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CHAPTER 1

Introduction

1.1 Software testing

Nowadays, software is ubiquitous; it is used not only to @@omputers, but also home
devices, cars, airplanes, and even flood control barriegs, e Beslis en Ondersteunend
Systeem [36] which controls the barrier built in the Nieuwat&weg, a canal connecting
the harbour of Rotterdam to the North Sea in The Netherlands)

At arapidly increasing rate, more and more sophisticat&cstare being left to be handled
by computerized systems. This requires, in turn, accoidiogmplex software. Given the
significance of these tasks, it is of utmost importance @iratt high degree of the software
correctness, quality, and reliability.

In order to prevent as much as possible faulty system betmaghich may cause severe
damage, there is a need to check whether systems behaveezsegkpUsually, the impor-
tance of correctness of such a system is best measured bgrikequences of their failure
(e.g., how much money an error could cost, or how many hurwas hre endangered by an
error).

One particularly successful method for achieving theseenties is based on system-
atically testing the software. Testing is the process dhtryto find errors in a system, by
means of experimenting with it. Thus, software testing ioparational way to check the
correct behaviour of a system implementation, by carefinligracting and experimenting
with it. This is achieved by applying a series of tests on thelementation, and studying its
reactions in a controlled environment.

Testing is in essence an instrument for measuring qualityycreases the value of a
product by establishing confidence in its quality, and ipkeh assessing the risk of putting
a product into operation.

Despite its importance, the thorough testing of softwareider pressure when products
have to be delivered on time. There are practical reasorthifartesting is both expensive
and difficult. Primitive, “hands-on” testing methods lackaid foundation, and their testing
strategies are driven by heuristics that may not be alwagsessful. Moreover, software
testing has not been studied as much as one would expect. eQoittar hand, it has been
mainly applied in the industry so far; there, testing is ohthe most important techniques
for software validation (whenever there is time and moneya@any kind of software valida-
tion). In contrast, in academia, software testing has oabpine a topic of serious researchin
the past decade or so. Fortunately, after some years oétinaitention, the theory of testing

1



Z Chapter 1. Introductuon

has now become a widely studied, academically respectabject of research. This is evi-
denced by the increasing number of papers related to tdstiing presented on international
workshops and conferences (e.g. FATES, TESTCOM).

In order to test a system, the desired behaviour of the systest be known in advance.
A description of the desired behaviour describes what &gystust do, not how this is done.
A system that is supposed to implement the desired behas@alled an implementation;
possibly, an implementation can be a real-life object, itimg of a combination of both
hardware and software components.

Level

system
integration
unit

I i Accessibility
stress white box  black box
robustness
performance
reliability
conformance

Aspect

Figure 1.1: Types of testing

Figure 1.1 shows different types of testing. As it occursallgun other methods for
analyzing software, one can test a system at differentdefedbstraction. If we wish to test
a system at its most fine-grained level, thus testing thelsstdtestable” pieces, then we are
performing the so-called unit testing. If, on the other hamd are interested in testing the
cooperation of a number of units whose composition formsséesy component, then we are
performing integration testing. Finally, we perform systéesting when we aim at testing
the whole, complete system.

Orthogonally to the abstraction layers, one must decidekvaspect of a system needs
to be tested. For instance, we may want to perform stressdesthich focuses on the
performance of the implementation under heavy workloadnil&ily, we could perform
robustness testing, to explore how an implementation setactinspecified environments,
or performance testing, to investigate how fast the impleatéon can perform its tasks.
This list can grow indefinitely; related to our original ainfi @haracterizing model based
correctness of a system, is conformance testing, where evimt@rested in testing whether
the behaviour of the implementation conforms to the spetiEhaviour.

Yet another testing distinction lies in the degree of vigipiwe assume in the system
implementation to have. One possibility, called black-besting, arises when we have only
the interface information regarding the implementatids;imner workings are completely
opaque to us. In the other extreme we find white-box testifggrevthe full internal details
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of the system implementation are exposed. This case hasrdgrnore appeal, as the testing
procedure can exploit this information; however, a systester may not be always so fortu-
nate as to get access to this information. Naturally, theadegf visibility between black-box

and white-box testing may vary, leading to a scale of graytbsting. For instance, it could

happen that in a system divided into modules one knows theabbwveodule structure, but

however lacks information regarding each module impleau@ori.

Level

system

} Accessibility
black box

conformance

Aspect

Figure 1.2: Types of testing considered in this thesis

In this thesis we focus on conformance testing at the systeai With black box imple-
mentations, as presented in Figure 1.2.

Model based testing  When the intended behaviour of a system is described with a
model, and in addition the test cases are derived from thdeinwe are performing model-
based testing. In this case we can use the model (or speoifizathich is (ideally) provided
by the designer, to define the notion of correctness for anggystem implementation.

Hence, the model allows us to give a correctness verdicechan observations made
during the test execution: a positive result gives us confiden the correct functioning of
the system implementation — a negative result, in turnciagis the presence of an error.

It must be noted that the specification is a fundamental afigret for model based testing:
without it, verdicts cannot be reached, as we cannot teltidrean implementation behaviour
is correct or not. Still, the necessity of having a model agscdption is not restrictive, as
we can simply test on the basis of crude models, or even trgweldp models as we test.

Formal methods in conformance testing In practice, system designers usually pro-
vide behaviour specifications which are simply written irtumal language, like English,
Dutch, or Spanish. This causes several complicationsthiisis difficult to describe a
system fully just with words, and so the specifications apéclly incomplete. Even worse
is the fact that natural language is inherently ambiguouschvcan lead to different inter-
pretations or inconsistencies.
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As discussed, specifications are crucial for testing a systeplementation. To obtain
good testing results, it is also vital that specificatiores @recise and unambiguous. Other-
wise, if we do not understand precisely what a system is ssgapto do, surely we will not
be able to see whether the system implementation perforpreppately.

Formal methods help us to solve this problem; they providwitis mathematical and
logical techniques to specify and model systems rigorofidly 50, 30, 27]. Formal specifi-
cations, being precisely defined mathematical objectsavitlear semantical meaning, allow
us to reason soundly about them. Moreover, specificatioiitewiin formal languages can
be manipulated by specialized tools, allowing us to auter(jart of) the analysis.

Conformance testing means that we are checking the furattamrectness of a black-
box system under test with respect to a formal specificatiorparticular, we are going to
focus on specifications whose formal semantics are expt@sserms of labelled transition
systems (e.g., LOTOS [35], PROMELA [34]). Transition systeare well-studied and used
to give semantics to process algebraic languages like CCSBr[46, 33]. Having a formal
specification allows us to automate the test generationegplsasce test cases can be derived
algorithmically in an efficient, effective, and systemdéshion.

Testing and verification Unfortunately, there exists an old myth stating that thecpra
tical and operational (or “dirty hands”) approach of tegttannot be combined with the
clean mathematical theories associated with formal vatifia. However, this wrong belief
is fortunately changing. The activities of formal testingdaverification are in fact comple-
mentary. Verification aims at proving properties abouteyst by formal manipulation of
the mathematical model of the system. Thus, verificationgiem certainty about the satis-
faction of a required property based only on the model of ylstesn, not on its real physical
implementation. Testing, on the other hand, is performeeaxgyrcising the real, executable
implementation. This is of course a highly desirable propehe price to pay for this ad-
vantage is that testing cannot be, in general, completeedslt is based on observations
of only a small subset of all (usually infinitely many) pogsiinstances of the system be-
haviour. However, people from industry usually consideifi@tion as impracticable and
not applicable to realistically-sized systems, pref@rt@sting as a validation method.

In this thesis we exploit the fact that verification and tegtare complementary in the
following way. Our specifications are assumed to be good isarfehe desired behaviour
(this could be established, for instance, using verificatechniques like model checking
where system properties, represented by logical formatas;hecked upon the specification
transition system). Critical systems, like airplanes oclear power plants, are some of the
cases where this assumption applies.

Test selection  As mentioned above, complete test suites usually cannobbered in
finite time for most interesting cases. Hence, the processstihg is inherently incomplete,
meaning that it cannot guarantee the absence of all and eu@ny This implies that having
a good strategy for test selection is of vital importance.

Technically, test coverage is a measure of the proportidineimplementation exercised
by a test suite. These coverage measures are used to evhkigigality of a test suite and
help the tester to select test cases with maximal impact minmim cost. Typical black-box
coverage metrics are state and transition coverage of #@figation [61, 42, 49]. Typical
white-box testing considers statement, condition and paxierage [47, 48, 8].
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A related notion (in the context of software testing) to aage and the issue of choosing
tests with maximum impact can be found in the work done on aisélysis [54, 55, 15],
where the metrics consider the risk of an error to occur. imghtting, in order to be able to
perform risk analysis, two ingredients are necessarytlfivge need to consider all different
errors that could possible appear in an implementationoi&#g, we need to assign, to each
error, an assessment (possibly stated as a numerical vafuesenting the cost of the error
occurrence.

In this thesis we extend an existing model-based testingryhend we introduce a se-
mantic based coverage. To this end we first present a forrpabaph for formal testing.

1.2 A formal framework for software testing

Specificatio Test generatio

A
|
|
| conforms? (Test Suité
|
|

Implementatio Test executioﬂw

(pass/ fail)

Figure 1.3: Process of formal conformance testing

In this section we illustrate a framework that helps to ustierd the process of formal
conformance testing, independently of any specific formathod (for a more elaborate
treatment of the contents of this section we refer the retad&0]). This process is described
schematically in Figure 1.3. There, the specification, &st fjeneration, and the test suite
are formal objects. Meanwhile, the implementation and éiseeéxecution (therefore also the
verdict, pass or fail) are not formal. The implementation ba a real object (or part of),
the test execution is an activity of feeding and readingeslutom the implementation. We
wish to know whether the implementation is correct (doeshase errors) with respect to
the specification (indicated by the dashed arrow in the figuFae criterion of correctness
is given by the so-called conformance relation. A decisibwloether the implementation
“conforms” the specification is reached by a test genergitocedure that generates a test
suite from the specification. So, the (generated) test sugbeecuted with the implementation
and a verdict from the test execution is reached, tellingthdrethe implementation does or
does not conform with the specification.

To formally deal with the implementation and test executimmake the assumptions
described next.
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The conformance relation & the test hypothesis In order to define the conformance
relation, we need three objects: the specification (obfebetconformed to), the implemen-
tation (object to be checked for conformance), and the aomdace relation (the criterion of
conformance). We assume that there is a universe of forneaifsgations, calledPECS,
and a universe of implementations, calléd1PS. Then, the conformance is a relation
conforms-taC ZMPS x SPECS. Animplementation under test (callédT") conforms to

a specification§), i.e. IUT conforms-taS, expresses thdtl/T' is a correct implementation
of the specificatiorb'.

However, since we are restricting ourselves to black-bstitg and thus cannot see inside
the implementation, we can only interact with the implenaéinh through their external
behaviour. Moreover, implementations can be physicalaibjéas pieces of hardware or
software), therefore they are not always suitable for fdme@soning. Thus, as a way to give
a formal definition of conformance, we make the assumptiab dny real implementation
(IUT € ZMPS) can be modelled as a formal object, iig;r € MODS, where MODS
is the universe of formal models. This assumption is knowthagest hypothesis [11]. An
important detail of this assumption is that it is supposed the model exists but not that the
model is actually known a priori.

The test hypothesis allows one to reason with real impleatiems just as if they are
formal objects. Moreover, it allows to express conformaase formal relation [14, 64],
called the implementation relatioinp C MODS x SPECS. In this way, an implemen-
tation /UT conforms to a specificatiof if and only if the model of the implementation,
iryr € MODS, isimp-related toS, i.e. i;yr imp S.

The observations  As we say before, testing studies the behaviour of an imphatien
by experimenting with it and observing its reaction. Thegaeegiments are called test cases,
and the process of applying them to the implementation Iled¢#&tst execution.

Once we have generated a set of test cases, their executiorei$ormal activity, as itis a
matter of mechanically feeding to and reading values framirtiplementation. Nevertheless,
the analysis of the results and the final verdict are stillieficed and simplified by the formal
framework. (Note that the test generation and executiorolo@ed to be always sequential.
One technique, called on-the-fly testing, allows to comkiiegest generation and execution.
Here, the tests are executed while they are generated.)

The universe of formal test cases is callé@STS. Thus, a test execution is a pro-
cess calleEXEC(t, [UT), built from a testt € TESTS and an implementatiohUT €
IMPS. During the execution, process observations can be madecorded; we call
OBS the universe of observations (interpreting them as forrb@ais). Thus, an execu-
tion EXEC(t, IUT) returns a subset @PBS.

Now, EXEC(t, IUT) corresponds to a physical execution of a test case in a redgim
mentation, and therefore is not a formal concept. To formedli we define the observation
functionobs : TESTS x MODS — P(OBS). In this way,obs(t, i;yr) models formally
the real test execution XY EC(¢, IUT'). Moreover, using the concepts introduced earlier we
can reformulate the test hypothesis as for7alll" in ZMPS, there existg;yr in MODS
such that for allt in TESTS, thenEXEC(t, IUT) = obs(¢, i;yr). Meaning that for each
real implementatiodUT', it is assumed that there exists a mogelr such that executing
against/UT yields exactly the some observations as executiagainsti;;yr. Hence, it is
not possible to distinguish them in a black-box performesjs inTESTS.
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The verdict Using the observations, we can determine whether an implttien is
correct or wrong. To this end we introduce the verdict fumctfor eacht a test,v; :
P(OBS) — {fail, pass}, and using the previous definition we can defifiéT’ passes
t £ v (EXEC(t,IUT)) = pass, and its extension to test suité§'T passes T 2V t €
T : IUT passes t. On the other hand, we say that an implementation fails astesT if
it does not pass it, i.elUT fails T = —(IUT passes T).

Properties of conformance testing Because we want the conformance relation to be
assessed through test cases, ideally, we would like to heest auiteT' s, for a given speci-
fication S, such that

IUT conforms-taS ifand only if ¢ passes Tg

When a test suite has this property we say @amplete Thus, a complete test suite is able to
distinguish between implementations that do conform ta gecifications and implemen-
tations that do not.

Unfortunately, this requirement is very strong since catwtests suites are usually infi-
nite. Nevertheless, it is possible to divide this requirahie two

if [UT conforms-taS then i passesTg
this is known asoundnessneaning that all correct implementations pass the tet;sand
if ipassesTg then [IUT conforms-taS

which is known agxhaustivenesmeaning that all non-correctimplementations are degecte
by the test suite. These properties can also be shown thrimugtal models as/ i €
MODS : i imp S if and only if for all testst, v;(obs(t,i)) = pass. Then,IUT passes

T if and only if IUT conforms-taS. So, if the completeness property is proved at the level
of models, assuming the test hypothesis, the conformarene iofiplementation with respect
to its specification can be decided by the testing procedure.

The derivation procedure The algorithm that produces sound and/or exhaustive test
suites from a specification given an implementation retatibis is called theest derivation

We define this procedure as a functid®rimp : SPECS — P(TESTS). Following the
requirement of soundness of test suites, such a functiamdipooduce sound test suites for
any specificatiort in SPECS.

1.2.1 The ioco testing relation

In this thesis we focus on a particular conformance relatiogioco testing relation (which
is an instantiation of the presented framework). T testing relation relates systems
described as labelled input-output transition systemg [B8ncludes nondeterminism and
quiescence (the absence of outputs). Also it requires imgagations to accept always all
inputs. Briefly,ioco allows implementations to have only outputs that are ptediby the
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specification, with a special consideration of no outpuiggcence) as a kind of output. Thus,
implementations can be more deterministic than specifinati In Chapter 2 we formally
describaoco.

1.3 Research questions

As we mentioned in the previous section, the process of focordormance testing involves
mainly three ingredients: physical aspects (like black4bgplementation and real execution
of test cases); formal aspects (like specifications, implaations, verdicts, and test deriva-
tions), and assumptions (like the test hypothesis). Fagush the formal ingredients, one
can see that each of those elements can be improved indettisndespecifically optimized
for a particular task; this, in turn, benefits the whole tegtiramework, resulting in more
accurate, effective and efficient testing.

Timeintesting There are many systems where the consideration of timedsatriven,

in same cases, small delays can cause huge problems. Tlssityeoéconsider time in some
theories has long been recognized and many formal methadbieen extended with time.
In this thesis we consider extensions of theo testing theory. Our first extensions address
the following question:

Research question 1: In which useful ways can we extemuto testing theory
to be able to test real-time systems in an accurate manner?

Coverage intesting  Existing coverage criteria for test suites are usually @éefin terms
of syntactic characteristics of the implementation undst or its specification [61, 42, 49,
47, 48, 8]. A disadvantage of this syntactic approach is diféérent coverage figures are
assigned to systems that are behaviorally equivalentyimastically different.

Moreover, those coverage metrics do not take into accosks,rimeaning that they do
bear in mind the fact that certain failures are more sevear tthers. Therefore, it should
be devoted more testing effort to cover more important buhde less critical system parts
can be tested less thoroughly. Thus, our second extenstivassithe following question:

Research question 2: In a black-box testing setting with failure risks, how can we
measure a given test suite independently of the specificatio
syntactic aspects?

These two questions are in fact complementary; whereasaRdésguestion 1 extends the
scope of testable systems, Research question 2 studiesohmgasure a given test suite
allowing to find the optimal test suite (the one with more intpat bugs).

1.4 Structure of the thesis

Our thesis contributions, developed in the context desdrityy theioco testing theory, are
depicted in Figure 1.4. After introducing formal testinglanore specifically thecotheory,



Section L.4. Structure ot the thesis J

we present our extensions: a testing theory consideriny teai-time {joco) and real-time
plus channelsriitioco,) in Chapters 3 and 4 respectively, and a semantic coveréagdaan
in Chapter 5.

‘ Conclusions¢hapter § ‘

tiocoy, mtioco Coverage
(Chapter () (Chapter é (Chapter 3

‘ i0CO (Chapter 3 ‘

‘ Formal Testing ¢hapter ) ‘

Figure 1.4: Thesis skeleton

Testing labelled input-output transition systems (Chapte 2) This chapter is an
introduction to the theory of formal methods applied toitestabelled input-output
transition systems. In particular, we introduce tbeo testing theory [58], where la-
belled input-output transition systems is the formalisradugco is a formal confor-
mance testing relation that includes nondeterminism atesgance (briefly, a system
is in a quiescent state when it does not produce outputs)dditian, quiescence is
considered an observable action. Implementations ardresfjto be input-enabled
(meaning that all input actions should be enabled at any)time
This chapter is the basic theory that the subsequent clsapiéd upon.

Testing timed labelled input-output transition systems (Gapter 3) We propose an
extension of thécotesting theory with real-time that enables test generdtiotimed
input-output labelled transition systems. Our treatmsiiiisised on an operational in-
terpretation of the notion of quiescence in the context af-tene behaviour. This
gives rise to a family of implementation relations pararrigézl by observation du-
rations for quiescence. We define a nondeterministic (pat@rzed) test generation
procedure that generates test cases that are sound widitt&she corresponding im-
plementation relation. Also, the test generation is shawpet exhaustive in the sense
that for each non-conforming implementation a test casébeagenerated that detects
the non-conformance.

We conclude this chapter showing a result that relates aypgsed timed extension
with the non-timed approach. Part of this work appears in(jdint work with Ed
Brinksma) and in [4] (joint work with Mathias Rohl).

Testing timed labelled multi input-output transition systems (Chapter 4) Our starting
point is the formal conformance timed testing relation dediin Chapter 3. We relax
the input-enableness assumption (required in the precioaister) by asking the input
and output sets to be partitioned (we called these parsitadbrannels), also we allow
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some input sets to be enabled while others remain disabledteder, we relax the
general bound/ (used in timed systems to detect quiescence), and alloerdift
bounds for different sets of outputs. We propose a new tgstiation for timed input-
output labelled transitions systems that have the inputargut set partitioned in
subsets. A test derivation procedure which is nondetestiérand parameterized (by
the set of bounds) is further developed, and shown to be sanddxhaustive with
respect to our new testing relation.

We end this chapter by showing a result that relates the nepoged channel timed
extension with the timed approach presented in Chapter &.0Pthis work appears
in [2] (joint work with Ed Brinksma).

Semantic coverage in testing (Chapter 5)n this chapter we introduce a semantic approach
to test coverage. Our starting point is a weighted fault madeich assigns a weight,
in the specification, to each potential error in an impleragoh. We define a frame-
work to express coverage measures that express how well suigs covers such a
specification, taking into account the error weights. Siogenotions are semantic,
they are insensitive to replacing a specification by one eithivalent behaviour. We
present several algorithms that, given a certain minimaliterion, compute a mini-
mal test suite with maximal coverage. These algorithms work syntactic represen-
tation of weighted fault models as fault automata.

We end this chapter with an illustrating our approach by yariaf and comparing a
number of test suites for a chat protocol. Part of this wonkesgps in [3] (joint works
with Ed Brinksma and Mariélle Stoelinga).



CHAPTER 2

Testing labelled input-output
transition systems

2.1 Introduction

This chapter introduces the relevant, preliminary thesosied relations describing thieco
testing theory developed originally by Tretmans [58]. As thst of this thesis builds upon
theioco testing theory, this chapter provides the basic settingssary for the rest of this
thesis development.

Theiocotesting theory has several desirable properties that malkiedctive as an initial
setting to which one can start building on, as in this the&mong these properties we find
theoretical and practical advantages. As theoreticalaspeco has a clean and precise the-
ory. Particularly, it allows non-determinism, as Hoare][88ys “There is nothing mysterious
about non-determinism, it arises from the deliberatedsi@eito ignore the factors which in-
fluence the selection”. Alsimco considers quiescence as observable, allowing to disshgui
systems that can not be distinguish with out quiescence.rdcipal aspectspco serves as
a base theory for several successful testing tools, eg@X1[10] and TGV [26].

Organization of the chapter In Section 2.2 we survey labeled input-output transitiosr sy
tems (LTS): we formally define LTS by describing their natatand properties. Sec-
tion 2.3 presents some implementation relations that cappked to LTS; in particu-
lar, we describe thecotesting relation [58]. Section 2.5 then shows how these fsode
and implementation relations can be put into practice; lsy$ing on theéocotest im-
plementation relation, a test derivation and a test execyirocedure are presented.
In Section 2.6 we show that the test generation procedusepted is sound and ex-
haustive with respect tmco. We conclude this chapter resalting some of the useful
characteristics of thco testing theory in Section 2.7.

2.2 Labelled input-output transition systems

Alabelled input-output transition system (LTS) is a systhat interacts with its environment
through inputs and outputs. Input actions come from (or aneed by) the environment,
while output actions are actions to the environment. Theriral actions or silent actions are
not observable by the environment. We ust® denote the action set and the special label

11
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T ¢ Lto represent internal actions. For arbitrdfyC L, L’ denotes/ U {7}.

Definition 2.2.1. Alabeled input-output transition system (LTS)s a 4-tuple( @, ¢°, L, T'),
where

e () is a countable, non-empty set of states

e ¢ € @ isthe initial state

e L is a countable set of labels. We assume thdtas a disjoint partition intanput
labels 7, andoutput labels O

e T C @ x L, x @ is the transition relation

We denote the components 4fby Q4, ¢4, La, and T4, respectively. We omit the
subscriptA if its meaning is clear from the context. The class of all ladenput-output
transition systems ovdris denoted by TS(L). When we need to make the input set and the
output set explicit we writeTS(Z, O).

To specify that a certain label)(is either an input action or an output action, we simply
suffix a special symbol. Thus, for input actions we add arringation mark, and writé?.
Similarly, for output actions we add an exclamation markting /!.

Atransition(q, [, ¢') € T is denoted ag KR q'. A path = is a finite or infinite sequence
of transitions

l

ll l2 l3 m—1 ln
T=q0 =@ — @ = (o1 qu(—...)

with ¢, gars .41 € Tandz =0,1,...,n,....

We denote byaths(A) the set of all paths inl. The set of all finite sequences of actions
over L is denoted by.*, while ¢ denotes the empty sequence. Moreover; ifos € L* then
with o -2 we denote the concatenationaf with o5.

An LTS is calledstrongly convergenif it does not have any infinite paths of internal
actions. We require all LTSs that we work with to be strongipwergent systems.

Definition 2.2.2. Let A = (Q, ¢°, L, T) be an LTS withy, ¢’, g1 € Q; Ir € L; 3,0k €
L,1 <k <nando € L*. Then

A ll l2 ln, !
q—"q = Jg,. g =0 == =g
Iyl o p. el

— = 3¢ :9g—¢q

beseln A / Iyl /

q -~ £ Hqd:qg g

& / A / TT

q=q = g=qorq—gq

3 B

q=q 2 Ja.pqSaoe=4q

BrBn N o B B B
= = J9 = Q== =g
o A / 9 ’

q= = 3d:q=q

o

q# £ Bqd:q3d
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We say that a state accepts the actiohif and only if ¢ L. When an LTS is able to
accept all input actions at any state, it is calledut-enabled This notion can be slightly
relaxed into a weak form, considering an LTS to be able to @cak input actions at any
state or any reachable state throughtransitions. Then, a stateweakly accepts the action
lifand only if ¢ L. Wwe say an LTS is deterministidf does not exists a transitions labeled

with a 7 action, and all transitions with the same source states etimha, have the same
target state.

Definition 2.2.3. Let A = (Q, ¢°, L, T) be an LT$I, O), then

A isinput-enabled
A is weak input-enabled
A is deterministic

VgeQ:Yael:qg>
VgeQ:Yael:qg=
Vqu’eT:l;&Tand
it -5 ¢, q-5q¢" €T, theng = ¢"

(> 1> >

In order to be able to keep track precisely of the occurrefagpoit and output actions,
we require LTS implementations to be input-enabled. Syminadly, the environment of an
LTS implementation is assumed to be able always to accephatpyt action.

Example 2.2.4. Consider the LTSI = (Q, ¢°, L, T) where: Q = {q, q1, @2 }; ¢° = qo;

L =TuU O with I = {card, ask-money and O = {give_money; and T' = {(qo, card, ¢1 ),
(g1, ask-money ), (g2, give_moneygo) }.

(a) (b)
card? card?

card?
ask_money?

give_money! ask_money? give_money! ask_money?

Figure 2.1: A cash machine and one of its input-enabled assi

This deterministic LTS is depicture in Figure 2.1 (a). ThetegnA has an initial statey,
denoted with double circles. Putting a card we arrive tostat From ¢ it is possible to
ask for money and go tg where we leave receiving money, and again we are in the initia

. ask_mone ive_mone
state. We can observe iithepathm = ¢o card a ng givem yqo_
There are several ways to make this LTS input-enabled, iar€ig.1 (b), we present one
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option. The self-loop with asknoney in statey, the one with card in state; and the one
with card and askmoney in state, makesA input enabled in every state.

Definition 2.2.5. Let A = (Q, ¢°, L, T) be an LTSy € Q and Q' C Q, then

traces(A) 2 {oelL*|¢"3}
init(q) 2 {leL|qb}
der(q) £ (¢|3ocel:q3 ¢}
gafters = {q|q=q'}
Q' afterc = | (qaftero)
qeQ’

Given an LTSA, traces(A) captures all possible observable behavioursiofin other
words, a trace is the sequence of input and output actiosepté a finitepath in paths(A).
Moreover, given a trace, by |o| we denote the length of that trace. Tihé& andder sets
collect the allowed actions and the reachable states, ctgply, from a given state. The
after setis composed of all the states that can be reached aftelaindeace is performed.

Example 2.2.6. As an example of Definition 2.2.5, in Figure 2.1(a), we se¢ ttha trace
o = card - ask_ money- give_money is intraces(A4), init(g2) = {give_money, der(q) =
{90, ¢1, 2} and(qo after o) = {qo}.

In fact, in this setting the determinism of an LTS can be djeelnaracterized, as shown
in the following proposition.

Proposition 2.2.7.Let A = (Q, ¢°, L, T) be an LTS, then
Ais deterministic ifandonlyif YV oe L*:V ge Q :|(qaftero) | <1

If o € traces(4) andg € @, then in cas€ ¢ after o) is a singleton set{¢'}, we abuse
the notation to denote this element,

Proof.
[« If Aisdeterministicthenv o € L* :V ¢ € Q : | (¢ after o) | < 1]
By induction over the length §|) of o. Let ¢ be any state irQ).
Let|o| =1 (the caser = ¢ s trivial), then by Definition 2.2.3 of determinism
we have| g after o | < 1.
Suppose for allo| < n then | ¢ after o | < 1.
Let|o| = n theno = ¢’-1. By Definition 2.2.5 of after | ¢ after o/ 1 | =
| (¢ after ¢’) after [ |. Now, using base casé ¢’ : {¢'} = ¢ after o’)V
(¢q after o’ = ()) then by Definition 2.2.5 of after and Definition 2.2.3 of
determinism we havgg after o | < 1.
[= IfVYoelL*:Vqge Q:|(qaftero)|<1thenA is deterministid
Assume that for all trace ifi* and for all statey in @ : | ¢ after o | < 1.
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Then for all action/ in L and for all state; in @ : | ¢ after [ | < 1. This means

that for all action/ in L and for all statey in @) : if ¢ N g Nq N q” then
¢’ = ¢”. Using that LTS are strongly convergent we have that forclba in

L and for all statey in Q : if ¢ 4 qdNq R q" theng’ = ¢ A q /. Now, by
Definition 2.2.3 of determinism we have thétis deterministic.
O

When a state is unable to perform an action, we say that the rgtuses that action. In
case a state has a set of actions that are not accepted, i.e. the set haspdy iatersection
with init(¢), we say that the statg has this set as refusal. This latter concept is precisely
defined in the following definition. Note that the case witHyoone action can also be
described with a set with only one element.

In the particular case that a state refuses all actionsjtigoes not have any outgoing
transition, we say that the state isdeadlock

Definition 2.2.8. Let A = (Q, ¢°, L, T) bean LTS witl € L, ¢ € Q andL’ C L, then
l T
a/Nas

1
VielL :q4
g refuses L

q refuses [

q refuses I/
q deadlocks

L
L

To be able to represent refusal sets in traces, we extencdatigtton relation in the LTS
as follows. Givend = (Q, ¢°, L, T') an LTS, its transition relationX) is extended to denote

the set of refused actions explicitly. Then, a transit[yoﬁ; ¢ is added for each statgthat
refusesl’:

q L g ifandonlyif ¢refuses L’

In this way the transition relation that was C @ x L, x @ now becomes’ C @ x
(L +P(L)) x @, whereP(L) denotes the power set af

In the special case where a state cannot produce outpuhad¢fio= 0), and can only
be activated by (further) supply of input actions, we say tha state igjuiescent

1
gquiescent £ VY I1€O,:q/

We writed(¢) to denote that stateis quiescent.
Hence, the extension of the transition relation can be giptied to quiescence, with the
aim of treating quiescence as an observable event (i.egltbence of outputs). Using the

new actiory (6 € L,), a transitiong 3, ¢q is added for each quiescent state

¢ ¢ ifandonlyif 3(q)



10 Chapter 2. lesling labelled input-output transition systems

Example 2.2.9. Recall Figure 2.1 (a). If we considdl’ = {ask money then ¢y and ¢»
refuses L'. Moreover, we can recognize th@tand ¢; do not have any outgoing transitions
labelled with output actions, then both states are quiesderFigure 2.2 we show the cash
machine with its extension on the quiescent stajesnd ¢; .

card?

give_money! ask_money?

