
Dynamic Reconfiguration and
Load Distribution in Component
Middleware
Maarten Wegdam

Large-scale distributed systems, such as
telematics systems, are often built using
component-middleware technologies (e.g.,
CORBA). Middleware offers distribution
transparencies. This means that
complexities related to the distribution are
hidden from the application developers by
embedding the distribution aspects in the
middleware. Component middleware is
middleware that uses component concepts
such as encapsulation and well-defined
interfaces.

This thesis proposes a new approach for
the design of Quality of Service (QoS)
mechanisms in component middleware.
The specific QoS mechanisms that we
propose in this thesis are (i) a new dynamic
reconfiguration mechanism, which
improves the availability by allowing
online replacements and migrations of
application components, and (ii) a new
load distribution mechanism, which
improves the performance of application
components. Important characteristics of
these QoS mechanisms are: (i) they are
dynamic, (ii) they do not rely on specific
network or operating system QoS
functionality, and (iii) they are transparent
for the developer of application
components. We achieve transparency by
using message reflection techniques in the
middleware layer.

A CORBA-based prototype serves as a
proof of concept for our approach and our
QoS mechanisms.

M
A

A
R

T
E

N
 W

E
G

D
A

M
D

Y
N

A
M

IC

R

E
C

O
N

F
IG

U
R

A
T

IO
N

A

N
D

L

O
A

D

D

IS
T

R
IB

U
T

IO
N

IN

C

O
M

P
O

N
E

N
T

M

ID
D

L
E

W
A

R
E

The author of this thesis is employ-
ed at Bell Labs, the research arm of
Lucent Technologies. The research
presented in this thesis was done
in cooperation with the Centre
for Telematics and Information
Technology (CTIT). Parts of the
research were done in the context of
two collaboration projects: AMIDST
and EQUANET.

AMIDST is a Telematica Instituut
project on next generation object-
middleware platforms that can sup-
port Quality of Service (QoS).

EQUANET is an ICT-”Doorbraak”
project sponsored by the Dutch
Ministry of Economic Affairs on cost-
effective realization of end-to-end
QoS in multi-domain network envi-
ronments.

This thesis is published as a part of
both the CTIT PhD.-thesis series and
the Telematica Instituut Fundamental
Research Series.

CTIT (www.ctit.utwente.nl) is one
of the key research institutes of the
University of Twente. It conducts
research on the design of complex
ICT systems and their application in
selected user domains.

Lucent Technologies (www.lucent.
com) develops and delivers the sys-
tems, software and services for next-
generation communications net-
works. Lucent focuses on high-
growth areas such as broadband and
mobile Internet infrastructures.

Telematica Instituut (www.telin.nl)
is a partnership between the busi-
ness community, research centers
and government, to perform
research in the field of telematics.
The Dutch government supports
Telematica Instituut under its ‘leading
technological institutes’ scheme.
Both CTIT and Lucent participate in
the Telematica Instituut.

About the author
Maarten Wegdam holds a M.Sc.

degree (December 1996) in
Computer Science from the
University of Groningen, The
Netherlands.

He worked as an applied
scientist for KPN Research for
three years (1997-1999), and
since then is a member of
technical staff at the Bell Labs
Advanced Technologies EMEA
Twente department, Lucent
Technologies in The Netherlands.
He specializes in middleware,
Quality of Service and service
platforms. He has worked as an
architect and project manager in
several internal and collaborative
projects in these areas.

For his Ph.D. research, Mr.
Wegdam was a visitor of the
Architecture of Distributed
Systems group, which is part of
the Department of Computer
Science at the University of
Twente, The Netherlands. The
research of the Department of
Computer Science is embedded in
the Centre for Telematics and
Information Technology. IS

B
N

 9
0-

75
17

6-
36

-8

MAARTEN WEGDAM

U
IT

N
O

D
IG

IN
G

Hi
er

bi
j n

od
ig

 ik
 u

 u
it

vo
or

 h
et

 b
ijw

on
en

 v
an

de
 o

pe
nb

ar
e

ve
rd

ed
ig

in
g

va
n

m
ijn

 p
ro

ef
sc

hr
ift

D
Y

N
A

M
IC

 R
E
C
O

N
F
IG

U
R

A
T

IO
N

A

N
D

 L
O

A
D

 D
IS

T
R

IB
U

T
IO

N
 I

N
C
O

M
P

O
N

E
N

T
 M

ID
D

L
E
W

A
R

E

Op
 d

on
de

rd
ag

 2
6

ju
ni

 o
m

 1
6:

45
 u

ur
 in

 za
al

 2
 v

an
 h

et

Be
st

uu
r e

n
Be

he
er

 (B
B)

 g
eb

ou
w

va
n

de
 U

ni
ve

rs
ite

it
Tw

en
te

.

Vo
or

af
ga

an
d

aa
n

m
ijn

 v
er

de
di

gi
ng

 za
l i

k
om

 1
6:

30
 u

ur

ee
n

to
el

ich
tin

g
ge

ve
n

op
 m

ijn
 p

ro
ef

sc
hr

ift
.

Na
 a

flo
op

 b
en

t u
 v

an
 h

ar
te

 w
el

ko
m

 o
p

de
 re

ce
pt

ie.

M
A

A
RT

EN
 W

EG
D

A
M

Ju
lia

na
st

ra
at

 1
65

75
11

 K
G

 E
ns

ch
ed

e

E-
m

ai
l:

we
gd

am
@

lu
ce

nt
.co

m

Te
l.:

05
3-

43
64

86
2

(th
ui

s)

05
3-

48
45

72
0

(w
er

k)

DYNAMIC
RECONFIGURATION
AND LOAD
DISTRIBUTION IN
COMPONENT
MIDDLEWARE

Dynamic Reconfiguration and
Load Distribution in Component
Middleware
Maarten Wegdam

Large-scale distributed systems, such as
telematics systems, are often built using
component-middleware technologies (e.g.,
CORBA). Middleware offers distribution
transparencies. This means that
complexities related to the distribution are
hidden from the application developers by
embedding the distribution aspects in the
middleware. Component middleware is
middleware that uses component concepts
such as encapsulation and well-defined
interfaces.

This thesis proposes a new approach for
the design of Quality of Service (QoS)
mechanisms in component middleware.
The specific QoS mechanisms that we
propose in this thesis are (i) a new dynamic
reconfiguration mechanism, which
improves the availability by allowing
online replacements and migrations of
application components, and (ii) a new
load distribution mechanism, which
improves the performance of application
components. Important characteristics of
these QoS mechanisms are: (i) they are
dynamic, (ii) they do not rely on specific
network or operating system QoS
functionality, and (iii) they are transparent
for the developer of application
components. We achieve transparency by
using message reflection techniques in the
middleware layer.

A CORBA-based prototype serves as a
proof of concept for our approach and our
QoS mechanisms.

M
A

A
R

T
E

N
 W

E
G

D
A

M
D

Y
N

A
M

IC

R

E
C

O
N

F
IG

U
R

A
T

IO
N

A

N
D

L

O
A

D

D

IS
T

R
IB

U
T

IO
N

IN

C

O
M

P
O

N
E

N
T

M

ID
D

L
E

W
A

R
E

The author of this thesis is employ-
ed at Bell Labs, the research arm of
Lucent Technologies. The research
presented in this thesis was done
in cooperation with the Centre
for Telematics and Information
Technology (CTIT). Parts of the
research were done in the context of
two collaboration projects: AMIDST
and EQUANET.

AMIDST is a Telematica Instituut
project on next generation object-
middleware platforms that can sup-
port Quality of Service (QoS).

EQUANET is an ICT-”Doorbraak”
project sponsored by the Dutch
Ministry of Economic Affairs on cost-
effective realization of end-to-end
QoS in multi-domain network envi-
ronments.

This thesis is published as a part of
both the CTIT PhD.-thesis series and
the Telematica Instituut Fundamental
Research Series.

CTIT (www.ctit.utwente.nl) is one
of the key research institutes of the
University of Twente. It conducts
research on the design of complex
ICT systems and their application in
selected user domains.

Lucent Technologies (www.lucent.
com) develops and delivers the sys-
tems, software and services for next-
generation communications net-
works. Lucent focuses on high-
growth areas such as broadband and
mobile Internet infrastructures.

Telematica Instituut (www.telin.nl)
is a partnership between the busi-
ness community, research centers
and government, to perform
research in the field of telematics.
The Dutch government supports
Telematica Instituut under its ‘leading
technological institutes’ scheme.
Both CTIT and Lucent participate in
the Telematica Instituut.

About the author
Maarten Wegdam holds a M.Sc.

degree (December 1996) in
Computer Science from the
University of Groningen, The
Netherlands.

He worked as an applied
scientist for KPN Research for
three years (1997-1999), and
since then is a member of
technical staff at the Bell Labs
Advanced Technologies EMEA
Twente department, Lucent
Technologies in The Netherlands.
He specializes in middleware,
Quality of Service and service
platforms. He has worked as an
architect and project manager in
several internal and collaborative
projects in these areas.

For his Ph.D. research, Mr.
Wegdam was a visitor of the
Architecture of Distributed
Systems group, which is part of
the Department of Computer
Science at the University of
Twente, The Netherlands. The
research of the Department of
Computer Science is embedded in
the Centre for Telematics and
Information Technology. IS

B
N

 9
0-

75
17

6-
36

-8

MAARTEN WEGDAM

U
IT

N
O

D
IG

IN
G

Hi
er

bi
j n

od
ig

 ik
 u

 u
it

vo
or

 h
et

 b
ijw

on
en

 v
an

de
 o

pe
nb

ar
e

ve
rd

ed
ig

in
g

va
n

m
ijn

 p
ro

ef
sc

hr
ift

D
Y

N
A

M
IC

 R
E
C
O

N
F
IG

U
R

A
T

IO
N

A

N
D

 L
O

A
D

 D
IS

T
R

IB
U

T
IO

N
 I

N
C
O

M
P

O
N

E
N

T
 M

ID
D

L
E
W

A
R

E

Op
 d

on
de

rd
ag

 2
6

ju
ni

 o
m

 1
6:

45
 u

ur
 in

 za
al

 2
 v

an
 h

et

Be
st

uu
r e

n
Be

he
er

 (B
B)

 g
eb

ou
w

va
n

de
 U

ni
ve

rs
ite

it
Tw

en
te

.

Vo
or

af
ga

an
d

aa
n

m
ijn

 v
er

de
di

gi
ng

 za
l i

k
om

 1
6:

30
 u

ur

ee
n

to
el

ich
tin

g
ge

ve
n

op
 m

ijn
 p

ro
ef

sc
hr

ift
.

Na
 a

flo
op

 b
en

t u
 v

an
 h

ar
te

 w
el

ko
m

 o
p

de
 re

ce
pt

ie.

M
A

A
RT

EN
 W

EG
D

A
M

Ju
lia

na
st

ra
at

 1
65

75
11

 K
G

 E
ns

ch
ed

e

E-
m

ai
l:

we
gd

am
@

lu
ce

nt
.co

m

Te
l.:

05
3-

43
64

86
2

(th
ui

s)

05
3-

48
45

72
0

(w
er

k)

DYNAMIC
RECONFIGURATION
AND LOAD
DISTRIBUTION IN
COMPONENT
MIDDLEWARE

Dynamic Reconfiguration
and

Load Distribution
in

Component Middleware

 Maarten Wegdam

C

T

I

T

en t re fo r

e l e m a t i c s a n d

n f o r m a t i o n

e c h n o l o g y

Enschede, The Netherlands, 2003

CTIT PhD.-thesis series number 03-50
Telematica Instituut Fundamental Research Series, No. 009 (TI/FRS/009)

Cover Design: Studio Oude Vrielink, Losser and Jos Hendrix, Groningen
Cover Photo: Susan ten Buuren and Maarten Wegdam
Book Design: Lidwien van de Wijngaert and Henri ter Hofte
Printing: Universal Press, Veenendaal, The Netherlands

Graduation committee:
Chairman, secretary: prof.dr. W.H.M. Zijm (University of Twente)
Promotor: prof.dr.ir. L.J.M. Nieuwenhuis (University of Twente)
Assistant promotor: dr.ir. M.J. van Sinderen (University of Twente)
Members: prof.dr.ir. M. Akşit (University of Twente)
 prof. F. Eliassen (University of Oslo)
 prof.dr.ir. B.R.H.M. Haverkort (University of Twente)
 dr. J. Schot (Lucent Technologies)
 prof.dr.ir. M.R. van Steen (Vrije Universiteit)

CTIT Ph.D.-thesis series, No. 03-50
ISSN 1381-3617; No. 03-50
Centre for Telematics and Information Technology, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

Telematica Instituut Fundamental Research Series, No. 009
ISSN 1388-1795; No. 009
Telematica Instituut
P.O. Box 589, 7500 AN Enschede, The Netherlands

Telematica Instituut Fundamental Research Series (see also http://www.telin.nl/publicaties/frs.htm)
001 G. Henri ter Hofte, Working apart together : Foundations for component groupware
002 Peter J.H. Hinssen, What difference does it make? The use of groupware in small groups
003 Daan D. Velthausz, Cost-effective network-based multimedia information retrieval
004 Lidwien A.M.L. van de Wijngaert, Matching media: information need and new media choice
005 Roger H.J. Demkes, COMET: A comprehensive methodology for supporting telematics investment decisions
006 Olaf Tettero, Intrinsic information security: Embedding security issues in the design process of telematics system
007 Marike Hettinga, Understanding evolutionary use of groupware
008 Aart van Halteren, Towards an adaptable QoS aware middleware for distributed objects

ISBN 90-75176-36-8

Copyright © 2003, Maarten Wegdam, The Netherlands

All rights reserved. Subject to exceptions provided for by law, no part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the
prior written permission of the copyright owner. No part of this publication may be adapted in whole or in part without the
prior written permission of the author.

 DYNAMIC RECONFIGURATION
AND

LOAD DISTRIBUTION
IN

COMPONENT MIDDLEWARE

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof.dr. F.A. van Vught,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op donderdag 26 juni 2003 om 16.45 uur

door
Maarten Wegdam

geboren op 12 februari 1973
te Almelo

 Dit proefschrift is goedgekeurd door:

 prof.dr.ir. L.J.M. Nieuwenhuis (promotor)

 en

 dr.ir. M.J. van Sinderen (assistent-promotor)

Abstract

The ability to control the Quality of Service (QoS) characteristics of
distributed systems is essential for their success. The QoS characteristics
that we consider in this thesis are performance characteristics (response
time and throughput) and availability characteristics (uptime, mean-time-
between-disruptions and mean-time-to-repair). Controlling QoS is a
complex problem since it concerns all the functional layers we consider in
this thesis, which are the application, middleware and resource layers.
Controlling QoS is especially complex for large-scale systems such as
telematics systems, due to heterogeneity and scalability issues.

QoS mechanisms control a certain QoS characteristic by allocating
network and/or processing resources, or by adapting the application
behavior. This thesis focuses on QoS mechanisms in the middleware layer.

Existing approaches to provide QoS are often static. Static approaches
allocate resources either at startup or before startup of each instance of an
application. This resource allocation remains fixed during the lifetime of
the application instance. For static approaches this allocation has to be such
that the highest resource usage that is expected during the lifetime of the
application instance can be supported. This leads to a waste of resources
since the actual resource usage of the application instance will vary during
its lifetime. In addition, this also requires intimate knowledge about the
resource needs of the application.

A dynamic approach varies the resource allocation based on the needs
during the lifetime of the application instance. Contrary to the static QoS
approach, a dynamic approach does not require calculations of the resource
needs before startup of the application instance. In a dynamic approach the
resource allocation is based on monitoring the achieved QoS during run-
time, and adapting the resource allocation based on this. As a consequence,
in a dynamic approach the QoS is not guaranteed, e.g., during run-time a
dynamic QoS mechanism might discover a shortage of available processing
resources. However, for a large class of distributed applications, such as

VI ABSTRACT

telematics applications, the benefits of a more efficient resource usage
outweighs the disadvantages of the inability to provide hard QoS guarantees.
In this thesis, we only consider dynamic QoS mechanisms.

Large-scale distributed systems are often built using component-
middleware technology (e.g., CORBA) because of the distribution
transparency it offers. With distribution transparency, complexities related
to the distribution are hidden from the application developers by
embedding the distribution aspects in the middleware. We extend the
distribution transparency concept by embedding the QoS mechanisms in
the middleware layer, thereby hiding the complexities associated with QoS
control from the application developer. In addition, this facilitates re-use of
the QoS mechanisms.

Besides the transparency, a second aspect of our approach is that we
make no assumptions with respect to the resource layer. Our middleware-
layer QoS mechanisms do not rely on QoS functionality in the resource
layer, such as, e.g., IntServ, DiffServ or real-time operating systems. The
mechanisms we propose instead use the functionality of the middleware.
For example, our QoS mechanisms can use the middleware to dynamically
change the allocation of components to different nodes. The main
challenges for the realization of these mechanisms are to preserve the
correctness of the applications, and to minimize restrictions on application
design.

We have applied our approach for dynamic QoS mechanisms in the
middleware layer to two QoS mechanisms: a dynamic reconfiguration QoS
mechanism, and a load distribution QoS mechanism. The dynamic
reconfiguration QoS mechanism allows runtime upgrades of a component-
middleware-based application. It can replace a component with a new
version, migrate a component to another node, add a component or remove
a component without taking the application instance as a whole offline.
Since this prevents disruptions of the application, it increases the availability
of the applications. An important characteristic of our dynamic
reconfiguration mechanism is that it preserves correctness, viz., mutually
consistent states, structural integrity and application invariants. Our
dynamic reconfiguration mechanism drives a component to a
reconfiguration-safe state in which there are no ongoing invocations by
selectively queuing incoming invocations.

The load distribution QoS mechanism distributes the components over
a set of nodes in such a way that the performance requirements are met. A
load distribution strategy makes the distribution decisions, based on the
available load information. The execution of the distribution decisions is
done by distribution methods: initial placement, migration and replication
of components. Since optimal load distribution depends on the specific
characteristics of an application and of the environment the application is

 ABSTRACT VII

deployed in, we propose a framework-based solution in which it is possible
to easily add new load distribution strategies and load information types. An
important aspect of our load distribution mechanism is that it allows QoS
differentiation, in addition to load sharing. We divide the available nodes
into classes, and create, migrate and replicate components over these classes
in such a way that the performance requirements are achieved.

For both QoS mechanisms we use message reflection techniques to
achieve a clear separation between application code, the middleware code
and the QoS mechanism code. The usage of reflection enhances the
transparency and composability of our QoS mechanisms.

A CORBA-based prototype implements our Dynamic Reconfiguration
Service and our Load Distribution Service. This prototype serves as a proof
of concept for our approach and our QoS mechanisms. CORBA Portable
Interceptors are used to implement the message reflection. Measurements
with the prototype give insight into the performance aspects, and show that
the overhead is acceptable for most applications.

The research presented in this thesis can be used to develop commercial
QoS mechanisms that improve the QoS of component-middleware-based
applications.

Acknowledgements

Although doing a PhD is mostly a solitary process, it is not something you
can do on your own. Below I mention the people I am most indebted to for
making it possible for me to do my PhD.

My promotor Bart Nieuwenhuis was there from start to finish to
supervise me. He continued to supervise me when I left KPN Research to
join Bell Labs Twente (Lucent), and also when he switched (principle)
employer. I have a deep respect for his commitment to his part-time full
professor job at the University of Twente, and his willingness to spend
many evenings and weekends on reviewing draft versions of my thesis, and
on contributing to papers we wrote together.

My assistant-promotor Marten van Sinderen got involved with my PhD
when I had already done most of the research, but little of the writing of the
thesis. His contribution to my PhD research proved to be essential. He
reviewed more draft versions of my thesis than anyone else, and provided
me with high-quality feedback on them.

Jeroen Schot is my supervisor at Bell Labs Twente, and I owe it mainly
to him that Lucent supported my PhD research. He was also involved with
the research itself, especially in the writing phase. His feedback taught me
to be more strict in my reasoning.

Aart van Halteren was my ‘promotiemaatje’, certainly when we were
both still at KPN Research, but also after that.

I supervised several master students who contributed to my PhD
research. The message reflection research was done together with Dirk-Jaap
Plas, who after his graduation became my colleague at Bell Labs Twente.
The dynamic reconfiguration research was done together with João Paulo A.
Almeida, who after his graduation became my room mate and fellow PhD
student at the University of Twente. The load distribution research was
done together with Erik Post.

Although not actually employed at the University of Twente (UT), I
have been a visitor of Architecture of Distributed Systems group. Especially

X ACKNOWLEDGEMENTS

during the last year of my PhD I have spent quite some time at the UT.
This is a non-exhaustive list of people that made this a pleasant and
productive environment: Giancarlo Guizzardi, Helen Kool, Remco van de
Meent, Renata Silva Souza Guizzardi, Patrícia Dockhorn Costa, Diego Ríos,
Valérie Gay, Remco Dijkman, Nikolay Diakov, Christian Tzolov, Dick
Quartel, Luís Ferreira Pires, Marcos Salvador, Cléver R. Guareis de Farias,
Marlous Weghorst, Aiko Pras (and, of course, João Paulo, Aart, Bart and
Marten).

The people I have worked with have influenced my PhD research, and
provided me with the context to do this research. I want to thank my
colleagues at Bell Labs EMEA Twente (especially our secretary Sue Atkins
and my ‘cubicle mates’ Bastien Peelen, Richa Malhotra and Dirk-Jaap) and
Bell Labs EMEA Hilversum, and my fellow project members in the
EURESCOM P715, EURESCOM P910, AMIDST and EQUANET
projects.

Friends and family are very important in life in general, and possibly
even more so while doing a PhD. Although I won’t even try to be complete
here, I want to mention some friends and family explicitly because I will
remember them as extra supportive at one time or another (for as far as
they are not already mentioned above): Mathijs Goldschmidt, Martijn
Vloedbeld, Marijke Mayer, Femke Wegdam, Frank Oude Breuil, Merthe
Oude Breuil, André Wegdam, Marga Wegdam-Fransen, Jorrit Wegdam,
Michel Westenberg, Peter Leijdekkers, Frank Wegdam, Petra Demmenie,
Edward Span, Harriët Span-Boersma, Cristian Hesselman, Miroslav
Živković, and, especially, Susan ten Buuren.

Contents

CHAPTER 1 Introduction 1
1.1 Background 1
1.2 Problem Description 4
1.3 Objectives and Scope 8
1.4 Approach and Structure 9

CHAPTER 2 QoS and Component Middleware: an Overview 11
2.1 Reference Model for Open Distributed Processing 12
2.2 Component-Based Development 15
2.3 State-of-the-Art in Component Middleware 16
2.4 Component-Based Systems and their Design 23
2.5 Quality of Service 27
2.6 Component Middleware Concepts 30
2.7 Related Work 37
2.8 Concluding Remarks 42

CHAPTER 3 QoS Mechanisms in the Middleware Layer 43
3.1 Requirements for QoS Mechanisms 44
3.2 Our Approach for QoS Mechanisms 47
3.3 Possible QoS Mechanisms 55
3.4 Using Reflection 60
3.5 Conclusions 67

CHAPTER 4 Dynamic Reconfiguration 71
4.1 A Model of Dynamic Reconfiguration 71
4.2 State-of-the-Art in Dynamic Reconfiguration 80
4.3 A New Dynamic Reconfiguration Mechanism 93
4.4 Design Overview 109
4.5 Conclusions 111

XII CONTENTS

CHAPTER 5 Load Distribution 113
5.1 A Model and Overview of Load Distribution 113
5.2 State-of-the-Art in Load Distribution 127
5.3 A New Load Distribution Mechanism 139
5.4 High Level Design 152
5.5 Conclusions 156

CHAPTER 6 Proof of Concept 161
6.1 Dynamic Reconfiguration Service 161
6.2 Load Distribution Service 188

CHAPTER 7 Conclusions 214
7.1 Introduction 214
7.2 Major Contributions 215
7.3 Contributions per Chapter 215
7.4 Conclusions 217
7.5 Future Research 221

Samenvatting (Dutch) 223

References 227

Publications by the Author 239

Chapter 1

1. Introduction

This chapter presents the background, problem description, objectives, scope and
approach for this thesis.

1.1 Background

Telecommunication and computer technologies are converging
[Janowiak03, P715], and telematics1 forms the merger of the two. The
telematics domain is the application domain we focus on in this thesis. We
characterize telematics as the domain of distributed systems concerned with
the support of the interactions between people or automated processes or
both, by applying telecommunication and information technology
[Visser00]. Telematics is also denoted by the term Information and
Communication Technology (ICT). We elaborate on telematics systems by
presenting an example.

Telematics

As a consequence of the unbundling of telecommunication networks
and services, the operator is opening up its network to allow third-party
service providers to provide end-user services that use the operator network
[P715]. Examples of such end-user services are multimedia messaging,
games and location-based services. This requires the operator to offer open
interfaces that a third party can remotely access. These open interfaces are
offered by service platforms. Standardization efforts in this area include TINA
[Halteren99A, Sellin99], and more recently Parlay [Hellenthal01] and
Open Service Access [Wegdam01B]. These standards enable third parties to
provide end-user services by allowing these third parties access to the
service platform that is located in the operator domain. The service
platform communicates with the network and back-end systems in the
operator domain, such as billing platforms, customer databases and Home

Service platform

1 The word “telematics” combines “telecommunication” and “informatics”.

2 CHAPTER 1 INTRODUCTION

Location Registers. Distribution is inherent for the realization of third-party
end-user services; the end-user remotely accesses the end-user service: the
end-user service remotely accesses the service platform, and the service
platform remotely accesses the network and back-end systems. The
communication networks that are used are both public networks (Internet)
and private networks (local and wide area networks). There might be
thousands if not millions of end-users and hundreds or thousands of third-
party service providers, and these end-users and service providers can be
involved in hundreds or thousands of parallel transactions. This makes
service platforms large-scale distributed systems. Characteristics of a service
platform, and of telematics systems in general, are as follows:
– the amount of end-users varies erratically in time;
– the end-users have soft real-time performance and availability

requirements;
– there exists inherent heterogeneity in used networks, operating systems

and computers due to the different parties that are involved. Because of
this, standards play an important role to enable interoperability between
the different parties.

Our focus on the telematics domain does not mean that the research
described in this thesis cannot be applied to other domains as well, in fact
we expect it can. But we will use the telematics domain to derive our
requirements, and in this way ensure the applicability of our research to
telematics systems.

Telematics systems are distributed systems for two reasons. The first is
that the users of a telematics service are physically distributed, thus
distribution of the service itself is inherent. The second reason is that
telematics systems are often designed as distributed systems to be able to
allocate more resources.

The quality of the telematics service is important because it is a way for
a service provider to differentiate himself from his competitors. This
Quality of Service (QoS) is often associated with the quality of the
underlying communication networks. Network QoS is however only one
aspect of the overall QoS as experienced by the end-user, and is not the
focus for this thesis. This thesis focuses on the QoS that can be provided by
component middleware, which is a generic software infrastructure that is
used to support the telematics services.

We will first explain the role of component middleware, and then the
relation between QoS and component middleware.

Component Middleware
Component middleware technologies facilitate the development of
distributed applications by functionally bridging the gap between the

 BACKGROUND 3

application and the lower-level resources, and by enabling and simplifying
integration of components developed by different parties [Schantz02]. We
elaborate on component middleware by first addressing the component
aspect, and then addressing the middleware aspect.

Distributed systems can be designed and implemented as a collection of
collaborating and distributed components. A component encapsulates a piece
of functionality, has a certain state, and offers services through one or more
interfaces. A component can be developed independently from the rest of
the system, and is subject to re-use and composition. A component has
well-defined interfaces to interact with other components and its
environment, and only interacts through these interfaces. The environment
provides the component with the resources it needs to operate.

Component

Middleware Middleware is software that provides a supporting infrastructure for
distributed applications that reduces costs by shifting common complexities
of distributed systems from the application to the middleware
[Raymond95]. Middleware hides the complexities related to distribution
from the application developer. We refer to this property of hiding
complexities as distribution transparency, or transparency for short.

Middleware is positioned as a software layer between the operating
system (including the basic communication protocols) and the distributed
applications that interact via the network [Geihs01A]. This results in a
layered architecture consisting of an application layer, a middleware layer
and a resource layer, see also Figure 1-3.

application layer

middleware layer

resource layer

Figure 1-1 Three layered
architecture

Component middleware is a specific type of middleware that uses component
concepts such as encapsulation and well-defined interfaces. Examples are
the Common Object Request Broker Architecture [CORBA], and
Enterprise JavaBeans [EJB]. Figure 1-2 shows the resulting three-layered
view on a distributed system. The application layer consists of a collection
of interacting components. The resource layer consists of a collection of
nodes that provide processing resources, connected by a network that
provides network resources.

Component
Middleware

4 CHAPTER 1 INTRODUCTION

com-
ponent

com-
ponent

com-
ponent

com-
ponent

application
layer

resource
layer

component middleware
middleware

layer

node
node

node
node

Figure 1-2 Layered view
on a component-
middleware-based
distributed system

Quality of Service
Distributed systems offer a service, and this service has to fulfill certain
Quality of Service (QoS) requirements. Quality of Service is defined as a set of
qualities related to the collective behavior of one or more components
[ISO-QoS]. This definition is quite broad, and in the context of this thesis
we limit ourselves to performance and availability QoS characteristics. The
performance characteristics are response time and throughput of interactions.
The availability characteristics are the percentage of time that the system
functions without disruptions, the mean-time-between-disruptions and the
mean-time-to-repair. Disruptions can be caused be faults, e.g., network
faults, but also by planned downtime of the system, e.g., caused by software
upgrades.

Quality of Service

Performance and
availability

The QoS that a component offers depends on the type and amount of
resources that it has available. Resources can be networking resources such as
bandwidth, or can be processing resources such as clock cycles. A QoS
mechanism improves some QoS characteristic by, for example, reserving
network resources, by prioritizing certain components or by prioritizing
certain interactions between components.

Networking and
processing resources

The research question we address is this thesis is how to provide QoS
for component-middleware-based applications. This includes QoS
differentiation, e.g., providing a different QoS to different users. We focus
on two specific QoS mechanisms: dynamic reconfiguration and load
distribution.

1.2 Problem Description

This section elaborates further on the problem of providing QoS for
component-middleware-based applications, and describes some choices we
make in our approach to solve this problem. These choices will be discussed
in greater detail later in this thesis.

 PROBLEM DESCRIPTION 5

QoS is a Middleware Issue
A basic characteristic of the middleware layer is that it shields the
components from the heterogeneity of the resource layer. Since the QoS as
experienced by the components depends on the available resources, it is
also the responsibility of the middleware layer to allocate the resources to
the components in such a way that the application QoS requirements are
met.

Current component middleware technologies generally do not have a
concept of QoS, and as a result offer only best-effort QoS. This means that
there are no means to control the QoS, and the available resources are
simply allocated to the components without considering specific QoS
requirements. The achieved QoS depends solely on the available resources
at a certain point in time. We need QoS mechanisms in the middleware
layer to be able to control the allocation of resources to the components
based on the QoS requirements.

Best-effort QoS

Approaches to QoS Provisioning
We distinguish three approaches to QoS provisioning: over-dimensioning
resources, static allocation of resources and dynamic allocation of resources.

The over-provisioning approach is based on providing abundant resources.
Although straightforward and easy to implement, this does result in a waste
of resources. In the static approach the required resources are calculated
using some quantitative model, and these resources are reserved for the life-
time of the application instance. This approach is more efficient with
resources than over-provisioning and it is possible to guarantee that QoS
requirement are met. The static approach is, for example, used for real-
time systems. The problem with this approach is that the quantitative
model is based on detailed knowledge of the application, is dependent on
the environment the application runs in and needs accurate predictions on
the usage of the application. For telematics systems, and other large-scale
systems with erratic usage, such a model-based approach is too static and
difficult to implement. In the dynamic approach the resource allocation is
adapted during runtime. This approach requires less detailed knowledge on
the application and is better suited for telematics systems. We will adopt
the dynamic approach in this thesis.

Over-provisioning

Static approach

Dynamic approach

Middleware-layer QoS Mechanisms
Middleware-layer QoS mechanisms can control a certain QoS characteristic
by relying on resource-layer QoS mechanisms. An example of a resource-
layer QoS mechanism is IntServ [IntServ94], which can be used to ensure
that sufficient network resources are available to transport invocations
between two components. Direct access by the application developer to the
IntServ interface would violate the transparency that the middleware layer

6 CHAPTER 1 INTRODUCTION

should offer. Middleware-layer QoS mechanism can be introduced to
prevent this, as, for example, proposed in [Halteren03]. Middleware-layer
QoS mechanisms that rely on resource-layer QoS mechanisms abstract the
often low-level interface of resource-layer QoS mechanisms by offering an
easier to use interface to the application developer. We refer to this
category of mechanisms as mapping mechanisms, since they map higher-level
QoS requirements to one or more lower-level resource-layer QoS
mechanisms.

Mapping QoS
mechanisms

A second category of QoS mechanisms uses the middleware
functionality to improve the QoS. An example is a mechanism that uses the
fact that middleware hides the precise location of a server component from
the client to implement transparent migration or replication of
components. This category of mechanisms would otherwise have to be
implemented in the application layer, and as a consequence would be
application specific and burden the application developer. We refer to this
category of mechanisms as middleware-layer-internal QoS mechanisms.

Middleware-layer-
internal QoS
mechanisms The mapping category of QoS mechanisms makes it easier to use

resource-layer QoS mechanisms. The mapping category of QoS
mechanisms excludes improvement of the QoS beyond what resource-layer
QoS mechanisms provide. With middleware-layer-internal QoS
mechanisms, however, it is possible to enhance the QoS beyond what is
possible with resource-layer QoS mechanisms. For example, by replicating
a component and dividing incoming requests over the different replicas we
can enhance performance beyond what is possible with resource-layer QoS
mechanisms alone. A second benefit of the middleware-layer-internal
category is that since there is no dependency on resource-layer QoS
mechanisms they allow more heterogeneity of the resources. These two
categories are complementary, and they can be combined. The focus in this
thesis is on middleware-layer-internal QoS mechanisms.

Dynamic Reconfiguration and Load Distribution
There are many possible middleware-layer-internal QoS mechanisms that
improve availability or performance, such as, e.g., prioritizing certain
invocations or replicating components. This thesis focuses on two
mechanisms: a QoS mechanism that improves availability, and a QoS
mechanism that improves performance:
– Dynamic reconfiguration QoS mechanism – This mechanism reconfigures or

upgrades a running system without taking it off-line. This increases the
availability QoS characteristics, viz., the percentage of time that the
system functions without disruptions, the mean time between
disruptions and the mean time to repair. Reconfiguration can be needed
because the resources the system is using will no longer be available, or

Dynamic
reconfiguration

 PROBLEM DESCRIPTION 7

the behavior of the system needs to be adapted by replacing some of the
components.

– Load distribution QoS mechanism – This mechanism improves the
performance, viz., the response time and throughput. It does this by
adapting the allocation of components to nodes by (i) migrating
components to a different node, by (ii) instantiating components on the
most suitable node or by (iii) replicating components over different
nodes.

Load distribution

Both of these mechanisms fall into the category of QoS mechanisms that
are internal to the middleware layer, i.e., they do not depend on resource-
layer QoS mechanisms.

Reflection and Separation of the QoS Concern
Separation of concerns is a fundamental principle in software and system
engineering to cope with the inherent complexity of designing a system.
Applying the separation of concerns principle results in a system design that
is split up into parts that each address a specific concern. These parts can,
for example, be components or layers.

Separation of
concerns

Formulated in these terms, the middleware layer handles the concerns
that deal with the physical distribution of a system. The application layer is
concerned with application specific concerns, i.e., the application logic.
This application logic is separated in different components.

We want to develop middleware-layer QoS mechanisms and make QoS a
middleware-layer concern. The problem is that these dynamic QoS
mechanisms require monitoring and control functionality in the application
layer [Molenkamp02], thereby potentially violating the separation of
concerns principle.

Middleware-layer
QoS mechanisms

Reflection seems to be a promising technique to prevent this violation of
separation of concerns, and to enhance the transparency for our QoS
mechanisms. Reflection, or meta programming, is a technique that has its
origin in programming languages and operating systems to introduce
openness and flexibility [Yokote92]. It enhances the adaptability and
composeability of a system. With reflection we mean the ability of a system to
reason about itself, using some kind of self-representation. This reasoning is
done at a meta-level where certain aspects of the system are represented or
reified as meta-objects. Reflection enables both inspection and adaptation
of systems at run time.

Reflection

Message reflection is a specific type of reflection in which messages that are
passed between different parts of the system are intercepted and reified.
The adaptability and composeability properties of reflection fit very well
with the separation of concerns requirements that form the basis of our
approach. Message reflection especially fits very well with the type of
distributed systems we are considering since these distributed systems

Message reflection

8 CHAPTER 1 INTRODUCTION

consist of components that exchange messages, and we can implement
message reflection with common-of-the-shelf middleware that is used to
develop telematics systems.

1.3 Objectives and Scope

The main objective of the research presented in this thesis is
To develop middleware-layer QoS mechanisms that improve the
availability and performance QoS characteristics of component-
middleware-based applications.

Essential characteristics of these QoS mechanisms are that they dynamically
adapt the allocation of the available resources for a component and do not
rely on resource-layer QoS mechanisms. The middleware-layer QoS
mechanisms have to be as transparent as possible, which means that we aim
for a maximum separation of concerns, and that the usage of these QoS
mechanisms should not pose specific restrictions on the design of the
application components. The responsibility of the application components
is ideally limited to passing the QoS requirements to the middleware-layer
QoS mechanisms, without requiring any knowledge on how these QoS
mechanisms work.

The following objectives are considered to be part of the main objective:
– Propose an approach for the design of QoS mechanisms that

dynamically adapt the resource allocation, that are transparent for the
component developers, and that do not rely on resource-layer QoS
mechanisms.

– Propose a new mechanism for dynamic reconfiguration. This
mechanism makes it possible to adapt a running application.
Adaptations that are supported include the replacement of a component
with a newer version, and the migration of a component to another
node. This improves the availability.

– Propose a new mechanism for load distribution. This mechanism
distributes the components over a set of nodes in such a way that the
performance requirements are met. This improves the performance.

– Investigate whether reflection can be used as a technique to achieve
separation of concerns for middleware-layer QoS mechanisms, and if
this is the case, how to do this.

Scope
We limit the scope of the research presented in this thesis to a single
management domain. Hence, we do not consider federated QoS control.

In this thesis, we focus on operational interfaces, rather than streaming
interfaces.

 APPROACH AND STRUCTURE 9

QoS is sometimes used to denote a wide range of characteristics,
including, for example, image resolution, data integrity and security. We
focus only on performance and availability.

We limit ourselves to QoS parameters that are meaningful at the
middleware layer. The translation of high-level, end-user QoS parameters
to QoS parameters on the middleware layer is the responsibility of the
application developer, and is out of our scope.

 We focus on the functional aspects of the QoS mechanisms. A
quantitative analysis of QoS requirements, QoS mechanisms and the exact
amount of required resources is out of our scope.

We limit ourselves to QoS mechanisms that can be used with common-
off-the-shelf middleware, contrary to implementing our own middleware,
or requiring source code changes to existing middleware.

Combining different QoS mechanisms can result in feature interaction
issues, depending on the involved mechanisms. We do not consider this
problem in the research presented in this thesis.

1.4 Approach and Structure

The approach to accomplish our objectives consists of the following steps:
1. Investigate state-of-the-art in component middleware technologies,

relevant standards, component-based development and QoS
provisioning for middleware-based applications (Chapter 2).

2. Define generalized component middleware concepts and terminology,
including QoS for component-middleware-based applications (Chapter
2).

3. Identify requirements that QoS mechanisms have to fulfill in order to be
suitable for large-scale telematics systems (Chapter 3).

4. Define our overall approach for the design of middleware-layer QoS
mechanisms, which is based on separation of concerns, a dynamic QoS
approach and no usage of resource-layer QoS mechanisms (Chapter 3).

5. Determine how to achieve transparency and separation of concerns
using reflection techniques (Chapters 3, 4, 5).

6. Develop a QoS mechanism that uses dynamic reconfiguration to
improve availability. This mechanism allows upgrades of component-
middleware-based applications without taking them off-line (Chapter
4).

7. Develop a load distribution QoS mechanism that allows the distribution
of load over a set of computers based on the QoS requirements, thus
improving the performance (Chapter 5).

10 CHAPTER 1 INTRODUCTION

8. Implement a prototype to serve as a proof of concept for our approach
for middleware-layer QoS mechanism, our dynamic reconfiguration
mechanism and our load distribution mechanism (Chapter 6).

The structure of this thesis is depicted in Figure 1-3.

 Figure 1-3 Structure of
this thesis - 1 -

Introduction

- 2 -
QoS and Component Middleware: an Overview

- 3 -
QoS Mechanisms in the Middleware Layer

- 5 -
Load Distribution

- 4 -
Dynamic Reconfiguration

- 6 -
Proof of Concept

- 7 -
Conclusions

Chapter 2

2. QoS and Component Middleware:
an Overview

This chapter provides the context for this thesis. We do this by:
i. Presenting an overview of relevant standards and technologies in the area of

component middleware.
ii. Presenting an overview of component-based systems, and how they can be designed.
iii. Defining QoS in the context of component-middleware-based systems.
iv. Defining our component middleware concepts.
v. Discussing related work in the area of QoS for middleware-based systems.
The standards and technologies in the area of component middleware we describe in
this chapter are the Reference Model for Open Distributed Processing, Szyperski’s work
on component-based development, and state-of-the-art of current middleware
technologies.

We used RM-ODP, Szyperski’s work, the current middleware technologies as input
to the definition of our generalized concepts and terminology for component
middleware. We will use these generalized concepts and terminology throughout this
thesis.

We describe relevant work in the area of QoS for component middleware, and relate
it to our work. This does not include related work that is specific to one of the QoS
mechanisms we developed, which we discuss when we discuss the specific mechanisms
(in Chapters 4 and 5).

The overview of relevant standards and technologies in the area of component
middleware in split up in three sections: Section 2.1 contains an overview of RM-
ODP, Section 2.2 contains an overview of Szyperski’s work and Section 2.3 describes
the state-of-the-art of current component middleware technologies. Section 2.4
contains an overview of a design approach for component-based systems. Section 2.5
defines QoS for component-middleware-based systems. Section 2.6 contains our
definition for component middleware concepts en terminology, and relates these to RM-
ODP, Szyperski’s work and current component-middleware technologies. Section 2.7

12 CHAPTER 2 QOS AND COMPONENT MIDDLEWARE: AN OVERVIEW

describes related work in the area of QoS for middleware. Section 2.8 ends this chapter
with concluding remarks.

2.1 Reference Model for Open Distributed Processing

The Reference Model for Open Distributed Processing (RM-ODP) is a joint ISO and
ITU-T standard that defines concepts and models to describe distributed
systems. A lot of concepts that are used in the context of component
middleware originate from RM-ODP. The standard is described in
[RMODPPart1, RMODPPart2, RMODPPart3]. We will adopt some RM-
ODP concepts in our work, as will be described later in this chapter. In this
section, we give a short overview of RM-ODP.

2.1.1 Distribution Transparencies

An important concept of RM-ODP is distribution transparency. Distribution
transparency, or transparency for short, is the property of hiding from a
particular user the potential behavior of some parts of a distributed system.
[RMODPPart2]. Users may for instance be end-users, application
developers and function implementers. [RMODPPart1] and [Putman01]
clarify what behavior is actually hidden by stating that transparency is the
property of hiding from developers the details and the differences in
mechanisms used to overcome problems caused by distribution. Examples
of such problems are partial failure, heterogeneity and remoteness. The
purpose of the distribution transparencies is to shift the complexities of
distributed systems from applications programmers to the supporting
infrastructure [Raymond95]. RM-ODP does not specify a complete set of
distribution transparencies, but it does define a number of commonly
required distribution transparencies, which are listed below:

Distribution
transparency

– access transparency — hides the differences in data representation and
procedure calling mechanism to enable interworking between
heterogeneous computer systems

Defined transparencies

– location transparency — masks the use of physical addresses, including the
distinction between local and remote

– relocation transparency — hides the relocation of an object and its
interfaces from other objects and interfaces bound to it

– migration transparency — masks the relocation of an object from that
object and the objects with which it interacts

– persistence transparency — masks the deactivation and reactivation of an
object

– failure transparency — masks the failure and possible recovery of objects,
to enhance fault tolerance

 REFERENCE MODEL FOR OPEN DISTRIBUTED PROCESSING 13

– replication transparency — hides the maintaining of consistency of a group
of replica objects with a common interface

– transaction transparency — hides the coordination required to satisfy the
transactional properties of operations

2.1.2 Viewpoints

RM-ODP defines five so-called viewpoints. A viewpoint is a set of concepts,
structures, and rules that are different for each viewpoint, providing a
language for specifying distributed systems in that viewpoint. The five
viewpoints are [Raymond95]:

Viewpoints

– Enterprise viewpoint – for specifying purpose, scope and policies
– Information viewpoint – for specifying semantics of information and

information processing
– Computational viewpoint – for specifying the functional decomposition
– Engineering viewpoint – for specifying the infrastructure required to

support distribution
– Technology viewpoint – for specifying the choices of technology for the

implementation

The different viewpoints focus on different aspects of the distributed
system, and cannot be considered refinements. They are also not
independent, and have to be consistent. RM-ODP specifies some concrete
constraints on the relationship between computational and engineering
viewpoint. We describe this relationship below when we describe the
engineering viewpoint.

The enterprise language does not provide concepts we can use to specify
QoS requirements or QoS mechanisms, and is therefore not relevant for
our work. The information viewpoint is not relevant for us since it deals
solely with the semantics and structure of the information that is
exchanged, and not with QoS. The technology viewpoints is also not
relevant for our work since it is too technology specific, and because it is
not a very well defined or complete part of the RM-ODP standard. This
leaves the computational and engineering viewpoints, which are relevant for
our work. We describe the computational and engineering viewpoints more
elaborately below, and explain their relevance.

The computational viewpoint is object-based, that is: Computational viewpoint
– An object encapsulates data and processing (i.e., behavior)
– An object offers (possible multiple) interfaces for interaction with other

objects

The distribution of the objects, and the distribution aspects are transparent
in the computational viewpoint. Most objects in a computational

14 CHAPTER 2 QOS AND COMPONENT MIDDLEWARE: AN OVERVIEW

specification describe application functionality, and these objects are linked
by bindings through which interactions occur [Raymond95, Leijdekkers97].
There are three forms of interaction between objects: stream-oriented,
signal-oriented and operational. The computational viewpoint is focused on
the functionality of the system, i.e., the division in objects, their interfaces
and the behavior. Although distribution aspects are not described in the
computational viewpoint, the requirements for the distribution are part of
the computational viewpoint. These include QoS requirements, which
makes this viewpoint relevant for our work.

The engineering viewpoint is concerned with distribution aspects and not with
the application semantics except to get the requirements for the
distribution aspects. It defines the concepts needed to describe the
distribution infrastructure that is required to support the distribution
transparencies. The engineering viewpoint is not a refinement of the
computational viewpoint as a whole, but only of the interactions. The
fundamental entities in the engineering viewpoint are channels and objects.
A channel provides the communication mechanism and contains or controls
the transparency functions required by the basic engineering objects, as
specified in the computational specification. Objects in the engineering
viewpoint can be divided into two categories—basic engineering objects
and infrastructure objects. Basic engineering objects correspond to objects
in the computational specification. This correspondence defines the
relationship between the computational and engineering viewpoints.

Engineering viewpoint

The engineering viewpoint prescribes the structure of an ODP system.
The basic units of structure are:

Units of structure: node,
cluster, capsule,
nucleus

– Node – An independently managed computer system.
– Cluster – A set of related basic engineering objects that will always be co-

located.
– Capsule – A set of clusters, a cluster manager for each cluster, a capsule

manager, and the parts of the channels which connect to their
interfaces. A typical example is a process in the operating system sense.

– Nucleus object – Controls a node, i.e., an (extended) operating system.

The engineering viewpoint deals with the mechanisms to implement the
interactions, and with the resources. This makes the engineering viewpoint
relevant for our QoS work.

In Section 2.6.2 we discuss which of the RM-ODP concepts we re-use in
this thesis.

 COMPONENT-BASED DEVELOPMENT 15

2.2 Component-Based Development

Component-based development is a design methodology that focuses on
third-party composition of software. Component-based development and
the technology to support this are becoming more and more popular in
industry and academia.

There is a lot of literature on component-based development, but we
consider Szyperski’s work on components [Szyperski98] to be
representative for component-based development. The component
definitions, concepts and ideas presented in this section are therefore based
on Szyperski’s work.

The main idea behind component-based development is to allow better
re-use of code than older techniques such as macros, libraries and object-
orientation. Concrete manifestations of a component can vary from
procedures, modules, classes, libraries to entire applications, as long as they
are binary and independent. Szyperski defines a software component as:

Szyperski’s component
definition

 “an unit of composition with contractually specified interfaces and
explicit context dependencies only. A software component can be deployed
independently and is subject to composition by third parties.”

Explicit context dependencies specify what the deployment environment needs
to provide to allow the component to function, including the required
interfaces that other components need to offer.

Context dependencies

Contract and interface Ideally, the contract between the client of a component and the
component specifies both functional and non-functional aspects. The
functional part of the contract is typically an interface annotated with pre-
and postconditions, and possibly invariants. This however does not cover
the non-functional aspects, such as performance and resource
requirements. Szyperski considers the question on how to include non-
functional aspects in a contract as ongoing and future research.

A component is a unit of deployment, meaning that the software
component is what is actually deployed. A component needs to be well
separated from its environment and from other components. A component
is a unit of third-party composition, and has no persistent state.

Unit of deployment

Third-party composition
and no persistent state

Components do not support implementation inheritance, i.e., it is not
possible to make a subclass of a component that inherits its behavior. The
reason behind this is that this would create a strong dependency of the
subclass on the implementation of the component it inherits from. For
example, implementation inheritance would have the undesirable
requirement that both components have to be implemented in the same
programming language, and this programming language would have to be
object oriented. Components do support interface inheritance, i.e., the

Implementation
inheritance

Interface inheritance

16 CHAPTER 2 QOS AND COMPONENT MIDDLEWARE: AN OVERVIEW

interface of the superclass is inherited without inheriting the behavior or
implementation.

Components are different from objects in the object oriented
programming sense. In short, the characteristics of objects are
encapsulation of state and behavior, polymorphism, and inheritance.
According to Szyperski, a main difference is that objects do not support the
notions of independent deployment and third-party composition. Using
components however, does not exclude use of objects. A typical example of
a component is a class, or a set of classes. Objects then form part of
component instances, and can be instantiated as needed. A component
however, does not have to be implemented using objects, it can just as well
be implemented using other programming techniques.

Objects versus
components

In Section 2.6.3 we discuss which of Szyperski’s concepts we adopt in
this thesis.

2.3 State-of-the-Art in Component Middleware

In this section, we describe the most popular component middleware
technologies and standards, which are:
– CORBA
– Enterprise JavaBeans
– CORBA Component Model
– SOAP and WSDL
– DCOM and COM+

2.3.1 CORBA

Common Object Request Broker Architecture (CORBA) is a middleware technology
that is standardized by the Object Management Group (OMG) [CORBA].
There are different generations of CORBA specifications. In this section, we
consider only the CORBA 2.x generation.

In CORBA, application objects have interfaces that objects running on
other nodes can use. All interfaces are of the operational type, i.e., they
support remote method invocations. Every object is identified by a unique
object reference, called the Inter Object Reference (IOR).

The CORBA standard is implemented by different vendors. CORBA is
operating system independent, and there are implementations available on
different operating systems, including the family of Microsoft Windows
operating systems, and different UNIX versions. To guarantee
interoperability between CORBA implementations of different vendors,
OMG standardized the General Inter-ORB Protocol (GIOP). This protocol
can be mapped on different network protocols. The mapping on TCP/IP is

 STATE-OF-THE-ART IN COMPONENT MIDDLEWARE 17

called Internet Inter-ORB Protocol (IIOP) and is part of the CORBA
standard.

The core of the CORBA standard is the Object Request Broker (ORB).
The ORB provides the basic mechanisms by which objects can make
requests and receive responses. The interface between an application object
and the ORB is part of the standard.

All interfaces are defined in the Interface Definition Language (IDL).
Interfaces can have an inheritance relationship to other interfaces. Each
interface consists of a set of operations. For each operation the operation
name, the parameters, the result value and possible exceptions are
specified. IDL is implementation language independent. The specification
contains mappings from IDL to different implementation languages,
including Java and C++. An IDL compiler uses the IDL to generate stubs
and skeletons in a specific implementation language for marshalling of the
operations.

OMG specifies several services that provide some common functionality.
Examples are the naming service, the notification service, the security
service and the transaction service.

OMG also standardized Portable Interceptors [Wegdam00A], which
provide an ORB independent way to intercept a request or reply, and
inspect the content. There are also limited possibilities to alter a request or
reply.

For the set of implementation languages that are part of the standard,
CORBA ensures not only interoperability, but also portability of application
objects. Portability here means that without changing an application object
it can use a CORBA implementation from vendor X or from vendor Y. This
is possible because both the interface between an application object and the
ORB, and the language mappings are part of the standard.

2.3.2 Enterprise JavaBeans

The Enterprise JavaBeans (EJB) [EJB] specification is part of Sun’s Java 2
Platform Enterprise Edition (J2EE). J2EE is a set of standards to develop
multitier enterprise applications. EJB is a standard architecture for
component-based distributed computing. EJB instances are server-side
components, i.e., EJB instances are meant to be components running in the
backend, contrary to the first tier that runs on the end-user system. EJB is
not suitable for thin clients such as web browsers and mobile phones.

An important concept in the EJB specification is that of EJB container.
A container provides the execution environment for EJB instances. The EJB
instances and container interact through standardized local interfaces. An
EJB server can contain multiple containers. Each container can accommodate
multiple EJB classes. An EJB class corresponds to the type definition of an

18 CHAPTER 2 QOS AND COMPONENT MIDDLEWARE: AN OVERVIEW

EJB, and contains the implementation. Each EJB class has a home interface
that can be regarded as a set of class methods that define factory methods
by which EJB instances, or EJB objects, for that class can be created,
deleted or located. A class method is comparable to static methods in C++
or Java. Multiple EJB instances of the same class can reside in the container.
Each EJB instance has a component interface that lists the methods that local
or remote clients can invoke.

There are restrictions on what an EJB instance is allowed to do. These
restrictions make it possible for the container to manage the resources EJB
instances use. An important restriction is that an EJB is passive. This means
that EJBs are not allowed to perform any threading operations and they
only respond to incoming invocations. Also the container serializes any
incoming invocations, and only one thread is simultaneously active within
one EJB instance (single thread model). The only exception is re-entrance,
which is allowed in some cases.

The EJB specification distinguishes a separate deployer role in the
development and deployment process. The deployer is responsible for
deployment of EJB classes into a specific operational environment. This
includes resolving any external dependencies declared by the developer of
the EJB, e.g., other EJB instances it depends on, or database connections it
requires. The benefit of this is that the EJB class itself will be more
independent of the environment it will be deployed in.

J2EE specifies several common services. These include a directory service
and a transaction service. The transaction service is compatible with the
OMG Transaction Service [CORBA].

There are different categories of EJB classes. A developer can choose to
implement an EJB class as one of three categories: session bean, entity bean
and message-driven bean.
– Session bean – a session bean executes on behalf of a single client, and

does not have a persistent state or identity. There are two sub-
categories:
– stateless session bean – no state between invocations
– stateful session bean – conversational state on a per-client, per-session

basis. Thus a different instance of a stateful session bean
implementation class is used for each client, and its state is
maintained between method invocations until the session is
terminated.

– Entity bean – has persistent state. Entity beans can be shared between
clients. Entity beans provide an object view of data in a database.
Typically, an entity bean represents a single row of a query into a
relational database.

– Message-driven bean – a more recent addition to the standard (since
version 2.0). Communication is not based on remote invocations, but

 STATE-OF-THE-ART IN COMPONENT MIDDLEWARE 19

based on exchanging messages. This is comparable to the OMG
Notification Service. A message-driven bean is stateless, and does not
have a persistent identity.

The container is responsible for the management of the lifecycle of an EJB.
Stateful beans can be activated and passivated. Activated means that they are
loaded from secondary storage, and the resources are allocated. Passivate is
the opposite, the EJB is stored in secondary storage and the resources are
released.

Session and entity beans use Java Remote Method Invocations (RMI) [RMI]
to communicate with clients, or to interact with other EJB instances. RMI
is a remote procedure call mechanism similar to CORBA, but meant for a
Java-only environment. A major difference with CORBA is that RMI allows
pass-by-value for objects. RMI uses the CORBA protocol IIOP to
interoperate between EJB servers of different vendors, and to interoperate
with CORBA-based systems.

2.3.3 CORBA Component Model

The CORBA Component Model (CCM) [CCM] is part of CORBA 3.0. The
CMM extends and builds upon CORBA 2.x, and is standardized by OMG.

A CORBA component is a basic meta-type in CORBA. The component
meta-type is an extension and specialization of the CORBA Object meta-
type. A CORBA component has a component type that is specified in IDL.
A CORBA component is denoted by a component reference, which is
represented by an object reference. A component interacts with its
environment through ports. There are different kinds of ports:
– Facets – named interfaces offered by the component. A component can

offer more than one facet. The lifecycle of the facets is bound to the
lifecycle of its component.

Ports

– Receptacles – the ability to accept object references upon which the
component may invoke operations. This can thus indicate a dependency
of the component on other components.

– Event sources and event sinks – sources and sinks supported by the
component for the publish/subscribe event model that is part of CCM.

– Attributes – named values exposed through accessor and mutator
operations, and primarily intended to be used for configuration.

Component reference
A component is identified by its component reference. The component
reference supports the so-called equivalent interface, which can be considered
as a special kind of facet. All ports can be reached through this equivalent
interface.

20 CHAPTER 2 QOS AND COMPONENT MIDDLEWARE: AN OVERVIEW

There are two levels of components: basic components and extended
components. Basic components are very similar to EJB (version 1.1), and
according to the specification essentially provide a simple mechanism to
“componentize” a regular CORBA object. Basic components are limited to
offering one facet (the equivalence interface) and possibly attributes, but no
other ports. Extended components can offer all kinds of ports. Figure 2-1
depicts an extended CORBA component with the equivalent interfaces and
two facets.

componentequivalent
interface

encapsulated
implementations
of facets

facets

Figure 2-1 A CORBA
Component with facets

A component home is a manager for all component instances of a certain type
within the scope of a container. The concept of container is explained
below. The component home controls the lifecycle of the component
instances. This means that all components are created with a factory pattern
through the component home. Components may also be associated with a
primary key. These primary keys are exposed to the clients, and are
maintained by the component home. A client can use this primary key to
identify or get a reference to a specific component instance.

