
Space-time discontinuous Galerkin method

for compressible flow

Colophon

The research presented in this thesis was done within the Chair Numerical Analysis and
Computational Mechanics, Department of Applied Mathematics, Faculty EWI, Univer-
sity of Twente.

This work was conducted as part of the Technologiestichting STW project TWI.5541, en-
titled Advanced simulation techniques for vortex dominated flows in aerodynamics. The
financial support from STW and the National Aerospace Laboratory NLR is gratefully
acknowledged.

This work was part of the research program of the J.M. Burgers School for Fluid Dy-
namics.

This thesis was typeset in TEX by the author and printed by Wöhrmann Printing Service,
Zutphen. The figures were made with either Tecplot, Matlab or Xfig.

All editing was done with GNU-Emacs; the AUCTEX and RefTEX front ends were used
for TEX editing and matlab.el was used for editing Matlab scripts.

All programming was done in Fortran 90. The source code was compiled with either the
GNU or Intel Fortran compiler and simulations were executed on regular PC’s or on SGI
Altix supercomputers.

All computers used the GNU/Linux operating system. Without the availability of free,
open source software this work would not have been possible.

 C.M. Klaij, Enschede, 2006.
No part of this work may be reproduced by print, photocopy or any other means without
the permission in writing from the author.

ISBN 90-365-2403-2

Space-time discontinuous Galerkin method

for compressible flow

Proefschrift

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof.dr. W.H.M. Zijm,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op vrijdag 29 september 2006 om 13.15 uur

door

Christiaan Marijn Klaij
geboren op 3 november 1977

te Hyderabad, India

Dit proefschrift is goedgekeurd door de promotoren
prof.dr.ir. J.J.W. van der Vegt
prof.dr.ir. B.J. Geurts

Preface

During the last four years, I have had the pleasure of doing scientific re-
search; meeting many people along the way and collaborating with some.
This thesis could not have been completed without their help and support,
for which I am deeply grateful.

I would like to start by thanking Jaap van der Vegt for introducing
me to discontinuous Galerkin methods when I was a student. Jaap first
supervised me during my Master’s, then offered me a PhD position and
is now my promotor. His profound insight in the topic proved invaluable
and his enthusiasm and optimism kept me motivated. I would also like to
thank Harmen van der Ven from the NLR for sharing his knowledge and
offering his help and advice, which was indispensable for the development
and implementation of the algorithms, first in my own program and later
in the NLR program. This work builds on the work by Jaap and Harmen;
both have had a great impact on the contents of this thesis.

I would further like to thank Bernard Geurts for his interest and ad-
vice. As my copromotor, Bernard was closely involved in the project and his
insight in physics, modeling and numerics helped me gain the broader per-
spective needed to distinguish the (in)essential. He also organized weekly
discussions with, among others, Fedderik van der Bos, Arek Kuzaj and
Sander Rhebergen, whom I would like to thank for their highly beneficial
comments.

I would like to thank Marc van Raalte from the Centrum voor Wiskunde
en Informatica (CWI) for introducing me to multigrid analysis. His knowl-
edge of the intricacies of multigrid and of Fourier analysis was essential
for chapter five. He also helped me being more precise and concise in my
writing.

Furthermore, I would like to thank Alexander Bell for his help with the

v

vi Preface

PETSc package used in chapter four and Enno Oosterhuis for keeping our
computers running and for answering my Linux related questions.

Special thanks go to my roommates over the past four years, Michael
Tchesnokov, Vijay Ambati, Sena Sopaheluwakan and Dom Sármány for the
pleasurable office hours. I would also like to thank the other people in the
NACM group for their helpfulness with various issues and for contributing
to the friendly atmosphere in our group.

Last but not least, I would like to thank my friends and family for their
continuous support and encouragements.

Christiaan Klaij Enschede, September 2006

Contents

Preface v

1 Introduction 1

2 Mathematical model 11

2.1 Navier-Stokes equations . 11

2.2 Non-dimensionalization . 13

3 Space-time method 17

3.1 Space-time discretization . 17

3.2 Algebraic system . 27

3.3 Numerical simulations . 32

4 Pseudo-time integration 43

4.1 Pseudo-time stepping methods 43

4.2 Stability analysis . 46

4.3 Convergence results . 58

5 Multigrid analysis 67

5.1 Model problem . 67

5.2 Fourier analysis . 74

5.3 Results . 77

6 Multigrid application 87

6.1 Grid-dependent stabilization parameter 87

6.2 Multigrid algorithm . 89

6.3 Numerical simulations . 94

vii

viii Contents

7 Conclusions and recommendations 103

A Computational details 107
A.1 Homogeneity tensor . 107
A.2 IMEX method . 109
A.3 EXV method . 112

Bibliography 115

Summary 121

Samenvatting 123

Curriculum Vitae 125

Chapter 1

Introduction

Flows are common phenomena in our daily live which explains the promi-
nent part fluid dynamics has been playing in the scientific endeavor over
the past centuries. The behavior of Newtonian fluids is presently well un-
derstood and expressed in a complete set of physical models based on the
principle of conservation. This principle states that mass, momentum and
energy are conserved, but its simplicity belies the diversity and complexity
found in fluid dynamics.

The model of interest in this thesis describes compressible flow with vis-
cous effects and is mathematically formulated by the Navier-Stokes equa-
tions. Compressibility is considered a property of the flow: air may be
modeled as incompressible at moderate flow speed since compressibility ef-
fects such as shocks only occur as the speed approaches the speed of sound.
Viscous effects are important near solid surfaces where the fluid adheres to
the object, influencing lift and drag. The model is valid for many applica-
tions in aerodynamics, however, exact solutions of the equations can only
be found in the simplest of cases.

During the past decades, emphasis has shifted from experiments and an-
alytical techniques to the numerical solution of the model equations, made
possible by the development of micro-processors. Numerical simulations
effectively complement wind tunnel experiments, which are essential in de-
signing aircraft but have their own limitations. The standing shock on the
wing of an aircraft in transonic flight, for example, may reflect on the walls
of the wind tunnel and disturb the measurements.

1

2 Chapter 1. Introduction

To be beneficial in engineering, numerical methods for solving the model
equations must be both accurate and efficient. Generally, a numerical
method starts with the discretization of the flow domain: the solution is
computed on a finite number of grid points around the object instead of
on the whole domain. This process induces an error. But, as the computa-
tional grid1 is refined, the error decreases according to the method’s order.
The discretization error of a second order accurate method, for example,
is inversely proportional to the squared number of grid points: tripling the
number of grid points reduces the error not by a factor three but by a factor
nine. Engineers can thus, in principle, obtain the accuracy needed for their
applications.

In practice, the accuracy is limited because, as the number of grid points
increases, so does the computational cost. Therefore, the efficiency of the
method is important. It is influenced by several factors. In the first place,
on the discretized flow domain the numerical method transforms the com-
plicated model equations into a large system of simpler algebraic equations.
The size of this system is proportional to the number of grid points. Second,
the system of algebraic equations is solved numerically. This procedure is
most efficient if the computational effort remains proportional to the num-
ber of algebraic equations. The computational efficiency can be further
improved by reducing the number of grid points: high densities are only
needed in regions of interest, such as boundary layers, shocks or vortices.
In other regions, the density of grid points can be reduced, provided the
numerical method can handle such local grid refinement.

An additional complication considered in this thesis is the movement
and deformation of certain parts of the object, such as the rotor blades on a
helicopter or the flaps and slats on a wing. The movement is considered to
be known in advance as true fluid-structure interaction is beyond our scope.
The computational grid is no longer fixed, instead, it must be constantly
adjusted to the movement. Doing so generally deteriorates a numerical
method’s accuracy.

The challenge, therefore, is threefold: to develop a numerical method for
compressible flow which a) allows grid movement, b) is accurate and c) is ef-
ficient. We meet this challenge with the space-time discontinuous Galerkin
(DG) discretization and a multigrid pseudo-time integration method to
solve the system of algebraic equations.

1also called mesh

3

Space-time DG discretization. The accurate solution of the compress-
ible Navier-Stokes equations on a domain with time-dependent boundaries
frequently requires moving and deforming meshes and it is non-trivial to
maintain a conservative and accurate scheme on this type of meshes [19, 31].
Finite volume arbitrary Lagrangian Eulerian (ALE) methods, for example,
do not automatically satisfy the geometric conservation law on deformed
and adapted meshes, which was proven to be essential [31] for the accuracy
of the solution. These issues have been the main motivation in [44, 47] to
develop a space-time DG finite element method for inviscid compressible
flows. This algorithm combines a fully conservative ALE approach to deal
with deforming meshes with the well known benefits of the compact sten-
cil of a DG method, such as optimal flexibility for local mesh refinement
(h-adaptation), adjustment of the polynomial order in each element (p-
adaptation) and excellent performance on parallel computers. The method
has been demonstrated for a variety of aerodynamic applications, including
rotorcraft [9, 46] and deforming wings [48].

The space-time DG method discussed in [44, 47] has been limited so
far to inviscid compressible flow. The first topic of this thesis is extend-
ing the space-time DG method to the compressible Navier-Stokes equa-
tions, which significantly enlarges its range of applications. The key fea-
ture of the space-time DG method discussed here is that no distinction is
made between space and time variables and the discretization is directly
performed in four-dimensional space. This provides optimal flexibility to
deal with time dependent boundaries and deforming elements and natu-
rally yields a conservative discretization, even on deforming locally refined
meshes with hanging nodes. The space-time algorithm results in an implicit
time-integration method which is unconditionally stable and preserves ac-
curacy also on non-smooth meshes. A complete hp-error and stability anal-
ysis of the space-time DG discretization for the linear advection-diffusion
equation is given in [41].

DG methods have recently received significant attention and are ap-
plied to a wide range of hyperbolic and (incompletely) parabolic problems.
For a survey, see [1, 13, 14, 15, 17]. An important step towards a DG dis-
cretization for the compressible Navier-Stokes equations was made in the
pioneering work of Bassi and Rebay [3] and in a different formulation by
Baumann and Oden [8]. These algorithms provide discretization techniques

4 Chapter 1. Introduction

for the diffusion operator and extend the DG formulation for hyperbolic
equations developed by Cockburn and Shu [17] to incompletely parabolic
equations. Improvements to the original formulation [3], which showed a
weak instability, have been provided in [6] and analyzed in [1, 10]. Applica-
tions to the solution of the compressible Reynolds averaged Navier-Stokes
equations are discussed in [2, 5, 18, 23]. A slightly different approach to
deal with the diffusion operator has been proposed by Cockburn and Shu
[16] with the local DG method. Although the various DG formulations for
the diffusion operator are quite different, there are no major differences in
terms of accuracy, computational cost and complexity between the meth-
ods which proved to be consistent, adjoint consistent and of optimal order
in the analysis given in [1]. In this thesis, we follow the approach of Brezzi
[10] for the diffusion operator and include this technique in the space-time
discretization for compressible flows presented in [44, 47], to which we refer
for details on the inviscid part of the algorithm.

Pseudo-time integration. When applying DG methods to time depen-
dent equations, the usual approach is to take discontinuous basis-functions
in space and a Runge-Kutta method for the time integration, resulting in
the so-called RKDG method, see, for example, the survey by Cockburn
and Shu [17]. The space-time DG method, however, uses discontinuous
basis-functions both in space and time and a numerical time-flux ensures
causality in time. The method is fully implicit in physical time and re-
sults in a system of non-linear algebraic equations for each physical time
step. Therefore, the overall efficiency of the space-time DG method highly
depends on the efficiency with which this system of algebraic equations is
solved.

The algebraic system may be solved with a fully implicit method, such
as the implicit Euler method [4] with the Generalized Minimal Residual
Method (GMRES) to solve the non-linear system or the Newton method
[24] for the steady-state equations. The advantage of implicit methods
is that the number of iterations needed to solve the algebraic system is
significantly reduced in comparison to explicit methods. Their main disad-
vantage, however, is the increased cost per iteration, linked to the global
linear system (based on the Jacobian of the flux) which has to be assembled
and solved. The storage of this (sparse) matrix can become problematic in

5

3D ‘real-life’ cases which typically require a few million elements. Another
issue is the small basin of attraction which demands an accurate initial
guess in order to converge. In practice, the initial guess is based on the free
stream conditions, and special attention is needed to overcome this prob-
lem, either by initially using small physical time-steps [4] before increasing
the step-size or by grid sequencing [24].

For the space-time discretization of the Euler equations [44], the al-
gebraic system was solved with an explicit pseudo-time stepping Runge-
Kutta method (with the correction by Melson e.a. [33]). When applied as
a smoother in a full approximation multigrid scheme, this approach proved
very efficient. The main advantage of the pseudo-time stepping method is
its locality, which matches the locality of the DG method and dispenses
with the assembly and storage of a global matrix. Also, the pseudo-time
stepping method is insensitive to the initial condition and remains stable
for large physical time steps. Therefore, we aim at extending the pseudo-
time stepping approach in [44] to the space-time DG discretization of the
Navier-Stokes equations. This is the second topic addressed in this thesis.

It is not trivial to extend the pseudo-time stepping method to the space-
time DG discretization of the compressible Navier-Stokes equations for two
reasons. First, for the Euler equations, the pseudo-time Courant-Friedrichs-
Levy (CFL) condition must be satisfied for stability of the Runge-Kutta
method in [44]. Applying the same method to the space-time discretization
of the compressible Navier-Stokes equations requires an additional stability
constraint, the diffusive Von Neumann condition, which is more restrictive
than the CFL condition in flow regions with small cell Reynolds num-
bers, i.e., boundary layers. Therefore, the Runge-Kutta method will con-
verge much slower. Second, in [44], the Runge-Kutta method is used as a
smoother in a full approximation multigrid algorithm. Since the efficiency
of the multigrid algorithm greatly depends on the quality of the smoother,
we first have to find an effective Runge-Kutta method for viscous flows, to
be combined with multigrid later on.

To relieve the viscous stability constraint without losing locality, we turn
to the family of explicit Runge-Kutta methods derived by Kleb e.a. [28].
These methods are especially designed for viscous flows and have stability
domains which are much more stretched along the negative real axis than
the Runge-Kutta methods used for hyperbolic equations. Even though the

6 Chapter 1. Introduction

diffusive Von Neumann condition still has to be satisfied for stability, it may
no longer be prohibitively restrictive. Since in aerodynamic applications, we
encounter both inviscid flow (far-field) and viscous flow (boundary layers)
in the same simulation, we apply local pseudo-time stepping and combine
the method developed for the Euler equations in [44], which is optimal
in the inviscid regime, with the method presented in [28] for the viscous
regime. This is feasible as both methods are local and permissible because
accuracy is not an issue in pseudo-time.

We investigate the effectiveness of this combination in relieving the vis-
cous stability constraint by comparison with an implicit-explicit (IMEX)
Runge-Kutta method. In the IMEX method, the inviscid part is treated
explicitly and the viscous part implicitly, such that only the CFL condition
has to be satisfied for stability. In that sense, it represents the ideal situa-
tion where viscosity does not affect stability, against which we can test the
influence of the diffusive Von Neumann condition on fully explicit methods.
Since the implicit-explicit method shares the disadvantage of fully implicit
methods (i.e., a global linear system) without sharing the advantage (i.e.,
a small the number of iterations) it is only recommended for this type of
testing.

Multigrid method. To efficiently solve the system of algebraic equa-
tions, we aim at multigrid pseudo-time integration, which is the third and
final topic addressed in this thesis. We begin by studying the convergence of
multigrid iteration for solving a time-dependent advection-diffusion equa-
tion that is discretized by the space-time DG method. In this technique we
discretize the time variable as a spatial variable and hence decoupling of
space and time is avoided. A consequence of such a space-time approach
is that the resulting methods can handle problems with moving and/or
deforming meshes. Moreover, the space-time approach applied to the in-
compressible Navier-Stokes equations does not suffer from the second order
barrier in time as is the case of the classical pressure-correction methods.
In theory, solutions of arbitrary order of accuracy can be computed.

For solving the underlying system of algebraic equations we prefer to
rely on multigrid iteration because of its expected efficiency [43, 51]. How-
ever, in contrast to the block iterative schemes considered in [21, 25, 27],
we study the application of explicit Runge-Kutta smoothing. For computa-

7

tionally demanding boundary value problems, the use of explicit multigrid
methods is preferable because the iterative solution process remains local
and does not need large data storage, thus ensuring low computational
costs.

To compute the multigrid convergence rates we introduce a similar two-
level local mode Fourier analysis as described in [25, 49]. The difference in
our analysis is that we avoid the cell-staggering problem of transferring cell
data from coarse to fine cells, by associating the data in a cell with a nodal
point. The resulting analysis can be used for an arbitrary polynomial basis
and is directly extendable to higher-dimensional problems by the tensor
product principle [26]. For various cell Péclet numbers we compute multi-
grid convergence rates and we find that explicit Runge-Kutta smoothing is
efficient for solving time dependent advection-diffusion equations.

The multigrid methods analyzed in the context of DG methods [21,
25, 27] use a sequence of nested meshes (h-multigrid) and are based on
the embedding of function spaces associated with these meshes. On non-
uniform grids where the embedding of spaces does not formally hold, an
alternative is the approach followed by Fidkowski e.a. [20], who keep the
mesh fixed and use a sequence of different order polynomials (p-multigrid).
In [44], h- and p-multigrid are combined to solve the (non-linear) system
of algebraic equations arising from the space-time DG discretization of the
Euler equations: the discretization is second order on the fine grid and first
order on the coarse grids. The advantage of such an approach is that the
construction of inter-grid transfer operators is possible without requiring
that the function spaces are embedded. Therefore, we wish to extend this
approach to the space-time DG discretization of the compressible Navier-
Stokes equations.

The space-time DG method for the Euler equations reduces to a first
order finite volume method when constant basis functions are used. For
the viscous terms in the Navier-Stokes equations, however, a first order
DG discretization depends solely on the stabilization term, which (because
of the non-uniform grid) becomes grid-dependent. We analyze the multi-
grid algorithm with linear basis functions on the fine grid and constant
basis functions on the coarse grids with two-level Fourier analysis of the
advection-diffusion equation. The quality of the predictions obtained with
this analysis is then evaluated by comparing with the multigrid convergence
results in actual simulations, for the compressible Navier-Stokes equations.

8 Chapter 1. Introduction

Outline. After describing the mathematical model for compressible flow
in Chapter 2, we present the space-time DG discretization of the Navier-
Stokes equations in Chapter 3. We show that accuracy is maintained on a
moving and deforming grid and that local mesh refinement is a relatively
inexpensive way of improving accuracy.

To efficiently solve the system of algebraic equations resulting from the
discretization, we propose multigrid pseudo-time integration with explicit
Runge-Kutta smoothing. In Chapter 4, we focus on the Runge-Kutta meth-
ods and show that a combination of two methods, one for the inviscid part
of the flow and one for the viscous part, effectively relieves the viscous sta-
bility constraint. The combined Runge-Kutta methods can, in principle, be
used as smoother in the h-multigrid context, which we show in Chapter 5
by two-level Fourier analysis of an advection-diffusion equation.

Application of h-multigrid to the compressible Navier-Stokes equations,
however, is complicated by the fact that the grid levels are generally not
nested. In Chapter 6, we circumvent this problem by limiting ourselves to a
first order discretization on the coarse grids, which facilitates the construc-
tion of inter-grid transfer operators. The multigrid algorithm with linear
basis functions on the fine grid and constant basis functions on the coarse
grids is analyzed for the advection-diffusion equation with the technique
presented in Chapter 5. We show that the analysis gives good predictions
for the compressible Navier-Stokes equations.

Finally, conclusions are drawn in Chapter 7 and computational details
needed to implement the methods are given in Appendix A. The contents
of this thesis is largely based on the following work:

• C.M. Klaij, J.J.W. van der Vegt and H. van der Ven. Space-time
discontinuous Galerkin method for the compressible Navier-Stokes
equations. J. Comput. Phys. (in press), 2006.

• C.M. Klaij, J.J.W. van der Vegt and H. van der Ven. Pseudo-time
stepping methods for space-time discontinuous Galerkin discretiza-
tions of the compressible Navier-Stokes equations. J. Comput. Phys.
(in press), 2006.

• M.H. van Raalte and C.M. Klaij. Runge-Kutta multigrid analysis
for space-time discontinuous Galerkin discretization of an advection-
diffusion equation. Submitted to SIAM J. Sci. Comput., 2006.

9

• J.J.W. van der Vegt, C.M. Klaij, F. van der Bos and H. van der
Ven. Space-time discontinuous Galerkin method for the compress-
ible Navier-Stokes equations on deforming meshes. ECCOMAS CFD
2006.

• H. van der Ven, O.J. Boelens, C.M. Klaij and J.J.W. van der Vegt.
Extension of a discontinuous Galerkin finite element method to vis-
cous rotor flow simulations. Proceedings of the 31th European Rotor-
craft Forum, Florence, 2005.

Chapter 2

Mathematical model

In this chapter, we summarize the mathematical model used for applications
in aerodynamics. The model consists of the compressible Navier-Stokes
equations with initial and boundary conditions, the equations of state of
calorically perfect gas and a set of dimensionless parameters. These pa-
rameters describe the flow problem and are obtained through non-dimen-
sionalization of the equations.

2.1 Navier-Stokes equations

The equations of motion considered in this thesis are the Navier-Stokes
equations that govern the dynamics of viscous compressible flows. These
five partial differential equations form a non-linear system, expressing con-
servation of mass, momentum and energy. Using the summation convention
on repeated indices and the comma notation to denote partial differentia-
tion, the compressible Navier-Stokes equations can be written as:

U,t + F e
k (U),k − F v

k (U,∇U),k = 0,

with the vector of conservative variables U ∈ R5, the inviscid flux F e ∈ R5×3

and the viscous flux F v ∈ R5×3 given by:

U =




ρ

ρuj

ρE



 , F e
k =




ρuk

ρujuk + pδjk

uk(ρE + p)



 , F v
k =




0

τjk

τjkuj − qk



 ,

11

12 Chapter 2. Mathematical model

where j, k = 1, 2, 3. The conservative variables are the density ρ, the mo-
mentum density vector ρ~u and the total energy density ρE, with ~u the
velocity vector and E the total energy. The pressure is denoted by p and δ
represents the Kronecker delta function. The total stress tensor τ is defined
as:

τjk = λui,iδjk + µ(uj,k + uk,j) ,

with i = 1, 2, 3 and the dynamic viscosity coefficient µ given by Sutherland’s
law:

µ

µ∞
=

T∞ + TS

T + TS

(
T

T∞

)3/2

,

where T is the temperature and TS a constant. The subscript ∞ denotes
free-stream values. The second viscosity coefficient λ relates to µ following
the Stokes hypothesis: 3λ + 2µ = 0. The heat flux vector ~q is defined as:

qk = −κT,k ,

with κ the thermal conductivity coefficient.
In aerodynamical applications such as the flow around aircraft, the ini-

tial and far-field boundary conditions are based on uniform flow:

ρ = ρ∞, ~u = ~u∞, p = p∞,

and, at the body surface, the isothermal no-slip boundary condition is ap-
plied:

~u = 0, T = T∞.

For a calorically perfect gas in thermodynamic equilibrium, the pressure
p and internal energy e are given by the equations of state:

p = ρRT, e = cvT,

where R = cp − cv is the specific gas constant and cp and cv the specific
heats at constant pressure and constant volume, respectively. Since the
total energy is the sum of the internal and kinetic energy:

E = e + 1
2uiui,

the pressure and temperature can be expressed in terms of the conservative
variables as:

p = (γ − 1)
(
ρE − 1

2ρuiui

)
, T =

1

cv

(
E − 1

2uiui

)
,

2.2. Non-dimensionalization 13

where γ = cp/cv is the ratio of specific heats. These two equations of state
close the system. A summary of all physical quantities involved in the
compressible Navier-Stokes equations is given in Table 2.1, together with
their symbols and physical magnitudes.