Figure 2.2: A cash machine with quiescent states explidiéigoted by self-loop quiescent
transitions

We can now introduce some new notions of traces, faiture traces(i.e. a sequence of
actions and refusals) asdispension tracgs.e. a sequence of actions and quiescence).

Definition 2.2.10. Let A = (Q, ¢°, L, T) be an LTS with the transition relation extended
with refused transitionSq(i g in caseq refusesl’). Then, thdailure tracef 4 are

Ftraces(A) £ {oe (L+P(L)* | ¢° >}

Definition 2.2.11. Let A = (Q, ¢", L, T) be an LTS with the transition relation extended
with quiescent transitions;(i g in cased(q)). Then, thesuspension traced A are

Straces(A) £ {oe L} | ¢"3}
usually we writeLs to denotel U {¢}.
There is a tight relationship betwe8traces andFtraces:

Proposition 2.2.12.Let A = (Q, ¢°, L, T) be an LTS with the transition relation extended
with refused transitions, then

Straces(4) = Ftraces(4) N (L+{0})*

whereO is written aso.
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Proof.
Direct from Definition 2.2.11.
O

Considering that implementations are required to be igmatbled, it makes sense to
believe that a system can be characterized by its outpurec{considering quiescence as
one of them). With this idea in mind, we introduce the notidrootput set. For labeled
input-output transition systems, all output actions thatenabled in state (including the
quiescent action) are collected into the output setit(q).

Definition 2.2.13. Let A = (Q, ¢°, L, T) be an LTS withy € Q and Q' C @, then

out(q) = {l€O | q—l>}U{5 | 5(q)}
out(Q') = eUQ’OHt(q)

Intuitively, the output set collects all possible obseteaiutputs of the system.

Example 2.2.14.The traces = card- {give_money-ask_ money{ask money-give_money
is a trace inFtraces(A) (from Figure 2.2). The trace = ¢ - card-ask_moneygive_moneyd

is a trace inStraces(A4). As example of an output set we can see tha out(g) and
give_moneye out(g2).

2.3 Conformance relations

An implementation relatior® (or conformance relation) is a relation that defines a notion
of correctness between an implementatipand a specificatiots'. If the implementation
relation holds (i.e(i, S) € R) we say that the implementation conforms to the specifinatio
There are several conformance relations that have beeredppILTSs, and in this section
we present some of them. For more details, the reader maylktsnsveys such as [22, 58].

As we already mentioned in Section 2.2, we require impleatents to be input-enabled.
For specifications we allow more freedom and do not requieentto be input-enabled. In
the following we present thieace equivalencdailure trace equivalencand thesuspension
trace equivalencand the corresponding preorders.

Definition 2.3.1. Let A; = (Q1, ¢¥, L1, T1) be an input-enabled implementation in LTS and
As = (Qa, ¥, Ly, T) be a specification in LTS with; = L, then

e trace equivalence and preorder
Ay =y Ay 2 traces(A;) = traces(As)
Ay <4 Ao traces(A;) C traces(4s)

e failure trace equivalence and preorder
Ay =g As Ftraces(A;) = Ftraces(A4s)
Ay <p Ay Ftraces(A;) C Ftraces(As)

>

> 1>
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e suspension trace equivalence and preorder
A~y As Straces(A;) = Straces(As)
A <y Ao Straces(A;) C Straces(As)

> 1>

The intuition behind trace equivalence is that an implemigorn conforms to a specifica-
tion if an external observer can not notice the differenceanes from both systems. In the
presence of non-determinism there are systems that carertistinguished by this equiv-
alence, i.e. Example 2.4.2. The failure trace equivalesce stronger relation than trace
equivalence because it rejects implementations using glaeached with information about
the actions that can not be performed (i.e. refused setg) slibpension trace equivalence is
also stronger than trace equivalence, but weaker tharrddilace equivalence. Suspension
trace equivalence compare traces enreached only witmiafiton about whether a system is
or is notin a quiescent state.

Trace and failure trace relations can be applied to systeith®wut a clear distinction of
input and outputs. On the other hand, suspension traceredaequire an explicit distinction
between inputs and output, because they are needed to reeogiescence.

There are two properties that we already required that carsbé to make the relation
more accurate. Firstly, we required an implementation tmpet-enabled. This implies that
if an implementation fails, it fails with an output action.sidg this knowledge we can use
the output set, from Definition 2.2.13, to check for inclusiaf output actions. Secondly,
when implementations are considered black boxes, thenkémsense to consider traces that
are not specified by the specification (in contrast with presidefinitions, where we use any
trace to test, even if its behaviour is not specified by theifipation).

With these two new ideas we present the trace conformanagomrel(also known as io-
conf), which is expressed as:

Aj treonf Ay 2V o € traces(Az) : out(4; after o) C out(4, after o)

This definition expresses that unspecified behaviours drested (i.e. we only consider
traces fromd,). As a (convenient) consequence, we can test using incoergpecifications;
and complete specifications can of course be considered also

Similarly, it is possible to define (ftconf) with inclusiot failure traces:

Ay fteonf Ay &V o € Ftraces(As) : out(4; after o) C out(A; after o)

2.4 The iocoimplementation relation

Finally using inclusion of suspension traces, we definertpat-output conformance relation
(ioco), presented in the next definition.

Definition 2.4.1. Let be input-enabled implementation in LTS afidbe a specification in
LTS, then

i iocoS £ VY o € Straces(S) : out(i after o) C out(S after o)
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Informally, this means that an input-enabled implemeataii € LTS is ioco correct
with respect to a specificatiofi € LTS, if and only if, after all possible behaviours of
the specificationy( o € Straces(.9)), any output actiorb produced by the implementation
(b € out(: after o)) can also occur as an output of the specificatior (cut (S after o)).

In particular, this should also hold for the special actioiregcent §), modeling the absence
of outputs. In this wayoco requires an implementation to react correctly to the tralcat
are explicitly mentioned in the specification. Moreovee tmplementation has freedom to
react in any manner to traces not explicitly specified.

Example 2.4.2.Figure 2.3 shows two different input-enabled nondeterstimspecifications
for the cash machine and the different relations betweemth@n the left hand side we see
an implementation that prescribes that after we introduceaad we can receiv& Euros,
and in case we introduce two cards we can rec@w 7 Euros. On the right hand side
we see another specification, but this time, after the intatidn of two card if the machine
internally chooses to go to its right size throughthen it does not produceEuros. In both
cases the machine can internally go to a statg (vhere it is possible to receivieEuros or
to a state (o) that is quiescent.

If we try to distinguish these two machines using the trcamfarmance relations we
can not, because these machines have the same set of tragesveBcan distinguish them
usingiocogive that:out(impl after card?-card?) = {give_7€!, give_2€!} is notincluded
in out(specafter card? §-card?) = {give 2€!}.

impl spec
trconf
ftconf
igto
card?
give_7€ ! card?
card? I__card?
@
card?
give_2€ ! give_2€ !
Y Y
a5 a5
card? card? card?

Figure 2.3: Specification of two cash machines and theiticgla
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2.5 Test generation framework

Focusing on théoco testing theory from [58], this section defines the concepésft cases,
the nature of their execution, and the evaluation of thaicess or failure.

Definition 2.5.1.

e Atestcase = (Q, ¢°, Ls, T) is an LTS such that

t is deterministic and has bounded behaviour
(i,e.3 N>0:V o€ traces(t): |o| < N)

@ contains the terminal statgsass andfail, with
init(pass) = init(fail) = 0

— for any stateg € @ of the test case with # pass, fail
init(¢q) = {a} forsomea € I, 0r
init(¢) = OU{d}

— t does not have-transitions

The class of test cases oveand O is denoted ag’ESTS (1, O)
e AtestsuiteT is a set of test caseT C TESTS(I, O)

For the description of test cases, we use a process-algetwtition with a syntax in-
spired by LOTOS [35]

B 2 I;B|B+B|%B

wherel € L, B is a countable set of behaviour expressions, and the axiothingerence
rules are:

leL F .BLB
B 5Bl lelL - B+ By, B
B, 5B lelL - B +B, 5B
BLB . BeBlelL + YBLB

A test run of an implementation with a test case is modeledbysynchronous parallel
execution of the test case with the implementation under fEisis run continues until no
more interactions are possible, i.e. until a deadlock azcur

Definition 2.5.2. Lett be a test inTESTS(I, O) andi be an input-enabled implementation
in LTSI, O), then

e Runningt with 4 is modeled by the parallel operator
|| : TESTS(I,0) x LTSI, 0)— LTYI, O)
which is defined by the following inference rules
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i S |

l
tS U NIle0its b t]i -t
t-viSitlel b t|i—S e
e Atestrun oft with i, is atraces € Lj of ¢ || i leading to a terminal state of, o is a
test run oft and: =

Ji':(t]|i Spass|| i)or(t]li 2 fail || )
e | passes t, if all test runs do not lead to £ail state oft

i passest = VUELg:Vi’:tHi;ZfailHi’
e | passes T, if i passes all test cases ifT’
ipassesT £ V tecT:ipassest
If : does not pass the test suitefsils
ifailsT £ 3JtcT:ipagsest

We define the verdict of a test run as the label of the reaclretrial state (i.e.pass
or fail). Since an implementation can behave nondeterministjaifferent test runs of the
same test case with the same implementation may lead toatiffeerminal states and hence
to different verdicts. An implementation passes a test faseonly if all possible test runs
lead to the verdict pass.

Systems are also considered to be fair in their executioés Means that an infinite
trace of input actions can not prevent an output or interngba to occur. Intuitively, fair
execution means that locally controlled actions cannotibekied by input actions forever.

2.5.1 Test generation procedure

Using theioco theory, the following algorithm for test derivation is peesed in [58]. Here,
a test case is understood as the specification of the belmai@udeterministic and finite
testing system that can be carried out against an impleti@mtander test. The behaviour
of test cases can be described by an LTS, where the occuméadeactiort in a test case
corresponds to the detection of quiescence in an implermenta.e. the observation that
no output is produced. In practice, the observation @ implemented using a time-out
of sufficiently long duration. For a formal definition of thiene-out, we refer the reader to
Chapter 3, where thiecotheory is extended with time.

Let S = (Q,¢", L, T) be a specification in LTS witl)’ C @ as a non-empty subset
of states, and initiallyQ’ = {¢°}. With Q' we represent the set of all possible states in
which the specification can be at the current stage of thetsst execution [58]; i.e. states
where the specification could possibly be after the obsemnsmade so far. For notational
convenience we abbreviate this test generation procedur&a.

The algorithm for the generation of test cases TESTS in Q' consists of a finite
number of recursive applications of a nondeterministiect&n between one of the following
three alternatives

1In [58] the action symba# is used for the observation of quiescence. We prefer t@ fiseboth quiescent and
its observation, in line with the philosophy that identieations synchronize.
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1. termination

\*. pass

The single state test cagass. It is possible to stop the recursion at any time using
this step.

t = pass

2. inputs

Test casé supplies the input and behaves as test case

t = Ut

)

wherel € I,(Q" after 1) # (), andt’ is obtained by recursively applying the algo-
rithm to (Q’ after [).

3. outputs

I, € out(Q’) I, € out(Q’)

Test case checks the next output from the implementation; if it is ad/eésponse the
test case continues recursively; if it is an invalid resgone. ! ¢ out(Q’), then the
test case terminates fail. The observation of quiescedts treated separately:

t = o {lu7 tu, | bye€ ONL € OUt(Q/)}
+ o {0; ts | d€out(Q)}
+ o{6 fail | 0¢out(Q)}

+ of{ly; fail | I, € OANI, €out(Q)}

wheret, andts are obtained by recursively applying the algorithm @ after )
and(Q’ after ¢), respectively.

Example 2.5.3. Figure 2.4 shows two examples of test cases derived for thie machine
from Figure 2.2. With these tests cases we can test the cashimeafrom Figure 2.1 (b),
which passes both tests.
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give_money!

fail

give_money!

fail

fail
give_money!
ask_money?

fail pass pass

Figure 2.4: Two tests for the cash machine from Figure 2.2

2.6 Completeness

An important property of a test suite is to be sound, i.e. ifimplementation fails any
test case of the test suite, then it should be the case that ithan error according to the
specification. If possible, a test suite also should be estivagy i.e. if an implementation has
an error the test suite will detect it. Below we define thespeprties formally foioco and
the TGP.

Definition 2.6.1. Let S be a specification in LT$, O) and T a test suite composed by all
test cases obtained fro by the TGP. Then for all an input-enabled implementation in
LTS, 0)

T is sound w.r.tioco
T is exhaustive w.r.ioco

£ if iioco S theni passes T
£ if ; passes T theni ioco S

The test generation algorithm presented is sound in theesias all test suite cases
generated are sound. The test generation algorithm is alsawustive in the sense that for
every incorrect implementation, a test that exposes tha@ ean be generated by the TGP.
This important properties are shown in the next two theordfiese we give a sketch of the
proofs for more formal proves we refer the reader to [58].

Theorem 2.6.2. Let S be a specification in LT3, O). Then for alli an input-enabled
implementation in LTS, O) and all ¢ a test case obtained fro by the TGP
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if iiocoS then i passest

Proof.
We give a sketch of the proof. To prove soundness it is suffidie prove that for all
obtained fromS by the TGP

if VoelL::t>fail then Jo':31€ O5:0=0c"-landl € out(S after o)

This property is proved by contradiction: letbe not sound, thed ¢ : ¢ ioco S, and
t | i3 fail || /. It follows thatt 2 fail andi = 4', so from the premised o’ : 3 | €

Os : 0 = o’-l andl & out(S after ¢’). But sincei 24 i andq ioco S, we have € out(S
after o’), so a contradiction.
By straightforward induction over the structuretoit is then proved that eadtgenerated
with the TGP fromS satisfies the previous property.
O

Theorem 2.6.3. Let S be a specification in LT, O). Then for alli an input-enabled
implementation in LTS, O) with i igco S, there exists a test case generated frofhby the
TGP such that

i pagses

Proof.
We give a sketch of the proof. To prove exhaustiveness we toaskow that the set of all
test cased generated with the TGP satisfies

Vi: digcoS implies 3teT:tfailsi

So leto be a trace such thatut(i after o) Z out(S after o), so3 [ € out(i after o)
with [ Z out(S after o). A test caséj, can be constructed from the TGP as follows:

e ) is obtained with the third choice, followed by the first cheofor eacht, with b € O

® t4y) (a € I)is obtained with the second choice, choosing «a, and followed by
recursive applications to obtaif = #,

® t0) (b € Os) is obtained with the third choice, followed by the first ot@for each
t, with " € O andb’ # b, and recursive application to obtain= {4

Now it can be shown that, || i = # || ¢/ = fail || 7, soi fails 4.
O

Example 2.6.4.We can see that the test cases from Figure 2.4 are sound gipleceto the
cash machine specification from Figure 2.2. However, cansid the test suite composed
by these two tests, this test suite is not exhaustive. Be@anschine with gives money after
the tracesc = card-ask_moneygive_moneycard, is a wrong implementation, but the tests
form Figure 2.4 will not expose the error.
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We conclude this section remarking that theo testing theory has been practically ap-
plied. Different test tools have been built which implemeanbre or less strictly, the algo-
rithm presented here (i.e. TVEDA [53, 19], TGV [26], TestQuuser [37], TestGen [29],
ToRrX [10]). Indeed, the developed theory plus it®AX support tool have proven to be
quite a useful and successful approach to the functionidhtesf reactive systems [60].

2.7 Conclusion

We choose to build our testing frameworkioco for the following reasons. Thiecotesting
relation has several desirable properties that make itteacctive testing relation, suitable for
building extensions on it. Hence, we choose this theory astanting point. These desirable
properties range from theoretical to practical, and cjeestablish the success of tleeo as

a testing theory and relation; we now highlight some of them:

e ioco has a well defined formal testing theoe present (a significant part of) this
formal testing theory on this chapter.

ioco works cleanly with reactive systerReactive systems are systems that interact
with the environment operating through stimuli and retagnieactions. Typically,
black boxes approaches to testing are done through reagttems in which the set
of possible actions to be performed are divided into inpats@utputs.

iocoallows non-determinisilthough it is a good engineering practice to refrain from
the introduction of unnecessary non-determinism, in theted of black box testing
non-determinism is often unavoidable, and hence it mustaoeqgb a sensible testing
theory. Some further reasons are:

— Although the implementation under test may be determmistiten it can only
be tested through a testing environment. Environmentsdikerating system
features or communication media typically introduce netedminism into the
observed behaviour.

— An implementation under test often consists of concurrentmonents in asyn-
chronous parallel composition. The lack of informationuaitibe relative progress
of components results in nondeterministic propertieseif ihtegrated behaviour.

— Non-determinism allows implementation freedom. Havingaheterministic spec-
ifications leaves room for alternatives in implementations

iococonsiders quiescence as observaBléescence characterizes systems that do not
produce output actions without a prior stimulation arisiram an input action. Mak-

ing the quiescence concept an observable output actionsatmdistinguish systems
that without quiescence would be indistinguishable (i>argple 2.4.2).

ioco has been successfully implemented in tddise TORX [10] tool and TGV [26]
implementioco. These tools have been used extensively; for instano&XThas
been applied successfully in the several industrial caseles [9, 17, 63]. Similar
algorithms have been also implemented in TVEDA [53, 19]tCesposer [37], Test-
Gen [29].
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CHAPTER 3

Testing timed labelled
Input-output transition systems

3.1 Introduction

Most of the typical formal testing approaches (like the orespnted in the previous chapter)
are limited to qualitative behaviour of systems, and exelgdantitative aspects such as real-
time properties. However, the explosive advance of emlubdoitware has caused a growing
need to extend existing testing theories to deal with riead-features. To this end, in this
chapter we present an extension of Tretmaosd testing theory [58] considering real-time.

As explained in Chapter 2 the notion of quiescence plays aaaole, in the (untimed)
test generation framework for labelled transition systéiii§) onioco testing theory. Qui-
escence characterizes systems that do not, and never wilupe an output without prior
stimulation with an input. By treating quiescence as a gpddnd of system output, the
notion of behavioural traces can be generalized to includkesgent observations.

A big difference between the untimed case and the time cabke iecognition of quies-
cence. Since we focus on black box testing to recognize cgie® in an implementation we
have to wait for outputs. But, it is clear that we can not waitfer. Therefore, we make a
realistic assumption in the sense that we assume that tkistse @ maximal duratiod/ for
the waiting period. Then)/ is a bound that precisely tells the time is needed to recegniz
that the black box implementation is in a quiescent state.

Treating quiescence as an observable action allows us taufate an implementation
relation that establishes unambiguously whether an imgieed behaviour conforms to a
given specification model or not. More precisely, the comfance relation demands that
after all specified traces, every possible generalizedutdtpm the implementation is al-
lowed according to the specification. In other words, everpot and quiescence from the
implementation has to be correctly predicted by the spedifin.

In practice, the above implementation criterion meansithptementations may be more
deterministic than specifications.

Organization of the chapter We develop a testing theory which addresses both nondeter-
minism and real-time.
Firstly, in Section 3.2, we introduce our real-time modsl,defining timed labelled
input-output transition systems (TLTS). In Section 3.%é& present a subset of TLTSs:
generated by timed automata (TA). The semantics of a TA iséefin terms of an

27
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TLTS. Even if the TLTS generated by TA is a strict subset of Th&S, it allows for

an intuitive and well-known way of being illustrated. We ukés drawing capability
for some of our examples through the rest of the chapter. diitiad, this first part

is completed with Section 3.3, where we introduce furthdgations, restrictions and
definitions for TLTSs.

Secondly, in Section 3.4, we present three relations ov&SEL Initially, we consider
inclusion of normalized timed traces (a handy simplificatom the notation of timed
traces). Later, we parameterize this relation with quiese®bservations. Finally, we
present an extension of thaco relation on real-time reactive systems. Our relation is
calledtioco,,, and itis based on an operational interpretation of thespeiece notion.
This interpretation gives rise to a family of implementatielations parameterized by
observation durations\{) of quiescence.

Thirdly, in Section 3.5, we formalize precisely the recdipmi of quiescence in a black
box implementation. We achieve this by using a bobidhat represents the time it
takes to infer that the implementation is in a quiescenéstat

Fourthly, in Section 3.6, we define a non-deterministic ¢esteration framework, pa-
rameterized by the bound . In Section 3.7 the test generation framework is shown to
be complete with respect to thieco,, implementation relation. This means that it is
sound (Section 3.7.1) and exhaustive (Section 3.7.2) wihect to théioco,, imple-
mentation relation. A test generation framework is sountth wespect to théioco,,

if for each implementation that fails a generated test, thplémentation is non-
conforming with respect tdioco,,. Besides, the test generation framework is ex-
haustive with respect to th&co,, if for every non-conforming implementation, fol-
lowing the test generation procedure a test case can beajedé¢nat detects its non-
conformance.

Finally, in Section 3.8 we show a result that relates our pseg timed extension
with the non-timed approach presented in Chapter 2. Coautlyrto the research
carried out in this chapter, several other timed testing@aghes have been developed
independently. We compare the approaches in Section 3.9coneude with some
summary and outlook of our approach.

3.2 Timed labelled input-output transition systems

Timed labelled input-output transition system are lafkllgput-output transition systems
(as described in Chapter 2) extended with time. Apart fromirttathe transitions labelled
just with actions, we now let transitions also be labellethwiime values that model delays.
Then now, we distinguish three types of labels: time-passatjons (from a sé®), external
actions ( from a sef) and the special internal action)( Every label which is not a time-
passage action is thought of as occurring instantaneaieslywithout consuming time. We
model time as the nonnegative reals (tfus- IR="); no a priori lower bounds are imposed
on the delays between actions. We denotefby: L U D and for arbitraryl’ C £, £
denotesC’ U {7}.

Definition 3.2.1. A timed labelled input-output transition systeffiLTS) A is a 4-tuple
(Q,¢°, L, T), where
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Q is a non-empty set of states

¢° € Qs the initial state

e £ £ LUD are the external actions and time-passage actiori3; whereD = IR=°
and L is partitioned into/ input labels(denoted by/?) and O output labelgdenoted
byl);with L=Tu OandIN O =0

T C Q x L, x Qs the transition relation with the following consisten@nstraints,
whered, d,, dy € D:

Time Determinism:  V ¢,¢,¢" € Q: ¢ 4, ¢’ andq A q" thenq’ = ¢”

Time Additivity : Vg,q"€Q:Vd,dy>0:3 ¢ €Q:
-2 ¢ % ¢ ifand only if ¢ htde
Null Delay: YV q,q €Q:q RN ¢ ifandonlyif ¢ = ¢

We denote the componentsétby Q 4, ¢%, £.4, andZ4 (we omit the subscript! if its
meaning is clear from the context). The class of all timecelill input-output transition
systems ovef is denoted a§LTS(£). When we need to mention explicitly the input and
output sets we denote it BYTS(7, O).

Example 3.2.2. Consider the timed cash machine, illustrated in Figure J.the behaviour
of this machine is simple. We can initially ask for money.nlladter5 time units, we receive
it. Despite its simplicity, this example illustrates thengeal complexity of a TLTS. Formally,
it can be expressed as a TL¥S= (Q, ¢", L, 7) whereQ = {q@} U {q:(d) | d € DA d €
[0,5]}; ¢° = qo; £L =1U O UDwith I = {askmoney and O = {give_money; and
(qo,ask-money ¢ (0)), (¢1(0),5, ¢1(5)), (¢1(5), give_money¢) € 7. Note that because
the infinitary nature of time the number of transitions iscailsfinite.

Even in Figure 3.1 we show only three states, actually thisShas an infinite number of

states. For instance, not shown but of course still therésstateg; (2) such thatg (0) 2
¢(2) and ¢ (2) 3, ¢ (5), dictated by the time density together with the time adtijtiv

property.
Unfortunately, a more precise illustration has only beeived for TA, but not yet for

TLTS.

ask_money?

give_money!

Figure 3.1: A simple cash machine with time as a TLTS

Labels inL represent the observable actions of a system, i.e. extactiahs and pas-
sage of time; the special labelrepresents an unobservable internal action. The set of all
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finite sequences of actions ov@ris denoted byC*, while e denotes the empty sequence. If
01,09 € L* thenoy - o4 is the concatenation af; ando,. A transition(q,1,¢') € T is

denoted ag 4 q’. A path 7 is a finite, or infinite, sequence of transitions

l

ll 12 lg m—1 ln
T=qg =@ — @ = (o1 qu(—...)

with ¢, =5 ¢.+1andz = 0,1,...,n,.... Moreover, we denote withaths(.A) the set of all
paths inA, and withpaths” (A) the set of all infinite paths in.

3.2.1 Timed automata

Since TLTSs are quite an expressive formalism, we choosa #eethe starting point for
our testing theory. However, as already mentioned, théimite set of states makes their
illustration difficult (c.f., Example 3.2.2). This problehras been resolved for the subset
of TLTSs generated by timed automata. In this section weepitethe formalism fotimed
automata(or TA) and its well known graphical notation, which is theeowe use in future
examples. However, note that we use TA indeed only for ilatiste purposes. Our testing
theory is defined on the far more expressive class of TLTSxfs@ted, given that our theory
relies on TLTS, TA constitute one instance in which our ressapply.

Timed automata extend finite LTS with a finite set of clocksravdense time domain [7].
All clocks increase monotonically with constant rateand measure the amount of time that
has elapsed since they started or were reset. The choioe éit state of a timed automaton
depends on the action and its occurrence time relative t@¢harrence’s previous action.
Each transition of the system can reset some of the clockkhas an associated enabling
condition. Condition are constraints on the clock valuestraisition can be taken only
if the current clock values satisfy its enabling conditiofiming constraints on clocks are
expressed as in the following definition.

Definition 3.2.3. For a setC of clock variables, the s& (') of clock constraints, where
c € C andr € Q2Y, is defined inductively by

o = c<k|c>k|c<K|c>K]|p1Aps
We abbreviate < k A ¢ > k asc = k, and0 < c as true.

Definition 3.2.4. Atimed automatoTA) F is a tuple(Q, ¢°, L, C, Inv, T'), where

Q is a finite set of locations

¢° € Q is the initial location

L is afinite set of actions

C'is afinite set of clocks

Inv : @ — ®(C) associates a clock invariant to each location
e TCQxL,x®(C)x2°x Qis the set of switches [5]

As before, we denote the components of &y Qr, ¢%, Lz, Cr, Invr and Tx. We
explicitly exclude TA witle < 0 as invariant in its initial state.
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A switch (¢, 1, ¢, \, ¢') € T represents a change of location frgne @ to ¢’ € Q on
action! € L,. The clock constraint (or guard) € ¢ specifies when the switch is enabled,
and the set\ C (' gives the subset of clocks to be reset when the switch is takéock
invariants determine how long the automaton is alloweday &t a certain location.

In the original theory of timed automata [6, 7], a timed au&bom is a finite-state Buchi
automaton extended with a set of real-valued variables timapelocks. Constraints on the
clock variables are used to restrict the behaviour of anraaton. A guard on a switch is
only an enabling condition, it can not force the switch to &lkeeh. Because of that, Biichi
accepting conditions are used to enforce progress preperfi simplified version, namely
timed safety automataintroduced in [31] to specify progress properties usaugl invariant
conditions. An automaton may remain in a location as londhasctocks values satisfy the
invariant condition of the location. Due to their simpligitimed safety automata have been
adopted in several verification tools for timed automata ERpPAAL [41] and Kronos [21].

In this section, we focus on timed safety automata, andvatig the literature, refer to them
as timed automata.

Example 3.2.5. Consider the TA in Figure 3.2, which is also a timed cash maehiThis
cash machine can be specified by the following timed autanféte (Q, ¢°, L, C, Inv, T'),
whereQ = {q,q}; ¢° = q; L = {ask-moneygive_money; C = {c}; Inv(q) =
true, Inv(¢1) = ¢ < 5; T = {(q,ask-moneytrue, {c}, 1), (1, ask-moneyc < 5,{c},
@), (¢, give_moneyc = 5,0, go)}.

We may ask for money at any moment, since the guard in theingtgwitch fromqq is
true. (Usually, when a guard is true we omit it.) As soon astiaehine receives the request
for money it resets the clock(denoted ag ¢} or ¢ := 0) and enters locationy;. At this
location, the machine can either receive another requasd, ia that case resets the clock
again, or in five time units it produces money. The intergretaof the outgoing labelled
switch fromg, to ¢q is the following. The machine gives money at the precise mothat
the clocke reaches the valug, and does not reset any clock. Note that the invariast 5
in location ¢;, ensures progress because it forces to take the outgoingrswi

ask-money?, true¢ := 0

ask_money?,
c <5,
c:=0

give_money!,c = 5, ()

Figure 3.2: A timed automata specification

The behaviour of a timed automat@hdepends on both its current location and the actual
values of all its clocks.
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Definition 3.2.6. A clock valuatiorover a set of clockg' is a mapyr : ¢ — D that assigns
to each clocke € C a value inD. With V(') we denote the set of clock valuations over
C. Ford € D, v + d denotes the clock interpretation which maps every clottkthe value
v(c) + d. Whenx C C, v[X := 0] denotes the clock interpretation fé¥ which assign$ to
eachc € \, and agrees withv over the rest of clocks.

TLTSs are used to define the behaviour of timed automata. tA stahe TLTS is a pair
{(¢q,v) such thaty is a location ofF andv is a clock valuation foiC' satisfying the invariant
Invr(q). Transitions in the TLTS represent either an elapse of tingeswitch of .

Definition 3.2.7. Thesemantics of a timed automatén= (Qr, ¢%, Lz, Cr, Invr, Tr) is
given by the TLTSL = (Q.4, ¢%, L4, T4), where

Qa={(q,v) € Qr x V(Cr) | v = Invr(q)}

(q,v) = ¢" whereq = ¢% andv(c) = 0 for all clocksc € Cr
Loa=LruD

Ta C Qa X Lgx Qq,where

- ({q,v),d,(qv+d)ifde DAV d:0<d <d,v+d E Inve(q)
= (g, V), ,{¢",v[\:=0])if (¢,1,p,\,¢') € Trandv = ¢

A significant advantage of timed automata is that it is pdedib construct a quotient
called theregion automatonThis construction makes the uncountable state space of & TL
associated to a TA to be partitioned into finitely many regifsj.

Definition 3.2.8. A timed automatotF = (Q, ¢°, L, C, Inv, T) is calleddeterministidf

e F does not have switches
eVgeQ:leL:{(ql,o1,A,q), (¢ 1,02, A, ) € T: @1 Ay is unsatisfiable

Deterministic timed automata constitute an important Egscof TA that are strictly less
expressive than non-deterministic timed automata [7]. TR to be deterministic, multiple
transitions starting at the same location with the same latgeonly permitted when their
clock constraints are mutually exclusive. Thus, at mostafrthe transitions with the same
action is enabled at a given time.

