the task, sequence
relation, choice relation and actor concepts. An example of a view is the view that contains two
instances of the task concept. One task has the description ‘fill out application form’ and the
other has the description ‘evaluate application’. These tasks are related by one instance of the
sequence relation concept and are performed by the instance of the actor concept with the name
‘John Jameson’.

3.1.2 Relating Views in a Design

Since viewpoints consider certain concerns at a certain level of abstraction,
we can position the viewpoints of a design relative to each other. Figure 3-3
illustrates the relative position of some viewpoints in a table. The columns
of the table represent the different concerns of stakeholders in the design,
while the rows represent the levels of abstraction at which these concerns
are considered. The rows in the table are ordered, such that the level of
abstraction decreases (and therefore the level of detail increases) as we get
to lower rows in the table.

concerns

level of
abstraction

viewpoint

viewpoint
viewpoint

viewpoint viewpoint

System properties that are prescribed at some level of abstraction do not
lose their validity at lower levels of abstraction. They can only be refined.
Therefore, if a concern is covered at a certain level of abstraction, then the
properties that it prescribes must also be covered at lower levels of abstrac-
tion. To prevent that parts of a design must be repeated without change at
successive levels of detail, we allow such parts to be left out. We do this by
assuming that, if a concern is not covered at a certain level of abstraction,
while it is covered at a higher level of abstraction (as is the case in the table
from Figure 3-3), then the properties that held for that concern at the
higher level of abstraction, also hold at the lower levels of abstraction. For
example, at the higher levels of abstraction, a stakeholder can consider
Quality of Service constraints, such as ‘a client must receive an answer
within 5 seconds’. These Quality of Service constraints may not have to be
considered explicitly at some successive intermediate levels of abstraction
and be considered again once an implementation platform has been chosen.

Figure 3-3 Table that
Contains the Viewpoints
of a Design

24 CHAPTER 3 FRAMEWORK FOR MULTI-VIEWPOINT DESIGN

However, the Quality of Service constraints do not lose their validity at the
intermediate levels of abstraction. Therefore the Quality of Service con-
straints described at the higher levels of abstraction must hold at each in-
termediate level.

Since a view is constructed from a viewpoint, by combining concepts
that that viewpoint defines, the views in a design are also positioned relative
to each other. The relative position of views can be represented in the same
table as the table that organizes the viewpoints.

Basic types of relations between views. Since different views in a de-
sign consider the same system, views are related in one way or another. In
our framework the designer must explicitly prescribe the relations that exist
between views, because defining the relation between views explicitly is a
prerequisite to verifying the consistency between those views.

The basic types of relations that viewpoints, and therefore views, can
have with each other can be inferred from the relative position that views
can have with respect to each other. Because a viewpoint considers certain
design concerns at a certain level of abstraction, different viewpoints can
consider different design concerns and different levels of abstraction.
Therefore, we distinguish between two basic types of view relations: the
refinement relation and the overlap relation.

Two views have a refinement relation, if they consider the same concerns at different
levels of abstraction.

In case of a refinement relation between two views, the more concrete view is
a refinement of the more abstract view. For example, one view may con-
sider the behaviour of a system as a whole, while another view also consid-
ers the internal behaviour of that system in terms of the interactions be-
tween its components. These views are related because the internal view is a
refinement of the system view, i.e., adds design detail, by providing a de-
composition of the system that prescribes how the system can be imple-
mented.

Two views may consider different concerns. In this case we say that they
are orthogonal. For example, one view may consider the structure of a sys-
tem in terms of interconnected components, while another view considers
the behaviour of each component. These views are orthogonal in the sense
that the structural view identifies the components and their interconnec-
tions, whereas the behavioural view considers the behaviour of the compo-
nent. In general, it may be difficult, if not impossible, to separate concerns
such that they are fully orthogonal, in the sense that they have no system
properties in common. Therefore, views that consider different concerns at
the same level of abstraction are likely to have overlap. For example, the

Definition 3-5 Refine-
ment Relation

 PRINCIPLES OF MULTI-VIEWPOINT DESIGN 25

structural and behavioural view are not fully orthogonal, because the behav-
ioural view should specify the behaviour of each component identified in
the structural view. Hence, both views address the system component
properties, although one focuses on the interconnections of the system
components, while the other focuses on the behaviour of the system com-
ponents. If two views have partly overlapping concerns we say that they have
an overlap relation.

Two views have an overlap relation if they partly consider the same system properties.

We can prescribe more design information about the relation between two
views, by prescribing which properties that are represented by the views are
related and how. In case of a refinement relation between two views, we
can prescribe what design information is added to which properties in one
view and in which, more concrete, properties this results in the other view.
In case of an overlap relation between two views, we can prescribe which
properties in one view have overlap with which properties in another view
and what the nature of the overlap is (the properties are the same, the
properties are partly the same, …). We can represent the design informa-
tion about view relations as associations between concept instances, because
concept instances represent (instances of) properties.

pre-defined relation

Viewpoint1
used to

construct ad-hoc
relation

re
la

tio
n

de
fin

ed
 b

et
we

en
 v

ie
ws

re
la

tio
n

de
fin

ed
 b

et
we

en
 v

ie
wp

oi
nt

s

ad-hoc relation

Viewpoint2
used to

construct

Viewpoint1
used to

construct

Viewpoint2
used to

constructpre-defined
relation

Viewpoint1

View1

used to
construct ad-hoc relation

implied by r

Viewpoint2
used to

construct

Viewpoint1
used to

construct

Viewpoint2

1

used to
construct

r r

pre-defined relation
implied by r

View2
1 View1

1 View2
1

View1
1 View2

1 View1
1 View2

1

r = each View1 from Viewpoint1 and each View2
from Viewpoint2 have an ad-hoc relation between

them

r = each View1 from Viewpoint1 and each View2
from Viewpoint2 have a pre-defined relation

between them

Different ways to prescribe view relations. Table 3-1 illustrates four
possibilities for prescribing the relation between views, depending on

Definition 3-6 Overlap
Relation

Table 3-1 Possibilities
to Define View Relations

26 CHAPTER 3 FRAMEWORK FOR MULTI-VIEWPOINT DESIGN

whether these relations are prescribed in an ad-hoc or pre-defined manner
and depending on whether they are described between viewpoints or be-
tween views. Relations are pre-defined if they are defined for re-use in dif-
ferent designs. They are ad-hoc if they are defined specifically for a single
design.

Whether an ad-hoc or a pre-defined relation is used has an impact on
the re-usability of view relations between designs as well as on the flexibility
in adapting a relation. On the one hand, using a pre-defined relation has
the benefit of being able to re-use an existing relation, but also has the
drawback of not being completely free to define the relation. On the other
hand, using an ad-hoc relation has the benefit of being completely free to
define that relation, but also has the drawback of having to define the rela-
tion by oneself.

Whether a relation is defined between views or between viewpoints, has
an impact on the re-usability of a view relation when views are modified as
well as on the flexibility in adapting a relation to two views. On the one
hand, if a relation is defined between viewpoints rather than directly be-
tween views, then that relation is not affected when views are modified.
Hence, a relation that is defined at a viewpoint level can be re-used for dif-
ferent views that are constructed from that viewpoint. On the other hand, it
may not be possible to define (a part of) a relation between viewpoints,
because it is not possible to define unambiguously at a viewpoint level
which concept instances the relation relates. For example, at a viewpoint
level, we may be able to specify that each behaviour from (a view from) one
viewpoint is a refinement of a single behaviour from (a view from) another
viewpoint. However, that does not provide us with enough information at a
view level to determine exactly which behaviour is a refinement of which.
Therefore, this relation must partly be defined at a view level.

For these reasons, we propose that, in a multi-viewpoint design, both
ad-hoc and pre-defined relations are used and relations are defined be-
tween viewpoints as well as between views. This combines the re-usability
of pre-defined and viewpoint-level relations with the flexibility of ad-hoc
and view-level relations. In section 3.2 we explain how these approaches
can be combined if a particular syntax is used to represent viewpoints. In
chapter 5 we pre-define some re-usable view(point) relations.

3.1.3 Consistency in a Multi-Viewpoint Design

If a relation is prescribed between two views, those views must observe the
requirements that the relation between them implies. A refinement relation
between two views implies that the more detailed view can be obtained
from the less detailed view by adding design information. An overlap rela-
tion between views implies that the views are equivalent with respect to

 PRINCIPLES OF MULTI-VIEWPOINT DESIGN 27

their overlap. More detail can be prescribed about the requirements that
are implied by a view relation, such as the (type of) design information that
is added in a refinement relation, or the nature of the overlap between
views. We separate view relations from consistency rules.

A consistency rule is a rule that represents a requirement that is implied by a view
relation.

The separation between view relations and their consistency rules is merely
a representation choice, because the consistency rules, being implied by the
view relations, are an inherent part of those relations. We make this repre-
sentation choice, such that the design activity of defining relations between
views can be separated from the design activity of verifying the consistency
between views. However, these activities can still be combined if the de-
signer so desires. Chapter 5 pre-defines the consistency verification rules
that accompany our pre-defined view relations.

We call the verification of the requirements implied by the relation, ac-
cording to the consistency rules, consistency verification. If a view is related to
another view by means of a refinement relation, design detail is added to
get from the less detailed to the more detailed view. Hence, two views are
consistent according to a refinement relation if, after removing the added
design detail from the more detailed view, the more detailed view is equiva-
lent to the less detailed view. Two views are consistent according to an
overlap relation, if they are equivalent (according to some notion of equiva-
lence) with respect to their overlap.

3.1.4 Choosing Viewpoints

Before a design is constructed, viewpoints must be selected to construct the
design from. It is not our aim to prescribe exactly which concerns, levels of
abstraction and viewpoints a design must cover. Our framework aims to
complement existing design methodologies that typically already imply par-
ticular concerns and levels of abstraction. However, we do provide guide-
lines for selecting viewpoints from which a design can be constructed.
These guidelines can be used to improve existing design methodologies, by
making these methodologies adhere to the guidelines. They can also be
used to add viewpoints to a design, if the methodology of choice does not
cover all concerns or levels of abstraction that are relevant to the stake-
holders.

Align viewpoints with the methodology used. The aim of our frame-
work is that it is used in combination with an existing design methodology.
However, to use our framework in combination with a methodology, we

Definition 3-7 Consis-
tency Rule

28 CHAPTER 3 FRAMEWORK FOR MULTI-VIEWPOINT DESIGN

must align it with that methodology. We do that by aligning the viewpoints
to the design milestones and layers of functionality that may be defined in the
context of a methodology.

A design milestone is a well-defined design objective.

Since a design milestone is a design objective, it can be considered a level of
abstraction, because it also prescribes what must be represented (to reach
the objective). Therefore, to align our viewpoints to a methodology, we can
define levels of abstraction that match the milestones in a design methodol-
ogy. Even though we align our levels of abstraction to milestones, we are
still allowed to define other levels of abstraction as well. Also, because a
level of abstraction is prescriptive, we are allowed to define levels of ab-
straction such that multiple milestones correspond to the same level of ab-
straction. For example, we could define a level of abstraction that addresses
the behaviour of a system as a whole and a milestone that corresponds to
that level of abstraction. The designer may present a view at that level of
abstraction to the client and modify the view based on comments from the
client, therewith reaching a new milestone. Although design information is
added in that process, the resulting view is still at the level of abstraction
that addresses the behaviour of a system as a whole. Hence, both milestones
correspond to that level of abstraction. In all evolutionary design ap-
proaches, where a design process is iterated several times until the designer
is satisfied with the result (Pressman 2003), this situation can occur. Even
though design detail is added in each iteration, the stakeholders observe
that the levels of abstraction that they defined are addressed once for each
iteration.

layer 1

uses
functions of

i. Layered functionality

black box

ii. Layered functionality with black box

provides
functions to

provides
functions to

layer 2

uses
functions of

provides
functions to

layer 3

layer 1

uses
functions of

provides
functions to

provides
functions to

We define layer of functionality as follows:

Definition 3-8 Design
Milestone

Figure 3-4 Layers of
Functionality

 PRINCIPLES OF MULTI-VIEWPOINT DESIGN 29

A layer of functionality is a set of functions that can be used by other sets of functions
and use other sets of functions, but that cannot both use (directly or indirectly) and be
used (directly or indirectly) by the same other set of functions.

We call a set of functions that cannot both use and be used by the same
other set of functions: a layer, because it can be layered on top of another
layer and other layers can be layered on top of it, such that the higher layers
only use, but are not used by, the lower layers and the lower layers are only
used by, but do not use, the higher layers. Figure 3-4.i illustrates this. We
can gradually introduce layers of functionality, during the design process.
We can start out with a description of what functions we need, considering
the layers that provide them as a black box. Subsequently, we can introduce
the layer of functionality that provides the required functions and uses the
functions from another black box. Figure 3-4.ii illustrates this step in the
design. We can apply this process recursively, by opening up each black box
and defining it as a layer of functionality and another black box. The proc-
ess ends when we can directly implement the black box as a layer of func-
tionality. Each introduction of a layer of functionality introduces design
detail with respect to the black box, because each black box describes only
what functions are provided. The decomposition of the black box into a
layer of functionality and another black box also describes how these func-
tions are realized. Hence, we can define a level of abstraction that matches
the composition of the layers of functionality that were identified so far and
the black box that provides the functions required by those layers. For ex-
ample, Figure 3-4.ii shows a design at a level of abstraction after the identi-
fication of one layer. Figure 3-5.i illustrates the levels of abstraction that we
can identify for different layers of functionality in a design methodology.

Definition 3-9 Layer of
Functionality

Figure 3-5 Incorporat-
ing Layers of Functional-
ity as Viewpoints

concerns

i. Layers as levels of detail

layer 1
concerns

ii. Layer concerns considered at successive decompositions

level of
abstraction

layer 1

functions
used by 1

layer 1

functions
used by 2

layer 2

layer 1
layer 2
layer 3
layer 4

layer 1

layer 2

layer 3 layer 4

layer 2
concerns

layer 3
concerns

layer 4
concerns

level of
abstraction

functions used by 2

functions used by 1

30 CHAPTER 3 FRAMEWORK FOR MULTI-VIEWPOINT DESIGN

An alternative to match viewpoints to layers of functionality is by con-
sidering that each layer addresses its own concerns. Hence, we create a
concern for each layer of functionality. This concern is addressed by the
layer itself and by the black box that contains the layer. The black box con-
siders the concerns at a higher level of abstraction, because it specifies what
concerns the layer addresses and abstracts from how the layer implements
these concerns. Figure 3-5.ii illustrates this relation between layers of func-
tionality and viewpoints. The figure shows that the concerns of layer 1 are
considered by the view that covers that layer at the highest level of abstrac-
tion. The concerns of layer 2 are considered by the view that covers that
layer at the second highest level of abstraction. The concerns of layer 2 are
also considered by the black box that incorporates that layer, but abstracts
from contributions of the individual layers, functions used by 1. The levels of
abstraction in this figure represent the successive levels of decomposition.

Align viewpoints to requirements of stakeholders. According to our
definition, viewpoints address the concerns of stakeholders at the levels of
abstraction that these stakeholders consider. Therefore, we can add view-
points, levels of abstraction and concerns as required by the stakeholders. If
the viewpoints, levels of abstraction and concerns were originally derived
from milestones and layers of functionality as described in the previous
paragraphs, this may involve modifying those viewpoints. For example, in
Figure 3-5 the concerns from each of the layers could be split-up into sev-
eral more fine grained concerns. Similarly, we can introduce levels of ab-
straction between two levels of abstraction that were derived from mile-
stones.

Separation of concerns. The generic architectural principle of separation
of concerns (where concerns are not necessarily concerns as they are de-
fined above) states that design problems should be broken up into sub-
problems that can be solved relatively independent, after which the solu-
tions can be combined again into a complete solution. The principle of
separation of concerns also applies to the concerns and viewpoints that we
identify. Applied to concerns and viewpoints, it implies that we should re-
duce the overlap between the concerns and viewpoints that we identify to a
minimum. Based on this principle, we could remove concept instances
from one viewpoint that have an equivalent in another viewpoint. Such con-
cepts do not add information, because the property that they represent is
already addressed by another view. The relation that exists between re-
moved concept instances and other concept instances from that view can be
incorporated into the overlap relation that exists between the views. Note,
however, that the existence of equivalent concepts may be intentional and
useful, because they improve the clarity of the individual viewpoints. In that

 PRINCIPLES OF MULTI-VIEWPOINT DESIGN 31

case the concepts should not be removed. The separation of concerns prin-
ciple may also motivate that concerns are split up into several more fine
grained concerns.

Derive generic concerns. If concerns are (partial) specializations of the
same concern, then there may be a benefit in grouping them under this
generic concern. The benefit is that the relation between the concerns at
different levels of abstraction becomes more clear. Hence, there is mainly a
benefit when the concerns are addressed at different levels of abstraction.
For example, the customer satisfaction concern that addresses the timeliness
and mistake-rate of the service that is delivered to the customers and the
application quality of service concern can (partly) be considered specializations
of the same generic concern quality of service. Hence, they can be grouped
under this concern. In this way, it becomes more clear that customer satis-
faction is (partly) realized by application quality of service at a lower level of
abstraction. Eventually all concerns are specializations of the concern a con-
cern in the design, so they could be grouped into that single concern. How-
ever, this violates the principle of separation of concerns. This illustrates
that there is a trade-off between separation and generalization of concerns.
The designer has to choose the concerns at the appropriate level of general-
ity.

Observe generic viewpoint relations. Viewpoints are in principle al-
ways related, either directly or indirectly, because they are used to repre-
sent design parts of the same system. Hence, we should define our view-
points in such a way that no groups of viewpoints exist between which there
are no relations. Also, viewpoints must always be assigned to the levels of
abstraction and concerns that they address. Since, for each two levels of
abstraction, one is always more concrete than the other, viewpoints are ei-
ther (partly) related by refinement, orthogonal or overlapping. This implies
that two viewpoints at different levels of abstraction cannot consider the
same concern and be unrelated by refinement.

Frequently occurring concerns and levels of abstraction. Each of
the frameworks presented in chapter 2 presents its own concerns and levels
of abstraction (or layers of functionality). These concerns and levels of ab-
straction can be used as a guideline for developing one’s own concerns and
levels of abstraction. Also, we can use the concerns and levels of abstraction
that are suggested by enterprise architecture frameworks, such as the
Zachman framework (Zachman, 1987; Sowa, & Zachman, 1992) and The
Open Group Architecture Framework (TOGAF) (The Open Group, 2005).

32 CHAPTER 3 FRAMEWORK FOR MULTI-VIEWPOINT DESIGN

3.1.5 Viewpoints and Modelling Languages

Viewpoints and their concepts are meant to construct mental images of a
part of the design. Since it is hard to discuss and share designs in terms of
mental images that only exist in the minds of the stakeholders, we should
make our designs concrete in the form of models. A model is a textual or
graphical representation of a design (part). Hence, design takes place in
three related ‘worlds’: the real world, where the real system and its envi-
ronment exist or will be constructed, the conceptual world, which is the
conception of the real world in our minds, and the symbolic world, which
is the concrete representation of the conceptual world on some medium
(e.g., paper or a computer screen). Views exist in the conceptual world,
because they are mental images of the stakeholders. Each view may be rep-
resented by different models that use different symbolisms.

Just as a viewpoint defines the means to construct a view in the form of
concepts, a modelling language defines the means to construct models. These
means consist of language concepts, which define what can be modelled, and
notational elements to represent (express) the language concepts graphically
or textually. A language concept represents some system properties, similar
to a design concept. For example, UML Activity Diagrams define the lan-
guage concept ‘Action’, which is represented by the graphical notational
element ‘Rounded Rectangle’. The UML language concept ‘Action’ repre-
sents some unit of activity that can be executed by a system.

A representation relation between language concepts and the notational
elements defines how each language concept is represented by a single nota-
tional element or a composition of notational elements. Similarly, it shows
how notational elements can be interpreted in terms of language concepts. A
modelling language may associate more than one notation with the same
concept. For example, it is common for modelling languages to define both
a graphical and a textual notation with the same concept, because the
graphical notation is easier to understand by humans, while the textual no-
tation is easier to use for processing by tools.

The benefit of distinguishing language concepts from notational ele-
ments is that we can clearly separate the conceptual aspects from the nota-
tional aspects of a modelling language. This is especially useful, because the
notational elements often contain properties that are used by modelling
tools to draw the model. Examples of such properties are the ‘height’ and
‘width’ of a rounded rectangle. These properties are not relevant from a
conceptual perspective. In contrast, language concepts are relevant to stake-
holders, because they imply a viewpoint. Moreover, because language con-
cepts have their own semantics, some languages are suitable to represent a
viewpoint, while others are not.

 PRINCIPLES OF MULTI-VIEWPOINT DESIGN 33

Viewpoint

View

Modeling Language
Language
Concepts

Notational
Elements

Model

representationrepresentation

representation

used to
construct used to construct

The relation between viewpoints and modelling languages. Figure
3-6 illustrates the relation between views, viewpoints, models and model-
ling languages. It is consistent with the relation between concepts and nota-
tional elements that is defined in (Ferreira Pires, 1994). In order to use a
modelling language to represent (the views according to) some viewpoint,
we must define the relationship between the language concepts of the mod-
elling language and the design concepts of the viewpoint. This relationship
should clearly define how (compositions of) language concepts represent
(compositions of) the design concepts from the viewpoint.

In the ideal case modelling language concepts correspond to viewpoint
concepts in a one-to-one fashion. Since this means that the sets of concepts
are equivalent, we only need one set of concepts. Hence, there is no need
for a representation relation in this case. However, in general language con-
cepts differ from viewpoint concepts, because they are developed separately
(by different expertise groups). For example, modelling languages are often
developed by tool builders, who want to make their tool suitable for as
many stakeholders as possible. Therefore, the language concepts that they
use are generic. In contrast, viewpoints are defined by stakeholders in a
system design, who want to define their concepts to match the properties
they consider important as closely as possible. Therefore, the viewpoint
concepts that they define are more viewpoint specific (although stake-
holders may (partly) adopt more generic concepts). This implies that mod-
elling languages can often be used to represent more than one viewpoint.
For these reasons, the representation relation between viewpoints and
modelling languages can take different forms, depending on how much the
viewpoint concepts differ from the language concepts in available modelling
languages, how much stakeholders of the viewpoint are willing to adapt
their viewpoint concepts and how easy it is to adapt the language concepts
and their corresponding tools.

In the extreme case language and viewpoint concepts are made to corre-
spond to each other in a one-to-one fashion, either by forcing the stake-
holders to adapt to the available modelling language concepts or by forcing
the modelling language to adapt to the viewpoint concepts. The first ap-
proach is often chosen in practice, where a set of popular modelling lan-
guages, like the UML, is selected and the definition of viewpoint concepts is

Figure 3-6 Viewpoints,
Modelling Languages
and their Relations

34 CHAPTER 3 FRAMEWORK FOR MULTI-VIEWPOINT DESIGN

left implicit. The stakeholders are then not free to choose their own view-
point concepts. Instead, the viewpoint concepts are implied by the language
concepts. The second approach is the approach proposed by Domain Spe-
cific Languages (DSL) (van Deursen, Klint, & Visser, 2000). A DSL is a
modelling language developed especially for a particular application domain
(such as a viewpoint or a set of viewpoints). Hence, a DSL does not define
its own concepts, but instead uses the concepts from the viewpoint(s) that
it represents.

We claim that it is not good practice to force stakeholders to use the
concepts from a modelling language, because viewpoint concepts should be
motivated by the properties that a stakeholder wants to represent. Language
concepts should adapt to these concepts. People have employed this ap-
proach for the area of workflow design. For this area, an inventory of the
viewpoint concepts (patterns) used by stakeholders has been made (van der
Aalst, ter Hofstede, Kiepuszewski, & Barros, 2003; Russell, van der Aalst,
ter Hofstede, & Edmond, 2005; Russell, ter Hofstede, Edmond, & van der
Aalst, 2005). The ability of existing languages to represent these concepts
has been evaluated. This has led to the development of a new language that
supports all the concepts (van der Aalst, & ter Hofstede, 2005).

Task Relation

Sequence Choice
Action

Edge

Node

Decision

Rounded Rectangle

Task Arrow

Diamond

affects

is a is a is a
is a

from to

Concepts Language Concepts Notational Elements

UML Activity DiagramsBusiness Process Concepts

Figure 3-7 illustrates a complex representation relation. The figure shows some business
process design concepts and a strongly simplified version of UML activity diagrams. It
represents concepts in boxes. Lines represent relations between concepts, while dashed arrows
represent the representation relation. The business process concepts consider tasks and two
relations between tasks: the sequence relation, that prescribes that the affected tasks are
performed in a sequence, and the choice relation, that represents that there is a choice between
the affected tasks. UML activity diagrams consider nodes and directed edges between nodes. We
consider action nodes and decision nodes. A decision node represents that a decision takes
place after the actions are performed from which edges are directed to the decision. After the
decision one of the actions is performed to which edges are directed from the decision. Edges in
a UML diagram are represented by arrows, actions by rounded rectangles and decisions by
diamonds. We use UML actions to represent business process tasks and UML decisions to
represent business process choices. However, a business process choice directly specifies the

Figure 3-7 Example of
Related Concepts and
Language

Example 3-3 A Repre-
sentation Relation

 TOOL-SUPPORT FOR MULTI-VIEWPOINT DESIGN 35

tasks between which it represents a choice, while a UML decision is related to UML actions by
means of UML edges. Therefore, the representation relation needs to take into account that a
business process choice is represented as a composition of a UML decision with edges leading
to and from it. Hence, the representation relation specifies that for each instance of the UML
action concept there exists an instance of the task concept. It also specifies that for each
instance of the UML ‘DecisionNode’ concept with instances of the ‘ActivityEdge’ concept leading
to and from it, there exists an instance of the choice concept. This choice instance relates task
instances in a similar way as the ‘ActivityEdge’ instances relate action instances.

3.2 Tool-Support for Multi-Viewpoint Design

The principles for multi-viewpoint design that we explained in the previous
section can be implemented in design tools. We implement the principles
for multi-viewpoint design as syntactic manipulations of models. We use
existing standards for both the syntax and the syntactic manipulations as
much as possible. At the end of the chapter, we give an overview of a tool
suite for multi-viewpoint design, in which the proposed syntax and syntac-
tic manipulations are used.

3.2.1 A Standardized Syntax to Define Concepts and Modelling
Languages

We claim that a standardized syntax is needed to define concepts and mod-
elling languages. We fulfil this need by using the Meta-Object Facility
(MOF) that is standardized by the Object Management Group (2002a).

The need for a standardized syntax. Just as we need concepts and
model elements to create a common understanding for constructing views
and models, we need meta-concepts to create a common understanding for
constructing viewpoints and modelling languages. This is especially impor-
tant if we want to relate (views from) different viewpoints. Because, if dif-
ferent viewpoints are defined using the same meta-concepts, we can use
techniques that are defined on the meta-concepts to relate these view-
points.

A meta-concept is a concept that is used to define other concepts.

A concept is an instance of a meta-concept or a composition of instances of
meta-concepts. Typical meta-concepts are ‘concept’, ‘attribute’ and ‘com-
position rule’. For example, to define the business process viewpoint from
Figure 3-7, we create the instances ‘task’ and ‘sequence’ of the meta-
concept concept. Hence, ‘task’ and ‘sequence’ are themselves concepts. We

Definition 3-10 Meta-
concept

36 CHAPTER 3 FRAMEWORK FOR MULTI-VIEWPOINT DESIGN

create the instances ‘description’ and ‘average duration’ of the ‘attribute’
meta-concept that we associate with the ‘task’ concept. Also, we create the
instances ‘source task’ and ‘destination task’ of the ‘attribute’ meta-concept
that we associate with the ‘sequence’ concept. Figure 3-8 illustrates the
relation between meta-concepts, concepts and concept instances, using the
business process viewpoint example.

Just as we need meta-concepts to define concepts, we need meta-meta-
concepts to define meta-concepts, meta-meta-meta-concepts to define
meta-meta-concepts and so on. However, if we follow this line of reason-
ing, we would always have to define the next meta-level and we would never
get around to the actual design. To solve this problem, we define meta-
concepts as instances of themselves. This still requires us to postulate a set
of meta-concepts. However, these meta-concepts are defined as instances
of themselves. Hence, they are their own meta-meta-concepts and we do
not need to define a set of meta-meta-concepts. For example, we can de-

Figure 3-8 The Means
to Define Concepts and
their Instances

Figure 3-9 How we
Define Meta-Concepts in
Terms of Themselves

‘has’‘affects’

‘affects’

‘connects’

meta-concepts

concepts

concept
instances

‘connects’: ‘composition rule’

‘task’: ‘concept’

‘sequence’: ‘concept’
‘affects’

‘description’: ‘attribute’

‘average duration’: ‘attribute’

‘source’: ‘attribute’

‘destination’: ‘attribute’

‘has’

‘has’

‘has’

‘has’

‘concept’‘composition rule’ ‘attribute’

‘t1’: ‘task’

‘t2’: ‘task’

‘fill out application form’: ‘description’
’15 minutes’: ‘average duration’

‘evaluate’: ‘description’
’15 minutes’: ‘average duration’

‘s1’: ‘sequence’

‘t1’: ‘source’
’t2’: ‘destination’

‘has’‘affects’
‘concept’‘composition rule’ ‘attribute’

‘concept’: ‘concept’

‘attribute’: ‘concept’

‘composition rule’: ‘concept’

‘has’: ‘composition rule’

‘affects’: ‘composition rule’

‘affects’

‘affects’

‘affects’

‘affects’

 TOOL-SUPPORT FOR MULTI-VIEWPOINT DESIGN 37

fine the meta-concepts ‘concept’ and ‘attribute’ as instances of the meta-
concept ‘concept’ and relate them via the instance of the ‘composition rule’
meta-concept: ‘a concept can have a number of properties’. Figure 3-9 il-
lustrates how meta-concepts can be defined as instances of themselves.

The Meta-Object Facility. We use the MOF to define the concepts for
our viewpoints and modelling languages syntactically. A benefit of using the
MOF is that it associates its meta-concepts with a graphical modelling lan-
guage, namely a specialized version of the UML (Object Management
Group, 2004b), that is widely supported by design tools. Therefore, it does
not only provide us with a set of meta-concepts for defining our concepts
syntactically, but also with a modelling language and tools that we can use
for doing that. In addition to a graphical language, the MOF associates a
textual language with its meta-concepts (Object Management Group,
2002b). This textual language can be used for interchange of designs and
meta-designs between tools.

DataType

1

+ type

Generalizes

Contains

Contains

+ type

1

12

1 0..*

0..*

0..*

0..*
Class

Classifier
+name: String

0..*

Attribute
+name: String

Association
+name: String

AssociationEnd

+name: String
+multiplicity: MultiplicityType
+aggregation: AggregationKind

Here, we introduce the meta-concepts from the MOF that we use further
on in this thesis and the graphical elements that are associated with these
concepts. The MOF meta-concepts are represented in Figure 3-10 in a
strongly simplified version. For further detail, we refer to the MOF specifi-
cation.

The ‘Class’ concept represents the meta-concept ‘concept’ from Figure
3-8. Hence, we can instantiate ‘Class’ to represent concepts. An instance of
a ‘Class’ has a unique name and is graphically represented as a box with
three compartments, the name of the concept represented in the top com-
partment. The graphical representation of a ‘Class’ instance is illustrated in
Figure 3-11.i.

Figure 3-10 MOF Con-
cepts

38 CHAPTER 3 FRAMEWORK FOR MULTI-VIEWPOINT DESIGN

An instance of a ‘Class’ can contain instances of ‘Attribute’. ‘Attributes’
of a ‘Class’ correspond to the attributes that are associated to meta-
concepts in Figure 3-8. An instance of ‘Attribute’ represents a system prop-
erty, of which the value can vary per concept instance. It has a name that
identifies it uniquely in the context of a ‘Class’ instance. It also has a type
that represents the degree of variation. To this end, a type identifies an-
other ‘Class’ instance or an instance of ‘Data Type’. This ‘Class’ or ‘Data
Type’ instance identifies the set of values that the attribute instance can
take. These values represent the properties that the attribute instance can
represent. ‘Data Type’ is a particular kind of concept that represents (struc-
tured) information, such as numbers or documents. ‘Attribute’ instances
are graphically represented in the second compartment of a ‘Class’ instance,
by names followed by a semi-colon and the name of their type. Figure 3-
11.ii illustrates this.

An instance of ‘Association’ represents a composition rule between con-
cepts, similar to the composition rule meta-concept from Figure 3-8. If an
‘Association’ instance exists between two concepts, the instances of those
concepts can be composed via an instance of that ‘Association’. As will be
explained below, we can specify additional rules that apply to instances of
an ‘Association’. An ‘Association’ instance has a name and two instances of
‘Association End’ that represent the concepts that participate in the ‘Asso-
ciation’ instance. The concepts at the ‘Association End’ instances are the
types of those instances. An ‘Association End’ instance has a name. It also
has a multiplicity that determines how many instances of the concept at that
end can be related to each concept instance at the other end. The multi-
plicity of an ‘Association End’ instance is determined by a minimum and a
maximum number. An ‘Association’ instance is graphically represented as a
line that is attached to the ‘Class’ instances that represent the concepts that
it associates. We draw the name of the ‘Association’ instance somewhere
close to the line. The attachment of the line to a ‘Class’ instance represents
an ‘Association End’ instance. We draw the name and multiplicity of the
‘Association End’ instance close to it. A maximum multiplicity of * repre-

<name>
+<name>: <type name>

<name>

<multiplicity>
<end name>

<end name>
<multiplicity>

i. Class ii. Attribute iii. Association

iv. Composition v. Generalization

<name>

vi. Package vii. Import

import

<name>

Figure 3-11 Graphical
Representation of MOF
Concepts

 TOOL-SUPPORT FOR MULTI-VIEWPOINT DESIGN 39

sents that there is no maximum. If the minimum and the maximum multi-
plicity is the same, they are represented by a single number. Figure 3-11.iii
illustrates how an ‘Association’ instance is represented graphically. A special
kind of association is ‘Composition’. A ‘Composition’ instance represents
that each concept instance at the ‘Association End’ instance with ‘aggrega-
tion’ set to ‘composite’ is a composition of concept instances from the
other ‘Association End’ instance. We represent a ‘Composition’ graphically
by drawing a diamond at the composite end of the ‘Association’ instance.
This is illustrated in Figure 3-11.iv. An ‘Association’ instance can be di-
rected, representing that it should be read from one end to another. This is
graphically represented by an arrowhead at the to end. The

MOF considers that a concept can be a generalization of another con-
cept. This is represented by a ‘Generalization’ instance from the more gen-
eral to the more specific concept. If a ‘Generalization’ instance exists be-
tween two concepts, each instance of the specific concept has a generic
counterpart in an instance of the generic concept. A ‘Generalization’ in-
stance is graphically represented by a line with an open arrowhead at the
more general end, as illustrated in Figure 3-11.v. If a ‘Class’ instance is a
more specific version of another, more general, ‘Class’ instance, it inherits
all ‘Attribute’ and ‘Association’ instances of the more general ‘Class’ in-
stance.

The definition of a set of concepts can be structured by the MOF by
putting them and their relations inside instances of ‘Package’. Concepts can
only ‘see’ concepts from the same ‘Package’ instance and ‘Association’ in-
stances can only be defined between concepts that can ‘see’ each other. A
‘Package’ instance makes concepts from another ‘Package’ instance visible,
if it contains or imports that ‘Package’ instance. A ‘Package’ instance has a
name. It is graphically represented as a box that contains ‘Class’, ‘Package’
and Association’ instances. This is illustrated in Figure 3-11.vi. A ‘Package’
instance that imports another ‘Package’ instance is graphically represented
as a dashed line from the importing to the imported ‘Package’ instance.
Figure 3-11.vii illustrates this. In case a ‘Class’ or ‘Association’ instance is
contained in a ‘Package’ instance, it can be referenced inside a ‘Package’
instance that contains or imports that ‘Package’ instance, using: ‘<name of
package instance name that contains the concept or association in-
stance>::<name of concept or association instance>’.

Figure 3-10 both represents the MOF meta-concepts and instances of
the MOF meta-concepts, because the MOF concepts are instances of them-
selves. Hence, it also illustrates how the MOF meta-concepts can be used to
define concepts.

If we define concepts merely as instances of meta-concepts, we only de-
fine the terms that we use to identify concepts and the relations that these
terms have with each other. Hence, we do not define the semantics of the

40 CHAPTER 3 FRAMEWORK FOR MULTI-VIEWPOINT DESIGN

concepts. The semantics must define precisely what system properties are
represented by each concept.

3.2.2 Syntactical Means to Relate Viewpoint Concepts to Basic
Concepts and to Modelling Languages

Chapter 1 explains that a viewpoint concept can be defined as a composi-
tion of basic concepts. A viewpoint concept can also be a specialization of a
single basic concept or a composition of basic concepts. If a viewpoint con-
cept is a specialization of a single concept or a composition of concepts, it
describes more properties than that concept or composition. For example,
the business task concept can be defined as a specialization of the basic
concept action. It represents all the properties that the action concept
represents as well as the property that the business task occurs in some
business environment.

The syntactical constructs of the MOF that we use to represent the rela-
tions between viewpoint and basic concepts are generalization and transforma-
tion. The same syntactical constructs have been used to relate viewpoints to
modelling languages by Akehurst, Derrick, & Waters (2003).

Relating via generalization. We can use the ‘Generalization’ from the
MOF to represent that a viewpoint concept is a specialization of a single
concept. This concept may, in turn, represent a composition of concepts,
such that we can represent a specialization of a composition. We represent
that a viewpoint concept is a specialization of another concept, by drawing
an instance of ‘Generalization’ from the more specific viewpoint concept to
the more general concept.

We can also use ‘Generalization’ to relate viewpoint concepts to lan-
guage concepts by defining the viewpoint concepts as specializations of the
language concepts. As with relating viewpoint concepts to basic concepts via
generalization, it is the responsibility of the designer to ensure that, seman-
tically, the viewpoint concepts are specializations of the language concepts
that they specialize.

The viewpoint concepts can introduce additional attributes and associa-
tions with respect to basic and language concepts, because they are defined
as specializations. The attributes represent the additional system properties
that the viewpoint concept considers, while the associations represent addi-
tional composition rules. Also, the viewpoint specific concepts can define
additional constraints on how their instances can be composed. Using these
mechanisms, the stakeholders can tailor their basic and language concepts
to match the required viewpoint concepts.

Ideally, we want modelling tools to support generalization between
viewpoint concepts and modelling languages, such that when we draw a

 TOOL-SUPPORT FOR MULTI-VIEWPOINT DESIGN 41

notational element there is a one-to-one correspondence with the view-
point concept instance that it represents. However, there are two problems
with this. Firstly, the notational elements are associated with language con-
cepts rather than viewpoint concepts and, in case a viewpoint concept is a
specialization of a language concept, it can be traced to that language con-
cept, but not the other way around. Hence, if we draw a notational ele-
ment, the tool has no way of knowing what viewpoint concept we mean.
For example, consider a situation where we have multiple concepts from
multiple viewpoints as specializations of the same language concept. In that
case, if we draw the notional element that is associated with that language
concept, which of the specializing viewpoint concepts does that language
concept represent? Secondly, the associated language concepts do not de-
fine the attributes that are only part of the specialized viewpoint concepts.
Hence, these attributes are not graphically represented by the notational
elements. For these reasons, we allow a notational element to be annotated
with the name of the specialized viewpoint concept that it represents and
values for the attributes that viewpoint concept has. We derived this tech-
nique of relating viewpoint concepts to modelling languages from the tech-
nique of ‘Stereotyping’ that can be used to specialize concepts that are de-
fined by the Unified Modelling Language. Figure 3-12.i shows an example
of how the UML activity diagram concept ‘Action’ could be specialized to
represent the business process viewpoint concept ‘Task’ that has an addi-
tional attribute ‘duration’. Figure 3-12.ii shows what the graphical repre-
sentation of a business process view would then look like.

Relating via transformation. We can use model transformation specifi-
cations to represent that a viewpoint concept is (a specialization of) a com-
position of basic concept. We can do that by defining a transformation from

Figure 3-12 Concepts
Related via the Generali-
zation Relation

Action
+name: String

Sequence

+from
+to

1

1

0..*

0..*

Task
+duration: Real

<<Task>>
Some Task

duration := 10

<<Task>>
Some Other Task
duration := 15

i. Business process concepts as specializations of activity concepts

ii. A model in the annotated notation

Business
Process

Viewpoint

Activity
Diagram
Concepts

+predecessors
+successors

42 CHAPTER 3 FRAMEWORK FOR MULTI-VIEWPOINT DESIGN

each of the viewpoint concepts to the basic concepts of which it is a com-
position. A transformation is a set of rules that define how, given some con-
cept instances, instances of other concepts must be generated. We can also
use this technique to relate modelling languages to viewpoints. Such an ap-
proach is, for example, proposed by Akehurst, Derrick, & Waters (2003).
They propose this approach to use UML modelling languages to represent
viewpoints from RM-ODP.

At the time of writing, a standard transformation technique and lan-
guage have not been defined for the MOF. However, standardization is in
progress (Object Management Group, 2002c) and early versions of trans-
formation techniques and languages are available (Object Management
Group, 2005; Akehurst, Kent, & Patrascoiu, 2003). In the remainder of
this thesis we use the transformation language YATL (Patrascoiu, 2004a;
Patrascoiu, 2004b), which stands for Yet Another Transformation Lan-
guage, because tool support exists for this language and because it is com-
pliant to the MOF. Since YATL is compliant with the MOF, it can be used
to define transformations for designs that have their concepts defined syn-
tactically in the MOF. Here, we explain the YATL features that we use in
this thesis.

YATL makes extensive use of the Object Constraint Language (OCL)
(Object Management Group, 2003c), a language that can be used to de-
scribe constraints on how concepts can be used. It can also be used to
query a design to verify that a constraint holds on that design. YATL uses
OCL expressions to yield a particular set of concept instances as indicated
by the query. OCL can be used on concepts that are defined using the MOF
meta-concepts. Hence, we can define expressions and queries over designs
that are compositions of instances of concepts that are defined syntactically
with the MOF meta-concepts. Here, we only explain some basic OCL
properties.

OCL. An OCL constraint is defined in a context. Here we consider only
concepts as contexts. If an OCL constraint is defined in the context of a
concept, it must hold for each instance of that concept. Each time the con-
straint is evaluated for an instance of the concept, the variable named self
refers to that instance.

To specify an OCL constraint, we must specify a truth expression. To
this end, we can use:
– Integer and Real operators and relations, such as +, - and =, <;
– Boolean operators and relations, such as and, xor and =;
– String operators and relations, such as ’string1.concat(string2)’; and
– Set operators and relations, such as ‘set->includes(element)’, ’set->isEmpty()’

and ’set1->includesAll(set2)’. Operations and relations on sets must always
be prefixed by the set to which they are applied and the symbol ‘->’.

 TOOL-SUPPORT FOR MULTI-VIEWPOINT DESIGN 43

OCL expressions can yield the attribute values of a concept instance and the
concept instances with which a concept instance is composed via associa-
tion instances. An attribute value of a concept instance is the result of the
expression ’<concept instance>.<attribute name>’. The set of concept instances
to which a concept instance is associated can be obtained using the expres-
sion ’<concept instance>.<association end name>’, where the association end
name is the name of the other end of an association in which the concept
instance participates. If the association end has no name, the name of the
concept at the other end can be used. If the multiplicity of the association
end has a maximum of 1, then a single concept instance is returned instead
of a set of concept instances. We can also get the set of attribute values of a
set of concept instances, using the expression <set of concept in-
stances>.<attribute name>.
Similarly, we can get the set of concept instances to which a set of concept
instances is related, using <set of concept instances>.<association end name>.

YATL. A YATL transformation has a name and consists of a set of trans-
formation rules. These rules are performed in the order in which they are
invoked by the rule that is declared the start rule. Each rule has a name, it
optionally has a match part and it has a body part. The match part identifies
a MOF ‘Class’ by its name and optionally defines an OCL expression over
that concept. The body part of the rule is evaluated for each instance that is
selected in the match part. For each execution of the body part self takes
the values of one of these instances.

The body part contains a sequence of statements that must be per-
formed. A let statement, ’let <name>: <classifier name>’, declares a variable by
the given <name> of the type given by the <classifier name>. An assignment
statement, ’<expr1> := <expr2>’, assigns the value of ’<expr2> to <expr1>’. A track
statement is used to store and recall relations between concept instances.
’track(<ci1>, <relation name>, <ci2>)’ stores a relation between the concept in-
stances <ci1> and <ci2> in the set with the name <relation name>. We also refer
to this set as the tracking relation. The tracking relation must be functional,
such that each <ci1> can be assigned to at most one other concept instance.

Example 3-4 OCL
Expressions An example of an expression that returns attribute values and related concept instances, is the

expression, defined on an instance of the ‘Action’ concept from Figure 3-12, that yields the
names of all actions that follow that action sequentially:

self.successors.to.name
An example of an OCL constraint, applied to the meta-model from Figure 3-12, is the constraint
that states that a sequence cannot be from and to the same ‘Action’:

context Action inv: self.from <> self.to
In this expression <> yields true if its arguments are not equal. inv stands for ‘invariant’, used
here as synonym for constraint.

44 CHAPTER 3 FRAMEWORK FOR MULTI-VIEWPOINT DESIGN

’track(<ci1>, <relation name>, null)’ returns the concept instance that is related
to concept instance <ci1> by the tracking relation that is identified by <rela-
tion name>. A tracking relation is visible in each rule in an entire transforma-
tion. A new statement, ’new <class name>’, creates a new instance of the
MOF ’Class’ by the specified name.

YATL transformations can be structured by defining them in the context
of namespaces. A namespace identifies the MOF ’Packages’ that contain the
MOF ’Classes’ that are the source and the target of the transformation, re-
spectively.

start example::transformationname::main;
namespace example(BPPackage, ActPackage){

transformation transformationname{
rule task2action match BPPackage::Task(){

let action: ActPackage::Action;
action := new ActPackage::Action;
track(self, task2action_relation, action);

}
rule taskname2actionname match BPPackage::Task(){

let action: ActPackage::Action;
action := track(self, task2action_relation, null);
action.name := self.name;

}
rule main(){

task2action();
taskname2actionname();

}
}

}

3.2.3 Syntactical Means to Define View Relations

To represent relations between viewpoints, we define ‘Association’ in-
stances between MOF ‘Class’ instances that represent the concepts of the
corresponding viewpoints. Then, we can represent the relations between
(concept instances from) views, using instances of these ‘Association’ in-
stances. Using this approach, a part of the view relations is defined at a view
level, while another part is defined at a viewpoint level, as explained in sec-
tion 3.1.2. At a viewpoint level we can represent additional requirements
on how (concept instances from) views must be related, using multiplicity

Example 3-5 A Trans-
formation in YATL Figure 3-13 shows an example of a transformation in YATL. It creates an instance of the ’Action’

concept from figure Figure 3-12 for each instance of the ’Task’ concept. The created ’Action’ has
the same name as the ’Task’ from which it is created. The transformation assumes that the ’Ac-
tion’ concept is declared in a ’Package’ called ’ActPackage’ and the ’Task’ concept is declared in
a ’Package’ called ’BPPackage’.

Figure 3-13 Example of
a Transformation Decla-
ration in YATL

 TOOL-SUPPORT FOR MULTI-VIEWPOINT DESIGN 45

and OCL constraints. This approach can be combined with both ad-hoc
and pre-defined view relations, as explained in section 3.1.2.

+to

0..* 0..*

1 1+from

AssignedE

0..1

1

1

0..1

AssignedS

Behavioral Viewpoint

i. Viewpoints and their associations

:Environment

:System

message

message

message

message

Structural View
Behavioral View

ii. Views and their associations

context Behavioral Viewpoint::Behavior inv:
not ((self.Environment->size() = 0) and (self.System->size() = 0))

DesignApproach

StructuralViewpoint::Environment

Import

BehavioralViewpoint::Behavior

BehavioralViewpoint::MessagePassing

1

StructuralViewpoint::System

Behavior

Message Passing

1
1

interact

Structural Viewpoint

Import

Environment

System

Interact

:Environment :System

Figure 3-14 shows an example of a structural viewpoint and a behavioural viewpoint that are
related in a design approach. The viewpoints are represented as ‘Packages’. The structural
viewpoint defines the ‘System’ and ‘Environment’ concepts that are related by an ‘Interact’
association, representing that interacting systems and environments can exist in a design. The
behavioural viewpoint defines the ‘Behaviour’ and ‘Message Passing’ concepts that represent
behaviours and messages that are passed from one behaviour to another, respectively. The

Figure 3-14 Viewpoints,
Views and Their Rela-
tions

Example 3-6 Related
Viewpoints

46 CHAPTER 3 FRAMEWORK FOR MULTI-VIEWPOINT DESIGN

‘Design Approach’ package represents the pre-defined relations that exist between views. The
relations between the viewpoints relates environments to their behaviour and systems to their
behaviour. Multiplicity and OCL constraints represent the additional requirements that an
environment and the system each have one behaviour and that a behaviour can either be the
behaviour of a system or the behaviour of an environment, but not both. Figure 3-14.ii shows two
views according to these viewpoints, represented as an object and a sequence diagram. The
object diagram shows that there is exactly one system and one environment that interact.
Behaviours are represented by the lifelines from the sequence diagrams. Lifelines are associated
to objects, thus representing the relation between the views according to the predefined
assignment relations.

3.2.4 Syntactical Means to Define and Verify Consistency Rules

During our state-of-the-art analysis we identified four approaches
(Dijkman, Quartel, Ferreira Pires, & van Sinderen, 2003) to represent and
verify consistency rules that accompany view relations.

Approach 1. The first approach is to represent consistency rules in natural
language along with the relation between the views or viewpoints. In this
approach consistency of the views is made plausible by informal reasoning
in natural language. Hence, the consistency verification must remain sim-
ple, because for complex consistency verification mathematical models and
tools are necessary. As an example consider the behavioural and structural
view from Figure 3-14. A consistency rule between these views could be
that messages can only be passed in the behavioural view, if the behaviours
between which they are passed belong to a system and an environment that
are interconnected in the structural view.

Approach 2. The second approach to represent consistency rules is to
represent them in terms of expressions in a relational algebra over concept
instances and relations between those instances. To do this, we interpret
concepts as sets (of their instances) and relations between concepts as rela-
tions over these sets. We also consider the relations between the views, de-
fined as relations between the concept instances from these views, as rela-
tional algebraic relations. Subsequently, we can express constraints on these
sets and relations. Languages such as the Object Constraint Language are
specifically meant for describing relational algebra-like expressions on de-
signs, views and models.

As an example consider the behavioural and structural view from Figure
3-14 and the consistency rule from the previous paragraph that: messages
can only be passed in the behavioural view, if the behaviours between which
they are passed belong to a system and an environment that are intercon-
nected in the structural view. We can specify this constraint in OCL as fol-
lows:

 TOOL-SUPPORT FOR MULTI-VIEWPOINT DESIGN 47

context BehavioralViewpoint::MessagePassing inv:
 (self.from.System.Environment = self.to.Environment.System) or
 (self.to.System.Environment = self.from.Environment.System)

This approach can only be used in combination with relations that are de-
fined at a viewpoint level.

Approach 3. The third approach to represent and verify consistency rules
between views, assumes that the views have a common formal semantics.

A formal semantics is a mapping from a set of concepts and their relations to a mathe-
matical model.

relation and
consistency rules

Viewpoint1

View1

used to
construct

Viewpoint2

1 View2
1

used to
construct

Basic relations and
operations rules

used to
construct

Semantics

has

hashas

We also call such a mathematical model a formalism. The mapping rules are
defined at a viewpoint level and can be used to transform each view into a
mathematical model. The relations and operations that are defined on the
formal semantics can be re-used in the views and viewpoints to represent
relations between them. Figure 3-15 illustrates this approach. We cannot
directly apply relations and operations that are defined on the formalism to
concept instances from the views. Instead, we have to apply them to the
mathematical representation of those concept instances, as it is defined by the
mapping rules. We use the mathematical representation operator [ci] to
obtain the mathematical representation of a concept instance ci.

The second approach can be considered a special case of this approach,
where the formal semantics is a relational algebraic model and the basic
relations and operation are relational algebraic relations and operations.
The third approach is more general, because it can also use other formal-
isms as a semantics.

We can use more than one formalism to define consistency rules be-
tween views. In that case, the operations and relations from each formalism
to which views are mapped, are available. However, since this means that a

Definition 3-11 Formal
Semantics

Figure 3-15 Another
Approach to Describe
Consistency Rules
between Views

48 CHAPTER 3 FRAMEWORK FOR MULTI-VIEWPOINT DESIGN

single concept instance can have more than one mathematical representa-
tion, we must indicate which mathematical representation of concept in-
stance ci we mean in the mathematical representation operator [ci]. We do
this by subscripting the operator with the name of the formalism: [ci]name.
Since the second approach is a special case of this approach, we can also
combine the second approach with this approach, such that consistency
rules can both use operations and relations from a mathematical algebra
and operations and relations from other formalisms to define consistency
rules.

Approach 4. The fourth approach to represent consistency rules assumes
that each of the viewpoint concepts is defined as a composition of basic
concepts. The definition of viewpoint concepts as compositions of basic
concepts, provides a mapping from those viewpoint concepts to the basic
concepts. Hence, similar to the use of a formal semantics, the basic con-
cepts provide a common semantics for the various viewpoints. The relations
and operations that are defined on that semantics can be reused to define
view relations. Figure 3-15 illustrates this. Also similar to the use of a for-
mal semantics, we cannot apply relations and operations that are defined on
the basic concepts directly on the viewpoint concepts. Therefore, we use a
general representation operator [<ci>]<name> that yields the representation of a
concept instance <ci>, either in terms of a mathematical model or in terms
of basic concepts as identified by the mapping named <name>.

The third and fourth approach are very similar. The third approach in-
volves a mapping of viewpoint concepts to mathematics, while the fourth
approach involves a mapping of viewpoint concepts to basic concept. How-
ever, we can observe that formalisms are often aimed towards use for par-
ticular concerns and levels of abstraction in a design. Therefore, as a foun-
dation for verifying consistency between views a collection of formalisms
may be required that each addresses its own concerns and levels of abstrac-
tion. This presents us with the additional challenge of maintaining the con-
sistency between formalisms. Furthermore, formalisms are mainly aimed to-

Example 3-7 Describing
Consistency Rules via a
Formal Semantics

As an example of relating views via the third approach, suppose that we have a view that repre-
sents the entire behaviour of a system, containing (among others) the concept instance behav-
iour, and another view that represents some scenarios that we want the system to perform, con-
taining (among others) the concept instances ’scenario1’ and ’scenario2’. A consistency rule
between these views is that both ’scenario1’ and ’scenario2’ can be performed by ’behaviour’.
Suppose that we have a formal semantics of both behaviours and scenarios in terms of Petri
nets, and a relation <, such that, for a Petri net p1 and a Petri net p2: p1 < p2, if each possible
execution of p1 is also an execution of p2. Then we can prescribe the consistency rule as:

[scenario1] < [behaviour] and [scenario1] < [behaviour].

 TOOL-SUPPORT FOR MULTI-VIEWPOINT DESIGN 49

wards mathematical rigour, rather than easy of use and understanding,
which are important qualities when trying to understand viewpoint con-
cepts and how they are related.

For these reasons, we propose the use of a set of basic concepts as a
common semantics for the viewpoints, while we provide the basic concepts
with a formal semantics in terms of one or more formalisms. This approach
has the benefit that, while the definers of the viewpoint concepts do not
have to be concerned with the formalisms or their mutual consistency, the
viewpoints still inherit the mathematical rigor and the analysis and verifica-
tion techniques from the formalisms. The formalisms are completely
shielded from the viewpoints by the set of basic concepts. Figure 3-16 illus-
trates this approach. It shows that the basic concepts provide the semantics
for the viewpoints, while the basic concepts are associated with a formal
semantics. The figure also shows that the formal semantics provides the
formal means to define the basic relations and consistency rules. Consis-
tency can then be verified in the tools that are provided with the formal-
isms.

used to
construct

Basic Concepts

formal
semantics

Formalisms

Basic relations and
consistency rules

has

concepts are
compositions of

Formal relations
and operations

formal
semantics

has

relation and
consistency rules

Viewpoint1

View1

used to
construct

Viewpoint2

View2

used to
construct

Combined approach. We use a combination of the second and fourth
approach to consistency rule prescription. We represent consistency rules
as OCL constraints. The benefit of using this approach is that it combines
an established approach to describing constraints, namely OCL, with pre-
defined consistency rules on the basic concepts.