We notice that the viscous flux F v is homogeneous with respect to the
gradient of the conservative variables ∇U :

F v
ik(U,∇U) = Aikrs(U)Ur,s ,

where the homogeneity tensor A ∈ R5×3×5×3 is defined as:

Aikrs(U) =
∂F v

ik(U,∇U)

∂(Ur,s)
,

with i, r = 1, . . . , 5 and k, s = 1, 2, 3. This tensor is given in Appendix A.1.
The homogeneity property will play a crucial role in the derivation of the
weak formulation of the compressible Navier-Stokes equations in the next
chapter.

2.2 Non-dimensionalization

The magnitudes of the physical quantities involved in the Navier-Stokes
equations can be expressed in terms of the four fundamental magnitudes
mass [M], length [L], time [T] and temperature [θ]. According to Buck-
ingham’s Pi theorem [32], the dimensionless form of the equations is ob-
tained using a recurrent set of four reference values; we choose the set
{ρ∞, a∞, T∞, L}, where a∞ is the free-stream speed of sound defined as:

a∞ =

√
γp∞
ρ∞

, (2.1)

and L is the characteristic length scale of the problem. The formulae in
Table 2.1 give the relation between the dimensional and dimensionless quan-
tities (denoted with a tilde), for example p = ρ∞(a∞)2p̃. Using these for-
mulae, the dimensionless equations can be obtained in the following way.
Consider the dimensional mass equation and substitute the dimensional

14 Chapter 2. Mathematical model

Table 2.1: Physical quantities in the Navier-Stokes equations, their symbol,
magnitude and formula in terms of the recurrent set {ρ∞, a∞, T∞, L}.
Quantity Symbol Magnitude Formula

mass m [M] ρ∞L3

length x [L] L
time t [T] L/a∞
absolute temperaturea T [θ] T∞

density ρ [ML−3] ρ∞
velocity u [LT−1] a∞
total internal energy E [L2T−2] (a∞)2

pressure p [ML−1T−2] ρ∞(a∞)2

stress τ [ML−1T−2] ρ∞(a∞)2

dynamic viscosity µ [ML−1T−1] ρ∞a∞L
second viscosity λ [ML−1T−1] ρ∞a∞L
heat flux q [MT−3] ρ∞(a∞)3

thermal conductivity κ [MLT−3θ−1] ρ∞(a∞)3L/T∞

specific heats cv, cp [L2T−2θ−1] (a∞)2/T∞

a Do not confuse the symbol T for temperature with the magnitude time [T].

quantities by their expression in terms of the reference values and the di-
mensionless quantities:

∂ρ

∂t
+

∂(ρuk)

∂xk
= 0 ⇔ ∂(ρ∞ρ̃)

∂(Lt̃/a∞)
+

∂(ρ∞a∞ρ̃ũk)

∂(Lx̃k)
= 0,

⇔ ρ∞a∞
L

(
∂ρ̃

∂t̃
+

∂(ρ̃ũk)

∂x̃k

)
= 0.

In the same way, the j-th dimensionless momentum equation and the di-
mensionless energy equation are obtained:

ρ∞(a∞)2

L

(
∂(ρ̃ũj)

∂t̃
+

∂(ρ̃ũj ũk + p̃δjk)

∂x̃k
− ∂τ̃jk

∂x̃k

)
= 0,

and

ρ∞(a∞)3

L

(
∂(ρ̃Ẽ)

∂t̃
+

∂
(
(ρ̃Ẽ + p̃)ũk

)

∂x̃k
− ∂(τ̃jkũj − q̃k)

∂x̃k

)
= 0.

2.2. Non-dimensionalization 15

Note that the form of the dimensionless equations is identical to the dimen-
sional equations, therefore the tilde notation is omitted from here on.

For aerodynamical applications, the following eleven parameters define
the flow problem [29]:

• the characteristic length scale L,

• the free-stream density ρ∞, velocity1 ~u∞ and temperature T∞,

• the gas constant R and the specific heat at constant pressure cp,

• the free-stream dynamic viscosity µ∞ and thermal conductivity κ∞,

• the constant TS in Sutherland’s law.

Since the equations contain four fundamental magnitudes, seven dimen-
sionless Pi groups can be formed according to Buckingham’s Pi theorem.
These are:

• the angles of attack α and β,

• the free-stream Mach number M∞ = u∞/a∞,

• the ratio of specific heats γ = cp/cv,

• the free-stream Reynolds number Re∞ = ρ∞u∞L/µ∞,

• the Prandtl number Pr = cpµ∞/κ∞,

• the ratio θS = TS/T∞ in Sutherland’s law.

For the simulations presented in this thesis, the angles of attack α and β
as well as the free-stream Mach and Reynolds numbers M∞ and Re∞ are
given as input2 of the simulation. We use the constants γ = 1.4, θS = 0.4
and Pr = 0.72 and, by definition of our non-dimensionalization, ρ∞ = 1,
a∞ = 1, T∞ = 1 and L = 1. The values of the other parameters needed
in the simulation are calculated using their expression in terms of the Pi
groups and the recurrent set {ρ∞, a∞, T∞, L} which gives:

u∞ = M∞a∞, ~u∞ =
[
cos α sinφ sinβ sin α

]T
u∞,

1The three components of the vector ~u∞ are counted separately.
2In all simulations β = 0 was used.

16 Chapter 2. Mathematical model

with φ = arcsin(sinβ/ cos α),

R =
p∞

ρ∞T∞
, cp =

γ

γ − 1
R

with the pressure from the definition of the speed of sound (2.1) and

µ∞ =
ρ∞u∞L

Re∞
, κ∞ =

cpµ∞

Pr
, TS = θST∞.

The mathematical model is now well defined and, in the next chapter, we
focus on the numerical solution method for the equations.

Chapter 3

Space-time method

This chapter covers the space-time discontinuous Galerkin discretization of
the compressible Navier-Stokes equations. We first define the geometry of
the space-time domain, then the necessary function spaces and operators.
This setting is used to define the weak formulation and a crucial part is
the discussion of the space-time numerical fluxes. The proper definition of
these fluxes allows the transformation of the space-time formulation into
an arbitrary Lagrangian Eulerian formulation which combines well with
upwind schemes based on approximate Riemann solvers. Finally, we derive
the non-linear system of algebraic equations for the expansion coefficients
of the solution in each element and demonstrate the method with several
test cases.

3.1 Space-time discretization

3.1.1 Geometry of the space-time domain

The space-time discontinuous Galerkin finite element method does not dis-
tinguish between space and time variables; instead the equations are consid-
ered in an open domain E ⊂ R4, where a point with position x̄ = (x1, x2, x3)
at time t = x0 has Cartesian coordinates (x0, x̄). At time t, the flow
domain Ω(t) is defined as Ω(t) := {x̄ ∈ R3 : (t, x̄) ∈ E}. Let t0
and T be the initial and final time of the evolution of the flow domain,
then the space-time domain boundary ∂E consists of the hypersurfaces

17

18 Chapter 3. Space-time method

x

t

tn

tn+1

Kn
j

Kj(tn)

Kj(tn+1)

Figure 3.1: The spatial element Kj(tn) moves and deforms into Kj(tn+1).
The space-time element Kn

j is constructed by linear interpolation in time.

Ω(t0) := {x ∈ E : x0 = t0}, Ω(T) := {x ∈ E : x0 = T} and
Q := {x ∈ ∂E : t0 < x0 < T}.

First, consider the partitioning of the time interval [t0, T] by an ordered
series of time levels t0 < t1 < · · · < T . The space-time domain E is
divided into Nt space-time slabs En = E ∩ In, with In = (tn, tn+1) the n-th
time interval. Each space-time slab En is bounded by Ω(tn), Ω(tn+1) and
Qn = ∂En/(Ω(tn) ∪ Ω(tn+1)).

Second, consider an approximation Ωh(tn) of Ω(tn) and divide Ωh(tn)
into Nn non-overlapping hexahedral spatial elements Kj(tn), where Ωh(t) →
Ω(t) as h → 0, with h the radius of the smallest sphere completely contain-
ing each element Kj(tn). Similarly, Ωh(tn+1) approximates Ω(tn+1). Each
element Kn is related to the master element K̂ = (−1, 1)3 through the
mapping Fn

K :

Fn
K : K̂ → Kn : ξ̄ 7→ x̄ =

8∑

i=1

xi(K
n)χi(ξ̄),

with xi the spatial coordinates of the vertices of the hexahedron Kn and
χi the usual tri-linear finite element shape functions for hexahedra. The
space-time elements Kn

j of En are constructed by connecting Kj(tn) with
Kj(tn+1) using linear interpolation in time, which results in the mapping

3.1. Space-time discretization 19

ξ0

ξ1

GK

t

x
Kj(tn)

Kj(tn+1)

Qn
j

K̂

Figure 3.2: Mapping GK between the master element K̂ and the space-time
element Kn

j with boundaries ∂Kn
j = Kj(t

+
n) ∪ Kj(t

−
n+1) ∪ Qn

j .

GK from the master element K̂ = (−1, 1)4 to the space-time element Kn:

Gn
K : K̂ → Kn : ξ 7→ (t, x̄) =

(
1
2(tn+1 + tn) + 1

2(tn+1 − tn)ξ0,
1
2(1 − ξ0)F

n
K(ξ̄) + 1

2(1 + ξ0)F
n+1
K (ξ̄)

)
.

The tessellation T n
h of the space-time slab En

h consists of all space-time
elements Kn

j , thus the tessellation Th of the discrete flow domain Eh is

simply Th = ∪Nt−1
n=0 T n

h .
Finally, consider the element boundary ∂K which is the union of open

faces of Kn
j and consists of three parts: Kj(t

+
n) = limǫ↓0 Kj(tn+ǫ), Kj(t

−
n+1) =

limǫ↓0 Kj(tn+1 − ǫ) and Qn
j = ∂Kn

j /(Kj(t
+
n) ∪ Kj(t

−
n+1)). The space-time

normal vector at an element boundary point moving with velocity ~v is given
by:

n =






(1, 0, 0, 0) at K(t−n+1),

(−1, 0, 0, 0) at K(t+n),

(−vkn̄k, n̄) at Qn,

(3.1)

with n̄ the spatial outward normal vector. It is often convenient to consider
the faces separately instead of the whole element boundary. Therefore, in
addition to the previously defined faces Kj(t

+
n) and Kj(t

−
n+1), we also define

interior and boundary faces as follows. A face S is an interior face if it is
shared by two neighboring elements Kn

i and Kn
j , such that S = Qn

i ∩ Qn
j ,

and a boundary face if S = ∂En ∩ Qn
j . The set of all interior faces in time

slab In is denoted by Sn
I , the set of all boundary faces by Sn

B, and the total
set of faces by Sn

I,B = Sn
I ∪ Sn

B.

20 Chapter 3. Space-time method

3.1.2 Function spaces and operators

Each element K of the tessellation Th is an image of the master element K̂:
K = GK(K̂), where K̂ = (−1, 1)4 is the open unit hypercube in R4. The
finite element space associated with the tessellation Th is given by:

Wh =
{
W ∈ (L2(Eh))5 : W |K ◦ GK ∈ (P k(K̂))5, ∀K ∈ Th

}
,

where L2(Eh) is the space of square integrable functions on Eh and P k(K̂)
denotes the space of polynomials of degree at most k in element K̂. We will
also use the following space:

Vh =
{
V ∈ (L2(Eh))5×3 : V |K ◦ GK ∈ (P k(K̂))5×3, ∀K ∈ Th

}
.

Note that ∇hWh ⊂ Vh, where the broken gradient ∇h of Wh is defined
as (∇hWh)|K = ∇(Wh|K). This relation between the function spaces is
essential for the discretization.

The trace of a function f ∈ Wh at the element boundary ∂KL is defined
as:

fL = lim
ǫ↓0

f(x − ǫnL),

with nL the unit outward space-time normal at ∂KL. We will also use the
notation n̄L when only the space components of the outward normal vector
are considered. Because of the discontinuous function approximation, a
function f in Wh and Vh can have a double-valued trace at the element
boundaries ∂K. The traces of the function f at an internal face S = K̄L∩K̄R

are denoted by fL and fR, respectively. The jump of f at an internal face
S ∈ Sn

I in the space direction k of a Cartesian coordinate system is defined
as: [[

f
]]

k
= fLn̄L

k + fRn̄R
k . (3.2)

Furthermore, we define the average of f at S ∈ Sn
I as:

{{
f
}}

= 1
2(fL + fR). (3.3)

The jumps and averages are not needed at faces other than internal faces.
Note that the jump operator satisfies the following product rule at S ∈ Sn

I

for f ∈ Vh and g ∈ Wh:

[[
gifik

]]
k

=
{{

gi

}}[[
fik

]]
k

+
[[
gi

]]
k

{{
fik

}}
, (3.4)

3.1. Space-time discretization 21

which can be verified by straightforward substitution of (3.2) and (3.3)
into (3.4). We will also use the following relation for the element boundary
integrals which occur in the weak formulation:

∑

K∈T n
h

∫

Q
gL
i fL

ikn̄
L
k dQ =

∑

S∈Sn
I

∫

S

[[
gifik

]]
k
dS +

∑

S∈Sn
B

∫

S
gL
i fL

ikn̄
L
k dS. (3.5)

To verify this relation, note that in the sum over all element boundary
integrals, the internal faces are counted twice. Therefore, when summing
over the internal faces, the contributions from the left and the right must
be counted, which is done by taking the jump.

3.1.3 Arbitrary Lagrangian Eulerian form

Now that the space-time context is well defined, we proceed by expressing
the compressible Navier-Stokes equations in the domain E ⊂ R4 as:






Ui,0 + F e
ik,k −

(
AikrsUr,s

)
,k

= 0 on E ,

U = U0 on Ω(t0),
U = B(U, U b) on Q,

for i, r = 1, . . . , 5 and k, s = 1, . . . , 3. The initial flow field is denoted by
U0 : Ω(t0) → R5, with U0 derived from the initial condition described in
Chapter 2. The boundary operator is denoted by B : R5×5 → R5 and is
a function of the internal data U and the boundary data U b derived from
the boundary conditions in Chapter 2. At the far-field boundary, suitable
in- and out-flow conditions can be derived using local characteristics. The
main idea is that characteristic variables of incoming characteristics are set
equal to their free-stream values, while the other variables are extrapolated
from within the flow domain, see for example [29]. At solid surfaces, the
isothermal no-slip boundary condition is applied.

Following the framework described in [1], we write the compressible
Navier-Stokes equations as a first-order system by introducing the auxiliary
variable1 Θ(U):

Ui,0 + F e
ik,k − Θik,k = 0, (3.6a)

Θik − AikrsUr,s = 0. (3.6b)

1Here, the auxiliary variable corresponds to the viscous flux, see Chapter 2. An
alternative would be to choose Θ = ∇U , see [2].

22 Chapter 3. Space-time method

The flux formulation of (3.6a) is obtained after multiplying by a test func-
tion W ∈ Wh, integrating by parts in space-time over an element K ∈ Th

and summing over all elements of the tessellation:

−
∑

K∈Th

∫

K

(
Wi,0Ui + Wi,k(F

e
ik − Θik)

)
dK

+
∑

K∈Th

∫

∂K
WL

i

(
Ûin

L
0 + (F̂ e

ik − Θ̂ik)n̄
L
k

)
d(∂K) = 0, (3.7)

where nL is the outward normal vector at ∂K. At the element boundaries,
U can be double-valued due to the discontinuous function approximation in
each element. Therefore, in order to uniquely define the element boundary
integrals and provide a coupling between neighboring elements, we intro-

duce numerical fluxes (̂·) which depend on both the left and right trace of
U at the element boundary. The numerical fluxes will be defined later on.

The auxiliary variable Θ is only needed as an intermediate step in the
derivation of the discretization and will be eliminated as we go from the flux
formulation to the primal formulation, which is expressed solely in terms
of the primary unknowns U .

But first we turn to the Arbitrary Lagrangian Eulerian (ALE) context in
order to accommodate moving and deforming meshes. The flux formulation
in ALE context is obtained following the approach described in Van der
Vegt and Van der Ven [44]. Using the definition (3.1) of the space-time
normal vector, the boundary integral in (3.7) becomes:

∑

K∈Th

∫

∂K
WL

i

(
Ûin

L
0 + (F̂ e

ik − Θ̂ik)n̄
L
k

)
d(∂K)

=
∑

K∈Th

(∫

K(t−n+1
)
WL

i Ûi dK −
∫

K(t+n)
WL

i Ûi dK
)

+
∑

K∈Th

∫

Q
WL

i (F̂ e
ik − Ûivk − Θ̂ik)n̄

L
k dQ.

The numerical flux Û at the faces K(t+n) and K(t−n+1) is defined as an
upwind flux to ensure causality in time:

Û =

{
UL at K(t−n+1),

UR at K(t+n).

3.1. Space-time discretization 23

With this numerical flux, the flux formulation in each space-time slab only
depends on the previous space-time slab, therefore the summation over the
space-time slabs can be dropped and the ALE flux formulation of (3.6a)
becomes:

−
∑

K∈T n
h

∫

K

(
Wi,0Ui + Wi,k(F

e
ik − Θik)

)
dK

+
∑

K∈T n
h

(∫

K(t−n+1
)
WL

i UL
i dK −

∫

K(t+n)
WL

i UR
i dK

)

+
∑

K∈T n
h

∫

Q
WL

i (F̂ e
ik − vkÛi − Θ̂ik)n̄

L
k dQ = 0. (3.8)

3.1.4 The auxiliary variable

The mixed formulation (3.6) has the disadvantage that both U and Θ have
to be stored and solved during a computation. Fortunately, it is possible
to eliminate the auxiliary variable using a weak expression for Θ in terms
of the primary unknowns U , so only U has to be stored. To derive this
expression, we multiply (3.6b) by a test function V ∈ Vh, integrate by
parts in space (twice) over an element K ∈ Th and sum over all elements of
the tessellation:

∑

K∈T n
h

∫

K
VikΘik dK =

∑

K∈T n
h

∫

K
VikAikrsUr,s dK

+
∑

K∈T n
h

∫

Q
V L

ikAL
ikrs(Ûr − UL

r)n̄L
s dQ, (3.9)

where we introduced the numerical flux Û after the first integration by
parts. In this case, the numerical flux does not have a time contribution
because we only integrated in space. Instead of using integrals over the
element boundary Q, it is more convenient to use integrals over the element
faces S. We therefore apply relation (3.5) to the element boundary integral

24 Chapter 3. Space-time method

of equation (3.9):

∑

K∈T n
h

∫

Q
V L

ikAL
ikrs(Ûr − UL

r)n̄L
s dQ

=
∑

S∈Sn
I

∫

S

[[
VikAikrs(Ûr − Ur)

]]
s
dS +

∑

S∈Sn
B

∫

S
V L

ikAL
ikrs(Ûr − UL

r)n̄L
s dS.

Now that we explicitly distinguish between internal and boundary faces,
we can follow the approach by Bassi and Rebay [3, 5, 6] and define the
numerical flux as:

Û =

{{{
U

}}
at Sn

I ,

U b at Sn
B.

With this choice for the numerical flux at the internal faces and using
relation (3.4) we obtain:

[[
VikAikrs(Ûr−Ur)

]]
s

= −
{{

VikAikrs

}}[[
Ur

]]
s
, which

leads to the following expression for the auxiliary variable:

∑

K∈T n
h

∫

K
VikΘik dK =

∑

K∈T n
h

∫

K
VikAikrsUr,s dK

−
∑

S∈Sn
I

∫

S

{{
VikAikrs

}}[[
Ur

]]
s
dS −

∑

S∈Sn
B

∫

S
V L

ikAL
ikrs(U

L
r − U b

r)n̄L
s dS.

In order to obtain an explicit expression for the auxiliary variable, we need
to define a global lifting operator. The global lifting operator R ∈ R5×3 is
defined in a weak sense as: Find an R ∈ Vh, such that for all V ∈ Vh:

∑

K∈T n
h

∫

K
VikRik dK =

∑

S∈Sn
I

∫

S

{{
VikAikrs

}}[[
Ur

]]
s
dS

+
∑

S∈Sn
B

∫

S
V L

ikAL
ikrs(U

L
r − U b

r)n̄L
s dS. (3.10)

More details on the lifting operator are given in Section 3.2. According to
this definition, the face integrals in the expression for Θ can now be written
as element integrals, leading to the weak expression of the auxiliary variable:

∑

K∈T n
h

∫

K
VikΘik dK =

∑

K∈T n
h

∫

K
Vik(AikrsUr,s −Rik) dK, ∀V ∈ Vh. (3.11)

3.1. Space-time discretization 25

In other words, Θik = AikrsUr,s−Rik almost everywhere in En
h . The role of

the lifting operator R is to penalize the jumps at the faces [1]. For smooth
solutions R = 0.

3.1.5 Primal formulation

The primal formulation can be obtained using the expression (3.11) for the
auxiliary variable Θ. Since ∇hWh ⊂ Vh, the special case Vik = Wi,k can be
considered in (3.11), and the auxiliary variable Θ can be replaced in the
element integral of (3.8):

∑

K∈T n
h

∫

K
Wi,kΘik dK =

∑

K∈T n
h

∫

K
Wi,k(AikrsUr,s −Rik) dK.

Now, only the numerical fluxes F̂ e and Θ̂ remain to be chosen. We therefore
consider the element boundary integrals of (3.8) and use relation (3.5) to
get the element face integrals:

∑

K∈T n
h

∫

Q
WL

i (F̂ e
ik − vkÛi − Θ̂ik)n̄

L
k dQ

=
∑

S∈Sn
I

∫

S

[[
Wi(F̂

e
ik − vkÛi − Θ̂ik)

]]
k
dS

+
∑

S∈Sn
B

∫

S
WL

i (F̂ e
ik − vkÛi − Θ̂ik)n̄

L
k dS.

The inviscid numerical flux F̂ e is based on the HLLC approximate Rie-
mann solver [7, 42, 44], because of its computational efficiency, accuracy
and straightforward implementation. The HLLC flux is consistent and con-
servative and is obtained by interpreting the discontinuity between UL and
UR at a face S as a local Riemann problem, which is solved approximately
while taking into account the grid velocity ~v. Following [44] and using the
fact that nR = −nL, we have:

[[
Wi(F̂

e
ik − vkÛi)

]]
k

= (WL
i − WR

i)Hi

26 Chapter 3. Space-time method

with H = H(UL, UR, v, n̄L) the HLLC flux. At a face moving with velocity
v, the HLLC flux is given by:

Hi = 1
2

(
(F e

ik)
Ln̄L

k − (F e
ik)

Rn̄R
k

)

+ 1
2

(
(|SM − v| − |SL − v|)UL

i∗ − (v − |SL − v|)UL
i

)

+ 1
2

(
(|SR − v| − |SM − v|)UR

i∗ − (v + |SR − v|)UR
i

)
,

with (F e)L,R = F e(UL,R). The intermediate states UL
∗ and UR

∗ are given
by:

UL,R
∗ =

SL,R − qL,R

SL,R − SM
UL,R +

1

SL,R − SM




0

(p∗ − pL,R)n̄L
k

p∗S
M − pL,RqL,R



 ,

with q = n̄L
k uk the normal velocity and p∗ the intermediate pressure:

p∗ = ρL(SL − qL)(SM − qL) + pL = ρR(SR − qR)(SM − qR) + pR.