To show the expressiveness of TLTSs compared with TAs, d@afslwe present two
examples of systems that can be expressed as a TLTS but ndAas a

Example 3.2.9. As an intriguing but very interesting example we can use tieountable
Cantor set to specify a cash machine.

1The Cantor set, introduced by German mathematician Geantp€as a construction of a set of points lying
on a single line segment, and involving only the real numbetsieen zero and one. The Cantor set is created by
repeatedly deleting the open middle thirds of a set of limgrents. One starts by deleting the open middle third
(3, 2) from the interval[0, 1], leaving two line segmentg0, 1] and(Z, 1]. Next, the open middle third of each of
these remaining segments is deleted. This process is gedtiad infinitum. The Cantor set contains all points in
the interval[0, 1] that are not deleted at any step in this infinite process. # weportant property of the Cantor set
is that it is uncountable.
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Consider a cash machine where, when we ask for money at tiagsdiong to the Cantor
set, the machine gives us money; if the asking time is noei€#ntor set, the machine does
not give us money. Interestingly, although this machinebmaexpressed as a TLTS, it cannot
be expressed as a TA. This follows from the fact that we neleer&in infinite number of
locations or to have guards that are able to express speetalas the Cantor set.

It may be argued that this kind of examples are unrealiscn@ one would specify
such a system. However, in the following we present a moréstiesexample in which the
expressiveness of TLTSs is still necessary.

Example 3.2.10.Consider a cash machine that has two clocks; the first oneitialined
when we insert the card; the second one is initialized whemtweduce the Pin number. In
this machine, the order in which these two actions are perfat is irrelevant, as they are
completely independent. However, the machine gives usynooe in the case that these
two actions are carried out together closely in time. In Fig3.3 this machine is shown in
TA-like notation; however, it should be noted that this isttanachine is indeed not a TA,
since the plus operation does not fall in the format allowgdefinition 3.2.3.

Figure 3.3: A cash machine in TA-like notation

This kind of system requires to control whether the sum dftbeslock values is equal or
less than a certain constari,(in Figure 3.3). Crucially, these kind of guards are not alled
by TAs, and moreover they can not even be expressed in TAfie@ither hand, this poses
no difficulty to be expressed as a TLTS.

Example 3.2.9 is not expressible as a TA because it requiré@siaite number of loca-
tions and TAs have only a finite number of locations availaltd® the other hand, Exam-
ple 3.2.10 requires strictly more expressiveness on TAsdgua

As we already mentioned, the remainder of this chapter istéeito TLTS, and we only
refer to TAs when its restrictions are useful or necessary.

3.3 Definitions, restrictions and notations

In the following we present some simplified notations fonsigions in TLTSs.
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Definition 3.3.1. Let A = (Q, ¢°, £, 7) be a TLTS withy, ¢, gz € Q; d,d’, e € D;
Iy €Ly; BEL; ap € L; o€ L* then

l

lhedy A L I 2 Iy, o
—'q = g, tmig=0—=q =g =4¢
hody 2 ;o hedy
q — = Jd:i9—q
boln A , Lody
q £ Hqd:qg=Tgq
€ A / T...T 4
q=q = g=qorqg—q
8 B
= q £ da,eq>aoe=>4q
e ’ A € e € ’
q=q £ GBaueq>a—>e=4J¢)or
(3 ql,d,d’:d—kd’:e:q:d>qli>q’)

qoa...anq/ S 3qo...anQZQO%C.h%"'O:tg%:q/
o A ’ 9 ’
q= = dJq¢:q9=¢

o
q7 £ Pqd:q3{

Definition 3.3.2. Let A = (Q, ¢°, £, 7) be a TLTS withy € Q, @' C Q ando € L*, then

ttraces(A) L2 {oeL "3}
init(q) 2 (el |qby
der(q) 2 {¢|3ceLl:q2 ¢}
g after o = {dle¢=d"}
Q' after o £ U (qaftero)
qeQ’

=

A is deterministic V o € L*: (¢" after o) has at most one element.Afis
deterministic and ¢” after o) # (), then(¢° after o) is

overloaded to denote the unique elemengh after o)

Timed traces, denoted asaces, capture the observable behaviour in a TLTS, they are
the sequence of observable actions gfagh. For a given ttracer we denote its length
with |o|. The setinit(¢) contains all labels of outgoing transitions fram The setder(q)
contains all reachable states frgmin after we collect states that are reached from a given
state (or a set of states) through a fixed ttrace. As oppos#tttantimed case (described
in Definition 2.2.5, page 14), all these sets can be infinigzalise of the continuous time
domain.

Example 3.3.3. The above definitions, applied to system- (Q, ¢°, £, 7) from Figure 3.1
give us: init(¢g) = {ask-money, der(gy) = Q and (g after askmoney = {¢:(0)}.
Moreover,c = ask-money5 -give_moneyask_money3 is a timed trace of4, thuso €
ttraces(.A).

From Definition 3.3.2 ofttraces we can observe that the time actions that appear on a
ttrace do not represent absolute time, but stand for relditive with respect to the time of
the previous action taken. For instance, in Example 3.Be8give_money action happened
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5 time units after the askmoney action, and ndt time units since the initialization of the
machine.

3.3.1 Restrictions

In the context of timed systems, particularly TLTSs, thexistethree important properties
that are necessary, either for characterizing realisttesys or for carrying out proofs in a
formal and precise manner.

A TLTS istime divergenif it can never reach a time deadlock, i.e. reach a state ishwhi
the system does not allow time to pass. A non-time diverggstesn does not faithfully
model the flow of time and thus does not model a system thatieoast.

A TLTS is strongly convergerit it does not have infinite-paths.

The last property, calledo forced inputsis specific to timed input-output systems. It
says that a system should always have another possibiéity lfocking if the environment
does not provide a particular input action; then if the emwinent does not provide any input
action, the system has the possibility to let time pass. ibwiay, we exclude the possibility
of blocking the time flow when the environment does not prevddrtain input actions.

Definition 3.3.4. Let A = (Q, ¢", £, 7) be a TLTS, then

e A is time divergent: if for each stateq there exists an infinite computatienfrom ¢
with infinite cumulative delay, i.e.

VegeQ:3oeLll o=h-bhl-:q> /\ZEDI =00
S
e A is strongly convergent if there are no infiniter paths, i.e.

V m € paths”(A) : 3 qz,l€7r:qz—l>/\17é7

e A hasno forced inputs: if for each stateg there exists an infinite computation from
without input actions and with infinite cumulative delag, i.

VgeQ:30€(0,+D)¥:o=Lbh-:q5 NSk =00
2 €

From now on, we assume that for all considerkd TLTS, A is time divergent, strongly
convergent and has no forced inputs.

A related property to the above ones is the Zeno behavioyepty Briefly, aZeno
behaviouiis a behaviour that performs an infinite number of actionsiitditime. A system
is considered to be Zeno when all prefixes of a given Zeno hetewan not be extended in
order to be time divergent. In our case, by simply requirimgtime divergent property we
are clearly ruling out Zeno systems

Example 3.3.5. Using TA notation, in Figure 3.4 we present a non-deternimisash ma-
chine. Even though it is a TA, there are no clocks or guardsifipd, so we can spend as
much time as we want in each location. In this machine we rawesért a card, and then we
can ask either foR or 7 Euros. Internally, the machine can non-deterministicallsive to
one of two locationsy; and ¢.. If the machine is in locatiog; and we ask foR Euros, we
receive2 Euros. However, if we ask far Euros the machine does not give it to us. Luckily,
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we can insist and ask again; this time, we will receiveitguros. In locationg we observe
the opposite behaviour; we can ask and rec&iuros but we need to insist to receive the
Euros.

This cash machine is time divergent because we can spenitigniiime in each location.
Clearly, this machine is strongly convergent because doehawver transitions. Moreover,
it does no forced inputs because it does not have state Buvigti

spec:

give_2€! ask 7€? ask 2€? give_7€!

give_2€!

ask 7€?

Figure 3.4: A non-deterministic cash machine

3.3.2 Normalized timed traces

In this section we present a useful simplification of the oot f ttraces (Definition 3.3.2).

A ttraceo is a sequence of actions and delays, exg= a?-d; - d>-b!. Obviously, it
would be more natural to avoid consecutive delays, as # a?- d; + do -b!. Such ttraces
could alternatively be written as sequences of actions (géfative) time stamps attached to
the actions, vizo = a?(0)-b!(d; + dz), meaning that action? occurs at time) and action
b! occursd; + do time units aftera?. This idea motivates the definition abrmalized timed
traces as follows.

Definition 3.3.6. A normalized timed trace is an element of D - L)* - (e + D).

Then normalized timed traces are a subsetwices which are of the special forrD -
L)* - (e + D), they have actions appearing after a time (that coul@)b&nd there are no
consecutive delays. Thus, actions and time alternate. da twto is a normalized timed
traceo =dy-log-dy-li---dy, -1, - dn+1, we writeo = lo(do)ll(dl) e ln(dn)dnJrl

Definition 3.3.7. Let A = (Q, ¢°, £, 7) be a TLT$I, O) then we define the set nbrmal-
ized timed tracesf A, denotechttraces(.A), as
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a

nttraces(A) £ {o€(D-L)*-(e+D) | ¢" >}

It is possible to associate to each ttrace a normalized dwen @ ttraces we denote
its associated normalized timed tracesasNote that this conversion can always be done
combining delays and addirigdelays if necessary.

We prove that for a TLTH, O) system the set ofittraces characterize the set of all
ttraces.

Theorem 3.3.8.Let A = (Q, ¢", £,7) be aTLT$I, O), then for allo € L*
o € ttraces(A) ifandonlyif & € nttraces(A)

Proof.
[« If ¢ € nttraces(A) then o € ttraces(A)]
Because is in nttraces(.A) using Definition 3.3.7 it is easy to check that also
oisinttraces(A).
[= If o€ ttraces(A) then & € nttraces(A)]
By induction over the length| o |) of o:
Let|o| = 1 (the caser = ¢ s trivial), then
if 0 = d theno = & andg € nttraces(A);
if 0 # dtheno = 1. Theng =0l org = [(0) andé € nttraces(A).
Suppose that for alf with | o | < n there exist$ such that € nttraces(A).
Let|o| = ntheno = ¢’ - pwith |¢’| < nandu € (D + L). By inductive
hypothesis there exist8’ € nttraces(.A) suchthat’ = dy-ly - - - dp—1-lp—1- di,
thenify € Dlety = dyy1 thensg = do-ly- -+ dg—1-lg—1-(dg + di41) Or
G =1lo(do) - le—1(dx—1)-(dp + di+1);
if ue Lletu=I,thens =dy-lp---dy_1-lp_1-di-l or
6 =1b(do) - le—1(dp—1) - l(di)
thusé € nttraces(A).

O

Example 3.3.9.As an example, we can convert the ttrace: 2-card3-1-ask 2€-give_2€'5,
from Figure 3.4, in the normalized timed traée= card(2)-ask 2€(4)-give_2€(0)-5.

Using Theorem 3.3.8 from now on, we do not distinguish betwadtraces and its
normalized versio@. Moreover we lift all defined notations (i.€>, =, etc.) that have been
defined forttraces to nttraces.

3.3.3 Input-enabled timed labelled input-output transiti on sys-
tems

To formalize the notion of input-enabledness in timed syst&ve ask that if an input action
is initiated by the environment, the system is always pregpéo participate in such an inter-
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action; inputs are accepted without letting time pass. TherLTS is input-enabled if it is
ready to accept any input at all times.

Definition 3.3.10. Let A = (Q, ¢°, £,7) be a TLT$I, O), thenA is weak input-enablei
all input actions are accepted in all states, abstractiranirr transitions

VqEQ:VlEI:q:l>

Our definition of input-enabled involves a double arrowgsiit abstract fromr-transitions.
However, there does exists a definition with a simple arréwj (e Q :V I € I ANl # 7

q —l>) which is known as strong input-enabled. To avoid confusignen we refer to the
definition with a simple arrow we explicitly use the word stgo In other case when we use
input-enabled we always mean weak input-enabled.

In the following we assume that implementations can be nied el weak input-enabled
TLTS. Later on, in Chapter 4, we relax this assumption.

Example 3.3.11.We can observe that the cash machine from Figure 3.4, lotatjaoes
not allow ask 2€ as a label of any outgoing transition nor ask€. Hence, we conclude that
this system is not input-enabled.

Later on in Example 3.5.6, we present a modified version sfrtfaéichine which is input-
enabled, and can be used as an implementation.

3.3.4 Quiescence

In the presence of time, a quiescent state is a state whesystam is unable to produce an
output immediately or in the future, without receiving apum first.

Definition 3.3.12. Let A = (Q,¢°, £, 7) be a TLT$I, 0). A stateq € Q is quiescent
denoted by (q), if

1(d)
VieO:YdeD:q #

Similarly to the untimed case, we represent quiescence pecgas action (§ ¢ L), and

extending the timed transition relation of a TLT&to include self-loop transitiong LR q
for each quiescent state

g2 ¢ ifandonlyif &(q)

Definition 3.3.13. Let A = (Q, ¢°, £, T) be a TLTS, we writé\(A), to denote the same
system with its timed transition relatiahy extended with self-loop transitions labelled with
¢ in all quiescent states.
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We lift all concepts and notations (i.ettraces, init, etc.) that have been defined for
TLTSs to extended TLTSs. In this way, ttraces now have thsipiity to perform¢ actions.

Example 3.3.14.Figure 3.5 shows a timed version of Example 2.4.2 (from Girapt
page 19). Again two different input-enabled non-deterstinisystems are represented. On
the left hand side we see an implementation that prescritasfter we introduce a card we
will receive7 Euros in less thar time units or not Euros at all, and in case we introduce
two cards we can receivZor 7 Euros in less tham time units. On the right hand side we
see a specification, where after the introduction of a cattiéf machine internally chooses
to go to statey, then it can only produce Euros.

These two machines have the same set of ttraces (withowgoguiee), but with quies-
cence it is possible to distinguish them. Because the mttrae card?®2)-6(0)-card?2)-
give_7€1(3) is in the implementation but it is not in the specifications.

Figure 3.5: Specification of two cash machines

3.3.5 Output set

Givenasystemin TLTH, O) and a state in it, the output seit 5, (¢) collects time-stamped
output actions that are allowed from statépossibly after some-actions) and thé-actions
that can appear after a delay.

In a specificatiort € TLTS, the quiescent states can be identified by analyzingrites
transition system, i.e. we can assume that) is at our disposal. However, given that
we work in a black box framework, for an input-enabled impéartation: € TLTS we can
only detect quiescence by waiting for outputs. Obviousk/can not wait forever. Therefore,
there must exist a maximal duratidn, setting the time needed to recognize a quiescent state.
We use this bound/ in the output set to recognize quiescence. Thus, we arewdinglthat
the system is in a quiescent state, if aftértime units, no output has occurred.
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Definition 3.3.15. Let A(A) = (Q, ¢°,£,7) be a TLT$I, O) with ¢ € @, Q' C Q and
M € D be the bound to recognize quiescence, then

outy(q) 2 {b(d) | beOordeDAq" LU | ¢ 2N
outy (Q) = EUQ, out s (q)

Therefore, the output set with parameiércollects all the output actions that a system
can produce, including observation of quiescence, in angstate or set of states.

Example 3.3.16.In the system from Figure 3.4, if we fiX = 6, we observe that: give<€(5)
€ out(gs) andd(6) € out(qy).

3.4 Timed implementation relations

Since we develop the timed testing theory inspired by themet case, we define our final
testing relatiortioco,, through two auxiliary relations, namety,;,; (inclusion ofnttraces)
andgi‘forf (inclusion ofnttraces with quiescence appearing only after time units).

The extension of the timed transition relation over TLTSeves us to define a relation
over input-enabled implementations in TLUTSO) and specifications in TLT@, O) as in-

clusion ofnttraces.

Definition 3.4.1. Leti be an input-enabled implementation in TLTSO) and S be a spec-
ification in TLTSI, O), then

i <tiorf S = nttraces(A(4)) C nttraces(A(S))
As we mentioned before, in specificatiofigjuiescent states can be identified, tRefb')
is at our disposal. However, this is not the case in impleat@ts where we need the bound

M to recognize quiescence. Consequently, the following diefimcharacterizes nttraces in
which quiescenceij can only appear after exactly time units.

Definition 3.4.2. Let A = (Q, ¢°, £, 7) be a TLTS, then
nttracesq; (A) =  nttraces(A(A))N(D- L+ M -6)* - (e + D)

Thus,nttraces; are those nttraces where quiescence comes after extddtiye units.
This definition motivates the following parameterized V@msof our tiorf-relation, which
checks for inclusion onttraces?).

Definition 3.4.3. Leti be an input-enabled implementation in TLTSO) and S be a spec-
ification in TLTSZ, O) with M € D, then
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i<}, S £ nttracesy (i) C nttracesq; ()

Thenttraces; set only takes into account observations of quiescencatbanade after
a delay of M time units. Hence, we leave out all nttraces with the forméd (k) o’ were
k#£ M.

The following proposition states that the previous paraim#orf relation (parameterized
by M) can be characterized by the inclusion of output sets frofinidien 3.3.15.

Proposition 3.4.4. Let i be an input-enabled implementation in TKTSO) and S be a
specification in TLTE, O), then

i <ph,; S ifandonlyif Voe(D-L+M-8)*-(c+D):
out) (A(i) after o) C  outy (A(S) after o)
Proof.
= If ¢ S?forf S then outy, (A(i) after o) C outy (A(S) after o))

Leto € (D-L+ M -0)*-(e+ D), then
if o & nttraces(A(z)), thenout y, (A(i) after o) = 0;
if o € nttraces(A(z)), thenV b : b € out (A(7) after o) then
o-b € nttracesy, (i). Usingi <}/ . S we have
o-b € nttracesy, (9), thenb € outy (A(S) after o).
[« If outy (A(i) after o) C outy (A(S) after o) then i gi‘forf S
Leto € nttracesy (i), i.e. o € nttraces(A(i)) N (D - L+ M - §)* - (e + D),
then(A(:) after o) # (). Hence, using the no forced inputs property from
Definition 3.3.4 we know thabut ; (A(7) after o) # (). Because,
out s (A(i) after o) C outy (A(S) after o), then
out s (A(S) after o) # ). Soo € nttraces(A(S)) and
o€ (D-L+ M-68)*-(e+ D). Then, we have € nttracesy; (S).

3.4.1 The tioco,, implementation relation

Finally, we are in the position to define the relation we uséeti timed labelled input-
output transition systems, thi@co,, relation. For an input-enabled implementatiocand a
specificationS, i is tiocoy, correct w.r.t. S, if the output set of after every nttrace of),
including observations of quiescence, is a subset of theubset ofS after the same nttrace.

Definition 3.4.5. Let ¢ be an input-enabled implementation in TTSO) and S be a spec-
ification in TLTSZ, O), then

itiocoy S = Vo € nttracesy; (S): outy (A(i) after o) C outy (A(S) after o)
Thetiocoy, relation is a restriction of the tiorf-relation that onlykés into account nt-

traces that belong to the specification. This relation alow to test black-box implementa-
tions assuming that the systems are input-enabled TLTSshwusour aim. Hencejoco,,
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is our target relation from which we define and derive ourstest

3.5 Operational model

To obtain an effective theory of quiescence in a timed sgtiive need more than stipulating
that observing quiescence takes time. Since with physiopldmentations we can only
observe the absence of outputs over finite time intervalsywst precisely stipulate when
such observations can be interpreted as quiescence.

Definition 3.5.1. Leti = (Q, ¢°, £, 7) be an input-enabled implementation in TKTSO)
andM € D, then

q € Qis M-quiescent
i is M-quiescent

2 V¢ c€Q:q c(qafter M) : ¢ is quiescent
£ VY g€ Q:qis M-quiescent

The strategy to formalize how nttraces of an input-enabletiSTmay be enriched with
0-actions is as follows. Whenever an nttrace allows an adfiitim a delay of more thad/
time-units, this creates a possibility to observe quieseefror example, if a system g -
quiescent and/ = 4 and the nttrace = a?(2)-b?(5)-c!(3) is observed, then it is also
possible to observe = a?(2)-6(4)-b?(1)-c!(3). We formalize the addition af-observations
to nttraces as a relatian, between nttraces.

Definition 3.5.2. Leti = (Q, ¢°, £, T) be aM-quiescent input-enabled implementation in
TLTSI, O). Leto, o', 01,09 € (D - Ls)* - (¢ + D) benttraces, | € Landd € D, then

eodyo 2 3Fo,00:31:3d>M:
oc=o01-l(d)oas No' =0c1-6(M)-I(d — M)-09

o let be a set ofittraces(.A), then
om(®) = pref( {o' | o8} 0'})

oeEXN
where preff’) is interpreted as the prefix-closure of a settafces ¥/ andd}, is the
reflexive and transitive closure of the relatidgy.

In the previous definition the actiolid) can only be an input action. This is because
two reasons: firstly the timé is bigger or equal to the bountd which is the bound for
quiescence observations and secondly the systien/ -quiescent. An informal interpreta-
tion of thed, relation is that, given a nttraceits collects all ttraces similar to it with more
occurrences of (M).

As follows we check the consistency in our proposeshturation. If aj-action is in-
troduced in an nttrace, on the basic observations of a ddlégt deast) M time units, we
must have the following property: “there never appears apuiaction immediately after a
o(M)".
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Lemma 3.5.3. Let i be a M -quiescent input-enabled implementation in TULS)), then
YV o € dpr(nttraces(7))

if o=01-0(M)-l(d)-o2 then & O

Proof.
By contradiction.
Suppose that there existsrac §,,(nttraces(z)) with o = o1-0(M)-1(d)-0o2 andl is

an output actionl(€ 0). Theno’ = o1-1(d + M)- 02 is also a ttrace of the systeim

Hence, there exists a statgsc (i after o;-M) such thatg l(:@. Using definition of

output set (Definition 3.3.15) we have thatl) € out(: after o,-M). Then, statey is not
M-quiescent, and is not M -quiescent, so a contradiction. Thenga= o1-6(M)-1(d)-o9
with [ € O does not exist.

|

Using the previous corollary, we show that if an input-eedtimplementatior can be
assumed to b&/-quiescent, then we may use the set of enriched observatipmstraces(z))
to obtain thenttraces4; (i) set, whose definition is based on the unobservable TIN(S).
This result is the basis for our test derivation algorithmganted in the next section.

Theorem 3.5.4. Let i be aM-quiescent input-enabled implementation in TUTL®) with
I #0,then

Su(nttraces(i)) = nttracesqy (i)

Proof.
To prove this result we use that for an nttrace nttraces(7) the functiory, only introduces
occurrences of(M). Similarly, in nttraces4y (4) all occurrences of(d) with d # M in
nttraces have been filtered out. Then, we prove this intuitive argurbgrinduction over the
number of occurrences 6f M) in a nttraces (denoted o |5).

Let|o|s = 0then

o € 0p(nttraces(7))
(By Definition 3.5.2) if and only if o € nttraces(1)

(By Definition 3.4.3 ando |s = 0) ifand onlyif o € nttraces4;(7)

Suppose that for alt with | |s < n we have

o € dp(nttraces(i)) ifandonlyif o € nttracess) (i)

Let|o|s = n, then there are two cases

e Suppose that is of the formoy-6(M)-1(d)-o2, with |o1|s = n — 1 A |oa|s = 0. We
prove that such & is in 6, (nttraces(4)) if and only if o is in nttraces4} (4). First note
that:

)

01-:0(M)-1(d)-02 € dpr(nttraces(
i)

(by def ofdpy) ifandonly if o1-1(d 4+ M)-02 € dar(nttraces(
(Ind. Hyp. onoy) ifandonlyif oy-1(d + M)-02 € nttracesy, (i)

)
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[<] If 01-0(M)-1(d)-02 € nttracesy (i) then by skippingi-observations
01-0(M)-1(d)-o9 € dpr(nttraces(7)). Then, clearly we have that
o € nttracesy; (i) implieso € &y (nttraces(i)).

[=] Leto € dp(nttraces()), then by the above implications - u(d + M)-o4
= o is in nttracesyy (7). Now suppose that; -6(M)-u(d)-o9 is notin
nttracesqy (7). This means that there is a non-quiescent state in
(7 after 01-M), i.e. there is an output actigne O with o1-6(M)-u(d’)
€ nttraces4y (7). Again, by the above implications we have that
o1-0(M)-u(d") € dp(nttraces(i)). Using Lemma 3.5.3, this contradicts
thati is M -quiescent.

e If o is not of the required format, it must be of the foem- (M), and by input-
enabledness we can extend it to the farm é(M) - 1(0) by appending some input
actionu. Thus, the above result together with the prefix-closurépfnttraces(7))
andnttraces4; (4), implies that these sets also coincide for such ttraceshiegheorem

holds.
O

As a final property, before presenting the derivation athamiwe present Theorem 3.5.5.
This theorem reveals that thi@co,, relation, in presence aff/-quiescent implementation,
implies anM based pre-order (is a pre-order with respect to the magnitidy/).

Theorem 3.5.5. Let i be aM;-quiescent input-enabled implementation in TUTLS)) and
S be a specification in TLT$, O) with M; < Ms, then

if ¢ tiocoy, S then i tiocoy, S

Proof.

Let assume thattioco,,, S ando is a nttrace imttracesfb (7). Then transforna into o’ by
replacing every subsequence of the farfi/;)-1(d) in o by 6(M;)-1(d + (Mz — My)), and
possiblyd(Mz) by §(M)-(My — M) in cased(Ms) is the last action of. Moreover, we
saturated the nttraeg with 6(M;) in case there exists it a time stampl bigger thani/;,
recursively. Thew’ is also an nttrace o(i), and therefore ofittracessy (i). As i S'é\i%rf

S, it follows thato’ is a nttrace innttracesj\%(S). By postponing back all observations
of 6 by My — M; we geto € nttracesAA/Iz(S), ie. nttracesfb(i) C nttracesf/IQ(S) then

i tiocoyy, S.

This postponing back observation ®tan be done because the original nttracewas
from nttraces§; (i). Theno has its observation of quiescence done aftgrtime units.
Using this information we can be sure that there is enougé topostpone.

O

Example 3.5.6. Figure 3.6 presents a new cash machine in TA notation. ThEtesyis
similar to the one from Figure 3.4, but it can be an impleménotg because it is input-
enabled. Furthermore, it id/-quiescent ford/ = 5. The M-quiescent property is archived
by the invariants { < 5) on all states with outgoing output transitions. In this e we
can be sure that if we receive money (gi2e< or give_7 €) then this action happen before
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5 time units have passed. This is the certainly provided byl\fhguiescent property.
To keep the illustration readable we assume that all actiesst the clock each time
they are taken.

impl:
insist?, ask7€?
ask 2€?
e () ™
give_2€! give_7€!
ask 7€? ask 2€?
card? card?
ask 2€? insist? insist?| ask 7€?
ask 7€? ask 7€?

insist?, card insist?, card?
ask 2€ ?

e ask 7€? i Ask 2E7?
65 card?, insist?

ask 2€?

N

aslc2€?<6
card?, insist?

ask 7€? give_7€! give_2€!

insist?, ask7€? L insist?, ask7€?
card?, ask2€?<@ card?, ask2€?

Figure 3.6: A non-deterministic cash machine implemeatatiVe assume that every transi-
tion reset the clock.

3.6 Timed test generation framework

In this section we define the concept of timed test cases,dheaof their execution, and
the evaluation of their verdict: pass or failure.

A timed test caseis a deterministic TLTS/, O) with actions inC; (wherels = LU{d})
such that it has bounded behaviour, in the sense that all etatipns have finitely many
action occurrences. The set of states in a test containethenal statepass and fail
without outgoing transitions, except self loops allowiigd to pass. For any state different
from pass andfail there exists a bounded time to observe quiescence or to &¢calvake
an input action. Moreover, because tests under considarate deterministie-transitions
are not allowed. Aimed test suitdl’ is a set of test cases. To simplify notation we represent
tests similarly as TA.

Definition 3.6.1. GivenM < D a fixed bound to recognize quiescenc®irthen

e Atimed test case = (Q, qv, L5,7) isa TLTS such that
— tis deterministic and hasounded behaviour.e.
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IN>0:Vocettraces(t):o=l-bl3---:|{z | L €L}|<x

— Q contains the terminal statgsass and fail, with init(pass) and init(fail)
without outgoing transitions except self loops allowingdito pass

— for any stateg € Q of the test case, with # pass, fail there exist® < d < M

with
(qafterd’) = OU{e| e<d-—d}foralld <d,or
(qafterd) = {i}withieclorli=9§

— t does not have-transitions

The class of test cases oveand O is denoted by £S7 (I, O)
e Atimed test suitdl' is a set of test case& C 7EST (1, O)

For the description of test cases we use, as already doneapt€it?, a process-algebraic
behaviour notation with a syntax inspired by LOTOS [35]

B & I;B|B+B|YB

wherel € L, B is a set of behaviour expressions, where the axioms and filxente rules
are:

lel F .BLB
l=d,d <d - B d—d: B
l=d - 5L B-%B

B, L Bl le Ly - By + By, B
B, L Bl leL, - Bi+B B
BLB. BeBleLs + YBLB

A test run of an implementation with a test case is modellethbysynchronous parallel
execution of the test case with the implementation under fEisis run continues until no
more interactions are possible, except letting the tims.pas

Definition 3.6.2. Lets be a)M-quiescent input-enabled implementation in TUT®), ¢ be
atestin7EST (I, 0) andT be atest suite i EST (I, O), then

e Runningt with 4 is modelled by the parallel operator
|| : TEST(I,O)x TLTSI, O)— TLTSI, O)

which is defined by the following inference rules

i oot st
l

tSUNYIe0it F o t]i -S|

t-Lvi-Litlel b tli-St 4

t %5 % Foot]i -S|
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e Atestrun oft with 4, is ac of ¢ || 7 leading to a terminal state of Then,o is a test
run of t and if

30 (t]| i S pass| i)or(t] i 2 fail|| )

e | passes {, if all their test runs do not lead to théail state oft

i passes t = Va:Vi’:tHi%failHi’
e | passes T, if ipasses all test cases ifl
ipassesT £ VteT:ipassest
If : does not pass the test suite, it fails it:
ifailsT £ —(ipassesT)

Since an implementation can behave non-deterministjaffgrent test runs of the same
test case with the same implementation may lead to difféezntinal states and hence to
different verdicts. An implementatiopasses a test case if an only if all possible test runs
lead to the verdicpass.

3.6.1 Test generation procedure

We define a procedure to generate test cases from a giverdextspecificatiom\(S) =
(Q,¢°, L, T)InTLTS(I, O), we call this test generation procedure as TTGP (from tirast t
generation procedure). Similar as in Chapter 2, test casest from the non-deterministic,
recursive application of three test generation steps f@ntorresponding to

1. termination
2. generation of an inpytand
3. observation of output§ncluding quiescence).