We enable the re-use of pre-defined consistency rules, by adding these
rules as operations on the basic concepts. Since OCL constraints can call
operations on objects, this means that the consistency rules can be re-used
in OCL constraints. For example, we define the abstract operator (that we
explain in more detail in chapter 5) in as follows:

context BehaviourInstantiation def:

abstract(as: Set): BehaviourInstantiation

Figure 3-16 Proposed
Approach to Describe
Consistency Rules
between Views

50 CHAPTER 3 FRAMEWORK FOR MULTI-VIEWPOINT DESIGN

The ‘abstract’ operator takes an instance of the ‘BehaviourInstantiation’
class and an instance of the ‘Set’ data type that contains instances of the
‘ActionInstantiation’ class. It returns an instance of the ‘BehaviourInstantia-
tion’ class, which abstracts from the instances of the ‘ActionInstantiation’
class.

BusinessProcess

has
1
0..*

BusinessProcessViewpoint

affects

0..* 1..*

ApplicationViewpoint

i. Viewpoints and their relations

ii. Basic concepts

context DesignApproach::BusinessProcess inv:
self.bp2basic_bp2behavior.equivalent(

self.Application.ap2basic_ap2behavior.abstract(
(self.Application.has – self.has.Function).ap2basic_fun2action

)

iii. Consistency rule

DesignApproach

BusinessProcessViewpoint::BusinessProcess ApplicationViewpoint::Application

ApplicationViewpoint::Function

1

BusinessProcessViewpoint::Task

ImplementsB

0..* 1

ImplementsT

0..* 1

Task Relation

Application

Function Precondition
has

1
0..*

has

11

ImportImport

BasicConcepts

Behavior

Action CausalityCondition
has

1
0..*

has

11

Figure 3-17 Viewpoints
with Consistency Rules
Defined via Basic Con-
cepts

 TOOL-SUPPORT FOR MULTI-VIEWPOINT DESIGN 51

To be able to derive, for a concept instance, the basic concept instances
that describe its semantics, we automatically transform YATL tracking rela-
tions into MOF associations. The name of the association end on the ‘to’
side of the tracking relation is the same as the name of the tracking relation.
For example, example 3-6 defines a tracking relation ‘task2action_relation’
that allows one to track instances of ‘Task’ to instances of ‘Action’. We
transform this relation into a MOF association between the concepts ‘Task’
and ‘Action’, such that for an instance t of ‘Task’, t.task2action_relation yields
the ‘Action’ to which it is related by the tracking relation.

Example. Figure 3-17.i shows an example of two related viewpoints, for
which the consistency rules are defined via relations and operations that are
defined on the basic concepts. The figure shows a business process view-
point and an application viewpoint. The business process viewpoint con-
tains concepts for representing the business processes and tasks in the or-
ganization, as well as relations between those tasks. The application view-
point contains concepts for representing the application services in an or-
ganization, functions that can be performed by these application services
and preconditions that must be met before the functions can be invoked.
The viewpoints are represented by packages. These packages are imported
in a package ‘Design Approach’ that represents the relations between the
viewpoints that are represented by these packages. A relation exists that
relates a business process to the application that implements it. This rela-
tion is represented by the ‘ImplementsB’ association. Another relation ex-
ists that relates a task to the application function that implements it. This
relation is represented by the ‘ImplementsT’ association. To keep the ex-
ample simple, we assume that each business process is completely imple-
mented by a single application and that each task is implemented by a single
application function. An application can still implement multiple business
processes and a function can implement multiple tasks.

We assume that transformations exist by the names ‘bp2basic’ and
‘ap2basic’. These transformations transform views from the business proc-
ess and application viewpoint into designs in the basic concepts from Figure
3-17.ii. Business processes and applications are transformed into behav-
iours, tasks and functions are transformed into actions and relations and
preconditions are transformed into causality conditions. Tracking relations,
named ‘bp2behavior’, ‘ap2behavior’ and ‘fun2action’ store the relations
between business processes and behaviours, applications and behaviours
and functions and actions, respectively.

We can now specify the consistency rule from Figure 3-17.iii, in which
the ‘equivalent’ operation represents an equivalence relation between basic
behaviours. The rule states that, if an application implements a business
process, then the behaviour of that application must be equivalent to the

52 CHAPTER 3 FRAMEWORK FOR MULTI-VIEWPOINT DESIGN

behaviour of the business process, after we abstract from functions in the
application that are not considered in the business process. Note that we
assume that the equivalence relation knows the relation between tasks and
the functions that implement them (for example because they have the
same name).

3.2.5 Overview of a Tool Suite for Multi-Viewpoint Design

Based on the means that we described in this section to implement the
principles for multi-viewpoint design, we provide an overview of a tool suite
for multi-viewpoint design. Figure 3-18 shows that overview. It shows the
software components that the tool suite should (at least) contain, the data
that is stored by these components and the flow of data from one compo-
nent to the other.

Viewpoint relations

Model repository

YATL transformation engine

OCL constraint checker

Basic relations and
operations checker

Component Data Data flow

Legend:

View relations

instances of

Viewpoint1
concepts

View1 concept
instances

instances of

Viewpoint2
concepts

View2 concept
instances

instances of

Consistency rules

Transformation
Viewpoint1 -> Basic

Transformation
Viewpoint2 -> Basic

Tracking relationsBasic concept
instances1

Basic concept
instances2

Basic concepts

instances of instances of

transformed
from

transformed
from

The tool suite contains a model repository in which the designer stores the
concepts and their relations that the viewpoints define, as well as the con-
cept instances and their relations that represent the views that are con-
structed according to the viewpoints. The designer also stores the view and
viewpoint relations in the repository. The model repository is MOF compli-
ant, in the sense that concepts and their relations are instances of MOF
meta-concepts. We store our basic concepts and their relations, as we will
define them in chapter 4, in the repository. The designs that are con-

Figure 3-18 Overview of
a Tool Suite for Multi-
viewpoint Design

 TOOL-SUPPORT FOR MULTI-VIEWPOINT DESIGN 53

structed by composing instances of these basic concepts can also be stored
in the repository.

The YATL transformation component can transform views that are
compositions of viewpoint concept instances into views that are composi-
tions of basic concept instances. To this end it contains descriptions of such
transformations. The transformation from view concept instances to basic
concept instances is necessary to obtain the composition of basic concept
instances in terms of which a view concept instance is defined. The YATL
transformation component stores this relation between view concept in-
stances and basic concept instances in tracking relations. These tracking
relations are transformed into MOF associations that are stored in the MOF
model repository (after the transformation was performed).

The OCL constraint checker can verify consistency rules that the de-
signer prescribes in the form of OCL constraints. The OCL constraint veri-
fication component uses the following components:
1. The basic relations and operation checker to evaluate relations and op-

erations that are defined on the basic concepts.
2. The model repository to obtain concepts and their relations as well as

their instances and to obtain viewpoint relations and their instances.
3. The model repository to obtain the basic concept instances that belong

to some view concept instance according to a tracking relation.
As an example, consider how the elements of the design approach from
Figure 3-17 would fit into the overview from Figure 3-18, as illustrated in
Figure 3-19. The concepts from the business process and application view-
points that Figure 3-17.i defines would be stored in the model repository
along with the relations between the viewpoints that the design approach
defines and the basic concepts. Views that are defined according to the
viewpoints could also be stored in the model repository. The consistency
rule that is defined in Figure 3-17.iii would be stored in the OCL con-
straint checker. This consistency rule assumes the existence of transforma-
tions ‘bp2basic’ and ‘ap2basic’ and tracking relations
‘bp2basic_bp2behavior’, ‘ap2basic_ap2behavior’ and
‘ap2basic_fun2actions’. These transformations and tracking relations must
be stored in the YATL transformation engine. Associations that are created
from the tracking relations are stored in the model repository.

To verify the consistency rule, the YATL transformation engine would
first have to perform the transformations. This transforms the viewpoint
concept instances into basic concept instances in the model repository.
Also, it stores the relations between the viewpoint concept instances and
the basic concept instances into which they are transformed into the track-
ing relations. After the transformations are performed, the consistency rule
can be verified. To this end the OCL constraint checker must call:

54 CHAPTER 3 FRAMEWORK FOR MULTI-VIEWPOINT DESIGN

1. The basic relations and operation checker to evaluate the equivalence
relation (equivalent) and the abstraction operation (abstract).

2. The model repository to obtain the instances of the concepts (e.g.:
‘BusinessProcess’ and ‘Application’) and relations that are referenced in
the OCL constraint (e.g.: ‘DesignApproach::ImplementsB’).

3. The model repository to obtain the basic behaviour instances into which
business process instances are transformed (according to the tracking
relation ‘bp2basic_bp2behavior’), the basic behaviour instances into
which applications instances are transformed (according to the tracking
relation ‘ap2basic_ap2behavior’) and the basic action instances into
which application functions are transformed (according to the tracking
relation ‘ap2basic_fun2actions’).

Design approach

Model repository

YATL transformation engine

OCL constraint checker

Basic relations and
operations checker

Component Data Data flow

Legend:

View relations

instances of

Business Process
Viewpoint

Business concept
instances

instances of

Application
Viewpoint

Application
concept instances

instances of

Basic concept
instances1

Basic concept
instances2

Basic concepts

instances of instances of

 Consistency rule:
 context ...

Transformation bp2basic

Transformation ap2basic

Tracking relations
bp2basic_bp2behavior
ap2basic_ap2behavior
ap2basic_fun2action

transformed
from

transformed
from

Figure 3-19 Example of
a Multi-viewpoint De-
sign in a tool

Chapter 4
4. Basic Design Concepts

This chapter defines concepts that can be used for distributed systems de-
sign across application domains and levels of abstraction. We categorize
these concepts into structural, behavioural and information concepts.
Structural concepts can be used to represent the structure of a distributed
system, behavioural concepts to represent the behaviour of a distributed
system and information concepts to represent the information that is ma-
nipulated by the system.

The concepts presented in this chapter are based on earlier work (Quar-
tel, 1998; Quartel et al., 1997; van Sinderen, 1995; Ferreira Pires, 1994).
We extended and improved these concepts on several points, as we explain
further on in this chapter.

This chapter successively defines the structural, behavioural and infor-
mation concepts, as well as the relations between these concepts.

4.1 System Structure and Structural Concepts

The structure of a system is the aggregate of the system’s parts in their rela-
tionships to each other (adapted from (Merriam-Webster, 2005)). We con-
sider two kinds of relationships between system parts. The first kind is the
connection relationship that exists between parts that interact via some
communication mechanism. The second kind is the part-whole relationship
that exists between a system and its parts. We can consider each part as a
(sub-)system. Therefore, this relation can also exist between a part (sub-
system) and its sub-parts.

It is possible that the structure of a system changes during the lifetime
of that system, because parts or relations between parts are added, removed
or changed. For example, a router can be added or removed from the
internet or a mobile user can disconnect from one wireless access point and
connect to another. We call the stable structure of a system during a certain

56 CHAPTER 4 BASIC DESIGN CONCEPTS

time interval a structural snapshot of that system. If the structure of the sys-
tem changes, it transitions from one snapshot to another.

Although the structure of a system can change, rules can apply to the
system that restrict the allowed structures. We consider the allowed struc-
tures of a system by observing that parts in a system, as well as their rela-
tions, are of particular types. Restrictions apply to how parts of particular
types can be connected and composed, using relations of particular types.

Finally, if we consider that the structure of a system can change during
the lifetime of that system, we can also consider what causes these changes
and when. We call this the structural dynamics.

A designer can use structural concepts to prescribe structural snapshots,
allowed structures and structural dynamics. The concepts from (Quartel,
1998; Quartel et al., 1997; van Sinderen, 1995; Ferreira Pires, 1994) partly
support the representation of these concerns. These concepts use entities to
represent systems and parts, interaction points to represent connections
between system parts and containment between entities to represent part-
whole relations. We explain these concepts below in more detail and we
explain how we extended them, to allow a designer to prescribe the allowed
structures of a system. Also, we added precision to the part-whole relation
by allowing a designer to prescribe that parts can implement connections of
the whole. We leave the addition of concepts for representing structural
dynamics for future work.

4.1.1 Structural Snapshot Concepts

To represent a snapshot of the structure of a system, we use the concepts
from Figure 4-1.

Entity

+name:String

InteractionPoint InteractionPointPart

Delegation

Location

+name:String

whole+0..1

part+

*

entity+1..*

owned_ipp+ 1..*

whole+

part+

2..*participant+

2..* owned_ip+

*

mechanism+0..1

location+

mechanismPart+ *

location+

from+

delegation+ 0..1

to+

delegated+ 1..*

Figure 4-1 Structural
Snapshot Concepts

 SYSTEM STRUCTURE AND STRUCTURAL CONCEPTS 57

<type> <name>

i. Entity ii. Interaction Point iii. Interaction Point Part iv. Delegation Relation

whole

<type> <name> <type> <name> part

Entity. We use the entity concept to represent a logical or physical part of a
system that carries behaviour. Hence, components and objects can be rep-
resented as entities and business units and teams can also be represented as
entities. An entity has a name that identifies it uniquely in the context of a
design. An entity also has a type, which characterizes a collection of entities
that are the same with respect to this type. This will be explained in more
detail in subsection 4.1.2.

We represent an entity graphically as a box with cut-off corners, as
shown in Figure 4-2.i. The entity’s name and the name of the type of which
it is an instance must be drawn inside the box. For brevity, the name of the
entity’s type can be omitted. In case the name of the entity’s type is omit-
ted, the entity’s name must equal the name of the entity’s type with some
suffixed natural number (e.g.: User1, where User is a typename).

Interaction point. We use the interaction point concept to represent a
shared mechanism that two or more entities can use to interact. Such a
mechanism consists of a part of these entities and some means of interaction
that connects them. However, at the level of abstraction at which we repre-
sent the interaction point, we abstract from these constituents. For exam-
ple, we can use an interaction point to represent an Ethernet connection
between two computers. Such a connection consists of the Ethernet cards
that are part of the connected computers and a means of interaction. This
means of interaction can be as simple as a cross-link cable or as complex as
a complete Ethernet network that consists of several cables, hubs and
switches. However, at the level of abstraction at which we modelled the
interaction point we do not have to consider that.

An interaction point is associated with a location at which the mecha-
nism that it represents is accessible to all its participating entities. The loca-
tion has a name that identifies it uniquely in the context of a design. Similar
to an entity, a location has a type. We identify an interaction point by the
name of the location with which it is associated.

We represent an interaction point graphically as a circle with lines pro-
truding from it, as shown in Figure 4-2.ii. The lines that leave the circle
must be attached to the entities that participate in the interaction point.
The name of the location that identifies the interaction point and the inter-
action point’s typename must be drawn close to the interaction point. For

Figure 4-2 Structural
Snapshot Notation

58 CHAPTER 4 BASIC DESIGN CONCEPTS

brevity, the name of the type of the interaction point may be omitted, simi-
lar to an entity’s typename.

Interaction point part. We use the interaction point part concept to repre-
sent an entity’s participation in a shared communication mechanism. We
need the interaction point part concept to represent that an entity is ready
to form an interaction point, but does not yet do so. Each interaction point
contains the interaction point parts of its participating entities and cannot
exist without these interaction point parts. Similarly, an interaction point
part cannot exist apart from an entity, since it is a part of an entity. An in-
teraction point part has a location at which the mechanism that it repre-
sents is available to the entity that it is a part of. This location is the same as
the location of the interaction point of which it is, or will become, a part.
An interaction point part also has a type.

We represent an interaction point part graphically as a circle half with a
line protruding from it, as shown in Figure 4-2.iii. The line that leaves the
circle half must be attached to the entity of which the interaction point part
is a part. The name of the location at which the interaction point part is
available and the location’s typename must be drawn close to the interac-
tion point part. Like the name of an interaction point type, the name of an
interaction point part type may be left out.

Composition. We use the composition relation to represent a part-whole
relation in a system. The composition relation can be applied recursively,
such that a part in one composition relation becomes a whole in another
composition relation. In this way a sub-part can consist of sub-sub-parts
and so on. The part-whole relation between the system and its parts can be
represented explicitly, by representing the system as an entity and specify-
ing a composition relation between the system and its parts.

We graphically represent the composition relation by drawing the enti-
ties that represent the parts inside the entity that represents the whole. The
entities that represent the parts can have interaction points with each other,
but they cannot have interaction points with entities that are not parts of
the same whole.

Delegation. An entity’s part in a communication mechanism can be im-
plemented by one or more of that entity’s constituents. For example, an
Ethernet card implements a computer’s part in an Ethernet connection.
We also say that the entity that represents the whole delegates the imple-
mentation of the communication mechanism to one or more of its parts.
We use the delegation relation to represent this. The delegation relation re-
lates the interaction point part of the whole to the interaction point parts of
the constituents that realize the communication mechanism.

 SYSTEM STRUCTURE AND STRUCTURAL CONCEPTS 59

We represent the delegation of an interaction point part graphically as a
dashed arrow from the interaction point part of the whole to the interac-
tion point parts of the whole’s constituents, as shown in Figure 4-2.iv.

DelegationType

EntityInstantiation

+multiplicity:MultiplicityType

InteractionPointPartInstantiation

+multiplicity:MultiplicityType

InteractionPointPartOfEntity InteractionPointType

LocationType

+name:String

InteractionPointPartTypeEntityType

+name:String

delegation+

0..1 from+

delegated+

0..1 to+

1..*

*

entity+

context+0..1

part+* instantiation+*

instantiated+

context+

has+

1..*

whole+

0..1
constituent+

2..*

*

interactionPointPart+

mechanism+

location+

mechanismPart+

*

location+

instantiation+*

instantiated+

InteractionPoint

Location

+name:String

InteractionPointPartEntity

+name:String

type+

instance+*

type+

instance+*

type+

instance+ *

instance+ *

type+

context DelegationType inv:
 let minimumMultiplicities = self.to->including(self.from)->collect(entity.multiplicity.lower*interactionPointPart.multiplicity.lower),
 maximumMultiplicities = self.to->including(self.from)->collect(entity.multiplicity.upper*interactionPointPart.multiplicity.upper) in
 minimumMultiplicities->forAll(m1, m2: Integer | m1 = m2) and
 maximumMultiplicities->forAll(m1, m2: Integer | m1 = m2)
context InteractionPointType inv:
 let minimumMultiplicities = self.constituent->collect(entity.multiplicity.lower*interactionPointPart.multiplicity.lower),
 maximumMultiplicities = self.constituent->collect(entity.multiplicity.upper*interactionPointPart.multiplicity.upper) in
 minimumMultiplicities->forAll(m1, m2: Integer | m1 = m2) and
 maximumMultiplicities->forAll(m1, m2: Integer | m1 = m2)

Delegation

instance+*

type+

Figure 4-3 Structural
Type Concepts

60 CHAPTER 4 BASIC DESIGN CONCEPTS

4.1.2 Structural Type Concepts

To represent the allowed structures of a system, we use the concepts from
Figure 4-3. We included the structural snapshot concepts in grey, to repre-
sent the relation between the structural type and snapshot concepts.

The structural type concepts are based on the dichotomy between types
and instances. A type represents a template, according to which we can cre-
ate things. We call what is created an instance of that type and the process of
creating it instantiation.

ii. Entity
Instantiation

iii. Interaction Point
Part Instantiation

iv. Interaction
Point Type

v. Delegation
Type

<typename>
[<min>..<max>]

<typename>
[<min>..<max>]

<typename>

i. Entity Type

Entity type. An entity type specifies the properties that each of its in-
stances, which are entities, will have. Specifically, it specifies the interaction
point parts and the constituent entities that these entities will have. For
example, a designer can define the entity type ‘Workstation’ according to
which various workstation entities can be instantiated. The type defines the
parts that each of the workstation entities has, namely a main board, a
processor and a hard disk. It also defines the interaction point parts that
each of the workstation entities has, namely a keyboard, a mouse, a screen
and a network adapter. Later on, we associate an entity type with a behav-
iour type that represents the behaviour that entities of a particular type
have. An entity type has a name that identifies it uniquely in the context of a
design. We represent an entity type graphically by an entity symbol with an
additional line in the top left corner, as shown in Figure 4-4.i. The name of
the type must be drawn inside the box.

Interaction point part type. An interaction point part type specifies the
properties that each of its instances, which are interaction point parts, will
have. Specifically, it defines the locations at which its instances will be avail-
able. These locations are specified by associating an interaction point part
type with a location type. The location type represents a template according
to which locations can be instantiated. Each time an interaction point part
is instantiated a location is instantiated along with it.

Instantiation. We use the instantiation concept to specify constraints on
the possible structures of a system. An entity instantiation can be defined in

Figure 4-4 Structural
Type Notation

 SYSTEM STRUCTURE AND STRUCTURAL CONCEPTS 61

the context of an entity type or in the context of a design. An instantiation
represents that entities of the instantiated type can be created in the associ-
ated context. If the instantiation is defined in the context of that entity, the
instantiated entities will be contained in that entity. Interaction point part
instantiations must be defined in the context of some entity type, repre-
senting that each entity of that type can instantiate interaction point parts of
the instantiated type, but do not necessarily have to.

An instantiation must have a multiplicity. The multiplicity defines the
minimum and the maximum number of instances that can be instantiated.
The maximum number can also be undefined. For practical purposes we
define the minimum and maximum number as ‘Integers’ and let an asterisk
represent an undefined maximum number of created entities. In this way,
entity and interaction point part instantiations specify the entities that can
exist in the system and how many entities of a particular type can exist at
any time. It also specifies the communication mechanism parts and the in-
ternal structure that entities can have.

Server

DatabaseServer
[1..1]

WorkflowServer
[1..1] Server [0..3]

Server [0..3]

DatabaseServer
[1..1]

WorkflowServer
[1..1]

i. Server Type Explicitly Defined ii. Server Type Implicitly Defined

We represent entity instantiation graphically by an entity symbol with an
additional line in the top left corner, as shown in Figure 4-4.ii. The name of
the type of the instantiation must be drawn inside the box, along with the
minimum and maximum multiplicity. Entity instantiation in the context of
an entity type is graphically represented by drawing the instantiation inside
an instantiation of that type. For example, Figure 4-5.i represents that three
servers may exist, each of which contains one database server and one
workflow server. For brevity, we allow an entity type to be represented im-
plicitly by one of its instantiations. For example, Figure 4-5.ii implicitly
defines the server type, by prescribing that up to three instances of the
server type can exist. We represent interaction point part instantiation
graphically by a double circle half with a line protruding from it, as shown
in Figure 4-4.iii. The line that leaves the interaction point part instantiation
must be attached to an instantiation of the entity type in the context of
which it is associated. The name of the type of the instantiation must be

Figure 4-5 Multiple
Instantiations with the
Same Structure

62 CHAPTER 4 BASIC DESIGN CONCEPTS

drawn close to the instantiation, along with the minimum and maximum
multiplicity.

Interaction point type. An interaction point type specifies the properties
that each of its instances, which are interaction points, will have. Specifi-
cally, it defines the locations at which interaction points of its type will be
available and the interaction point parts that are used to form the interac-
tion point. To this end an interaction point type is associated with two or
more interaction point part instantiations of particular entity instantiations.
This represents that an interaction point can be formed by combining one
interaction point part of each of these instantiations. Interaction point types
do not specify how many interaction points must be created. If the designer
wants to specify that, he must do so in additional constraints. We associate
an interaction point type with an interaction point part instantiation of an
entity instantiation, because interaction points are formed between interac-
tion point part instances of entity instances. We represent an interaction
point type graphically by a dashed line that connects interaction point part
instantiations, as show in Figure 4-4.iv. Although the notation may suggest
that the dashed line represents the means of interaction that the connected
entities use to interact, this is not the case.

Since interaction point parts that form an interaction point must have
the same location, interaction point types must connect interaction point
part instantiations that have the same location type. Also, the multiplicity of
the interaction point part instantiations that are related by an interaction
point type must match, because, if the multiplicities do not match, some
interaction point parts can never be part of an interaction point. More spe-
cifically, because an interaction point type is associated with interaction
point part instantiations and entity instantiations, the multiplicity of the
interaction point part instantiation times the multiplicity of the entity in-
stantiation should be the same for each combination that is associated with
the interaction point type. Figure 4-3 represents this constraint in OCL.

Client [0..128]

Server [2..2]

interface
[0..64]

interface
[1..1]

Figure 4-6 Example of
Matching Multiplicities

Example 4-1 Matching
Multiplicities Figure 4-6 shows an example of a structure in which two servers exist that can each serve up to

64 clients via an interface. In the system up to 128 clients can exist, each of which has exactly
one interface. The interaction point type connects the interface interaction point parts of the cli-
ent and server type, representing that interaction points can be formed, each with one client and
one server interface. Hence, the minimum multiplicity of the server instantiation times the mini-
mum multiplicity of the server interface instantiation (2⋅0) must match the minimum multiplicity
of the client instantiation times the minimum multiplicity of the client interface instantiation
(0⋅1). Similarly, the maximum multiplicity of the server instantiation times the maximum multi-
plicity of the server interface instantiation (2⋅64) must match the maximum multiplicity of the
client instantiation times the maximum multiplicity of the client interface instantiation (128⋅1).
Suppose that each server could only serve up to 63 clients, then only 126 clients could be
served. In that case, the multiplicities would not match and the model would not be well-formed.

 SYSTEM STRUCTURE AND STRUCTURAL CONCEPTS 63

Delegation type. A delegation type specifies the properties that each of its
instances, which are delegations, will have. Specifically, it defines interac-
tion point parts between which it delegates. To this end it is associated with
a source interaction point part instantiation and one or more target interac-
tion point part instantiations. This represents that each delegation of this
type delegates from an interaction point part of the source instantiation to
the interaction point parts of the target instantiations. A delegation type is
graphically represented as dashed arrows from the source interaction point
part instantiation to the target interaction point part instantiations, as show
in Figure 4-4.v. Similar to interaction point types, delegation types must
connect interaction point part instantiations that have the same location
type. Also, the multiplicities of the connected interaction point instantia-
tions must match. Figure 4-3 represents this constraint in OCL.

4.1.3 Examples

In two examples, we show how the structural type level can be used to de-
scribe the possible structures of a system and how the structural snapshot
level can be used to represent the stable structure of a system during a par-
ticular interval in the system’s lifetime.

Wireless Connection [1..1]

Wireless Connection [0..64]

Ethernet Connection [1..1]

Ethernet Connection [0..4]

Ethernet Connection [0..4] Ethernet Connection [1..1]

IP Connection [1..1]

End User Device
[0..*]

Access Point
[0..*]

Router
[0..*]

Ethernet Connection [0..4]
Switch
[0..*]

As an example, consider the wireless network of a fictitious company. This
network consists of a number of end-user devices, such as laptops and
workstations that are equipped with a wireless network card. The end-user
devices can connect to wireless access points via the wireless network. Each
wireless access point can serve up to 64 end-user devices at a time. The
wireless access points are connected to Switches via an Ethernet connec-
tion. A Switch has four Ethernet ports to which access points, other
Switches and Routers can connect. A Router has an Ethernet connection to

Figure 4-7 The Possible
Structures of a Wireless
Network

64 CHAPTER 4 BASIC DESIGN CONCEPTS

the wireless network and a connection to the rest of the network that we do
not consider here. Figure 4-7 represents this structure graphically.

Note that the figure represents that a Switch can connect to four other
Switches and four access points and four Routers, while we wanted to ex-
press that it can only connect to four other Switches, access points or
Routers in total. Hence, the figure allows for more possible structures than
we intended and the figure underspecifies the network. We could solve this
problem by adding the constraint that “each entity of type Switch has ex-
actly four interaction point parts of type Ethernet Connection”. However,
we did not define a language to express such constraints. This is left for
future work. Figure 4-8 represents a possible structure of the system during
a particular time interval.

Wireless
Connection w1

End User Device e1 End User Device e2 End User Device e3

Access Point a1 Access Point a2

Switch s Router r

Wireless
Connection w2

Wireless
Connection w3

Ethernet
Connection e1

Ethernet
Connection e2

Ethernet
Connection e3

As another example, consider the system that consists of some interacting
business partners. The goal of the system is to provide a mortgage to clients
via a mortgage broker. In the system there is a single mortgage broker that
communicates with clients that require a mortgage and with banks that pro-
vide mortgages. The broker selects the best mortgage for each client, based
on the client’s wishes and the mortgages that are available. To close the
deal, the broker and the clients interact with a notary that draws up the
final deed. Finally, the banks interact with the bureau of credit registration
to verify if the client has a history of non-payment.

The broker itself is completely internet-based. It consists of a web-
server to which clients can connect to inquire about a mortgage. The web-
server interacts with a database in which information about available mort-
gages is stored. When the client selects a mortgage, the web-server interacts
with a transaction manager that coordinates the interaction between the
bank, the broker and the notary to draw up the final deed. Figure 4-9
represents the possible structures of the system graphically. It shows that
we consider only one broker that connects to one notary and a number of
banks and clients. Also, it shows the internal structure of the broker. Figure

Figure 4-8 A Wireless
Network during a Par-
ticular Interval

 SYSTEM STRUCTURE AND STRUCTURAL CONCEPTS 65

4-10 shows a possible configuration of the system during a particular inter-
val.

[1..1]

[1..1]

[1..1]

[1..1] [1..1]

[1..1]

[1..1]

[0..*]

[0..*]

[1..1]

[0..*]

[0..*]

[1..1]

Client
[0..*]

Web Server
[1..1]

Database
[1..1]

Transaction Manager
[1..1]

Notary
[1..1]

Bank
[0..*]

Broker
[1..1]

Bureau of Credit
Registration [1..1]

[1..1]

[0..*]

Broker b

Client c1 Client c2 Client c3

Web Server ws

Database db
Transaction

Manager tm
Notary n

Bank b1 Bank b2 Bank b3

Bureau of Credit

Registration bcr

Figure 4-9 The Possible
Structures of a Business
Partnership

Figure 4-10 A Business
Partnership during a
Particular Interval

66 CHAPTER 4 BASIC DESIGN CONCEPTS

4.1.4 Connection Patterns

There are a number of frequently occurring patterns for entities to form
interaction points. Table 4-1 shows the connection patterns that we con-
sider. Since interaction points are formed between interaction point part
instantiations of entity instantiations, the figure distinguishes patterns, based
on the multiplicities of those instantiations. The combinations that are
crossed out are impossible, because the multiplicities of the entity and in-
teraction point part instantiations do not match.

entity instantiation of type E1
with maximum multiplicity 1,

owning:

entity instantiation of type E1
with maximum multiplicity n >

1, owning:

interaction
point part

instantiation of
type IPP1 with

maximum
multiplicity 1

interaction
point part

instantiation of
type IPP1 with

maximum
multiplicity n

> 1

interaction
point part

instantiation of
type IPP1 with

maximum
multiplicity 1

interaction point
part instantia-

tion of type IPP1
with maximum
multiplicity n >

1

interaction
point part

instantiation of
type IPP2 with

maximum
multiplicity 1

one-to-one

entity instan-
tiation of type
E2 with maxi-

mum multiplic-
ity 1, owning:

interaction
point part

instantiation of
type IPP2 with

maximum
multiplicity n

> 1

replicated inter-

action points one-to-many
replicated interac-

tion points

interaction
point part

instantiation of
type IPP2 with

maximum
multiplicity 1

 one-to-many many one-to-
one

many one-to-
many

entity instan-
tiation of type
E2 with maxi-

mum multiplic-
ity n > 1,
owning:

interaction
point part

instantiation of
type IPP2 with

maximum
multiplicity n

> 1

replicated inter-

action points
many one-to-

many many-to-many

The one-to-one connection pattern represents that, in each possible struc-
ture, one entity of a particular type exists (or can exist in case of a mini-
mum multiplicity of 0) that can connect to one entity of another type via

Table 4-1 Connection
Patterns between Two
Entity Types

 SYSTEM STRUCTURE AND STRUCTURAL CONCEPTS 67

one interaction point. Figure 4-11.i shows an example entity and entity
type model that correspond to this pattern.

IP ip

i. One-to-one ii. One-to-many iii. Many one-to-one

iv. Many-to-many v. Replicated interaction points

E1 [1..1]

E2 [1..1]

IP [1..1]
IP [1..1]

E1 e1

E2 e2

E1 [0..*]

E2 [1..1]

IP [1..1]
IP [0..*]

IP ip1

E1 e11

E2 e2

E1 e12 E1 e13

IP ip2 IP ip3

E1 [0..*]

E2 [0..*]

IP [1..1]
IP [1..1]

IP ip1

E1 e11 E1 e12 E1 e13

IP ip2 IP ip3

E2 e21 E2 e22 E2 e23

E1 [0..*]

E2 [0..*]

IP [0..*]
IP [0..*]

E1 [1..1]

E2 [1..1]

IP [0..*]
IP [0..*]

E1 e11 E1 e12 E1 e13

E2 e21 E2 e22 E2 e23

IP ip1

E2 e2

IP ip2 IP ip3

E1 e1

The one-to-many connection pattern represents that, in each possible
structure, one entity of a particular type exists that can connect to many
entities of another type via as many interaction points. This pattern will be
commonly used in client-server architectures where there is one server to
which many clients can connect. Each client then gets its own interaction
point with the server. Variations of this pattern can specify a different mul-
tiplicity for the entity and the interaction point part of which multiple in-
stantiations exist, indicating that there are restrictions to the number of
entities or interaction points of each type that can exist. Figure 4-11.ii
shows an example entity and entity type model that correspond to this pat-
tern.

The many one-to-one connection pattern represents that, in each possi-
ble structure, many entities of a particular type exists that can be paired
with entities of another type. Hence, it represents a set of possible struc-
tures in which the one-to-one connection pattern occurs multiple times.
This pattern is not very useful on its own, because the paired entities do not
have connections with other pairs. Hence, the resulting structural snapshots

Figure 4-11 Connection
Patterns between Two
Entity Types

68 CHAPTER 4 BASIC DESIGN CONCEPTS

represent collections of loose systems rather than a single coherent system.
However, this pattern can occur in combination with a one-to-many or
many-to-many pattern. For example, each of the clients in a one-to-many
client-sever architecture can be paired with a GUI entity. Variations of this
pattern can further constrain the minimum and maximum multiplicities
that are associated with the instantiations. Figure 4-11.iii shows an example
entity and entity type model that correspond to this pattern.

Similar to the many one-to-one connection patters, the many one-to-
many connection pattern represents a set of possible structures in which
the one-to-many connection pattern occurs multiple times. This connec-
tion pattern should also be used in combination with other connection pat-
terns.

The many-to-many connection pattern represents that, in each possible
structure, many entities of a particular type exists that can be connected
with many entities of another type. Variations of this pattern can further
constrain the minimum and maximum multiplicities that are associated
with the instantiations. Figure 4-11.iv shows an example entity and entity
type model that correspond to this pattern.

The replicated interaction points pattern represents that, in each possi-
ble structure, many interaction points of the same type can exist between
the same two entities. This pattern can exist in combination with each of
the other connection patterns. Variations of this pattern can further con-
strain the minimum and maximum multiplicities that are associated with
the instantiations. Figure 4-11.v shows an example, where three interaction
points of the same type exist in a one-to-one connection.

4.1.5 Communication Mechanism Abstraction

Different stakeholders may consider communication mechanisms at differ-
ent levels of abstraction. Stakeholders that focus on high levels of abstrac-
tion consider that some entities interact through some communication
mechanism. However, these stakeholders typically abstract from the par-
ticulars of the soft- and hardware that constitutes this communication
mechanism and from the constraints that this mechanism imposes on the
interaction (e.g.: the constraint that interaction can only take place using a
request/response type of mechanism). Stakeholders at lower levels of ab-
straction can consider the soft- and hardware that constitutes a communica-
tion mechanism. They must also consider the constraints that the mecha-
nism imposes and implement measures that ensure that the mechanism,
with its constraints, implements the interaction at the higher levels of ab-
straction correctly.

At the different levels of abstraction, the communication mechanism
and its parts can be represented by different compositions of entities and

 SYSTEM STRUCTURE AND STRUCTURAL CONCEPTS 69

interaction points. At the highest level of abstraction the communication
mechanism can be represented by a single interaction point. At lower levels
of abstraction, it can be represented by several entities, representing the
parts of the communication mechanism, with interaction points between
them.

At all levels of abstraction, the locations of interaction points must be
described at the same abstraction level as those interaction points. It is the
responsibility of the designer to ensure this. A common pitfall when choos-
ing locations is represent a communication mechanism by an interaction
point, but to assign this interaction point a location that corresponds to
only one ‘endpoint’ of the communication mechanism. The problem with
this construction is that an interaction point represents an entire communi-
cation mechanism and abstracts from the ‘endpoints’ that this mechanism
has.

The ability to abstract from the particulars of the communication mecha-
nism is in line with the philosophy of the Model Driven Architecture
(MDA) (Object Management Group, 2003a). The MDA proposes that
there is an abstraction level in a design, also called the platform independ-
ent level, at which the particulars of the communication mechanism are not
decided upon. At a lower level of abstraction, also called the platform spe-
cific level, the communication mechanism is considered in sufficient detail
to have a straightforward mapping between design and implementation.

Figure 4-12 shows some common abstractions of message-oriented or
remote procedure call (RPC) based middleware. It shows a design that
represents two functional parts that communicate via some abstract com-
munication mechanism. It also shows how this design can be refined in two
steps into a design that can be implemented by middleware. Such middle-
ware typically distinguishes between provided interfaces, at which entities
can receive messages and RPC indications and send RPC responses, and
required interfaces, at which entities can send messages and RPC requests
and receive RPC confirmations. The intermediate step shows the abstrac-

Example 4-2 Mismatch-
ing Abstraction Levels As an example of locations of interaction points that exist at a different level of abstraction than

those interaction points, consider a client-server architecture where several clients can interact
with a server via TCP/IP. The designer may be tempted to use the IP addresses and ports of the
clients to identify the interaction points. However, each interaction point represents an entire TCP
connection between the client and the server, while the locations suggest that only the client’s
side of the connection is represented. We can choose to identify the interaction points between
the server and its clients as tcp-connection1, tcp-connection2, …, or identify an interaction point
by both the client’s address and port and the server’s address and port. Also, we can adapt the
entity model to match the addressing scheme, by representing the TCP connection as an entity
that has an interaction point with the server that is identified by the server’s address and port and
an interaction point with the client that is identified by the client’s address and port.

70 CHAPTER 4 BASIC DESIGN CONCEPTS

tion level at which modelling languages, such as UML (Object Management
Group, 2004a; Object Management Group, 2003b) and SDL (ITU-T,
2002), commonly represent their communication mechanisms. At this level
an interaction point is formed by a provided interface of one part and a
required interface of another part.

communication
mechanism

provided interface of part 1 and
required interface of part 2

provided interface of part 2 and
required interface of part 1

provided interface of
part 1

required interface of
part 2

required interface of
part 1

provided interface of
part 2

refines into

Part p1 Part p2

Part p1' Part p2'

refines into

Part p1'' middleware Part p2''

4.1.6 Related Work

System structure design is also addressed by languages known as Architec-
tural Description Languages (ADLs) and UML 2.0 (Object Management
Group 2004a). Medvidovic and Taylor (2000) wrote a survey on ADLs.
Here, we discuss the ADLs Wright (Allen, & Garlan, 1997; Allen, & Garlan,
1994) and Rapide (Luckham, Kenney, Augustin, Vera, Bryan, & Mann,
1995; Luckham, & Vera, 1995), because, like our concepts, these ADLs
support the description of the behaviour of a system. We also discuss Dar-
win (Magee, Dulay, Eisenbach, & Kramer, 1995), because it has strong sup-
port for (composite) structure design and for representing dynamic change
in a system’s structure.

Wright. Wright describes the structure of a system using the component
and connector concepts. A component represents a part of the system that
performs some computation. A connector represents a part of the system
that realizes the communication between computational system parts. Con-
nectors are not intended to perform any computation. Wright distinguishes
between types and instances of both components and connectors. Hence,

Figure 4-12 Common
Abstractions of Commu-
nication Mechanisms

 SYSTEM STRUCTURE AND STRUCTURAL CONCEPTS 71

multiple instances of a single component type or connector type can exist.
Components have ports at which they make their computational functions
available in the form of actions that can be invoked on these ports. The
ports that a component can have are specified as port instantiations in a
component type. Each port can be attached to a connector role. A connec-
tor role represents the role that a communicating party has in the commu-
nication that the connector represents. Connector roles are specified as
instantiations in a connector type. Wright uses Communicating Sequential
Processes (Hoare, 1985) to describe the behaviour of components and
connectors in terms of the possible sequences in which actions can occur
on the ports of components and on the roles of connectors. The behaviour
is defined on the component and connector types. Figure 4-13 shows how
a part of the wireless network from Figure 4-7 and Figure 4-8 could be
represented in Wright.

System WirelessNetwork

 Component EndUser
 Port Antenna

 Component AccessPoint
 Port Antenna1..64
 Port UTPPort

 Connector RadioLink
 Role OneEnd
 Role OtherEnd

 Instances
 e1..3 : EndUser
 a1..2 : AccessPoint
 rl1..3 : RadioLink

 Attachments
 e1.Antenna as rl1.OneEnd
 a1.Antenna1 as rl1.OtherEnd
 e2.Antenna as rl2.OneEnd
 a1.Antenna2 as rl2.OtherEnd
 e3.Antenna as rl3.OneEnd
 a2.Antenna1 as rl3.OtherEnd

End WirelessNetwork

Wright provides similar expressive power as our structural concepts. The
main difference is that Wright connectors have their own behaviour and
exist between components, while the behaviour of interaction points is
completely defined by the behaviour of their participants. Hence, our struc-
tural concepts allow us to abstract from what occurs between entities, while
we can also choose to represent that by representing a connector as a spe-
cific type of entity. Therefore, the potential for abstraction with our con-

Figure 4-13 A Design in
Wright

72 CHAPTER 4 BASIC DESIGN CONCEPTS

cepts is greater and our concepts are more suitable for design at higher lev-
els of abstraction. Moreover, Wright is intended to be used for software
structure design rather than structure design in general. Other differences
between our structural concepts and Wright are that Wright does not sup-
port the design of a component as a composition of sub-components and
that Wright only partly supports the design of the possible structures of a
system.

type RadioLink is interface
end RadioLink;

type UTPPort is interface
end UTPPort;

type EndUser is interface
 service rl: RadioLink;
end EndUser;

type AccessPoint is interface
 service rl [1..64]: dual RadioLink;
 service utp: UTPPort;
end AccessPoint;

with EndUser, AccessPoint;
architecture WirelessNetwork is
 endusers: array [1..3] of EndUser;
 accesspoints: array [1..2] of AccessPoint;
connect
 enduser [1].rl to accesspoints [1].rl [1];
 enduser [2].rl to accesspoints [1].rl [2];
 enduser [3].rl to accesspoints [2].rl [1];
end WirelessNetwork;

Rapide. Strictly speaking, Rapide only defines the behaviour of a system. It
does this by specifying the externally observable behaviour of the system
parts, which it calls the interfaces of parts. Interfaces can be bound by
means of connect statements that specify which events or function calls on
one interface cause which events or function calls on another. Hence, the
interfaces of parts and the bindings between these interfaces imply the
structure of the system, which Rapide calls its architecture. Similar to the
way in which actions can be grouped at ports in Wright, events and func-
tions can be grouped into services in Rapide.

Rapide provides a mechanism for representing hierarchical composition
of parts, by allowing an architecture, which consists of bound interfaces, to
provide an interface itself. This interface can in turn be used in a composite
architecture. Also, Rapide provides mechanisms for representing the dy-
namic creation of interfaces and services. In structural terms this corre-
sponds to the dynamic creation of parts and interaction point parts at which

Figure 4-14 A Design in
Rapide

 SYSTEM STRUCTURE AND STRUCTURAL CONCEPTS 73

these parts can interact. Hence, Rapide can represent dynamic changes in
the structure of a system.

Figure 4-14 shows how a part of the wireless network from Figure 4-7
and Figure 4-8 could be represented in Rapide.

Darwin. Darwin is similar to Wright in that it also allows for the descrip-
tion of the structure of a system. It also supports component types that have
port instantiations and distinguishes between provided and required ports.
However, it differs from Wright in that it does not consider connectors as a
separate concept. Instead, provided and required ports of instances of
components can be bound in a binding statement.

In addition, Darwin provides a mechanism for representing hierarchical
composition of its components, by allowing a component to consist of
other components. Also, it provides a mechanisms for representing the dy-
namic creation of components. Hence, structural dynamics can partly be
represented in Darwin. Darwin’s formal semantics is described in the Pi-
calculus (Milner, 1999), a formalism that can partly represent structural
dynamics.

Figure 4-15 shows how a part of the wireless network from Figure 4-7
and Figure 4-8 could be represented in Darwin.

component EndUser{
 require RadioLink;
}

component AccessPoint{
 provide RadioLink [64];
 require NetworkCable;
}

component WirelessNetwork{
inst
 array e[3]: EndUser;
 array a[2]: AccessPoint;
bind
 e[0].RadioLink – a[0].RadioLink[0];
 e[1].RadioLink – a[0].RadioLink[1];
 e[2].RadioLink – a[1].RadioLink[0];
}

UML 2.0 Components. In UML 2.0 the structure of a system at a high
level of abstraction can be described by means of connected components.
Several components of a particular type can exist. UML distinguishes be-
tween interfaces and ports. An interface can be used to describe the behav-
iour that a component requires from or provides to its environment, in
terms of the events and functions that this interface can handle. A port is a
location at which a component can communicate with its environment. An
interface can be associated with a port, indicating that a component pro-

Figure 4-15 A Design in
Darwin

74 CHAPTER 4 BASIC DESIGN CONCEPTS

vides or requires certain behaviour at that port, or directly with the compo-
nent itself. A required and a provided interface can be connected by an as-
sembly connector. Also, more than one required and one provided interface
can be connected. In this case an interaction that occurs at the connection,
occurs between all components that can support that interaction. The hier-
archical composition of components can be specified, by allowing a compo-
nent (type) to contain instantiations of other components. The containing
component can delegate its ports and interfaces to the contained compo-
nents.

Similar to the our structural concepts, UML distinguishes between
structural snapshot and structural type concepts. The structural type con-
cepts can describe component types and possible dependencies between
components of those types. They can be used to construct a component
diagram. The structural snapshot concepts can describe the component
that constitute a system during a particular interval. They can be used to
construct a composite structure diagram.

Figure 1-3 shows how a part of the wireless network from Figure 4-7
and Figure 4-8 could be represented in UML. It shows how the possible
structures can be represented in a component diagram and how a structural
snapshot can be represented in a composite structure diagram.

AccessPoint

Antenna

i. Component diagram ii. Composite structure diagram

EndUser

Antenna

:EndUser :EndUser :EndUser

:AccessPoint :AccessPoint

Antenna

Antenna Antenna Antenna

AntennaAntenna

4.2 System Behaviour and Behavioural Concepts

The behaviour of a system consists of the activities that can be performed by
the system and the relations between these activities. The behaviour of a
system can be structured into sub-behaviours to improve modularity of the
behaviour. The sub-behaviours can either represent the behaviour of a sys-
tem part or a logical unit of behaviour. Sub-behaviours can in turn be struc-
tured into sub-sub-behaviours and so on.

An activity can be performed either by a single system part or by some
system parts in collaboration. It produces a tangible or intangible result that
is available to all parts that engage in the activity. This result is available to

Figure 4-16 A Design in
UML 2.0

 SYSTEM BEHAVIOUR AND BEHAVIOURAL CONCEPTS 75

the parts at some logical or physical location. An activity takes time to be
performed. Hence, it starts and finishes at particular time moments.

Two activities are related if the occurrence of one depends on the
(non-) occurrence of the other. If two activities are related there is an im-
plicit time relation between them that we will elaborate on further in this
chapter. Also, if the occurrence of an activity depends on the occurrence of
another activity, then its result may depend on the result of the activity on
which it depends. For example, two activities are related if they must be
performed in a sequence, because then the occurrence of the second de-
pends on the occurrence of the first. Since the second occurs after the first,
there is a time relation between them. Also, the result of the second activity
can be a function of the result of the first activity.

The concepts from (Quartel, 1998; Quartel et al., 1997; van Sinderen,
1995; Ferreira Pires, 1994) support the representation of the behavioural
concerns mentioned above. A designer can use behavioural concepts to pre-
scribe the behaviour that a system must have.

As opposed to the structural concern for which designs can be con-
structed using both instance and type concepts, only type concepts can be
used to construct designs for the behavioural concern. We impose this re-
striction because behaviours can contain an infinite number of activities.
Such behaviours cannot be represented by a finite number of instances.
However, assuming that realistic behaviours perform a finite number of
activities and then repeat themselves, we can represent infinite behaviours
by types that are instantiated multiple times. For example, a behaviour that
successively performs an infinite number of activities ‘a’, can be represented
by a behaviour type that performs ‘a’ and then repeats itself.

4.2.1 Behaviour

A behaviour represents a group of activities and the relations between these
activities. For example, a behaviour can group the activities that belong to a
single system part or the activities that are related to a particular phase in
the behaviour of the entire system, such as the initialization phase or the
data transmission phase. If a behaviour groups the activities that belong to a
single system part, then it must be associated to the entity that represents
that system part.

A behaviour type represents a template according to which behaviours can
be created. The creation of a behaviour according to a behaviour type is
represented by behaviour instantiation (of a behaviour type). We call the form
of behaviour instantiation where a behaviour type instantiates itself behaviour
recursion. We call the form of behaviour instantiation where a behaviour type
instantiates another behaviour type behaviour declaration. If a behaviour type
represents a template for the behaviours of some system parts, then it must

76 CHAPTER 4 BASIC DESIGN CONCEPTS

be associated with the entity type that represents these system parts. If a
behaviour declaration represents the instantiation of the behaviour of a sys-
tem part, then it must be associated with the entity instantiation that repre-
sents the instantiation of that part.

BehaviourType

-name:String

MonolithicBehaviourType

GeneralBehaviourType

StructuredBehaviourType

BehaviourInstantiation

-name:String

instantiated+

instantiation+

*

container+

declaration+ 1..*

BehaviourRecursion

container+

recursion+ *

BehaviourDeclaration

We distinguish between monolithic and structured behaviour types. Struc-
tured behaviour types are intended to represent behaviour structures.
Therefore, they can only contain behaviour instantiations and no activities.
In contrast, monolithic behaviours can only contain activities and behaviour
recursions, but no behaviour declarations. When a behaviour type contains
a behaviour instantiation, each behaviour of that type contains a behaviour
of the instantiated type. Hence, containment of instantiations at the behav-
iour type level implies containment of behaviours at the behavioural in-
stance level. Since we may want to combine a behaviour that contains activi-
ties with a behaviour that is structured, we also define the general behaviour
type. A general behaviour type can both contain behaviour instantiations and
activities.

Figure 4-17 shows the behavioural type concepts that we explained
above in a meta-model.
Figure 4-18 shows how the different behavioural concepts can be graphi-
cally represented. A behaviour type is represented graphically as a rounded
rectangle. The name of a behaviour type must be drawn inside the rounded
rectangle. A behaviour instantiation is also represented as a rounded rectan-

Figure 4-17 The Con-
cepts Related to the
Behaviour Concept

Figure 4-18 Graphical
Representation of Be-
haviour Type and Instan-
tiation

i. Behavior type ii. Behavior instantiation

<typename> <typename>

<typename> <instantiation name>

 SYSTEM BEHAVIOUR AND BEHAVIOURAL CONCEPTS 77

gle. The name of the behaviour type that it instantiates and the name of the
instantiation must be drawn inside the rounded rectangle. We draw a be-
haviour instantiation inside the behaviour type that causes the instantiation.

Figure 4-19 shows an example of the structured behaviour type that represents a database
server. This behaviour type consists of behaviour declarations that represent the database’s parts.
The behaviour type of each of the parts is also defined. Both behaviour types contain recursive
instantiations of themselves, representing that they can be repeated.

DatabaseBehaviorType

SecurityModuleBehaviorType s RecordStorageBehaviorType r

SecurityModuleBehaviorType

SecurityModuleBehaviorType s

RecordStorageBehaviorType

RecordStorageBehaviorType r

4.2.2 Action

An action represents the successful completion of an activity that is per-
formed by a single entity. Consequently, an action must be assigned to the
behaviour of the entity that performs it. Each activity must be represented
by a unique action. For example, the activity of sending an e-mail message
with subject ‘my account’ is considered separate from the activity of send-
ing an e-mail message with the subject ‘how was your.

An action type represents a template according to which actions can be
created. The creation of an action according to an action type is repre-
sented by action instantiation (of an action type). For example, we can define
a type for the actions of sending e-mail.

A behaviour type contains action instantiations. The containment of an
action instantiation in a behaviour type represents that an action is instanti-
ated when a behaviour of the containing type is instantiated. As an example,
consider a behaviour type that prescribes the behaviour of an e-mail system.
This behaviour type contains an instantiation of the action type ‘send e-
mail’ and a recursive instantiation of itself. Hence, the behaviour type
represents the repeating behaviour of an e-mail system that can perform a
‘send e-mail’ action for each repetition.

<typename> <instantiation name> <typename>

<typename>
<instantiation name>

Example 4-3 Example
Behaviour

Figure 4-19 Behaviour
Structure of a Database
Server

Figure 4-20 Graphical
Representation of Action
Concepts

78 CHAPTER 4 BASIC DESIGN CONCEPTS

Figure 4-20 shows how action types and action instantiations are graphi-
cally represented. They are represented by an ellipse that contains the name
of the type and the instantiation or by a circle to which a box containing the
type and instantiation name is attached. In the case where only a single in-
stantiation of a type exists, the name of the instantiation can be omitted. In
that case, we assume that the name of the instantiation is the same as the
name of the type. An instantiation must be drawn inside the behaviour type
that instantiates it. Figure 4-21 shows an example of a behaviour type that
contains two instantiations of the same action type.

EmailSystemBehaviourType

SendEmail s1 SendEmail s2

4.2.3 Interaction

An interaction represents the successful completion of an activity that is per-
formed by two or more entities in collaboration. An interaction either oc-
curs, representing successful completion, or does not occur, representing
failure to complete successfully, for all participating entities. If it occurs, all
participating entities can refer to the result. If it does not occur, none of the
participating entities can refer to any (intermediate) result that may have
been established. An interaction is supported by a communication mecha-
nism. Therefore, it can only occur between entities that have an interaction
point.

Interaction contribution. We call the participation of an entity in an
interaction an interaction contribution. Hence, an interaction consists of the
interaction contributions of its participating entities. An interaction contri-
bution must be assigned to the behaviour of the entity of which it repre-
sents the participation. For example, consider a ‘submit application’ inter-
action between a bank and a client. This interaction consists of a contribu-
tion of the bank, which is associated to the behaviour of the bank, and a
contribution of the client, which is associated to the behaviour of the client.

An interaction contribution type represents a template according to which
interaction contributions can be created. The creation of an interaction
contribution according to an interaction contribution type is represented by
interaction contribution instantiation (of an interaction contribution type). An
interaction contribution instantiation is associated with a behaviour type,

Figure 4-21 Behaviour
Structure of a Database
Server

 SYSTEM BEHAVIOUR AND BEHAVIOURAL CONCEPTS 79

representing that each behaviour that is created according to that behaviour
type contains an interaction contribution of the instantiated type.

Interaction type. An interaction type represents a template according to
which interactions can be instantiated. However, we do not explicitly rep-
resent interaction instantiations. Instead, an interaction type is implicitly
instantiated if its interaction contributions are allowed to occur.

We define an interaction type in the context of a structured behaviour
type, representing that it is an interaction of that structured behaviour type.
Interactions of the structured behaviour type are formed by interaction
contribution instantiations of behaviour declarations that the structured
behaviour contains.