The middle wave speed is defined as:

SM =
ρRqR(SR − qR) − pR − ρLqL(SL − qL) + pL

ρR(SR − qR) − ρL(SL − qL)
,

and the left and right wave speeds as:

SL = min{qL − aL, qR − aR}, SR = max{qL + aL, qR + aR},

with a =
√

γp/ρ the speed of sound. At the boundary faces, we use Hb =
H(UL, U b, v, n̄L).

The numerical flux Θ̂ is defined following Brezzi [10] as a central flux
Θ̂ =

{{
Θ

}}
, using the weak expression (3.11) for the auxiliary variable. This

is a suitable choice as viscosity does not have a preferred direction. The
numerical flux can thus be written as:

Θ̂ik(U
L, UR) =

{{{
AikrsUr,s − ηRS

ik

}}
for S ∈ Sn

I ,

Ab
ikrsU

b
r,s − ηRS

ik for S ∈ Sn
B,

where η is a stabilization constant and Ab = A(U b) and U b
r,s denotes the

derivatives of U at the boundary. The local lifting operator RS is an ap-
proximation of the global lifting operator R and is preferable because it

3.2. Algebraic system 27

reduces the width of the stencil to the minimum, see [10]. The local lifting
operator RS ∈ R5×3 is defined as follows: Find an RS ∈ Vh, such that for
all V ∈ Vh:

∑

K∈T n
h

∫

K
VikRS

ik dK =

{∫
S

{{
VikAikrs

}}[[
Ur

]]
s
dS for S ∈ SI ,∫

S V L
ikAL

ikrs(U
L
r − U b

r)n̄s dS for S ∈ SB.
(3.12)

With these numerical fluxes the space-time weak formulation of the com-
pressible Navier-Stokes equations in terms of the primary unknown U can
be written as follows: Find a U ∈ Wh, such that for all W ∈ Wh:

−
∑

K∈T n
h

∫

K

(
Wi,0Ui + Wi,k(F

e
ik − AikrsUr,s + Rik)

)
dK

+
∑

K∈T n
h

(∫

K(t−n+1
)
WL

i UL
i dK −

∫

K(t+n)
WL

i UR
i dK

)

+
∑

S∈Sn
I

∫

S
(WL

i − WR
i)Hi dS +

∑

S∈Sn
B

∫

S
WL

i Hb
i dS

−
∑

S∈Sn
I

∫

S

[[
Wi

]]
k

{{
AikrsUr,s − ηRS

ik

}}
dS

−
∑

S∈Sn
B

∫

S
WL

i

(
Ab

ikrsU
b
r,s − ηRS

ik

)
n̄L

k dS = 0

(3.13)

where we used the relation
[[
WiΘ̂ik

]]
k

=
[[
Wi

]]
k
Θ̂ik, which follows from the

viscous numerical flux being conservative: Θ̂(UL, UR) = Θ̂(UR, UL).
Discontinuous Galerkin methods are known to suffer from numerical

oscillations around shocks and sharp gradients. This problem can be over-
come using a slope limiter (see for example [15]), but we prefer the artificial
dissipation proposed in [44] as it allows convergence to steady-state up to
machine precision. We refer to [44] for a detailed description of the artificial
dissipation operator.

3.2 Algebraic system

In this section, the space-time discretization of the compressible Navier-
Stokes equations is completed by defining the basis functions, computing
the local lifting operator and constructing the system of algebraic equations.

28 Chapter 3. Space-time method

3.2.1 Basis functions

Here, we use linear polynomials to represent the trial function U and the
test function W in each element K ∈ T n

h :

U(t, x̄)|K = Ûmψm(t, x̄), W (t, x̄)|K = Ŵlψl(t, x̄), m, l = 0, . . . , 4

with (̂·) the expansion coefficients and ψ the basis functions. The basis
functions are defined such that the test and trial functions are split into
an element mean at time tn+1 and a fluctuating part. This construction
facilitates the definition of the artificial dissipation operator and of the
multigrid convergence acceleration method [44]. The basis functions ψ are
given by:

ψm =





1, for m = 0

φm(t, x̄) − 1
|Kj(t

−

n+1
)|

∫
Kj(t

−

n+1
) φm(t, x̄) dK, for m = 1, . . . , 4

where the functions φ in an element K are related to the basis functions φ̂
on the master element K̂ through the mapping G:

φm = φ̂m ◦ G−1
K

with φ̂m(ξ) ∈ P 1(K̂) and ξ the local coordinates in the master element K̂
defined in Sec. 3.1.

3.2.2 Lifting operators

The global and local lifting operators contained in the primal formulation
(3.13) must be computed first in order to obtain the system of algebraic
equations for the expansion coefficients Û of the trial function U . The
volume integral containing the global lifting operator can simply be replaced
by face integrals using its definition (3.10):

∑

K∈T n
h

∫

K
Wi,kRik dK =

∑

S∈Sn
I

∫

S

{{
Wi,kAikrs

}}[[
Ur

]]
s
dS

+
∑

S∈Sn
B

∫

S
WL

i,kA
L
ikrs(U

L
r − U b

r)n̄L
s dS.

3.2. Algebraic system 29

These face integrals can be directly computed by replacing the test and
trial functions by their polynomial expansions. The local lifting operator,
however, cannot be computed directly. Like the test and trial functions, it
is represented by a linear polynomial:

RS(t, x̄)|K = R̂jψj(t, x̄),

and a small linear system must be solved for the expansion coefficients R̂j .
The linear system follows from the definition of the local lifting operator
(3.12). By this definition, the local lifting operator is only non-zero on the
two elements KL and KR connected to the face S ∈ Sn

I , hence:
∫

KR

VikRS
ik dK +

∫

KL

VikRS
ik dK =

∫

S

{{
VikAikrs

}}[[
Ur

]]
s
dS.

Since V is an arbitrary test function, this is equivalent with the two follow-
ing equations:

∫

KL,R

VikRS
ik dK = 1

2

∫

S
V L,R

ik AL,R
ikrs

[[
Ur

]]
s
dS,

where the superscript L, R refers to the traces from either the left or right
element. Replacing RS by its polynomial approximation leads to two sys-
tems of linear equations for the expansion coefficients R̂ikj of RS

ik on S ∈ SI :

R̂L,R
ikj

∫

KL,R

ψlψj dK = 1
2

∫

S
ψL,R

l AL,R
ikrs

[[
Ur

]]
s
dS.

The element mass matrices on the l.h.s. are denoted by ML,R
lj and can easily

be inverted leading to following expression for the expansion coefficients of
the local lifting operator on S ∈ SI :

R̂L,R
ikj = 1

2(M−1)L,R
jl

∫

S
ψL,R

l AL,R
ikrs

[[
Ur

]]
s
dS. (3.14)

Similarly, the expression for the expansion coefficients of the local lifting
operator for the faces S ∈ SB is:

R̂L
ikj = (M−1)L

jl

∫

S
ψL

l AL
ikrs(U

L
r − U b

r)n̄L
s dS. (3.15)

Note that the mass matrices M only have to be inverted once per element in
each space-time slab, after which the local lifting operator can be computed
as a small matrix-vector multiplication.

30 Chapter 3. Space-time method

3.2.3 Equations for the expansion coefficients of the flow

field

The system of algebraic equations for the expansion coefficients Û of the
trial function U is obtained by replacing U and the test function W in
(3.13) by their polynomial expansions. We distinguish between the inviscid
and viscous part:

Le(Ûn, Ûn−1) + Lv(Ûn) = 0. (3.16)

The term Le corresponds to the inviscid part of the residuals and is defined
as:

Le
il = −

∑

K∈T n
h

(
Ail + Bil

)
+

∑

K∈T n
h

Cil +
∑

S∈Sn
I,B

Eil,

with i = 1, . . . , 5 the equation number, l = 0, . . . , 4, the index of the expan-
sion coefficients and the terms A, B, C and E defined as:

Ail =

∫

K
ψl,0Ui dK, (3.17)

Bil =

∫

K
ψl,kF

e
ik dK, (3.18)

Cil =

∫

K(t−n+1
)
ψL

l UL
i dK −

∫

K(t+n)
ψL

l UR
i dK, (3.19)

Eil =

{∫
S(ψL

l − ψR
l)Hi dS for S ∈ SI ,∫

S ψL
l Hb

i dS for S ∈ SB,
(3.20)

with F e
ik = F e

ik(U) the Euler flux and Hi = Hi(U
L, UR, v, n̄L) the HLLC

flux. The term Lv corresponds to the viscous part of the residual and is
defined as:

Lv
il =

∑

K∈T n
h

Dil +
∑

S∈Sn
I,B

(
− Fil − Gil + Hil

)
,

with

Dil =

∫

K
ψl,kAikrsUr,s dK, (3.21)

Fil =

{∫
S

{{
ψl,kAikrs

}}[[
Ur

]]
s
dS for S ∈ SI ,∫

S ψL
l,kA

L
ikrs(U

L
r − U b

r)n̄L
s dS for S ∈ SB,

(3.22)

3.2. Algebraic system 31

Gil =

{∫
S

[[
ψl

]]
k

{{
AikrsUr,s

}}
dS for S ∈ SI ,∫

S ψL
l (Ab

ikrsU
b
r,s)n̄

L
k dS for S ∈ SB,

(3.23)

Hil =

{
η

∫
S

[[
ψl

]]
k

{{
RS

ik

}}
dS for S ∈ SI ,

η
∫
S ψL

l RS
ikn̄

L
k dS for S ∈ SB,

(3.24)

with RS
ik = RS

ik(U) the local lifting operator and Aikrs = Aikrs(U) the
homogeneity tensor.

Thus, the space-time discontinuous Galerkin discretization of the com-
pressible Navier-Stokes equations results in a system of coupled non-linear
equations for the expansion coefficients, which is solved by adding a pseudo-
time derivative:

|Kn|∂Ûn

∂τ
= − 1

∆t

(
Le(Ûn; Ûn−1) + Lv(Ûn)

)
, (3.25)

and integrating to steady-state in pseudo-time. Different pseudo-time step-
ping methods suitable for this purpose are presented in Chapter 4, where we
analyze their stability in pseudo-time and compare their efficiency. Com-
puting the viscous part Lv of the residual takes roughly twice the CPU
time needed for the inviscid part Le, see Table 3.1. The stabilization term
(3.24) is by far the most expensive as it requires the expansion coefficients
of the local lifting operator, which must be computed first using (3.14) and
(3.15).

Table 3.1: Relative computational effort in the NLR program hexadap.

Equation Notation CPU time (%)

Time flux (3.17) Ail 1.7
(3.19) Cil 1.8

Euler flux (3.18) Bil 4
(3.20) Eil 25

Viscous flux (3.21) Dil 10
(3.22) Fil 10
(3.23) Gil 7
(3.24) Hil 40.5

32 Chapter 3. Space-time method

3.3 Numerical simulations

The space-time discontinuous Galerkin method for the compressible Navier-
Stokes equations is implemented in the NLR computer program hexadap

and, in this section, numerical results are presented. We consider a model
problem of two-dimensional laminar dynamic stall and the three-dimensional
vortex flow around a delta wing.

3.3.1 Laminar dynamic stall of NACA0012 airfoil

We consider the laminar flow over a NACA0012 airfoil in rapid pitch-up
maneuver, comparable to the situation described in [34] and [50]. The
flow is characterized by a complex interaction of an unsteady leading-edge
vortex, shear layer vortices and trailing edge vortex, resulting in the de-
tachment of the leading edge vortex: the dynamic stall phenomenon. The
complexity of the unsteady flow and the significant grid movement make
this a challenging test case for the space-time discretization of the Navier-
Stokes equations, where the deforming elements in the neighborhood of the
moving airfoil are accommodated with the deformation algorithm proposed
in [44].

In this case, the far-field Reynolds number is Re∞ = 104 and the Mach
number M∞ = 0.2, based on the non-dimensionalization presented in Chap-
ter 2 with L the chord of the airfoil. The pitch axis is situated at 25% from
the leading edge and the airfoil rotates in such a way that the angle of
attack α evolves as follows:

α(t) = a + bt − a exp(−ct). (3.26)

The coefficients are a = −1.2455604, b = 2.2918312, c = 1.84 and the time
t ranges from 0 to 25. With these coefficients, the movement of the airfoil
is the same as the movement of the NACA0015 used in [50]. At time t = 0,
both α = 0 and dα/dt = 0 and, after a short transition, the movement
becomes mainly linear. The basis functions in the discretization are linear
and the stabilization constant is η = 5.

Remark. Although, in this thesis, we limit ourselves to linear basis func-
tions, the space-time method allows higher-order basis functions to be used
both in space and time. We refer to [41] for the detailed analysis of high-
order space-time approximations.

3.3. Numerical simulations 33

Since the flow is laminar, the boundary layer thickness is estimated as
δ ≈ 5/

√
Re and the computational mesh should be fine enough to accurately

represent this layer. In this case, δ ≈ 0.05 and we use a C-type grid with
112× 38 elements which results in 14 elements in this boundary layer. The
dimensionless physical time step is ∆t = 0.005. Each physical time step
requires about 20 pseudo-time iterations to solve the algebraic system. At
each step the mesh moves and deforms according to the motion of the airfoil
prescribed by (3.26), see Figure 3.3 for the details of the mesh at a 50◦ angle
of attack. At this point, the mesh lines are no longer perpendicular to the
airfoil geometry and are sharply bend near the trailing edge. Yet, even on
this mesh of reduced quality, the space-time discontinuous Galerkin method
still performs well as can be seen in Figure 3.4 which shows the streamlines
at angles of attack α = 30◦, 40◦ and 50◦, respectively. The sudden drop in
lift and increase in drag associated with the detachment of the leading edge
vortex (between α = 40◦ and 50◦) can clearly be seen in Figure 3.5, where
we show the lift and drag coefficients as a function of the angle of attack.

We thus conclude that the space-time discontinuous Galerkin method
combined with grid movement and deformation has significant potential
to simulate the complex flow phenomenon which occur in dynamic stall
situations.

3.3.2 Delta wing with mesh adaptation

To test the performance of the space-time method with local mesh adap-
tation in a 3D situation, we consider the steady state flow around the 75◦

delta wing used in the experiments by Riley and Lowson [39], see Figure 3.6
for details on the geometry. The flow is symmetric with a large steady vor-
tex and two secondary vortices along both sides of the wing, see for example
the similar situation in [39].

We consider the case with far-field Reynolds number Re∞ = 4 · 104,
Mach number M∞ = 0.3 and angle of attack α = 12.5◦. We compute
the solution on a coarse mesh with 208 896 elements and on a fine mesh
with 1 671 168 elements. The basis functions are linear and the stabilization
constant is η = 7. Since this is a steady-state case, we take one huge physical
time step ∆t = 1021 and solve the algebraic system with the pseudo-time
integration method. Figure 3.7 shows an overview of the streamlines and
the vorticity in several cross sections of the flow field computed on the fine

34 Chapter 3. Space-time method

(a) Overview

(b) leading edge (c) trailing edge

Figure 3.3: Overview and details of the mesh deformation in the dynamic
stall case at α = 50◦.

3.3. Numerical simulations 35

(a) α = 30◦

(b) α = 40◦

(c) α = 50◦

Figure 3.4: Streamlines in the dynamic stall case.

36 Chapter 3. Space-time method

Angle of attack

C
o

e
ff

ic
ie

n
ts

0 20 40 60

0

0.5

1

1.5

2

2.5

3

CL
CD

Figure 3.5: The lift and drag coefficients in the dynamic stall case.

mesh. The two main vortices are clearly visible as well as the secondary
vortices near the edges of the wing, see also Figure 3.8 for the streamlines
in cross-section x/c = 0.6.

In the local mesh adaptation procedure, we start with the solution on
the coarse mesh, then refine the mesh in the regions with the highest vortic-
ity, thereby increasing the number of elements by 10%. Then we compute
the solution on the adapted mesh and repeat the same procedure until the
mesh has been adapted three times. The final adapted mesh has 286 416
elements, see Figure 3.9 for an impression of the 3D adaptation. Note that
the refinement mainly takes place in the stream-wise direction.

The effect of vorticity driven mesh adaptation is shown by comparing
the pressure coefficient and the helicity (u ·ω with w the vorticity) obtained
on the coarse and adapted mesh with those on the fine mesh. Figure 3.10
shows the pressure coefficient Cp on the delta wing at cross sections x/c =
0.3 and x/c = 0.6 respectively. In these figures, we also show the Cp

computed with the NLR finite volume code ensolv [30] on the fine mesh
and found some small differences. For instance, the suction peak with
hexadap on the coarse and adapted mesh is higher than the one on the
fine mesh and the one obtained with ensolv. Also, the sharp edge at the

3.3. Numerical simulations 37

t
30◦ x

c

z

x

y

75◦

Figure 3.6: The geometry of the delta wing (t/c = 0.024).

VORTICITY

20

18

16

14

12

10

8

6

4

2

Figure 3.7: Streamlines and vorticity in several cross sections of the delta
wing.

38 Chapter 3. Space-time method

bottom of the wing induces a small oscillation in Cp with hexadap on the
coarse and adapted mesh, while the fine mesh results of both hexadap and
ensolv are smoother. We conclude that the pressure coefficient is not very
sensitive to the mesh quality, even the coarse mesh gives reasonable results.

The helicity, however, is much more sensitive to the mesh quality as
can be seen in Figures 3.11 and 3.12 where we show the mesh and helicity
contours in cross sections x/c = 0.9 and x/c = 1.1, respectively. At x/c =
0.9, the results on the coarse mesh are rather poor, while the results on
the adapted mesh are much closer to those on the fine mesh. Downstream
of the delta wing (x/c = 1.1), the advantage of grid adaptation is even
clearer: on the coarse grid the details in the helicity are almost lost, while
on the adapted grid the helicity still strongly resembles the one on the
fine mesh. Since the adapted mesh has five times fewer elements than the
fine grid, the computational cost is much lower. This demonstrates that a
solution adaptive space-time method can result in significant cost savings
when applied to vortex dominated viscous flows.

Remark. Cost saving is important as DG methods are known to be com-
putationally expensive in comparison to finite volume methods. In [47],
the computational complexity of the space-time DG method for the Euler
equations is considered in detail and in [45] it was shown that the CPU time
per degree of freedom is comparable to a Jameson finite volume solver. The
relative cost of the viscous part is given in Table 3.1.

The space-time DG discretization is now validated and, in the next
chapter, we focus on the pseudo-time integration method used to solve the
system of algebraic equations.

3.3. Numerical simulations 39

Figure 3.8: Streamlines around the delta wing (cross-section x/c = 0.6).

Adapted vortex region

Original resolution

Figure 3.9: Impression of the vorticity based mesh adaptation.

40 Chapter 3. Space-time method

X

­C
p

­0.1 ­0.08 ­0.06 ­0.04 ­0.02 0 0.02
­0.4

­0.2

0

0.2

0.4

0.6

0.8

1

1.2
ensolv (fine grid)
hexadap (fine grid)

hexadap (adapted grid)
hexadap (coarse grid)

(a) cross-section x/c = 0.3

X

­C
p

­0.2 ­0.15 ­0.1 ­0.05 0 0.05
­0.4

­0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ensolv (fine grid)
hexadap (fine grid)

hexadap (adapted grid)
hexadap (coarse grid)

(b) cross-section x/c = 0.6

Figure 3.10: Pressure coefficient Cp at of the delta wing.

3.3. Numerical simulations 41

Y

Z

0.1 0.15 0.2 0.25
­0.05

0

0.05

0.1

0.15

Y

Z

0.1 0.15 0.2 0.25
­0.05

0

0.05

0.1

0.15

Y

Z

0.1 0.15 0.2 0.25
­0.05

0

0.05

0.1

0.15

Y

Z

0.1 0.15 0.2 0.25
­0.05

0

0.05

0.1

0.15

Y

Z

0.1 0.15 0.2 0.25
­0.05

0

0.05

0.1

0.15

Y

Z

0.1 0.15 0.2 0.25
­0.05

0

0.05

0.1

0.15

Figure 3.11: Grid and helicity isolines at cross section x/c = 0.9 for the
coarse, adapted and fine mesh. The helicity ranges from −5 to 2 with step
size 0.2, the negative part being represented with solid lines, the positive
part with dashed lines.

42 Chapter 3. Space-time method

Y

Z

0.1 0.15 0.2 0.25 0.3

­0.05

0

0.05

0.1

0.15

Y

Z

0.1 0.15 0.2 0.25 0.3

­0.05

0

0.05

0.1

0.15

Y

Z

0.1 0.15 0.2 0.25 0.3

­0.05

0

0.05

0.1

0.15

Y

Z

0.1 0.15 0.2 0.25 0.3

­0.05

0

0.05

0.1

0.15

Y

Z

0.1 0.15 0.2 0.25 0.3

­0.05

0

0.05

0.1

0.15

Y

Z

0.1 0.15 0.2 0.25 0.3

­0.05

0

0.05

0.1

0.15

Figure 3.12: Grid and helicity isolines at cross section x/c = 1.1 for the
coarse, adapted and fine mesh. The helicity ranges from −5 to 2 with step
size 0.2, the negative part being represented with solid lines, the positive
part with dashed lines.

Chapter 4

Pseudo-time integration

In this chapter, we investigate a combination of two explicit Runge-Kutta
schemes, one designed for inviscid flows and the other for viscous flows, to
solve the non-linear system of algebraic equations of the space-time dis-
cretization of the compressible Navier-Stokes equations. To evaluate the
effect of viscosity on the stability and performance of this method, we
compare with an implicit-explicit Runge-Kutta method, where the viscous
terms are treated implicitly and the inviscid terms explicitly.

4.1 Pseudo-time stepping methods

In this section, the different Runge-Kutta methods for the pseudo-time
integration of system (3.25) are described. Here, the scaling in (3.25) with
the diagonal matrix |Kn| with entries |Kj(tn+1)| is taken into the definition
of the residual:

L(Ûn; Ûn−1) ≡ 1

|Kn|
(
Le(Ûn; Ûn−1) + Lv(Ûn)

)
,

in the remainder of this chapter.

First, we consider the explicit 5 stage Runge-Kutta method, which was
successfully used to solve the system arising from the space-time discretiza-
tion of the Euler equations in [44]. It is derived from a 5 stage Runge-Kutta
method using the correction proposed by Melson e.a. [33] to enhance the
stability of the pseudo-time integration. For details of the derivation and

43

44 Chapter 4. Pseudo-time integration

the stability analysis for the Euler case we refer to [44]. This scheme is
given by:

Algorithm 4.1 (EXI). Explicit Runge-Kutta method for inviscid flow
with Melson correction.

1. Initialize V̂ 0 = Û .

2. For all stages s = 1 to 5 compute V̂ s as:

(
I + αsλI

)
V̂ s = V̂ 0 + αsλ

(
V̂ s−1 − L(V̂ s−1; Ûn−1)

)
.

3. Return Û = V̂ 5.

The Runge-Kutta coefficients at stage s are denoted by αs and defined as:
α1 = 0.0791451, α2 = 0.163551, α3 = 0.283663, α4 = 0.5 and α5 = 1.0. The
matrix I represents the identity matrix. The coefficients were optimized to
ensure rapid convergence to steady state. The factor λ is the ratio between
the pseudo-time step ∆τ and the physical time step: λ = ∆τ/∆t. The
Melson correction consists in treating V̂ semi-implicitly, without this the
scheme would become unstable for values of λ around one.

Second, we consider the implicit-explicit version of the EXI method.
The residual L defined in (3.16) consists of two parts: L = Le + Lv, where
Le stems from the inviscid part of the compressible Navier-Stokes equations
and Lv from the viscous part. The implicit-explicit method can be derived
by introducing a Newton matrix D, which approximates the Jacobian of
the viscous part of the residual:

DV̂ s ∼= Lv.

