
Theories for Model-based Testing:
Real-time and Coverage

Laura Brand án Briones

Graduation committee:

Prof. Dr. H. Brinksma (promotor) University of Twente/Embedded Systems Institute,
The Netherlands

Prof. Dr. J. W. Fokkink Vrije Universiteit Amsterdam, The Netherlands
Prof. Dr. P. H. Hartel University of Twente, The Netherlands
Prof. Dr. K. G. Larsen Aalborg University, Denmark
Dr. Ir. A. Rensink University of Twente, The Netherlands
Dr. M. I. A. Stoelinga University of Twente, The Netherlands
Dr. Ir. J. Tretmans Radboud University Nijmegen, The Netherlands
Dr. W. Visser NASA Ames, United States

The work in this thesis has been carried out under the auspices of the Institute for Program-
ming Research and Algorithmics (IPA) research school and within the context of the Center
for Telematics and Information Technology (CTIT).

IPA Dissertation Series No. 2007–05
Series title: CTIT Ph.D.-thesis Series
Series number: 1381-3617
CTIT number: 07-97

Typeset by LATEX, edited with Emacs, and printed by Gildeprint b.v.
Cover: The Bugis designed by Laura Brandán Briones.

Copyright c© 2007 Laura Brandán Briones, Enschede, The Netherlands.
ISBN: 978-90-365-2476-6

THEORIES FOR MODEL-BASED TESTING:
REAL-TIME AND COVERAGE

DISSERTATION

to obtain
the doctor’s degree at the University of Twente,

on the authority of the rector magnificus,
prof. dr. W.H.M. Zijm,

on account of the decision of the graduation committee,
to be publicly defended

on Wednesday, March 21, 2007 at 15:00

by

Laura Brand án Briones

born on 23 September 1975

in Mendoza, Argentina

This dissertation is approved by:

Prof. Dr. H. Brinksma (promotor)

A mis padres, Elizabeth y Eugenio.

Acknowledgments

I thank Ed, not only for being a great advisor, director and friend, but mainly because he
believed in me. He gave me this great opportunity, he allowedme to try to do a PhD and be
here. I know that I am not an easy person and I am sure that only agreat being could see
beyond to give me this kind of opportunity. As one day I said: “I will remember you”.

In the technical aspects, firstly, I thank our nice secretaryJoke, who did a lot of useful
things for me that are not supposed to be done by a secretary. Iam very grateful to her for all
her help. Secondly, I thank some friends that helped me to solve problems and understand
better things in research: Ed, Pedro, Axel, Conrado, Mariëlle, Jan, and Riky. Thirdly, I
thank everyone who helped me to have a more understandable thesis: Riky, Mariëlle, Henrik,
Conrado, Wan, Pieter, and Ed. I also warmly thank the membersof my thesis committee: Ed
Brinksma, Wan Fokkink, Pieter Hartel, Kim Larsen, Arend Rensink, Mariëlle Stoelinga, Jan
Tretmans, and Willem Visser.

I thank Axel who translated the Summary into Dutch, and also Andre and Theo for their
useful comments. Moreover, I thank Isabel and Riky for theirappropriate corrections in the
translation of the Summary into Spanish.

I thank the FMT group for allowing me to do several trips in these years: summer schools,
conferences, research visits, where I made new friends and enjoyed beautiful places. Also, I
thank Willem and Corina that made my stay in NASA so pleasant.

My years in Holland were not difficult, the truth is that I enjoyed them very much, al-
though I did not learn Dutch I felt very comfortable. Many people made my days here so
nice, like my BOCOM friends (Arend, Joost, Georgios, etc.),the 4th floor friends (Vasu,
Nikolay, Jordan, Supriyo, etc.), and some old friends that left (Pedro, Joost-Pieter, Holger,
Tomas, Ruj, Yaroslav, etc.). Last but not least I thank my closest friends: Gabriele, Conrado,
Isabel, Marcos, Lorena, Axel, and Mariëlle.

I thank some friends that even though I was far away these years they were always with
me: Mariana, Ileana, Natalia, Tamara, Victor, Eli, Andrea,Flavio, Ester, Hubert, and Valeria.

Muchı́simas gracias a mi familia, a mi madre Elizabeth por nuestras largas charlas por
teléfono que me hicieron sentirlos cerca, a mi padre Eugenio por sus sabios consejos que me
sirvieron y servirán durante toda mi vida, a mi hermana Virginia por enseñarme la importan-
cia de ser feliz, a mi hermano Eugenio y su familia por darnos la alegrı́a de sus hijos. Y por
supuesto a todos mis demás familiares, tı́os, primos, sobrinos, cuñados, suegros, etc.

Finally, I thank my friend, my partner, my lover.
My confidant, my dream, my happiness, my sadness.
My quiet morning, my warm end of the day.
My song, my silence, my peace, my desire.
I thank my love, Ricardo.

Enschede, February 2007.

Table of contents

Acknowledgments vii

1 Introduction 1
1.1 Software testing .1
1.2 A formal framework for software testing 5

1.2.1 The ioco testing relation .7
1.3 Research questions .8
1.4 Structure of the thesis .. . 8

2 Testing labelled input-output transition systems 11
2.1 Introduction . 11
2.2 Labelled input-output transition systems 11
2.3 Conformance relations .. 17
2.4 Theioco implementation relation . 18
2.5 Test generation framework .. . 20

2.5.1 Test generation procedure .21
2.6 Completeness . 23
2.7 Conclusion . 25

3 Testing timed labelled input-output transition systems 27
3.1 Introduction . 27
3.2 Timed labelled input-output transition systems 28

3.2.1 Timed automata . 30
3.3 Definitions, restrictions and notations 33

3.3.1 Restrictions . 35
3.3.2 Normalized timed traces . 36
3.3.3 Input-enabled timed labelled input-output transition systems 37
3.3.4 Quiescence . 38
3.3.5 Output set . 39

3.4 Timed implementation relations 40
3.4.1 ThetiocoM implementation relation 41

3.5 Operational model . 42
3.6 Timed test generation framework 45

3.6.1 Test generation procedure .47
3.7 Completeness . 50

3.7.1 Soundness . 51
3.7.2 Exhaustiveness . 51

3.8 Relation withioco . 53

x

3.9 Related work . 54
3.10 Conclusion . 55

4 Testing timed labelled multi input-output transition systems 59
4.1 Introduction . 59
4.2 A basic model and a basic conformance relation 61