Since interactions can only occur between entities that have an interac-
tion point, interaction types can only be specified between behaviour in-
stantiations of which the entity instantiations can have an interaction point.

i. Interaction contribution instantiation and type ii. Interaction type

<typename> <instantiation name>
<typename>

Figure 4-22 shows how interaction types and interaction contribution types
and instantiations can be graphically represented. Interaction contribution
types and instantiations are graphically represented in the same way as ac-
tion types and instantiations. However, they are represented by an ellipse
half instead of an ellipse. Interaction contribution instantiations must be
drawn on the border of the behaviour type by which they are instantiated,
with the flat part pointing outwards. An interaction is represented by a dot
and lines that connect the dot to the interaction contribution instantiations
that form the interaction. If an interaction contains only two interaction
contribution instantiations, then the dot can be left out. The name of the
type of an interaction is drawn inside a box and attached to it with a dashed
line. For brevity, the name of an interaction type or any of its parts can be
left out. In that case, the names of the interaction type and its parts are as-
sumed to be the same. Figure 4-23 illustrates this case. In this figure, we
assume that the interaction type and its parts have the type name ‘A’.
Structured interaction contribution. Since a behaviour can consist of
sub-behaviours, we may want to express that sub-behaviours contribute to
an activity of their containing behaviour. To allow for this, we introduce the
structured interaction contribution concept. A structured interaction contribu-

Figure 4-22 Graphical
Representation of Inter-
actions and their Contri-
butions

A A

Figure 4-23 Shorthand
Notation for Interaction
Type Names

80 CHAPTER 4 BASIC DESIGN CONCEPTS

tion represents an interaction contribution of a structured behaviour, which
is delegated to interaction contributions of the behaviour’s parts. The suc-
cessful completion of a structured interaction contribution coincides with
the successful completion of its constituents.

Figure 4-24 shows how a structured interaction contribution must be
graphically represented. It is graphically represented in the same way as a
regular interaction contribution instantiation. It is attached to the interac-
tion contributions that form it, similar to the way in which an interaction
type is attached to the interaction contribution instantiations that form it.

The structured interaction contribution is the behavioural counterpart
of the structural delegation instantiation concept. Therefore, the association
between a structured interaction contribution and its constituents must
correspond to a delegation instantiation between the entity type and instan-
tiations that perform the contribution.

SystemBehaviorType

ClientBehaviorType c

DatabaseBehaviorType d

storeRecordauthenticate

As an example, consider that the behaviour of the database server from
Figure 4-25 contains the behaviours of a security module and a record stor-
age module. The security module participates in the authenticate interaction
contribution of the database server. Therefore the authenticate interaction
contribution instantiation is defined as structured and is associated with an
authenticate interaction contribution instantiation of the security module’s
behaviour. Figure 4-26 illustrates this behaviour structure.

DatabaseBehaviorType

SecurityModuleBehaviorType s RecordStorageBehaviorType r

storeRecordauthenticate

Alternative interaction shorthand. To facilitate in constructing simpler
models, we developed shorthands. A shorthand is a single notational element
for frequently occurring compositions of other notational elements. A
shorthand can be used in place of such a composition.

TypeA
a

TypeB
a

TypeB
a

Figure 4-24 Graphical
Representation of Struc-
tured Interaction Contri-
butions

Figure 4-25 Example of
Interaction Types

Figure 4-26 Example of
Structured Interaction
Contributions

 SYSTEM BEHAVIOUR AND BEHAVIOURAL CONCEPTS 81

We developed a shorthand for an interaction with alternatives. A com-
mon activity may be performed by alternative groups of participants. Each
alternative group of participants performs an alternative of the interaction.
We call this alternative an alternative interaction. We represent an alternative
interaction graphically in the same way as we represent a interaction. How-
ever, unlike an interaction, an alternative may share an interaction contri-
bution instantiation with other alternatives (of the same interaction), repre-
senting that that interaction contribution instantiation contributes to each of
these alternatives.

Figure 4-27 shows an example of alternative interactions of the interac-
tion ‘buy’. In this example a buyer can perform an interaction ‘buy’ with
either one of two sellers. Figure 4-27 also illustrates how to rewrite an in-
teraction with alternatives into a design that uses only basic concepts, by
splitting up a shared interaction contribution into as many interaction con-
tribution instantiations as there are alternatives. Each of these instantiations
contributes to one of the alternatives. The instantiations must disable each
other, because the shared interaction contribution instantiation from which
they were derived can occur only once.

BuyerBehaviour b

SellerBehaviour s1 SellerBehaviour s2

buy

buy buy

BuyerBehaviour b

SellerBehaviour s1 SellerBehaviour s2

buy buy

buy b1 buy b2

=

Interaction meta-model. Figure 4-28 shows a meta-model of the con-
cepts that are explained in this section. It shows that an interaction type
consists of interaction participations. An interaction participation repre-
sents the participation of a behaviour in an interaction type. The meta-
model shows that a structured interaction contribution is specified in the
same way as an interaction. It is also specified by the participations that it
contains.

4.2.4 Attributes

An attribute represents a result of an activity, the time at which the activity is
finished and the location at which the results of the activity are available.
We represent these properties of activities with the information, time and
location attribute, respectively. When an activity has completed, its results
are established and its attributes have a value.

Each attribute has a name and a type. The type of an attribute repre-
sents the structure of the result and the range of values that the result can

Figure 4-27 Example of
Alternative Interaction
Contributions

82 CHAPTER 4 BASIC DESIGN CONCEPTS

have. The type that is associated with an information attribute can be freely
defined by the designer. The types that are associated with the time and
location attributes have pre-defined properties. How information, time and
location types can be defined is explained in more detail in section 4.3,
along with the definition of the properties of the time and location attrib-
utes. A value of the location type is a location, such that a location attribute
identifies (the location type of) an interaction point type and a value as-
signed to a location attribute identifies (the location of) an interaction
point. In this way, we can specify the interaction point at which an interac-
tion can occur or has occurred.

BehaviourDeclaration

InteractionParticipation

StructuredInteractionContribution

InteractionType

-name:String

interaction+ 0..1

constituent+2..*

InteractionContributionInstantiation

InteractionContribution

0..1

contribution+

structure+0..1

constituent+

1..*

StructuredBehaviourTypecontext+

interaction+

*

context+

contribution+

*

*

participant+

An attribute is associated with an action or interaction contribution type,
representing that each instance of that type has an attribute with the speci-
fied name and type. Since the same result is available to all participants in
an interaction at the same time and at the same location, the same attrib-
utes must be associated with all interaction contributions of the same inter-
action. When an interaction occurs, all interaction contributions that be-
long to the interaction have the same values for their attributes.

Figure 4-29 shows the concepts that are related to the attribute con-
cept. The causality target type represents either an action type or an inter-
action contribution type. Each causality target type can have a number of

Figure 4-28 The Con-
cepts Related to the
Interaction Concept

 SYSTEM BEHAVIOUR AND BEHAVIOURAL CONCEPTS 83

attributes. Each attribute can either be an information attribute, a time at-
tribute or a location attribute.

CausalityTargetType

-name:String

CausalityTargetAttribute

-name:String

InformationAttribute TimeAttributeLocationAttribute

ActionType

InteractionContributionType

target+

attribute+*

InformationType

-name:String attribute+

*type+

TimeTypeLocationType

type+

attribute+*

type+

attribute+*

Figure 4-30 shows how attributes are graphically represented and an exam-
ple. The attributes that belong to an action or interaction contribution type
are represented in a box and attached to an instantiation of that type by a
dashed line. For each attribute, both the name of the type of that attribute
and the name of the attribute is shown.

4.2.5 Causality Relation

A causality relation associates an action or interaction contribution instantia-
tion with a condition for the occurrence of that action or interaction con-
tribution instantiation. In this section we provide a brief overview of causal-
ity relations. We refer to Quartel (1998) for a more detailed discussion, as
well as a formal semantics of causality relations in terms of partially ordered
sets. We refer to Katoen (1995). A causality relation consists of:
1. the action or interaction contribution instantiation, also called the cau-

sality target instantiation, for which it describes the condition;
2. a causality condition, which describes what causality targets must (not)

have occurred for the associated causality target instantiation to occur;
and

Figure 4-29 The Con-
cepts Related to the
Attribute Concept

Send

Message m
Time t
Socket s

<typename>

<typename> <name>
<typename> <name>

Figure 4-30 Graphical
Representation Attrib-
utes

84 CHAPTER 4 BASIC DESIGN CONCEPTS

3. constraints. These constraints can describe what values other causality
target instantiations must have established for the associated causality
target instantiation to occur, in which case we call them as causality con-
straints. Constraints can also describe restrictions on the values that the
associated causality target instantiation can establish, in which case we
call them attribute constraints.

We associate a causality relation with interaction contribution instantiations
rather than interactions, such that each behaviour that is involved in an in-
teraction can specify its own condition for the occurrence of the interac-
tion.

i. start
condition

ii. enabling
condition

iii. disabling
condition

iv. synchronization
condition v. conjunction vi. disjunction

Causality conditions. The causality condition for an instance of some
causality target instantiation a is defined in terms of four basic causality
conditions:
1. the start condition represents that the instance of a is always enabled to

occur (or enabled for short);
2. the enabling condition represents that the instance of a is enabled, if an

instance of some other causality target instantiation, specified by the
condition, has occurred;

3. the disabling condition represents that the instance of a is enabled, if an
instance of some other causality target instantiation, specified by the
condition, has not yet occurred nor occurs at the same time; and

4. the synchronization condition represents that the instance of a is enabled, if
an instance of some other causality target instantiation, specified by the
condition, occurs at the same time.

These basic causality conditions can be combined into:
1. a conjunction that represents that all associated conditions must be satis-

fied to enable the occurrence of an instance of a;
2. a disjunction that represents that at least one of the associated conditions

must be satisfied to enable the occurrence of an instance of a; or
3. a combination of conjunctions or disjunctions.
Figure 4-31 shows how causality conditions can be graphically represented.
The arrowhead must point towards the instantiation of which the instances
are enabled.

If a causality condition is expressed as a disjunction of conjunctions of
basic causality conditions, we say that it is in the disjunctive normal form. We
call a part of a condition in the disjunctive normal form an alternative causal-
ity condition, or alternative for short, if it is a sufficient condition for a causal-

Figure 4-31 Graphical
Representation of Cau-
sality Conditions

?

!

Figure 4-32 Graphical
Representation of Un-
certainty Attributes

 SYSTEM BEHAVIOUR AND BEHAVIOURAL CONCEPTS 85

ity target to occur. For example, for the causality condition “b has occurred
and either c or d has occurred”, “b and c have occurred” and “b and d have
occurred” are alternative causality conditions. Although multiple alterna-
tives can be true at the same time, an activity can only occur as a conse-
quence of one alternative.

An activity either must or may occur if its causality condition is satisfied.
To represent that, we use the uncertainty attribute. The uncertainty attribute
is associated with each alternative causality condition. If the alternative con-
dition is satisfied, the uncertainty attribute specifies whether the occurrence
of the associated action is certain or not. If the uncertainty attribute has the
value must, then the activity will eventually occur if the causality condition is
satisfied. If value is may, then the activity may, or may not, occur if the cau-
sality condition is satisfied. The uncertainty attribute imposes no restric-
tions on when the activity will occur. Constraints on the time attribute
should be used to represent such restrictions. Figure 4-32 shows how an
uncertainty attribute is graphically represented. A must condition is repre-
sented by an exclamation mark that is associated to an alternative by a
dashed line. A may condition is represented by a question mark.

i. conjunction

=

ii. choice

= =

iii. synchronization

=

iv. disabling

= =

Shorthand Causality Conditions. Figure 4-33 shows some of the short-
hands that we developed for causality conditions.

Figure 4-33 Shorthands

86 CHAPTER 4 BASIC DESIGN CONCEPTS

A conjunction of conditions can be represented as conditions pointing
to a filled box, or as conditions pointing directly to the causality target in-
stantiation.

We can represent a choice between causality target instantiations by
those causality target instantiations mutually disabling each other. Alterna-
tively, we can represent two causality target instantiations mutually disabling
each other by connecting those causality target instantiations by a line with
a small line intersecting it. If some causality target instantiations mutually
disable each other and depend on the enabling by some other causality tar-
get instantiation, we can represent this as an open diamond. This diamond
has an arrow from the enabling causality target instantiation to it, and from
it to all causality target instantiations between which there is a choice.

Some causality conditions imply other causality conditions. For exam-
ple, if one causality target instantiation ‘a’ must occur at the same time as
‘b’ (synchronization condition), then ‘b’ must occur at the same time as ‘a’.
Figure 4-33.iii shows this. Since these relations will frequently be used in
combination, we developed the shorthand shows in Figure 4-33.iii.

Similarly, if one causality target instantiation ‘a’ disables another causal-
ity target instantiation ‘b’, then ‘b’ cannot occur after ‘a’ has occurred, nor
at the same time. This implies a condition for ‘a’, namely that ‘a’ cannot
occur at the same time as ‘b’. We can represent this by adding the condi-
tion that ‘a’ can occur either if ‘b’ has occurred or if ‘b’ has not yet oc-
curred nor is occurring. Figure 4-33.iv shows this. Because each disabling
of a causality target instantiation implies a relation in the opposite direc-
tion, this composition occurs frequently. Therefore, we developed the
shorthands that are also shown in Figure 4-33.iv.

i. causality
constraint ii. attribute constraint

<expression>

iii. attribute constraint

<attribute> |
 a -> <expression>,
 b -> <expression>

<attribute> | <expression>

Constraints. An alternative causality constraint specifies what attribute values
must have been established by activities that appear in an enabling or syn-
chronization condition, for the associated alternative causality condition to
be satisfied. Hence, a causality target is only enabled if one of its alternative
causality conditions is satisfied and the alternative causality constraint that is
associated with that alternative is satisfied. An alternative causality con-
straint cannot depend on attribute values of activities that appear in a dis-
abling condition, because these activities must not occur for the associated

Figure 4-34 Graphical
Representation of Con-
straints

 SYSTEM BEHAVIOUR AND BEHAVIOURAL CONCEPTS 87

activity to occur. Hence, their attributes do not have values. Figure 4-34.i
shows how an alternative causality constraint is represented by an expres-
sion that is associated with an alternative by a dashed line. The language
that we use to express the alternative causality constraints on the attributes
is explained further in section 4.3.

An alternative attribute constraint specifies constraints on the values that
can be established for an attribute. These constraints can also represent the
relations between the results of two activities. Similar to alternative causality
constraints, we associate alternative attribute constraints with alternative
causality conditions. This represents that if a causality target occurs as a
consequence of the alternative causality conditions, then the attributes of
that causality target are constrained by the alternative attribute constraint.
Figure 4-34.ii shows how an alternative attribute constraint is represented
as an expression that follows an attribute. In this representation, the con-
straint must hold for all alternatives. If the constraint must only hold for
some alternatives, it can be associated with that alternative in the same way
as a causality constraint (Figure 4-34.i), or by prefixing the constraint with
a textual representation of the alternative (Figure 4-34.iii). In this textual
representation:
– the start condition is represented as √;
– the enabling condition is represented by the name of the associated cau-

sality target instantiation (e.g.: a);
– the disabling condition is represented by ¬ followed by the name of the

associated causality target instantiation (e.g.: ¬a);
– the synchronization condition is represented by = followed by the

name of the associated causality target instantiation (e.g.: =a);
– the conjunction is represented by the logical conjunction, ∧, of condi-

tions (e.g.: ¬a ∧ b); and
– the disjunction is represented by the logical disjunction, ∨, of condi-

tions (e.g.: ¬a ∨ b).
The language that we use to express the attribute constraints is the same as
the language that we use to express the causality constraints. It is explained
further in section 4.3.

A causality relation of an action or interaction contribution can imply
time relations with other actions and interactions, as well as causality rela-
tions for other actions and interactions and values for the uncertainty at-
tributes of other causality relations. For example, if action a is synchronous
with action b then a must occur at the same time as b. Hence, the time at-
tribute of a must have a value that is equal to the time attribute of b. Also, b
must be synchronous with a. Therefore, the causality relation for b must
include the condition that it occurs synchronously with a. Finally, the un-
certainty attribute for the causality conditions of the two actions must be
the same, because if one of them must occur if its causality condition is

88 CHAPTER 4 BASIC DESIGN CONCEPTS

satisfied, then so must the other. More details about implied relations be-
tween actions and interactions can be found in (Quartel, 1998).

CausalityCondition

AlternativeCausalityConditionUncertaintyAttribute

-certain:Boolean

BasicCausalityCondition

StartCondition EnablingConditionDisablingCondition

CausalityTargetInstantiation

-name:String

condition+

disjunction+1..*

condition+

conjunction+*

certainty+

0..1

on+

participation_d+ * participation_e+*
on+

CausalityRelation

relation+

target+

0..1 condition+

ActionType

ActionInstantiation

instantiated+

instantiation+*

InteractionContributionType

InteractionContributionInstantiation

instantiated+

instantiation+*

MonolithicBehaviourType

behaviour+

causalityrelation+1..*

SynchronisationCondition

participation_s+ *

on+

Causality relation meta-model. Figure 4-35 shows a meta-model of the
concepts that are related to the causality relation concept. The meta-model

Figure 4-35 Concepts
Related to the Causality
Relation Concept

 SYSTEM BEHAVIOUR AND BEHAVIOURAL CONCEPTS 89

only allows for modelling in the disjunctive normal form. It shows that each
causality condition consists of a disjunction of alternative causality condi-
tions. Each alternative causality condition is a conjunction of basic causality
conditions. Each alternative causality condition is associated with an uncer-
tainty attribute and can be associated with attribute and causality con-
straints on the attributes of the target of the causality relation. Each ena-
bling, disabling or synchronization condition refers to the action or interac-
tion contribution that causes the enabling, disabling or synchronization with
the target of the causality relation. Causality relations are specified in the
context of a monolithic behaviour. Hence, only monolithic behaviours can
contain causality relations and therefore action and interaction contribution
instantiations. Figure 4-36 shows a meta-model of the concepts that are
related to the causality constraint concept.

Figure 4-37 shows an example of some causality relations that are defined in the context of a
behaviour type. The figure represents a behaviour in which a local or a remote request can occur
with some parameters. A remote request has to be sent and received, while a local request can
be processed immediately. However, after a remote request is sent, a communication error can
occur. Both a local and a remote request can only be processed, if the parameter that is sent
along with the request is valid. The action instantiations from Figure 4-37 represent these
activities. Remote request send and local request have a start condition. Therefore they are
enabled from the moment the behaviour is instantiated. The communication error action is
enabled by remote request send and disabled by remote request receive. Hence, it can occur
after a request was sent and while the request was not received on the other side. Remote
request receive has a similar condition. Therefore, remote request receive and communication
error exclude each other. The value of the parameter that remote request receive establishes
must be equal to the value that remote request send establishes. calculate response can either
be caused by remote request receive or by local request. However, both alternative conditions
have the constraint that the parameter must be valid before calculate response can occur. The
result that calculate response establishes is a function of the parameter of remote request receive
or the parameter of local request, depending on which of the two caused the occurrence of
calculate response.

AlternativeCausalityCondition

AlternativeCausalityConstraint

AlternativeConstraint

-expression:String

(discriminator)

constraint+

*

AlternativeAttributeConstraint

CausalityTargetAttribute

-name:String

*

constrained_t+

*

Example 4-4 An Exam-
ple of Causality Rela-
tions

Figure 4-36 Concepts
Related to the Causality
Constraint Concept

90 CHAPTER 4 BASIC DESIGN CONCEPTS

SystemBehaviorType

p.valid

RemoteRequestSend

Parameter p

CommunicationError

RemoteRequestReceive

Parameter p | p =
RemoteRequestSend.p

LocalRequest

Parameter p

p.valid

CalculateResponse

Result r | LocalRequest -> r = functionOf(LocalRequest.p),
RemoteRequest -> r = functionOf(RemoteRequestReceived.p)

4.2.6 Behaviour Structuring

We define two techniques for structuring a behaviour, using the structured
behaviour type concept: causality oriented structuring and constraint oriented
structuring. These structuring techniques differ with respect to the way in
which they relate the constituent behaviours of a structured behaviour.
They can be used in combination if necessary.

TypeA

TypeB b

i. entry point ii. exit point

TypeB

a 1

b1

TypeA

TypeB b a1

TypeB
b 1

Causality oriented structuring. The causality oriented structuring tech-
nique is a purely syntactic structuring technique. It allows the causality tar-
get instantiations from one behaviour instantiation to appear in the causality
condition of causality target instantiations from another behaviour.
Therewith ‘splitting up’ a causality relation between several behaviour in-
stantiations. This behaviour structuring technique can be used for both
forms of behaviour instantiation: behaviour declaration and behaviour re-

Figure 4-37 A Behav-
iour with Causality
Relations

Figure 4-38 Graphical
Representation of Entry
and Exit Points

 SYSTEM BEHAVIOUR AND BEHAVIOURAL CONCEPTS 91

cursion. To split up a causality condition between several behaviours, we
use entry points and exit points.

An entry point represents a causality condition from outside the behav-
iour type of which it is a part. The behaviour type of which it is a part can
use the entry point as a part of its own causality conditions. The behaviour
type that instantiates the behaviour type of the entry point must specify the
condition that the entry point represents.

An exit point represents a causality condition from inside the behaviour
type of which it is a part. The behaviour type must define the condition that
the exit point represents. The behaviour that instantiates the behaviour type
of the exit point, can use the exit point in its own causality conditions.

Figure 4-38 shows how that entry and exit points are graphically repre-
sented as a triangles pointing into or out of a behaviour type, respectively.
An entry point represents a condition from the instantiating behaviour type,
being used in the instantiated behaviour type. Hence, Figure 4-38.i repre-
sents that the condition for b is the occurrence of a. An exit point repre-
sents a condition from the instantiated behaviour type, being used in the
instantiating behaviour type. Hence, Figure 4-38.ii represents that the con-
dition for a is the occurrence of b.

TypeA a1
1 1

1

TypeA a2
1 1

TypeA a3
1 1 1

TypeA
1 1a

To make behaviours completely modular, we do not allow an attribute from
one behaviour to depend on an attribute from another behaviour, since
referring to attributes from another behaviour would mean that a behaviour
could ‘look inside another behaviour’ and hence violate the principles of
modularity. To allow behaviours to make use of the values that are estab-
lished in other behaviours, these values can be passed as parameters of entry

Figure 4-39 Example of
Entry and Exit Points

Example 4-5 Entry and
Exit Points Figure 4-39 shows a structured behaviour type that replicates behaviour type Type A three times.

The entry points of the first and the second replica are associated with the condition represented
by entry point of the instantiating behaviour. The entry point of the third replica is associated with
the conjunction of the conditions that are represented by the exit points of the first two replicas.
Since these exit points represent the enabling by action a, the entry point of the third replica
represents the conjunction of the enabling of action a from the first replica and action a from the
second replica. Hence, action a from the third replica can occur after both action a from the first
and from the second replica has occurred. The exit point of the structured behaviour represents
the enabling by action a from the third replica.

<typename> <name>

TypeA a1

<name> |
<name>=<expression>

TypeA1

Figure 4-40 Graphical
Representation of Pa-
rameters

92 CHAPTER 4 BASIC DESIGN CONCEPTS

and exit points. The parameter of an entry point represents a value that is
assigned by the behaviour that instantiates the behaviour that owns the en-
try point. The parameter of an exit point represents a value that is assigned
by the behaviour that owns the exist point. A parameter constraint represents
an expression that defines the value that can be assigned to the parameter.
The parameter constraint can reference attributes or other parameters.

TypeB1

Num p

a

a

Num i | i = 1.p + 1

1

p | p = a.i

TypeB b11

Figure 4-40 shows that parameters are graphically represented by their
name and type attached to the point of which they are a parameter. Pa-
rameter constraints are graphically represented as expressions that are asso-
ciated to the point by the behaviour type that imposes the constraint.
Hence, in the case of an entry point, the constraint is associated with the
behaviour type that instantiates the behaviour type of the entry point, be-
cause this behaviour type imposes the constraint. In the case of an exit
point, the constraint is associated with the behaviour type that owns the exit
point, because this behaviour type imposes the constraint.

Causality-oriented structuring meta-model. Figure 4-42 shows a
meta-model of the concepts that are related to causality-oriented behaviour
structuring. It shows that each behaviour type can have entry and exit
points. We do not distinguish between entry and exit point types and entry
and exit point instantiations, because each entry and exit point type is in-
stantiated exactly once for each behaviour instantiation. Hence, a point
represents a combination of a point type and a point instantiation. An exit
point is associated with the causality condition that it represents. A struc-
tured behaviour type associates each entry point of the behaviour instantia-
tions that it defines with a causality condition. Therefore, an entry point
dependency relates a causality condition to an entry point of a behaviour
instantiation.

Figure 4-41 Example of
Parameters

Example 4-6 Parame-
ters Figure 4-41 shows a recursive behaviour type that has an entry point with a parameter named p

with type Num. The result of action a equals the value of the parameter p plus 1. The value of the
parameter for the recursive instantiation of the behaviour is constrained, using a parameter con-
straint, such that it equals the result of action a. The instance that is created by this instantiation
has another action a, which will increase the parameter again and pass the new value on to the
next instance and so on.

 SYSTEM BEHAVIOUR AND BEHAVIOURAL CONCEPTS 93

Point

-name:String

BehaviourType

-name:String

EntryPoint

CausalityCondition

ExitPoint

EntryPointDependency BehaviourInstantiation

-name:String

context+

point+

*

instantiated+

instantiation+ **

point+

0..1

represented+

point+ 0..1

represented+

context+

dependency+

*

PointParameter

-name:String
-type:InformationType

point+

parameter+

*

Since causality conditions can refer to conditions that are represented by
entry and exit points, we extend the causality relation concepts with the

Figure 4-42 Concepts
Related to Behaviour
Structuring

Figure 4-43 Concepts
Related to Point Condi-
tions

CausalityCondition

AlternativeCausalityConditionUncertaintyAttribute

-certain:Boolean

BasicCausalityCondition

condition+

disjunction+1..*

condition+

conjunction+*

certainty+

0..1

ExitPointpoint+

0..1

represented+

EntryPointCondition

EntryPoint

on+

participation+ *

ExitPointCondition

on+

participation+ *

PointCondition

condition+
conjunction+*

BehaviourInstantiation

-name:String

context+

point+

*

94 CHAPTER 4 BASIC DESIGN CONCEPTS

concepts from Figure 4-43. The figure shows that an alternative causality
condition is a conjunction of basic causality conditions and point condi-
tions. A point condition either refers to the entry point of the behaviour
type that instantiates the causality target, or it refers to an exit point of one
of the behaviour instantiations in that behaviour type. Figure 4-44 shows a
meta-model of the concepts that are related to causality constraints on
point parameters.

AlternativeConstraint

-expression:String

AlternativeParameterConstraintAlternativeCausalityConstraint AlternativeAttributeConstraint

PointParameter

-name:String
-type:InformationType

*

constrained_p+

* CausalityTargetAttribute

-name:String

* constrained_t+

*

Constraint oriented structuring. The constraint oriented structuring
technique allows the conditions for an activity to occur to be distributed
over several interacting behaviours. For this purpose, the activity has to be
represented as an interaction for which each participating behaviour can
specify its own constraints. The constraint oriented structuring technique
can, for example, be used to logically distribute the conditions for the oc-
currence of an activity. It can also be used to distribute the responsibility of
enforcing those conditions over different parts.

4.2.7 Example

Figure 4-45.i defines the behaviour of a web-server that can be used by its
clients to search for an appropriate mortgage. The web-server allows a cli-
ent to obtain a form via a session that the web-server has with that client.
After the client has obtained the form, the web-server instantiates a new
web-server behaviour, such that another client can also obtain a form. After
a client has received a form, the behaviour only accepts interactions via the
same session though which the client obtained the form. In this way each
behaviour instance can be related to a single session with a client and not
accidentally process parts of a session with another client. The client can fill
out the form, resulting in an application. Based on this application, the
web-server constructs a query on the database. It performs this query on
the database and receives the result. The result is a set of mortgages, which
is presented to the client. The client may select one of the mortgages, after
which the mortgage is passed to the transaction manager that will take care
of closing the deal with the bank and the notary. If it succeeds it returns an
accept message and if it fails it returns a reject message.

Figure 4-44 Concepts
Related to Point Con-
straints

 SYSTEM BEHAVIOUR AND BEHAVIOURAL CONCEPTS 95

i. Web server behaviour type

ii. Broker behaviour type

WebServerBehaviour

1

EnterInformation
Application a
Session s | s = GetForm.s

GetForm
Form f
Session s

PresentOptions
Mortgages ms | ms =
 QueryDatabase.r
Session s | s = GetForm.s

ChooseMortgage
Mortgage m
Session s | s = GetForm.s

ReportSale
Receipt r | r =
 sign(ConfirmMortgage.m)
Session s | s = GetForm.s

ReportNoSale
Message mg
Session s | s = GetForm.s

?

QueryDatabase
Query q | q =
 queryFor(EnterInformation.a)
Result r

RequestMortgage
Mortgage m | m =
 ChooseMortgage.m

ConfirmMortgage
Mortgage m | m =
 RequestMortgage.m
Message mg

BrokerBehaviour

RequestBank
Mortgage m
Contract c

EnterInformation
Application a
Session s

PresentOptions
Mortgages ms
Session s

ChooseMortgage
Mortgage m
Session s

ReportSale
Receipt r
Session s

ReportNoSale
Message mg
Session s

WebServerBehaviour wsb1

DatabaseBehaviour
db

1

TransactionManagerBehaviour tmb

1

CommitBank
Mortgage m
Contract c

RollbackBank
Mortgage m
Contract c

QueryDatabase
Query q
Result r

RequestMortgage
Mortgage m

ConfirmMortgage
Mortgage m
Contract c

GetForm
Form f
Session s

RequestNotary
Mortgage m
Contract c

CommitNotary
Mortgage m
Contract c

RollbackNotary
Mortgage m
Contract c

ConfirmMortgage.mg
instanceof RejectMessage

WebServerBehaviour wsb
ConfirmMortgage.mg
instanceof AcceptMessage1

Figure 4-45 A Behav-
iour Design

96 CHAPTER 4 BASIC DESIGN CONCEPTS

The web-server behaviour is used in the behaviour of the mortgage bro-
ker from Figure 4-45.ii. The mortgage broker behaviour combines the be-
haviour of a web-server with the behaviour of a database and a transaction
manager, by instantiating these behaviours. All instantiations have a start
condition associated with their entry points, representing that they are en-
abled from the moment the broker behaviour is instantiated. The broker
behaviour also defines the interaction query database between the web-server
and the database and the interactions request mortgage and confirm mortgage
between the web-server and the transaction manager. Finally, it defines
how its sub-behaviours participate in interactions that it has with its envi-
ronment.

4.3 Information and Information Concepts

The (values of) attributes of an action or interaction represent the result
that that action or interaction establishes, as well as the time and location at
which the result is available. Those values carry information about the result
and the time and location at which it is available.

We use the information concepts to describe the information about the
result in more detail. In particular, we consider that information has struc-
ture and can be of a certain information type. An information type identi-
fies information that is similar with respect to this type.

We consider that information can be structured by logically grouping it
into different information elements. In turn, the information elements in
each of these logical groups can be grouped into logical sub-groups and so
on and so forth. Hence, we also say that information can be hierarchically
structured.

It is our goal to focus on concepts for prescribing information structure
and constraints, not to define an information modelling language for
graphically representing them. Therefore, rather than defining a modelling
language ourselves, we allow a designer to define his own representation
relation to describe which modelling elements he wants to use to describe
which concepts.

The graphical representation of causality and attribute constraints de-
pends on the graphical representation of attributes to which these con-
straints apply. Therefore, these same binding that binds information con-
cepts to modelling elements must bind constraint concepts to modelling
elements.

At the end of this section we show a binding between the information
concepts and UML.

 INFORMATION AND INFORMATION CONCEPTS 97

4.3.1 Information Concepts

Figure 4-46 shows the concepts that we can use to represent information
structures and types.

An information value represents (a part of) a possible result of an activity.
After an activity is performed its result is represented by information values
assigned to its attributes. The information type concept represents a set of
information values that are similar with respect to that type and the struc-
ture of these information values. We say that information values in the set
that is represented by an information type are of that type or satisfy that type.
We say that an information type a is a subtype of another type b, if all in-
formation values that satisfy a also satisfy b. If a is a subtype of b, b is a su-
pertype of a. The information type that is associated with an attribute con-
strains the information values that can be assigned to that attribute, because
the value must satisfy the type. An information type is uniquely identified by
a name in the context of a design.

InformationType

-name:String

TimeType

+before(t:TimeType):Boolean
+after(t:TimeType):Boolean
+at_the_same_time(t:TimeType):Boolean

LocationType

InformationBlock

-name:String

PrimitiveInformationType CompositeInformationType

block+ *

*structure+

Location

-name:String

values+*

type+

PrimitiveTimeType CompositeTimeTypePrimitiveLocationType CompositeLocationType

Figure 4-46 Information
Structure Concepts

98 CHAPTER 4 BASIC DESIGN CONCEPTS

To represent structure of information values, an information type can be
structured into information blocks, in which case we refer to it as a composite
information type. Each block is associated with an information type itself,
constraining the information values that that part can have and, optionally,
its further structuring into blocks. An information block is uniquely identi-
fied by a name in the context of a composite information type. If an infor-
mation type is unstructured, we refer to it as a primitive information type.

As an example of a composite information type, consider the personal information type that can
be structured into the blocks name and address. The name block has a finite list of characters as
its information type. The address block has a type that can be further structured into a block
street with a finite list of characters as its information type and a number block with a positive
natural number as its information type. As an example of an information value, consider an
information value that is the result of an activity that establishes a result of type personal
information. This value must have a block name that, for example, has the value John Jameson. It
must have a block address that, for example, has the value Bowstreet for street and 7 for number.

Two special information types are the time type and the location type. These
types can be used to represent the information structure and values of the
time and the location at which the result of an activity is available. An in-
formation value of the location type is called a location and an information
value of the time type is called a time moment. The location and location type
concepts are the same concepts as those from the structural system design.
Therefore, each location type must correspond to a location type in the
structural type design. The values of that type are locations of that location
type in a structural snapshot design.

4.3.2 Binding of Modelling Language to Information Concepts

We allow a designer to use a modelling language of his choice to represent
information concepts. However, before he can do so, a binding between the
modelling language and the information concepts has to be defined. A bind-
ing defines which modelling elements can be used to represent which in-
formation concept. If a modelling element is used to represent an informa-
tion concept in the context of a binding, we also say that the information
concept and the modelling element are bound.

Since the elements of a modelling language have a semantics of their
own, the binding of modelling elements and information concepts is not
arbitrary. It must be defined such that the semantics of the modelling ele-
ments is consistent with the semantics of the information concepts to which
they are bound. In particular it must observe the rules below.

Binding to Information Type Concepts. A binding must describe
which modelling elements are used to represent the information type con-

Example 4-7 A Com-
posite Information Type

 INFORMATION AND INFORMATION CONCEPTS 99

cept and the information value concept. The modelling element that is
bound to the information value concept and the modelling element that is
bound to the information type concept must have a type-instance relation-
ship, because the information type and information value concept have such
a relationship.

A binding must prescribe which modelling elements are used to repre-
sent the composite and primitive information type concepts. The composite
information type concept puts additional constraints on the modelling ele-
ments that can be bound to it. Modelling elements that the designer binds
to the composite information type concept must be able to contain model-
ling elements that can be bound to information blocks. These modelling
elements must be able to have an identifier (name). Also, they must have an
association with the modelling elements that are bound to the information
type concept. This relationship must represent that the block can be as-
signed a value that satisfies the type represented by the associated modelling
elements that are bound to the information type.

The designer defines the required time and location types in the model-
ling language of his choice as a part of a design. Each time type must repre-
sent a continuous or discrete timeline for which at least a notion of ‘be-
fore’, ‘after’ and ‘at the same time’ exists. These notions are required to
match the time relations that are implied by the basic causality conditions. a
enables b implies that b occurs after a, a disables b implies that, if b occurs, it
occurs before a and a synchronous with b implies that a and b occur at the
same time. A model of a location type must represent a set of values that
correspond to the locations of that type in the structural design.

T

+a: A
+b: B

Date

+day: Integer
+month: Integer
+year: Integer

+before(d: Date): Boolean
+after(d: Date): Boolean
+at_the_same_time(d: Date): Boolean

String

IPAddress

A binding must bind modelling elements to the attribute and parameter
concepts. The modelling element that is bound to these concepts must be
able to have a name, a type and a value. The value must take the form of an
instance of the modelling element that is bound to the information value
concept. It must satisfy the type that is associated to the corresponding at-
tribute or parameter. Note that a value of an attribute or parameter is asso-
ciated with an instance of an action, interaction or behaviour type, and not
with an instantiation. Figure 4-48 illustrates this case. In this figure, each
action instance of a can have its own value for n.

Figure 4-47 An Example
of Information Types
Represented with a
Binding to UML

B
int n

B beh11 a

Figure 4-48 Example of
Different Values for the
Same Attribute

100 CHAPTER 4 BASIC DESIGN CONCEPTS

Binding to Constraint Concepts. The constraint concept contains an
expression that can be used to model a constraint in the modelling language
of choice. Hence, the binding must describe which modelling elements can
be used to model a constraint. A constraint is a truth expression that must
evaluate to true. In this way attribute and parameter constraints restrict the
values that can be assigned to an attribute or parameter, because only values
that make the corresponding constraint true are allowed. Causality con-
straints restrict the alternative causality conditions by which a causality tar-
get can be enabled, because only alternative causality conditions for which
the constraint evaluates to true can enable a causality target.

Parameter constraint bindings can be treated in the same way as attrib-
ute constraint bindings. However, parameter constraints can only be
equivalence constraints, because parameter constraints can only be used to
pass information from one behaviour to another. If information can only be
passed, then we have to know exactly which information is passed. Hence, a
parameter constraint must evaluate to a single value.

A constraint can refer to attributes of action or interaction instantiations
and to parameters of entry or exit points. Therefore, we allow expressions
that represent these constraints to refer to the modelling elements that rep-
resent attributes and parameters. Since different instantiations can have
attributes with the same name, we refer to attributes as: <the name of the
instantiation>.<the name of the attribute>. This prevents naming con-
flicts between instantiations with attributes that have the same name. We
use the same naming scheme to refer to parameters of entry points. We
refer to parameters of exit points as: <the name of the behaviour instantia-
tion of the exit point>.<the name of the exit point>.<the name of the
parameter>. This prevents naming conflicts between behaviours that have
exit points with the same name. If a constraint refers to an attribute or pa-

As an example of a binding, consider UML as a language for representing information. UML
classes and objects have a template-instance relationship. Therefore we can bind the UML class
modelling element to the information type concept and the UML object modelling element to the
information value concept. We can also bind UML classes to composite information types, such
that their attributes represent the blocks of composite information types.

For example, consider a composite information type T that contains a block by the name a
with an information type by the name A and a block by the name b with an information type by
the name B. This information type can be modelled in UML by a class T that has an attribute with
name a that is an object of class A and an attribute with name b that is an object of class B. We
can model a composite time type in UML as a class Date with attributes day, month and year of
type Integer and methods before, after and at_the_same_time that take another Date object as an
argument and return a Boolean. As another example, we can model a primitive location type that
represents IP addresses as UML class IPAddress that is a subclass of the UML primitive type
String. Figure 4-47 shows these types.

Example 4-8 A Binding

 INFORMATION AND INFORMATION CONCEPTS 101

rameter of the instantiation or point to which it is attached, the name of
that instantiation or point can be left out for brevity. Finally, an expression
can refer to blocks in an information type using <the name of the attribute
or parameter>.<the name of the block>. If the block is structured itself,
the ‘dot’ notation can be used further to identify those blocks and so on.
For example, consider the two actions from Figure 4-49. The constraint
states that the value of attribute m of the action instance that is created by
instantiation b must be equal to the value of attribute n of the action in-
stance that is created by instantiation a.

B

a

int n

B beh11

int m | m = a.n

b

The same model elements that are bound to attribute and parameter con-
straints can be bound to causality constraints.

Information Concept UML 2.0 Modelling Element

InformationValue InstanceSpecification

InformationType Classifier

PrimitiveInformationType DataType

CompositeInformationType Class

InformationBlock Property of Class

Attribute/Parameter Property of Class that represents the result of an
Action or Interaction

Causality, Attribute or Parameter Constraint OCL Constraint

4.3.3 Binding of UML Modelling Elements to Information Concepts

Table 4-2 shows how we bind UML modelling elements to information
concepts.

We bind an information value to a UML instance specification and an
information type to a UML classifier. Since classifiers and instance specifi-
cations have a type-instance relation, this satisfies the binding rules.

We bind a primitive information type to a UML data type. Hence, val-
ues of a primitive information type are bound to UML data values. Four
pre-defined UML data types exist:
– The data type ‘Boolean’, which represents the logical truth values: ‘true’

and ‘false’.

Figure 4-49 An Example
of Attribute Constraints

Table 4-2 UML Binding
to Information Concepts

102 CHAPTER 4 BASIC DESIGN CONCEPTS

– The data type ‘Integer’, which represents integer values (…, -2, -1, 0,
1, 2, …).

– The data type ‘String’, which represents sequences of characters.
– The data type ‘UnlimitedNaturals’, which represents natural numbers

(0, 1, 2, …) and infinity. We represent infinity as an asterisk (*).
In addition to that, UML data types include enumeration types. An enu-
meration type is a data type of which the values can be defined freely, by
enumerating them.

We bind a composite information type to a UML class. Hence, the val-
ues of a composite information type are bound to UML objects. We bind
the blocks of a composite information type to properties of the correspond-

Figure 4-50 An Example
of a Behaviour with the
Information Concern
Represented in UML

Calculator

Calculator c

Fraction

+over: Integer
+under: Integer

Add

Fraction toAdd
Fraction result |
 result.over =
 1.operand.over*toAdd.under +
 toAdd.over*1.operand.under
 result.under =
 1.operand.under*toAdd.under

Op operation
Fraction operand

«enumeration»
Op

add
substract

Subtract

Fraction toSubtract
Fraction result

ChooseOp

Op operation
Fraction operand |
 Add -> operand = Add.result
 Subtract -> operand = Subtract.result

operation = ChooseOp.operation
operand = ChooseOp.operand

B Calculator c

operation = add
operand.over = 1
operand.under = 1

1.operation = add

1.operation = substract

toAdd =
 Fraction{over=1,
 under=2}
result =
 Fraction{over=3,
 under=2}

:Add

operation = subtract
operand =
 Fraction{over=3,
 under=2}

:ChooseOp

i. A Design with Information

ii. Results of Possible Occurrences Represented by the Design

1 1

1

 INFORMATION AND INFORMATION CONCEPTS 103

ing class. These properties can have a name and a type. The type identifies a
UML class that is bound to an information type. Hence, the class structure
matches that of the information types and the binding rules are satisfied.

We bind the attributes of a causality target instantiation to properties of
a UML class. The name of an attribute is bound to the name of the UML
property and the type of the attribute or property is bound to the type of
the UML property. We do not explicitly represent the class that contains
the properties in UML. Instead, we assume that such a class exists for each
causality target instantiation. We assume that this class has the same name
as the causality target instantiation that it represents. When an instance of a
causality target instantiation has occurred, then the result that is established
is represented by an instance of the class. The parameters of a point are
represented by properties of a UML class in the same way.

We bind a causality, attribute or parameter constraint to an OCL con-
straint. In case of an attribute or parameter constraint, the OCL constraint
must be specified in the context of the UML class that contains (a UML
representation of) the corresponding attribute or parameter. In case of a
causality constraint, the OCL constraint must be specified in the context of
a newly defined UML Class. Each instance of this class represents the ena-
bling of the corresponding alternative causality constraint. Like the classes
that represent attributes or parameters, this class is not modelled explicitly,
but we assume that it exists.

Figure 4-50.i shows a behaviour that contains information types and constraints specified in
UML. The behaviour represents a calculator that can either perform an addition or a subtraction
operation on fractions. After an addition or subtraction, the next operation can be chosen and the
behaviour is repeated. Two information types are defined: ‘Op’ and ‘Fraction’. ‘Op’ is a primitive
type that represents an addition or subtraction operator. It is represented by a UML enumeration.
‘Fraction’ is a composite type that represents a fraction. It has two blocks ‘over’ and ‘under’ that
represent the numerator and the denominator of the fraction, respectively. Both blocks are of the
primitive type ‘Integer’ that is pre-defined in UML. ‘Fraction’ is represented by a UML class.

Whether an addition or a subtraction operation is performed is determined by the causality
constraints on the enabling conditions of the actions that represent those operations. According
to those causality constraints, if the parameter ‘operation’ is set to ‘add’, the ‘Add’ action is
enabled. If the parameter ‘operation’ is set to ‘subtract’, the ‘Subtract’ action is enabled. The
‘Add’ action establishes a result ‘toAdd’ that represents the fraction to add to the parameter
‘operand’. It also establishes a result ‘result’ that represents the addition of ‘toAdd’ to the
parameter ‘operand’. The ‘Subtract’ action establishes similar results.

The ‘ChooseOp’ action establishes a result ‘operand’ that represents the operand for the next
operation to perform. ‘operand’ is set to the result established in either the ‘Add’ or the ‘Subtract’
operation, depending on which operation was performed.

Figure 4-50.ii shows the results of some instances of the action instantiations from Figure
4-50.i. ‘:Add’ represents the results of an occurrence of the action ‘Add’ and ‘:ChooseOp’
represents the results of an occurrence of the action ‘ChooseOp’.

Example 4-9 A Behav-
iour with the Information
Concern Represented in
UML

104 CHAPTER 4 BASIC DESIGN CONCEPTS

To create valid OCL constraints to represent parameter, causality and at-
tribute constraints, we must make some assumptions about the existence of
UML constructs in a design. For example, ‘1.operand=add’ in the example
from Figure 4-50 is not a valid OCL constraint, unless we assume that an
association exists between the class that is the context of the constraint and
the class that represents the parameters of ‘1’.

We assume that the UML classes and data types that represent the in-
formation types are contained in a UML package. Also, we assume that a
UML package exists for each behaviour declaration. This package has the
same name as the declaration and represents the behaviour declaration in
UML. It contains the classes that correspond to attributes of causality target
instantiations from the represented behaviour declaration. It contains pack-
ages that correspond to behaviour declarations inside the represented be-
haviour declaration. Also, it imports the UML package that represents the
information types.

If a causality target instantiation or point causally depends on another
causality target instantiation or point, we add an association between the
UML classes that represent the corresponding attributes or parameters. An
instance of such an association represents that one of the corresponding
causality targets caused the other. The association has ‘0..1’ multiplicity on
the causer side, because a causality target can be caused by at most one in-
stance of another causality target instantiation.

An attribute constraint of an alternative condition only applies when the
occurrence of its causality target is caused by that alternative condition. We
assume that this requirement is incorporated into the OCL constraint that
represents the attribute constraint. We can incorporate these requirements
using OCL expressions on the associations that represent that one causality
target causes another. For example, in Figure 4-50 ‘operand = Add.result’
only applies if ‘ChooseOp’ was caused by ‘Add’. We can add this require-
ment to the constraint, as: ‘not Add.OclIsUndefined() implies operand =
Add.result’. This means that if an association exists between ‘self’ and an
instance of the class ‘Add’, then the alternative attribute constraint applies.

Figure 4-51.i shows some of the assumptions that must be made to correctly represent the
information types from Figure 4-50 in UML. It shows that packages are assumed to exist for the
definition of the information types and for the behaviour declaration ‘Calculator c’. The package
for the behaviour declaration contains classes that represent the results of each of the points and
causality targets in the corresponding behaviour type. It also contains the classes that are the
contexts for the causality constraints for the ‘Add’ and ‘Subtract’ actions. ‘Add’ has an
association to ‘1’, because its action may be caused by (the condition represented by) ‘1’.
‘ChooseOp’ has an association to both ‘Add’ and ‘Subtract’, because its action may be caused
by those ‘Add’ or by ‘Subtract’. ‘1’ has a parameter constraint. This constraint either sets the
parameters of ‘1’ to a pre-defined value or to the results of the ‘ChooseOp’ action, depending on

Example 4-10 Assump-
tions for a UML Binding
of Information Concepts

 INFORMATION AND INFORMATION CONCEPTS 105

whether ‘1’ was enabled by the ‘ChooseOp’ action or a start condition.
Figure 4-51.ii shows the occurrences of some actions that are specified by the design. In

these occurrences an instance of ‘1’ is enabled, such that the class that represents the
parameters of ‘1’ is instantiated. ‘1’ has parameters that represent the addition operator and the
fraction 1/1. ‘1’ enables and causes an occurrence of the ‘Add’ action, such that the class that
represents the causality condition of ‘Add’ and the class that represents the results of ‘Add’ are
instantiated. These instances are associated to ‘1’, because ‘1’ causes the enabling and
instantiation of ‘Add’. Further, the figure shows that an instance of ‘ChooseOp’ occurs and that
another instance of ‘1’ is enabled. These occurrences and their results meet the OCL constraints
specified in the design.

if (not ChooseOp.OclIsUndefined()) then
 (operation = ChooseOp.operation) and
 (operand = ChooseOp.operand)
else
 (operation = add) and
 (operand.over = 1) and
 (operand.under = 1) and
endif

Fraction

+over: Integer
+under: Integer

Add

+toAdd: Fraction
+result: Fraction

+operation: Op
+operand: Fraction

«enumeration»
Op

add
substract

ChooseOp

c

1

Subtract

+toSubtract: Fraction
+result: Fraction

+operation: Op
+operand: Fraction

InformationTypes

«imports»

AddEnabling

1.operation = add

0..1

0..10..1

0..1

0..1 0..1

0..1

operation = add
operand =
 Fraction{over=1,
 under=1}

:c::1

toAdd =
 Fraction{over=1,
 under=2}
result =
 Fraction{over=3,
 under=2}

:c::Add

operation = subtract
operand =
 Fraction{over=3,
 under=2}

:c::ChooseOp

operation = subtract
operand =
 Fraction{over=3,
 under=2}

:c::1

:c::AddEnabling

i. Assumptions for a Design

ii. Results of Possible Occurrences Represented by the Design

1.operation = subtract

SubtractEnabling

Figure 4-51 Example of
Assumptions for a UML
Binding of Information
Concepts

Chapter 5
5. Pre-Defined Viewpoint Relations

This chapter investigates the notions of refinement and overlap from chap-
ter 3 in more detail and identifies some frequently occurring cases of re-
finement and overlap. Based on these frequently occurring cases, this chap-
ter pre-defines some refinement and overlap relations that a designer can
re-use to prescribe a relation between viewpoints. The pre-defined rela-
tions are associated with consistency rules that a designer can re-use to ver-
ify consistency between views.

The pre-defined refinement relations and consistency rules focus on the
conditions for the occurrence of actions and interactions. They do not con-
sider attribute constraints, nor do they consider other design concerns,
such as structural concerns or security concerns. We leave verification of
consistency with respect to attribute constraints and with respect to other
concerns for future work.

The work described in sections 5.1, 5.2.1, 5.2.3 and 5.2.4 is an exten-
sion of the work described by Quartel et al. (2002) and Quartel (1998). It
contains a more algorithmic interpretation of that work, which is necessary
for the implementation of the work in tool support. The work described in
sections 5.2.5, 5.2.6 and 5.3 is a new contribution.

We define the viewpoint relations and consistency rules on a textual
concrete syntax of the basic concepts that we explain in section 5.1, along
with some basic operations and relations on the concrete syntax that are
used further in the chapter. Subsequently, we explain refinement and over-
lap in sections 5.2 and 5.3, respectively.

5.1 Textual Concrete Syntax for Basic Concepts

We define a textual concrete syntax to represent basic behaviours. Also, we
define some rules, relations and operations that apply to behaviours.

108 CHAPTER 5 PRE-DEFINED VIEWPOINT RELATIONS

Textual concrete syntax for behaviour types. In the textual concrete
syntax, action, interaction contribution, interaction, point and behaviour
instances as well as their types are represented by the names of those in-
stances or types. Instantiations are represented by their name, suffixed by
the name of the type that they instantiate between brackets. The name of an
entry point is prefixed by >. The name of an exit point is suffixed by >. If
only one instantiation of a particular action or interaction contribution type
exists in a behaviour type, the type of that action or interaction contribution
can be left out. If we refer to a point or interaction contribution instantia-
tion of a particular behaviour instantiation, we refer to it as <name of be-
haviour instantiation>.<name of interaction contribution instantiation or
point>. For example, the name of exit point 1 of behaviour instantiation b
of behaviour type B becomes b(B).1>. We can also use this notation to
uniquely identify two instances or instantiations with the same name that
belong to different behaviours. By convention, we use upper case letters to
represent types, lower case letters to represent instances and instantiations
and numbers to represent points.

A behaviour type consists of action and interaction contribution instan-
tiations, as well as the (recursive) behaviour instantiations that can occur in
the context of that behaviour type and the exit points that the behaviour
type makes available. We represent the relation between a behaviour type
and its constituents by representing the behaviour type as a set that contains
these constituents. Each of a behaviour type’s constituents is prefixed by an
arrow and a causality condition for its occurrence, or, in case of an exit
point, the causality condition that it represents. Figure 1-2 illustrates the
textual representation of two behaviour types and their constituents. It also
illustrates the equivalent graphical representation of the behaviour types.

}

,

,

1

1{

}1).({

c

b

a

ba

a

bB

BbA

→
→
→

∨
¬∧>
¬∧>=

>→√=

B aA
B b1

b

1 c

Causality conditions are represented as follows. An enabling condition is
represented by the name of the instantiation by which the target is enabled.
A disabling condition is represented by the logical not (¬) followed by the
name of the instantiation by which the target is disabled. The start condi-
tion is represented by √. The disjunction of conditions is represented by
the logical or (∨) of those conditions. The conjunction of conditions is rep-
resented by the logical and (∧) of those conditions.

Figure 5-1 Textual
Representation of Be-
haviour Types

 TEXTUAL CONCRETE SYNTAX FOR BASIC CONCEPTS 109

By convention we refer to an arbitrary basic causality condition as γ and
to an arbitrary disjunction or conjunction as Γ.

Commutativity, associativity and distributivity. Some rules apply to
causality conditions. The disjunction and conjunction of conditions are as-
sociative and commutative, such that for each causality condition Γ1, Γ2 and
Γ3:

Γ1 ∧ (Γ2 ∧ Γ3) = (Γ1 ∧ Γ2) ∧ Γ3 (1)
Γ1 ∨ (Γ2 ∨ Γ3) = (Γ1 ∨ Γ2) ∨ Γ3 (2)

Γ1 ∧ Γ2 = Γ2 ∧ Γ1 (3)
Γ1 ∨ Γ2 = Γ2 ∨ Γ1 (4)

Conjunction distributes over disjunction, such that for causality conditions
Γ1, Γ2 and Γ3:

Γ1 ∧ (Γ2 ∨ Γ3) = (Γ1 ∧ Γ2) ∨ (Γ1 ∧ Γ3) (5)

Disjunction does not distribute over conjunction.
The conjunction or disjunction of two syntactically equivalent condi-

tions is equivalent to one of these conditions:

Γ ∧ Γ = Γ (6)
Γ ∨ Γ = Γ (7)

Impossible conditions. A user may inadvertently specify a causality con-
dition that is impossible to satisfy, such that the target of the condition can
never occur. We specify some rules to detect impossible conditions, such
that we can remove them. We use the symbol † to denote the impossible
condition. The equations below are the equations for calculating with im-
possibility.

For each action or interaction contribution instantiation a:
if Γ → a and a appears in Γ then a can be replaced by † in Γ (8)
if Γ → a and ¬a appears in Γ then ¬a can be replaced by † in Γ (9)
a ∧ ¬a = † (10)
† ∧ Γ = † (11)
† ∨ Γ = Γ (12)
¬† = √ (13)
if † → a then a can be replaced by † in each condition Γ (14)

110 CHAPTER 5 PRE-DEFINED VIEWPOINT RELATIONS

Equations 8 and 9 represent that an action or interaction contribution can-
not depend on the (non-)occurrence of itself. Hence, if the enabling or
disabling of an action or interaction contribution appears in the condition
of that action or interaction contribution, it can be replaced by the impos-
sible condition. Equation 10 represents that the conjunction of the enabling
and disabling of an action or interaction contribution cannot be satisfied
and is therefore impossible. The other equations represent simplification
rules for the impossible condition. Equation 11 represents that the con-
junction of the impossible condition and another condition is equivalent to
the impossible condition. The conjunction of a condition and the impossi-
ble condition is impossible, because in the conjunction of some conditions
all conditions must be satisfied for that condition to be satisfied, while the
impossible condition can never be satisfied. Equation 12 represents that in
the disjunction of the impossible condition and another condition, the im-
possible condition can be removed. This is so, because the target of the
disjunction can never occur as a result of the impossible condition. Equa-
tion 13 represents that the disabling of the impossible condition is equiva-
lent to the start condition. This is so, because an impossible action or inter-
action contribution is always disabled. Finally, equation 14 represents that if
the causality condition of an action or interaction contribution is impossi-
ble, then a reference to that action or interaction contribution in a causality
condition can be replaced by the impossible condition. After simplifying a
behaviour according to the rules above, we can remove the actions and in-
teraction contributions from that behaviour that are impossible.

ba c = c

Figure 5-2 Example of a
Behaviour with Impossi-
ble Actions

Example 5-1 A Behav-
iour with Impossible
Actions

Figure 5-2 shows an example of a behaviour in which impossible actions exist. Action a is im-
possible, because it is enabled by itself. Action b is impossible, because it depends on the im-
possible action a. The behaviour can be simplified by replacing the condition of action c by the
start condition and removing the impossible actions a and b.