Here, the approximation consists of freezing the (non-linear) homogeneity
tensor A at the previous Runge-Kutta stage s − 1. Details on the con-
struction of D are given in Appendix A.2. This approximation is relatively
inexpensive compared with the Jacobian of the inviscid flux which would
be required by a Newton solver, since A is readily available in the dis-
cretization. The implicit-explicit Runge-Kutta method can thus be written
as:

4.1. Pseudo-time stepping methods 45

Algorithm 4.2 (IMEX). Implicit-explicit Runge-Kutta method.

1. Initialize V̂ 0 = Û .

2. For all stages s = 1 to 5 compute V̂ s by solving:

(
I + αsλ(I + D)

)
V̂ s = V̂ 0 + αsλ

(
(I + D)V̂ s−1 − L(V̂ s−1; Ûn−1)

)
.

3. Return Û = V̂ 5.

The coefficients αs are the same as in Algorithm 4.1. Note that the diffusive
terms Lv in the residual L are not replaced by the approximation, both
methods solve the same non-linear system L = 0 at steady-state. Clearly,
the l.h.s. of the equation for V̂ s is no longer a diagonal matrix, but a global
sparse block matrix, therefore V̂ s must be computed by solving the sparse
linear system. We do so using the sparse iterative GMRES solver with
Jacobi preconditioning, available in the PETSc package [36].

Finally, we consider the family of methods proposed by Kleb e.a. [28].
Based on an explicit 4 stage Runge-Kutta method, Kleb e.a. proposed a
procedure to optimize the Runge-Kutta coefficients for various situations
depending on the cell Reynolds number. The method is given by:

Algorithm 4.3 (EXV). Explicit Runge-Kutta method for viscous flows.

1. Initialize V̂ 0 = Û .

2. For all stages s = 1 to 4 compute V̂ s as:

V̂ s = V̂ 0 − αsλL(V̂ s−1; Ûn−1).

3. Return Û = V̂ 4.

Here, the Runge-Kutta coefficients at stage s are defined as: α1 = 0.0178571,
α2 = 0.0568106, α3 = 0.174513 and α4 = 1; a summary of the derivation
of these values is given in Appendix A.3. With these coefficients, the sta-
bility domain of the Runge-Kutta method is very different from the one
associated with the classic 4 stage Runge-Kutta method for inviscid flows.
Notice that we do not apply the Melson correction to this scheme because

46 Chapter 4. Pseudo-time integration

we will not use it for values of λ around one, for reasons which will become
clear in the next section.

The EXI method is designed for inviscid flows, while the EXV method
is designed for viscous flows. In aerodynamical applications, however, one
encounters both flow regimes in the same simulation: the flow is inviscid
in the far-field and viscous in boundary layers. Therefore, we will seek to
combine both methods, based on their stability properties. The advantage
of such a combination is that it remains local, contrary to implicit-explicit
methods or fully implicit methods.

4.2 Stability analysis

The methods discussed in the previous section can all be applied to solve the
system of non-linear equations (3.25) given by the space-time discretization
of the compressible Navier-Stokes equations, provided a suitable pseudo-
time stability constraint is satisfied. In this section, we derive these con-
straints.

4.2.1 The model problem

Rigorous stability analysis of numerical methods for the Navier-Stokes
equations is extremely difficult and will not be attempted. Instead, in
order to derive practical stability constraints, the method is required to be
stable for the scalar advection-diffusion equation [28, 52]:

ut + a ux = d uxx, (x, t) ∈ R × R
+,

with a > 0 the advection constant and d > 0 the diffusion constant. The
domain is divided into uniform rectangular elements ∆t by ∆x. The space-
time discontinuous Galerkin method using the linear basis functions de-
scribed in Chapter 3 gives the following discrete system for the vector of
expansion coefficients ûn at time level n:

L(ûn; ûn−1) ≡ (La + Ld)ûn + Ltûn−1 = 0, (4.1)

The (block tridiagonal) inviscid part of the stencil depends on the Courant
number:

σ =
a∆t

∆x
, (4.2)

4.2. Stability analysis 47

and is given by:

La =




−σ −σ σ
σ σ −σ
σ σ −4

3σ

∣∣∣∣∣∣

1 + σ σ −σ
−σ 1

3 + σ σ
−2 − σ −σ 2 + 4

3σ

∣∣∣∣∣∣

0 0 0
0 0 0
0 0 0



 .

The right block is zero because the advective numerical flux is upwind
(a > 0). The (block tridiagonal) viscous part of the stencil depends on the
diffusive Von Neumann number:

δ =
d∆t

(∆x)2
, (4.3)

as well as on the stabilization constant η and is given by:

L
d = δ




−2η 1 − 2η 2η

−1 + 2η −2 + 2η 1 − 2η
2η −1 + 2η −

13

6
η

∣∣∣∣∣∣

4η 0 −4η
0 4η 0

−4η 0 13

3
η

∣∣∣∣∣∣

−2η −1 + 2η 2η
1 − 2η −2 + 2η −1 + 2η

2η 1 − 2η −
13

6
η



 .

The (block diagonal) part of the stencil related to the previous space-time
slab is given by:

Lt =




−1 0 0
0 −1

3 0
2 0 0



 .

Note that the matrix has a periodic block Toeplitz structure with 3 × 3
blocks, written symbolically as:

L =
[
L

∣∣ D
∣∣ U

]
,

with L the block-lower, D the block-diagonal and U the block-upper part
of the matrix. The system of algebraic equations (4.1) resulting from the
space-time discontinuous Galerkin discretization of the model problem is
solved using the pseudo-time stepping methods described in the previous
section. Since the stability in pseudo-time of the Runge-Kutta methods
is only affected by the transients, we only consider the homogeneous part
of the linear system (4.1). Thus, the pseudo-time equation for the model
problem becomes:

∂ûn

∂τ
= − 1

∆t
(La + Ld)ûn. (4.4)

48 Chapter 4. Pseudo-time integration

4.2.2 Stability of the EXI and EXV method

The stability analysis of the EXI and EXV method is similar and therefore
treated simultaneously in this section. The vector of expansion coefficients
in element j is assumed to be a Fourier mode:

ûn
j = ûF exp(ıθj)

with ûF the amplitude of the mode, ı =
√
−1 and θ ∈ (−π, π]. With this

assumption, the Fourier transform of the discrete system becomes:

FT(L)(θ) = L exp(−ıθ) + D + U exp(ıθ),

with L the block-lower, D the block-diagonal and U the block-upper part
of the matrix. We begin by noticing that the matrix FT(L)(θ) is non-
singular and can be diagonalized as QMQ−1, with Q the matrix of right
eigenvectors and M the diagonal matrix with the (complex) eigenvalues
µi(θ) with i = 1, 2, 3. Using this property and introducing the new vector
w = Q−1ûn, reduces equation (4.4) to the simple scalar test model:

∂wi

∂τ
= −µi(θ)

∆t
wi, for i = 1, 2, 3. (4.5)

Note that the summation convention does not apply here and to avoid
confusion, we consider the generic scalar model problem of the form:

∂w

∂τ
= − µ

∆t
w,

with the understanding that the scalars w and µ can be any of the three
components of the corresponding vectors. When applying the EXI method
to this model equation, the Runge-Kutta stages ws are computed as:

(1 + αsλ)ws = w0 + αsλ(1 − µ)ws−1,

with λ = ∆τ/∆t and for the EXV as:

ws = w0 − αsλµ ws−1.

Using these equations the relation between two consecutive pseudo-time
steps can easily be derived and is written in generic form as:

wn = G(−λµ)wn−1,

4.2. Stability analysis 49

with G the algorithm dependent amplification factor. Starting with an
initial condition winit, we obtain after n steps:

wn = G(−λµ)nwinit.

In stability analysis, we are interested in the behavior of a perturbation
of the initial condition (see for example [52]), and, due to linearity, the
amplification of the perturbation is the same as the amplification of w.
Clearly, the perturbation is bounded if ‖Gn‖ is bounded, where ‖·‖ denotes
the Euclidian (or discrete l2) norm [22, 52]. Therefore, in view of (4.5), a
sufficient condition for stability is that the values −λµi(θ) for i = 1, 2, 3
and θ ∈ (−π, π] all lie inside the stability domain S given by:

S = {z ∈ C : |G(z)| ≤ 1}.

Remember that the discretization of the advection-diffusion equation only
depends on the Courant number (4.2), the diffusive Von Neumann number
(4.3) and the constant η. For given values of these numbers, the factor
λ of the Runge-Kutta algorithm should be chosen such that −λµi(θ) lies
inside the stability domain S. Once a suitable λ is found, it is convenient
to express the stability in terms of the pseudo-time Courant and diffusive
Von Neumann numbers: σ∆τ = λσ and δ∆τ = λδ. Hence, for stability, the
pseudo-time step ∆τ must satisfy the pseudo-time Courant-Friedrichs-Levy
(CFL) condition and the pseudo-time diffusive Von Neumann condition:

∆τ ≤ ∆τa ≡ σ∆τ∆x

a
and ∆τ ≤ ∆τd ≡ δ∆τ (∆x)2

d
.

We distinguish between flow regimes by introducing the cell Reynolds num-
ber, defined as:

Re∆x ≡ a∆x

d
. (4.6)

In aerodynamical computations, the flow is inviscid in most of the domain,
yet significant viscous effects occur in the boundary layer near the airfoil.
Therefore we will consider the following regimes:

1. Steady-state, inviscid: σ = 100 and Re∆x = 100,

2. Steady-state, viscous: σ = 100 and Re∆x = 0.01,

50 Chapter 4. Pseudo-time integration

3. Time-dependent, inviscid: σ = 1 and Re∆x = 100,

4. Time-dependent, viscous: σ = 1 and Re∆x = 0.01.

The pseudo-time diffusive Von Neumann condition can be expressed in
terms of the pseudo-time Courant number and the cell Reynolds number
as:

∆τd =
δ∆τRe∆x

σ∆τ
∆τa

Thus, the CFL condition is the most restrictive for the inviscid flow regime,
the diffusive Von Neumann condition for the viscous flow regime and the
threshold between both is given by δ∆τRe∆x = σ∆τ .

The stability domains of the EXI and EXV method and the values
−λµi(θ) are plotted in Figures 4.1, 4.2, 4.3 and 4.4 for i = 1, 2, 3 and a dis-
crete series of θ = −0.96π, 0.92π, . . . , 1.00π. For inviscid flow regimes with
pseudo-time Courant number around σ∆τ = 1.7, the EXI method is stable
and the EXV is unstable, but for viscous flow regimes with pseudo-time
diffusive Von Neumann number δ∆τ = 0.8, the converse holds. Stability
constraints for which both methods are stable are given in Table 4.1, con-
firming that the EXI method is preferable in the inviscid regime and the
EXV in the viscous regime. Therefore, we combine the EXI and EXV by
looking at the cell Reynolds number, and, for that particular cell, deploy
whichever scheme has the mildest stability restriction.

Remark. The stabilization parameter η has a significant effect on the stabil-
ity of the pseudo-time integration: as η increases, the pseudo-time diffusive
Von Neumann number decreases proportionally. Therefore η should be
taken as small as allowed in the discontinuous Galerkin discretization, in
general equal to the number of faces of an element [10, 41].

Remark. The Melson correction is applied to the EXI scheme to ensure
stability for values of λ around one, which is the case for the time-dependent
inviscid flow regime (Figure 4.3). For all other flow regimes, λ is small and
the Melson correction vanishes. Since we only apply the EXV scheme in the
viscous flow regime, the Melson correction is unnecessary for this scheme.

4.2.3 Stability of the IMEX method

The IMEX method solves the inviscid part of the equations with the EXI
method and treats the viscous part implicitly. The main idea is that the

4.2. Stability analysis 51

−10 −8 −6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Re(z)

Im
(z

)

0.2
0.4

0.6

0
.6

0.8

0
.8

1

1

−30 −25 −20 −15 −10 −5 0

−10

−5

0

5

10

Re(z)

Im
(z

)

0.2 0.2

0.2
0.2

0
.4 0
.4 0
.4

0
.4

0
.6

0.6

0.6

0.
6

0.8

0.8
0.8

0.
8

1

1

Figure 4.1: The stability domain S and values −λµi (dots) for the EXI
method (top) and EXV method (bottom) in the steady-state inviscid flow
regime with λ = 1.8 · 10−2. The pseudo-time CFL number is 1.8 and for
this constraint only the EXI method is stable.

52 Chapter 4. Pseudo-time integration

−30 −25 −20 −15 −10 −5 0

−10

−5

0

5

10

Re(z)

Im
(z

)

0
.2

0.4

0.6

0
.6

0.8

0
.8

1

1

−30 −25 −20 −15 −10 −5 0

−10

−5

0

5

10

Re(z)

Im
(z

) 0
.2

0.2
0.2 0.2

0
.4

0
.4

0
.4 0.4

0.6

0.
6 0
.6

0
.6

0.
8

0
.8

0
.8

0
.8

1

1

Figure 4.2: The stability domain S and values −λµi (dots) for the EXI
method (top) and EXV method (bottom) in the steady-state viscous flow
regime with λ = 8 · 10−5. The pseudo-time diffusive Von Neumann number
is 0.8 and for this constraint only the EXV method is stable.

4.2. Stability analysis 53

−12 −10 −8 −6 −4 −2 0 2 4

−6

−4

−2

0

2

4

6

Re(z)

Im
(z

)

0.2

0.20.
4

0
.4

0.
6

0
.6

0.
8

0
.8

1

1

1

−30 −25 −20 −15 −10 −5 0

−10

−5

0

5

10

Re(z)

Im
(z

)

0
.2

0
.2

0
.2 0.2

0
.4

0
.4

0
.4 0.4

0
.6 0

.6

0.6

0
.6

0.8 0
.8

0
.8

0
.8

1

1

Figure 4.3: The stability domain S and values −λµi (dots) for the EXI
method (top) and EXV method (bottom) in the time-dependent inviscid
flow regime with λ = 1.6. The pseudo-time CFL number is 1.6 and for this
constraint only the EXI method is stable.

54 Chapter 4. Pseudo-time integration

−30 −25 −20 −15 −10 −5 0

−10

−5

0

5

10

Re(z)

Im
(z

) 0.
2

0.
4

0.6

0
.6

0.8

0
.8

1

1

−30 −25 −20 −15 −10 −5 0

−10

−5

0

5

10

Re(z)

Im
(z

)

0.
2

0
.2

0
.2

0.2

0.4

0.
4 0.4

0.4

0
.6

0.6 0.6

0
.6

0.
8

0
.8

0.
8

0
.8

1

1

Figure 4.4: The stability domain S and values −λµi (dots) for the EXI
method (top) and EXV method (bottom) in the time-dependent viscous
flow regime with λ = 8 · 10−3. The pseudo-time diffusive Von Neumann
number is 0.8 and for this constraint only the EXV method is stable.

4.2. Stability analysis 55

Table 4.1: Stability constraints of the EXI and EXV methods in various
flow regimes.

flow regime stability constraints

σ Re∆x EXI EXV

Steady-state, inviscid 100 100 σ∆τ ≤ 1.8 σ∆τ ≤ 0.3
Steady-state, viscous 100 0.01 δ∆τ ≤ 0.1 δ∆τ ≤ 0.8
Time-dependent, inviscid 1 100 σ∆τ ≤ 1.6 σ∆τ ≤ 1.0
Time-dependent, viscous 1 0.01 δ∆τ ≤ 0.1 δ∆τ ≤ 0.8

stability should now only depend on the inviscid part, so only the CFL con-
dition has to be satisfied. This represents the ideal situation where viscosity
does not affect stability, needed to assess the influence of the diffusive Von
Neumann condition on the fully explicit methods. Unfortunately, the ma-
trices La and Ld in (4.4) do not commute, making it impossible to obtain a
scalar model problem through diagonalization, as was done for the explicit
method. Stability analysis of IMEX methods for general non-commuting
matrices is still largely an open problem, although recently, for the related
W-methods, results have been presented by Ostermann [35]. In this sec-
tion, we will prove stability of the IMEX method by directly estimating the
norm of the amplification factor G.

For the IMEX method the Runge-Kutta stages v̂s are computed by
solving the sparse linear system:

(
I + αsλ(I + Ld)

)
v̂s = v̂0 + αsλ(I − La)v̂s−1. (4.7)

The starting point of our analysis is the fact that Ld is a Hermitian matrix,
therefore Ld = QMQT where Q is a unitary matrix and M the diagonal
matrix with the eigenvalues µi of Ld. The eigenvalues of Ld are real and
positive, and can be computed as the eigenvalues µi(θ) with i = 1, 2, 3 and
θ ∈ (−π, π] of the corresponding Fourier transform:

FT(Ld)(θ) = Ld exp(−ıθ) + Dd + Ud exp(ıθ),

with Ld the block-lower, Dd the block-diagonal and Ud the block-upper
part of the matrix Ld. For a unitary matrix Q−1 = QT and the l.h.s. of

56 Chapter 4. Pseudo-time integration

(4.7) can be written as:

I + αsλ(I + Ld) = Q
(
I + αsλ(I + M)

)
QT

= QMsQ
T ,

(4.8)

with Ms the diagonal matrix with values 1 + αsλ(1 + µi). Introducing the
decomposition (4.8) into (4.7) gives:

Msw
s = w0 + αsλQT (I − La)Qws−1,

= w0 + αsλPaw
s−1,

(4.9)

with ws = QT v̂s and Pa = QT (I − La)Q. Therefore, the relation between
two consecutive pseudo-time steps is: wn = Gwn−1 with the amplification
matrix G defined as:

G = M−1
5 (I + α5λPaM

−1
4 (I + α4λPa · · ·M−1

1 (I + α1λPa))).

If ‖G‖ ≤ 1, then ‖Gn‖ ≤ 1 and the method is stable. Our stability analysis
aims at a direct estimation of this norm, therefore we consider the following
upper bound:

‖G‖ ≤ ‖M−1
5 ‖(1 + α5λ‖Pa‖‖M−1

4 ‖
(1 + α4λ‖Pa‖ · · · ‖M−1

1 ‖(1 + α1λ‖Pa‖))).

The matrices M−1
s are equal to:

M−1
s = diag

(
1

1 + αsλ(1 + µ1)
, · · · ,

1

1 + αsλ(1 + µn)

)
,

with µi the eigenvalues of Ld. The Euclidian norm of M−1
s can be estimated

as:

‖M−1
s ‖ = max

i∈{1,··· ,n}

1

1 + αsλ(1 + µi)
<

1

1 + αsλ
,

since µi, αs, λ > 0. Using this estimation, the upper bound for the Euclidian
norm of G is then provided by the following estimate:

‖G‖ ≤ 1

1 + α5λ

(
1 + α5λ‖Pa‖

1

1 + α4λ(
1 + α4λ‖Pa‖ . . .

1

1 + α1λ
(1 + α1λ‖Pa‖)

))
.

4.2. Stability analysis 57

λ

s
ta

b
il
it
y

fu
n

c
ti
o

n

10
­1

10
0

10
1

10
20.5

0.6

0.7

0.8

0.9

1

1.1

Figure 4.5: The stability function f for ‖Pa‖ = 1.

The r.h.s. of this equation is called the stability function, denoted by
f(λ, ‖Pa‖) and plotted for ‖Pa‖ = 1 in Figure 4.5. If ‖Pa‖ < 1 we find
ourselves below the curve in Figure 4.5, therefore: ‖Pa‖ ≤ 1 ⇒ f(λ, ‖Pa‖) ≤
1 ⇒ ‖G‖ ≤ 1 meaning ‖Pa‖ ≤ 1 is a sufficient condition for stability
of the implicit-explicit method. Since the matrix Pa is defined as Pa =
QT (I − La)Q, with Q a unitary matrix (hence ‖Q‖ = 1), this implies
that the stability of the IMEX method is only determined by the following
condition:

‖I − La‖ ≤ 1.

Since La only depends on the Courant number (4.2), this condition im-
plies that the IMEX method is stable independently of the diffusive Von
Neumann number, and only the CFL condition has to be satisfied.

The fact that the IMEX method does not require the diffusive Von
Neumann condition for stability makes it suitable to evaluate (by compari-
son) the effect of viscosity on the stability and performance of fully explicit
methods. We can thus assess whether the combined EXI and EXV method
effectively relieves the diffusive Von Neumann constraint. We will address
this issue in the following section through numerical experiments.

58 Chapter 4. Pseudo-time integration

4.3 Convergence results

In this section, three benchmark problems for the compressible Navier-
Stokes equations are considered. First, we explain how to compute the
local pseudo-time step size. Then, we compare the performance of the EXI
method with the combined EXI and EXV method and the IMEX method to
assess the effect of viscosity on the stability and performance of the explicit
methods. Finally, we show the feasibility of the explicit methods for the
flow around a 3D delta wing.

4.3.1 Local pseudo-time step-size

The space-time method is unconditionally stable in physical time, which
allows us to take any desired physical time step ∆t and solve the non-linear
system using the pseudo-time stepping methods discussed in this paper.
Since accuracy is not an issue in pseudo-time we can use local steps (∆τ)K ,
which are determined for each element K as:

(∆τ)K =

{
min{(∆τ)i

K , (∆τ)v
K} for EXI and EXV,

(∆τ)i
K for IMEX.

The local inviscid and viscous pseudo-time steps are computed as:

(∆τ)i
K =

σ∆τdK

λi
K

with λi
K = max{|uK − aK |, |uK + aK |},

(∆τ)v
K =

δ∆τ (dK)2

λv
K

with λv
K = max

{ 1

cv

κK

ρK
,
4

3

µK

ρK

}
,

where σ∆τ is the pseudo-time Courant number, δ∆τ the pseudo-time diffu-
sive Von Neumann number (both from Table 4.1) and dK the diameter of
the circle inscribed in element K. The cell Reynolds number ReK is defined
as:

ReK =
λi

KdK

λv
K

,

and λi represents the absolute maximum of the eigenvalues of the inviscid
Jacobian and λv of the viscous Jacobian. These wave-speeds are computed
at the element faces during the flux evaluation and we take the maximum
over all faces belonging to element K, where u is the flow speed, a the speed

4.3. Convergence results 59

of sound and ρ the density. Note that the specific heat at constant volume
cv is constant throughout the domain but the dynamic viscosity µ and the
thermal conductivity coefficient κ depend on the temperature in element
K, see [29] and Chapter 2. Even though the stability analysis was only
done for the advection-diffusion equation on a periodic domain, the result-
ing stability constraints proved also adequate in case of the compressible
Navier-Stokes equations.

4.3.2 NACA0012 airfoil

Steady-state case. To test the effect of viscosity on the stability and
performance of the explicit methods, we have chosen the A1 case described
in [12] for the viscous flow past a NACA0012 airfoil. This case has become a
standard benchmark for discontinuous Galerkin methods for the compress-
ible Navier-Stokes equations as it was treated in the seminal paper by Bassi
and Rebay [3]. The Prandtl number is fixed at Pr = 0.72, the far-field Mach
and Reynolds numbers at M∞ = 0.8 and Re∞ = 73, respectively. With
an angle of attack α = 12◦ this gives a highly viscous flow. Since it is a
steady flow, we take one huge dimensionless physical time step ∆t = 1021,
see Chapter 2 for the non-dimensionalization. For laminar viscous flow, the
boundary layer thickness at the nose of the airfoil is estimated as [37]:

δ ≈ 5/
√

Re∞,

which means that δ ≈ 0.6 in this case. To compute the boundary layer with
reasonable accuracy, we have chosen a C-type mesh with 112×38 elements,
which is a coarsening of the 224 × 76 grid shown in Figure 4.6.