4.2.1 Timed labelled transition systems with partitioned input and outputs . 61
4.2.2 The tmior conformance relation 63

4.3 An extended model and its conformance relation 63
4.3.1 Timed labelled multi input-output transition system. 63
4.3.2 Quiescence . 64
4.3.3 Operational model . 66
4.3.4 The mtiorf conformance relation 68

4.4 The ultimate model and its conformance relation 69
4.4.1 Normalized timed traces . 69
4.4.2 Output set . 71
4.4.3 ThemtiocoM implementation relation 73

4.5 Multi timed test generation framework 73
4.5.1 Test generation procedure .75

4.6 Completeness . 78
4.6.1 Soundness . 78
4.6.2 Exhaustiveness . 79

4.7 Relation withtiocoM . 80
4.8 Related work . 82
4.9 Conclusions . 82

5 Semantic coverage in testing 85
5.1 Introduction . 85
5.2 Coverage measures in weighted fault models 86

5.2.1 Weighted fault models . 86
5.2.2 Coverage measures . 87

5.3 Test cases in labelled input-output transition systems. 88
5.3.1 Labelled input-output transition systems 88
5.3.2 Test cases . 90

5.4 Fault automata . 91
5.5 Finite depth weighted fault models 92
5.6 Discounted weighted fault models 93
5.7 Properties . 97

5.7.1 Calibration of the discount function 97
5.7.2 Invariance under bisimilarities 100
5.7.3 More weighted fault models from fault automata 101

5.8 Algorithms to compute and optimize coverage 101
5.8.1 Absolute coverage in a test suite 101
5.8.2 Total coverage . 103
5.8.3 Relative coverage . 108
5.8.4 Optimization . 108

xi

5.9 Application: a chat protocol 112
5.10 Related work . 114
5.11 Conclusions . 115

6 Concluding remarks 119

Bibliography 123
Author references .123
Other references .123

Nomenclature 127

Summary 129

Samenvatting 131

Resumen 133

xii

CHAPTER 1

Introduction

1.1 Software testing

Nowadays, software is ubiquitous; it is used not only to drive computers, but also home
devices, cars, airplanes, and even flood control barriers (e.g., the Beslis en Ondersteunend
Systeem [36] which controls the barrier built in the Nieuwe Waterweg, a canal connecting
the harbour of Rotterdam to the North Sea in The Netherlands).

At a rapidly increasing rate, more and more sophisticated tasks are being left to be handled
by computerized systems. This requires, in turn, accordingly complex software. Given the
significance of these tasks, it is of utmost importance to attain a high degree of the software
correctness, quality, and reliability.

In order to prevent as much as possible faulty system behaviours which may cause severe
damage, there is a need to check whether systems behave as expected. Usually, the impor-
tance of correctness of such a system is best measured by the consequences of their failure
(e.g., how much money an error could cost, or how many human lives are endangered by an
error).

One particularly successful method for achieving these properties is based on system-
atically testing the software. Testing is the process of trying to find errors in a system, by
means of experimenting with it. Thus, software testing is anoperational way to check the
correct behaviour of a system implementation, by carefullyinteracting and experimenting
with it. This is achieved by applying a series of tests on the implementation, and studying its
reactions in a controlled environment.

Testing is in essence an instrument for measuring quality; it increases the value of a
product by establishing confidence in its quality, and it helps in assessing the risk of putting
a product into operation.

Despite its importance, the thorough testing of software isunder pressure when products
have to be delivered on time. There are practical reasons forthis: testing is both expensive
and difficult. Primitive, “hands-on” testing methods lack asolid foundation, and their testing
strategies are driven by heuristics that may not be always successful. Moreover, software
testing has not been studied as much as one would expect. On the other hand, it has been
mainly applied in the industry so far; there, testing is one of the most important techniques
for software validation (whenever there is time and money todo any kind of software valida-
tion). In contrast, in academia, software testing has only become a topic of serious research in
the past decade or so. Fortunately, after some years of limited attention, the theory of testing

1

2 Chapter 1. Introduction

has now become a widely studied, academically respectable subject of research. This is evi-
denced by the increasing number of papers related to testingbeing presented on international
workshops and conferences (e.g. FATES, TESTCOM).

In order to test a system, the desired behaviour of the systemmust be known in advance.
A description of the desired behaviour describes what a system must do, not how this is done.
A system that is supposed to implement the desired behaviouris called an implementation;
possibly, an implementation can be a real-life object, consisting of a combination of both
hardware and software components.

Level

unit

integration

system

Accessibility
white box black box

Aspect

�
�

�
�

�
�

��

stress

robustness

performance

reliability

conformance

Figure 1.1: Types of testing

Figure 1.1 shows different types of testing. As it occurs usually in other methods for
analyzing software, one can test a system at different levels of abstraction. If we wish to test
a system at its most fine-grained level, thus testing the smallest “testable” pieces, then we are
performing the so-called unit testing. If, on the other hand, we are interested in testing the
cooperation of a number of units whose composition forms a system component, then we are
performing integration testing. Finally, we perform system testing when we aim at testing
the whole, complete system.

Orthogonally to the abstraction layers, one must decide which aspect of a system needs
to be tested. For instance, we may want to perform stress testing, which focuses on the
performance of the implementation under heavy workload. Similarly, we could perform
robustness testing, to explore how an implementation reacts to unspecified environments,
or performance testing, to investigate how fast the implementation can perform its tasks.
This list can grow indefinitely; related to our original aim of characterizing model based
correctness of a system, is conformance testing, where we are interested in testing whether
the behaviour of the implementation conforms to the specified behaviour.

Yet another testing distinction lies in the degree of visibility we assume in the system
implementation to have. One possibility, called black-boxtesting, arises when we have only
the interface information regarding the implementation; its inner workings are completely
opaque to us. In the other extreme we find white-box testing, where the full internal details

Section 1.1. Software testing 3

of the system implementation are exposed. This case has certainly more appeal, as the testing
procedure can exploit this information; however, a system tester may not be always so fortu-
nate as to get access to this information. Naturally, the degree of visibility between black-box
and white-box testing may vary, leading to a scale of gray-box testing. For instance, it could
happen that in a system divided into modules one knows the overall module structure, but
however lacks information regarding each module implementation.