Component home

A container is the execution environment in which a component instance
and a component home live. It provides via local interfaces a standard set of
services to the component. These standard services are transactions, security,
persistence and events. There are two types of containers: the session type
and the entity type. Components that run in an entity container have a
persistent reference, components that run in a session container have a
transient reference. The specification mandates that a CORBA Container
can also host Enterprise JavaBeans (EJB) (with EJB 1.1 version). An EJB is
then exposed as if it was a CORBA Component.

Figure 2-2 depicts a CORBA Component with a container and the rest
of the CCM entities.

 STATE-OF-THE-ART IN COMPONENT MIDDLEWARE 21

component

component
home

Object Request Broker

cl
ie

nt
local
callback
interfaces

equivalent
interface

facets local
interfaces
(offered by
container)

home
interface

container

transaction
service

security
service

notification
(event) service

persistence
service

Figure 2-2 The CORBA
Component Model

There are four different component categories:
– Service component – only state within the processing of one invocation and

no identity. The lifecycle is equal to a single invocation. This is similar to
the stateless EJB session bean.

– Session component – only state within a session (no persistent state). It has
an identity, but this identity is not persistent. This is similar to the
stateful EJB session bean.

– Entity component – persistent state and persistent identity. The identity is
externally visible, thus the finder pattern is used, and an entity
component has a key. This is similar to the EJB entity bean.

– Process component – persistent state and persistent identity. Contrary to
the entity component, the identity is not exposed to the client, i.e., no
finder pattern or keys are defined. There is no corresponding EJB bean.

The CCM can be considered a generalization of EJB [Szyperski99]. It
borrowed a lot of concepts and ideas from EJB, and interoperability
between the two is part of the CCM standard. The most notable feature
CCM adds to EJB is language independence. Unfortunately, there are no

22 CHAPTER 2 QOS AND COMPONENT MIDDLEWARE: AN OVERVIEW

complete and mature implementations of the CCM available at the moment
of writing.

2.3.4 SOAP and WSDL

Simple Object Access Protocol (SOAP) [SOAP] is a W3C standard that specifies a
mechanism to perform remote method invocation by exchanging XML
[XML] messages between a web client and a web service. SOAP messages
are commonly exchanged using HTTP as a transport protocol, but other
protocols (e.g., SMTP) are also possible.

Web Services Description Language (WSDL) [WSDL] is also a W3C standard.
It is an XML format describing the web service operations, protocol
bindings, and protocol message formats. A WSDL definition usually also
contains information about the service endpoint, i.e., the address where the
service is deployed.

The combination of SOAP to do remote method invocations and WSDL
to define an interface, guarantees interoperability between software entities.

SOAP and WSDL specify interfaces and a protocol, comparable to the
combination of GIOP, IDL, IOR and the Common Data Representation in
CORBA. CORBA, and the other component middleware technologies
discussed in this section, however, specify much more. For a discussion on
this, see [Lagerberg02]. We summarize the main differences here:
– SOAP/WSDL do not specify assumption on how software entities are

implemented, i.e., there is no component model. For example, the
WSDL/SOAP specifications do not consider concepts as unit of
deployment and independency.

– SOAP/WSDL do not specify the APIs that the execution platform on
which the software entities run should support. SOAP/WSDL thus
provide no portability and every platform of every vendor will have
different APIs between the platform and the software entities.

– SOAP/WSDL do not specify language mappings, marshalling
functionality and common services.

Different vendors of platforms that use SOAP and WSDL do offer or plan
additional functionality or assume a particular type of component model.
Due to the proprietary nature of these platforms and the immaturity of
WSDL, SOAP and related technologies, it is not possible to make proper
generalizations about these platforms and the component functionality they
(might) support.

2.3.5 DCOM and COM+

DCOM [DCOM] is an object middleware technology from Microsoft that
borrowed a lot of concepts of CORBA [Emmerich02]. DCOM is

 COMPONENT-BASED SYSTEMS AND THEIR DESIGN 23

programming language independent, but it depends on the Microsoft
Windows family of operating systems. It is closely integrated with MicroSoft
development tools. COM+ [COM+, Eddon99] is a component middleware
technology that uses DCOM. Microsoft more recently released .NET, which
is Microsoft answer to Sun’s J2EE. .Net re-uses parts of DCOM/COM+
[Bakken01]. A major change in .NET compared to DCOM/COM+ is that
.NET is very Web Services (SOAP) oriented. The successor of
DCOM/COM+ in .Net is called .Net Remoting [NetRemoting]. .Net
Remoting is a component middleware technology with many similarities
with DCOM, Enterprise JavaBeans and CORBA. It can interoperate with
existing DCOM and COM+ applications.

2.4 Component-Based Systems and their Design

In this section, we give an overview of component-based distributed
systems, and how they can be designed. We assume a top-down design
approach here, thus start with a high level view of distributed systems, and
refine this in several steps.

2.4.1 Stepwise Refinement

At the highest abstraction level, we distinguish the distributed system itself,
and its interactions with the environment. This is depicted in Figure 2-3.
We do not make any assumption on the type of environment and the type
of interactions between the distributed system and the environment. The
environment could for example be a human user, but also some automated
process. The nature of the interactions between the distributed system and
the environment will depend on the type of environment, e.g., graphical
user interfaces, or analog signals.

distributed system

environment

interactions

Legend

Figure 2-3 Model of a
distributed system as a
black-box

A well-known methodology to design distributed systems, or systems in
general, is stepwise refinement [IEEE610]. Refinement uses the divide-and-Stepwise refinement

24 CHAPTER 2 QOS AND COMPONENT MIDDLEWARE: AN OVERVIEW

conquer engineering principle in which a system is divided in several
subsystems, and the abstraction principle in which irrelevant information is
suppressed [RMODPPart2]. In iterative steps the distributed system is
divided in subsystems that interact, as depicted in Figure 2-4. How this
subdivision is done is part of the creative design process. Criteria for this
division can be functional (functional decomposition) [IEEE610], but other
criteria are also possible. For example, the fact that a system is
geographically distributed can influence the decision of the designer on how
to divide a system in subsystems. Or, if there is existing functionality that
can be re-used, a designer might want to divide a system in such a way that
reuse is possible. A third example is to meet certain QoS requirements. A
concrete example of this is that some functionality must have a higher
availability than the rest the system. Modeling this functionality as a separate
subsystem that can be replicated can then ensure this higher availability.

For a refinement step to be correct, the combined external behavior of
the subsystems has to provide the same external behavior as the original
system. The process of stepwise refinement will often have cycles, because
at a lower level of refinement you may discover that you are not able to
sufficiently address certain concerns because of decisions taken at a higher
level [Emmerich02].

environment

a distributed
system

subsystem

subsystem

subsystem

interactions
Legend

Figure 2-4 Example of
refinement step

The stepwise refinement stops when the granularity of the subsystems is
such that each subsystem can be implemented using the software artifacts
that the chosen implementation technology offers, or if existing subsystems
can be used. At this level, we refer to the subsystems as components. Thus,
at the lowest level of stepwise refinement, we model a distributed system as
a set of interacting components. The complete design methodology is not
important for our thesis, and we will not cover it further.

Component A component encapsulates its behavior and state, and has one or more
interfaces. Components interact with each other via their interfaces, and
only via their interfaces. There is a strong parallel here to object orientation,

 COMPONENT-BASED SYSTEMS AND THEIR DESIGN 25

and a component is similar to an object. We prefer to use the term
component to avoid confusion with object as a programming language
artifact, and because components as we define them are similar to
components as they exists in recent middleware technologies (see Section
2.3). We elaborate on the definition of component in Section 2.6

Figure 2-5 depicts an example of a distributed system consisting of three
interacting components. We will refer to such a model as the computational
viewpoint of a distributed system (see Section 2.1). The computational
viewpoint does not model the behavior of the distributed system as such, it
only describes how it is structured. Since in this thesis we focus on the QoS
of components and the QoS of interactions between components, and not
on the semantics of the system, we do not require a model that describes
the complete behavior of the distributed system.

component

Legend
interactions

a distributed
system

environment

Figure 2-5 An example
computational model of
a distributed system

The QoS requirements for the interactions between the distributed system
and the environment determine the QoS requirements for the components
and component interactions. We allow these interactions to be of any type,
and thus cannot make any assumptions on them for the generic case. The
issue of how to translate the QoS requirements of the interaction with the
environment to QoS requirements for the components and the component
interactions is therefore an application designer issue. We cannot provide
generic support for it, and it is not a middleware issue. We therefore
consider the QoS characteristics of the interactions between the distributed
system and the environment, and the translation into QoS characteristics of
components and component interactions, outside the scope of this thesis.

QoS of component
interactions

2.4.2 Remote Method Invocation

In the common middleware technologies we consider in this thesis an
interaction is always limited to two components. One component offers
certain functionality, i.e., a service, to another component. The component
that offers the service has a server role, the component using the service has a

Servers and clients

26 CHAPTER 2 QOS AND COMPONENT MIDDLEWARE: AN OVERVIEW

client role. A component can be involved in numerous interactions during its
lifetime and can play both the client and the server role. Interacting
components can be distributed over different nodes, but do not have to be.
We abstract from this, we only indicate the potential to be distributed. In
this thesis we limit ourselves to operational interfaces and do not consider
streaming and signal interactions. An instance of an operational interaction
consists of the sequence of activities starting when a client component
issues a request for a server component, followed by the processing of this
request by the server component and ending when a reply to the request is
delivered to the client component. In the literature this is often referred as
a remote procedure call, or remote method invocation [Bakken01]. A set of related
remote method invocations between a specific client and server component
is called a session. This session is implicitly created by the middleware with
the first invocation.

Operational interfaces

Remote method
invocation

Session Figure 2-6.depicts two alternative representations of a single instance of
interaction between a component in the server role and a component in the
client role. In Figure 2-6a we explicitly show the request and the reply by
using one-sided arrows. In Figure 2-6b we indicate the server component by
drawing the interface on the server, and imply the request and reply.

Legend
interface client - server relationship

component

request
reply

request or reply

a)

b) server

serverclient

client

Figure 2-6 Two
alternative ways to
depict a client and
server component

Remote invocations between components are enabled by a distribution
infrastructure. The distribution infrastructure offers distribution
transparencies to the components. The distribution infrastructure contains
network and processing resources, and middleware. In Section 2.6 we will
detail the distribution infrastructure further, for now we will consider this
as a black box.

Distribution
infrastructure

Every remote invocation between two components involves two local
invocations between the components and the distribution infrastructure.
This is depicted in Figure 2-7

 QUALITY OF SERVICE 27

client
send request

receive reply receive request

send reply

server

component

Legend
distribution

infrastructure

distribution infrastructure

request or reply

Figure 2-7 Instance of
interaction supported by
a distribution
infrastructure

2.5 Quality of Service

This thesis is about QoS in component-middleware-based systems. We do
not focus on the QoS as perceived by a human end-user, or the QoS of the
interactions between the system and the environment, but instead consider
the QoS as it is provided to a component when interacting with other
components. The QoS as perceived by the environment, e.g., by a human
user through some graphical user interface, depends on the QoS as
provided by the different components. How the QoS as perceived by the
environment is translated into QoS as provided to the different components
is application specific, and we consider this the responsibility of the
application developer.

RM-ODP defines Quality of Service as a set of quality requirements on the
collective behavior of one or more objects [RMODPPart2]. It does not
define what the quality requirements could be, it only gives some examples,
such as the rate of information transfer, the latency, the probability of a
communication being disrupted, the probability of a system failure and the
probability of a storage failure. The RM-ODP definition of QoS is also used
in the ISO QoS Framework [ISO-QoS], which does list possible quality
requirements. We will base our definitions of quality requirements on the
definitions that the ISO QoS Framework provides.

Quality of Service

ISO QoS Framework

The ISO QoS Framework describes QoS characteristics that can be used
in communications and processing. The following categories are
distinguished:
– time-related characteristics
– coherence characteristics
– capacity-related characteristics
– integrity-related characteristics

28 CHAPTER 2 QOS AND COMPONENT MIDDLEWARE: AN OVERVIEW

– safety-related characteristics
– security-related characteristics
– reliability-related characteristics
– other characteristics

We do not consider all these QoS characteristics in this thesis, but limit
ourselves to:
– time delay (time-related characteristics)
– throughput (capacity-related characteristics)
– availability, reliability, and maintainability (reliability-related

characteristics)

All other QoS characteristics defined by the ISO QoS Framework, and any
other QoS characteristics not captured in the ISO QoS Framework, are
outside the scope of this thesis.

We will define these characteristics, based on the definitions of the ISO
QoS Framework but specialized for component-middleware-based systems.
The response time is the time delay from the perspective of the client between
sending the request, and receiving the reply. The throughput is the amount
of invocations per time interval. This is thus the rate of requests/replies, and
can also be denoted with the more generic term capacity.

Response time and
throughput

Before defining the reliability-related characteristics, we first need to
define failure, fault and error. A failure is a violation of a contract
[Nieuwenh91, RMODPPart2, Avizienis00], i.e., a deviation of the correct
behavior. A failure can be caused by an error, but an error does not
necessarily lead to a failure. Corrective actions or internal redundancy may
prevent an error to cause a failure. An error is a manifestation of a fault.
Faults can be dormant or active. A fault is active when it produces errors.

Failure, fault and error

Using this definition of failure, we define availability as the percentage of
time that the application is functioning without failures. Reliability is the
time between disruptions of the service, i.e., the mean time between
failures. Disruptions can be caused by some fault in the hardware or
software, but also by system maintenance, e.g., when upgrading some part
of the application. The maintainability is the duration of any continuous
period for which the service is disrupted, i.e., the mean time to repair.

Availability

Reliability

Maintainability

We group these five QoS characteristics into two categories:
performance and availability. The performance category consists of the
response time and the throughput characteristics. The availability category
consists of the availability, reliability and maintainability QoS characteristics.

Performance and
availability QoS
categories

Statistical QoS characteristics are derived from a specific QoS characteristic.
The ISO QoS framework defines some commonly used statistical QoS
requirements: maximum, minimum, range, average, variance, standard
deviation, n-percentile and statistical moments [ISO-QoS]. For example,

Statistical QoS
characteristics

 QUALITY OF SERVICE 29

for delay it is possible to state that the maximum response time should be
less than 150 ms, the average 50 ms, and in 90% of the cases it should be
less than 75 ms.

The QoS characteristics are not only used to describe the required QoS,
but also to describe the offered QoS, the agreed QoS and the achieved QoS. In
a typical scenario the client will have some required QoS, which is matched
with the offered QoS by one or more servers. This process is called the QoS
negotiation, which will besides client and server also involve the supported
infrastructure. The QoS negotiation results in an agreed QoS. The achieved
QoS is the QoS that the client actually receives.

Offered, agreed and
achieved QoS

A QoS mechanism is a specific mechanism that may use protocol elements,
QoS parameters or QoS context, possibly in conjunction with other QoS
mechanisms, in order to support establishment, monitoring, maintenance,
control, or enquiry of QoS [ISO-QoS]. A QoS mechanism enhances one or
more QoS characteristics.

QoS mechanism

The QoS as perceived by the client component is a combination of the QoS of
the transportation of the request and reply by the distribution
infrastructure, and the QoS of the server component to process the
invocation. Figure 2-8 shows a message sequence diagram that illustrates this
for the response time characteristic for a simple invocation. Between time
t1 and time t2 the requests is transported from the client to the server,
between t2 and t3 the server processes the invocation, and between t3 and
t4 the reply is sent to the client. Figure 2-9 shows the response time as
provided to the client C1 in case of a more complex interaction in which
C1 is a client of C2, and C2 interacts with C3 as part of processing the
interaction with C1. This is called a nested invocation. We illustrate with this
example that in case of a nested invocation the QoS depends on all involved
components and interactions.

QoS as perceived by the
client component

Client

processing of request

Server

t1

t2

t3

t4

tim

e

reply()

request()

Distribution Infrastructure

request()

reply()

Figure 2-8 Response
time for a simple
invocation

30 CHAPTER 2 QOS AND COMPONENT MIDDLEWARE: AN OVERVIEW

C2C1 C3

reply2()

reply1()

request1()

Distribution Infrastructure

request2()

request1()

reply2()

reply1()

tim
e

request2()

Figure 2-9 Response
time for a nested
invocation

2.6 Component Middleware Concepts

In this section, we present our terminology and concepts to discuss
component middleware and component-middleware-based applications.
Our concepts and terminology are a generalization of concepts found in
existing component middleware technologies as described in Section 2.3,
and we selectively use concepts defined by RM-ODP (see Section 2.1) and
Szyperski (see Section 2.2). In the end of this section we compare our
concepts and terminology with RM-ODP, Szyperski’s definitions and with
current middleware technologies.

Layering
As described in the previous sections, the QoS of a component based
application depends on the distribution infrastructure. We use a common
division (e.g., see [Bakken01]) of the infrastructure layer into a middleware
layer and a resource layer. The resource layer is the layer that provides the
resources that make it possible for the components to execute and interact,
the middleware layer is the layer that shields the components from the
particularities of the resources and provides the distribution transparencies.

Resource layer

Middleware layer

 Figure 2-10 illustrates the layering by providing a functional view on
interacting components. We only show one invocation, although all types of
nested invocations are possible, we can represent this by modeling one
invocation. The interactions between the components and the distribution

 COMPONENT MIDDLEWARE CONCEPTS 31

infrastructure are by definition local, and are transported by the middleware
using available resources. With a local interaction we mean that no
communication over a network takes place. This does not imply the client
and server have to be distributed, but they can be. We indicate with the
dashed line that the QoS as perceived by the client depends on the
middleware, resources and the server component.

Local interactions

serverclient

middleware layer

QoS perceived
by client

component
request or reply,

number indicates order

Legend

1 34 2

resource layer

Figure 2-10 Functional
view on middleware and
components

To be able to reason about the QoS mechanisms that are part of the
middleware, and to be able to reason about allocation of resources to
components, we have to further refine resources and middleware.

Resources
We distinguish two types of resources; processing resources and network
resources. Processing resources are provided by a node. Examples of processing
resources are clock cycles on the CPU, or threads. Since processing
resources are part of a node, they are shared by all the components located
at that node. The QoS is dependent on the processing resources allocated
to components.

Processing resources

Network resources are provided by the network and allow communication
between nodes. Examples are bandwidth or buffer space. The QoS depends
on the network resources to transport the request and reply. Nodes are
connected by network connections that represent the network resources.
The network resources are shared by the nodes connected to the network.
How they are shared between the nodes depends on the network topology.

Network resources

The QoS as perceived by a client component for a specific interaction
depends on the amount of allocated processing and network resources
during that interaction. Every node has one nucleus that controls and

32 CHAPTER 2 QOS AND COMPONENT MIDDLEWARE: AN OVERVIEW

provides access to the processing resources of that node. A typical example
of the nucleus is the operating system of a computer. The nucleus also
provides access to the network resources. However, the control of the
network resources is shared with the other nuclei because the networking
resources themselves are shared with the nodes connected to the network.
The amount of control and how this is divided over the nuclei depends on
the type of network.

Nucleus

Component Middleware
A component is a software entity that encapsulates its behavior and state, and
that has one or more interfaces (see also Section 2.4). Components interact
with each other via their interfaces, and only via their interfaces.
Components have a unique identity, and are instantiated from a component
template. Characteristics of a component are that it is a unit of composition and
a unit of deployment. A component template defines the behavior of the
components that are initiated from the template.

Component, template,
unit of composition, unit
of deployment

Middleware provides a component with distribution functionalities
while shielding the component from the peculiarities of the nucleus and the
resources that are used to provide the distribution. Components are
grouped in capsules. A capsule is an encapsulation of processing resources. A
typical example of a capsule is a process in an operating system. The
middleware is present in every capsule, and requests resources from the
nucleus for all the components that execute within the capsule. Figure 2-11
depicts this. Contrary to Figure 2-10 and earlier figures, Figure 2-11 does no
longer abstract from the distribution aspects, e.g., it shows that the
components are distributed over two nodes. In addition, it shows that the
middleware layer as we depicted it in earlier figures, is now split up in a set
of middleware parts.

Capsule

 COMPONENT MIDDLEWARE CONCEPTS 33

C1

middleware 1 middleware 2

nucleus 2

C2 C3

Legend

nucleus 1

local interaction
between entities object

 component

capsule

network
connectionnode

Figure 2-11 A view of a
distributed system with
middleware as a black-
box

A node typically has several capsules, and a capsule typically contains several
components. Figure 2-12 shows the cardinality.

Node Nucleus Capsule

Component Middleware

1 1 1 0..*

1

1
0..* 1

Figure 2-12 Cardinality
of middleware, capsules
etc

Since QoS mechanisms in the resource layer are out of the scope of this
thesis, we do not need to refine the network or nodes further. Our focus is
on QoS mechanisms in the middleware layer, and we therefore will refine
the middleware part of the above model.

As is the case in current middleware technologies such as EJB and CCM,
we divide middleware into 3 different parts; core middleware, common
services and container.

The core middleware provides the basic invocation and communication
functionality. It is responsible for locating the server component,
transporting the request and replies and marshalling of the parameters.

Core middleware

The common services provide functionality that goes beyond basic
communication and is commonly used by components. The purpose of this
is two-fold: to relief the component developer of developing this
functionality himself, and to enhance interoperability between components.

Common service

34 CHAPTER 2 QOS AND COMPONENT MIDDLEWARE: AN OVERVIEW

The interoperability is enhanced because the common services located at
different nodes can interact using standard interfaces. For example, in case
of a security service the same encryption algorithm will be used at client and
at server side. Although there is no agreement in the literature which
services to consider a common service, there is a consensus that this
includes directory (or naming), transaction, security, persistence and event
services [MDA01]. Another term sometimes used for common services is
basic services, or pervasive services [MDA01].

The container provides the context for the components to execute. There
can be several containers within one capsule, each providing a different type
of execution context. The container is responsible for lifecycle management
functionality, deployment functionality and access to the common services.
With deployment functionality we refer to the possibility to control the
behavior of a component in a very late stage, i.e., at deployment time
contrary to at development time. This enhances re-use of a component, and
makes the component more independent of the environment it runs in
compared to not having deployment functionality. The container has a
separate interface, called deployment interface, to control the deployment
functionality.

Container

Deployment

Figure 2-13 shows the composite relationship between middleware and
its parts, with the cardinality. Some middleware technologies do not
support the container concept, e.g., CORBA, DCOM and RMI. This type
of middleware technologies is sometimes also referred to as object
middleware. Object middleware

Figure 2-13 Core
middleware, Container
and Common Services

Middleware

Core Middleware Container Common Service

1

1

1

0..*

1

0..*

Figure 2-14 is a refinement of Figure 2-11 in which middleware is no longer
depicted as a black-box. The middleware is split into the container,
common services and core middleware.

The concepts presented in this section are used throughout this thesis,
and we will detail them further where necessary, for example to describe
details of a specific QoS mechanism.

 COMPONENT MIDDLEWARE CONCEPTS 35

C1

core middleware 1

container 1

common
services 1

Legend

local interaction
between entities

object

 component

capsule

network
connection

nucleus 1

deployment
interfacenode

middleware
C2 C3

core middleware 2

container 2

common
services 2

nucleus 2

Figure 2-14 A view on
middleware

2.6.2 Comparison with RM-ODP

Our terminology to describe distributed systems and component
middleware has many similarities with the computational and engineering
viewpoint languages of RM-ODP. Specifically, we also use object as a
central modeling entity, and re-used capsule, node, nucleus, and
distribution infrastructure. Also the concept of transparency is used
throughout this thesis. However, we focus on component-middleware-
based systems, and not on any type of distributed system, which makes
some RM-ODP concepts superfluous for us. We will not list all RM-ODP
concepts we do not use and explain why not, but for example we do not use
engineering objects. These are not suitable to describe the middleware
functionality. For example, the concept of container as it exists in current
middleware technologies cannot be properly described using the RM-ODP
engineering language.

36 CHAPTER 2 QOS AND COMPONENT MIDDLEWARE: AN OVERVIEW

2.6.3 Comparison with Szyperski’s Definitions

There are similarities between the concept of component as described by
Szyperski [Szyperski98] and how we define it. Notably concepts such as
unit of deployment, unit of composition and explicit context dependencies
are shared. Szyperski’s component definition however is more focused on
third party composition aspects, and thus software re-use, while we focus
more on the distribution aspects of component-based applications.

Another difference is that our definition of component is stricter than
Szyperski’s. Contrary to Szyperski we assume that components are instances
of a component template. Our components have an identity, have state,
every interface has a unique identity, and the lifecycle of the interface is
linked to the lifecycle of the component as a whole. A component in
Szyperski’s definition however cannot be instantiated, and only objects
inside it can be instantiated and have an identity and state. Szyperski does
not specify any correlation between the lifecycle of interfaces and of the
objects, so anything is possible. Thus, Szyperski’s definitions are broader,
and the lifecycle of interfaces is not linked together. For example, a
component in Szyperski’s definition could be a library, which is not possible
in our case. Our component corresponds with the simplest case of
Szyperski’s component in which a component is a class [Szyperski99]. With
the same reasoning, Szyperski’s component is similar to our component
template.

We choose this more strict definition to make the definition of a
component correspond better to current component middleware
technologies, such as EJB and CCM.

2.6.4 Comparison with Component Middleware Technologies

Our definition of a component is compliant to the EJB and CCM definition
of component. We generalized the EJB and CCM definitions of component,
and abstract from specific technical peculiarities of these technologies. For
example, we do not specify different types of ports, such as CCM. Contrary
to EJB we do allow the possibility of several interfaces. Also we do not
distinguish between session and service type of components, since this is
not relevant for us. In our component definition a component always has
state, we do not divide components into stateful and stateless types. When
necessary, we will consider stateless component as a special type of
component for which certain issues such as state consistency between
replicas becomes trivial.

Our concepts of container, core middleware and common services are
based on and can easily be mapped to EJB and CCM/CORBA. Our
deployment interface is a generalization of the deployment descriptor, as it
exists in CCM and EJB. Our definition of component also fits the older

 RELATED WORK 37

middleware technologies RMI, CORBA and DCOM. The main differences
are that they do not have the concept of container, and do not have the unit
of deployment characteristic of our definition of component. These older
generation of middleware technologies do not enforce the encapsulation
characteristic of our component definition and allows components to
interact in other ways, such as, e.g., bypassing the middleware and calling
co-located components directly.

2.7 Related Work

The current middleware technologies, as discussed in Section 2.3, do not
support QoS, or only have a very limited support for QoS. There is research
in academia however on QoS for component middleware, which we discuss
in this section.

We limit ourselves here to work with an overall QoS approach, contrary
to related work that focuses on one QoS mechanism or one QoS
characteristic. Later in this thesis when we focus on specific QoS
mechanisms we discuss related work specific to each of those QoS
mechanisms.

QoS Modeling Language and the QoS Runtime Representation
The Quality of service Modeling Language (QML) [Frolund99] is a language
for defining QoS specifications for distributed objects. QML originates
from HP Laboratories, Palo Alto. QML has been designed to support QoS
specification in a general way, encompassing QoS categories such as
reliability, performance and security.

QML has three main language constructs that are used to construct a
QoS specification:
– Contract type – A contract type specifies the QoS category, for example

reliability or performance.
– Contract – A contract is an instance of a contract type, and represents a

particular QoS specification.
– Profile – A profile associates contracts with interfaces entities. A common

example of an interface entity is an operation.

For each QoS category, the contract type defines the QoS dimensions. A
QoS dimension expresses the values that can be used to express a QoS
contract. A dimension has a domain of values. A domain can be ordered,
i.e., in an ordered domain it is possible to compare two values and know
which value indicates a better QoS. There are three types of domains: set,
enumerated and numeric. A set is unordered, enumerated domains have a
user-defined ordering, numeric domains have a built-in ordering. For every

38 CHAPTER 2 QOS AND COMPONENT MIDDLEWARE: AN OVERVIEW

ordered dimension you can specify if it is increasing or decreasing, which
indicates whether a higher value is better or worse than a lower value. It is
possible to indicate some statistical constraints in a contract, e.g., the
latency has to be within certain boundaries in 90% of the cases.

QML supports the notion of conformance between contracts. Contract
P conforms to contract Q if contract P is stronger than contract Q. This
relieves developers of making exact matches between contract types. It is
only necessary to find an operation whose specification is at least as strong
as needed.

The QoS Runtime Representation (QRR) makes it possible to manipulate
and create QoS contracts at runtime. QRR is purely focused on runtime
manipulations of the QoS contracts, i.e., it does not prescribe how these
contracts should be enforced or monitored.

Summarizing, QML offers a language for specifying QoS contracts and
contract types, together with a runtime representation (QRR) of this
language. QML does not prescribe any specific QoS categories, QoS
dimensions or QoS contract types.

Quality Objects
Quality Objects (QuO) supports the specification of QoS contracts between
clients and service providers, runtime monitoring of contracts, and
adaptation to changing system conditions. It is based on CORBA. QuO is
developed by BBN Technologies [Zinky97, Vanegas98].

The QuO framework consists of the following components:
– A local delegate of the remote object. This delegate has the same

interface as the remote object, but it can trigger contract evaluation
upon each call and return.

– A QoS contract written in a Quality Description Language (QDL) between
client and object.

– System condition object interface, used to measure and control QoS.
When a client calls a remote method, the call is passed to the object’s local
delegate. The local delegate will then pass the call on to the remote object.
While doing so the delegate is able to record the current system conditions.
The method return will also pass through the local delegate and the delegate
is so able to evaluate whether the QoS requirements were met or if it has to
take action in order to fulfill the requirements for subsequent remote
method invocations.

At runtime, client and server interact about the level of QoS they can
provide. Clients and servers are notified of changes in QoS through callback
interfaces. The QuO architecture provides objects that define these
callbacks; the developer is responsible for implementing their behavior. The
delegates will try to modify their behavior to maintain the systems current

 RELATED WORK 39

QoS. For example, if the network throughput degrades to such a level that
they may degrade below the agreed QoS specifications, the delegates can try
to compress the data and thus to trade CPU cycles for throughput.

QDL is an extension of IDL that specifies an application's expected usage
patterns and QoS requirements for a connection to an object. The QoS and
usage specifications are at the object level (e.g., methods per second) and
not at the communication level (e.g., bits per second). A client application
can have many connections to the same server object, each with different
system properties. QDL allows the object designer to specify QoS regions,
which represent the status of the QoS agreement for an object connection.
The application can adapt to changing conditions by changing its behavior
based on the QoS regions of its object connections.

QuO has three focus areas; distributed systems that run over wide-area
networks, embedded systems and security. It considers mainly network
resources, processing resources are out of scope. A main difference
between QuO and other research in this area is the concept that the
application objects get feedback on the QoS characteristics through the
QoS regions. In most approaches the QoS mechanisms just have to fulfill
the QoS requirements, and there are no callback interfaces to inform the
application objects to what extent the agreed QoS is actually achieved.
Although with these callback interfaces QuO reduces the transparency since
it impacts the application code, it does have the benefit that the application
can adapt its behavior based on achieved QoS. The client side proxy
concept that QuO uses is more common, the main difference with other
approaches is the layered architecture that is proposed. An important issue
with respect to the client side proxy is how transparent it is for the client
developer. This is not clearly described. Also, the proxy concept can pose
significant management issues, such as how to distribute the proxies and
how to upgrade them. It is unclear how this is envisioned in QuO.

QuO is used by AQuA [Ren03], which implements fault tolerance for
CORBA by using replication.

Quartz
Quartz [Siquera00] is a research project at Trinity College in Dublin,
Ireland. Quartz translates high-level application specific QoS requirements
into low-level, resource-layer QoS parameters. It uses a three-step
translation for this. The application-specific QoS parameters are translated
into a set of generic application-level QoS parameters, which are further
translated into a set of generic system-level QoS parameters. These generic
system-level QoS parameters are balanced between the network and the
operating system, and translated into the system-specific QoS parameters.

40 CHAPTER 2 QOS AND COMPONENT MIDDLEWARE: AN OVERVIEW

The system-specific QoS parameters are specific for the resource-layer QoS
mechanisms that are used. This idea is prototyped for the CORBA
Audio/Video Service. As will be more elaborately explained in Chapter 3,
our approach is more dynamic, and does not rely on resource-layer QoS
mechanisms.

TAO
TAO [TAO] is a research C++ CORBA ORB that implements the real-
time CORBA specification. It is developed by the University of Washington
and University of California, Irvine, both in the USA. Other research
groups also use TAO for prototyping QoS mechanisms. Examples of
prototyped QoS mechanisms are a load balancing service based on
replication of stateless CORBA objects (see Chapter 5), a fault tolerance
service by Lucent called Doors [Man00B, Natarajan00], and pluggable
protocols [Kuhns99]. We discuss the relation between TAO and our work
in Chapter 3 when we discuss our approach in more detail, and in Chapter
5 we compare the TAO-based load balancing service with our load
distribution service.

MASQ
MASQ uses aspect-oriented programming ideas to weave QoS with the
application objects [Geihs01B]. This is done with the MICO CORBA ORB.
The QoS parameters and QoS interfaces are specified in a special language
called Quality IDL (QIDL). QIDL is an extension of CORBA IDL. The
QIDL definitions are a part of IDL spec, thus the functional IDL
specification cannot be implemented with different QoS characteristics.
The IDL compiler functions as the aspect weaver. The work is very
networking oriented, processing resources are not considered. There is a lot
of focus on a QoS catalog of QoS mechanisms. The published papers do not
make clear what the actual QoS mechanisms are, and how the weaving of
QoS mechanisms with the application code takes place. Because of this it is
not clear what the impact is on the application code. Examples have the
typical get_state() and set_state() operations, which would require
intimate knowledge of the application code and we do not see how a tool
could weave this automatically.

Monet
The Monet group at University of Illinois at Urbana-Champaign (US) does
research on QoS aware middleware [Nahrstedt01]. Their approach is based
on calculation of required resources using a so-called QoS compiler. The
QoS compiler compiles high level QoS requirements into low level resource
QoS mechanisms. A second characteristic of their approach is that during
run-time and based on available resources one of different preselected

 RELATED WORK 41

configurations of the application is chosen. How these configurations are
selected, how they differ and how this impacts the design or
implementation of the application is not clearly described. We discuss the
relation between this work on our work in Chapter 3 when we describe our
approach in more detail.

MULTE-ORB
The MULTE-ORB is a research orb for distributed multimedia applications
from several groups in Norway [Eliassen02]. Goals include:
– The ability to provide dynamic QoS support, meaning that users can

change their QoS requirements at any time.
– Evolution of QoS requirements, new media types and new applications

might introduce new QoS characteristics.
– Transparency versus fine-grained control, MULTE should provide high

level and lower level QoS requirements.
– To control the QoS mappings using policies.

Central in the design of MULTE-ORB is the concept of explicit binding,
which is similar to the binding concept in RM-ODP. A stream model was
developed to describe the QoS properties of a stream. Media gateways are
used within a binding to modify the format and/or QoS of a media stream,
when necessary. A trading service is used to locate a gateway with the
appropriate capabilities. MULTE-ORB is streaming focused, contrary to
the focus on operational interface we have in this thesis.

Globus
The Globus Project develops technologies needed to build computational
grids. Grids are persistent environments that enable software applications to
integrate instruments, displays, computational and information resources
that are managed by diverse organizations in widespread locations. Part of
Globus is GARA: Globus Architecture for Reservation and Adaptation
[Foster00]. GARA allows resource reservations and adaptations in the
resource allocation to enhance performance in the scientific computing
domain. Typical examples of what GARA is used for and geared at are bulk
data transport and distant visualization.

Contrary to the type of applications we consider, GARA is not remote
procedure call based. Transparency does not seem to be a major concern
for Globus. Although Globus tries to make life easier for the developer by
providing resource reservation mechanisms, it does not hide the
distribution or QoS aspects. Globus is focused on performance, not on
availability.

42 CHAPTER 2 QOS AND COMPONENT MIDDLEWARE: AN OVERVIEW

Open ORB
The Open ORB Python Prototype (OOPP) [Andersen02] is an
experimental middleware platform with QoS support for multimedia
streaming. OOPP uses structural reflection, which allows inspection of the
different parts that make up OOPP, e.g., to determine overflow of internal
buffers. OOPP also uses structural reflection to effectuate a change of
strategy if needed to achieve a certain QoS. OOPP is implemented in the
programming language Python, which has reflective features.

We assume common middleware technologies, which do not support
structural reflection. Also we focus on operation invocations, not on
streams. We will discuss the usage of reflection, and the work done on
reflection by the designers of Open ORB, in Chapter 3.

2.8 Concluding Remarks

The concepts we use in this thesis to describe component middleware are
based on RM-ODP, on Szyperski’s work on component-based development
and on current component middleware technologies. RM-ODP is a
standard for specifying distributed systems, and specifies concepts like
distribution transparency and viewpoints. Szyperski’s work on components
defines concepts such as unit of deployment and explicit context
dependencies. Current component middleware technologies such as
CORBA and EJB have concepts such as container and common services,
which are not part of RM-ODP or Szyperski’s work, but are relevant for us.
By defining our own generalized concepts, we avoid any technology
dependencies, and can apply our research results to different component
middleware technologies.

The concepts we use to describe component middleware include
component, middleware, common services, container, core middleware,
processing resources, network resources, capsule and node.

We limit QoS in this thesis to the performance and availability QoS
categories. The performance QoS category consists of the response time
and throughput QoS characteristics. The availability QoS category consists
of the availability, reliability and maintainability QoS characteristics.

Current middleware technologies have no or only limited support for
QoS and QoS differentiation. Related work in the area of QoS and
middleware, such as QML and QuO, provides only partial solutions, or is
very specific to certain application domains or middleware technologies.

Chapter 3

3. QoS Mechanisms in the
Middleware Layer

This chapter2 discusses our approach for QoS mechanisms for component-middleware-
based applications.

We identify requirements for QoS mechanisms for component-middleware-based
applications. These requirements are generic, i.e., they are independent of any specific
QoS mechanism.

Based on these requirements, we define our approach for QoS mechanisms. We
describe and compare static and dynamic approaches to QoS provisioning, and
motivate our choice for a dynamic approach. We discuss the roles of separation of
concerns and transparency in our approach. We compare middleware-layer QoS
mechanisms that rely on resource-layer QoS mechanisms and those that do not, and
motivate our choice for the second category.

We discuss QoS mechanisms that are possible within our approach, and select two
concrete mechanisms that we will focus on in the remainder of this thesis.

A major issue for the design of our QoS mechanisms is how to maximize the
transparency for the component developer who uses a QoS mechanism. We discuss
reflection, and how we can use reflection and especially message reflection to tackle this
issue. We also identify and evaluate different ways to implement message reflection in
common middleware technologies.

The approach we describe in this thesis is applied to specific QoS mechanisms in
the next two chapters. These chapters also list requirements specific for those QoS
mechanisms.

Section 3.1 contains our generic requirements for QoS mechanisms for component-
middleware-based applications. Section 3.2 describes and motivates our approach.
Section 3.3 selects two mechanisms that are the subjects for the next chapters. Section

2 Parts of this chapter have been published in papers [Wegdam00A], [Wegdam00B],
[Wegdam01C] and [Kath00], which are co-authored by the author of this thesis.

44 CHAPTER 3 QOS MECHANISMS IN THE MIDDLEWARE LAYER

3.4 discusses the usage of reflection to achieve a clear separation of concerns. Section
3.5 contains the conclusions.

3.1 Requirements for QoS Mechanisms

This section formulates requirements for QoS mechanisms for component-
middleware-based applications. A QoS mechanism enhances the QoS, and
the requirements formulated in this section define the conditions on the
behavior of the QoS mechanism, the interactions it may have with its
environment, and the conditions it poses on the application design and
implementation. The requirements listed in this section are generic, i.e.,
they are not specific for a certain QoS mechanism. Generic requirements for

QoS mechanisms We distinguish two stakeholders for a QoS mechanism, each with their
own set of requirements:
– The component developer that implements application components that

use the QoS mechanism.
– The middleware developer that implements QoS mechanism.

We first describe the requirements from the perspective of the component
developer, and then the requirements from the perspective of the QoS
mechanism developer. Each requirement is identified with a keyword that
will be used in the remainder of this thesis to refer to the specific
requirement.

Component developer’s requirements
1. Telematics - The QoS mechanisms should at least be suitable for

telematics systems. However, when possible the QoS mechanisms
should not be restricted to a specific application domain at all.
Telematics systems have these characteristics (see also Chapter 1):
– They are inherently distributed.
– The amount of users, and the usage in general, varies erratically in

time.
– The end-users have certain performance and availability expectations

that have to be met, but there are no hard, real-time requirements.
– Because of the different parties involved, there is inherent

heterogeneity in used networks, operating systems and computers.
– They are large scale.
– They process large amounts of (parallel) interactions.
These characteristics are not unique for telematics systems, other
domains with large scale distributed system have similar characteristics,
e.g., banking systems. We however pose this requirement here since the
research takes place in a telematics context.

 REQUIREMENTS FOR QOS MECHANISMS 45

2. Flexibility – Since components are subject to third-party composition,
the component developer does not know the QoS requirements for the
component he is developing. Limiting the range of QoS requirements
that can be supported limits the possibilities for third-party
composition, and for re-use in general. The choice which QoS
mechanisms are used determines the range of QoS requirements that
can be supported. This choice should be made as late as possible in the
development cycle to increase the flexibility on the QoS requirements
that can be supported. Ideally, this choice is made at run-time, and
design or implementation dependency on QoS mechanisms should be
minimized. Design and implementation dependencies cannot always be
avoided, e.g., some QoS mechanisms need access to the application
state, which has to be implemented by the component developer.

3. Time - A component developer using the QoS mechanism should spent
less time on the QoS aspects than would be the case if he did not use
the QoS mechanism. This decreases the total development time that is
needed, and a larger percentage of the development time is spent on the
application logic. To make this more precise, we split up the
development time needed for a component as follows:
 t = a + q + o
 with
 t = total development time needed to develop a component
 a = development time needed to develop the application logic
 q = development time needed to develop the QoS aspects
 o = development time needed to develop other aspects
By decreasing the development time needed to develop the QoS aspects,
the total development time needed also decreases. The time spent on
the application logic and the other aspects is not affected by using the
QoS mechanism. The responsibility of the component developer for the
QoS aspects should be limited to specifying the required QoS, and not
on enforcing this QoS. Because the component developer has to specify
the QoS, he will still spent some time on the QoS aspects. As a result of
the decrease in total development time for a component the time-to-
market decreases and the development costs decrease.

4. Expertise - A related but separate requirement from the time requirement
is that using a QoS mechanism should not require special expertise from
the component developer on the implementation of that QoS
mechanism. The time requirement already states that that component
developers should only focus on the application logic, but are still
expected to specify the QoS they need. The way the component
developer has to specify QoS however should not require expertise on
the QoS mechanism. Or put differently, any interface that a QoS
mechanism exposes to the component developer should not reveal any

46 CHAPTER 3 QOS MECHANISMS IN THE MIDDLEWARE LAYER

implementation details of the QoS mechanism. We do not want to
require the exact way to specify QoS, but below we give an example for
each of the five QoS characteristics we consider in this thesis:
– throughput – 25 invocations per second
– response time – 150 ms
– availability – 99%
– reliability – 16 days
– maintainability – 20 minutes.
A QoS mechanism that fulfills this requirement will, when used by a
component developer, decrease development costs because more
developers will be qualified to develop components.

5. Heterogeneity - The QoS mechanisms should be suitable to run in
heterogeneous environments, i.e., on different types of networks and
nodes. We want to minimize the assumptions we make on the nodes
and networks that are used, including the resource-layer QoS
mechanisms that these networks and nodes support. Minimizing the
assumptions we make on the resource layer maximizes the number of
different types of environments we can use the QoS mechanism in, e.g.,
different UNIX versions, different Windows versions, real-time and
non-real-time operating systems, non-IP networks.

QoS mechanism developer’s requirements
6. Generality - The QoS mechanisms should be generic, i.e., not be

application specific. This allows re-use of QoS mechanisms. A QoS
mechanism that fulfills this requirement can be used for a wide range of
applications, and thus enlarges the potential market for this QoS
mechanism. In fact, this requirement applies to middleware in general.

7. Common middleware - The QoS mechanisms should be applicable to
common-off-the-shelf component middleware. The QoS mechanisms
should not be specific for some research middleware, or require changes
to the middleware source code. Common-off-the-shelf middleware
represent the current consensus on what functionalities and concepts
should be supported by the middleware, which we want to extend in
our research. If we need changes to these functionalities and concepts to
be able to implement a QoS mechanism, we limit the possibilities to use
that mechanism. In addition, the impact of our research increases if this
research can be applied to popular middleware technologies, including
the possibilities to submit it for standardization. Using common
middleware allows us to better position and compare our work to other
work that is based on the same middleware technology. A last very
practical reason it that we do not want to spent a lot of effort on re-
implementing functionality that is already part of existing middleware.

 OUR APPROACH FOR QOS MECHANISMS 47

Although this requirement poses some restrictions on our design
choices, the above-mentioned benefits outweigh these restrictions.

Figure 3-1 gives an overview of the requirements and shows their origin.

QoS
Mechanisms

Legend

requirement from component developer

component
developer

QoS mechanism
 developer

requirement from QoS mechanism developer

generality

expertise

time

common middleware

telematics

flexibility

heterogeneity

name

name

Figure 3-1 The
requirements and their
stakeholder

3.2 Our Approach for QoS Mechanisms

This section defines our approach for QoS mechanisms for component-
middleware-based applications.

3.2.1 Dynamic Approach

We can divide approaches for providing QoS into static and dynamic
approaches. This is a common division, see for example this survey of QoS
architectures [Aurrecoech98], or [Molenkamp01,Foster00]. We will
introduce both approaches, then elaborate on them and discuss their
suitability for QoS mechanisms based on our requirements.

The static approach is based on calculating the required resources needed
for obtain a certain QoS, and reserving these resources for the lifetime of
the application, or session. The dynamic approach is based on monitoring

48 CHAPTER 3 QOS MECHANISMS IN THE MIDDLEWARE LAYER

the achieved QoS during run-time, and adapting the application behavior or
resource allocation if the achieved QoS does not fulfill the QoS
requirements.

Static Approach
The static approach is a commonly used approach to achieve a certain level
of QoS [Molenkamp01, Foster00, Aurrecoech98, Franken96]. In a static
approach the maximum amount of resources that would be needed to
obtain a certain level of QoS during the lifetime of an application is
calculated, and this maximum amount of resources is then reserved for the
whole lifetime of the application. In literature this approach is sometimes
called static QoS management [Aurrecoech98], sometimes reservation technique
[Foster00] or sometimes static approach [Molenkamp01]. We will use the
latter term.

Below we identify four problems with the static approach:
– Usage - To be able to calculate the required resources, an estimation on

the usage of the application is needed, e.g., the number of users, or the
number of interactions. For certain application domains, for example
single user applications or application for a fixed set of users, this might
be possible, but as stated above for the telematics type of applications
that we consider the number users can be vary erratically and is difficult
to predict.

– Resources per usage - To be able to calculate the required resources, a
quantification of the resources needed per usage, or per user, of the
system is needed. An example of usage of the system is making a
reservation for a movie, which will result in one or more remote
invocations. To calculate the amount of resources per usage requires a
lot of knowledge about the application, used systems, used programming
language, used compiler etc. This conflicts with the heterogeneity that is
inherent to telematics systems. And since this calculation is partly
application dependent the application developer will have to do part of
it, which is a burden we want to avoid. As an example, in the case of a
Java-based CORBA application, the amount of resources to send an
invocation will depend, among others, on the length of the parameters,
the type of parameters, the threading model, the settings of the garbage
collector, the used virtual machine and the operating system.

– Shared resources - A static approach requires knowledge on the usage of
the resources by other applications. In the telematics domain, resources
are typically shared, and other applications will have their own resource
needs that vary in time. The amount of resources available to one
application will thus depend on the amount of resources that other
application will use. A trivial solution is not sharing the resources, but

 OUR APPROACH FOR QOS MECHANISMS 49

this leads to underutilization of resources since typically the average
usage will be much lower than the peak usage.

– Failures - Failures are inherently unpredictable. Since with a static
approach the amount of resources is fixed, it is not possible to change
the resource allocating in case of resources failures (e.g., node failure).
This is an undesirable limitation for QoS mechanisms that enhance the
availability.

Dynamic Approach
The alternative to a static approach is a dynamic approach. A dynamic
approach does not use a fixed resource allocation, but dynamically adapts
during run-time the resource allocation and behavior of the application
based on achieved and required QoS. This dynamic approach is in literature
sometimes referred to as dynamic QoS management [Molenkamp01,
Aurrecoech98] or adaptation technique [Foster02]. We will use the term
dynamic approach.

A dynamic approach typically uses a so-called control system
[Bergmans00], in which the achieved QoS is measured and compared to
the required QoS. If the achieved QoS is insufficient, a control action is
taken to correct this. A control action could be to change the resource
allocation, or to change the application behavior.

If we apply this to QoS mechanisms to component-middleware-based
applications, we need to address the following issues:
– Monitoring functionality - The monitoring of achieved QoS requires

alterations to the application and/or to the core middleware. We want
to control the QoS as perceived by the client component, this means we
have to measure the actual QoS the client component receives. See also
[Molenkamp02] for a discussion on this. For example, suppose the
required response time should be less than 150 ms in 90% of the cases,
and always less than 300 ms. To be able to determine if the achieved
QoS fulfills this required QoS, we have to record the time that the client
component starts the invocation, and the time it receives the reply. We
can either do this at the application layer by requiring the component
developer to alter his code with timing statements, or do this in the core
middleware just before marshalling the request, and after de-marshalling
the reply.

– Control functionality - A similar reasoning also applies to the control
functionality that is required. To adapt the resource allocation and
behavior of the applications extra functionality is needed in the
middleware or application layer.

– Decide on adaptation - Although a dynamic approach does not require us
to calculate the resource needs, we do need to make some assumptions
on the resource usage to be able to decide which adaptation would

50 CHAPTER 3 QOS MECHANISMS IN THE MIDDLEWARE LAYER

improve the achieved QoS. We do not have to be able to quantify the
change in QoS for every control action, it is sufficient to know what
control action will positively influence what QoS characteristic.
Fortunately, this does allow a simple heuristic algorithm, since this does
not require specific knowledge on the application or on the resources
that are used. Should we make an adaptation that does not achieve the
desired improvement in QoS, we can correct or supplement it with new
adaptations.

– Statistical QoS requirements - The dynamic approach basically tries
different resource allocation to find one that fulfills the QoS
requirements. The problems with this are that this resource allocation
might not exists, or the heuristic algorithm might not find a suitable
resource allocation. The inability to achieve the required QoS is then
discovered during run-time. In addition, the adaptations can have a
temporarily negative effect on the achieved QoS, e.g., the migration of a
component to a node with more processing resources will make the
component temporarily unavailable. Because of this a dynamic approach
is best suitable for statistical QoS requirements in which some
percentage of the time certain QoS requirements will not be met.
Fortunately, for the telematics domain this is typically acceptable, e.g., a
temporary and small degradation in performance is acceptable. This
contrary to hard real-time systems, for which not fulfilling a QoS
requirements can have disastrous consequences, and is therefore always
considered a failure. For applications that have those hard QoS
requirements, a dynamic approach is not suitable.

Conclusion
Based on the above discussion on the static and dynamic approach, we
select the dynamic approach. The reasons for this are that a static approach
is not suitable for the telematics domain because of the difficulty to predict
usage, needed resources per usage, available resources due to the sharing of
resources and inherent unpredictability of failures. In addition, a dynamic
approach is more efficient with resources since resources are only allocated
to an application when it actually uses them (contrary to allocating the
resources for the whole lifetime of an application).

An issue with the dynamic approach is the need for monitoring and
control functionality. This functionality has to be added to the application
and/or middleware layer, and can potentially violate the flexibility, time,
expertise and common middleware requirements. To prevent violation of
these requirements, we have to provide the monitoring and control
functionality without burdening the component developer, or requiring
changes to the middleware. This is further discussed in the next subsection,
and in Section 3.4.

 OUR APPROACH FOR QOS MECHANISMS 51

3.2.2 Separation of Concerns

Separation of concerns is an important principle underlying the
construction of complex systems. The viewpoints of RM-ODP are based on
this principle. As stated in Chapter 2, a viewpoint consists of set of
concepts, structures, and rules that are different for each viewpoint. The
separation of concerns principle is used here because every viewpoint
focuses on different concerns. Also the RM-ODP distribution
transparencies are based on separation of concerns by allowing a developer
designing a distributed application not to be concerned with the details on
how this distribution is established.

Distribution transparency is the property of hiding from developers the
details and the differences in mechanisms used to overcome problems
caused by distribution (see Chapter 2). We give here two examples of how
this transparency principle is implemented:
1. Access transparency hides the differences in computer architectures and

programming languages to enable interworking across heterogeneous
computer systems. The component developer thus does not need to be
concerned with what programming language or operating system is used
by the component he wants to interact with. The component developer
however does need to be aware that the interactions are passed through
some middleware platform, and there are restrictions on these
interactions that local interactions in the same programming language
do not have. For example, in CORBA a developer has to design the
interface in IDL, and not in the programming language he is using. Also
simple types in IDL that he can use might be quite different than the
simple types in the programming language he is using. In Java RMI, the
interface design is in the Java programming language, which makes it
easier for the developer to design the interfaces, at the cost of being able
to use other programming languages.

2. Failure transparency enhances the fault tolerance by masking the failure
and possible recovery of objects. The component developer does not
need to be concerned about the types of failures that are masked by the
failure transparency. CORBA standardized fault-tolerant CORBA for
this, and thus offers failure transparency. Fault tolerant CORBA
however will always require the developer of a component that should
be recoverable to implement state access methods. The component
developer thus has to adapt his design and implementation be able to
use fault tolerant CORBA.

As the above examples show, transparency hides the details, differences and
implementation of the distribution, but the transparency has its limits. The
distribution aspects are not completely hidden. Transparency is not a

52 CHAPTER 3 QOS MECHANISMS IN THE MIDDLEWARE LAYER

boolean value, and it is possible to compare two mechanisms on their
transparency property. For example, “mechanisms A is more transparent
than mechanism B”, if mechanism A is less intrusive to the application code
than mechanisms B. We can conclude that full distribution transparency, i.e.,
fully hiding the complexities of distribution for the component developer, is
not achievable.

Full distribution
transparency

A similar reasoning can be found in [Waldo94], where it is argued that
objects that interact in a distributed system need to be dealt with in ways
that are intrinsically different from objects that interact in a single address
space.

With full distribution transparency as an unachievable goal, the
challenge is to achieve a degree of transparency that is as transparent as
possible by moving the complexity of the distribution aspects as much as
possible into the middleware. This also applies to QoS support for
component-middleware-based applications. We want to extend the existing
distribution transparencies offered by component middleware with QoS
transparencies. We define QoS transparency as the property of hiding from
application developers the details and differences of the mechanisms that
are used to achieve the required QoS for an application. The purpose of
QoS transparencies is to shift the complexities of achieving a certain QoS
for distributed systems from application layer to the supporting
infrastructure (the middleware). This definition makes QoS transparencies
a specialization of the distribution transparencies, i.e., the set of QoS
transparencies is a subset of the set of distribution transparencies (see also
Figure 3-2). Examples of QoS transparencies are load distribution
transparency and replication transparency. An example of a distribution
transparency that is not a QoS transparency is access transparency.

QoS
trans-

parencies

distribution
transparencies

Figure 3-2 QoS
transparencies and
distribution
transparencies

Using a QoS mechanism that offers some QoS transparency does not
mean that the QoS aspects of the application are hidden from the
application developer, or that the application developer can abstract from
QoS. However, he will be able to focus on the application logic embedded
in the component, and on application-layer QoS. The application developer
does not need to be concerned with the details of how the QoS is achieved
by the distribution infrastructure (middleware). It is desirable for the
application developer to have a control interface to pass the QoS
requirements to the middleware (see also our time requirement). This
interface should be at the appropriate abstraction level, and should not
require expertise of the application developer on the specific QoS
mechanisms (see our expertise requirement). However, even at the right
abstraction level, such an interface could be considered a violation of
transparency, making full QoS transparency not only unachievable but also
undesirable.

 OUR APPROACH FOR QOS MECHANISMS 53

3.2.3 Middleware-layer-internal QoS Mechanisms

Our heterogeneity requirement states that middleware-layer QoS
mechanism should minimize the dependency on resource-layer QoS
mechanisms. In this section, we discuss dependency on resource-layer QoS
mechanisms, divide middleware-layer QoS mechanisms into those that do
rely on resource-layer QoS mechanisms and those and do not, and motivate
our choice for the later category.

QoS mechanisms, independent if the are inside the middleware layer or
not, can enhance QoS by providing functionality that improves one or more
QoS characteristics, without relying on other QoS mechanism. This can be
compared to TCP layer, which adds reliability to the IP layer by resending
lost packages. The functionality that improves the QoS, in this case the
resending of lost packages, is inside the TCP layer. There are also QoS
mechanisms that rely on QoS mechanisms in a lower layer to actually
provide the functionality that enhances the QoS. An example is a QoS
mechanism that would add reliability by changing the standard Ethernet
parameter to increase the number of retransmissions.

The reason we do consider QoS mechanisms that rely on lower- layer
QoS mechanism to enhance QoS is because such a QoS mechanism does
offer a different interface to control the QoS that is typically easier to use
than the interface of the lower-layer QoS mechanism it relies on.

When we apply this distinction to middleware-layer QoS mechanisms,
we can divide these mechanisms into mechanisms that rely on the resource-
layer QoS mechanisms, and mechanisms that do not rely on resource-layer
QoS mechanisms:
– Mapping QoS mechanisms – There are middleware-layer QoS mechanisms

that map to resource-layer QoS mechanisms, e.g., pluggable protocols
[Halteren99B], QIOP [Halteren03], Monet [Nahrstedt01] and Quartz
[Siquera00]. These mapping mechanisms offer a higher level interface to
the application developer that is easier to use than the typically difficult
to use lower level interfaces that the resource-layer QoS mechanisms
provide. Mapping mechanisms also enhance the portability of the
application because the mapping-mechanisms can use several different
resource-layer mechanisms without exposing this to the component
developer.