The local Mach number isolines and the convergence results are pre-
sented in Figure 4.7. The cell Reynolds number varies between 0.09 and 88
which explains why the convergence of the EXI method is very slow: one or-
der of convergence in 80 000 pseudo-time iterations. For the combined EXI
and EXV method, one order of convergence requires ten times fewer iter-
ations, which is roughly what we expect from the stability analysis as the
diffusive Von Neumann number for the EXV method is eight times larger
(Table 4.1). Furthermore, the combined method achieves seven orders of
convergence within 50 000 steps. The IMEX method performs much better
in terms of iterations: six orders of convergence in 3 000 pseudo-time steps.
Therefore, we conclude that combining the EXI method with the EXV

60 Chapter 4. Pseudo-time integration

x

y

­20 ­10 0 10 20
­20

­10

0

10

20

(a) Overview

x

y

0 0.5 1

­0.5

0

0.5

(b) Airfoil

x

y

0 0.05

­0.04

0

0.04

(c) Nose

x

y

0.95 1

­0.04

0

0.04

(d) Tail

Figure 4.6: Details of the NACA0012 C-grid with 224 × 76 elements.

4.3. Convergence results 61

method significantly improves the convergence in pseudo-time but does not
completely rule out the effect of viscosity on the stability restriction and
thus on the convergence of explicit methods.

Remark. For the IMEX method, the implicit linear system must be solved
at each Runge-Kutta stage. We do so using the block sparse GMRES
solver with Jacobi preconditioner available in the PETSc package [36]. In
terms of CPU-time, the IMEX method converges significantly slower than
the combined EXI and EXV method in all considered cases and is only
pursued to evaluate the effect of the viscosity on the fully explicit methods.

Time-dependent case. To test the performance of the explicit pseudo-
time stepping methods for time-dependent simulations, we have chosen the
A7 case described in [12]. The Prandtl number is fixed at Pr = 0.72,
the far-field Mach and Reynolds numbers at M∞ = 0.85 and Re∞ = 104,
respectively, and the angle of attack is α = 0◦, which gives a time-dependent
viscous flow with a shock and vortex shedding. To capture the vortex
shedding, we have estimated the velocity of the vortices to be around u =
0.8 and the diameter to be around D = 0.1, which, together with a physical
time step ∆t = 0.05, gives a physical Courant number u∆t/D = 0.4: small
enough for accuracy in time. To compute the boundary layer in the A7 case
with reasonable accuracy, we use the C-type grid for viscous flows shown
in Figure 4.6 with 224× 76 elements which offers more than 30 elements in
the boundary layer with thickness δ ≈ 0.05.

In the A7 case, for each physical-time step, the EXI method achieves
three orders of convergence in 1000 pseudo-time steps, see Figure 4.8. The
physical time-step is already fairly small in order to capture the vortex
shedding, which explains the relatively small number of pseudo-time steps
needed to solve the system. In this case, the cell Reynolds number varies
between 2 and 14 000, which explains why the difference between the EXI
and the combined EXI and EXV method is less than in the A1 case. Still,
the convergence is twice as fast. The IMEX method requires 200 itera-
tions, which is two and half times faster in terms of iterations than the
combined EXI and EXV method. Therefore, as in the steady-state case
A1, we conclude that combining the EXI method with the EXV method
significantly improves the convergence in pseudo-time but viscosity still has
some influence on the convergence of the combined EXI and EXV method.

62 Chapter 4. Pseudo-time integration

m

0.95

0.85

0.75

0.65

0.55

0.45

0.35

0.25

0.15

0.05

iterations

re
s
id

u
a

l
(m

a
x

n
o

rm
)

20000 40000 60000 80000
10

­10

10
­9

10
­8

10
­7

10
­6

10
­5

10
­4

10
­3

10
­2

10
­1

EXI
EXI & EXV

IMEX

Figure 4.7: Local Mach numbers for the A1 case (M∞ = 0.8, Re∞ = 73,
α = 12◦) on the 112 × 38 grid and convergence to steady-state for the
different pseudo-time stepping methods.

4.3. Convergence results 63

m

1.15

1.05

0.95

0.85

0.75

0.65

0.55

0.45

0.35

0.25

0.15

0.05

iterations

re
s
id

u
a

ls
(m

a
x

n
o

rm
)

0 1000 2000 3000
10

­7

10
­6

10
­5

10
­4

10
­3

10
­2

10
­1

EXI
EXI & EXV

IMEX

t=10. t=10.05 t=10.1

Figure 4.8: Local Mach numbers for the A7 case (M∞ = 0.85, Re∞ = 104,
α = 0◦) on the 224 × 76 grid at t = 10 and convergence in pseudo-time for
three physical time steps with the different pseudo-time stepping methods.

64 Chapter 4. Pseudo-time integration

4.3.3 Delta wing

In the previous chapter, we presented results for the steady-state flow
around a 3D delta wing at M∞ = 0.3, Re = 4 · 104 and α = 12.5◦ on
an adapted mesh. The mesh adaptation was based on the vorticity in order
to capture the primary and secondary vortices along both sides of the sharp
leading edge of the wing, see Chapter 3 for the wing geometry, an impres-
sion of the mesh and the flow field. The results for the pressure coefficient
and the helicity showed good agreement with those obtained on a fine mesh
(1 650 000 elements). Therefore, we concluded that the solution adaptive
space-time method results in significant cost savings for this application.
Here, we show the convergence for this case using the EXI and combined
EXI and EXV method. The IMEX method was not attempted in this case
due to the size of the linear system.

We start by computing the solution on the coarse mesh with 208 896
elements, with uniform flow as initial condition. Based on a comparison
with the solution on the fine mesh, we consider the case solved after three
orders of convergence. In Figure 4.9, we see that the combined EXI and
EXV method meets our convergence criterion in five thousand pseudo-time
steps while the EXI method takes fifteen thousand steps. Next, anisotropic
mesh refinement is applied in vortex regions in such a way that eventually
the mesh in the region around a vortex is as uniform as possible. A cell is
refined in any of the three directions whenever the vorticity is greater than
2a∞/c and the mesh width in the given direction is greater than 0.01c. In
this way, the mesh around the primary vortices will eventually have a uni-
form resolution of 0.005c. Mesh adaptation is based on the (more accurate)
solution obtained with the combined EXI and EXV method. After each
mesh adaptation, the residual has to be decreased again. We do so with the
EXI and the combined EXI and EXV method and show the convergence
results in Figure 4.9. The advantage of the combined EXI and EXV method
becomes even more apparent, since, at each adaptation, the percentage of
relatively small cells (and thus of small cell Reynolds numbers) increases.
On the final adapted grid, the cell Reynolds number varies between 0.4 and
118 000, confirming the robustness of the combined EXI and EXV method
for a wide range of cell Reynolds numbers.

The combined EXI and EXV method effectively relieves the viscous
stability constraint and, in the next chapter, we investigate its potential as
a smoother in a multigrid setting.

4.3. Convergence results 65

iterations

re
s
id

u
a

ls
(L

2
n

o
rm

)

0 5000 10000 15000
10

­5

10
­4

10
­3

10
­2

10
­1

10
0

EXI

EXI & EXV

(a) coarse mesh with 208 896 elements

iterations

re
s
id

u
a

ls
(L

2
n

o
rm

)

0 5000 10000 15000
10

­5

10
­4

10
­3

10
­2

10
­1

10
0

EXI

EXI & EXV

1st adapt: 251,800 elements

2nd adapt: 287,290 elements

(b) mesh adaptations

Figure 4.9: Convergence to steady-state with the explicit pseudo-time step-
ping methods for the 3D delta wing (M∞ = 0.3, Re∞ = 4 · 104, α = 12.5◦)
starting from uniform flow on a coarse mesh (top) and with two successive
mesh adaptations (bottom).

Chapter 5

Multigrid analysis

The previously presented explicit Runge-Kutta methods are applied, in this
chapter, as smoothers in a multigrid context. The scalar advection-diffusion
equation is used as a model problem to study the multigrid convergence
behavior with two-level Fourier analysis. A simple numerical example il-
lustrates the multigrid method.

5.1 Model problem

5.1.1 Weak form

In this section we introduce the space-time discretization for which we study
multigrid convergence. For that purpose we introduce the open space-time
domain:

Ω =
{
(x, t) | x ∈ R, t ∈ R

+
}

,

with boundary ∂Ω = {(x, t) | t = 0, x ∈ R} and consider the advection-
diffusion equation in generic form:

−∇ · A∇u + b · ∇u = 0 in Ω, u = u0 on ∂Ω, (5.1)

where:

∇ =
[
∂x ∂t

]T
, b =

[
a 1

]
, A =

[
d 0
0 0

]
, (5.2)

67

68 Chapter 5. Multigrid analysis

with a > 0 and d > 0. Next, to arrive at a DG discretization, we partition
the domain Ω in regular rectangular cells of identical shape:

Ωn
j = {(x, t) | jh < x < (j + 1)h, n∆t < t < (n + 1)∆t} , (5.3)

with h > 0, ∆t > 0, j ∈ Z and n ∈ N. Then Ωn =
⋃

j∈Z
Ωn

j is a space-time
slab. To find the discrete algebraic equations we introduce the discrete
function space:

Sn
h =

{
vn
h ∈ L2(Ω)

∣∣∣ vn
h |Ωn

j
∈ Pk(Ωn

j), ∀j ∈ Z, n ∈ N

}
,

the space of piecewise polynomials of degree at most k in the coordinate
directions. Then the discrete weak DG form of (5.1) reads ([10, 38] and 3):
find un

h ∈ Sn
h such that:

B(un
h, vn

h) = 0, ∀vh ∈ Sn
h , ∀n ∈ N, (5.4)

with

B(un
h, vn

h) =
∑

j∈Z

∫

Ωn
j

(A∇un
h) · ∇vn

h dΩ −
∑

j∈Z

∫

Γn
j

{{
A∇un

h

}}
·
[[
vn
h

]]
ds

−
∑

j∈Z

∫

Γn
j

{{
A∇vn

h

}}
·
[[
un

h

]]
ds +

∑

e∈Z

∑

j∈Z

∫

Ωn
j

ηe(re(u
n
h)A) · re(v

n
h) dΩ

−
∑

j∈Z

∫

Ωn
j

∇vn
h · bun

h dΩ +
∑

j∈Z

∫

Γn
j
−

un
h
−nj · b vn

h
+ ds

+
∑

j∈Z

∫

Γn
j

+

un
h
+nj · b vn

h
+ ds,

(5.5)

and A and b defined in (5.2). Here, the first four terms in the righthand
side are associated with the diffusion part of (5.1), where the term with
stabilization parameter ηe > 0 prevents the discrete system of being indef-
inite. In the next section, we show how to compute this stabilization term.
For a complete overview of DG methods for elliptic problems we refer to
[1]. The common cell interface between two adjacent cells Ωn

j−1 and Ωn
j in

the time slab Ωn is Γn
j = ∂Ωn

j−1∩∂Ωn
j . On this interface the jump operator[[

·
]]

and the average operator
{{
·
}}

are defined by:
[[
un

h(x, t)
]]

= un
h(x, t)|∂Ωn

j−1
nj−1 + un

h(x, t)|∂Ωn
j
nj , for un

h ∈ Sn
h ,

{{
τn
h (x, t)

}}
=

1

2

(
τn
h (x, t)|∂Ωn

j−1
+ τn

h (x, t)|∂Ωn
j

)
, for τn

h ∈ [Sn
h]2 ,

5.1. Model problem 69

with x ∈ Γn
j and with nj the unit outward normal of cell Ωn

j . Furthermore

we distinguish between inflow and outflow boundaries of ∂Ωn
j = Γn

j
−∪Γn

j
+.

With Γn
j
− we denote the inflow boundary part. Here is nj · b < 0. The

outflow boundary is denoted by Γn
j
+, i.e., nj · b ≥ 0. The traces un

h
± at

∂Ωn
j are defined by:

un
h
± = lim

ε↑0
un

h(x ± εnx, t ± εnt),

with nj =
[
nx nt

]T
. Notice that, because of the causality in time, u0

h
−|∂Ω =

u0 and that un
h
−(x, n∆t) = un−1

h (x, n∆t). So for each time slab Ωn we have
to solve a system of algebraic equations. To explicitly describe the iterative
methods studied in this paper, in the next section, we provide Sn

h with a
polynomial space and we give the discrete stencils associated with (5.5).

5.1.2 Discrete system

Here, we describe the linear system that must be solved for each time slab.
For sake of clarity, in this presentation we restrict ourselves to a second
order discretization although the analysis can be extended to higher order
and multiple dimensions.

On the unit square (ξ, η) ∈ (0, 1)2 we take the following polynomial
space:

φ0(ξ, η) = 1, φ1(ξ, η) = 2ξ − 1, φ2(ξ, η) = 2(η − 1),

yielding the approximation:

un
h =

∑

j∈Z

2∑

k=0

cn
j,kφ

n
j,k(x, t) ≡

∑

j∈Z

2∑

k=0

cn
j,kφk

(
x − jh

h
,
t − n∆t

∆t

)
. (5.6)

This polynomial basis is of interest because of two reasons: the basis func-
tions are chosen such that the test and trial function can be split into an
element mean ūh at t = tn+1 and a fluctuating part ũh [44]:

uh(x, t) = ūh + ũh(x, t), ∀x, t ∈ Ωn
j

with ūh = cj,0 and ∫

x∈Ωn
j

ũh(x, tn+1) dx = 0.

70 Chapter 5. Multigrid analysis

As a consequence the relation between DG and finite volume discretiza-
tions is exposed: the equations for the element mean in the space-time DG
discretization are the same as those of a finite volume discretization. The
second reason is that it suits the definition of the artificial dissipation oper-
ator used in [44] as an alternative for slope limiters to guarantee monotone
solutions around discontinuities and sharp gradients.

To compute the penalty term in (5.5), we consider its definition in
variational form [10]: find re(v

n
h) ∈ [Sn

h]2 such that:

∑

j∈Z

∫

Ωj

re(v
n
h) · τn

h dΩ =

∫

Γn
e

[[
vn
h

]]
·
{{

τn
h

}}
ds, ∀τn

h ∈ [Sn
h]2 ,

and e ∈ Z. Since [Sn
h]2 = [Span{φn

j,k}]2 and because re =
[
(re)x (re)t

]T
is

a polynomial expansion we take:

(re)∗ =
∑

j∈Z

2∑

k=0

(
an

j,k

)
∗
φn

j,k , ∗ = x, t, (5.7)

with 2 × 3Z unknowns
(
an

j,k

)

∗
. Taking the same number of test functions:

τn
h ∈

{[
φn

j,k 0
]T

,
[
0 φn

j,k

]T
}

, j ∈ Z, 0 ≤ k ≤ 2,

we find re(φ
n
j̃,k̃

) and hence re(u
n
h) by solving the small linear system for the

unknowns
(
an

j,k

)

x
:

e∑

j=e−1

2∑

k=0

(
an

j,k

)
x

∫

Ωj

φn
j,kφ

n
j,l dΩ =

∫

Γn
e

[[
φn

j̃,k̃

]]
·
{{ [

φn
j,k 0

]T }}
ds, (5.8)

with j̃ ∈ {e − 1, e} and l, k̃ ∈ {0, 1, 2}, while (an
j,k)x = 0 for all j ∈ Z/{e −

1, e} and (an
j,k)t = 0 for all j ∈ Z. So with the approximation (5.6) and with

the definition of the lifting functions (5.7) and (5.8), the discrete system
(5.4) is 3Z block-Toeplitz. The corresponding operator is given by the
associated stencils:

L
n
dh

∼=
d∆t

h
×




−2ηe 1 − 2ηe 2ηe

−1 + 2ηe −2 + 2ηe 1 − 2ηe

2ηe −1 + 2ηe −
13

6
ηe

∣∣∣∣∣∣

4ηe 0 −4ηe

0 4ηe 0
−4ηe 0 13

3
ηe

∣∣∣∣∣∣

−2ηe −1 + 2ηe 2ηe

1 − 2ηe −2 + 2ηe −1 + 2ηe

2ηe 1 − 2ηe −
13

6
ηe





5.1. Model problem 71

for the diffusion part. The space-time advection stencil is given by:

L
n
ah

∼=




−a∆t −a∆t a∆t
a∆t a∆t −a∆t
a∆t a∆t −

4

3
a∆t

∣∣∣∣∣∣

a∆t + h a∆t −a∆t
−a∆t a∆t + 1

3
h a∆t

−a∆t − 2h −a∆t 4

3
a∆t + 2h

∣∣∣∣∣∣

0 0 0
0 0 0
0 0 0



 .

The stencil containing data of the previous time slab is given by:

Ln−1
ah

∼=




0 0 0
0 0 0
0 0 0

∣∣∣∣∣∣

−h 0 0
0 −1

3h 0
2h 0 0

∣∣∣∣∣∣

0 0 0
0 0 0
0 0 0



 .

With Ln
h = Ln

dh
+ Ln

ah
and fn

h = Ln−1
ah

un−1
h we have to solve for each time

slab Ωn the 3Z × 3Z linear system:

Ln
hun

h = fn
h . (5.9)

This system will be solved by multigrid iteration combined with Runge-
Kutta smoothers and the resulting convergence behavior will be analyzed.

5.1.3 Runge-Kutta smoothers

In order to reduce the computational costs when handling complex higher
dimensional problems, we are interested in fully explicit iterative solvers.
For that purpose, we write the system of equations (5.9) as a system of
ordinary differential equations that we want to iterate towards steady state.
Hence we consider the problem:

dcn
h

dτ
= fn

h − An
hcn

h,

for expansion coefficients cn
h of un

h with An
h the 3Z×3Z block-Toeplitz matrix

associated with the operator Ln
h in (5.9). The first Runge-Kutta method

used for this purpose is:

Algorithm 5.1 (EXI). Explicit Runge-Kutta method for inviscid flow
with Melson [33] correction and pseudo-time step ∆τ .

1. Set (cn
h)k

0 = (cn
h)k.

2. For all stages s = 1 to 5 compute (cn
h)k

s as

(cn
h)k

s =
1

1 + αs∆τ

(
(cn

h)k
0 + αs∆τ

(
(cn

h)k
s−1 + fn

h − An
h(cn

h)k
s−1

))
.

72 Chapter 5. Multigrid analysis

3. Return (cn
h)k+1 = (cn

h)k
5.

Here the Runge-Kutta coefficients are α1 = 0.0791451, α2 = 0.163551,
α3 = 0.283663, α4 = 0.5 and α5 = 1.0. In Chapter 4, the performance
of the EXI method was analyzed for the space-time DG discretization of
the advection-diffusion equation. When diffusion dominates, the stability
condition proved quite restrictive. To alleviate this restriction, a member
of a family of Runge-Kutta methods proposed by Kleb e.a. [28] was used.
It has a stability domain which stretches much further along the negative
real axis than classical Runge-Kutta schemes, making it ideal for diffusion
dominated flow problems. The method is given by:

Algorithm 5.2 (EXV). Explicit Runge-Kutta method for viscous flows
with pseudo-time step ∆τ .

1. Set (cn
h)k

0 = (cn
h)k.

2. For all stages s = 1 to 4 compute (cn
h)k

s as

(cn
h)k

s = (cn
h)k

0 + αs∆τ
(
fn

h − An
h(cn

h)k
s−1

)
.

3. Return (cn
h)k+1 = (cn

h)k
4.

For this iteration scheme the Runge-Kutta coefficients are α1 = 0.0178571,
α2 = 0.0568106, α3 = 0.1745130, α4 = 1.0. In Chapter 4, the EXI and
EXV method were combined based on the cell Reynolds number: the EXV
method is used for elements with low cell Reynolds numbers (i.e. bound-
ary layers) and the EXI method for high cell Reynolds numbers (i.e. the
far-field). This approach proved very effective for the 3D compressible
Navier-Stokes equations. Therefore, we study the smoothing properties of
these two explicit Runge-Kutta methods. The error amplification opera-
tors associated with these Runge-Kutta methods are needed to assess the
smoothing property. These operators for the error (en

h)k+1 ≡ (cn
h)k+1−(cn

h)k

are given by:

MEXI
h =

Ih

1 + α5∆τ
+

α5∆τ (Ih − An
h)

(1 + α4∆τ) (1 + α5∆τ)
+ · · ·

+
α2α3 · · ·α5 (∆τ (Ih − An

h))4

(1 + α1∆τ) (· · ·) (1 + α5∆τ)
+

α1α2 · · ·α5 (∆τ (Ih − An
h))5

(1 + α1∆τ) (· · ·) (1 + α5∆τ)
, (5.10)

5.1. Model problem 73

and

MEXV
h = Ih−α4∆τAn

h +α3α4 (∆τAn
h)2−· · ·+α1α2α3α4 (∆τAn

h)4 . (5.11)

5.1.4 Multigrid

At the core of any multigrid algorithm is the two-level scheme. Multilevel
algorithms are obtained by recursively applying the two-level scheme in, for
example, a V-cycle. Therefore, we study the error amplification operator
of the two-level algorithm MTLA

h , which is given by [25, 49]:

MTLA
h = MCGC

h MREL
h ,

with MREL
h the error amplification operator associated with either the EXV

or the EXI scheme, given in (5.11) and (5.10). The coarse grid correction
operator is defined as:

MCGC
h = Ih − PhH (Ln

H)−1 RHhLn
h, (5.12)

with Ln
H the system obtained by the space-time DG discretization for the

time slab Ωn on the coarse grid with H = 2h. The prolongation and
restriction operators PhH and RHh are based on the embedding of the
spaces Sn

H ⊂ Sn
h and will be given in the next section.

Remark. Contrary to the internal penalty method, the discretization of the
second order term (based on the method by Brezzi e.a. [1, 10]) only satisfies
the Galerkin property (LH = RHhLhPhH) if the stabilization parameter ηe

on the coarse mesh is a factor H/h larger than on the fine mesh (5.3). In
general this property does not hold, e.g., on non-uniform meshes. Therefore
we take the same stabilization parameter on the fine and coarse mesh. For
stability of the discretization we take ηe = 2; equal to the number of spatial
faces per cell [41].

The convergence behavior of the two-level algorithm for the space-time
DG discretization is given by the spectral radius of the error amplification
operator ρ

(
MTLA

h

)
which represents the expected convergence factor per

iteration. In the next section, we will apply Fourier analysis to compute
the eigenvalue spectra of the two-level algorithm.

74 Chapter 5. Multigrid analysis

5.2 Fourier analysis

5.2.1 Grid functions and the space-time block Toeplitz op-

erator

To study the convergence of the various iterative methods we introduce
two-level Fourier analysis tools for the unknowns in the cells Ωn

j . The key
part in this analysis is to associate the coefficients {cn

j,0, c
n
j,1, c

n
j,2}j∈Z of the

approximation (5.6) in the system (5.9) with the nodal points jh. In this
way we avoid the staggering problem of transferring cell data from coarse
to fine cells [25, 49], while we keep the data in cell wise ordering. Hence, we
introduce an elementary mode eh(ω) = eıjhω, with ω ∈ Th = [−π/h, π/h)
on the space-time grid:

Z
n
h = {(jh, n∆t) | j ∈ Z, n ∈ N, h > 0, ∆t > 0} . (5.13)

If we decompose Ln
h into a strict block-lower, a block-diagonal and a strict

block-upper matrix, where:

Ln
h
∼=

[
Ln

h Dn
h Un

h

]
,

we compute the Fourier transform by:

L̂n
h(ω) = Ln

he−ıωh + Dn
h + Un

h e+ıωh. (5.14)

Then, following [25, 49], we find in the eigenvalue-eigenvector decomposi-
tion:

L̂n
h(ω)v = vΛn

h(ω), ω ∈ Th ,

that Λn
h(ω) is a 3 × 3 diagonal matrix with the eigenvalues λi(ω) of Ln

h as
function of ω ∈ Th. The columns of v = [v0, v1, v2] are the coefficients of
the eigenvector vie

ıjhω of Ln
h. We see that this eigenvector is a three-valued

grid function on the grid (5.13) in the coefficient ordering {cn
j,0, c

n
j,1, c

n
j,2}j∈Z.