Level

system

Accessibility
black box

Aspect

�
�

�
�

�
�

��
conformance

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

Figure 1.2: Types of testing considered in this thesis

In this thesis we focus on conformance testing at the system level with black box imple-
mentations, as presented in Figure 1.2.

Model based testing When the intended behaviour of a system is described with a
model, and in addition the test cases are derived from that model, we are performing model-
based testing. In this case we can use the model (or specification), which is (ideally) provided
by the designer, to define the notion of correctness for a given system implementation.

Hence, the model allows us to give a correctness verdict, based on observations made
during the test execution: a positive result gives us confidence in the correct functioning of
the system implementation – a negative result, in turn, indicates the presence of an error.

It must be noted that the specification is a fundamental ingredient for model based testing:
without it, verdicts cannot be reached, as we cannot tell whether an implementation behaviour
is correct or not. Still, the necessity of having a model as a description is not restrictive, as
we can simply test on the basis of crude models, or even try to develop models as we test.

Formal methods in conformance testing In practice, system designers usually pro-
vide behaviour specifications which are simply written in natural language, like English,
Dutch, or Spanish. This causes several complications. Firstly, it is difficult to describe a
system fully just with words, and so the specifications are typically incomplete. Even worse
is the fact that natural language is inherently ambiguous, which can lead to different inter-
pretations or inconsistencies.

4 Chapter 1. Introduction

As discussed, specifications are crucial for testing a system implementation. To obtain
good testing results, it is also vital that specifications are precise and unambiguous. Other-
wise, if we do not understand precisely what a system is supposed to do, surely we will not
be able to see whether the system implementation performs appropriately.

Formal methods help us to solve this problem; they provide uswith mathematical and
logical techniques to specify and model systems rigorously[51, 50, 30, 27]. Formal specifi-
cations, being precisely defined mathematical objects witha clear semantical meaning, allow
us to reason soundly about them. Moreover, specifications written in formal languages can
be manipulated by specialized tools, allowing us to automate (part of) the analysis.

Conformance testing means that we are checking the functional correctness of a black-
box system under test with respect to a formal specification.In particular, we are going to
focus on specifications whose formal semantics are expressed in terms of labelled transition
systems (e.g., LOTOS [35], PROMELA [34]). Transition systems are well-studied and used
to give semantics to process algebraic languages like CCS orCSP [46, 33]. Having a formal
specification allows us to automate the test generation phase, since test cases can be derived
algorithmically in an efficient, effective, and systematicfashion.

Testing and verification Unfortunately, there exists an old myth stating that the prac-
tical and operational (or “dirty hands”) approach of testing cannot be combined with the
clean mathematical theories associated with formal verification. However, this wrong belief
is fortunately changing. The activities of formal testing and verification are in fact comple-
mentary. Verification aims at proving properties about systems by formal manipulation of
the mathematical model of the system. Thus, verification cangive certainty about the satis-
faction of a required property based only on the model of the system, not on its real physical
implementation. Testing, on the other hand, is performed byexercising the real, executable
implementation. This is of course a highly desirable property; the price to pay for this ad-
vantage is that testing cannot be, in general, complete: itsresult is based on observations
of only a small subset of all (usually infinitely many) possible instances of the system be-
haviour. However, people from industry usually consider verification as impracticable and
not applicable to realistically-sized systems, preferring testing as a validation method.

In this thesis we exploit the fact that verification and testing are complementary in the
following way. Our specifications are assumed to be good models of the desired behaviour
(this could be established, for instance, using verification techniques like model checking
where system properties, represented by logical formulas,are checked upon the specification
transition system). Critical systems, like airplanes or nuclear power plants, are some of the
cases where this assumption applies.

Test selection As mentioned above, complete test suites usually cannot be covered in
finite time for most interesting cases. Hence, the process oftesting is inherently incomplete,
meaning that it cannot guarantee the absence of all and everyerror. This implies that having
a good strategy for test selection is of vital importance.

Technically, test coverage is a measure of the proportion ofthe implementation exercised
by a test suite. These coverage measures are used to evaluatethe quality of a test suite and
help the tester to select test cases with maximal impact or minimum cost. Typical black-box
coverage metrics are state and transition coverage of the specification [61, 42, 49]. Typical
white-box testing considers statement, condition and pathcoverage [47, 48, 8].

Section 1.2. A formal framework for software testing 5

A related notion (in the context of software testing) to coverage and the issue of choosing
tests with maximum impact can be found in the work done on riskanalysis [54, 55, 15],
where the metrics consider the risk of an error to occur. In this setting, in order to be able to
perform risk analysis, two ingredients are necessary. Firstly, we need to consider all different
errors that could possible appear in an implementation. Secondly, we need to assign, to each
error, an assessment (possibly stated as a numerical value)representing the cost of the error
occurrence.

In this thesis we extend an existing model-based testing theory and we introduce a se-
mantic based coverage. To this end we first present a formal approach for formal testing.

1.2 A formal framework for software testing

�
�

�
�Specification

6

conforms?

?

-

�
�

�
�Implementation -

Test generation

?�
 �	Test Suite

?
Test execution

??�
 �	pass / fail

Figure 1.3: Process of formal conformance testing

In this section we illustrate a framework that helps to understand the process of formal
conformance testing, independently of any specific formal method (for a more elaborate
treatment of the contents of this section we refer the readerto [59]). This process is described
schematically in Figure 1.3. There, the specification, the test generation, and the test suite
are formal objects. Meanwhile, the implementation and the test execution (therefore also the
verdict, pass or fail) are not formal. The implementation can be a real object (or part of),
the test execution is an activity of feeding and reading values from the implementation. We
wish to know whether the implementation is correct (does nothave errors) with respect to
the specification (indicated by the dashed arrow in the figure). The criterion of correctness
is given by the so-called conformance relation. A decision of whether the implementation
“conforms” the specification is reached by a test generationprocedure that generates a test
suite from the specification. So, the (generated) test suiteis executed with the implementation
and a verdict from the test execution is reached, telling whether the implementation does or
does not conform with the specification.

To formally deal with the implementation and test executionwe make the assumptions
described next.

6 Chapter 1. Introduction

The conformance relation & the test hypothesis In order to define the conformance
relation, we need three objects: the specification (object to be conformed to), the implemen-
tation (object to be checked for conformance), and the conformance relation (the criterion of
conformance). We assume that there is a universe of formal specifications, calledSPECS,
and a universe of implementations, calledIMPS. Then, the conformance is a relation
conforms-to⊆ IMPS ×SPECS. An implementation under test (calledIUT) conforms to
a specification (S), i.e. IUT conforms-toS , expresses thatIUT is a correct implementation
of the specificationS .