Mapping QoS
mechanism

– Middleware-layer-internal QoS mechanisms – This are middleware-layer QoS
mechanisms that do not use resource-layer QoS mechanisms, and
instead enhance the QoS by using the functions that the middleware
provides. Example of these middleware-layer-internal middleware
category of QoS mechanisms are active replication mechanisms that
multi-cast requests to a group of replicas, or passive replication

Middleware-layer-
internal QoS mechanism

54 CHAPTER 3 QOS MECHANISMS IN THE MIDDLEWARE LAYER

mechanisms and load distribution mechanisms that direct invocations to
another node during a session.

Figure 3-3 depicts the two categories of QoS mechanisms. It shows that the
mapping mechanisms map the QoS requirements to resource-layer QoS
mechanisms, contrary to the middleware-layer-internal QoS mechanism
that do not rely on any resource-layer QoS mechanisms.

resource
layer

middleware
layer

application
layer

QoS
Mechanism

QoS
Mechanism

map QoS to lower-
layer QoS mechanism

request certain QoS

request certain QoS

request certain QoS

implement QoS
functionality

provide certain QoS

provide certain QoS

Mapping QoS Mechanism Middleware-Layer-Internal
QoS Mechanism

compo
nent

compo
nent

QoS
Mechanisms

QoS
Mechanisms

provide certain QoS

Figure 3-3 Mapping
versus middleware-
layer-internal QoS
mechanisms

Middleware-layer-internal mechanisms can be used in a wider range of
environments than mapping mechanisms because they do not require the
support of specific resource-layer QoS mechanisms. This means
middleware-layer-internal QoS mechanisms fulfill the heterogeneity
requirement.

A second benefit of middleware-layer-internal mechanisms is that they
can enhance the QoS beyond what the resource layer provides, while
mapping mechanisms are by definition limited to whatever QoS
mechanisms the resource layer provides.

Based on the above reasoning, we select middleware-layer-internal QoS
mechanisms as the focus for thesis.

The two categories of mechanisms are complementary and they can be
used together to provide the required QoS. For example, a mapping
mechanism that uses DiffServ can be used to obtain sufficient network
resources, together with an middleware-layer-internal mechanism that uses
load distribution to obtain sufficient processing resources. There can be
feature interactions issues between the mechanisms, this depends on the
mechanisms involved. This is out of scope for this thesis.

 POSSIBLE QOS MECHANISMS 55

3.3 Possible QoS Mechanisms

This section discusses what different QoS mechanisms are possible within
our dynamic, middleware-layer-internal approach. We first discuss
mechanisms that enhance the performance characteristics, and then discuss
mechanisms that enhance the availability characteristics. In addition, we
select two mechanisms that will be the focus for the remainder of this
thesis.

3.3.1 Performance Mechanisms

As stated in Chapter 2, we consider two performance related QoS
characteristics:
– response time
– throughput.
To have a basis for discussing how we could enhance these characteristics
with middleware-layer-internal QoS mechanisms, we first discuss
performance in middleware-based systems.

A remote invocation sequentially passes through the following steps:
1. client middleware – marshal the request
2. client nucleus – pass the request to the network
3. network – transport the request
4. server nucleus – pass the request to the server middleware
5. server middleware – unmarshal the request
6. component – actual processing of the request
7. server middleware – marshal the reply
8. server nucleus – pass the reply to the network
9. network – transport the reply
10. client nucleus – pass the reply to the client middleware
11. client middleware – unmarshal the reply

These steps are depicted in Figure 3-4. For a local invocation, i.e., an
invocation between components that are located on the same node, or even
in the same capsule, some of the above steps will be skipped. Since this
does not affect the line of reasoning presented here, there is no need to
distinguish this as a separate case.

56 CHAPTER 3 QOS MECHANISMS IN THE MIDDLEWARE LAYER

Legend

invocation object

 component network connectionnode

middleware

nucleus

1

2 3 4

5

6

7

8910

11

The numbers correspond to steps in the text

serverclient

Figure 3-4 Steps for a
remote invocation

The total response time is the sum of the times that each of these steps
take. The time each step takes depends on the available resources to
perform this step. The throughput depends on the available resources, but
also on the usage of parallelism of the application and the middleware. How
parallelism is used, and how this influences the throughput, depends on the
implementation of the middleware, application and nucleus.

Network Related Steps
Elaborating on the network related steps, the required amount of network
resources for a single invocation depends on the size of the request and of
the reply. The size of the request and reply depends on the size of the
parameters, plus some overhead to encode method name, identify the
target component etc. The amount of time required to send the request or
reply, depends on the amount of network resources that is allocated to the
(typically TCP) connection that is used to send them. In the normal case,
there is no QoS control mechanism to control this allocation, and the
available bandwidth is equally shared over all connections, i.e., a best-effort
network. If the network does support some QoS mechanisms, such as
IntServ [IntServ94] or DiffServ [DiffServ98], the middleware can request a
certain amount of resources, or a certain priority class, for a connection.
Commercial middleware has little or no support for network resource
reservation, but in some research or prototype middleware
implementations do support this (e.g., [Halteren01, Halteren99B]). Also

 POSSIBLE QOS MECHANISMS 57

the middleware can prioritize certain request over others, and thus
influence response times for certain requests. Prioritizing requests does not
influence overall throughput, but the throughput for certain components,
or for certain component-component interactions can be influenced.

Processing Related Steps
The processing in the client and server middleware, and the processing of
the request in the server component will require a certain amount of
processing resources. The available processing resource for this determines
the amount of time this takes. The nucleus divides the available resources of
the node over the different capsules, including the capsules the client and
server component execute in. Controlling the scheduling algorithms of the
nucleus is not possible in all operating systems, or if possible can be quite
limited. Besides, as we stated already, we do not use resource-layer QoS
mechanisms.

Within the capsules, given the amount of processing resources the
nucleus allocates to the capsule, the middleware can have its own division
and prioritization of the resources over the tasks it has to perform. This
offers possibilities at the server side where the middleware will typically
have a queue for incoming requests and assigns requests to threads to be
processed. For more background on this, see [Schmidt98] for a comparison
of multi-threading strategies in CORBA. The scheduling algorithm for
assigning requests to threads can be used to influence the response time by
prioritizing certain requests over others (for an example see Real-Time
CORBA [RTCORBA]). The most common scheduling algorithm does not
prioritize requests, but uses a first-in-first-out queue.

The scheduling algorithm is part of the core middleware, and the
middleware developer determines whether or not it is possible to control or
parameterize this scheduling algorithm. Trying to change this scheduling
behavior beyond what has been made possible by the middleware developer
requires changing the code, which would violate the common middleware
requirement.

If we assume the distribution of the components over the different
nodes as fixed, the only way to control QoS is by controlling the allocation
of the (local) resources over the components located at a certain node. As
an alternative, if we do not assume the distribution of the components to be
fixed, we can control the achieved QoS by (re)distributing components to
nodes, or over several nodes. Since the amount of available and needed
resources differs per node, we can use this to control performance. And by
distributing one component over several nodes, we increase the amount of
resources available to this component. Controlling the QoS by controlling
the distribution of the components, and thus the workload of these

58 CHAPTER 3 QOS MECHANISMS IN THE MIDDLEWARE LAYER

components, fits our approach because it does not require any resource-
layer QoS mechanism. These two approaches are complementary.

We distinguish three ways to adapt the distribution of components:
– initial placement – create the component on a node that has enough

resources available;
– migration – migrate a component to a node with more resources

available;
– replication – replicate a component to increase the amount of resource

that it has available.

We have chosen to apply our approach for QoS mechanisms to a
mechanism that is based on dynamically changing the distribution of
components over the nodes. This is the subject of Chapter 5 where we
describe our Load Distribution mechanism.

3.3.2 Availability Mechanisms

We distinguish three QoS characteristics in the availability category (see
Chapter 2):
– availability
– reliability
– maintainability.

We discuss two types of mechanisms that are possible within our approach
and improve one or more of these characteristics. The first type of
mechanisms we discuss can mask faults by creating redundancy by
replicating components. This improves availability and reliability.

The second type of mechanism improves availability by allowing a
distributed system to be reconfigured without taking it off-line. This
includes on-the-fly migration of components to other nodes, and on-the-fly
upgrading the functionality of a component. This improves maintainability,
reliability and availability.

Replication Mechanisms
Creating redundancy can prevent a fault in some part of the system to lead
to a failure of the system. This increases the uptime of a system (availability
characteristic) and the time between failures (reliability characteristic).

In the case of a component-based application, redundancy translates to
replicating components, and locating the replicas on different nodes. In
case of node or network failures, the distributed system can continue
functioning. Typically each replica is created from the same template.
Hence replication has limited protection against software faults in the
component. The replicas together form one component from the

 POSSIBLE QOS MECHANISMS 59

perspective of the rest of the distributed system. E.g., it is not visible for a
client that a server component is actually implemented as a group of
replicas. For each replica to be able to respond equally to a request of a
client, their states need to be synchronized. Only in case of stateless
components this is not required. The state synchronization requires
exposure of the state, i.e., the component developer will have to provide the
functionality to get and set the state. This is a violation of the encapsulation
of state principle of components. Breaking encapsulation to expose the
state is discussed in more detail in Chapter 4.

We distinguish two types of replication. With active replication each
replica receives and processes all requests [Halteren99B, FTCORBA]. With
passive replication only one replica, called the primary replica, receives and
processes the requests, the other replicas are passive. Should a failure occur
that affects the primary replica, one of the other replicas becomes active
and assumes the role of primary replica [Man00B, FTCORBA].

At the moment of writing, commercial middleware has little or no
facilities for replication, but literature does describe several approaches. See
[Halteren99B] for a paper on multicasting request to a group of replicas.
See [Man00B, Natarajan00] for papers on using a prototype CORBA fault-
tolerance service called Doors to implement passive replication for CORBA
Components. See [FTCORBA] for the Fault-Tolerant CORBA
specification, and [Natarajan00] for a discussion on state synchronization
and other issues involving fault-tolerant CORBA.

Dynamic Reconfiguration Mechanisms
System reconfiguration can cause a distributed system to become
unavailable. Common reconfigurations include (i) reconfigurations that
upgrade components to a newer version, and (ii) reconfigurations to (not)
use certain nodes by migrating components to other nodes. Migrations of
components can for example be needed in case a certain node has to be
taken offline.

A reconfiguration can cause the system to become unavailable, i.e., it has
to be taken offline. Even a reconfiguration on a single part of the distributed
system may cause the distributed system as a whole to be unavailable, for
example, because existing bindings between components may be broken,
and those bindings may require a complete restart of the system to be re-
established. In addition, partial restarts of the system can cause state
inconsistencies which causes incorrect behavior of the system.

A dynamic reconfiguration mechanism allows runtime reconfiguration
of a system, without causing the system to become unavailable. Dynamic
reconfiguration is sometimes also referred to as online upgrades
[Wegdam01A].

60 CHAPTER 3 QOS MECHANISMS IN THE MIDDLEWARE LAYER

We have chosen to apply our approach for QoS Mechanisms in this PhD
thesis to a dynamic reconfiguration mechanism. This is the subject of
Chapter 4.

3.4 Using Reflection

As discussed in Section 3.2.1, a dynamic approach to QoS provisioning
requires monitoring and control functionality in the application and/or
middleware layer. We refer to this monitoring and control functionality as
QoS instrumentation. The QoS instrumentation potentially violates our
flexibility, time, expertise and common middleware requirements (as
identified in Section 3.1).

QoS instrumentation

In this section, we discuss the usage of reflection techniques to cope
with the issue of separating the QoS instrumentation from the (application)
components and the core middleware.

QoS instrumentation is needed on different layers (application and
middleware), and cannot be located in separate components or even in an
additional layer. This makes QoS instrumentation a so-called cross-cutting
concern [Bergmans01, Kiczales97]. The risk with cross-cutting concerns it
that the code may end up being tangled with the code that deals with other
concerns, violating the separation of concerns principle.

Cross-cutting concern

A technique to prevent tangled code is reflection. Reflection allows us to
separate concerns by offering openness to the implementations details
[Blair98A]. Reflection can prevent code that deals with different concerns
to become tangled by handling certain concerns at the so-called meta level.
Although reflection is often applied at a programming language level, this is
not necessarily the case. In particular, reflection can be applied to
middleware-based applications to reflect on the middleware and/or
components. In addition, depending on the implementation, this does not
require access to source code.

Reflection

Reflection and Aspect-Oriented Software Development
Before elaborating on reflection, we discuss a related programming
technique that is getting more and more attention in the research
community the last few years. This is Aspect-Oriented Programming (AOP)
[Miller01], and the more general Aspect-Oriented Software Development
(AOSD). Reflection can actually be used to implement AOP [Kiczales97,
Elrad01].

Aspect-Oriented
Programming

In AOP, a component is a piece of functionality that can be cleanly
encapsulated in some programming language construct, e.g., an object or
procedure [Kiczalis97]. Components tend to be units of the system’s

 USING REFLECTION 61

functional decomposition. An aspect cannot be cleanly separated in some
programming language construct, but rather tends to be properties that
affect the performance or semantics of components in systemic ways. An
example of an aspect is synchronization of concurrent objects. Aspects are
represented in an aspect language that is different from the component
language. An aspect weaver combines the aspects and components into one
program. This is done at the join points, which are those elements of the
component language semantics that the aspects coordinate with. This
weaving can be done at compile time or at run time.

Although we could view our QoS instrumentation as aspects, which can
be weaved with the application components, we do not believe this be done
in a straightforward manner using AOSD. Especially, we did not find any
aspect language in which we could implement our QoS instrumentation,
and that can be used with common middleware (especially not in 1999 and
2000 when this part of the research took place). We therefore dismiss
AOSD as an option to develop our QoS instrumentation. However, with
AOSD techniques becoming more mature, we do consider this a potential
opportunity for the future. For example, more recent work by Filman and
others [Filman02] combines AOP with CORBA, and uses instrumented
stubs and skeletons to intercepts the request and reply (similar to
middleware interceptors, as we will discuss below). By intercepting the
requests and replies, Filman et al. are able to insert predefined aspects to
the invocation path. An aspect language controls which aspects are inserted,
and the aspect language is used to pass parameters to the aspects.

In the remainder of this section we give a more elaborate overview of
reflection, discuss the usage of a special type of reflection called message
reflection to implement QoS instrumentation, and identify and compare
different ways to implement message reflection.

Overview of Reflection
The term reflection (or meta-level programming) is generally used for
systems that have the ability to reason about them selves, using some kind
of self-representation. This reasoning is done at a meta-level where certain
aspects of the system are represented or reified as meta-objects. Reification
is the process of transforming objects from a certain level to a meta-level,
e.g., the transformation of method invocations to first-class objects [Plas99,
Blair98A, Ferber89].

Reflection offers a principled, as opposed to ad hoc, means to expose
certain implementation details [Andersen02]. It can be used for both
inspection of a system, in which certain aspect of the system are revealed,
or for adaptation in which the behavior is changed by modifying or adding a
feature. Reflection is a technique to reach more flexibility and openness.

62 CHAPTER 3 QOS MECHANISMS IN THE MIDDLEWARE LAYER

We believe that reflection is a promising way to implement QoS
instrumentation, and allows us to fulfill the flexibility, time, expertise and
common middleware requirements. The monitoring and adaptation
functionality we need can be separated from the other concerns by locating
them at the meta-level.

Reflective middleware is becoming an active area of research [Blair98A,
Blair98B, Andersen01, Wang00, Halteren99B]. The focus of this work is
on how to make middleware better configurable to be able to better adapt
the middleware to environment or specific application requirements.
Examples are changing the used protocol [Halteren99B, Wang00], or
better support for streaming [Blair98B].

We distinguish two different types of reflection. Structural reflection is
concerned with the structural dimensions of a system, such as classes,
inheritance and instantiation relationships in an OO-system. Behavioral
reflection is concerned with observing or changing the behavior of a system.
A specific form of behavioral reflection is message reflection. Message
reflection transforms a message to a meta-object. This meta-object can be
read or modified to respectively obtain information or change the behavior
of the system. This is depicted in Figure 3-5.

Figure 3-5 Message
reflection

reflection
mechanism

message

reflection

reflected message

Current middleware technologies do not support reflection, or have very
limited support for it [Blair98A]. Adding reflective capabilities to a system
will have a great impact on both design and code, and we consider it very
unlikely that this can be done without re-implementing it completely,
which violates the common middleware requirement. However, what we
can do without violating the common middleware requirement is to exploit
the fact that components exchange message, and implement message
reflection by intercepting these messages.

3.4.2 Message Reflection in Middleware

In this section, we list different methods that can be used to implement
message reflection. The issue here is to intercept the messages going into or

 USING REFLECTION 63

out of the components, and then be able to inspect and possibly alter the
message. Criteria for a good method are that it is transparent for the
application developer, the amount of overhead, the simplicity of
instantiating and managing them.

Sniffing
A very straightforward method for intercepting messages is network
sniffing. This is typically done by filtering out non-relevant TCP/IP
messages, and parsing the relevant messages to extract the relevant
information, effectively de-marshalling the requests. The obvious advantage
of this method is that it is completely non-intrusive and transparent for the
client, the server and the middleware. Disadvantages are that only messages
actually passing through the network segment will be sniffed, excluding
messages sent between clients and servers on the same host. A second
problem is that this method is only practical on a network that uses
broadcast technology, such as Ethernet. It would otherwise require a sniffer
for each host which does not scale very well. A third limitation of this
method is that it does not allow messages to be altered.

Instrumented Stubs and Skeletons
In most middleware technologies and for most distributed systems, stubs
and skeletons are generated during the development or deployment phase
by some tool provided by the middleware vendor. Stubs implement the
proxy pattern [Gamma94], and marshal method invocations, such as
parameters, at the client side into a standardized protocol format.
Skeletons do the opposite by implementing the adapter pattern
[Gamma94], and demarshal the method invocations at the server side.
Typically stubs and skeletons are generated based on a description of the
interfaces in some interface definition language. For example, in CORBA
stubs and skeletons are generated by the IDL compiler. These stubs and
skeletons can be instrumented to read or even alter messages that pass
through them. Modified stubs are sometimes referred to as smart proxies
[Wang00]. Filman et al. [Filman02] use instrumented stubs and skeletons
to implement the join points for the Aspect Oriented Programming
approach.

The main disadvantage of this method is that it is very dependent on the
specific middleware implementation. For example in CORBA there is no
standard for instrumented stubs or skeletons, although some ORBs have a
proprietary way to do this. Another disadvantage is that messages that do
not use stubs and skeletons, for example in the case of dynamic invocations
in CORBA, are not intercepted.

64 CHAPTER 3 QOS MECHANISMS IN THE MIDDLEWARE LAYER

Wrapping
Wrapping is a well-known pattern [Gamma94] to add functionality to an
existing component or object. Wrapping can be used to intercept messages
going to and from objects in a distributed application. Although dependent
on the implementation technology, the main advantage of this method is
that it is completely or at least mostly transparent to the server object. The
problem is that the client has to send requests to the wrapper object instead
of the actual object, which is especially difficult when object references are
passed between clients. This problem requires a lot of administration and
thus introduces a management issue. Also, it introduces a delay that can be
unacceptable for certain applications. But in a system with a fixed number
of objects on fixed locations this can be a good solution.

Inheritance and Delegation
At first glance, it might seem like a good idea to use implementation
inheritance to add intercepting capabilities to a component. One can
introduce a new class at the top of the inheritance tree that all other classes
inherit from, or one can do the opposite and create a subclass of a
component to do the intercepting. The first approach is not suitable for
intercepting messages without requiring major changes to the middleware,
since the instrumentation will not be in the invocation path. It can be used
to intercept lifecycle events on an object. The second approach could be a
solution, but introduces so-called inheritance anomalies [Bergmans96]. It is
also quite intrusive to the application object and requires the usage of an
object-oriented implementation language. Of course, inheritance is only be
possible for object oriented programming languages that support
inheritance, which is severe limitation. Delegation has similar disadvantages
as inheritance, especially since it is intrusive to the application object.

Composition Filters
Composition filters [Bergmans96] is a modeling concept in which the
actual object has explicit incoming and outgoing filters that can manipulate
messages, e.g., to delay or to dispatch messages. It allows separation of
concerns, and solves the problem of inheritance anomalies. It is a form of
Aspect Orientated Programming (AOP) [Elrad01A], in which certain
concerns are weaved together into a coherent program. Difference with
other AOP approaches is that with composition filters the concerns are
attached to messages, which allows the concerns to be modular extensions
to the object. Because of this composition filters are less dependent on the
implementation details of the object and more implementation language
independent than other AOP approaches [Elrad01B].

The objects that composition filters encapsulate are (typically)
programming language objects, but a component is typically implemented

 USING REFLECTION 65

as a collection of objects, thus the granularity of the composition filters is
too small. To be directly usable composition filters should have the
granularity of a component, i.e., have middleware support. Unfortunately
there is no support for it in common middleware technologies, and also
limited support for composition filters in most implementation languages.

Middleware Interceptors
Middleware interceptors can intercept requests at defined points inside the
middleware. All request are intercepted, including those between
components that are co-located, i.e., requests between components in the
same capsule. OMG standardized these type of interceptors for CORBA,
and named them request interceptors [CORBA].

Middleware interceptors can intercept in- and outgoing requests on
both the client and the server-side, resulting in a total of four interception
points, see Figure 3-6.

client side pre-invoke

client side post-invoke

server side pre-invoke

server side post-invoke

core middleware

compo
nent

compo
nent

Figure 3-6 Middleware
interceptors

The exact capabilities of the middleware interceptors depend on the
middleware technology. For example in the case of CORBA a middleware
interceptor can affect the outcome of a request by raising a system
exception at any of the interception points, or directing a request to a
different location. The target and parameters of a request can be inspected,
but not altered. Several interceptor instances can be registered for one
interception point, in which case they run in sequence. A request
interceptor can inspect and alter implicit request parameters.

Other middleware technologies offer similar interception mechanisms as
CORBA. For example COM+ [COM+] has interceptors that offers
functionality that is comparable to the CORBA interceptors [Kath00].

Since the components are unaware of the middleware interceptors, this
is a transparent solution. Depending on the middleware technology, no or
very minimal code changes are required to instantiate the interceptors.

66 CHAPTER 3 QOS MECHANISMS IN THE MIDDLEWARE LAYER

Operating System Interceptors
Operating System (OS) interceptors are positioned between the
middleware and the OS-level interface to the network. Outgoing messages
are intercepted after they leave the middleware, just before they enter the
TCP/IP library. And incoming messages are intercepted just before they
enter the middleware. This approach is used in Eternal [Narasimh99A].
The major benefit of this approach is that it is completely transparent to the
component programmer and to the middleware. There are however several
disadvantages. A major one is that since the intercepted messages are
already marshaled, the messages have to be parsed (i.e., de-marshalling) to
obtain request information (as is the case with sniffing). Besides this, the
method depends on the usage of dynamically linked libraries, and is
dependent on the OS and network. Last but not least, requests between
components that reside in the same capsule or even on the same host
cannot be intercepted, since they usually bypass the TCP/IP library.

Other
There are more interception mechanisms that are more on the
programming language level. These are unsuitable because they are linked
too much to the computational model of the programming language. The
same argument is valid for Virtual Machine type of interception
mechanisms such as the Java Virtual Machine Debugger Interface [Java], or
the Java Virtual Machine Profiling Interface [Java]. The information is also
too fined grained: we are only interested in messages that go in or out of
the components, internal method calls are not relevant for our purpose.
Filtering the relevant information is too complex and causes too much
overhead.

Comparison
We consider middleware interceptors are best currently available technique
to implement the message reflection functionality. Middleware interceptors
can intercept incoming and outgoing requests and replies. The exact
functionality depends on the used middleware technology, but each of the
current major middleware technology has a similar feature. Benefits of
middleware interceptors are that they can be added at deployment or even
run-time, they also work for components located in one capsule or on one
node, and they do not require changes in the middleware code.

This does not mean that the other interception mechanisms cannot be
used. Depending on development environment, used middleware, access to
source code and acceptable performance degradation, they may qualify as
well or even can be preferred. For example, Filman et al. [Filman02] use
instrumented stubs and skeletons, probably because this offers more

 CONCLUSIONS 67

flexibility than middleware interceptors. We will however use middleware
interceptors in our design of QoS mechanisms.

3.5 Conclusions

Requirements

Our requirements for QoS mechanisms in component middleware can be
separated in requirements from the perspectives of:
– the component developer that implements (application) components

that use the QoS mechanism, and
– the middleware developer that implements the QoS mechanism.

The requirements from the perspective of the component developer are:
1. Telematics – the QoS mechanisms should be suitable for telematics

systems, and in general for large-scale systems.
2. Flexibility – to allow third-party composition and enhance re-use, it

should be possible to decide on the usage of QoS mechanisms and the
QoS requirements as late as possible in the development cycle.

3. Time – the QoS mechanisms should require little development time to
use them.

4. Expertise – the QoS mechanisms should require little expertise on the
complexities of enforcing QoS from the component developer.

5. Heterogeneity – it should be possible to use the QoS mechanisms on a
large variety of different types of node and networks.

From the perspective of the developer of the QoS mechanisms the
requirements are:
6. Generality – the QoS mechanisms should be application independent,

and thus be useable for a wide range of applications.
7. Common middleware – the QoS mechanisms should be useable together

with common middleware technologies.

Dynamic Approach
A static approach towards QoS provisioning is based on calculating the
required resources needed for obtaining a certain QoS, and reserving these
resources for the lifetime of the application or session. A dynamic approach
is based on monitoring the achieved QoS during run-time, and adapting the
application behavior or resource allocation if the achieved QoS does not
fulfill the QoS requirements.

68 CHAPTER 3 QOS MECHANISMS IN THE MIDDLEWARE LAYER

We select a dynamic approach for our QoS mechanisms. The reasons
for this are that a static approach is not suitable for the telematics domain
because of the difficulty to predict usage, needed resources per usage,
available resources due to the sharing of resources and inherent
unpredictability of failures. In addition, a dynamic approach is more
efficient with resources since resources are only allocated to an application
when it actually uses them (contrary to allocated the resources for the
whole lifetime of an application).

Separation of Concerns
Central in our approach in our aim for a strict separation of concerns,
where we want to minimize the involvement of the component developer in
the complexities of QoS provisioning. The role of the component developer
is ideally limited to providing QoS requirements. We proposed to extend
the distribution mechanisms as they are now provided by middleware
technologies with new QoS transparencies. These QoS transparencies hide
the complexities of the QoS provisioning from the component developer.

Middleware-layer-internal QoS Mechanisms
We can divide middleware-layer QoS mechanisms into mapping and
middleware-layer-internal QoS mechanisms based on whether or not they
rely on resource-layer QoS mechanisms. Mapping QoS mechanisms are
middleware-layer QoS mechanisms that map to resource-layer QoS
mechanisms. Middleware-layer-internal QoS mechanisms are middleware-
layer QoS mechanisms that do not use resource-layer QoS mechanisms, and
instead enhance the QoS by using the functions that the middleware
provides.

Middleware-layer-internal mechanisms can be used in a wider range of
environments than mapping mechanisms because they do not require the
support of specific resource-layer QoS mechanisms. In addition,
middleware-layer-internal mechanisms can enhance the QoS beyond what
the resource layer provides, while mapping mechanisms are by definition
limited to whatever QoS mechanisms the resource layer provides.

Dynamic Reconfiguration and Load Distribution
There are different types of QoS mechanisms possible within our approach.
We choose to apply our approach to a dynamic reconfiguration mechanism
(which improves availability), and to a load distribution mechanism (which
improves performance). These mechanisms will be the focus on the
remainder of this thesis.

 CONCLUSIONS 69

Message Reflection
Message reflection can help us with one of the main challenges of our
research: how to implement the monitoring and adaptation functionality
that is required for our QoS mechanisms and still have a strict separation of
concerns. Based on an evaluation and comparison of different ways to
implement message reflection, we consider middleware interceptors as the
best way that is currently available to implement message reflection.

Chapter 4

4. Dynamic Reconfiguration

This chapter3 describes a QoS mechanism that improves the availability characteristics
of a distributed system by making it possible to create, upgrade, migrate or remove
components at run-time.

This chapter is structured as follows: Section 4.1 presents our model of dynamic
reconfiguration, a new classification of approaches to dynamic reconfiguration and
definitions of concepts and terminology in the area of dynamic reconfiguration. The
model, classification, concepts and terminology presented in Section 4.1 are used in
Section 4.2 to present, evaluate and compare the state-of-the-art in the area of
dynamic reconfiguration, both approaches that are middleware based and approaches
that are not middleware based. Section 4.3 discusses our middleware-based mechanism
for dynamic reconfiguration, and compares our mechanism to the related work. Section
4.4 presents a high level design of our Dynamic Reconfiguration Service, which
implements our mechanism. Section 4.5 presents the major conclusions of this chapter.

A description of the prototype of the Dynamic Reconfiguration Service can be found
in Chapter 6.

4.1 A Model of Dynamic Reconfiguration

This section develops a model of dynamic reconfiguration that we adopt in
this theses and a classification of approaches to dynamic reconfiguration. In
addition, we give an overview of important concepts and terminology that
are used in the area of dynamic reconfiguration. We discuss the importance
of consistency preservation, and the three consistency preservation
requirements: structural integrity, mutually consistent state and application

3 Parts of this chapter have been published in the papers [Almeida01A], [Almeida01B] and
[Wegdam03A], which are co-authored by the author of this PhD thesis, the Lucent
Technologies' response [Wegdam01A] to OMG’s Request For Information on Online Upgrades
and in a master thesis that was supervised by the author of this PhD thesis [Almeida01C].

72 CHAPTER 4 DYNAMIC RECONFIGURATION

state invariants. We conclude this section by discussing the impact of
reconfiguration on execution.

4.1.1 Introduction

The aim of dynamic reconfiguration [Bidan98, Bloom93, Endler94,
Hofmeister93, Kramer85, Kramer90, Goudarzi99, Oreizy98, Wermel99] is
to allow a system to evolve incrementally from one configuration to another
at run-time, as opposed to at design-time, while introducing little (or
ideally no) impact on the system’s execution. In this way, systems do not
have to be taken off-line, rebooted or restarted to accommodate changes.

The reconfiguration will have some impact on execution. Typically at
least part of the system will be suspended during the reconfiguration, thus
potentially violating some performance requirements. It depends on the
QoS requirements and the extent of the impact whether this will be
considered a disruption. In case the impact of a reconfiguration is such that
it is not considered a disruption of the system, dynamic reconfiguration
improves the reliability (mean time between failures or disruptions) and
availability (uptime) QoS characteristics (see Chapter 2 for definition of
these QoS characteristics). And even if the impact on execution of a
reconfiguration is such that that this is considered a disruption, this
disruption will typically be much shorter than a complete restart of the
system. So also in this case dynamic reconfiguration improves availability
and maintainability (time to repair) QoS characteristics. We will discuss the
impact on execution of a dynamic reconfiguration more elaborately later
this chapter.

4.1.2 Process and Activities Overview

The purpose of dynamic reconfiguration is to make a system evolve
incrementally from its current configuration to another configuration
without disrupting the system. A system configuration is defined as a set of
software entities, and how they are related to each other. The definition of
entity depends on the level of granularity of reconfiguration. Examples of
entities include objects, groups of objects, components, groups of
components, sub-systems, modules, bindings and groups of bindings.
Reconfiguration is specified in terms of entities and operations on these
entities. Typical operations on entities are replacement, migration, creation
and removal. Dynamic reconfiguration should introduce as little impact as
possible (ideally no impact at all) on the system execution.

Figure 4-1 depicts our dynamic reconfiguration model. This model is
based on [Kramer85, Kramer90].

 A MODEL OF DYNAMIC RECONFIGURATION 73

Reconfig.
Design

Activities

Reconfig.
Management

Running System
(Configurationnew)

Running System
(Configurationold)

Designold Designnew

Configuration
Informationnew

Configuration
Informationold

Reconfiguration
Specification and

Constraints

Legend:

information

activities

system

input-output

corresponds to

Figure 4-1 Model of
Dynamic
Reconfiguration

In this model, reconfiguration design activities are the activities that prepare the
reconfiguration. The reconfiguration design activities have as input the old
design, the new design and configuration information on the current
system. Configuration information refers to the relationship between entities.
The reconfiguration design activities produce updated configuration
information, and the specification of well-defined changes and constraints
that have to be preserved during reconfiguration. Changes are specified in
terms of entities and operations on these entities, and are applied under the
control of reconfiguration management functionality. Reconfiguration
constraints are predicates on the reconfiguration process that restrict its
execution, e.g., “the reconfiguration process must be completed within
10s”, or “entity A should be available during the whole reconfiguration
process”.

Reconfiguration management functionality [Kramer85, Goudarzi99,
Oreizy98] controls the reconfiguration process of a distributed system. This
functionality makes the system evolve from its current configuration to a
new configuration. It has as input the current system and its configuration

74 CHAPTER 4 DYNAMIC RECONFIGURATION

information, and the reconfiguration specification and reconfiguration
constraints. It produces the new system, and updated configuration
information.

The reconfiguration management functionality must guarantee that (i)
specified changes are eventually applied to a system, (ii) a (useful) correct
system is obtained, and (iii) reconfiguration constraints are satisfied.

Reconfiguration Design Activities
Reconfiguration (or change) design activities are part of the design activities
that are executed during the lifetime of a system, and relate to a specific
reconfiguration. These activities succeed system deployment, in case of
unforeseen changes, and precede the application of a reconfiguration to a
system. They are performed by reconfiguration (or change) designers.

Reconfiguration designers make use of the initial system configuration
and the new configuration, identifying modifications introduced, to
produce a well-defined set of changes to be applied to a system.

Changes are specified in terms of entities and operations on these
entities. The definition of entity depends on the level of granularity of
reconfiguration. Examples of entities include objects, groups of objects,
components, groups of components, sub-systems, modules, bindings and
groups of bindings. Examples of operations on entities are replacement,
migration, creation and removal.

The procedures for obtaining a new system configuration are beyond the
scope of this work. These procedures are performed subsequently to design
activities and may include transformations on the initial system, re-
specification, re-design and re-implementation, re-validation, re-test of
parts of the system, acquisition and integration of new system parts, etc.

4.1.3 Correctness

Operating systems, middleware platforms and programming languages have
mechanisms that facilitate system evolution, by allowing modules to be
located, loaded and executed during run-time. However, these mechanisms
normally do not ensure correctness, or desired properties of run-time
change. Therefore, the sole use of these mechanisms to perform
reconfiguration is error-prone [Oreizy98].

Performing reconfiguration on a running system is an intrusive process
[Goudarzi99]. Reconfiguration may interfere with ongoing interactions
between entities. Reconfiguration management must assure that system
parts that interact with entities under reconfiguration do not fail because of
the reconfiguration.

Preservation of system consistency is a major reconfiguration
requirement. A system can become useless in case the preservation of

 A MODEL OF DYNAMIC RECONFIGURATION 75

consistency is ignored. The system under reconfiguration must be left in a
“correct” state after reconfiguration. In order to support the notion of
correctness of a distributed system, three aspects of correctness requirements
are identified [Goudarzi99]. A system is said to be correct state if:

Correctness

1. The system satisfies its structural integrity requirements,
2. The entities in the system are in mutually consistent states, and
3. The application state invariants hold.

A resulting running system Si+1 is said to be a correct incremental evolution
of a running system Si, if Si+1 is in correct state, and if the behavior of the
affected entities complies with the behavior expected by the unaffected
system parts in case the reconfiguration had not taken place. Each aspect of
the correctness notion is addressed in the remainder of this section.

Structural Integrity
Structural integrity requirements constrain the structure of a system, i.e., they
constrain how entities are related [Gouradzi99].

Reconfiguration may affect the structural integrity of the whole system,
so that corrective measures must be taken. For example, let us consider the
replacement of one component by a new version of this component in a
component-middleware-based system. Clients of the component being
replaced should be capable of invoking the operations of this component
during reconfiguration and after reconfiguration has taken place. This
implies that two conditions on the structural integrity of the system must
hold: (i) the new version of the component must satisfy the interface
definitions of the original component, and (ii) the clients should have a
valid reference to the new version of the component.

Mutually Consistent States
Entities in a distributed system need to be in mutually consistent states if
they are to interact successfully with each other. Entities are said to be in
mutually consistent states, if each interaction between them, on completion,
results in a transition between well-defined and consistent states for the
parts involved [Goudarzi99]. Interactions are the only means by which
entities can affect each other’s state.

For example, in a system with two components, component A invokes
an operation on B. Components A and B are said to be in mutually
consistent states if A and B have the same assumptions on the result of the
interactions between them. To be more specific, either both of them
perceive that an invocation has occurred successfully, or both of them
perceive that the invocation has failed. Suppose the change manager decides
to replace B by B’ after A initiated an operation invocation on B. For the
resulting system to be in a consistent state, either (i) the invocation is

76 CHAPTER 4 DYNAMIC RECONFIGURATION

aborted, A is informed and synchronization is maintained; or (ii) B receives
the request, finishes processing it and sends the response, and then is
replaced by B’; or, (iii) B is replaced by B’, and B’ has to honor the
invocation, by processing the request and sending a response to A. In case
none of these alternatives occur, A might be waiting forever for a response.

Reconfiguration approaches provide mechanisms to transform systems
with entities in mutually consistent states into resulting systems that
maintain this mutual consistency. This is done by defining a reconfiguration-
safe state (or shortly safe state) in which reconfiguration can be applied while
maintaining mutual consistency. Figure 4-2 shows a classification of
reconfiguration approaches according to their choices regarding the
preservation of mutual consistency.

Reconfiguration-safe
state

Figure 4-2
Classification of
reconfiguration
approaches

do not preserve
mutual consistency

preserve some kind of
mutual consistency

detected safe statedriven safe state

abort interactions do not abort interactions

complete ongoing interactions
before actually applying

reconfiguration

complete ongoing
interactions after

reconfiguration is completed

reconfiguration approaches

In this classification, approaches that preserve some form of mutual
consistency fall into two categories: the ones that reach the reconfiguration-
safe state by observing the system execution, and the ones that reach the
reconfiguration-safe state by driving the system to it. In the former case, the
reachability of the safe state depends on the behavior of the application. For
systems in which entities may interact continuously because of parallel
interactions that are interleaved, there is no guarantee that reconfiguration

 A MODEL OF DYNAMIC RECONFIGURATION 77

will ever take place. If at all times there are interactions in progress,
reconfiguration is postponed indefinitely. In case the system is driven to a
safe state, it is the role of the reconfiguration algorithm to guarantee the
reachability of the safe state.

Existing approaches that work with a driven safe state fall into two major
categories [Goudarzi99]: those in which during reconfiguration interactions
are aborted and that rely on entities to recover from abortions, and those
which avoid interactions to be aborted. Mechanisms based on interaction
abortion (e.g., [Bloom93]) require the application developer to provide
rollback mechanisms to recover from abortions without proceeding to
errors. Therefore, the range of applications to which these mechanisms can
be used is quite limited.

Abortion-based
approaches

Mechanisms that do not abort interactions are designed to assure that
interactions in progress are eventually completed, either before
reconfiguration has started or after reconfiguration has finished.
In case of an approach in which ongoing interactions are interrupted
(suspended) and completed (resumed) when reconfiguration has finished,
the application developer has to implement functionality to restore the
control state of the reconfigured entities, allowing the interrupted
interactions to continue after reconfiguration. This control state typically
includes the state of the invocation stack, program counter or thread
context information. This information is closely tied to specific
characteristics of the implementation code, and it is typically language- and
operating system-dependent. The mapping of the control state from one
implementation to the implementation of the new version would require
deep knowledge of both implementations and would hardly be manageable
by the reconfiguration designer. Therefore most approaches to
reconfiguration do not consider this alternative. An exception is
[Hofmeister93].

In this chapter, we propose an approach that drives the system to a safe
state without aborting interactions and that allows ongoing interactions to
complete before reconfiguration is applied. This mechanism is discussed in
Section 4.3.

Application-State Invariants
Application-state invariants are predicates involving the state (of a subset) of
the entities in a system. The preservation of safety and liveness properties of
a system depends on the satisfaction of these invariants [Goudarzi99].

For example, let us consider a component that generates unique
identifiers. An application-state invariant could be “all identifiers generated
by the component are unique within the lifetime of the system”. In order to
preserve this invariant, the new version of the component must be
initialized in a state that prevents it from generating identifiers that have

78 CHAPTER 4 DYNAMIC RECONFIGURATION

been already used by the original version. So, either (i) the set of all used
identifiers is provided to the new version of the component, or (ii) the last
used identifier is provided to the new version of the component. The latter
alternative would require knowledge of the assignment mechanism used by
the original version.

If dynamic reconfiguration is to be useful in a broad range of scenarios,
it ought to provide mechanisms to allow the re-establishment of
application-state invariants.

Most existing reconfiguration approaches rely on embedding the extra
functionality for dealing with invalidated invariants into reconfigurable
entities [Goudarzi99]. In this way, the responsibility to re-establish
application invariants is solely delegated to application entities, which must
determine what course of actions is needed to re-establish application
invariants. For example, in Conic [Kramer90], application designers are
required to supply modules with embedded routines (initialization and
finalization) that are called whenever a reconfiguration operation is
executed. The complexity of these routines depends largely on the nature of
the application.

As pointed out in [Goudarzi99], this approach has serious drawbacks.
Due to the generality of possible changes to a system, individual entities are
rarely in a position to determine the course of actions to re-establish
application-state invariants. This is especially true when, as is often the case,
invariants are expressed over the combined state of a number of entities of
the system.

Application entities that are developed to re-establish application-state
invariants are likely to lose their potential generality, since they embed
configuration specific concerns that prevent them from being used in other
configurations. This is hardly acceptable since it reduces the potential for
re-use and third-party composition.

Since embedding the necessary functionality to deal with invalidated
invariants into application entities is undesirable, the support platform
should provide mechanisms for change designers to specify how to re-
establish application-state invariants.

[Goudarzi99] proposes a scheme whereby invalidated invariants can be
identified and re-established by the change designer with little assistance
from the application developer. This scheme consists of requiring
reconfigurable entities to provide general-purpose state access-methods that
can be invoked by a third party to query or adjust the state of entities.
These are called state-access methods, and would be invoked by the change
designer to query and alter a selected subset of an entity’s internal state at
runtime. The particular subset of the state that is exposed by these access-
methods is decided upon by the application designer. In general, entities

 A MODEL OF DYNAMIC RECONFIGURATION 79

should provide “get” and “set” methods for state variables that control
synchronization and computational behavior of the entity. One might argue
that this scheme breaks encapsulation, as it allows external access to a
component’s internal state. Nevertheless, some form of introspection is
necessary anyway for the manipulation of run-time aspects of an entity.

The nature of the safe state, as discussed in the beginning of this section,
should be such that in the safe state the invocation of state-access methods
yields meaningful results. Thus, a reconfigurable entity in a reconfiguration-
safe state must have a consistent, self-contained state that can be accessed
from outside the entity.

4.1.4 Impact on Execution

Reconfiguration is an intrusive process, since during reconfiguration, some
system entities may temporarily become partially or totally unavailable,
which can affect the performance of the system as a whole. Determining to
what extent a system is affected during reconfiguration is relevant to assess
the risks and costs in performing dynamic reconfiguration. If the system
during reconfiguration fails to satisfy some QoS requirements (e.g., hard
response times), it may not be feasible to reconfigure during run-time. For
instance, dynamic reconfiguration may be shown to be unacceptable due to
safety reasons. This may be the case for process control, where a failure to
perform a critical activity within a bounded time can put people’s lives in
danger.

The quantification of the impact of reconfiguration on system execution
is not trivial. Some reconfiguration approaches [Kramer85, Goudarzi99]
quantify the impact on system execution as proportional to the number of
system entities affected by reconfiguration. These entities become idle or
partially idle due to reconfiguration and would otherwise execute normally.
In [Bidan98] a more fine grained quantification is proposed in which
impact is said to be minimal if the reconfiguration affects the smallest
possible set of execution threads in system objects. In [Wermel99], it is
argued that more attention should be given to the period of time during
which system entities are affected by reconfiguration.

Application characteristics are important when evaluating the impact of
reconfiguration on execution. The impact of reconfiguration, and which
reconfiguration algorithm would result in the least impact, cannot be
evaluated if we do not consider, for example, the level of coupling between
system parts and the duration of the interactions between these parts.

In order to better understand the implications of application
characteristics to system execution during reconfiguration, let us consider
an application where interactions might take up to some hours to complete.
Further, let us consider the replacement of an entity that has just initiated

80 CHAPTER 4 DYNAMIC RECONFIGURATION

an interaction, using a reconfiguration approach based on a driven safe
state. If we choose for an approach that allows on-going interactions to
complete before reconfiguration, the reconfiguration will have a large
impact on system execution, as it might take hours before the safe state is
reached. During this time period, the affected system parts may not initiate
new interactions, which might prevent the rest of the system from
functioning. In contrast, if we choose an approach that aborts interactions,
the reconfiguration time can be reduced drastically.

Ultimately, the maximum acceptable level of disturbance on the QoS
during reconfiguration is determined by the QoS requirement of the
application.

4.2 State-of-the-Art in Dynamic Reconfiguration

This section describes some available approaches to dynamic
reconfiguration reported in the literature, extending the survey presented in
[Goudarzi99]. The selected approaches preserve mutual consistency
without aborting interactions and strive to minimize impact on system’s
execution.

For each approach we present its overall considerations on
reconfigurable distributed systems, as well as the way it structures
reconfiguration functionality, and its specific mechanisms to guarantee
correctness of the resulting system. We give special attention to the level of
transparency for the application developer, including the configuration
information required to allow reconfiguration.

We do not cover the following approaches further in this section, but we do
mention them here for completeness:
– [Rodriguez99] describes how the interpreted language Lua can be used

in combination with CORBA Dynamic Invocation Interface and the
Dynamic Skeleton Interface as a substitute to declarative configuration
files to control the linking between clients and servers. The actual
CORBA objects can be programmed in more conventional compiled
languages. Also minor changes in the interfaces are possible without
recompilation, e.g. to change a parameter from short to long. None of
the consistency guarantees are discussed, and this thesis does not cover
run-time reconfiguration. We will therefore not consider it further.

– [Hofmeister93] proposes an approach in which the state of a module
that has to be reconfigured can be captured even if the module is not in
a quiescent state, i.e. it is possible to have active threads and ongoing
interactions. Because of the required access to the low-level control

 STATE-OF-THE-ART IN DYNAMIC RECONFIGURATION 81

state (e.g., stack and heap), and the intrusiveness to the application
code, we do not consider this approach further.

4.2.1 Kramer and Magee

The early work of Kramer and Magee [Kramer85, Kramer90] has
influenced the subsequent works of many others on dynamic
reconfiguration. The concepts and terminology presented in Section 4.1
stem mostly from their work. Kramer and Magee promote a strict
separation between the structural description of a system and the
description of individual nodes. The first realization of their approach could
be seen in the Conic environment [Kramer85], and led to the development
of the approach called Configuration Programming and a configuration
language named Darwin [Magee95].

In the Configuration Programming approach, a system is seen as a directed
graph consisting of nodes and connections between the nodes. A node is
defined here as a processing entity. The model assumes at most one
connection between any pair of nodes. Nodes can only affect each other
states via transactions. A transaction is defined in this approach as an
instance of information exchange between two and only two nodes,
initiated by one of the nodes, and consisting of a sequence of one or more
message exchanges between the two connected nodes. The model also
assumes that transactions complete in bounded time and that the initiator
of a transaction is aware of its completion. Figure 4-3 shows an example of a
simple system, in which nodes A1, A2 and A3 are able to initiate
transactions on a node B.

A1

A2

A3

B

Figure 4-3 A simple
system

In this approach, a change is described in terms of modifications to the
structure (configuration) of the application system. Changes take the form
of node creation and deletion, and connection establishment and removal,
and are applied by a Configuration Manager.

Reconfiguration-Safe State
This approach has been the first to propose an avoidance-based mechanism
to ensure that reconfigurations do not result in mutually inconsistent node
states.

Kramer and Magee’s approach uses the description of the changes and
the current system configuration:
1. to identify the set of nodes whose activities must be restricted if

reconfiguration is to proceed without leaving them in mutually
inconsistent states, and;

82 CHAPTER 4 DYNAMIC RECONFIGURATION

2. to instruct these nodes to restrict their behavior by becoming passive, so
that the reconfiguration safe state is brought about over the affected
nodes.

In this approach, node interactions are bounded transactions which are
assumed to be the only means through which connected node can affect
each other’s states. Both parties involved in a transaction are informed of its
completion. A transaction t is said to be dependent on the consequent
transactions t1, t2,… tn (written t/t1t2..tn), if t can complete only after t1,
t2,… tn complete, and independent otherwise. This approach supports
reconfiguration in systems with independent and dependent transactions.

Dependent and
independent
transactions

Reachability of the Safe State
The safe state for reconfiguration is reachable in finite time. This is
discussed below for systems with only independent transactions and then
generalized for systems with dependent transactions.
For systems with independent transactions a node is said to be in the passive
state if it: Passive state

a) continues to accept and service transactions, but
b) does not initiate new transactions, and
c) any transactions it has already initiated have completed.

A node reaches the passive state by refraining from starting new transactions
and waiting for all the transactions it has started to terminate. A node is said
to be passive if it is in a passive state. Passive nodes are not necessarily in a
reconfiguration safe state, since they continue to accept and service
transactions. Therefore, the notion of quiescence is relevant. A node is said
to be quiescent if it is passive, and

Quiescent d) it is not currently engaged in servicing any transactions (self
initiated or otherwise), and

e) no transactions have been or will be initiated by other nodes which
require service from this node.

The passive state can be brought about by nodes unilaterally. The quiescent
state, in contrast, can only be brought about by nodes in cooperation with
other nodes in the system. A node N becomes quiescent if and only if all
nodes in its passive set PS, denoted PS(N) are in the passive state. For
systems with only independent transactions, the membership of PS(N) is as
follows:

a) the node N, and
b) all nodes that can directly initiate transactions on N, i.e., all nodes

directly connected to N.

 STATE-OF-THE-ART IN DYNAMIC RECONFIGURATION 83

If all nodes in PS(N) are passive, N as well as all nodes that can initiate
transactions on N are passive. Therefore, all transactions involving N are
complete and new transactions will not be initiated, satisfying the
quiescence requirements d) and e). As the approach assumes transactions to
complete in bounded time, it follows that quiescence is reachable within
bounded time.

For systems with dependent transactions the situation is more complicated
and the definition of passive and PS(N) need to be amended to allow for
the initiation and service of consequent transactions. Consider the system
depicted in Figure 4-4, consisting of three nodes N1, N2 and N3. Suppose
that N3 is in the passive state and N1 has initiated transaction a. In this
situation, transaction a cannot complete because it depends on consequent
transaction b. Transaction b cannot complete because it depends on a
consequent transaction c, which N3 cannot initiate since it is passive. This
means that neither N1 nor N2 will be able to move into the passive state if
we would apply the algorithm as suggested above.

N1 N2 N3

b/c

c

a/b

Legend

node

a

a/b

connection with independent transaction a

connection with transaction a,
where a depends on the consequent transaction b

passive

Figure 4-4 A system
with dependent
transactions.

To ensure the reachability of the passive state and consequently the
reachability of the quiescent state for systems with dependent transactions,
the requirements of the passive state have been modified as follows. For a
system with dependent transactions a node is said to be in the passive state
if it:

a) continues to accept and service transactions and initiate
consequent transactions, but

b) does not initiate new (non-consequent) transactions, and
c) any (non-consequent) transactions it has already initiated have

terminated.

84 CHAPTER 4 DYNAMIC RECONFIGURATION

The set of passive nodes is extended to include all the nodes which are
capable of initiating transactions indirectly on N. The enlarged passive set
for a node N is called EPS(N) and is defined as follows:

a) all nodes in PS(N) are in EPS(N), and
b) all nodes that can initiate dependent transactions that result in

consequent transactions on N are in EPS(N).

This extension guarantees that node N reaches a quiescent state in finite
time.

Reconfiguration Rules
So far, we have discussed how nodes can reach quiescent states.
Nevertheless, we have not discussed which set of nodes should be in the
quiescent state for reconfiguration. In Kramer and Magee’s approach,
reconfiguration actions are node deletion, node linking and unlinking, and
node creation. For each of these actions, reconfiguration rules in Table 4-1
apply:

Actions Rule and justification

Node removal Rule - The node targeted for removal must be
quiescent and isolated, where isolated means that
no connections are directed to it from other
nodes or from it to other nodes.

 Justification - An isolated node cannot affect the
system and therefore can be independently
removed.

Node linking and unlinking Rule - The node N from which the connection is
directed must be in the quiescent state.

 Justification - Quiescence of the initiator node
ensures that its state is consistent and frozen with
respect to that connection, and all transactions
involving this node are complete.

Node creation Rule - The node should be quiescent.

 Justification - Trivially true, a newly created node
is initially isolated and can neither respond to nor
initiate transactions.

Table 4-1
Reconfiguration rules
and justification.

Using these rules it is possible to obtain the order in which nodes should be
made passive, removed, created, connected and disconnected. Kramer and
Magee also define an algorithm that allows multiple reconfiguration
operations to be conducted simultaneously (see [Kramer90]).

Some criticisms to Kramer and Magee’s approach are:

 STATE-OF-THE-ART IN DYNAMIC RECONFIGURATION 85

– It places a heavy burden on the application programmer who must write
all nodes of the system such that they respond correctly to the command
to drive to a passive state [Bidan98, Goudarzi99]. Kramer and Magee’s
approach thus requires substantial effort from the application developer
to make the system reconfigurable, and it also requires expertise from
the application developer. This respectively violates the time and
expertise requirements, as identified Chapter 3 (generic requirements
for QoS Mechanisms).

– Since all entities capable of initiating a transaction directly or indirectly
with an affected entity have to be passive to reach the safe state, even
small reconfigurations involving a few nodes result in substantial
disruptions to the system [Goudarzi99, Wermel99].

– The re-establishment of application invariants is done through routines
embedded in nodes [Goudarzi99].

4.2.2 Goudarzi

In [Goudarzi99], Moazami-Goudarzi proposes a framework that identifies
the basic elements of a change management subsystem and establishes a
separation between the responsibilities of the objects that implement this
subsystem. The framework consists of a Reconfiguration Manager, a
Reconfiguration Database, the Consistency Manager and a number of
runtime hooks in the application.

The Reconfiguration Manager selects and executes reconfiguration
scripts upon the arrival of triggering messages from an Event Composition
Service. The Reconfiguration Manager coordinates the execution of the
scripts with the Consistency Manager and Configuration Database, such
that reconfiguration operations do not interfere with each other and leave
objects in mutually consistent states.

The Consistency Manager encapsulates the safety mechanism necessary
to ensure that objects are left in mutually consistent states after
reconfiguration. Thus reconfigurations only proceed after the Consistency
Manager has been consulted and has signaled that they can proceed safely.

The Configuration Database maintains and affects changes to the system
configuration. It exports an interface that can be used to query and modify
the system configuration. Interactions with the Configuration Database are
transaction-based and are performed through an internal concurrency
control module that coordinates concurrent access to the system
configuration.

The Event Composition Service evaluates the triggering conditions
written by the change designers and generates messages that trigger the
execution of the reconfiguration scripts. In this framework, reconfiguration
scripts are written in a reconfiguration language.

86 CHAPTER 4 DYNAMIC RECONFIGURATION

The re-establishment of the application invariants is controlled from
within the reconfiguration program, with the aid of specialized runtime
hooks.

Preserving Consistency
Moazami-Goudarzi’s approach presents an alternative to Kramer and
Magee’s approach to reach a reconfiguration safe state. It assumes that
objects in the system do not interleave transactions, i.e., while a transaction
is in progress, an object does not participate in any new one. In this way, it
is possible to drive an object to a quiescent state by blocking its execution
when no transactions are being serviced. As in Kramer and Magee’s
approach, for an object to block within finite time (therefore reaching
quiescence), transactions are assumed to complete within finite time.

The basic algorithm is to request objects in the quiescent set (called
BSet, short for blocking set) to block their execution. Consider that an
object Q is to be driven to the quiescent state. Since some of the objects
that depend on Q may also have to block, Q must temporarily unblock to
service some requests. However, the mechanism must guarantee that at
some point no more such requests arrive and Q remains blocked.
Therefore, a blocked object should be selective when serving transactions. A
blocked object cannot process just any incoming transaction, since the
transaction might come from an object that is not affected by the
reconfiguration and thus is not blocked and allowed to initiate a new
transaction any time. If all incoming transactions would be processed, a
blocked object would unblock unpredictably and the safe state needed for
reconfiguration to begin would never be reached. At least the transactions
initiated by other BSet members will have to be serviced in order for them
to become blocked. However, not every request from a non-BSet member
can be ignored, since this might indirectly prevent another object in the
BSet from blocking.

Figure 4-5 gives an example of a situation in which blocked object N1
does not accept incoming transaction c from non-blocked object N4, but
has to accept an incoming transaction b from non-blocked object N3.
Transaction b has to be processed because transaction a depends on it, and
without completion of a affected object N2 will never reach a quiescent
state.

 STATE-OF-THE-ART IN DYNAMIC RECONFIGURATION 87

N1

N2

N3

a/b

bLegend

unaffected object (not in BSet)

a

a/b

connection with independent transaction a

connection with transaction a,
where a depends on consequent transaction b

affected object (BSet)

N4

c

Figure 4-5 Situation in
which BSet members
have to accept
transactions from non-
BSet members

The BSet grows dynamically with outgoing transactions. When an object
gets an incoming transaction from a BSet member, it becomes a member
too, and only transactions from BSet members are attended; all other are
queued and serviced after reconfiguration. In the above example, N3 thus
becomes a member of BSet when it gets a transaction from N2.

A distinction is made between members of the original BSet and
members of the extended BSet. Members of the original BSet are affected
directly by reconfiguration. Members of the extended BSet are those that
have blocked in order to let the members of the original BSet get blocked.
When all the members of the original BSet are blocked, the objects in the
extended BSet can be unblocked. The BSet thus first grows and then
shrinks.

This alternative addresses some of the criticisms to Kramer and Magee’s
work mentioned before. Nevertheless, the class of distributed systems to
which this alternative can be applied is much more limited than in the case
of Kramer and Magee, since objects in this approach cannot treat more
than one transaction simultaneously. In component-middleware-based
applications, such as CORBA-based applications, components can be multi-
threaded, and it is possible to have re-entrant invocations. A re-entrant
invocation is a special type of nested (or consequent) invocation that
invokes a component that is in its invocation path. Figure 4-6 shows the
simplest case of re-entrance in which the nested invocation b has to be
processed before invocation a can finish. Both multi-threading and re-
entrance cannot be supported using Goudarzi’s approach.