Where the set 0f’ € Q represents the set of all possible states in which the spaiifn
can be at the current stage of the test case executionllini@ais equal to{ ¢°}.

1. termination

\*. pass

t = pass

The single state test capass is always a sound test case. It stops the recursion in the
algorithm, and thus terminates the test case.
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2. inputs
chooses € [0, M) andl € T
L= S {by(dy); ty | b€ OANd, <KkAby(dy) € outp(Q)}
+ Ur) 4
+ XA{b(d); fail | b, e OANd, <kAD(d)¢outy(Q)}

wherec is a clock,x is a time constant)/ is the bound to detect quiescenees in
[1,n], visin[1,n'] andt, andt; are obtained by recursively applying the algorithm
to (Q’ after b,(d,)) and(Q’ after [(x)), respectively.

The test caseis waiting forx time units, and trying to perform an inpu) (If an out-
put from the implementation arrives before timethe test checks whether the output
is an invalid response, i.é/ (d!) ¢ out,(Q’); in that case, the test case terminates
with fail. If the output is valid the test case continues recursiveti w,. If the in-
tended time has passed (ie= ) then the test produces the inguif and continues
with the test case,.

3. observations of outputs
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to= S bu(da): e | by € OAdy < MAby(dy) € outy(Q)}
+ X {o(M); ts | 0 € outy(Q after M)}

+ X {o(M); fail | 0 ¢ outy(Q after M)}

+ | (d,

¥ {bl(d}); fail b€ ONd, < M A (d) ¢ outy(Q)}

wherec is a clock, M is the bound to detect quiescenees in [1, n], v isin [1, n/]
andt, andts are obtained by recursively applying the algorithn{ @ after b;(d;))
and(Q’ after 6(M)), respectively.

The test caseis waiting for M time units; if an output arrives from the implementation

it checks whether it is an invalid response, ibg(d!,) ¢ out,,(Q’); in that case, the
test case terminates fiil. If it is a valid response after the time passed, the test case
continues recursively. The observation of quiescenisdreated separately, using the
constantl/ given by the)M -quiescent property.

The construction steps involve (negations of) predicatéseoformb(d) € outy, (Q'),
which at the general level of TLTSs are undecidable. Theguore given here, therefore,
should be seen as a meta-algorithm that can be used to getest effectively for sub-
classes of TLTSs for which these predicates are decidalih,as timed automata [38, 39].

We present an example of our test case generation basedroadhdutomaton model of
our cash machine, similar to the previous one.

Example 3.6.3.In Figure 3.7 we present three systems in TA notation, whga@ndhe initial
locations are represented with a double circle. On the Ipfier part we see the specification
as already shown in Example 3.3.5, augmented with an explriotation for quiescence
with straight self-loops. On the left bottom part is the iBmpkntation, where we do not
represent quiescence because we suppose it is a black btenientation. We suppose that
every action (in both systems) reset the cleck

We can see that the implementation is slightly differenttodne presented in Exam-
ple 3.5.6. In this one after asking f@GrEuros, if the machine does not give it to us even if we
insist we can not obtain them. A similar behaviour happerefauros in the other branch of
the machine.

On the right of the figure, we present a test case that was elgising the TTGP from
Section 3.6.1. We assumé = 5.

We suppose the timing between each action is one unit of tindé¢.0Assume that we
let one time unit to pass and then insert the card. After tha,ask the machine for
Euros. Then, we observe that there is no reaction, so we duiie@scence; then, we insist (for
example by quirking the machine) and ask again7&uros. In normalized ttrace notation,
this is as follows

card(1)-ask_7€(1)-6(M)-insisi(1)-ask 7€(1)

In this situation, we would like to obtain Euros, as we see in the specification this is the
case, because
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out(spec after card(1)-ask 7€(1)-6(M)-insist(1)-ask 7€(1)) = {give_7€[0,0)}

Since the output set in the timed case is infinite, we use thee &[0, co) notation to
denote that the output giv@€ can be produced at any time betwekeand co.

The test on the right hand side of Figure 3.7 was produceddbttee nttrace that we
just described. If we apply this test to the implementatibthe left bottom hand side of
Figure 3.7, we obtain

out(impl after card(1)-ask 7€(1)-6(M)-insist(1)-ask-7€(1)) = {i(5)}

In this way we know that this implementation is fioto,,; correct with respect to the speci-
fication, because it produces the unspecified ouipiit

3.7 Completeness

In this section we prove that our test generation procedir&pP) presented in Section 3.6.1
is complete with respect to thimco,, implementation relation, i.e. it is sound and exhaus-
tive. To be precise we adapt Definition 2.6.1 (from Chaptgra®e 23) to the particular case
of tiocoy,.

Definition 3.7.1. Let S be a specification in TLT$, O). Then for alli a M-quiescent input-
enabled implementation in TLTS O) and forT composed by all test cases obtained from
S by the TTGP

T is sound w.r.t. tdioco,,
T is exhaustive w.r.t. tdoco,,

£ VY teT:if itiocoy S then i passes t
£ if itigcoy S then3 t € T : i pagses t

A test suite, generated by the TTGP, is sound with respetbto,,, if any implemen-
tation that fails a test in the set is incorrect with respedidco,, relation. A test suite is
exhaustive with respect tmco,, relation, if for every incorrect implementation the testesu
contains a test case that detects the non-conformance.

In order to archive these two results we first have to estalsiisne technicalities. We
saturate an nttrace with An nttrace is considered saturated when for each oppdytaha
6 symbol to appear, it actually does it.

Definition 3.7.2. Let.A be a system in TLT$, O) ando € nttracesy; (A), then

oisd(M)-saturated = P o’ € nttracesy; (A) 10 = 01-1(d)-02 A
o' =01 6(M)-I(d— M)-09

Proposition 3.7.3. Let ¢ be a M-quiescent input-enabled implementation in TLTS),
then
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if oisd(M)-saturated then V [(d)# 6(M) occurringine : d < M

Proof.
By contradiction. Assume that is 6(M)-saturated and there exist&d) # d(M) with
d > M. Then, becausécan not be an output, singeis M-quiescent]/ is an input, and
o =o1-1(d)-oy andd > M. So, there exists’ such that’ = o1-6(M)-I(d — M )-o2. Thus,
o is notd(M)-saturated, which is a contradiction to our initial asstiopt

|

3.7.1 Soundness

The TTGP is sound in the sense that it does not wrongly rejegieimentations by mistake.
This section formalizes and proves this property.

Theorem 3.7.4.Let S be a specification in TLT$, O). Then for alli M-quiescent input-
enabled implementations in TLT/S O) and for all ¢ a test case obtained frorfi by the
TTGP

if itiocoy S then i passest

Proof.
Let s be aM-quiescent input-enabled implementation witioco,, S. We prove that for all
o € Ay (S) and for allt a test cases, generated by the TTGP fi$yrthe following holds:

it t|i3t] 4 then ' #fail

Without loss of generality we can assume thas 6(M )-saturated. Moreover, we can
assume that || i 2, because otherwise there is nothing to show. We prove tetreby
induction over the length of

eifo=candt||i=t'| i
if ¢ was constructed using case 1 in the first step, then = pass || i/
if t was constructed using cases 2 or 3 in the first step, then
t = ¢’ # fail and all derivations of>- have the form¢ || i = ¢ || i/

a

eifo=c aandt|iZ ¢ |2t | Aa=I(d),
there are only two possibilities to construtt
fromcase 2a =I(d)Al €I ANd< M and
tlli3t || i’ At # fail
from case 3u = I(d) A a € outy (A(7) after o). Since
i tiocoys S, a € outy (A(S) after o), and thug || i = ¢/ || i’ A t' # fail

O

3.7.2 Exhaustiveness

The TTGP presented in Section 3.6.1 is also exhaustive wihect to thdioco,, testing
relation. This means that for each non-conforming impletai@m, a test case can be gener-
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ated that exposes the error. Hence, if we test enough (peihfapite times), it is possible to
recognize all erroneous implementations.

Lemma 3.7.5.Let S be a specification in TLTS, O), o € nttraces4; (S) bed (M )-saturated,
andt’ be a test case generated by the TTGP f(@xiS) after o). Then there existsa test
case generated frorfi with ¢ = ¢/.

Proof.
By induction over the length of, (| o |):

e If |o| = 0thentaket = ¢'.
e Suppose there existdor all o with |o| < n.
e Let|o|=nwitho =0"-aanda=1(d)

a

if [ € I, using case for the inputi : ¢ LA

a

if a € outy (A(S) after o), using case : ¢ LA
(I

Theorem 3.7.6.Let S be a specification in TLT$, O). Then for alli M-quiescent input-
enabled implementation in TLTS O) with i tigcoy, S, there existg a test case generated
by the TTGP fronf' such that

i pagses t

Proof.
If itigcoy S then there exists € nttracesyy (S) such that

outy (A(i) after o) € outy (A(S) after o)

Without loss of generality we can assume thas (M )-saturated. Then, I1é{d) be in

out s (A(4) after o) \ outy (A(S) after o) andi = i/ W,
Let ¢’ be the result of applying case 3 of the procedurg¥6s) after o), and lett be the
test case constructed outtdfando by the Lemma 3.7.5. Then, becausé) ¢ out (A(S)

o-

after o) thent || ¢ D fai) [| i". Then using Definitions 3.6.2,pagses t.
O

The exhaustiveness of our test generation procedure is$e$s| than the corresponding
result in the untimed case. There, the exhaustivenessamifiat the test generation algo-
rithm, if repeatedly executed in a fair non-terminating memn will generate all test cases
in the limit, and therefore, in the limit, will achieve fullowerage with respect to a given
specificationS and theioco relation.

In our timed case, as presented, the number of potentiatéssts is not only infinite
but also uncountable, resulting from our underlying camtins timed model. Moreover, a
non-countable repetition of test generations are necessdre performed. Nevertheless,
it is still possible to obtain a version of the stronger forfreghaustiveness for real-timed
test generation as well. This is done by considering eqgeind classes of (minimal) error
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traces. It can be shown that with reasonable assumptiong itest generation procedure, in
the limit, we will hit each such equivalence class.

In the timed automata setting, the decision of the prediGdi&,) € out, (Q') amounts
to reachability analysis. For the simpler versiotio€o,,; based on timed trace inclusion (i.e.
excluding quiescence) this has already been implementdtkitool environment IF [38],
and in the WPAAL-based testing tool T-PRAAL. Also within a timed automata setting,
although with the addition of quiescence, there exists &tis@ extension of the HRX
tool [12].

3.8 Relation with ioco

All our work was inspired by théoco testing relation, as we already mentioned. Here, we
present a theorem that characterizes the relation betviregioto,, and theioco testing
relations.

Given thattioco,, is defined over TLTSs anidco over LTSs, we need to relate a TLTS
with a LTS. To this end, initially, we define the functiom, which transforms a trace in
nttracesy; into a simple trace.

Definition 3.8.1. The functionmn : nttracesy; — traces, is recursively define as

un(e)
un(o-1l(d))

€
un(o)-l

> >

Thus, functionun extracts the untimed trace from a timed one. Now,Agtbe a M-
quiescent input-enabled TLTS witfttracess, (A1) (the set ofnttracesy; from A;) and let
Az be a TLTS withnttraces4) (Az) (the set ofnttracess, from As). We can always obtain
through theun function the set of untimed traces framtracessy (A1) andnttracess) (As).
Now, in case that there exists an input-enabled UESsuch that its set of tracesaces(A;)
is equal toun(nttracesy; (A;)) and a LTSA, such that its set of tracegaces(Az) is equal
to un(nttraces4; (Az)) then we can define our relation.

Theorem 3.8.2.Let.A; be aM-quiescent input-enabled implementation afigdbe a speci-
fication both in TLTE, O). Let 4, be an input-enabled implementation asd be a specifi-
cation bothin LTSI, O) with un(nttracessy (A;)) = traces(A;) andun(nttracessy (Az)) =
traces(Az). Then,

if AjtiocoyAs then A;iocoA,

Proof.
We assume thatl; tioco,;.A> and we prove this theorem proving that:
V o € traces(43) :V b€ O: if b € out(A; after o) thenb € out(4; after o)

Let o € traces(A2) andb € out(A; after o). Then becausen(nttracesy; (Az)) =
traces(As), we know that there exists’ € nttracesy; (A2) such thatun(o’) = o. Now,
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becausé € out(4; after o) it follows that there existd € D such thath(d) € out(A;
after o’). Thus, sinced; tiocoyr Az ando’ € nttraces4) (Az), S0 we have)(d) € out(As
after ¢'), thusb € out (4, after un(o’)), thend € out(A; after o).

(|

For all (possibly infinite) sets of traces of the form(nttraces4; (A)), it is possible to
construct a LTSA4 such thatrraces(A) = un(nttracesy; (A)). Moreover, our construction
only uses traces in which at most ofi@ccurs between subsequent actions, we call this
propertysimple quiescence occurrence

Let B be the set of simple quiescence occurrencesifnttracesy; (A)) then we con-
struct the LTSA = (Q, ¢°, L, T), where( is the set of states of the forgy for all traces
o € B; Lis the same set of labels &g; and T is the set of transitions such that for each

traces and each actiohif o-1-6 ¢ B then we create a transitiag 4 Jot, andifo-1-0 € B

then we create two transitions N ¢ and g, 4 g-1s5- Following this construction it is
straightforward to see thataces(A) = un(nttraces4y (A)).

The result presented in this section means thatitdw®,, relation is a sound extension
of theiocorelation. Note that to obtain this result, it is crucial tmea@er quiescence in the
timed relation.

3.9 Related work

There are several approaches that focus on the developrhtsgting methods for timed
systems [56, 52, 45, 32, 24, 18, 16, 20, 31]. Most of them, mtrast with our work, which
assumes generic TLTS as the basic model, are developed subckass of TA. In the fol-
lowing, we discuss some of the most interesting previoudtes

e Nielsen and Skou [52] describe a fully automatic method lier generation of real-
time test sequences from a subclass of timed automata dallext-Recording Au-
tomata (ERA). Their technique is based on a symbolic arabyfsTA inspired by the
UPRAAL model-checker. Test sequences are selected by coverinamlience class
partitioning of the state space. They argue that this agbrpeovides a heuristic that
guarantees that a well-defined set of interesting scenaritge specification is au-
tomatically, completely, and systematically explored.wdwer, this method lacks a
suitable notion of an implementation relation.

e Springintveld, Vaandrager, and D’Argenio [56] show thalh@&wstive testing (with re-
spect to bisimulatiof) of deterministic timed automata with a dense time intetgpre
tion is theoretically possible. The testing of timed syséesndescribed as a variant of
the bounded time-domain automaton (BTA). The BTA descglifre specification is
transformed into a region automaton, which in turn is transid into another finite
state automaton, the Grid Automaton. Test sequences argémnerated from the Grid
Automaton. The idea behind the construction of the Grid Mton is to represent
each clock region with a finite set of clock valuations, reddrto as the representatives
of the clock region. However, although being exact, theid gnethod is impractical
because as said in [56] it generates “an astronomicallg lavgnber of test sequences”.

2Actually, for the deterministic case, bisimulation ands&@quivalence coincide [62].
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e Cardell-Oliver [16] presents a testing method for netwarsksleterministic TA ex-
tended with integer data variables. She checks for traceaguce, but this is done
only for those parts of a system that are visibly observabieaddition to the usual
time-discretization, test views are used to discriminaievieen states depending on a
test-purpose. Test views partition variables and eventsviisible and hidden ones.
Equivalence on visible clocks and variables induces arvafgrice relation on states.
States that are evidently different, i.e. that are in défevisible equivalence classes,
need to be distinguished from each other. This significamttiices the length of test
suites, at the price that the test is not always exhaustive.

Further details discussing the above these approachesectoubd in the survey [4].
Most of these works have not been implemented they are mecedtical approaches.

More recently, these theoretical works have been improvdabtmore practical as our
proposed theory. Closely related to our work is the one dgnkdnsen et al. [39] and by
Krichen et al. [38]. Both of them are extensions of ilheotesting theory, with quiescent-free
interpretations over TA and their relations is inclusiohimed traces. The more important
difference between them is that in [39] the environment igx@plicit part of the model. In
contrast in our work we provide a framework at the TLTS leved ave include quiescence.
As follows, in Figure 3.8, we present a comparative table dweioco testing theory exten-
sions with time.

3.10 Conclusion

In this chapter, we present an extension with real-time effians’ioco testing theory and
test generation framework. The extension allows us toitestt systems, particularly TLTSs.
Our treatment is based on an operational interpretatiolmeofibtion of quiescence that gives
rise to a family of implementation relations parameteribgdobservation durations/ of
quiescence. These relations detect differences in belneafi@r the execution of timed traces
(extended with quiescence) provided that all observatidggiiescence take longer than the
stipulated duratior/.

We explain how this theory can be used to test TLTSs, undeagisamption that the
absence of system interaction with its environmentiibtime units implies quiescence. We
have defined a non-deterministit/¢parameterized) test generation framework that gener-
ates sound test cases with respect to the correspondingrimeptation relatiotioco,;. The
test generation is also exhaustive. This means that formatitonforming implementation,
a test case detecting the non-conformance can be generated.

Our framework can be effectively instantiated for subaassf TLTSs, as long as the
instance satisfies thatut, (A(S) after o) is computable; this is the case, for instance,
on TA. Using standard symbolic state space representatitrei form of difference bound
matrices [23], a real-time version ofoRX for TA models has also been recently developed
in [12] which incorporate quiescence.

Our work, as presented here, can be extended in several Walike the untimed case,
here the test cases are not only infinite but also uncount@ibén our notion of completeness
guarantees that for a non-conforming implementation aces¢ “can” be generated. But,
we can not be sure that this test case “will” be generated. &lieve it is possible to show
a stronger exhaustiveness result for the test generatmregure, based on an appropriate
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notion of equivalence of error traces. The generation ghaeewill hit each such class in
the limit, provided that the error class is not negligible, it must have positive measure in
some appropriate sense.

Another interesting extension is to relax the requirembat there must be a uniform
observation deadling/ for quiescence. Alternatives are:

e To make the observation paramefdi(c) a function of the behaviour (trace) ob-
served so far. This would allow us to model sequential phakgsiescence, i.e. slow
VS. quick response times.

e To divide the output set in subset of communication chararedsmake the observation
parametedV (C;) a function of the communication channg} on which output (from
that channel) are being observed. This allows us to modferdiit kinds of response
times for different communication channels with the systemder test. This idea
corresponds to a real-time extension of theco implementation relation of [28].
This approach is the one we present in the next Chapter 4.

Our real-time theory inherits its focus on control aspeétsystem behaviour from the
existingiocotheory. Ultimately, it will be important to combine this teg theory with meth-
ods for testing the static data aspects of systems. It wilitegesting to see up to what extent
the symbolic representation of data types can be combingdsyimbolic representations of
time.

Thanks to several enriching discussions on the applicatfavur theory in the DRX
tool, we found that in a more general vein, it can be statedthigedevelopment of a real-time
testing theory forces us to confront modeling issues wispeet to physical aspects of time
and implementation. From a physical point of view, for exéemijt is questionable whether
negligible behaviour can be implemented (e.g., Examplé3.2Z'his has also implications
for specification formalisms that can be used to specify figttaviour, e.g. TA can define
negligible behaviour by using guards that force behaviouyd through specific points in
time, such ag = 3. Perhaps, realistic specifications and/or implementagtations should
allow for tolerance in the evaluation of clock conditionfigwould then introduce another
source of nondeterminism in the testing theory of real-tsystems. At any rate, a more
systematic study of the formal aspects of tolerance andstabss is a useful and interesting
future work.
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spec:
test:

give_2€! W give_7€!
&

give_7€! give_2€!
c<2 c<2
ci=0
fail card? fail
c<2
give_7€! give_2€!
c<2 c<2
fail e=1 fail
ask 7€?
ask 7€? ask 2€?

impl:
insist?, ask7€?
ask.2€?
give_2€! A give_7€!
- ) N
ask.7€? ask 2€? e=2
card? card?
give_7€! give_2€!
c<2 c<2
ask 2€? o o ask 7€?
? insist? ! .
fail c=1 fall
c:=0
ask 7€?

card?, insist?
? ask 2€?

card?, insist?
as;ag?(@D <M
give_7€! give_2€!

2, ?
card?, ask2€? c <M, c< M

ask 7€? insist, ask 7€?

card?, ask2€?
insist, ask 7€? ask 2€?

pass c(;: fail

insist?, ask 7€? insist?, ask7€?
card?, ask2€? card?, ask2€?

Figure 3.7: A specification of a cash machispd€q, an M -quiescent implementatiomgpl),
and a test case derived from the specificati@st(. We suppose that every transition reset
the clocke
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Spec Model Impl Model Conformance | Test
relation

Larsen TA with environmente TA rtiocoe are tree
etal. are non-deterministic, are non-deterministic, out set: in the

haver, haver, outputs and time | iocostyle

are strong input-enabled, are strong input-enabled|

and are non-blocking and are non-blocking

e is output-enabled
Krichen | TA TA tioco are total
etal. with lazy, delayable, with lazy, delayable, out set: function

and eager deadlines, and eager deadlines, outputs and time

hasr, hasr,

is non-blocking is non-blocking,

strong input-enabled

Brandan| TLTS TLTS tiocoyys are tree
Briones | is non-deterministic, is non-deterministic, out set: in the
etal. hasr, hasr, outputs with time | ioco style

is no forced inputs,
has time divergent

is no forced inputs,
has time divergent, and

is weak input-enabld

and
& with
(bounded) time

Figure 3.8: Timedoco extensions




CHAPTER 4

Testing timed labelled multi
Input-output transition systems

4.1 Introduction

As mentioned in Chapter 2, we perform black box testing by momicating with the en-
vironment in terms of inputs and outputs. In the previouptds we always assumed that
implementations are systems where input actions are neftesed. More precisely, we as-
sumed that IUTs are input enabled, i.e., IUTs accept alltmptiany time. Although many
systems can be modelled with that requirement, there isagtignificant portion of realistic
systems that cannot. As an example, consider a cash madiiigged with a card slot.
After a card is inserted in the slot (which can be seen as am)igmother card can not be
inserted; the input card is no longer enabled.

In this new setting, a system may have set of actions enabldidabled depending on
its particular execution stage. It seems convenient tikithiat the actions between a system
and its environment are triggered through communicatianakls. In the example of the
cash machine, the slot to enter cards is a possible chanhetevthe action of inserting a
card happens. Similarly, the cash machine may have a keybwhich can be considered as
another channel in which the action of entering informaf®ug., a Pin number) happens. To
model the fact that actions are enabled or disabled at differxecution stages, it is sufficient
to enable or disable the communication channels in whictadtiens occur.

To deal with this new setting, in the untimed case, the malpiut-output transition
systems (called MIOTS) were proposed. This work was done égrifk [28]. There,
theiocotesting theory is extended to deal with multiple channels.

It is natural to investigate whether the timed testing tggmesented in Chapter 3 can
also be extended to deal with multiple channels, thus catnpl&igure 4.1 (bottom right).
This means that both features, namely communication cheiand time, can be combined
together in a richer model. Fortunately, in this chapter m@ager this question affirmatively
by extending our timed testing theory to account for muttighannels.

The resulting model is the timed labelled multi input-outipansition systems (TLMTS),
and it allows us to consider input enabledness and quiesgemaperties not only for the
entire system but on a per channel basis, thus relaxing lgtgbgem assumptions.

Formally, channels are represented as a partition on the am output sets of actions,
respectively. Each partition class defines the inputs (dsjelonging to an individual input
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LTS TLTS
(ioco) (tiocons)
1/0
A
MLTS TLMTS
(mioco) (..)

Figure 4.1: Relation between test generation approaches

(output) channel. Following Heerink’'s work in the untimeake, we replace the input en-
abling requirement of a system by the following weaker regpaent: for each input channel,
either all inputs are allowed, or they are all blocked. Faaregle, recall the cash machine
example with an input channel where the action of insertimgra may occur. There, the
requirement naturally follows the intuition: initiallyhé slot accepts a card (that is, the input
channelis enabled). However, after a card is inserted isltigno further cards are accepted
(that is, the input channel is blocked).

Additionally, we relax the treatment of quiescence. Weaeelthe global boung/ from
thetioco,, testing relation by a vector of boundd = (M, - - - , M,,); wherel; represents
the bound on the output chanpelln thetioco,, relation the global bound/ is a parameter
that tells us how long a system must be silent before we cdeduiescence. Relaxing the
global bound) for a vector of bounds means that we do not have to wait for ltheest
response time to conclude the quiescence on a faster channel

The combination of these ideas is formalized asrttimco,, conformance implemen-
tation relation. We develop a test derivation procedurenitioco, which is shown to be
sound and exhaustive with respect to thigoco ., implementation relation.

Therefore, our results can be seen as a real-time extensidearink’s mioco testing
theory, where we introduce the channel-based treatmenpat enabling-blocking and qui-
escence in the timed setting.

Organization of the chapter The chapter consists of two main parts: models and relations
(Sections 4.2, 4.3, and 4.4) and the test generation frankei8ections 4.5 and 4.6).
Initially, in Section 4.2, we introduce the timed labellegut-output transition sys-
tems. In this model we suppose that the input set and outpoaeébe partitioned into
subsets, the so called channels. However, so far we do nairegfe system to have
any special property on these sets. Over this model we défngrtior conformance
relation, which relates systems with respect to a subsetilfré timed traces where
the refusals can only be complete channels. Refusals of letenghannels mean that
if one action in a channel is refused, then every other adtigdhat channel is also
refused. This is in contrast to the definition of refusalsegivn Chapter 2 (in Defi-
nition 2.2.8, page 15), where any subset of actions can lbisedf e.g. one part of a
channel may be refused while another is not.

In Section 4.3, the timed transition relation of the pregianodel is extended with
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quiescence and refusals. As a consequence, states of tleriergation are required
to be input enabled or blocked per channel. Furthermoregesive consider quies-
cence, we introduce the bounds vector that is necessargogmee quiescence per
channel. This new feature allows us to define a parametecafdrmance relation in
terms of the bounds vector. The resulting relation is caifgidrf. In Section 4.4, the
concept of observed output set is introduced andhttieco, conformance relation is
given, a relation that only takes into account timed tracesifthe specification with
quiescence and blocking per channel.

Subsequently, in Section 4.5, we develop a parameterizediaterministic test deriva-
tion procedure. Moreover, the set of tests obtained by oopgsed procedure are
proved to be sound and exhaustive with respect toxtiioco o4 relation in Section 4.6.
Finally, in Section 4.7 we prove a result that relates theppsed timed extension
with channels and the timed relatitinco presented in Chapter 3. Then, Section 4.9
presents the conclusions.

4.2 A basic model and a basic conformance relation

We start from the model described in Chapter 3, assumingamyextra feature: we ask the
input and output sets to be partitioned in disjoint subshtt,we callchannels

4.2.1 Timed labelled transition systems with partitioned i nput
and outputs

Through all this chapter we use Definition 3.2.1 (from Cheftg@age 28) where TLTSs are
defined. Recall thatl = (Q, ¢°, £,7) a TLTS(I, O) is a labelled transition system where
labels can be: external actions)( an internal actions) or time passage action®]. In
addition, all other definition and restrictions from Senti®.3 (page 33) also apply to this
chapter.

Up to now we have considered TLTSs with external actionsitparéd into only two
set: inputs and outputs. In the following we consider TLTSthuthe external actions sub-
partitioned in to subsets, the channels.

Channels Given a TLTS/, O), we assume that there exists partitions of the input and
output sets into channels, id.= L U...Ul,, O = O, U---U O, and for allk # 2
then; N I, = 0 and for allj # 2’ thenO; N O, = 0. We denote the partitions as
I=A{hL, - ,I,},0={0,---,0,}, and the TLTS is denoted as TLTE O).

Although our framework is based on TLTSs, for simplicity e tgraphical notation all
the examples we present are given as timed automata (TA)d&tation of a TA and its
corresponding semantics in terms of TLTSs can be found ip@&n&, Section 3.2.1.

Example 4.2.1. Our example, illustrated on Figure 4.2 and already anti¢gzhabove, is
an adapted version, with time, of the cash machine from [28}the machine, a card may
be inserted in the slot, and fdr time units a Pin number can be typed in. After that, the
machine decides whether the Pin number is correct; if it iis the machine returns the card.
If the Pin is correct, a desired amount of money can be regdedn case the machine has
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sufficient money, it will return the card and then gives thguested money. However, if there
is not enough money it will produce an error and return thedcar

i d! i t!
/glve_car @ give_amoun N

give_card! 69
> 5
Pin? o
<5
Err_P! =8
-
- <5
c<5 okl give_card!
ci=0
@ ®
amount?
c<5 Ok!
c:=0
) D e
<5 <5

Figure 4.2: A timed cash machine

We can describe Figure 4.2 in terms of Definition 3.2.1, witleeecash machine is spec-
ified as theA € TLTSI, O) where(Q, ¢°, £, T), with I = {card, Pin, amount} and
O = {gwe_card, give_amount, Ok, Err_P, Err_a}.

We partition the input set in two sets, with respect to theeasgoints of introducing the
card in the slot and typing in the numbers in the keyboardlierPin and desired amount
money. We obtain two subsets: = {card} and I, = {Pin, amount}. In a similar way,
the output set can be partitioned with respect to the accesg$ the location in which we
receive the card, where we receive the money and where wiveeother messages (e.g.,
the screen). We obtain three subsei = {give_card}, Oy = {give_amount} and
O3 = {Ok,Err_P, Err_a}.

As in Chapter 2 (in Definition 2.2.8, page 15) where refuseddrtroduced, in the timed
setting we can also explicitly encode the inability for aet® perform an action in the set
L’ or an internal actiorr. Even though we consider time as a kind of action, the dedimiti
of refusal only considers the refusal of input or output@tsi while it discards the time as a
possible refutable action.

Definition 4.2.2. Let A = (Q, ¢°, £,7) be a TLTSwith € L, ¢ € Q andL’ C L, then

!
grefuses I/ 2 VIicL :q4
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Moreover we extend all previous definitions (like, —) to our new setting. As before,

we extend the timed transition relation with self-loop s#ions: ¢ L q, in casel’ is refused
in the statey (slightly relaxed by abstracting frominternal actions):

’ l
¢Bq 2 VIEl qAAg=¢
As a result, the timed traces (ttraces, recall DefinitionZ.Bage 34) can be extended

to express not only the actions that can be taken but alscetiseo$ actions which are not
allowed.

Definition 4.2.3. Let A = (Q, ¢°, £,7) be a TLTS, then
Fttraces(A) =2 {oec (L+P(L)" | ¢" >}

As expected, a failure timed trace (Fttrace) is a ttracenebdd with sets of actions that
can not be performed; in other words, with sets of actionsatarefused.

Example 4.2.4.In Figure 4.2 we can observe that in stagginput actions: Pin and amount
are not enabled, but card is. Then this system has the Fttragi¢h o = {Pin, amoun}card.

4.2.2 The tmior conformance relation
The channels’ partition of the input and output sets givethagossibility to introduce the
tmior-conformance relation.