Formally, the behaviour can be simplified as follows:

{√ ∧ a → a, a ∧ (c ∨ ¬c) → b, ¬b → c} = 8

{√ ∧ † → a, a ∧ (c ∨ ¬c) → b, ¬b → c} = 11

{† → a, a ∧ (c ∨ ¬c) → b, ¬b → c} = 14

{† → a, † ∧ (c ∨ ¬c) → b, ¬b → c} = 11

{† → a, † → b, ¬b → c} = 14, 13

{† → a, † → b, √ → c}

 TEXTUAL CONCRETE SYNTAX FOR BASIC CONCEPTS 111

Disjunctive normal form. Many of the formulae in this chapter assume
that the causality conditions of a behaviour type are in the disjunctive nor-
mal form, because the disjunctive normal form is a convenient form to per-
form calculations over causality conditions.

The disjunctive normal form of a causality condition is the causality condition that is
specified as a disjunction of conjunctions.

More precisely, a causality condition Γ for a causality target a is in the dis-
junctive normal form, if it has the form: Γ1 ∨ Γ2 ∨ … ∨ Γn such that each
Γi does not contain a disjunction. We call each Γi an alternative causality con-
dition for a, because it is a sufficient condition for a to occur. We define the
function ‘alternatives’ to obtain the set of alternative conditions for a causal-
ity condition in the disjunctive normal form. Hence, for a condition Γ =
Γ1 ∨ Γ2 ∨ … ∨ Γn in the disjunctive normal form, we define the alterna-
tives of Γ as follows:

alternatives Γ = {Γ1, Γ2, …, Γm}

A behaviour is in the disjunctive normal form, if each of its causality condi-
tions is in the disjunctive normal form.

We define the function ‘dnf’ to compute the disjunctive normal form
for a causality condition as follows:

γγ =

Γ∧Γ∨=Γ∧Γ

Γ∨Γ=Γ∨Γ

Γ∈Γ
Γ∈Γ

 dnf

)(dnf

) dnf() dnf(dnf
'
2

'
1

 ves.dnf)(alternati
, ves.dnf)(alternati

21

2121

2
'
2

1
'

1

The ‘dot’ represents function composition. For example, ‘alternatives.dnf’
represents that we first apply the function ‘dnf’ and then we apply the func-
tion ‘alternatives’ to the result of ‘dnf’. The function ‘dnf’ takes a causality
condition as input. If the causality condition is a disjunction of two parts,
then the condition is already in the disjunctive normal form except (possi-
bly) for its parts. Hence, in that case the formula returns the disjunction of
the disjunctive normal forms of the two parts. If the causality condition is
the conjunction of two parts, then the condition is not yet in the disjunctive
normal form. Hence, in that case the formula first computes the disjunctive
normal form of the parts. This results in two causality conditions in dis-
junctive normal form. The conjunction of each pair of conditions, where
one condition is an alternative causality condition of one part and the other
is an alternative causality condition of the other part, is an alternative of the

Definition 5-1 Disjunc-
tive Normal Form

112 CHAPTER 5 PRE-DEFINED VIEWPOINT RELATIONS

resulting causality condition. If the causality condition is a basic condition,
then the condition is already in the disjunctive normal form and nothing
has to be done. Hence, in that case the formula returns the causality condi-
tion without changes.

As an example of calculating the disjunctive normal form, consider the behaviour:

B = { √ → a, a ∧ (c ∨ ¬c) → b, ¬b → c, (a ∨ b) ∧ (a ∨ c) → d }
The condition for b, a ∧ (c ∨ ¬c), is not in the disjunctive normal form. We can use the function
‘dnf’ to compute its disjunctive normal form as follows:

)()(

)(

)(

)(dnf

'
2

'
1

},{
}{

'
2

'
1

 ves.dnf)(alternati
 ves.dnf)(alternati

'
2

'
1

'
2

'
1

caca

cca

cc
a

cc
a

¬∧∨∧

=Γ∧Γ

=Γ∧Γ

=¬∨∧

∨

∨

¬∈Γ
∈Γ

¬∨∈Γ
∈Γ

The condition for d, (a ∨ b) ∧ (a ∨ c) also is not in the disjunctive normal form. We can
compute the disjunctive normal form for that condition as follows:

)()()()(

)(

)()(dnf
'
2

'
1

},{
},{

'
2

'
1

cbabcaaa

caba

ca
ba

∧∨∧∨∧∨∧

=Γ∧Γ

=∨∧∨

∨
∈Γ
∈Γ

Alternative behaviours and their combination. Just as the specifica-
tion of causality conditions in the disjunctive normal form makes it easier to
perform computations over causality conditions, the specification of a be-
haviour as a set of alternative behaviours makes it easy to perform calculations
over behaviours. Therefore, we introduce the notion of alternative behav-
iour.

An alternative behaviour of a behaviour is a combination of one alternative causality
condition of each of the causality relations in that behaviour.

Hence, for a behaviour B = { Γa1 → a1, Γa2 → a2, …, Γan → an } in the
disjunctive normal form the set of alternative behaviours is the set of each
possible combination of alternative causality conditions. We introduce the
function ‘Alt’ to compute the set of alternative behaviours of B:

Example 5-2 Calculat-
ing the Disjunctive
Normal Form

Definition 5-2 Alterna-
tive Behaviour

 TEXTUAL CONCRETE SYNTAX FOR BASIC CONCEPTS 113

}

,

,

, |},,,{{Alt

2

1

2

12211

nan

a

ann

esalternativ

esalternativ

esalternativaaaB

Γ∈Γ

Γ∈Γ

Γ∈Γ→Γ→Γ→Γ=

K

K

After we perform a computation over a set of alternative behaviours, these
alternative behaviours must be combined again into a regular behaviour.
Alternative behaviours can be combined, by considering each condition for
a particular action in an alternative behaviour an alternative condition for
that action. For a set of alternative behaviours

}},,,{

,

},,,,{

},,,,{{

2211

2222112

1221111

21 nnmmm

nn

nn

aaa

aaa

aaaBS

n
→Γ→Γ→Γ

→Γ→Γ→Γ
→Γ→Γ→Γ=

K

K

K

K

we introduce the function ‘°’ to compute their combination:

}

,

,

,{

21

222221

111211

2

1

nnmnn

m

m

a

a

aBS

n
→Γ∨∨Γ∨Γ

→Γ∨∨Γ∨Γ

→Γ∨∨Γ∨Γ=

K

K

K

Ko

The alternatives of a behaviour or the combination of alternative behaviours
cannot be calculated for the class of one-and-a-half sided causality relations.
This is the class of relations where, in some alternatives, an action a de-
pends on another action b and b depends on a, while, in other alternatives a
depends on b but b does not depend on a. More precisely, it is the class of
behaviours B, where for some actions a and b:

Γa1 ∨ Γa2 → a ∈ B and Γb1 ∨ Γb2 → b ∈ B
such that b or ¬b appears in Γa1 and b or ¬b appears in Γa2
 a or ¬a appears in Γb1 but not in Γb2

Even though one-and-a-half sided relations do not appear in a behaviour,
they may appear in the alternatives of that behaviour as a consequence of
some operation performed on those alternatives. A one-and-a-half sided
relation manifests itself in a set of alternative behaviours as follows. In all

114 CHAPTER 5 PRE-DEFINED VIEWPOINT RELATIONS

alternative behaviours b depends on a, but in some alternative behaviours a
depends on b, while in others a does not depend on b. More precisely, al-
ternative behaviours BS contain a one-and-a-half-sided relation between a
and b if:

In all alternative behaviours AB ∈ BS
 Γa → a ∈ AB such that b appears in Γa
and there exist alternative behaviours AB ∈ BS for which
 Γb → b ∈ AB such that a or ¬a appears in Γb
and there exist alternative behaviours AB ∈ BS for which
 Γb → b ∈ AB such that a or ¬a does not appear in Γb

Well-formedness rules demand that, if ¬b appears in Γa in some alternative
behaviour, a or ¬a appears in Γb in that same alternative behaviour (Quar-
tel, 1998). Therefore, we only need to consider one-and-a-half sided rela-
tions where b appears in Γa. Current experience shows that we can solve
the problem of not being able to combine alternative behaviours that con-
tain a one-and-a-half-sided relations in the following way (Quartel, 1998).
If some alternative behaviours BS contain a one-and-a-half-sided relation
between a and b, then:

in all alternative behaviours AB ∈ BS in which
 b ∧ Γa → a ∈ AB and Γb → b ∈ AB

such that a or ¬a does not appear in Γb
replace:
 Γb → b by ¬a ∧ Γb → b in AB

Graphically, this replacement is represented in Figure 5-3.

baΓa Γb baΓa Γb

Figure 5-4 and Figure 5-5 show an example of the decomposition of a behaviour into alternative
behaviours and the composition of alternative behaviours into a behaviour, respectively. Figure
5-4 shows the behaviour: B = {¬b → a, ¬a → b, a ∨ b → c, a ∨ b → d}. Each possible
combination of alternative conditions for c and d yields an alternative behaviour. Hence, the set
of alternative behaviour BS is:

BS = { {¬b → a, ¬a → b, a → c, b → d},
 {¬b → a, ¬a → b, a → c, a → d},
 {¬b → a, ¬a → b, b → c, b → d},
 {¬b → a, ¬a → b, b → c, a → d}}

The combination of these alternatives behaviour can be computed using the ‘°’ operator, as

Figure 5-3 Replacing
One-and-a-half-sided
Relations

Example 5-3 Decompo-
sition and Combination
of Behaviour

 TEXTUAL CONCRETE SYNTAX FOR BASIC CONCEPTS 115

follows:

° BS = { ¬b ∨ ¬b ∨ ¬b ∨ ¬b → a,
 ¬a ∨ ¬a ∨ ¬a ∨ ¬a → b,
 a ∨ a ∨ b ∨ b → c,
 b ∨ a ∨ b ∨ a → d }
 =4,7 { ¬b → a, ¬a → b, a ∨ b → c, b ∨ a → d }

Figure 5-5 shows two alternative behaviours that imply a one-and-a-half-sided relation between
a and b, because b depends on a in both alternatives, while a depends on b in one alternative but
not in the other. Hence, before we can combine these alternatives, we must add the condition
¬b to the condition of a in the alternative behaviour in which a does not depend on b. After
which we can combine the alternative behaviours. More precisely:

BS = {{√ → a, a → b }, {¬b → a, ¬a → b }}
 = {{√ ∧ ¬b → a, a → b }, {¬b → a, ¬a → b }}

After which:

° BS = { (√ ∧ ¬b) ∨ ¬b → a, a ∨ ¬a → b }

a

{

c

b d

a c

b d

a c

b d

a c

b d

a c

b d

},,,

ba ba{ , }

ba ba{ , }

a b

Figure 5-4 Example of
Decomposition of Be-
haviour into Alternative
Behaviours

Figure 5-5 Example of
Combination of Alterna-
tive Behaviours

116 CHAPTER 5 PRE-DEFINED VIEWPOINT RELATIONS

(i) ba c ba c=

(ii) ba c ba c=

(iii) ba c ba c=

Dependency closure. A relation between actions a and b and between
actions b and c may imply a relation between actions a and c. If a relation is
implied, it can be added to the behaviour, because the behaviour in which
the implied relation is represented explicitly is equivalent with the behav-
iour in which the implied relation is not added explicitly. We distinguish
three possible implied relations. Figure 5-6 illustrates these relations. (i) If
a enables b and b enables c, then a implicitly enables c. This follows from the
observation that c can only occur if a has occurred and, if c occurs it (indi-
rectly) depends on a. (ii) If b enables a and b disables c, then a implicitly
disables c. This follows from the observation that c can only occur if a has
not yet occurred, because a can only occur if b has occurred and that would
mean that c is disabled (by the occurrence of b). (iii) If a disables b and b
disables a and b enables c, then a implicitly disables c (and c implicitly dis-
ables a, but that follows from the previous rule). This follows from the ob-
servation that c can only occur as long as a has not occurred, because if a
occurs b cannot yet have occurred and after a has occurred b cannot occur
anymore. Since c can only occur after b has occurred, this means that c, like
b, depends on the non-occurrence of a. Note that, in this case, also c im-
plicitly disables a, if we apply rule (ii).

More precisely, for an alternative behaviour AB, in which Γa → a, Γb → b
and Γc → c:

if a appears in Γb and b appears in Γc, then Γc = a ∧ Γc (15)
if b appears in Γa and ¬b appears in Γc, then Γc = ¬a ∧ Γc (16)
if ¬b appears in Γa, ¬a appears in Γb and b appears in Γc,
 then Γc = ¬a ∧ Γc (17)

The explicit inclusion of an implicit relation, may give rise to the explicit
inclusion of another relation. For example consider the behaviour: B = { a
→ b, b → c, c → d }, after applying the first rule (twice) this behaviour
becomes B = { a → b, a ∧ b → c, b ∧ c → d }. Now a appears in the con-
dition of c and c appears in the condition of d. Hence, we can apply the first
rule again to yield the behaviour: B = { a → b, a ∧ b → c, a ∧ b ∧ c → d
}. We can use these equations to calculate the dependence closure of a be-
haviour. Or, in the textual notation:

Figure 5-6 Implied
Relations between
Actions

 TEXTUAL CONCRETE SYNTAX FOR BASIC CONCEPTS 117

B = { a → b, b → c, c → d } = 15
 { a → b, a ∧ b → c, b ∧ c → d } = 15
 { a → b, a ∧ b → c, a ∧ b ∧ c → d }

The dependency closure of a behaviour is the behaviour in which all causality condi-
tions have been rewritten to include all implicit causality conditions.

The dependency closure of an alternative behaviour can be calculated, using
the algorithm ‘ADep’ below. In this algorithm AB’ := AB represents the
assignment of the causality relations of AB to AB’. AB = AB’ is true if the
causality condition of each causality target in AB is equivalent to the condi-
tion of that causality target in AB’ using associative, commutative and dis-
tributive rewriting and rewriting of impossible conditions (using equations
1-14 defined above).

ADep AB:
 repeat
 AB’ := AB
 for each Γa → a, Γb → b, Γc → c ∈ AB:
 if a appears in Γb, b appears in Γc and a does not appear in Γc

then
replace Γc by a ∧ Γc in AB

 if b appears in Γa, ¬b appears in Γc
and ¬a does not appear in Γc then

replace Γc by ¬a ∧ Γc in AB
 if ¬b appears in Γa, ¬a appears in Γb, b appears in Γc

and ¬a does not appear in Γc then
replace Γc by ¬a ∧ Γc in AB

 until AB’ = AB
 return AB’

We introduce the function ‘Dep’ to compute the dependency closure of a
behaviour B, which is the dependency closure of each of the alternatives of
this behaviour:

Dep B = ° (map ADep (Alt B))

Where ‘map’ is the function that applies a function to each element of a set.

a c

b

d a c

b

d a c

b

d

Definition 5-3 Depend-
ency Closure

Figure 5-7 Example of
Calculating Dependency
Closure

118 CHAPTER 5 PRE-DEFINED VIEWPOINT RELATIONS

Figure 5-7 shows an example of calculating the dependency closure of a behaviour in two steps.
In the first step, the implied enabling condition between actions a and d according to equation
15, is added to the behaviour. Also, the implied disabling conditions that exist between actions b
and c according to equations 16 and 17, are added to the behaviour. In the resulting behaviour
two disabling conditions are implied between actions b and d according to equations 16 and 17.
These conditions are added to the behaviour in the second step. In the textual notation this can
be represented as:

B = { ¬b → a, ¬a → b, a → c, c → d } = 15, 16, 17
 { ¬b → a, ¬a ∧ ¬c → b, a ∧ ¬b → c, a ∧ c → d } = 16, 17
 { ¬b → a, ¬a ∧ ¬c ∧ ¬d → b, a ∧ ¬b → c, a ∧ ¬b ∧ c → d }

Strong behaviour equivalence. We define strong equivalence (~) be-
tween behaviours as follows.

Two behaviours are strongly equivalent if they prescribe syntactically equivalent (im-
plicit) causality conditions for their causality targets.

Hence, two behaviours are strongly equivalent if one can be derived from
the other, using the equations for commutativity, associativity, distributivity
and implicit conditions, defined above. We present the following algorithm
to compute strong equivalence. For two behaviour B1 and B2 in the disjunc-
tive normal form:

B1 ~ B2:
 BS1 := ((map ADep).Alt) B1
 BS2 := ((map ADep).Alt) B2
 if
 for each AB1 ∈ BS1 there exists an AB2 ∈ BS2 such that
 for each (Γ1 → a) ∈ AB1 there exists an (Γ2 → a) ∈ AB2,

such that equivalentalternatives Γ1 Γ2
 and
 for each (Γ2 → a) ∈ AB2 there exists an (Γ1 → a) ∈ AB1,

such that equivalentalternatives Γ1 Γ2
 and
 for each AB2 ∈ BS2 there exists an AB1 ∈ BS1 such that
 for each (Γ1 → a) ∈ AB1 there exists an (Γ2 → a) ∈ AB2,

such that equivalentalternatives Γ1 Γ2
 and
 for each (Γ2 → a) ∈ AB2 there exists an (Γ1 → a) ∈ AB1,

such that equivalentalternatives Γ1 Γ2
 then return true else return false

Example 5-4 Calculat-
ing the Dependency
Closure of a Behaviour

Definition 5-4 Strong
Behaviour Equivalence

 TEXTUAL CONCRETE SYNTAX FOR BASIC CONCEPTS 119

The algorithm first computes the dependency closure of each alternative of
the two behaviours. Subsequently, it returns true if for each alternative of
B1 there exists an equivalent alternative in B2. Equivalence between alterna-
tives is assessed, by checking if for each condition in one alternative, an
equivalent condition exists in the other alternative. For this purpose, the
algorithm uses the ‘equivalentalternatives’ function that returns true if and
only if two alternative conditions are syntactically equivalent, not regarding
the order in which their basic conditions are specified. More precisely:

equivalentalternatives Γ1 Γ2 =

((basicconditions Γ1) = (basicconditions Γ2))

basicconditions Γ1 ∨ Γ2 = (basicconditions Γ1) ∪ (basicconditions Γ2)
basicconditions Γ1 ∧ Γ2 = (basicconditions Γ1) ∪ (basicconditions Γ2)
basicconditions γ = {γ}

Concrete syntax for interactions. In the textual concrete syntax, we
represent an interaction by its name prefixed by a double arrow (⇒) and
the interaction contributions and behaviours that participate in the interac-
tion. We represent the interaction contributions and behaviours that par-
ticipate in the interaction by the logical and (∧) of the interaction contribu-
tions that must be enabled for the interaction to occur. The interaction
contributions are identified by the name of the behaviour instantiation of
which they are a part ‘dot’ their name. If alternative interaction contribu-
tions exist, the alternative interaction contributions are separated by a logi-
cal or (∨).

aacabaaabaa ⇒∧∧∨∧)...()..(21 A a

a1 a2

C c

a

B b
a

Figure 5-8 shows an example of the textual representation of an interaction
as well as the graphical representation of that interaction. It shows an inter-
action by the name a that is made up of two alternatives.

Interactions are defined in a way that is very similar to causality relations
in the textual notation. Therefore, we also speak of the condition for the
occurrence of an interaction. A difference between a causality condition
and an interaction condition is that an interaction depends on the enabling
of interaction contributions, while an action or interaction contribution
depends on the occurrence of other actions or interaction contributions. Also,

Figure 5-8 Textual
Representation of Inter-
actions

120 CHAPTER 5 PRE-DEFINED VIEWPOINT RELATIONS

there is no equivalent to the disabling condition in an interaction condition.
However, we can derive the disjunctive normal form of an interaction con-
dition. For this, we can use the same algorithm that we defined for deriving
the disjunctive normal form of a causality condition. We will also speak of
the alternatives of an interaction condition in the same way as we speak of
the alternatives of a causality condition. By convention, we will refer to in-
teraction conditions using the Greek letter theta (θ or Θ).

5.2 Pre-Defined Refinement Relations and Consistency
Rules

We distinguish three basic ways in which (the behavioural concern of) a
design can be refined into a more detailed design. Based on these cases of
refinement, we pre-define means to specify consistency rules between
views.

i. Causality refinement

ba a b a a’

a

ii. Action refinement

a
a

iii. Behavior decomposition

5.2.1 Cases of Refinement

We consider that a behaviour can be refined in the following ways (Quartel,
1998):
1. A behaviour can be refined by decomposing a relation between two of

its activities into multiple relations, optionally introducing activities to
connect these relations. We represent this case of refinement as causality
refinement, illustrated in Figure 5-9.i. In case of causality refinement a
causality constraint is split up into two or more constraints. Optionally,
actions are inserted to represent the activities that connect the refining
constraints. These actions are called inserted actions, because they do not
coincide with the completion of any of the original actions. Figure 5-
10.i shows an example of causality refinement. In the example, the ac-
tion ‘send data to subsystem’ is inserted as the result of refining the con-
straint of the ‘process data’ action.

Figure 5-9 Different
Forms of Refinement

 PRE-DEFINED REFINEMENT RELATIONS AND CONSISTENCY RULES 121

2. A behaviour can be refined by describing one of its activities as a com-
position of more fine-grained activities. We represent this case of re-
finement as action refinement, illustrated in Figure 5-9.ii. In case of action
refinement an action is refined into multiple actions with relations be-
tween them. Figure 5-10.ii shows an example of action refinement.
When an action is refined, some of the actions from the refinement co-
incide with the completion of the original action. We call these actions
final actions. In the example, ‘send welcome letter’ and ‘verify client’s status’
are final actions for ‘process new client’, because the original action com-
pletes if both these actions complete. Actions from the refinement that
do not coincide with the completion of the original action are inserted
actions. In the example, ‘enter client details’ is an inserted action.

3. The behaviour of an entity can be refined by decomposing it into multi-
ple behaviours that represent the individual contributions of parts of the
original entity. As a result of this decomposition, the assignment of re-
sponsibilities of parts for performing activities are also considered. We
represent this case of refinement as behaviour decomposition, illustrated in
Figure 5-9.iii. In case of behaviour composition a behaviour is refined
into multiple behaviours with interactions between them. Figure 5-10.iii
shows an example of behaviour decomposition. In the example, actions
‘request’ and ‘respond’ are refined into interactions.

In general a behaviour will be refined, using a combination of the basic
cases identified here.

Figure 5-10 Example of
Refinement

ii. Action refinement example

iii. Behavior decomposition example

i. Causality refinement example

enter data

process data

enter data

process data

send data to
subsystem

process new client
enter client’s

details send welcome
letter

verify client’s
credit status

request

process

respond request respond

process

122 CHAPTER 5 PRE-DEFINED VIEWPOINT RELATIONS

abstract view equivalence

refinement
(insert design information)

abstraction
(remove design information)

abstract view’

concrete view

5.2.2 Consistency Verification and Specifying Relations between
Views

Having identified the ways in which an abstract design may be refined into a
concrete design, we distinguish two approaches to check that a concrete
design correctly refines (and hence is consistent with) an abstract design:
1. by ensuring that designers only use the aforementioned refinement op-

erations, in which case the refinement may be considered consistent by
construction, and;

2. by checking afterwards whether the concrete design can be reached by
applying the refinement operations.

Since a designer may experience the refinement rules as overly restrictive,
in particular because refinement is a creative activity, we opt for the latter
approach. However, it is not feasible to verify consistency between a con-
crete design and an abstract design by trying to get from the abstract design
to the concrete design by applying the refinement operators. The reason for
this is that the refinement operators may be applied on any part of a design
and in any combination.

Therefore, we use an approach in which we apply inverted refinement
operators to abstract from the design details that were inserted during the
refinement. After the application of the inverted refinement operations, we
have to check if the resulting design is equivalent to the original design.
Figure 5-11 illustrates this approach.

Inverted refinement operators. We introduce the following inverted
refinement operators, which are explained in more detail in the following
sections.

We introduce the action abstraction rule as the inverse of the causality re-
finement rule. The action abstraction rule removes the specified inserted
actions (a1, a2, …) from a design. For example, in Figure 5-10.i we can
abstract from the inserted action ‘send data to subsystem’. The actions that we

Figure 5-11 Refinement
and Consistency Verifi-
cation

 PRE-DEFINED REFINEMENT RELATIONS AND CONSISTENCY RULES 123

must abstract from can be derived from the ‘final action of’ relation, since
each action that is not a final action of another must be an inserted action.

We introduce two rules as the inverse of action refinement: the action
abstraction and action integration rule. Action abstraction abstracts from the
specified inserted actions in an action refinement. Action integration inte-
grates the specified final actions from the action refinement into a single
action. Figure 5-10.ii shows an example in which action abstraction must
be applied to action ‘enter client details’ and action integration must be ap-
plied to the actions ‘send welcome letter’ and ‘verify client’s credit status’. The
actions that we must integrate can be derived from the ‘final action of’ rela-
tion, the actions that are final actions of the same action must be integrated.

We introduce the behaviour composition rule as the inverse of the behav-
iour decomposition rule. The composition rule composes the specified be-
haviours into a single behaviour and composes the interactions between
these behaviours into internal actions. Figure 5-10.iii shows an example of
behaviour composition. The behaviours that must be composed can be de-
rived from a ‘part of’ relation, because behaviours that are a part of the
same abstract behaviour must be composed.

refinement

equivalence

i. Abstraction of interactions undefined ii. Checking consistency through a common
abstraction

composition

abstraction

abstraction
(undefined) refinement

equivalence

composition

Checking consistency of interaction refinement. The action abstrac-
tion and action integration rules are only defined for actions and interaction
contributions that are not part of an interaction. The latter are contribu-
tions to interactions for which other behaviours impose no conditions for
their occurrence. Checking consistency between designs in which interac-
tions are refined is not possible, because abstraction and integration rules

Figure 5-12 Checking
Consistency of Interac-
tion Refinement

124 CHAPTER 5 PRE-DEFINED VIEWPOINT RELATIONS

are not defined for interactions. Figure 5-12.i illustrates this. The definition
of abstraction and integration rules for interactions is left for future work.

We can partly check the consistency of an interaction refinement, by us-
ing a common abstraction in which the behaviours that participate in the
refined interaction are composed. Using this approach, the interactions
appear as actions in the composed behaviour and we can integrate and ab-
stract these actions, as illustrated in Figure 5-12.i. We can use this ap-
proach, because a composed behaviour is equivalent to its decomposition,
except that the distribution of causality conditions among interacting par-
ties is not considered. Hence, the limitation of this approach is that we can-
not verify the correctness of the re-distribution of causality conditions
among interacting parties in a refinement.

Concrete syntax for specifying consistency rules. To specify consis-
tency rules between views, we introduce the following OCL operations.
These operations correspond to the inverted refinement operators above.

The ‘abstract’ operator takes an object of the behaviour instantiation
meta-class (defined in chapter 4) and an object as of the OCL Set meta-
class that contains objects of the causality target instantiation meta-class
(defined in chapter 4). It returns an object of the behaviour instantiation
meta-class, in which the causality target instantiations which are members
of as are abstracted from. Hence, defined in OCL, its signature is as fol-
lows:

context BehaviourInstantiation def:

abstract(as: Set): BehaviourInstantiation

Since the ‘abstract’ operator creates a new object of the behaviour instantia-
tion meta-class, we must maintain the relation between causality target in-
stantiations from the behaviour instantiation before abstraction and causal-
ity target instantiations from the behaviour instantiation after abstraction.
The tracking relation named ‘basicrules_abstract_target2target’ maintains
this relation.

The ‘integrate’ operator takes an object of the behaviour instantiation
meta-class and an object ccs of the OCL Set meta-class that contains objects
of the OCL String meta-class. It returns an object of the behaviour instan-
tiation meta-class, in which causality target instantiations referenced in ccs
are integrated according to completion conditions (that we explain in sec-
tion 5.2.4) that are also specified in ccs. Hence, its signature is as follows:

context BehaviourInstantiation def:

integrate(ccs: Set): BehaviourInstantiation

 PRE-DEFINED REFINEMENT RELATIONS AND CONSISTENCY RULES 125

Each completion condition cc in ccs must conform to the following syntax:

<cc> → <condition> TO <cti name>
<condition> → <alternative> OR <alternative> | <alternative>
<alternative> → <cti name> AND <cti name> | <cti name>

Where <cti name> refers to the name of a causality target instantiation.
The tracking relation named ‘basicrules_integrate_target2target’ main-

tains the relation between the causality target instantiations from the behav-
iour instantiation before integration and the causality target instantiations
into which they are integrated in the result.

The ‘compose’ operator takes two objects of the behaviour instantiation
meta-class. It returns an object of the behaviour instantiation meta-class
that is the result of the composition of those two objects. Hence, its signa-
ture is as follows:

context BehaviourInstantiation def:

compose(bi: BehaviourInstantiation): BehaviourInstantiation

The tracking relation named ‘basicrules_compose_action2interaction’

maintains the relation between causality target instantiations in the newly
created behaviour instantiation that are the result of composing interactions
and the interactions of which they are a composition. The tracking relation
‘basicrules_compose_target2target’ maintains the relation between other
causality target instantiations in the newly created behaviour instantiation
and their counterparts.

5.2.3 Action Abstraction

The action abstraction operator can be used to remove inserted actions
from a design. However, implicit causality relations in which an inserted
action is involved must be preserved if that action is removed. Therefore,
before removing an inserted action, we explicitly add the implicit causality
conditions in which this action is involved. For example, Figure 5-13 shows
that action a implicitly enables b through inserted action bi. Before remov-
ing bi, we must add that enabling condition.

We remove an inserted action a by removing its causality relation and all
the basic conditions in which it appears. If this results in an empty causality
condition, because an action b only depended on the inserted action a, then
that causality condition is replaced by the start condition (√). We define the
function ‘remove’ to remove an inserted action a from an alternative behav-
iour AB:

bi ba

Figure 5-13 Example of
an Implicit Causality
Condition

126 CHAPTER 5 PRE-DEFINED VIEWPOINT RELATIONS

remove a AB
= { (removeconditions {a, ¬a} Γb) → b | (Γb → b) ∈ AB, b ≠ a }

removeconditions as γ1 ∧ γ2 ∧ … ∧ γn

= ∧ {γ | γ ∈ {γ1, γ2, …, γn}, γ ∉ as }
, if ∃γ∈{γ1, γ2, …, γn} γ ∉ as

= √, otherwise

To optimize action abstraction, we do not calculate all implicit causality
relations, but only the implicit causality relations that the inserted actions
participate in. For an inserted action a, we can derive these implicit causal-
ity relations from:
1. the causality relation of a;
2. alternative causality relations in which the enabling or disabling of a ap-

pears; and
3. causality relations of actions that appear in the condition of a, but only

the alternatives of those causality relations in which the enabling or dis-
abling of a appears.

We call these causality relations the causality context of a in behaviour B. We
define the function ‘Con’ to compute the causality context of an action a in
a behaviour B in the disjunctive normal form.

Con a B =

{ Γa → a }
 ∪

{(alternativeswith a Γb)→b | (Γb → b) ∈ B, a ≠ b, (appearsin a Γb)}
∪
{(alternativeswith a Γb)→b | (Γb → b) ∈ B, a ≠ b, (appearsin b Γa)}

where (Γa → a) ∈ B

appearsin a Γ

= (a ∈ (basicconditions Γ)) ∨ (¬a ∈ (basicconditions Γ))

alternativeswith a Γ1 ∨ Γ2 ∨ … ∨ Γn

=∨{Γ|Γ∈{Γ1, Γ1, …, Γn}, appearsin a Γ },
if ∃Γ∈{Γ1, Γ1, …, Γn} appearsin a Γ

= √, otherwise

After we abstracted from inserted action a in its causality context, we have
to integrate the result with B again. We do that by computing the causality
relations that are not in the causality context of a in behaviour B and calcu-
lating their disjunction with the causality context after abstraction. If an
action only appears as a causality target in the causality context or only in

 PRE-DEFINED REFINEMENT RELATIONS AND CONSISTENCY RULES 127

the rest of the behaviour, its causality relation appears in the result un-
changed. If an action appears both in the causality context and in the rest
and its condition in the causality context is not equal to the start condition,
the result contains the disjunction of both conditions. If an action appears
both in the causality context and in the rest and its condition in the causal-
ity context is equal to the start condition, the result contains the causality
relation of that action from the rest of the behaviour. The removal of start
conditions in this way is necessary, because start conditions were added
when computing the causality context, to yield a well-formed behaviour.
We define the function ‘NCon’ to compute the causality relations that are
not in the context of action a in behaviour B:

NCon a B =

{Γb → b|(Γb → b)∈B, a≠b, ¬(appearsin a Γb), ¬(appearsin b Γa)}
∪
{(alternativeswithout a Γb)→b|(Γb → b)∈B, a≠b, (appearsin a Γb)}
∪
{(alternativeswithout a Γb)→b|(Γb → b)∈B, a≠b, (appearsin b Γa) }

where (Γa → a) ∈ B

alternativeswithout a Γ1 ∨ Γ2 ∨ … ∨ Γn

=∨{Γ|Γ∈{Γ1, Γ1, …, Γn}, ¬(appearsin a Γ) },
if ∃Γ∈{Γ1, Γ1, …, Γn} ¬(appearsin a Γ)

= √, otherwise

We define the function ‘ICon’ to integrate the (changed) causality context
BCon of action a in behaviour B with the causality relations BNCon that are
not in the causality context.

ICon BCon BNCon a B =
 { Γa → a | (Γa → a) ∈ BCon, ¬∃(Γb → b) ∈ (BNCon) a = b}
 ∪
 { Γb → b | (Γb → b) ∈ (BNCon), ¬∃(Γa → a) ∈ BCon a=b}
 ∪
 { Γb → b | (Γb → b) ∈ (BNCon), (Γa → a) ∈ BCon, a=b, Γa=√}
 ∪
 { Γa∨Γb→ b | (Γb→b) ∈ (BNCon), (Γa→a) ∈ BCon, a=b, Γa≠√}

Hence, the following algorithm can be used for the abstraction of a single
inserted action a in a behaviour B (the abstraction of multiple inserted ac-
tions can be obtained by successive applications of the algorithm).

128 CHAPTER 5 PRE-DEFINED VIEWPOINT RELATIONS

abstract a B:
 BCon := Con a B
 BNCon := NCon a B
 AltsInBCon := (Alt.dnf) BCon
 DepClosOfAltsInBCon := map ADep AltsInBCon
 AbstractedDepClosOfAltsInBCon := map (remove a) DepClosOfAltsInBCon
 AbstractedDepClosOfBCon := ° AbstractedDepClosOfAltsInBCon
 AbstractedDepClosOfB := ICon AbstractedDepClosOfBCon BNCon a B
 return AbstractedDepClosOfB

aB =

{Bcon} =
AltsInBCon =

DepClosOfAltsInBCon =

= BNCon

AbstractedDepClosOfAltsInBCon=
{AbstractedDepClosOfBCon}=

AbstractedDepClosOfB =

b

c

d e

a

b

c

d

d e

c{ }

a

b

c

d{ }

a

c

d{ }

d ea

c

Figure 5-14 illustrates the abstraction from action b in behaviour B, where B is defined as
follows:

B = { √ → a, a ∧ ¬c → b, a ∧ ¬b → c, b ∨ c → d, d → e }

We split up this behaviour into the causality context of b and the rest of the behaviour that is not
the causality context of b:

BCon = Con b B = { √ → a, a ∧ ¬c → b, a ∧ ¬b → c, b → d }

Figure 5-14 Example of
Abstraction from an
Action

Example 5-5 Abstrac-
tion from an Action

 PRE-DEFINED REFINEMENT RELATIONS AND CONSISTENCY RULES 129

BNCon = NCon b B = { c → d, d → e }
Since there are no disjunctions in the causality context of b in B, there is only one behaviour in
the set of alternative behaviours of BCon. This behaviour is equal to BCon. We can compute the
implicit relations in the causality context of b in B, resulting in the behaviour
DepClosOfAltsInBCon. Then we can abstract from b in that behaviour, resulting in:

AbstractedDepClosOfAltsInBCon =
map (remove a) DepClosOfAltsInBCon =
{ √ → a, a ∧ ¬d → c, a ∧ ¬c → d }

Since there is only one alternative behaviour, the integration of alternative behaviours
(AbstractedDepClosOfBCon) is equal to that alternative. Next, we can combine the causality
context in which we abstracted from b, with the rest of the behaviour (BNCon). This results in:

AbstractedDepClosOfB =
ICon AbstractedDepClosOfBCon BNCon b B =
{ √ → a, a ∧ ¬d → c, (a ∧ ¬c) ∨ c → d, d → e }

5.2.4 Action Integration

The action integration operator can be used to integrate final actions in a
design.

There are different ways in which the completion of final actions corre-
sponds to the completion of an abstract action. For example, the comple-
tion of all final actions corresponds to the completion of the abstract action,
or the completion of any of the final actions corresponds to the completion
of the abstract action. Therefore, we require the specification of a completion
condition that represents which of the final actions must have completed, for
the integrated action to complete. A completion condition can use conjunc-
tions, represented by ∧, to represent that all actions in the conjunction
must have completed for the abstract action to complete. It can use dis-
junctions, represented by ∨, to represent that any of the actions in the dis-
junction must have completed for the abstract action to complete. And, it
can use combinations of conjunctions and disjunctions. We assume that a
completion condition is specified in the disjunctive normal form. An exam-
ple of a completion condition is: a1 ∨ (a2 ∧ a3). This condition represents
that the completion of some abstract action corresponds to the completion
of final action a1 or the completion of final actions a2 and a3.

To integrate final actions, we must derive the causality condition of the
integrated action. Also, we must change the causality conditions that other
actions have on the final actions into conditions on the integrated action.
These causality conditions depend on the completion condition of the inte-
grated action.

130 CHAPTER 5 PRE-DEFINED VIEWPOINT RELATIONS

Causality condition of an integrated action. To determine the causal-
ity condition of an integrated action, we distinguish three basic cases of the
completion condition:
1. The completion of the integrated action corresponds to the completion

of a single final action (the completion condition looks like: a). In that
case the condition of the integrated action is the condition of that single
final action.

2. The completion of the integrated action corresponds to the completion
of a conjunction of final actions (the completion condition looks like: a1
∧ a2 ∧ … ∧ an). In that case the integrated action occurs when all final
actions occur. Hence, the causality condition of the integrated action is
the conjunction of the conditions of the final actions. To keep the condi-
tion of the integrated action in the disjunctive normal form, the condi-
tion is the disjunction of all possible conjunctions of alternative condi-
tions of the final actions. More precisely, if Γ1 → a1, Γ2 → a2, …, Γn
→ an and the completion condition is a1 ∧ a2 ∧ … ∧ an, then the cau-
sality condition of the integrated action is:

∨{Γi1∧Γi2∧…∧Γin|Γi1∈(alternatives Γ1),

Γi2∈(alternatives Γ2),…,Γin∈(alternatives Γn)}

3. The completion of the integrated action corresponds to the completion

of a disjunction of final actions (the completion condition looks like: a1
∨ a2 ∨ … ∨ an). In that case the integrated action occurs when any of
the final actions occurs. Hence, the causality condition of the integrated
action is the disjunction of the conditions of the final actions. From these
conditions, we must remove conditions on other final actions (like final
action b1 has a condition on the non-occurrence of final action b2 in
Figure 5-15), because conditions on the occurrence of other final ac-
tions are irrelevant in the condition of the integrated action. At the level
of abstraction of the integrated action, these conditions are internal to
the integrated action and therefore abstracted from. More precisely, if
Γ1 → a1, Γ2 → a2, …, Γn → an and the completion condition cc = a1
∨ a2 ∨ … ∨ an, then the causality condition of the integrated action is:

∨{ removeconditions (conactionsin cc) Γi |Γi ∈ (alternatives Γ),
Γ ∈ {Γ1, Γ2, …, Γn} }

Where we define ‘conactionsin’ (which stands for: conditions on actions
in) function as follows:

conactionsin cc = { a, ¬a | a ∈ (actionsin cc) }

a

b1

b2

Figure 5-15 Example of
an Implicit Causality
Condition

 PRE-DEFINED REFINEMENT RELATIONS AND CONSISTENCY RULES 131

actionsin A1 ∨ A2 = (actionsin A1) ∪ (actionsin A2)
actionsin A1 ∧ A2 = (actionsin A1) ∪ (actionsin A2)
actionsin a = {a}

In general the completion condition is a disjunction of conjunctions of final
actions. We define the function ‘conditionfor’ that determines the condi-
tion for an integrated action, based on a completion condition, as follows.
For a completion condition cc and a behaviour B:

conditionfor (A1 ∨ A2) B = (conditionfor A1 B) ∨ (conditionfor A2 B)
conditionfor (A1 ∧ A2) B =
 ∨{Γi ∧Γj | Γi ∈(alternatives (conditionfor A1 B)),
 Γj∈(alternatives (conditionfor A2 B))}
conditionfor a B =
 ∨{ removeconditions (conactionsin cc) Γi | Γi ∈ (alternatives Γ)}
 where Γ → a ∈ B

The definition of this function follows logically from the basic cases of the
completion condition above.

Replacing conditions on final actions. To replace the conditions on
final actions, we distinguish the same three basic cases of the completion
condition as above:
1. The completion of the integrated action corresponds to the completion

of a single final action (the completion condition looks like: a). In that
case the enabling condition on the single final action must be replaced
by the enabling condition on the integrated action. Similarly, the dis-
abling condition on the single final action must be replaced by the dis-
abling condition on the integrated action.

2. The completion of the integrated action corresponds to the completion
of a conjunction of final actions (the completion condition looks like: a1
∧ a2 ∧ … ∧ an).

In that case, we can replace the enabling of all final actions that ap-
pear in a condition Γ by the enabling of the integrated action, because
the completion of the integrated action implies the completion of each
of the final actions. We define the ‘replace2a’ function to perform that
replacement for a completion condition cc = a1 ∧ a2 ∧ … ∧ an and an
integrated action a’ in a condition Γ:

replace2a cc a’ Γ =
∨{ a’ ∧ (removeconditions (actionsin cc) Γi) |

Γi ∈ (alternatives Γ), partof cc Γi }
∨
∨{ Γi | Γi ∈ (alternatives Γ), ¬partof cc Γi }

132 CHAPTER 5 PRE-DEFINED VIEWPOINT RELATIONS

partof γ1 ∧ γ2 ∧ … ∧ γn Γ = ∀γ’∈{γ1, γ2, …, γn} γ’∈ (targets Γ)

Informally, if the completion condition is a part of an alternative

condition of Γ, then we remove the completion condition from the al-
ternative and include the integrated action. If the completion condition
is not a part of an alternative condition, then that alternative remains
unchanged. If some final actions are part of an alternative condition,
those final actions will not be removed. This leads to failure of the con-
sistency check, when checking the equivalence of the behaviour to the
abstract behaviour (that does not contain final actions). This failure is
caused by an incorrect refinement, because an action must be refined by
all of the final actions.

Also, we can replace the disjunction of disablings on the final actions
(¬a1 ∨ ¬a2 ∨ … ∨ ¬an) by the disabling of the integrated action. We
can do that, because the non-occurrence of the integrated action implies
the non-occurrence of (at least) one of the final actions. Algorithmically,
we perform the replacement, by trying to rewrite a condition Γ into:

(x1 ∧ (¬a1∨¬a2∨…∨¬an))∨(x2 ∧ (¬a1∨¬a2∨…∨¬an))∨…∨y

Then we can rewrite each occurrence of (¬a1 ∨ ¬a2 ∨ … ∨ ¬an) by
the integrated action. The function below does this by looking for an x
and, if such an x can be found, rewriting the condition and looking for
the next x. If such an x cannot be found, either there is no final action in
the condition and therefore no replacements are necessary, or not all fi-
nal actions appear in the condition. In the latter case, no replacements
can be made. Hence, some final actions will remain in the condition.
This leads to failure of the consistency check, when checking the equiva-
lence of the behaviour to the abstract behaviour (that does not contain
final actions). This failure is caused by an incorrect refinement, because
a condition on the non-occurrence of an action must be refined by a
condition on the non-occurrence of any of the final actions.

We define the function ‘replace2b’ to perform that replacement for
a completion condition cc = a1 ∧ a2 ∧ … ∧ an and an integrated action
a’ in a condition Γ (that is not the condition of the integrated action).
The function is defined in such a way that it is performed for one x that
satisfies the conditions above. If such an x can be found, the replace-
ment is performed for that x. Then the function recursively instantiates
itself to search for another x that meets the conditions.

 PRE-DEFINED REFINEMENT RELATIONS AND CONSISTENCY RULES 133

replace2b cc a’ Γ =
 if we can construct a condition x for which
 ∀a∈(actionsin cc)(∃Γ’∈(alternatives Γ)equivalentalternatives Γ’ (¬a ∧ x))
 then, for that x
 Γ’ := ∨{¬a’∧(removeconditions ¬a Γ”)|Γ”∈(alternatives Γ),
 a∈(actionsin cc), equivalentalternatives Γ” (¬a∧x)}

 ∨
 ∨{ Γ” | Γ” ∈(alternatives Γ),

 ¬∃a∈(actionsin cc) equivalentalternatives Γ” (¬a∧x)}
 return replace2b cc a’ Γ’ =
 otherwise return Γ

3. The completion of the integrated action corresponds to the completion
of a disjunction of final actions (the completion condition looks like: a1
∨ a2 ∨ … ∨ an). The approach to replace final actions in this case is
similar to the approach to replace final actions in case the completion
condition is a conjunction of final actions. We can replace the disabling
of all of the final actions by the disabling of the integrated action, be-
cause the non-occurrence of the integrated action implies the non-
occurrence of all of the final actions. Also, we can replace the disjunc-
tion of enablings of the final actions by the enabling of the integrated ac-
tion, because the occurrence of the integrated action implies the occur-
rence of one (or more) of the final actions. These replacements are cov-
ered by the functions ‘replace3a’ and ‘replace3b’, respectively. Hence,
for a completion condition cc = a1 ∨ a2 ∨ … ∨ an, an integrated action
a’ and a condition Γ (that is not the condition of the integrated action):

replace3a cc a’ Γ =
∨{¬a’∧(removeconditions ¬(actionsin cc) Γi)|

Γi∈(alternatives Γ), ∀a∈ (actionsin cc) partof ¬a Γi }
∨
∨{ Γi | Γi ∈ (alternatives Γ), ¬∀a∈(actionsin cc) partof ¬a Γi }

replace3b cc a’ Γ =
if we can construct a condition x for which
∀a∈(actionsin cc) (∃Γ’ ∈(alternatives Γ) equivalentalternatives Γ’ (a ∧ x))

then, for that x
Γ’ := ∨{a’∧(removeconditions a Γ”)|Γ”∈(alternatives Γ),

 a∈(actionsin cc), equivalentalternatives Γ” (a∧x)}
∨
∨{ Γ” | Γ” ∈(alternatives Γ),
 ¬∃a∈(actionsin cc) equivalentalternatives Γ” (a∧x)}

return replace3b cc a’ Γ’
 otherwise return Γ

134 CHAPTER 5 PRE-DEFINED VIEWPOINT RELATIONS

In general the completion condition (in the disjunctive normal form) is a
disjunction of conjunctions of final actions. Therefore, we must combine
the functions above, which either cover the disjunction or the conjunction
of final actions, but not the general case. We define the functions ‘re-
placeen’ and ‘replacedis’. ‘replaceen’ replaces a conjunction of enabling
conditions on final actions or disabling conditions on final actions by an
integrated action. ‘replacedis’ replaces a disjunction of enabling conditions
on final actions or disabling conditions on final actions by an integrated
action. For a completion condition cc and an integrated action a’ in a condi-
tion Γ (that is not the condition of the integrated action):

replaceen cc a’ Γ =
 if we can construct a condition x for which

∀acc∈(altccs cc) (∃Γ’ ∈(alternatives Γ) eqtoaltcc Γ’ x acc)
 then, for that x
 Γ’ := ∨{ a’ ∧ (removeconditions acc Γ” |
 Γ” ∈(alternatives Γ),

acc∈(altccs cc), eqtoaltcc Γ” x acc}
 ∨
 ∨{ Γ” | Γ” ∈(alternatives Γ),

¬∃acc∈(altccs cc) eqtoaltcc Γ” x acc}
 return replace cc a’ Γ’ =
 otherwise return Γ

replacedis cc a’ Γ =
 if we can construct a condition x for which

∀adcc∈(altdccs cc) (∃Γ’ ∈(alternatives Γ) eqtoaltcc Γ’ x adcc)
then, for that x

 Γ’ := ∨{ ¬a’ ∧ (removeconditions ¬adcc Γ”) |
 Γ” ∈(alternatives Γ),

adcc∈(altdccs cc), eqtoaltcc Γ” x adcc}
 ∨

∨{ Γ” | Γ” ∈(alternatives Γ),
¬∃adcc∈(altdccs cc) eqtoaltcc Γ” x adcc}

 return replace cc a’ Γ’ =
 otherwise return Γ

Where we define the function ‘altccs’ (which stands for: alternative comple-
tion conditions) that returns, for a completion condition, the set of con-
junctions of enabling conditions that can be replaced by an integrated ac-
tion:

altccs A1 ∨ A2 = (altccs A1) ∪ (altccs A2)
altccs A = {A}

 PRE-DEFINED REFINEMENT RELATIONS AND CONSISTENCY RULES 135

We define the function ‘altdccs’ to do the same for the conjunctions of dis-
abling conditions:

altdccs A = (altccs (dnf (helper A)))

helper A1 ∨ A2 = (helper A1) ∧ (helper A2)
helper A1 ∧ A2 = (helper A1) ∨ (helper A2)
helper a = ¬a

We define the function ‘eqtoaltcc’ (which stands for: equivalent to alterna-
tive completion condition). This function returns true if and only if an al-
ternative condition Γ is equivalent to x or the conjunction of x with a or ¬a:

eqtoaltcc Γ x a =

equivalentalternatives (removeconditions (basicconditions a) Γ) x
∧
partof (removeconditions (basicconditions x) Γ) a

B =

rsp1

req rsp2

rsp3

proc

B’ = req’ rsp’ proc’

As an example of integrating final actions, consider Figure 5-16. This figure shows two
behaviours B and B’. In B a request (req) is sent, after which a response rsp1 and a choice
between response rsp2 and rsp3 is returned. Finally, the response is processed (proc). We
integrate the different responses (rsp1, rsp2 and rsp3) into a single response (rsp’), using the
completion condition (rsp1 ∧ rsp2) ∨ (rsp1 ∧ rsp3). This yields B’.
The causality condition Γ for rsp’ can be determined as follows, using the formula ‘conditionfor’
that is defined for that purpose.

Γ = conditionfor ((rsp1 ∧ rsp2) ∨ (rsp1 ∧ rsp3)) B
 = (conditionfor (rsp1 ∧ rsp2) B) ∨ (conditionfor (rsp1 ∧ rsp3) B) B
 = ∨{Γ1∧Γ2|Γ1∈(alternatives.conditionfor rsp1 B),Γ2∈(alternatives.conditionfor rsp2 B)}
 ∨
 ∨{Γ1∧Γ2|Γ1∈(alternatives.conditionfor rsp1 B),Γ2∈(alternatives.conditionfor rsp3 B)}
 = ∨{Γ1 ∧ Γ2 | Γ1 ∈ {req}, Γ2 ∈ {req}} ∨ ∨{Γ1 ∧ Γ2 | Γ1 ∈ {req}, Γ2 ∈ {req}}

Figure 5-16 Example of
Integration of Final
Actions

Example 5-6 Integration
of Final Actions

136 CHAPTER 5 PRE-DEFINED VIEWPOINT RELATIONS

 = (req ∧ req) ∨ (req ∧ req)
 = req

Only the causality condition of proc depends on final actions. We replace the final actions in the
causality condition of proc’, which is the single final action for proc in B’, using the formula
‘replaceen’ that is defined for that purpose.
replaceen ((rsp1 ∧ rsp2) ∨ (rsp1 ∧ rsp3)) rsp’ ((rsp1 ∧ rsp2) ∨ (rsp1 ∧ rsp3)):
If we choose x = √, then:
 ∀acc∈{rsp1 ∧ rsp2, rsp1 ∧ rsp3} (∃Γ∈{rsp1 ∧ rsp2, rsp1 ∧ rsp3} eqtoaltcc Γ x acc)
 For example:
 eqtoaltcc rsp1 ∧ rsp2 √ rsp1 ∧ rsp2
 = equivalentalternatives(removeconditions (basicconditions rsp1∧rsp2) rsp1∧rsp2) √
 ∧
 partof (removeconditions (basicconditions √) rsp1∧rsp2) rsp1∧rsp2
 = equivalentalternatives(removeconditions {rsp1, rsp2} rsp1∧rsp2) √
 ∧
 partof (removeconditions {√} rsp1∧rsp2) rsp1∧rsp2
 = equivalentalternatives √ √ ∧ partof rsp1∧rsp2 rsp1∧rsp2
 = True
 Therefore perform:
 Γ’ := ∨{ rsp’ ∧ (removeconditions {rsp1, rsp2, rsp3} Γ|
 Γ∈{rsp1 ∧ rsp2, rsp1 ∧ rsp3},
 ∃acc∈{rsp1 ∧ rsp2, rsp1 ∧ rsp3} eqtoaltcc Γ x acc}
 ∨
 ∨{Γ|Γ∈{rsp1∧rsp2, rsp1∧rsp3},¬∃acc∈{rsp1∧rsp2,rsp1∧rsp3} eqtoaltcc Γ x acc}
 = ∨{ rsp’ ∧ (removeconditions {rsp1, rsp2, rsp3} {rsp1 ∧ rsp2},
 rsp’ ∧ (removeconditions {rsp1, rsp2, rsp3} {rsp1 ∧ rsp3}}
 ∨
 ∨ ∅
 = ∨{rsp’ ∧ √, rsp’ ∧ √ } ∨ ∨ ∅
 = rsp’ ∧ √
 return replaceen ((rsp1 ∧ rsp2) ∨ (rsp1 ∧ rsp3)) rsp’ (rsp’ ∧ √)

Hence, we have to perform another iteration of ‘replaceen’ over the newly defined causality (rsp’
∧ √) of proc’.

 replaceen ((rsp1 ∧ rsp2) ∨ (rsp1 ∧ rsp3)) rsp’ (rsp’ ∧ √):
 There is no x for which:
 ∀acc∈{rsp1∧rsp2, rsp1∧rsp3} • ∃Γ∈{rsp’ ∧ √} • eqtoaltcc Γ x acc
 Therefore perform:
 return rsp’ ∧ √

5.2.5 Behaviour Composition

Constituents of a structured behaviour can be composed into a single be-
haviour, using the composition operator. We developed a composition op-

 PRE-DEFINED REFINEMENT RELATIONS AND CONSISTENCY RULES 137

erator for certain classes of structured behaviours. This section describes
the composition operator for those classes.

The class that contains non-structured, non-recursive sub-
behaviours. If the behaviour instantiations that we compose are neither
structured nor recursive, they do not contain declarations of other behav-
iour instantiations, nor recursive instantiations of themselves. This class of
behaviour instantiations represents finite behaviours.

In this class of structured behaviours an interaction is instantiated and
enabled if all interaction contribution instantiations that it consists of are
enabled. Each interaction contribution instantiation is enabled exactly once.
Hence, the condition for the occurrence of the interaction is the conjunc-
tion of the conditions of its interaction contribution instantiations. There-
fore, if we compose the structured behaviour, its interactions can be re-
placed by action instantiations. The condition for the occurrence of such an
action instantiation is the conjunction of the conditions of the interaction
contribution instantiations that constituted the original interaction.