C1 C2a/b
b

Figure 4-6 Example of
re-entrance

88 CHAPTER 4 DYNAMIC RECONFIGURATION

4.2.3 Bidan et al.

In [Bidan98], the implementation of a reconfiguration service in CORBA is
considered. A distributed system in this case consists of a number of objects
that communicate over an ORB. The reconfigurable entity is a CORBA
object and the configuration information consists of a directed graph of
objects connected through links. Objects A and B are said to be linked if A
can potentially initiate a CORBA invocation on a target object B. Links are
therefore similar to connections in Kramer and Magee’s approach.

This approach offers node consistency, i.e., it is primarily concerned
with preserving mutual consistent states, refraining from addressing
application consistency. More specifically, they provide Remote Procedure
Call (RPC)-integrity, which is defined as “all RPCs initiated will be
completed before the changes are effected.” By providing only node
consistency they do not address application state invariants and state
transfer issues.

The reconfiguration service is designed for CORBA applications with
multi-threaded objects, following the thread-per-request execution model,
and extends the LifeCycle service [CORBA] to support dynamic
reconfiguration of a CORBA application. It provides the primitives create
and remove to respectively create and remove objects, and the primitives
link, unlink, transferLink and transferState to respectively create
and destroy a link, transfer the requests pending on a passivated link to
another existing link, and to transfer the state from one object to another.

Reconfigurable objects should implement functionality to passivate a
link, i.e., to block the thread that may use the specific link.

Preserving Mutual Consistent States
In [Bidan98], the algorithm to guarantee mutual consistent states works at a
finer granularity level than the approaches previously presented. This
approach considers the passivation of links instead of quiescence,
passivation or blocking of objects. The advantage of this approach is that
multi-threaded objects can continue functioning partially, since only
threads that may use the passivated links are required to block.
Nevertheless, this implies additional burden to the application developer,
which must provide functionality to restrict individual threads that use a
specified link.

Unlike the approaches in [Kramer85, Wermel99], this algorithm is not
suitable for a system with re-entrant transactions. Since Bidan et al.’s work
has focused on CORBA-based distributed systems, this means that the
reconfiguration of systems with re-entrant invocations is not supported.

 STATE-OF-THE-ART IN DYNAMIC RECONFIGURATION 89

Another major limitation of this approach is that it does not support
multiple simultaneous object replacements.

4.2.4 Wermelinger

Wermelinger’s approach [Wermel99] considers link passivation, as in
[Bidan98]. Nevertheless, more fine-grained information on the objects is
used than in [Bidan98].

A system is defined as a set of connected nodes, where a connection is
given by an initiator port and a recipient port. For each node, port
dependencies are specified. A port dependency is defined by a recipient
port and an initiator port. Port I is said to be dependent of port R, if upon
reception of a transaction in R, a transaction is initiated in connections
leaving from I. This makes it possible to relate transactions and derive
transaction dependencies.

This approach requires an object to be shipped with a description of the
object’s internal port dependencies. However, this sort of specification has
to be made by the application developer, and violates the time and expertise
requirements, as identified in Chapter 3 (generic requirements for QoS
Mechanisms). Wermelinger’s work is presented at a theoretical level, and so
far it has not been implemented.

4.2.5 Tewksbury et al.

Parallel and independent research of Tewksbury et al. [Tewksb01A,
Tewksb01B, Tewksb01C, Tewksb01D, Moser00] propose an approach that
extends a Fault Tolerant CORBA [FTCORBA] implementation named
Eternal [Narasimh99B] with dynamic reconfiguration capabilities. This
approach exploits the replication functionality provided by Eternal.

The basic idea behind this approach is to replace old versions of the
objects by an intermediate version that implements both the behaviour of
the old version, and of the new version of the object. The intermediate
version of the object is usually generated based on the code for the old and
the code for the new object. Although not explicitly mentioned in the
literature, this implies that the old and the new object are written in the
same (version of the) programming language. After all old objects have been
replaced by intermediate objects, and all intermediate objects are in a
quiescent state, all intermediate objects simultaneously switchover to the
new behaviour using a special method that is implemented by the
intermediate objects. The intermediate version can then be replaced by the
actual new versions of the objects.

Figure 4-7 shows the process as we sketched it. It shows a client object
(C), that invokes a method m on server object S. We want to upgrade server
object S, from version Sold to version Snew. i) shows the start situation before

90 CHAPTER 4 DYNAMIC RECONFIGURATION

the reconfiguration activities start. In situation ii) the intermediate version
of server object (Sint) is instantiated, and forms an object group with Sold.
Invocation could be multi-casted if Eternal uses active replication, or in case
of passive replication the state is periodically synchronized, and the
invocations between synchronization are logged. In situation iii) the old
version of S is removed. The normal replication functionality of Eternal
makes sure that the client now uses Sint. In situation iv) the switchover has
taken place, and the new code is now used. In situation v) the actual new
version of S is added, and forms an object group with the intermediate
version of S. In vi) the intermediate version has been removed, and Eternal
made sure this was transparent for the client.

Sold

m

C

call m

Sold

m

Sint

m
mnew

C

call m

Sint

m

C

call m

Sint

m

C

call m

Snew

mnew mnew

mnew

i) ii)

iv) v)

add
intermediate

version

remove old
version

add new
version

remove
intermediate

version

Sint

m

C

call m

Snew

C

call m

mnew

mnew

iii)

vi)

switchover

Figure 4-7 Stepwise
upgrade using Eternal

Consistency
A mutual consistent state is preserved by requiring an object to be in a
quiescent state. In the quiescent state, the state can be transferred using the
usual get and set state operations that the application developer has to
implement. Objects have to be quiescent three times, once for the
replacement of the old with the intermediate version, once for the

 STATE-OF-THE-ART IN DYNAMIC RECONFIGURATION 91

switchover of the intermediate version from the old to the new behaviour,
and once to replace the intermediate version with the new version.

Messages are queued to get the objects in a quiescent state. The
quiescence algorithm that controls the queuing makes it possible to have
nested invocations. Eternal does not allow multi-threading and re-entrance
[Narasimh99B], and the quiescence algorithm also assumes single-threaded
objects.

State Access
To assist a component developer with implementing the state access
method, [Tewksb01A] describes a tool that parses the source code and
generates the get_state() and set_state() methods. Benefits of
generating these methods is that is can save the component developer
considerable time, and it can prevent some errors that manual state access
methods might contain. A disadvantage is that some state that is captured in
this way might not be relevant, or can easier be re-created in the upgraded
component. Also the component developer cannot rely completely on this
generated state access code, for example some of application state can be
location dependent. A concrete example is the usage of logging component
that resides on each node for efficiency reasons. After a migration the
migrated component will, for efficiency reasons, want to use the local
logging component and not the logging component on the node it used to
reside. A third disadvantage is that this generated code does not work in
case of an upgrade to another programming language. A developer has to
modify the generated state access code in these cases. [Tewksb01A]
mentions a graphical interface to assist the component developer with this.
If the state actually has to be converted because of changes, this conversion
can typically not be generated, and has to be done manually.

Group IOR
This approach uses the group Interoperable Object Reference (IOR), as
specified by Fault Tolerant CORBA, to maintain structural integrity. A
group IOR is basically the list of IORs of the replicas that are part of the
group. Which replicas are part of the group, and changes in this group, are
transparent to the clients. If the list of replicas changes, the client gets an
updated group IOR the first time he makes an invocation. It is thus not
pushed to the client. An issue with using the group IOR is that clients send
requests to the old IOR, so either the updated object has to use the same
IOR (and thus be on the same node), or some object should use the same
IOR and send the clients the updated group IOR. This however means that
the node cannot be taken offline.

92 CHAPTER 4 DYNAMIC RECONFIGURATION

Some criticisms on this approach are:
– Eternal is based on operating system interceptors, which are ORB

independent, but cannot intercepts invocations between co-located
objects [Wegdam00C].

– The requirements for strong replica consistency presented in
[Narasimh99B] imply that an object can only service one invocation at a
time. Similarly to Goudarzi et. al., re-entrant invocations are also ruled
out.

– Because the intermediate object mixes the old and new implementation
code, access to the source code is required, and the old and new version
of the code have to be in the same (version of) programming language.

4.2.6 Observations

A common characteristic of the approaches we have studied is the
definition of a reconfiguration-safe state. A system is driven into this safe
state by algorithms that interfere with the execution of the system.

All the approaches studied, except for Tewksbury et al., use some formal
representation of the system. These representations are described in
configuration languages [Kramer85, Wermel99] or in configuration graphs
[Bidan98, Goudarzi99]. The representations are used to identify which
activities of the system should be deferred in order to reach the safe state.
The use of these representations may have implications on the scalability of
the solutions since for large-scale systems providing such information can
be problematic.

The approaches studied do not assume the same computation model.
For example, in the computation model assumed by –Goudarzi and
Tewksbury et al., an application entity cannot be involved in several
interactions simultaneously, while in the computation model assumed by
Kramer and Magee this restriction does not apply. The computation model
assumed by an approach has direct implications on the definition of a safe
state and the algorithms to reach this safe state.

The approaches proposed by Tewksbury et al. and Bidan are aimed at
middleware-based applications (CORBA in both cases). The other
approaches assume that the application developer implements all the
distribution functionality himself, and has full control over this. Also in
Bidan’s approach, the application developer has to implement functionality
to passivate a link himself, making this approach also not very transparent.

 A NEW DYNAMIC RECONFIGURATION MECHANISM 93

Table 4-2 summarizes this comparison between the approaches to
dynamic reconfiguration.

Approach Uses

Formalism
Simultaneous
interactions

Re-
entrance

Middleware-
based

Implemented Driven
safe
state

Kramer-
Magee

yes yes yes no yes yes

Goudarzi yes no no no yes yes

Bidan yes yes no yes yes yes

Wermelinger yes no no no no yes

Tewksbury no no no yes yes yes

Table 4-2 Comparison
of studied approaches to
dynamic reconfiguration

4.3 A New Dynamic Reconfiguration Mechanism

This section describes our mechanism for dynamic reconfiguration of
component-middleware-based applications. Our mechanism addresses each
of the generic requirements for QoS mechanisms (as identified in Chapter
3) and specific requirements for dynamic reconfiguration, which we will
also list in this section. These specific requirements include the correctness
aspects for a reconfiguration as identified in Section 4.1.

This section is further structured as follows: Section 4.3.1 motivates the
need for a new mechanism for dynamic configuration of component-
middleware-based applications, Section 4.3.2 states the specific
requirements for such a mechanism, Section 4.3.3 presents the
reconfiguration possibilities supported by our mechanism and Section 4.3.4
describes the mechanisms prescribed for change management. Finally,
Section 4.3.5 discusses the limitations of our mechanism and Section 4.3.6
compares it to the approaches found in the literature.

4.3.1 Motivation

Most of the approaches found in the literature do not address component-
middleware-based applications specifically. As a consequence, either they
consider a computing model that is limited with respect to our component
model, e.g. ruling out multi-threading or re-entrance, or they fail to address
issues that are particularly relevant for component middleware systems,
such as, e.g., interface evolution.

While some dynamic reconfiguration approaches that have not been
originally developed for middleware platforms may be used in distributed

94 CHAPTER 4 DYNAMIC RECONFIGURATION

component applications, only a component-middleware-based approach is
able to profit from particular characteristics of component middleware.

As explained in Chapter 3, component middleware provides functions
to locating components, relocating components, multi-casting requests and
replies, holding requests and replies and change the order of request and
replies. These functions provide an opportunity for the provision of
reconfiguration transparency. Application developers can profit from
reconfiguration functionality with the benefits of a middleware-supported
service, e.g., interoperability, application portability, language
independence, and wide support, requiring minimal expertise in the field of
dynamic reconfiguration.

4.3.2 Requirements

The following requirements have been considered in the conception of our
approach for a dynamic reconfiguration QoS mechanism, in addition to the
generic requirements identified in Chapter 3:
1. Correct incremental evolution – The mechanism must include functionality

to obtain a correct incremental evolution of a system, as defined in
Section 4.1.3. The integrity of the component model must be preserved
under normal operation, i.e., when reconfiguration is not taking place,
and during reconfiguration.

2. Impact on execution – The mechanism should minimize impact on
execution during reconfiguration, and it should account for little
overhead during normal operation.

3. General applicability – The mechanism should minimize restrictions on
applications. In particular, it should be suitable for systems with off-the-
shelf, multi-threaded, stateful, re-entrant and active components. This
requirement is somewhat overlapping with the flexibility and generality
requirements for QoS Mechanisms, as identified in Chapter 3 (generic
requirements for QoS Mechanisms). We want to stress this point since
most approaches do not support re-entrant components and multi-
threaded execution models.

4. No additional formalisms – The mechanism must not require the use of
additional formalisms for application development. This is a
specialization of time and expertise requirements, as identified in
Chapter 3. We want to make this requirement explicit because most
approaches use additional formalisms.

5. Composite reconfiguration steps – The mechanism should allow
reconfigurations that involve multiple entities.

 A NEW DYNAMIC RECONFIGURATION MECHANISM 95

4.3.3 Supported Reconfigurations

In our dynamic reconfiguration mechanism, entities subject to
reconfiguration are called reconfigurable components. A reconfigurable
component is a component that can be manipulated through
reconfiguration operations, namely creation, replacement, migration and
removal.

Component Creation
Component creation allows an application to create a component at run-
time. From the moment a component is created, references to its interfaces
are used to communicate with it. Component creation is a trivial case from
the perspective of change management, since applications are expected to
cope with it.

Figure 4-8 depicts component creation from an abstract perspective.

creation

Legend
interaction

component

i) ii)

Figure 4-8 Component
creation

Component Replacement
Component replacement allows one version of a component to be replaced
by another version. We use the term version of a component to denote a set
of implementation constructs that realizes a component (a template).

The new version of a component may have functional and Quality-of-
Service (QoS) properties that differ from the old version. For example, the
new version may correct faults in the original version, or implement
additional functionality. The reconfiguration designer is responsible for
assuring that the new version of a component satisfies both the functional
and QoS requirements of the environment in which the component its
inserted.

In addition, in our definition of replacement, the new version of
component may run in another location or in another type of execution

96 CHAPTER 4 DYNAMIC RECONFIGURATION

environment supported by the component-middleware platform, e.g., a
different programming language and/or operating system.

Component replacement requires special attention from the perspective
of change management, since it threatens application consistency.

Figure 4-9 depicts component replacement from an abstract perspective.
Component A is replaced, substituting its original version Aori with a new
version Anew.

Aori Anew

invocations

Legend

component

replace Aori

with Anew

i) ii)

Figure 4-9 Component
replacement

Replacement with Interface Changes
We define a version Anew of a component A conforming with a version Aori if
the interfaces of Anew are identical to the interfaces of Aori or are a subtype
from it [Liskov88], and non-conforming otherwise.

Replacement of a current version by a non-conforming version is called
non-conforming replacement. Our mechanism only supports non-
conforming replacements in special cases that are explained later in Section
4.3.4.

Component Migration
Migration means that a component is moved from its current location to a
new location. A component preserves its identity and state. Because in our
mechanism replacement can involve changing the location, we consider
migration a special type of replacement in which the version of the
component does not change.

Figure 4-10 depicts component migration from an abstract perspective.
Component A migrates from its original location X to a new location Y.

 A NEW DYNAMIC RECONFIGURATION MECHANISM 97

A A

invocations

Legend

component

migrate A
to Y

i) ii)

node

node X node Y node X node Y

Figure 4-10 Component
migration

Component Removal
Component removal allows an application to remove a reconfigurable
component at run-time. From the moment a component is removed, the
reference to its interface becomes invalid. Component removal is a trivial
case from the perspective of reconfiguration management, since
applications are expected to cope with it.

Figure 4-11 depicts component removal from an abstract perspective.

A

invocations

Legend

component

remove A

ii)i)

Figure 4-11 Component
removal

Reconfiguration Steps
A system evolves incrementally from its current configuration to a resulting
configuration in a reconfiguration step. A reconfiguration step is perceived
as an atomic action from the perspective of the application.

A reconfiguration step consists of:

98 CHAPTER 4 DYNAMIC RECONFIGURATION

1. the execution of a reconfiguration operation in a component, in which
case it is called a simple reconfiguration step; or

2. the execution of reconfiguration operations in several distinct
components, in which case it is called a composite reconfiguration step.

Composite reconfiguration steps are often required for reconfiguration of
sets of related components. In a set of related components, a change to one
component A may require changes to other components that depend on A’s

behavior or other characteristics.
Figure 4-12 depicts a composite reconfiguration step from an abstract

perspective, where component D is removed, components A and B
replaced, and component E is created.

C

Bori

Aori D

invocations

Legend

component

composite
reconfi-
guration

ii)i)
C

Bnew

Anew

E

Figure 4-12 Composite
reconfiguration step

A particular case of composite reconfiguration step is the replacement of
multiple components. A common usage example is to replace all
components of the same type with a new version.

4.3.4 Change Management

This section describes how we ensure consistency in our mechanism by
addressing each of the correctness aspects identified in Section 4.1.3.

Structural Integrity
The main issues that have to be dealt with for a component-middleware-
based system with respect to preserving structural integrity are referential
integrity and interface compatibility.

Referential integrity becomes an issue whenever a component reference
changes. A component reference is defined as a value that denotes a
particular component, and is used by the middleware infrastructure to
identify and locate the component. References acquired by clients prior to
reconfiguration may be invalidated due to reconfiguration. If a reference

 A NEW DYNAMIC RECONFIGURATION MECHANISM 99

points to a component that no longer exists, the established logical binding
between a client and a target component is broken. In order to re-establish
the binding after reconfiguration, we provide a logically central point of
contact for clients to find the component with invalidated component
references.

To preserve interface compatibility, a new version of a component must
satisfy the original interfaces. In component-middleware technologies,
interfaces satisfy the Liskov substitution principle [Liskov88]:

“If for each object o1 of type S there is an object o2 of type T such that for
all programs P defined in terms of T, the behavior of P is unchanged
when o1 is substituted for o2, then S is a subtype of T.”

This means that to satisfy the original interfaces, the new interfaces have to
implement the original interfaces, or implement interfaces that are subtypes
of the original interfaces. We refer to this as a conformant replacement. A non-
conformant replacement is possible by introducing a wrapper component that
is conformant, or by replacing all the clients of the replaced component as
part of the same (composite) reconfiguration step.

It is possible to apply non-conforming replacements that promote arbitrary
changes to an interface of a reconfigurable component if either one of the
following conditions is satisfied:
1. all clients of the reconfigurable component that use the interface that is

changed are also reconfigurable components,
2. the reconfiguration designer supplies a wrapper version of the

component that is capable of translating requests to the new version.

Both cases require the use of a composite reconfiguration step. In the first
case, the reconfigurable component and all the clients that use the interface
that is changed are replaced. In the second case, the new version is created
and the reconfigurable component is replaced by the wrapper version.

Mutually Consistent States
We propose an algorithm to drive the system to the safe state that uses
information obtained from the middleware platform at run-time and
freezes system interactions on-demand. This algorithm consists of these
three stages:

Drive to safe state

1. Drive the system to the safe state by deferring invocations that would
prevent the system from reaching the safe state;

2. Detect that the safe state has been reached; and
3. Apply reconfiguration;

100 CHAPTER 4 DYNAMIC RECONFIGURATION

We use the term affected component to denote a reconfigurable component
that is replaced, migrated or removed as a consequence of reconfiguration.
The system is said to be in the reconfiguration-safe state when each affected
component (i) is not currently involved in invocations and (ii) will not be
involved in invocations until after reconfiguration. As defined in Chapter 2,
an invocation can be split up in the client component issuing a request, the
server component processing the request, and sending the reply back to the
client component. This means that when the system is in a reconfiguration-
safe state none of the affected components is processing requests or waiting
for replies.

Affected component

Safe state

We distinguish components in general as active and reactive. Reactive
components are components that only initiate requests that are causally
related to incoming requests. Active components may initiate requests that do
not depend on incoming requests, e.g., they may initiate requests as a result
of the elapsing of a time-out.

Active and reactive
components

An active component should have capabilities for driving itself to a
reactive state, in which it refrains from initiating requests that are not
causally related to an incoming request. The implementation of the
operation for forcing reactive behavior is a responsibility of the component
developer. Once the set of affected system components is defined, all active
components in the set are requested to exhibit reactive behavior.

Since the component developer has to implement this, we violate
transparency here. We however prefer this to not allowing the
reconfiguration of active components since this would violate the general
applicability requirement we identified earlier this chapter.

Reaching the safe state
We guarantee the reachability of the safe state by interfering with the
activities of the system. All affected components are requested to exhibit
reactive behavior, and then pending invocations in the affected components
are allowed to complete.

In the case of a simple reconfiguration step, with the replacement or
migration of a single non re-entrant component, all requests issued to this
component are queued by the middleware platform before they reach the
component. Queuing of requests is one of the middleware functions we
identified in Chapter 3.

In this way, new invocations are prevented from being served before the
reconfiguration, and the component gets the chance to finish handling
ongoing invocations. When all ongoing invocations have been treated, the
system is in the safe state. Since all invocations are guaranteed to finish
within bounded time, the safe state is reachable within bounded time.

 A NEW DYNAMIC RECONFIGURATION MECHANISM 101

There is only one restriction we have here. The completion of an
ongoing invocation might depend on another incoming invocation, which
we queue and therefore never reaches the object. The case where this is a
re-entrant invocation we discuss below. This leaves the case of a non-re-
entrant invocation, i.e., an invocation that is not dependent on the ongoing
invocation but still needs to be processed by the object before it can
complete the ongoing invocation. These types of dependencies are not
common, but they are possible. An example is an object with two methods:
some_event_occurred() and wait_for_some_event(). The second
method blocks waiting for the first method to be called. An ongoing
wait_for_some_event() would never complete since we queue all
invocations including the some_event_occurred() invocation that is
needed for the completion of wait_for_some_event(). We cannot
detect such cases and therefore do not allow them. Since such
dependencies are very rare, we do not consider this a major disadvantage.

In the case of replacement or migration of a single re-entrant component,
we should not queue up re-entrant invocations. A re-entrant invocation is
not queued, since otherwise the affected component would have a pending
outgoing invocation that would never complete. Consequently, the system
would never reach the safe state. Figure 4-13 shows a re-entrant invocation
(request2) that must be allowed to complete for reconfiguration to
proceed.

Figure 4-13 Requests
that must not be queued
in case of a simple
reconfiguration step A B

request1()

request2()

reply2()

reply1()

beginning of
reconfiguration

nested request
cannot be queued

affected
component

not-affec-
ted component

102 CHAPTER 4 DYNAMIC RECONFIGURATION

In the case of composite reconfiguration steps, several affected components
have to be driven to the safe-state. In this case, we should neither queue up
requests issued by an affected component nor the nested requests that are a
consequence of invocations issued by an affected component. If one of
these requests would be queued, there would always be a pending outgoing
request in the set of affected components that would never complete, and
the system would never reach the safe state. Figure 4-14 shows invocations
that must be allowed to complete for reconfiguration to proceed.

A C

request() beginning of
reconfiguration

cannot
be queued

affected
component

reply()

A B

request1()

reply1()

C

request2()

reply2()

cannot
be queued

beginning of
reconfiguration

affected
component

not-affec-
ted component

Reconfiguration with two
affected components

Reconfiguration with nested
request by not-affected component

Figure 4-14 Requests
that must not be queued
in case of composite
reconfiguration step

Therefore, in a system under reconfiguration, we can distinguish three sets
of invocations:
1. invocations whose processing is necessary for the system to reach the

reconfiguration-safe state, the ‘laissez-passer’ set (‘laissez-passer’ is French
for ‘letting pass’),

Laissez-passer set

2. invocations whose processing could prevent the affected components
from reaching the reconfiguration-safe state (blocking set), and

3. invocations that do not involve any affected component. Blocking set

In our mechanism, the middleware platform is responsible for selectively
queuing requests that belong to the blocking set and for allowing requests in
the ‘laissez-passer’ set to be processed. This is done transparently for the
application components.

In order to identify requests that belong to the ‘laissez-passer’ set, we use
the propagation of implicit parameters along invocation paths. For every
reconfigurable component in an invocation path the middleware

 A NEW DYNAMIC RECONFIGURATION MECHANISM 103

infrastructure adds the component’s identification to the request as an
implicit parameter.

Given a request and the set of affected components, it is possible to
determine if a request belongs to the ‘laissez-passer’ set by inspecting its
implicit parameters. If at least one of the affected components has been
included in the request’s implicit parameters, the request belongs to the
‘laissez-passer’ set, and should be allowed to complete.

Applying reconfiguration
When all affected components are idle, reconfiguration can proceed. The
affected components’ state can be inspected and used to derive the state of
the components being introduced. Once newly created components, new
versions and relocated components have been instantiated (which may
already be done before driving the system to the safe state), their state is
properly modified. After their state is modified, they are allowed to exhibit
active behavior. Queued requests and further new requests are redirected to
the new or relocated version of a component after reconfiguration.

Application-state invariants
Each reconfigurable component must provide operations to access its state.
These operations are used to inspect and modify a selected subset of the
component’s internal state. The component developer is responsible for
deciding on the particular subset of the components’ state that is exposed
by these state-access operations. In general, a component should provide
operations to inspect and modify its control and data state. These
operations are only invoked in the safe state. Since in the safe state a
component is idle, the amount of control state to be externalized is
minimized.

State access operations

When the system to be reconfigured is in the safe state, the state of the
affected components can be accessed consistently through these state-access
operations, and can be used as input to a state translation function supplied
by the change designer. The state translation function determines the state of
the new version of each affected component so as to guarantee that
application invariants are not violated. Furthermore, the state translation
function may have to adjust the state of an affected component so that its
behavior is compatible with the behavior expected by its environment.

State translation function

It is possible, however, that such state translation function does not exist
for two given versions, preventing reconfiguration. This situation can be
illustrated in a simple component replacement. It is possible that the new
version of the component does not have a state that corresponds to the
state of the original version. For example, let us consider a component that
generates unique identifiers, with an initial version that generates identifiers
counting up from A to B. The state variable of this implementation is the

104 CHAPTER 4 DYNAMIC RECONFIGURATION

counter containing the last generated number S. Let us suppose that the
new version also produces unique identifiers, but does it counting down
from B to A. While the identifiers produced so far are known (all values
smaller or equal to S), there is no value for the internal counter in the new
version that can be derived so as to preserve the expected behavior of the
generator. With any starting state, the new version would end up producing
identifiers that have already been used in the previous version of the
component, introducing inconsistency in the application.

Impact on Execution
While some reconfiguration approaches [Kramer85, Goudarzi99] quantify
the impact on execution as proportional to the number of affected
reconfigurable entities, or proportional to the number of blocked execution
threads in application components [Bidan98], we intend to estimate the
increase in response time QoS characteristic experienced by clients of
affected components during reconfiguration.

Clients of an affected component may observe an increase in the response
time of operations invoked on an affected component during
reconfiguration. This increase only applies to invocations initiated by the
clients of a target component after the beginning of the reconfiguration and
before the end of the reconfiguration.

The increase in response time during reconfiguration is highly
dependent on the application. Since in our mechanism we wait for ongoing
interactions involving the affected components to finish, the expected
increase in response time is proportional to the expected duration of those
interactions. Therefore, this increase is higher for systems with long-lived
interactions. The increase is limited by the duration of the longest pending
invocation in the set of affected components at the moment the
reconfiguration starts. For active components, the amount of time taken for
the component to exhibit reactive behavior should also be considered in the
calculation of the upper bound of the increase in response time. We expect
however this increase to be insignificant for most applications.

Considering the absolute increase in response time, the mechanism
seems to be best suited for applications with short-lived interactions.
Ultimately, the maximum acceptable increase in response time during
reconfiguration is determined by the QoS requirements for the application.

4.3.5 Limitations of our Mechanism

Our mechanism does not use any formal representation of the system,
contrary to the approaches presented in [Kramer85, Goudarzi99, Oreizy98,
Wermel99]. Instead, we discover during run-time the configuration

 A NEW DYNAMIC RECONFIGURATION MECHANISM 105

information that we need to preserve consistency. There are application
invariants that cannot be discovered during run-time, and therefore cannot
automatically be preserved by our dynamic reconfiguration mechanism.
We rely on the reconfiguration designer to preserve these application
invariants. As an example, suppose a system has the property that it has to
be organized as a ring. A removal of one component should preserve the
ring. The fact that the components have to be organized in a ring cannot be
discovered during run-time, and therefore the reconfiguration designer is
responsible for preserving this ring property.

Since we have opted for complete transparency for clients of reconfigurable
components, we can only support non-conforming replacements in
restricted cases, as identified in Section 4.3.4. A less restrictive support to
non-conforming replacements would require clients of reconfigurable
components to be developed with mechanisms to cope with arbitrary
interface change.

Another limitation refers to the externalization of state. In the component
model adopted, relationships between components may be buried in the
implementation of a component, in the form of component references.
These component references cannot be easily manipulated externally. This
forces the externalized state of a component to include all the component
references that are still required for the component to continue operating
and that otherwise would not be recovered from the system after
reconfiguration.

4.3.6 Comparison with Studied Approaches

This section presents distinctive features of our mechanism and compares it
with the reconfiguration approaches studied.

Application-description Models
Our mechanism does not require the use of specific description formalisms
for application development. Some of the dynamic reconfiguration
approaches studied [Kramer90, Goudarzi99, Oreizy98, Wermel99]
prescribe the use of formal architectural or configuration models to
describe an application. These models are produced by the application
designer during the development process, and are described in Architecture
Description Languages (ADLs) or Configuration Languages (CLs).

These models are used by dynamic reconfiguration approaches to derive
how to apply changes to a system under reconfiguration. For example, in
Kramer and Magee’s approach [Kramer90] an application is represented as
a directed graph, whose nodes are system entities and whose arcs are

106 CHAPTER 4 DYNAMIC RECONFIGURATION

connections between entities. An entity A is connected to an entity B if A
can initiate a transaction with B. For an entity Q to be replaced, all the
entities that are capable of initiating transactions directly or indirectly on Q
should exhibit passive behavior, as well as Q itself. In this case, the
configuration graph is used to identify which entities must exhibit passive
behavior for the system to reach the reconfiguration-safe state. In
Wermelinger’s approach [Wermel99], application entities must be supplied
with a description of internal port dependencies, which relate input ports
and output ports.

A drawback of prescribing an ADL or CL for application design is that
the conventional development process has to incorporate the production of
a description of the application using the specific formalism or language.
Our mechanism differs from these in the sense that it does not prescribe
the use of an ADL or CL. The configuration information required to apply
reconfiguration is obtained from the system at run-time. By doing this, we
intend to separate the concerns of obtaining and maintaining configuration
information for the reconfiguration design activities, and obtaining and
maintaining configuration information for the application of
reconfiguration.

Figure 4-15 shows a refinement of the model presented in Section 4.1,
obtained by decomposing configuration information into configuration
information obtained at design-time and obtained at run-time. Our
mechanism covers the grayed boxes, i.e., the instrumentation to obtain
configuration information at run-time, and the Reconfiguration
Management functionality. The rest of the model is not covered by our
mechanism, and is the responsibility of the reconfiguration designer. We
could however extend our mechanism by using design-time ADLs of CLs to
give more information about the design and architecture of the application
to the Reconfiguration Design Activities. This would especially facilitate
maintaining of application invariants. The usage of ADLs or CLs however
would add to the responsibilities of the application designer, and thus
reduce the transparency.

 A NEW DYNAMIC RECONFIGURATION MECHANISM 107

Reconfig.
Design

Activities

Reconfig.
Management

Running System
(Configurationnew)

Running System
(Configurationold)

Designold Designnew

Reconfiguration
Specification and

Constraints

Legend

information

activities

system

input-output

corresponds to

Co
nf

ig
ur

at
io

n
In

fo
rm

at
io

nol
d Obtained at design-time

(ADLs or CLs)

Obtained at run-time (by
instrumenting the system)

Configuration
Inform

ation
new

Obtained at design-time
(ADLs or CLs)

Obtained at run-time (by
instrumenting the system)

Reconfiguration
Objectives

Figure 4-15 Dynamic
Reconfiguration Model
with refined
configuration
information

Reconfiguration Supported and Computation Model
Bidan et al. consider in [Bidan98] an approach to dynamic reconfiguration
of CORBA-based applications and a reconfigurable entity is a CORBA
object. This is similar to our mechanism, since a CORBA object is a specific
example of our more generic component concept. In Bidan’s approach, the
reconfiguration infrastructure maintains a representation of the
configuration of the system, through a directed graph of components
connected through links. Components A and B are said to be linked if A can
invoke an operation on target component B. In the approach, all client
applications and target components must implement a passivate operation
to block the initiation of requests in a specific outgoing link. The algorithm
guarantees the reachability of an idle state by sending passivate messages to
all the clients of a component and then to the component itself.

Unlike our mechanism, Bidan et al.’s approach does not support
composite reconfiguration steps. In sets of related components, it is
common that a change to one component may require changes to other

108 CHAPTER 4 DYNAMIC RECONFIGURATION

components that depend on the component’s behavior or other
characteristics. Since only simple reconfiguration steps are allowed, the
application of this approach is limited.

Furthermore, the approach does not support applications with re-
entrant invocations. Therefore, a component that has initiated an invocation
cannot play the role of server for some consequent invocation. The
approach does not support re-establishment of application invariants and
state translation either.

A second approach that is based on CORBA is the replication-based
approach by Tewksbury et al. [Tewksb01B]. As stated before, this work was
done independently and parallel to our work, and was published after we
finished our work. The main differences between our mechanism and the
Tewksbury et al. are:
– Threading - contrary to our mechanism, in the Tewksbury et al. approach

an object can only service one invocation at a time [Narasimh99B],
which means re-entrant invocations are also ruled out. This violates our
general suitability requirement.

– Implementation language - because the intermediate object mixes the old
and new implementation code, access to the source code is required,
and the old and new version of the code have to be in the same (version
of) programming language.

There are some more differences in how the approaches were
implemented, which we will discuss when we have discussed our CORBA
based prototype in Chapter 6.

Impact on Execution
Our mechanism proposes a mutual consistency mechanism that only
interferes with application activities that require interaction with affected
components during reconfiguration. This is not the case in most approaches
we have studied [Bidan98, Kramer85, Goudarzi99, Wermel99], which
block all potential system activities that may prevent the system from
reaching the safe state.

Transparency
Our mechanism is completely transparent for the clients of reconfigurable
components, in contrast with [Bidan98, Kramer90, Goudarzi99,
Wermel99] where client applications have to provide support for
reconfiguration.

Our mechanism facilitates the development of reconfigurable
components by incorporating change management functionality in the
middleware infrastructure. Therefore, it requires minimal reconfiguration
expertise and development effort from the component developer. The

 DESIGN OVERVIEW 109

transparency is not complete for the reconfigurable component developer,
specifically the reconfigurable component developer is responsible to
provide state-access operations and operations to drive an active
component from an active state to a reactive state and back.

4.4 Design Overview

This section gives a high level overview of the design of our Dynamic
Reconfiguration QoS mechanism. Details on the design of the prototype of
this mechanism in CORBA can be found in Chapter 6.

As described in Chapter 2, common functionalities that go beyond the basic
communication functionalities are put in a common service, or service for
short. We therefore designed the Dynamic Reconfiguration QoS
mechanisms as a common service, and will refer to it as the Dynamic
Reconfiguration Service.

Dynamic
Reconfiguration Service

The Dynamic Reconfiguration Service consists of a Reconfiguration
Manager, a Location Agent and Reconfiguration Agents, and is depicted in
Figure 4-16.

The Reconfiguration Manager is the central component of the Dynamic
Reconfiguration Service in that it interacts with all the other components of
the service. It coordinates reconfiguration with Reconfiguration Agents and
the Location Agent. The Reconfiguration Manager delegates object creation
and removal to Reconfigurable Component Factories, it registers, re-
registers and de-registers components through interaction with the
Location Agent and it co-ordinates the Reconfiguration Agents to drive the
system to a reconfiguration-safe state.

Reconfiguration
Manager

A Reconfiguration Agent is created for each middleware instance that
mediates invocations for reconfigurable components. Typically there will be
a middleware instance per capsule. A Reconfiguration Agent is responsible
for restricting the behavior of an affected component during
reconfiguration through filtering of requests.

Reconfiguration Agent

The Location Agent provides a registry for the location of reconfigurable
components. It produces location-independent component references, and
is capable of translating a location-independent component reference to a
component reference with the current location of a reconfigurable
component.

Location Agent

A Reconfigurable Component is the unit of reconfiguration. It provides
state-access operations and is able to exhibit reactive behavior upon
demand.

A Reconfigurable-Component Factory implements the Factory design
pattern, creating and removing versions of Reconfigurable Components on

Reconfigurable-
Component Factory

110 CHAPTER 4 DYNAMIC RECONFIGURATION

behalf of the Reconfiguration Manager. Factories shield the Dynamic
Reconfiguration Service from the specific support to component
deployment offered by different languages, operating systems or virtual
machines, such as, e.g., DLLs and the Java class loader.

The State Translator implements a state translation function, if needed for
a reconfiguration. This state translation is application dependent.

As Figure 4-16 also shows, the service concerns both the change designer
and the component developer. The change designer can access the service
of the Dynamic Reconfiguration Service to request the execution of
reconfiguration steps, and has to supply the State Translator (if needed).
The component developer has to supply the application-specific
Reconfigurable-Component Factories and Reconfigurable Components that
comply with the interfaces defined by the service. The Reconfiguration
Manager, Location Agent and the Reconfiguration Agents are supplied by
the developer of the Dynamic Reconfiguration Service.

ComponentComponent

ReconfigurationManager

ReconfigurableComponentFactory ReconfigurableComponent

ReconfigurationAgent

LocationAgent

Application components

Dynamic Reconfiguration Service

GenericFactory

GenericStateTranslator

ReconfigurationAgentAdmin

Application components (optionally)
provided by change designer

capsule

Change Designer
(to request execution of

reconfiguration operations)

Application
(to request component
creation and removal)

Legend

State
Translator

Location
Agent

Reconfiguration
Manager

Factory

Reconfiguration
Agent

Component

Figure 4-16 High level
design

 CONCLUSIONS 111

4.5 Conclusions

We presented our model for dynamic reconfiguration, presented a new
classification of dynamic reconfiguration approaches, described concepts
and terminology in the area of dynamic reconfiguration and described,
evaluated and compared related work in the area of dynamic
reconfiguration. Based on this, we developed a new dynamic
reconfiguration mechanism for component-middleware-based applications,
and compared this to the existing approaches. We also presented a high
level design of the Dynamic Reconfiguration Service that implements our
mechanism. Chapter 6 describes a prototype of the Dynamic
Reconfiguration Service, implemented using CORBA, which serves as a
proof of concept.

Our dynamic reconfiguration mechanism:
– supports component creation and removal;
– supports replacement with a new version of the component with the

same identity. This new version may run in another execution-
environment type supported by the middleware platform;

– supports migration;
– supports composite reconfiguration steps, in which several components

are reconfigured in an atomic action from the perspective of the
application;

– prescribes how to obtain a correct incremental evolution of a system,
preserving the component model;

– is applicable to a broad range of applications, including applications
built from off-the-shelf components, multi-threaded components, re-
entrant components, and stateful components;

– minimizes impact on execution during reconfiguration;
– scales with respect to the number of clients;
– provides full reconfiguration transparency to client developers, and

requires minimal reconfiguration expertise from the reconfigurable
component developer;

– does not require the use of a specific programming language for
application development;

– does not require the use of additional formalisms for application
development.

Component Middleware and Transparency
Contrary to most existing approaches we studied, our mechanism exploits
the particular characteristics of component middleware. Embedding
reconfiguration functionality in the middleware layer is a promising way to
achieve transparency. Our mechanism can be realized with minimal

112 CHAPTER 4 DYNAMIC RECONFIGURATION

additional burden on the developer of the reconfigurable components and
is fully transparent to the developer of client components. We compared
our mechanism with middleware-based and non-middleware-based
approaches in 4.3.6.

Our mechanism can be used in systems with a large and changing number
of components, addressing the telematics requirement, see Chapter 3
(generic requirements for QoS Mechanisms). We can use message
reflection, and in particular middleware interceptors, to instrument the
middleware platform to obtain configuration information at runtime, as we
will show in Chapter 6 when we discuss our implementation. This avoids
burdening the component developer to provide extensive descriptions of
the system and its components, and addresses the flexibility, time and
expertise requirements (see Chapter 3). In addition, by using message
reflection we are able to provide the functionality we need to freeze system
interactions on demand when we drive the system to a reconfiguration-safe
state. Our mechanism only interferes directly with those parts of the system
that actually interact with the set of affected components during
reconfiguration, allowing the rest of the system to execute normally and
reducing the impact on execution.

Performance Impact
Reconfiguration of objects that are involved in long-running interactions
may implicate high increase in response time experienced by the clients of
the affected objects. Ultimately, the maximum acceptable increase in
response time during reconfiguration is determined by the QoS
requirements for the application.

Concluding Remarks
The main limitation of the mechanism is that it does not cope with
preserving application invariants that cannot be discovered during run-time.
The mechanism assumes that the reconfiguration design activities produce
changes that have been validated a priori, and puts the responsibility for this
with the reconfiguration designer.

The dynamic reconfiguration mechanism could be extended with the
abortion of interactions that are possibly long running and do not affect the
state of a component. This would lead to a hybrid abortion-avoidance and
abortion approach that could decrease the impact on system execution,
especially for systems with long-running interactions.

Chapter 5

5. Load Distribution

This chapter describes a QoS mechanism that improves the performance characteristics
of a distributed application by distributing the load. Our focus is on making load
distribution transparent for the component developer, facilitating a wide range of
possible load distribution strategies and to support QoS differentiation.

This chapter is structured as follows: Section 5.1 presents our model of load
distribution, contains definitions of relevant concepts in the area of load distribution,
and discusses the suitability of different load distribution methods; Section 5.2 uses the
model and concepts defined in Section 5.1 to present, compare and evaluate the state-
of-the-art in load distribution, with a focus on middleware-based load distribution;
Section 5.3 proposes our load distribution mechanism; Section 5.4 presents a high
level design for a Load Distribution Service that implements our mechanism; Section
5.5 presents the major conclusions of this chapter.

5.1 A Model and Overview of Load Distribution

As described in Chapter 3, the end-to-end performance depends on both
processing resources and network resources. Even though research in the
area of QoS for distributed applications has focused mostly on network
QoS, for the overall end-to-end QoS the processing resources can and will
become a more important bottleneck, especially for the operational
interactions that we consider in this thesis [Cardellini02]. A reason for this
is that networking capacity is improving faster than processing capacity.
This chapter proposes a mechanism for the distribution of processing load
for component-middleware-based applications in order to improve the
performance.

The goal of load distribution is to execute a certain amount of workload on a
set of processors subject to some optimizing criteria [Chapin96, Santos01].

Load distribution

114 CHAPTER 5 LOAD DISTRIBUTION

The nature of the workload depends on the type of application, and can,
e.g., be of set of tasks, entities, components, objects, invocations or
transactions. Literature also uses other terms to indicate load distribution
such as load management [Santos01] and global scheduling [Chapin96]. Global
scheduling refers to the scheduling among nodes, contrary to local
scheduling, which happens inside a node by the nucleus.

Load distribution model Figure 5-1 shows a model of load distribution that we adopt in this thesis. It
combines the concept of a feedback model, as presented in, e.g.,
[Bergmans00], with the model of a scheduler as presented in [Santos01].
The three activities we distinguish in this model are:
– load monitoring functionality - collects information on the current load of

the controlled application. This load information is quantitative and
dynamic, and indicates the amount of load at a certain moment in time.
An example is CPU load.

– load distribution strategy - decides how to distribute the load, i.e., it
contains some algorithm that tries to fulfill the performance
requirements. An example is a least-loaded strategy that directs
workload to the least loaded node. In literature this is sometimes also
referred to as scheduler [Santos01], selection algorithm [Dahlin00,
Casavant88], load evaluation [Linderm00], dispatching policy
[Cardellini02] or controller [Bergmans00].

– load distribution method - actually distributes the load by executing the
distribution decision made by the load distribution strategy. Examples of
distribution methods are replication and migration. In literature this is
sometimes also referred to as distribution mechanism [Schnekenb97],
but we choose to name it distribution method since we use the term
QoS mechanism to denote the complete load distribution functionality,
including the load distribution strategy and load monitoring. Other
terminology used in literature is actuator [Berman96], manipulation
[Bergmans00] and effector [Santos01].

The load distribution strategy can receive load events if something happens to
the controlled application that is relevant for the distribution of the load.
Typical load events are the arrival of new workload and the completion of
some workload. The events are created by and related to a distribution
method. For example, a load distribution method may intercept every new
invocation, and then notify the load distribution strategy through a load
event so that the load strategy can subsequently decide which replica to use.

Load events

Contrary to load events, load monitoring is independent of any
distribution method, and gives quantitative information on the load at a
certain point in time.

 A MODEL AND OVERVIEW OF LOAD DISTRIBUTION 115

controlled
system

distribution
decision

load
information

performance
requirements

Legend

system

input-output

information

load distribution
method

load
monitoring

load distribution
strategy

activity

load event

Figure 5-1 A model of
load distribution

Depending on the concrete load distribution solution, some parts of this
model might not be used. For example, some load distribution solutions do
not monitor the load, and some do not have load events.

In the following subsections we discuss the three activities more elaborately.

5.1.1 Load Monitoring Functionality

Load information is information used by the load distribution strategy to
decide how to distribute the load. It is typically information on the current
usage of the available resources. Load information should [Santos96]:
– Correlate well with workload response times. Since the load information

is used by the load distribution strategy to make the distribution
decisions, the load information has to correlate well with the actual
performance of executing some workload (e.g., an invocation) at some
particular resource.

116 CHAPTER 5 LOAD DISTRIBUTION

– Be usable to predict the load in the near future, since the response time
of a workload will be affected more by the future load than by the
present load.

– Be relatively stable. Short fluctuations in the load should be discounted.

Load information mentioned in literature [Shivaratri92, Santos96] includes
CPU queue length, CPU utilisation, normalised response time, I/O queue
length, memory utilisation, context-switch rate and application call rate.
These are all application independent load information. It is less common to use
application dependent load information, but for example [Santos01] and
[Berman96] do advocate this. Examples of application dependent load
information in a service provisioning platform with call control functionality
are the number of active calls and the number of call setups in a certain
time-interval.

Application
(in)dependent load
information

5.1.2 Load Distribution Strategies

The load distribution strategy decides how to distribute the workload. It has
as inputs (i) dynamic and quantitative load information on the status of the
application, and (ii) events that occur in the controlled application that can
be relevant for the load distribution, in particular the arrival of new
workload. Examples of new workload are an arriving invocation or the
creation of a new component. Depending on the type of load event and
used distribution method, a load distribution strategy has to take a
distribution decision when it receives a load event. For example, if case of
an initial placement distribution method, the load distribution strategy
decides where to create the component when it receives the corresponding
load event.

Based on the load information, the events and the performance
requirements, the load distribution strategy will decide how to distribute
the load. Figure 5-2 shows the part of the load distribution model (see Figure
5-1) that involves load distribution strategy.

 A MODEL AND OVERVIEW OF LOAD DISTRIBUTION 117

distribution
decisions

load information

performance
requirements

Legend

input-output

information

load distribution
strategy

activity

load events

Figure 5-2 Load
Distribution Strategy

Load Balancing, Load Sharing and Load Distribution
Two often-used load distribution strategies are load sharing and load
balancing. Load sharing optimizes the total throughput of the application by
keeping all resources busy. As long as there is work to be performed, all
resources will be busy, independently of the amount of work actually
assigned to each resource. Load sharing minimizing the time any resource is
idle [Santos01, Shivaratri92]. Load balancing is a special case of load sharing
that has as an additional goal to distribute the load evenly across all
resources [Chapin96, Shivaratri92, Santos01]. This ensures a certain
fairness, because all the workload will be given an even amount of resources
which will result in less variations in response times.

Load sharing

Load balancing

Load distribution strategies in general however can have other
optimization functions than those of load sharing and load balancing. For
example minimizing costs, minimizing communications delay, prioritizing
certain users [Chapin96] or QoS differentiations based on QoS
requirements.

Static, Dynamic and Adaptive Strategies
Load distribution strategies can be broadly characterized as static, dynamic
or adaptive [Shivaratri92, Casavant88]. Figure 5-3 depicts this division.

dynamic

strategies

static

adaptive non-
adaptive

Figure 5-3 Division of
load distribution
strategies in static,
dynamic and adaptive

Static strategies do not use information on the current state of the
application when making distribution decisions. For example, workload can
be assigned to a random node, or workload can be assigned to nodes in a
cyclic way. Static strategies thus do not use load information.

Dynamic strategies, on the other hand, use load information that describes
the state of the application. This means that the state of the application has
to be collected in some way, which provides additional complexities and
overhead. We will discuss load information below.

118 CHAPTER 5 LOAD DISTRIBUTION

Adaptive strategies are a special case of dynamic strategies. An adaptive
strategy can change its behavior to adapt to application state changes. For
example, if a particular policy performs better for a specific application
state, an adaptive strategy could change to that policy if it observes the
required application state.

Scalability
Load distribution is a common means to increase the scalability of a
application, e.g. [Cardellini02, Steen98, Othman01A]. We define scalability
as the ability of a application to handle the addition of users and resources
without users suffering a noticeable loss of performance. This definition is
based on (numerical) scalability definition as found in [Neuman94].
Important for scalability is that a linear increase in available resources
results in a linear increase in throughput, while maintaining a constant
response time.

Scalability

Stale Load Information and Effective Scheduling
A problem with dynamic load distribution strategies is that the dynamic
load information always describes the situation in the past since the
collection and transportation of the load information takes time. The fact
that load distribution strategies make their decision based on this stale load
information can severely limit the effectiveness of the load distribution
strategy, and can even cause instability. For example, in the very common
least-loaded strategy, new workload is sent to the least loaded node. This
can cause the so-called thundering herd effect, in which the least-loaded
machine quickly becomes overloaded because of the large amount of new
workload it receives until new load information is gathered [Dahlin00]. Thundering herd effect

The obvious approach to cope with stale load information is by
frequently gathering the load information. However, a higher frequency of
gathering load information causes more overhead. In addition, the load
information will always be somewhat stale. A load distribution strategy
therefore has to be able to perform effectively based on information
available that is stale to some degree. [Dahlin00] proposes that load
distribution strategies do not only base their load distribution decisions on
the load information, but also on how stale this information is. The
‘staleness’ of load information depends on both the age of the load
information, and an estimation of the rate at which new workload arrives
that will change the load information. If the load information is fresh (as
opposed to stale) because it is recent and/or the new workload arrival rate is
small, workload is sent to a node with a low load. As the load information
gets staler, the load distribution strategy behaves more as a random strategy.

 A MODEL AND OVERVIEW OF LOAD DISTRIBUTION 119

Stability
We define stability as the ability of a load distribution strategy to detect
when further actions will not improve the application state as defined by a
user-defined objective [Casavant88].

Stability

Casavant identifies four sources of instability and their effects on the
environment's behavior [Casavant88, Santos01]:
– Intolerance instability – if the distribution strategy reacts to small

imbalances in load distribution, it may enter a state where tasks are
continuously transferred among a given set of nodes to correct small
load differences. This is called processor thrashing. To avoid this type of
instability, the definition of optimal load distribution may be relaxed,
allowing the application to tolerate small imbalances.

– Overresponse instability – this is caused by an attempt to respond too fast
to local imbalance conditions. When an imbalance is detected, the
application tries to transfer a large proportion of work to achieve an
optimal load distribution as soon as possible. This may increase
dramatically the number of transfers, causing instability and decreasing
the distribution strategy’s performance.

– High static load instability – if the load on the application increases, the
opportunity for load imbalances and to overreactions becomes greater.
This may lead to instability. Under conditions of heavy application load,
the scheduler may do more harm than good with respect to application
performance.

– Invalid assumption instability – this type of instability may occur when the
load distribution algorithm violates certain assumptions made by the
designer. It may happen, for example, if the application was designed to
run on a certain environment and it is actually running on one with
different characteristics. Or the designer assumed certain components
to be co-located, and the load distribution strategy allocates them to
different nodes.

[Casavant88] and [Santos01] argue that relatively simple policies can
provide substantial performance gains, while more complex ones are not
likely to offer much further improvements.

Division of a Strategy in Policies
A load distribution strategy can typically be decomposed in four logical
components [Shivaratri92, Santos96], called policies:
– Information policy – to decide when, from where and what load

information has to be collected.
– Transfer policy – to determine which resources to transfer workload to

or from.
– Selection policy – to decide what workload can be transferred.

120 CHAPTER 5 LOAD DISTRIBUTION

– Location policy – given that the sending or receiving resource is
determined by transfer policy, to determine the respectively receiving or
sending resource.

The information policy decides when load information has to be collected,
where that load information is collected, and what load information is
collected. Information policies can be classified into three types, although
hybrid policies are also possible:

Information policy

– Demand driven information policies only collect information about the state
of the application if an entity transfer has to be made. This means that
the collection of load information is triggered by the transfer policy.

– Periodic information policies collect load information periodically. A fixed
amount of overhead is introduced because information is collected
whether it will be used or not. There is no extra delay when workload
has to be transferred, because information has already been collected.

– In state-change driven information policies, the dissemination of load
information is triggered by a change of the load to a certain degree.

The transfer policy determines which nodes qualify to move load to, and
which nodes qualify to move work from. Transfer policies may be based on
thresholds, or may be relative transfer policies:

Transfer policy

– Threshold transfer policies may decide that a source initiates a transfer of
workload to a target (node) if the load of the source exceeds a certain
threshold. It may also decide that a certain target initiates the transfer of
workload from a source if its load falls below a certain threshold.
Careful selection of these thresholds is necessary for a good
performance of the load distribution strategy.

– A relative transfer policy considers the difference between the loads of
targets (nodes) in a domain. If the loads differ more than a certain
threshold, workload can be transferred.

A second and orthogonal division of transfer policies is into periodic and
event-triggered policies. A periodic transfer policy periodically checks if the
node’s state qualifies for an entity transfer. Most transfer policies, however,
are event-triggered. With event-triggered transfer policies entity transfers may
be initiated because of a state change of other nodes, or because new
workload originates at a source.

A third orthogonal characterization of transfer policies is the question who
initiates the transfer of workload [Shivaratri92, Santos01]. If a heavily
loaded node decides to transfer some workload, the strategy is said to be
sender-initiated. If a lightly loaded node tries to get some workload from
heavily loaded nodes, the strategy is said to be receiver-initiated. A symmetrically

 A MODEL AND OVERVIEW OF LOAD DISTRIBUTION 121

initiated strategy is also possible: both senders and receivers may initiate a
workload transfer.

The selection policy is responsible for finding suitable workload to transfer.
The suitability of workload can depend on certain rules or restrictions for
this workload. The selection policy can take the following criteria into
consideration:

Selection policy

– Workload transfer overheads must be minimized, i.e., the time and
resources it takes to transfer the workload should be as small as possible;

– The transferred workload’s execution time should be enough to justify
the cost of the transfer;

– The dependency on local resources (e.g., file access, windowing
application), should be minimal, since after transfer accessing these
would have to be done remote. Dependency on local resources can also
prohibit transfer if the resources cannot be accessed remotely.

A simple approach for a selection policy is to consider newly created tasks
or entities to transfer, before they start executing. They are then much
cheaper and easier to transfer.

The location policy tries to find a suitable transfer partner when some
workload has been selected for transfer, and the transfer policy determined
the receiving or sending resource. This could be done using the state of the
application (dynamic strategies), but it can, e.g., also be done in a random
way (static strategies).

Location policy

5.1.3 Load Distribution Methods

In this section, we discuss distribution methods, and in particular how we
can classify them in the context of component middleware. Load
distribution method is in literature sometimes also referred to as
distribution mechanism [Schnekenb97], actuator [Berman96],
manipulation [Bergmans00] and effector [Santos01].

Historically most work done in the area of distribution methods is on
assigning processes (e.g., [Nasika00, Boyd02, Milojicic00]) or tasks (e.g.
[Chapin96, Santos01, Foster00]) to nodes.

We cannot however apply this task-based research directly to
component-middleware because of its very different computational model.
E.g., in task-based approaches every task represents a typically large amount
of computation that is done at some node, without any communication
during the computation with other tasks. The tasks ends when the
computation is finished. This differs from our domain of large-scale
distributed applications that exchange a lot of invocations that typically
require little computation per invocation.

Task-based approaches

122 CHAPTER 5 LOAD DISTRIBUTION

The process-based research cannot be used because migrating a process
does not preserve the validity of component references [Nasiki00, Boyd02].
In addition, for a process-based approach:

Process-based
approaches

– The amount of state that has to be transferred is quite large, making it
expensive [Milojicic00].

– This requires support from the operating application, which current
commercial operating applications do not provide [Milojicic00].

– A process can contain a lot of components, making this a too coarse
grained solution. In particular, we could not differentiate between QoS
of the components that live within the process.

Replication based and Non-replication based Distribution Methods
Replication is a well-known load distribution method [Cardellini02,
Neuman94]. In the context of component middleware, replication refers to
the usage of replicas, which are multiple components instantiated from the
same component template with a single identity. Replicas can logically be
thought of as one single component [Neuman94, RMODPPart3], i.e., they
exhibit the same behavior and have a consistent state. Each replica is
assigned to a different node, and invocations are directed to one of the
replicas. The decision which replica to use can be made with different
granularities, in particular per invocation or per session. Replication is often
used to improve availability, e.g., to create redundancy to cope with node or
network failures, as is the case with Fault Tolerant CORBA [FTCORBA].

Replication

Non-replication means that we only use a single instance of a component.
In contrast with replication, the invocations or sessions are always allocated
to the same server component. The load is distributed by distributing the
components over the set of available processing nodes. Different server
components of the same type will have different identities and different
states, but can be instantiated from the same template. In a non-replicated
distribution method, components can be allocated to a specific node at
creation time, and/or can be migrated to another node during run-time.

Non-replication

Pre-emptive and non-preemptive distribution methods
Distribution methods are commonly divided into preemptive and non-
preemptive [Shivaratri92]:
– Non-preemptive distribution method: the workload is assigned to a

target immediately after it has originated at a source. Once workload has
been assigned to a target, it cannot be transferred to another target.

Non-preemptive

– Preemptive distribution methods: the workload can be migrated to
another target after it has been assigned to its initial target.