Definition 4.2.5. Let ¢ be an implementation in TLT5, O) and S be a specification in
TLTSZ, O), then

i <tmior S = Fttraces(i) N (L +Z + O)* C Fttraces(9)

This conformance relation refers to the inclusiorfafraces where the refusals can only
be asetirZ orinO.

4.3 An extended model and its conformance relation

The tmior-conformance relation inspired us to define anresitan of TLTSs where the input
and output sets are subdivided in channels and where eaahdéhpnnel is either input-
enabled or blocked.

4.3.1 Timed labelled multi input-output transition system

A timed labelled multi input-output transition systemlMTS(Z, ©), isa TLTSZ, O) where
in each reachable state, each input channel is either ldamkall inputs of that channel are
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accepted (input-enabling for a particular channel).

Definition 4.3.1. LetZ = {f;,--- ,I,} andO = {04, -+, O,,, } with for all k¥ # 2 then
NI, = 0andforallj # 2’ thenO; N O, = (. Then a timed labelled multi input-
output transition system (TLMTS) ovf, O) isa A = (Q, ¢°, £, 7) in TLTSI, O) with

I= U IyandO= U 0O, where
1<k<n 1<j<m -

l
Vageder(¢®):V1<k<n:(VIE€l:qA&)V(VIEL:q=)
Moreover, whenever a channglis blocked in state, it is denoted asy (¢).

In a similar way to the refusals, we can extend the timed itiangelation in TLMTSs to
denote explicitly when a channel is blocked. Hence, we adidfdaop transition in a state
with a~; label whenever channé] is blocked in state

¢B ¢ ifandonlyif ~(q)

Obviously, every TLTS can be interpreted as a TLMTS by hawng channel for each
action in the TLTS.

Example 4.3.2. Figure 4.3 is a modified version of Figure 4.2. It is possildesee it as
a specification of a cash machine with = (Q, ¢, £,7) in TLMTSZ,0). WhereZ =
{6, L} andO = {0y, Oz, O3} with I = {card}, I, = { Pin, amount} and O, = {card},
Os = {amount}, O3 = { Ok, Err_P, Err_a}.

The differences between Figure 4.2 and Figure 4.3 are that we have per state and
per channel input-enabledness or blocking. In Figure 4.8hestate is input-enabled per
channel or it has a state self-loop with the correspondjpglenoting that the input channel
k is blocked in that state.

Since the model of TLMTE&, O) from Definition 4.3.1 implies that input channels are
either input-enabled or blocked, we only use this model vthese properties are necessary.
Otherwise, we use the most general model of TI,®), which only assumes a TLTS with
its input and output sets partitioned in channels.

4.3.2 Quiescence

We take advantage of the channel partition in the outpubsgéétine quiescence. Hence, we
have a definition of quiescence particularly per each channe

In TLTS(Z, O) there are two possible approaches to deal with quiescericglyFwe
may consider the situation in which the observer can onlyoseechannel. In this case, it is
not relevant for the notion of quiescence whether the remgichannels stay silent or not.
Secondly, we may consider the environment to be able to ebsdrpossible channels.

We adopt the latter direction, assuming that the observesea simultaneously all chan-
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Figure 4.3: A timed cash machine with input-enabled or béackhannels

nels. This choice fits well with the testing framework of Ctea8, where tests synchronize
on all output actions. Partial observations of system astpan be dealt with by considering
modified IUTs where the unobservable channels became aitections to the system.

Definition 4.3.3. Let A = (Q,¢°,£,7) be a TLTSZ, 0) with ¢ € Q, thengq is called
0;-quiescent, denoted (¢), if

I(d)
VieO;:YVdeD:q #

With the definition ofO;-quiescent we can extend the timed transition relation @daov
it with refused channels) to include self-loop transitiéoisquiescence per channel. We use
thed; symbol to denote that the chanr@| is quiescent.

¢ % ¢ ifandonlyif &;(q)
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In order to denote explicitly whed = (Q, ¢°, £,7) a TLTSZ, O) has its timed transi-
tion relation7 extended with quiescence and refusals, we defifid).

Definition 4.3.4. Let A = (Q,¢°,£,7) be a TLT$Z, O), we write A(A), to denote the
systemQ, ¢°, £, A(T)), whereA(7) is the timed transition relatiod” extended with self-
loop transitions labelled witl; in all O;-quiescent states and witf in all states that have
channell;;, blocked.

We lift all concepts and notations (i.ettraces, init, etc.) that have been defined for
TLTS(Z, O) to extend TLT$Z, O).

A direct consequence of this extension is that represeiitiag-; for all input channels
and0; asd; for all output channels, we have:

Fttraces(A) N (L+Z 4+ O)* = ttraces(A(A))

Therefore, using this notation we can rewrite the tmior comfance relation as:
i <tmior S ifandonlyif ttraces(A(z)) C ttraces(A(S))

Example 4.3.5. Figure 4.4 illustrates the cash machine with the extendeedi transition
relation with refusals{;;) and quiescence).

4.3.3 Operational model

In a black box implementation we can not know if a state is sgeat or not, instead we
can only observe the absence of output actions. To resoévpritblem of the detection of
quiescence in black box implementations we adopt a solintggired by Chapter 3. There, to
recognize quiescence, the implementations are requiteel d-quiescent. An\/-quiescent
implementation is an implementation in which all outpup@sses take place befobé time
units. In other words)M is the amount of time a tester has to wait for outputs befocarit
conclude that the system is in a quiescent state.

As mentioned earlier in TLMT&, O) we relax thelM -quiescent requirement and allow
each channel to have its particular (and possibly diffgresiue for M. Therefore, thel/-
quiescent requirement can be seen as imposing the same too@ticchannels.

We start by defining what it means for a state to be quiescahtnespect to a channel
and a particular time bound. Intuitively, the fact that aestia quiescent on a channel with
respect to a particular bound means that all reachablessafter the given bound delaying
are quiescent on that particular channel. More precisalynplementation’s state is con-
sidered);-quiescent, for an output chanryelif and only if all states reachable fromby
delaysd > M; are quiescent.

Definition 4.3.6. Let A = (Q, ", £,7T) be a TLMTSZ, 0) with ¢,¢’ € Q and M =
(My,---, My,)with M; € Dforall j =1,--- ,m be an ordered set of bounds, then
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Figure 4.4: A timed cash machine with blocked channels aigsgance

q is M;-quiescent
Ais Mj-quiescent
A is M-quiescent

V ¢ € (qafter M) :6;(¢)
vV ¢ € Q: qis M;-quiescent
V1<j<m:V qge Q: qis M;j-quiescent

> f> [>

An interpretation of this definition is that for a tester teech for quiescence in channel
J, itis enough to wait a period of time equalid;, for outputs to occur. Note that the set of
boundsM = (M, --- , M,,) is a set with an order, that assig# to channe}.

There are two important principles involved in the previde$inition. We are spending
different times for detecting quiescence for differentruinels and we are assuming that after
the corresponding delay there will not be any spontaneotmiban that channel. The next
corollary and proposition prove that Definition 4.3.6 is bekdfined.

Corollary 4.3.7. Let A = (Q, ¢°, £,T) be aM;-quiescent system in TLM{B O) with
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g € Q, then

I(d)
di(q) ifandonlyif Vic OQ;:VdeD:d<M:q#

Proof.
1(d)
[= [Ifdj(g)thenV i€ O;:VdeD:d<M:q #]
Letd;(qg), then by Definition 4.3.3, 00;-quiescent, we have that for all action

1(d)
I € O; andforalld € D suchthaty % thenforalll € O; and for alld € D with
I(d)
d < M; we haveg # .

1(d)
[« IfYieO;:VdeD:d<M:q # thend;(q)]
BecauseM ;-quiescen(tA) using Definition 4.3.6, of\/;-quiescent, we have

that M ;-quiescen(ty), then again by Definition 4.3.§, ¢’ € (¢ after M;) : W

1(d)
d;(¢"). Now, because for all € O; and for alld € D with d < M; thenq #,
we haved;(q).

O

Proposition 4.3.8. Let A = (Q, ¢", £, T) be aM-quiescent system in TLMTS O) with
g€ Q,andM = (My,--- , M,,), thenvV 1 <j <m:

I(d)
dj(q) ifandonlyif Vic Q;:VdeD:d<M:q#

Proof.

M-quiescentA)
< {Definition 4.3.3
vV 1<j<m:Mj;-quiescentA)
< {Corollary 4.3.%
I(d)

di(g)ifandonlyif Vie O;:VdeD:d<M:q %
O

Example 4.3.9.In the cash machine of Figure 4.4 fovt = {M;, My, M5} with M; = 6,
M, = 5 and M35 = 7 we recognize that statg is M;-quiescent.

4.3.4 The mtiorf conformance relation

Using the M-quiescent property, we can detect quiescence in impletiens by the ab-
sence of outputs in the stipulated period of time per chanfidlerefore, requiringM-
quiescent input-enabled implementations we define therfrdtanformance relation, a re-
lation that is parameterized byt.
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Definition 4.3.10. Let A = (Q, ¢°,£,7) be a TLT$Z, 0) with M = (My,---, M,,),
M; e Dforall j =1,---, m be an ordered set of bounds, then

ttracesy(A) =  ttraces(A(A)) N LkJU(L + vk + M;-0,)*
J

Definition 4.3.11. Let i be aM-quiescent input-enabled implementation in TLNII,®)
and S be a specification in TLTS, O), then
i <My S & ttracesiy (i) C ttracesiy ()

The mtiorf relation considers ttraces extended with therimiation about blocked input
channels and the quiescence in output channels. Morebeeguiescence information on a
channel can only appear after the time’s period stipulaetthé channel bounds. Thera
can only occur aftef/; time units.

4.4 The ultimate model and its conformance relation

All the relations that we considered up to now are built up eforimation based on be-

havioural knowledge of both specifications and implemémnat In this section we define
a relation that uses information (or knowledge) from thecdfmation behaviour and only

observations from the implementation behaviour. In thiy,vear approach became more
desirable in the context of black box testing.

4.4.1 Normalized timed traces

Similarly as in Section 3.4 (from Chapter 3, page 40), we @cfirpractical notation in the
form of normalized timed traces. Normalized timed tracenaled nttraces, are a subset of
ttraces with a particular form; they do not have consecwelays.

Definition 4.4.1. A normalized timed trace is a trace such that

7 € UUD-(L++6)" (e +D)

Definition 4.4.2. Let A(A) = (9, ¢°, £, T) be aTLT$Z, 0), then

a.

nttraces(A) = {oc UUMD-(L+7k +6;)* (e +D) | ¢ >}
kJ

for nttraceso = dy-01-dy -1+ da-a We also writeo = 61 (dp)-v1(dr)- a(dz).

Moreover, the definition of nttraces already assumes thiahgl, a systemin TLTEZ, O),
has its timed transition relation extended with quiescemzkrefusals, implying that
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nttraces(A(A)) = nttraces(A)

Definition 4.4.2 and Definition 3.3.7 (from Chapter 3, pag¢ 3&e one similarity and
one difference. The similarity is that in both definitionsties do not have consecutive de-
lays. The difference is that now we assume the system to dadliextended with quiescence
and refusals.

Example 4.4.3.In the cash machine of Figure 4.4, we observe the nttraceith o =
card(3)-Pin(2)-Err-P(5)-~1(6)-give_card(0).

For consistency, we need to show that by using nttraces weoatesing expressiveness.
Hence, in Theorem 4.4.4, we prove that the inclusion of oésdor two systems and inclu-
sion of ttraces for the corresponding extended systemgjaineagent. As in Chapter 3, given
a ttraces we can always associate it a normalized one, dendtembmbining delays and
adding0 delay if they are necessary.

Theorem 4.4.4.Let A;, A, € TLTSZ, O) , then
ttraces(A(A;)) C ttraces(A(Az)) ifandonlyif nttraces(A;) C nttraces(.As)

Proof.

[= |If ttraces(A(A;)) C ttraces(A(A2)) thennttraces(A;) C nttraces(As)]
Direct using Definition 4.4.2 ofittraces.
[< If nttraces(A;) C nttraces(Asq) thenttraces(A(A;)) C ttraces(A(Asg))]
If o € ttraces(A(A1)), andl € I or I = ;. Then
o1 € ttraces(A;)
= {Definition 4.4.2, adding consecutive times and putfirtignes when
is necessary
-1 € nttraces(A(A,))
= {property ofittraces}
o-1 € nttraces(A;)
= {hypothesi}
ole nttraces(As)
= {property ohttraces}
ole nttraces(A(Az))
= {Definition 4.4.2 and turning back the procedure done béfore
o-1 € ttraces(A(Az))
= {density ofD}
o € ttraces(A(As))
(|

Using this result from now on we do not distinguish betwednaae or its normalization.
Moreover, we can extend Definition 4.3.10 to nttraces.
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Definition 4.4.5. Ano is annttracesy, if o is a nttrace and is an element of

o € UUD-(L+v)+ M;-6;)"(c+D)
kJ

Thus,nttracesﬁ/[ are nttraces, meaning they do not have consecutive deltigasand
for each channel an occurrencedadppears exactly after its particular bound.

Definition 4.4.6. Let A = (Q, ¢°, £,7) be a TLTSZ, O) with M = (My, - -+, My,,), M; €
Dforall j =1,---, m be an ordered set of bounds, then

nttraces®(A) = nttraces(A) NUU(D: (L + v) + M;-6;)* (e + D)
k j

4.4.2 Output set

The observable output set of a given set of st&&sdenotedout ((Q’), is defined as the
union of two sets: the set of output actions enriched wittesgnce, denotesiitf,, and
the set of refusals, denoteait’y .. Thus,out§, is the set of outputs that could happen after
a period of time plus the special symldbl A/;) expressing quiescence on output channel
in case a reachable state affdy is quiescent on channg! Further, the sebut’y, is the set

of refusalsy, (d) for each input channdl that is refused afted time units.

Definition 4.4.7. Let A(A) = (Q,¢°, £,7) be TLT$Z,O) with Q" € Q and M =
(My,---,Mp), M; € Dforall j =1,---,m be an ordered set of bounds, then

outp(Q) £ U outi(¢) U U out,(g)
qeQ’ qeQ’
5J(My)

where outl(q) 2 {i(d) | le 0nq D yuULs(M) | ¢ L)

1(d)
out’y(q) = LkJ{’Yk(d) | Viel: ¢}

An immediate and useful consequence of this definition is $h&LTS(Z, O) has an
nttrace if and only if the observed output setit (, of the system after that nttrace is not
empty.

Corollary 4.4.8. Let A = (Q,¢°,£,7)in TLTSZ, O) with o € nttraces, then
outp(¢" after o) =0 ifandonlyif o & nttraces(q)

Proof.
[« If outr(¢° after o) = () theno ¢ nttraces(q°)]
By contradiction.
Suppose); € O ando € nttraces(¢°), thend ¢’ : ¢* > ¢/, then
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it 31c0,:3deD:q " then

I(d) € outr(q° after o)

1(d

if vieO;:VdeD:¢ ;é)then

§;(M;) € outr(q° after o). Contradiction, then if
out (¢° after o) = () theno & nttraces(q°)

[= If o & nttraces(¢°) thenout r((¢° after o) = (]

Direct from Definition 4.4.7 obut, sets.

O

We also prove that the parameterized mtiorf relation is\ejent to checking the inclu-
sion of observed output set for all nttraces that only hgwafter A/; time units.

Proposition 4.4.9. Let i be a.M-quiescent input-enabled implementation in TLNII.S®)
and .S be a specification in TLTS, O). Then,

i S%iorf S ifandonlyif V o € nttracesi,: out (i after o) C out (S after o)

Proof.
[= Ifi S%iorf S thenY o € nttracesi: outr(i after o) C out (S after o)
Leto € nttracesy,, then
if o & nttracesyy, (1), then
out (i after o) = ()
if o € nttracesy, (i), then
V I(d) € out (i after o)
= {Definition 4.4.%
o - 1(d) € nttracesy (i)
= {hypothesi
o - 1(d) € nttracesi(S)
= {Definition 4.4.%
I(d) € out p(S after o)
[« IfV o € nttraces},: out (i after o) C outu (S after o) theni <)\, - 5]
Leto € nttracesi (i) : o € nttracesy, (i) N nttracesy, then,(A(i) after o) # ()
let I, € 7, then

Faely:l=a(d)AN3 q:qe (A®) aftera)/\q$)\/
(I=(d) AT q: q€ (A(i) after o) A q =)

| € out p (i after o)

= {hypothesi}

l € outp(S after o)

=

out (S after o) # 0

= {Corollary4.4.8}

o € nttracesy ()
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4.4.3 The mtioco,, implementation relation

We are ready to define thmtioco, relation, based solely on information from the observed
output set and the specification. Crucially, the definitioeginot rely on any internal knowl-
edge of the implementation, which complies with out requieet of black box testing.

For i a M-quiescent input-enabled implementation in TLMZSO) and S a specifica-
tion in TLTS(Z, O) theni is mtiocoa correct with respect t§' if and only if the observable
output set ofi, after everyhttraces/%/l of S is a subset of the observable output sef after
the same nttrace.

Definition 4.4.10. Let ¢ be a M-quiescent input-enabled implementation in TLNII,®)
and S be a specification in TLTS, O), then

imtiocor S £V o€ nttracesy, (S): out (i after o) C out (S after o)

Themtiocoy, relation is a parameterized timed relation (with paramétgrthat consid-
ers quiescence for each particular channel. We use thisorel®a build our test derivation
framework over TLT®Z, O).

4.5 Multi timed test generation framework

In this section we define the concept of time multi test cafsether, we detail the nature of
their execution and the evaluation of their verdict: pasiaiture.

A timed multi test caseis a deterministic TLTEZ, O) with actions inl;., (whereLs, e
LU{1,...,0n,71,--.,7vm})Such that it has bounded behaviour, i.e. all computatians h
finitely many action occurrences. The set of states in a tsgams the terminal statgmss
andfail without outgoing transitions, except self loops which et time pass. For any state
different frompass andfail, there exists a bounded time to observe quiescence in aehann
or for being able to perform an input action. Moreover, sitests under consideration are
deterministic,7-transitions are not allowed. #imed multi test suitd is a set of test cases.
Similarly as done in Chapter 3, in order to simplify notativa represent tests as TA. The
difference between multi timed test cases and timed testsscas defined in Chapter 3 (in
Section 3.6, page 45) is precisely the channel and block&adrhents. Now a test is able to
recognize not only quiescence per channels but also a Watdiennel.

Definition 4.5.1. GivenM = (M, - -- , M) with M; € Dforall j = 1,--- , m an ordered
set of bounds to recognize quiescence, then

o Atimed multi test case = (Q, qo, Ls~, 7 ) is a TLTSZ, O) such that
— tis deterministic and halsounded behaviour.e.
IN>0:Voettraces(t):0=hbls---:|{z | , € L}|<

— Q contains the terminal statgsass and fail, with init( pass ) andinit( fail )
without outgoing transitions expect self loops allowingdito pass
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— for any stateq € QO of the test case witly # pass, fail, there existsd in
0<d < max{M,---, M) with

init(q after d’)
init(q after d)

OU{e | e=d—d'}forall d < d,or
{l}withleTorl=d;0rl=ny
foralll <j<mandl <k<n

— t does not have-transitions

The class of test cases ovEandO is denoted by\7ES7 (Z, O)
e Amulti timed test suitél' is a set of test case¥ C M7TEST (Z,0)

For the description of test cases, as before, we use a pralgetgaic behavioural nota-
ton: B £ [; B | B+ B | ¥ B. Wherel € Ls,, Bis a countable set of behaviour
expressions, and the axioms and the inference rules are:

lelL - . BLpB
l=d,d <d - & BYSd—da: B
l=d - . B-%p

B, L Bl 1€ Ly, - Bi+ By B

B, L Bl 1€ Ly, - Bi+B LB
BL B BeBlecLy, + NBLB

A test run of an implementation with a test case is modellethbysynchronous parallel
execution of the test case together with the implementatiater test. This run continues
until no more interactions are possible, except lettingitne pass.

We reuse the definition of run, passes and fails from Chaptéog Definition 3.6.2,
page 46), but we have to adapt the notion of test composttigmis done in the next defini-
tion.

Definition 4.5.2. Let i be a M-quiescent input-enabled implementation in TLNII,®), ¢
be atestinMTEST (Z,0) andT be a test suite included IM7 EST (Z, O) , then

e Runningt with i is modelled by the parallel operator
| : MTEST(Z,0)x TLMTS(l, 0)— TLTS(l, O)
which is defined by the following inference rules. Forlall j < m and1 < k < n:
i 5 oot st
: l
t2 Y e 0 i b
l
L A NN N A R )
l_
|_

i
Ll i——1t] 1

t-vi-Sillel Ll | i
d d

t-Sv i Sl deD t] i -5t || 4
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4.5.1 Test generation procedure

We define a procedure to generate test cases from a giverdextspecificatiom\(S) in
TLTS(Z, O), we call this test generation procedure as MTGP. Again (asefiore chap-
ters) test cases result from the nondeterministic, reaeiggiplication of three test generation

steps:

1. termination
2. inputs and blockingand

3. observation of output§ncluding quiescence).

The set of@’ € Q represents the set of all possible states in which the spatifh can

be at the current stage of the test case execution. Inigilig equal to{ ¢°}.

1. termination

t := pass

The single state test capass. It is possible to stop the recursion at any time using

this step.

2. inputs and blocking

\‘. pass

choosex € [0, Maz{M,---

A ‘ =" fail fail

, My, })andl € I

fail

t:= S{by(dy); tu
{U(k); 1
{I(x); fail
{n(r); t
{'Yk( )a fall
{4, (Mj) fail
X{bl(d)); fail

++++++

by, € ONdy, <KAby(d,) € outp(Q)}
lel A3 qge Q (k) outrm(q)}
lely AN\Vqge Q :vi(k) € outp(q)}
74 (s) € out ()}

Vk(k) & outy(Q)}
M EMAM; <kN6j(M) & outa(Q)}
S O/\b’(d') ¢outM(Q )}
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wherec is a clock,x is a timed constantl/; is the bound to detect quiescence in chan-
nelj, wisin[l, n|, visin[L, n’] andt,, t; andt,, are obtained by recursively applying
the algorithm to( Q' after b,(d,)), (Q after I(x)) and(Q’ after v, (My)), respec-
tively.

The test case is waiting for x time units, and trying to perform an inpuf) (or to
observe a blocking channely). If an output arrives from the implementation, the test
checks whether the output is an invalid response, bgd)) ¢ outy/(Q'); in that
case, the test case terminatedail. If the output is a valid response after the time
passed, then the test case continues recursively. If taedet time pass (i.e. = k)
then the test produces the inpltdr it observe the blocking channel), and contin-
ues recursively.

3. observation of outputs

choose a channgl

[ ]
fail

Y {by(dy); t | by € ONdy < M;Aby(dy) € outp(Q')}
X{6;(M;); ¢ | §; € outp(Q after M;)}

X{6;(M;); fall | §; & outp(Q after M;)}

{6, (sz) fail | M € M A My < M, /\6 (M) & out p(Q')}
{0} (d)); fail | b, € OND, (d') ¢ outM(Q')}

[

+
+
+
+

wherec is a clock,x is a timed constant}/; and ;. are the bounds to detect quies-
cence in channel and;’ respectively;u is in [1, n], v is in [1, ] andt, andts, are
obtained by recursively applying the algorithm(@’ after b, (d,)) and(Q’ after
9;(M;)), respectively.

The test case is waiting for M, time units; if an output arrives from the implementa-
tion it checks whether it is an invalid response, he(d,,) ¢ outy(Q'); in that case,
the test case terminatesfiail. If it is a valid response, the test case continues with test
caset,, generated froniQ’ after b/ (d.)). The observation of quiescence in channel
j (9;) is treated separately, using the constéfit Moreover, the test reports a failure
in case a channel with a smaller bourd;( < ;) shows incorrectly to be quiescent.
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We use case to stop the recursion and bound the behaviour of the test.

Case2 is used for two purposes: either try to test the acceptanaa ofput or try to test
the blocking of an input channel; both trials are done in éigalar time (). Since we need to
wait until this particular time happens, we use this waifpegiod for observations. There are
two kinds of observations: outputs observations and qaigsabservations. For the former,
if we observe an output we check its correctness. For ther]attwe observe quiescence
in a channel whose quiescent observation bound is sma#lardgbr waiting period, then we
check its incorrectness.

There are two possible approaches to check the blocking baarel ;). Firstly, we
can repeat a test for each input in chanhelSecondly, using the input-enabled property
assumed on implementations, we can try to apply any inpat tbannelk and if it is not
accepted we conclude that the channel is blocked.

We use cas8 for the observation of outputs or quiescence. In case we toastserve
quiescence in channg] using thel;-quiescent property, it is enough to wait until; to
recognize it. If no output comes from that channel we corelilndt it is quiescent. On the
other hand, if we want to observe an output from charinelgain using thel/;-quiescent
property, it is enough to wait fa¥/; time units. If no output actions, from changekppears
again we conclude quiescence in chanjnéf an output appears we check it correctness.

Itis possible to recognize that cashas an overlapping with the waiting period from case
2, as follows. Suppose we derive a test using caaad we find out, during the derivation
procedure, that there exists an arrow labelled WjthThis means that the bounid; from
channelj is smaller thatx (the intended time to apply the input) and moreover channel
j should not be quiescent. Thus, if an implementation prosl@ceoutput before, the
intended input will not be applied. Besides, if the impletagion does not produce any
output from channel before/;, we must have found an error and the intended input will
not be applied neither. Hence, if an arrow lebelled wittappears deriving casethen we
know that the intended input will not be applied. Fortungtele can use this knowledge.
Once it is known that there exists an arrow §pderiving case, we could suggest to choose
case3 and wait for outputs on channgl But, because the recognition of this knowledge
could take time, our proposed improvement may only be usdshtch derivation test (that
is, tests that are derived before they are applied).

As a final remark, the construction steps involve negatidngredicates of the form
b(d) € outp(Q') or v, (d) € outa(Q'); which in general for TLT&Z, O) are unde-
cidable. Hence, the procedure given here can be seen as-algetihm which is useful for
generating tests effectively for the subclasses of TZT®) in which these predicates are
decidable; for example TA [38, 39], with sub-partitionintloe input and output sets.

Example 4.5.3. Figure 4.5 shows a test for the cash machine. The test chieakd s not
possible to ask for money before a card is authenticateds iBhilone using cas&for ;.
Then, a card and a Pin are inserted using casfr the inputs card and Pin, respectively.
Subsequently, using ca8ave expect an answer from the machine; if the Pin is correct, we
then ask for an amount of money, using caséth input amount. We expect the answer from
the machine using cask if the answer is positive we wait for the card and the amount o
money. We finally end the recursive procedure of the testoailel.

We suppose that this test will be used with an implementatiahwe know isM-
quiescent with\t = {M;, My, M3} and My > 3, My > 4 and M3 > 5.
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4.6 Completeness

In this section we show that the test generation framework@®@®) presented in Section 4.5.1
is complete with respect to thatioco,, implementation relation. We first recall when an
implementation is sound and exhaustive with respect tortti@co 4.

A set of tests, generated by the MTGP, is sound with respewtitco if for any imple-
mentation that fails a test in the set, the implementatiamdsrrect with respect tmtioco .
Furthermore, a set of tests is exhaustive with respechtioco,, if for every incorrect
implementation a test case can be generated, following th&R] that detects the non-
conformance.

Definition 4.6.1. Let S be a specificationin TLTS, ©). Then for alli a M-quiescent input-
enabled implementation in TLMTE O) and forT the test set of all test cases obtained from
S by the MTGP

T is sound w.r.t. tantioco4
T is exhaustive w.r.t. tmtioco

if V ¢teT:imtiocor S theni passes ¢
if ¢ mtidcor, Sthend ¢t € T : ¢ pagses ¢

L
L

In the proofs of soundness and exhaustiveness we use theaaurationto refer to satu-
rations ofg’s, in nttraces4,. The following definition gives a relation betweettraces, with
¢ in a particular location and a similar one, with@un that location.

Definition 4.6.2. Let A be a system in TLTS, O) with M = (M, --- , M,,), M; € D for
all j =1,---,m be an ordered set of bounds amct nttracesy, (A), then

oisd(M)-saturated = f o’ € nttracesyy(A) : IM; € Mo =o01-1(d) 02 A
L# 65 No' = 0a1:6;(M;)-1(d — M;)-09

A §(M)-saturatedhttracesy, is anttracesy, that does not permit an action to come after
max{ M1, -- -, M,,, } without observing quiescence.

4.6.1 Soundness

The MTGP presented is sound with respeatiioco , testing relation.

Theorem 4.6.3.Let S be a specification in TLTS, O), then for alli a M-quiescent imple-
mentations in TLMT&, O) and for all ¢ a test cases obtained frofby the MTGP

if imtiocor S then i passest

Proof.
Let i be M-quiescent with(i mtioco, S), then we show that for att € nttracesy,(S) and
for all ¢ test cases generated frafrby the MTGP the following holds
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if t|i>t] 4 then ' #fail

Without loss of generality we can assume tha § (M )-saturated. We prove the theorem
by induction over the length of

elfo=candt|i=t| 4
if t was constructed using case 1 in the first step, then
t]li= pass|| i’
if t was constructed using cases 2 or 3 in the first step, then
t = t' # fail and all derivations of> have the form:
tllis>t]| i

a

elfo=0c'-aandt||[iZt"||i" 2t iAa=I1d),
because can doa there are only two possibilities to construétt
from case2: (I € I) or (I = ;) A d < Max{M,---, M}, then
becausgi mtiocop, 5)
if 1 € I, theny,(d) & out o (S after o’), then
tl i3t At # fail
if [ =y, theny;(d) € out (S after ¢'), then
t i3t i At # fail
from case3 for j: (I € O;) or (I =0;) A a € out (¢ after o), then
becauséi mtiocon S): I(d) € out (S after '), and thus
t i3t i’ At # fail

4.6.2 Exhaustiveness

The MTGP is also exhaustive, in the sense that for each nofecaing implementation, a
test case can be generated that detects the non-conformance

Before proving the theorem of exhaustiveness, we establisseful property. For every
specificationS in TLTS(Z, ©) and everys(M)-saturatedr € nttracesy,(S) such that there
exists a test case for (S aftero), then there also exists a test casmich that fromt doing
o itis possible to obtain’. This property is reflected in the next lemma.