In the next section we introduce the grid transfer operators that are
needed to construct the two-level algorithm.

5.2.2 Prolongation and restriction

Important ingredients in the two-level analysis are the flat prolongation
and the flat restriction operator. Any constant coefficient grid transfer

5.2. Fourier analysis 75

operator is a combination of a Toeplitz and a flat grid transfer operator.
In this section we introduce the grid transfer operators and the Fourier
transforms for grid functions {cn

j,0, c
n
j,1, c

n
j,2}j∈Z that are needed in the two-

level analysis.
To avoid the data staggering problem related to the grid transfer op-

erators acting on cell-wise data [25], it is necessary for this analysis to
associate the cell data with the nodal points xj . In this way, we can ob-
tain vector valued grid functions un

h(jh) = {cn
j,0, c

n
j,1, c

n
j,2}j∈Z in the Hilbert

space
[
l2(Zn

h)
]3

for which the grid transfer operators are easily defined. For

such a grid function the flat prolongation P 0
hH :

[
l2(Zn

H)
]3 →

[
l2(Zn

h)
]3

is
defined by:

P 0
hHun

H(jH) =

{
un

H(j
2H) if j even,

0 if j odd.

The flat restriction operator R0
hH :

[
l2(Zn

h)
]3 →

[
l2(Zn

H)
]3

is defined by:

(R0
Hhu

n
h)(jH) = un

h(2jh).

Then the prolongation PhH : Sn
H → Sn

h so that PhHun
H(x) = un

H(x) for all
x ∈ R \ Zn

h is uniquely defined by PhH = PhP 0
hH , where:

Ph
∼=




1 1

2 0
0 1

2 0
0 0 1

∣∣∣∣∣∣

1 −1
2 0

0 1
2 0

0 0 1

∣∣∣∣∣∣

0 0 0
0 0 0
0 0 0



 .

Another unique operator that is needed in the two-level analysis is the
restriction on the residual. It is the adjoint of the prolongation operator
and is given by:

RHh = R0
HhP T

h .

Then the Fourier transforms are computed from [25, 49]:

P̂hHun
H(ω) =

(
̂PhP 0

hHun
H

)
(ω) =

1

2

[
P̂h (ω)

P̂h

(
ω + π

h

)
]
ûn

H(ω), (5.15)

and with Rh = P T
h :

̂RHhu
n
h(ω) = ̂R0

HhRhu
n
h(ω)

=
[
R̂h (ω) R̂h

(
ω + π

h

)]
[

ûn
h (ω)

ûn
h

(
ω + π

h

)
]

,
(5.16)

76 Chapter 5. Multigrid analysis

P 0
hHR0

Hh

n∆t

(n − 1)∆t

Ωn−1

j

Ωn
j

Ωn
j
2

(n + 1)∆t

jh

j

2
H

(n + 1)∆t

n∆t

t

0 x

Figure 5.1: A sketch of the grid function un
h(jh) on the space-time grid

(5.13) and a part of the coarse mesh. Pictorially the action (5.15) of the
flat prolongation and the flat restriction (5.16) is shown.

with ω ∈ TH = [−π/H, π/H) and

ûn
h(ω) =

h√
2π

∑

j∈Z

e−ıjhωun
h(jh).

A sketch of the basic two-level set up is shown in Figure 5.1. Here we see
the grid function un

h(jh) on the space-time grid; a part of the coarse grid
and pictorially the action of the grid transfer operators. With these tools
we construct the Runge-Kutta two-level analysis in the next section.

5.2.3 Two-level algorithm

The eigenvalue spectra of the two-level algorithm MTLA
h is shown [49] to be

{λi(ω)} with i = 1, . . . , 6 and λi(ω) the eigenvalues of the Fourier transform

M̂TLA
h for ω ∈ TH . The Fourier transform of the two-level operator reads:

M̂TLA
h (ω) = M̂CGC

h M̂REL
h (ω),

with M̂REL
h the Fourier transform of the EXI (or EXV) Runge-Kutta method

and M̂CGC
h of the coarse grid correction. For the operator L̂n

h (see (5.14)),

5.3. Results 77

the Fourier transforms of the EXI and EXV error amplification operators
are:

M̂EXI
h (ω) =

Ih

1 + α5∆τ
+

α5∆τ
(
Ih − L̂n

h(ω)
)

(1 + α4∆τ) (1 + α5∆τ)
+ · · ·

+
α2α3 · · ·α5

(
∆τ

(
Ih − L̂n

h(ω)
))4

(1 + α1∆τ) (· · ·) (1 + α5∆τ)
+

α1α2 · · ·α5

(
∆τ

(
Ih − L̂n

h(ω)
))5

(1 + α1∆τ) (· · ·) (1 + α5∆τ)
,

and

M̂EXV
h (ω) = Ih − α4∆τ L̂n

h(ω) + α3α4

(
∆τ L̂n

h(ω)
)2

− · · ·

+ α1α2α3α4

(
∆τ L̂n

h(ω)
)4

,

with ω ∈ Th. Using the Fourier transform of the block Toeplitz operator
and of the prolongation and restriction operators the Fourier transform of
the two-level error amplification operator is given by (see (5.12)):

M̂TLA
h (ω) =

[
Ih 0
0 Ih

]
−

[
P̂h (ω)

P̂h

(
ω + π

h

)
] [

L̂H(ω)−1
]
×

[
R̂h (ω) R̂h

(
ω + π

h

)]
[
L̂h(ω) 0

0 L̂h(ω + π
h)

] [
M̂REL

h (ω) 0

0 M̂REL
h (ω + π

h)

]
,

with Ih the 3 × 3 identity matrix and ω ∈ TH .

5.3 Results

5.3.1 Convergence of the two-level algorithm

In this section, the eigenvalue spectra and radii of the two-level algorithm
are given for various situations, described by the Courant and Péclet num-
bers:

C∆t =
a∆t

h
and Peh =

ah

d
.

The Courant number expresses the time-accuracy of the discretization and
the Péclet number the importance of diffusion relative to advection. Since

78 Chapter 5. Multigrid analysis

Table 5.1: The TLA algorithm with EXI smoothing is preferable in the
advection dominated case (denoted by ∗).
flow regime stability convergence

C∆t Peh ∆τ/∆t ρ
(
MEXI

h

)
ρ

(
MTLA

h

)

100 100 1.8 · 10−4 0.991 0.623∗

100 0.01 1.0 · 10−7 0.999 0.959
1 100 1.6 0.796 0.479∗

1 0.01 1.0 · 10−3 0.999 0.957

Table 5.2: The TLA algorithm with EXV smoothing is preferable in the
diffusion dominated case (denoted by ∗).
flow regime stability convergence

C∆t Peh ∆τ/∆t ρ
(
MEXV

h

)
ρ

(
MTLA

h

)

100 100 2.0 · 10−5 0.999 0.914
100 0.01 8.0 · 10−7 0.999 0.744∗

1 100 1.0 0.924 0.660
1 0.01 8.0 · 10−3 0.993 0.744∗

the space-time DG discretization is implicit in physical time, the method
is unconditionally stable [41] for any physical time step. This allows us to
take the Courant number C∆t = 100 for steady-state cases and C∆t = 1
for time-dependent cases. We will consider Péclet numbers Peh = 0.01 and
Peh = 100, which represent the diffusion and advection dominated cases,
respectively. This defines the following four flow regimes:

1. steady, advection dominated: C∆t = 100, Peh = 100

2. steady, diffusion dominated: C∆t = 100, Peh = 0.01

3. unsteady, advection dominated: C∆t = 1, Peh = 100

4. unsteady, diffusion dominated: C∆t = 1, Peh = 0.01

The Runge-Kutta methods are explicit in pseudo time and their stability is
governed by the ratio between the pseudo and physical time step ∆τ/∆t.

5.3. Results 79

In Tables 5.1 and 5.2, we give the spectral radii of the smoothers and the
two-level algorithm for these cases. Both the EXI and EXV smoother are
stable but hardly converge (except in the unsteady advection dominated
case) which shows the necessity of multigrid iteration. With the two-level
algorithm, the situation is considerably improved. Clearly, the EXI method
is preferable in the advection dominated case. We find convergence factors
of 0.62 and 0.48 for the steady and unsteady case respectively (Table 5.1).
The EXV method is preferable in the diffusion dominated case, where we
find convergence factors of 0.74 both in the steady and unsteady situation
(Table 5.2).

In Figures 5.2, 5.3, 5.4 and 5.5, we show the eigenvalue spectra of
the preferable smoother and the two-level algorithm for each case. For
the smoothers we have plotted the eigenvalues corresponding to a dis-
crete series of low frequencies ωi = −π/2h,−0.96π/2h, . . . , π/2h and as-
sociated high frequencies ωi + π/h. The eigenvalues corresponding to low
frequencies are denoted by ◦; those corresponding to high frequencies by
+. The eigenvalue spectra of two-level algorithms are plotted for ωi =
−π/H,−0.96π/H, . . . , π/H. Here we do not distinguish between low and
high frequencies. The two-level algorithm must damp all frequencies.

Moreover, from these figures we see that the Runge-Kutta methods
have the smoothing property, i.e., the high frequencies are damped. The
observed smoothing factor of approximately 0.8 (which is often used as an
estimate for the multigrid convergence [11]) is rather inaccurate in compar-
ison to the true smoothing factor obtained with two-level analysis.

5.3.2 Numerical illustration

To illustrate the results of the multigrid analysis, we consider the space-time
discretization of the scalar advection-diffusion equation for the following
simple initial boundary value problem:






ut + aux = duxx, x ∈ (0, 1), t ∈ R+,

u(0, t) = 1, u(1, t) = 0, t ∈ R+,

u(x, 0) = 1 − x, x ∈ (0, 1).

80 Chapter 5. Multigrid analysis

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Re

Im

low

high

(a) EXI

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Re

Im

(b) TLA with EXI

Figure 5.2: Eigenvalue spectra of the EXI smoother and two-level algorithm
in the steady advection dominated case (C∆t = 100 and Peh = 100).

5.3. Results 81

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Re

Im
low

high

(a) EXV

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Re

Im

(b) TLA with EXV

Figure 5.3: Eigenvalue spectra of the EXV smoother and two-level algo-
rithm in the steady diffusion dominated case (C∆t = 100 and Peh = 0.01).

82 Chapter 5. Multigrid analysis

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Re

Im

low

high

(a) EXI

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Re

Im

(b) TLA with EXI

Figure 5.4: Eigenvalue spectra of the EXI smoother and two-level algorithm
in the unsteady advection dominated case (C∆t = 1 and Peh = 100).

5.3. Results 83

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Re

Im
low

high

(a) EXV

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Re

Im

(b) TLA with EXV

Figure 5.5: Eigenvalue spectra of the EXV smoother and two-level algo-
rithm in the unsteady diffusion dominated case (C∆t = 1 and Peh = 0.01).

84 Chapter 5. Multigrid analysis

The exact (steady state) solution is given by:

u(x) =
ea/d − eax/d

ea/d − 1
,

and features an exponential boundary layer near x = 1. Such a case is best
solved on a so-called Shishkin mesh [40]. With N elements, this mesh is
piecewise equidistant with nodes xj given by:

xj =

{
2(1 − c)j/N for j = 0, 1, . . . , N/2,

1 − c + 2c/N(j − N/2) for j = N/2, N/2 + 1, . . . , N ,

where c = (2/a)d ln(N). For our example, we take a = 1, d = 0.025 and
N = 32. Advection dominates in the first part, so we use the EXI scheme
there and the EXV scheme in the second part. We use three level multigrid
in a V-cycle with two pre- and post-relaxations. The coarse grid problem is
solved approximately with four relaxations, which is more realistic in view
of applications to complex problems where the exact coarse grid solution
cannot be attained.

The problem can be solved in two ways: time accurate with ∆t = 0.05
which corresponds to C∆t ≈ O(1) or directly steady-state with ∆t = 5
which corresponds to C∆t ≈ O(100). In Figure 5.6, the space-time solution
and the convergence in pseudo-time for a few physical time steps are shown.
With eight orders of convergence in fifty cycles, an effective damping factor
of 0.7 is achieved. In Figure 5.7, the steady-state solution is shown. With a
single time step the convergence in pseudo-time is ten orders in one hundred
and fifty cycles which corresponds to a damping factor of 0.85. Despite
the presence of boundary conditions and the inaccurate solution of the
coarse grid problem, these convergence rates are in agreement with the
rate obtained from the analysis. The latter being 0.74 when diffusion is
dominating (Table 5.2), which is the case in the boundary layer.

These results show that the EXI and EXV methods can indeed be com-
bined to form a cheap local smoother for a full multigrid setting as expected
from the analysis. However, its application to the 3D compressible Navier-
Stokes equations is complicated by the fact that the grid levels are generally
not nested. Therefore, in the next chapter, we limit ourselves to a simpler
multigrid algorithm which uses constant basis functions on the coarse mesh.

5.3. Results 85

t

0
0.2

0.4
0.6

0.8
1

x

0
0.2

0.4
0.6

0.8
1

u
(x

,t
)

0

0.2

0.4

0.6

0.8

1

(a) Solution

MG cycles

re
s
id

u
a

ls
(L

2
­n

o
rm

)

150 200 250 300 350
10

­12

10
­10

10
­8

10
­6

10
­4

10
­2

t=0.2 t=0.25 t=0.3 t=0.35

(b) Convergence

Figure 5.6: The space-time solution of the advection-diffusion equation
(a = 1, d = 0.025) on a Shishkin mesh with 32 elements and the convergence
in pseudo-time of the MG algorithm for a few physical time steps ∆t = 0.05.

86 Chapter 5. Multigrid analysis

x

u
(x

)

­0.2 0 0.2 0.4 0.6 0.8 1 1.2
­0.2

0

0.2

0.4

0.6

0.8

1

1.2

exact solution
approximation

(a) Solution

MG cycles

re
s
id

u
a

ls
(L

2
­n

o
rm

)

50 100 150 200
10

­12

10
­10

10
­8

10
­6

10
­4

10
­2

(b) Convergence

Figure 5.7: The steady-state solution of the advection-diffusion equation
(a = 1, d = 0.025) on a Shishkin mesh with 32 elements and the convergence
in pseudo-time of the MG algorithm for a single physical time step ∆t = 5.

Chapter 6

Multigrid application

In this chapter, we study the multigrid algorithm for the space-time dis-
cretization with linear basis functions on the fine grid and constant basis
functions on the coarse grids. We first derive the grid-dependent stabiliza-
tion parameter needed for the discretization with constant basis functions.
We then study the multigrid convergence with the two-level Fourier anal-
ysis developed in the previous chapter and compare with the convergence
observed for the compressible Navier-Stokes equations in various 2D and
3D situations.

6.1 Grid-dependent stabilization parameter

The basis functions used for the space-time DG discretization of the com-
pressible Navier-Stokes equations (see Section 3.2.1) split the trial function
Uh into an element mean at time tn+1 and a fluctuating part [44]:

Uh(t, x̄) = Ūh(Kj(t
−
n+1)) + Ũh(t, x̄), (6.1)

with

Ūh(Kj(t
−
n+1)) = Û0,

∫

Kj(t
−

n+1
)
Ũh(t, x̄) dK = 0.

This splitting is useful for the multigrid algorithm because, on the coarse
grid levels, we only use the equations for the element mean; the space-time
discretization is then closely related to a first order finite volume method.

87

88 Chapter 6. Multigrid application

When constant basis functions are used, Uh(t, x̄) = Ūh and the terms
related to the viscous flux F v drop out of the weak form (3.13), except for
the stabilization term. The stabilization parameter ηS then necessarily be-
comes grid-dependent. In this section, we derive ηS for hexahedral meshes.
A similar approach gives the grid-dependent stabilization parameter pro-
posed in [20] for 2D triangular meshes.

To derive the grid-dependent stabilization parameter, we consider the
3D Laplace equation for U ∈ R with a source term F ∈ R:

(U,k),k = F, on E
with k = 1, 2, 3. Using constant basis functions, the stabilization term for
internal faces reduces to:

∑

S∈Sn
I

∫

S

[[
W

]]
k

{{
ηS(RS)k

}}
dS =

∑

K∈T n
h

∫

K
WF dK.

Taking W = 1 in K and zero elsewhere gives:

∑

S∈∂K

∫

S
n̄L

k

{{
ηS (RS)k

}}
dS =

∫

K
F dK.

Suppose that the source term is defined by F = (U,k),k and apply Gauss’
theorem:

∑

S∈∂K

∫

S
n̄L

k

{{
ηS (RS)k

}}
dS =

∑

S∈∂K

∫

S
(U,k)

Ln̄L
k dS,

with UL the trace from KL at S = K̄L ∩ K̄R and n̄L the spatial outward
normal vector. A sufficient condition for this equation to hold is:

{{
ηS (RS)k

}}
= (U,k)

L on S ∈ ∂K. (6.2)

We now introduce a finite difference approximation of the derivatives on
the face S:

(U,k)
L ≈

[[
U

]]
k

d
, (6.3)

with d the distance between the centers of gravity of elements KL and KR.
For constant basis functions, the lifting operator RS in elements KL,R at
face S reduces to:

(RS)L,R
k =

|S|
[[
U

]]
k

2|KL,R| ,

6.2. Multigrid algorithm 89

Therefore, the l.h.s of (6.2) can be written as:

{{
ηS (RS)k

}}
=

1

2

(
ηS(RS)L

k + ηS(RS)R
k

)
,

=
ηS |S|

4

(
1

|KL| +
1

|KR|

)[[
U

]]
k
,

and, with approximation (6.3) on the r.h.s. of (6.2), we obtain:

ηS =
4

d|S|

(|KL||KR|
|KL| + |KR|

)
.

The same reasoning can be followed for boundary faces which gives: ηS =
|KL|/(d|S|), with d the distance between the element and the face centers
of gravity.

Remark. Note that on uniform grids, |KL| = |KR| = d|S| for internal faces
and |KL| = 2d|S| for boundary faces. Therefore, on uniform grids, ηS = 2
for all faces.

6.2 Multigrid algorithm

In this section, we present the multigrid algorithm used to solve the non-
linear system of algebraic equations (3.25) by pseudo-time integration. The
combined EXI and EXV method (Chapter 4) is used as smoother. To gain
insight in the multigrid convergence behavior, we analyze the convergence
of the two-level algorithm for the model problem introduced in Section 5.1.

6.2.1 Two-level algorithm

Let the subscripts h and H denote quantities associated with the fine and
coarse grid, respectively. Let Û denote an approximation of the steady-
state solution Ûn of (3.25), R the restriction operator for the solution, R̄
the restriction operator for the residuals and P the prolongation operator.
With this notation, the two-level algorithm can be written as:

Algorithm 6.1 (TLA). Two-level algorithm.

1. A pseudo-time step on the fine grid with the combined EXI and EXV
method gives an approximation Ûh.

90 Chapter 6. Multigrid application

2. Restrict this approximation to the coarse grid: ÛH = R(Ûh).

3. Compute the forcing:

FH ≡ L(ÛH ; Ûn−1
H) − R̄

(
L(Ûh; Ûn−1

h)
)
.

4. Solve the coarse grid problem for Ûn
H :

L(Ûn
H ; Ûn−1

H) − FH = 0,

5. Compute the coarse grid error EH = Ûn
H − ÛH and correct the fine

grid approximation: Ûh ← Ûh + P (EH).

Solving the coarse grid problem at stage four of Algorithm 6.1 can again
be done with the two-level algorithm. This recursively defines the multi-
level algorithm. It is common practice to do ν1 pseudo-time steps at stage
one of Algorithm 6.1 and another ν2 pseudo-time steps after stage five. In
that case, ν1 and ν2 are called the number of pre- and post-relaxations,
respectively.

In this multigrid algorithm, we use the linear basis functions (6.1) on the
fine grid and the stabilization parameter ηS is constant and (at least) equal
to the number of spatial faces of an element [10, 41]: four in 2D and six in 3D
for hexahedra. For the coarse grid problems, we use the discretization with
constant basis functions and the grid-dependent stabilization parameter ηS
derived in Section 6.1.

The reason we prefer constant basis functions on the coarse grids stems
from the construction of the different grid levels. The coarse grid is obtained
from the fine grid by abandoning the nesting of spaces (see Figure 6.1). This
keeps the coarse grid hexahedral. Without the nesting, the two grids overlap
only partially, therefore the inter-grid transfer operators must take care of
the ’gaps’. Such gaps also occur when local mesh refinement is applied
near curvilinear boundaries. The splitting of the basis functions in element
means and fluctuations now comes in: the restriction and prolongation work
directly on the element mean of U , which is constant and therefore easily
extrapolated to the gaps. The restriction and prolongation operators for
the solution are defined as [44]:

R(Û)|KH
=

∑
Û0(Kh)|Kh|∑ |Kh|

, P (Û)|Kh
= Û0(KH), (6.4)

6.2. Multigrid algorithm 91

(a) nesting maintained (b) nesting abandoned

Figure 6.1: Hierarchy between the (curvilinear) fine and coarse grid.

where the summation in the coarse grid element KH is over the set {Kh} of
corresponding fine grid elements. The restriction operator R̄ for the residual
is the same as for the solution (R̄ = R). Note that in the definition of the
restriction operator, we divide by

∑ |Kh| instead of |KH | to accommodate
non-uniform grids.

6.2.2 Fourier analysis

The convergence behavior of Algorithm 6.1 is studied with Fourier analy-
sis. Here, we apply the analysis technique presented in Chapter 5 for the
space-time discontinuous Galerkin discretization of the advection-diffusion
equation, in the special case when constant basis functions are used for the
coarse grid problem.

The space-time discontinuous Galerkin discretization of the advection-
diffusion equation with linear basis functions on a uniform mesh with ele-
ments Kn

j = (xj , xj+1)× (tn, tn+1) yields a discrete system for the vector of
expansion coefficients û of u at time level n:

Lh(ûn; ûn−1) = 0,

with

Lh(ûn; ûn−1) ≡ (La
h + Ld

h)ûn + Lt
hûn−1,

and h = xj+1 − xj . The stencils associated with La
h, Ld

h and Lt
h are given

in Section 5.1.2. Remember that the total 3Z × 3Z system has a block

92 Chapter 6. Multigrid application

Toeplitz structure with 3 × 3 blocks, with associated stencil of the form:

Lh
∼=

[
Lh Dh Uh

]
,

where Lh represents the left block, Dh the diagonal block and Uh the right
block. For the viscous part Ld

h of the stencil we have Uh = LT
h , which reflects

the symmetry in the discretization of the diffusive term. The stabilization
parameter in Ld

h is taken equal to the number of spatial faces per element:
ηS = 2 in the one-dimensional case.

The discretization on the coarse grid (H = 2h) is obtained by using
constant basis functions. In this case, the discretization only involves the
element means ū = û0 and reduces to:

LH(ūn; ūn−1) ≡ (La
H + Ld

H)ūn + Lt
H ūn−1,

with

La
H

∼=
[
−a∆t a∆t + H 0

]
,

Ld
H

∼= d∆t

H

[
−2ηS 4ηS −2ηS

]
, Lt

H
∼=

[
0 −H 0

]
.

This Z × Z system has a block Toeplitz structure with 1 × 1 blocks, with
associated stencil:

LH
∼=

[
LH DH UH

]
.