Preemptive

Preemptive distribution methods introduce additional complexities because
it must be possible to migrate the state of a workload to a new target. This
makes a preemptive approach not only more complex to implement, but

 A MODEL AND OVERVIEW OF LOAD DISTRIBUTION 123

also potentially less transparent for the application developer. In addition,
migration can cause a significant performance overhead. Studies show that
the performance of preemptive and non-preemptive strategies are largely
application dependent [Santos01].

Combining load distribution methods
Table 5-1 combines the above-mentioned dimensions for classifying load
distribution methods. Non-preemptive and preemptive replication-based
distribution can be done at different granularity levels: per invocation and
per session. However, we dismiss preemptive per invocation replication
since it is too intrusive to the application to access the application state with
ongoing invocations (see Chapter 4). A preemptive replication method with
session granularity migrates a session to another replica.

In the case of a non-replicated approach, a preemptive approach can
change the location of a component during its lifetime, i.e., a component
can be migrated to another location. Important in this case is preserving the
correctness, which includes migrating the application state and updating the
component references.

 replication

 session invocation

non-replication

non-preemptive per-session per-invocation initial placement

preemptive session-migration - migration

Table 5-1 Non-
preemptive and
preemptive distribution
methods.

A specific load distribution solution can combine several of the above
distribution methods. For example, a load distribution solution might
initially create a set of replicas based on the load at that point in time. It
then assigns invocations to the least-loaded replica, and migrates replicas
that execute on a node that is consistently overloaded to another node.

5.1.4 Replication and State Consistency

In principle, replicas have to be consistent, i.e., every change to the state of
one replica has to be applied simultaneously to all other replicas. This can
be done by either processing every invocation in all replicas, or by
processing it in one replica and sending the resulting state update to all
other replicas. This however makes little sense if performance improvement
is the goal of the replication. Replication is therefore only useful from a
performance perspective if we can relax the consistency requirement. We
will refer to ‘real’ consistency as absolute consistency, and to a relaxed
consistency as loose consistency [Neuman94]. An example of loose consistency
is when it is sufficient that replicas will eventually receive state updates.
Whether this is acceptable depends on the specific application.

Absolute and loose
consistency

124 CHAPTER 5 LOAD DISTRIBUTION

There are many possible forms of loose consistency. Examples are
update-propagation (every replica eventually receives every state update),
and reads-your-writes (updates made by a specific client will be visible for
that client the next time the client does a read) [Chockler00]. Most of them
however have the disadvantage that they violate the transparency principle,
i.e., they require the application developer to be exposed to the complexity
of the consistency mechanisms that are used, and how they impact the
application. We therefore limit ourselves here to only one form of loose
consistency that does not violate transparency, which is replication for
components that only have session state. In this case a component has state
within a session with a specific client, but other sessions do not depend on
or affect this state. By making sure that subsequent invocations that are part
of the same session are handled by the same replica, this state can be kept
by this replica and does not have to be propagated to the other replicas.
This allows a straightforward and efficient implementation.

5.1.5 Suitability of Distribution Methods

We can divide components in three types based on the state that is
maintained. In general, we must assume that a component has state, that
this state is shared between concurrent sessions, and that the response to
any incoming invocation may depend on any other previous or simultaneous
invocation. We refer to this as global state. In more specific cases a
component has only the before mentioned session state, i.e., it maintains
state within one session and a response to an incoming invocation only
depends on other invocations within the same session. Finally, a component
can be stateless, i.e., no state is maintained between invocations and any
response is independent of any other invocation. Table 5-2 indicates for
each of these three types of components the suitability of the different
distribution methods.

 A MODEL AND OVERVIEW OF LOAD DISTRIBUTION 125

Distribution Methods

Type of Component

Initial Placem
ent

M
igration

Per-session
Replication

Session-m
igration

Replication

Per-invocation
Replication

Stateless –
no state between invocations

+ + + + +

Session State –
state between invocations in

the same session
+ + + + -

Global State –
state between invocations

+ + - - -

Table 5-2 Suitability of
distribution methods
based on type of
component

Replication Routing
Replication-based distribution methods, regardless of how they maintain
consistency, can be divided in three types based on how they transport
invocations from the client to the selected replica. This division is based on
[Cardellini02], but since the original division is specific for web servers, we
generalized it somewhat:
– central invocation-switch – all invocations for a certain replicated

component pass through a centralized piece of functionality. This is
depicted in Figure 5-4, in which client component C invokes server
component S, and this invocation passes to an invocation switch that
assigns it to replica R2. In the web server domain this is called a web-
switch approach for cluster based web server replication [Cardellini02].
A limitation of a central invocation-switch is that all replicas have to be
geographically co-located in order to prevent long network delays. In
addition, the central switch is a potential bottleneck and single point of
failure. It is possible to make a further subdivision into one-way
architectures that send responses directly from replica to client, and
two-way architectures in which the responses also pass through the
central-invocation switch.

R1 R2

C

component S

switch

Figure 5-4 Central
invocation-switch based
replication.

126 CHAPTER 5 LOAD DISTRIBUTION

– multi-casting – all invocations are multi-casted to all the replicas. This is
depicted in Figure 5-5, which shows client component C multicasting an
invocation to all replicas. Benefit of this approach is that there is no
central point of failure or potential bottleneck, as is the case for the
central invocation-switch. This is referred to as a virtual web cluster in
the webserver domain [Cardellini02]. A limitation is that the replicas
typically have to be geographically co-located to accomplish multi-
casting with minimal bandwidth consumption. The actual multi-casting
can then be done close to the server using IP layer or below IP layer
facilities. The approach must guarantee that one replica and only one
replica processes the invocation, and responds to the client. This
requires either a fixed/static algorithm, which reduces flexibility, or
coordination between replicas, which causes processing overhead and
delay.

R1 R2

C

component S

Figure 5-5 Replication
and multi-casting

– client middleware visible routing, invocations are directly routed to a specific
replica. This is depicted in Figure 5-6, in which the invocation is directly
routed to one of the replicas. In this approach the replica address is
visible to the client It is essential not to violate the replication
transparency, which can be done by making the (client-side) middleware
responsible for the routing to a specific replica. This approach is similar
to distributed web applications that use DNS, or standardized HTTP
redirects. Benefits are that the replicas can be geographically distributed,
and there is no central functionality that all invocations have to pass
through. A disadvantage is that it can cause extra overhead to inform the
client which replica to use, which is typically done as part of the first
invocation of a session. A second disadvantage is that to be able to
redirect a client to another replica during a session is established can
again cause extra overhead. Due to the overhead involved with using
client middleware visible routing for the first invocation, it does not
make sense for per-invocation replication.

R1 R2

C

component S

Figure 5-6 Replication
and client middleware
visible routing

For per invocation replication the selection of replicas can be content-blind
or content aware [Cardellini02]. In case of content blind approaches, the
distribution method does not inspect the content of the requests. For
content-aware approaches the distribution method does inspect the content
of a request, or the identity of the clients to decide which replica to use.
Content aware approaches cause more overhead but allow more intelligent
load distribution strategies.

Content Blind versus
Content Aware

Caching and Replication
A special type of replication is caching. Caching is a temporary form of
replication, in which an entity or response is saved in a cache that is located
at or close to a requesting node (this definition is based on [Neuman94]).

Caching

 STATE-OF-THE-ART IN LOAD DISTRIBUTION 127

In some cases, e.g., in the case of web caching, only the response is cached
and not execution logic that generated the response. Caching of responses does
not fit very well with component-middleware-based application, in which a
response is usually generated based on the parameters of the request, and
the current state. We can therefore dismiss caching responses for load
distribution in component-middleware-based applications. In the case of
caching of entities however, we considered the cached entity a replica that is
created close to the clients. The creation is typically done on-demand at the
first invocation.

Like normal replication, caching can improve performance and
scalability because the actual (replicated) server gets fewer invocations. And
caching improves response time because the network latency is less. As is
the case for normal replication, caches have to employ a validation
technique to verify consistency between cached entity and the server, i.e.,
the cached entity is a replica and both the state and execution logic have to
be consistent with the other replicas.

5.2 State-of-the-Art in Load Distribution

This section describes the state-of-the-art in load distribution for
middleware-based applications. This includes approaches in commercial
middleware products, for as far as we could find a publicly available
technical description of the load distribution functionality.

Although there is also work on load distribution for non-middleware-
based systems, we do not include this work in this state-or-the-art overview
since we cannot directly apply it to middleware-based application, as
explained in Section 5.1.3. We limit ourselves here to some pointers to
approaches for non-middleware-based systems:
– Task-based load distribution – [Santos01] focuses on the usage of

stochastic models to increase effectiveness of application level
scheduling, in particular on how to deal with incompleteness and
inaccuracy of load information.

– Process-based load distribution – [Nasika00] describes work in process
migration that takes interactions between distributed processes into
account. The follow-up paper [Boyd02] explicitly mentions that their
work is not suitable for distributed object applications.

– Web server load distribution – [Cardellini02] provides a survey on the
usage of replication to increase web server scalability. Web server
replication is similar to replication for middleware-based applications
because both consider client-server connections that consist of a series
of interactions between the client and the server. Current research in
web server scalability often assumes that web server interactions are

128 CHAPTER 5 LOAD DISTRIBUTION

stateless, and with static content. Replication of web servers that have
stateful sessions and require significant processing is considered future
work [Cardellini02].

5.2.1 Middleware-based Load Distribution

This section describes the state-of-the-art in middleware-based load
distribution.

Schnekenburger et al.
Schnekenburger’s approach [Schnekenb96, Schnekenb97] is based on
IONA’s CORBA ORB Orbix, and relies on the CORBA Trading Service. It
implements per-session replication and migration.

In the case of replication, the client uses the trader to select an object
(replica) to invoke. Changing to another object is possible, but not without
explicit involvement of the client (it requires a new import to the trader).
State synchronization or state migration issues are not dealt with, effectively
making it only possible to migrate sessions in case of stateless components.

Migration of objects to a node with a lesser load can be done
periodically. This is not transparent for the client since it invalidates the
object reference. When the client receives an exception after the server
object has been migrated, it has to contact the trader for an updated object
reference. Issues concerning reconfiguration safe state or consistency
guarantees in general are not mentioned, and are probably not supported.

The load information consists of the average percentage of time a CPU
is busy.

Barth et al.
[Barth99] describes a load distribution service in CORBA that is based on
using the Naming Service. An existing UNIX based resource management
application called WINNER is used to collect load information. Several
objects are bound to one name in the Naming Service, and a resolve on that
name will return the object on the least loaded node. Since from the
perspective of the application logic, it will randomly get one of the objects
bound to this name, we classify this as replication. Since there is no concept
of changing to another replica during a session, and no state
synchronization between replicas, this is a per-session replication for
components with session state (or stateless components).

The load distribution strategy uses a combination of CPU queue length
and percentage of CPU idle time. The paper argues that CPU queue length
can be misleading in case of many shortly running processes, but that if the
percentage idle time is approaching zero the queue length has to be taken
into account.

 STATE-OF-THE-ART IN LOAD DISTRIBUTION 129

A benefit of this approach, and all Naming Service based approaches, is
that it is transparent for the client and the server. It is however limited to
applications that use the Naming Service for every new session, and it can
only change the load distribution for new sessions.

Friends
[Man00A] describes an approach that uses initial placement to balance load
in a CORBA-based service platform called Friends. The load distribution
strategy uses CPU load information, and combines this with application
specific information that is hard-coded in the strategy. The initial
placement method is implemented through a centralized factory.

Othman et al.
[Othman01A] and [Othman01B] describe a CORBA-based replication
approach. It provides per-request, per-session and session-migration.
Client-side transparency is provided by using a location agent type of
solution, combined with the standard CORBA LOCATION_FORWARD
mechanism.

Per-request approach uses a central switch to distribute requests over
the different replicas. Othman et al. claim that per-request incurs too much
overhead to be of practical use.

Figure 5-7 shows how per-session load balancing works. A client initially
receives a reference to a load balancer. When a client makes a request, the
load balancer redirects the request to the appropriate target server replica
using a LOCATION_FORWARD reply. The client will continue to use the
object reference from the LOCATION_FORWARD message to interact
with the server.

Load Balancer

Client Replica

2. LOCATION_FORWARD

1. send_request()

3. send_request()

Figure 5-7 Per-session
distribution by Othman
et al.

This approach advocates session-migration (called on-demand by Othman
et al.) as the preferred approach for load distribution. Reason for this is that
session-migration does not introduce the overhead in the per-request
approach, but still allows for distribution during a session.

130 CHAPTER 5 LOAD DISTRIBUTION

Measurements for a test setup in which objects are stateless and provide
a service that runs a relatively long time show that latency and throughput
change only little when using on-demand and per-session assignment.
Using per-request assignment, latency doubles, while throughput decreases
fifty percent, thus the overhead for per-request is too high.

[Othman01A] compares a static per-session strategy to a dynamic
session-migration strategy. In the used test scenario, the static strategy is
not able to balance the load over the available replicas. In the case of the
dynamic strategy the load across the replicas fluctuates for a short period of
time, after which it stabilizes, distributing the load evenly across the
available replicas.

As [Othman01C] mentions, this approach does not provide any facilities for
state synchronization, thus limiting its use to stateless objects.
[Othman01C] does mention the possibility to use the state access methods
to synchronize state, or to use the CORBA Persistent State service for this
[CORBAPSS]. It however does not properly address the consistency issues,
and does not address the performance penalties associated with state
synchronization. Summarizing, this approach can only provide load
balancing for stateless objects.

Badidi et al.
Badidi et al.’s approach [Badidi99] implements a CORBA load sharing
service. It does this by using the standardized CORBA Trading Service to
implement a straightforward replication approach comparable to Barth et
al. Per-session replication is implemented by the Trading Service, which
gives a client the object reference of an existing server (replica) that is
lightly loaded. There is no state synchronization, limiting per-session
replication to stateless components, and components with session state.

This approach differs from Barth et al. with the possibility to do per-
request replication. This is implemented through smart proxies, a
proprietary way to add functionality at the client side in the invocation path
for every invocation. These smart proxies are used for every subsequent
invocation, to make it possible to redirect subsequent invocations to
another server. The paper does not contain details on how the smart
proxies are aware of load of each replica, and which replicas exist. Since
state transfer issues are not dealt with, this approach allows per-request
replication for stateless objects only.

Three strategies are possible, round-robin, random and least loaded.
The load of a server is defined by the server utilization, i.e., the amount of
time the server is busy handling requests during 1 second of time. This is
measured by manually instrumenting server code to measure response time.

 STATE-OF-THE-ART IN LOAD DISTRIBUTION 131

Thissen et al.
Thissen et al. [Thissen00] use the CORBA Trading Service [CORBATS] to
balance the load for a service that is replicated over several nodes. Each
Trading service is instrumented with load measuring functionality to collect
load information for the node it runs in. When a client imports a service,
the Trader searches its service directory for suitable services. The Trader
returns a list of services that fulfill the client’s import request, together with
a quality score for every service that characterizes the degree of fulfillment
to the client’s request. This list is ordered by the load balancer based on the
load of the system (or is random), and allows the client to import the
service that is, e.g., least-loaded.

The approach was evaluated by performing measurements in several
different setups, measuring the mean response time of the servers from the
client’s perspective. A random strategy proved to be inadequate in most
situations, especially when loads are relatively high. When the servers are
homogeneous, i.e., the server hosts have equal hardware characteristics,
different load balance strategies that use the load of the system have roughly
the same performance. However, when the servers are heterogeneous the
strategies do vary in performance.

Lindermeier
Lindermeier’s approach [Linderm00] combines initial placement, migration
and per-session replication in CORBA. A central load evaluation
component is responsible for selecting a host during object creation,
redirecting requests to migrated objects, and assigning requests to replicas
in case of replication. Replication is supported for replication safe objects
only, which means that there is no need for consistency protocols between
the replicas.

The load evaluation component, which resides at the implementation
repository, is responsible for selecting a node for initial placement, and for
deciding when replication or migration of an object should take place. The
load evaluation component gets load information from nodes and
middleware by using the Simple Network Management Protocol (SNMP).
Load information to represent the load for a certain host is the processor
utilization, amount and used memory and network capacity and utilization.
The load evaluation component gets load information on objects by
querying the ORB and POAs. Load information gathered this way is request
rate, waiting time of requests to be processed, processing time of requests,
waiting time for sending requests, data volume of requests and what are
common communication partners.

State transfer can be achieved by using the common state access
methods, and the standard CORBA request forwarding method is used to
(re)direct clients to the appropriate location. The issue of save state is

132 CHAPTER 5 LOAD DISTRIBUTION

mentioned, but no solution is described on how to obtain this. Also the
issue of state synchronization between replicas is mentioned but not dealt
with.

This approach implements initial placement, migration and per-session
replication, and discusses the state issues related with these load
distribution methods. It however does not solve all these issues, and the way
this approach is implemented violates some of our requirements.
Specifically:
– This approach requires changes to the POA interface, which is a

standardized interface and thus reduced transparency for the server
object developer.

– This approach requires changes to the ORB implementation.
– The consistency in case of migration is not dealt with.
– The consistency between replicas is not dealt with, limiting this

approach to stateless objects.
Also details on how the load information is obtained and used are not
mentioned in the paper.

Orbix
Orbix [Orbix] provides per-session replication for stateless objects using
the Naming Service. Object groups consisting of multiple objects can be
bound to a single path in the naming service. When a client resolves a path
that an object group is bound to, the naming service returns one member
object of the group based on the selection policy. This selection policy can
be static (round-robin or random) or active. The active policy selects the
object with the least load. The load for each replica is not collected by
Orbix, but has to be set manually after which it remains valid for a certain
period. Since all new clients will be directed to the least-loaded replica, this
seems to be a risk for thundering herd effects.

COM+
Load distribution in COM+ (called Component Load Balancing
[Carter99]) is done by the activation of object implementations at a specific
target location. This is the same as assignment of an object implementation
to a server at instantiation time. After the object implementation has been
assigned to a server, it cannot be migrated. Assignment of requests is not
used for CLB.

When a client activates an object, the request is passed to a (centralized)
load balancing server. This server keeps a list of machines that can create an
instance of the object implementation, and selects one that will receive the
activation request. The target machine then returns an interface pointer

 STATE-OF-THE-ART IN LOAD DISTRIBUTION 133

directly to the client. The client then continues to make invocations directly
on the object implementation, until the client is finished with the object.

The machines that participate in the load balancing are regularly polled
by the load balancing server for their response time (information policy).
The load balancing server sorts the list of target machines according to load,
and then selects targets from the list in a round robin fashion until the next
response time poll (selection policy).

One problem with this approach is the use of a centralized load
balancing server. If many object implementation activations take place, the
load balancing server can be overloaded. It also introduces a single point of
failure. Another problem is that once a client is bound to an object on a
particular target, it cannot be rebound.

WebLogic
EJB itself provides no explicit support for load distribution. However,
several commercial EJB container implementations do provide load
distribution support. We describe here how BEA WebLogic 6.1 [Weblogic]
supports load distribution by clustering of server objects.

WebLogic provides load distribution through replica-aware stubs. These
replica-aware stubs can exist on two level: for a component home, and for a
EJB object.

A replica-aware stub for a component home supports initial placement
since the creation request for a specific object is routed to a component
home that is selected by the load distribution strategy.

For stateless session beans, the replica-aware object stub provides per-
request assignment for client requests. For stateful session beans, the
replica-aware object stub routes always to the primary object, and only to
another replica (secondary object) in case of a failure. So replication is
supported for stateful components, but not for the purpose of load
distribution.

For entity beans that are read-only, the replica-aware object stub does
per-invocation replication. For entity-beans that also support writes, all
invocations are always routed to the same object.

WebLogic provides only static load distribution strategies, viz., round-
robin, weight-based and random. It is also possible to provide custom
strategies via the so-called call router that decide which replica to use.
These call routers become part of the replica-aware stub, and thus execute
at the client side.

Summarizing, WebLogic provides initial placement for all types of
beans, and per-invocation replication for stateless beans.

134 CHAPTER 5 LOAD DISTRIBUTION

Globe
Globe [Steen98] is a research middleware that aims at building scalable
applications in a wide-area network. Globe is not based on common
middleware technologies.

In Globe an object is a distributed object in that an object can be
distributed over several nodes in any way the developer sees fit. This
contrary to the more common computational model that mandates that an
object is located on one node, and generated stubs are co-located with
every client (in the same capsule). Common middleware technologies do
provide interceptors (as described in Chapter 3), which also allows
functionality co-located with every client beyond the generated stubs, but
this is more limited than what is possible in Globe.

The distributed object concept in Globe can be used to implement
different types of replication. Where in most replication approaches the
whole object implementation and state are replicated, Globe makes it easier
to replicate only part of the state and implementation. The different parts
that combined are the distributed object can use pre-defined or custom
consistency policies, which can be more efficient than absolute consistency.

Absolute consistency is considered to cause too much overhead to be
useful for scalability purposes. [Steen98] therefore advocates more efficient
and ‘looser’ consistency, which can depend on specific application
requirements. Instead of a one-size-fits-all approach, an application
developer can determine an application specific replication strategy.

Recent papers on Globe focus on Globule (e.g., [Pierre01, Pierre02],
which applies Globe to on-demand replication of web documents.
However, [Jansen01] describes how to use Globe for remote object
middleware. Globe is integrated with a remote object middleware
application named CORE that, according to the paper, resembles object
middleware technologies such as CORBA. One of the main differences is
that with CORE the proxies are downloaded by clients, contrary to being
generated at development time, as is typically done with CORBA.
[Jansen01] describes how CORE is extended to allow an object to be
distributed over several machines using Globe. In the extended CORE an
application developer can implement customized proxies that do more than
the simple remote-access type of proxies that the normal CORE offers.

Concluding, Globe incorporates very interesting ideas on replication and
scalability, but assumes a different computational model than the common
middleware technologies we consider in this thesis. Compared to common
middleware such as CORBA, Globe sacrifices transparency in favor of
flexibility. This violates our common middleware requirement (see Chapter
3, generic requirements for QoS mechanisms). In addition, the extra

 STATE-OF-THE-ART IN LOAD DISTRIBUTION 135

flexibility that Globe offers has as a disadvantage a decrease in transparency.
This violates our time and expertise requirements.

Similar ideas on application dependent consistency as advocated in
[Steen98] are applied in Cascade, a CORBA-based caching service that we
will discuss next.

CASCADE
CASCADE [Chockler00] is a caching service for CORBA objects.
CASCADE provides several levels of consistency guarantees for keeping
replicas of objects consistent. Replicas are cached close to the client to
improve the network latency when accessing an object.

The approach is based on a hierarchy of logical caching domains,
consisting of several servers (called Domain Caching Servers). In practice, a
domain represents a geographical location. It is assumed that network
latency in a domain is low, that the network latencies between domains are
high and that servers are available for caching in every domain. The root of
the hierarchy is the original location of the object. When a client makes a
request for a service, the object is copied from the closest domain in the
hierarchy. Different policies can be set for object consistency requirements
at a per-request granularity, and the caching service makes sure these
requirements are met.
The following six levels of consistency conditions are defined:
– Update Propagation – Each update on an object is eventually received by

each DCS.
– Read Your Writes – The effects of an update an application makes on an

object are visible to all subsequent queries of that application.
– Monotonic Reads – The effects of every update seen by an application

query are visible to all subsequent queries of this application (unless
overwritten by later updates).

– Monotonic Writes – Two updates from the same application are applied in
the same order as issued.

– Writes Follow Reads – Updates whose effects are seen by an application
query are applied before all subsequent updates issued by this
application. Along with Monotonic Writes, this ensures causal ordering
of updates.

– Total Ordering – All updates are applied in the same order (by all Domain
Caching Servers). In other words, there is a global sequence of updates.
Total Ordering includes Writes Follow Reads.

The total ordering is the most strict consistency condition, and can be used
for the widest variety of application. However, total ordering also imposes
the most overhead. It is implemented by ascending all updates to the root,
which orders them in a sequence and applies them to itself. After having

136 CHAPTER 5 LOAD DISTRIBUTION

done so, the root propagates an update downwards by either propagating
the request itself, or by propagating the resulting version of the object. The
latter is the only option in CASCADE if external objects are affected
(nested invocations) according to [Chockler00]. Although not clearly stated,
this is probably because if a nested invocation would be processed by each
replica, the nested invocation would be duplicated. This is a general issue
for replicated systems in which requests are processed by several or all
replicas, and probably could be suppressed in a similar way to how this is
done for active replication for Fault Tolerance [FTCORBA]. There is
however a performance penalty for this which might prove to be
unacceptable for most applications.

The paper mentions that sometimes a client has to provide consistency
information, e.g., the last update seen by client. This is then done through
either a special interface, violating client transparency, or it can be done
through an interceptor. Details on this are not provided.

CASCADE is geared towards reducing response time in case of slow
network connections, not on increasing throughput. Applications with lots
of read-only operations can benefit most from CASCADE. But depending
on the consistency required, throughput and even response time can
actually degrade.

The application developer is responsible for setting the policies in such a
way that the consistency is as ‘loose’ as possible, while not actually violating
application consistency. This requires expertise from the application
developer, violating our expertise requirement (see Chapter 3). A lot of
applications require total ordering, in which case CASCADE could just
increase response time instead of decreasing it (depending probably on the
ratio read/writes). The application would have to be designed to prevent
this, which violates the transparency.

However, in cases where there are servers available in the same domain
as where clients are located, and the application is suitable for caching,
CASCADE can increase performance while hiding the complexity of the
consistency protocols for the application developer.

5.2.2 Observations

Historically most work done in the area of load distribution is done on
scheduling of processes and tasks to different nodes, and more recently on
load distribution for web servers. We cannot however apply this research
directly to component-middleware-based application because of (i) the very
different computational model we assume, and (ii) we want to be able to
differentiate QoS based on the client or session, which requires a fine

 STATE-OF-THE-ART IN LOAD DISTRIBUTION 137

granularity which is not available at the network or operating application
level.

Supported Load Distribution Strategies and Load Information
Most middleware-based load distribution approaches focus on load
distribution methods, and apply simple least-loaded load balancing
strategies that use CPU measurements as load information. To our
knowledge, there are no approaches that thoroughly compare and evaluate
alternative strategies and/or usage of different load information. All
approaches have one or only a small number of fixed strategies, based on
one or limited set of load information solutions. None of them allow
addition of custom strategies, or custom load meters.

A problem with comparing the different approaches is that each
approach evaluates its solution using very different test scenarios. The test
scenarios differ in aspects such as:
– the amount of servers (few, many);
– the amount of client (few, many);
– the amount of clients per server;
– whether they have nested invocations or not;
– whether the servers have state or not;
– the frequency of state changes;
– whether the objects are long or short lived;
– whether processing an invocation takes a lot of processing power, or

very little processing power, or varying processing power;
– whether they assume a homogenous environment with no other

processes that consume resources, or a heterogeneous environment with
other processes consuming varying amounts of resources;

– whether client and servers are located in the same LAN (high bandwidth
and low latency), or are connected via a slow network connection.

All these aspects can be important for determining the most appropriate
strategy, load information and distribution method for a specific scenario.

Initial Placement
Initial placement of components is implemented by several approaches
[Man00A, Carter99, WebLogic, Linderm00]. [Man00A] and [Linderm00]
describe approaches that are CORBA based, and use the factory pattern in
which a component is instantiated via a central factory. Here, the central
factory delegates the instantiation to a node that is selected by the load
strategy, similar to our approach. [Carter99] describes Component Load
Balancing for COM+, which provides an initial placement distribution
method that activates object implementations via a (centralized) load-
balancing server. WebLogic [WebLogic] is an Enterprise Java Beans (EJB)
server that supports initial placement through its so-called replica-aware

138 CHAPTER 5 LOAD DISTRIBUTION

home stubs. These (client-side) stubs are downloaded by the client during
run-time, and contain a list of EJB Home objects. The client stub will select
one Home object when the clients want to create or find an EJB.

Migration
Only a few approaches offer migration of components [Schnekenb97,
Linderm00]. [Linderm00] describes transparent redirecting of a client to a
new location of a migrated object by exploiting the request forwarding
mechanism that is part of the CORBA specification [CORBA,
Almeida01C]. [Schnekenb97] describes a CORBA-based approach that uses
the Trader Service. The transparency of this approach is limited, since after
each migration the client has to get the new object reference from the
Trader Service. None of the approaches consider all the correctness aspects
related to migrating components.

Replication
Replication is offered by quite some approaches [Othman01A, Badidi99,
Schnekenb97, WebLogic, Orbix, Thissen00], but none of these approaches
is suitable for stateful components. Stateless components and sometimes
components with session state are supported.

Quite some approaches use session-based granularity by using a
Directory Service type of solution: [Schnekenb97], [Badidi99] and
[Thissen00] describe the use of the CORBA Trader Service, and [Barth99]
and [Orbix] describe the use of the CORBA Naming Service. Only
[Barth99] and [Badidi99] mention the possibility to switch to another
replica during the session, without considering state issues.

[Othman01A, Othman01B, Othman01C] and [Linderm00] also
describe approaches for replication of CORBA-based applications, but they
use the more advanced CORBA request forwarding mechanisms to
implement (re)direction. The approach described in [Othman01A]
supports session-migration replication for stateless components.
[Othman01B] does mention the possibility to use the state access methods
to synchronize state, or to use the CORBA Persistent State service
[CORBAPSS] for this. It however does not actually propose a solution, or
sufficiently addresses the consistency issues and performance penalties.
[Linderm00] describes how to offer replication for stateless components for
both per-invocation and per-session granularity. Since the per-invocation
replication is also based on the request forwarding mechanism, this causes
considerable overhead. A criticism towards [Linderm00] is that it not only
requires changes to the ORB implementation, but also to the CORBA
standard.

WebLogic [WebLogic] supports per-invocation and per-session
replication for stateless session beans and read-only entity beans only

 A NEW LOAD DISTRIBUTION MECHANISM 139

through so-called replication-aware EJB Object stubs, in which the
locations of the replicated (stateless) beans are embedded.

None of the above approaches allows session migration for component
with session state.

5.3 A New Load Distribution Mechanism

This section describes our load distribution mechanism for component-
middleware-based applications. Our mechanism addresses the generic
requirements for QoS mechanisms (as identified in Chapter 3) and specific
requirements for load distribution, which we will identify in this section.

This section is further structured as follows: Section 5.3.1 motivates the
need for a new mechanism for load distribution of component-middleware-
based applications, Section 5.3.2 states the specific requirements for such a
mechanism, Section 5.3.3 gives an overview of our mechanism; Sections
5.3.4, 5.3.5 and 5.3.4 respectively elaborate on the supported distribution
methods, the load strategies and the load monitoring functionality. Section
5.3.7 describes how we differentiate QoS in our mechanism. Finally,
Section 5.3.8 discusses the limitations of our mechanism and compared to
the approaches found in the literature.

5.3.1 Motivation

Load distribution for component-middleware-based applications can be
done at different layers:
– application layer
– middleware layer
– resource layer

Solutions at the resource layer are process-based solutions that migrate or
replicate processes, and network-layer-based solutions that distribute
invocations based on IP address or DNS name. Although they offer a
generic solution to load distribution, these solutions are too coarse grained
and do not allow QoS differentiation. The reason for this is that the
granularity of such a solution is a process or node, and these contain a lot of
components, and these solutions cannot distinguish between invocations for
the different components, or migrate a specific component.

Solutions at the application layer are specific for a certain application,
and burden therefore the application developer. They violate the flexibility,
time and expertise requirements (see Chapter 3, generic requirements for
QoS mechanisms).

140 CHAPTER 5 LOAD DISTRIBUTION

We propose a middleware-based solution here. At the middleware layer
there is more information on the application available than on the resource
layer, such as information on the client, the target component, the method
name etc. This allows more intelligent load distribution strategies, and
allows QoS differentiation. At the middleware layer the load distribution
can still be solved in a generic and transparent manner, i.e., without
burdening the developer of client or server components.

Existing middleware-based approaches offer point solutions that target
specific types of applications, often without making this explicit (see
Section 5.2), do not sufficiently consider state synchronization issues, do
not sufficiently consider correctness issues for migrations and/or violate
transparency.

5.3.2 Requirements

We consider the following requirements for our load distribution QoS
mechanism, in addition to the generic requirements for QoS mechanisms as
identified in Chapter 3:
1. Not application type specific – the load distribution QoS mechanism should

not be specific for certain application type, e.g., be specific for
applications with long running invocations, or for short lived
components, or for processor bound applications, or for non-nested
invocations. This extends generality requirement (see Chapter 3), which
states that a QoS mechanism should not be specific for a certain
application.

2. Node heterogeneity – the load distribution QoS mechanism should allow
different types of nodes, e.g., with different operating applications, or
with different levels of processing power. Part of this requirement is the
ability of the mechanism to function effectively in an environment with
nodes with different performance characteristics, e.g., the load
distribution strategy should function properly with one slow and one
fast node. This requirement extends the heterogeneity requirement (see
Chapter 3).

3. Multiple geographic locations – the load distribution QoS mechanisms
should be able to function properly with nodes at different geographic
locations. The load distribution QoS mechanism has to be able to
function properly with a slow network connection, not only between the
clients and the servers, but also with a slow network connection
between the servers.

4. Quality of Service – the load distribution QoS mechanism should provide
functionality that allows enforcement of QoS requirements, i.e., be

 A NEW LOAD DISTRIBUTION MECHANISM 141

suitable for QoS differentiation contrary to be limited to load sharing or
load balancing.

5. Minimize overhead – the load distribution QoS mechanisms should cause
minimal overhead. Some overhead is unavoidable, for example for load
monitoring, transportation of load information, generation of load
events and state synchronization.

5.3.3 A Framework-based Mechanism

An optimal load distribution strategy, and the load information that is
needed for this, depends on characteristics of the application and the
environment in which it operates. This means there is an inherent trade off
for load distribution between being generic and optimized for certain
applications and environments. We therefore propose a framework-based
mechanism that offers a wide range of often used distribution methods,
load information and load distribution strategies, and that can easily be
extended with new strategies or load information types.

As an example, an application that creates new components that are very
short lived and uses a lot of CPU would typically benefit most from a
combination of initial placement as the distribution method, and CPU load
information. The frequency of gathering load information has to be
balanced with the relative stability of this information (as explained in
Section 5.1.2). On the other hand, for an application with a large number
of long running components that cause little CPU load per component,
migration could be the most suitable distribution method, but the strategy
should migrate multiple components simultaneously because the impact of
moving one component at a time is too small.

The framework is not extendible with respect to the distribution
methods because, contrary to what load information to use or what strategy
to use, there is consensus in literature on a limited set of distribution
methods. In addition, implementing distribution methods can be very
intrusive to the middleware, application and the framework itself, making
this less suitable for extension. Our mechanism includes the following
distribution methods: initial placement, migration, per-session replication
and session-migration replication.

In the following sections we will elaborate on the different parts of our
framework-based mechanism: the load monitoring functionality, the load
distribution strategies and the load distribution methods.

142 CHAPTER 5 LOAD DISTRIBUTION

5.3.4 Load Monitoring Functionality

In our mechanism, load monitoring can be done at all three different layers
we distinguish in this thesis: application layer, middleware layer and
resource layer (see Figure 5-8).

application layer

middleware layer

resource layer

Figure 5-8 Monitoring
at all three layers

A load meter instruments the controlled application at one of the three
different layers, and produce some specific type of load information. Our
framework is extendible in that it is possible to add new load meters very
easily. We define interfaces for this that do not expose internals of the load
monitoring, including how the load information is transported from the
load meter to the load distribution strategy.

We provide default load meters at the resource and middleware layer.
Our default resource-layer load meters provide CPU and memory related
information. Our default middleware-layer load meters provide load information
on the number of active requests, response times and throughput. Since at
the middleware layer it is possible to distinguish between requests for
different components, it is possible to derive load information that is
actually application specific, and at a fine granularity. Examples are
response times for a certain component, throughput for a certain
component, or derived values from this such as average response time. This
makes it possible to use the load monitoring functionality to monitor the
achieved QoS.

We do not provide default application-layer load meters since these are
by definition application dependent. An example of application-layer load
information would be the size of some application internal buffer. We
provide interfaces for this that the application developer can use. What the
load is, is opaque for our framework, the load is simply passed to the
strategy without any form of interpretation.

We support three models for the transportation of load information to the
load distribution strategy:
– A push model, a state-change driven information policy (see Section

5.1.2) in which load meters actively report load information to the
strategy, e.g., when some threshold is reached.

Push, pull and periodic
models

– A pull model, a demand-driven information policy in which the strategy
requests data from the load meters.

– A periodic model, a periodic information policy in which load information
is pulled at a configurable frequency.

The transportation of the load information causes overhead, i.e., it
consumes network and processing resources. We try to minimize this
overhead by using a hierarchical model in which the information is
collected per node, and derived values such as averages can be calculated
locally.

 A NEW LOAD DISTRIBUTION MECHANISM 143

5.3.5 Load Distribution Strategies

Load distribution strategies decide how to distribute the load in order to
fulfill the QoS requirements. Our mechanism does not limit the way in
which the QoS requirements are expressed, since this can differ per load
distribution strategy. Typically, QoS requirements are quantitative (for
example response time and throughput), class-based (for example “best-
effort”, “silver” and “gold”) or do not differentiate QoS (for example load
balancing).

Strategies can use (i) the initial placement distribution method to
control the node where components are created, (ii) the migration
distribution method to migrate an existing component to another node,
and (iii) per-session replication and (iv) session-migration replication to
distribute the load of one component over several nodes.

 Besides offering some default load distribution strategies, our
framework-based mechanism allows easy addition of new strategies.
Strategies can interact with the framework to:
– Get access to load information, using the before mentioned pull, push or

periodic models.
– Be notified of relevant load events. The initial placement distribution

methods will produce a load event for the creation of a component, and
the per-session replication distribution methods will produce a load
event for the start of a new session.

– Convey distribution decisions, which can be: the location for a new
component, the migration of an existing component, the placement of
replicas, which replica to use for a certain session and the migration of a
session.

5.3.6 Supported Distribution Methods

We discuss the support for the different distribution methods one by one.
We give special attention to the transparency and overhead issues, and
indicate typical usage of the distribution method.

Initial Placement
Initial placement makes it possible for a load distribution strategy to control
the location where a component is instantiated. The component is created
with its normal initial state, and is not moved or replicated. Initial
placement can therefore be implemented without burdening the application
developer with state access or state synchronization issues.

Since this distribution method operates only at instantiation time, there
is no overhead during the rest of the lifecycle. Only at instantiation time
there is some performance overhead due to forwarding the instantiation
request to the proper location.

144 CHAPTER 5 LOAD DISTRIBUTION

This distribution method can be used for all types of applications, has
only a small overhead and is transparent for both client and server
developer. The disadvantage is that it is not possible to change the
distribution of the load for existing components. Without the creation of
new components there is no possibility to control the load distribution. For
example, a application with long-lived components is less suitable than a
application with short-lived components.

We use the Factory pattern [Gamma94] to implement initial placement
in a transparent manner. A client requests the creation of a component of a
specific type to a logically centralized factory. This factory interacts with the
load distribution strategy, which selects a target location for the creation of
the component. A request for the creation of a component triggers a load
event that is sent to the load distribution strategy, see Figure 5-1. The
creation of the component is then delegated to a local factory at the
selected location. Figure 5-9 depicts the interactions between the involved
components to implement initial placement using the factory patterns. The
numbers indicate the order of the requests and replies.

local
factory

com-
ponent

central
factory

 1. create component 2. which location ?
LD

strategy3. location

4. create

component

5. create

 6. return

8. return

7. return

Legend

component

 1. name
request, number indicates order

2. return
reply, number indicates order

Figure 5-9 Initial
placement

Migration
Migration of components makes it possible to migrate a (non-replicated)
component to another node. For migration we can re-use the migration
operation of our dynamic reconfiguration mechanism (see Chapter 4) to
ensure correctness (preserving structural integrity, mutual consistent states,
and application invariants). Before actually migrating a component, we drive
it to a safe state in which the component is not involved in any invocations.
Ongoing invocations are completed. New incoming invocations are
intercepted, and queued if they can be processed after the migration.

 A NEW LOAD DISTRIBUTION MECHANISM 145

Migration is not as transparent as initial placement, since for typical
components the application developer has to implement state access
methods to allow the transfer of the state to the migrated component.

Migration can be used to migrate components in case there are
insufficient resources available at the current location to provide the
required QoS. A load distribution strategy might also do the opposite, and
move components from a certain location to increase the amount of
resources that is available for the remaining components. A third possibility
to use migration is to migrate components that interact a lot to the same
node, or to nodes that have a high bandwidth network connection between
them (typically on the same LAN).

Figure 5-10 gives an example of a migration of a component S that has three
clients, and is migrated from node X to node Y. After the migration the
clients interact with S at its new location.

Legend
component

invocation

SC

C

C

node X

node Y

S

C

C

C

node X

node Y

node

migrate

Figure 5-10 Example of
migration

The overhead of the migration distribution methods is minimal during
instantiation and during normal operation. Only when an actual migration
is executed there is a temporary performance penalty because the
components are frozen for a certain amount of time. The amount of time
this takes depends on the longest running invocation in the set of re-located
components.

Using migration is only beneficial from a performance perspective if the
performance gains outweigh the temporary freeze of part of the application

146 CHAPTER 5 LOAD DISTRIBUTION

caused by the migration. Typically, migration is suitable for long-lived
components that have short lasting invocations. In case of short-lived
components the potential performance increase after migration might be
too small to compensate the overhead caused by the migration. In case of
long lasting invocations the migration can freeze the component and clients
that use the component too long.

Replication
We offer replication for components that are stateless, or have only session
state. For other types of components, the application developer has to
implement his own mechanisms to guarantee (loose) consistency.

Per-invocation replication can be implemented using a central switch
(see Section 5.1.5), which inspects every request and based on the current
load condition forwards it to an appropriate replica. Other solutions would
require coordination between the replicas, or with the client middleware,
which would decrease transparency and cause extra overhead. A central
switch however causes an extra delay for every invocation, and creates a
potential bottleneck because all requests for a certain component have to go
through this central switch. For this reason, we do not offer per-invocation
granularity because we consider this performance overhead is too big (linear
with the amount of requests), and because of the related scalability issues.

We do support per-session replication and session migration
replication. For this we adopt a client middleware visible routing approach (see
Section 5.1.3, or [Othman01C]) to route request to an appropriate replica.
The client directly sends its request to the appropriate replica, and in case
of session migration the client middleware changes the replica to which the
requests are directed during the session. The overhead is limited to initially
directing the client to the selected replica, and in case session-migration the
re-direction to another replica. The alternative approach would multi-cast
the requests, which would require support for this from the network and
would require coordination between the replicas to communicate which
replica would process the request, which causes extra overhead.

Figure 5-11 gives an example of a session migration for a replication
based distribution method. It shows three clients C1 and C2 that use one
replica (R1) on node X, and client C3 that uses another replica (R2) on
node Y. By migrating the session that client C2 has with R1 to R2, part of
the workload is shifted from node X to node Y.

 A NEW LOAD DISTRIBUTION MECHANISM 147

Legend
component or replica

invocation

R1C1

C2

C3

node X

node Y

R2

C1

C2

C3

node X

node Y

node

migrate
session

R2

R1

component consisting of
group of replicas

replicated
component C

Figure 5-11 Example of
a session migration.

In case of stateless components, no state transfer is needed between the
involved replicas. However, in case of component with session state, the
session migration includes the transfer of the relevant session state between
the replicas. This is done with similar state access methods as in the case of
component migration.

5.3.7 Quality of Service

Load distribution strategies distribute the load based on the QoS
requirements. We do not limit the way these QoS requirements are
expressed since this may differ per load distribution strategy. We however
can categorize load distribution strategies based on the type of QoS
requirements:
– Quantitative performance requirements – we consider two performance

characteristics to quantify performance: throughput and response time
(see Chapter 2). It is possible to have derived values of these two
characteristics, e.g., 90% of the time the response time has to be less
than 150ms.

– Class-based performance requirements – instead of quantitative requirements,
a certain component or client-server connection is put in a class, e.g.,
gold, silver, bronze class. The different classes will have different
amounts of resources available to components in that class. This division
in classes in similar to Differentiated Services for IP networks
[DiffServ98].

148 CHAPTER 5 LOAD DISTRIBUTION

– Load sharing or load balancing requirements – no QoS differentiation is
required, and there are no specific QoS requirements. The load
distribution strategy should only maximize total throughput of the
application (in case of load sharing) or balance the load (in case of load
balancing).

The load distribution strategy bases its distribution decisions on the QoS
requirements for the specific application. What the most effective way is to
enforce these QoS requirements depends on the application, the
environment and the nature of the QoS requirements. Besides accounting
for the different factors that determine what the optimal way is to enforce
the QoS, we also have to consider the stability, performance and scalability,
i.e., the strategy should not use load information or distribution methods
that incur too much overhead, and the strategy should scale up to high
volumes of load events, load information, nodes, invocations and
components.

To reduce overhead, increase scalability and account for the inherent
unpredictability of large-scale applications, we propose a dynamic and
heuristic strategy that is based on creating classes of nodes.

Class-based QoS Differentiation LD Strategy
We want to use load distribution to differentiate QoS, i.e., to allocate more
resources to certain components in case this is needed to fulfill the QoS
requirements. The assumption underlying the class-based QoS
differentiation load distribution strategy is that we do not know the amount
of resources a component will need, and that we also do not know the
amount of resources that is available since resources are shared with other
components, capsules etc. (see also our motivation for a dynamic approach
in Chapter 3). We can however estimate this to some extent by considering
current resource usage, which is provided to the strategy by the load
information. The assumption we make is that the needed and available
resources will not change very erratic, i.e., that past resource need and
availability is a useful measure to predict future resource needs and
availability.

We use this by creating classes of nodes. Within a class of nodes every
node will have a load below a certain threshold, and the load is balanced
between nodes. We can use any combination of load information to classify
the nodes, e.g., we can classify using some CPU idle time, but also using a
combination of CPU idle time, CPU queue length, memory usage and
middleware-layer response time. Nodes can be added and removed from a
class, when needed.

Figure 5-12 gives an example of four nodes that are divided over three
classes, based on their CPU load. The lowest class “Bronze” does not have a

 A NEW LOAD DISTRIBUTION MECHANISM 149

maximum CPU load, and is a best effort class. The “Silver” and “Gold”
have an increasingly lower maximum load, and thus there are increasingly
more processing resources available for the components that run in these
classes.

class "Bronze" - no
load threshold

class "Silver" - average
CPU load < 0.8

class "Gold" - average
CPU load < 0.6

Legend

component or replica

node

node A node B node C node D

Figure 5-12 Creation
classes of nodes based
on the available
resources

Should some class reach a load that is too high, a node can be added to that
class. The load can then be distributed over more nodes, resulting in a
lower load per node. If the load is significantly lower than the threshold
load for that class, one of the node in this class can be reclaimed, and
possibly used for another class.

The granularity for QoS differentiation in case of initial placement
and/or component migration distribution methods is per component, i.e., it
is not possible to differentiate between clients or invocations for the same
component. If a replication distribution method is used, the replicas can be
distributed over the different classes, and thus it is possible to differentiate
per session. Because of state synchronization issues between the replicas,
this can have undesirable side effects that a replica in a higher class cannot
meet certain QoS requirements because one of the replicas of a lower class
slows down the synchronization process.

We now first describe the strategy in case of class-based performance
requirements, and then for quantitative performance requirements.

Class-based QoS Requirements
In the case of class-based QoS requirements, we have both class-based QoS
requirements and classes of nodes, and we let the classes of nodes coincide
with the classes in the QoS requirements. The algorithm is then
straightforward: create new components on a node of the appropriate class
and assign new sessions to a replica in the appropriate class.

Figure 5-13 depicts an example in which client component C1 has
“Bronze” class QoS requirements, and client component C2 has “Silver”

150 CHAPTER 5 LOAD DISTRIBUTION

class QoS requirements. Since there is no load threshold for the “Bronze”
class, this is in fact best-effort.

The load is balanced within a class using the available distribution
methods, and nodes are removed or added to classes if the needed. In case
of overload situations, new load can be rejected (access control).

class "Bronze" - no
load threshold

class "Silver" -
average CPU load < 0.8

C1

node A node B node C

C2 QoS requirement:
"Silver" performance

QoS requirement: "Bronze"
performance (best effort)

Legend

component or replica

node

Figure 5-13 Example
with class-based QoS
requirements

Quantitative QoS Requirements
In case of quantitative QoS requirements we extend the above algorithm in
two ways. The first extension is that we monitor the achieved QoS by using
middleware-layer response time and the throughput load meters. This
enables the strategy to determine if the required QoS is met. The
granularity of this monitoring deserves extra attention, for example
reporting the response time for every single invocation is not very scalable.
A threshold-based load meter that pushes QoS violations to the strategy will
reduce the overhead. The second extension is that if QoS requirements are
not met, the strategy upgrades components or sessions to a higher class of
nodes that has more resources available. The possibilities for this upgrade
depend on the used distribution method:
– In case of the initial placement distribution method, this strategy is

limited in flexibility. The only possible action for existing components is
to move a whole node up to a higher class, and with some delay decrease
the load on that node. For new components of the same type, which

 A NEW LOAD DISTRIBUTION MECHANISM 151

can be expected to have similar resource needs, the strategy can choose
to instantiate them on a node in a higher class.

– In case of the migration distribution method the strategy can migrate
the involved components to a higher class. Figure 5-14 gives an example
in which server component S is migrated because the QoS requirements
of client component C are not met.

– In case of replication, a session can be migrated to a replica that
executes on a node of a higher class.

class "Bronze" - no
load threshold

class "Silver" -
average CPU
load < 0.8

S

C

node A node B

class "Bronze" - no
load threshold

class "Silver" -
average CPU
load < 0.8

S

C

node A node B

QoS requirement:
90% of the time a
response time of less
than 15ms

migrate S
in case of

QoS violation

QoS requirement:
90% of the time a
response time of less
than 15ms

Figure 5-14 Example of
a migration to enforce
quantitative QoS
requirement

If a component or replica already runs in the highest class, and thus there
does not exist a higher class to migrate a session or component to, a new
class can be created that has a lower load threshold than the current highest
class.

The above-described strategies assume that sufficient resources are
available. In an overload situation where there are insufficient resources a
combination of access control to refuse new workload and removing
current workload can be used.

Overload

Other QoS Enforcing Strategies
Our framework-based mechanism is suitable to implement other load
distribution strategies that enforce QoS requirements. Examples of such
strategies are:
– Strategies that co-locate components to reduce communication

overhead or to minimize network resource usage. Interaction patterns
can be discovered using message reflection techniques, or be based on
deployment descriptors, or a developer or application administrator can
configure the strategy with knowledge on the interaction patterns.

152 CHAPTER 5 LOAD DISTRIBUTION

– We can apply same class-based approach as above, but use capsule or
even container as unit of granularity, e.g., migrate component to a
capsule or container that has more execution threads available.

5.3.8 Comparison with Other Middleware Approaches

Main differences between our mechanism and other approaches are that, to
our best knowledge, we are the only one to offer migration that preserves
correctness, and we are the only one to use load distribution for QoS
differentiation. None of the other approaches offers extendibility for
custom load strategies, instead they only offer one or a few strategies
without much justification why these strategies are sufficient. With respect
to the load information, we offer several middleware-layer load meters,
have a concept of application-layer load meters, and offer extendibility with
respect to load meters.

We support several distribution methods, in particular stateless
replication, session state replication, initial placement and component
migration. Contrary to other approaches we do not neglect state
synchronization and consistency issues, which is especially relevant for
replication and migration-based approaches. We have a better transparency
than most other approaches, most of which rely on a Naming or Trader
Service.

5.4 High Level Design

Figure 5-15 gives a high level overview of all the different components of the
Load Distribution Service (LDS). The shades indicate who supplies the
components. For clarity we do not show interactions between components
that are both part of the LDS, i.e., we only show interactions between the
LDS and:
– the application, including the factory and components
– the load distribution strategies, since the LDS can be extended with

extra strategies
– the load meters, since the LDS can be extended with extra load meters

The different parts of the LDS are:
– Load Distribution Strategy – either provided as a default strategy by the

LDS, or ‘plugged into’ the LDS. It interacts with the Central Factory in
case of initial placement method, with the Migration Manager in case of
migration method and with the Replication Manager in case of
replication method. It receives load information from the load
monitoring components.

 HIGH LEVEL DESIGN 153

– Strategy Manager – handles configuration issues such as registering
strategies, which strategy should be used for which components,
configuration of strategies, configuration of load monitoring etc.

– Central Factory – used by the application when creating a new component
that has to be ‘load distributed’, it sends creation and deletion events to
the LD strategy to determine which local factory to use, and thus
implements the initial placement distribution method.

– Load Meter – monitors some type of load information, default resource
and middleware-layer Load Meters are supplied as part of the LDS, but
application layer and additional resource and middleware-layer Load
Meters can be added.

– Other Load Monitoring Components – monitoring functionality consists of
the reporting of load data, the exchange of load data, and the collection
of load data. This actually consists of several components. We will
further explain this in Section 5.4.2.

– Component Migration Manager – implements in collaboration with other
components such as the location agent and the LD agent the migration
distribution method.

– Replica Manager – implements in collaboration with other components
such as the Location Agent and the Load Distribution agent the
replication of components, and the distribution of invocation over the
replicas.

– Location Agent – used by client to get the component reference for a
component that is subject to the replication or migration distribution
method.

– Component and Factory – provided by the application developer.
– Load Distribution Agent – the instrumentation required for the migration

and replication distribution methods.

154 CHAPTER 5 LOAD DISTRIBUTION

Central
Factory

LD
Strategy

Component
Migration
Manager

Location Agent

Component

LD Agent
(migration and

replication)

Local
Factory

Replication
Manager

Application

Other Load
Components

(not detailed in this
design overview)

Capsule

Load Meter

to get a component
reference

to request creation and
deletion of components

to pass QoS
requirements

Component

LD
Strategy

Load Meter

Legend

load distribution service

application components

default implementations are part of LDS, but other
implementations can be 'plugged in'

Strategy
Manager

interactions

Figure 5-15 High Level
Design of the Load
Distribution Framework

5.4.1 Load Distribution Strategies

The LDS provides some default load distribution strategies, but an essential
property of our LDS is the possibility to extend the LDS with new
strategies. New strategies can be ‘plugged in’ easily, without requiring access
to the source code of the LDS or requiring recompilation of the LDS. The
LDS implements the distribution methods and load monitoring

 HIGH LEVEL DESIGN 155

functionality, which can be used by the strategy through offered interfaces.
The responsibility of the designer of a new strategy is limited to making
distribution decisions. A strategy can be application or environment
dependent, i.e., use specific characteristics of an application of the
environment the application runs in to be most effective.

As explained in Section 5.1.1, the designer of the load distribution
strategy does have to make sure the strategy is stable, i.e., he should avoid
processor thrashing and thundering herd effects.

Strategies have to be registered with the Strategy Manager, who instantiates
the strategies and also determines which strategy received which load
events. For example, in case of the application wants to instantiate a new
component only one strategy can process the create load event. Several
strategies can be active at the same time, and it is the responsibility of the
Strategy Manager that the load event is directed to the correct strategy.

5.4.2 Load Monitoring

Figure 5-16 depicts the basic architecture of the monitoring part. The
arrows indicate how the relationship should be read. This architecture is
based on [Rackl01]. The structure contains four logical components that
have to be mapped to physical implementation components. The four
different components are:
– Load Meter – performs load metering for a certain load type.
– Meter Agent – collects load data from one or more Load Meters, and may

also manipulate that data (for example to provide averages).
– Load Notifier – propagates load data to the Load Collectors that have

registered for such notifications.
– Load Collector – collects the load data.

We discuss each of these load monitoring components in some more detail
below.

156 CHAPTER 5 LOAD DISTRIBUTION

Load Collector

Load Notifier

Meter Agent

Load Meter

*

1
1

*

1

*

1

*

 is assigned to

 cooperates with

 is assigned to

 represents

Figure 5-16 Load
monitoring components

Load Meters are suppliers of load information. This information can relate to
load on the resource layer, on the middleware layer or on the application
layer. Load meters can support either of two data exchange models: push or
pull. Load meters that support the pull model provide an operation to
retrieve the load data measured by the meter. Periodic load information can
be gathered by periodically pulling the load information for the Load
Meters.

The primary purpose of a Meter Agent is to act as a façade for multiple
Load Meters that may exist in a location. The Meter Agent can do some
additional manipulation of the data received from Load Meters, and should
be local to the Load Meters to avoid communication overhead.

The Load Notifier component receives load data from Load Meters, filters
these reports and propagates them to Load Collectors that have registered
as consumers. The Load Notifier is a logically centralized component, but
may be physically distributed.

The Load Collector is the component that receives the load data sent by
Meter Agents. The strategy component uses the Load Collector for
retrieving load information.

5.5 Conclusions

We gave an overview of the area of load distribution, and how load
distributions concepts and terminology can be applied to middleware-based

 CONCLUSIONS 157

applications. We discussed and compared related work in the area of
middleware-based load distribution. We proposed a new mechanism for
load distribution of component-middleware-based applications that
integrates parts of existing approaches, and extends them with QoS
differentiation, a higher degree of transparency and more consideration for
consistency. Central to our mechanism is the extendibility, i.e., we make it
possible to easily add new strategies and to monitor other types of load
information. We presented a high level design of a Load Distribution
Service that implements our mechanism.

Our load distribution mechanism:
– supports initial placement of a component;
– supports migration of a component, while maintaining correctness;
– supports replication of stateless components;
– supports replication of components with session-state;
– supports migration of a session to another replica;
– supports resource, middleware and application-layer load monitoring;
– has default load meters for common load information such as CPU load,

throughput and response time;
– has a hierarchical monitoring design that minimizes overhead and

increases scalability;
– enables QoS differentiation;
– has some default load distribution strategies such as least-loaded

distribution based on CPU load;
– can easily be extended with new load distribution strategies;
– can easily be extended with new load information.

Main Contributions
The main contributions of this chapter are:
– we show that a load distribution QoS mechanism can be implemented

in middleware;
– we discuss the trade-offs with respect to transparency for the different

load distribution methods;
– our mechanism integrates different distribution methods, and allows for

extendibility with respect to the load distribution strategies and load
information;

– we show it is possible to use message reflection, i.e., portable
interceptors, to make our mechanism more transparent than other
existing approaches;

– we achieve separation of concerns of the designer of strategy and load
information, and the concern of the application component designer
(no mixed code);

– we propose how to use load distribution for QoS differentiation.