Lemma 4.6.4.LetS be a specification in TLTS, O), o € nttracesy, (S) bes(M)-saturated,
andt’ be a test case generated by the MTGP foafter o). Then, there existsa test case
generated frons with ¢ = ¢/,

Proof.
By induction over the length of:

e Let|o| = 0thentakel =t
e Suppose there existdor all o with |o|< n
e Let|o|=nwitho =0’ aanda =1(d)

a

if (I € Iorl=-ry)using case forthe inputl : ¢ LAV

a

if a € out (S after o), using cas@ for channelj (I € 0;) : t LTS
O
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Theorem 4.6.5. Let S be a specification in TLTS, ©). Then for everyi a M-quiescent
implementation in TLMT@&, O) with ¢ mtidcox, S, there existg a test case generated by
the MTGP fromS such that

i pagses t

Proof.
If « mtiocon S then there exists € nttraces4, (S) such that

out (i after o) ¢ out(S after o)

Without loss of generality, we can assume thas J, -saturated. Then, let = I(d)
such thatz € out (i after o)\ out (S after o) andi = i = 4.

e If [ € O, then lett’ be the result of applying casefor j of the procedure tdA(S)
after o), and let¢ be the test case constructed outtbfand o by Lemma 4.6.4.
Because: ¢ out (S after o) then(t || i == fail || i), s0i pagses t

e If | = v; then lett’ be the result of applying cagefor 44, of the procedure t¢A(S)
after o), and lett be the test case constructed outtbfand o by Lemma 4.6.4.
Because: ¢ out (S after o) then(¢ || i == fail || i""), soi pagses t.

O

The exhaustiveness of our test generation procedure,asiynds in Chapter 3, is less
useful than the corresponding result in the untimed caserelThhe repeated execution of
the test generation algorithm in a fair, nondeterministammer, will generate for every error
a test exposing it in finite time. This is not feasible for tkalrtime case, since the number
of potential test cases is uncountable due to the undergamgnuous time domain. It is
possible to recover such limit-completeness by considesunitable equivalent classes of
errors (i.e., an implementation has either all or no errbesgiven class), such that a repeated
test generation procedure will automatically expose aor énrevery equivalence class.

4.7 Relation with tiocoy,

In this section we present the relation betweemtiieco ., and thetioco,, testing relations.
Note that even that thatioco, relation is defined over TLMT&, O) implementations and
TLTS(Z, O) specifications, because TLM{B O) and TLTSZ, O) are TLTS I, O) (where

I'= U I;andO = U 0;)we can defingioco,, over them.
1<k<n 1<j<m

To prove this result we usettracess, as defined in Definition 3.4.2 (from Chapter 3,
page 40) andttracesy, as defined in Definition 4.4.6 (from Chapter 4, page 71). Mogeeo
as follows we define how to transfornmatracess); to anttraces?y.

Definition 4.7.1. Let Abe a TLT$Z, O) with M = (M, --- , M,,) and
M = max(M,- -, M,,), we define the functiof) o : nttraces§; — nttracesy, as
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(>

)

m-U(d)
(M,) 1=6AM,=max(M, -, M)

)
=
<
I
—N
0

Then the only difference betweenc nttraces4; (A) and(o) A4 is in thed-actions.

Lemma 4.7.2. Let A = (Q,¢°, £, 7T) be a TLTSZ, O) with M = (M,,---, M,,) and
M = max(M,--- , M,,), then

if o € nttracesqy (A) then (o) € nttracesy(A)

Proof.
We prove this lemma by induction over the length of & nttraces4; (A).

e Leto = [(d) thenifl # § theno = (o) A« and immediately € nttracesy, (A). If [ =

5 thend = M and there existg € Q such thag® M g andq is M -quiescent. Because
M = max(M,---, My,,), there existd, € (M, ---, M,,) such thatM, = M and
q is M.-quiescent. S@,(M.) € nttracesy(A) and then sincéo) ps = 4. (M. ) we
have(o)am € nttracesy (A).

e Suppose that for allo | < n with o € nttracesqy (A) then(o) s € nttracesy, (A).

e Let|o| = nthenthereexists’ : o = o’-1(d). If [ # ¢ then using hypothesis inductive
is direct that(c) o4 € nttracesy,(A). If I = 6 thend = M, so there existg € Q

such thatg® % g andq is M-quiescent. But sincé/ = max(M;,---, M,,) also

there existsM, € (My,---, M,,) such thatM, = M andgq is M_-quiescent. So
using hypothesis inductiver') v -0, (M, ) € nttracesy(A) and then sincéo) v =

(0") 6. (M,) we have(o) o € nttracesy, (A).

O

Theorem 4.7.3.Let S be a specification in TLTZ, O), i be an input-enabled1-quiescent
implementation in TMLTS, O) and letM = max(Mj,---, M,,) then

if imtiocon S then itiocoy S

Proof.
We prove the theorem proving that for alin nttracessy (S)

if I(d) € outyp (i after o) then I(d) € outy (S after o)

We prove it by induction over the length ef then

o Leto = eandi(d) € outy (i after €), then if[ # o thenl(d) € out (i after
€). So, becausé mtioco, S we know thatl(d) € out(S after ¢), theni(d) €
out (S after €). If [ = § then becaus@/ = max (M, -, M,,) we know that
there exists: such that), (M,) € out (i after €). So using that mtioco,, S we
know thatd,(M,) € out (S after €). But, again sincél/ = max(M,---, M,,)
we haved (M) € outy (S after e).
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e Suppose that for alt with |o] < n, if I(d) € outy (i after o) thenl(d) € out (S
after o).

e let| o | = nandi(d) € outy(i after o), then using Lemma 4.7.2 we know
that (o), € nttracesy (i). If I # 6 thenli(d) € outpr(i after (o)r). SO
becausei mtiocor, S we know thati/(d) € outa (S after (o)) theni(d) €
outy (S after o). If | = ¢ thend(M) € outy (i after o) and becausd/ =
max{M,---, M,,) we know that there exists such that,(M,) € out (i after
(o) m). Now using that mtiocop, S we have thab, (M,) € out o (S after (o) ).
So sinceM = max(M,--- , M,,) we obtain that (M) € out; (S after o).

O

The difference between thatioco, testing relation and th&oco,, testing relation is
that the former relaxes the input-enabled assumption iteimentations and allows different
bounds to detect quiescence per each channel. So the Thdofedrshows that requiring
input-enabledness and the same bound to detect quiesa@radedhannels (the maximum
of all the previous bound) is enough to prove thanéocorcorrect implementation is also
a tiocoj-correct implementation with respect to a given specifarati

4.8 Related work

The work of Heerink [28] is an extension of Tretmai®o testing theory [58] to deal with
channels. In his untimed work, a testing theory is presemdsdd on singular observers; only
one output channel is observed at the time. Li et al. in [43t a similar theory with
an alternative type of observers, called all-observers. dlhobservers can see every output
channels simultaneously. Later in [44] they extend theprapch with queues. However, in
contrast to the work presented here, both approaches acerc@d with untimed systems.

Recently, another approach for the test generation ortiraalsystems was presented [38,
40], as we discussed in Chapter 3. But, their techniquesid@nseither quiescence nor
multiple channels.

4.9 Conclusions

To the best of our knowledge, we propose the first attemptheigee test cases from multi
input-output real-time specifications. More specificablyr contributions are:

e We show how the concept of multi input-output transitionteyss can be applied to
the modeling of real-time systems.

e We develop a new parameterized conformance relation ubm@mriched real-time
multi input-output transition systems: th&ioco,, testing relation.

e We relax theM -quiescent assumption by allowing different bounds foiedént chan-
nels.

¢ \We relax the input-enabled assumption allowing input cledsito be blocked.

e We relate our results with the timed relatittoco without channels.

We are continuing our work along two lines. Firstly, we argdging thdimit-completeness
of our approach, as explained in Section 4.6.2. Secondlgr&&orking on an implementa-
tion of the timed multiple input-output theory as an extensf the TORX tool [10, 12].
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give_
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Figure 4.5: Atest case for the cash machine consideving- 3, My > 4 andMs; > 5
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CHAPTER 5

Semantic coverage in testing

5.1 Introduction

As we anticipated in the first chapter, another interestingction (studied in this chapter) is
to investigate testing coverage. Even though so far we hawsidered extensions of labelled
transition systems with time, to study coverage we starnfregular, unextended labelled
transition systems.

Since testing is inherently incomplete, test selectionitasimportance. Coverage mea-
sures evaluate the quality of a test suite and help the testslect test cases with maximal
impact or minimum cost.

Existing coverage criteria for test suites are usually @efiim terms of syntactic char-
acteristics of the implementation under test or its spetific. Typical black-box coverage
metrics are state and transition coverage of the specdit#tat would be visited by execut-
ing a test suite against it [61, 42, 49]. White-box testingofconsiders the number of state-
ments, conditional branches, and paths through the impltatien code that are touched by
the test suite execution [47, 48, 8]. A disadvantage of §igesctic approach is that different
coverage figures are assigned to systems that are behbvigalvalent, but syntactically
different. The approaches are based on syntactic modeirésati.e. coverage figures are
based on a specific model or program used as a reference. Asaquence, we may get
different coverage results when we replace the model withlmehaviorally equivalent but
syntactically different.

Moreover, those coverage metrics do not take into accoanicertain failures are more
severe than others, and that more testing effort should beteld to uncover the most im-
portant bugs, while less critical system parts can be tdstdthoroughly. In other words,
these approaches fail to account for the non-uniform gyaiitailures, whereas it would be
natural to select test cases in such a way that the mostatitystem parts are tested most
thoroughly.

It is important to realize that the weight of a failure canhetextracted from a purely
behavioural model, as it may depend, in an essential wayhemarticular application of
the implementation. The importance of the same bug may vamngiderably between its
occurrence in a part of an electronic game or in a part of tiérobof a nuclear power plant.

In practice, the exhaustiveness notion is usually probtienmgince exhaustive test suites
will contain infinitely many test cases. This raises the tjoasof test selection, i.e. the
selection of well-chosen, finite test suites that can be igeee (and executed) within the

85
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available resources. Test case selection is naturallieceta a measure of coverage, indicat-
ing how much of the required conformance is tested for a gigshselection. In this way,
coverage measures can assist the tester in choosing testwiils maximal impact against
some optimization criterion, e.g. number of tests, executime, or cost.

Organization of the chapter This chapter introduces a semantic approach for test cgeera
that aims to overcome the two points mentioned above. Ourtdideparture is
the weighted fault model (WFM) that assigns a weight in thecgjration to each
potential error in an implementation. We define our covenagasures relative to
these WFMs. Since WFMs are augmented specifications, owrage framework
qualifies as black-box. Moreover, since WFMs are infinite aetic objects, we need
to represent them finitely if we want to model them or use theralgorithms. We
provide such representations by the fault automata (Sebtid). Fault automata are
rooted iniocotesting theory [58] (recapitulated in Chapter 2), but tipeinciples apply
to a much wider setting.

We provide two ways of deriving WFMs from fault automata, redyrthe finite depth
WFM(Section 5.5) and the discounted WFM(Section 5.6). Ttnecage measures
obtained for these fault automata are invariant under beheal equivalence.

For both weighted fault models, we provide algorithms theltwalate and optimize
test coverage (Section 5.8). In particular, we computettital( absolute and relative)
coverage of a test suite with respect to a WFM. Also, giverselémgthk, we present
an algorithm that finds the test of lengthwith maximal coverage and an algorithm
that finds the shortest test with coverage exceeding a gwegrage bound. Moreover,
in Section 5.9 we apply our theory to the analysis and corapamnf several test suites
derived for a chat protocol. Related work is discussed iniGe&.10 and we end
providing conclusions and suggestions for further redesrS&ection 5.11.

5.2 Coverage measures in weighted fault models

Let L be any set. Theh* denotes the set of all finite sequences dveAs in before chapters
the empty sequence is denotedsgnd| o | denotes the length of a trasec L*. Moreover,
we useL.t = L*\ {e}. Foro, o’ € L*, we say that is aprefixof ¢/, if there exists a trace
" € L* such that’ = o-¢”. On the other hand, if is a prefix ofo’, thens”’ is asuffixof
o. We callo aproper prefixof ' ande’ aproper suffiof o if o is a prefix ofo’, buto # o”.

For any functiory : L — IR=", we use the convention th&€ f(z) =0and ] f(z) = 1.
zed zed

5.2.1 Weighted fault models

A weighted fault model specifies the desired behaviour ostesy by not only providing the
correct system traces, but also giving the severity of thenerous traces. In this section, we
work with a fixed action alphabét.

Definition 5.2.1. A weighted fault modedver L, denoted WFNIL), is a functionf : L* —
R=° such that
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0 < > flo) < o

oeL*

Thus,f a WFM(L) assigns a non-negative error weight to each teaeeL*. If f(o) =
0, theno represents correct system behaviour.f (&) > 0, theno represents incorrect
behaviour and’ (o) denotes the severity of that error. In this way, the highenthlue of
f(o) is the worse the error. We refer to tracess L* with f(o) > 0 aserror tracesand
traces withf (o) = 0 ascorrect tracedn f.

In order to define coverage measures relative to the total eright, we require the total

error weight >~ f(o) to be finite and non-zero.
oeL*

5.2.2 Coverage measures

In this section we abstract from the exact shape of test easbtest suites. Giveha WFM
over the action alphabét we only use that a test is a trace gef, L*. As well, a test suite

is a collection of trace set¥, C P(L*). Then, we define the absolute and relative coverage
with respect tgf of a test and of a test suite. In this way, our coverage messymgly in all
settings where test cases can be characterized as tra¢aseltéch case test suites can be
characterized as collections of trace sets). This is thefoasests in TTCN [25]iocotesting
theory [58] and FSM testing [61, 42].

Definition 5.2.2. Letf : L* — IR=" be a WFML), lett C L* be a set of traces and let
T C P(L*) be a collection of sets of traces, then

[I>

abscov(t, f) > f(o)

et
b Ut
a scov(tGT )

(
abscov(T, f)

totcov(f) £ abscov(L*, f)
relcov(t, f) = %\%
relcov(T,f) = %&I}{)

The coverage of a test suite, with respect tgf, measures the total weight of the errors
that can be detected by testsih The absolute coveragéscov(T, /) simply accumulates
the weights of all error traces ifi. Note that the weight of each trace is counted only once,
since one test case is enough to detect the presence of atracmin an IUT. The relative
coveragerelcov(T, f), yields the error weight i as a fraction of the weight of all traces in
L*. Since absolute (coverage) numbers have meaning onlyifateeput in perspective of a
maximum or average; we advocate that the relative coveriatpsya good indication for the
quality of a test suite.

Completeness of a test suite can easily be expressed in ¢éicugerage.

Definition 5.2.3. Letf : L* — IR=" be a WFML). A test suiteT C P(L*) is complete
with respect tg if
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relcov(T,f) = 1
The following proposition characterizes the complete se#es.
Proposition 5.2.4. Let f be a WFML) and letT C P(L*) be a test suite. Then

T is completew.r.tf ifandonlyif VoeL*:f(oc)>0:3teT:0€t

Proof.

From Definition 5.2.3 we have that is complete forf if and only if relcov(T, f) = 1 =
b T.f) . . . . :

%\(/(f’{) if and only if > f(o) = > f(o) if and only if for all o € L* with

oce Ut ocL*
te™T
f(e) > 0theno € tUTt if and only if for allc € L* with f(o) > 0 there exists a tegte T
S

such that € t.
O

5.3 Test cases in labelled input-output transition sys-
tems

In this section we make use of all definitions from Chapter 8uababelled input-output
transition systems (LTS) and we only extend some of themusec# prepares for the next
section that treats an automaton-based formalism for fyjregWFMs.

5.3.1 Labelled input-output transition systems
Definition 5.3.1. Given A = (Q, ¢°, L, T') a deterministic LTS, we define the input transi-
tion relation, 77, and the output transition relatiori © as

TI
TO

the restriction of'to Q x I x Q
the restriction ofT'to @ x O x @

1> >

Moreover, givend = (Q, ¢°, L, T) a deterministic LTS, we writel'(¢) = {(/,¢) |
(q,1,¢") € T} and similarly forT(q) and T°(q). We denote byutdeg(q) = | T(q)| the
out-degree of state, meaning the number of outgoing transitions;of

We requiredA to be deterministic only for technical simplicity. This ietra real restric-
tion, since we can always determinize In case we incorporate quiescence by adding a self
loop qiq labelled with a special labélto each quiescent stageas in Chapter 2, we should
note that: since quiescence is not preserved under deieatiam, we must first determinize
and then add quiescence.

Example 5.3.2.Figure 5.1 (a) presents a LTS of a cash machine: if the usefaskoney,
the machine should give money. We use this simple cash reachinake simple examples
through all this chapter, later in Section 5.9 we present agreaborated one. In Figure 5.1
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(b), we see the extension with quiescence. Sinsenot enabled in state;, we explicitly
forbid the absence of outputs i, i.e. the machine must give money. As in before chapters,
the double circles represent the initial state.

ask_money? ask_money?

ask_money? ask_money?

give_money! give_money!

Figure 5.1: A LTS specification of a cash machine and its esttarwith quiescence

As follows we introduce some language theoretic conceptsTss.

Definition 5.3.3. Let A = (Q,¢"°, L, T) be a LTSt = @hqb...l,q, be a path in
paths(4), ando € L* be any trace, not necessarily one froimthen

|| 2 |{q| gen}|

last() 2 g,

trace() L2 L.,

reach’j‘(a) 2 {q¢'| 3 wepaths(A): |o| =k Atrace(r) = o Alast(n) = ¢}
reachy(o) = Uy reach” (o)

As before, we leave out the subscribif it is clear from the context.

Then,| 7 | denotes the number of states in the pathnd last of a path denotes the last
state of the path. Witlrace(w) we refer to the actions occurring in the pattand we write
traces(A) = {trace(n) | = € paths(4)} for the set of all traces inl. With reach” (¢) we
denote the set of states that can be reachetdimexactlyk steps by followingr. Moreover,
we writereach” for the set of states that can be reachedl mumber of steps, by following
any tracereach’; = aéJL* reach” (o). Note thatreach” (o) contain as most one state, sinte

is deterministic. Finallyreach 4 (o) is the set of states that can be reached through the trace
o in any number of steps and we writeach 4 = UL reach 4 (o) for the set of all reachable
oelL*

states inA. This definition is only a re-phrasing of thdr set from Definition 2.2.5 (in
Chapter 2, page 14).

Definition 5.3.4. Let A = (Q, ¢°, L, T) be a LTS and; € @ be a state in4, then byA[q]
we denote the LTS such thélq] = (Q, ¢, L, T').
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Thus, A[g] is the same asl, but with ¢ as its initial state. This notation allows us to
speak ofpaths, traces, in A starting from a state that is not the initial state. For insta
paths(A[q]) denotes the set of paths starting from state

5.3.2 Test cases

As we already mentioned, the test cases for LTSs that weaeraie based on thecotesting
theory [58]. Asin TTCNjocotest cases are adaptive. That s, the next action to be peztbr
(observe the IUT, stimulate the IUT or stop the test) may ddpm the test history, that is,
the trace observed so far. If, after a tragehe tester decides to stimulate the IUT with an
inputa?, then the new test history becomes?; in case of an observation, the test accounts
for all possible continuations- b! with ! € O an output action. Thimcotesting theory re-
quires that tests fails fast, because they stop after tloewksy of the first failure, and never
fail immediately after an input. I§ € traces(A), buto-a? ¢ traces(A), then the behaviour
aftero-a? is not specified, leaving room for implementation freedomnfally, a test case
consists of the set of all possible test histories obtainedis way.

For a detailed description of a test we refer the reader t@t@h&. Here we only recall
that givenA4 a LTS a test is a finite, prefix-closed subsetlif such that: ifo-a? € ¢, then
o-a’?7 ¢ tforanya’? € Lwith a # d';if o-b! € ¢, theno-b'! € ¢t forall b'! € O; if
o ¢ traces(A), then no proper suffix of is contained ir.. Moreover, recall that we denote
the set of all tests fordl by TESTS(A). The length of a test, denoted ¢ |, is the length of
the longest trace in, | t| = r{}gfﬂ o|}. We denote byT'ESTS"(A) the set of all tests for

with lengthk.

Example 5.3.5. Figure 5.2 shows two test cases for the cash machine fronrd-igid (b),
represented as trees and augmented with verdicts pass @ntlia prefix closed trace set is
obtained by taking all traces in these trees.

Since each test ol is a set of traces, we can apply Definition 5.2.2 and speakbsifa
lute, total and relative) coverage of a test case (or a tésf) i A, with respect tgf a WFM.
However, not all WFMs are consistent with the interpretatitat traces ofd represent cor-
rect system behaviour, and that tests are "fail fast” andatdail after an input.

Definition 5.3.6. Let A = (Q, ¢°, L, T) be a LTS and lef : L* — IR=° be a WFM. Then
f is consistent withd if L = L4 and for allo € L% we have

o if o € traces(A), thenf (o) = 0 (correct traces have weigli)
e f(o-a?) =0 (no failure occurs after an input)
e if f(0) > Othenf(c-0’) = 0forall o’ € L} (at most one failure per trace)

The following result states that the set containing all fjmesest cases has complete
coverage.

Theorem 5.3.7.Let A = (Q, ¢°, L, T) be a LTS ang be a WFM consistent witd. Then,
the setTESTS(A) of all test cases for is complete with respect o
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test

fail

i |
ask_money? give_money!

pass fail pass

Figure 5.2: Two test cases for the LTS from Figure 5.1, audatewith verdictspass and
fail

Proof.
For all o € L with f(o) > 0, we build a testt € TESTS(A) with o € t. Leto be
oc=1NL-l-...-l,. Then, forl < z < n, we define a sek, by

2 {h...l,_1b|be O} 1,eO

The sett is defined ag = 1<U< X,. Sincef is consistent withA, the sett is a test
zZSsn

in TESTS(A). Clearly, ¢ containss. Now, Proposition 5.2.4 yields thafESTS (A) is
complete forf.
|

5.4 Fault automata

Weighted fault models are infinite semantic objects. Thésise introducegault automata
which provide a syntactic format for specifying WFMs. A faalutomatond is a LTS aug-
mented with a state weight function Then, A is a behavioural specification of the system;
its traces represent the correct system behaviours. Htérass traces will be assigned error
weight0; traces not ind are erroneous and get an error weight throtighs explained below.

Definition 5.4.1. A fault automator{FA) F is a pair (A, r), where4A = (Q, ¢°, L, T) is a
LTS andr : Q x O — IR="is a function such that

r(g,b) >0 = Hq €Q:(q,b,¢)eT
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We denote the components®ty A and r» and leave out the subscripis if it is clear
from the context.

Then we require that if (¢, b!) > 0 then there is n@!-successor of in 7. Moreover,
we extend- to a functionr : Q x L — IR=° by puttingr (g, a?) = 0 for a? € I and define
7:Q —»R>"as

T(q) = Y r(g,b)

beO(q)

Thus,7 accumulates the weight of all the erroneous outputs in a.s¢e# lift all concepts
and notations (e.graces, paths, etc.) that have been defined for LTSs to FA.

Example 5.4.2. Figure 5.3 presents an FA for our cash machine example fraguirgi5.1
(b). We give error weightO if in state ¢y the cash machine gives us money with out asking;
and weight if in state ¢, the cash machine does not gives us money ones we did ask for it.

ask_money?

‘ ask_money?

Figure 5.3: An FA for our cash machine extended with a valueep®r per state

We wish to construct a WFM from theF an FA, usingr to assign weights to traces not
in A. If there is no outgoing!-transition in statey, then the idea is that, for a traeéeending
in ¢, the (incorrect) trace - b! gets weight-(g, b!). Doing so, however, could cause the total
error weighttotcov(f) to be infinite.

We consider two solutions to this problem. Firstly, in findepth WFM(Section 5.5),
for a givenk € N, we only consider faults in traces of lengthor smaller. Secondly, in
discounted WFM(Section 5.6) we obtain finite total coverigeugh discounting, while
considering error weight in all traces. The solutions pnése here are only two potential
solutions, there are many other ways to derive a WFM from H éattomaton.

5.5 Finite depth weighted fault models

As said before, the finite depth model derives a WFM from anfRAor a givenk € N, by
ignoring all traces of length longer th&ni.e. by putting their error weight t0. For all other
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traces, the weight is obtained through the functionf o is a trace ofF ending in the state
q, buto-b! is not a trace irfF, theno - b! gets weightr(q, b!).

Definition 5.5.1. GivenF = (A, r) an FAwithA = (Q, ¢°, L, T) andr : Q x O — IR=".
Then, leti be a number iN, we define the functioff : L* — IR=° by

fEe) £ 0
r(q,b) q€reachz(c) Abe ONz <k
0 otherwise

I
Q
(=

N—

>

This function is uniquely defined becauges deterministic, so that there is at most one
stateq with ¢ € reach’-(c). Also, if fE(o-b) = r(q,b) > 0, theno € traces(F), but
o-b ¢ traces(F).

The following proposition states th#f is a WFM consistent witl#, provided that”
contains at most one state with a positive accumulated waighthat is reachable within
steps.

Proposition 5.5.2.LetF = (A, r) be an FAwithd = (Q, ¢°, L, T) andr : Qx O — R=°.
Letk be anumberitN, then if there is a number < k and a statey in reach’ with7(¢) > 0,
thenfz is a WFM consistent wittF.

Proof.
We have thaff < oo because it is finite anflt > 0 becauseél z < k : 3 ¢ € reach’ :
7(q) > 0. By constructionl, = Lz and for allo € traces(F) : f£(o) = 0.

Now we only need to prove that jf%(c) > 0then forallo’ € LE : fE(o-0’) = 0.
So, becausgt (o) > 0 we know that there exists” such thatr = ¢” -1 and there exists
a stateq’ such thaty” % ¢’ with 7(¢’,1) > 0, this means that then for alf we have that
fE(oa’) =0,

O

Example 5.5.3. Given F the FA from Figure 5.3 and = 3, then Figure 5.4 shows the
functionf£. Using the tests tesaind test presented in Figure 5.2, we obtain
abscov(test, f£) = 5 and abscov(test, f£) = 15. Moreover, if T = {test test} then
abscov(T, f£) = 20.

5.6 Discounted weighted fault models

While finite depth WFMs achieve finite total coverage by cdasing finitely many traces,
discounted WFMs take into account the error weights of altés. To do so, only finitely
many traces may have weight greater thkarior anye > 0. One way to do this is by
discounting: lowering the weight of a trace proportionaitsolength. The rationale behind
this is that errors in the near future are worse than errdrsdffiar future, and hence, the latter
should have lower weights.

In its basic form,f a discounted WFM forF an FA sets the weight of a traee b! to
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give_money! 7 &
ask_money?
@, ()
give_mone & give_money! é
ask_money?® ask_money~
O ) () @
give_money, 5 give_money, 5 give_money 5 give_money, 5
ask_money? ask_money? ask_money? ask_money?
o] [of [o] [o] o] [o] o] [o]

Figure 5.4: Functiorf®, with k = 3, consistent withF from Figure 5.3

alel . r(q, b)), for some discount factar in (0, 1). If we takea small enough, then one can

easily show that>_ f(o) < oo. To be precise, we take < % whered is the branching
oceL*

degree ofF, i.e. d = meag?( {outdeg(¢)}. Indeed, leto - d < 1 and M = max {@}.
q q

Thenf (o) < al°l . M. Since there are at mogt traces of lengtt in 7, it follows that:

M
1—da

Sodb ok M
kEN

S YakMo<

keEN ge Lk

2. f(o)

oeL*

< o0

To obtain more flexibility, we allow the discount to vary peartsition. That is, we work
with a discount functionv : Q x L x Q — IR=" that assigns a positive weight to each
transition of . Then we discount the trade- - - [, obtained from the pathyli¢; ... gx by
algo, i, q1) - a(qr, b, q2) - - - a(qe—1, Ik, &) The requirement that is small enough now
becomes

< 1

2

leL,qg'e@

a(q, 1, q)

for each state.

We can even be more flexible and, in the sum above, do not ramgetates in which all
paths are finite, as in these states we have finite total cggenayway. Thus, ifnf~ is the
set of all states iF with at least one outgoing infinite path, we require for aktesg:

< 1

2

leL,q’€Infr

alq,l,q")

Definition 5.6.1. Let F = (A, r) be an FAwithd = (Q, ¢°, L, T) andr : Q@ x O — IR=".
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Then the seinfx C @ of states with at least one infinite path is defined as

Infr £ {q€ Q|3 e paths(Flg]) : || > [Q[}

The following proposition states that the $ef- is closed under taking the predecessors
of a state.

Proposition 5.6.2.LetF = (A, r) bean FAwithd = (Q, ¢°, L, T) andr : @ x O — IR=",
then

if (¢,1,¢)e TA¢ €lnfr then qelInfe

Proof.

Let(q,!,¢")beinT andq’ € Infx then there exists a pathin paths(F[q]) with |7| > | Q|

then letr’ = ¢l¢’w then|n’| > |7 | > | Q#| A m € paths(F][q]), so by definitiong € Infz.
O

Definition 5.6.3. Let F = (4, ) be an FAwithd = (Q, ¢°, L, T) andr : Q x O — RR=".
Then, adiscount functiorfor F is a functiona : Q x L x Q — IR=? such that

e forall ¢, ¢’ € Q,andl € L we have

a(g,1,4') =0
e forall ¢ € @, we have

(¢,0,4)¢T

> oalgld) < 1

IEL,q’ Enfr

Definition 5.6.4. Leta be a discount function faF = (A, r) an FAwithA = (Q, ¢°, L, T)
andr: Q x O — R=". Letr = ¢l ... ¢, be a path inpaths(F), then

n

am) £ I (g1, 2)

z=1

Definition 5.6.5. Let F = (A, r) be an FAwithd = (Q,¢°, L, T), 7 : Q x O — IR=",
¢ € @ anda a discount function foF. We define the functiofg : L* — R=" by

fRe) £ 0
fo(ob) 2 a(r)-r(q,b) q€reachz(c) ANbe O Atrace(rr) =0
F\7 0 otherwise

SinceF is deterministic, there is at most omewith trace(r) = o and at most one
q € reach(c). Hence, the function above is uniquely defined.

The following proposition states thaf is a WFM consistent witl#, provided thatF
contains as most one reachable state with a positive acateadubeight.
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Proposition 5.6.6. Let F = (A, r) be an FAwithA = (Q,¢°, L, T), 7 : Q@ x O — R=",
anda be a discount function faf. If there is a statey € reachs with 7(¢) > 0, thenfg is
a WFM consistent witlf.

Proof.

We have thaff < cobecause )  a(q,l,¢') < landfg > 0becausé ¢ € reachs :
leL,q'€lnfx

7(g) > 0. By construction = L. Now we need to show that for all ¢’ € traces(F) :

f#(o) = 0. Leto = o’-1 then exists a path such thatrace(r) = ¢’. So, there exists a state

g € Qsuchthay® % ¢, ¢ 4 ¢ andr(q,1) = 0 thenfg (o) = 0.

To prove that iff2 (o) > O thenforalle’ € Lt : f2(o-0’) = 0. So, becausgg (o) > 0
we know that there does not exists a pathwith trace(n) = ¢ ando in traces(F) then
ff(o0') =0,

O

Example 5.6.7.Figure 5.5 presents the functigig for 7 from Figure 5.3 withn (¢, 1, ¢) =
~ for every transition(q, [, ¢’) € T. Using the testg; and ¢, presented in Figure 5.2,
we obtainabscov(test, /&) = +5 and abscov(test, f£) = 10 4+ +?5. Moreover, ifT =
{test test} thenabscov(T, f2) = 10 + 5 + 5.