An interaction can consist of alternatives. Each alternative denotes a
group of interaction contribution instantiations that, when enabled, instan-
tiate and enable the interaction. However, each interaction contribution
instantiation can occur only once. Therefore, if an interaction occurs as a
consequence of an interaction contribution, other alternatives that contain
that interaction contribution cannot occur anymore. Hence, action instan-
tiations in a composition, that are derived from interaction alternatives that
share interaction contribution instantiations, disable each other. Another
property of alternative interactions is the following. If an action or interac-
tion contribution instantiation is enabled or disabled by an interaction con-
tribution instantiation that appears in multiple alternative interactions, it is
enabled or disabled by each of these alternative interactions.

Therefore, we can define the composition of an interaction with alterna-
tives as follows. For each alternative, create an action instantiation. Such an
action instantiation is enabled by the conjunction of the causality conditions
of the interaction contribution instantiations from which it was derived.
Also, it is disabled by action instantiations created from other alternatives
with which it shares one or more interaction contribution instantiations.
Another causality condition can contain an enabling condition on an inter-
action contribution instantiation that appears in multiple alternatives. In the
composite behaviour such an enabling condition must be replaced by the
disjunction of enabling conditions on composite actions in which the inter-
action contribution appears. Similarly, if another causality condition con-
tains a disabling condition on an interaction contribution that appears in
multiple alternatives. In the composite behaviour this disabling condition

138 CHAPTER 5 PRE-DEFINED VIEWPOINT RELATIONS

must be replaced by the conjunction of disabling conditions on composite
actions in which the interaction contribution appears.

B b

B2 b2

B1 b1a

c
c
c

b

a

b

Example 5-7 Composi-
tion of Non-Structured,
Non-Recursive Behav-
iours

Figure 5-17 and Figure 5-18 show two examples of the composition of behaviours that are not
structured nor recursive. Interaction c in the first example consists of interaction contribution
instantiations b1.c and b2.c. Hence, the causality condition for the action that is the composition
of the interaction is the conjunction of the causality condition of b1.c and the causality condition
of b2.c. We name the resulting action instantiation c after the interaction from which it was de-
rived. In the textual notation, the example from Figure 5-17 looks as follows:

B1 = {√ → a, a → c}
B2 = {√ → b, b → c}
b1.c ∧ b2.c ⇒ c
B = {√ → a, √ → b, a ∧ b → c}

Figure 5-18 shows an interaction c that is instantiated and enabled, if b1.c and b2.c1 are enabled,
or b1.c and b2.c2 are enabled. Hence, in the example, interaction c can occur as a consequence
of b1.c and b2.c1, or as a consequence of b1.c and b2.c2. We compose this interaction into two
actions c1 and c2 that represent the alternative interactions ‘b1.c and b2.c1’ and ‘b1.c and b2.c2’,
respectively. Since the alternative interactions share the interaction contribution ‘b1.c’, one dis-
ables the other. Therefore, the actions that correspond to the alternative interactions also disable
each other.

In Figure 5-18 b1.b is enabled by b1.c. b1.c appears in the alternative interaction formed by b1.c
and b2.c1 and the alternative interaction formed by b1.c and b2.c2. Therefore, in the composite
behaviour b, action instantiation b is enabled by (the disjunction of) both actions that correspond
to these alternatives. In contrast, b2.e is enabled by b2.c1, which only occurs in the alternative
interaction formed by b1.c and b2.c1. Therefore, in the composite behaviour b, action instantiation
e is only enabled by the instantiation action that correspond to that alternative.

The equivalent of the example from Figure 5-18 in the textual notation is as follows:

B1 = {√ → a, a → c, c → b}
B2 = {√ → d, d → c1, c1 → e, √ → f, f → c2, c2 → g}
b1.c ∧ (b2.c1 ∨ b2.c2) ⇒ c
B = {√→a, √→d, d∧a∧¬c2→c1, c1→e, √→ f, f∧a∧¬c1→c2, c2→g, c1∨c2→b}

Figure 5-17 Example of
Finite Behaviour Com-
position

 PRE-DEFINED REFINEMENT RELATIONS AND CONSISTENCY RULES 139

B b

B2 b2

B1 b1a

c1

c

d

b

c1 c2

e g
f

a

d

b

e g
f

c2

Based on these observations, we can define the composition ⊕ of behaviour
instantiations {b1(B1), b2(B2), …, bn(Bn)} into a behaviour instantiation b(B).
b1(B1), b2(B2), …, bn(Bn) have the interactions defined in the set I.

⊕I {b1(B1), b2(B2), …, bn(Bn)} = b(B), such that
 ∀i∈{1, …, n},(Γ → t)∈Bi | bi.t ∉ ∪{contributions Θ | (Θ ⇒ int) ∈ I}
 (((rename.(prefixall bi)) Γ) → bi.t) ∈ B
 ∀(Θ ⇒ int) ∈ I, θ ∈ (alternatives Θ)
 ((∧b.ic ∈ (contributions θ) (rename.conditionof) b.ic
 ∧
 ∧θ’∈(alternatives Θ), θ≠θ’, (contributions θ) ∩ (contributions θ’) ≠ ∅

 ¬(contributions θ’).int
) → (contributions θ).int
) ∈ B

The composite operator yields a behaviour type that is built from two rules.
The first rule applies to actions and interaction contributions that do

not appear in an interaction between the composed behaviour instantia-
tions. These actions and interaction contributions appear in the composite
unchanged. We prefix each of these actions and interaction contributions,
as well as actions and interactions in their conditions, with the name of the
behaviour instantiation in which they were defined. In this way, names of
actions or interaction contributions that appear in more than one behaviour
instantiation remain unique. The ‘prefixall’ helper function does this. Fi-
nally, we have to change enabling and disabling conditions on interaction
contributions that appear in interactions from I. We have to change these
conditions into conditions on the actions that are derived from those inter-
action contributions. The ‘rename’ helper function does this.

The second rule applies to interactions in I. For each interaction alter-
native in I we create an action. The condition for that action is the conjunc-
tion of two parts. The first part is the conjunction of the conditions of the
interaction contributions that form the alternative. These conditions have to
be renamed with the ‘rename’ function. The second part is the conjunction
of the disablings of all actions with which this action shares interaction con-
tributions. Each action name is prefixed with the names of all interaction

Figure 5-18 Example of
Behaviour Composition
with Alternative Interac-
tions

140 CHAPTER 5 PRE-DEFINED VIEWPOINT RELATIONS

contributions from which it is derived. This is to distinguish it from each
action that was derived from the same interaction, but from a different al-
ternative.

The composition operator uses the helper functions defined below. The
‘contributions’ helper function yields all interaction contributions in an
interaction condition. This function assumes that the interaction condition
is in the disjunctive normal form (although it could easily be rewritten to
accept a condition in any form). The ‘contributionof’ function delivers the
condition of the interaction contribution in a particular behaviour instantia-
tion. It prefixes each action and interaction contribution in that condition
with the name of the behaviour instantiation. The ‘prefixall’ function pre-
fixes a name to each action and interaction contribution in a condition. The
‘rename’ function renames an enabling or disabling condition on an inter-
action contribution from I into a condition on the action or actions in
which it appears.

contributions Θ1 ∧ Θ2 = (contributions Θ1) ∪ (contributions Θ2)
contributions Θ1 ∨ Θ2 = (contributions Θ1) ∪ (contributions Θ2)
contributions b.ic = {b.ic}, otherwise

conditionof b.ic = prefixall b Γ
 where (Γ → ic) ∈ B and

b(B) is one of the composed behaviour instantiations

prefixall b (Γ1 ∧ Γ2) = (prefixall b Γ1) ∧ (prefixall b Γ2)
prefixall b (Γ1 ∨ Γ2) = (prefixall b Γ1) ∨ (prefixall b Γ2)
prefixall b a = b.a
prefixall b ¬a = ¬b.a
prefixall b √ = √

rename Γ1 ∧ Γ2 = (rename Γ1) ∧ (rename Γ2)
rename Γ1 ∨ Γ2 = (rename Γ1) ∨ (rename Γ2)
rename b.a = b.a, if ¬∃(Θ ⇒ int) ∈ I, (b.a)’ ∈ (contributions Θ) (b.a)’ = b.a
 =∨ contributions θ).int, otherwise

rename ¬b.a
 = ¬b.a, if ¬∃(Θ ⇒ int) ∈ I, (b.a)’ ∈ (contributions Θ) (b.a)’ = b.a
 =∧ (contributions θ).int, otherwise

rename √ =√

(Θ ⇒ int) ∈ I, θ ∈ (alternatives Θ),

(b.a)’ ∈ (contributions θ), (b.a)’ = b.a

(Θ ⇒ int) ∈ I, θ ∈ (alternatives Θ),

(b.a)’ ∈ (contributions θ), (b.a)’ = b.a

 PRE-DEFINED REFINEMENT RELATIONS AND CONSISTENCY RULES 141

As a consequence of composing behaviours, some of the composite actions
may be impossible. This is not an error in the composition operator, but
rather reflects an impossible interaction that already existed.

The class that contains non-structured, recursive sub-behaviours.
To describe infinite behaviours, we can use the recursive behaviour instan-
tiation concept as described in section 4.3. If an interaction is specified on
an interaction contribution instantiation of a recursive behaviour that inter-
action can occur if any instance of that instantiation is enabled. We say any
instance, because, from the perspective of the behaviour with which the
recursive behaviour interacts, it does not matter if it interacts with the first,
second or nth instance of the instantiation. However, interactions that con-
sist of different interaction contribution instances are not identical. Also,
they may have different values for their attributes and/or different causality
conditions, in which case they are not equivalent either.

The observations above lead to the conclusion that an interaction in
which an interaction contribution instantiation of a recursive behaviour
appears represents an interaction with a potentially infinite number of al-
ternatives and instances. We can represent an interaction with an infinite
number of alternatives, using the following notation. For any behaviour b of
type B, bi represents: b if i = 1, b.b if i = 2, b.b.b if i = 3, …. In this way bi
refers to successive instances (or instantiations) of behaviour type B by the
name bi, because instances (or instantiations) can be referred to by the
name of the behaviour to which they belong ‘dot’ their own name. Hence,
in the context of a behaviour instance b of type B, we represent the instan-
tiation b of type B as b.b(B), leading to a behaviour instance b.b. We repre-

Example 5-8 Composi-
tion using the Composi-
tion Operator for Finite
Behaviours

Using the composition operator as it is defined above, the composition of b1(B1) and b2(B2) from
Figure 5-18, with interactions I = { (b1.c ∧ b2.c1) ∨ (b1.c ∧ b2.c2) ⇒ c } is b(B), such that:

B = { √ → b1.a,
 {b1.c, b2.c1}.c ∨ {b1.c, b2.c2}.c → b1.b,
 √ → b2.d,
 {b1.c, b2.c1}.c → b2.e,
 √ → b2.f,
 {b1.c, b2.c2}.c → b2.g,
 b1.a ∧ b2.d ∧ ¬{b1.c, b2.c2}.c → {b1.c, b2.c1}.c,
 b1.a ∧ b2.f ∧ ¬{b1.c, b2.c1}.c → {b1.c, b2.c2}.c}

Figure 5-18 shows the same composition. Only in Figure 5-18 b1.a is named a, b1.b is named b,
b2.d is named d, b2.e is named e, b2.f is named f, b2.g is named g, {b1.c, b2.c1}.c is named c1
and {b1.c, b2.c2}.c is named c2.

142 CHAPTER 5 PRE-DEFINED VIEWPOINT RELATIONS

sent the instantiation of b of type B in the context of behaviour instance b.b
as b.b.b(B), leading to a behaviour instance b.b.b, and so on.

We can use this notation in conditions as follows. We represent the
conjunction and disjunction of an infinite number of instances of action a,
from successive instances b1, b2, b3, … of behaviour type B, as

abi

i

.
1
∧
∞

=
 and abi

i

.
1
∨
∞

=
, respectively.

We can represent (infinite) combinations of conjunctions and disjunctions
in a similar fashion.

Example 5-9 Composi-
tion of Infinite Behav-
iours

Figure 5-19.i and ii illustrate how an interaction a can occur between any instance b1
i.a of B1 and

any instance b2
j.a of B2. If we use the notation outlined above, we can represent the interaction:

(b1

1.a ∨ b1
2.a ∨ b1

3.a ∨ …) ∧ (b2
1.a ∨ b2

2.a ∨ b2
3.a ∨ …) ⇒ a

as:

aabab j

j

i

i

⇒∧ ∨∨
∞

=

∞

=
).().(2

1
1

1

Figure 5-19.iii shows how we can specify the composite of the structured behaviour type that
contains instantiations b1 and b2 as an infinite behaviour type. If behaviour types B1 and B2 are
specified as:

B1 = { b1

i.>1 → a, b1
i.>1 → b1

i+1(B1).>1 | i > 0}
B2 = { b2

i.>1 → a, b2
i.>1 → b2

i+1(B2).>1 | i > 0}

The textual equivalent of the composed behaviour type, using the notation outlined above, is, for
i, j > 0:

}}.,{)}.,{()}.,{(1.1.{ 2121
1

21
1

1
2

1
1 abbabbabbbbB jijk

ik
k

ki

jk
k

→¬∧¬∧>∧>= ∧∧
∞

≠
=

∞

≠
=

Each action has a name that allows it to be identified as a composition of an interaction contribu-
tion of a particular instance of b1 and an interaction contribution of a particular instance of b2. For
example, {b1

2, b2
3}.a is the action a that is the composite of interaction contributions b1

2.a and
b2

3.a. Each action has two entry point conditions, because both behaviours from which it was
derived assign it an entry point condition. The entry points are not named and not attached to the
border of the behaviour to simplify the drawing. Each action {b1

i, b2
j}.a is disabled by all actions

{b1
i, b2

k}.a (k ≠ j), because these actions share the same interaction contribution b1
i (and an

interaction contribution can only occur once). Similarly, each action {b1
i, b2

j}.a is disabled by
all actions {b1

k, b2
j}.a (k ≠ i).

 PRE-DEFINED REFINEMENT RELATIONS AND CONSISTENCY RULES 143

B1 b1

B

i. Infinite behavior instantiation ii. Infinite behavior

iii. Infinite composite behavior

{b1
2, b2

1}.a {b1
3, b2

1}.a

{b1
1, b2

2}.a {b1
2, b2

2}.a {b1
3, b2

2}.a

{b1
1, b2

3}.a {b1
2, b2

3}.a {b1
3, b2

3}.a

{b1
1, b2

1}.a

B1 b11

B2 b2

a
a

1 B2 b2

1

1

B1 b11

B2 b2

a

1

b1.a b1.b1.a

b2.a b2.b2.a

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

a

Specifying infinite conditions in this way is not allowed by the syntax from
chapter 4, we merely present it here to explain what we do when we com-
pose infinite behaviours. The syntax from chapter 4 only allows for the
specification of infinite behaviours using the recursive behaviour instantia-
tion concept. Infinite conditions can then be represented by exit points of
these behaviours. Therefore, we can only specify the composition of two or
more infinite behaviours, if it can be expressed as a recursive behaviour or a
finite behaviour.

B1 b1 B1 b11

B2 b2

a
a

1 B2 b2

1

1

b
b

Figure 5-19 Composi-
tion of Infinite Behav-
iours

Figure 5-20 Example of
Interacting Repeating
Behaviours

Example 5-10 Interact-
ing Repeating Behav-
iours

Figure 5-20 shows an example of two repeating behaviours. Behaviour b1 is repeating, because it
can recursively instantiate itself after both interaction contribution a and interaction contribution
b have occurred. Behaviour b2 is repeating, because it can only recursively instantiate itself ei-
ther after a has occurred and b is disabled or after b has occurred and a is disabled. The textual
representation of the example is as follows:

B1 = {>1 → a, a → b, b → b1(B1).>1}
B2 = {>1 ∧ ¬b → a, >1 ∧ ¬a → b, a ∨ b → b2(B2).>1}
b1.a ∧ b2.a ⇒ a
b1.b ∧ b2.b ⇒ b

144 CHAPTER 5 PRE-DEFINED VIEWPOINT RELATIONS

The class that contains non-structured, repeating sub-behaviours.
We present an algorithm to compose two or more repeating behaviour in-
stantiations into a behaviour instantiation that can be represented as a re-
cursive behaviour. Such a behaviour can be represented using the syntax
from chapter 4. A repeating behaviour is a behaviour that can only recur-
sively instantiate itself after all its actions and interaction contributions ei-
ther have occurred or cannot occur anymore. Such a behaviour is a repeat-
ing behaviour, because it completes before it instantiates itself (repeats).

We can compose two or more repeating behaviours b1, b2, …, if, after i1
recursive instantiations of b1, i2 recursive instantiations of b2, …, they all
have an entry point enabled that allows them to recursively instantiate. If
this situation occurs, all behaviours have completed, because, by definition,
all their actions and interaction contributions either have occurred or can-
not occur anymore. Therefore, if we recursively instantiate the behaviours
from that point, their joint behaviour is equivalent to their behaviour before
that point. Hence, we can derive the composite behaviour as the composite
behaviour after i1 recursive instantiations of b1, i2 recursive instantiations of
b2, …, that recursively instantiates itself after that.

The algorithm for composing repeating behaviours follows from that
claim. We recursively instantiate the individual behaviours b1, b2, … that
can be instantiated recursively, until the point at which they can all be in-
stantiated recursively. This results in i1 instances of b1, i2 instances of b2, ….
The composition of the repeating behaviours then is the composition of
those i1 instances of b1, i2 instances of b2, …. The conditions for the causal-
ity targets in the next instance of the composition are equivalent to the
conditions for the causality targets in the i1+1st instance of b1, the i2+1st
instance of b2, …. Therefore, we can use the same entry-points and point
conditions on the composed behaviour as on the original behaviours.

These observations give rise to the definition of a ’substitution’ operator
(σ). The substitution operator substitutes a recursive behaviour instantia-
tion by the instantiated behaviour itself. Note that, in the substitution of a
behaviour instantiation, the action and interaction contribution instantia-
tions of that behaviour must be pre-fixed with the name of the instantia-
tion. To simplify the resulting behaviour, the entry points of the recursive
instantiation can be replaced by the conditions that they represent. We de-
fine the substitution operator σ on an instantiation of type B’ in behaviour
instantiation b of type B as follows:

σ B’ b(B) = b(B”)
 where B” = ((replaceentries b’(B’) B).(prefix b’)) B’
 ∪
 removeentries b’(B’) B
 b’ is the name of the instantiation of B’ in B

 PRE-DEFINED REFINEMENT RELATIONS AND CONSISTENCY RULES 145

The substitution operator states that the substitution of the recursive in-
stantiation b’ in b(B) is the behaviour instantiation b(B”). B” is the union of
the causality relations in B’ and the causality relations in B. Each action,
interaction contribution and entry point in B’ is prefixed with b’ to distin-
guish it from similar elements in B. Subsequently, each entry point of B’ is
replaced by the condition that it represents. Consequently, the entry points
of B’ in B can be removed.

To this end, the substitution operator uses the following helper func-
tions. The ‘prefix’ function prefixes all actions, interaction contributions
and entry points in B’ with b’. It uses the ‘prefixall’ function that we defined
earlier. This function has to be modified, because it originally did not con-
sider entry points. The ‘removeentries’ function removes the entries of
b’(B’) in B. The ‘replaceentries’ function replaces entry point conditions in
B” by the conditions that the entry points represent. The latter conditions
are defined in B as the conditions of entry points of b’(B’).

prefix b B = {(prefixall b Γ) → b.t | (Γ → t) ∈ B}
prefixall b (Γ1 ∧ Γ2) = (prefixall b Γ1) ∧ (prefixall b Γ2)
prefixall b (Γ1 ∨ Γ2) = (prefixall b Γ1) ∨ (prefixall b Γ2)
prefixall b a = b.a
prefixall b ¬a = ¬b.a
prefixall b √ = √
prefixall b >e = >b.e

removeentries b’(B’) B = {Γ → t | (Γ → t) ∈ B, t ≠ b’(B’).>e}

replaceentries b’(B’) B B” = { (re Γ B b’(B’)) → t | (Γ → t) ∈ B”}

re (Γ1 ∧ Γ2) B b’(B’) = (re Γ1 B b’(B’)) ∧ (re Γ2 B b’(B’))
re (Γ1 ∨ Γ2) B b’(B’) = (re Γ1 B b’(B’)) ∨ (re Γ2 B b’(B’))
re >b’.e B b’(B’) = Γ, where (Γ → b’(B’).>e) ∈ B
re a B b’(B’) = a, otherwise

B1 b1 B1 b11

B2' b2

a

a

1 B2 b2.b2

1

1

b

b

b2.bb2.a

Figure 5-21 Interacting
Repeating Behaviours
after One Substitution of
b2

146 CHAPTER 5 PRE-DEFINED VIEWPOINT RELATIONS

To define the composition operator for repeating behaviours, we use the
composition operator for finite behaviours (⊕). However, since the com-
position operator for finite behaviours did not consider entry points, we
have to extend that operator. The redefined operator prefixes the names of
the entry points with the names of the behaviours to which they originally
belonged. In this way, the names of the entry points remain unique in the
composite behaviour. We redefine the operator as follows:

⊕I {b1(B1), b2(B2), …, bn(Bn)} = b(B), such that
 ∀i∈{1, …, n},(Γ → t)∈Bi | bi.t ∉ ∪{contributions Θ | (Θ ⇒ int) ∈ I}
 t = b’(B’).>e ⇒ (((rename.(prefixall bi)) Γ) → b’(Bi).>bi.e) ∈ B
 t = a ⇒ (((rename.(prefixall bi)) Γ) → bi.a) ∈ B
 ∀(Θ ⇒ int) ∈ I, θ ∈ (alternatives Θ)
 ((∧b.ic ∈ (contributions θ) (rename.conditionof) b.ic
 ∧
 ∧θ’∈(alternatives Θ), θ≠θ’, (contributions θ) ∩ (contributions θ’) ≠ ∅

 ¬(contributions θ’).int
) → (contributions θ).int
) ∈ B

Example 5-11 Substitu-
tion of Behaviour Instan-
tiations

Figure 5-21 shows the result of the substitution of b2(B2) in B2 from Figure 5-20. It shows how
the interaction contributions in the recursive instantiation are prefixed with the name of the recur-
sive instantiation (b2) and how the entry point of the recursive instantiation (b2(B2).>1) is re-
placed by its condition (a ∨ b). We can calculate this substitution, using the formulae above, as
follows:

σ B2 b2(B2) = b2(B2

”), where
 B2

” = ((replaceentries b2(B2) B2).(prefix b2)) B2
 ∪
 removeentries b2(B2) B2

prefix b2 B2 = { b2.>1 ∧ ¬b2.b → b2.a,
 b2.>1 ∧ ¬b2.a → b2.b,
 b2.a ∨ b2.b → b2.b2(B2).>1}

replaceentries b2(B2) B2 (prefix b2 B2) = { (a ∨ b) ∧ ¬b2.b → b2.a,
 (a ∨ b) ∧ ¬b2.a → b2.b,
 b2.a ∨ b2.b → b2.b2(B2).>1}

removeentries b2(B2) B2 = { >1 ∧ ¬b → a, >1 ∧ ¬a → b}

B2” = { (a ∨ b) ∧ ¬b2.b → b2.a, (a ∨ b) ∧ ¬b2.a → b2.b,
 b2.a ∨ b2.b → b2.b2(B2).>1, >1 ∧ ¬b → a, >1 ∧ ¬a → b}

 PRE-DEFINED REFINEMENT RELATIONS AND CONSISTENCY RULES 147

Using the substitution operator and the redefined composition operator for
finite behaviours, we define the composition operator (⊗) for repeating be-
haviour instantiations {b1(B1), b2(B2), …, bn(Bn)} that have interactions I as
follows.

⊗I {b1(B1), b2(B2), …, bn(Bn)}

= ⊗HelperI {(B1, b1(B1)), (B2, b2(B2)), …, (Bn, bn(Bn))}

⊗HelperI {(B1

’, b1(B1)), (B2
’, b2(B2)), …, (Bn

’, bn(Bn))} = b(B), such that
 if ∀i ∈ {1, …, n} (¬∀(Γ → b’(Bi’).>e) ∈ B” Γ = †)
 or
 ∀i ∈ {1, …, n} (∀(Γ → b’(Bi’).>e) ∈ B” Γ = †)
 then
 b(B) = b”(replacerecursions {B1

’, B2
’, …, Bn

’} b”(B”))
 otherwise
 b(B) = ⊗HelperI {(B1

’, b1(B1”)), (B2
’, b2(B2”)), …, (Bn

’, bn(Bn”))}
 where

b”(B”) = ⊕I’ {b1(B1), b2(B2), …, bn(Bn)}
bi(Bi”) = σ Bi

’ bi(Bi), if ¬∀(Γ → b’(Bi’).>e) ∈ B” Γ = †
= bi(Bi), otherwise

 I’ = map (explode bi.b’) I, for each b’(Bi’) for which
¬∀(Γ → b’(Bi’).>e) ∈ B” Γ = †

replacerecursions {B1’, B2’, …, Bn’} b”(B”) =
 {Γ → t | (Γ → t) ∈ B”, t ≠ b’(B’).>e, B’ ∈ {B1’, B2’, …, Bn’}}
 ∪
 {Γ → b”(B”).>e|(Γ→t)∈B”, t=b’(B’).>e, B’∈{B1’, B2’, …, Bn’}}

explode b.b’ (Θ ⇒ int) = (ex b.b’ Θ) ⇒ int

ex b.b’ (Θ1 ∧ Θ2) = (ex b.b’ Θ1) ∧ (ex b.b’ Θ2)
ex b.b’ (Θ1 ∨ Θ2) = (ex b.b’ Θ1) ∨ (ex b.b’ Θ2)
ex b.b’ b”.ic = b”.ic ∨ b.b’.ic, if b.b’ = b”.x
 = b”.ic, otherwise
 where x is a variable that does not contain a dot (.)

This composition operator for repeating behaviours is defined recursively.
Textually, it reads as follows:

if, in the composition (⊕) of behaviours

all behaviours repeat
or
none repeat,

148 CHAPTER 5 PRE-DEFINED VIEWPOINT RELATIONS

then
the result is the regular composition.

Otherwise,
the result is the composition (⊗) of the behaviours

where
the behaviours that can recursively instantiate are substituted.

The repeated composition ’explodes’ the original interaction contributions,
because the substituted interaction contributions now also participate in the
interactions. Hence, each interaction contribution of which another in-
stance is created during the substitution of its behaviour, must be replaced
by the disjunction of itself and the newly created instance. For example,
during the substitution of behaviour b2(B2), which results in the behaviour
from Figure 5-21, a new instance b2.b2.a is created of b2.a. Hence, the in-
teraction b1.a ∧ b2.a ⇒ a must be replaced by b1.a ∧ (b2.a ∨ b2.b2.a) ⇒ a.

As an example of using the composition operator for repeating behaviours, we compose the
repeating behaviours from Figure 5-20, resulting in the behaviour that is shown in Figure 5-22.i.
The textual representation of this composite behaviour is:

B = { b1.>1 ∧ b2.>1 ∧ ¬{b1, b2}.b → {b1, b2}.a,
 {b1, b2}.a ∧ ¬{b1, b2}.a ∧ b2.>1 → {b1, b2}.b,
 {b1, b2}.b → b(B).b1.>1,
 {b1, b2}.a ∨ {b1, b2}.b → b(B).b2.>1}

Only behaviour b2 can instantiate itself recursively in this composition. This can intuitively be
seen, if we observe that a single instantiation of b1 must perform a and then b before it can
instantiate recursively, while a single instantiation of b2 can only perform either a or b. Hence,
the composite behaviour of one instance of b1 and one instance of b2 can only perform a, after
which b2 can instantiate recursively, but b1 must still perform b before it can instantiate
recursively. The following calculation shows how we can compute that b1 cannot recursively
instantiate in the composition of one instance of b1 and one instance of b2:

{b1, b2}.a ∧ ¬{b1, b2}.a ∧ b2.>1 → {b1, b2}.b =10,11 † → {b1, b2}.b

{b1, b2}.b → b(B).b1.>1 =14 † → b(B).b1.>1

Since, in the example, b2 recursively instantiates itself, but b1 does not, we substitute
instantiation b2 in B2. Then we calculate the composite behaviour of one instance of b1 and two
instances of b2 to see if both behaviours repeat in the result. Figure 5-21 shows the result of
substituting instantiation b2 in B2 and Figure 5-22.ii shows the composition of the result. The
textual representation of this composition is:

B = { b1.>1 ∧ b2.>1 ∧ ¬{b1

1,b2
2}.a ∧ ¬{b1

1,b2
1}.b → {b1

1, b2
1}.a,

Example 5-12 Compo-
sition of Repeating
Behaviours

 PRE-DEFINED REFINEMENT RELATIONS AND CONSISTENCY RULES 149

 b1.>1 ∧¬{b1
1,b2

1}.a ∧ ({b1
1,b2

1}.a ∨ {b1
1,b2

2}.a) ∧¬{b1
1,b2

2}.b → {b1
1,b2

1}.b,
 b2.>1 ∧({b1

1,b2
1}.a ∨ {b1

1,b2
1}.b) ∧¬{b1

1,b2
1}.a) ∧¬{b1

1,b2
2}.b → {b1

1,b2
2}.a,

 ({b1
1, b2

1}.a ∨ {b1
1, b2

2}.a) ∧ ({b1
1, b2

1}.a ∨ {b1
1, b2

1}.b)
 ∧ ¬{b1

1,b2
2}.a) ∧¬{b1

1,b2
1}.b → {b1

1,b2
2}.b,

 {b1
1,b2

1}.b ∨ {b1
1,b2

2}.b → b(B).b1.>1,
 {b1

1,b2
2}.a ∨ {b1

1,b2
2}.b → b(B).b2.>1}

After simplification of the behaviours, using the rules for calculating with impossibility, it looks
as shown in Figure 5-22.iii. This figure shows that the recursive instantiation of both the original
behaviours is possible. Therefore, this figure represents the final result. This figure also shows
that, in the compositions, the actions named {b1

1, b2
1}.b and {b1

1, b2
2}.a are impossible.

Intuitively, this can be seen, because these actions represent the composition of b1
1.b and b2

1.b
and the composition of b1

1.a and b2
2.a, respectively. Since in the first and only instance of b1

(b1
1) interaction contribution a must occur and then interaction contribution b, a must occur in

the first instance of b2 (b2
1) and b must occur in the second instance of b2 (b2

2). Therefore,
because a and b disable each other in b2, b can never be performed in the first instance of b2,
while a can never be performed in the second instance of b2. The simplified composed
behaviour can be specified in the textual notation as follows:

B = { b1.>1 ∧ b2.>1 ∧ √ ∧ √ → {b1

1, b2
1}.a,

 {b1
1, b2

1}.a ∧ {b1
1, b2

1}.a ∧ √ ∧ √ → {b1
1, b2

2}.b,
 {b1

1, b2
2}.b → b(B).b1.>1,

 {b1
1, b2

2}.b → b(B).b2.>1}

B b

B b

i. Composition after zero substitutions

ii. Composition after one substitution

{b1, b2}.b{b1, b2}.a

b1.1

B b
b2.1

b1.1

b2.1

{b1
1, b2

1}.b{b1
1, b2

1}.a

b1.1

b2.1

{b1
1, b2

2}.b{b1
1, b2

2}.a B b

b1.1

b2.1

B b

iii. Simplification of the composition after one substitution

{b1
1, b2

1}.a

b1.1

b2.1

{b1
1, b2

2}.b B b

b1.1

b2.1

Figure 5-22 Simplifica-
tion of Composition of
Repeating Behaviours

150 CHAPTER 5 PRE-DEFINED VIEWPOINT RELATIONS

Note that we can compose two or more repeating behaviours b1, b2, …, if,
after i1 recursive instantiations of b1, i2 recursive instantiations of b2, …,
they all have an entry point enabled. This statement implies an important
constraint, because we may not find an i1, i2, … that satisfies this con-
straint. In that case we cannot calculate the composition. This leads to a
problem, because in case the individual behaviours continue repeating, but
never repeat at the same time, the algorithm will end up in a live-lock. It
continuously substitutes the behaviour instantiations that can occur, but
never stops. Until now, we have not been able to find a solution for this
problem.

The class that contains structured, repeating sub-behaviours with
finite sub-sub-behaviours. In case a sub-behaviour contains an instantia-
tion of a finite behaviour, it can be composed with other behaviours, after
we substituted the instantiation by the actual behaviour. For this purpose,
we can use the substitution operator that we defined in the previous para-
graph. Figure 5-23.i shows an example of a structured behaviour that con-
tains an instantiation of a finite behaviour. Figure 5-23.ii shows the same
behaviour, after we substituted the instantiation for the behaviour that it
represents.

i. Structure with finite part ii. Finite part substituted

B b
1 B1 b1

1
a

1

a b

B b
1

a b

The class that contains structured, repeating sub-behaviours with
repeating sub-sub-behaviours. We also develop an algorithm for the
case in which a sub-behaviour B contains an instantiation of a repeating
behaviour BC that satisfies the following constraints.
1. If B is repeating, then B must disable (all causality targets in) BC before

B repeats. Otherwise, BC may have enabled causality targets when B re-
peats. Therewith violating the constraint that B is repeating.

2. BC (indirectly) interacts with any number of finite monolithic behav-
iours or at most one repeating monolithic behaviour.

In case these constraints are satisfied, we can compute the composition
by first composing BC with the behaviours with which it interacts and then
composing B with the behaviours with which it interacts.

Figure 5-24.i shows an example of a structured sub-behaviour that contains a repeating
behaviour. The behaviours a1 and a2 are repeating, but interaction b disables repeating behaviour
b1, both in a1 and in a2, via the disabling relation that points to that behaviour. Therewith it

Figure 5-23 Example of
a Structured Behaviour

Example 5-13 Struc-
tured Behaviour with a
Repeating Sub-
Behaviour

 PRE-DEFINED REFINEMENT RELATIONS AND CONSISTENCY RULES 151

satisfies the first constraint. A disabling relation to a behaviour is a shorthand that represents a
disabling relation to all parts of that behaviour. Hence, b disables b1.a, b1.b1.a, …. Figure 5-24.ii
shows how the shorthand can be decomposed into a basic behaviour. Repeating behaviour b1 in
behaviour a1 interacts with repeating behaviour b1 of behaviour a2. Since it does not interact with
any other behaviour, the second constraint is satisfied. Therefore, we can compose a1 and a2 by
first composing b1 and b2 and then a1 and a2 themselves. In the textual notation, B1 and A can be
specified as follows:

B1 = { >1 ∧ >2 → a
 a → b1(B1).>1,
 >2 → b1(B1).>2
 (a ∨ ¬a) ∧ b1(B1).1> → 1>}

A = { >1 → b1(B1).>1,
 ¬b → b1(B1).>2,
 b1(B1).1> → b,
 b → a1(A1).>1}

B1 b1

i. Structure with composable infinite part ii. Relation represented by behavior disabling

A a2

1
B1 b1

1

a

a b

B1 b1
1

A a2
1

A a1
1

B1 b11

a

a b

B1 b1
1

A a1
1

a

B1 b1

1

1

2

1 1

2

b

The algorithm for composing repeating behaviours relies on knowing if an
entry point can be enabled, to recursively instantiate the associated behav-
iour. Therefore, we must be able to calculate for each entry point if it can
be enabled, or if it is impossible. This is difficult for an entry point that de-
pends on the exit point of a repeating behaviour, because the condition for
that exit point may be infinite. Hence, we must define an approach to
compute if such an exit point can be enabled.

We have not defined such an approach for the general case. This is left
for future work. However, we show for three frequently occurring infinite
conditions if the exit point can be enabled.

B

1

B b1a 2

2

Figure 5-24 Example of
a Structured Behaviour
with a Repeating Sub-
Behaviour

Figure 5-25 Convergent
Condition for Depend-
ence on Entry or Self

152 CHAPTER 5 PRE-DEFINED VIEWPOINT RELATIONS

Case I. Figure 5-25 shows a behaviour with an exit point that has an infi-
nite condition, because the condition of the exit point is the disjunction of
the entry point of the behaviour and itself (in the recursive instantiation).
This behaviour represents a ‘while’ loop as it can be used in programming
languages. While a certain ‘while condition’ is satisfied, action a is per-
formed and the behaviour is repeated, if that condition is not satisfied, the
loop exits. Hence, assuming that the ‘while condition’ eventually becomes
false, the exit point is eventually enabled once the entry point is enabled.

B

B b

i. Structure with infinite condition shorthand

B
1B b1a

2

1a

1

2

1

1

ii. Shorthand exploded

Case II. Figure 5-26.i shows a behaviour B that has a choice relation with
another behaviour or an action or an interaction contribution. Figure 5-
26.ii shows what this behaviour looks like after the shorthand is rewritten in
terms of basic concepts, showing that 1> represents an infinite condition,
because it depends on itself. However, exit point 1> is enabled as long as
none of the a’s have happened.

B

B b

i. Structure with infinite condition shorthand

B
1B b1a

2

1a

1

2

1

1

ii. Shorthand exploded

Case III. Figure 5-27.i shows a behaviour that is disabled by another be-
haviour, an action or an interaction contribution. Figure 5-27.ii shows what
this behaviour looks like after the shorthand is rewritten in terms of basic
concepts. Exit point 1> has an infinite condition, because it depends on
itself. However, exit point 1> is enabled as long as none of the a’s is hap-
pening at the same time.

Examples of composition. Figure 5-28.i shows two interacting behav-
iour instantiations that represent the composite behaviour of a client and an
enterprise. On the client side, the client can submit an application, then the
client will negotiate the application. During this process, the client may
receive several rejections, before the application is accepted. The client can
then confirm and finally pays either via the bank or in cash. On the enter-
prise side, the enterprise can engage in the submission of an application.

Figure 5-26 Convergent
Condition for Choice
between Behaviours

Figure 5-27 Convergent
Condition for Disabling
of Behaviour

 PRE-DEFINED REFINEMENT RELATIONS AND CONSISTENCY RULES 153

After that the enterprise can engage in the negotiation process. The enter-
prise can continue that process until a confirmation is received. Finally, the
enterprise accepts payment by bank and cash.

i. Business process with interacting parties

Client c LP1 l

1 LP1 l1

submit

accept reject
1

1

confirm paycash paybank

Enterprise e LP1 l

1 LP1 l1
submit

accept reject
1

1

confirm paycash paybank

ii. Composed business process

Join1 j1 Join2 j2

1

Join2 j2

1submit
accept reject

1

1
confirm paycash paybank

1 1 1

1

Both behaviour instantiations are structured, but not recursive. Contained
behaviour l in the client instantiation only interacts with l in the enterprise
instantiation and vice versa. Hence, the behaviour instantiations satisfy the
constraints that allow them to be composed and we can compose c and e by
first composing c.l and e.l and then c and e. The composition of c and e then
is the behaviour from Figure 5-28.ii.

Figure 5-29.i shows an example that represents a question and answer
service. There is a questioner (Q) that poses a question request (qreq) and
awaits an answer confirmation (acnf), an answerer (A) that awaits a question
indication (qind) and then gives an answer response (arsp) and a transporter
(T) that transports the question from the questioner to the answerer and
the answer from the answerer to the questioner. These behaviours are de-
fined as follows:

Q = { >1 → qreq,
 qreq → acnf,
 acnf → q(Q).>1}

Figure 5-28 Business
Process Example

154 CHAPTER 5 PRE-DEFINED VIEWPOINT RELATIONS

T = { >1 ∧ ¬arsp → qreq,
 >1 ∧ ¬qreq → arsp,
 qreq → qind,
 arsp → acnf,
 qind ∨ acnf → t(T).>1}

A = { >1 → qind,
 qind → arsp,
 arsp → a(A).>1}

The interactions between these behaviours are:

I = { q.qreq ∧ t.qreq ⇒ qreq, q.acnf ∧ t.acnf ⇒ acnf,
 q.qind ∧ t.qind ⇒ qind, q.arsp ∧ t.arsp ⇒ arsp}

Figure 5-29 Question
and Answer Service

T t

Q q

i. Question and answer service ii. Questioner and transporter composed

iii. Questioner and transporter after one instantiation

iv. Questioner and transporter composed after one instantiation

Q q1qreq acnf1

A a
A a1qind arsp

1

1

T t1

QT qt

{q,t}.qreq

QT qt

{q,t}.acnf

t.qind t.arsp

q.1

t.1

q.1

t.1

ST t
1 ST t1

qreq acnf t.qreq t.acnf

Q q
Q q1qreq acnf1

qind arsp t.qind t.arsp

t1.qind t1.arsp t2.qind t2.arsp

{t1,q}.qreq {t1,q}.acnf {t2,q}.qreq {t2,q}.acnf QST qst

QST qst
q.1

t.1

q.1

t.1

 PRE-DEFINED REFINEMENT RELATIONS AND CONSISTENCY RULES 155

Hence, using the composition operator, we can define the composition of
Q and T as shown in Figure 5-29.ii. In the textual notation this corresponds
to (for brevity we prefix actions only with the behaviour names of the inter-
action contributions from which they are derived):

q(Q) ⊕ t(T) = qt(QT), where
 QT = { q.>1 ∧ t.>1 ∧ ¬t.arsp → {q, t}.qreq,
 {q, t}.qreq ∧ t.arsp → {q, t}.acnf,
 t.>1 ∧ ¬{q, t}.qreq → t.arsp,
 {q, t}.qreq → t.qind,
 {q, t}.acnf → qt(QT).q.>1,
 t.qind ∨ {q, t}.acnf → qt(QT).t.>1}

Using the rules for calculating with impossibility, we can derive that, in the
composition only T can repeat and Q cannot repeat. This can be done as
follows (for brevity, we only show some of the causality relations in QT):

QT = 17 {…, ¬{q, t}.qreq ∧ {q, t}.qreq ∧ t.arsp → {q, t}.acnf, …}
 = 10 {…, † ∧ t.arsp → {q, t}.acnf, …}
 = 11 {…, † → {q, t}.acnf, …}
 = 14 {…, † → {q, t}.acnf, † → qt(QT).q.>1, …}

Since T can repeat, but Q cannot, we have to substitute T in t(T). This also
changes the interactions in which T engages. Figure 5-29.iii shows how the
recursive instantiation of T affects T and Q and their interactions. Using the
textual notation, the result is:

σ T t(T) = t(ST), where
ST = { >1 ∧ ¬arsp → qreq,
 >1 ∧ ¬qreq → arsp,
 qreq → qind,
 arsp → acnf,
 (qind ∨ acnf) ∧ ¬t.arsp → t.qreq,
 (qind ∨ acnf) ∧ ¬t.qreq → t.arsp,
 t.qreq → t.qind,
 t.arsp → t.acnf,
 t.qind ∨ t.acnf → t(ST).>1}

(t1.qreq ∨ t2.qreq) ∧ q.qreq ⇒ qreq
(t1.acnf ∨ t2.acnf) ∧ q.acnf ⇒ acnf

Hence, the composition of Q and ST, shown in Figure 5-29.iv, is:
q(Q) ⊕ t(ST) = qt(QST), where

156 CHAPTER 5 PRE-DEFINED VIEWPOINT RELATIONS

QST={ t.>1 ∧ ¬t.arsp ∧ q.>1 ∧ ¬{t2,q}.qreq → {t1,q}.qreq,
 (t.qind∨{t2,q}.acnf)∧¬t2.arsp∧q.>1∧{t1,q}.qreq → {t2,q}.qreq,
 t.arsp ∧ ({t1,q}.qreq ∨ {t2,q}.qreq) ∧ ¬{t2,q}.acnf → {t1,q}.acnf,
 t2.arsp ∧ ({t1,q}.qreq∨{t2,q}.qreq) ∧ ¬{t1,q}.acnf → {t2,q}.acnf,
 t.>1 ∧ ¬{t1,q}.qreq → t1.arsp,
 {t1,q}.qreq → t1.qind,
 (t.qind ∨ {t1,q}.acnf) ∧ ¬{t2,q}.qreq → t2.arsp,
 {t2,q}.qreq → t2.qind,
 t2.qind ∨ {t2,q}.acnf → t.>1,
 {t1,q}.acnf ∨ {t2,q}.acnf → q.>1}

ii. Simplified questioner/transporter and answerer composed

iii. Final simplified composition

i. Simplified questioner/transporter and answerer

t1.qind t1.arsp t2.qind t2.arsp

{t1,q}.qreq {t2,q}.acnf QT qt

QT qt
q.1

t.1

q.1

t.1

A a
A a1qind arsp1

{t1,q}.qreq {t2,q}.acnf

QTA qta

QTA qta qt.q.1

qt.t.1
{a,qt}.t1.qind {a,qt}.t1.arsp {a,qt}.t2.arsp{a,qt}.t2.qind

QST qst
a.1

a.1

qt.q.1

qt.t.1

{t1,q}.qreq {t2,q}.acnf

QTA qta

QTA qta qt.q.1

qt.t.1
{a,qt}.t1.qind {a,qt}.t2.arsp

QST qst
a.1

a.1

qt.q.1

qt.t.1

Figure 5-30 Question
and Answer Service
(continued)

 PRE-DEFINED REFINEMENT RELATIONS AND CONSISTENCY RULES 157

Using the rules for calculating with impossibility, we can derive that in the
composition of Q and ST, both Q and ST can repeat. Also, we can simplify
the composite behaviour into the behaviour shown in Figure 5-30.i (the
crossed-out interaction contribution in the figure represents an impossible
interaction contribution). This can be done as follows (again, we only show
causality relations that change, at the end we show the entire behaviour):

QST = 17
{ …,
 ¬{t1,q).qreq∧arsp∧({t1,q}.qreq∨{t2,q}.qreq)∧¬{t2,q}.ancf→{t1,q}.ancf
 …}
= 5, 10, 11, 12
{ …, ¬{t1,q).qreq ∧ arsp ∧ {t2,q}.qreq ∧ ¬{t2,q}.ancf → {t1,q}.ancf,
 …}
= 17
{ …, ¬{t1,q).qreq ∧ arsp ∧ {t2,q}.qreq ∧ ¬{t2,q}.ancf → {t1,q}.ancf,
 ¬qind∧(qind∨{t1,q}.ancf)∧¬t.arsp∧q.>1∧¬{t1,q}.qreq→{t2,q}.qreq,
 …}
= 5, 10, 11, 12
{ …, ¬{t1,q).qreq ∧ arsp ∧ {t2,q}.qreq ∧ ¬{t2,q}.ancf → {t1,q}.ancf,
 ¬qind ∧ {t1,q}.ancf ∧ ¬t.arsp ∧ q.>1 ∧ ¬{t1,q}.qreq → {t2,q}.qreq,

 …}
= 15
{ …, ¬{t1,q).qreq ∧ arsp ∧ {t2,q}.qreq ∧ ¬{t2,q}.ancf → {t1,q}.ancf,
 {t2,q}.qreq∧¬qind∧{t1,q}.ancf∧¬t.arsp∧q.>1
 ∧¬{t1,q}.qreq→{t2,q}.qreq,
 …}
= 8, 11
{ …, ¬{t1,q).qreq ∧ arsp ∧ {t2,q}.qreq ∧ ¬{t2,q}.ancf → {t1,q}.ancf,
 † → {t2,q}.qreq, …}
= 14, 11
{ …, † → {t1,q}.ancf, † → {t2,q}.qreq, …}
=
{ t.>1 ∧ ¬t.arsp ∧ q.>1 ∧ √ → {t1,q}.qreq,
 † → {t2,q}.qreq,
 † → {t1,q}.ancf,
 t2.arsp ∧ {t1,q}.qreq ∧ √ → {t2,q}.ancf,
 t.>1 ∧ ¬{t1,q}.qreq → t.arsp,
 {t1,q}.qreq → t.qind,
 t.qind ∧ √ → t2.arsp,
 † → t2.qind,
 {t2,q}.ancf → qt(QST).t.>1,
 {t2,q}.ancf → qt(QST).q.>1}

158 CHAPTER 5 PRE-DEFINED VIEWPOINT RELATIONS

We can compose this resulting behaviour with A. Note that the interactions
between T and A have also changed, when T was recursively instantiated,
into:

a.qind ∧ (qt.t1.qind ∨ qt.t2.qind) ⇒ qind
a.arsp ∧ (qt.t1.arsp ∨ qt.t2.arsp) ⇒ arsp

Figure 5-30.ii shows the result of the composition. Figure 5-30.iii shows
the result of the composition, after eliminating all impossible actions and
simplifying the behaviour. The composition and the simplification can be
calculated as follows:

qt(QST) ⊕ a(A) = aqt(AQT), where
AQT =
{ qt.t.>1 ∧ ¬{a,qt}.t1.arsp ∧ qt.q.>1 ∧ √ → {t1,q}.qreq,
 † → {t2,q}.qreq,
 † → {t1,q}.ancf,
 {a,qt}.t2.arsp ∧ {t1,q}.qreq ∧ √ → {t2,q}.ancf,
 a.>1 ∧ {t1,q}.qreq ∧ ¬{a,qt}.t2.qind → {a,qt}.t1.qind,
 a.>1 ∧ † ∧ ¬{a,qt}.t1.qind → {a,qt}.t2.qind,
 ({a,qt}.t1.qind ∨ {a,qt}.t2.qind) ∧ qt.t.>1
 ∧¬{t1,q}.qreq ∧ ¬{a,qt}.t2.arsp → {a,qt}.t1.arsp,
 ({a,qt}.t1.qind ∨ {a,qt}.t2.qind) ∧ {a,qt}.t1.qind
 ∧ √ ∧ ¬{a,qt}.t1.arsp → {a,qt}.t2.arsp,
 {t2,q}.acnf → aqt(AQT).qt.t.>1,
 {t2,q}.acnf → aqt(AQT).qt.q.>1,
 {a,qt}.t1.arsp ∨ {a,qt}.t2.arsp → aqt(AQT).a.>1}
= 11
{ …, † → {a, qt}.t2.qind, …}
= 14, 13, 12

{ …, a.>1 ∧ {t1,q}.qreq ∧ √ → {a,qt}.t1.qind,
 {a,qt}.t1.qind∧qt.t.>1∧¬{t1,q}.qreq∧¬{a,qt}.t2.arsp→{a,qt}.t1.arsp,

{a,qt}.t1.qind ∧ {a,qt}.t1.qind ∧ √ ∧ ¬{a,qt}.t1.arsp → {a,qt}.t2.arsp,
…}

= 17
{ …, ¬{a,qt}.t1.qind ∧ {a,qt}.t1.qind ∧ qt.t.>1
 ∧ ¬{t1,q}.qreq ∧ ¬{a,qt}.t2.arsp → {a,qt}.t1.arsp,
 …}
= 10, 11
{ …, † → {a,qt}.t1.arsp, …}
= 14, 11, 13
{ …, {a,qt}.t1.qind ∧ {a,qt}.t1.qind ∧ √ ∧ √ → {a,qt}.t2.arsp,
 {a,qt}.t2.arsp → aqt(AQT).a.>1, …}

 PRE-DEFINED REFINEMENT RELATIONS AND CONSISTENCY RULES 159

=
{ qt.t.>1 ∧ √ ∧ qt.q.>1 ∧ √ → {t1,q}.qreq,
 † → {t2,q}.qreq,
 † → {t1,q}.ancf,
 {a,qt}.t2.arsp ∧ {t1,q}.qreq ∧ √ → {t2,q}.ancf,
 a.>1 ∧ {t1,q}.qreq ∧ √ → {a,qt}.t1.qind,
 † → {a,qt}.t2.qind,
 √ → {a,qt}.t1.arsp,
 {a,qt}.t1.qind ∧ {a,qt}.t1.qind ∧ √ ∧ √ → {a,qt}.t2.arsp,
 {t2,q}.acnf → aqt(AQT).qt.t.>1,
 {t2,q}.acnf → aqt(AQT).qt.q.>1,
 {a,qt}.t2.arsp → aqt(AQT).a.>1}

5.2.6 Discussion

We defined the operators for abstraction and for equivalence assessment in
this section for a subset of the possible behaviours that we can specify using
the basic concepts from chapter 4.

We defined the action abstraction and integration operators and the
equivalence relation for the class of monolithic, possibly recursive, behav-
iours. In addition we can use these operators to verify consistency in struc-
tured behaviours, if we first compose these behaviours into monolithic be-
haviours. However, this has the limitation that we cannot verify consistency
with respect to (re-)distribution of responsibility for enforcing causality
conditions among interacting parties. We defined the behaviour composi-
tion operator for structured behaviours that either contain finite sub-
behaviours or repeating sub-behaviours.

We defined the abstraction operators and the equivalence relation in
such detail that we can implement them in tools and provided prototype
implementations. We tested (the implementation of) the operators for
some example behaviours, but not extensively. Also, we have not proven the
correctness of the operators formally. A suggestion for assessing the cor-
rectness of the operators is to use the operational semantics for the basic
concepts (Quartel, 1998) and verify the correctness of the operators with
respect to this semantics. Also, correctness of the operators can be assessed
via extensive testing of the implementations. The composition operator for
the class of behaviours that contain structured sub-behaviours is defined
informally and not implemented.

160 CHAPTER 5 PRE-DEFINED VIEWPOINT RELATIONS

5.3 Pre-Defined Overlap Relations and Consistency Rules

Overlap exists between concerns and viewpoints that partly consider the
same system properties. With respect to the properties that they both con-
sider, views of overlapping viewpoints must be equivalent. We distinguish
three frequently occurring cases of overlap between views. Based on these
cases of overlap, we pre-define four possible overlap relations between con-
cept instances from overlapping views. Also, we illustrate how consistency
rules can be specified on (the MOF associations that represent) these rela-
tions.

5.3.1 Cases of Overlap

If two viewpoints overlap, either: (i) they consider exactly the same proper-
ties; (ii) one viewpoint considers all the properties that the other considers
as well as some other properties; or (iii) they have some properties in
common but both also consider other properties. These different forms of
overlap are also identified by Spanoudakis, Finkelstein, & Till (1999). They
are illustrated in Figure 5-31. The figure shows the properties that are ad-
dressed on the horizontal axis. It represents concerns on the property axis
between dashed lines, representing that they are used to represent the
properties between these dashed lines. Viewpoints that address these con-
cerns are drawn between dashed lines as well, representing that they ad-
dress the concerns that belong to the dashed lines.

viewpoint

i. fully overlapping

concerns

viewpoint

ii. one overlapping the other

concerns

viewpoint

iii. partly overlapping

concerns

viewpointviewpoint

One could argue that it is a mistake to have completely overlapping view-
points or concerns or to have one viewpoint or concern completely over-
lapping the other, because that means that one of the viewpoints or con-
cerns does not add any design information, since all design information is
present in one of the viewpoints. However, we argue that there may be a
benefit in (graphically) representing the same system properties in a differ-
ent fashion. Representing the same system properties differently may im-
prove the understanding of the designers. For example, we can represent
the behaviour of a system and the execution traces that that behaviour pro-
duces as two separate concerns and in two separate views. Although the
execution traces that the behaviour of the system produces are completely
described by the behaviour of the system, describing these traces separately
may improve the understanding of the behaviour of the system.

Figure 5-31 Different
kinds of Overlap be-
tween Viewpoints

 PRE-DEFINED OVERLAP RELATIONS AND CONSISTENCY RULES 161

One could also argue that it is a mistake to have one viewpoint or con-
cern completely overlapping another, because then the overlapping view-
point or concern adds design information with respect to the overlapped
viewpoint and, therefore, should be considered a refinement rather than an
overlap of the overlapped viewpoint. However, we argue that this is a mat-
ter of how you choose your concerns and levels of detail. If the concerns
and levels of detail are chosen as in Figure 5-31.ii the viewpoints must over-
lap and not have a refinement relation. This is so because, by definition, a
refinement relation can only exist between the same properties at different
levels of detail, while the viewpoints from Figure 5-31.ii consider the same
properties at the same level of detail. In contrast, we could have chosen the
viewpoints such that they address the same concern at different levels of
detail. Both ways of positioning the viewpoints in the framework have their
own benefit, because they stress different design relations. One stresses the
refinement relation, therewith positioning the viewpoints in a relation to
each other that can be traced back to the design process (gradually adding
detail). The other stresses the overlap relation, such that the viewpoints can
be considered at the same level of abstraction in the design process.