158 CHAPTER 5 LOAD DISTRIBUTION

Other Contributions
Other contributions of this chapter are:
– we propose a new generic model for load distribution;
– we propose a new categorization of distribution methods;
– we indicate important limitations in current middleware-based

approaches with respect to applicability and the consistency;
– we discuss the trade off between being optimal and being generic, and

argue that effective load distribution solutions will have to incorporate
application dependent knowledge.

Our Load Distribution Mechanism
Major issues to solve for any load distribution approach are (i) how to
direct invocations to the appropriate component or replica (ii) how to
handle the inherent trade-off between offering an optimal solution and
offering a generic solution (iii) how to keep application consistency in case
of migration or replication distribution methods.

Our mechanism solves the first issue, i.e., the direction of invocations to
the appropriate component or replica in a transparent manner using the
middleware.

We addressed the second issue by having a framework-based mechanism
that allows easy extension of the Load Distribution Service with additional
load distribution strategies and load information. Application or even
environment specific solution can then easily be implemented, while re-
using the distribution method, load monitoring and other functionality of
the Load Distribution Service.

The third issue cannot be completely solved in a generic, transparent
and efficient manner. Maintaining consistency is dependent on the
distribution method. For initial placement this is straightforward.
Maintaining consistency in case of migration is more difficult, but is
solvable in a generic and transparent manner, although it depends on the
application whether the overhead is acceptable. For replication however this
is not solvable, especially if we consider that this has to be done with
minimal overhead and has to be transparent to the component developer.
Our mechanism therefore does not provide replication in the true sense,
i.e., our mechanism does not keep all the states of all the replicas
consistent. We however do provide stateless replication, and session based
replication. The latter means that state changes are local to a specific
replica, which from a consistency perspective is similar to stateless
replication. It could be possible to implement some state consistency
protocols, similar to how CASCADE does this for caching, or to how Globe
does this. This would however violate transparency, and we chose not do
pursue this.

 CONCLUSIONS 159

Comparison with Other Approaches
A main difference between our mechanism and other approaches is that our
mechanism offers a wider range of distribution methods, in particular our
mechanism offers migration of components, (while preserving correctness)
and session-migration replication for components with session state. None
of the other approaches offers extendibility for custom load strategies, and
only offer one or a few strategies without justifying why these strategies are
sufficient. With respect to load information, we offer several middleware-
layer load meters, have a concept of application-layer load meters, and offer
extendibility with respect to load meters.

Future Work
We have argued in this chapter that the optimal load distribution strategy,
and the distribution methods and optimal load information required for
this, is application dependent. Without contradicting this, we think there
might very well be a certain limited set of application categories for which a
certain load distribution strategy works best. Future research could be on
determining these categories, and the corresponding strategies.

Strategy per application
category

While full replication is not desirable for load distribution purposes, we
could research further what the possibilities and trade-offs are for loose
replication. Current work (CASCADE, Globe) is applied to ‘close to client
replicas/caches’, but the proposed solutions might be suitable for the more
general case also. It would violate transparency, but it could be beneficial to
get insight in the trade-off between transparency and performance, and to
have support for this in our Load Distribution Service.

Loose replication

The OMG issued a request for proposal for a Load Balancing and
Monitoring specification [CORBALB]. The submissions to this request for
proposal indicate that the adopted solution will have many similarities with
[Otham01C]. It is based on using to the standard CORBA request
forwarding mechanism to direct client to the appropriate object. It has
fixed load metrics and fixed (but configurable) strategies, but mentions
possible subsequent additions to the specification to allow replacements of
these. The submissions are based on replication, i.e., they assume that the
load is balanced over a group of objects that share one identity. The
submissions however do not propose any facilities for state synchronization.
Our load distribution mechanism is a superset of the submissions, and
should OMG actually adopt a Load Balancing and Monitoring specification,
we could align our mechanism with it.

OMG standard

160 CHAPTER 5 LOAD DISTRIBUTION

Concluding Remarks
As became clear in this chapter, initial placement, replication for stateless
components and per-session replication for components with session-state
are the most transparent distribution methods. Avoiding migration and
especially state synchronization between replicas benefits both the
transparency, and minimizes the overhead. One can do this by partitioning
the application such that a component is dedicated to a single client,
thereby avoiding concentrating too much load on one component.
[Neuman94] identified three ways to build a scalable application,
replication, caching and partitioning. Basically, what we are advocating here
is that replication, or caching, is only part of the solution, and application
design should still take the partitioning principle into account. This can be
considered a violation of transparency in that it restricts application design,
but it will increase transparency with respect to state access and
synchronization, and allows optimal use of load distribution.

Chapter 6

6. Proof of Concept

This chapter describes a prototype of the QoS mechanisms that are proposed in this
thesis: the Dynamic Reconfiguration Service and the Load Distribution Service. Our
prototype integrates both QoS mechanisms, where the Load Distribution Service makes
use of the Dynamic Reconfiguration Service. We do however describe and evaluate the
QoS mechanisms separately.

For the implementation of our prototype we had to choose a specific technology,
namely CORBA. Similar prototypes could however be implemented in other component
middleware technologies.

This chapter is structured as follows: Section 6.1 describes the Dynamic
Reconfiguration Service prototype; Section 6.2 describes the Load Distribution Service
prototype.

6.1 Dynamic Reconfiguration Service

This section4 describes the Dynamic Reconfiguration Service (DRS)
prototype. The dynamic reconfiguration mechanism and high level design of
the DRS were already described in Chapter 4.

There are three different types of users of the DRS: the change
designers, the reconfigurable component designers and the designers of
clients of a reconfigurable component. We first describe the view that each
of these types of users have on the DRS. We then describe the design
choices we made for the DRS components themselves. We end this section
with an evaluation of the prototype, which includes a discussion of the
performance, the transparency and future work.

4 Parts of this section have been published in the papers [Almeida01B] and [Wegdam03A],
which are co-authored by the author of this PhD thesis, and in a master thesis that was
supervised by the author of this PhD thesis [Almeida01C].

162 CHAPTER 6 PROOF OF CONCEPT

The prototype is developed in Java, and with the ORBacus 4.0.4
CORBA ORB [ORBacus]. For an introduction to CORBA, see Chapter 2.
Some parts of this chapter however require more advanced CORBA
knowledge to understand them.

6.1.1 Change Designer View

The change designer interacts with the Dynamic Reconfiguration Service
through the ReconfigurationManager interface. The
ReconfigurationManager interface provides operations for creating and
removing objects, managing factories and specifying reconfiguration steps.

Normal Creation and Removal
Creation and removal of objects is part of the normal lifecycle of any object.
In itself these operations are not specific to the DRS. It is mandatory
however that the application logic creates and deletes objects through the
ReconfigurationManager, because the DRS has to assign a unique
identifier to each reconfigurable object.

Operations for object creation and removal are inherited from the
GenericFactory interface defined in the Fault Tolerant CORBA
specification [CORBA].

The create_object() operation allows the application to request the
creation of an object by specifying the identifier of the object’s type and the
criteria to be used in the creation. The delete_object() removes an
object.

The IDL fragment is shown below. We simplified the IDL by leaving the
exceptions and type definitions out, see [Almeida01C] for the complete
IDL.

interface GenericFactory {
 Object create_object(
 in TypeId type_id,
 in Criteria the_criteria,
 out FactoryCreationId factory_creation_id);

 void delete_object(
 in FactoryCreationId factory_creation_id);
};

The type_id is the same identifier as used in the interface repository to
denote the most derived type of an interface. The type identifier is used in
conjunction with the criteria to determine the local factory that creates the
application object.

The the_criteria parameter allows application to define initialization
parameters, and restrictions on how to create the object. Examples of

 DYNAMIC RECONFIGURATION SERVICE 163

criteria are initialization values, the required version of an object and the
preferred location of an object.

The factory_creation_id parameter allows the entity that invokes
the factory and the factory itself to identify the object for subsequent
manipulation. The factory_creation_id is an Any value that contains a
ReconfigurableObjectId. This ReconfigurableObjectId is used to
denote a reconfigurable object.

The object reference returned by the create_object() operation is a
reference to the reconfigurable object, which is valid during the complete
reconfigurable object lifetime. This object reference continues to be valid
after subsequent replacements and migrations.

Reconfiguration Step
A system evolves incrementally from its current configuration to a new
configuration in a reconfiguration step, which is perceived as an atomic
action from the perspective of the application.

A reconfiguration step is modelled by a ReconfigurationStep object,
which can be created through the create_reconfiguration_step()
operation of the ReconfigurationManager interface.

Composing a reconfiguration step
The ReconfigurationStep interface provides means to compose a
reconfiguration step from reconfiguration operations, namely,
– object creation;
– object removal;
– object replacement;
– object migration.

The change designer composes a reconfiguration step and commits it, i.e.,
requests its execution. The actual reconfiguration does not start till after the
commit.

The operations for object creation and removal have the same syntax as
defined in the GenericFactory interface. They differ from the ones
defined in the GenericFactory interface in that they are executed when
the reconfiguration step is committed. The object reference returned by
create_object() should only be used after the reconfiguration step has
been executed. An additional operation remove_type() can remove all
objects of a certain type.

Creation and removal

Object replacement can be done both on an individual basis, i.e., by specifying
factory_creation_ids, or on a type basis, i.e., by specifying the type of
the objects. While replacement on an individual basis provides a fine-

Replacement

164 CHAPTER 6 PROOF OF CONCEPT

grained control over the version of each object in the system, its use should
be avoided when all objects of a type can be replaced simultaneously.
Reconfiguration on a type basis simplifies version management, by
preventing objects of the same type from having different versions.

The operation replace_object() requires the user to specify the
object being replaced and the criteria to be used in the creation of the new
version of the object. The criteria are used to determine which factory to
use.

interface ReconfigurationStep {
 void replace_object(
 in FactoryCreationId factory_creation_id,
 in Criteria the_criteria);

The operation replace_type() requires the user to specify the type being
replaced, the new type and the criteria to be used in the creation of the new
version of objects. The new type must be identical or derived from the
original type. If the Reconfiguration Manager receives requests for the
creation of objects of a type that is being replaced, then those request are
deferred until the end of the reconfiguration. After reconfiguration, the
identifier of the original type can still be used when requesting object
creation, so that type replacements with sub-typing can be transparent for
the client application. Nevertheless, the new derived type is used for the
actual creation. The replace_type() operation returns the list of objects
replaced.

FactoryCreationIds replace_type(
 in TypeId current_type_id,
 in TypeId new_type_id,
 in Criteria the_criteria);

Object migration can be done both on an individual basis, i.e., by specifying
factory_creation_ids, or on a type-location basis, i.e., by specifying
the type of the objects to be migrated and their current location. Migration
on an individual basis provides a fine-grained control over the location of
each object in the system. The local factory that is used to create the
relocated version of an object is determined by the criteria.

Migration

void migrate_object(
 in FactoryCreationId factory_creation_id,
 in Criteria the_criteria);

FactoryCreationIds migrate_objects(
 in TypeId type_id,
 in Location origin,
 in Criteria the_criteria);

It is possible to set default criteria for the creation of a type by invoking
set_default_criteria(). It influences the behaviour of object creations

Default criteria

 DYNAMIC RECONFIGURATION SERVICE 165

after reconfiguration, e.g., by specifying the default location of new objects
of the type.

void set_default_criteria(
 in TypeId type_id,
 in Criteria the_criteria);

The optional state translator for the reconfiguration step can be provided by
invoking set_state_translator(). We describe the state translation
below.

void set_state_translator(
 in GenericStateTranslator translator);

Requesting the Execution of a Reconfiguration Step
A reconfiguration step can be executed in blocking mode by invoking
commit(), in which case the operation returns when the reconfiguration is
complete. A reconfiguration step can also be executed in non-blocking
mode by invoking deferred_commit(), in which case the operation
returns immediately. In the non-blocking mode, is_completed() should
be invoked to determine whether the reconfiguration step has already been
executed, or whether errors have occurred.

The non-blocking mode is necessary for self-replacement, i.e., when the
object that initiates the replacement is expected to be replaced. In this case,
the blocking mode would lead to deadlock, since the object being replaced
would have a pending request (commit()) and would never reach the idle
state.

void commit();

void deferred_commit();

boolean is_completed();

State Translation
In the replacement operations, the change designer can optionally specify a
state translator. The state translator is used by the DRS when the system has
reached the safe state. In the safe state, all the states of the affected objects
are consistent and stable. These states are used as input to the state
translator, which translates them to the state of the objects being
introduced to replace the affected objects.

A state translator has to be implemented by the change designer. A state
translator implements the GenericStateTranslator interface. This
interface defines the structure Instance, which comprises the type
identifier, the reconfigurable object identifier, the state of a reconfigurable
object instance and the reconfiguration operation being applied to it. The
operation types_supported() returns the types supported by the state

166 CHAPTER 6 PROOF OF CONCEPT

translator. In the absence of a supplied state mapping for a particular type,
the identity function is used, i.e., the state is not modified. The operation
translate() translates the states of a set of instances into derived states.

enum ReconfigurationOperationType {
 CREATION,
 REPLACEMENT,
 MIGRATION,
 DELETION};

struct Instance {
 TypeId type_id;
 ReconfigurableObjectId id;
 State the_state;
 ReconfigurationOperationType op_type;};

TypeIds types_supported();

void translate(
 in Instances original,
 out Instances derived);

The state of an object may include object references that are narrowed by a
state translator. If a reference to be narrowed points to an object being
replaced, e.g. as part of a replace_type() with sub-typing, an unchecked
narrow must be performed. A checked narrow would invoke an operation
on the object to check if the type is correct, which we want to avoid since
this object is part of the reconfiguration. Also a check narrow would delay
the state translation.

Unchecked narrows have been incorporated in the CORBA standards
with the introduction of CORBA Messaging. For ORB implementations
that do not support unchecked narrows, an object reference should be
externalized as CORBA::Object. These references should only be narrowed
when first used by the new version of an object.

6.1.2 Component Designer View

We discuss here how a reconfigurable component designer interacts with
the DRS, and the design restrictions that the DRS poses on the
reconfigurable component designer. This section is structured in four parts:
– state access – discusses the methods a component designer has to

implement to provide access to the internal state.
– factory – the usage of the DRS makes the usage of a factory pattern

mandatory. We discuss the exact interfaces that have to be used.
– active object – for active reconfigurable objects there are some additional

methods that the component designer has to implement for the DRS to
be able to reach a reconfiguration safe state.

 DYNAMIC RECONFIGURATION SERVICE 167

– threading – in some non-typical cases the component designer has to
pass some implicit context information to outgoing invocations to
enable the DRS to determine the invocation path.

State Access
Reconfigurable Objects must implement the ReconfigurableObject
interface, providing the state-access operations get_state() and
set_state(), which are identical to the state-access operations in the
Fault Tolerant CORBA specification. The state is encoded as a sequence of
octets. The encoding of the state may be application-specific. Nevertheless,
the application developer is strongly recommended to specify the state as a
structure in IDL. This guarantees interoperability and allows re-use of
available CORBA functionality to encode data structures as sequences of
octets (Common Data Representation [CORBA]).

interface ReconfigurableObject {

 State get_state() raises(NoStateAvailable);

 void set_state(in State s) raises(InvalidState);
};

Factory
Reconfigurable Object Factories implement the
ReconfigurableObjectFactory interface, which inherits the
GenericFactory interface. These factories must provide
create_object(), delete_object() and
get_reconfiguration_agent() operations. The
get_reconfiguration_agent() operation returns the
ReconfigurationAgent associated to a given reconfigurable object.

interface ReconfigurableObjectFactory :
 GenericFactory {
 ReconfigurationAgent get_reconfiguration_agent(
 in ReconfigurableObjectId id);
};

A Reconfigurable Object Factory creates and deletes instances of objects on
behalf of the Reconfiguration Manager, and registers and de-registers these
instances with the Reconfiguration Agent.

Figure 6-1 depicts the participation of an object factory in the creation,
replacement and migration of an object.

168 CHAPTER 6 PROOF OF CONCEPT

Reconfigurable
Object Factory

Reconfigurable
Object

Reconfiguration
Agent

Capsule

2. creates the object

1. create_object()

3. register_object()

Reconfiguration Manager
(as result of creation,

replacement or migration)

Figure 6-1 Participation
of factory in creation,
replacement and
migration

The create_object() operation is invoked by the Reconfiguration
Manager (1) to create an instance of an object. create_object() may be
invoked in the course of object creation, replacement or migration.

In the case of replacement or migration, the Reconfiguration Manager
delegates the creation, by repeating the parameters supplied by the user and
adding extra properties (name-value pairs) in the criteria parameter. These
properties are the location-independent object reference to be used by the
instance of the object and its reconfigurable object identifier. This allows
the object to maintain its identity across subsequent reconfigurations, and
publish the location-independent object reference as its object reference.
We explain how we implemented the location-independent IOR in Section
6.1.4 (page 174).

A reconfigurable object may retrieve its location-independent object
reference and its reconfigurable object identifier from the Reconfiguration
Agent, by invoking the get_reference() and
get_reconfigurable_object_id() operations. A reference to the
Reconfiguration Agent can be obtained by invoking
ORB::resolve_initial_references("ReconfigurationAgent"). If
the reconfigurable object invokes POA methods to retrieve its object
reference, the POA supplies the conventional location-dependent object
reference.

In case of an actual reconfigurable object creation, the Reconfiguration
Manager includes in the criteria the IOR and the Id properties, and an extra
ApplicationObjectCreation property. This allows the factory to
distinguish, if necessary, between an actual object creation and a creation
that results from replacement.

 DYNAMIC RECONFIGURATION SERVICE 169

create_object() creates the instance of the object (2), registers it with
the Reconfiguration Agent (3) and returns the location-dependent object
reference to the Reconfiguration Manager.

interface ReconfigurationAgent{
 void register_object(
 in ReconfigurableObjectId id,
 in Object rec_obj_reference,
 in octets adapter_id,
 in octets object_id);

 void deregister_object(
 in ReconfigurableObjectId id);

 Object get_reference(
 in octets adapter_id,
 in octets object_id);

 ReconfigurableObjectId
 get_reconfigurable_object_id(
 in octets adapter_id,
 in octets object_id);

 boolean is_affected(
 in ReconfigurableObjectId id);
};

register_object() receives as parameters the identifier of the
reconfigurable object and the location-independent object reference as sent
by the reconfiguration manager, the identifier of the object adapter in
which the object is located, and the object identifier used by this object
adapter.

The delete_object() operation is invoked by the Reconfiguration
Manager to delete an instance of an object. The execution of
delete_object() may be invoked in the course of reconfigurable object
removal, replacement or migration. If a factory finds it necessary to
distinguish between object removal on the one hand, and replacement and
migration on the other hand, it may invoke the operation is_affected()
of the ReconfigurationAgent with the identifier of the object as a
parameter. is_affected() returns true if the object is currently being
replaced or migrated. The use of is_affected() allows us to maintain the
syntax for delete_object() as defined in the Fault Tolerant CORBA
specification.

Figure 6-2 depicts the participation of an object factory in the removal,
replacement and migration of an object.

170 CHAPTER 6 PROOF OF CONCEPT

Reconfigurable
Object Factory

Reconfigurable
Object

Reconfiguration
Agent

Capsule
2. deletes the object

1. delete_object()

3.deregister_object()

Reconfiguration Manager
(as result of removal,

replacement or migration)

is_affected()
(optional)

Figure 6-2 Participation
of factory in removal,
replacement and
migration

Active Object
Active reconfigurable objects must also implement the ActiveObject
interface, in order to provide passivate() and activate() operations
in addition to state-access operations. An active object is an object that can
initiate non-nested requests, i.e., requests that are not causally related to an
incoming request. An active object should react to the passivate()
operation by refraining from initiating non-nested requests, i.e., by
exhibiting reactive behaviour. The activate() operation is the inverse of
passivate(), i.e., it informs an object that it is allowed to exhibit active
behaviour.

interface ActiveObject {

 void passivate();

 void activate();
};

Threading
For reconfigurable objects, the DRS maintains some context information
for the thread in which a request is being processed. This context
information, called the DRS context, contains the invocation path of the
request being treated and the identifier of the object treating the request.
The DRS context is used in order to determine the invocation path that is
sent implicitly with a request. As discussed in Chapter 4, we need the
invocation path when we drive the system to a reconfiguration safe state.

Figure 6-3 shows the DRS context of a thread treating a request req1.
The DRS context contains the invocation path of req1 ({O1, … ON}) and

 DYNAMIC RECONFIGURATION SERVICE 171

the identifier of the object ON+1 treating req1. The request req2, which is a
nested request of req1, contains the invocation path of req1 appended with
the identifier ON+1 ({O1, … ON, ON+1}).

incoming request req1
{O1 ... ON}

DRS context:
 invocation path = {O1 ... ON}
 object identifier = ON+1

nested request req2
{O1 ... ON, ON+1}

thread in ON+1

Figure 6-3 The DRS
context and the
propagation of the
invocation path

The DRS context is accessible through the ReconfigurationCurrent
local object. An instance of the ReconfigurationCurrent object can be
obtained by invoking
ORB::resolve_initial_references(“ReconfigurationCurrent”).

An active reconfigurable object must register each thread that issues non-
nested requests with the DRS. This is done by using the operation
register_thread() of the ReconfigurationCurrent object. The
parameters for register_thread() are the identifier of the object
adapter in which the object is located, and the object identifier used by this
object adapter. For the Portable Object Adapter (POA) these parameters
are obtained through POA::id and POA::reference_to_id()
respectively.

module ReconfigurationService {
 interface Current : CORBA::Current {
 void register_thread(
 in octets adapter_id,
 in octets object_id);
…

In the typical case an incoming request is treated in only one thread, as
depicted in Figure 6-3, and the propagation of the invocation path is
completely transparent for the reconfigurable object developer. The
propagation of the invocation path can be done without involvement of the
component developer because of the usage of message reflection. CORBA
Portable Interceptors (see Chapter 3) inspect and alter the implicit

172 CHAPTER 6 PROOF OF CONCEPT

parameters of an invocation, and copy them to and from the
ReconfigurationCurrent. It also does not require any changes to the
CORBA ORB. We thus fulfil the time, expertise and common middleware
requirements, as identified in Chapter 3 (generic requirements for QoS
Mechanisms).

In less conventional threading strategies, however, more support from
the reconfigurable object developer is required, as explained in the
remainder of this section.

In case the completion of an incoming request req1 served in a thread T1
depends on the completion of a nested request issued in another thread T2,
the DRS context information in thread T1 must be transferred to thread
T2. This situation is depicted in Figure 6-4, where T1 blocks waiting for
nested request req2 in T2 to be processed.

incoming request req1
{O1 ... ON}

reply to req2
reply to req1

DRS context:
 invocation path = {O1 ... ON}
 object identifier = ON+1

nested request req2
{O1 ... ON, ON+1}

threads in ON+1

T1 T2

c = get_control();

resume(c);

blocks till reply to
req2 is received

reply to req2 is
received

DRS context:
 invocation path = {O1 ... ON}
 object identifier = ON+1

Figure 6-4 Transferring
DRS context information
between threads

In this case, the get_control() operation of the
ReconfigurationCurrent must be invoked in thread T1 to obtain the
Control structure that must be passed to the resume() operation of the
ReconfigurationCurrent in thread T2. The names get_control(),
resume() and Control are adopted in order to resemble the Indirect
Context Management with Explicit Propagation in the CORBA Transaction
Service [CORBATS].

interface Current : CORBA::Current {
 void register_thread(
 in octets adapter_id,
 in octets object_id);

 struct CurrentSlotInfo {

 DYNAMIC RECONFIGURATION SERVICE 173

 ReconfigurableObjectId id;
 ReconfigurableObjectIds invocation_path;};

 typedef CurrentSlotInfo Control;

 Control get_control();

 void resume(in Control which);
};

The invocation path must also be propagated through non-reconfigurable
objects that are in the invocation path between reconfigurable objects. If
these non-reconfigurable objects are implemented with the unconventional
threading strategies identified previously in this section, the object
developer is responsible for transferring DRS context information between
threads in the same way as required for reconfigurable objects with
unconventional threading strategies.

6.1.3 Client Designer View

The Dynamic Reconfiguration Service is transparent for client applications,
which manipulate object references and issue requests to reconfigurable
objects in the way prescribed in the CORBA object model. During
reconfiguration, requests may be queued by the ORB and re-directed to the
target object, transparently for the client application.

One may think that the selective queuing of requests interferes with
ordering guarantees provided by the middleware infrastructure.
Nevertheless, in the CORBA object model, the order in which a client
issues requests does not imply the order in which a target object processes
the requests. This can, for example, depend on the server-side queue in the
ORB, which is not part of the CORBA specification.

This can be seen in example (1) of Figure 6-5. In addition, the order in
which replies reach a client does not imply the order in which the server
processed the requests. This can be seen in example (2) of Figure 6-5.

174 CHAPTER 6 PROOF OF CONCEPT

Client Server Object

requestA()

requestB()

replyB()

replyA()

Client Server Object

requestB()

requestA()

replyA()

replyB()

(1) Order of issuing the
requests does not imply

order of processing.

(2) Order of processing
does not imply order in
which the replies arrive.

Figure 6-5 CORBA
ordering guarantees

Nevertheless, CORBA does guarantee that (i) the issuing of a request is
eventually followed by the processing of the request, and that (ii) the
processing of a request is eventually followed by the arrival of the reply at
the client-side. A client can assume that requests are processed sequentially
if it issues a request after the arrival of the reply of a previous request. Our
DRS does not jeopardize these guarantees.

6.1.4 Design

The two main design choices for the DRS are concerned with the location
independent object reference, and the implementation of the selective
queuing. We describe both choices, and discuss alternative solutions and
motivate the selected one. We also describe how a simple reconfiguration
step is implemented, and how a composite reconfiguration step is
implemented.

Location Independent Object References
There are three alternatives to implement location independent object
references: forwarding proxies, client ORB notifications and location
agents. We discuss each of them, and motivate why we selected the location
agent alternative.

A location independent object reference can be implemented by keeping
forwarding proxies in the location of the old targets. These forwarding proxies
forward requests to the new location (or version) of an object.

Forwarding proxies

The problem with this solution is that the forwarding chain grows each
time an object is replaced or migrated. Therefore, when compared to the

 DYNAMIC RECONFIGURATION SERVICE 175

Location Agent solution, this approach introduces more overhead, is harder
to manage and uses more system resources than necessary. Furthermore,
locations where forwarding proxies exist cannot be actually taken off-line,
e.g., in the case of a hardware upgrade.

Sending a LOCATION_FORWARD reply to the client ORB when the
client makes the first request after reconfiguration can solve the first
disadvantage. The LOCATION_FORWARD message is a standard CORBA
message that notifies the client ORB redirect the client to use an updated
IOR. The client ORB then resends the request to the new IOR, and from
that point onwards keeps using the updated IOR. This however does not
solve the second disadvantage: the forwarding proxy has to remain active
until there is certainty that no clients might still have the old IOR. In
addition, this takes still would require a way to know which clients might
still have the old IOR. Keeping track of all clients would prevent the
scalable implementation of the DRS. Object reference distribution in
CORBA, or in any of the common middleware technologies for that matter,
is not controlled by the ORB, i.e., object references can be exchanged
between objects by many different means.

A second alternative is to notify the client-side ORB of the reconfiguration,
substituting the current object reference with the new modified object
reference. Although compared to the first alternative this alternative would
be faster, this alternative would also have to keep track of all possible clients
of a reconfigurable object.

Notify client side ORB

A third alternative to keep an object reference valid after reconfiguration is
to use of a location agent [Henning98]. In case a request on a modified
object reference is performed, an exception at the client ORB makes it
contact the Location Agent, which uses the above described
LOCATION_FORWARD mechanism to inform a client ORB of the new
location of the target object. We select this alternative because it does not
require the DRS to keep track of all clients, and it makes it possible to take
the node on which the old target ran offline. We describe the details on
how we implemented this below.

Location agent

The location agent must generate object references that point to itself
instead of pointing to the actual location of object. These object references
are called location-independent object references. The location agent does
this by creating an object reference that contains the location’s agent
address and the reconfigurable object identifier as the object-key.

Location agent
implementation

When a request is issued by a client for the first time, the location agent
is invoked. The location agent is implemented with a servant locator, which
keeps a registry mapping a reconfigurable object identifier to the
conventional location-dependent object reference. The servant location

176 CHAPTER 6 PROOF OF CONCEPT

throws a LocationForward exception with the current location-
dependent object reference that points to the current version of the object.
This exception reaches the client ORB as a LOCATION_FORWARD GIOP
(General Inter-ORB protocol) message. As prescribed in the rules of GIOP,
the client ORB reissues the request with the new object reference, until an
error occurs when using this reference.

Figure 6-6 depicts the basic functioning of the mechanism in the
establishment of the binding.

Figure 6-6 Transparent
binding establishment Server ORBClient

tim
e

Server

reply1()

reply1()

request1()

LOCATION_FORWARD()

Client ORB

request1()

request1()

reply1()

Location Agent

request1()

reply2()

reply2()

request2()
request2()

reply2()

request2()

When reconfiguration occurs, the reference being used by a client ORB is
no longer valid. At this point in time, GIOP mandates that the client ORB
switches back to the original object reference, which in this case is the
location-independent reference. The re-establishment of the binding
follows the same procedure as in the first establishment, transparently for
the client application.

Figure 6-7 depicts the basic functioning of the mechanism in the re-
establishment of a binding broken by reconfiguration.

 DYNAMIC RECONFIGURATION SERVICE 177

Client Client ORB Server ORB Server

Server' ORB Server'

Location Agent

request1()
request1()

request1()
reply1()

reply1()
reply1()

request2()

request2()
request2()

LOCATION_FORWARD()

request2()

reply2()
reply2()

request3()
request3()

reply3()
reply3()

X

request2()

reply2()

request3()
reply3()

X

at time t1 server is
replaced by server' which
resides on a different node

t1

request2 is send
to outdated location,

and thus fails

Figure 6-7 Transparent
binding re-
establishment

This mechanism is fully transparent to the client application and the
overhead for this solution is limited to the first invocation of a client on the
reconfigured target object. The forward mechanism is implemented in the
implementation repositories of some CORBA ORB implementations,
although the interface between the implementation repository and the
server ORB has not been standardized.

In our implementation, the Location Agent implements the
LocationAgentAdmin interface, which allows the Reconfiguration
Manager to register an object while retrieving its location-independent
object reference (register_object()), get the location-independent
object reference to an object (get_reference()), get the location-
dependent object reference to an object (get_target_object()) and

178 CHAPTER 6 PROOF OF CONCEPT

remove the current reconfigurable object identifier and location-dependent
object reference association (deregister_object()).

interface LocationAgentAdmin {
 Object register_object (
 in Object target,
 in ReconfigurationService::
 ReconfigurableObjectId id);

 Object get_reference (
 in ReconfigurationService::
 ReconfigurableObjectId id);

 Object get_target_object (
 in ReconfigurationService::
 ReconfigurableObjectId id);

 void deregister_object (
 in ReconfigurationService::
 ReconfigurableObjectId id);
};

Selective Request Queuing
In order to bring the system to the reconfiguration-safe state we have to
implement a selective queuing of requests. Requests that do not belong to
the ‘laissez-passer’ set should be queued transparently for clients and target
objects.

We identify two functions that are needed to realize selective queuing: a
selector and a queue. For each request directed to an affected object, the
selector determines if the request belongs to the ‘laissez-passer’ set. If it does,
the request is forwarded to the target object as in normal operation.
Otherwise, the request is sent to the queue.

Selector

The queue is responsible for storing requests until reconfiguration is
complete. Stored requests are redirected to the new version of the target
object after the reconfiguration.

Queue

We want the implementation of selector and queue to be transparent to
both client and server object. This means we have to implement them as
part of the middleware layer, opposed to implementing them as CORBA
objects on top of the middleware.

 We have different alternatives on how to implement the selector and
queue in the middleware layer. We distinguish them by considering the
allocation of the selector and the queue to different parts of the middleware
infrastructure, namely the client-side ORB (client ORB) and the server-side
ORB (server ORB). The benefits and drawbacks of each alternative are the
following:

 DYNAMIC RECONFIGURATION SERVICE 179

Selector and queue at
client side

– Pure client-side solution – Selector and queue are implemented as
extensions of the client ORB. Requests are selected and blocked at the
client side, imposing no overhead to the communication infrastructure.
Nevertheless, there is a serious scalability problem since all potential
clients of an affected object must be known a priori, and all these clients
must be notified of the set of affected objects. This drawback applies to
all solutions that place the selector in the client ORB. Moreover, this
solution complicates management, since the client ORB extensions have
to be deployed in every potential client of the reconfigurable objects;

Selector and queue at
server side

– Pure server-side solution – Selector and queue are implemented as
extensions of the server ORB. This solution offers better scalability than
the pure client-side solution, as clients do not need to be known a priori
and do not need to be informed of the reconfiguration. Since the client
ORB does not have to be extended, management and deployment can
be simplified;

Hybrid solution for
selector and queue

– Hybrid solution – The selector and the queue are implemented as
extensions of the server ORB and the client ORB, respectively. Clients
that attempt to issue a request to an affected object are informed to
block the request and re-issue it when they get a notification that the
reconfiguration has been completed. In effect, the queue becomes
distributed among all clients that attempt to issue a request to an
affected object during reconfiguration. This solution requires more
communication overhead than in the case of the pure server-side
solution.

The solutions discussed above imply that the ORB has to be extended
somehow, i.e., the ORB has to be instrumented. This can be realized by
either making proprietary modifications to the ORB code, but this violates
the common middleware requirement (see Chapter 3). We therefore will
use message reflection to implement the instrumentation. Since we use
CORBA, we can use Portable Interceptors for this (see also the discussion
on message reflection in Chapter 3)

The pure client-side solution can be directly implemented using
portable interceptors in the client ORB, but has the above mentioned
scalability issue.

The implementation of the pure server-side solution with portable
interceptors has a problem because the server side receive_request()
interceptors executes in the same thread as the target invocation [CORBA].
We would have to block this thread to implement the queuing function.
The effect of the blocking depends on the threading model of the server
object. Suppose this is a fixed pool of threads or a single thread, this can
cause deadlock. And if it would be a thread-per-request threading model,

180 CHAPTER 6 PROOF OF CONCEPT

we have a scalability issue. Because of these problems we have to reject the
server-side solution.

The hybrid solution can be directly implemented using portable
interceptors in the client ORB and in the server ORB, without risk of
deadlocks or scalability issues. We therefore select the hybrid solution.

The selector can use the service context of a request to determine a request
belongs to the ‘laissez-passer’ set. Service contexts allow implicit arguments
to be passed in a method invocation. When a reconfigurable object issues a
request, it adds its identifier to the service context. During the first stage of
the reconfiguration process, when a request arrives at the selector the
request’s service context is inspected. If the identifier of an affected object
is included in the service context, the request belongs to the ‘laissez-passer’
set and should not be queued.

Implementation of
hybrid solution

Figure 6-8 gives an overview of the implementation with a brief
description of the actions undertaken at the client- and server-side request
interception points.

receive_exception:
- wait notification and
reissue request (via
LocationForward)

Client Factory Reconfigurable Object

Object Request Broker Core

Client
Request

Interceptor

Reconfiguration
Agent

Server
Request

Interceptor

Client
Request

Interceptor

Reconfiguration
Manager

Location
Agent

receive_exception:
in case of 'reconfig exception',
wait for notification and reissue
request (via LocationForward)

receive_request:
- extract 'invocation path'
- during reconfiguration filter requests
(throw 'reconfig exception' to queue)
- append id of target object to invocation
path and copy into thread context
- increment # of incoming requests for
target object

send_reply, send_other
or send_exception:
- decrement # of
incoming requests for
target

send_request:
- copy thread context
into request service
context

application

infrastructure

ORB-mediated interaction

request flow (decomposed
ORB-mediated interaction)

intra-capsule interaction

reply flow (decomposed
ORB-mediated interaction)

Legend

Figure 6-8 Elements of
the implementation and
request reification points

 DYNAMIC RECONFIGURATION SERVICE 181

Before a reconfigurable object receives a request, the request is reified in
the receive_request interception point, and the service context
propagated with the request is extracted. A service context is an implicit
parameter used by CORBA services to propagate information along with a
request. For the DRS, it contains the list of reconfigurable objects that
depend on the execution of the request to become idle. The list of
reconfigurable objects is appended with the identification of the request’s
target object and the appended list is copied into the
ReconfigurationCurrent local object. The ReconfigurationCurrent
object provides access to an implicit per-thread context, and in this way the
thread is associated with the reconfigurable object.

During the first stage of the reconfiguration process, server request
interceptors inspect the propagated service context. If any of the affected
objects is listed in the service context, the request should be allowed to
complete, so that all affected objects can progress to the idle state. If no
affected objects are listed, an exception is raised. This exception is
intercepted in the client-side request interceptors, which block the thread
of execution and reissue the blocked requests later by raising a
LocationForward exception.

There is one disadvantage to the hybrid queuing solution, which we cannot
avoid. Suppose an affected object needs to issue a request to an unaffected
object to be able to finish some ongoing invocation. In the normal case the
client will process this invocation, and return the reply to the affected
object that can then reach the quiescent state. The issue here is that the
client ORB might not have the resources to process this request, because
they resources are blocked by our client-side queue. For example, it might
have a fixed thread pool of 4 threads. If the client already has four blocked
requests that it tried to send to affected objects, there are no threads
available to process the incoming request from the affected object. Although
we think this is very unlikely to actually happen, this is an inherent
limitation of the way we implemented the queuing. A solution would be to
adapt the algorithm to extend the set of affected object with this specific
object, and unblock the blocked requests. This is however not trivial since
we have to be able to detect this situation, and because it requires extra
communication between the Reconfiguration Manager and the affected
objects. Another solution that would at least prevent the reconfiguration as
a whole to wait forever is to detect that there has been a deadlock (e.g. with
help of a timer), and abort the reconfiguration. We however did not
implement this.

Because of this disadvantage, and also to prevent the installation of
client-side interceptors, a solution that does not involve the client side
could be considered as an alternative implementation. This could be done

182 CHAPTER 6 PROOF OF CONCEPT

by providing a separate queue. The implementation of such a queue,
however, cannot be done in a portable manner since it would either involve
ORB changes or using ORB proprietary functionality.

We consider two different policies for determining the moment at which
queued requests are re-issued: the wait-and-retry policy and the wait-for-
notification policy. The policy is determined by the Reconfiguration
Manager prior to reconfiguration.

Re-issuing requests
after reconfiguration

In the wait-and-retry policy, the Reconfiguration Manager sends a time
interval to the Reconfiguration Agents of the affected objects. This time
interval is passed in the reply service context of the exception that is sent to
clients during reconfiguration. The client-side request interceptor waits for
the time interval specified and reissues the request. If the reconfiguration is
not yet completed, the server-side request interceptors will raise the
exception again, and the client-side request interceptor will block for the
time internal again.

Wait-and-retry policy

Wait-for-notification
policy

In the wait-for-notification policy, the requests are re-issued when the
Reconfiguration Manager gives a signal to do so. The most straightforward
implementation of this would be to use the CORBA Event Service, and have
the Reconfiguration sent an event to all the blocked clients that the
reconfiguration is over. There is however a problem with this, in some cases
a client might remain blocked. An example of this is shown in Figure 6-9. In
this execution, the client’s pull() request reaches the event channel after
the event that indicates the end of reconfiguration. According to the
specification of the event service, the event is not delivered, and the client is
left waiting for a response to pull() indefinitely.

Client Client-side ORB Event Channel Server-side ORB Object Reconfig Mngr

request()

request()

'reconfig exception'()

pull()

object_is_idle()

push()

pull() reaches event channel after push()
because of which event is not retreived by
pull(), and request is never re-issued

client interceptor implements
queue and has to wait for event
to re-issue request

reconfiguration-safe state is reached,
reconfiguration took place, and all queued
requests can be re-issued

Figure 6-9 Problem
using the CORBA Event
Service for notifying
clients

 DYNAMIC RECONFIGURATION SERVICE 183

Although the above-described problem with the CORBA Event Service,
excludes its usage, we could implement a similar event service that would
pass the event to the client even if the push already occurred. We however
decided it was easier to block the client by introducing a (logically)
centralized point which all clients use to block.

We implemented this by introducing the
ReconfigurationManagerCallback object that the Reconfiguration
Manager creates before the start of a reconfiguration. The Reconfiguration
Manager sends the reference of the callback object to the Reconfiguration
Agents of the affected objects. This reference is passed in the reply service
context of the exception that is sent to clients during reconfiguration. The
client-side request interceptor invokes the block_until_ready()
method of the ReconfigurationManagerCallback object, which blocks
until the end of the reconfiguration. Serializing the access to the object,
e.g., by using a single threaded POA, can prevent possible scalability issues
with this callback object. The client application is not at any moment aware
of the reconfiguration, potentially observing an increase in the response
time of invocations that are queued waiting for reconfiguration.

Performing a Reconfiguration Step
The DRS components, namely the Reconfiguration Manager, the Location
Agent and the Reconfiguration Agents, cooperate to perform a
reconfiguration step. Below we detail the activities executed to perform a
simple reconfiguration step.

Object Creation
Figure 6-10 shows the creation of an object. The Reconfiguration Manager
delegates the creation to a local Reconfigurable Object Factory (2), which
creates the object (3) and registers it with the Reconfiguration Agent
responsible for the capsule where the object lives (4). After that, the
Reconfiguration Manager registers the recently created object with the
Location Agent (5), and returns the object reference to the client that
requested the object creation (6).

184 CHAPTER 6 PROOF OF CONCEPT

Reconfigurable
Object Factory

Reconfigurable
Object

Reconfiguration
Agent

Capsule

3. creates the object

2. create_object()

4. register_object()

Reconfiguration
Manager

Location
Agent

1. create_object()

6. returns reference to
reconfigurable object

5. register_object()

Figure 6-10 Object
creation

Object Replacement
Figure 6-11 shows the replacement of an active object. Initially, the
Reconfiguration Manager delegates the creation of the new version of the
object to a local Reconfigurable Object Factory (2). After that, the
Reconfiguration Manager notifies the affected reconfigurable object and its
Reconfiguration Agent of the start of the reconfiguration (5, 6). The
Reconfiguration Agent restricts the behavior of the affected object, and
notifies the Reconfiguration Manager when the object is ready for
reconfiguration (7). The state-transfer is conducted (8, 9), the object is
allowed to exhibit active behavior (10), the new location of the object is
registered with the Location Agent (11), and the local factory is requested
to remove the previous version of the object (12). In Figure 6-11 we do not
show state translation that may take place.

Reconfigurable
Object Factory

Reconfigurable
Object

Reconfiguration
Agent

Capsule A
13. removes
the object

2. create_object()

Reconfiguration
Manager

Location
Agent

1. replace_object()

14. done

11. register_object()

Reconfigurable
Object Factory

Reconfigurable
Object

Reconfiguration
Agent

Capsule B

3. creates the object

4. register_object()

9. set_state()
10. activate()

8. get_state()

5. passivate()

6. start_freezing()

7. notify_ready_for_reconfig()

 1

2.
rem

ov
e_

ob
j()

Figure 6-11 Object
replacement

 DYNAMIC RECONFIGURATION SERVICE 185

Object Migration
Object migration is treated as an object replacement where the factory of
the new version of the object is located in the destination capsule.

Object Removal
The Reconfiguration Manager delegates object removal to the
Reconfigurable Object Factory responsible for the object being removed,
and de-registers the object with the Location Agent.

Performing a Composite Reconfiguration Steps
The procedures for the execution of simple reconfiguration steps described
above are special cases of the procedure to execute a composite
reconfiguration step. To minimize the time in which the affected objects
are blocked, we do all the creation’s before driving to a safe state, and do all
the removal’s after the unblocked all the affected objects. This results in this
following procedure:
1. for each object creation, migration and replacement, the

Reconfiguration Manager invokes the create_object() operation of
the appropriate local object factory (determined by type and criteria);

2. the Reconfiguration Manager invokes the passivate() operation of all
active objects in the affected set;

3. the Reconfiguration Manager invokes the start_freezing()
operation of all active objects in the affected set. The parameters of
start_freezing() include the set of affected objects and the
information for the queuing policy adopted;

4. all the affected objects eventually reach the idle state and the
Reconfiguration Agents invoke the notify_ready_for_reconfig() to
let the Reconfiguration Manager know this. The safe-state is reached;

5. the Reconfiguration Manager reads the states of the affected objects,
translates them with the translate() operation of the state translator,
when this is supplied, and sets the states of the new or relocated
versions;

6. the Reconfiguration Manager (re-) registers the location-dependent
object reference with the location agent;

7. the Reconfiguration Manager invokes the activate() operation of the
new or relocated versions;

8. the client-side ORBs are notified that the reconfiguration is over, in case
reissuing policy is wait-for-notification; and

9. for each object removal, migration and replacement, the
Reconfiguration Manager invokes the delete_object() operation of
the local object factory that holds the version to be discarded.

186 CHAPTER 6 PROOF OF CONCEPT

6.1.5 Evaluation

The DRS prototype has been successfully tested for applications with
multiple multithreaded objects, including nested and re-entrant
invocations. See [Almeida01C] for a description of the tests. The prototype
validates our dynamic reconfiguration QoS mechanism for component-
middleware-based applications. It is a prototype nevertheless, and should be
tested further to assure practical usability and correctness.

We evaluate the prototype by discussing the performance and transparency,
and we mention some future work on the DRS.

Performance
We separate two aspects of the performance of the DRS: (i) the overhead
during normal operation and (2) the impact on execution during
reconfiguration.

The usage of the portable interceptors causes some extra overhead for every
invocation during normal operation. Our tests show that this causes an
increase in response time of about 0,13ms [Almeida01B]. This increase is
more or less independent of the type of invocation. In the worst case this
causes a relative increase in response time of about 12.4%. These
measurements however are quite dependent on the used ORB (ORBacus),
implementation language (Java) and the environment in general.

Overhead during normal
operation

Clients of an affected object observe an increase in the response time of
operations that are invoked during a replacement. This increase only applies
to invocations that reach the target object after the beginning of the
reconfiguration and before the end of the reconfiguration.

Impact on execution
during reconfiguration

The increase in response time during reconfiguration is highly
dependent on the application. It is upper-bounded by the duration of the
longest pending invocation in the set of affected objects at the moment the
reconfiguration starts plus a fixed delay introduced by the reconfiguration
service for co-ordination overhead. For active objects, the amount of time
taken for the object to exhibit a reactive behavior should also be considered
in the calculation of the upper bound of the increase in response time.

According to an experiment conducted with the replacement of one
single object, this delay is approximately 530 ms of which 320 ms are
related to marshalling and de-marshalling of service contexts. We see
opportunities for optimizations that should reduce these values.

The experiments should be repeated for different ORB implementations to
reach more conclusive results. In addition, further tests should consider the

 DYNAMIC RECONFIGURATION SERVICE 187

effects of reconfiguration on the performance of the new object right after
the reconfiguration, as all the queued requests are directed to it.

Transparency
We discussed the transparency aspects of our mechanism already in
Chapter 4. Here we will summarize how this is effectuated in the prototype.

For the typical case of a reactive object that does not spawn additional
threads, there are two obligations for the developer of a reconfigurable
object: to use the factory pattern, and to provide state-access methods.
These are the same requirements as for the CORBA Fault-Tolerance
Service. Also portable interceptors have to be installed for reconfigurable
objects and clients of reconfigurable object, and more general for any object
that could be in the invocation path for re-entrant invocations. The
installation of the portable interceptors however does not require changes
to the application code, it is only a deployment issue.

For active objects there is an additional obligation to implement
methods for passivating and re-activating the object. For active objects, and
for objects that spawn additional threads to process an incoming request,
the component developer has the additional responsibility to update the
invocation path in the ReconfigurationCurrent. This is in our opinion not
time consuming, but does violate especially expertise requirement (see
Chapter 3) since the developer has to be knowledgeable when to do this.

The obligations for passivation and invocation path updates depends on
the specific middleware technology. For example, in EJB active components
or components that spawn new threads are not allowed, and this would
thus not be an issue.

Future Work
We could extend the prototype with a mechanism to abort on ongoing
reconfiguration if we detect a problem, for example some run-time
exception. An abort would mean re-activating all passivated affected objects,
accepting invocations again and unblocking all clients.

We can also use this abortion mechanism if the time to reconfigure
exceeds some value specified by the reconfiguration designer. This can serve
two purposes. The first is if the QoS requirements for the application put
an upper bound on the time a reconfiguration can last, in which case
aborting the reconfiguration and resuming operation with the old
configuration might be preferred to violating the QoS requirements. The
second is that the reconfiguration might have reached a deadlock, e.g.
because one of the affected components does not comply with its
restrictions. An abort of the complete reconfiguration is then the only
solution.

188 CHAPTER 6 PROOF OF CONCEPT

Our prototype of the dynamic reconfiguration service could be made
available to a large number of developers and it could be applied in complex
realistic applications. This would further validate the service and provide
feedback that would lead to possible improvements.

We expect our dynamic reconfiguration mechanism to be applicable
directly on a component-based middleware infrastructure such as
Enterprise JavaBeans [EJB] and CORBA Component Model [CCM]. The
support to dynamic reconfiguration in this case may be located in the
container of a reconfigurable component. A component could be declared
to be reconfigurable in its deployment descriptor, thus providing a strict
separation between application and reconfiguration concerns. With
component-based middleware, it would be easier for the component
developer to define the state access functions, because the relationships
between components are not encapsulated in the implementation of a
component, and these relationships can be reified and manipulated at run-
time by a third-party, which, in our case, is the dynamic reconfiguration
service. Since a component is a deployment unit, it would also be possible
to re-use or adapt the deployment facilities of a middleware infrastructure
in order to include dynamic reconfiguration. This includes re-use of the
factory patterns that newer generation component middleware mandates.

6.2 Load Distribution Service

This section5 describes the prototype that validates our load distribution
QoS mechanism. The validation focuses on the load distribution methods,
the load monitoring capabilities and the pluggeability of the load
distribution strategies and load meters. The provided default strategies are
focus at testing the functional and performance overhead aspects of the
Load Distribution Service (LDS). We spent only limited effort in
developing advanced strategies. As a consequence, the strategies we
developed are not suitable for a wide range of applications and
environments, and cannot enforce complicated QoS requirements.

This section is structured as follows: Section 6.2.1 describes the design of
the distribution methods; Section 6.2.2 describes the design of the load
monitoring functionality; Section 6.2.3 describes the load distribution
strategies, and the Strategy Manager; Section 6.2.4 gives the view on the
LDS from the perspective of the different users: the component designer,

5 Parts of this section also appeared in a master thesis [Post02] that was supervised by the
author of this PhD thesis

 LOAD DISTRIBUTION SERVICE 189

the client designer, the strategy designer, the load meter designer and the
system administrator; Section 6.2.5 describes the tests we did, and the
resulting measurements on the overhead and performance of the LDS
prototype; Section 6.2.6 evaluates the LDS prototype.

6.2.1 Distribution Methods

This section describes the design of the distribution methods: initial
placement of objects, migration of objects and replication.

Initial Placement Distribution Method
Support for initial placement is provided by the Central Factory. The
Central Factory implements the GenericFactory interface from Fault
Tolerant CORBA [FTCORBA]. This interface provides operations for the
creation and destruction of objects, implementing the abstract factory
design pattern [Gamma94]. Although in the prototype the Central Factory
is a singleton object, i.e., only a single instance exists, the Central factory
can easily be distributed should this be required for scalability reasons.

Clients use the create_object() operation to create an object of a
specific type, specified by the CORBA repository identifier of the target’s
most derived type. Clients also specify the criteria that should be used when
creating the object. Criteria are name-value pairs that allow clients to
specify how an object should be created. An example of a criterion is an
initialisation value for the object to create.

When a client that created an object wants to delete it, it can use the
delete_object() operation. The IDL is shown below. We left out the
exceptions and some of the type definition to make it more readable. The
full IDL can be found in [Post02].

interface GenericFactory {
 typedef any FactoryCreationId;

 Object create_object(

in TypeId type_id,
in Criteria the_criteria,

 out FactoryCreationId factory_creation_id);

 void delete_object(

in FactoryCreationId factory_creation_id);
};

The create_object() operation returns a reference that points to the
newly created object and a creation identifier. This identifier should be
retained by the creating entity so that it can delete the object using the
delete_object() operation. The identifier is opaque, and only valid
within the factory that produced the identifier.

190 CHAPTER 6 PROOF OF CONCEPT

A call to the create_object() operation on the Central Factory is
delegated to a factory on the node where the object will actually be created.
The selection of this local factory is based on the initial placement strategy
for the type of object being created. The corresponding delete_object()
operation at the end of the lifecycle is delegated to the local factory that
created the object. Every local factory also implements the
GenericFactory interface.

The Central Factory object also inherits the FactoryManager interface for
the administration of local factories. Information that has to be provided
when a factory is registered consists of the object reference of the factory,
the location of the factory, the default criteria for object creation and the
type identifiers that are supported by the factory. The FactoryManager
interface also specifies operation for removing factories. Other operations
that are supported and are also useful for a load distribution strategy are
operations to retrieve information on a specific factory, to get a list of all
object types supported by the Central Factory, and to get a list of local
factories that support a specific type of factory.

struct FactoryInfo {
 GenericFactory the_factory;
 common::Location the_location;
 Criteria the_criteria;
};

interface FactoryManager {
 typedef any FactoryId;

 FactoryId add_factory(

in FactoryInfo factory_info,
in TypeIds type_ids);

void remove_factory(

in FactoryId factory_id);

FactoryInfo get_factory_info(

in FactoryId factory_id,
out TypeIds type_ids);

common::TypeIds get_type_ids();

FactoryInfos get_factories_creating_type(

in common::TypeId type_id);
};

Migration Distribution Method
The Component Migration Manager implements the migration distribution
method. The Component Migration Manager uses the migrate()
operation of the ReconfigurationManager interface of the Dynamic
Reconfiguration Service (DRS), see Section 6.1.1. We can directly use this

 LOAD DISTRIBUTION SERVICE 191

functionality and the other involved DRS components such as the
Reconfiguration Agent and the Location Agent. We will not repeat the
description of the implementation of this migration functionality.

Based on load information and QoS requirements, the load distribution
strategy can instruct the Component Migration Manager to initiate the
migration of one or more components to another node.

Replication Distribution Methods
The replication distribution methods are currently not implemented in the
LDS prototype. Since our replication method, at least for stateless
components, is similar to the one presented in [Othman01C] (see also the
section on related work in Chapter 5), we are confident that the
implementation can be done. Our load distribution mechanism extends
[Othman01C] with the migration components that have session state.
Below we briefly describe a possible implementation.

Replica and replica group management are provided by a Replication
Manager, which is based on replication in the Fault Tolerant CORBA
specification [FTCORBA]. The load distribution strategy interacts with the
replication manager to decide on issues as number of replicas, placement of
replicas, assignment of sessions to a specific replica, and the migration of
sessions to another replica.

For the actual placement of replicas, for assignment of a session to a
replica and for migrating a session, existing functionality of the initial
placement and migration distribution methods can be re-used. This means
that creation of a replica is done via a Central Factory, that delegates it to a
local factory. Assignment of a session to a certain replica is controlled via a
Location Agent. Redirecting a client to another replica (session migration)
is done by instructing the load distribution agent to send a LocateForward
exception to the client ORB. We implement the load distribution agent
using a portable interceptor, contrary to [Othman01C] which proposes the
use of a Servant Manager.

Although we could also implement per-request replication is a similar way
as per-session and session-migration replication, we consider the associated
overhead to be unacceptable. This overhead is per invocation, contrary to
per session or per migration. Every invocation is send twice, once to the
Location Agent and once to the replica.

6.2.2 Load Monitoring

Section 5.4 already gave an overview of the monitoring components. In this
section, we zoom in on how we implemented this in the prototype.

192 CHAPTER 6 PROOF OF CONCEPT

Load Meters
As described in Chapter 5, the LDS supports both push and pull models for
the load monitoring. As a result, we also have two different types of Load
Meters, namely the Push Load Meter and the Pull Load Meter. We support
the periodic model for the load monitoring by periodically pulling the load.
There is common functionality for all load meters, especially functionality
to identify them. We therefore let the interfaces for the push and pull load
meters inherit from one base interface. The resulting UML class diagram is
shown in Figure 6-12.

LoadMeter
the_location : Location
load_type : LoadType
the_name : string
id : UniqueId

destroy()

interface

PullLoadMeter

get_load()

interface
PushLoadMeter

interface

Figure 6-12 Load Meter
class diagram

A LoadMeter provides operations for retrieving the location of the load
meter (the_location attribute), the type of load that is measured by the
meter (load_type attribute), the name of the load meter (the_name
attribute), and a unique id for identification purposes (id attribute). The
destroy() operation is called to destroy the load meter, and can include
clean-up related tasks.

A location is described by using a name as defined by the CORBA
Naming Service [CORNANS]. A name consists of one or more
components, such that hierarchical names can be formed for identifying
different locations. To make up a hierarchy, the following information is
used: the IP address of the node, the ORB identifier, the name of the
Portable Object Adapter, the object identifier, and the interface operation
method name.

The PullLoadMeter interface provides an additional operation called
get_load() to query for the current load value. The PushLoadMeter

 LOAD DISTRIBUTION SERVICE 193

does not provide any additional operations, and pushes the load value to the
local Meter Agent. Our current prototype does not include any push load
meters.

Default Load Meters
The LDS provides four resource-layer load meters and two middleware-
layer load meters, all based on the pull exchange model:
– Standard CPU load meter – This resource-layer load meter calculates the

load by determining the percentage of time the CPU is executing non-
idle threads. This information is collected using operating system
specific system calls.

– Average CPU load meter – This resource-layer load meter calculates the
load by measuring the CPU load over a configurable time interval
(default is 1 minute). The CPU load is measured in the same way as the
standard CPU load meter.

– Memory load meter – This resource-layer load meter calculates the load by
determining the ratio of used and total available amount of memory.
This information is also collected using operating system specific system
calls.

– Intrusive CPU load meter – This resource-layer load meter calculates the
load by counting the number of integer increments that can be done in a
specific time interval. Calculating load in this way causes more overhead
than using operating system specific system calls, but it has two benefits.
The first is that it does not rely on operating system specific
functionality. The second is that it is an absolute measurement of
available processing resources. For example, suppose we have a
heterogeneous environment with one very powerful node and one much
less powerful node. Even in cases were the powerful node is loaded
somewhat more than the less powerful node, it is typically better for
performance to direct load to the more powerful node. Using a CPU
measurement based on idle time might cause the load distribution
strategy to make the wrong choice.

– Average response time load meter – This middleware-layer load meter
calculates the load by measuring on the server side the time it takes to
execute a certain object operation, and calculating the average over a
configurable time interval (default is 10 seconds).