O

give_money! 5
ask_money?
(J @,
give_money! é give_money! &
ask_money? ask_money?
® O ® O

give_mone &  give_mone! 5 give_mone &  give_mone! 5
ask_money? ask_money? ask_money? ask_money

o] O OO0 O[] O O [e]re] O O
N /N /N AN |

Figure 5.5: Functiorfg for F from Figure 5.3 wit(q, 1, ¢') = v
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5.7 Properties

5.7.1 Calibration of the discount function

Discounting weighs errors in short traces more than in loages. Thus, if we discount too
much, we may obtain very high test coverage just with a fewtshet cases. The calibration
result (Theorem 5.7.2) presented in this section showsftitedny FAF, any given lengttk
ande > 0, there exists a discount functiensuch that the relative coverage of all test cases
of lengthk or shorter is less than This means that by choosing the rightve can always
make the contribution of short tests (i.e. smaller than therg:) arbitrarily small (i.e.< ¢).

For technical reasons, the weight assignment function dffahave to be fair, i.e. all
states innf must be able to reach some state with a positive weight.

Definition 5.7.1. LetF = (A, r) be an FAwithd = (Q, ¢°, L, T) andr : Q x O — IR=",
thenF has afair weight assignmerit

V g€ lnfr:3 ¢ €reachyrpy :7(¢') >0

Theorem 5.7.2.LetF = (A, r) be an FAwithd = (Q, ¢°, L, T), r: Q x O — R=’, and
a fair weight assignment. Then there exists a family of distéunctions{a. } ¢ o,1) for 7
such that for allk € N

lim relcov(TESTS" (fz), fz) = 0
The prove of this theorem follows from the next propositiand definitions.

Definition 5.7.3. GivenF = (A, r) an FAwith4 = (Q, ¢°, L, T),r: @ x O — IR=’, and
anumbete € (0,1). We define a discount functien : @ x L x @ — (0,1) as

1—
% (¢.1,¢) € TAq €lnfr

>0 (1,4 )€ TN &Infe
0 otherwise

L

ac(g, 1, q)
Here OutInf(q) = {(l,¢') € T(q) | ¢’ € Infx}. We usually writed. to denote thed“«
matrix.

Definition 5.7.4. GivenF = (A, r) an FAwithA = (Q,¢°, L, T) andr : Q x O — R=",
we define the vectdr; indexed byy € @ as

N 1 qelnfg
Lini(q) = {0 otherwise

Proposition 5.7.5. 1, is an eigenvector ofl . with eigenvalud — ¢,
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Ac- Ly = (1 - 5) “ Lint

Proof.
Firstly, we consider; € Infx, then

(Ae-Lint)qg = : Q(Ae)qq’ “1int(q")
= Z (Ae)qq’

q’'€Infx

= > > alelq)

g’enfr IEL

= X Touint
(1.geOutInf (g | =M (@)

— | outinf(q) | '|o|v(&l_n€)(q>|

= 1—¢

Forgq € Q/Infz we get, using Proposition 5.6.2

(Ae-Linf)g = 22 (Ac)ge - Lini(q')
7'eQ
= Z (Ae)qq’
q’€lnf
= Z Z ae(qa lv q/)
q’€Inf €L
= > 20
q’€Inf €L
= 0
O
Corollary5.7.6. (A)" Lt = (1—¢€)" i
Proof.
Direct using induction over.
O

Proposition 5.7.7. Let F = (A, r) be an FAwithd = (Q, ¢°, L, T), r : Q@ x O — IR=",
and a fair weight assignmentthen for every; € Infx

Q-1

(> Aj-?)q > 0

2=0

Proof.
Note that(A?),,, > 0 implies thatg’ can be reached fromin z transitions. AsF is based
on an FA every state is at mos{ @ | —1 transitions removed any of the staigshat can be

Q-1
reached from it, so that there is an< |Q | with (A7)qq > 0. Hence( 3 AZ) > 0for
2=0
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any pair of suchy, ¢/ € Q. By the definition of fair weight assignment all staiges Infx
can reach ag’ € Q with 7(¢’) > 0. Thus we get

Q-1 _ Q-1 _,
(X Ai'r)q = X 2 (Ade T(d) > 0
z=0 q'eQ z=0

O

Now we are ready to show that the family of discounted fumatifv. }.<(0,1) has the
desired properties.

Proposition 5.7.8. Let F = (A, r) be an FA withd = (Q, ¢°, L, T), r : Q@ x O — IR=",
and a fair weight assignment. Then for everg Infx

lim  relcov(TESTS x(fz*), 2y =0

Proof.
Recall that

abscov(TESTS i (f7°)./7°)
totcov(f7¢)

relcov( TESTSk(f£), f7°) =
As abscov(TESTS ; (f5<), f5<) is always finite, it suffices to show that
ll_rg% totcov(fr?) = o0

This can be shown as follows. Let

Q-1
Tmin = min ( Z Af ' T)q’
q’ E€Inf 2=0

Then Proposition 5.7.7 yields that;, > 0. Moreover, we have for alf € @ that

Q-1
(2 A2-Tg = Twmin- Lini(4)
2=0

Therefore,

o]

totcov(fpe) = (zz::() Aﬁ-?)q
. Q-1
BN T
=0 2=0 q

2 Tmin-* (Z AJE‘Q‘ : 1Inf)
=0

- (f (1—eplel 1)

=0

q

q

Tmin

=gl

AS rmin > 0 andl — (1 — €)I9l is of the ordeiO(¢), we get
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lim(iAj-T) = o

=0 "2=0 q

5.7.2 Invariance under bisimilarities

It is not difficult to see that our coverage notions are tr@gnantic in that they are invariant
underr-preserving bisimilarity, and-preserving bisimilarity.

Definition 5.7.9. Let F = (A, r) be an FAwithd = (Q, ¢°, L, T), r: Q x O — IR=", and
let R C @ x @ be an equivalence relation on the state spac& oThenR is a r-preserving
bisimulation onF if for all (¢, ¢') € R, I € L, we have

o if ¢ 5 ¢, then there is a transitio’ - ¢/ with (g1, q}) € R
o forallb e O:7(q,b) =r(q,0b)

Theorem 5.7.10.Let F = (A, r) be an FAwithd = (Q,¢°, L, T), r: Q x O — R=°, R
be ar-preserving bisimulation off and(q, ¢’) € R, then for allk

fFg = Ao

Proof.

We prove thafy, , (0-b) = f£,(0-b). Letf£ i(o-b) = r(qi, b) then using Definition 5.5.1

we know thatg; € reachfﬁ[ ](0) A b € O then becaus® is anr-preserving bisimulation
q

onF then3 ¢] € reachf}[ l](a) such that(¢1, ¢;) € R and moreover fob € O we have
q

f]’_i[q,] (o-b) = r(qy,b). Now, again becausgy, ¢;) € R we know thatr(q1, b) = r(q{, b).

S0, f£141(0-b) = [£,(0-0).
O

Definition 5.7.11.LetF = (A, r) bean FAwithd = (Q, ¢°, L, T), r : Qx O — R=", and
let R C @ x @ be an equivalence relation on the state spac& oThenR is aa-preserving
bisimulation onF if for all (¢, ¢') € R, I € L, we have

e if ¢ -5 ¢ then there is a transition’ -5 ¢/ with (g1, ¢}) € R
e forallle L:a(q,l,q)=oalqd,1,q)

Theorem 5.7.12.Let F = (A, r) be an FAwithd = (Q,¢°, L, T), 7 : @ x O — R=% R
be ar-preserving bisimulation and-preserving bisimulation otf. Then,

if (¢,¢)€ R then fﬁ[q] = fﬁ[q,]
Proof.

We prove thafz, (o-b) = fz,,(0-b). Letfz (c-b) = a(m)-r(q, b) then using Defini-
tion 5.6.5 we know that; € reachye (6) AN'b € O Atrace(m) = o then becaus® is an
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r-preserving bisimulation ot then3 ¢; € reachf;m (c) A3 7’ : trace(rw) = ¢’ such that
(@1, 1) € R and moreover fob € O we havefg| ,(c-b) = a(n’)-r(q;, b). Now, again
becausé i, ¢;) € R using thatR is a-preserving bisimulation otf thena(w) = a(n’).

O

5.7.3 More weighted fault models from fault automata

We like to stress that the finite depth and discounted modelgiat two examples for deriv-
ing WFMs from fault automata, but there are many more pdgs#isi For instance, one may
combine the two and do not discount the weights of tracesraftieless than somk, and
only discount traces longer thdn Alternatively, one may let the discount factor depend on
the length of the trace. We claim that the methods and alguostwe present in this chapter
can easily be adapted for WFMs with such variations.

5.8 Algorithms to compute and optimize coverage

This section presents various algorithms for computing@gtémizing coverage for a given
FA, interpreted under the finite depth or discounted weigtigailt model. In particular,
Section 5.8.1 presents algorithms to calculate the alesobuterage in a test suite of a given
FA. In Section 5.8.2 we give algorithms that yield the totaVerage in a weighted fault
model derived from a FA. Section 5.8.4 provides three ogiation algorithms for tests with
lengthk. The first one finds a test case with maximal coverage; thenskeaoe finds the:
test cases with maximal coverage; and the third one finds aués withn test cases with
maximal coverage, i.e. the bestest cases with minimum overlap.

We use the following notation. Recall thafq] denotes the FA that is the sameZasbut
with ¢ as initial state. Whet¥ is clear from the context, we write respectivéjﬁ/ andf>
for the weighted fault modelﬁf’C d andf]‘?[q] derived fromF. Moreover, givenF = (A, r)
an FA, we writeA » for the muiti-adjacency matrix ofl. That is, A contains at position
(g, ¢') the number of edges betweemnd¢’, then

(AF)qq = > 1

I:(q,l,¢")ET

If ais a discount function fofF, then A% is a weighted version ofl 7, then

(A%-‘)qq’ = Za(% [ ql)

leL

We omit the subscripf if it is clear from the context.

5.8.1 Absolute coverage in a test suite

GivenT atest suite, atF = (A, r) an FAwithA = (Q,¢°, L, T), 7 : @ x O — R=", and
either a discounting function for F or a numbet, we desire to compute
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abscov(T,f) = abscov(tht,f)

wheref = f£ or f2.

Given two testg andt’ and an actiord, we write!l-¢ for {{-c | o € t} andt + ¢ for the
uniont U ¢’. We call a super-test the union of any number of tests.

Now, we can write each test as= ¢; or t = [-¢; in casea is an input; ort = by -t; +
-+ b,-t, whenby,--- , b, are all output actions of. Each super-test can be written as
a -ty + -+ am-t), + bt +--- + by, -t wherea, are inputs and; are all outputs and
t., t; are super-tests.

To compute the unionUTt, we recursively merge all tests iR into a super-test using
te
the infix operator, then we add the error weights of all traces%limTt via the functionac
€
defined below.

Tests merge  Lett = ay-t{ + -+ @ -8, + b1-t{ +--- + b, -t/ be a super-test and
beatest. Them=cort=a-t; ort = by-t{ +--- + b, -t/,. Then, we define

at] + e (G Wh) + - tapty, + it + bty t=ah Na=g

Wt =< art] + - tamt,, + b (¢ W)+ +b, () Wty t=bit] + - +bnt),
t'+t otherwise

Absolute coverage in a super-test Given a super-tegtof 7 and a statg on F, then

ac(e,q) = 0
ac(t,q) = > aux(ly-tsq)
z=1
_ [ alg,L,6(q, k) - ac(tz, 6(q, L)) L€ 5(q)
where aux(l.-t.,q) = {r(lz,q) otherwise

The correctness of this algorithm is stated in the followtimgorem.

Theorem 5.8.1.GivenF = (A, r) an FAwithA = (Q,¢°, L, T), 7 : Q@ x O — R=’%, a
stateq € @, anumberk € N, afunctiona : Q x L x @ — [0,1] andT atest suite, then

e if a is a discount function fof thenabscov(T, f;*) = ac(&T, q)
o if k> max |t]anda(q, !, ¢') = 1 for all transitions(q, [, ¢’) in F, then
(S

abscov(T, fF) = ac(&T, q)

Where we writed{t, ta, ... ¢, } meaningt; W io W ... t,.
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5.8.2 Total coverage
Total coverage in discounted FA GivenF = (A,r) an FAwithA = (Q, ¢°, L, T),
r:Qx 0 — R=° astatey € Q and a discounting functiom for F, we desire to calculate

totcov(fy) = > f(o)

oeL*

We assume that from each statefirve can reach at least one error state, then
Vge Q:3q €reachry :7(g) >0

In this way, f,* is a WFM for every state.
The basic idea behind the computation method is that theiibme: : @ — [0, 1] (for
the total coverage) given hy— totcov(f,*) satisfies the following set of equations:

tc(qg) = T+ > algld) te(d) = T(g)+ Y} Ag, -te(d)
leL,q'€Q 7'eqQ

These equations express that the total coverage in gtatgials the weight(¢) of all

immediate errors i, plus the weights in all successaysn ¢, discounted byd " a(q, I, ¢').
€L
The following proposition gives an alternative recursibai@cterization of-.

Proposition 5.8.2. Let F = (A, r) be an FAwithd = (Q, ¢°, L, T), r : Q@ x O — IR=",
anda be a discount function faf, then

> algld) fi(o) 1€ T(q)

« q'eQ
fo) = r(q,1) lg T No=¢
0 otherwise

wherel € T'(q) means that there existg such that(/, ¢’) € T'(q).

Proposition 5.8.3. Let F = (A, r) be an FAwithd = (Q, ¢°, L, T), r : Q x O — IR=",
and a be a discount function fo#. Then the functionc : @ — [0,1], ¢ — totcov(f;")
satisfies the following set of equations

tc(q) = T+ > algl,q) tc(q)
leL,g'e@
Proof.
tc(q) = ;L*fqa(a)

= e+ X 0+ > o+ 3 f@lo)

I¢T(q) 1¢T(q),0€L™ leT(q),0€L"
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(Proposition 5.8.2)

= 0+ > r(g,)+0+ > a(g,l,q") - f2(0)
€T (q) 1€T(q),q'€Q,0€L*
= T+ X alglq) tc(q)
leL,q'eQ

Using matrix-vector notation, we obtain
tc = T+ A% -tc
The next Proposition 5.8.4 states that the matrix A is invertible.

Proposition 5.8.4. Let F = (A, r) be an FA withd = (Q, ¢°, L, T), r : Q x O — IR=",
such that for all stateg € @ there is a state;’ € reach ;) With 7(¢q) > 0. Leta be a
discount function fofF. Then, the matri¥ — A¢ is invertible.

Proof.

By reordering the states we can obthifi- = {q1, ..., ¢, } and

VE\INTE = {Gny 415 -+ -y Gny+ny } With ny + no = n = |Q4. Without loss of generality we
may therefore assume that" is of the form

B C
0 D
with B then; x n; matrix that is the restriction of® to Inf£, andD is the restriction ofA“

to Vz\Infz. It follows that/(,,y — A* is invertible if and only iff,, y — B and/,,) — D are
invertible.

We first show that| B - v||- < ||v]| for all v # 0, where||v||.c = max{v,} denotes

the supremum norm af.
Assumev # 0 and consider the componentB - v),, of the vectorB - v

(B-v): = X By-vy
jsm
< X Byl
jsm
— Jole: S alzaj) (Definition5.6.3)

(j,a)eOutInf(z)

[[olo

A

Hence,||B - v]|oo < ||v||0o. ThereforeB - v # v, so(I — B) - v # 0 for v # 0, which
yields that/ — B is invertible.

Without loss of generality we can also assume that the stetes been numbered such
that for z,7 € Qr\Infr (2,1,5) € 6 impliesz < j. It follows thatD,; = 0 for all
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l1<j<z<mngandthatl — D), =0foralll <j <z < ngwith (I — D),, = 1forall
1 < z < ng. We can conclude that ddt— D) = 1 # 0, and thus thal — D is invertible.
O

Theorem 5.8.5.LetF = (A, r) be an FAwithd = (Q, ¢°, L, T), r : Q@ x O — IR=, such
that for all ¢ € @ there exists a statg’ < reach [, with 7(¢") > 0, and leto be a discount
function forF, then

tc = (I—AY"1.7

The time complexity of the method above is dominated by matsiersion, which can
be computed ir0(|Q|*) with Gaussian elimination, i (|Q|!°%2") with Strassen’s method.

Example 5.8.6.GivenF the FA from Figure 5.3 and a discount function= {(qo, 9, o, %),
(q0,ask-money?q:, 3), (¢1,askmoney?q, 1), (¢1, give_money! ¢, 5)}, then

te(@) = 7T(9) + (9,9, q) - te(g) +  a(qo,ask-money?q) - tc(q1)
= T(q)+ a(q,givemoney! ) - tc(q) + g, ask-money?q) - tc(q1)

In matrix notation:

tc = T4 (A% tc)
tc—(A%-tc) = T
(I—-A%)-tc = T

tc = ([—-AY~t.7

11 11 45 10
5 3 5 3 26 13
Ao = , 1A% = , (- A=
11 103 15 24
2 4 2 4 26 13

andT as the one given in Figure 5.3 = [10, 5], we obtaintc = 21.15384616.

Total coverage in finite depth FA GivenF = (A,r) an FAwithA = (Q,¢", L, T),
r:Q x 0 —IR=" astatey € Q and a deptht € N, we desire to compute

totcov(fF) = Y fF(o)

ocL*

We assume that from each state, there is at least one erobiafgla ink steps,

Vge Q:3q¢ € reach]}_[q] :7(q') >0
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This makes that) is a weighted fault model for any.
The basic idea behind the computation method is that theibmic;, : @ — [0, 1] given
by ¢ — totcov(qu) satisfies the following recursive equations:

tCQ(q) = 0
teer1(q) = T+ Y ta(d)
(a,q")€T(q)
= T(g)+ > Agg-ta(d)
a€Ll,q’€Q

The following proposition gives an alternative recursiveacterization of *; it is the
analogon in the finite depth model from Proposition 5.8.2.

Proposition 5.8.7. Let F = (A, r) be an FAwithA = (Q,¢°, L, T), 7 : Q@ x O — R=",
andk € N be a number, then

fE o) 1eT(@ Ao <k

k _ q':(1,q¢")E€T(q)
loo) =3 r(q.1) ¢ T(q)ho=c
0 otherwise

Proposition 5.8.8. Let F = (A, r) be an FAwithd = (Q, ¢°, L, T), r : Q@ x O — IR=",
and a a discount function foc. Then the functionc;, : @ — [0,1], ¢ — totcov(f;")
satisfies the following set of equations

ten(q) = T+ Y tee-1(q)
(L,a")eT(q)

Proof.
As the proof of Proposition 5.8.3.
In matrix-vector notation, we have

tco = 0
tCh41 = T+ A - tey

Theorem 5.8.9.Let F = (A, r) be an FAwithA = (Q,¢°, L, T), 7 : Q x O — R=’, and
for all stateq € Q existsq’ € reach’jf[q] such thatF(¢’) > 0. Let ¢ be a state inQ) andk be
in N, then

Note that for a state in an arbitrary 7, there exists a statg¢ € reach]}_[q] with7(¢’) > 0'if
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k—1
and only if (3 A% -7) > 0.
z=0

Using Theorem 5.8.9 with sparse matrix multiplication, @rating the equations just
above it,tc;, can be computed in tim@ (k- |T'| + |Q |).

Example 5.8.10.GivenF the FA from Figure 5.3 and = 2 the matrixA4, becomes
1 1 10 1 1 10
A = [11} and tc, = {5]+[11}-[5]
Then, we calculatec;, = 25.

A similar method to the one above can be used to compute tlghtwadi all tests of length
k in the discounted weighted fault modebscov(T*, /), whereT* is the set of all tests of
lengthk in F.

Writing tedy(q) = abscov(Tk,fqo‘) (for the total coverage discounted), the recursive
equations become

tedo(q) = 0
tedpy1(q) = T(g)+ > tedi(q)
leL,qg’€Q
= T(g+ > A, -tedi(q)
leL,qg’eQ

and the analogon of Theorem 5.8.9 becomes:

ted, = kz:::(Aa)z T
(1 A2yt (1= (amyby 7

The latter equality holds becauge- A is invertible.

The computing ofted;, requires one matrix inversion and, using the power method,
log, (k) matrix multiplications, we have time complexity equal®g|Q |82 7 + |Q |'°#2(F))
with Strassen’s method. (T — A%) can be put in diagonal form, the problem can be solved
in O(|Q | + log, n). These tricks cannot be applied in the finite depth modebhbse — A
is not invertible; sinced has row suni, we have for the vectar whose entries are all equal
tolthatA -1 = 1. Hencel isinthe kernel off — A4, sol — A is not invertible.

Example 5.8.11. Given F our FA from Figure 5.3,k = 2, matrix A%, matrix I — A%,
(I — A*)~1 and(A®)* are equal to
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11 4 1
5 3 5 3
A« - [— A®
11 103
L 2 4 2 4
45 10 31 3
26 13 150 20
(1A~ = (A*)*
152 9 1
L 26 13 40 48

Here, we calculatécd;, = 13.66666667.

5.8.3 Relative coverage

Combining the algorithms for computing total and absoluestage from the previous sec-
abscov(T,f)

tions, we can compute easitglcov(T, f) = totcov(/)

f=1

for a test suitél" andf = fJ or

5.8.4 Optimization

Optimal coverage in a test case GivenF = (A,r)an FAwithA = (Q, ¢°, L, T),
r: Q x O — IR=° andk alength, we compute the best test case with legtte. the test
with highest coverage. We treat the finite depth and dis@slintodel at once by fixing, in
the finite depth model

/ _ 1 (Q7la q/) €T
a(g,l,¢) = {o otherwise

We call this function an extended discount functiafit is a discount function or it is
obtained from a finite depth model.
The optimization method is again based on recursive equatiée write

acopt,(q) = max
te TESTS*

{abscov(t, f;*)}

for the optimal absolute coverage. To understand the rieucharacterization odcopt,,,
we consider two situations. Firstly, we consider a test ecddengthk + 1 that in stateg
applies an input? and in the successor stajéapplies the optimal test of length The
(absolute) coverage of this test casexig, a?, ¢') - acopt,(¢'). The best coverage that we
can obtain by stimulating the IUT is given by

max «a(q,a?, q') - acopt, (¢
s ) (d)

Secondly, we consider the test case of lerigthl that in state; observes the IUT and in
each successor stajeapplies the optimal test of length The coverage of this test case is
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7(q) + > alg, b, q) - acopty(q')
(b,¢")€TO(q)

Now, the optimal test.copt(q) of lengthk + 1 is obtained fromucopt,, by selecting from
these options (i.e. inputing an actiefl or observing) the one with the highest coverage.

Proposition 5.8.12.Let F = (A, r) be an FAwithA = (Q, ¢°, L, T), r : Q@ x O — IR=",
and leta be a discount function faF andk € N

1. Letq be a state, leta?, ¢') € T'(q), and lett’ be a test case in states. We writet
for the test case = {a?-0 | o € t'}. Then

abscov(t,f;Y) = alq,a, q)- abscov(t’,fqof)

abscov(t, fF) = abscov(t’,qufl) [t <k+1

2. Letq be a state andl'®(q) = {(b1!, q1), (b2!, g2) ... (bn!, ¢)}, where allb,! are
different. Also, writeO\{b1,...b,} = {c1, ca,... cm}. Letty, ta, ... t, be test cases
in statesg; ... g, respectively. Writet for the test caseé = {b.!"0 | ¢ € t,} U
{c1,¢2,...¢m}. Then

abscov(t,f*) = T(q)+ 22 a(q bz, ¢z) - abscov(tz, f3')
z=1

abscov(t,fF) = T(q)+ X abscov(t,, fF) [t|<k+1
z=1

Proof.
We give the proof for®; the one forqu is similar.

L. abscov(t, fy) = > f(o)

oct
= > fM(ad) (Proposition 5.8.2)
o’ et’!

= X algaq) ()
o'et’
= O[(qa a, q/) ' abscov(t’,fqo,‘)

2. abscov(t,ft) = > fX(o)

oct

= > fqa(0)+§n: > f(bs-a’) (Proposition 5.8.2)
)

c€T(q z=1 o'€t,

= T(q) + 21 > alg, b, qz) - f2(0")
z=1 o’'€t,
= 7(q)+ X alg, bz, ¢z) - abscov(t, fi¥)

z=1

O

Thus, we obtain the following result, which follows from pieus Proposition 5.8.12.
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Theorem 5.8.13.Let F = (A, r) be an FAwithA = (Q,¢°, L, T), 7 : Q x O — IR=°,
« be an extended discount function, aind= N be a test length. Thescopt,, satisfies the
following recursive equations

acopty(q) = 0
acoptya(a) = wax(T(@)+ X alg,bl ') acoply(q),
(b!,q")ETC(q)

max  «fq, a?,q") - acopt q’)
s ) (4

Based on Theorem 5.8.13, we can compui@t,, in time O(k(|Q| + | T'])).

Shortest test case with high coverage We can use the above method not only to com-
pute the test case of a fixed lendthvith optimal coverage, but also to derive the shortest test
case with coverage higher than a given bountiVe iterate the equations in Theorem 5.8.13
and stop as soon as we achieve coverage higherthian at the first with acopt,, (¢) > &.

We have to take care that the bound not too high, i.e. higher than what is achievable
with a single test case. In the finite depth model, this is edghe test length is the same
ask then we can stop, since this is the longest test we can haube ldiscounted model,
however, we have to ensure thats strictly smaller than the supremum of the coverage of
all tests in single test case.

Letmw(q) = supp {abscov(t,q)}, i.e. the maximal absolute weight of a single test

te TESTS

case. Themw is again characterized by a set of equations.

Theorem 5.8.14.Let F = (A, r) be an FAwithAd = (Q,¢°, L, T), 7 : Q x O — R=7,
and« be a discount function faf. Thenmw is the unique solution of the following set of
equations

mw(q) =

max | 7(q) + a(g, b, q") - mw(q), max
< o (b!,q/)zG:T“(Q) ( : ) (a%.q)€T"(9)

a(q,a?,q')- mW(fJ’))

The solution of these equations can be found by linear progriag (LP).

Theorem 5.8.15.Let F = (A, r) be an FAwithAd = (Q,¢°, L, T), 7 : Q x O — R=7,
anda be a discount function. Thenw is the optimal solution of the following LP problem :
minimize _ mw(q) subject to

q€EQ
mw(q) > a(g, a?, ¢') - mw(q’) (a?,¢') € T'(q)
mw(g) >r(g)+ Y algbld) mw(q) 7€ Q

(b1,a")€TO(q)

The above LP problem contaif@@ | variables and@ | + | 7/| inequalities. Thus, solving
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this problem is polynomial inQ|, |Q| + | 7| and the length of the binary encoding of the
coefficients [57].

Optimal coverage in n testcases  The first algorithm in this section for computing the
best test case of lengthcan be extended to a method for computing the hésst cases with
optimal coverage: the previous algorithm picks the bestdase with lengttk. To pick the
second best test case, we apply the same procedure, exaeptetlexclude the first choice
from all possible options; for the third best choice, we axel the previous two, and so on.

Optimal coverage in a test suite (with  n test cases) Differently from the previous
algorithm where the: chosen tests may overlap, we now present an algorithm to eemp
the best coverage in a test suite withtests. In this test suite, we avoid test overlapping.
Avoiding overlapping after we combined the tests in a supsrwe obtain the test suite with
optimal coverage. The idea is the following, we write

acopt(q) = tl,t2,..,TLa€X7r"]ESTS"'{abSCOV(TESTS’ q)}

for the ordered lisfly, s, . . . 1,], wherel, is the coverage of the" best test of length. We
characterizecopt} recursively. To do this we start dividing our reasoning i tsets: a test
suite for inputs and a test suite for outputs, and later webtoethem.

Assume the input actions arg, as, . . . a,,. Let T be a test suite started in statesuch
thatt = {a:-T1, -, an-Ts}. To cOmputeacopt}(g) of the test suitél’ we assume that
there exists the set of best test cases that start gn: acopt}_,(¢.) forall0 < z < m
(whereg, is the state reachable frosrafter the input actior,). Then, letacopt}_, (g¢.) be
equal to[l], 15, ... I!] wherel] is the optimal coverage of a test startedjinZ} is the second
optimal coverage of a test started fr@g) and so on.

acopty_4(q:) = [i,B,... 1]
= [(acopt}_;(g:))1," -, (acopty_;(qz))n]
acopt(q) = maxn [a(q, a1, g1)(acopty_(q1))1, (g, a1, q1)(acopty_;(q1))n, -+
OZ((], Uy qm)(acoptk 1((]m))17 (q7 A (Zm)(acoptZ—l((Zm))n]
= maxn [a(q,a,q") -1 | (a?,¢') € T]( ) AL (acopt}_;(q"));
A0 <j<n]

For the case of outputs. Assume the outputs actions.are, ... b,. Let T be a test
suite started in state such thafl' = {b,-Ti,---,b,-T,}. To computecopt} (¢q) of the
test suiteT', again, we assume that there exists the set bést test cases that start gn
acopt}?_;(¢,) forall 0 < z < m (whereg, is the state reachable fromafter an output
actiond,). Also, letacopt}_,(g¢.) be equal tdi;, 5, ... 1] wherel] is the optimal coverage
of a test started ifg,, and so on.

acopty_,(q.) = [U,4,....1]
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= [(aCOptzfl(qz))lv R (aCOpthl(QZ))n]
acopti(q) = [F(q)+alq, b, q1)(acopty_;(q1))1+-- +a(q, by, qp)(acopty_1(qn))n,
7(q) +a(g, bi, Q1)(aC0ptZ—1(q1§)T|b -+ a(q, by, gp)(acopty_;(gp))n]

=T(@ael >  alebd

(b1,q")E€TO(q)

« (acopt}_;(q')); NO<j < n

Where,z®1 adds the number € IR=° to each element of the lig(i.e.,z®[e;, ez, . . . €,
=[x+ e,z + e2,...2 + ¢e,]). Moreovermaxn yields then maximal elements in a list. By
keeping the lists sorted (largest element first) we can efftt implement the algorithm. To
do so, it suffices thahaxn returns a sorted list.

Theorem 5.8.16.Let F = (A, r) be an FAwithd = (Q, ¢°, L, T), 7 : Q x O — R=",
a discount function fofF, £ € N be a test length and € N be a number. Thett,, satisfies
the following equations

vo(q) = [0,0,. 0]
vkt1(q) = maxn{ [ g a,¢)-v|(a?¢) e T(q),v— (v(q)); NO<j < n%
++r@el > alg,bd) 1]l (u(g)); N0<j<n]

(b1,a")ETO(q)

Example 5.8.17.This example shows the difference between the last twoitlges: optimal
coverage im test cases and optimal coverage in a test suite (witbst cases).