5.3.2 Cases of Overlap between Concept Instances

Since overlap between views exists between the parts of those views that
represent the same properties, we can represent overlap between views by
relating concept instances (not necessarily of the same concept) that repre-
sent the same property. However, concept instances may not only represent
the same property, but other properties as well. Also, concept instances
may only represent a property in a composition. Figure 5-32 illustrates dif-
ferent overlap relations that correspond to different ways in which two con-
cept instances represent the same property. Below we explain these overlap
relations in more detail.

ci

p

concept instance

view

i. Equivalent ii. Partly equivalent

iii. Complementary

ci

view

ci

p

view

ci

view

p p

ci

view

ci

view

ci ci

ci

p

ci ci

iv. Composite equivalent

view view

ci

p

legend:

property

represents

Figure 5-32 Correspon-
dences between Con-
cept Instances from
Overlapping Views

162 CHAPTER 5 PRE-DEFINED VIEWPOINT RELATIONS

Equivalent concept instances. If two concept instances represent ex-
actly the same property they are, by definition, equivalent. Figure 5-32.i
illustrates this case. Equivalent concept instances can have a different
graphical or textual representation. Moreover, the concept instances may be
instances of concepts with different names (e.g. Task versus Activity). The
concepts can also differ in that one concept may represent a property ex-
plicitly as an attribute, while the other does not. Such representation
choices do not determine the semantics of the concept and therefore do
not determine whether two concepts are equivalent. Only the property rep-
resented determines whether two concepts are equivalent.

i. A and B interleaved ii. A and B concurrent

a b
ba

Different notions of equivalence. It is possible that two concept in-
stances only represent the same property, if we make certain assumptions
about (what properties we consider relevant in) the real world domain. We
then abstract from other properties. In that case, we can say that two con-
cept instances are equivalent under these assumptions. For example, consider
the behaviours from Figure 5-33. These behaviours can be equivalent if we
abstract from causal relations between actions and from full-concurrency
properties (whether two actions can occur independent of each other).
These assumptions are often used for equivalence notions on finite state
machines. A large variety of equivalence relations for behaviour exists,
which make different assumptions about properties they consider relevant
(van Glabbeek, & Goltz, 2001). We pre-defined the notion of strong behav-
iour equivalence on our basic concepts from chapter 4. The designer can
use this equivalence relation to prescribe that two behaviours must be
equivalent with respect to the causal relations that exist between activities.
The question how this notion of equivalence relates to the notions distin-
guished by van Glabbeek, & Golz remains for further study. Obviously, the
actions from the behaviours in Figure 5-33.i and Figure 5-33.ii do not have
the same causality conditions and therefore are not equivalent under the
assumptions of the notion of strong behaviour equivalence.

As an example of equivalent concept instances, consider a UML Class Diagram and a UML State
Machine Diagram. UML Class Diagrams can be used to represent the classes that exist in an
object-oriented program and methods that can be invoked on those classes. UML State Machine
Diagrams can be used to represent when methods can be invoked. Hence, if we consider UML
Class Diagrams and UML State Machine Diagrams as different viewpoints with their own sets of
concepts, then there is an equivalence relation between each method in a UML State Machine

Figure 5-33 Equivalent
Behaviours under Some
Assumptions

Example 5-14 Equiva-
lent Concept Instances

 PRE-DEFINED OVERLAP RELATIONS AND CONSISTENCY RULES 163

Diagram and a method in a UML Class Diagram. We can represent this relation by a MOF
association between the ‘Method’ meta-classes in both viewpoints. Also, we can prescribe
consistency rules in OCL to check this form of equivalence. For example, we can define that
associated methods must have the same signature.

As another example of equivalence, consider a UML Activity Diagram and a UML State
Machine Diagram as two views that represent the same behaviour. However, a UML Activity
Diagram can represent that two actions occur at the same time, while in a UML State Machine
actions are always interleaved. Hence, they can only represent the same behaviour under the
assumption that it does not matter whether actions occur at the same time or interleaved. Of
course, the designer is free to prescribe a strong equivalence relation between the behaviours
that are represented by the diagrams. However, this is likely to result in inconsistencies (that can
be verified by the consistency rules), because the designer makes a claim that is not true.

Partly equivalent concepts instances. If a concept instance from one
view represents partly the same property as a concept instance from an-
other view as well as some other properties, then these concept instances
are only equivalent with respect to the property that they have in common.
Hence, we say that they are partly equivalent. Figure 5-32.ii illustrates this
case. For partly equivalent concept instances, the designer has to define his
own relation and prescribe exactly with respect to which part the concept
instances are equivalent. The designer can re-use the strong equivalence
notion on behaviours to prescribe that two behaviours must be, in part,
equivalent.

Complementary concept instances. If two concept instances represent
different properties of the same entity, we say that they are complementary.
The concept instances ‘overlap’, because they deal with the same entity.
Figure 5-32.iii illustrates this case. In this case the concepts instances must
be related by some other relation than an equivalence relation, because they
do not represent the same property. The designer must define this relation.
As an example, consider a view that considers causality conditions and a
view that considers causality constraints. The causality conditions describe
the condition for an action to occur in terms of the (non-)occurrence of
other actions, while a causality constraint describes the condition for an
action to occur in terms of constraints on the information that is estab-
lished by other actions. Causality conditions and constraints complement
each other to represent the overall condition for an action to occur. They

Example 5-15 Partly
Equivalent Concept
Instances

The behaviour of a service and the behaviour of that service at a particular interaction point ip are
partly equivalent. The designer can represent this form of partial equivalence, by prescribing that
the service behaviour, after abstracting from all interactions that occur at other interaction points,
must be equivalent to the service behaviour at interaction point ip. We can prescribe this consis-
tency in OCL, using the ‘abstract’ operator and the ‘strong equivalence’ relation defined earlier in
this chapter.

164 CHAPTER 5 PRE-DEFINED VIEWPOINT RELATIONS

are related by an association that associates a causality constraint to an al-
ternative causality condition in the meta-model from chapter 4.

Composite equivalent concept instances. If a composition of concept
instances from one view represents the same property as a composition of
concept instances from another view, these compositions are equivalent.
Figure 5-32.iv illustrates this case. Since, using the MOF, we can only relate
individual concept instances, we can only represent equivalence between a
composition of concept instances and some other concept instance, after
we added a single concept instance that represents the composition as a
whole. This concept instance must be related (directly or indirectly) to the
concept instances that form the composition. Subsequently we can relate
the concept instance that represents the composition via an equivalence
relation to another concept instance (that represents another composition
as a whole). Figure 5-34.i illustrates this situation. As an example, consider
two views that prescribe sets of actions and their relations. To represent
that these sets of actions and their relations are equivalent, we can add a
behaviour concept instance to each of the views and draw the equivalence
relation between those behaviours. The behaviours must be related to the
actions of which they are a composition.

i. Composite equivalence and equivalence ii. Composite equivalence and part equivalence

ci ci

ci

p

ci ci

view view

ci ci

ci

p

ci ci

view view

p

We can also combine the basic overlap relations from Figure 5-32 into
more complex relations. Figure 5-34 illustrates two more complex corre-
spondences. Figure 5-34.i illustrates the case that we described in the pre-
vious paragraph, in which the same property is represented by both a com-
position of concept instances and a single concept instance. Figure 5-34.ii
illustrates equivalence between a composition of concept instances in one
view and a composition of concept instances in another view that represents
the same property as well as another property. The correspondence be-
tween these compositions is such that the composition on the left is equiva-
lent to a part of the composition on the right.

Figure 5-34 Complex
Correspondences be-
tween Concept Instances

Chapter 6
6. Enterprise, Computational and

Information Viewpoint

An earlier version of the work presented in this chapter was published in (Dijkman,
Quartel, Ferreira Pires, & van Sinderen, 2004).

As a case study for the framework outlined in this thesis, this chapter pre-
sents three viewpoints: an enterprise, a computation and an information
viewpoint. We based our viewpoints on the corresponding RM-ODP view-
points.

This chapter is structured as follows. Section 6.1 presents the goal and
scope of the case study. Sections 6.2 and 6.3 present our enterprise and
computational viewpoint, respectively. Section 6.4 presents the relations
between these viewpoints and the consistency rules that apply to these rela-
tions. Section 6.5 presents our information viewpoint and its relations to
the other two viewpoints along with the consistency rules that apply to
these relations.

6.1 Goal and Scope of the Case Study

The goal of the case study is to show that the framework outlined in this
thesis can be applied to realistic viewpoints. The main goal is to show that
the framework aids in defining rules to check the consistency between views
in a design, using a set of basic concepts and re-usable consistency rules. In
addition, the case study serves to illustrate:
– how to define viewpoints in the framework;
– how to define an abstract syntax, that consists of concepts and their re-

lations, for each viewpoint;
– how to relate a graphical notation (concrete syntax) to a collection of

concepts, to represent a view according to a viewpoint;

166 CHAPTER 6 ENTERPRISE, COMPUTATIONAL AND INFORMATION VIEWPOINT

– how to define viewpoint-specific concepts as compositions of basic con-
cepts; and

– how to re-use view relations and consistency rules that were defined on
the basic concepts to define view relations and to check consistency be-
tween views.

The focus of the case study is on the evaluation of the framework rather than
the evaluation of the viewpoints that we define in this chapter.

Currently, the pre-defined viewpoint relations and consistency rules ad-
dress relations and consistency between behaviours. Therefore, this chapter
focuses on behaviour relations and consistency.

Structure
SystemEnvironmentSystem

Behaviour Information

Enterprise

Compu tational

System in Environment

Information about Enterprise

Functional Decomposition

Information

concerns
levels of abstraction

Figure 6-1 shows the viewpoints that we present in this chapter and their
relative position with respect to the concerns and abstraction levels that we
consider (as explained in chapter 1). We base the positions of the view-
points on the correspondences that RM-ODP prescribes and on the defini-
tions of the viewpoints themselves (ITU-T, & ISO/IEC, 1999; ITU-T, &
ISO/IEC, 1995).

The enterprise viewpoint addresses the structural, behavioural and in-
formation concerns of the enterprise, covering both the system and its envi-
ronment.

The computational viewpoint addresses the structure, behaviour and in-
formation concerns of a functional decomposition of the system. Since it
considers a decomposition of the system, it refines the part of the enter-
prise viewpoint that represents the system.

The information viewpoint focuses on the structure and values of infor-
mation that is used in the system and its environment. It refines the enter-
prise viewpoint with respect to the information concern. The computa-
tional viewpoint makes use of the information viewpoint to define the
structure and values of the information that it manipulates. Therefore, the
information and computational viewpoint overlap with respect to this con-
cern.

Figure 6-1 Relative
Position of ODP View-
points

 ENTERPRISE VIEWPOINT 167

6.2 Enterprise Viewpoint

The enterprise viewpoint is used to design a system in its environment. This
is the concern of a stakeholder that wants to have an overview of how the
system is embedded in an environment, such as a director, a quality assur-
ance manager or an enterprise architect. To represent the system in its en-
vironment, an enterprise view represents the community of which the sys-
tem is a part. A community is a configuration of objects that is formed to
meet an objective. The system can be represented by one or more objects
in that community. To represent the community in more detail, the enter-
prise viewpoint addresses the following concerns:
– the objective of the community;
– the structure of the community;
– the behaviour of the community; and
– the policies that govern the structure and behaviour of the community.
It addresses these concerns at the level of abstraction at which the commu-
nity’s objects represent people, business units or applications. The behav-
iour of the community (and its objects) is represented in terms of business
tasks.

6.2.1 Enterprise Viewpoint Concepts

Figure 6-2 shows the enterprise viewpoint concepts and their relations,
represented in the UML Profile for MOF 1.4. This conceptual model is an
adaptation of a part of the conceptual model that is defined in (ITU-T, &
ISO/IEC, 2005). We selected the part that considers the structure and be-
haviour of the system, but not the policies that govern the structure and
behaviour, nor the concepts that relate to accountability. Inclusion of these
concepts is left for future work. Other conceptual models for the RM-ODP
enterprise viewpoint exist (Steen, & Derrick, 2000). We chose the one
from (ITU-T, & ISO/IEC, 2005), because it is the most recent and because
it is a part of an international standardization activity. We made some
changes to the conceptual model, to better match the RM-ODP enterprise
viewpoint specification. We explain these changes below. Also, we made the
following changes, to match the syntax prescribed in the UML profile for
MOF:
1. We changed ternary associations into (multiple) binary associations,

because the MOF 1.4 does not support ternary associations.
2. We changed the way in which roles of classes in associations are graphi-

cally represented. In the UML profile for MOF 1.4 the role of a class in
an association is drawn where the association is attached to that class,
while in the conceptual model the role is drawn on the other side of the
association. we changed the names of the roles accordingly.

168 CHAPTER 6 ENTERPRISE, COMPUTATIONAL AND INFORMATION VIEWPOINT

3. We added a name attribute to some of the concepts, such that their in-
stances can be more easily recognized in a MOF repository.

Figure 6-2 shows a MOF meta-model that represents the enterprise con-
cepts and their relations. For brevity, we prefixed the concept names with
‘E_’ instead of ‘Enterprise’ in the figure. Figure 6-2 represents that a com-
munity is a configuration of enterprise objects. An enterprise object represents
a carrier of behaviour in the enterprise. A community can be represented as
a single community object, such that its constituents are not revealed. Since a
community object is an object itself, it can participate in another commu-

Figure 6-2 Concep-
tual Model for the
Enterprise Viewpoint

E_Community

+name:String

E_Object

+name:String

E_CommunityObject

E_Role

+name:String

E_InterfaceRole

E_BehaviourTemplate

+name:String

E_ActionTemplate

+name:String
E_StepTemplate

+name:String

E_ProcessTemplate

+name:String

E_Objective

+name:String

configuration+*

member+*

abstraction+0..1

represented+

in+

containedRole+ *

fulfiller+

* fulfilled+

1..*

authorized+

* role+

1..*
identifier+

0..1 identified+
behaviour+

1..*

action+ 1..*

abstraction+

* action+

objective+

1..*

role+*

objective+

process+

*

super+ 0..1 sub+*

in+

contained+ 1..*

represented+ 0..1

abstraction+ 0..1

step+ *

actor+1..*

artefact+

*

mentioner+

*

resource+ *

user+
*

/actor+ *

/performed+
1..*

in+

containedProcess+

*

community+0..1

objective+

E_ConstraintTemplate

constraint+

*

process+

0..1

constraint+ *

constrainedStep+

*

constraint+ *

behaviour+0..1

constraint+*

constrainedAction+ *

E_InteractionTemplate E_InternalActionTemplate

E_ObjectTemplate

+name:String

instance+*

template+

 ENTERPRISE VIEWPOINT 169

nity. An enterprise object template represents properties of enterprise objects
in such detail that new objects can be created according to it. Each newly
created enterprise object is an instance of its template.

Figure 6-2 represents the relation between a community and its objec-
tive as an association. In the model from (ITU-T, & ISO/IEC, 2005), a
community is associated to its objective via a contract. However, we chose
not to represent the contract concept explicitly, because a contract is com-
pletely defined by its constituents: the enterprise’s objective, its behaviour
and the policies that govern the enterprise. The objective of a community
can be described in more detail by some sub-objectives.

The behaviour of a community is described by the roles and processes
that are performed in that community, which, therefore, have a contain-
ment relation with the community.

A role is an identifier for a behaviour template. An object that fulfils that
role performs an instance of the template. Our definition of role deviates
from the one given in RM-ODP (ITU-T, & ISO/IEC, 1995, part 2 clause
9.14), where “A role is an identifier for a behaviour …”, rather than a behav-
iour template. We adapted our role concept from the role concept that is
used in the workflow area (where a role is: “A group of participants exhibiting a
specific set of attributes, qualifications and/or skills.” (Workflow Management
Coalition, 1999)). In this definition a role identifies a group of objects and
their behaviours, rather than a single object behaviour. We motivate this
change to the role concept by the ability to model the four-eye-principle.
The four-eye-principle involves two people in the same role cross-checking
each others work. Using our role concept, we can represent this as two
objects fulfilling the same role. Using the RM-ODP role concept, we must
represent this as two objects that fulfil different roles (of the same type). An
interface role is a role that includes interactions with objects outside of the
community. A role contributes to achieving an objective or sub-objective of
the community. Our conceptual model differs from the original conceptual
model in this respect, because the original conceptual model assigns an ob-
jective to behaviours instead of roles. However, (ITU-T, & ISO/IEC, 1999,
clause 7.7) states that “A sub-objective may be assigned to a collection of roles”.
Whether or not an enterprise object can fulfil a role at any moment in time
is determined by an assignment policy. Although we do not consider poli-
cies in detail, we add to the conceptual model that an enterprise object may
be allowed, or authorized, to fulfil a role, because such authorization is usu-
ally part of a business process modelling language (Workflow Management
Coalition, 1999).

In RM-ODP a behaviour is a collection of actions with a set of constraints
on when they may occur. An action is something that happens. An action
can either be performed by a single object, in which case we refer to it as an
internal action, or by some objects in collaboration in which case we refer to

170 CHAPTER 6 ENTERPRISE, COMPUTATIONAL AND INFORMATION VIEWPOINT

it as an interaction. RM-ODP does not prescribe how the behaviour con-
straints must be specified. It allows specifications that are based on RM-
ODP to prescribe their own constraint specification concepts and tech-
niques. We explain further on in this chapter how we apply UML activities
to specify constraints.

Enterprise objects can be involved in an action in three ways:
1. An object is an actor in an action, if it participates in carrying out that

action. Whether an enterprise object is involved in an action as an actor
can be derived from whether it fulfils a role that identifies a behaviour
that performs the action.

2. An object is a resource in an action, if the action uses the object and pos-
sibly makes it unavailable.

3. An object is an artefact in an action, if the action refers to the enterprise
object.

A process is a collection of steps taking place in a prescribed manner and
leading to an objective. A step is an abstraction of an action, in that it may
leave the objects that participate in it unspecified. A process can be per-
formed in a community as often as required. Therefore, the conceptual
model represents process templates rather than process instances. The con-
ceptual model from (ITU-T, & ISO/IEC, 2005) allows that a step is a
member of more than one process. We do not allow this. Instead, we allow
that an action is represented by more than one step, such that each refer-
ence to an action corresponds to a step. In this way each step is a member
of exactly one process, such that it is easy to create and destroy steps along
with the process to which they belong. Each step must be associated with a
role that performs it. A process may itself be considered as a single step,
such that its constituent steps are not revealed.

6.2.2 Representation of Enterprise Views

We use UML 2.0 to represent enterprise views by means of models. We
define the representation relation between enterprise concepts and UML
2.0 modelling elements, by stereotyping the UML 2.0 modelling element.

We deviate from the representation relation that is defined in (ITU-T,
& ISO/IEC, 2005), because this standard represents interactions between
roles by sending and receiving signals. We claim (Almeida, Dijkman,
Ferreira Pires, Quartel, & van Sinderen, 2005) that representing interac-
tions in this way forces a designer to make choices with respect to interac-
tion mechanisms too early in the design process. Moreover, the way in
which (ITU-T, & ISO/IEC, 2005) represents interactions forces the de-
signer to order the exchange of artefacts in an interaction, while the con-
ceptual model from Figure 6-2 does not prescribe that such an ordering
must be provided. Other techniques to represent the ODP enterprise view-

 ENTERPRISE VIEWPOINT 171

point in UML exist as well (Steen, & Derrick, 2000; Aagedal, & Milosevic,
1999). However, these are based on earlier versions of UML.

Enterprise Viewpoint Concept UML 2.0 Modelling Element

E_Community Class stereotyped E_Community

E_CommunityObject Class stereotyped E_CommunityObject

E_Object Class stereotyped E_Object

E_ObjectTemplate Class stereotyped E_ObjectTemplate

E_Role Actor stereotyped E_Role

E_InterfaceRole Actor stereotyped E_InterfaceRole

E_BehaviourTemplate Activity stereotyped E_BehaviourTemplate

E_Objective Class stereotyped E_Objective

E_ProcessTemplate Activity stereotyped E_ProcessTemplate

E_StepTemplate Activity stereotyped E_ProcessTemplate, if the
E_StepTemplate represents a E_ProcessTemplate
Activity stereotyped E_StepTemplate, otherwise

E_ActionTemplate Activity stereotyped E_ActionTemplate

E_ConstraintTemplate Flow in Activity and localPrecondi-
tion/localPostcondition of Action

Table 6-1 presents our representation relation between the enterprise view-
point concepts from Figure 6-2 and the UML 2.0 modelling elements that
we use to represent them. We represent the community, community ob-
ject, enterprise object, enterprise object template and objective concepts by
stereotypes of the UML singleton class (which is a class that has a single
instance) modelling element. We represent the name of an instance of one
of these concepts by the name of the class that represents it. We cannot
represent these concepts using UML objects, because we are cannot define
UML Associations between UML objects, while we must use UML Associa-
tions to represent relations between concept instances. We represent the
role and interface role concepts by stereotypes of the UML actor modelling
element and the names of their instances by the names of the actors. We
represent the behaviour template, process template, step template and ac-
tion template concepts by stereotypes of the UML activity modelling ele-
ment. We represent the names of their instances by the names of the activi-
ties. We represent the containment of a step template in a process template
as the activity that represents the process template calling the activity that
represents the step. Such a call is represented by a UML ‘call behaviour
action’. We represent the containment of an action template in a behaviour
template in the same way. We allow an activity that represents a step tem-
plate or an action template to be implicitly defined by a call behaviour ac-
tion. We represent constraints in a behaviour or process template by flows

Table 6-1 Representa-
tion of Enterprise View-
point Concepts in UML
2.0

172 CHAPTER 6 ENTERPRISE, COMPUTATIONAL AND INFORMATION VIEWPOINT

in the UML activity and pre- and postconditions on the UML call behaviour
actions. We explain this in more detail in the next subsection.

Enterprise Viewpoint Relation UML 2.0 Modelling Element

E_Object or E_Role in E_Community aggregation stereotyped memberObject and
memberRole, respectively

E_ProcessTemplate in E_Community aggregation stereotyped processOf

E_Objective of E_Community association stereotyped objectiveOf

E_CommunityObject representing
E_Community

E_Community and E_CommunityObject having
the same name

E_Object fulfilling E_Role association stereotyped fulfils

E_Object authorized to fulfil E_Role association stereotyped authorizedForRole

E_Role identifying E_BehaviourTemplate association stereotyped identifies

E_BehaviourTemplate containing
E_ActionTemplate

activity containing call behaviour action, which
calls the activity that represents the
E_ActionTemplate

instance of E_ObjectTemplate as artefact in
E_ActionTemplate

class representing the object template as the type
of a parameter of the activity

E_Object as actor in E_ActionTemplate implicitly represented via the associations be-
tween the object, its roles, the behaviours identi-
fied by the roles and the actions contained in
those behaviours

E_Object as resource in E_ActionTemplate association stereotyped resourceIn

sub-objective of objective aggregation stereotyped subObjective

E_Role helping to achieve E_Objective association stereotyped helpsToAchieve

E_ProcessTemplate containing
E_StepTemplate

activity containing call behaviour action, which
calls the activity that represents the
E_StepTemplate

E_ProcessTemplate towards E_Objective association stereotyped towards

E_StepTemplate representing
E_ProcessTemplate

represented by the activity being stereotyped
E_ProcessTemplate rather than E_StepTemplate

E_StepTemplate representing
E_ActionTemplate

represented by the activities that represent the
E_StepTemplate and the E_ActionTemplate hav-
ing the same name

E_Role authorized to perform
E_StepTemplate

association stereotyped authorizedForStep

Table 6-2 illustrates the representation relation between the enterprise
viewpoint relations from Figure 6-2 and the UML 2.0 modelling elements
that we use to represent these relations.

A UML association represents a general form of relation. We use it to
represent most of the relations from Figure 6-2. We specialize the associa-
tions with stereotypes, as indicated in Table 6-2, to represent specific rela-

Table 6-2 Representa-
tion of Enterprise View-
point Relations in UML
2.0

 ENTERPRISE VIEWPOINT 173

tions between the enterprise viewpoint concepts. We represent some of the
relations by aggregation associations to indicate that the concept instance
on the aggregate side of the aggregation contains the concept instance on the
other side of the aggregation. We represent the relation between a commu-
nity object and the community of which it is an abstraction, by the commu-
nity object and the community having the same name. Similarly, we repre-
sent the relation between a step template and the action template of which
it is an abstraction, by step template and the action template having the
same name. We represent that a process template contains a step template
by the activity that represents the process template containing a call to the
activity that represents the step template. We represent that a behaviour
template contains an action template in the same way. We represent that an
enterprise object is referenced as an artefact of an action template, by rep-
resenting the enterprise object as a parameter of the activity that represents
the action template.

Chapter 3 explains the graphical representation of MOF classes and as-
sociations, which is the same notation used for UML classes and associa-
tions. A UML actor is graphically represented as a puppet. We explain the
graphical representation of UML activities in the next subsection.

ActivityNode
ActivityEdge

ExecutableNode ObjectNode ControlNode

Action

ControlFlow ObjectFlow

Pin ActivityParameterNode

InputPin OutputPin

input+ * output+ *

ValuePin

source+

outgoing+

*

target+

incoming+

*

ValueSpecification
value+

guard+

Constraint

0..1

localPreCondition+

*

0..1

localPostCondition+

*

0..1

specification+

*

/transformation+

*

*

/selection+

*

OpaqueExpression

+body:String
+language:String[0..1]

InstanceValue

Figure 6-3 UML Activity
Diagram Concepts

174 CHAPTER 6 ENTERPRISE, COMPUTATIONAL AND INFORMATION VIEWPOINT

6.2.3 Representing Constraints with UML Activities

By representing behaviour, action, process and step templates as UML ac-
tivities, we inherit the concepts from UML activities to represent behaviour
constraints. Figure 6-3 shows some of the concepts from UML activities.
We restrict ourselves to these concepts for representing behaviour con-
straints. UML allows for a lot of freedom in the notation and the use of
these concepts. Below, we use them in a more restrictive way. Addition of
other concepts and loosening restrictions is left for future work.

We use UML flows and pre- and postconditions to represent behaviour
constraints. UML control flows and UML object flows represent the flow of con-
trol and information, respectively, from one action in a system to another.
We only use UML call behaviour actions (which in our case represents a step
template of an enterprise action template). A flow passes tokens from one
action to the other. In a control flow, the flow of tokens represents that the
action at the source of the flow enables the action at the target of the flow.
In an object flow, the flow of tokens represents the flow of information
from one action to the next. Flows constrain behaviour, because an action
can only start if all its incoming flows have a token on them. If an action
completes, it puts a token on all its outgoing flows. An object flow must
connect an output pin or activity parameter node to an input pin or activity
parameter node. An output pin represents the output information of an ac-
tion, while an input pin represents the input information of an action. Pins
have a name and a type. If the action is a UML call behaviour action (an
action that represents the execution of some behaviour, such as a UML
activity), the input and output pins must correspond to the parameters of
the called behaviour. A value pin is a special kind of input pin, which repre-
sents a pre-defined input value. We can represent this value as an instance
of a UML data type (e.g. String), in which case we represent it as a UML
instance value. We can also represent this value using an expression in an
arbitrary language, in which case we represent it as a UML opaque expression.
We will use OCL for these purposes. An activity parameter node represents
the input or output of the activity. If the activity is started via a call behav-
iour action, the input pins of the call behaviour action must correspond to
parameter nodes of the called activity. The tokens that arrive on the input
pins are passed to the activity parameter nodes. The output pins of the call
behaviour action must correspond to output parameter nodes of the called
activity. Tokens that arrive on the output parameter nodes are passed to the
output pins.

An object flow can have a flow transformation that represents that the
flow transforms the information value that is put on it. A flow transforma-
tion transforms some input into some output. The input of the flow is rep-
resented by the output pin that is the source of the flow, while the output

 ENTERPRISE VIEWPOINT 175

of the flow is represented by the input pin that is the target of the flow. An
OCL constraint is associated with the transformation. This constraint
represents the postcondition of the transformation behaviour. The OCL
constraint can refer to the input and output pins that the flow connects, as
if they were variables with their name and type specified by the pins. Simi-
larly, a selection represents that only particular values can be put on a flow.

The activity that an action represents can also be specified in more de-
tail, by representing the pre- and postconditions of that action in OCL. A
precondition represents a condition on the input of an action that must be
satisfied before the action can be performed. A postcondition represents a
condition that the output of the action satisfies.

<name>

i. Activity iii. Action

<name>

ii. Flow iv. Input pin v. Output pin

vi. Parameter
node

«<type>»
<constraint>

vii. Constraint

Figure 6-4 shows how we graphically represent UML activities. We repre-
sent an action or an activity as a rounded rectangle with the name of the
action or activity inside it. In case of a call behaviour action, the name of
the action is the name of the behaviour (e.g. the activity) that is called. We
represent a flow as an arrow. We represent input and output pins as blocks
on an action that only have incoming or outgoing flows, respectively. The
value of a value pin must be represented close to the pin. Similarly, we rep-
resent input and output parameter nodes as blocks on an activity that only
have outgoing or incoming flows, respectively. We represent constraints
inside a comment box that is attached to the model element that it con-
strains. The comment box is stereotyped with the type of constraint that it
represents (local pre- or post-condition, selection, or transformation).

«localPostCondition»
t.i=i and t.s=s

«localPreCondition»
i<>0

s:String=
‘someValue’

i: Integer
a

t:Tuple(i: Integer, s: String)
s:String

«transformation»
s=t.s

«selection»
t.i<>0

Figure 6-4 Graphical
Notation for UML Activi-
ties

Figure 6-5 Example of a
UML Activity

176 CHAPTER 6 ENTERPRISE, COMPUTATIONAL AND INFORMATION VIEWPOINT

ControlNode

ForkNode

JoinNode

FinalNode

FlowFinalNode ActivityFinalNode

MergeNode

DecisionNode

InitialNode

We can represent more advanced behaviour constraints, using control
nodes. A control node is a node that can be the source and target of flows
and that affects the tokens on these flows in a pre-defined manner. Figure
6-6 shows the different kinds of control nodes that exist. Their ways of af-
fecting tokens are as follows:
– if a token is put on the incoming flow of a fork node, it removes that

token and puts tokens (representing the same value) on all of its outgo-
ing flows. Figure 6-7.i shows the graphical representation for a fork
node;

– if a join node has tokens on all its incoming flows, it removes those to-
kens and puts one token on its outgoing flow. Possible information val-
ues are combined. However, this is outside the scope of this thesis.
Figure 6-7.ii shows the graphical representation for a join node;

– a flow final node removes all tokens that arrive on its incoming flows.
Figure 6-7.iii shows the graphical representation for a flow final node;

Example 6-1 A UML
Activity Figure 6-5 shows a UML activity with an input parameter of type integer and an output parameter

of type string. An object flow from the input parameter node to an input pin of action ‘a’ passes a
token that represents an integer value to ‘a’. The precondition of ‘a’ defines that the value should
not be zero. ‘a’ has a value pin that is assigned the string ‘someValue’. The postcondition of ‘s’
ensures that the output value of ‘a’ is a tuple with an integer and a string value that are equal to
the inputs of ‘a’. The object flow that leaves the output pin of ‘a’ accepts only tokens that repre-
sent a tuple with an integer value that is not zero, as specified by the selection of the object flow.
The transformation of the object flow ensures that a token that only contains the string value of
the tuple is delivered to the output parameter.

Figure 6-6 Control
Nodes

 ENTERPRISE VIEWPOINT 177

– an initial node initially has tokens on all its outgoing flows. Figure 6-7.iv
shows the graphical representation for an initial node;

– an activity final node removes all tokens from the activity if a token ar-
rives on one of its incoming flows. Figure 6-7.v shows the graphical rep-
resentation for an activity final node;

– if a token is put on an incoming flow of a merge node, it removes that
token and puts a token (representing the same value) on its outgoing
flow. Figure 6-7.vi shows the graphical representation for a merge node;

– if a token is put on the incoming flow of a decision node, it removes
that token and puts a token (representing the same value) on the outgo-
ing flow of which the value satisfies the attached OCL constraint (also
called guard). A special guard, named ‘else’, exists that is only satisfied if
none of the other constraints are satisfied. No two guards should be sat-
isfied at the same time. Figure 6-7.vii shows the graphical representa-
tion for a decision node.

i. Fork ii. Join iii. Flow final iv. Initial v. Activity final vi. Merge vii. Decision

[else]

[<guard>]

6.2.4 Example of an Enterprise View

Figure 6-8 shows an example of an enterprise view that uses the concepts
from subsection 6.2.1 and the notation from subsection 6.2.2. Figure 6-8.i
shows an enterprise community that contains three enterprise objects and
three roles. One of the objects is a community object that is further de-
tailed as a community. Figure 6-8.ii represents the behaviour templates
identified by the roles in the ‘ValueChain’ community as activity diagrams.
The ‘Product’ and ‘Offer’ enterprise object templates that are used by the
action templates are represented as parameters to the call behaviour ac-
tions. Hence, their instances represent artefacts that are used by the actions
represented by the action templates. The ‘RequestOffer’ and ‘NotifyCheap-
est’ behaviour call actions appear both in the ‘BuyerBehaviour’ and in the
‘ProcurerBehaviour’, indicating that they represent interactions between
behaviours of those templates. Similarly, the ‘RequestPrice’ behaviour call
action appears both in the ‘ProcurerBehaviour’ and the ‘SellerBehaviour’,
indicating that it represents an interaction between behaviours of those
templates. Figure 6-8.iii shows the business process template that is part of
the ‘ValueChain’ community. The step templates bear the same names as
the action templates from the behaviours, indicating that they represent
these action templates. Figure 6-8.iv shows which roles are authorized to
perform steps of which templates, which enterprise objects are authorized
to perform which roles and which enterprise object fulfils which role.

Figure 6-7 Graphical
Notation for Control
Nodes

178 CHAPTER 6 ENTERPRISE, COMPUTATIONAL AND INFORMATION VIEWPOINT

Figure 6-8.v illustrates the contributions of roles and processes to the goal
for which the ‘ValueChain’ community exists.

«E_BehaviourTemplate»
ProcurerBehaviour

«E_Role»

Buyer

«E_Role»

Seller

«memberRole» «memberRole»

Request
Offer

«E_Role»

Procurer

«identifies»

product:Product

i. Enterprise Structure

ii. Enterprise Behaviours

iii. Enterprise Process

«E_Community»
ValueChain

«processOf»

«E_Community»
ValueChain

«E_CommunityObject»
SellerFed

«E_Object»
ProcurementCompany

«E_Community»
SellerFed

«E_Object»
CompanyB

«E_Object»
CompanyC

«memberObject»«memberObject»«memberObject»«memberObject»«memberObject»

«E_Role»

Member

«E_Role»

Chair
«memberRole» «memberRole»

Request
Price

offer: Offer

[offer.moreRequired]

[else]
Notify

Cheapest

«E_Role»

Procurer
«memberRole»

«E_Object»
CompanyA

product:Product offer: Offer

«E_ProcessTemplate»
ProcurementProcess

Request
Offer

product:Product

Request
Price

offer: Offer

[offer.moreRequired]

[else]
Notify

Cheapest

product:Product offer: Offer

«E_BehaviourTemplate»
BuyerBehaviour

«E_Role»

Buyer

«identifies»

product:Product offer: Offer

«E_BehaviourTemplate»
SellerBehaviour

«E_Role»

Seller

«identifies»
Request

Price

offer: Offerproduct:Product

Notify
Cheapest

Request
Offer «E_ObjectTemplate»

Offer

«E_ObjectTemplate»
Product

Figure 6-8 An Enter-
prise View Represented
in UML

 ENTERPRISE VIEWPOINT 179

«E_Objective»
ProcureGoods

«helpsToAchieve»

«E_ProcessTemplate»
ProcurementProcess

«helpsToAchieve»

«towards»

v. Contributions towards Objective

«E_Community»
ValueChain

«objectiveOf»

«E_StepTemplate»
RequestOffer

«E_Object»
CompanyA

«fulfils»

«authorizedForRole»«authorizedForRole»
«fulfils»

«authorizedForStep»«authorizedForStep»

iv. Authorization

«E_StepTemplate»
RequestPrice

«E_CommunityObject»
SellerFed

«fulfils»

«E_Role»

Buyer

«E_Role»

Seller

«E_Role»

Procurer

«helpsToAchieve»

«E_StepTemplate»
NotifyCheapest

«E_Role»

Buyer

«E_Role»

Seller

«E_Role»

Procurer

«authorizedForStep»

«E_Object»
ProcurerCompany

«authorizedForRole»

«fulfils»

6.2.5 Relation of Enterprise Viewpoint Concepts to Basic Concepts

We define the relation between the enterprise viewpoint concepts and the
basic viewpoint concepts in terms of a transformation. The transformation
defines how a view in terms of enterprise viewpoint concepts can be trans-
formed into a view in terms of basic concepts. We explain the transforma-
tion informally, i.e. in natural language. The role and objective concepts are
not supported by the basic concepts, because basic concepts (or composi-
tions thereof) that represent the same properties do not exist. Therefore,
these concepts cannot be transformed into basic concepts.

Procurement
Company

CompanyCCompanyB

SellerFed
ValueChain

CompanyA

Figure 6-8 An Enter-
prise View Represented
in UML (continued)

Figure 6-9 An Example
of Enterprise Structure
Transformation

180 CHAPTER 6 ENTERPRISE, COMPUTATIONAL AND INFORMATION VIEWPOINT

Transformation of structural concepts. We transform communities
and enterprise objects (that are not community objects) into entities. We
transform the membership of an enterprise object to a community into an
instantiation of the entity that represents the enterprise object by the entity
that represents the community. Similarly, we transform the membership of
a community object o (that represents some community c1) to a community
c2 into the containment of the entity representing c1 in the entity represent-
ing c2. Figure 6-9 illustrates the transformation of the enterprise structure
from Figure 6-8.i into basic concepts.

Since the entity model that is the result of the transformation does not
contain interaction points, it cannot be considered a well-formed entity
model. In future work, we must create rules to add interaction points to
the basic model. However, for now we focus on the behaviour concern.

ProcurementProcess

RequestOffer
product: Product

RequestPrice
product: Product
offer: Offer

NotifyCheapest
offer: Offer

Transformation of behaviour and process templates. We transform
behaviour templates into basic behaviour types and internal action tem-
plates into basic action instantiations. We transform an interaction template
into one basic interaction contribution instantiation for each behaviour
template in which the interaction template is contained. A basic action in-
stantiation or interaction contribution instantiation must be contained in
the basic behaviour type that represents the behaviour template in which
the corresponding internal action or interaction is contained.

We transform process templates into basic behaviour types and step
templates (that do not represent process templates) into basic action in-
stantiations. We transform a step template that does represent a process
template into an instantiation of the basic behaviour type that corresponds
to that process template.

To transform an artefact of an action into an instance of a basic concept,
we transform the UML pin that represents the artefact. We transform a pin
into an information attribute with the same name and information type as
the pin. If an attribute represents a value pin, we add an OCL constraint
that states that the value of the attribute must be equal to the value of the
value pin.

Figure 6-10 shows an example in which the process template from
Figure 6-8.iii is transformed into a basic behaviour type. The type contains

Figure 6-10 An Example
of a Behaviour Template
Transformation

 ENTERPRISE VIEWPOINT 181

the steps in the process as basic action instantiations. The pins that repre-
sent the parameters of the steps are transformed into information attributes
of the corresponding basic action instantiations.

Activity Concept Basic Concept

aa OR a aOR OR

aa OR a a aOR OR

OR

Removed

[cond2]

[cond1]
[cond2]

Transformation of constraints. To transform constraints into basic con-
cepts, we transform the UML flows and pre- and postconditions that repre-
sent these constraints. The transformation consists of the following steps:
1. transform flows and nodes into basic causality conditions;
2. rewrite invalid disjunctive conditions;
3. add guards, transformations, selections and pre- and postconditions.

Step 1. The first step in the transformation is the transformation of flows
and nodes into basic causality conditions. Table 6-3 shows this transforma-
tion. The transformations are the following:
– We transform a flow to an UML action into a causality condition of the

corresponding action instantiation, interaction contribution instantia-
tion or behaviour instantiation. If multiple flows point to a UML action,
the causality condition of the corresponding basic concept is the con-

Table 6-3 Transforma-
tion of Activity Concepts
to Basic Concepts

182 CHAPTER 6 ENTERPRISE, COMPUTATIONAL AND INFORMATION VIEWPOINT

junction of the causality conditions into which the flows can be trans-
formed.

– We transform a flow from an UML action into a basic enabling condi-
tion on the corresponding action, interaction contribution or behaviour
instantiation, because a flow from an UML action enables the execution
of its target after the UML action has completed.

– We transform a flow from an initial node into a start condition, because
each flow from an initial node initially gets a token, such that its target
can be performed (depending on other flows that have the same target).

– We do not transform a flow to a flow final node, because the flow final
node does not affect the execution of any other nodes.

– We transform flows to a join node into the conjunction of the condi-
tions represented by those flows, because the join node enables its out-
going flow if all its incoming flows are enabled.

– We transform a flow to a fork node into the corresponding basic condi-
tion targeting each of the basic concept instances that the flow points to.
We can do this, because a join node enables each of its targets when it is
enabled.

– We either transform a decision between some UML actions into a basic
choice between the corresponding targets or into the enabling of newly
created behaviour instantiations (and other targets) that mutually disable
each other. We prefer to use the first construct, because it is easier.
However, the second construct must be used in the case where one (or
more) of the flows point to a fork node. This is because, in this case, us-
ing the basic choice would cause the actions that are the target of the
fork node to mutually disable each other (as illustrated in Figure 6-11),
while they should not. If a decision is part of a loop (it (implicitly) de-
pends on itself), actions and interaction contributions that are part of
that loop (that (implicitly) depend on the decision and on themselves)
are enabled by the condition of the decision. However, in this case, we
do not add mutual disabling relations between these actions and interac-
tion contributions. We will do that in the next step. Figure 6-12 illus-
trates this case. The decision node in the figure indirectly depends on it-
self. Hence, it is part of a loop. Action a depends the decision and on it-
self and therefore is part of the same loop. Therefore, we do not add the
mutual disabling between a and the behaviour that contains b and c.

– We transform flows to a merge node into a disjunction between the
corresponding basic conditions. Note, however, that, while a disjunction
only enables the execution of its target once, the merge can enable the
execution of its target once for each flow pointing to it. We fix this discrep-
ancy between the semantics of the two concepts in step 2.

– Regarding activity final nodes, we focus on the case in which the activity
final node only receives a token if no other tokens exist in the activity

a

b

c

a

b

c
wrong

transformation
a

b

c

right
transformation

Figure 6-11 Transfor-
mation of Decision
Nodes

 ENTERPRISE VIEWPOINT 183

anymore. In this case, the activity final node represents a milestone (the
completion of the activity) and does not affect the execution of other
parts of the activity. Therefore, we do not transform it into a basic cau-
sality condition.

Step 2. The second step in the transformation is rewriting disjunctions that
were transformed from a merge node through which more than one token
could flow. This is the case if:
1. tokens can be put on more than one of its incoming flows, for example,

because these flows (indirectly) all depend on an initial node; or
2. the merge node is part of a loop, such that a token can be put on it, af-

ter a token was already processed by it once. Figure 6-12 illustrates a
merge node for which this is the case.

In the basic concepts, an action, interaction contribution or behaviour can
only be repeated if the behaviour type of which it is a part is instantiated
more than once. Therefore, we change the disjunction that is transformed
from a merge through which multiple tokens flow as follows:
1. We remove the disjunction and everything that causally depends on it

from its behaviour type and put it in a new behaviour type.
2. On that behaviour type we add an entry point for the disjunction. The

condition of the entry point is the condition of the disjunction. Also, we
add an entry point for each disjunction that both causally depends on
the first disjunction and on which the first disjunction depends. Their
conditions are the conditions of the disjunctions for which they are cre-
ated. We add these entry points because the merges from which they
(their disjunctions) are transformed are part of the same loop as the first
disjunction. Therefore, they must be part of the same instantiation.

3. We replace each alternative condition of the original disjunction(s) by
an instantiation of the new behaviour type, such that the condition of
the entry point of that instantiation equals the alternative condition.

4. In step one we did not add disabling relations to actions and interaction
contributions that were part of a loop when transforming a decision
node. Now that we have transformed the loop, we can do that.

Figure 6-12 illustrates this step. For the disjunction that was transformed
from the merge that caused the repeated occurrence of a, create an entry
point of a new behaviour type. This behaviour can both be instantiated by
the start condition and by the occurrence of a. The recursive instantiation
of the behaviour and the behaviour that contains b and c mutually disable
each other, such that, after a has occurred once, there is a choice between
executing the behaviour that contains b and c, or repeating the entire behav-
iour.

If interaction contributions are put inside a new behaviour type, they
must be added as structured interaction contributions to the behaviour type

b

c

a

c

original activity

result of first step

c

result of second step

a
B b

B b

a b

b b

Figure 6-12 Transfor-
mation of Loops

184 CHAPTER 6 ENTERPRISE, COMPUTATIONAL AND INFORMATION VIEWPOINT

that contains one or more instantiations of the new behaviour type. The
interaction contribution of each contained behaviour instantiation is an
alternative interaction contribution for the structured interaction contribu-
tion. Figure 6-12 illustrates this for interaction contribution b that must be
added as a structured contribution to the overall behaviour.

Also, if actions or interaction contributions are put inside a new behav-
iour type, they may causally depend on actions or interaction contributions
outside the behaviour as a result. Causality relations between actions or
interaction contributions outside and inside a behaviour must be split up
using point conditions.

Step 3. The third step in the transformation is the addition of guards,
transformations, selections and pre- and postconditions into causality and
attribute constraints. We transform a guard or a selection on a flow into a
basic causality constraint on the corresponding basic condition. Assuming
that guards and the selections are represented as OCL constraints and that
the UML binding to the basic concepts is used, the basic constraint is equal
to the guard or selection from which it must be transformed. An ‘else’
guard must be transformed into a constraint that is the ‘not’ of the disjunc-
tion of the conditions on the other flows that leave the decision node. We
must do this, because the causality condition that corresponds to the flow
with the ‘else’ guard is enabled if none of the other flows are. We transform
a transformation on a flow into a constraint on the attribute that represents
the input pin to which the flow points. We transform pre- and postcondi-
tions into constraints on the corresponding attribute. An object flow also
represents a constraint, in that the value of the pin that the flow points to
must be the same as the value of the pin that the flow comes from. There-
fore, we transform an object flow into an equivalence constraint on the at-
tributes that correspond to the pins that the flow connects.

We replace an object that is referenced by the name of the pin, by <the
name of the action of which the object is a result>.<the name of the
pin>, because the basic concepts require an information value to be refer-
enced by <the name of an action or interaction contribution>.<the name
of an attribute of that action or interaction contribution>.

A constraint can reference an attribute from another behaviour, as the
result of a disjunction being transformed into an entry point of another
behaviour. In that case, we must pass the value of the attribute as a parame-
ter of the entry point. The parameter of the entry point has the same name
and type as the attribute and the constraint that its value must be equal to
the value of the attribute. Also, the constraint that references the attribute
must reference the parameter from the entry point instead.

 ENTERPRISE VIEWPOINT 185

B

ProcurementProcess

ProcurementProcess

B b

B b

i. Behaviour after Transforming Flows and Nodes

ii. Behaviour after Rewriting Disjunctive Conditions

BProcurementProcess

B b

B b

not RequestPrice.offer.moreRequired

iii. Behaviour after Addition of Guards

product = RequestOffer.product

1
product: Product

RequestOffer
product: Product

RequestPrice
product: Product
offer: Offer

NotifyCheapest
offer: Offer

RequestOffer
product: Product

RequestPrice
product: Product
offer: Offer

NotifyCheapest
offer: Offer

RequestOffer
product: Product

NotifyCheapest
offer: Offer |
 offer = RequestPrice.offer

RequestPrice
product: Product |
 product = 1.product
offer: Offer

RequestPrice.offer.moreRequired product = RequestPrice.product

Figure 6-13 shows an example in which the constraints from the process template from Figure
6-8.iii are transformed into basic behaviour constraints. Figure 6-13.i shows the result of the first
step, in which UML flows are transformed into causality conditions according to Table 6-3.

Figure 6-13.ii shows the result of the second step, in which the disjunctive condition of the
‘RequestPrice’ action instantiation is transformed into two behaviour instantiations of a new
behaviour type. We added an entry point to the new behaviour type for the disjunction. The
behaviour type contains all actions that depended on the disjunction. Both alternative conditions
of the disjunction (‘RequestOffer has occurred’ and ‘RequestPrice has occurred, but
NotifyCheapest has not yet occurred’) are transformed into conditions for instantiations of the
new behaviour type.

Figure 6-13.iii shows the result of the third step, in which the guard conditions are

Figure 6-13 An Example
of Constraint Transfor-
mation

Example 6-2 Constraint
Transformation

186 CHAPTER 6 ENTERPRISE, COMPUTATIONAL AND INFORMATION VIEWPOINT

transformed. We transformed the ‘else’ guard into the ‘not’ of the disjunction of the guards on
the other flows (offer.moreRequired). We prefixed ‘offer’ with ‘RequestPrice’, because that is the
way in which we must refer to the result of an action or interaction. The ‘offer’ attribute value
must be equal for the ‘RequestOffer’ and ‘RequestPrice’ action instantiations and the ‘product’
attribute value must be equal for the ‘RequestPrice’ and ‘NotifyCheapest’ action instantiations,
because the corresponding attributes were originally passed as objects in the UML activity.

Transformation into behaviour instantiations. We transformed en-
terprise processes and behaviours into basic behaviour types. However, be-
haviour types cannot be performed. Only their instances can be. Therefore,
we must create instances of the behaviour types that represent enterprise
processes and behaviours.

Multiple instances of a process can be active in an enterprise at the same
time. However, since a process is only aimed at representing the activities
performed to achieve a certain goal, it does not consider the relations be-
tween these instances. Therefore, we cannot construct a complete design
with multiple instantiations of the same process. However, as we see later,
creating multiple instantiations is not necessary for verifying conformance,
we create only a single instantiation for each process.

Each enterprise object that fulfils an enterprise role, performs a behav-
iour of the type identified by that role. Therefore, in each community, we
create an instantiation of the basic behaviour represented by a role, for each
enterprise object fulfilling that role. We create an interaction between (in-
teraction contributions of) the behaviour instantiations for each enterprise
interaction. We assume that, if multiple instantiations of the same behav-
iour type exist, any of these instantiations can contribute to an interaction.
Hence, each instantiation adds an alternative interaction contribution to the
interaction.

ProcurerBehaviour ProcumentCompany

SellerBehaviour CompanyA SellerBehaviour SellerFed

RequestPrice
product: Product
offer: Offer

RequestPrice
product: Product
offer: Offer

RequestPrice
product: Product
offer: Offer

RequestOffer
product: Product

NotifyCheapest
offer: Offer

Figure 6-14 An Example
of Transformation into
Behaviour Instantiations

 COMPUTATIONAL VIEWPOINT 187

6.3 Computational Viewpoint

The computational viewpoint is used to design a functional decomposition
of the system. This is the concern of a stakeholder that wants to have an
overview of the constituents of the system at a level of abstraction above the
software implementation. To represent the functional decomposition of the
system, the computational viewpoint addresses the following concerns:
– the structure of the system;
– the behaviour of (the parts of) the system; and
– contracts that govern the behaviours of the parts and their interconnec-

tions.
The computational viewpoint assumes that the design will be implemented,
using some object-oriented or component-based middleware to implement

Example 6-3 Transfor-
mation into Behaviour
Instantiations

Figure 6-14 illustrates the transformation of enterprise objects that fulfil roles according to
Figure 6-8.iv into instantiations of the basic behaviour types identified by those roles. The figure
shows one instantiation of the behaviour associated with the ‘Procurer’ role, because there is
only one object that fulfils that role. There are two instantiations of the behaviour associated with
the ‘Seller’ role, because there are two objects that fulfil that role.

The ‘RequestPrice’ interaction can be performed by the ‘ProcurementCompany’ in the ‘Pro-
curer’ role and either ‘CompanyA’ in the ‘Seller’ role or the ‘SellerFed’ in the ‘Seller’ role. There-
fore, the ‘RequestPrice’ basic interaction has two alternatives that correspond to these two op-
tions.

Figure 6-15 Conceptual
Model for Computational
Instance Concepts

C_Instance

+name:String

C_Object C_Interface

C_Binding
C_BindingObject

C_CompoundBinding C_PrimitiveBinding

C_State

+name:String

C_StreamInterface

C_SignalInterface

C_OperationInterfacebinding+0..1

bound+ 2..*

object+

interface+

1..*

object+

state+

*

implementer+

implemented+

C_ActiveState

composite+

0..1 component+

2..*

188 CHAPTER 6 ENTERPRISE, COMPUTATIONAL AND INFORMATION VIEWPOINT

the interactions between the system parts. Hence, it represents the system
at a level of abstraction at which such interactions must be considered.

6.3.1 Computational Viewpoint Concepts

As a conceptual model for the computational viewpoint, we use an adapted
version of the conceptual model from (ITU-T, & ISO/IEC, 2005). We
adapted the conceptual model syntactically in the same way as we adapted
the conceptual model for the enterprise viewpoint. We separated the con-
ceptual model into three diagrams:
– The computational instances diagram (Figure 6-15) that incorporates

the concepts that represent the system parts and their properties;
– The computational templates diagram (Figure 6-16 and Figure 6-17)

that incorporates the concepts that represent templates according to
which instances can be constructed; and

– A diagram that relates the instance concepts to the template concepts
(Figure 6-18).

The distinction between the computational templates and computational
objects is also made in (ITU-T, & ISO/IEC, 2005) and (Akehurst, et al.,
2003). To make the distinction more strict than in (ITU-T, & ISO/IEC,
2005), we added the behaviour specification and contract specification
concepts, as the template counterparts of behaviour and contract. We also
included a relation between those concepts and the action template and
constraint template concepts, representing that the behaviour and contract
specification templates contain the related action and constraint templates.

A computational view consists of a configuration of computational objects.
A computational object has a behaviour that is determined by the template
according to which it is instantiated. The behaviour of an object is defined
by the actions that the object can perform, possibly in collaboration with
other objects, and the constraints on the occurrence of those actions. A
computational object also has a state. The state of an object is the mode that
determines the actions in which an object can take part from a certain mo-
ment in time. The state of an object can change when it performs an action.
We consider the state of an object to be implicitly defined by the behaviour
of that object and the actions that an object has performed, along with the
result that was established during these actions. We can do this, because the
behaviour of an object and (the results of) the actions that an object has
performed, determine which actions it can take part in next. We call the
current state of an object the active state.

An object has interfaces. An interface is an abstraction of the behaviour
and environment contract of an object. It is an abstraction by considering
only the interactions that an object may have at a particular binding. We
explicitly added the relation between the object and interface concept,

 COMPUTATIONAL VIEWPOINT 189

which was not contained in (ITU-T, & ISO/IEC, 2005). We distinguish
three different kinds of interfaces:
1. The stream interface, which is an interface that contains only interactions

that are abstractions of a sequence of interactions. Such interactions are
called flows.

2. The signal interface, which is an interface that contains only interactions
that represent an atomic shared activity between two objects. Such in-
teractions are called signals.

3. The operation interface, which is an interface that contains only interac-
tions that follow the request/response pattern. Such interactions are
called operations. We consider an operation as consisting of a request,

Figure 6-16 Conceptual
Model for Computational
Template Concepts

C_Object TemplateC_InterfaceTemplate

C_BehaviourSpecification

C_EnvironmentContractSpecification

C_StateChangeTemplate

C_ConstraintTemplate

behaviour+ 0..1

constraint+*

contract+0..1

constraint+ *

object+

interface+

1..*

C_InterfaceSignature

+name:String

C_OperationInterfaceSignature

-causality:OperationCausality

template+

signature+

C_SignalInterfaceSignature C_StreamInterfaceSignature

superType+

*

subType+*

C_StateTemplate

+name:String

object+

state+

*

to+

incoming+ *

from+

outgoing+ *

C_ActionTemplate

cause+

changed+*

behaviour+

1..*

action+ 1..*

constraint+
* target+

1..*

C_Template

+name:String
template+

contract+
template+

behaviour+

C_InitialStateTemplate C_FinalStateTemplate

190 CHAPTER 6 ENTERPRISE, COMPUTATIONAL AND INFORMATION VIEWPOINT

which we call invocation, and optionally a response, which we call termi-
nation. In case an operation has a response we call it an interrogation, oth-
erwise we call it an announcement.

A binding between interfaces represents a contractual context in which joint
activities of objects can occur. A joint activity cannot occur between two
objects if no binding exists between (interfaces of) those objects. We distin-
guish between a primitive binding that binds only two interfaces and a com-
pound binding that can bind any number of interfaces. A compound binding
can be represented by a computational object, a so-called binding object, and
primitive bindings between the binding object and the objects that are
bound by the compound binding. In that case we also say that the computa-
tional object implements the compound binding.