– Invocation throughput load meter – This middleware-layer load meter
calculates the load by counting on the server side the number of
invocations per configurable time interval for a certain object operation.

194 CHAPTER 6 PROOF OF CONCEPT

Load Information Exchange
The monitored data exchanged between Load Meters and a Meter Agent is
captured in a Load Value. The following IDL code shows the type
definitions of load values.

// TimeT is from the CORBA Time Service
typedef TimeBase::TimeT TimeT;

struct LoadValue {
 LoadType type;
 float value;
};

A Load Value consists of the type of load it represents, and the value of that
load. Because load data is usually expressed in some numerical form (e.g.,
the percentage of the time a CPU is busy), a floating-point number is used
to represent the load value. In some cases when the nodes have different
capacities, the load values are not directly comparable, and have to be
normalized.

Data exchanged between Meter Agents and Load Collectors is carried in
Load Events. These Load Events describe the load values that have been
measured, the location where that load was measured, and a timestamp that
indicates when the load was measured.

Depending on the load meter, the location consists of one or more
name components. For example, for a CPU load meter, a location consists
only of the IP address of the node, because CPU load is shared between all
objects on a node.

The timestamp re-uses the basic types from the CORBA Time Service
[CORBATime]. Comparing timestamps makes sense if the timestamps refer
to measurements performed on the same node, because no logical clock is
used. We expect that using a logical clock [Raynal96] would cause an
unacceptable overhead. Besides, we could not find a use-case in which a
load distribution strategy would really need to compare timestamps
between two different nodes.

The following IDL code defines Load Events:

struct LoadEvent {
 TimeT time;
 drs::Location loc;
 LoadValue value;
};

For load data exchange, the CORBA Notification service [CORBANot] is
used. The Notification service supports both the push and the pull model.
Because the Load Notifier basically acts as a channel for distributing events,
it can be implemented using the Notification service. An additional benefit

 LOAD DISTRIBUTION SERVICE 195

is that the Notification service provides the ability to filter events allowing
consumers to only receive the events they are interested in.

Load Meter Registration
A Load Meter registers with the Meter Agent that exists at the same node as
the load meter. Meter Agents support the MeterAgentAdmin interface, as
defined in the following IDL:

interface MeterAgentAdmin {
 readonly attribute common::Location the_location;
 readonly attribute common::UniqueId id;

 LoadMeterId register_pull_load_meter(

in PullLoadMeter load_meter);

 LoadMeterIds get_all_load_meters();
 LoadMeter get_load_meter(

in LoadMeterId load_meter_id);

 void unregister_load_meter(

in LoadMeterId load_meter_id);
};

The operations provided by this interface allow for the registration of load
meters with the Meter Agent (register_pull_load_meter()), the
removal of load meters from the Meter Agent
(unregister_load_meter()), and the retrieval of registered load meters
(get_all_load_meters() and get_load_meter()). The
MeterAgentAdmin interface also provides a location attribute
(the_location) and an identifier (id), both for configuration and
identification purposes.

Load Collector
The Load Collector provides an interface for strategies to retrieve load data.
The LoadCollector interface is defined as follows:

interface LoadCollector {
 monitoring::LoadEvents get_load_for_type(
 in monitoring::LoadType load_type);

 monitoring::LoadEvents get_load_for_locations(
 in monitoring::LoadType load_type,
 in common::Locations loc_seq);
};

The get_load_for_type() operation retrieves a list of load events for the
specified load type. The returned list includes the last received load event of
the specified type for each location that has load monitors for the specified
type. The get_load_for_locations() operation retrieves a list of load
events for the specified load type and list of locations.

196 CHAPTER 6 PROOF OF CONCEPT

The Load Collector collects load events by pulling them from the
monitor channels, and storing the retrieved events.

Configuration of Load Meters
Load meters can be created by using a load meter factory. The interface of
the load meter factory is as follows:

interface LoadMeterFactory {
 PullLoadMeter create_pull_load_meter(

in LoadType load_type);

 PushLoadMeter create_push_load_meter(

in LoadType load_type);

 PullLoadMeter create_named_pull_load_meter(

in LoadType load_type,
 in string name);

 PushLoadMeter create_named_push_load_meter(

in LoadType load_type,
 in string name);
};

Invoking the create_pull_load_meter() or
create_push_load_meter() operation results in the factory creating a
push or pull load meter of the specified load type. The factory assigns the
name to the created load meter.

The create_named_pull_load_meter() and
create_named_push_load_meter() operations allow the creation of
load meters with a specific name. These methods are provided to support
distinction between load meters that measure the same type of load by
application provided names.

The LoadMeterFactory does not register the created load meters with
the Meter Agent, nor is it used to destroy load meters. The registration is
the responsibility of the creator of the load meter, as is the destruction.

In order to let the monitoring objects find each other, a simple object
discovery system has been provided. It is event based, using a channel in the
Notification Service to exchange the events. It is designed in such a way that
it does not expect a specific order in which the different object are started,
and new objects can easily be added during run-time. The events are
CREATE, DESTROY, QUERY and QUERY_REPLY. Details can be found in
[Post02].

 LOAD DISTRIBUTION SERVICE 197

6.2.3 Load Distribution Strategies

We define separate interfaces for the distribution methods that are
supported by the LDS. All strategy interfaces derive from an abstract
Strategy interface. Figure 6-13 shows this.

«interface»
Strategy

+get_target_location()

«interface»
InitialPlacementStrategy

«interface»
MigrationStrategy

Figure 6-13 Interface
inheritance for the
different strategies

Strategies that use the initial placement method implement the
InitialPlacementStrategy interface. This interface provides a single
operation that asks the strategy for the target location for an object
creation.

interface InitialPlacementStrategy : Strategy {
 common::Location get_target_location();
};

Strategies that use the migration distribution method have to implement
the MigrationStrategy interface. This interface does not provide any
operations because a migration is initiated by the strategy itself. A typical
migration strategy uses the load data by querying the load collector to
determine if a migration is needed. A strategy can use both the initial
placement and the migration distribution methods by implementing both
corresponding interfaces.

The LDS includes some default strategies for initial placement and
migration. These are discussed in Section 6.2.5, where we also discuss their
performance.

Strategy Manager
The Strategy Manager implements the StrategyAdmin interface, which
provides operations to administrate the strategies. The
add_initial_placement_strategy() operation is used to add a
strategy for initial placement. An initial placement strategy is coupled to a
specific object type. When a request is made on the Central Factory to
create an object using the initial placement mechanism, the Central Factory
queries the StrategyAdmin for the initial placement strategy for the type
of the object being created by invoking the
get_initial_placement_strategy() operation. After retrieving the

198 CHAPTER 6 PROOF OF CONCEPT

initial placement strategy object, the ObjectManager queries the strategy
for the target location for the object creation by invoking the
get_target_location() operation on the
InitialPlacementStrategy object.

interface StrategyAdmin {
 StrategyId add_initial_placement_strategy(

in common::TypeId type_id,
 in InitialPlacementStrategy strategy);

 StrategyId add_migration_strategy(
in MigrationStrategy strategy);

 void remove_strategy(

in StrategyId id);

 Strategy get_strategy(
in StrategyId id);

InitialPlacementStrategy

get_initial_placement_strategy(
 in common::TypeId type_id);
};

To add a migration strategy, the add_migration_strategy() operation
is provided. Operations that add a strategy return a strategy identifier that
can be used to remove a strategy (remove_strategy() operation).

6.2.4 Views on the Load Distribution Service

In this section, we summarize views of the different involved users of the
LDS. We distinguish the following users:

– component designer – a designer of an object that is subject
to load distribution

– client designer – a designer of a client of an object that is
subject to load distribution

– strategy designer – a designer of a new load distribution
strategy

– load meter designer – a designer of a new load meter
– system administrator – the person responsible for deploying

an application and the LDS

Component Designer View
The transparency from the perspective of the component designer depends
mainly on distribution methods that can be used with the object. For every
distribution methods that are supported in the LDS, the component
designer has to comply with the factory pattern. In addition, object should
only interact with other objects via the ORB. We basically expect a CORBA
object to be ‘componentized’, which goes beyond what CORBA 2.x

 LOAD DISTRIBUTION SERVICE 199

requires (e.g,, stricter encapsulation and use of factory pattern). For initial
placement these are the only transparency issues. The main additional
transparency issue for migration is that the component designer has to
provide state access methods. See Section 6.1.3 for an elaborate discussion
on this.

Client Designer View
The LDS is completely transparent for the client designer. In case of the
migration distribution method, the client-side portable interceptors do have
to be installed and activated, but this is more a system administrator issue.

Strategy Designer View
A designer of a new strategy has to:

– inherit from the InitialPlacementStrategy and/or
MigrationStrategy interface (see Section 6.2.3);

– if the initial placement distribution method is used, the strategy designer
has to implement the get_target_location() method, through
which the strategy receives the create load events, and which controls
where new components are created (see Section 6.2.3);

– if the migration distribution method is used, the strategy designer has to
invoke the migrate() operation of the Migration Manager to initiate
migrations (see Section 6.2.1);

– use the LoadCollector methods to get access to load information (see
Section 6.2.2).

Load Meter Designer View
A designer of a new load meter has to:
– implement the PushLoadMeter or the PullLoadMeter interfaces;
– use the MeterAgentAdmin interface to register the load meter (see

Section 6.2.2);
– in case of a push load meter, invoke the push()method to

send load values to the Meter Agent (see Section 6.2.2).

System Administrator View
When deploying an application that uses the load distribution framework,
the system administrator has the following responsibilities:
– The Strategy Manager needs to be configured. A Java property file is

used to specify a list of strategies that should be installed, and what
parameters these strategies have. When the Strategy Manager starts, the
strategies will automatically be installed.

– The application has to be started with the LD agent present. The LD
agent is implemented using portable interceptors, which can be
activated by a command-line parameter, or by small code modifications.

200 CHAPTER 6 PROOF OF CONCEPT

The same applies for middleware-layer load meters, which are also
typically implemented as portable interceptors.

– Clients of the application have to have portable interceptors installed for
the migration distribution method.

– Load meters that operate on the resource layer are created using a
resource load meter factory. This resource load meter factory is a
separate executable that should run on nodes where these load meters
will be created.

– The exchange of load information also requires the meter agent to be
run on each node that may have load meters installed.

6.2.5 Applications and Measurements

This section describes the types of applications and measurements used to
compare the effects of different load distribution strategies and mechanisms
on several application types. Since we did not implement the replication
method, we do not discuss it in this section.

Application Types
As we motivated in Chapter 5, it depends on the application and the
environment it runs in which distribution method and which strategy will
be most effective in distributing the load to fulfil the specific QoS
requirements. It is beyond the scope of this thesis to determine what are
the exact parameters, which determine what distribution method and
strategy are the most effective. We instead take a framework-based
approach that allows easy extension of the LDS to fit a specific application
and/or environment. We will however make a common distinction between
session and service type of component to describe the tests we did.

According to [Henning99], applications typically fall into one of two
general categories:
1. Service-oriented applications. Service-oriented applications tend to support

persistent objects that are long-lived and stable. Different clients may
access such an object, possibly interleaving requests. An example of a
service-oriented application is the CORBA Naming Service.
A further distinction can be made for service-oriented applications:
– Long-lived objects that have state. These objects are from this point

on referred to as ‘stateful’ objects.
– Long-lived objects that do not have state. These objects are referred

to as ‘stateless’ objects.
2. Session-oriented applications. Other server applications may be designed in

such a way that clients first create the objects they tend to use, use those
objects and then destroy them. These applications are session-oriented
because most objects only live as long as the clients need them. Clients

 LOAD DISTRIBUTION SERVICE 201

create objects programmatically by using an object factory. The objects
are referred to as ‘session’ objects. The concept of session objects can
also be found in the Enterprise JavaBeans architecture [EJB].

Migration mechanism are likely to work better with service-oriented
applications, because objects in such applications are long-lived and as such
could benefit in the long term from moving between different nodes.
Session-oriented applications would intuitively benefit less from migration
since they are generally short-lived, and the overhead would be too big
compared to the potential gain that could be achieved with the migration.
Both would benefit from initial placement, especially since the overhead is
relatively small.

Test Environment
The load distribution framework provides a set of classes and applications
that can be used to create different application scenarios that are easily
reproducible.

Application scenarios are specified by scenario files. Scenario files are
XML [XML] files that contain definitions of client and server applications,
and how these client and server applications interact. See [Post02] for the
XML Schema.

The scenario file allows the specification of zero or more server
applications. Server applications have several attributes: a name, the address
of the node the server runs on, the location of the configuration file and a
flag for verbose logging output.

When a scenario is executed by running the server application of the
test environment, the scenario file is searched for a definition of a server
application for the node where the scenario is executed. This allows
different servers on different nodes to be specified in a single scenario file.

Server Side
A server can contain object factories, or it can contain a hierarchy of
Portable Object Adapters (POAs). Every POA may have one or more
objects created on the POA.

For factories, the scenario file allows the specification of the type of
objects created by a factory (by specifying a CORBA IDL repository
identifier), and the default criteria that are used when an object is created
by the factory. The factory is added to the Factory Manager when the
scenario is executed.

The most important part of the specification of an object is the
specification of the properties of the object’s service time. The service time
determines the type and length of the work executed when a particular
operation (called do_some_work()) of the object is invoked.

202 CHAPTER 6 PROOF OF CONCEPT

The test environment allows two types of work: CPU time, and waiting-
time. With CPU-time work, the do_some_work() operation performs
mathematical operations that stress the CPU of the node where the server
application is running. With waiting-time work, the operation waits for a
specified amount of time, doing nothing.

With these two types of service time, it is possible to create objects that
perform CPU intensive tasks, or perform tasks that do a lot of waiting (for
example waiting for I/O events).

The scenario file also allows the specification of the length of the service
time. The length can be some constant value, or a value that is distributed
according an uniform or exponential distribution.

Client Side
The test environment also allows the specification of the client side. A client
consists of one or more threads of execution that are running concurrently.
Each thread consists of three stages: creation, usage, and removal of objects.
In the creation stage the thread can create objects it will use. In the removal
stage it has to destroy them.

In the usage stage a thread invokes operations on one or more target
objects. The objects whose operations are invoked can be objects that have
been created in the creation stage, but can also have been created by other
means. The scenario file specifies the number of requests that the thread
makes, the statistical distribution that specifies the time between each
request, and the targets of the requests.

The specification of a distribution of the requests made by the thread
can be throughput (do not wait between invocations), exponential (wait
with an exponential distribution) and burst (alternate fast and slow
invocation rate).

A target specifies the object that receives the invocation, and the name
of the method that will be invoked. It is possible to specify a set of target
objects, and assign weights to each target. The client will then use choose
between the targets, based on their weight.

A limitation of the test environment is that a thread can only execute one
sequence of creation, usage and removal stages. It is not possible for a
thread to create an object, make invocations on the object, delete the
object, create a new object, make invocations, etc. The consequence of this
limitation is that we are limited in our ability to do measurements in
scenarios that simulate session-oriented applications with clients that
create, use and destroy more than one object.

 LOAD DISTRIBUTION SERVICE 203

All threads can start simultaneously, but each thread can also be started
at different times by having each thread wait for a different event from a
CORBA notification channel.

Test Setup
The test setup consists of five machines in total. All machines are connected
via a 100Mpbs switched Ethernet LAN. One machine is used for hosting
the notification service and channels. Two machines are used for running
server applications, one machine is used for running the load distribution
framework components, and one machine is used for running the client
application.

The hardware configuration and role of each machine is listed in Table
6-1.

Name CPU type CPU speed

(MHz)
Memory
(MB)

Operating
System

Role

Machine A 2x Pentium III 2x 1000 512 Linux with kernel
2.2.18

Notification server

Machine B Pentium II 400 192 Windows 2000
Professional

Server location 1

Machine C Pentium II 400 256 Windows 2000
Professional

Server location 2

Machine D Pentium III 866 256 Windows 2000
Server

Framework
components

Machine E 2x Pentium III 2x 1000 512 Windows 2000
Server

Client

Table 6-1 Machine
configuration

The ORB used is IONA’s ORBacus version 4.1.0 for Java, together with
Sun’s Java2 Platform, Standard Edition JDK version 1.3.1_01. The
Notification Service implementation used is IONA’s OBNotify version
2.0.0, together with ORBacus version 4.1.0 for C++.

The timer used for measuring response times has microsecond
precision. The normal Java timers are not very accurate, so we use high-
precision timer capabilities provided by the operating system. These
operating system timers are accessed using the Java Native Interface.

To measure the time the execution of the timer itself takes, we did a test
in which we executed a loop that starts and stops the timer 1000 times.
This test indicated that the overhead every time we run the timer code is
6.5µs. This overhead is negligible compared to the response time of an
invocation on a remote object.

LDS Overhead
The overhead for using the LDS consists of several categories:

204 CHAPTER 6 PROOF OF CONCEPT

– Overhead for creation of components – Because object creation happens via the
Central Factory which delegates to local factories, an additional delay is
introduced for every object creation. This delay however is quite minimal,
and only occurs once in the lifetime of a component.

– Overhead caused by the request forwarding mechanism – At the start of a session,
i.e., for the first invocation of a client with some server object, the client-
side middleware will first contact the Location Agent that redirects it to the
actual location of the server object using the standard CORBA request
forwarding mechanism. After the client middleware receives the (new)
location of the object, subsequent invocations will directly go to the object.
The client middleware only returns to the location agent in case of a
migration. The extra delay introduced by this depends on the network
latency, but it is typically small and is only for the first invocation of a
session, and for the first invocation after the migration of an object (or
session).

– Overhead caused by the instrumentation for the migration – The migration
distribution method requires instrumentation, for which we used CORBA
Portable Interceptors. This overhead is fixed (independent of the parameter
size, method etc.), see also Section 6.1.5.

– Overhead caused by the load monitoring – The load is monitored by Load
Meters, and transported via the Meter Agent and Load Notifier to the Load
Collector. All this takes processing and network resources. The actual
overhead depends on the type of load meter, the number of load meters,
the type of derived information that has to be calculated (such as averages)
and the frequency of the exchange of load information.

– Performing a component migration – The migrating of a component causes a
temporary disruption of execution, which can, depending on the
application, be considerable. Invocations initiated by the clients of the
migrated component after the beginning of the migration and before the
end of the migration are queued. This causes an increase in response time
that is dependent on the application. Since we wait for ongoing invocations
involving the affected component to finish, the expected increase in
response time is proportional to the expected duration of these invocations.
Therefore, this increase is higher for applications with long-lived
invocations, see also Section 6.1.5.

Since the interceptors are in the invocation path for every invocation, their
overhead is linear to the amount of invocations, and they cause an
additional delay for every invocation. We therefore consider this the
primary source of overhead. To quantify this category of overhead, we did
four different tests:
1. Application scenario with no interceptors,

 LOAD DISTRIBUTION SERVICE 205

2. Application scenario with empty interceptors, i.e., no implementation
code in the interception points,

3. Application scenario with Dynamic Reconfiguration Service
interceptors,

4. Application scenario with a load meter implemented as interceptor.

Measurement 1 provides a baseline for the other measurements.
Measurement 2 provides details about the costs of using interceptors
incurred by the ORB implementation. Measurement 3 shows the cost
incurred by the interceptors provided by the load distribution framework.
Measurement 4 determines the cost for using a load meter implemented as
interceptor.

These tests repeat some of the performance evaluation tests we did for
the DRS tests (see Section 6.1.5). We repeat them here to give a complete
overview of the overhead, because we made some minor changes to the
DRS and we used a more accurate native timer here instead of the Java
timer.

Overhead is measured by measuring the response time R of each
invocation, observed at the client. Because the operation invoked on the
server object contains no application code, R is approximately equal to the
delay introduced by the ORB implementation and the network.

For test case 1, the delay introduced by the middleware layer as a whole
is equal to the delay introduced by the ORB implementation (including
network delay), because no interceptors are installed. For test case 2, the
delay introduced by the middleware consists of the delay introduced by the
ORB and the delay introduced by the implementation of portable
interceptors. For test case 3, the delay consists of the ORB delay, the
interceptor delay, and the delay introduced by the DRS implementation.
Test case 4 shows the additional delay introduced by an interceptor load
meter that monitors the number of requests made in the last 10 seconds.
We make the assumption that other interceptor based load meters will
cause a similar delay. Test case 4 also includes the meter agent running on
the server machine and the exchange of load data between the meter agent
and the load collector.

The following list summarizes how the response time is built up from the different
delays in each test case:
1. R = ∆ORB
2. R = ∆ORB + ∆interceptors
3. R = ∆ORB + ∆interceptors + ∆DRS
4. R = ∆ORB + ∆interceptors + ∆DRS + ∆loadmeter

Five batches of 25000 requests for each of the four test cases have been
executed, with two different sizes for parameter and return value of the

206 CHAPTER 6 PROOF OF CONCEPT

invocations. The results obtained from tests 1 – 3 are shown in Table 6-2.
The values are the averages of 5 x 25000 invocations.

 No inter-

ceptors
Minimal portable

interceptors
Dynamic Reconfiguration Service

Size of
parameters and
return value

∆ORB (µs) ∆intercep-
tors (µs)

increase
from
∆ORB

∆DRS
(µs)

increase from
∆ORB +
∆interceptors

∆intercep-
tors +
∆DRS (µs)

increase
from
∆ORB

0 bytes 988.9 69.96 7% 184.9 17% 254.8 26%

2048 bytes 2392 75.02 3% 180.0 7% 255.0 11%

Table 6-2 Results for
test cases 1 – 3

With a parameter and return value size of 0 bytes, overhead incurred by the
DRS interceptors is 26%. This is a worst case scenario with a parameter
size of 0 bytes, and no servant execution time. With a larger size for
parameters and return values (2KB), the overhead becomes 11%.

Because the interceptor overhead is constant, relative overhead
decreases as overall processing time for (de)marshalling of parameters and
for the servant implementation increases.

Another issue to keep in mind is that the DRS and framework
interceptor implementations are not optimised. Optimising the common
execution path and the data that is sent with each request in the service
context could further reduce the overhead associated with the interceptors.
Another opportunity for optimisation lies in the fact that DRS interceptors
are only needed for migration of objects. Table 6-3 shows the results for test
case 4.

 No

interceptors
Dynamic Reconfiguration Service and

interceptor load meter

Size of parameters
and return value

∆ORB (µs) ∆loadmeter
(µs)

increase from ∆ORB
+ ∆interceptors +
∆DRS

∆interceptors
+ ∆DRS +
∆loadmeter
(µs)

increase
from ∆ORB

0 bytes 988.9 45.52 4% 300.3 30%

Table 6-3 Results for
test case 4

The results indicate that adding an additional interceptor for monitoring
the load increases the response time 4% from the situation where the DRS
interceptors are installed. One should keep in mind that the results
presented here are obtained for a single ORB implementation. Other ORB
implementations may have a different overhead.

 LOAD DISTRIBUTION SERVICE 207

Initial Placement Measurements
The measurements for the initial placement mechanism are based on a
single application scenario that is tested with two static and two dynamic
initial placement strategies.
1. Random – a static strategy that uses a random algorithm, i.e., the strategy

randomly chooses a location out of the set of available locations.
2. Round-robin – a static strategy that uses a round-robin algorithm, i.e., the

strategy rotates through the available locations.
3. Least-loaded CPU – a dynamic strategy that selects the location with the

lowest CPU idle time. In case of overload CPU idle time will be
(almost) 0 for all locations, and a round-robin algorithm is used. This is
thus actually an adaptive strategy.

4. Least-loaded ORB – a dynamic strategy that uses a middleware-layer load
meter that monitors the amount of requests that are being processed.
Since there is no hard upper limit for this, we do not need to adapt the
behaviour in case of an overload situation.

The DRS interceptors are enabled for each measurement to create equal
test conditions, even though since we do not migrate components in this
test we do not need them. The random and round-robin strategies are
strategies that are often used in commercial applications, and are therefore
included in the initial placement measurements.

The application scenario simulates five clients on the same machine by
executing five threads of execution within a single client on machine E. The
threads are started consecutively with a one second delay between each start
signal. Each thread creates a Session object using the initial placement
mechanism. Each thread makes 1000 invocations on the do_some_work()
operation of the object it has created. The do_some_work() operation has
CPU-type service time with a service time length of 100ms.

The application scenario simulates a session-oriented application (with
one client per server) in an overloaded situation. The client machine is fast,
so that the execution of the five threads simulating the five clients is not
limited by the available processing resources on the client machine. By
starting the threads with a fixed time interval between them, the scenario
tries to gradually increase the load on the two locations.

Random Initial Placement Strategy
Because this strategy assigns objects to locations in a random fashion, each
run of the test scenario will produce a different object allocation. For large
number of objects, this will typically not be an issue, but in our test
scenario which has only five server objects, this can easily result in a non-
optimal allocation of objects. For example, one test run resulted in a
situation with four objects created on location 2, and one object on location

208 CHAPTER 6 PROOF OF CONCEPT

1. Because of the random nature of the strategy, in theory it is possible that
all objects are created on a single location.

Round-robin Initial Placement Strategy
The round-robin initial placement strategy determines the target location of
an object creation in a rotating fashion. This means that first location 1 is
used as target when a client invokes create_object() on the object
manager. The second object creation is delegated to the factory on location
2. The third object creation will be delegated to location 1, etc. Like the
random initial placement strategy, the round-robin strategy is a static
strategy that does not use load data from location 1 and location 2.

We ran the tests in an environment with homogenous nodes for the
server objects, but in case of heterogeneous servers a static strategy with
weights for each location is more appropriate. The weight determines the
relative chance the location will be chosen as the target of an object
creation, and can be related to the level of load a location can handle. For
example, by giving location 1 a weight of 0.25 and location 2 a weight of
0.75, statistically 25% of the object creations happen on location 1, and
75% happen on location 2.

Initial Placement Strategy using CPU load
The CPU based initial placement strategy uses the CPU load data from
location 1 and location 2 to determine which location should be the target
of an object creation. For this purpose, a load meter is used that measures
the average percentage of time the processor is busy.

The initial version of this strategy exhibited a high static load instability
(see Chapter 5) type of flaw when all locations had a high load with a small
variation. The strategy overloaded one of the nodes, instead of an even
division of the load over the different nodes. A run of the application
scenario would result in the first object being created on location 2, the
second object on location 1, and the third, fourth, and fifth objects being
created on location 2 again. This very unbalanced allocation of objects over
the available locations resulted in an average response time for location 2
that was more than twice as high as for location 1.

The reason for this behaviour is largely dependent on the nature of the
load type: the CPU load value has a maximum value of 100%. If all
locations are overloaded, and thus report the maximum load value, no
distinction can be made between the locations based on the reported load.
We therefore made the strategy adaptive, and switch from a least-loaded to
a random strategy in an overload situation.

 LOAD DISTRIBUTION SERVICE 209

Initial Placement Strategy using Number of Active Requests
This dynamic strategy makes its decision based on number of active
requests, which means that both location 1 and location 2 have load meters
that monitor this load information.

Strategies Comparison
We compare the different scenarios by comparing the average response
times for the different strategies. We leave out the random strategy here
because in this test scenario it at best gives a average response time that is
equal to the round-robin strategy, and typically worse because of the small
amount of server objects in this test scenario. All three strategies resulted in
the most optimal distribution of objects for this scenario: 2 objects on one
machines, and 3 objects on the other.

Table 6-4 shows the average response times for all invocations from all
five simulated clients for each strategy.

Strategy Average response time (ms)

Round-robin 170.2

Active requests based 174.0

CPU-based 172.7

Table 6-4 Average
response time for the
initial placement
strategies

The table shows that the three strategies perform equally well, as could be
expected since they divide the objects in the same way over the two
locations. The minor differences can be caused by the overhead of
collecting the load information, which is apparently almost negligible in this
test scenario.

Migration Measurements
We did two tests with strategies that use the migration distribution method.
The first test determines, for a specific scenario, the overhead of migration
is general, and compares it to not using the migration distribution method
at all. The second test determines the delay caused by a migration for
objects, i.e., what the temporary performance penalty is for a migration.

Migration versus No Migration
The application scenario for this measurement is as follows: three objects
are created on the two available locations: one object at location 2 (machine
C), and two objects at location 1 (machine B). For each of the three objects
do_some_work() has a CPU-type service time, and a service time length of
100ms. The objects each have a state of 1KB.

The client (on machine E) consists of three threads. Each thread makes
1000 invocations of the do_some_work() operation on a single object.

210 CHAPTER 6 PROOF OF CONCEPT

Each thread is started with a 1 second interval. The framework components
run on machine D.

Each of client threads initiates its requests in bursts, i.e., alternating
periods with many and with few requests. The length of a burst is fixed to
100 requests. The time between each request is based on a random variable
with an exponential distribution with rate of 0.05ms-1, resulting in an
expected value of 1 / 0.05 = 20ms.

For each period with few requests, the value obtained from the random
variable is divided by a scale factor. For each period with many requests, the
value obtained from the random variable is multiplied by the scale factor.
This leads to alternating periods of a fixed number of requests with lower
waiting time between requests and higher waiting time between requests.

In the application scenario the scale factor is set to 10. This results in
alternating periods of requests with 20 / 10 = 2ms average between each
request and requests with 20 * 10 = 200ms average between each request.

The application scenario is executed both with a migration strategy
installed, and without a migration strategy installed. The migration strategy
bases its decision to migrate an object on the CPU loads (idle time)
measured on both locations. The strategy retrieves the load of the two
locations from the load collector every 2.5 seconds. If most recent reported
load of each location differs by more than 25 percentage points, a random
object is migrated from the location with the higher load to the location
with the lower load. To increase the stability for the strategy, and to try to
avoid thundering herd or processor trashing effects, the strategy waits at
least 5 seconds after finishing one migration before initiating a new
migration.

Figure 6-14 shows the average response times from the client perspective
for each of the client threads. The average response time over all threads for
both scenarios is about equal (within 1%). However, in the case of
migration there is less difference between the response times of the
different threads. The reason for the difference in average response time in
the test without migration is that one node will host two objects, and one
node hosts one object. As can be expected, the node with two objects will
have a higher average response time. In exact numbers, with migration the
difference between the average response time of thread1 (minimum) and
thread2 (maximum) is 5ms, without the migration strategy the difference
between thread1 (minimum) and thread3 (maximum) is 10ms.

 LOAD DISTRIBUTION SERVICE 211

0

20

40

60

80

100

120

with migration without migration

av
er

ag
e

re
sp

on
se

 ti
m

e
(m

s)

th
re

ad
1

th
re

ad
2

th
re

ad
3

al
l t

hr
ea

ds

th
re

ad
1

th
re

ad
2

th
re

ad
3

al
l t

hr
ea

ds

Figure 6-14 Average
response times for a
migration scenario

During the execution of the scenario with migration enabled, 22 migrations
take place, and the average time for a migration is 312ms.

The measurements obtained from this application scenario indicate that
migration in this case has an overhead that is equal to the performance gain
from using the strategy. The application scenario with a migration strategy
performs about equal to the same scenario without a migration strategy.

Migration of Stateless versus Stateful Objects
The application scenario used in this measurement is the following: an
object (either stateless or stateful) is created at location 1. The object has a
CPU-type service time with a service time length of 100ms. The object can
be migrated between location 1 and location 2, which means that both
locations have a factory that can create the object. A single client consisting
of five threads invokes the object’s do_some_work() operation. Each
thread makes 1000 invocations after being started. The threads are started
with a one second interval. The node configuration is the same as for the
initial placement measurements.

The application scenario simulates a service-oriented application that is
accessed by five clients. The service object is an object that does a CPU
intensive task. The migration strategy used in this test is based on the
percentage of time the processors are busy executing non-idle threads. The
strategy retrieves the load of the two locations from the load collector every
2.5 seconds. If most recent reported load of each location differs by more
than 25 percentage points, a random object is migrated from the location
with the higher load to the location with the lower load. To increase the

212 CHAPTER 6 PROOF OF CONCEPT

stability of the strategy somewhat the strategy waits at least 5 seconds after a
migration before initiating a new one. The strategy however does not
attempt to prevent oscillating behaviour, since we need many migrations to
get better measurements.

Table 6-5 shows the average duration of a migration both for stateless
and stateful objects. A stateful object has a state of 1024 bytes. The average
values are obtained from executing the scenario three times.

 Average duration of a

migration (ms)
Standard deviation (ms)

Stateful (1024 bytes) 141.0 39.22

Stateless 130.7 78.20

Table 6-5 Duration of
object migration

These numbers shows a significant overhead for a migration. Because the
processing of a single invocation takes the server object 100ms, and all
invocations have to finish processing before the actual migration can take
place, this is also to be expected.

Migration of a stateful object takes on average 7.88% longer than
migration of stateless object in this particular scenario. The standard
deviation for both stateless and stateful object migration is quite large,
which means there is a large variation in the duration of migration. This can
be explained by the fact that the duration will depend on the invocation
which takes the longest to finish, which can be anywhere in the range of 0
till 100ms.

Because of the load imposed by invocation of the do_some_work()
operation and the fact that only a single object exists, the migration exhibits
oscillating behaviour: the object is constantly being migrated from the heavy
loaded location to the lightly loaded location. The migration strategy we
used for this test does not prevent this oscillating behaviour from
happening. More advanced migration strategies should be more stable, and
should detect this type of instable behaviour.

6.2.6 Evaluation

The Load Distribution Service prototype has been successfully tested,
including the tests described in Section 6.2.5. Although the prototype does
not implement our complete load distribution mechanism, it implements
and thus validates the most essential parts.

We evaluate the prototype by discussing the performance and transparency,
and we mention some future work on the LDS.

 LOAD DISTRIBUTION SERVICE 213

Performance and Overhead
The measurements for the overhead of the LDS show that the overhead of
using the LDS appears to be large (±25%), but because the overhead is
constant, and the tests were performed for a worst-case scenario (no service
time, no parameters and return value), it is expected that overhead for most
applications is acceptable. Moreover, the interceptors used by the DRS and
LDS are not optimised. It is expected that optimisations are possible for the
DRS and LDS interceptors.

The measurements performed for migration strategies are too limited to
make conclusions for different applications in general. The measurements
do show that migration can be an expensive operation, because it takes
network capacity and processing power and, more importantly, temporarily
suspends part of the system. The temporary degradation of part of the
system during a migration might be unacceptable if the QoS requirements
have a hard upper limit for the response time. More tests for different types
of applications would be necessary to get more insight in when the
performance gains outweigh the costs associated with a migration.

Transparency
The LDS is very transparent from the perspective of the client, which we
consider essential. Also for a designer of a component there are only limited
violations of the transparency. The main issues with respect to transparency
have to do with the state access, as discussed in Section 6.2.4.

Future Work
The prototype should be extended to implement the missing part of our
load distribution mechanism, especially the replication distribution method.
The replication distribution method is subject to standardisation within
OMG, as mentioned in Chapter 5. Assuming this standardisation is
successful, our implementation should comply with this standard.

We expect that our load distribution mechanism and this prototype can
easily be used for the newer generation of component middleware, such as
Enterprise JavaBeans [EJB] and CORBA Component Model [CCM]. We
plan to validate this by porting our current CORBA 2.x based prototype.

We had scalability as a requirement for our load distribution mechanism
and prototype, which resulted, for example, in a hierarchical monitoring
design. Some parts of the prototype however are now physically centralized,
such as the Strategy Manager and the Central Factory. These are potential
scalability bottlenecks. There are no inherent limitations to our mechanism
or high level design that prohibit distributing these components, but we
could modify our prototype to actually distribute them.

Chapter 7

7. Conclusions

This chapter presents the contributions and conclusions for the research presented in
this thesis, and suggests directions for future research.

Section 7.1 briefly describes the background for this thesis. Section 7.2 presents the
major contributions. Section 7.3 details the contributions per chapter. Section 7.4
presents our conclusions. Section 7.5 suggests directions for future research.

7.1 Introduction

The ability to control the Quality of Service (QoS) is essential for the
success of distributed systems. Controlling QoS is a complex problem since
it concerns all the functional layers we consider in this thesis, which are the
application, middleware and resource layers. Controlling QoS is especially
complex for large-scale systems such as telematics systems due to
heterogeneity and scalability issues. The term QoS can denote a wide range
of characteristics of a system, but in the context of this thesis we limit QoS
to the performance characteristics (response time and throughout), and the
availability characteristics (maintainability, reliability and availability).

Large-scale distributed systems are often built using component-
middleware technology (e.g., CORBA) because of the distribution
transparency it offers. With distribution transparency, complexities related
to the distribution are hidden from the application developers by
embedding the distribution aspects in the middleware. We focus on
component-middleware-based applications in this thesis.

 MAJOR CONTRIBUTIONS 215

7.2 Major Contributions

This thesis describes how to develop middleware-layer QoS mechanisms that
improve the availability and performance QoS characteristics of component-
middleware-based applications. By embedding the QoS mechanisms in the
middleware layer we hide their complexity from the developer of the
application components, and allow re-use of the QoS mechanisms.

The major contributions are:
1. This thesis proposes an overall approach for the design of dynamic QoS

mechanisms for component-middleware-based applications. These
middleware-layer QoS mechanisms do not rely on resource-layer QoS
mechanisms (Chapter 3).

2. This thesis describes how message reflection is used to obtain separation
of concerns between component developers, QoS mechanism
developers and middleware developers. Message reflection is essential in
ensuring the transparency of our QoS mechanisms. We have identified,
compared and evaluated the suitability of different techniques to
implement message reflection in middleware (Chapters 3, 4, 5).

3. This thesis proposes a new dynamic reconfiguration mechanism that is
suitable for component-middleware-based applications, and that
maximizes transparency. It preserves correctness and is embedded in
the middleware layer. Dynamic reconfiguration improves the availability
characteristics of an application (Chapter 4).

4. This thesis proposes a new load distribution mechanism that
incorporates different distribution methods, is extensible with new load
distribution strategies and load information types, and allows QoS
differentiation. Load distribution improves the performance
characteristics of an application (Chapter 5).

5. This thesis describes an integrated prototype of our dynamic
reconfiguration and load distribution mechanisms that serves as a proof
of concept. This prototype is based on CORBA [CORBA], a common
off-the-shelf middleware technology, and uses Portable Interceptors to
implement the message reflection. Measurements with the prototype
give insight into the performance aspects, and show that the overhead is
acceptable for most applications (Chapter 6).

7.3 Contributions per Chapter

In this section, we detail the contributions per chapter.

216 CHAPTER 7 CONCLUSIONS

Chapter 2 – QoS and Component Middleware: an Overview
1. Proposes a model of component middleware, and defines QoS for

component-middleware-based applications. Our model generalizes
existing component-middleware technologies, and uses parts of RM-
ODP [RMODPPart3] and Szyperski’s [Szyperski98] component
definitions.

2. Gives a state-of-the-art overview of approaches in the area of QoS for
middleware-based applications.

Chapter 3 – QoS Mechanisms in the Middleware Layer
1. Identifies generic requirements for QoS mechanisms from the

perspectives of the application-component developer and the QoS
mechanism developer.

2. Discusses the merits of static versus dynamic QoS mechanisms for large-
scale distributed systems, and motivates why we select a dynamic
approach.

3. Makes a division of QoS mechanisms in middleware-layer-internal and
mapping mechanisms, and motivates our choice for middleware-layer-
internal mechanisms.

4. Discusses how message reflection can be used to achieve a strict
separation of concerns for our QoS mechanisms, and evaluates and
compares different techniques to implement message reflection.

Chapter 4 – Dynamic Reconfiguration
1. Presents a model for dynamic reconfiguration that is used to describe

existing approaches and that is used as the basis for our dynamic
reconfiguration mechanism.

2. Gives an overview of the issues that arise when implementing dynamic
reconfiguration, and how they affect component-middleware-based
applications. We give special attention to the correctness requirements:
structural integrity, mutually consistent states and application-state
invariants.

3. Contains an extensive overview and comparison of the state-of-the-art
in dynamic reconfiguration, including their (lack of) suitability for
component-middleware-based applications.

4. Proposes a new mechanism for dynamic reconfiguration of component-
middleware-based applications that is more transparent for application
developers than existing approaches.

5. Proposes a refinement of the model for dynamic reconfiguration. This
refined model separates configuration information into information that
can be obtained at run-time, and information that has to be provided by
the application developer.

 CONCLUSIONS 217

Chapter 5 – Load Distribution
1. Presents a model for load distribution, and, based on this model,

presents the issues that arise when implementing load distribution.
2. Discusses the limitations related to state synchronization when using the

replication distribution method, and compares replication and non-
replication distribution methods.

3. Identifies the different distribution methods, and their suitability for
different types of components.

4. Gives an extensive overview and comparison of the state-of-the-art in
load distribution, which includes identifying issues that are not covered
in existing approaches.

5. Proposes a new mechanism for load distribution in component-
middleware-based applications that incorporates a wide range of load
distribution methods, and is extensible with new load distribution
strategies and new types of load information.

6. Proposes how to use our load distribution mechanisms for QoS
differentiation. We do this by dividing the available nodes in classes. We
support both class-based performance requirements and quantitative
performance requirements.

Chapter 6 – Proof of Concept
1. Describes an integrated prototype that serves as a proof of concept for

the proposed dynamic reconfiguration and load distribution
mechanisms. This prototype is developed in CORBA and Java.

2. Presents measurements on the performance and overhead of the
prototype.

7.4 Conclusions

The conclusions are structured based on the objectives for this thesis as
they are identified in Chapter 1.

Our Approach for QoS Mechanisms
We advocate a dynamic approach to QoS provisioning using the middleware
layer. By putting the QoS functionality in middleware-layer QoS
mechanisms, it is possible to better separate the QoS concern from the
application logic. The middleware-layer QoS mechanisms hide as much as
possible the complexities of QoS provisioning from the application
component developer. In addition, this facilitates re-use of the QoS
functionality.

218 CHAPTER 7 CONCLUSIONS

Middleware-layer QoS mechanisms can be divided into middleware-
layer-internal QoS mechanisms and mapping QoS mechanisms.
Middleware-layer-internal QoS mechanisms are internal to the middleware
layer, and enhance the QoS by using the functions that the middleware
provides. They do not rely on resource-layer QoS mechanisms. Mapping
QoS mechanisms on the other hand do map to resource-layer QoS
mechanisms. These two categories of mechanisms are complementary and
they can be used together to provide the required QoS. This thesis focuses
on the design of middleware-layer-internal mechanisms.

Mapping and
middleware-layer-
internal QoS
mechanisms

We chose to apply our dynamic and middleware-layer-internal approach
to two different QoS mechanisms: a dynamic reconfiguration QoS
mechanism that improves availability, and a load distribution QoS
mechanism that improves performance.

Dynamic Reconfiguration QoS Mechanism
We have shown that it is possible to develop a dynamic reconfiguration QoS
mechanism that allows runtime upgrades of a component-middleware-
based application while preserving correctness. Since dynamic
reconfiguration prevents disruptions of an application, it increases the
availability characteristics (mean-time-between-disruptions, uptime, mean-
time-to-repair).

Our mechanism supports replacement of a component with a newer
version, migration of a component to another node, adding a component
and removing a component, without taking the application instance as a
whole offline. It also supports composite reconfigurations in which several
components are reconfigured in an atomic action from the perspective of
the rest of the system.

Our mechanism is applicable to a broader range of applications than
existing solutions. We support multi-threaded components, re-entrant
components, and stateful components. Special care is taken to minimize the
impact on execution during reconfiguration, and to be scalable with respect
to the number of clients.

Multi-threading , state
and re-entrance

Our mechanism provides full reconfiguration transparency to client
developers, requires only minimal reconfiguration expertise from the
reconfigurable-component developer and does not require the use of
additional formalisms for application development.

An important characteristic of our dynamic reconfiguration mechanism
is that it preserves correctness, viz., mutually consistent states, structural
integrity and application-state invariants.

To preserve correctness, components need to be in a reconfiguration-
safe state before a reconfiguration can be applied. We drive the component
to a reconfiguration-safe state in which the component is not involved in
any invocations. Ongoing invocations are completed. New incoming

Driven safe state

 CONCLUSIONS 219

invocations are intercepted, and queued if they can be processed after the
migration. To prevent a deadlock, re-entrant invocations cannot be queued,
i.e., the queuing has to be selective. We detect a re-entrant invocation by
adding an implicit parameter to (nested) invocations that identifies the
invocation path. Queuing and selection of invocations, and adding implicit
parameters to invocations, can be done using message reflection, e.g., in
CORBA by using Portable Interceptors.

Selective queuing

Load Distribution QoS Mechanism
We have shown that it is possible to develop a load distribution QoS
mechanism that distributes components over a set of nodes in such a way
that certain performance requirements are met. There are different
distribution methods, viz., initial placement, migration and replication.

Since the optimal load distribution is dependent on specific
characteristics of an application and of the environment it is deployed in,
we propose a framework-based solution in which it possible to easily add
new load distribution strategies and load information types.

Framework-based
solution

An important aspect of our load distribution mechanism is that it allows
both load sharing and QoS differentiation, while other solutions are limited
to load sharing. The QoS differentiation is based on classes of nodes, and
components and replicas are placed in or migrated to a certain class based
on the QoS requirements.

QoS differentiation

When replication is used as a distribution method, the states of all
replicas have to be consistent. This means that every change to the state of
one replica has to be applied simultaneously to all other replicas. Since this
can cause an unacceptable overhead, this makes little sense if performance
improvement is the goal of the replication. For replication to actually
improve performance, the consistency requirements have to be relaxed.
This is usually referred to as loose consistency. Most types of loose
consistency however violate transparency because they expose the
component developer to the complexity of the consistency mechanisms that
are used. We therefore propose to use replication only for those types of
components that allow a loose consistency without violating transparency:
components that have only session state, and components that are stateless.
Components with session state only have state between invocations in the
same session. Because of this, state changes are local to a specific replica,
which from a consistency perspective is similar to replication for stateless
components. Transparent replication for stateful components that have
state between invocations (global state) is not beneficial from a performance
perspective.

Replication

220 CHAPTER 7 CONCLUSIONS

Using Reflection to Achieve Separation of Concerns
Reflection, and in particular message reflection, can be used to achieve
separation of concerns. It allows the instrumentation that is required for
QoS mechanisms to be separated from the application code, and also from
the middleware code. This increases the transparency of the QoS
mechanism. Although current common middleware technologies only
provide limited reflective capabilities, we have shown that for our purpose
we can use message reflection with common middleware.

Transparency

Our evaluation of possible techniques to implement message reflection
shows that the middleware interceptors are currently the most suitable
technique. Middleware interceptors can intercept incoming and outgoing
requests and replies. Benefits of middleware interceptors are that (i) they
can be added at deployment or even run-time, (ii) they also work for
components located in one capsule or on one node, and (iii) they do not
require changes in the middleware code.

Proof of Concept
We provide a proof of concept of the research presented in this thesis
through an integrated prototype: the Dynamic Reconfiguration Service
implements our dynamic reconfiguration mechanism, and the Load
Distribution Service implements our load distribution mechanism. This
prototype is implemented in CORBA and Java.

CORBA-based prototype

For dynamic reconfiguration, the overhead during normal operation is
fixed, i.e., there is a fixed extra delay for each invocation. This delay
depends on the used ORB and the test environment, and for our test setup
(see Chapter 6) results in a 0.13ms delay. For a worst-case scenario this
causes a relative increase of 12.4%, but typically this relative increase will be
smaller, and we expect that it will be acceptable for most applications.

Overhead for dynamic
reconfiguration

The impact on execution caused by a reconfiguration can be quantified
as the increase in response time from the perspective of the unaffected
components. This increase in response time depends on application
characteristics and especially on the time it takes to finish the ongoing
invocations.

The performance overhead for our Load Distribution Service consists of
three categories: the overhead for the creation of components, the overhead
caused by Portable Interceptors, and the overhead caused by the load
monitoring. The overhead for the creation of components, and thus for the
initial placement load distribution method, is minimal. The overhead
caused by the Portable Interceptors and monitoring can be considerable,
depending on the application and the chosen frequency for collecting load
information. Measurements show that because the overhead associated with
the migration load distribution method (which relies on the Dynamic
Reconfiguration Service) can be considerable, this distribution method

Overhead for load
distribution

 FUTURE RESEARCH 221

should only be used for long-lived components that have short-lasting
invocations.

7.5 Future Research

We suggest here some possibilities to continue the research presented in
this thesis.

Quantitative modeling of middleware-based applications, and of the
middleware itself, would allow better predictions on the QoS (given a
certain application and a certain environment), and more optimal
adaptations in resource allocations for dynamic QoS mechanisms. Research
on how to make quantitative models of middleware and middleware-based
application is needed for this.

Quantitative modeling

The Model Driven Architecture [MDA01] advocates designing distributed
systems in a platform independent manner, and then with the help of
development tools transform such a platform independent design into a
platform dependent design that can then be implemented. This design
approach should in our opinion also consider the QoS aspects of a
distributed system. QoS thus has to be expressed in platform independent
manner, including the adaptations that might be required to the design to
obtain this QoS, and this then has to be translated into platform dependent
concepts. As an example, a component might need a 99% uptime, which is
a platform independent QoS concept. When such a component is
implemented in CORBA, this can be translated to parameters for the Fault-
Tolerant CORBA specification, such as the number of replicas and whether
to use active or passive replication. Related to this is the ongoing work for a
syntax and semantics for QoS formalisms, e.g., the UML QoS Profile RFP
[UMLQoS].

Platform independent
QoS

An additional middleware-layer-internal QoS mechanism that could be
added to improve availability is a fault tolerance mechanism based on
redundancy. Distributed systems with very high availability requirements
need such a mechanism, in which replicas of components are created to
cope with, for example, network or node failures. In addition, it would be
interesting to also add mapping QoS mechanisms, which enforce QoS by
relying on resource-layer QoS mechanisms.

Fault tolerance

Mapping QoS
mechanism

Feature interaction between QoS mechanisms is an area of research that is not
addressed in this thesis. For example, mechanisms that improve
performance might degrade availability, or the instrumentation might not

Feature interaction

222 CHAPTER 7 CONCLUSIONS

mix. In case of feature interaction issues, a QoS manager could be made
responsible for dealing with this. Research in this area would require the
availability of a wider range of QoS mechanisms than is provided by our
prototype.

The load distribution QoS mechanism can be extended with possibilities for
replication with some form of loose consistency, thereby extending the range of
components for which the replication distribution method is suitable.

Extend load distribution
with loose consistency

By extending our dynamic reconfiguration QoS mechanism with the
possibility to abort ongoing interactions, it is possible to reduce the impact
on execution. In addition, it can be investigated to what extend architectural
description formalisms can aid a reconfiguration designer in preserving
correctness.

Extend dynamic
reconfiguration

Samenvatting (Dutch)

Het beheersen van de kwaliteitskarakteristieken (‘Quality of Service’, ‘QoS’)
van gedistribueerde systemen is essentieel voor het succes van deze
systemen. De QoS-karakteristieken die we in dit proefschrift beschouwen,
zijn de prestatiekarakteristieken (namelijk reactietijd en doorvoercapaciteit)
en de beschikbaarheidskarakteristieken (namelijk percentage van de tijd dat
het systeem operationeel is, gemiddelde tijd tussen storingen en gemiddelde
tijd die nodig is voor een reparatie). Het beheersen van de QoS is een
complex probleem, omdat het alle functionele lagen betreft die we
onderscheiden in dit proefschrift. Dit zijn de applicatie-, ‘middleware’- en
‘resource’-lagen. Het beheersen van de QoS is met name complex voor
grootschalige systemen, zoals telematicasystemen, vanwege de heterogeniteit
en schaalbaarheidsproblemen.

QoS-mechanismen beheersen een bepaalde QoS-karakteristiek. QoS-
mechanismen doen dit door netwerk- of ‘processing’-resources toe te
wijzen, of door het gedrag van de applicatie aan te passen. Dit proefschrift
richt zich op QoS mechanismen in de middleware-laag.

Bestaande benaderingen om de QoS te beheersen zijn vaak statisch.
Statische benaderingen wijzen resources toe op of voor het moment dat een
applicatie-instantie gecreëerd wordt. Deze resourcetoewijzing blijft
ongewijzigd gedurende de levensduur van de applicatie-instantie. Een
statische benadering baseert de resourcetoewijzing op de maximaal
benodigde hoeveelheid resources. Om dit te kunnen bepalen, is een
gedetailleerde kennis over de applicatie en het gebruik van de applicatie-
instantie vereist. Bovendien leidt een statische benadering tot een verspilling
van resources, aangezien de daadwerkelijk benodigde hoeveelheid resources
varieert gedurende de levensduur van de applicatie-instantie.

Een dynamische benadering varieert de toewijzing van resources
gedurende de levensduur van een applicatie-instantie, afhankelijk van de
behoefte aan resources op een bepaald moment in de tijd. Bij een
dynamische benadering, in tegenstelling tot een statische benadering, is het

224 SAMENVATTING (DUTCH)

niet nodig dat de hoeveelheid benodigde resources bepaald wordt voordat
de applicatie-instantie gecreëerd wordt. Een dynamische benadering baseert
de resource-toewijzing op het ‘monitoren’ van de huidige QoS van een
applicatie-instantie, en het aanpassen van de resource-toewijzing wanneer
dat nodig is. Een gevolg hiervan is, dat bij een dynamische benadering de
QoS niet gegarandeerd is. Bijvoorbeeld, terwijl de applicatie instantie draait,
kan op een bepaald moment het QoS-mechanisme constateren dat er een
tekort aan processing resources is. Echter, voor een grote categorie
gedistribueerde applicaties, zoals telematica-applicaties, weegt het voordeel
van efficiënter gebruik van resources op tegen het nadeel dat er geen harde
QoS-garanties mogelijk zijn. In dit proefschrift richten we ons alleen op
dynamische QoS mechanismen.

Grootschalige, gedistribueerde systemen worden vaak ontwikkeld met
behulp van component-middleware technologieën (bijvoorbeeld CORBA),
vanwege de distributie-transparanties die deze technologieën bieden. Deze
distributie-transparanties verbergen de complexiteit van het ontwikkelen
van gedistribueerde systemen voor de applicatie-ontwikkelaar door de
distributie-aspecten in de middleware-laag af te handelen. We breiden dit
concept van distributie-transparantie uit door ook QoS-mechanismen toe
te voegen aan de middleware-laag en daardoor de complexiteit van het
beheersen van de QoS te verbergen voor de applicatieontwikkelaar.
Bovendien, maken we het makkelijker deze mechanismen te hergebruiken,
door de QoS-mechanismen in de middleware-laag af te handelen.

Een belangrijk aspect van onze benadering is dat we niks veronderstellen
over de resource-laag. Onze QoS-mechanismen bevinden zich in de
middleware-laag en zijn niet afhankelijk van QoS-functionaliteit in de
resource-laag, zoals bijvoorbeeld IntServ, DiffServ of ‘real-time’
besturingssystemen. Onze QoS-mechanismen gebruiken alleen de
functionaliteit van de middleware. Bijvoorbeeld, onze QoS mechanismen
kunnen de middleware gebruiken om dynamisch de allocatie van
componenten over de verschillende computersystemen te veranderen. De
belangrijkste uitdagingen voor het realiseren van deze mechanismen zijn het
behouden van de correctheid van de applicaties, en de beperkingen voor het
applicatie-ontwerp te minimaliseren.

We hebben onze benadering voor dynamische QoS-mechanismen in de
middleware-laag toegepast op twee QoS-mechanismen: een dynamische
herconfiguratie mechanisme, en een ‘load’-distributie mechanisme.

Het dynamische herconfiguratie mechanisme kan applicaties die
ontwikkeld zijn met behulp van component middleware ‘upgraden’ terwijl
ze draaien. Dit mechanisme kan een component vervangen door een
nieuwere versie, een component migreren naar een ander
computersysteem, een component toevoegen of een component
verwijderen, zonder dat de applicatie-instantie gestopt hoeft te worden.

 SAMENVATTING (DUTCH) 225

Aangezien dit ervoor zorgt dat de applicatie minder vaak gestopt hoeft te
worden, verhoogt dit de beschikbaarheid. Een belangrijk aspect van ons
dynamische herconfiguratie mechanisme is dat het de correctheid van de
applicatie behouden blijft. Hiervoor brengt ons dynamische herconfiguratie
mechanisme een component in een toestand waarin er geen actieve
‘invocaties’ zijn en de component veilig geherconfigureerd kan worden. Dit
gebeurt door selectief de binnenkomende invocaties in een wachtrij te
zetten.

Het load-distributie QoS-mechanisme distribueert de component op
een zodanige manier over de beschikbare computersystemen dat er aan de
prestatie-eisen wordt voldaan. Een zogenaamde load-distributie-strategie
maakt de load-distributie-beslissingen, gebaseerd op de beschikbare load-
informatie. Het uitvoeren van deze load-distributie-beslissingen wordt
gedaan door de volgende load-distributie-methoden: initiële plaatsing,
migratie en replicatie van componenten. De optimale load-distributie is
afhankelijk van specifieke karakteristieken van de applicatie en de omgeving
waarin de applicatie draait. Daarom stellen we in dit proefschrift een
oplossing voor waarbij het makkelijk is nieuwe load-distributie-strategieën
en nieuwe types load-informatie toe te voegen. Een belangrijk aspect van
ons load-distributie mechanisme is dat het naast het evenredig verdelen van
load ook QoS-differentiatie toestaat. In het geval van QoS-differentiatie
verdelen we de beschikbare computersystemen in klassen, en plaatsen,
migreren en repliceren componenten op een zodanige manier over deze
klassen dat er aan hun prestatie-eisen wordt voldaan.

Voor beide QoS-mechanismen gebruiken we ‘message’-
reflectietechnieken om een duidelijke scheiding te bewerkstelligen tussen
applicatiecode, QoS-mechanismecode en de middleware-code. Het gebruik
van message-reflectie verbetert de transparantie en de mogelijkheden om
ons QoS-mechanisme samen te stellen.

Een op CORBA gebaseerd prototype implementeert onze Dynamic
Reconfiguration Service and onze Load Distribution Service. Dit prototype
toont aan dat onze benadering voor QoS-mechanismen in de middleware-
laag, en onze dynamische reconfiguratie- en load-distributie QoS-
mechanismen, uitvoerbaar zijn. We gebruiken CORBA Portable
Interceptors om de message reflectie te implementeren. Metingen met het
prototype geven inzicht in de prestatie aspecten, en tonen aan dat de
‘overhead’ acceptabel is voor de meeste applicaties.
Het onderzoek dat in dit proefschrift beschreven is, kan gebruikt worden
voor commercieel toepasbare QoS-mechanismen, die de QoS verbeteren
van applicaties die ontwikkeld zijn met component-middleware
technologieën.