However, since we are restricting ourselves to black-box testing and thus cannot see inside
the implementation, we can only interact with the implementation through their external
behaviour. Moreover, implementations can be physical objects (as pieces of hardware or
software), therefore they are not always suitable for formal reasoning. Thus, as a way to give
a formal definition of conformance, we make the assumption that any real implementation
(IUT ∈ IMPS) can be modelled as a formal object, i.e.iIUT ∈ MODS, whereMODS
is the universe of formal models. This assumption is known asthe test hypothesis [11]. An
important detail of this assumption is that it is supposed that the model exists but not that the
model is actually known a priori.

The test hypothesis allows one to reason with real implementations just as if they are
formal objects. Moreover, it allows to express conformanceas a formal relation [14, 64],
called the implementation relation:imp ⊆MODS × SPECS. In this way, an implemen-
tation IUT conforms to a specificationS if and only if the model of the implementation,
iIUT ∈ MODS, is imp-related toS , i.e. iIUT imp S .

The observations As we say before, testing studies the behaviour of an implementation
by experimenting with it and observing its reaction. These experiments are called test cases,
and the process of applying them to the implementation is called test execution.

Once we have generated a set of test cases, their execution isnot a formal activity, as it is a
matter of mechanically feeding to and reading values from the implementation. Nevertheless,
the analysis of the results and the final verdict are still influenced and simplified by the formal
framework. (Note that the test generation and execution do not need to be always sequential.
One technique, called on-the-fly testing, allows to combinethe test generation and execution.
Here, the tests are executed while they are generated.)

The universe of formal test cases is calledTESTS . Thus, a test execution is a pro-
cess calledEXEC(t , IUT), built from a testt ∈ TESTS and an implementationIUT ∈
IMPS. During the execution, process observations can be made or recorded; we call
OBS the universe of observations (interpreting them as formal objects). Thus, an execu-
tion EXEC(t , IUT) returns a subset ofOBS.

Now, EXEC(t , IUT) corresponds to a physical execution of a test case in a real imple-
mentation, and therefore is not a formal concept. To formalize it we define the observation
functionobs : TESTS ×MODS → P(OBS). In this way,obs(t , iIUT) models formally
the real test execution ofEXEC(t , IUT). Moreover, using the concepts introduced earlier we
can reformulate the test hypothesis as for allIUT in IMPS, there existsiIUT inMODS
such that for allt in TESTS , thenEXEC(t , IUT) = obs(t , iIUT). Meaning that for each
real implementationIUT , it is assumed that there exists a modeliIUT such that executingt
againstIUT yields exactly the some observations as executingt againstiIUT . Hence, it is
not possible to distinguish them in a black-box performing tests inTESTS .

Section 1.2. A formal framework for software testing 7

The verdict Using the observations, we can determine whether an implementation is
correct or wrong. To this end we introduce the verdict function for eacht a test,vt :
P(OBS) → {fail,pass}, and using the previous definition we can defineIUT passes

t , vt(EXEC(t , IUT)) = pass, and its extension to test suitesIUT passes T , ∀ t ∈
T : IUT passes t . On the other hand, we say that an implementation fails a testsuiteT if
it does not pass it, i.e.IUT fails T , ¬(IUT passes T).

Properties of conformance testing Because we want the conformance relation to be
assessed through test cases, ideally, we would like to have atest suiteTS , for a given speci-
ficationS , such that

IUT conforms-toS if and only if i passes TS

When a test suite has this property we say it iscomplete. Thus, a complete test suite is able to
distinguish between implementations that do conform to their specifications and implemen-
tations that do not.

Unfortunately, this requirement is very strong since complete tests suites are usually infi-
nite. Nevertheless, it is possible to divide this requirement in two

if IUT conforms-toS then i passes TS

this is known assoundness, meaning that all correct implementations pass the test suite; and

if i passes TS then IUT conforms-toS

which is known asexhaustiveness, meaning that all non-correct implementations are detected
by the test suite. These properties can also be shown throughformal models as∀ i ∈
MODS : i imp S if and only if for all testst , vt (obs(t , i)) = pass. Then,IUT passes

T if and only if IUT conforms-toS . So, if the completeness property is proved at the level
of models, assuming the test hypothesis, the conformance ofan implementation with respect
to its specification can be decided by the testing procedure.

The derivation procedure The algorithm that produces sound and/or exhaustive test
suites from a specification given an implementation relation; this is called thetest derivation.
We define this procedure as a functionderimp : SPECS → P(TESTS). Following the
requirement of soundness of test suites, such a function should produce sound test suites for
any specificationS in SPECS.

1.2.1 The ioco testing relation

In this thesis we focus on a particular conformance relation, the ioco testing relation (which
is an instantiation of the presented framework). Theioco testing relation relates systems
described as labelled input-output transition systems [58]. It includes nondeterminism and
quiescence (the absence of outputs). Also it requires implementations to accept always all
inputs. Briefly,ioco allows implementations to have only outputs that are predicted by the

8 Chapter 1. Introduction

specification, with a special consideration of no output (quiescence) as a kind of output. Thus,
implementations can be more deterministic than specifications. In Chapter 2 we formally
describeioco.

1.3 Research questions

As we mentioned in the previous section, the process of formal conformance testing involves
mainly three ingredients: physical aspects (like black-box implementation and real execution
of test cases); formal aspects (like specifications, implementations, verdicts, and test deriva-
tions), and assumptions (like the test hypothesis). Focusing on the formal ingredients, one
can see that each of those elements can be improved independently, or specifically optimized
for a particular task; this, in turn, benefits the whole testing framework, resulting in more
accurate, effective and efficient testing.

Time in testing There are many systems where the consideration of time is crucial. Even,
in same cases, small delays can cause huge problems. The necessity of consider time in some
theories has long been recognized and many formal method have been extended with time.
In this thesis we consider extensions of theioco testing theory. Our first extensions address
the following question:

Research question 1: In which useful ways can we extendioco testing theory
to be able to test real-time systems in an accurate manner?

Coverage in testing Existing coverage criteria for test suites are usually defined in terms
of syntactic characteristics of the implementation under test or its specification [61, 42, 49,
47, 48, 8]. A disadvantage of this syntactic approach is thatdifferent coverage figures are
assigned to systems that are behaviorally equivalent, but syntactically different.