C_ActionTemplateC_ActionSignature

+name:String
+/numberOfParameters:Integer

C_Parameter

+name:String
+type:String

C_InternalActionSignature

C_InteractionSignature

C_OperationInterfaceSignature

-causality:OperationCausality

C_OperationSignature

C_AnnouncementSignature C_InterrogationSignature

C_InvocationSignature

C_TerminationSignature

C_SignalSignature

+causality:SignalCausality

C_SignalInterfaceSignature

C_StreamInterfaceSignature

C_FlowSignature

+causality:FlowCausality

interface+

interrogation+*

announcement+

invocation+

action+

parameter+

*
template+

signature+

1..*

superType+

*
subType+ *

interrogation+

termination+

interrogation+

invocation+

interface+

signal+ *

interface+

flow+ *

The conceptual model from Figure 6-16 and Figure 6-17 shows the con-
cepts that represent templates according to which computational objects
can be created. Computational objects are created according to a computa-
tional object template. Their actions are created according to action tem-

Figure 6-17 Conceptual
Model for Computational
Template Concepts:
Interface Signatures

 COMPUTATIONAL VIEWPOINT 191

plates. The behaviour of a computational object conforms to the behaviour
specification of the corresponding object template, and so on. The behav-
iour of an object is governed by an environment contract, which is an agree-
ment that governs the collective behaviour of that object and objects that
want to interact with it. The contract consists of constraints, such as Quality
of Service constraints, on interactions between the object and its environ-
ment. The environment contract specification specifies the environment
contract that an object of the associated template must observe.

The state and state change template concepts represent the states that
an object of a particular template can be in, the actions that it can perform
in this state and the states that an object can change into upon performing
an action, respectively. The initial state and final state templates represent
the state that an object is in directly after its creation and the state in which
it has completed its behaviour, respectively.

Signatures represent additional information for templates to create in-
stances. An action signature represents the name of the action that must be
created, as well as parameters that represent the information that is estab-
lished in an action. Each interface in which the action can appear has its
own signature of that action. Different kinds of action signatures exist that
correspond to the different kinds of actions that can exist in a computa-
tional object. Flow action signatures have a causality that represents
whether the object that owns the interface associated with the flow is the
producer or the consumer of the flow. Signal action signatures have a cau-
sality that represents whether the object that owns the interface associated
with the signal is the initiator or the responder of the signal. An interface
signature represents the name of the interface that must be created and the
actions that it must contain. Different kinds of interface signatures exist
that correspond to the different kinds of interfaces that a computational
object can have. An operation interface signature has a causality that repre-
sents whether the object’s interface is the server, such that it responds to
the operation calls at the interface, or the client, such that it initiates the
operation calls at the interface. Although (ITU-T, & ISO/IEC, 2005) repre-
sents operation causality as a property of the operation concept, we added
operation causality as an attribute of the operation interface concept, be-
cause the RM-ODP computational viewpoint prescribes that.

C_Instance

+name:String

C_Template

+name:String

C_StateTemplate

+name:String

instance+

* template+

C_State

+name:String

instance+

* template+

Figure 6-18 Relations
between Computational
Instances and Templates

192 CHAPTER 6 ENTERPRISE, COMPUTATIONAL AND INFORMATION VIEWPOINT

Figure 6-18 represents the relations between the computational instances
from Figure 6-15 and the computational templates from Figure 6-16.

Computational Viewpoint Concept UML 2.0 Modelling Element

C_Object Component Instance stereotyped C_Object

C_SignalInterface Port with one or two Interfaces stereotyped
C_SignalInterface

C_OperationInterface Port with Interface stereotyped C_OperationInterface

C_BindingObject Component Instance stereotyped C_BindingObject

C_PrimitiveBinding One Assembly Connector stereotyped
C_PrimitiveBinding if binding operation interfaces, two
Assembly Connectors if binding signal interfaces

C_CompoundBinding Implicitly represented by a binding object

C_ObjectTemplate Component stereotyped C_ObjectTemplate

C_InterfaceTemplate Implicitly represented by C_InterfaceSignature

C_OperationInterfaceSignature Port with required Interface stereotyped
C_OperationInterfaceSignature if the causality is ‘client’,
Port with provided interface stereotyped
C_OperationInterfaceSignature if the causality is ‘server’

C_SignalInterfaceSignature Port with at most one provided and at most one required
Interface stereotyped C_SignalInterfaceSignature

C_ActionTemplate Implicitly represented by C_ActionSignature

C_AnnouncementSignature Operation stereotyped C_AnnouncementSignature

C_InterrogationSignature Operation stereotyped C_InterrogationSignature

C_TerminationSignature Implicitly represented as part of
C_InterrogationSignature

C_InvocationSignature Implicitly represented as part of C_OperationSignature

C_SignalSignature Signal stereotyped C_SignalSignature

C_InternalActionSignature Implicitly represented by a CallBehaviourAction in a
C_BehaviourSpecification

C_Parameter A parameter of an Operation, an Attribute of a Signal, a
Parameter of a CallBehaviourAction or an Attribute of a
Class that represents the return type of an Operation.

C_BehavourSpecification Activity stereotyped C_BehaviourSpecification

C_EnvironmentContractSpecification Class stereotyped C_EnvironmentContractSpecification

C_ConstraintTemplate Flow in Activity and localPrecondi-
tion/localPostcondition of Action

6.3.2 Representation of Computational Views

Like for enterprise views, we use UML 2.0 to represent computational
views by means of models. We deviate from the representation explained in

Table 6-4 Representa-
tion of Computational
Viewpoint Concepts in
UML 2.0

 COMPUTATIONAL VIEWPOINT 193

(ITU-T, & ISO/IEC, 2005), because this standard prescribes a way to rep-
resent computational views with the EDOC profile for UML (Object Man-
agement Group, 2002d), rather than with UML itself. This approach means
that people have to learn another profile, while this is not necessary. Blair
and Stefani (1998) also developed a notation for the computational view-
point. However, they use a proprietary modelling language. Romero and
Vallecillo (2005) developed their profile for modelling the RM-ODP com-
putational viewpoint with UML 2.0 at the same time as we developed ours.

Table 6-4 illustrates the representation relation between the computa-
tional viewpoint concepts and UML 2.0 modelling elements. We stereotype
the UML modelling elements, as indicated in Table 6-4, to make them
identifiable as computational viewpoint concepts. We do not address
stream interfaces and flows, because there exist no modelling elements in
UML 2.0 that have a semantics that matches these concepts. Representing
streams and flows is left for future work. Also, we do not explicitly repre-
sent the states of an object, because we consider state to be defined implic-
itly by the behaviour of the objects.

We represent computational objects and binding objects by UML com-
ponent instances, their interfaces by UML ports with required and provided
UML interfaces and we represent primitive bindings by UML assembly
connectors. We represent a signal interface by (at most) two UML inter-
faces: a required interface and a provided interface. We must do this, be-
cause a required UML interface only sends signals and a provided UML
interface only receives signals, while a computational signal interface can
both send and receive signals. A compound binding is completely repre-
sented by its binding object.

We represent the structural concepts of the computational template
concepts, as well as their relations, by a UML component diagram. We rep-
resent an object template by a UML component. We represent an opera-
tion interface by a UML port with a provided UML interface if the interface
has server causality and a required UML interface if the interface has client
causality. We represent a signal interface by a UML port with at most one
provided and at most one required UML interface, for reasons discussed
above. If multiple instances of an interface template can be attached to a
single object, we represent this by setting the multiplicity of the UML ports
accordingly. UML ports do not represent all properties of computational
interfaces, because computational interfaces can be created and destroyed
at any time, while UML ports can only be created or destroyed along with
the UML component to which they belong (Bordbar, Derrick, & Waters,
2002). However, since we do not consider the dynamics of a structure fur-
ther on in this thesis, we do not consider this a problem. Also, UML port
‘types’ do not exist. Therefore, if we use ports to represent computational

194 CHAPTER 6 ENTERPRISE, COMPUTATIONAL AND INFORMATION VIEWPOINT

interfaces, the name of a computational interface is equal to the name of its
template.

We represent operations by UML operations. We represent the termi-
nation of an interrogation as the reply of a UML operation. We represent
the parameters of the invocation of an operation as the parameters of the
UML operation and we represent the parameters of a termination as a
UML class that contains UML attributes that correspond to the parameters.
We represent a signal as a UML signal and the parameters of the signal as
UML attributes of the UML signal. We represent that a signal has ‘initiator’
causality, by assigning it to a required UML interface. We represent that a
signal has ‘responder’ causality, by assigning it to a provided UML interface.

i. Component ii. Port

<name>
<name>

iii. Interface requirement

<name>

iv. Interface provision

<name>

<name>(<parameters>): <parametertype>

v. Operation vi. Component instance

<name>:<componentname>

<name><name>

vii. Sending viii. Receiving

Figure 6-19 shows how UML graphically represents component concepts.
A UML component is graphically represented as a box that carries the
name of the component. A port is represented as a square on the border of
a component. The name of the port must be drawn close to the square. An
interface is represented as a UML class stereotyped ‘interface’. If a compo-
nent requires an interface this is denoted by the symbol shown in Figure 6-
19.iii and the name of the required interface drawn close to the symbol.
Similarly, a provided interface is denoted by the symbol shown in Figure 6-
19.iv. A signal is represented by a class stereotyped ‘signal’. An operation or
signal on an interface is textually represented inside the box that represents
the interface. A signal is represented by its name. An operation is repre-
sented by a name, followed by the parameters of the request, followed by
the name of the parametertype of the response. The parameters of the re-
quest are denoted as: <name>:<typename>. A component instance is
graphically represented in the same way as a component. However, the box
contains the name of the component instance, followed by the name of the
component.

Figure 6-19 Notation for
the Computational
Viewpoint

 COMPUTATIONAL VIEWPOINT 195

Computational Viewpoint Concept UML 2.0 Modelling Element

C_Template owning C_BehaviourSpecification Aggregation stereotyped behaviourOf

C_Template owning
C_EnvironmentContractSpecification

Aggregation stereotyped contractOf

C_ActionTemplate referenced in
C_BehaviourSpecification

Action referencing the corresponding Operation
or Signal

Similar to enterprise behaviour templates, we represent computational be-
haviour specifications as UML activities and we represent their constraint
templates by flows and pre- and postconditions. Table 6-5 shows how we
represent the relations between the structural and behavioural computa-
tional viewpoint concepts. We represent the ownership of a behaviour
specifications or environment contract by a UML aggregation. We repre-
sent that an action in a behaviour or contract by a UML action in the UML
activity that represents the behaviour or contract. This UML action must
represent the initiation of or the response to the UML operation or signal
that represents the action’s signature in the behaviour. Therefore, the fol-
lowing rules apply when representing actions:
– if the action’s signature is a signal with ‘initiator’ causality it must be

represented by a UML SendSignalAction;
– if the action’s signature is a signal with ‘responder’ causality it must be

represented by a UML AcceptEventAction;
– if the action’s signature is an operation on an interface with ‘client’ cau-

sality it must be represented by a UML CallOperationAction;
– if the action’s signature is an announcement on an interface with ‘server’

causality it must be represented by a UML AcceptCallAction;
– if the action’s signature is an interrogation on an interface with ‘server’

causality it must be represented by a UML AcceptCallAction that corre-
sponds to the invocation and a UML ReplyAction that corresponds to
the termination.

SendSignalActions, AcceptEventActions, AcceptCallActions and ReplyAc-
tions have a special notation associated with them (other UML actions can
be denoted using the regular action notation). SendSignalActions and Re-
plyActions are denoted as shown in Figure 6-19.vii. The box carries the
name of the signal or operation response that is sent. Optionally, the name
is prefixed with the name of the port on which the action occurs. Each
SendSignalAction must have an input pin for each parameter of the sent
signal. This pin must have the same name and type as the attribute. A Re-
plyAction must have an input pin for the return parameter of the operation.
This pin must have the same type as the parameter. A ReplyAction must
also have an input pin named ‘returnInformation’. The data received on
this pin must come from the pin with the same name on the corresponding
AcceptCallAction. AcceptEventActions and AcceptCallActions are denoted

Table 6-5 Representa-
tion of Computational
Viewpoint Relations in
UML 2.0

196 CHAPTER 6 ENTERPRISE, COMPUTATIONAL AND INFORMATION VIEWPOINT

as shown in Figure 6-19.viii. The box carries the name of the signal or op-
eration invocation that is received. Optionally, the name is prefixed with
the name of the port on which the action occurs. An AcceptCallAction must
have an output pin named ‘returnInformation’. An AcceptCallAction must
also have one output pin for each parameter of the invocation of which it
represents the reception. Each pin must have the same name and type as
the parameter to which it corresponds. An AcceptEventAction that repre-
sents the reception of a signal must have an output pin that represents the
signal. This pin must have the signal as its type.

If we use UML, we cannot represent invocation and termination action
templates on a ‘client’ interface by separate actions. Instead, these actions
templates but must be represented by a single UML action that represents

Figure 6-20 Structure of
a Computational View
Represented in UML

«C_ObjectTemplate»
Procurer

«C_OperationInterface»
ProcurementInterface

procurementPort
«C_SignalInterface»
NotificationInterface
«C_SignalInterface»
PublicationInterface

eventPort

«C_ObjectTemplate»
EventServer «C_SignalInterface»

NotificationInterface

«C_SignalInterface»
PublicationInterface

eventPort[*]

«C_ObjectTemplate»
SellerUI

«C_SignalInterface»
NotificationInterface
«C_SignalInterface»
PublicationInterface

eventPort

«C_OperationInterface»
ProcurementInterface

«C_SignalInterface»
NotificationInterface

«C_SignalInterface»
PublicationInterface

«C_Interrogation» buy(order: Product): BuyReturnParameters

«C_Signal» Notification

«C_Signal» Publication

«C_Signal»
Notification

+topic: String
+object: Object

«C_Signal»
Publication

+topic: String
+object: Object

BuyReturnParameters

+saleSlip: SaleSlip

«C_OperationInterface»
SalesInterface

sellerPort

«C_OperationInterface»
SalesInterface

«C_Interrogation» sell(order: Product): SellReturnParameters

SellReturnParameters

+saleSlip: SaleSlip

 COMPUTATIONAL VIEWPOINT 197

both the sending of the invocation and the reception of the termination.
Similarly, we cannot represent an interrogation action template on a
‘server’ interface by a single UML action. Instead, we must represent an
interrogation action template by two UML actions that represent the recep-
tion of the invocation and the sending of the termination.

We do not consider the representation of environment contracts in this
thesis. This is left for future work.

6.3.3 Example of a Computational View

Figure 6-20 shows the structural aspects of the object templates in a com-
putational view. It shows three object templates that can be used to create
computational objects. The ‘Procurer’ object template is a template for
computational objects that receive orders and select the best seller to fulfil
each order. It has a ‘ProcurementInterface’ operation interface with ‘server’
causality that it uses to communicate with potential buyers. This interface
has the interrogation ‘buy’ that has a single parameter ‘order’ with type
‘Product’ for the invocation and a single parameter ‘saleSlip’ of type
‘SaleSlip’ for the termination. The ‘Procurer’ object template has a signal
interface at which it exchanges events. At this signal interface it can initiate
‘Publication’ signals that have a topic and an item on that topic. Also, it can
respond to ‘Notification’ signals that also have a topic and an item on that
topic. An event server ensures that events that are published via a ‘Publica-
tion’ signal are notified to computational objects that are subscribed to the
topic. The event server notifies objects via a ‘Notification’ signal. To this
end, it has multiple signal interfaces to which publishers and subscribers
can bind. The subscription of computational objects to topics is outside the
scope of this example. We assume that ‘SellerUI’ objects are subscribed to
events on the ‘order’ topic and ‘Procurer’ objects are subscribed to events
on the ‘offer’ topic. The ‘SellerUI’ object template represents a template to
construct objects that represent the user interface for a seller.

Figure 6-21 shows the behaviour specifications that are attached to the
‘Procurer’ and ‘EventServer’ object templates, respectively (the associations
that represent the relations between the object templates and the behaviour
specifications are not shown). A procurer initially receives an invocation.
The action that represents the reception of this invocation has a parameter
of type ‘Product’. The subsequent send signal action publishes the ‘Product’
object as an event on the ‘order’ topic. After the order is published, the
procurer awaits a response in the form of an event on the ‘offer’ topic. In
parallel, it creates an object that holds an empty offer and a counter (set to
zero) that represents the number of offers received. When it receives an
offer, the ‘evaluate offers’ action accepts the empty offer, the counter and
the received offer. It then evaluates the best offer and increases the counter

198 CHAPTER 6 ENTERPRISE, COMPUTATIONAL AND INFORMATION VIEWPOINT

by one. If the procurer has not yet received 3 offers, it awaits the next offer
and compares this offer with the best offer received so far. If the procurer
has received 3 offers, it sends the best offer via the procurement interface.

The event server receives a notification and, based on that, creates an
object that consists of a publication and a counter. As long as the counter
has not reached the number of subscribers to the topic, the publication is
sent to the next subscriber, which is identified in the ‘get target’ action.
Concurrently the counter is increased and the publication step is started
again.

Figure 6-21 Behaviour
of a Computational View
Represented in UML procurementPort\

buy
eventPort\
Publication

procurementPort\
buy

eventPort\
Notification

returnInformation

product: Product

n: Notification

p: Port

evaluateOffers

noneReceived
EmptyOffer

[sno.nrReceived<3]

[sno.nrReceived=3]

sn: Tuple(nrReceived: Integer, slip: ReturnParameters)

«transformation»
slip=sno.slip

eventPort[j]\
Notification createPublication

[pi.i<nrSubscribers]

i++

getTarget

«transformation»
i=pi.i

«transformation»
o=pi.pub.object

pi: Tuple(i: Integer, pub: Publication)

p:Port

‘order’

n:
Notification

«C_Behaviour»
ProcurerBehaviour

«C_Behaviour»
EventServerBehaviour

sn = Tuple{nrReceived=0,
slip=OclUndefined}

sno:
Tuple(nrReceived: Integer, slip: ReturnParameters)

pi=Tuple{i=0, pub=n}

pi: Tuple(i: Integer, pub: Publication)

eventPort[k]\
Publication

eventPort[k]=opposite(p)

topic: String

o: Object

i: Integer

«transformation»
topic=pi.pub.topic

slip: ReturnParameters

 COMPUTATIONAL VIEWPOINT 199

«C_Object»
:Procurer

procurementPort

eventPort

«C_Object»
:EventServer

eventPort[1]

«C_Object»
:SellerUI

«C_Object»
:SellerUI

eventPorteventPort

eventPort[2]

eventPort[3]

salesPort salesPort

Figure 6-22 shows an example in which instances of the computational
object templates from Figure 6-20 are shown. The figure shows one pro-
curer, one event server and two seller user interfaces. To interact with the
procurer as well as the sellers, the event server has three event ports. For
brevity, the figure does not show the names of interfaces.

6.3.4 Relation of Computational Viewpoint Concepts to Basic
Concepts

We define the relation between the computational viewpoint concepts and
the basic viewpoint concepts in terms of a transformation. The transforma-
tion defines how a view in terms of computational viewpoint concepts can
be transformed into a view in terms of basic concepts.

Procurer p SellerUI s1 SellerUI s2

EventServer e

eventPort1 eventPort2 eventPort3

procurementPort salesPort salesPort

Transformation of instance concepts. We transform computational
objects into entities and we transform computational interfaces into inter-
action point parts of those entities. We transform a primitive binding be-
tween two interfaces into an interaction point that consists of the interac-
tion point parts that correspond to the bound interfaces. We transform the
name of an object into the name of the corresponding entity. If the object
does not have a name, we create (a unique) one. We transform the name of
an interface into the location of the corresponding interaction point part. If
a binding binds interfaces with different names, we must create a single
unique location for the corresponding interaction point and interaction

Figure 6-22 Instances of
a Computational View
represented in UML

Figure 6-23 An Example
of Instance Transforma-
tion

200 CHAPTER 6 ENTERPRISE, COMPUTATIONAL AND INFORMATION VIEWPOINT

point parts. We must do this because a binding can bind interfaces with
different names, while the corresponding interaction point cannot have
interaction point parts with different locations. If we change the name of an
interface in this way, references to that interface in the behaviour must be
changed accordingly. We do not transform a compound binding, but we
transform the binding object that represents it.

Figure 6-23 shows the transformation of the computational instances
from Figure 6-22 into basic concepts.

ProcurerBehaviour

buy_invocation

product: Product
returnInformation: InformationType
l: ProcurementPortType |
 l = ProcurementPort

Publication

topic: String | topic = ‘order’
object: Object |
 object = buy_invocation.product
l: EventPort |
 l = 1.p and l = eventPort1

Notification

topic: String
object: Object
l: EventPort | l = eventPort1

noneReceivedEmptyOffer

sn: Tuple(nrReceived: Integer, slip: ReturnParameters) |
 sn = Tuple{nrReceived = 0, slip = OclUndefined}

evaluateOffers

sn: Tuple(nrReceived: Integer, slip: ReturnParameters) |
 sn = 2.sn
topic: String | topic = Notification.topic
object: Object | object = Notification.object
sno: Tuple(nrReceived: Integer, slip: ReturnParameters)

buy_termination

returnInformation: InformationType |
 returnInformation = 3.returnInformation
saleSlip: SaleSlip |
 saleSlip =
evaluateOffers.sno.slip.saleSlip
l: ProcurementPortType |
 l = ProcurementPort

1

p: Port

2

sn: Tuple(nrReceived: Integer, slip: ReturnParameters) |
 sn = noneReceivedEmptyOffer.sn

3

returnInformation: InformationType |
 returnInformation = buy_invocation.returnInformation

1

3

returnInformation =
 3.returnInformation

2

sn = evaluateOffers.sn

1

evaluateOffers.sno.nrReceived = 3

evaluateOffers.sno.nrReceived < 3

Transformation of template concepts. We transform object templates
into entity types and we transform interface templates into interaction

Figure 6-24 An Example
of Template Transforma-
tion

 COMPUTATIONAL VIEWPOINT 201

point part types. We transform the name of an interface template’s signa-
ture into the location type of the corresponding interaction point part type.
If the instances of one interface template are meant to be bound to in-
stances of another interface template (which we can only derive by checking
if there are instances for which this is true), the location types of the corre-
sponding interaction point part types must be the same. Hence, we may
change the names of the interface templates, similar to the way we change
the names for interfaces.

We transform the behaviour specification of an object template into a
basic behaviour type of the corresponding entity type. We transform the
action templates that constitute those behaviours as follows:
1. If the action template represents an internal action (it is associated with

an internal action signature), we transform it into a basic action instan-
tiation. The parameters of the internal action are transformed into at-
tributes of the basic action instantiation, such that the name of the pa-
rameter corresponds to the name of the attribute and the type of the
parameter to the type of the attribute.

2. If the action template represents a signal (it is associated with two signal
signatures), we transform it into a basic interaction contribution instan-
tiation. The parameters of the signal are transformed into attributes of
the basic interaction contribution instantiation. Optionally, the port on
which the signal occurs is transformed into the value of the location at-
tribute. The value of the location attribute must be equal to the location
into which the port is transformed. The basic concepts have no way of
representing whether the interaction contribution represents the initiat-
ing or responding part of the signal. Therefore, these design properties
are lost during the transformation and consistency with respect to these
properties cannot be verified using the basic concepts.

3. If the action template represents an operation (it is associated with two
operation signatures), we transform the invocation part of the operation
into an interaction contribution instantiation. If the operation has a
termination, we transform the termination into an interaction contribu-
tion instantiation as well. The condition of that interaction contribution
instantiation must include the condition that the ‘interaction contribu-
tion instantiation that corresponds to the invocation must have oc-
curred’. The parameters of the invocation and termination are trans-
formed into the attributes of the corresponding interaction contribution
instantiations. Optionally, the port on which the signal occurs is trans-
formed into the value of the location attribute.

The constraints of behaviours can be transformed in the same way as we
transform behaviour constraints in the enterprise viewpoint, because, as in
the enterprise viewpoint, they are represented using UML activities.

202 CHAPTER 6 ENTERPRISE, COMPUTATIONAL AND INFORMATION VIEWPOINT

In a UML activity diagram, a flow from an operation invocation action
to some other action represents the fact that the other action is enabled
immediately after the operation has been sent. We do not wait for the invo-
cation to be received on the server side. However, in ISDL, if we prescribe
that an action is enabled by an interaction contribution that represents an
operation invocation, then we represent that the action is only enabled after
the invocation has been received on the server side. Therefore, we cannot
transform a flow from an operation invocation action into an enabling con-
dition on that action. To solve this problem, we insert an action that repre-
sents sending an invocation for each invocation action, as illustrated in
Figure 6-25. We transform a flow from the invocation action into an ena-
bling condition on that inserted action.

For the same reason, we insert a new action, which represents sending a
termination, for each termination action on the server side. A flow leaving
an operation termination action on the server side must be transformed
into an enabling condition on the inserted action.

Since the transformation transforms bound interfaces into a single inter-
action point, the constraints that apply to the interfaces must be trans-
formed into constraints on the interaction point.

Transformation into behaviour instantiations. As in the enterprise
viewpoint, we must create instances of behaviour types, such that those be-
haviour types can be performed.

For each object, we create an instance of the behaviour type that repre-
sents the behaviour of the corresponding object template.

client

invk_snd

invk_rcv

condition for
invocation

condition on
invocation

Figure 6-25 Condition
on Invocation on the
Client’s Side

Example 6-4 Transfor-
mation of Templates Figure 6-24 shows an example in which the ‘ProcurerBehavour’ behaviour template from Figure

6-21 is transformed. The transformation follows the algorithm outlined in section 6.2.5. Note that
the name of the location at which the procurer interacts with the event server is changed to
‘eventPort1’. This is the result of the transformation of instance concepts, in which bound inter-
faces, which may have different names, are transformed into interaction points, which must have
a single location (with a single name). The constraints that applied to the two interfaces are
transformed into constraints on the interaction point. Also note that, while the UML actions that
represent the ‘buy invocation’ and ‘buy termination’ interactions both have the name ‘buy’ in the
UML activity, the basic interactions into which they are transformed have the names
‘buy_invocation’ and ‘buy_termination’, respectively. This is because UML represents invoca-
tions and terminations, using the name of the operation to which they belong. Instead, the basic
concepts into which invocations and terminations are transformed use the names of these invo-
cations and terminations themselves. Another difference that stems from the way in which UML
represents computational concepts is the difference between the reference of parameters in UML
and in the basic concepts. UML references the parameters of a received signal using the name of
that signal, while the basic concepts directly reference these parameters. Similarly, UML refer-
ences the parameters of a termination using a separate class, while the basic concepts directly
reference these parameters.

 RELATIONS BETWEEN ENTERPRISE AND COMPUTATIONAL VIEWS 203

For each action template that represents an interaction (i.e. it is associ-
ated with an interaction signature), we create a basic interaction, but only if
there exist bound instances of the interfaces at which this interaction can
occur. For each pair of bound interfaces at which the interaction can occur,
we create an alternative of the interaction. Each alternative consists of a pair
of interaction contributions that are contributed by objects with bound in-
terfaces. Figure 6-26 illustrates this. It shows two examples in which ob-
jects of templates A and B (with behaviour templates that have the same
names) can have an interaction of template ic. Objects of these templates
can interact at interfaces that are transformed into interaction points of
type I. In the first example, only a1 and b1, and a2 and b2 are bound through
interfaces. Therefore, there are only alternative interactions between a1 and
b1, and between a2 and b2. In the second example, a1 and b2, and a2 and b1
are bound as well. Therefore, there also exist alternative interactions be-
tween a1 and b2 and between a2 and b1.

Figure 6-27 shows the instantiations of behaviour types that correspond
to the behaviours of the objects from Figure 6-22. The figure assumes that
interaction templates ‘Publication’ and ‘Notification’ exist between ‘Pro-
curerBehaviour’ and ‘EventServerBehaviour’, and between ‘SellerUIBehav-
iour’ and ‘EventServerBehaviour’. A ‘Publication’ or ‘Notification’ interac-
tion can occur between the ‘EventServerBehaviour’ and either the ‘Procur-
erBehaviour’ or one of the ‘ServerUIBehaviours’. This is consistent with
how the ‘Procurers’ and ‘SellerUIs’ are bound to the ‘EventServer’ in
Figure 6-22.

ProcurerBehaviour p

EventServerBehaviour e

buy_invocation

SellerUIBehaviour s1 SellerUIBehaviour s2

Publication
Notification

buy_termination

sell_invocation sell_termination

sell_invocation sell_termination

6.4 Relations between Enterprise and Computational
Views

In this section we consider the refinement relation between enterprise and
computational views in more detail. We precisely represent the relations
and consistency rules between:
– enterprise and computational objects;
– enterprise role-based behaviour and computational behaviour; and

A a1 A a2

B b1 B b2

A a1 A a2

B b1 B b2

ic ic

icic

A a1 A a2

B b1 B b2

A a1 A a2

B b1 B b2

ic ic

icic

I i1 I i2

I i1 I i3
I i4 I i2

Figure 6-26 Instantia-
tion of Interactions

Figure 6-27 An Example
of Transformation into
Instantiations

204 CHAPTER 6 ENTERPRISE, COMPUTATIONAL AND INFORMATION VIEWPOINT

– enterprise process-based behaviour and computational behaviour.
We base these relations and consistency rules on the viewpoint correspon-
dences that RM-ODP defines.

C_ObjectE_Object

C_ActionTemplateE_ActionTemplate

C_ActionInstantiationE_ActionInstantiation

refinement

*

*

refined

* ** *

template

instantiator instantiator

instantiation

template

CompletionCondition Term
disjunction

conjunctionI

conjunctionT *

*

0..10..10..1

0..1

0..1

0..1

*condition

conditioncondition term term

ownerI

ownerT
instantiationinstantiationinstantiation

Enterprise and Computational Objects. In the relations between en-
terprise and computational views, computational objects refine enterprise
objects that represent (parts of) the system under design. The computa-
tional objects describe the system in more detail, by decomposing it into
functional parts and, optionally, describing the activities that the system can
perform in more detail. We represent this relation by a MOF association
between the enterprise object and computational object concepts. Figure 6-
28 shows this association.

We do not associate consistency rules with this relation. The designer is
free to relate enterprise objects to computational objects that refine them.

Enterprise Role-Based Behaviour and Computational Behaviour.
If a computational object refines an enterprise object, its behaviour refines
the behaviour of that enterprise object. Hence, actions of the computa-
tional object can be final actions for actions of the enterprise object, ac-
cording to some completion condition.

We represent this relation and the associated consistency rules, using
operators on the basic concepts. The operators on the basic concepts allow

Figure 6-28 Relations
between Enterprise and
Computational Views

 RELATIONS BETWEEN ENTERPRISE AND COMPUTATIONAL VIEWS 205

us to represent that action instantiations are final actions for action instantia-
tions. However, the enterprise and computational viewpoints only contain
concepts that correspond to the basic action template concept (namely the
enterprise action template and the computational action template con-
cepts). Therefore, we should introduce enterprise and computational con-
cepts that correspond to the basic action instantiation concept. Since each
object that performs (the behaviour that contains) an action template has an
instantiation of that template, we introduce action instantiation concepts, as
shown in Figure 6-28. We relate those action instantiation concepts via a
completion condition. The completion condition is a disjunction of a con-
junction of final (computational) action instantiations.

Enterprise and computational action templates that represent a joint ac-
tivity between two or more objects correspond to a basic interaction. Since
we did not define refinement rules for interactions, we cannot relate action
templates that correspond to basic interactions. Instead, we use the ap-
proach described in subsection 5.2.2 to represent and verify refinement
relations between interactions. In this approach, we compose (the behav-
iours that contain contributions to) the interactions. Subsequently, we ver-
ify the refinement of the resulting action instantiations. Using this ap-
proach, each interaction is composed into one or more action instantia-
tions. Therefore, we allow enterprise or computational action templates
that correspond to basic interactions to participate in a completion condi-
tion, representing that the action instantiation that they correspond to (af-
ter composition) participate in the completion condition.

If a computational action template corresponds to more than one basic
action instantiation after composition, we assume that each of these action
instantiations is a final action for the related enterprise action. We do not
cover the case in which an enterprise action template corresponds to more
than one basic action instantiation after composition. This case is left for
future work.

Figure 6-29 shows the relations between the enterprise view from Figure 6-8 and the
computational view from Figure 6-22. We represented the ‘ProcurementCompany’ enterprise
object twice to make the model more clear. Also, we split up each interrogation into an
announcement and a termination, to be able to relate these two parts separately.

The figure shows a relation between the ‘ProcurementCompany’ enterprise object and the
‘Procurer’, ‘EventServer’ and both ‘SellerUI’ computational objects. This relation represents that
the ‘ProcurementCompany’ enterprise object is refined by those computational objects.

The figure also shows a relation between the ‘RequestOffer’ enterprise action instantiation,
as it is performed by the ‘ProcurementCompany’ enterprise object, and the ‘buy_invocation’
computational action instantiation as it is performed by the ‘Procurer’ computational object.
These action instantiations are related via a completion condition that represents that the
completion of a ‘buy_invocation’ action instantiation corresponds to the completion of a

Example 6-5 Enterprise
and Computational View
Relations

206 CHAPTER 6 ENTERPRISE, COMPUTATIONAL AND INFORMATION VIEWPOINT

‘RequestOffer’ action instantiation. Similarly, the ‘buy_termination’ computational action
instantiation, as it is performed by the ‘Procurer’ computational object, is related to the
‘NotifyCheapest’ enterprise action instantiation. The ‘RequestPrice’ enterprise action
instantiation, as it is performed by the ‘ProcurementCompany’ enterprise object, is related to the
‘sell’ action instantiations, as they are performed by the ‘SellerUI’ objects. The completion
condition that relates them represents that the completion of either one of the ‘sell’ action
instantiations corresponds to the completion of ‘RequestPrice’ enterprise action instantiation.

templateinstantiator

«E_BehaviourTemplate»
ProcurerBehaviour

Request
Offer

«E_Role»

Procurer

«identifies»

product:Product

Request
Price

offer: Offer

[offer.moreRequired]

[else]
Notify

Cheapest

product:Product offer: Offer

«E_CommunityObject»
ProcurementCompany

«fulfils»

«C_Object»
:Procurer

«C_Object»
:EventServer

«C_Object»
:SellerUI

«C_Object»
:SellerUI

:E_ActionInstance

:CompletionCondition

:Term

:C_ActionInstance

condition

disjunction

conjunctionI

template

instantiator

«C_OperationInterface»
ProcurementInterface

«C_Invocation» buy()
«C_Termination» buy()

«C_OperationInterface»
SalesInterface

«C_Invocation» sell()
«C_Termination» sell()

instance

instance

instance

refinement

instantiator

«E_CommunityObject»
ProcurementCompany

refinement

refinement

refinement

:E_ActionInstance

:CompletionCondition

:Term

:C_ActionInstance

condition

disjunction

conjunctionI

:Term

:C_ActionInstance

disjunction

conjunctionI

:E_ActionInstance

:CompletionCondition

:Term

:C_ActionInstance

condition

disjunction

conjunctionI

template

instantiator

instantiatorinstantiatorinstantiator

instance

Figure 6-29 Example of
Enterprise and Compu-
tational View Relations

 RELATIONS BETWEEN ENTERPRISE AND COMPUTATIONAL VIEWS 207

The following consistency rule applies to the relations between the enter-
prise and computational viewpoint. Computational objects refine the enter-
prise objects that represent the system. Therefore, in each community, the
joint behaviour of the computational objects implementing that community
must conform to the joint behaviour of the enterprise objects that they re-
fine. We verify this consistency rule in four steps.
1. For each community, we compose all basic behaviour instantiations that

represent behaviour performed by computational objects that imple-
ment that community. Also, we compose all basic behaviour instantia-
tions that represent behaviour performed by enterprise objects in that
community, but only those enterprise objects that represent parts of the
system rather than its environment. These are enterprise objects that are
related to computational objects via the association from Figure 6-28.
We compose the behaviour instantiations, because the following steps
(the abstract and integrate operators) can only be performed on a single
behaviour instantiation, rather than on multiple interacting behaviour
instantiations. We compose only enterprise behaviour instantiations that
represent parts of the system, because the computational viewpoint only
represents the behaviour of the system. Therefore, we can only verify
consistency of behaviour instantiations that represent behaviour of the
system.

2. In the resulting computational behaviour instantiation, we abstract from
basic action and interaction contribution instantiations that do not corre-
spond to the completion of an enterprise action instantiation. These are
basic action and interaction contribution instantiations that do not track
(via a tracking relation that is stored during the transformation into ba-
sic concepts) to a computational action instantiation or template that is
related to an enterprise action instantiation or template. Such a relation
is represented by the ‘completion condition’ and ‘term’ concepts from
Figure 6-28 and their associations.

3. In the resulting computational behaviour instantiation, we integrate ba-
sic action and interaction contribution instantiations that do correspond
to the completion of an enterprise action instantiation. The ‘completion
condition’ from Figure 6-28 represents the precise relation that such
basic action and interaction contributions have to their enterprise view-
point counterparts.

4. We verify whether the resulting computational behaviour instantiation is
(strongly) equivalent to the enterprise behaviour instantiation. If the be-
haviour instantiations are equivalent, the views are consistent with re-
spect to this consistency rule.

Appendix A.1 defines an OCL constraint that represents this consistency
rule. The OCL constraint follows the steps outlined above. It assumes that,
when an enterprise or computational view is transformed into a basic de-

208 CHAPTER 6 ENTERPRISE, COMPUTATIONAL AND INFORMATION VIEWPOINT

sign, tracking relations are maintained that can relate a basic behaviour in-
stantiation to the viewpoint behaviour instantiation from which it was cre-
ated. It also assumes that tracking relations are maintained that can relate a
basic action instantiation, interaction contribution instantiation or interac-
tion to the viewpoint action instantiation or template from which it was
created.

ProcurerBehaviour ProcurementCompany

1. compose

1. compose

2. abstract

3. integrate

4. equivalent

Enterprise View Computational View

RequestOffer NotifyCheapest

ProcurerBehaviour ProcurementCompany

RequestOffer NotifyCheapest

RequestPrice

SellerBehaviour
CompanyA

SellerBehaviour
SellerFed

RequestPrice

ProcurerBehaviour
p

SellerUIBehaviour
s1

EventServerBehaviour e

SellerUIBehaviour
s2

buy_invocation
buy_termination

sell_invocation
sell_termination

Publication Notification

sell_invocation
sell_termination

System s

buy_invocation
buy_termination

sell_invocation
sell_termination

PublicationNotification

sell_invocation
sell_termination

Publication

Notification

Publication

Notification

System s

sell_termination sell_terminationbuy_invocation
buy_termination

System s

RequestPriceRequestOffer
NotifyCheapest

Figure 6-30 illustrates how this consistency rule can be verified in four steps. The figure shows
the basic behaviour instantiations that are the result of a transformation of the enterprise view
from Figure 6-8 and the computational view from Figure 6-22 into basic concepts. We can verify
the consistency between these basic designs as follows:
Step 1: compose the enterprise and computational behaviour instances that represent the
behaviour of the system. The relations that are specified in Figure 6-29 imply that only the
enterprise ‘ProcurementBehaviour’ represents behaviour of the system, because only the
‘ProcurementCompany’ is refined by computational objects. Therefore, composition is not
needed in the enterprise view. In the computational view, composition results in composition of
the ‘Notification’ and ‘Publication’ signal interactions.
Step 2: abstract from computational actions that do not correspond to the completion of an
enterprise action. The relations that are specified in Figure 6-29 imply that only the

Figure 6-30 Example of
Checking Behaviour
Consistency between
Enterprise and Compu-
tational Views

Example 6-6 Checking
Behaviour Consistency
between Enterprise and
Computational Views

 RELATIONS BETWEEN ENTERPRISE AND COMPUTATIONAL VIEWS 209

‘buy_invocation’, ‘buy_termination’ and ‘sell_termination’ interactions correspond to the
completion of enterprise actions.
Step 3: integrate the computational actions that correspond to the completion of an enterprise
action, as represented by completion conditions that are specified in Figure 6-29.
Step 4: verify that the resulting enterprise and computational behaviour instantiations are
equivalent.

Enterprise Process-Based Behaviour and Computational Behav-
iour. Each process in an enterprise view is prescriptive for the computa-
tional view. This relation between enterprise processes and computational
behaviours is implicitly represented by the relation between enterprise ac-
tions and computational actions from Figure 6-28, because enterprise ac-
tions correspond to steps in an enterprise process.

The consistency rule associated with this relation is that each computa-
tional behaviour must conform to the processes that it refines, but only to
the part thereof that is performed by the system.

Two differences between the concerns that enterprise processes and
computational behaviours address, complicate verifying this consistency
rule. Firstly, an enterprise process design on the one hand typically covers
only a single customer. It does not cover mechanisms that allow multiple
customers to engage in the same business process. A computational behav-
iour design on the other hand also cover mechanisms that allow multiple
customers to engage in (the computational realization of) the same business
process. Therefore, a computational behaviour specification and an enter-
prise behaviour specification in terms of processes can only be compared
after we remove such concurrency mechanisms from the computational
behaviour specification. We can only remove these concurrency mecha-
nisms, if they are clearly indicated in the computational view. Secondly, an
enterprise process design does not consider relations between steps that
belong to different processes, while a computational design does consider
relations between actions of which abstractions belong to different proc-
esses. Therefore, we can only compare the behaviour of an enterprise proc-
ess to a computational behaviour, after abstracting from such relations.

We verify the consistency rule, using the four steps outlined above.
However, instead of verifying equivalence of the computational behaviour
to the composed enterprise behaviour, we verify equivalence to a business
process. Also, we only consider parts of the computational view that do not
represent concurrency mechanisms. To this end we assume that computa-
tional action and constraint templates can be marked as representing a part
of such mechanisms. To verify consistency with business processes, we ap-
ply a modified version of the transformation from the computational view
to basic concepts. This transformation does not transform action and con-
straint templates that are marked. A better solution would be to mark the

210 CHAPTER 6 ENTERPRISE, COMPUTATIONAL AND INFORMATION VIEWPOINT

basic concepts rather than not transform them. We leave this for future
work. Appendix A.2 defines an OCL constraint that represents this consis-
tency rule.

6.5 Information Viewpoint

The information viewpoint is used to design the structure of information in
a system and its environment and basic operations that can be performed
on this information. This is the concern of a stakeholder that focuses on the
information in the system, such as a database analyst. Also, we rely on the
information viewpoint to represent the structure of parameters of actions in
the computational viewpoint. To represent the structure and processing
rules of information, the information viewpoint addresses the following
concerns:
– the structure of information objects;
– the invariants that must hold for information objects; and
– how actions use, change, create and remove information objects.

6.5.1 Information Viewpoint Concepts

The conceptual model from Figure 6-31 represents the information view-
point concepts, using the UML profile for MOF. The conceptual model
deviates from the one provided by ITU-T, & ISO/IEC (2005). As in the
computational viewpoint, we make a more strict distinction between tem-
plate and instance concepts. We consider the state of an information object
to be implicitly determined by the information values of that object, be-
cause the information values of that object completely determine the ac-
tions that it can take part in next. Therefore, we do not explicitly consider
the state concept in our conceptual model. Also, we leave the addition of
the type concept for future work. In RM-ODP a type is a predicate. We
consider the template of an object to be the type of that object.

Information objects represent information that is established in the system.
An information object can be either atomic or composite. If it is atomic, it is
not composed of other information objects. If it is composite, it is com-
posed of component information objects, each of which has a name that
identifies it within the composite information object. Unlike (ITU-T, &
ISO/IEC, 2005) we explicitly consider atomic and composite information
object concepts in our conceptual model, because the distinction between
the two concepts is made explicitly in RM-ODP. The template according to
which an information object can be created is composite or atomic, de-
pending on the structure of the objects that it creates. We can associate
information object templates with invariants. An invariant represents a con-

 INFORMATION VIEWPOINT 211

straint that must hold at all times for each object that is constructed accord-
ing to that template.

Information actions represent activities that change the state of some
collection of information objects. Information actions are constructed from
information action templates. Such a template provides more information
about how actions of that template can affect information. To this end it
prescribes information that is input to such actions and information that is
output from such actions. The information is identified by a name and ref-
erences an information object template to represent the structure of the
input or output information. An action template specifies a precondition that
represents the state that the original information objects must be in, for
actions of that template to be allowed to occur. Also, an action template
specifies a postcondition that represents the state that resulting information
objects must be in, after actions of that template have occurred.

6.5.2 Representation of Information Views

Like for enterprise and computational views, we use UML 2.0 to represent
information views by means of models. We deviate from (ITU-T, &

Figure 6-31 Conceptual
Model for Information
Concepts

I_Object

+name:String

I_ObjectTemplate

+name:String

I_AtomicObjectTemplate I_CompositeObjectTemplate

I_ComponentObjectTemplate

+name:String

I_ActionTemplate

+name:String
+precondition:Constraint
+postcondition:Constraint

I_NamedTemplate

+name:String

I_AtomicObjectI_CompositeObject

I_ComponentObject

+name:String

composite+

component+1..*
component+*

value+

composite+

component+ 1..* component+ *

template+

user+

original+ *

modifier+

result+ *

reference+*

template+

instance+

* template+

I_Action

+name:String
template+

instance+

*

template+

instance+

*

user+*

original+ *
modifier+*

result+ *

I_Invariant

+constraint:Constraint

invariant+

*

applied+ *

I_NamedObject

+name:String

reference+*

object+

template+

instance+

*

212 CHAPTER 6 ENTERPRISE, COMPUTATIONAL AND INFORMATION VIEWPOINT

ISO/IEC, 2005), because the representation proposed there is based on
explicit representation of states.

Information Viewpoint Concept UML 2.0 Modelling Element

I_ObjectTemplate Class stereotyped I_ObjectTemplate

I_ComponentObjectTemplate Attribute of Class

I_AtomicObjectTemplate Classes with names: String, Boolean, Integer or Unlimit-
edNatural

I_Object Object stereotyped I_Object

I_ComponentObject Attribute of Object

I_AtomicObject PrimitiveType

I_Invariant Constraint represented in OCL stereotyped I_Invariant

I_ActionTemplate UML CallBehaviourAction

I_NamedTemplate Pin of the CallBehaviourAction

Table 6-6 describes the representation relation between our information
viewpoint concepts and UML 2.0 modelling elements. We stereotype the
UML modelling elements, as indicated in Table 6-6, to make them identifi-
able as information concepts.

We represent object templates by UML classes. We represent the com-
ponents of a composite object template by attributes of the UML class that
represents that template. The name and type of such an attribute represent
the name and type of the component, respectively. We represent invariants
as OCL constraints. We consider the following atomic object templates
(which we derived from the primitive types that UML considers):
– A template with the name ‘String’ that represents a sequence of charac-

ters.
– A template with the name ‘Integer’ that represents an integer number.
– A template with the name ‘UnlimitedNatural’ that represents a natural

number and infinity. We graphically represent infinity by an asterisk (*).
– A template with the name ‘Boolean’ that represents either the value

‘true’ or the value ‘false’.
We represent an object by a UML object and we represent the components
of a composite object by the attributes of the representing UML object. We
represent an atomic object by the value that it represents (e.g.: true, 128, *,
…), not by its name (we consider its value to be its name).

We only represent information action templates. Information actions
are implicitly defined as the actions that can be constructed from the tem-
plates. We represent an action template as a UML call behaviour action.
This UML action must have input pins that correspond to the object tem-
plates referenced as original object templates. A UML action must have
output pins that correspond to the object templates referenced as result

Table 6-6 Representa-
tion of Information View-
point Concepts in UML
2.0

 INFORMATION VIEWPOINT 213

object templates. We represent pre- and postconditions as UML con-
straints. A constraint can use the name of a named template to represent an
instance of the UML class that represents the corresponding object tem-
plate.

«I_ObjectTemplate»
Product

+name: String
+description: String

«I_ObjectTemplate»
Company

+name: String
+address: String

«I_Invariant»
self.name <> ‘’

«I_Object»
Bruichladdich:Company

name = ‘Bruichladdich’
address = ‘Argyll’

createOffer

o:Offer

«I_Postcondition»
o.oclIsNew()

«I_ObjectTemplate»
Offer

+product: Product
+amount: Integer

6.5.3 Example of an Information View

Figure 6-32 represents an information view in UML. The view shows three
information object templates: ‘Offer’, ‘Product’ and ‘Company’. The ‘Of-
fer’ object template consists of a ‘product’ of template ‘Product’ and an
amount of template ‘Integer’, representing that it describes a product and
an amount of money that is to be paid for this product. The template refer-
ences the ‘Product’ template (alternatively this could be represented as a
UML association). The ‘Product’ template has an invariant that prescribes
that it must have a name.

Figure 6-32 also represents an information object that is created ac-
cording to the ‘Company’ template and an action template that represents
the creation of an object from the template ‘Offer’. As a postcondition, the
instance of the template ‘Offer’ that it references, must be newly created
according to the ‘oclIsNew()’ predicate.

6.5.4 Relation of Information Viewpoint Concepts to Basic Concepts

We define the relation between the information viewpoint concepts and the
basic viewpoint concepts in terms of a transformation. The transformation
defines how a view in terms of information viewpoint concepts can be
transformed into a view in terms of basic concepts. For the transformation,
we assume that the UML binding to the basic information concepts, as de-
scribed in section 4.3, is used.

Figure 6-32 Information
View Represented in
UML

214 CHAPTER 6 ENTERPRISE, COMPUTATIONAL AND INFORMATION VIEWPOINT

We transform an information object template into a basic information
type with the same name, such that an atomic information object template
is a basic primitive information type and a composite information object
template is a basic composite information type. We transform the compo-
nent of a composite information object template into a basic information
block with the same name and a basic information type that corresponds to
the object template of the component.

We transform an action template into a basic action type and we trans-
form the named templates of an action template into basic attributes of the
corresponding basic action type. We transform a pre- or postcondition into
a basic attribute constraint on one of the basic attributes that it affects. We
transform information objects into basic information values and informa-
tion actions into basic actions.

Since the basic concepts focus on behaviour, different ways of trans-
forming invariants exist, depending on how we want the system under de-
sign to behave with respect to information invariants.
1. We can transform an information object template into a basic informa-

tion type that always meets the invariants, because an information value
that does not satisfy the constraint is not part of the values identified by
the type.

2. We can transform an invariant by adding it as an attribute constraint to
all basic actions that affect the corresponding basic information type.

3. We can transform an invariant by adding additional basic behaviour that
specifies what must be done if some invariant is not met.

We leave the inclusion of invariants for future work.

createOffer

o: Person | o.oclIsNew()
Product

+name: String
+description: String

Company

+name: String
+address: String

Offer

+product: Product
+amount: Integer

Figure 6-33 represents the transformed information view from Figure 6-
32, using the UML binding to the basic information concepts. It illustrates
that a straightforward relation exists between the information viewpoint
concepts and the basic information concepts.

Figure 6-33 Transforma-
tion of Information
Concepts

 INFORMATION VIEWPOINT 215

Enterprise
Object

Information
Object

Information
Object

State
Performed

Actions

Action
Results

Behaviour determine

represents
describes

relation

6.5.5 Relations between Enterprise and Information Views

In the relations between an enterprise and an information view, an enter-
prise object can be related to information objects. Such a relation repre-
sents that the information objects (partly) describe the state of the related
enterprise object. Figure 6-34 illustrates this relation. Since the state of an
enterprise object represents the factors that determine which actions the
enterprise object can perform next, the information objects also (partly)
describe those factors. Since the behaviour of an object is fixed, information
objects can represent which actions an enterprise object has performed and
the results that were established in those actions. For that reason, an infor-
mation view refines an enterprise view with respect to the information con-
cern, by representing the results of enterprise actions (represented by arte-
facts) in more detail.

An enterprise object template can be related to information object tem-
plates, representing that the state of an instance of that the enterprise ob-
ject template is described by instances of the related information object
templates. Similarly, an enterprise role can be related to information object
templates, representing that details about an enterprise object that fulfils
the role are described by instances of the related information object tem-
plates.

In the relations between an enterprise and an information view, an en-
terprise action template can be related to information action templates.
Such a relation represents that the information action templates are used in
the realization of the related enterprise action template (RM-ODP is un-

Figure 6-34 Relation
between Enterprise and
Information Objects
Illustrated

Example 6-7 Relation
between Enterprise and
Information Objects

For example, the information object ‘Application Form’ can describe the state of the enterprise
object ‘Application’. The information values of ‘Application Form’ can represent the result of the
‘Fill Out Application’ enterprise action and an information value ‘accepted’ can represent that the
enterprise action ‘Accept Application’ was performed on the ‘Application’ object.

216 CHAPTER 6 ENTERPRISE, COMPUTATIONAL AND INFORMATION VIEWPOINT

clear about this relation, claiming that enterprise actions ‘correspond to’
information actions, but not explaining what that means). In this way, in-
formation action templates describe a part of the refinement of an enter-
prise action. For example, the ‘start database transaction’, ‘add database
entry’ and ‘commit database transaction’ information action templates cor-
respond to the ‘enter client information’ enterprise action template.

I_ObjectE_Object

I_ObjectTemplateE_ObjectTemplate

I_ActionTemplateE_ActionTemplate

state

*

1..*

abstraction

state

*

*

1..*

*

partOfrealization

abstraction

user

I_ObjectTemplateE_Role description

*

*

described

Figure 6-35 represents the potential relations between enterprise and in-
formation views at a viewpoint level. View relations are instances of the re-
lations represented in this figure.

The viewpoint relations imply consistency rules. One consistency rule is
that information objects are related to an enterprise object, they must re-
fine the results of the enterprise actions of that enterprise object. These
results are represented as artefacts. This refinement relation is a refinement
relation on information. However, since we have not defined what we mean
by refinement of information, further research is necessary before we can
specify this consistency rule. Other consistency rules are the following.

If an information object template describes the state of an enterprise
object template, then the state of each enterprise object of that enterprise
object template must be described by an information object of the informa-
tion object template. In OCL, the consistency rule is:

context E_Object inv:

self.template.state->forAll(iot: I_ObjectTemplate|
 I_Object.allInstances()->exists(io: I_Object|

Figure 6-35 Relations
between Enterprise and
Information Views

 INFORMATION VIEWPOINT 217

 io.template = iot and self.state = io
)
)

If an information object template describes an enterprise role, then the
state of each enterprise object that fulfils the role must be described by an
information object of the information object template. In OCL, the consis-
tency rule is:

context E_Object inv:

self.fulfilled.state->forAll(iot: I_ObjectTemplate|
 I_Object.allInstances()->exists(io: I_Object|
 io.template = iot and self.state = io
)
)

If an enterprise object template is referenced as an artefact in an enterprise
action template, then the information object templates that describe the
state of the enterprise object template must be referenced by the informa-
tion action templates that realize the enterprise action template. However,
this rule only applies if such information object templates and information
action templates exist. In OCL, the consistency rule is:

context I_ObjectTemplate inv:

self.abstraction.mentioner.partOfRealization->
forAll(iat: I_ActionTemplate|
 iat.result.template->includes(self)
 or
 iat.original.template->includes(self)
)

Example 6-8 Enterprise
and Information View
Relations

Figure 6-36 illustrates related enterprise and information views. The figure represents that the
state of the ‘CompanyA’ enterprise object is described by an information object that represents
details about a company. The states of objects that fulfil the ‘Offer’ and ‘Product’ enterprise
roles, must be described by information objects of the ‘Offer’ and ‘Product’ templates, respec-
tively. The ‘RequestPrice’ enterprise action template is partly realized by an information action
template that creates a new offer.

The ‘RequestPrice’ enterprise action template references the ‘Offer’ enterprise object tem-
plate, of which the state is described by the ‘Offer’ information object template. Therefore, the
third consistency rule requires that the ‘createOffer’ information action template references the
‘Offer’ information object template. Since this is the case, the third consistency rule is satisfied.

218 CHAPTER 6 ENTERPRISE, COMPUTATIONAL AND INFORMATION VIEWPOINT

«E_Object»
CompanyA

«I_ObjectTemplate»
Product

+name: String
+description: String

«I_Object»
Bruichladdich:Company

name = ‘Bruichladdich’
address = ‘Argyll’

createOffer

o:Offer

«I_ObjectTemplate»
Offer

+product: Product
+amount: Integer

state

state

state

Request
Price

offer: Offerproduct:Product

partOfRealization

«E_ObjectTemplate»
Offer

«E_ObjectTemplate»
Product

6.5.6 Relations between Computational and Information Views

Similar to the relation between information and enterprise objects, infor-
mation objects (partly) represent the state of a computational object. How-
ever, where the enterprise viewpoint has its own concept (artefact) for rep-
resenting the information concern, the computational viewpoint relies on
the information viewpoint for that. Therefore, an information view com-
plements, rather than refines, a computational view with respect to the in-
formation concern.