References

[Almeida01A] J. P. A. Almeida, M. Wegdam, L. Ferreira Pires, M. van Sinderen, “An
approach to dynamic reconfiguration of distributed systems based on object-
middleware”, in Proceedings of the 19th Brazilian Symposium on Computer Networks
(SBRC 2001), Santa Catarina, Brazil, May 2001.Also appeared as CTIT
Technical Report TR-CTIT-01-06 in February 2001.

[Almeida01B] J. P. A. Almeida, M. Wegdam, M. van Sinderen, L. Nieuwenhuis,
“Transparent Dynamic Reconfiguration for CORBA”, in Proceedings of the 3rd
International Symposium on Distributed Objects & Applications (DOA 2001), Rome,
Italy, September 2001.

[Almeida01C] J. P. A. Almeida, “Dynamic Reconfiguration of Object-Middleware-based
Distributed Systems”, MSc Thesis, Faculty of Computer Science, University of
Twente, 2001. Supervisors: M.Wegdam, M.J. van Sinderen, L.J.M.
Nieuwenhuis and L. Ferreira Pires. nr. UT-CS-ARCH-2001-03,
http://arch.cs.utwente.nl/assignments/thesis/ARCH-2001-03.pdf. Also
appeared as deliverable AMIDST/WP1/N021 of the AMIDST project.

[Andersen01] Anders Andersen, Gordon Blair, Vera Goebel, Randi Karlsen, Tage Stabell-
Kulø, Weihai Yu, “Arctic Beans: Configurable and Re-configurable Enterprise
Component Architectures”, Work in Progress session at Middleware 2001,
Heidelberg, Germany, November 2001. Published in IEEE Distributed
Systems Online, Vol. 2, No. 7, 2001.

[Andersen02] Anders Andersen, “OOPP - A Reflective Middleware Platform including
Quality of Service Management”, PhD Thesis, University of Tromso, Norway,
2002.

[Aurrecoech98] C. Aurrecoechea, A.T. Campbell, L. Hauw, “A Survey of QoS Architectures”,
Multimedia Systems Journal, Special Issue on QoS Architecture, ACM/Springer
Verlag, Vol. 6, No. 3, pg. 138-151, May 1998.

[Avizienis00] A.Avizienis, J.C.Laprie, B.Randell, “Fundamental concepts of dependability”,
Third Information Survivability Workshop (ISW 2000), October 24-26, 2000,
Boston, Massachusetts, USA

[Badidi99] E. Badidi, R. K. Keller, P. G. Kropf, V. V. Dongen, “The Design of a Trader-
Based CORBA Load Sharing Service”, Proc. of the 12th Int’l Conf. On Parallel
and Distributed Computing Systems (PDCS’99), August 1999.

228 REFERENCES

[Bakken01] David E. Bakken, “Middleware”, in Encyclopedia of Distributed Computing,
Kluwer Academic Press, 2001.

[Barth99] Thomas Barth, Gerd Flender, Bernd Freisleben, Frank Thilo, “Load
Distribution in a CORBA Environment”, Int’l Symposium on Distributed Objects
and Applications (DOA 99), pp. 158-166, Edinburgh, UK, 1999.

[Bergmans96] Lodewijk Bergmans, Mehmet Aksit, “Composing Synchronization and Real-
Time Constraints”, Journal of parallel and distributed computing, 1996, Vol. 36,
pp. 32-52, Academic Press.

[Bergmans00] L. Bergmans, A. van Halteren, L. Ferreira Pires, M. van Sinderen, M. Aksit,
“A QoS-Control Architecture for Object Middleware”, in Proceedings of the 7th
Intl. Conf. on Interactive Distributed Multimedia Systems and Telecommunication
Services (IDMS 2000), Enschede, Netherlands, October 2000. LNCS 1905,
Springer, 2000, pp. 117-131.

[Bergmans01] Lodewijk Bergmans, Mehmet Aksit, “Composing crosscutting concerns using
composition filters”, Communications of the ACM, October 2001, Vol. 44,
No.10, pp. 51-57.

[Berman96] Fran Berman, Richard Wolski, Silvia Figueira, Jennifer Schopf, Gary Shao,
“Application-Level Scheduling on Distributed Heterogeneous Networks”, in
Proceedings of Supercomputing 1996. Also published as UCSD CS Tech Report
#CS96-482.

[Bidan98] C. Bidan, V. Issarny, T. Saridakis, A. Zarras, “A dynamic reconfiguration
service for CORBA”, in Proc. IEEE International Conference on Configurable
Distributed Systems, May 1998.

[Blair98A] Gordon S. Blair, Geoff Coulson, “The case for reflective middleware”, internal
report, MPG-98-38, Distributed Multimedia Research Group, Department of
Computing, Lancaster University, 1998.

[Blair98B] G.S. Blair, G. Coulson, P. Robin, M. Papathomas, “An Architecture for Next
Generation Middleware”, IFIP International Conference on Distributed Systems
Platforms and Open Distributed Processing (Middleware'98), Lake District, UK.

[Bloom93] T. Bloom, M. Day, “Reconfiguration and module replacement in Argus:
Theory and Practice”, IEE Software Engineering Journal, Vol 8, No 2, March
1993.

[Boyd02] Tom Boyd, Partha Dasgupta, “Process Migration: A Generalized Approach
using a Virtualizing Operating System”, in Proc. 22nd International Conference on
Distributed Computing Systems (ICDCS-2002), Vienna, July 2002.

[Cardellini02] Valeria Cardellini, Emiliano Casalicchio, Michele Colajanni, Philip S. Yu,
“The state of the art in locally distributed Web-server systems”, ACM
Computing Surveys (CSUR), Vol. 34, Nr. 2, June 2002.

[Carter99] C. Carter-Schwendler, “Component Load Balancing with COM+”, COM+
Resource CD, 1999,
http://www.microsoft.com/com/resources/compluscd/slides/LoadBalancing.zi
p (Current as of 5 December 2002).

[Casavant88] T.L. Casavant, J.G. Kuhl, “Effects of Response and Stability on Scheduling in
Distributed Computing Systems”, IEEE Transactions on Software Engineering,
Vol. 14, Nr. 11, Nov. 1988, pp. 1578-1588.

 REFERENCES 229

[CCM] Object Management Group, “CORBA Component Model”, version 3.0,
formal/2002-06-65, June 2002.

[Chapin96] Steve J. Chapin, “Distributed and multiprocessor scheduling”, ACM Computing
Surveys, Vol. 28, Nr. 1, 1996.

[Chockler00] G. Chockler, D. Dolev, R. Friedman, R. Vitenberg, “Implementing a Caching
Service for Distributed Objects”, in Proc. IFIP/ACM Int’l Conf. on Distr. Systems
Platforms and Open Distr. Processing (Middleware 2000), April 2000.

[COM+] M. Kirtland, “Object-Oriented Software Development Made Simple with
COM+ Runtime Services”, Microsoft Systems Journal, Nov. 1997,
http://www.microsoft.com/msj/1197/complus.htm.

[CORBA] Object Management Group, “The Common Object Request Broker:
Architecture and specification”, Rev. 2.4.1, formal/00-11-07, Nov. 2000.

[CORBALB] Object Management Group, “Load Balancing Request For Proposal”,
http://www.omg.org/techprocess/meetings/schedule/Load_Balancing_RFP.ht
ml, April 2002.

[CORBANot] Object Management Group, “Notification Service Specification”, Rev. 1.0,
formal/00-06-20, June 2000.

[CORBANS] Object Management Group, “Naming Service Specification”, Rev. 1.1.1,
formal/01-02-65, February 2001.

[CORBAPSS] Object Management Group, “Persistent State Service”, Rev. 2.0,
formal/2002-09-06, 2002.

[CORBATime] Object Management Group, “Time Service Specification”, Rev. 1.0,
formal/00-06-26, May 2000.

[CORBATS] Object Management Group, “Trading Object Service Specification”, Rev. 1.0,
formal/00-06-27, May 2000.

[Dahlin00] Michael Dahlin, “Interpreting Stale Load Information”, IEEE Transactions on
Parallel and Distribution Systems, Vol. 11, No. 10, Oct. 2000.

[DCOM] Microsoft Corporation and Digital Equipment Corporation, “The Component
Object Model Specification”, Version 0.9, Oct. 1995,
http://www.microsoft.com/com/resources/comdocs.asp.

[DiffServ98] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, “An
Architecture for Differentiated Services”, IETF RFC 2475, December 1998

[Eddon99] Guy Eddon, “COM+: The Evolution of Component Services”, IEEE Computer,
Vol. 32, No. 7, pp. 104-106. 1999.

[EJB] Sun Microsystems, “Enterprise JavaBeans Specification”, Version 2.0, 22
August 2001.

[Eliassen02] Frank Eliassen, Thomas Plagemann, Brita Hafskjold, Tom Kristensen, Hans
Ole Rafaelsen, Robert H Macdonald, “QoS management in the MULTE-
ORB”, IEEE Distributed System Online,
http://dsonline.computer.org/middleware/articles/dsonline-MULTE-
ORB.html, March 2002.

[Elrad01A] Tzilla Elrad, Robert E. Filman, Atef Bader, “Aspect-oriented Programming:
Introduction”, Communications of the ACM, October 2001, Vol. 44, No. 10, pp.
29-32.

http://www.omg.org/techprocess/meetings/schedule/Load_Balancing_RFP.html
http://www.omg.org/techprocess/meetings/schedule/Load_Balancing_RFP.html
http://dsonline.computer.org/middleware/articles/dsonline-MULTE-ORB.html
http://dsonline.computer.org/middleware/articles/dsonline-MULTE-ORB.html

230 REFERENCES

[Elrad01B] Tzilla Elrad, Mehmet Aksits, Gregor Kiczales, Karl Lieberherr, Harold Ossher,
“Discussing aspects of AOP”, Communications of the ACM, Oct. 2001, Vol. 44,
No.10, pp. 33 – 38.

[Emmerich02] Wolfgang Emmerich, “Distributed Component Technologies and their
Software Engineering Implications”, in Proc. of the 24th International Conference
on Software Engineering, Orlando, Florida, pp. 537-546, 2002.

[Endler94] M. Endler, “A language for implementing generic dynamic reconfigurations of
distributed programs”, in Proc. of the 12th Brazilian Symposium on Computer
Networks, 1994.

[Ferber89] J.Ferber, “Computational Reflection in Class based Object Oriented
Languages”, in Proc. OOPSLA 1989, SIGPLAN Notices, pp. 317-326, 1989.

[Filman02] Robert E. Filman, Stuart Barrett, Diana D. Lee, Ted Linden, “Inserting ilities
by controlling communications”, Communications of the ACM, Vol. 45, No. 1,
2002.

[Foster00] I. Foster, A. Roy, V. Sander, “A Quality of Service Architecture that Combines
Resource Reservation and Application Adaptation”, 8th International Workshop
on Quality of Service, Pittsburgh, USA, June 2000.

[Franken96] Leonard Franken, “Quality of Service Management: a Model-Based
Approach”, CTIT Ph.D.-thesis series, ISSN-1381-3617, No. 96-10, ISBN 90-
72125-56-8, 1996.

[Frolund99] S.Frolund, J.Koistinen, "Quality of Service Aware Distributed Object
Systems", in Proc. of the 1999 USENIX Conference on Object-Oriented Technologies
and Systems (COOTS), 1999. Also appeared as HP Labs Technical Report HPL
98-142.

[FTCORBA] Object Management Group, “Fault Tolerant CORBA Specification”, Rev. 1.0,
ptc/2000-04-04, April 2000.

[Gamma94] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, “Design
Patterns, Elements of Reusable Object-Oriented Software”, published by
Addison Wesley, ISBN 0-201-63361-2, 1994.

[Geihs01A] K. Geihs, “Middleware challenges ahead”, Computer, June 2001, Vol. 34, Nr.
6, pp. 24 – 31.

[Geihs01B] K. Geihs, C. Becker, “A Framework for Re-use and Maintenance of Quality of
Service Mechanisms in Distributed Object Systems”, in Proc. of International
Conference on Software Maintenance (ICSM 2001), Italy, 2001.

[Goudarzi99] K. Moazami-Goudarzi, “Consistency preserving dynamic reconfiguration of
distributed systems”, Ph.D. thesis, Imperial College, London, March 1999.

[Halteren01] A.T. van Halteren, G. Fábián, E. Groeneveld, "Design and evaluation of a QoS
provisioning service", in Proceedings of 3rd Intl. Conf. on Distributed Applications
and Interoperable Systems (DAIS 01), Krakow, Poland, September 2001.

[Halteren03] Aart T. van Halteren, “Towards an adaptable QoS aware middleware for
distributed objects”, CTIT PhD.-thesis series, ISSN 1381-3617 nr 02-46, ISSN
1388-1795 No. 008, ISBN 90-75176-35-X, University of Twente, The
Netherlands, January 2003.

 REFERENCES 231

[Halteren99A] Aart T. van Halteren, Lambert J.M. Nieuwenhuis, Mike R. Schenk, Maarten
Wegdam, “Value Added Web: Integrating WWW with a TINA Service
Management platform”, in Proc. of Telecommunications Information Networking
Architecture Conference 1999 (TINA '99), Apr. 1999.

[Halteren99B] A.T. van Halteren, A. Noutash , L.J.M. Nieuwenhuis, M. Wegdam,
“Extending CORBA with specialised protocols for QoS provisioning”, in Proc.
of International Symposium on Distributed Objects and Applications (DOA'99), Sept.
1999.

[Hellenthal01] J.W. Hellenthal, F.J.M. Panken, M.Wegdam, “Validation of the Parlay API
through prototyping”, in Proc. IEEE Intelligent Network Workshop 2001
(IN2001), 6-8 May, Boston, USA.

[Henning98] M. Henning, “Binding, migration, and scalability in CORBA”, Communications
of the ACM, Vol. 41, No. 10, Oct. 1998.

[Henning99] M. Henning, S. Vinoski, “Advanced CORBA Programming with C++”, 3rd
printing, Addison-Wesley, Reading, MA., 1999.

[Hofmeister93] C. Hofmeister, “Dynamic Reconfiguration of Distributed Applications”, PhD
thesis, 1993, University of Maryland, USA.

[IEEE610] IEEE, “Standard Glossary of Software Engineering Terminology”, IEEE Std.
610.12-1990, 1990.

[IntServ94] R. Braden, D. Clark, S. Shenker, “Integrated Services in the Internet
Architecture: An Overview”, IETF RFC 1633, July 1994.

[ISO-QoS] ITU/ISO, “Quality of Service – Framework”, ISO/IEC CD 13236, 1998.
[Janowiak03] R.M. Janowiak, “Computers and communications: a symbiotic relationship”,

IEEE Computer, Vol. 36, No. 1, Jan 2003, pp. 76-79.
[Jansen01] M. Jansen, E. Klaver, P. Verkaik, M. van Steen, A.S. Tanenbaum,

“Encapsulating Distribution in Remote Objects”, Information and Software
Technology, Vol. 43, No. 6, pp. 353-363, May 2001.

[Java] Sun, Java 2 Platform, http://java.sun.com.
[Kath00] O. Kath, A. v. Halteren, F. Stoinski, M. Wegdam, Mike Fisher, “Integrated

Middleware Platform Management based on Portable Interceptors”, in Proc.
11th IFIP/IEEE International Workshop on Distributed Systems: Operations &
Management (DSOM 2000), LNCS 1960, Dec. 2000, Austin, Texas, USA.

[Kiczales97] G.Kiczales, J. Lamping, A.Mendhekar, C. Lopes, J. Loingtier, J. Irwin,
“Aspect-Oriented Programming”, European Conference on Object-Oriented
Programming (ECOOP), LNCS 1241, June 1997.

[Kramer85] J. Kramer, J. Magee, “Dynamic configuration for distributed systems”, IEEE
Transactions on Software Engineering, Vol. 11, No. 4, pp. 424-436, April 1985.

[Kramer90] J. Kramer, J. Magee, “The evolving philosophers’ problem: dynamic change
management”, IEEE Transactions on Software Engineering, Vol. 16, No. 11, pp.
1293-1306, November 1990.

[Kuhns99] Fred Kuhns, Carlos O’Ryan, Douglas C. Schmidt, Ossama Othman, Jeff
Parsons, “The Design and Performance of a Pluggable Protocols Framework
for Object Request Broker Middleware”, IFIP 6th International Workshop on
Protocols For High-Speed Networks (PfHSN ’99), Aug. 1999, Salem, MA, USA.

http://java.sun.com/

232 REFERENCES

[Lagerberg02] Ko Lagerberg, Dirk-Jaap Plas, Maarten Wegdam, “Web Services in 3G Service
Platforms”, Bell Labs Technical Journal, Special issue on Wireless Networks, online
ISSN 1538-7305, print ISSN 1089-7089, published by Wiley Periodicals
Inc., Vol. 7, No. 2, pp. 167-183, Dec. 2002.

[Leijdekkers97] Peter Leydekkers, “Multimedia Services in Open Distributed
Telecommunications Environments”, CTIT Ph.D.-thesis series ISSN-1381-
3617, No. 97-12, ISBN 90-72125-04-6, University of Twente, The
Netherlands, 1997.

[Linderm00] M. Lindermeier, “Load Management for Distributed Object-Oriented
Environments”, in Proc. 2nd Int’l Symp. Distr. Objects and Appl. (DOA 2000), pp.
59-68, IEEE CS Press, Antwerp, Belgium, 2000.

[Liskov88] Barbara Liskov, “Data Abstraction and Hierarchy”, ACM SIGPLAN Notices, Vol.
23, No. 5, pp. 17-34, May 1988.

[Magee95] J. Magee, N. Dulay, S. Eisenbach, J. Kramer, “Specifying Distributed Software
Architectures”, in Proc. of the 5th European Software Engineering Conference, ESEC
’95, Barcelona, 1995.

[Man00A] Ronald de Man, Jeroen Schot, Jack Verhoosel, “Load balancing in a TINA
based service deployment environment”, ISS 2000, Birmingham, UK, 2000.

[Man00B] Ronald de Man, Rudynell Millian, Maarten Wegdam, Aniruddha Gokhale,
Shalini Yajnik, “Transparent Fault Tolerance for CORBA based Distributed
Components”, Poster at 15th Annual ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA 2000), two
page extended abstract appeared in the conference companion and ACM
Digital Library, Oct. 2000, Minneapolis, Minnesota USA.

[MDA01] OMG Architecture Board MDA Drafting Team, “Model Driven Architecture -
A Technical Perspective", editors Joaquin Miller and Jishnu Mukerji,
ormsc/01-07-01, July 2001.

[Miller01] Sandra Kay Miller, “Aspect Oriented Programming takes Aim at Software
Complexity”, IEEE Computer, April 2001.

[Milojicic00] D. S. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler, S. Zhou, “Process
migration”, ACM Computing Surveys, Vol. 32, No. 3, pp. 241-299, Sept. 2000.

[Molenkamp01] Gary Molenkamp, Michael Katchabaw, Hanan Lutfiyya, Michael Bauer,
“Distributed Resource Management to Support Distributed Application-
Specific Quality of Service”, 4th IFIP/IEEE International Conference on
Management of Multimedia Networks and Services (MMNS) 2001, LNCS 2216, pp.
142-159, 2001.

[Molenkamp02] G. Molenkamp, H. Lutfiyya, M. Katchabaw, M. Bauer, “Diagnosing quality of
service faults in distributed applications”, in Proc. of 21st IEEE International
Conference on Performance, Computing, and Communications 2002, pp. 375 - 382,
April 2002, Phoenix, AZ, USA.

[Moser00] L. E. Moser, P. M. Melliar-Smith, P. Narasimhan, L. Tewksbury, V.
Kalogeraki, “Eternal: Fault Tolerance and Live Upgrades for Distributed
Object Systems”, in Proc. of the IEEE Information Survivability Conference, Hilton
Head, SC, Jan. 2000.

 REFERENCES 233

[Nahrstedt01] K. Nahrstedt, X Dongyan, D. Wichadakul, L. Baochun, “QoS-aware
middleware for ubiquitous and heterogeneous environments”, IEEE
Communications Magazine, Vol. 39, No. 11, Nov. 2001, pp. 140 –148.

[Narasimh99A] Priya Narasimhan, Louise E. Moser, P.M. Melliar-Smith, “Using Interceptors
to Enhance CORBA”, IEEE Computer, Vol. 32, No. 7, pp. 62-68, 1999.

[Narasimh99B] P. Narasimhan, “Transparent Fault Tolerance for CORBA”, Ph.D. thesis,
University of California, Santa Barbara, Dec. 1999.

[Nasika00] R. Nasika, P. Dasgupta, “Transparent Migration of Distributed
Communicating Processes”, 13th ISCA International Conference on Parallel and
Distributed Computing Systems (PDCS-2000), Aug. 2000

[Natarajan00] Balachandran Natarajan, Aniruddha Gokhale, Shalini Yajnik, Douglas C.
Schmidt, “DOORS: Towards High-performance Fault Tolerant CORBA”, in
Proc. 2nd Int’l Symp. Distr. Objects and Appl. (DOA 2000), IEEE CS Press,
Antwerp, Belgium, 2000.

[NetRemoting] Piet Obermeyer, Jonathan Hawkins, “Microsoft .NET Remoting: A Technical
Overview”, Microsoft Corporation, July 2001,
http://msdn.microsoft.com/library/en-us/dndotnet/html/hawkremoting.asp.

[Neuman94] B. Neuman, “Scale in Distributed Systems. Readings in Distributed
Computing Systems”, pp. 463–489. IEEE CS Press, Los Alamitos, CA., 1994.

[Nieuwenh91] L.J.M. Nieuwenhuis, “Fault Tolerance through Program Transformation”,
PhD Thesis, University of Twente, 1991.

[ORBacus] IONA, “ORBacus CORBA ORB”, http://www.iona.com.
[Orbix] Iona Technologies, “Orbix 2000 1.2.1 Administrator's Guide”,

http://www.iona.com.
[Oreizy98] P. Oreizy, N. Medvidovic, R. Taylor, “Architecture-based runtime software

evolution”, in Proc. of the International Conference on Software Engineering, April
1998.

[Othman01A] O. Othman, C. O’Ryan, D. C. Schmidt, “Strategies for CORBA Middleware-
Based Load Balancing”, IEEE Distributed Systems Online, Vol. 2, Nr 3, March
2001.

[Othman01B] O. Othman, C. O’Ryan, D. C. Schmidt, “Designing an Adaptive CORBA Load
Balancing Service Using TAO”, IEEE Distributed Systems Online, Vol. 2, Nr. 4,
April 2001.

[Othman01C] O. Othman, D. C. Schmidt, “Optimizing Distributed System Performance via
Adaptive Middleware Load Balancing”, in Proc. ACM SIGPLAN Workshop on
Optimization of Middleware and Distr. Systems, Snowbird, Utah, June 2001.

[P715] Eurescom P715, “Middleware for the Open Services Market, A boolet for
Executives”, Eurescom P715 project (British Telecom, Deutsche Telekom,
France Telecom, FINNET Group, KPN, Telecom Eireann),
http://www.eurescom.de, 1999.

[Pierre01] G. Pierre, M. van Steen, “Globule: a Platform for Self-Replicating Web
Documents”, in Proc. 6th Int'l Conf. on Protocols for Multimedia Systems,
Enschede, The Netherlands, October 2001.

http://msdn.microsoft.com/library/en-us/dndotnet/html/hawkremoting.asp
http://www.eurescom.de/

234 REFERENCES

[Pierre02] G. Pierre, M. van Steen, A.S. Tanenbaum. "Dynamically Selecting Optimal
Distribution Strategies for Web Documents", IEEE Transactions on Computers,
Vol. 51, No. 6, June 2002.

[Plas99] D.J. Plas, “Using Message Reflection for the Management of CORBA”, MSc
thesis, University of Groningen, Supervisors: M. Wegdam. A.T. van Halteren,
L.J.M. Nieuwenhuis, Dec. 1999.

[Post02] E. Post, “Load Distribution in Object Middleware”, MSc thesis, Faculty of
Computer Science, University of Twente, 2002. Supervisors: M.Wegdam,
M.J. van Sinderen, L.J.M. Nieuwenhuis, N. Diakov, nr. UT-CS-ARCH-2002-
01, http://arch.cs.utwente.nl/assignments/thesis/ARCH-2002-01.pdf.

[Putman01] J. Putman, “Architecting with RM-ODP”, ISBN 0-13-019116-7, Prentice
Hall, 2001.

[Rackl01] G. Rackl, “Monitoring and Managing Heterogeneous Middleware”, PhD thesis,
Institut für Informatik, Technische Universität München, 2001.

[Raymond95] Kerry Raymond, “Reference Model of Open Distributed Processing (RM-
ODP): Introduction”, IFIP International Conference on Open Distributed Processing
(ICODP '95), Brisbane, Australia, Febr. 1995.

[Raynal96] M. Raynal, M. Singhal, "Logical Time: Capturing Causality in Distributed
Systems", IEEE Computer, Vol. 29, No. 2, pp. 49-57, Febr. 1996.

[Ren03] Yansong (Jennifer) Ren, David E. Bakken, Tod Courtney, Michel Cukier,
David A. Karr, Paul Rubel, Chetan Sabnis, William H. Sanders, Richard E.
Schantz, Mouna Ser, “AQuA: An Adaptive Architecture that Provides
Dependable Distributed Objects”, IEEE Trans. on Computers, Vol. 52, No. 1,
pp. 31-50, Jan. 2003.

[RMI] Sun, “Java Remote Method Invocation”,
http://java.sun.com/products/jdk/rmi/.

[RMODPPart1] ITU-T / ISO, “Open Distributed Processing Reference Model. Part 1 –
Overview”, ITU-T X.901 | ISO/IEC 10746-1, Aug. 1997.

[RMODPPart2] ITU-T / ISO, “Open Distributed Processing - Reference Model - Part 2:
Foundations”, ITU-T X.902 | ISO/IEC 10746-2, Nov. 1995.

[RMODPPart3] ITU-T / ISO, “Open Distributed Processing - Reference Model - Part 3:
Architecture”, ITU-T X.903 | ISO/IEC 10746-3, Nov. 1995.

[Rodriguez99] Noemi Rodriguez, Roberto Ierusalimschy, “Dynamic Reconfiguration of
CORBA-Based Applications”, SOFSEM'99: Theory and Practice of Informatics,
26th Conference on Current Trends in Theory and Practice of Informatics, LNCS 1725,
Milovy, Czech Republic, Nov./Dec. 1999.

[RTCORBA] Object Management Group, “Real-Time CORBA Specification”, Rev. 1.1,
formal/2002-08-02, Aug. 2002.

[Santos01] Luis Paulo Peixoto dos Santos, “Application Level RunTime Load
Management: A Bayesian Approach”, PhD thesis, Universidade do Minho,
Portugal, 2001.

[Santos96] L. P. P. dos Santos, “Load Distribution: a Survey”, Tech. Report,
UM/DI/TR/96/03, Universidade do Minho, Escola de Engenharia,
Departamento de Informática, Oct. 96.

http://java.sun.com/products/jdk/rmi/

 REFERENCES 235

[Schantz02] Richard E. Schantz, Douglas C. Schmidt, “Middleware for Distributed
Systems: Evolving the Common Structure for Network-centric Applications”,
Encyclopedia of Software Engineering, Wiley and Sons, 2002.

[Schmidt98] Douglas C. Schmidt, “Evaluating architectures for multithreaded object
request brokers”, Communications of the ACM, Vol. 41, No. 10, pp. 54 – 60.

[Schnekenb00] T. Schnekenburger, “Load Balancing in CORBA: A Survey of Concepts,
Patterns, and Techniques”, The Journal of Supercomputing, Vol. 15, No. 2, 2000,
pp. 141-161.

[Schnekenb96] T. Schnekenburger, “Automatic Load Distribution for CORBA Applications”,
in Proc. 1st Component User’s Conf. (CUC 1996), SIGS, 1996.

[Schnekenb97] T. Schnekenburger, G. Rackl, “Implementing Dynamic Load Distribution
Strategies with Orbix”, in Proc. Int’l Conf. Parallel and Distr. Processing Techniques
and Appl. (PDPTA’97), CSREA, 1997, Vol. 2, pp. 996-1005.

[Sellin99] Eric Sellin, Peter Loosemore, Sohail Rana, Jürgen Dittrich, Maarten Wegdam,
“Audio/Video Stream Binding in a Pan-European Service Management
Platform”, in Proc. of Sixth International Conference on Intelligence in Services and
Networks (IS&N '99), Apr. 1999.

[Shivaratri92] N. Shivaratri, P. Krueger, M. Singhal, “Load Distributing for Locally
Distributed Systems”. IEEE Computer, Vol. 25, No. 12, Dec. 1992, pp. 33-44.

[Siqueira00] Frank Siqueira, Vinny Cahill, “An Open QoS Architecture for CORBA
Applications”, in Proc. of the 3rd IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC), 2000.

[SOAP] World Wide Web Consortium, “Simple Object Access Protocol (SOAP)”,
version 1.1, W3C Note 8 May 2000, <http://www.w3.org/TR/SOAP/>.

[Steen98] M. van Steen, A.S. Tanenbaum, I. Kuz, H.J. Sips, “A Scalable Middleware
Solution for Advanced Wide-Area Web Services”. in Proc. Middleware '98, Sept.
1998.

[Szyperski98] C. Szyperski, “Component software”, Addison-Wesley, 1998.
[Szyperski99] C. Szyperski, “Components and Objects Together”, Software Development

Magazine, Document ID 11334, May 1999.
[TAO] TAO homepage, <http://www.cs.wustl.edu/~schmidt/TAO.html>.
[Tewksb01A] L. A. Tewksbury, L. E. Moser, P. M. Melliar-Smith, “Automatically Generated

State Transfer and Conversion Code to Facilitate Software Upgrades”,
Maintenance and Reliability Conference, Gatlinsburg, Tn, USA, May 2001.

[Tewksb01B] L. A. Tewksbury, L. E. Moser, P. M. Melliar-Smith, “Coordinating the
Simultaneous Upgrade of Multiple CORBA Objects”, 3rd International
Symposium on Distributed Objects and Applications (DOA 2001), Rome, Italy, Sept.
2001.

[Tewksb01C] L.A. Tewksbury, L.E. Moser, P.M. Melliar-Smith, “Live Upgrade Techniques
for CORBA Applications”, Third IFIP WG 6.1 International Working Conference
on Distributed Applications and Interoperable Systems (DAIS 01), Krakow, Poland,
Sept., 2001.

[Tewksb01D] L.A. Tewksbury, L.E. Moser, P.M. Melliar-Smith, “Live upgrades of CORBA
applications using object replication”, in Proc. IEEE International Conference on
Software Maintenance, Nov. 2001. Florence, Italy, pp. 488-497.

http://www.cs.wustl.edu/~schmidt/TAO.html

236 REFERENCES

[Thissen00] D. Thissen, H. Neukirchen, “Managing Services in Distributed Systems by
Integrating Trading and Load Balancing”, in Proc. 5th IEEE Sym on Computers
and Communications (ISCC 2000), IEEE CS Press, Los Alamitos, Calif., 2000.

[UMLQoS] Object Management Group, “Request for Proposal - UML Profile for
Modeling Quality of Service and Fault Tolerance Characteristics and
Mechanisms”, ad/2002-01-07.

[Vanegas98] Rodrigo Vanegas, John A. Zinky, Joseph P. Loyall, David Karr, Richard E.
Schantz, David E. Bakken, “QuO's Runtime Support for Quality of Service in
Distributed Objects”, in Proc. of the IFIP International Conference on Distributed
Systems Platforms and Open Distributed Processing (Middleware'98), Sept. 1998.

[Visser00] C.A. Visser, L. Ferreira Pires, D.A.C. Quartel, M.J. van Sinderen, “The
Architectural Design of Distributed Systems”, Reader for The Design of Telematics
Systems course, University of Twente, The Netherlands, Nov. 2000.

[Waldo94] Jim Waldo, Geoff Wyant, Ann Wollrath, Sam Kendall, “A Note on
Distributed Computing”, Sun Labs SMLI TR-94-29, Nov. 1994.

[Wang00] Nanbor Wang, Kirthika Parameswaran, Douglas C. Schmidt, “The Design and
Performance of Meta-Programming Mechanisms for ORB Middleware”, in
Proc. of the 6th Conference on Object-Oriented Technologies and Systems, San
Antonio, TX, pp. 103-118, USENIX, Jan./Feb. 2000.

[Weblogic] BEA, “Using WebLogic Server Clusters”, BEA Weblogic Server 6.1,
<http://e-docs.bea.com/wls/docs61/cluster/>, 24 June 2002.

[Wegdam00A] M.Wegdam, A.T. van Halteren, “Experiences with CORBA interceptors”,
Position paper for the Workshop on Reflective Middleware (RM 2000), co-located
with the IFIP/ACM International Conference on Distributed Systems
Platforms and Open Distributed Processing (Middleware'2000), April 2000.

[Wegdam00B] Maarten Wegdam, Dirk-Jaap Plas, Aart van Halteren, Bart Nieuwenhuis,
“ORB Instrumentation for Management of CORBA”, The 2000 International
Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA
2000), Las Vegas, USA, June 2000.

[Wegdam00C] Maarten Wegdam, Dirk-Jaap Plas, Aart van Halteren, Bart Nieuwenhuis,
“Using message reflection in a management architecture for CORBA”, 11th
IFIP/IEEE International Workshop on Distributed Systems: Operations & Management
(DSOM 2000), LNCS 1960, Dec. 2000, Austin, Texas, USA.

[Wegdam01A] M. Wegdam, J. P. A. Almeida, “Lucent response to OMG ORBOS RFI on
online updates”, orbos/01-01-01, Jan. 2001.

[Wegdam01B] Maarten Wegdam, Dirk-Jaap Plas, Musa Unmehopa, “Validation of the Open
Service Access API for UMTS Application Provisioning”. in Proc. of the 6th
International Conference on Protocols for Multimedia Systems (PROMS 2001), LNCS
2213, pp. 210-221, Oct. 2001, Enschede, The Netherlands.

[Wegdam03A] Maarten Wegdam, João Paulo A. Almeida, Marten J. van Sinderen, Lambert
J.M. Nieuwenhuis, “Dynamic Reconfiguration for Middleware-Based
Applications”, CTIT Technical Report, TR-CTIT-03-09, ISSN 1381-3625,
March 2003. Also submitted to IEEE Transactions on Parallel and Distributed
Systems - Special Issue on Middleware (Fall 2003).

[Wermel99] M. A. Wermelinger, “Specification of software architecture reconfiguration”,
PhD thesis, Universidade Nova de Lisboa, September 1999.

 REFERENCES 237

[WSDL] World Wide Web Consortium, “Web Service Description Language
(WSDL)”, version 1.1, W3C Note, 15 March 2001,
<http://www.w3.org/TR/wsdl>.

[XML] World Wide Web Consortium, “Extensible Markup Language (XML)”,
version 1.0 (Second Edition), W3C Recommendation, 6 October 2000,
<http://www.w3.org/TR/REC-xml>.

[Yokote92] Yasuhiko Yokote, “The Apertos Reflective Operating System: The Concept
and Its Implementation”, OOPSLA'92 Proceedings, October 1992.

[Zinky97] J.A. Zinky, D.E. Bakken, R.E. Schantz, “Architectural Support for Quality of
Service for CORBA Objects”, Theory and Practice of Object Systems. April 1997.

Publications by the Author

In reverse chronological order:
• Maarten Wegdam, João Paulo A. Almeida, Marten J. van Sinderen,

Lambert J.M. Nieuwenhuis, “Dynamic Reconfiguration for
Middleware-Based Applications”, CTIT Technical Report TR-CTIT-03-
09, ISSN 1381-3625, March 2003. Also submitted to IEEE Transactions
on Parallel and Distributed Systems - Special Issue on Middleware (Fall
2003).

• Ko Lagerberg, Dirk-Jaap Plas, Maarten Wegdam. “Web Services in 3G
Service Platforms”, Bell Labs Technical Journal - Special issue on Wireless
Networks, online ISSN: 1538-7305, print ISSN: 1089-7089,
Published by Wiley Periodicals Inc., 7(2), pp. 167-183, December
2002.

• Maarten Wegdam, Dirk-Jaap Plas, Musa Unmehopa, “Validation of the
Open Service Access API for UMTS Application Provisioning”, In
Proceedings of the 6th International Conference on Protocols for Multimedia
Systems (PROMS 2001), published by Springer as LNCS 2213, pp. 210-
221, ISBN 3-540-42708-2, Enschede, The Netherlands, October
2001.

• J. P. A. Almeida, M. Wegdam, M. van Sinderen, L. Nieuwenhuis,
“Transparent Dynamic Reconfiguration for CORBA”, In Proceedings of
the 3rd International Symposium on Distributed Objects & Applications (DOA
2001), ISBN 0-7695-1300-X, pp. 197-207, Rome, Italy, September
2001.

• M. Wegdam, J. P. A. Almeida. “Lucent response to OMG ORBOS RFI
on online updates”, orbos/01-01-01, January 2001.

• J.W. Hellenthal, F.J.M. Panken, M.Wegdam, “Validation of the Parlay
API through prototyping”, IEEE Intelligent Network Workshop 2001
(IN2001), ISBN 0-7803-7047-3, pp. 58-63, 6-8 May, Boston, USA.

240 PUBLICATIONS BY THE AUTHOR

• J. P. A. Almeida, M. Wegdam, L. Ferreira Pires, M. van Sinderen, “An
approach to dynamic reconfiguration of distributed systems based on
object-middleware”, In Proceedings of the19th Brazilian Symposium on
Computer Networks (SBRC 2001), Santa Catarina, Brazil, May 2001. Also
appeared as CTIT Technical Report TR-CTIT-01-06, ISSN 1381-
3625, February 2001.

• Maarten Wegdam, Dirk-Jaap Plas, Aart van Halteren, Bart
Nieuwenhuis, “Using message reflection in a management architecture
for CORBA”, 11th IFIP/IEEE International Workshop on Distributed
Systems: Operations & Management (DSOM 2000), Springer-Verlag
Lecture Notes in Computer Science Volume 1960, pages 230-242,
Austin, Texas, USA, December 2000.

• O. Kath, A. v. Halteren, F. Stoinski, M. Wegdam, Mike Fisher,
“Integrated Middleware Platform Management based on Portable
Interceptors”, 11th IFIP/IEEE International Workshop on Distributed
Systems: Operations & Management (DSOM 2000), Springer-Verlag
Lecture Notes in Computer Science Volume 1960, pages 107-118,
Austin, Texas, USA, December 2000.

• Ronald de Man, Rudynell Millian, Maarten Wegdam, Aniruddha
Gokhale, Shalini Yajnik, “Transparent Fault Tolerance for CORBA
based Distributed Components”, Poster at 15th Annual ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA 2000), two page extended abstract appeared in
the conference companion and ACM Digital Library, ISBN 1-58113-
307-3, Minneapolis, Minnesota, USA, October 2000.

• Maarten Wegdam, Dirk-Jaap Plas, Aart van Halteren, Bart
Nieuwenhuis, “ORB Instrumentation for Management of CORBA”,
The 2000 International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA 2000), Las Vegas, USA, June 2000.

• M.Wegdam, A.T. van Halteren, “Experiences with CORBA
interceptors”, Position paper for the Workshop on Reflective Middleware
(RM 2000), co-located with the IFIP/ACM International Conference
on Distributed Systems Platforms and Open Distributed Processing
(Middleware'2000), April 2000.

• A.T. van Halteren, A. Noutash, L.J.M. Nieuwenhuis, M. Wegdam,
“Extending CORBA with specialised protocols for QoS provisioning”,
In Proceedings of International Symposium on Distributed Objects and
Applications (DOA'99), ISBN 0-7695-0182-6, pages 318-327,
September 1999.

 PUBLICATIONS BY THE AUTHOR 241

• Eric Sellin, Peter Loosemore, Sohail Rana, Jürgen Dittrich and
Maarten Wegdam, “Audio/Video Stream Binding in a Pan-European
Service Management Platform”, In Proceedings of Sixth International
Conference on Intelligence in Services and Networks (IS&N '99), Springer-
Verlag Lecture Notes in Computer Science Volume 1597, pp. 357-
372, April 1999.

• Aart T. van Halteren, Lambert J.M. Nieuwenhuis, Mike R. Schenk and
Maarten Wegdam, “Value Added Web: Integrating WWW with a
TINA Service Management platform”, In Proceedings of
Telecommunications Information Networking Architecture Conference 1999
(TINA '99), ISBN 0-7803-5785-X, pages 14-23, April 1999.

Dynamic Reconfiguration and
Load Distribution in Component
Middleware
Maarten Wegdam

Large-scale distributed systems, such as
telematics systems, are often built using
component-middleware technologies (e.g.,
CORBA). Middleware offers distribution
transparencies. This means that
complexities related to the distribution are
hidden from the application developers by
embedding the distribution aspects in the
middleware. Component middleware is
middleware that uses component concepts
such as encapsulation and well-defined
interfaces.

This thesis proposes a new approach for
the design of Quality of Service (QoS)
mechanisms in component middleware.
The specific QoS mechanisms that we
propose in this thesis are (i) a new dynamic
reconfiguration mechanism, which
improves the availability by allowing
online replacements and migrations of
application components, and (ii) a new
load distribution mechanism, which
improves the performance of application
components. Important characteristics of
these QoS mechanisms are: (i) they are
dynamic, (ii) they do not rely on specific
network or operating system QoS
functionality, and (iii) they are transparent
for the developer of application
components. We achieve transparency by
using message reflection techniques in the
middleware layer.

A CORBA-based prototype serves as a
proof of concept for our approach and our
QoS mechanisms.

M
A

A
R

T
E

N
 W

E
G

D
A

M
D

Y
N

A
M

IC

R

E
C

O
N

F
IG

U
R

A
T

IO
N

A

N
D

L

O
A

D

D

IS
T

R
IB

U
T

IO
N

IN

C

O
M

P
O

N
E

N
T

M

ID
D

L
E

W
A

R
E

The author of this thesis is employ-
ed at Bell Labs, the research arm of
Lucent Technologies. The research
presented in this thesis was done
in cooperation with the Centre
for Telematics and Information
Technology (CTIT). Parts of the
research were done in the context of
two collaboration projects: AMIDST
and EQUANET.

AMIDST is a Telematica Instituut
project on next generation object-
middleware platforms that can sup-
port Quality of Service (QoS).

EQUANET is an ICT-”Doorbraak”
project sponsored by the Dutch
Ministry of Economic Affairs on cost-
effective realization of end-to-end
QoS in multi-domain network envi-
ronments.

This thesis is published as a part of
both the CTIT PhD.-thesis series and
the Telematica Instituut Fundamental
Research Series.

CTIT (www.ctit.utwente.nl) is one
of the key research institutes of the
University of Twente. It conducts
research on the design of complex
ICT systems and their application in
selected user domains.

Lucent Technologies (www.lucent.
com) develops and delivers the sys-
tems, software and services for next-
generation communications net-
works. Lucent focuses on high-
growth areas such as broadband and
mobile Internet infrastructures.

Telematica Instituut (www.telin.nl)
is a partnership between the busi-
ness community, research centers
and government, to perform
research in the field of telematics.
The Dutch government supports
Telematica Instituut under its ‘leading
technological institutes’ scheme.
Both CTIT and Lucent participate in
the Telematica Instituut.

About the author
Maarten Wegdam holds a M.Sc.

degree (December 1996) in
Computer Science from the
University of Groningen, The
Netherlands.

He worked as an applied
scientist for KPN Research for
three years (1997-1999), and
since then is a member of
technical staff at the Bell Labs
Advanced Technologies EMEA
Twente department, Lucent
Technologies in The Netherlands.
He specializes in middleware,
Quality of Service and service
platforms. He has worked as an
architect and project manager in
several internal and collaborative
projects in these areas.

For his Ph.D. research, Mr.
Wegdam was a visitor of the
Architecture of Distributed
Systems group, which is part of
the Department of Computer
Science at the University of
Twente, The Netherlands. The
research of the Department of
Computer Science is embedded in
the Centre for Telematics and
Information Technology. IS

B
N

 9
0-

75
17

6-
36

-8

MAARTEN WEGDAM

U
IT

N
O

D
IG

IN
G

Hi
er

bi
j n

od
ig

 ik
 u

 u
it

vo
or

 h
et

 b
ijw

on
en

 v
an

de
 o

pe
nb

ar
e

ve
rd

ed
ig

in
g

va
n

m
ijn

 p
ro

ef
sc

hr
ift

D
Y

N
A

M
IC

 R
E
C
O

N
F
IG

U
R

A
T

IO
N

A

N
D

 L
O

A
D

 D
IS

T
R

IB
U

T
IO

N
 I

N
C
O

M
P

O
N

E
N

T
 M

ID
D

L
E
W

A
R

E

Op
 d

on
de

rd
ag

 2
6

ju
ni

 o
m

 1
6:

45
 u

ur
 in

 za
al

 2
 v

an
 h

et

Be
st

uu
r e

n
Be

he
er

 (B
B)

 g
eb

ou
w

va
n

de
 U

ni
ve

rs
ite

it
Tw

en
te

.

Vo
or

af
ga

an
d

aa
n

m
ijn

 v
er

de
di

gi
ng

 za
l i

k
om

 1
6:

30
 u

ur

ee
n

to
el

ich
tin

g
ge

ve
n

op
 m

ijn
 p

ro
ef

sc
hr

ift
.

Na
 a

flo
op

 b
en

t u
 v

an
 h

ar
te

 w
el

ko
m

 o
p

de
 re

ce
pt

ie.

M
A

A
RT

EN
 W

EG
D

A
M

Ju
lia

na
st

ra
at

 1
65

75
11

 K
G

 E
ns

ch
ed

e

E-
m

ai
l:

we
gd

am
@

lu
ce

nt
.co

m

Te
l.:

05
3-

43
64

86
2

(th
ui

s)

05
3-

48
45

72
0

(w
er

k)

DYNAMIC
RECONFIGURATION
AND LOAD
DISTRIBUTION IN
COMPONENT
MIDDLEWARE

Dynamic Reconfiguration and
Load Distribution in Component
Middleware
Maarten Wegdam

Large-scale distributed systems, such as
telematics systems, are often built using
component-middleware technologies (e.g.,
CORBA). Middleware offers distribution
transparencies. This means that
complexities related to the distribution are
hidden from the application developers by
embedding the distribution aspects in the
middleware. Component middleware is
middleware that uses component concepts
such as encapsulation and well-defined
interfaces.

This thesis proposes a new approach for
the design of Quality of Service (QoS)
mechanisms in component middleware.
The specific QoS mechanisms that we
propose in this thesis are (i) a new dynamic
reconfiguration mechanism, which
improves the availability by allowing
online replacements and migrations of
application components, and (ii) a new
load distribution mechanism, which
improves the performance of application
components. Important characteristics of
these QoS mechanisms are: (i) they are
dynamic, (ii) they do not rely on specific
network or operating system QoS
functionality, and (iii) they are transparent
for the developer of application
components. We achieve transparency by
using message reflection techniques in the
middleware layer.

A CORBA-based prototype serves as a
proof of concept for our approach and our
QoS mechanisms.

M
A

A
R

T
E

N
 W

E
G

D
A

M
D

Y
N

A
M

IC

R

E
C

O
N

F
IG

U
R

A
T

IO
N

A

N
D

L

O
A

D

D

IS
T

R
IB

U
T

IO
N

IN

C

O
M

P
O

N
E

N
T

M

ID
D

L
E

W
A

R
E

The author of this thesis is employ-
ed at Bell Labs, the research arm of
Lucent Technologies. The research
presented in this thesis was done
in cooperation with the Centre
for Telematics and Information
Technology (CTIT). Parts of the
research were done in the context of
two collaboration projects: AMIDST
and EQUANET.

AMIDST is a Telematica Instituut
project on next generation object-
middleware platforms that can sup-
port Quality of Service (QoS).

EQUANET is an ICT-”Doorbraak”
project sponsored by the Dutch
Ministry of Economic Affairs on cost-
effective realization of end-to-end
QoS in multi-domain network envi-
ronments.

This thesis is published as a part of
both the CTIT PhD.-thesis series and
the Telematica Instituut Fundamental
Research Series.

CTIT (www.ctit.utwente.nl) is one
of the key research institutes of the
University of Twente. It conducts
research on the design of complex
ICT systems and their application in
selected user domains.

Lucent Technologies (www.lucent.
com) develops and delivers the sys-
tems, software and services for next-
generation communications net-
works. Lucent focuses on high-
growth areas such as broadband and
mobile Internet infrastructures.

Telematica Instituut (www.telin.nl)
is a partnership between the busi-
ness community, research centers
and government, to perform
research in the field of telematics.
The Dutch government supports
Telematica Instituut under its ‘leading
technological institutes’ scheme.
Both CTIT and Lucent participate in
the Telematica Instituut.

About the author
Maarten Wegdam holds a M.Sc.

degree (December 1996) in
Computer Science from the
University of Groningen, The
Netherlands.

He worked as an applied
scientist for KPN Research for
three years (1997-1999), and
since then is a member of
technical staff at the Bell Labs
Advanced Technologies EMEA
Twente department, Lucent
Technologies in The Netherlands.
He specializes in middleware,
Quality of Service and service
platforms. He has worked as an
architect and project manager in
several internal and collaborative
projects in these areas.

For his Ph.D. research, Mr.
Wegdam was a visitor of the
Architecture of Distributed
Systems group, which is part of
the Department of Computer
Science at the University of
Twente, The Netherlands. The
research of the Department of
Computer Science is embedded in
the Centre for Telematics and
Information Technology. IS

B
N

 9
0-

75
17

6-
36

-8

MAARTEN WEGDAM

U
IT

N
O

D
IG

IN
G

Hi
er

bi
j n

od
ig

 ik
 u

 u
it

vo
or

 h
et

 b
ijw

on
en

 v
an

de
 o

pe
nb

ar
e

ve
rd

ed
ig

in
g

va
n

m
ijn

 p
ro

ef
sc

hr
ift

D
Y

N
A

M
IC

 R
E
C
O

N
F
IG

U
R

A
T

IO
N

A

N
D

 L
O

A
D

 D
IS

T
R

IB
U

T
IO

N
 I

N
C
O

M
P

O
N

E
N

T
 M

ID
D

L
E
W

A
R

E

Op
 d

on
de

rd
ag

 2
6

ju
ni

 o
m

 1
6:

45
 u

ur
 in

 za
al

 2
 v

an
 h

et

Be
st

uu
r e

n
Be

he
er

 (B
B)

 g
eb

ou
w

va
n

de
 U

ni
ve

rs
ite

it
Tw

en
te

.

Vo
or

af
ga

an
d

aa
n

m
ijn

 v
er

de
di

gi
ng

 za
l i

k
om

 1
6:

30
 u

ur

ee
n

to
el

ich
tin

g
ge

ve
n

op
 m

ijn
 p

ro
ef

sc
hr

ift
.

Na
 a

flo
op

 b
en

t u
 v

an
 h

ar
te

 w
el

ko
m

 o
p

de
 re

ce
pt

ie.

M
A

A
RT

EN
 W

EG
D

A
M

Ju
lia

na
st

ra
at

 1
65

75
11

 K
G

 E
ns

ch
ed

e

E-
m

ai
l:

we
gd

am
@

lu
ce

nt
.co

m

Te
l.:

05
3-

43
64

86
2

(th
ui

s)

05
3-

48
45

72
0

(w
er

k)

DYNAMIC
RECONFIGURATION
AND LOAD
DISTRIBUTION IN
COMPONENT
MIDDLEWARE

	Abstract
	Acknowledgements
	Contents
	Introduction
	Background
	
	Component Middleware
	Quality of Service

	Problem Description
	
	QoS is a Middleware Issue
	Approaches to QoS Provisioning
	Middleware-layer QoS Mechanisms
	Dynamic Reconfiguration and Load Distribution
	Reflection and Separation of the QoS Concern

	Objectives and Scope
	
	Scope

	Approach and Structure

	QoS and Component Middleware: an Overview
	Reference Model for Open Distributed Processing
	Distribution Transparencies
	Viewpoints

	Component-Based Development
	State-of-the-Art in Component Middleware
	CORBA
	Enterprise JavaBeans
	CORBA Component Model
	SOAP and WSDL
	DCOM and COM+

	Component-Based Systems and their Design
	Stepwise Refinement
	Remote Method Invocation

	Quality of Service
	Component Middleware Concepts
	
	Layering
	Resources
	Component Middleware

	Comparison with RM-ODP
	Comparison with Szyperski’s Definitions
	Comparison with Component Middleware Technologies

	Related Work
	
	QoS Modeling Language and the QoS Runtime Representation
	Quality Objects
	Quartz
	TAO
	MASQ
	Monet
	MULTE-ORB
	Globus
	Open ORB

	Concluding Remarks

	QoS Mechanisms in the�Middleware Layer
	Requirements for QoS Mechanisms
	
	Component developer’s requirements
	QoS mechanism developer’s requirements

	Our Approach for QoS Mechanisms
	Dynamic Approach
	Static Approach
	Dynamic Approach
	Conclusion

	Separation of Concerns
	Middleware-layer-internal QoS Mechanisms

	Possible QoS Mechanisms
	Performance Mechanisms
	Network Related Steps
	Processing Related Steps

	Availability Mechanisms
	Replication Mechanisms
	Dynamic Reconfiguration Mechanisms

	Using Reflection
	
	Reflection and Aspect-Oriented Software Development
	Overview of Reflection

	Message Reflection in Middleware
	Sniffing
	Instrumented Stubs and Skeletons
	Wrapping
	Inheritance and Delegation
	Composition Filters
	Middleware Interceptors
	Operating System Interceptors
	Other
	Comparison

	Conclusions
	
	Requirements
	Dynamic Approach
	Separation of Concerns
	Middleware-layer-internal QoS Mechanisms
	Dynamic Reconfiguration and Load Distribution
	Message Reflection

	Dynamic Reconfiguration
	A Model of Dynamic Reconfiguration
	Introduction
	Process and Activities Overview
	Reconfiguration Design Activities

	Correctness
	Structural Integrity
	Mutually Consistent States
	Application-State Invariants

	Impact on Execution

	State-of-the-Art in Dynamic Reconfiguration
	Kramer and Magee
	Reconfiguration-Safe State
	Reachability of the Safe State
	Reconfiguration Rules

	Goudarzi
	Preserving Consistency

	Bidan et al.
	Preserving Mutual Consistent States

	Wermelinger
	Tewksbury et al.
	Consistency
	State Access
	Group IOR

	Observations

	A New Dynamic Reconfiguration Mechanism
	Motivation
	Requirements
	Supported Reconfigurations
	Component Creation
	Component Replacement
	Component Migration
	Component Removal
	Reconfiguration Steps

	Change Management
	Structural Integrity
	Mutually Consistent States
	Application-state invariants
	Impact on Execution

	Limitations of our Mechanism
	Comparison with Studied Approaches
	Application-description Models
	Reconfiguration Supported and Computation Model
	Impact on Execution
	Transparency

	Design Overview
	Conclusions
	
	Component Middleware and Transparency
	Performance Impact
	Concluding Remarks

	Load Distribution
	A Model and Overview of Load Distribution
	Load Monitoring Functionality
	Load Distribution Strategies
	Load Balancing, Load Sharing and Load Distribution
	Static, Dynamic and Adaptive Strategies
	Scalability
	Stale Load Information and Effective Scheduling
	Stability
	Division of a Strategy in Policies

	Load Distribution Methods
	Replication based and Non-replication based Distribution Methods
	Pre-emptive and non-preemptive distribution methods
	Combining load distribution methods

	Replication and State Consistency
	Suitability of Distribution Methods
	Replication Routing
	Caching and Replication

	State-of-the-Art in Load Distribution
	Middleware-based Load Distribution
	Schnekenburger et al.
	Barth et al.
	Friends
	Othman et al.
	Badidi et al.
	Thissen et al.
	Lindermeier
	Orbix
	COM+
	WebLogic
	Globe
	CASCADE

	Observations
	Supported Load Distribution Strategies and Load Information
	Initial Placement
	Migration
	Replication

	A New Load Distribution Mechanism
	Motivation
	Requirements
	A Framework-based Mechanism
	Load Monitoring Functionality
	Load Distribution Strategies
	Supported Distribution Methods
	Initial Placement
	Migration
	Replication

	Quality of Service
	Class-based QoS Differentiation LD Strategy
	Class-based QoS Requirements
	Quantitative QoS Requirements
	Other QoS Enforcing Strategies

	Comparison with Other Middleware Approaches

	High Level Design
	Load Distribution Strategies
	Load Monitoring

	Conclusions
	
	Main Contributions
	Other Contributions
	Our Load Distribution Mechanism
	Comparison with Other Approaches
	Future Work
	Concluding Remarks

	Proof of Concept
	Dynamic Reconfiguration Service
	Change Designer View
	Normal Creation and Removal
	Reconfiguration Step
	Composing a reconfiguration step
	Requesting the Execution of a Reconfiguration Step
	State Translation

	Component Designer View
	State Access
	Factory
	Active Object
	Threading

	Client Designer View
	Design
	Location Independent Object References
	Selective Request Queuing
	Performing a Reconfiguration Step
	Performing a Composite Reconfiguration Steps

	Evaluation
	Performance
	Transparency
	Future Work

	Load Distribution Service
	Distribution Methods
	Initial Placement Distribution Method
	Migration Distribution Method
	Replication Distribution Methods

	Load Monitoring
	Load Meters
	Load Information Exchange
	Load Meter Registration
	Load Collector
	Configuration of Load Meters

	Load Distribution Strategies
	Strategy Manager

	Views on the Load Distribution Service
	Component Designer View
	Client Designer View
	Strategy Designer View
	Load Meter Designer View
	System Administrator View

	Applications and Measurements
	Application Types
	Test Environment
	Test Setup
	LDS Overhead
	Initial Placement Measurements
	Migration Measurements

	Evaluation
	Performance and Overhead
	Transparency
	Future Work

	Conclusions
	Introduction
	Major Contributions
	Contributions per Chapter
	
	Chapter 2 – QoS and Component Middleware: an Over
	Chapter 3 – QoS Mechanisms in the Middleware Laye
	Chapter 4 – Dynamic Reconfiguration
	Chapter 5 – Load Distribution
	Chapter 6 – Proof of Concept

	Conclusions
	
	Our Approach for QoS Mechanisms
	Dynamic Reconfiguration QoS Mechanism
	Load Distribution QoS Mechanism
	Using Reflection to Achieve Separation of Concerns
	Proof of Concept

	Future Research

	Samenvatting (Dutch)
	References
	Publications by the Author