Moreover, those coverage metrics do not take into account risks, meaning that they do
bear in mind the fact that certain failures are more severe than others. Therefore, it should
be devoted more testing effort to cover more important bugs,while less critical system parts
can be tested less thoroughly. Thus, our second extension address the following question:

Research question 2: In a black-box testing setting with failure risks, how can we
measure a given test suite independently of the specification
syntactic aspects?

These two questions are in fact complementary; whereas Research question 1 extends the
scope of testable systems, Research question 2 studies how to measure a given test suite
allowing to find the optimal test suite (the one with more important bugs).

1.4 Structure of the thesis

Our thesis contributions, developed in the context described by theioco testing theory, are
depicted in Figure 1.4. After introducing formal testing and more specifically theioco theory,

Section 1.4. Structure of the thesis 9

we present our extensions: a testing theory considering both real-time (tioco) and real-time
plus channels (mtiocoM) in Chapters 3 and 4 respectively, and a semantic coverage criterion
in Chapter 5.

Conclusions (Chapter 6)

tiocoM

(Chapter 3)
mtiocoM
(Chapter 4)

Coverage
(Chapter 5)

ioco (Chapter 2)

Formal Testing (Chapter 1)

Figure 1.4: Thesis skeleton

Testing labelled input-output transition systems (Chapter 2) This chapter is an
introduction to the theory of formal methods applied to testing labelled input-output
transition systems. In particular, we introduce theioco testing theory [58], where la-
belled input-output transition systems is the formalism used. ioco is a formal confor-
mance testing relation that includes nondeterminism and quiescence (briefly, a system
is in a quiescent state when it does not produce outputs). In addition, quiescence is
considered an observable action. Implementations are required to be input-enabled
(meaning that all input actions should be enabled at any time).
This chapter is the basic theory that the subsequent chapters build upon.

Testing timed labelled input-output transition systems (Chapter 3) We propose an
extension of theioco testing theory with real-time that enables test generationfor timed
input-output labelled transition systems. Our treatment is based on an operational in-
terpretation of the notion of quiescence in the context of real-time behaviour. This
gives rise to a family of implementation relations parameterized by observation du-
rations for quiescence. We define a nondeterministic (parameterized) test generation
procedure that generates test cases that are sound with respect to the corresponding im-
plementation relation. Also, the test generation is shown to be exhaustive in the sense
that for each non-conforming implementation a test case canbe generated that detects
the non-conformance.
We conclude this chapter showing a result that relates our proposed timed extension
with the non-timed approach. Part of this work appears in [1](joint work with Ed
Brinksma) and in [4] (joint work with Mathias Röhl).

Testing timed labelled multi input-output transition systems (Chapter 4) Our starting
point is the formal conformance timed testing relation defined in Chapter 3. We relax
the input-enableness assumption (required in the previouschapter) by asking the input
and output sets to be partitioned (we called these partitions channels), also we allow

10 Chapter 1. Introduction

some input sets to be enabled while others remain disabled. Moreover, we relax the
general boundM (used in timed systems to detect quiescence), and allow different
bounds for different sets of outputs. We propose a new testing relation for timed input-
output labelled transitions systems that have the input andoutput set partitioned in
subsets. A test derivation procedure which is nondeterministic and parameterized (by
the set of bounds) is further developed, and shown to be soundand exhaustive with
respect to our new testing relation.
We end this chapter by showing a result that relates the new proposed channel timed
extension with the timed approach presented in Chapter 3. Part of this work appears
in [2] (joint work with Ed Brinksma).

Semantic coverage in testing (Chapter 5)In this chapter we introduce a semantic approach
to test coverage. Our starting point is a weighted fault model, which assigns a weight,
in the specification, to each potential error in an implementation. We define a frame-
work to express coverage measures that express how well a test suite covers such a
specification, taking into account the error weights. Sinceour notions are semantic,
they are insensitive to replacing a specification by one withequivalent behaviour. We
present several algorithms that, given a certain minimality criterion, compute a mini-
mal test suite with maximal coverage. These algorithms workon a syntactic represen-
tation of weighted fault models as fault automata.
We end this chapter with an illustrating our approach by analyzing and comparing a
number of test suites for a chat protocol. Part of this work appears in [3] (joint works
with Ed Brinksma and Mariëlle Stoelinga).

CHAPTER 2

Testing labelled input-output
transition systems

2.1 Introduction

This chapter introduces the relevant, preliminary theories and relations describing theioco
testing theory developed originally by Tretmans [58]. As the rest of this thesis builds upon
the ioco testing theory, this chapter provides the basic setting necessary for the rest of this
thesis development.

Theioco testing theory has several desirable properties that make it attractive as an initial
setting to which one can start building on, as in this thesis.Among these properties we find
theoretical and practical advantages. As theoretical aspects,iocohas a clean and precise the-
ory. Particularly, it allows non-determinism, as Hoare [33] says “There is nothing mysterious
about non-determinism, it arises from the deliberated decision to ignore the factors which in-
fluence the selection”. Alsoiococonsiders quiescence as observable, allowing to distinguish
systems that can not be distinguish with out quiescence. As practical aspects,ioco serves as
a base theory for several successful testing tools, e.g. TORX [10] and TGV [26].

Organization of the chapter In Section 2.2 we survey labeled input-output transition sys-
tems (LTS): we formally define LTS by describing their notation and properties. Sec-
tion 2.3 presents some implementation relations that can beapplied to LTS; in particu-
lar, we describe theioco testing relation [58]. Section 2.5 then shows how these models
and implementation relations can be put into practice; by focusing on theioco test im-
plementation relation, a test derivation and a test execution procedure are presented.
In Section 2.6 we show that the test generation procedure presented is sound and ex-
haustive with respect toioco. We conclude this chapter resalting some of the useful
characteristics of theioco testing theory in Section 2.7.

2.2 Labelled input-output transition systems

A labelled input-output transition system (LTS) is a systemthat interacts with its environment
through inputs and outputs. Input actions come from (or are driven by) the environment,
while output actions are actions to the environment. The internal actions or silent actions are
not observable by the environment. We useL to denote the action set and the special label

11

12 Chapter 2. Testing labelled input-output transition systems

τ 6∈ L to represent internal actions. For arbitraryL′ ⊆ L, L′
τ denotesL′ ∪ {τ}.