Since the grid is uniform, the stabilization parameter is ηS = 2, see Sec-
tion 6.1.

In the two-level analysis of the model problem, we aim at computing
the eigenvalue spectra of the two-level algorithm given by:

MTLA
h = MCGCMREL

h ,

because the spectral radius ρ(MTLA
h) represents the expected convergence

factor per iteration. Here, MREL
h is the fine grid relaxation matrix corre-

sponding to the EXI or EXV Runge-Kutta smoother and the coarse grid
correction (CGC) of Algorithm 6.1 is given by:

MCGC = I − PL−1
H R̄Lh.

6.2. Multigrid algorithm 93

On this uniform grid, the 3Z × Z system associated with the prolongation
P defined in (6.4) has a block Toeplitz structure with 3 × 1 blocks:

P =




1
0
0

∣∣∣∣∣∣

1
0
0

∣∣∣∣∣∣

0
0
0



 ,

and the restriction operator for the residual is R̄ = P T . The Fourier trans-
form L̂h of a block Toeplitz operator Lh for a frequency ω is given by:

L̂h(ω) = Lhe−ıωh + Dh + Uhe+ıωh,

with ı =
√
−1. The eigenvalue spectra of the two-level algorithm MTLA

h is
{λi(ω)} with i = 1, . . . , 6 and λi(ω) the eigenvalues of the Fourier transform

M̂TLA
h for ω ∈ [−π/H, π/H), as shown in [25, 49]. The Fourier transform

of the two-level error amplification operator (Section 5.2.3) is given by:

M̂TLA
h (ω) =

[
Ih 0
0 Ih

]
−

[
P̂ (ω)

P̂ (ω + π
h)

] [
L̂H(ω)−1

]
×

[
̂̄R(ω) ̂̄R(ω + π

h)
] [

L̂h(ω) 0

0 L̂h(ω + π
h)

] [
M̂REL

h (ω) 0

0 M̂REL
h (ω + π

h)

]
,

with Ih the 3 × 3 identity matrix. Here, ω ∈ [−π/H, π/H) corresponds to
the low frequencies and ω + π/h to the associated high frequencies. The
Fourier transforms of the EXI and EXV error amplification operators are
given in Section 5.2.3. For further details on the two-level analysis, the error
amplifications operators and the Fourier transforms, we refer to Chapter 5.

We are interested in the multigrid behavior in both steady and unsteady
flow regimes which are either advection or diffusion dominated. These
situations are described by the Courant number C∆t = a∆t/h and cell
Reynolds number Reh = ah/d as follows:

1. steady, advection dominated: C∆t = 100, Reh = 100

2. steady, diffusion dominated: C∆t = 100, Reh = 0.01

3. unsteady, advection dominated: C∆t = 1, Reh = 100

94 Chapter 6. Multigrid application

4. unsteady, diffusion dominated: C∆t = 1, Reh = 0.01

Being implicit in physical time, the space-time DG discretization is uncon-
ditionally stable [41] for any physical time step. However, the Runge-Kutta
methods are explicit in pseudo time and their stability depends on the ratio
between the pseudo and physical time step ∆τ/∆t.

In the advection dominated cases, the EXI method is preferable as
smoother (see Section 5.3) and we show the eigenvalue spectra of the two-
level algorithm for advection dominated cases in Figures 6.2 and 6.4. The
results for diffusion dominated cases with the EXV smoother are shown
in Figures 6.3 and 6.5. We have plotted the eigenvalues corresponding to
frequencies ωi and ωi + π/h with ωi = −π/H,−0.96π/H, . . . , π/H.

The spectral radii of the smoothers and the two-level algorithm are
given in Tables 6.1 and 6.2. For steady-state cases, the spectral radius of
the smoother is typically 0.99 and the TLA hardly improves the situation:
only in the advection dominated case the spectral radius of the TLA is
0.98. Since 0.99N ≈ 0.98N/2, this leads us to expect that the TLA will
converge twice as fast as the single-grid algorithm for this case. For the
unsteady diffusion dominated case a similar conclusion is reached. For the
other cases, the TLA does not improve the convergence factor, but note
that the smoother is already very efficient for the time accurate advection
dominated cases: its spectral radius is 0.79.

6.3 Numerical simulations

Definition of work units. To measure the efficiency of the multigrid
algorithm, we have to define a basic work unit. The CPU time does not
reflect the true work load as it is greatly affected by the implementation,
optimization and the machine the code runs on. Therefore, we propose a
more transparent definition: one work unit corresponds to one Runge-Kutta
step on the fine grid.

To account for the work done on the coarse grids in terms of this work
unit, we make use of the following observation. In a well written code,
the computational effort of an explicit Runge-Kutta step is proportional
to the number of degrees of freedom (DoF). The number of DoF on the
fine mesh is NeNqNc with Ne the number of elements, Nq the number of
equations and Nc the number of expansion coefficients. On the coarse mesh,

6.3. Numerical simulations 95

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Re

Im

Figure 6.2: Eigenvalue spectra of the two-level algorithm with EXI smooth-
ing in the steady advection dominated case (C∆t = 100 and Reh = 100).

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Re

Im

Figure 6.3: Eigenvalue spectra of the two-level algorithm with EXV smooth-
ing in the steady diffusion dominated case (C∆t = 100 and Reh = 0.01).

96 Chapter 6. Multigrid application

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Re

Im

Figure 6.4: Eigenvalue spectra of the two-level algorithm with EXI smooth-
ing in the unsteady advection dominated case (C∆t = 1 and Reh = 100).

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Re

Im

Figure 6.5: Eigenvalue spectra of the two-level algorithm with EXV smooth-
ing in the unsteady diffusion dominated case (C∆t = 1 and Reh = 0.01).

6.3. Numerical simulations 97

Table 6.1: Spectral radii in the advection dominated flow regimes.

flow regime stability convergence

C∆t Peh ∆τ/∆t ρ
(
MEXI

h

)
ρ

(
MTLA

h

)

100 100 1.8 · 10−4 0.991 0.979
1 100 1.6 0.796 0.794

Table 6.2: Spectral radii in the diffusion dominated flow regimes.

flow regime stability convergence

C∆t Peh ∆τ/∆t ρ
(
MEXV

h

)
ρ

(
MTLA

h

)

100 0.01 8.0 · 10−7 0.999 0.998
1 0.01 8.0 · 10−3 0.993 0.985

the number of elements is Ne/fe with fe the mesh coarsening factor and
Nc = 1 because we use constant basis functions. Therefore, the number
of DoF on the coarse mesh is 1/(feNc) with respect to fine mesh. For
example, in 3D, fe = 8 and Nc = 5 so forty coarse grid Runge-Kutta steps
are counted as one work unit. A similar counting is done for multiple levels.
The prolongation and restriction are trivial and this effort is neglected.

NACA 0012 airfoil, steady-state case. To test the multigrid per-
formance for the space-time DG discretization of the compressible Navier-
Stokes equations, we first consider the A1 case described in [12]. In this test
case the far-field Reynolds number is Re∞ = 73, the far-field Mach number
is M∞ = 0.8 and the angle of attack is α = 10◦. This gives a steady-state
solution with a relatively thick (diffusion dominated) boundary layer; ad-
vection dominates outside the boundary layer. We solve the problem on a
C-type grid with 224×76 elements (see Figure 4.6) and start by comparing
the solution obtained with constant and linear basis functions in Figure 6.6.
Clearly, with constant basis functions the discretization is more dissipative
than with linear basis functions. However, as can be seen in Figure 6.7,
constant basis functions for the coarse grid correction is enough to reduce
the work load. Here, the multigrid iteration consists of a V-cycle with three
levels and 3 pre- and post-relaxations on each level. The number of work
units needed to obtain four orders of convergence with multigrid is less than

98 Chapter 6. Multigrid application

half of the number needed for single-grid computations.

NACA 0012 airfoil, time-dependent case. Second, we consider the
A7 case described in [12]. In this test case, the far-field Reynolds number
is Re∞ = 104, the far-field Mach number is M∞ = 0.85 and the angle of
attack is α = 0◦. The case is time-dependent with a much thinner boundary
layer than the A1 case (see Figure 4.8). We use three level multigrid with 3
pre- and post-relaxations on the fine C-type mesh with 224 × 76 elements.
The physical time step needed to accurately capture the vortex shedding
is ∆t = 0.05, see Section 4.3.2. In Figure 6.8, we show the convergence in
pseudo-time for three physical time steps corresponding to t = 10, 10.05 and
10.1. As expected from the analysis, the convergence is much better than
in the steady-state case: three orders of convergence are achieved within
600 work units. In this time-dependent case, where advection dominates in
most of the domain, multigrid iteration does not improve the convergence.

3D delta wing. Finally, we consider the steady state flow around the 75◦

delta wing used in the experiments by Riley and Lowson [39], see Chapter 3
for the solution and Chapter 4 for the convergence results with the (single-
grid) combined EXI and EXV method. In this case, the far-field Reynolds
number is Re∞ = 4·104, the far-field Mach number M∞ = 0.3 and the angle
of attack is α = 12.5◦. The solution on a coarse mesh with 209 000 elements
is computed first. Then, the grid is refined in vortex regions as follows. An
element is subdivided in any of the three directions if the vorticity is greater
than 2a∞/c (with c the length of the wing) unless the mesh width in that
direction is already 0.005c or less. This gives a uniform resolution around
the primary vortices.

In Figure 6.9, we show the difference between single and multigrid con-
vergence. In this case, the multigrid algorithm consists of a V-cycle with
two levels and three pre- and post-relaxations on each level. On the origi-
nal grid, multigrid iteration converges twice as fast as single grid iteration:
three orders of convergence in two thousand work units. After each mesh
refinement, the residual has to be decreased again. With multigrid iteration
this costs a few hundred work units, considerably less than with single-grid
iteration.

6.3. Numerical simulations 99

MACH

1.05

0.95

0.85

0.75

0.65

0.55

0.45

0.35

0.25

0.15

0.05

(a) Constant basis functions

MACH

1.05

0.95

0.85

0.75

0.65

0.55

0.45

0.35

0.25

0.15

0.05

(b) Linear basis functions

Figure 6.6: Solution of the A1 case (Re∞ = 73, M∞ = 0.8, α = 10◦) on the
C-type grid with 224 × 76 elements.

100 Chapter 6. Multigrid application

work units

re
s
id

u
a

ls
(L

2
n

o
rm

)

0 20000 40000
10

­3

10
­2

10
­1

10
0

10
1

10
2

10
3

SG

MG

Figure 6.7: Single-grid (SG) and multigrid (MG) convergence for the A1
case (Re∞ = 73, M∞ = 0.8, α = 10◦) on the C-type grid with 224 × 76
elements.

work units

re
s
id

u
a

ls
(m

a
x

n
o

rm
)

0 1000 2000 3000
10

­7

10
­6

10
­5

10
­4

10
­3

10
­2

10
­1

SG

MG

t=10. t=10.05 t=10.1

Figure 6.8: Single-grid (SG) and multigrid (MG) convergence in pseudo-
time for three physical time steps of the A7 case (Re∞ = 104, M∞ = 0.85,
α = 0◦) on the C-type grid with 224 × 76 elements.

6.3. Numerical simulations 101

work units

re
s
id

u
a

ls
(L

2
n

o
rm

)

0 1000 2000 3000 4000 5000
10

­4

10
­3

10
­2

10
­1

10
0

SG
MG

(a) original grid (209 000 elements)

work units

re
s
id

u
a

ls
(L

2
n

o
rm

)

0 1000 2000 3000
10

­4

10
­3

10
­2

SG
MG

1st adapt: 252 000 elements

2nd adapt: 288 000 elements

(b) original grid adapted twice

Figure 6.9: Single-grid (SG) and multigrid (MG) convergence for the delta
wing (Re∞ = 4 · 104, M∞ = 0.3, α = 12.5◦).

Chapter 7

Conclusions and

recommendations

The performance of the space-time discontinuous Galerkin discretization in
combination with multigrid pseudo-time integration was tested for various
2D and 3D simulations of compressible flow. In this chapter, we draw
conclusions from these numerical experiments and give recommendations
for further research.

Space-time method. We presented a space-time discontinuous Galerkin
method for the compressible Navier-Stokes equations aimed at the accurate
solution of time dependent problems on moving and deforming grids. The
method does not distinguish between space and time, thereby providing
optimal flexibility to accommodate time dependent boundaries and element
deformation. We have discussed our choices for the space-time numerical
fluxes and emphasized the treatment of the viscous part of the Navier-
Stokes equations needed to maintain locality of the stencil and optimal
order of accuracy.

The method was implemented in the NLR program hexadap, paral-
lelized using OpenMP and typically runs at 6.4 Gflops/s on 8 processors of
an SGI Altix supercomputer. It accurately handles complex aerodynami-
cal problems, which we demonstrated by computing the flow around a 3D
delta wing and around a NACA0012 airfoil in rapid pitch-up maneuver.
We found that the results for the 3D delta wing on an adapted mesh with

103

104 Chapter 7. Conclusions and recommendations

300 000 elements are comparable with those on a (costly) fine mesh with
1 600 000 elements. The method remains accurate even in the case of sig-
nificant mesh movement and deformation as required by the NACA0012
airfoil in rapid pitch-up maneuver.

Pseudo-time integration. When applying the space-time discontinuous
Galerkin method to the compressible Navier-Stokes equations one obtains a
system of non-linear algebraic equations. To solve this system we developed
a fully explicit pseudo-time stepping method suitable for a wide range of
applications. This was achieved by combining two explicit Runge-Kutta
methods: the EXI method for the inviscid part of the flow domain and the
EXV method for the viscous part.

We showed that these methods are stable if either the pseudo-time CFL
condition or the Von Neumann condition is satisfied, depending on the cell
Reynolds number. In the inviscid flow regime, the cell Reynolds numbers
are large and the CFL condition is the most restrictive, while in the viscous
flow regime small cell Reynolds numbers occur so that the Von Neumann
condition is the most restrictive. To assess the influence of viscosity on
the performance of the explicit methods, we also considered the implicit-
explicit version of the EXI method where the viscous terms are treated
implicitly and the inviscid terms explicitly. We showed that the stability
of the IMEX method only depends on the inviscid part, thereby effectively
relieving us of the Von Neumann condition, providing a method against
which we could test our explicit algorithms.

The combination of the EXI and EXV method significantly improves the
convergence in pseudo-time compared to the EXI method, yet viscosity is
still limiting the convergence when compared to the IMEX results in terms
of number of iterations. However, in terms of CPU-time, the IMEX method
is significantly slower due to the linear system which must be solved at each
iteration. The main advantage of the combined EXI and EXV method
is its locality, which matches the locality of the space-time discontinuous
Galerkin discretization and dispenses with the assemblage and storage of a
global (sparse) matrix.

Multigrid. To further reduce the computational effort, we applied the
combined EXI and EXV method as a smoother in a multigrid algorithm.

105

We analyzed the convergence of Runge-Kutta multigrid iteration for solv-
ing the system of algebraic equations resulting from the space-time DG
discretization of the scalar advection-diffusion equation. In this two-level
analysis we avoid the cell-staggering problem of transferring cell data from
coarse to fine cells, by associating the data in a cell with a nodal point.

The analysis shows that explicit Runge-Kutta methods can be applied
as smoothers in an h-multigrid setting. Depending on the case under consid-
eration, two-level convergence factors between 0.48 and 0.74 are obtained.
With a numerical illustration we showed the multigrid convergence behavior
in practice and we found convergence factors that are in agreement with
those obtained from the analysis. The advantage of using Runge-Kutta
smoothing is that it results in a fully explicit approach, which can be ex-
tended to complex multidimensional problems where implicit smoothing
may be too costly.

For the pseudo-time integration of the system of algebraic equations
arising from the space-time DG discretization of the compressible Navier-
Stokes equations, h-multigrid is complicated and we have limited ourselves
to an easier approach. The main idea is to exploit the construction of the
basis functions which separates element means from fluctuations and only
use the equations for the element means on the coarse grids in the multigrid
method. This facilitates the definition of the inter-grid transfer operators
for non-uniform grids where the embedding of spaces does not hold.

We applied two-level Fourier analysis to the multigrid algorithm with
constant basis functions on the coarse grid and found two-level convergence
factors ranging between 0.79 and 0.98, depending on the case. Based on
the analysis, we expect the multigrid algorithm to be twice as fast as the
single-grid algorithm for steady-state cases and this was confirmed by 2D
and 3D numerical simulations of the compressible Navier-Stokes equations.
This leads us to conclude that the two-level analysis of the scalar advection
diffusion equation gives useful predictions for the multigrid behavior of the
3D compressible Navier-Stokes equations.

Further research. The space-time DG method gives accurate results on
moving, deforming and locally refined meshes needed in many flow prob-
lems. However, high computational costs currently prevent its application
in industry. These costs are related to the number of iterations required by

106 Chapter 7. Conclusions and recommendations

the explicit pseudo-time integration which solves the system of algebraic
equations. For time-dependent flows at moderate Reynolds numbers ten to
twenty pseudo-time steps per physical time step would be acceptable; cur-
rently we still need hundreds. We have shown that, in principle, h-multigrid
can achieve the necessary cost reduction. Further research should therefore
primarily aim at bringing h-multigrid into practice, which implies devel-
oping inter-grid transfer operators suitable for situations where the coarse
and fine grid are not nested, for instance near curvilinear boundaries.

Appendix A

Computational details

A.1 Homogeneity tensor

The elements of the homogeneity tensor (Aikrs) are calculated by applying
the definition:

Aikrs(U) :=
∂F v

ik(U, ∇̄U)

∂(Ur,s)
,

for i, r = 1, . . . , 5 and k, s = 1, . . . , 3 and by using the Stokes hypothesis
3λ + 2µ = 0 to eliminate λ. For clarity’s sake, the elements are grouped in
the following matrices:

A11 := A|k=1
s=1, A12 := A|k=1

s=2, A13 := A|k=1
s=3,

A21 := A|k=2
s=1, A22 := A|k=2

s=2, A23 := A|k=2
s=3,

A31 := A|k=3
s=1, A32 := A|k=3

s=2, A33 := A|k=3
s=3.

which are given by:

A11 =
1

ρ




0 0 0 0 0
− 4

3
µu1

4

3
µ 0 0 0

−µu2 0 µ 0 0
−µu3 0 0 µ 0
A5111 (4

3
µ − κ

cv
)u1 (µ − κ

cv
)u2 (µ − κ

cv
)u3

κ

cv




,

with

A5111 = −1
3µu2

1 − µ‖~u‖2 − κ
cv

(E − ‖~u‖2),

107

108 Appendix A. Computational details

A12 =
1

ρ




0 0 0 0 0
2

3
µu2 0 − 2

3
µ 0 0

−µu1 µ 0 0 0
0 0 0 0 0

− 1

3
µu1u2 µu2 − 2

3
µu1 0 0




,

A13 =
1

ρ




0 0 0 0 0
2

3
µu3 0 0 − 2

3
µ 0

0 0 0 0 0
−µu1 µ 0 0 0

− 1

3
µu1u3 µu3 0 − 2

3
µu1 0




,

A21 =
1

ρ




0 0 0 0 0
−µu2 0 µ 0 0
2

3
µu1 − 2

3
µ 0 0 0

0 0 0 0 0
− 1

3
µu1u2 − 2

3
µu2 µu1 0 0




,

A22 =
1

ρ




0 0 0 0 0
−µu1 µ 0 0 0
− 4

3
µu2 0 4

3
µ 0 0

−µu3 0 0 µ 0
A5212 (µ − κ

cv
)u1 (4

3
µ − κ

cv
)u2 (µ − κ

cv
)u3

κ

cv




,

with

A5212 = −1
3u2

2 − µ‖~u‖2 − κ
cv

(E − ‖~u‖2),

A23 =
1

ρ




0 0 0 0 0
0 0 0 0 0

2

3
µu3 0 0 − 2

3
µ 0

−µu2 0 µ 0 0
− 1

3
µu2u3 0 µu3 − 2

3
µu2 0




,

A31 =
1

ρ




0 0 0 0 0
−µu3 0 0 µ 0

0 0 0 0 0
2

3
µu1 − 2

3
µ 0 0 0

− 1

3
µu1u3 − 2

3
µu3 0 µu1 0




,

A32 =
1

ρ




0 0 0 0 0
0 0 0 0 0

−µu3 0 0 µ 0
2

3
µu2 0 − 2

3
µ 0 0

− 1

3
µu2u3 0 − 2

3
µu3 µu2 0




,

A.2. IMEX method 109

A33 =
1

ρ




0 0 0 0 0
−µu1 µ 0 0 0
−µu2 0 µ 0 0
− 4

3
µu3 0 0 4

3
µ 0

A5313 (µ − κ

cv
)u1 (µ − κ

cv
)u2 (4

3
µ − κ

cv
)u3

κ

cv




,

with
A5313 = −1

3µu2
3 − µ‖~u‖2 − κ

cv
(E − ‖~u‖2).

A.2 IMEX method

The system of non-linear algebraic equations for the expansion coefficients
Ûn in space-time slab In can be written as:

L(Ûn, Ûn−1) = 0,

with L = Le + Lv. The term Le corresponds to the inviscid part of the
residuals and Lv to the viscous part of the residual, see Chapter 3 for details
of the derivation. The IMEX method uses a Newton matrix D which is
an approximation of the Jacobian of Lv. In this Appendix, we give the
necessary details to compute D.

A.2.1 Linearization of the Lv

The viscous part Lv of the residual is defined as:

Lv
il =

∑

K∈T n
h

Dil +
∑

S∈Sn
I,B

(
− Fil − Gil + Hil

)
,

with i = 1, . . . , Np the physical equation index, l = 0, . . . , Nc the element
expansion coefficient index. The coefficient matrices are defined as:

Dil =

∫

K
ψl,kAikrsUr,s dK,

Fil =

{∫
S

{{
ψl,kAikrs

}}[[
Ur

]]
s
dS for S ∈ SI ,∫

S ψL
l,kA

L
ikrs(U

L
r − U b

r)n̄L
s dS for S ∈ SB,

Gil =

{∫
S

[[
ψl

]]
k

{{
AikrsUr,s

}}
dS for S ∈ SI ,∫

S ψL
l (Ab

ikrsU
b
r,s)n̄

L
k dS for S ∈ SB,

110 Appendix A. Computational details

Hil =

{
η

∫
S

[[
ψl

]]
k

{{
RS

ik

}}
dS for S ∈ SI ,

η
∫
S ψL

l RS
ikn̄

L
k dS for S ∈ SB.

Since the terms D, F , G and H depend on the non-linear homogeneity
tensor A, the viscous part is non-linear in Û . The terms are linearized
by freezing the homogeneity tensor A at the element mean of the previous
Runge-Kutta stage: A ∼= A(V̄ s−1) so that A can be treated as a constant.
With this approximation, the terms D, F , G and H of Lv become linear in
Û and can be expressed using the following basic integrals:

IKklms =

∫

K
ψl,kψm,s dK, NLR

klms =

∫

S
ψL

l,kψ
R
mn̄R

s dS,

PLR
klms =

∫

S
ψL

l ψR
m,sn̄

L
k dS, SLR

lkj =

∫

S
ψL

l ψR
j n̄L

k dS,

LLR
nms =

∫

S
ψL

nψR
mn̄R

s dS.

As an example, consider the approximation of the coefficient matrix D.
The linearization of D for an element K in terms of the basic integral IK

and the frozen homogeneity tensor A is given by:

Dil ≡
∫

K
ψl,kAikrsUr,s dK =

∫

K
ψl,kAikrsψm,sÛrm dK ∼= AK

ikrsI
K
klmsÛ

K
rm.