In Figure 5.6 upper part we see four tests with lengthTestt; is the test with optimal
coverage in lengtl3, it value is30 (for anyqu with £ > 3). Any of the next three tests (
t3 andt,) can be the second test with optimal coverage, given thaff éiflem have valug0.
Then, using the optimal coveragerirtest cases algorithm, we can chodsas the optimal
test case and, as the second optimal test case. But, as we appreciate inutienbpart in
Figure 5.6 the test suitd® with T = {#, t2} is not the test suite with optimal coverage (it
has valuet0). The test suite with optimal coveragelis= {t;, {4} (with value50). This is
because to compute the value of a test suite we first combieddgts and then we compute
the value. Thus, we obtain a tests suite with optimal coweifage choose test that have less
overlap between them, as is the case illtk= {1, t4}.

5.9 Application: a chat protocol

This section applies our theory to a practical example, mamehat protocol, also known
as a conference protocol [10]. This protocol provides a rual$t service to users engaged
in a chat session. A chat is a group of users that can exchaegsages. Each user can
send messages to and receive messages from all other pgrangcipating in the same chat
session. The chat participants are dynamic, as the chatselows them to join and leave
the chat at any moment in time. Different chats can existastme time, but each user can
only participate in at most one chat at a time.

The protocol specifies the data units, the underlying seraitd the chat service. The
protocol data units describes the format of the data urdgiisate used by the protocol entities
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Figure 5.6: We use_an? for askmoney? and gm! for give_money!

to communicate with peer entities, the underlying serviesctbes the service of the un-
derlying communication medium through which these datésumve to be communicated
between peer entities and the behaviour of the protocdientiDetails of all these services
can be found in [10]. The chat service is explained as folldwah chat session has a name.
The chat service has the following service primitives @AICSPs), which can be performed

at the chat service access points (CSAPS):
e join: a user joins a named chat and defines its user title in thimseshe user title

identifies a user in a chat
e datareq a user sends a message to all other users participatirggassion
e dataind a user receives a message from another user participatitggsession

e leave a user leaves the chat; since a user can only participatedrcoat at a time,

there is no need to identify the chat in this primitive.

The service primitives join and leave are used for chat cbnfFhe service primitives
datareq and dataind are used for data transfer. Initiall\gea is only allowed to perform a
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join to a chat. After joining, the user is allowed to send naggs, by performing datareq’s,
or to receive messages, by performing dataind’s. In ordstdj its participation in the chat,
a user can a leave at any time after it has done a join.

Data transfer is multi-cast, which means that each datanesgs corresponding dataind’s
in all other participants in the chat. Data transfer in thatcervice is not reliable: messages
may get lost, but they never get corrupted; corrupted messate discarded. Also, the
sequence delivery of messages is not guaranteed.

Figure 5.7 displays a LTS model of the chat protocol. This et@dnsiders two chat
sessions and three users (A, B and C). We consider differeigthts values per error, de-
pending on the gravity of the error, in Figure 5.8 we preskatttansition weight function
r. Basically, we consider absence of required answers asdhgeverrors with weight0;
inappropriate answers as less serious with weigdnd inappropriate joins or leaves as the
least severe with weiglt

We interpretF as a discounted WSM under different discount functiens. andas.

If 6 = (q,1,q") is a transition inF leaving from state; with out-degreel, we usex; () =
1 1 1
8'(12(9)_3 Oo,and(lg( ) 4~ 10000

States errorvalues (i.8), out- degree (| ed) and the different values of discount function
(i.e. a1, aa, a3) can be found in Figure 5.9. Figure 5.10 gives the total cayeiinF, again,
for ay, as, a3. Also, in Figure 5.10 are the absolute and relative coveddiglee test suites
containing all tests of length, for k£ = 2,4, 50 anda;, as, as. We used Maple 9.5 to resolve
the matrix equations in these algorithms.

Figure 5.11 displays the relative coverage for test suii@istave been generated automat-
ically with TORX, using discount functionas. For tests with lengths = 30, 35, 40, 45, 50,
TorX has generated a test sufl?, consisting of 10 tests’, ... ¢, of lengthk. Finally,
Figure 5.12 lists the coverage for the same test siifegenerated by BRX, also usingxs.

The running times of all computations were very small, in ¢héer of a few seconds.
Notice the influence of the discount factor and the test lengtthe coverage numbers.

5.10 Related work

There is a vast literature on syntactic test coverage @if8}. Test coverage and optimiza-
tion are well studied for (extended) finite state machinds f2]. Most works consider syn-
tactic coverage measures and optimize preset tests, icethnshortest sequence of inputs
to the IUT that achieves a certain coverage.

Test optimization in the adaptive setting is also considéne[49]. Their specification
models are Markov Decision Processes, i.e. the tester ee@sinput to the IUT and the
IUT makes a probabilistic choice among all possible outpatsl assigns a cost to each
transition to be executed. This paper provides optiminatchniques for deriving test suites
with maximal expected coverage for (final) states and ttiomsi at minimal expected cost.
Thus, their coverage criteria are syntactic.

The work [13] optimize the order in which a test suite is exedysuch that the impact
(i.e. the probability that a certain error occurs times itsght) is maximized against total
duration, cost and produced quality.
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5.11 Conclusions

Semantic notions of test coverage have long been overdie, vy are much needed in the
selection, generation and optimization of test suiteshis ¢hapter, we presented semantic
coverage notions based on WFMs. We introduced fault autnrfa¢, to represent syntacti-
cally (a subset of) WFMs and provided algorithms to compuig @ptimize test coverage.
This approach is purely semantic since replacing an FA wikraantically equivalent one
(i.e. r-preserving bisimilar and-preserving bisimilar) leaves the coverage unchanged. Our
experiments with the chat protocol indicate that our apgiaa feasible for small protocols.
Larger case studies should evaluate the applicability isffitamework for more complex
systems. In order to do this we are implementing our theotfiénS=Co tool, standing for
Semantic Coverage. This new tool is being developed in JagtlanEclipse.

Our weighted fault models are based on (adapive) test theory. We expect to be easy
to adapt our approach to different settings, such as FShh¢est on-the-fly testing. Further-
more, our optimization techniques use test length as amapty criterion. To accommodate
more complex resource constraints (e.g time, costs, peisability) occurring in practice,
it is relevant to extend our techniques with these attrbugince these fit naturally within
our model and optimization problems subject to costs, tinte@obability are well-studied,
we expect that such extensions are both feasible and useful.
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LAtoB1!

LAtoBC1!
CQO )
LAtoBC2!

LAtoB2!

Figure 5.7: Chat protocol with two chats. L = leave, J = joins Bata and W = answer
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name of error value | name of error value
join.A.1.PDU!(JAL1!) 3 leave.A.to.C.2.PDU!(LAtoC2!) 3
join.A.2.PDU!(JA2!) 3 leave.A.to.BC.1.PDU!(LAtoBC1!) 3
answer.B.1!(WB1!) 7 leave.A.to.BC.2.PDU!(LAtoBC2!) 3
answer.B.2!(WB2!) 7 dataind!(Dind!) 3
answer.C.1/(WC1!) 7 data.to.B.PDU!(DtoB!) 3
answer.C.2/(WC2!) 7 data.to.C.PDU!(DtoC!) 3
leave.A.t0.B.1.PDU!(LAtoB1!)] 3 data.to.BC.PDU!(DtoBC!) 3
leave.A.to.B.2.PDU!(LAtoB2!)| 3 quiescent! 10
leave.A.to.C.1.PDU!(LAtoC1!) 3
Figure 5.8: Error names and error values
state| r | d | o Q9 Qa3 state| r | d | o o) a3
o 64| 3| 1/8 | 0.323| 0.333 @0 | 64| 81| 1/8| 0.115| 0.124
el 71| 1| 1/8 | 0.990| 0.999 @21 71 1| 1/8 | 0.990| 0.999
G 71| 1| 1/8| 0.990| 0.999 g2 | 71| 1| 1/8| 0.990| 0.999
a3 71| 1| 1/8| 0.990| 0.999 g3 | 71| 1| 1/8| 0.990| 0.999
4 71| 1| 1/8 | 0.990| 0.999 gq | 71| 1| 1/8| 0.990| 0.999
a5 71| 1| 1/8 | 0.990| 0.999 ¢@s | 64| 8| 1/8 | 0.115| 0.124
6 71| 1| 1/8 | 0.990| 0.999 @6 | 64| 8| 1/8 | 0.115| 0.124
a7 64| 9| 1/8| 0.101]| 0.111 g7 | 71| 1] 1/8| 0.990| 0.999
qs 64| 9| 1/8| 0.101]| 0.111 gps | 71| 1| 1/8| 0.990| 0.999
o 67| 1| 1/8 | 0.990| 0.999 g9 | 67| 1| 1/8| 0.990| 0.999
¢o | 67| 1] 1/8| 0.990| 0.999 g0 | 71| 1| 1/8 | 0.990| 0.999
qi1 67| 1| 1/8 | 0.990| 0.999 g31 67| 1| 1/8 | 0.990| 0.999
G2 | 67| 1] 1/8| 0.990| 0.999 gs2 | 67| 1| 1/8| 0.990| 0.999
q3 | 71] 1] 1/8| 0.990| 0.999 g3 | 64| 6| 1/8 | 0.156| 0.166
Ga | 71] 1] 1/8| 0.990| 0.999 g4 | 64| 6| 1/8| 0.156| 0.166
¢5 | 71] 1] 1/8| 0.990| 0.999 g5 | 71| 1| 1/8 | 0.990| 0.999
¢qe | 71| 1] 1/8| 0.990| 0.999 g6 | 71| 1| 1/8 | 0.990| 0.999
q7 | 71] 1] 1/8| 0.990| 0.999 gs7 | 67| 1| 1/8 | 0.990| 0.999
s | 71] 1] 1/8| 0.990| 0.999 gss | 71| 1| 1/8| 0.990| 0.999
G0 | 64| 8| 1/8| 0.115| 0.124

Figure 5.9: The accumulated weights of erroneous outpiisife out-degree (d) and the
different discountsy per state
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ap | 99.134

ay | 511.369

ag | 743.432
ack | k=2] k=4| k=50 rek | k=2] k=4]k=50
ar | 89.750 | 97.171 [ 99.134 ar | 91% | 98% | 100%
ay | 130.607 | 239.025 | 510.768 ag | 26% | 47% | 100%
ag | 132.652 | 249.320 | 733.540 az | 18% | 34% | 99%

Figure 5.10: Total coveraged) for different discount functions, absoluteck) and relative
coveragerck) of the test suite containing all tests of length

testtl | testty | testt¥ | testtf | testt®
k=30 |153% | 4.6% | 14.0% | 5.3% | 15.3%
k=35 |141% | 15.3% | 15.3% | 8.5% | 8.6%
k=40 | 53% | 14.0% | 14.2% | 15.3% | 5.3%
k=45 | 50% | 85% | 14.0% | 5.0% | 8.5%
k=50 53% | 142% | 5.3% | 4.9% | 14.0%

testty | testtF | testtt | testty | testtf,
k=301 4.6% | 14.2% 8.5% | 15.3% 4.9%
k=35 5.3% | 15.3% 8.5% 8.5% 4.9%
k=40 | 14.1% | 15.3% 5.3% | 14.0% | 15.3%
k=451 15.3% 4.9% | 15.3% 4.5% | 14.2%
k =50 5.3% | 14.2% 5.3% | 14.0% | 15.3%

Figure 5.11: Relative coverage, as a percentage, of tesésated by DRX, with as

test suiteT*
k=30 63.1%
k=35 69.1%
k=40 72.8%
k=45 47.2%
k=50 54.2%

Figure 5.12: Relative coverage, as a percentage, of tesesated by DRX, with as



CHAPTER 6

Concluding remarks

In this thesis we study a formal approach to software testihgre specifically, we provide
a mathematical foundation for conformance testing of inm@atations with respect to spec-
ifications formally described. Our developments and modetsshaped by the following
assumptions:

e \We assume that the implementation is completely opaqueistiitas black box (i.e.,
we do not know its internal structure and can only observiedtgaviour).

e \We assume that the real implementation can be modelled bsnraafonodel. This is
known as the testing assumption.

e We assume the implementation to be input-enabled. (Thibviaya the case except
for Chapter 4, where we are able to relax slightly this asgionp

e \We assume that we are always testing reactive systems, \ataoi us to interact by
applying inputs to them and observing their outputs.

e We assume that the interaction between the implementatidraaest is fully syn-
chronous (i.e., there is an unison coordination betweeut@ipom the test and inputs
on the implementation, and outputs from the test and outputee implementation).

e \We assume that the given specification reflects preciselyntéeded behaviour of the
system (i.e. specifications are considered correct).

We start our study in Chapter 1 by giving a formal interpiietato the various concepts
used in model based conformance testing. Next, in ChapteeZresent the testing for-
malism applied specifically to non-deterministic labeliegut-output transition systems; in
particular, we present tHecotesting theory. There, the notion of quiescence plays aalent
role. Quiescence characterizes systems that do not, aedwily produce an output without
prior stimulation with an input. By treating quiescence apacial kind of system output,
the notion of behavioural traces can be generalized to drecfjuiescent observations. This
allows to distinguish systems that are not distinguishatierwise. A test derivation algo-
rithm is presented and it is proved that the set of generatdds sound and exhaustive with
respect to théoco testing relation. These two chapters review existing forapproaches
for conformance testing, and they provide the base-linehizhvthese thesis’ contributions
build upon.

In Chapter 3 we present our first extensionidoo. The extension considers time ex-
plicitly, and this constitutes a crucial addition to the ratsdconsidered in this thesis. The
concepts defined in this chapter to deal with real-time pgapathroughout the remainder
of the chapter. In particular, the notion of quiescence beoparameterized by the amount

119
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of time that is need to recognize quiescent states on thesimmgaitation. As a consequence,
our testing relationtfoco,,) is parameterized as well, with quiescence recognition g&-a
rameter (/). This bound)M represents the time it takes to infer that the implememato
in a quiescent state. We define a non-deterministic testrggoe framework, parameterized
by the bound}, and show that the set of test generated is sound and exfeausti re-
spect totioco,,. Moreover, we explore the relation between our proposeddiextension,
tiocoy,, and the non-timed approadbgo.

Subsequently, in Chapter 4, we present our second extecwisisting of both real-time
and the addition of channels, which are partition on thetsand output actions. The com-
bination of channels and real-time are interestingly irdaéed together. A system may have a
channel enabled or disabled depending on its particulaugiaa stage, thus to model the fact
that actions are enabled or disabled, it is sufficient to Enabdisable the communication
channels in which the actions occur. The resulting moddiestimed labelled multi input-
output transition systems (TLMTS), and it allows us to cdesinput enabledness and quies-
cence properties on a per channel basis, thus relaxinglgigftam assumptions. We replace
the input enabling requirement of a system by the followirgler requirement: for each in-
put channel, either all inputs are allowed, or they are alckéd. Also, we replace the global
bound M from thetioco,, testing relation by a vector of boundst = (M, -, M,,);
wherel; represents the bound on the output charin&elaxing the global boundt/ for a
vector of bounds means that we do not have to wait for the slbresponse time to conclude
the quiescence on a faster channel. The resulting testiatioreis parameterized by a set
of bounds which detect quiescence per each output chaheehttoco, conformance im-
plementation relation. We develop a test derivation praoeéormtioco, which is shown
to be sound and exhaustive with respect torttii®co . implementation relation. Moreover,
we elaborate on the relation between our proposed timedggrtewith channelsntioco,
and the timed approactipco,,.

Finally, in Chapter 5, we present our semantic approaclte&irdoverage. In this chapter,
we provide a semantic point of view which allows us to studyerage formally and pre-
cisely. Our point of departure is a weighted fault model (WRNat assigns a weight in the
specification to each potential error in an implementatida.define our coverage measures
relative to these WFMs. Since WFMs are augmented specifitatour coverage framework
qualifies as black-box. Moreover, because WFMs are infiriteastic objects, we provide a
finite representation as fault automata. Our theory all@aassign equal coverage measures
to semantically equivalent specifications, taking intocast that certain failures are more
severe than others. Moreover, we provide algorithms tHatizée and optimize test cover-
age. In particular, we compute the (total, absolute andivelacoverage of a test suite with
respect to a WFM. Also, given a test lendgthwe present an algorithm that finds the test of
length k& with maximal coverage and an algorithm that finds the shotéss with coverage
exceeding a given coverage bound.

Our extensions, based (mostly) on tloeo testing theory, are directed to answer the
research questions proposed in Section 1.3, where we dearvéw theories that are able to
test better, effectively and efficiently.

In this thesis we believe that we achieve our goal succdgste support this conclusion
by describing our contributions as follows:

e We present new models and formalisms that are usable foenmgitations and spec-
ifications taking into account real-time and real-time watiannels.
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More precisely, some of the main contributions for each téragre shown in Figure 6.1.

We develop new testing relations between our models.

We compare and elaborate on the relation between the origitsdion we consider

and the new ones proposed.
We develop an algorithm to derive test for our timed testalgtions.

We prove that the proposed algorithms are sound and exhawgth respect to their

corresponding testing relation.
e We propose a new approach for test coverage in a semangc styl

We prove that the proposed coverage approach is authéytseahantic under pre-

serving bisimilarities.
We develop several algorithms to calculate test with optongerage.

Contribution

Chapter 3| timed output set Definition 3.3.15
nttracesyy Definition 3.4.2
tiocoy, Definition 3.4.5
M -quiescent implementations Definition 3.5.1
test generation procedure (TGP) Section 3.6.1
soundness of TGP Theorem 3.7.4
exhaustiveness of TGP Theorem 3.7.6
relation betweelnco andtioco;, Theorem 3.8.2

Chapter 4| O;-quiescent Definition 4.3.3
M-quiescent implementations Definition 4.3.6
nttraces/%/l Definition 4.4.5
channels output set Definition 4.4.7
mtioco Definition 4.4.10
multi test generation procedure (MTGP)Section 4.5.1
soundness of MTGP Theorem 4.6.3
exhaustiveness of MTGP Theorem 4.6.5
relation betweertiocoy, andmtiocoy, | Theorem 4.7.3

Chapter 5| weighted fault models (WFM) Definition 5.2.1
coverage measures Definition 5.2.2
fault automaton Definition 5.4.1
finite depth WFM Definition 5.5.1
discounted WFM Definition 5.6.5
calibration Theorem 5.7.2
invariance under bisimilarities Section 5.7.2
absolute coverage algorithms Section 5.8.1
total coverage algorithms Section 5.8.2
relative coverage algorithm Section 5.8.3
optimization algorithms Section 5.8.4

Figure 6.1: Principal contributions of this thesis per dieap




lzz Chapter 6. Concluding remarks

As possible future work, it would certainly be interestirgapply thetioco,, testing
relation to more realistic examples. We would also like toacode the implementation tool
of themtioco,, testing relation, and apply the semantic coverage alguostfthat is being
implementing in the 8Co tool) to existing examples, thus allowing us to make morésea
judgments.

From theory to practice Our first proposed extensidinco,,, is already implemented
for timed automata on thedrRX tool. The second proposed extensimtioco, is being
implemented as part of current work. The third proposed @gogr for semantic coverage is
also, as we mention above, currently being implemented ivatool called &Co.

Moreover, most of the results presented in this thesis abdighed in refereed confer-
ences (i.e. ATVA, ICFEM, FATES), so we are confident that&tdgories have been “tested”
on the research community.

Formal methods, in general, are not yet smoothly integrafiéi practical, day-to-day
development tools. We believe that theories should beyeagplicable, in a way that prac-
tical communities (e.g., the industry) can appreciate thaatage that formal methods can
offer. The work in this thesis attempts to achieve this éffédthough we focus on formal
approaches, indeed we carefully develop them in a way tlegtdhn be built in practical and
useful tools. By having this in mind, the tools which implemeur theories can be directly
applied to real life examples.
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Nomenclature

LTS
A label input-output transition system
Q set of states
Q' subset of states
L set of labels
r subset of labels
L. Lu{r}
Ly L'U{s}
5. L'u{r}u{d}
L* finite label sequences
Lt I\ {e}
L¥ infinite label sequences
I input labels
0 output labels
T set of transitions
TLTS
A timed label input-output transition system
Q set of states
Q'  subset of states
L set of timed labels
L' subset of timed labels
Lo Luir}
L LU{d}
[, LU{rhu{s}
:H ‘C/U{élv"'v57l}u{715"'v’ym}
D set of time-passage actions
L£*  finite timed label sequences
L¥ infinite timed label sequences
T set of timed transitions
TMLTS
M= (My,---,M,,) ordered setof bounds
I=A{hL, - ,I,} input set partition

O={0y,---,0,} outputset partition
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Nomenclature

Variables and constants

q

)
(=}

i‘\‘ S e 2 g0 an AR S > @I A
(9]

M

Tests

1, iUT

S

t

T

k

TESTS

TEST

states

initial state

trace (timed or untimed)

action (timed or untimed)

internal action

action different tham

input action or action and time

output action

action that denotes quiescence

action that denotes quiescence in charnel
action that denotes blocking in chaniel
path

empty sequence

time variables

clock

set of clocks

constant

variable overl, - - -, n]

variable overl, - - -, n/|

variable for output channels ovfr, - - - | m]
variable for input channels ovét, - - - | n]

extract constant
guiescence observation bounds

implementations
specification

tests

test suite

test length

set of tests for LTS/, O)
set of tests for TLTH/, O)

MTEST setoftests for TLMTEZ, O)

Coverage
r error weighted function
T error weighted function per state

o discounted function

TT  setof input transitions

T setof output transitions

F fault automaton

'k finite depth weighted fault model
2 discounted weighted fault model



Summary

Inthe last years, increasingly complex systems are beihiggharge of critical tasks. When
these complex systems, are drive by sophisticated softiteg need to attain a high degree
of reliability. Unfortunately, developing correct systemm difficult, and in the past there have
been several complex systems that went wrong because thedlaerious analysis of their
potential behaviour. In this thesis, we study an effectiay wf obtaining confidence on the
correctness of a system, known as testing. Testing is theragsic process of finding errors
in a system by means of extensively experimenting with it.

In order to successfully test a system, it is crucially neetdecount with both effective
test cases and feasible strategies to execute them. Fefyyneork in formal methods helps
us achieving this task in a precise and rigorous manner. Acpéarly successful formal
theory of testing is théoco theory, devised by Tretmans to work on labelled input-ottpu
transition systems. The theory smoothly covers issuesiikaleterminism and quiescence
(that is, the notion representing the absence of outputg)ioto testing theory is clean and
precise, and is the basis used in successful testing tdkdsthe TorX tool and the TGV
tool. In this thesis we extend theco testing theory in three important directions, as follows.

Our first extension concerns the addition of real-time, Whg crucial to the analysis
of several systems (e.g., systems where actions are rdguoicur in a precise moment).
New models and formalisms that take into account real-tireéreroduced. Furthermore, we
develop a new testing relation between these real-time moaled a sound and exhaustive
algorithm to derive tests for that relation.

Our second extension arises when we consider the input atpditoactions as being
subdivided in communication channels. We explore how tlchs@nels interact with real-
time. Interestingly, this new setting is more flexible siiitcalows us to relax some standard
assumptions. We develop a testing relation between modteiseal-time and channels, and
a sound and exhaustive algorithm to derive tests for thisniever setting.

Our third, final extension is concerned with the common pepbihat complete test suites
usually cannot be covered in finite time for most interestinges. Test coverage measures
the proportion of the implementation exercised by a tedesuExisting coverage criteria
are usually defined in terms of syntactic characteristiasirty the disadvantage that behav-
iorally equivalent, although syntactically different syis1s have different measures. More-
over, these metrics do not take into account risks (i.eyeslvhich represent that certain
failures are more severe than others). We propose a novebagpfor test coverage in a
semantic style, where bisimilar processes measure equdliyeover, we develop several
algorithms to calculate tests with optimal coverage.

The results presented in this thesis enrich the formal thebtesting. They provide a
solid basis for make the process of testing more applicablaplete, and effective, helping
today’s and tomorrow’s complex systems to be more reliable.
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Samenvatting

De laatste jaren worden steeds complexere systemen ingeazekritieke taken. Als deze
complexe systemen bestuurd worden door geavanceerdeaseftienen ze aan een hoge
graad van betrouwbaarheid te voldoen. Helaas is het onélgkkvan correcte systemen
moeilijk, en er zijn in het verleden dan ook complexe systemeweest die de fout ingin-
gen als gevolg van het ontbreken van een serieuze analydeumamogelijke gedrag. Dit
proefschrift gaat over een effectieve manier om vertrouimetie correctheid van een sys-
teem te krijgen: testen. Testen is het systematisch zoekanfauten in een systeem door
het uitgebreid aan experimenten bloot te stellen.

Om een systeem succesvol te kunnen testen is het van crbeiaalg om te kunnen
beschikken over effectieve tests en over een werkbaregiesam die uit te voeren. Gelukkig
is er werk gedaan op het gebied van formele methoden dat eansdtpen om dit accuraat
en zorgvuldig te doen. Een bijzonder succesvolle formeitthteorie is déoco theorie, ont-
wikkeld door Tretmans, voor gelabelde transitiesystemaarim onderscheid wordt gemaakt
tussen invoer en uitvoer. Zaken als non-determinisme eesgeance (dat wil zeggen, de
afwezigheid van uitvoer) zijn voor deze theorie geen preiieDeioco testtheorie is onge-
kunsteld en precies, en vormt de basis voor sucessvollotdstzoals DRX en TGV. In dit
proefschrift breiden we diecotheorie als volgt uit op drie belangrijke gebieden.

Onze eerste uibreiding bestaat uit het toevoegen van heipligd, wat van cruciaal
belang is voor de analyse van bijvoorbeeld systemen waetiirtaiten op een exact moment
plaats moeten vinden. We introduceren nieuwe modellen enaiismen waarin het begrip
tijd meegenomen kan worden. Verder ontwikkelen we een réciawmele testrelatie tussen
deze modellen met tijd en een algoritme, dat correct endigllis voor het afleiden van tests
voor deze relatie.

Onze tweede uitbreiding komt tot stand wanneer we in- eroaiacties aan communi-
catiekanalen koppelen. We onderzoeken het effect van Ipgteken aan kanalen in combi-
natie met het begrip tijd. Het blijkt dat deze combinatie imeigelijk maakt om een aantal
standaard aannamen af te zwakken. We ontwikkelen een femestelatie tussen modellen
met tijd en kanalen, en een algoritme, dat correct en valedivoor het afleiden van tests
voor deze uitgebreidere relatie.

Onze derde en laatste uitbreiding betreft het veelvoorkategrobleem dat volledige
verzamelingen van tests over het algemeen niet volledigémmvorden afgedekt in eindige
tijd, in ieder geval voor de interessantere gevallen. Dekibgjsgraad geeft aan hoeveel van
het gedrag van het te testen systeem wordt geraakt door emamaling tests. Bestaande
dekkingsgraadcriteria zijn over het algemeen gedefinieaardde hand van de syntactische
vorm van een systeembeschrijving. Dit heeft als nadeetl lue¢fsyntactisch verschillende
beschrijvingen van het zelfde systeemgedrag verschileiettkingsgraadwaarden (kunnen)
hebben. Daarenboven kunnen in bestaande dekkingsgraatfyergen geen risico’s uitge-
drukt worden (waarmee we getalswaarden bedoelen die aamgex bepaalde fouten ern-
stiger zijn dan andere). We stellen een nieuwe aanpak veogelbruikt kan worden om
de dekkingsgraad op een semantische manier te definigvdanig dat beschrijvingen die
bisimulatie-gelijk aan elkaar zijn dezelfde dekkingsghaaarde krijgen. Tevens ontwikke-
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len we een aantal algoritmes voor het berekenen van teatwetingen met optimale dekkings-

graad.

De in dit proefschrift gepresenteerde resultaten vormarvesijking van de formele the-
orie op het gebied van testen. Ze vormen een solide basis tiedtygroces beter toepasbaar,
vollediger en effectiever te maken, waarmee ze ertoe lyghalat de systemen van vandaag

en morgen betrouwbaarder worden.



Resumen

En los Gltimos afos, cada vez mas, sistemas complejgsusstos a cargo de tareas criticas.
Cuando estos sistemas son controlados por un softwarécaafstnecesitan un alto grado de
confiabilidad. Desafortunadamente, desarrollar sistaroaectos es dificil, y en el pasado
varios de estos sistemas han fallado debido a que su commpenta potencial carecia de un
analisis serio. En esta tesis, estudiamos una manera dicalatener confianza en que un
sistema sea correcto, conocida como testing. El testingisteren un proceso sistematico
desarrollado para encontrar errores en un sistema por megdioexperimentacion extensiva.

Para testear con éxito un sistema, es crucialmente neacesatar con tests eficaces y
estrategias factibles para ejecutarlos. Afortunadamehteabajo realizado en métodos for-
males nos ayuda a realizar estas tareas de manera exaateogaigUna de las mas famosas
teorias de testing formal es la teoriaideo, ideada en el trabajo de Tretmans sobre sistemas
etiquetados de transicion con entrada-salida (LTS). ®iebria cubre adecuadamente temas
como el no-determinismo'y la quietud (es decir, la nociéa ggpresenta la ausencia de sali-
das). La teoria de testingco es rigurosa y exacta, y es la base usada por varias herrasient
de testing, como ®RX y TGV. En esta tesis extendemos dicha teoria en tres dinees
importantes, como presentamos a continuacion.

Nuestra primera extension se refiere a la adicion de tiermaalp lo que es crucial para
el analisis de varios sistemas (por ejemplo, sistemasealt@slacciones deben ocurrir en
un momento preciso). Introducimos nuevos modelos y fosmads que consideran tiempo
real. Desarrollamos una nueva relacion de testing entleodimodelos con tiempo real, y
un algoritmo que es consistente y exhaustivo para deristr t@nfirmando dicha relacion.

Nuestra segunda extension considera las acciones deda&ytsalida como subdivididas
en canales de comunicaciones, donde exploramos comaastaies interactlian con tiempo
real. Interesantemente, este nuevo contexto es mas @eddtlido a que permite relajar
algunas suposiciones que eran estandar. También désaos una relacion de testing entre
los modelos con canales y tiempo real, y un algoritmo cagrsisty exhaustivo que deriva
tests para dicho nuevo contexto.

Nuestra tercera y Ultima extension se refiere al probleenque el testing, en general,
no puede ser completado en tiempo finito, al menos para lan@agie los casos mas in-
teresantes. La cobertura de un test, o un conjunto de teists,qué particion de una im-
plementacion es experimentada por dicho test, o dichauatmjde tests. Los criterios de
cubrimientos existentes, en general, son definidos enrtéede caracteristicas semanticas.
Esto tiene la desventaja de que sistemas con comportameguidvalentes, pero expresados
sintacticamente en forma diferente, tienen medidasetites. Por otra parte, dichas métricas
no tienen en cuenta riesgos, es decir, valores represenjardiertas fallas son mas severas
que otras. En esta tesis proponemos un nuevo método panmagheabrimiento de un test,

o de un conjunto de tests, de manera semantica. Mas alarralEsnos varios algoritmos
para calcular tests con cubrimiento 6ptimo.

Los resultados presentados en esta tesis enriquecenik fieonal del testing. Propor-
cionan una base solida que hace el proceso de testing riéasbdg completo y efectivo,
ayudando a que los sistemas complejos de hoy y mafiana seacomfiables.
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