Definition 2.2.1. A labeled input-output transition system (LTS)A is a 4-tuple〈Q , q0,L,T 〉,
where

• Q is a countable, non-empty set of states
• q0 ∈ Q is the initial state
• L is a countable set of labels. We assume thatL has a disjoint partition intoinput

labels, I , andoutput labels, O
• T ⊆ Q × Lτ ×Q is the transition relation

We denote the components ofA by QA, q0
A, LA, and TA, respectively. We omit the

subscriptA if its meaning is clear from the context. The class of all labeled input-output
transition systems overL is denoted byLTS(L). When we need to make the input set and the
output set explicit we writeLTS(I ,O).

To specify that a certain label (l) is either an input action or an output action, we simply
suffix a special symbol. Thus, for input actions we add an interrogation mark, and writel?.
Similarly, for output actions we add an exclamation mark, writing l !.

A transition(q, l , q ′) ∈ T is denoted asq
l
→ q ′. A path π is a finite or infinite sequence

of transitions

π = q0
l1→ q1

l2→ q2
l3→ · · ·

ln−1
→ qn−1

ln→ qn(→ . . .)

with qz
lz+1
→ qz+1 ∈ T andz = 0, 1, . . . ,n,

We denote bypaths(A) the set of all paths inA. The set of all finite sequences of actions
overL is denoted byL∗, while ε denotes the empty sequence. Moreover, ifσ1, σ2 ∈ L∗ then
with σ1 ·σ2 we denote the concatenation ofσ1 with σ2.

An LTS is calledstrongly convergentif it does not have any infinite paths of internal
actions. We require all LTSs that we work with to be strongly convergent systems.

Definition 2.2.2. Let A = 〈Q , q0,L,T 〉 be an LTS withq, q ′, qk ∈ Q ; lk ∈ Lτ ; β, βk ∈
L, 1 ≤ k ≤ n andσ ∈ L∗. Then

q
l1···ln−→ q ′ , ∃ q0, . . . , qn : q = q0

l1→ q1
l2→ · · ·

ln→ qn = q ′

q
l1···ln−→ , ∃ q ′ : q

l1···ln−→ q ′

q
l1···ln
6−→ , ∄ q ′ : q

l1···ln−→ q ′

q
ε
⇒ q ′ , q = q ′ or q

τ ···τ
−→ q ′

q
β
⇒ q ′ , ∃ q1, q2 : q

ε
⇒ q1

β
→ q2

ε
⇒ q ′

q
β1···βn
==⇒ q ′ , ∃ q0, . . . , qn : q = q0

β1
⇒ q1

β2
⇒ · · ·

βn
⇒ qn = q ′

q
σ
⇒ , ∃ q ′ : q

σ
⇒ q ′

q
σ

6⇒ , ∄ q ′ : q
σ
⇒ q ′

Section 2.2. Labelled input-output transition systems 13

We say that a stateq accepts the actionl if and only if q
l
→. When an LTS is able to

accept all input actions at any state, it is calledinput-enabled. This notion can be slightly
relaxed into a weak form, considering an LTS to be able to accept all input actions at any
state or any reachable state throughτ ’s transitions. Then, a stateq weakly accepts the action

l if and only if q
l
⇒. We say an LTSA is deterministicif does not exists a transitions labeled

with a τ action, and all transitions with the same source states and actions, have the same
target state.

Definition 2.2.3. LetA = 〈Q , q0,L,T 〉 be an LTS(I ,O), then

A is input-enabled , ∀ q ∈ Q : ∀ a ∈ I : q
a
→

A is weak input-enabled , ∀ q ∈ Q : ∀ a ∈ I : q
a
⇒

A is deterministic , ∀ q
l
→ q ′ ∈ T : l 6= τ and

if q
l
→ q ′, q

l
→ q ′′ ∈ T , thenq ′ = q ′′

In order to be able to keep track precisely of the occurrence of input and output actions,
we require LTS implementations to be input-enabled. Symmetrically, the environment of an
LTS implementation is assumed to be able always to accept anyoutput action.

Example 2.2.4. Consider the LTSA = 〈Q , q0,L,T 〉 where: Q = {q0, q1, q2}; q0 = q0;
L = I ∪O with I = {card, ask money} andO = {give money}; andT = {(q0, card, q1),
(q1, ask money, q2), (q2, give money, q0)}.

(a)

�� �
�
 �	q0

j

card? �� �
q1

K

ask money?�� �
q2)

give money!

(b)

�� �
�
 �	q0

j

card?

�	���
HH ask money?

�� �
q1

�
HHj
��card?

K

ask money?�� �
q2

��
AAU ��

ask money?
card?

)

give money!

Figure 2.1: A cash machine and one of its input-enabled versions

This deterministic LTS is depicture in Figure 2.1 (a). The systemA has an initial stateq0

denoted with double circles. Putting a card we arrive to state q1. From q1 it is possible to
ask for money and go toq2 where we leave receiving money, and again we are in the initial

state. We can observe inA thepathπ = q0
card
−→ q1

ask money
−→ q2

give money
−→ q0.

There are several ways to make this LTS input-enabled, in Figure 2.1 (b), we present one

14 Chapter 2. Testing labelled input-output transition systems

option. The self-loop with askmoney in stateq0, the one with card in stateq1 and the one
with card and askmoney in stateq2 makesA input enabled in every state.

Definition 2.2.5. LetA = 〈Q , q0,L,T 〉 be an LTS,q ∈ Q andQ ′ ⊆ Q , then

traces(A) , {σ ∈ L∗ | q0 σ
⇒ }

init(q) , {l ∈ Lτ | q
l
→ }

der(q) , {q ′ | ∃ σ ∈ L∗ : q
σ
⇒ q ′}

q after σ , {q ′ | q
σ
⇒ q ′}

Q ′ after σ ,
⋃

q∈Q′

(q after σ)

Given an LTSA, traces(A) captures all possible observable behaviours ofA. In other
words, a trace is the sequence of input and output actions present in a finitepath in paths(A).
Moreover, given a traceσ, by |σ | we denote the length of that trace. Theinit andder sets
collect the allowed actions and the reachable states, respectively, from a given state. The
after set is composed of all the states that can be reached after a certain trace is performed.

Example 2.2.6. As an example of Definition 2.2.5, in Figure 2.1(a), we see that the trace
σ = card · ask money· give money is intraces(A), init(q2) = {give money}, der(q0) =
{q0, q1, q2} and(q0 after σ) = {q0}.