Like information objects are related to computational objects, informa-
tion object templates are related to computational object templates, repre-
senting that their instances partly describe the state of computational ob-
jects.

In RM-ODP a change in the state of an information object, represented by
an information action being performed on that object, corresponds to some
actions being performed in the computational view. Therefore, we relate
the information action template that causes a state change to the computa-
tional action templates that cause the same state change in the computa-

Figure 6-36 Example of
Enterprise and Informa-
tion View Relations

Example 6-9 Relation
between Computational
and Information Objects

An example of a relation between a computational object and information objects is a ‘Database’
computational object that stores information about client accounts. In the information view these
accounts can be represented as ‘Account’ objects. The ‘Account’ objects are the result of com-
putational actions that store information about client accounts in the ‘Database’. As another ex-
ample, the value of the ‘connected’ component object of the ‘Connection’ information object can
correspond to possible states of the ‘Switchboard’ computational object. It represents whether a
connection has been established by the ‘Switchboard’ computational object.

 INFORMATION VIEWPOINT 219

tional view. For that reason, the computational view refines the information
view with respect to the behaviour concern. An example of such a relation
is that a ‘createAccount’ information action template is implemented by
some computational interaction templates with the ‘Database’ computa-
tional object template.

We relate each parameter of a computational action to an information
object template. This relation represents that the type of the parameter is
described by the information object template, such that the information
object template determines the possible values and structure of the parame-
ter.

I_ObjectC_Object

I_ObjectTemplateC_ObjectTemplate

I_ActionTemplateC_ActionTemplate

state

*

*

stateOf

state

*

*

*

*

realized

stateOf

realization

I_ObjectTemplateC_Parameter *

1

typeRealization

typeOf

Figure 6-37 represents the relations between the computational viewpoint
concepts and information viewpoint concepts described above. These rela-
tions imply the following consistency rules.

The relations between computational and information objects (and their
templates) imply that each value of an information object corresponds to
particular states in the behaviour of a related computational object. There-
fore, impossible values of information objects, as defined by invariants,
must correspond to impossible states in the related computational objects.
Similarly, information actions that cause a change in the values of some in-
formation objects, as defined by pre- and postconditions, must be related
to computational actions that cause corresponding changes in the states of
computational objects. However, since we neither consider state nor are
able to compare information values to execution states, we cannot verify
consistency with respect to these properties.

Figure 6-37 Relations
between Computational
and Information Views

220 CHAPTER 6 ENTERPRISE, COMPUTATIONAL AND INFORMATION VIEWPOINT

A more trivial consistency rule is that, if a computational object tem-
plate is related to an information object template, then instances of the
computational object template must be related to instances of the informa-
tion object template. In OCL, the consistency rule is:

context C_Object inv:

self.template.state->forAll(iot: I_ObjectTemplate|
 I_Object.allInstances()->exists(io: I_Object|
 io.template = iot and self.state = io
)
)

A consistency rule, stating that each parameter must be related to an object
template, is specified as a cardinality constraint in Figure 6-37 and by the
following OCL constraint. This constraint states that the type of a computa-
tional parameter is realized by an information object template with the
same name.

context C_Parameter inv: self.type = self.typeRealization.name

«C_OperationInterface»
ProcurementInterface

«C_Interrogation» buy(order: Product): ReturnParameters

ReturnParameters

+saleSlip: SaleSlip
«I_ObjectTemplate»

SaleSlip

+products: OrderedSet
+numbers: OrderedSet
+totalAmount: Real

«I_ObjectTemplate»
Product

+name: String
+description: String

Figure 6-38 Example of
Computational and
Information View Rela-
tions

Example 6-10 Compu-
tational and Information
View Relations.

Figure 6-38 illustrates a relation between the computational and information viewpoint. The
views show how the parameters of the ‘buy’ computational action template are realized by infor-
mation object templates ‘Product’ and ‘SaleSlip’. The relations between the parameters and
information object templates is represented by the parameter type and the information object
template having the same name.

Chapter 7
7. Conclusions and Future Work

This chapter presents our conclusions and considerations for applying the
work described in this thesis. Also, it lists the contributions of this work and
it provides suggestions for future work.

7.1 Main Conclusions

This thesis proposes a framework to help maintain consistency in designs
that incorporate viewpoints from different stakeholders, focusing on view-
points that address behavioural, structural and information concerns. Our
framework is based on the hypothesis that the use of a common set of basic
design concepts aids in defining rules to check the consistency between
views. We claim in particular that the set of design concepts that we defined
earlier in (Quartel, 1998; Quartel et al., 1997; van Sinderen, 1995; Ferreira
Pires, 1994), aids in defining such consistency rules. A common and basic
set of concepts represents properties that all stakeholders consider relevant
(common) and that are elementary (basic), as opposed to composite prop-
erties that can be represented by a composition of elementary properties.
We present our framework in chapter 3 and our common and basic con-
cepts in chapter 4.

In a case study, presented in chapter 6, we show that our framework
and our set of basic concepts can be applied to check consistency between
views. We show this by applying the framework to define consistency rules
between designs from RM-ODP based enterprise, computational and in-
formation viewpoints.

We show that our framework and our set of basic concepts also aid in
managing the consistency between views in the following respects:
– A common set of design concepts provides a common vocabulary that

stakeholders can use to understand each other’s design concepts.

222 CHAPTER 7 CONCLUSIONS AND FUTURE WORK

– Frequently occurring consistency rules can be defined on a common set
of design concepts. Such consistency rules can be re-used to define con-
sistency rules between views. In chapter 5 we define some re-usable
consistency rules, motivated by the fact that they are commonly used
between views. The rules that we define can be used to check the con-
sistency between views that have some form of refinement or overlap re-
lation.

7.2 Considerations for Applying the Framework

Some considerations must be taken into account when applying the frame-
work.

Limitations of the framework. Since the use of the basic design con-
cepts is essential in the framework, the framework only aids in managing
the consistency of design properties that can be represented by the basic
design concepts. However, in case the basic concepts cannot be exploited,
the framework still allows a designer to define consistency rules directly on
the viewpoint concepts.

The designer must be careful not to violate the semantics of viewpoint
concepts when defining a relation between viewpoint concepts and basic
concepts. A viewpoint concept must have exactly the same semantics as the
basic concepts to which it is related. Otherwise, the result of a consistency
check via the basic concepts is unreliable.

Consistency rules and consistency. That a consistency rule is satisfied is
a necessary, but not sufficient conditions for the consistency of views. If a
consistency rule is not satisfied we know that the views to which it applies
are not consistent. However, if the consistency rule is satisfied, we cannot
claim that the views are consistent. We can only claim that the views are
consistent with respect to that particular rule.

For this reason and because chapter 6 shows that specifying a consis-
tency rule can cost significant effort, a designer should not try to be exhaus-
tive, when specifying consistency rules using our framework. The designer
can use alternative means to check consistency. For example, the designer
can manually compare two views. It is up to the designer to find a suitable
means for checking consistency.

Using basic concepts and using formal semantics. We can check
consistency between views using basic concepts, using formal semantics or
using a combination of both. Each of these options has benefits and draw-
backs.

 CONSIDERATIONS FOR APPLYING THE FRAMEWORK 223

A formalism is developed with the aim of reducing ambiguity, increasing
conciseness and aiding in analysis and verification. Our basic concepts on
the other hand are developed with the aim of representing the application
domain in such a way that designs are easy to understand and develop
(more detailed criteria are defined by (Vissers, van Sinderen, & Ferreira
Pires, 1993)). Observing these differences with respect to aim, we can con-
clude that formalisms on the one hand are better suited for verifying and
analyzing models. Our basic concepts on the other hand are easier to use by
people that are less mathematically skilled.

We can exploit the benefits of both the basic concepts and formal se-
mantics if we provide the basic concepts with a formal semantics. In that
way, on the one hand, the designer can focus on the relation between view-
point concepts and basic concepts, which are relatively easy to understand.
On the other hand, the basic concepts inherit means for analysis and verifi-
cation from the formalisms.

Using basic concepts and using direct view relations. We can check
consistency between views using basic concepts or using relations and con-
sistency rules that are defined directly between views. Using basic concepts
has both benefits and drawbacks with respect to using direct relations. The
drawbacks of using basic concepts are that:
– it requires designers to familiarize themselves with another set of con-

cepts;
– it requires designers to specify the relation between each set of view-

point concepts and the basic concepts.
In addition to the benefits that basic concepts aid in the definition of re-
usable view relations and provide a common basis that helps stakeholders to
understand each others concepts, benefits of using basic concepts are that:
– basic concepts help to understand more complex (viewpoint) concepts;
– basic concepts help to add precision to more complex (viewpoint) con-

cepts.
For example, the remote procedure call concept can have many forms; to
understand which form of remote procedure call we mean and to define it
more precisely, we can define it in terms of a composition of basic interac-
tions.

To show that using basic concepts aids in verifying consistency, we have
to show that the benefits of using basic concepts outweigh the drawbacks.
We have not shown this conclusively in this thesis. However, the observa-
tions above do provide a motivation.

Moreover, designers use a ‘basic’ set of concepts anyway to define and
check consistency rules. For example, to define and check consistency rules
between views that represent behaviour using different notations, designers
typically use concepts from some behaviour formalism (e.g. Petri nets). In

224 CHAPTER 7 CONCLUSIONS AND FUTURE WORK

these cases the designers already have the overhead of specifying a relation
between the viewpoint concepts and the ‘basic’ concepts. Hence, there is
no additional overhead compared to using the basic concepts that we pro-
pose.

7.3 Contributions

The research described in this thesis contributes to research in the area of
the design of distributed systems that support administrative business proc-
esses. Specifically, it contributes to:
– multi-viewpoint design;
– basic concepts;
– basic view relations;
– concepts for enterprise, information and computational viewpoint de-

sign.

Contributions to multi-viewpoint design. Our research contributes to
the research on multi-viewpoint design, because it uses basic concepts to
define view relations. Although frameworks exist that define viewpoint spe-
cific concepts as compositions of more basic concepts (Object Management
Group, 2003b; Naumenko, 2002; ITU-T, & ISO/IEC, 1995), the use of
these basic concepts to define view relations is new. We also contributed to
the techniques to define viewpoint specific concepts (Quartel, Dijkman, &
van Sinderen, 2005).

Contributions to basic concepts. This thesis evaluates the expressive-
ness of the basic concepts that were defined earlier in (Quartel, 1998;
Quartel et al., 1997; van Sinderen, 1995; Ferreira Pires, 1994). It evaluates
these concepts in their ability to represent the design properties considered
by three representative viewpoints: the enterprise, information and compu-
tational viewpoints. Based on this evaluation, it proposes improvements to
the basic concepts. Specifically, we propose:
– concepts that address the information concern of distributed systems

design;
– a more strict definition of concepts that address the structural concern

of distributed systems, including some new concepts;
– a more strict separation between concepts that represent types and con-

cepts that represent instances that conform to those types. For example,
we defined a strict separation between the ‘behaviour type’, the ‘behav-
iour instance’ and the ‘behaviour instantiation’ concept, helping to de-
fine multiple instances that represent similar behaviour; and

 FUTURE WORK 225

– an abstract syntax for our basic concepts, using MOF meta-modelling
techniques. This improves the precision of (the syntax of) our language
and helps the re-use of MOF-compliant tools and techniques.

Contributions to basic view relations. Our research contributes to the
basic view relations that we defined earlier in (Quartel, 1998; Quartel et al.,
1997; van Sinderen, 1995; Ferreira Pires, 1994), in that we add:
– a behaviour decomposition relation, which is a specific form of refine-

ment relation that represents that some interacting behaviours are a de-
composition of another behaviour;

– an overlap relation, which represents that some concept instances in one
view and some concept instances in another view represent overlapping
properties;

– consistency rules that help us to verify the consistency between views
that have a decomposition or overlap relation;

– an algorithm to verify causality preserving equivalence, also called strong
equivalence, between behaviours.

Contributions to enterprise, information and computational con-
cepts. The definition of the RM-ODP enterprise, information and compu-
tational viewpoint concepts as compositions of basic concepts leads to:
– a more precise definition of the relations between views from those

viewpoints;
– a more precise definition of the relation between the viewpoint concepts

and the basic (RM-ODP) concepts;
– a more general RM-ODP interaction concept, which is being considered

in the revision of RM-ODP (Linington, Vallecillo, & Wood, 2004).

7.4 Future Work

We suggest the following topics for future work.

Exploit a formal semantics to compute consistency. We explained
above how the strengths of basic concepts and formalisms can be com-
bined. Therefore, we propose that, in addition to the formal semantics that
are already defined on the basic concepts by Quartel (1998) to improve
precision and perform behaviour simulation, formal semantics are added
that help to compute consistency. For example, we can use Z (ISO/IEC,
2002) to compute consistency with respect to the information concern and
Petri nets to compute equivalence of one behaviour to another. The basic
concepts then serve to relate the different formalisms and use them in a

226 CHAPTER 7 CONCLUSIONS AND FUTURE WORK

unified way. They also serve as an intermediate level to define concepts and
consistency rules that are more easy to understand for a designer.

Create more informative consistency statements. Currently, the
framework is based on specifying OCL constraints to represent consistency
rules. These OCL constraints notify a designer when a consistency rule is
violated. However, they do not provide information about why a consistency
rule is violated. Such information is useful to solve inconsistencies. We pro-
pose that consistency rules that provide such information are developed.
The problem of providing such information is named the traceability prob-
lem by Boiten, Derrick, Bowman, and Steen (1999; 1997).

Define criteria to distinguish design concepts and language con-
cepts. We explained the distinction between design concepts and language
concepts in chapter 3. However, while developing the conceptual model
and modelling language for the basic concepts and the enterprise, informa-
tion and computational viewpoint, we discovered that the distinction still
leaves room for interpretation. Therefore, we claim that criteria should be
defined to clearly separate design concepts from abstract syntax. To define
these criteria, we can use the work of others (e.g. (Guizzardi, 2005; Guiz-
zardi, Ferreira Pires, & van Sinderen, 2005)).

Define concepts to represent structural dynamics. In chapter 4 we
defined structural dynamics as the design concern that represents when the
system structure changes and how. However, we did not define concepts to
represent structural dynamics. The definition of such concepts is left for
future work.

Elaborate on basic consistency rules. For the class of monolithic be-
haviours, the basic consistency rules are defined, up to a level of detail at
which they can be implemented. However, for the class of structured be-
haviours, consistency rules are only defined informally. The definition and
implementation of these rules is left for future work. This work could be
combined with the definition of a formal semantics to aid in computing
consistency. Such a semantics can also be used to formally prove the cor-
rectness of the consistency rules.

Appendix A
Consistency Rules in OCL

A.1 Enterprise Roles and Computational Behaviour

-- The constraint assumes that the following operations are defined.

-- Operation of completion condition that yields the causality target
-- instantiations that track to the enterprise action instantiation or
-- template for which the completion condition is a completion condition.
-- e2b_cti2eat tracks a basic causality target instantiation to the
-- enterprise action template from which it was transformed.
-- e2b_i2eat tracks a basic interaction to the enterprise action template
-- from which it was transformed.

context CompletionCondition
 def: ctisForAbstractAction(): Set =
 allCTI->select(cti: CausalityTargetInstantiation |
 E_ActionInstantiation.allInstances()->
 exists(eai: E_ActionInstantiation |
 eai.instantiator=
 cti.basicrules_compose_target2target.bi.e2b_bi2eo
 and
 eai.template=
 cti.basicrules_compose_target2target.cti.e2b_cti2eat
 and
 eai.condition=self
)
).union(
 allCTI->select(cti: CausalityTargetInstantiation |
 cti.basicrules_compose_action2interaction.
 e2b_i2eat.condition=self
)
)

-- Operation of completion condition that yields a textual version of the
-- completion condition.
-- The elements of the completion condition are (the names of) basic
-- action or interaction contribution instantiations that correspond to
-- computational actions in the completion condition.

 def: leftPartCompletionCondition():String =
 let terms = self.disjunction->asSequence() in
 terms->subSequence(2, terms->size())->
 iterate(t: Term; result: String = terms->first().conditionFor()|
 result.concat(' OR '.concat(term.conditionFor()))
)

-- Operation that yields a textual version of this term in the completion
-- condition.

228 APPENDIX A CONSISTENCY RULES IN OCL

context Term
 def: conditionForTerm(): String =
 let cais = self.conjunctionI->asSequence() in
 let cait = self.conjunctoinT->asSequence() in
 '('.concat(
 if cais->isEmpty() then '' else
 cais->subSequence(2,cais->size())->
 iterate(cai: C_ActionInstantiation;
 result: String =
 Term.conditionForElements(
 Term.ctisForInstantiation(cais->first())) |
 result.concat(' AND '.concat(
 Term.conditionForElements(
 Term.ctisForInstantiation(cai))))
)
 endif
).concat(
 if cais->isEmpty() or cats->isEmpty() then '' else ' AND ' endif
).concat(
 if cats->isEmpty() then '' else
 cats->subSequence(2,cats->size())->
 iterate(cat: C_ActionTemplate; result: String =
 Term.conditionForElements(
 Term.ctisForTemplate(cats->first())) |
 result.concat(' AND '.concat(
 Term.conditionForElements(
 Term.ctisForTemplate(cat))))
)
 endif
).concat(')')

 def: conditionForElements(ctis: Sequence): String =
 '('.concat(
 ctis->subSequence(2,ctis->size())->
 iterate(cti: CausalityTargetInstantiation;
 result: String = ctis->first().name |
 result.concat(' OR '.concat(cti.name))
)
).concat(')')

 def: ctisForInstantiation(cai: C_ActionInstantiation): Sequence =
 allCTI->select(cti: CausalityTargetInstantiation |
 cai.instantiator.c2b_co2bi=
 cti.basicrules_abstract_target2target.
 basicrules_compose_target2target.bi
 and
 cai.template=
 cti.basicrules_abstract_target2target.
 basicrules_compose_target2target.cti.c2b_cti2cat
)

 def: ctisForTemplate(cat: C_ActionTemplate): Sequence =
 allCTI->select(cti: CausalityTargetInstantiation |
 cti.basicrules_abstract_target2target.
 basicrules_compose_action2interaction.c2b_i2cat=cat
)

-- The actual constraint is the following.
context E_Community inv:

-- Basic behaviour instantiations that correspond to enterprise behaviour
-- templates performed by enterprise objects in the community.
-- Only behaviours of objects that are part of the system are selected.
-- These are objects that are refined by computational objects
-- (according to the 'refinement' relations between the views).
-- track e2b:bi2eo tracks basic behaviour instantiations to the enterprise
-- objects that perform them.
let e_behinst =
 BehaviourInstantiation.allInstances()->select(
 bi: BehaviourInstantiation |
 self.member->includes((bi.e2b_bi2eo))
 and

 ENTERPRISE ROLES AND COMPUTATIONAL BEHAVIOUR 229

 not (bi.e2b_bi2eo).refinement.isEmpty()
)->asSequence()
in

-- Basic behaviour instantiations that correspond to computational
-- behaviours performed by computational objects.
-- Computational objects must implement an enterprise object in the
-- community.
-- track c2b:co2bi tracks computational objects to the basic behaviour
-- instantiations that they perform
let c_behinst =
 C_Object.allInstances()->select(co: Object |
 co.refined.configuration->includes(self)
)->collect(co: Object |
 co.c2b_co2bi
)->asSequence()
in

-- The behaviour instantiation that is the composition of all
-- instantiations in e_behinst.
let e_composed =
 e_behinst->subSequence(2,e_behinst->size())->
 iterate(bi: BehaviourInstantiation;
 result: BehaviourInstantiation = e_behinst->first() |
 bi.compose(result)
)
in

-- The behaviour instantiation that is the composition of all
-- instantiations in c_behinst.
let c_composed =
 c_behinst->subSequence(2,c_behinst->size())->
 iterate(bi: BehaviourInstantiation;
 result: BehaviourInstantiation = c_behinst->first() |
 bi.compose(result)
)
in

-- All causality target instantiations
let allCTI = CausalityTargetInstantiation->allInstances()
in

-- All causality target instantiations that can not be abstracted, because
-- they correspond to final actions or interactions.
-- These are:
-- 1. All causality target instantiations in the composed behaviour that
-- track to an action or interaction contribution in the non-composed
-- behaviour. These non-composed actions and interaction contributions
-- must track to a computational action instantiation that is a final
-- action for an enterprise action (template or instantiation).
-- c2b_cti2cat tracks a basic causality target instantiation to the
-- computational action template from which it was transformed.
let finalActions =
 allCTI->select(cti : CausalityTargetInstantiation |
 C_ActionInstantiation.allInstances()->
 exists(cai: C_ActionInstantiation |
 cai.instantiator.c2b_co2bi=
 cti.basicrules_compose_target2target.bi
 and
 cai.template=
 cti.basicrules_compose_target2target.cti.
 c2b_cti2cat
)
)
in

-- 2. All causality target instantiations in the composed behaviour that
-- track to an interaction in the non-comopsed behaviour. These
-- interactions must track to a computational action template that is a
-- final action for an enterprise action (template or instantiation).
-- c2b_i2cat tracks a basic interaction to the computational action
-- template from which it was transformed.
let finalInteractions =

230 APPENDIX A CONSISTENCY RULES IN OCL

 allCTI->select(cti : CausalityTargetInstantiation |
 not cti.basicrules_compose_action2interaction.
 c2b_i2cat.term.oclIsUndefined()
)
)
in

-- The causality targets, in the transformed and composed computational
-- behaviour, from which we can abstract.
-- These are causality targets that do not represent final actions,
-- interaction contributions or interactions.
let ctiToAbstract =
 (allCTI - finalActions) - finalInteractions
in

-- The composed computational behaviour in which we abstracted from all
-- inserted actions
let c_composed_abstracted =
 c_composed.abstract(ctiToAbstract)
in

-- Textual versions of all completion conditions
let ccs =
 CompletionCondition.allInstances()->collect(cc: CompletionCondition |
 cc.ctisForAbstractAction().name.collect(name: String |
 ' TO '.concat(name))->
 product(cc.leftPartCompletionCondition())->
 collect(tuple : Tuple(first: String, second: String) |
 tuple.second.concat(tuple.first)
)
)
)
).flatten()
in

-- The integrated, abstracted and composed behaviour that corresponds to
-- the behaviour of the computational objects.
let c_integrated_abstracted_composed =
 c_composed_abstracted.integrate(ccs)
in

-- Is the integrated, abstracted and composed computational behaviour
-- equivalent to the composed enterprise (system) behaviour?
e_composed.equivalent(c_integrated_abstracted_composed)

A.2 Enterprise Processes and Computational Behaviour

-- The constraint uses the same operations as the previous section and
-- adds the following.

-- Operation of completion condition that yields the causality target
-- instantiations that track to the step in the process (argument) for
-- which the completion condition is a completion condition.
-- e2b_cti2st tracks a basic causality target instantiation to the
-- enterprise step template from which it was transformed.
context CompletionCondition
 def: ctisForAbstractAction(p: E_ProcessTemplate): Set =
 allCTI->select(cti: CausalityTargetInstantiation |
 cti.e2b_cti2st.in = p
 and(
 cti.e2b_cti2st.action.condition = self
 or
 cti.e2b_cti2st.action.instance.condition->includes(self)
)
)

-- The actual constraint is the following.
context E_ProcessTemplate inv:

 ENTERPRISE ROLES AND COMPUTATIONAL BEHAVIOUR 231

-- Basic behaviour instantiations that correspond to computational
-- behaviours performed by computational objects.
-- track c2b'_co2bi tracks computational objects to the basic behaviour
-- instantiations that they perform, c2b' is the transformation that does
-- not transform computational action and constraint templates that
-- represent parts of concurrency mechanisms.
let c_behinst =
 C_Object.allInstances()->collect(co: Object |
 co.c2b'_co2bi
)->asSequence()
in

-- The basic behaviour representing process that we are comparing to.
-- e2b_p2bi tracks processes to behaviour instantiations that represent
-- them.
let e_process = self.e2b_p2bi
in

-- The behaviour instantiation that is the composition of all
-- instantiations in c_behinst.
let c_composed =
 c_behinst->subSequence(2,c_behinst->size())->
 iterate(bi: BehaviourInstantiation; result:
 BehaviourInstantiation = c_behinst->first() |
 bi.compose(result)
)
in

-- All causality target instantiations
let allCTI = CausalityTargetInstantiation->allInstances()
in

-- All causality target instantiations that can not be abstracted, because
-- they correspond to final actions or interactions.
-- These are:
-- 1. All causality target instantiations in the composed behaviour that
-- track to an action or interaction contribution in the non-composed
-- behaviour. These non-composed actions and interaction contributions
-- must track to a computational action instantiation that is a final
-- action for a step in the process.
-- c2b'_cti2cat tracks a basic causality target instantiation to the
-- computational action template from which it was transformed.
let finalActions =
 allCTI->select(cti : CausalityTargetInstantiation |
 C_ActionInstantiation.allInstances()->
 exists(cai: C_ActionInstantiation |
 cai.instantiator.c2b'_co2bi=
 cti.basicrules_compose_target2target.bi
 and
 cai.template=
 cti.basicrules_compose_target2target.cti.c2b'_cti2cat
 and
 self.contained.action.condition.disjunction.conjunctionI->
 includes(cai)
)
)
in

-- 2. All causality target instantiations in the composed behaviour that
-- track to an interaction in the non-comopsed behaviour. These
-- interactions must track to a computational action template that
-- is a final action for a step in the process.
-- c2b'_i2cat tracks a basic interaction to the computational action
-- template from which it was transformed.
let finalInteractions =
 allCTI->select(cti : CausalityTargetInstantiation |
 self.contained.action.condition.disjunction.conjunctionT->includes(
 cti.basicrules_compose_action2interaction.c2b'_i2cat
)
)
in

-- The causality targets, in the transformed and composed computational

232 APPENDIX A CONSISTENCY RULES IN OCL

-- behaviour, from which we can abstract.
-- These are causality targets that do not represent final actions,
-- interaction contributions or interactions.
let ctiToAbstract =
 (allCTI - finalActions) – finalInteractions
in

-- The composed computational behaviour in which we abstracted from all
-- inserted actions
let c_composed_abstracted =
 c_composed.abstract(ctiToAbstract)
in

-- Textual versions of all completion conditions that apply to steps in
-- this process
let ccs =
 CompletionCondition.allInstances()->collect(cc: CompletionCondition |
 cc.ctisForAbstractAction(self).name.collect(name: String |
 ' TO '.concat(name))->
 product(cc.leftPartCompletionCondition())->
 collect(tuple : Tuple(first: String, second: String) |
 tuple.second.concat(tuple.first)
)
)
)
).flatten()
in

-- The integrated, abstracted and composed behaviour that corresponds to
-- the behaviour of the computational objects.
let c_integrated_abstracted_composed =
 c_abstracted_composed.integrate(ccs)
in

-- Is the integrated, abstracted and composed computational behaviour
-- equivalent to the composed enterprise (system) behaviour?
e_process.equivalent(c_integrated_abstracted_composed)

References

Aagedal, J. Ø., & Milosevic, Z. (1999). ODP enterprise language: UML
perspective, Proceedings of the 3rd IEEE International Enterprise Dis-
tributed Object Computing Conference (EDOC) (pp. 60-71).

van der Aalst, W.M.P., & ter Hofstede, A.H.M. (2003). YAWL: Yet An-
other Workflow Language. Information Systems, 30(4), 245-275.

van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., & Barros,
A.P. (2003). Workflow Patterns. Distributed and Parallel Databases,
14(3), 5-51.

Akehurst, D. H., Derrick, J., & Waters, A. G. (2003a). Addressing compu-
tational viewpoint design, Proceedings of the 7th IEEE Enterprise Dis-
tributed Object Computing Conference (EDOC) (pp. 147-158).

Akehurst, D. H., Kent, S., & Patrascoiu, O. (2003b). A relational approach
to defining and implementing transformations between meta-
models. Software and Systems Modeling, 2(4), 215-239.

Akehurst, D. H., Linington, P. F., & Patrascoiu, O. (2003c). OCL 2.0: Im-
plementing the standard (Technical Report No. 1746): University of
Kent at Canterbury.

Allen, R., & Garlan, D. (1994). Formalizing architectural connection, Pro-
ceedings of the 16th ACM/IEEE International Conference on Software
Engineering (ICSE) (pp. 71-80).

Allen, R., & Garlan, D. (1997). A formal basis for architectural connection.
ACM Transactions on Software Engineering and Methodology (TOSEM),
6(3), 213-249.

Almeida, J. P. A., Dijkman, R. M., Ferreira Pires, L., Quartel, D. A. C., &
Sinderen, M. J. van (2005). Abstract interactions and interaction
refinement in model-driven design, Proceedings of the 9th IEEE
EDOC Enterprise Computing Conference (EDOC) (pp. 273-286).

Balabko, P., & Wegmann, A. (2003). From RM-ODP to the formal behav-
ior representation. In H. Kilov & K. Baclawski (Eds.), Practical

234 REFERENCES

foundations of business and system specifications (pp. 41-66): Kluwer
Academic Publishers.

Blair, G., & Stefani, J.-B. (1998). Open distributed processing and multimedia:
Addison Wesley Longman.

Boiten, E., Bowman, H., Derrick, J., & Steen, M. W. A. (1997). Managing
inconsistency and promoting consistency (unpublished): Univer-
sity of Kent, Canterbury, United Kingdom.

Boiten, E., Derrick, J., Bowman, H., & Steen, M. W. A. (1999). Construc-
tive consistency checking for partial specification in Z. Science of
Computeer Programming, 35(1), 29-75.

Boiten, E. A., Bowman, H., Derrick, J., Linington, P. F., & Steen, M. W. A.
(2000). Viewpoint consistency in ODP. Computer Networks, 34(3),
503-537.

Bordbar, B., Derrick, J., & Waters, A. G. (2002). A UML approach to the
design of open distributed systems, Proceedings of the 4th Interna-
tional Conference on Formal Engineering Methods (ICFEM) (Vol. 2495
in Lecture Notes in Computer Science, pp. 561-572).

Derrick, J., Boiten, E. A., Bowman, H., & Steen, M. W. A. (1999). View-
points and consistency: Translating LOTOS to object-Z. Computer
Standards and Interfaces, 21, 251-272.

Deursen, A. van, Klint, P., & Visser, J. (2000). Domain-specific languages:
An annotated bibliography. ACM SIGPLAN Notices, 35(6), 26-36.

Dijkman, R. M., Quartel, D. A. C., Ferreira Pires, L., & Sinderen, M. J. van
(2003). An approach to relate viewpoints and modeling lan-
guages, Proceedings of the 7th IEEE Enterprise Distributed Object Com-
puting Conference (EDOC) (pp. 14-27).

Dijkman, R. M., Quartel, D. A. C., Ferreira Pires, L., & Sinderen, M. J. van
(2004). A rigorous approach to relate enterprise and computa-
tional viewpoints, Proceedings of the 8th IEEE Enterprise Distributed
Object Computing Conference (EDOC) (pp. 187-200).

Eck, P. A. T. van, Blanken, H. M., & Wieringa, R. J. (2004). Project
GRAAL: Towards operational architecture alignment. Interna-
tional Journal of Cooperative Information Systems, 13(3), 235-255.

Eijk, P. van, Vissers, C., & Diaz, M. (1989). The formal description technique
LOTOS: North-Holland.

Ferreira Pires, L. (1994). A framework for distributed systems development. Ph.D.
Thesis. University of Twente, Enschede, The Netherlands.

Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J., & Nuseibeh, B. (1994).
Inconsistency handling in multi-perspective specifications. IEEE
Transactions on Software Engineering, 20(8), 569-578.

Glabbeek, R. J. van, & Goltz, U. (2001). Refinement of actions and equiva-
lence notions for concurrent systems. Acta Informatica, 37(4/5),
227-327.

 REFERENCES 235

Guizzardi, G. (2005). On the ontological foundations of structural conceptual mod-
els. Ph.D. Thesis. University of Twente, Enschede, The Nether-
lands.

Guizzardi, G., Ferreira Pires, L., & Sinderen, M. J. van (2005). An ontol-
ogy-based approach for evaluating the domain appropriateness
and comprehensibility appropriateness of modeling languages,
Proceedings of the 8th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems (MoDELS).

Hoare, C. A. R. (1985). Communicating sequential processes: Prentice-Hall.
IEEE. (2000). IEEE recommended practice for architectural description of software-

intensive systems (IEEE Std No. 1471-2000).
ISO/IEC. (2002). Information technology - Z formal specification notation - syn-

tax, type system and semantics (Specification 13568).
ISO/IEC/JTC1/SC7. (2004). Announcement - SC7 study group on the revision of

RM-ODP (Announcement No. N3054).
ITU-T. (2002). CCITT specification and description language (Specification

Z.100).
ITU-T, & ISO/IEC. (1995). Open distributed processing reference model (ODP-

RM) (ITU-T Specification 901.4 and ISO/IEC Sprecification
10746-1.4).

ITU-T, & ISO/IEC. (1999). Information technology - open distributed processing
reference model - enterprise language (ITU-T Specification 911 and
ISO/IEC Specification 16414).

ITU-T, & ISO/IEC. (2005). Information technology - open distributed processing
- use of UML for ODP system specification (Committee Draft Version
1.00 of ITU-T Specification X.906 and ISO/IEC Specification
19793).

Jackson, D. (2002). Alloy: A lightweight object modelling notation. ACM
Transactions on Software Engineering and Methodology (TOSEM),
11(2), 256-290.

Jonkers, H., Lankhorst, M. M., Buuren, R. van, Hoppenbrouwers, S., Bon-
sangue, M., & Torre, L. van der (2004). Concepts for modelling
enterprise architectures. International Journal of Cooperative Informa-
tion Systems, 13(3), 257-287.

Katoen, J.-P. (1995). Causal Behaviours and Nets, Proceedings of the 16th
International Conference on Application and Theory of Petri Nets (ATPN)
(Vol. 935 in Lecture Notes in Computer Science, pp. 258-277).

Lankhorst, M. M. (2005). Enterprise architecture at work: Modelling, communica-
tion and analysis: Springer.

Lankhorst, M. M., Buuren, R. van, Leeuwen, D. van, Jonkers, H., & Doest,
H. ter (2004). Enterprise architecture modelling - the issue of
integration. Advanced Engineering Informatics, 18(4), 205-216.

236 REFERENCES

Linington, P. F., Vallecillo, A., & Wood, B. (2004). Report of the 2004
workshop on ODP for enterprise computing (WODPEC). Re-
trieved 4 August 2005, from
http://www.lcc.uma.es/~av/wodpec2004/WODPEC2004-
Report.doc

Luckham, D. C., Kenney, J. J., Augustin, L. M., Vera, J., Bryan, D., &
Mann, W. (1995). Specification and analysis of system architec-
ture using Rapide. IEEE Transactions on Software Engineering, 21(4),
336-355.

Luckham, D. C., & Vera, J. (1995). An event-based architecture definition
language. IEEE Transactions on Software Engineering, 21(9), 717-
734.

Magee, J., Dulay, N., Eisenbach, S., & Kramer, J. (1995). Specifying dis-
tributed software architectures, Proceedings of the 5th European
Software Engineering Conference (ESEC) (Vol. 989 in Lecture Notes
in Computer Science, pp. 137-153).

Medvidovic, N., & Taylor, R. N. (2000). A classification and comparison
framework for software architecture description languages. IEEE
Transactions on Software Engineering, 26(1), 70-93.

Merriam-Webster. (2005). Merriam-webster online. Retrieved 2 October
2005, from http://www.m-w.com/

Milner, R. (1999). Communicating with mobile agents: The Pi-calculus: Cam-
bridge University Press.

Naumenko, A. (2002). Triune continuum paradigm: A paradigm for general sys-
tem modeling and its applications for UML and RM-ODP. Ph.D. The-
sis. École Politechnique Fédérale de Lausanne, Switzerland.

Nuseibeh, B., Kramer, J., & Finkelstein, A. (1993). Expressing the relation-
ships between multiple views in requirements specification, Pro-
ceedings of the 15th ACM/IEEE International Conference on Software
Engineering (ICSE) (pp. 187-196).

Nuseibeh, B., Kramer, J., & Finkelstein, A. (1994). A framework for ex-
pressing the relationships between multiple views in require-
ments specification. IEEE Transactions on Software Engineering,
20(10), 760-773.

Object Management Group. (2002a). Meta object facility (MOF) specification
(Available Specification No. formal/02-04-03).

Object Management Group. (2002b). OMG XML metadata interchange (XMI)
specification (Available Specification No. formal/02-01-01).

Object Management Group. (2002c). Request for proposal: MOF 2.0 query /
views / transformations RFP (Request for Proposal No. ad/02-04-
10).

Object Management Group. (2002d). UML profile for EDOC (Final Adopted
Specification No. ptc/02-02-05).

 REFERENCES 237

Object Management Group. (2003a). MDA guide version 1.0.1 (No.
omg/2003-06-01).

Object Management Group. (2003b). UML 2.0 infrastructure specification (Fi-
nal Adopted Specification No. ptc/03-09-15).

Object Management Group. (2003c). UML 2.0 OCL specification (Final
Adopted Specification No. ptc/03-10-14).

Object Management Group. (2004a). UML 2.0 superstructure specification (Fi-
nal Adopted Specification No. ptc/04-10-02).

Object Management Group. (2004b). UML profile for meta object facility
(MOF) specification (Available Specification No. formal/04-02-06).

Object Management Group. (2005). Revised submission for MOF 2.0 query /
view / transformation RFP (Revised Submission No. ad/05-03-02).

Patrascoiu, O. (2004a). Mapping EDOC to web services using YATL, Pro-
ceedings of the 8th IEEE Enterprise Distributed Object Computing Confer-
ence (EDOC) (pp. 286-297).

Patrascoiu, O. (2004b). YATL: Yet another transformation language, Pro-
ceedings of the 1st European Workshop on Model Driven Architecture for
Industrial Applications (MDA-IA) (pp. 83-90).

Pressman, R. S. (2003). Software engineering: A practitioner's approach (5th ed.):
McGraw-Hill.

Quartel, D. (1998). Action relations - basic design concepts for behaviour modelling
and refinement. Ph.D. Thesis. University of Twente, Enschede,
The Netherlands.

Quartel, D., Ferreira Pires, L., Franken, H., & Vissers, C. (1995). An engi-
neering approach towards action refinement, Proceedings of the 5th
IEEE Workshop on Future Trends of Distributed Computing Systems
(FTDCS) (pp. 266-273).

Quartel, D., Ferreira Pires, L., Sinderen, M. J. van, Franken, H. M., &
Vissers, C. A. (1997). On the role of basic design concepts in be-
haviour structuring. Computer Networks and ISDN Systems, 29(4),
413-436.

Quartel, D., Ferreira Pires, L., & Sinderen, M. van (2002). On architectural
support for behavior refinement in distributed systems design.
Journal of Integrated Design and Process Science, 6(1).

Quartel, D. A. C., Dijkman, R. M., & Sinderen, M. J. van (2005). Extend-
ing profiles with stereotypes for composite concepts using model
transformation, Proceedings of the 8th ACM/IEEE International Con-
ference on Model Driven Engineering Languages and Systems (MoDELS).

Romero, J. R., & Vallecillo, A. (2005). Modeling the ODP computational
viewpoint with UML 2.0, Proceedings of the 9th IEEE EDOC Enter-
prise Computing Conference (EDOC) (pp. 169-180).

Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., & Edmond, D.
(2005). Workflow Resource Patterns: Identification, Representa-

238 REFERENCES

tion and Tool Support, Proceedings of the 17th International Confer-
ence on Advanced Information Systems Engineering (CAiSE) (Vol. 3520
in Lecture Notes in Computer Science, pp. 216-232).

Russell, N., ter Hofstede, A.H.M., Edmond, D., & van der Aalst, W.M.P.
(2005). Workflow Data Patterns: Identification, Representation
and Tool Support, Proceedings of the 24th International Conference on
Conceptual Modeling (ER) (pp. 353-368).

Sinderen, M. J. van (1995). On the design of application protocols. Ph.D. The-
sis, University of Twente, Enschede, The Netherlands.

Smith, G. (2000). The object-Z specification language. Advances in formal methods:
Kluwer Academic Publishers.

Sowa, J. F., & Zachman, J. A. (1992). Extending and formalizing the
framework for information systems architecture. IBM Systems
Journal, 31(3), 590-616.

Spanoudakis, G., Finkelstein, A., & Till, D. (1999). Overlaps in require-
ments engineering. Automated Software Engineering, 6(2), 171-198.

Steen, M. W. A., & Derrick, J. (2000). ODP enterprise viewpoint specifica-
tion. Computer Standards and Interfaces, 22(3), 165-189.

The Open Group. (2005). The open group architecture framework (TOGAF --
'the book') version 8.1: The Open Group.

Vissers, C. A., Ferreira Pires, L., & Lagemaat, J. van de (1995). LOTO-
Sphere, an attempt towards a design culture. In T. Bolognesi, J.
van de Lagemaat & C. A. Vissers (Eds.), LOTOSphere: Software de-
velopment with LOTOS. Dordrecht: Kluwer Academic Publishers.

Vissers, C. A., Sinderen, M. J. van, & Ferreira Pires, L. (1993). What makes
industries believe in formal methods. In A. A. S. Danthine, G.
Leduc & P. Wolper (Eds.), Proceedings of the 13th IFIP International
Symposium on Protocol Specification, Testing and Verification (PSTV)
(pp. 3-26).

Wegmann, A. (2003). On the systemic enterprise architecture methodology
(seam), Proceedings of the 5th International Conference on Enterprise
Information Systems - Volume III (pp. 483-490).

Wieringa, R. J., Blanken, H. M., Fokkinga, M. M., & Grefen, P. W. P. J.
(2003). Aligning application architecture to the business context.
In J. Eder & M. Missikoff (Eds.), Proceedings of the 15th Interna-
tional Conference on Advanced Information Systems Engineering (CAiSE)
(Vol. 2681 in Lecture Notes in Computer Science, pp. 209-
225).

Workflow Management Coalition. (1999). Workflow management coalition
terminology and glossary version 3.0 (Specification No. WFMC-TC-
1011).

Zachman, J. A. (1987). A framework for information systems architecture.
IBM Systems Journal, 26(3), 276-295.

Index

Abstract Operator.................124
Action77
Action Abstraction........122, 125
Action Integration123, 129
Action Refinement................121
Action Type............................77
Activity74
Alternative Behaviour............112
ArchiMate13
Architectural Description

Language............................70
Attribute81

Information........................81
Location.............................81
Time..................................81
Uncertainty........................85

Attribute Constraint87
Behaviour75

Declaration75
General76
Monolithic76
Recursion...........................75
Repeating.........................144
Structured..........................76

Behaviour Composition 123, 136
Behaviour Decomposition.....121
Behaviour Equivalence..........162
Behaviour Structuring

Causality Oriented..............90
Constraint Oriented94

Behaviour Type 75
Causality Condition................ 83

Alternative 84, 111
Conjunction....................... 84
Disabling Condition........... 84
Disjunction........................ 84
Enabling Condition............ 84
Implicit............................ 116
Impossible 109
Start Condition 84
Synchronization Condition. 84

Causality Constraint 84, 86
Causality Context 126
Causality Refinement 120
Causality Relation................... 83

One-and-a-Half Sided...... 113
Completion Condition . 124, 129
Compose Operator 125
Computational Viewpoint

Active State...................... 188
Announcement 190
Behaviour 188
Binding............................ 190
Binding Object 190
Compound Binding 190
Environment Contract 191
Flow 189
Interface 188
Interrogation 190
Invocation........................ 190

240 INDEX

Object..............................188
Operation189
Operation Interface..........189
Parameter191
Primitive Binding190
Signal189
Signal Interface189
Signature..........................191
State.................................188
Stream Interface...............189
Termination.....................190

Computational Viewpoint187
Concern20
Consistency Rule5, 27, 124
Consistency Verification .27, 122
Darwin...................................73
Delegation..............................58
Delegation Type63
Dependency Closure116
Design Concept........................2

Basic3, 55
Composite4

Design Culture3
Design Milestone....................28
Design Process20
Disjunctive Normal Form84,

111
Enterprise Viewpoint

Action169
Actor................................170
Artefact170
Authorization169
Behaviour.........................169
Community......................167
Community Object...........168
Interaction170
Interface Role169
Internal Action.................169
Object..............................168
Object Template169
Process.............................170
Resource170
Role169

Step................................. 170
Enterprise Viewpoint 167
Entity..................................... 57
Entity Composition 58
Entity Type 60
Entry Point 91
Exit Point............................... 91
Final Action 121
Formal Semantics................... 47
Formalism.............................. 47
Generalization........................ 40
GRAAL 11
Information Binding............... 98
Information Block.................. 98
Information Type................... 97

Composite 98
Location 98
Primitive............................ 98
Time.................................. 98

Information Value 97
Information Viewpoint

Atomic Object 210
Composite Object............ 210
Invariant 210
Object 210
Postcondition 211
Precondition.................... 211

Information Viewpoint 210
Inserted Action 120
Instance 60
Instantiation........................... 60
Integrate Operator 124
Interaction 78
Interaction Contribution 78

Structured 79
Interaction Contribution Type 78
Interaction Point.................... 57
Interaction Point Part............. 58
Interaction Point Part Type 60
Interaction Point Type 62
Interaction Type 79
Language Concept.................. 32
Layer of Functionality............. 28

 INDEX 241

Level of Abstraction................20
Meta-Concept35
Meta-Object Facility37
Model32
Model Driven Architecture69
Modelling Language................32
Multiplicity.............................61
Multi-Viewpoint Design............1
Notational Element32
OpenViews.............................17
Overlap Relation.............25, 160
Parameter...............................91
Parameter Constraint..............92
Rapide....................................72
Refinement Relation.......24, 120
Representation Relation..........32
RM-ODP14

SEAM 16
Shorthand 80
Stakeholder.............................. 1
Strong Behaviour Equivalence

.. 118
Structural Dynamics............... 56
Structural Snapshot 56
Structural Type 56
Substitution Operator 144
Transformation 40
Type 60
View 1, 21
Viewpoint 1, 21
Viewpoint Relation........... 5, 107
ViewPoints Framework 16
Wright 70

Samenvatting

Dit proefschrift beschrijft een raamwerk dat helpt bij het bewaken van de
consistentie in een ontwerp vanuit meerder ontwerpperspectieven. In een
dergelijk ontwerp construeert iedere belanghebbende zijn eigen
ontwerpdeel. We noemen dat deel de ‘view’ van de belanghebbende. Om
zijn gedeelte van het ontwerp te construeren, heeft een belanghebbende een
‘viewpoint’ dat de ontwerpconcepten, de notatie en de ondersteunende
software beschrijft die de belanghebbende gebruikt.

Het raamwerk dat in dit proefschrift beschreven wordt, richt zich op
architectuurontwerp van gedistribueerde systemen.

Een gedistribueerd systeem is een systeem waarin het gedrag wordt
uitgevoerd door fysiek gescheiden systeemdelen. Interactie tussen de
systeemdelen speelt dan een belangrijke rol. Een voorbeeld van een
gedistribueerd systeem is een mobiel communicatienetwerk. In een
dergelijk netwerk wordt het gedrag uitgevoerd door bijvoorbeeld mobiele
telefoons, antennes waarmee die mobiele telefoons verbinden en computers
bij de netwerkaanbieder.

Architectuurontwerp is het gebied van ontwerp dat zich richt op de
hogere abstractieniveaus in een ontwerpproces. Het laagste abstractieniveau
dat onder de architectuurontwerp valt, is het niveau waarin het gedrag
wordt uitgevoerd door delen die communiceren met behulp van een
communicatie middleware.

In het raamwerk wordt consistentie bewaakt door relaties en
consistentieregels die gedefinieerd worden door de belanghebbenden.
Relaties specificeren hoe een ‘view’ gerelateerd kan zijn aan een andere
‘view’ en consistentieregels specificeren regels die moeten gelden in een
consistent ontwerp.

Om te helpen bij het bewaken van de consistentie definieert het
raamwerk:
– een verzameling basisconcepten;
– voorgedefinieerde relaties;

244 SAMENVATTING

– voorgedefinieerde consistentieregels; en
– een taal om de relaties en consistentieregels te representeren.
De basisconcepten hebben we overgenomen uit eerder werk. Deze
concepten zijn ontwikkeld door het gebied van gedistribueerd
systeemontwerp te bestuderen. In het raamwerk moeten ‘viewpoint’-
specifieke concepten worden gedefinieerd als composities of specialisaties
van de basisconcepten. Daarmee vormen de basisconcepten een
gemeenschappelijke vocabulaire, die de verschillende belanghebbenden
kunnen gebruiken om elkaars ontwerpen te begrijpen.

Het raamwerk definieert relaties die kunnen worden hergebruikt om te
specificeren hoe een ‘view’ is gerelateerd aan een andere ‘view’. De twee
hoofdtypen van relaties die worden voorgedefinieerd zijn: de verfijningsrelatie
en de overlap relatie. Een verfijningsrelatie bestaat tussen ‘views’ die (deels)
dezelfde ontwerpaspecten beschouwen, maar die deze beschouwen op
verschillende abstratieniveaus. Een overlap relatie bestaat tussen ‘views’ die
(deels) dezelfde ontwerpaspecten beschouwen op hetzelfde
abstractieniveau. De voorgedefinieerde relaties zijn ontwikkeld door
bestaande raamwerken voor ontwerp vanuit verschillende perspectieven te
analyseren en er de veel gebruikte relaties uit af te leiden.

De voorgedefinieerde relaties impliceren bepaalde consistentieregels.
Daarom definieert het raamwerk de volgende herbruikbare
consistentieregels die de voorgedefinieerde relaties complementeren. Als
twee ‘views’ een verfijningsrelatie hebben, dan moet de ene ‘view’ de
eigenschappen die de andere view voorschrijft handhaven. Als twee views
een overlap relatie hebben, dan moeten ze equivalent zijn met betrekking
tot hun overlap.

Het raamwerk definieert ook een architectuur voor
softwareondersteuning. Die ondersteuning is erop gericht om de relaties en
consistentieregels tussen ‘views’ te specificeren en om de consistentieregels
te evalueren. De architectuur bevat de voorgedefinieerde basisconcepten,
relaties en consistentieregels, zodat die kunnen worden hergebruikt.

Als casestudie definiëren we, met behulp van het raamwerk, aangepaste
versies van de RM-ODP ‘enterprise’, ‘computational’ en ‘information
viewpoints’. We definiëren de concepten uit deze ‘viewpoints’ als
composities of specialisaties van de basisconcepten. Ook definiëren we de
relaties en consistentieregels tussen de ‘viewpoints’, gebruikmakend van de
voorgedefinieerde relaties en consistentieregels. De resultaten van de
casestudie steunen de hypothese dat het raamwerk helpt bij het bewaken
van de consistentie in een ontwerp met meerder ontwerpperspectieven.

CONSISTENCY IN
MULTI-VIEWPOINT
ARCHITECTURAL
DESIGN

R
E

M
C

O
 D

IJK
M

A
N

C
O

N
S

IS
T

E
N

C
Y

 IN
 M

U
L
T

I-V
IE

W
P

O
IN

T
 A

R
C

H
IT

E
C

T
U

R
A

L
 D

E
S

IG
N

This publication is a collaborative
result of the Telematica Instituut
and the Centre for Telematics and
Information Technology. It is published
as a part of the Telematica Instituut
Fundamental Research Series.

Parts of the research presented in this
thesis were done in the context of two
projects: A-MUSE and ArCo. A-MUSE
is a BSIK Freeband project, sponsored
by the Dutch Government. It aims at
developing an advanced methodology,
comprising architectures, methods,
techniques and tools, to facilitate
the development and provisioning of
services. ArCo is a Telematica Instituut
project. It aims at developing concepts
for service-oriented design.

Telematica Instituut (www.telin.nl)
is a unique partnership between the
business community, research centres
and government, to perform research
in the field of telematics for the public
and private sectors. The emphasis is
on rapidly translating fundamental
knowledge into market-oriented
applications. The institute’s objective is
to strengthen the competitiveness and
innovative strength of Dutch business,
as well as improving the quality of our
society through the proper application
of telematics. To achieve this, the
institute brings together leading
researchers from various institutions
and disciplines. The Dutch government
supports Telematica Instituut under
its `leading technological institutes’
scheme. Participation in the Telematica
Instituut Consortium is open to other
companies and research centres.

The Centre for Telematics and
Information Technology (www.ctit.
utwente.nl) is one of the key research
institutes of the University of Twente
(UT), Enschede, The Netherlands.
It conducts research on the design
of complex ICT systems and their
application in a variety of domains.
Over 300 researchers actively
participate in the CTIT programme. In
addition, CTIT closely co-operates with
many public and private organizations,
including industrial companies.REMCO DIJKMAN

U

IT
N

O
D

IG
IN

G

Hi

er
bi

j n
od

ig
 ik

 u
 u

it
vo

or
 h

et
 b

ijw
on

en
 v

an
 d

e

op

en
ba

re
 v

er
de

di
gi

ng
 v

an
 m

ijn
 p

ro
ef

sc
hr

ift

C
O

N
S
IS

T
E
N

C
Y

 I
N

M

U
LT

I-
V

IE
W

P
O

IN
T

A

R
C
H

IT
E
C
T

U
R

A
L

D

E
S
IG

N

op
 v

rij
da

g
3

fe
br

ua
ri

om
 1

6.
45

 u
ur

 in
 za

al
 2

 v
an

ge
bo

uw
 ‘d

e
Sp

ie
ge

l’
va

n
de

 U
ni

ve
rs

ite
it

Tw
en

te
.

Vo
or

af
ga

an
d

aa
n

de
 v

er
de

di
gi

ng
 za

l i
k

om
 1

6.
30

 u
ur

ee
n

to
el

ich
tin

g
ge

ve
n

op
 d

e
in

ho
ud

 v
an

 h
et

 p
ro

ef
sc

hr
ift

.

Na
 a

flo
op

 b
en

t u
 v

an
 h

ar
te

 w
el

ko
m

 o
p

de
 re

ce
pt

ie.

RE

M
CO

 D
IJ

KM
A

N

M

ar
sk

an
t 3

1-
3

75

51
 B

S
He

ng
el

o

E-

m
ai

l:
r.m

.d
ijk

m
an

@
ut

we
nt

e.n
l

Te

le
fo

on
: +

31
 (0

)5
3

48
9

44
54

CONSISTENCY IN
MULTI-VIEWPOINT
ARCHITECTURAL
DESIGN
Remco Dijkman

The design of large-scale distributed
applications involves the viewpoints of many
different stakeholders, such as business analysts,
software architects and end-users. Each of these
stakeholders uses his own design languages and
tools to construct a part of the design from his
viewpoint. This presents us with major challenges
in maintaining the consistency between the
designs of the different stakeholders. The
framework presented in this thesis helps to
maintain this consistency.

Using our framework, consistency is preserved
through inter-viewpoint relations and consistency
rules that must be specified by the stakeholders.
The framework supports the specification of such
relations and rules by providing: (i) a set of basic
concepts that stakeholders can use as a common
basis to understand each others concepts; (ii)
pre-defined relations and consistency rules
that stakeholders can re-use to specify inter-
viewpoint relations and consistency rules; and
(iii) an architecture for a tool-suite that supports
enforcing these relations and rules.

We demonstrate the applicability of our
framework by applying it to the viewpoints that
are defined by the Reference Model for Open
Distributed Processing.

About the author
Remco Dijkman has a master’s

degree, with high distinction, from
the Computer Science department
of the University of Twente in The
Netherlands.

After completing his master’s
degree he joined Anaxagoras
Procesarchitecten, a part of Ordina,
as a business process architect. At the
same time he started research towards
a Ph.D. at the Open University of The
Netherlands. After a year he joined
the University of Twente to become a
full-time researcher. Here, he worked
from 2001 until 2005. During this
period, he has participated in the
ArCo and in the A-MUSE research
projects, and developed his Ph.D.
research, which resulted in this thesis.
He has been a visitor at the Business
Process Management group of the
Queensland University of Technology
in Australia.

He authored many international
publications, including conference
papers, journal papers and book
contributions. He served as a reviewer
for several international workshops,
conferences and journals, and he
served as an organizing committee
member of the 9th IEEE EDOC
conference.

IS
B

N
 9

0-
75

17
6-

 8
0-

5

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