In a similar way, we obtain the linearization of the coefficient matrices F ,
G and H for an internal face S ∈ SI in terms of the basic integrals and the
homogeneity tensor:

FS
il
∼= (1

2AL
ikrsN

LL
klms + 1

2AR
ikrsN

RL
klms)Û

L
rm

+ (1
2AL

ikrsN
LR
klms + 1

2AR
ikrsN

RR
klms)Û

R
rm,

GS
il
∼= (1

2AL
ikrsP

LL
klms + 1

2AL
ikrsP

RL
klms)Û

L
rm

+ (1
2AR

ikrsP
LR
klms + 1

2AR
ikrsP

RR
klms)Û

R
rm,

HS
il
∼= 1

4η(M−1)L
jnLLL

nmsA
L
ikrs

(
SLL

lkj + SRL
lkj

)
ÛL

rm

+ 1
4η(M−1)R

jnLRL
nmsA

R
ikrs

(
SLR

lkj + SRR
lkj

)
ÛL

rm

+ 1
4η(M−1)L

jnLLR
nmsA

L
ikrs

(
SLL

lkj + SRL
lkj

)
ÛR

rm

+ 1
4η(M−1)R

jnLRR
nmsA

R
ikrs

(
SLR

lkj + SRR
lkj

)
ÛR

rm.

A.2. IMEX method 111

These approximations can now be used to construct the matrix D, needed
in the IMEX-RK5 method.

A.2.2 Construction of the Newton matrix D
Note that the different contributions to the viscous part of the residual are
all of the same form:

Ξil = ΛilrmÛrm,

where Λ depends on the basic integrals I, N , P , S and L and on the frozen
homogeneity tensor A. These contributions can be expressed as matrix
vector products of the form:

Ξq = Λ̂qpÛp,

by applying the transformations q = (i−1)Nc+l and p = (r−1)Nc+m with
i, r ∈ {1, . . . , Np} the physical equation index and l, m ∈ {1, . . . , Nc} the ele-
ment expansion coefficient index. The implicit matrix D ∈ RNnNpNc×NnNpNn

consists of Nn×Nn blocks of size NpNc×NpNc and is constructed as follows.

Algorithm A.1 (Matrix D). The construction of the matrix D.

1. Initialize D = 0.

2. For all elements K ∈ T n
h do:

[Dqp]
KK ← [Dqp]

KK + AikrsI
K
klms.

3. For all faces S ∈ Sn
I do:

[Dqp]
LL ← [Dqp]

LL − 1
2AL

ikrsN
LL
klms − 1

2AL
ikrsP

LL
klms

+ 1
4η(M−1)L

jnLLL
nmsA

L
ikrsS

LL
lkj

+ 1
4η(M−1)R

jnLRL
nmsA

R
ikrsS

LR
lkj ,

[Dqp]
LR ← [Dqp]

LR − 1
2AL

ikrsN
LR
klms − 1

2AR
ikrsP

LR
klms

+ 1
4η(M−1)L

jnLLR
nmsA

L
ikrsS

LL
lkj

+ 1
4η(M−1)R

jnLRR
nmsA

R
ikrsS

LR
lkj ,

112 Appendix A. Computational details

[Dqp]
RL ← [Dqp]

RL − 1
2AR

ikrsN
RL
klms − 1

2AL
ikrsP

RL
klms

+ 1
4η(M−1)L

jnLLL
nmsA

L
ikrsS

RL
lkj

+ 1
4η(M−1)R

jnLRL
nmsA

R
ikrsS

RR
lkj ,

[Dqp]
RR ← [Dqp]

RR − 1
2AR

ikrsN
RR
klms − 1

2AR
ikrsP

RR
klms

+ 1
4η(M−1)L

jnLLR
nmsA

L
ikrsS

RL
lkj

+ 1
4η(M−1)R

jnLRR
nmsA

R
ikrsS

RR
lkj .

4. Return D.

Since the Algorithm A.1 consists of loops over elements and faces, it is
directly suitable for structured and unstructured meshes, with or without
grid adaptation. It also becomes clear that the matrix D is a sparse block
matrix. For each block row, D contains one block on the diagonal and the
number of blocks off the diagonal is equal to the number of faces of the ele-
ment. The homogeneity tensor A is neither symmetric nor positive definite,
so neither is the matrix D. We therefore solve the system with the robust
sparse iterative GMRES solver with Jacobi preconditioning, available from
the PETSc package.

A.3 EXV method

In [28] a family of Runge-Kutta schemes for efficient time-marching of vis-
cous flow problems is presented. We used a member of this family, the
EXV method, for local pseudo-time stepping in flow regions with low cell
Reynolds numbers. In this appendix, we summarize the derivation of the
entire family.

Consider the following N stage Runge-Kutta scheme:

1. Initialize v̂0 = û.

2. For all stages s = 1 to N compute v̂s as:

v̂s = v̂0 − αsλL(v̂s−1; ûn−1).

3. Return û = v̂N .

A.3. EXV method 113

When applied to the simple model problem:

∂u

∂τ
= − µ

∆t
u,

the stages s are updated according to: vs = v0 − αsλµ vs−1 and therefore
the amplification factor G is of the form:

GN (z) = 1 + αNz + αNαN−1z
2 + · · · + αN · · ·α1z

N , (A.1)

with z = −λµ ∈ C. The family of Runge-Kutta schemes proposed in
[28] can be derived by choosing the coefficients αs in such a way that the
amplification factor equals Manteuffel’s transformation of Tchebyshev poly-
nomials:

GN (z) =
TN

(
(d − z)/ǫ

)

TN (d/ǫ)
,

where TN denotes the N -th Tchebyshev polynomial defined recursively as:

Tn+1(z) = 2zTn(z) − Tn−1, n ∈ N,

with T0(z) = 1 and T1(z) = z. Here, the parameter d defines the family of
N stage Runge-Kutta schemes and the parameter ǫ is chosen such that:

GN (0) = 1 and
dGN

dz

∣∣∣∣
z=0

= 1,

which ensures that the stability region touches the imaginary axis and is
symmetric w.r.t. the real axis. The parameter d controls the scaling of the
stability region.

The family member used in this paper is the 4-stage Runge-Kutta
scheme with d = −14. For this scheme, we use the fourth order Tchebyshev
polynomial: T4(z) = 8z4−8z2 +1 and obtain the following stability region:

G4(z) = 1 +
16ǫ2d − 32d3

D
z +

48d2 − 8ǫ2

D
z2 − 32d

D
z3 +

8

D
z4, (A.2)

with D = 8d4 − 8d2ǫ2 + ǫ4. The coefficients αs can now be computed by
equating (A.2) with (A.1) which gives:

α1 = − 1

4d
, α2 =

4d

ǫ2 − 6d2
, α3 =

6d2 − ǫ2

2d(ǫ2 − 2d2)
, α4 =

16d(ǫ2 − 2d2)

D
.

114 Appendix A. Computational details

The condition G4(0) = 1 is already satisfied and the condition on the
derivative of G becomes:

16ǫ2d − 32d3

D
= 1,

which has four solutions for ǫ from which we choose the following:

ǫ =

√
4d(d + 2) − 2

√
16d2 + 8d3 + 2d4.

In the same way, we can derive the other members of the family. Note,
however, that only even N produces consistent schemes.

Bibliography

[1] D. Arnold, F. Brezzi, B. Cockburn, and D. Marini. Unified analysis of
discontinuous Galerkin methods for elliptic problems. SIAM J. Numer.
Anal., 39:1749–1779, 2002.

[2] F. Bassi, A. Crivellini, S. Rebay, and M. Savini. Discontinuous
Galerkin solution of the Reynolds-averaged Navier-Stokes and k − ω
turbulence model equations. Computers & Fluids, 34(4-5):507–540,
2004.

[3] F. Bassi and S. Rebay. A high-order accurate discontinuous finite
element method for the numerical solution of the compressible Navier-
Stokes equations. J. Comput. Phys., 131:267–279, 1997.

[4] F. Bassi and S. Rebay. GMRES discontinuous Galerkin solution of the
compressible Navier-Stokes equations. In B. Cockburn, G.Karniadakis,
and C.-W. Shu, editors, Discontinuous Galerkin Methods, volume 11,
pages 197–208. Springer, 1999.

[5] F. Bassi and S. Rebay. Numerical evaluation of two discontinuous
Galerkin methods for the compressible Navier-Stokes equations. Int.
J. Num. Meth. Fluids, 40:197–207, 2002.

[6] F. Bassi, S. Rebay, G.Mariotti, S. Pedinotti, and M. Savini. A high-
order accurate discontinuous finite element method for inviscid and
viscous turbomachinery flow. In R. Decuypere and G. Dibelius, edi-
tors, 2nd European conference on turbomachinery, fluid dynamics and
thermodynamics, pages 99–108. Technologisch Instituut, Antwerpen,
1997.

115

116 Bibliography

[7] P. Batten, N. Clarke, C. Lambert, and D. Causon. On the choice of
wavespeeds for the HLLC Riemann solver. SIAM J. Sci. Comput.,
18(6):1553–1570, 1997.

[8] C.E. Baumann and J.T. Oden. A discontinuous hp finite element
method for the Euler and Navier-Stokes equations. Tenth International
Conference on Finite Elements in Fluids (Tucson, AZ, 1998). Internat.
J. Numer. Methods Fluids, 31(1):79–95, 1999.

[9] O.J. Boelens, H. van der Ven, B. Oskam, and A.A. Hassan. The bound-
ary conforming discontinuous Galerkin finite element approach for ro-
torcraft simulations. J. of Aircraft, 39(5):776–785, 2002.

[10] F. Brezzi, G. Manzini, D. Marini, P. Pietra, and A. Russo. Discon-
tinuous Galerkin approximations for elliptic problems. Numer. Meth.
Part. Diff. Eq., 16(4):365–378, 2000.

[11] W.L. Briggs, Van Emden Henson, and S.F. McCormick. A Multigrid
tutorial. SIAM, 2000.

[12] M.O. Bristeau, R. Glowinski, J.Periaux, and H. Viviand (Eds.). Nu-
merical simulation of compressible Navier-Stokes flows: A GAMM
workshop, 4-6 December 1985, Nice, France. Braunschweig, Vieweg,
1987.

[13] B. Cockburn. Discontinuous Galerkin methods for convection-
dominated problems. In T.J. Barth and H. Deconinck, editors, Lect.
Notes in Comp. Sci. and Eng., volume 9. Springer Verlag, 1999.

[14] B. Cockburn. Discontinuous Galerkin methods. ZAMM Z. Angew.
Math. Mech., 11:731–754. 65–02, 2003.

[15] B. Cockburn, G.E. Karniadakis, and C.-W. Shu (Eds.). Discontinuous
Galerkin methods. Theory, computation and applications. Lect. Notes
in Comp. Sci. and Eng. (Springer Verlag, 2000), 11, 2000.

[16] B. Cockburn and C.-W. Shu. The local discontinuous Galerkin method
for time-dependent convection-diffusion systems. SIAM J. Numer.
Anal., 35:2240–2463, 1998.

Bibliography 117

[17] B. Cockburn and C.-W. Shu. Runge-Kutta discontinuous Galerkin
methods for convection-dominated problems. J. Sci. Comput.,
16(3):173–261, 2001.

[18] V. Doleǰśı. On the discontinuous Galerkin method for the numerical
solution of the Navier-Stokes equations. Int. J. Numer. Meth. Fluids,
45:1083–1106, 2004.

[19] C. Farhat, P. Geuzaine, and C. Grandmont. The discrete geomet-
ric conservation law and the nonlinear stability of ALE schemes for
the solution of flow problems on moving grids. J. Comput. Phys.,
174(2):669–694, 2001.

[20] K.J. Fidkowski, T.A. Oliver, J. Lu, and D.L. Darmofal. p-Multigrid so-
lution of high-order discontinuous Galerkin discretizations of the com-
pressible Navier-Stokes equations. J. Comput. Phys., 207(1):92–113,
2005.

[21] J. Gopalakrishan and G. Kanschat. A multilevel discontinuous
Galerkin method. Numerische Mathematic, 95:527–550, 2003.

[22] E. Hairer and G. Wanner. Solving ordinary differential equations
II. Stiff and differential-algebraic problems, Second revised edition.
Springer Verlag, Berlin, 2002.

[23] R. Hartmann and P. Houston. Adaptive discontinuous Galerkin finite
element methods with interior penalty for the compressible Navier-
Stokes equations. In M. Feistauer, V. Doleǰśı, P. Knobloch, and
K. Najzar, editors, Numerical Mathematics and Advanced Applica-
tions, ENUMATH 2003, pages 410–419. springer, 2004.

[24] R. Hartmann and P. Houston. Symmetric interior penalty DG methods
for the compressible Navier-Stokes equations I: Method formulation.
Int. J. Num. Anal. Model., 3(1):1–20, 2006.

[25] P.W. Hemker, W. Hoffmann, and M.H. van Raalte. Two-level Fourier
analysis of a multigrid approach for discontinuous Galerkin discretisa-
tion. SIAM Journal on Scientific Computing, 25:1018–1041, 2004.

118 Bibliography

[26] P.W. Hemker and M.H. van Raalte. Fourier two-level analysis for
higher dimensional discontinuous Galerkin discretisation. Computing
and Visualization in Science, 7:159–172, 2004.

[27] K. Johannsen. Multigrid Methods for NIPG. Technical Report ICES
05-32, University of Texas, 2005.

[28] W.L. Kleb, W.A. Wood, and B. van Leer. Efficient Multi-Stage Time
Marching for Viscous Flows via Local Preconditioning. AIAA J., 99-
3267:181–194, 1999.

[29] J. Kok. An Industrially Applicable Solver for Compressible, Turbulent
Flows. PhD thesis, Delft University of Technology, 1998.

[30] J. C. Kok and S. P. Spekreijse. Efficient and accurate implementation
of the k-ω turbulence model in the NLR multi-block Navier-Stokes
system. NLR TP-2000-144 (presented at ECCOMAS 2000, Barcelona,
Spain, 11-14 September, 2000), 2000.

[31] M. Lesoinne and C. Farhat. Geometric conservation laws for flow
problems with moving boundaries and deformable meshes, and their
impact on aeroelastic computations. Comput. Methods. Appl. Mech.
Eng., 134:71–90, 1996.

[32] B.S. Massey. Units, dimensional analysis and physical similarity. Van
Nostrand Reinhold company, 1971.

[33] N.D. Melson, M.D. Sanetrik, and H.L. Atkins. Time-accurate Navier-
Stokes calculations with multigrid acceleration. In Proc. 6th Copper
Mountain Confer. on Multigrid Methods, 1993.

[34] G.A. Osswald, K.N. Ghia, and U. Ghia. Simulation of dynamic
stall phenomenon using unsteady Navier-Stokes equations. Computer
Physics Communications, 65:209–218, 1991.

[35] A. Ostermann. Stability of W-methods with applications to operator
splitting and to geometric theory. Appl. Num. Math., 42:353–366,
2002.

[36] PETSc package. http://www-unix.mcs.anl.gov/petsc/petsc-2.

Bibliography 119

[37] S.B. Pope. Turbulent flows. Cambridge University Press, 2000.

[38] W. Reed and T. Hill. Triangular mesh methods for the neutron trans-
port equation. Technical Report LA-UR 73-479, LANL, 1973.

[39] A.J. Riley and M.V. Lowson. Development of a three dimensional free
shear layer. J. Fluid Mech., 369:49–89, 1998.

[40] M. Stynes and E. O’Riordan. A Uniformly Convergent Galerkin
Method on a Shishkin Mesh for Convection-Diffusion Problem. J.
Math. Anal. Appl., 214:36–54, 1997.

[41] J.J. Sudirham, J.J.W. van der Vegt, and R.M.J. van Damme. Space-
time discontinuous Galerkin method for advection-diffusion problems.
Application to wet-chemical etching processes. Appl. Numer. Mathe-
matics (in press), 2006.

[42] E.F. Toro. Riemann solvers and numerical methods for fluid dynamics.
A practical introduction. Springer Verlag, 1997.

[43] U. Trottenberg, C.W. Oosterlee, and A. Schüller. Multigrid. Academic
Press, London, 2001.

[44] J.J.W. van der Vegt and H. van der Ven. Space-time discontinuous
Galerkin finite element method with dynamic grid motion for inviscid
compressible flows. I. General formulation. J. Comput. Phys, 182:546–
585, 2002.

[45] J.J.W. van der Vegt and H. van der Ven. Space-time discontinuous
Galerkin finite element method with dynamic grid motion for inviscid
compressible flows. In 33rd Computational Fluid Dynamics Course
- Novel methods for solving convection dominated systems, volume 1.
VKI Lectures series Monographs: computational fluid dynamics, 2003.

[46] H. van der Ven and O.J. Boelens. A framework for aeroelastic simula-
tions of trimmed rotor systems in forward flight. In Proceedings of the
30th European Rotorcraft Forum, Marseille, France, September 14-16,
2004.

120 Bibliography

[47] H. van der Ven and J.J.W. van der Vegt. Space-time discontinuous
Galerkin finite element method with dynamic grid motion for inviscid
compressible flows. II. Efficient flux quadrature. Comput. Meth. Appl.
Mech. Engrg., 191:4747–4780, 2002.

[48] H. van der Ven, J.J.W. van der Vegt, and E.G. Bouwman. Space-time
discontinuous Galerkin finite element method for inviscid gas dynam-
ics. In Computational fluid and solid mechanics 2003 (MIT Boston),
volume 1, pages 1181–1184. Elsevier Science, Oxford, UK., 2003.

[49] M. H. van Raalte. Multigrid analysis and embedded boundary condi-
tions for discontinuous Galerkin discretization. PhD thesis, Korteweg-
de Vries institute, University of Amsterdam, 2004.

[50] M.R. Visbal and J.S. Shang. Investigation of the Flow Structure
Around a Rapidly Pitching Airfoil. AIAA J., 27(8):1044–1051, 1989.

[51] P. Wesseling. A robust and efficient multigrid method. In W. Hack-
bush and U. Trottenberg, editors, Multigrid Methods, pages 614–630.
Springer-Verlag, New York, 1982.

[52] P. Wesseling. Principles of Computational Fluid Dynamics. Springer,
2000.

Summary

In this thesis, a space-time discontinuous Galerkin (DG) method for the
compressible Navier-Stokes equations is presented. We explain the space-
time setting, derive the weak formulation and discuss our choices for the
numerical fluxes. The resulting numerical method allows local grid adap-
tation as well as moving and deforming boundaries, which we illustrate by
computing the flow around a 3D delta wing on an adapted mesh and by
simulating the dynamic stall phenomenon of a 2D airfoil in rapid pitch-up
maneuver.

The space-time DG discretization results in a (non-linear) system of al-
gebraic equations, which we solve with pseudo-time stepping methods. We
show that explicit Runge-Kutta methods developed for the Euler equations
suffer from a severe stability constraint linked to the viscous part of the
equations and propose an alternative to relieve this constraint while pre-
serving locality. To evaluate its effectiveness, we compare with an implicit-
explicit Runge-Kutta method which does not suffer from the viscous sta-
bility constraint. We analyze the stability of the methods and show their
performance for 2D and 3D simulations.

To improve the efficiency of the method, we apply fully explicit multigrid
pseudo-time integration with Runge-Kutta smoothing. We analyze the con-
vergence of multigrid iteration for solving the algebraic equations arising
from a space-time DG discretization of the advection-diffusion equation.
Depending on the Péclet number, we find multigrid convergence factors
between 0.50 and 0.74 with Fourier two-level analysis. We illustrate the
analysis with a numerical example.

For the Navier-Stokes equations, we consider multigrid with linear basis
functions on the fine grid and constant basis functions on the coarse grids.
This facilitates the definition of inter-grid transfer operators on non-uniform

121

122 Summary

grids. Two-level Fourier analysis shows that this multigrid iteration con-
verges twice as fast as single-grid iteration for steady-state cases. This
prediction is confirmed by the 2D and 3D simulations.

Samenvatting

In deze thesis wordt een ruimte-tijd discontinue Galerkin (DG) methode
voor de compressibele Navier-Stokes vergelijkingen gepresenteerd. We ge-
ven uitleg over de ruimte-tijd, de afleiding van de zwakke vorm en onze keu-
zes voor de numerieke fluxen. De uiteindelijke numerieke methode maakt
lokale grid verfijning mogelijk alsmede bewegende en vervormende grids,
hetgeen we illustreren door de stroming rond een 3D delta vleugel uit te
rekenen en het dynamische overtrekken van een 2D vleugelprofiel in een
snelle opwaardse manoeuvre.

De ruimte-tijd DG discretizatie geeft een (niet-lineair) systeem van al-
gebräısche vergelijkingen, dat we oplossen met pseudo-tijdstaps methoden.
We laten zien dat de expliciete Runge-Kutta methoden ontwikkeld voor de
Euler vergelijkingen te lijden hebben onder een strenge stabiliteits voor-
waarde gerelateerd aan het viskeuze deel van de vergelijkingen. We pre-
senteren een alternatief om, onder behoud van lokaliteit, deze voorwaarde
milder te maken. Om uit te zoeken hoe effectief dit is, vergelijken we
voorgaande procedure met een impliciet-expliciete Runge-Kutta methode
zonder viskeuze stabiliteits voorwaarde. We analyseren de stabiliteit van
de methoden en laten hun prestaties zien voor 2D en 3D simulaties.

Om de efficientie van de methode verder te verbeteren, passen we vol-
ledige expliciete multigrid pseudo-tijds integratie toe, met Runge-Kutta
demping. We analyseren de convergentie van multigrid iteratie voor het
oplossen van de algebräısche vergelijkingen voortgebracht door een ruimte-
tijd DG discretisatie van de advectie-diffusie vergelijking. Afhankelijk van
het Péclet getal, vinden we multigrid convergentie factoren tussen 0.50 en
0.74 met Fourier twee-level analyse. We illustreren de analyse met een
numeriek voorbeeld.

Voor de Navier-Stokes vergelijkingen bekijken we multigrid met lineai-

123

124 Samenvatting

re basis functies op het fijne grid en constante basis functies op de gro-
ve grids. Dit maakt de definitie van inter-grid overdrachts operatoren op
niet-uniforme grids eenvoudiger. Twee-level Fourier analyse wijst uit dat
multigrid iteratie twee keer zo snel convergeert als enkel-grid iteratie voor
tijdsonafhankelijke situaties. Deze voorspelling wordt bevestigd door de 2D
en 3D simulaties.

Curriculum Vitae

Christiaan Marijn Klaij was born on the 3rd of November 1977 in Hy-
derabad, India. He grew up in India, the Netherlands, Niger, France and
Ethiopia mainly being educated within the French school system. He got
his scientific baccalaureate in 1996 at the French Lycée Guebre Mariam in
Addis Ababa, Ethiopia, before moving to the Netherlands.

In 1996, he started studying Applied Mathematics at the University
of Twente. In the final phase of his MSc he received a technical training
from the Institut de Physique du Globe de Paris (IPGP) at their depen-
dency in Poitiers. Under the supervision of dr. J.-F. Thovert, he worked
on Simulating well tests; the simulation of compressible flow to a well in
underground reservoirs for code debugging and validation purposes. Then,
back in Twente, he worked under the supervision of prof.dr.ir. J.J.W. van
der Vegt on The effect of low Mach number on the accuracy of the discon-
tinuous Galerkin method for compressible flow and received his Master’s
degree in Applied Mathematics in 2002.

In 2002, he became a PhD student at the University of Twente under
supervision of prof.dr.ir. J.J.W van der Vegt. His research was conducted
under the umbrella of the STW involving a number of Institutions among
which the NLR and CWI. This thesis contains the result of his research.

125