In fact, in this setting the determinism of an LTS can be clearly characterized, as shown
in the following proposition.

Proposition 2.2.7. LetA = 〈Q , q0,L,T 〉 be an LTS, then

A is deterministic if and only if ∀ σ ∈ L∗ : ∀ q ∈ Q : | (q after σ) | ≤ 1

If σ ∈ traces(A) andq ∈ Q , then in case(q after σ) is a singleton set,{q ′}, we abuse
the notation to denote this element,q ′.

Proof.
[⇐ If A is deterministic then∀ σ ∈ L∗ : ∀ q ∈ Q : | (q after σ) | ≤ 1]

By induction over the length (|σ |) of σ. Let q be any state inQ .
Let |σ | = 1 (the caseσ = ǫ is trivial), then by Definition 2.2.3 of determinism

we have| q after σ | ≤ 1.
Suppose for all|σ | < n then | q after σ | ≤ 1.
Let |σ | = n thenσ = σ′ ·l . By Definition 2.2.5 of after :| q after σ′ ·l | =
| (q after σ′) after l |. Now, using base case(∃ q ′ : {q ′} = q after σ′)∨
(q after σ′ = ∅) then by Definition 2.2.5 of after and Definition 2.2.3 of
determinism we have| q after σ | ≤ 1.

[⇒ If ∀ σ ∈ L∗ : ∀ q ∈ Q : | (q after σ) | ≤ 1 thenA is deterministic]
Assume that for all trace inL∗ and for all stateq in Q : | q after σ | ≤ 1.

Section 2.2. Labelled input-output transition systems 15

Then for all actionl in L and for all stateq in Q : | q after l | ≤ 1. This means

that for all actionl in L and for all stateq in Q : if q
l
→ q ′ ∧ q

l
→ q ′′ then

q ′ = q ′′. Using that LTS are strongly convergent we have that for all action l in

L and for all stateq in Q : if q
l
→ q ′∧ q

l
→ q ′′ thenq ′ = q ′′ ∧ q

τ

6→. Now, by
Definition 2.2.3 of determinism we have thatA is deterministic.

When a state is unable to perform an action, we say that the state refuses that action. In
case a stateq has a set of actions that are not accepted, i.e. the set has an empty intersection
with init(q), we say that the stateq has this set as refusal. This latter concept is precisely
defined in the following definition. Note that the case with only one action can also be
described with a set with only one element.

In the particular case that a state refuses all actions, i.e.it does not have any outgoing
transition, we say that the state is indeadlock.

Definition 2.2.8. LetA = 〈Q , q0,L,T 〉 be an LTS withl ∈ L, q ∈ Q andL′ ⊆ L, then

q refuses l , q
l

6→ ∧ q
τ

6→

q refuses L′ , ∀ l ∈ L′
τ : q

l

6→
q deadlocks , q refuses L

To be able to represent refusal sets in traces, we extend the transition relation in the LTS
as follows. GivenA = 〈Q , q0,L,T 〉 an LTS, its transition relation (T) is extended to denote

the set of refused actions explicitly. Then, a transitionq
L′

→ q is added for each stateq that
refusesL′:

q
L′

→ q if and only if q refuses L′

In this way the transition relation that wasT ⊆ Q × Lτ × Q now becomesT ⊆ Q ×
(Lτ + P(L))×Q , whereP(L) denotes the power set ofL.

In the special case where a state cannot produce output actions (L′ = O), and can only
be activated by (further) supply of input actions, we say that the state isquiescent:

q quiescent , ∀ l ∈ Oτ : q
l

6→

We writeδ(q) to denote that stateq is quiescent.
Hence, the extension of the transition relation can be also applied to quiescence, with the

aim of treating quiescence as an observable event (i.e., theabsence of outputs). Using the

new actionδ (δ 6∈ Lτ), a transitionq
δ
→ q is added for each quiescent stateq:

q
δ
→ q if and only if δ(q)

16 Chapter 2. Testing labelled input-output transition systems

Example 2.2.9. Recall Figure 2.1 (a). If we considerL′ = {ask money} thenq0 and q2

refuses L′. Moreover, we can recognize thatq0 andq1 do not have any outgoing transitions
labelled with output actions, then both states are quiescent. In Figure 2.2 we show the cash
machine with its extension on the quiescent statesq0 andq1.

�� �
�
 �	q0

j

card?

�HHj
��δ

�� �
q1

K

ask money?

�HHj
��δ

�� �
q2)

give money!

Figure 2.2: A cash machine with quiescent states explicitlydenoted by self-loop quiescent
transitions

We can now introduce some new notions of traces, viz.failure traces(i.e. a sequence of
actions and refusals) andsuspension traces(i.e. a sequence of actions and quiescence).

Definition 2.2.10. Let A = 〈Q , q0,L,T 〉 be an LTS with the transition relation extended

with refused transitions (q
L′

→ q in caseq refusesL′). Then, thefailure tracesof A are

Ftraces(A) , {σ ∈ (L + P(L))∗ | q0 σ
⇒}

Definition 2.2.11. Let A = 〈Q , q0,L,T 〉 be an LTS with the transition relation extended

with quiescent transitions (q
δ
→ q in caseδ(q)). Then, thesuspension tracesof A are

Straces(A) , {σ ∈ L∗
δ | q0 σ

⇒}

usually we writeLδ to denoteL ∪ {δ}.

There is a tight relationship betweenStraces andFtraces:

Proposition 2.2.12.Let A = 〈Q , q0,L,T 〉 be an LTS with the transition relation extended
with refused transitions, then

Straces(A) = Ftraces(A) ∩ (L + {O})∗

whereO is written asδ.

Section 2.3. Conformance relations 17

Proof.
Direct from Definition 2.2.11.

Considering that implementations are required to be input-enabled, it makes sense to
believe that a system can be characterized by its output actions (considering quiescence as
one of them). With this idea in mind, we introduce the notion of output set. For labeled
input-output transition systems, all output actions that are enabled in stateq (including the
quiescent actionδ) are collected into the output setout(q).

Definition 2.2.13. LetA = 〈Q , q0,L,T 〉 be an LTS withq ∈ Q andQ ′ ⊆ Q , then

out(q) , {l ∈ O | q
l
→} ∪ {δ | δ(q)}

out(Q ′) ,
⋃

q∈Q′

out(q)

Intuitively, the output set collects all possible observable outputs of the system.

Example 2.2.14.The traceσ = card·{give money}·ask money·{ask money}·give money
is a trace inFtraces(A) (from Figure 2.2). The traceσ = δ ·card·ask money·give money·δ
is a trace inStraces(A). As example of an output set we can see thatδ ∈ out(q0) and
give money∈ out(q2).

2.3 Conformance relations

An implementation relationR (or conformance relation) is a relation that defines a notion
of correctness between an implementationi , and a specificationS . If the implementation
relation holds (i.e.(i ,S) ∈ R) we say that the implementation conforms to the specification.
There are several conformance relations that have been applied to LTSs, and in this section
we present some of them. For more details, the reader may consult surveys such as [22, 58].

As we already mentioned in Section 2.2, we require implementations to be input-enabled.
For specifications we allow more freedom and do not require them to be input-enabled. In
the following we present thetrace equivalence, failure trace equivalenceand thesuspension
trace equivalenceand the corresponding preorders.

Definition 2.3.1. LetA1 = 〈Q1, q
0
1 ,L1,T1〉 be an input-enabled implementation in LTS and

A2 = 〈Q2, q
0
2 ,L2,T2〉 be a specification in LTS withL1 = L2, then

• trace equivalence and preorder
A1 ≈tr A2 , traces(A1) = traces(A2)

A1 ≤tr A2 , traces(A1) ⊆ traces(A2)

• failure trace equivalence and preorder
A1 ≈ft A2 , Ftraces(A1) = Ftraces(A2)

A1 ≤ft A2 , Ftraces(A1) ⊆ Ftraces(A2)

18 Chapter 2. Testing labelled input-output transition systems

• suspension trace equivalence and preorder
A1 ≈st A2 , Straces(A1) = Straces(A2)

A1 ≤st A2 , Straces(A1) ⊆ Straces(A2)

The intuition behind trace equivalence is that an implementation conforms to a specifica-
tion if an external observer can not notice the difference intraces from both systems. In the
presence of non-determinism there are systems that can not be distinguished by this equiv-
alence, i.e. Example 2.4.2. The failure trace equivalence is a stronger relation than trace
equivalence because it rejects implementations using trace enreached with information about
the actions that can not be performed (i.e. refused sets). The suspension trace equivalence is
also stronger than trace equivalence, but weaker than failure trace equivalence. Suspension
trace equivalence compare traces enreached only with information about whether a system is
or is not in a quiescent state.

Trace and failure trace relations can be applied to systems without a clear distinction of
input and outputs. On the other hand, suspension trace relations require an explicit distinction
between inputs and output, because they are needed to recognize quiescence.

There are two properties that we already required that can beused to make the relation
more accurate. Firstly, we required an implementation to beinput-enabled. This implies that
if an implementation fails, it fails with an output action. Using this knowledge we can use
the output set, from Definition 2.2.13, to check for inclusion of output actions. Secondly,
when implementations are considered black boxes, then it make sense to consider traces that
are not specified by the specification (in contrast with previous definitions, where we use any
trace to test, even if its behaviour is not specified by the specification).

With these two new ideas we present the trace conformance relation (also known as io-
conf), which is expressed as:

A1 trconf A2 , ∀ σ ∈ traces(A2) : out(A1 after σ) ⊆ out(A2 after σ)

This definition expresses that unspecified behaviours are not tested (i.e. we only consider
traces fromA2). As a (convenient) consequence, we can test using incomplete specifications;
and complete specifications can of course be considered also.

Similarly, it is possible to define (ftconf) with inclusion of failure traces:

A1 ftconf A2 , ∀ σ ∈ Ftraces(A2) : out(A1 after σ) ⊆ out(A2 after σ)

2.4 The ioco implementation relation

Finally using inclusion of suspension traces, we define the input-output conformance relation
(ioco), presented in the next definition.

Definition 2.4.1. Let i be input-enabled implementation in LTS andS be a specification in
LTS, then

i iocoS , ∀ σ ∈ Straces(S) : out(i after σ) ⊆ out(S after σ)

Section 2.4. The ioco implementation relation 19

Informally, this means that an input-enabled implementation i ∈ LTS is ioco correct
with respect to a specificationS ∈ LTS , if and only if, after all possible behaviours of
the specification (∀ σ ∈ Straces(S)), any output actionb produced by the implementation
(b ∈ out(i after σ)) can also occur as an output of the specification (b ∈ out(S after σ)).
In particular, this should also hold for the special action quiescent (δ), modeling the absence
of outputs. In this wayioco requires an implementation to react correctly to the tracesthat
are explicitly mentioned in the specification. Moreover, the implementation has freedom to
react in any manner to traces not explicitly specified.

Example 2.4.2.Figure 2.3 shows two different input-enabled nondeterministic specifications
for the cash machine and the different relations between them. On the left hand side we see
an implementation that prescribes that after we introduce acard we can receive7 Euros,
and in case we introduce two cards we can receive2 or 7 Euros. On the right hand side
we see another specification, but this time, after the introduction of two card if the machine
internally chooses to go to its right size throughq2 then it does not produce7 Euros. In both
cases the machine can internally go to a state (q1) where it is possible to receive7 Euros or
to a state (q2) that is quiescent.

If we try to distinguish these two machines using the trconf conformance relations we
can not, because these machines have the same set of traces. But, we can distinguish them
usingiocogive that:out(impl after card?·δ·card?) = {give 7e!, give 2e!} is not included
in out(specafter card?·δ ·card?) = {give 2e!}.

impl�
�	����q0

�
�

��	

card? @
@

@@R

card?�
�	q1

?

give 7e !

z
card? �
�	q2

?

card?�
�	q3z
card?

�
�	q4

?

give 7e !
@

@
@R
give 2e !

9
card?

�
�	q5z
card?

�
�	q69card?

spec�
�	����q0

�
�

��	

card? @
@

@@R

card?�
�	q1

?

give 7e !

z
card? �
�	q2

?

card?�
�	q3z
card?

�
�	q4

?

give 2e !

9
card?

�
�	q5z
card?

trconf

ftc 6onf

i 6oco

Figure 2.3: Specification of two cash machines and their relations

20 Chapter 2. Testing labelled input-output transition systems

2.5 Test generation framework

Focusing on theioco testing theory from [58], this section defines the concept oftest cases,
the nature of their execution, and the evaluation of their success or failure.

Definition 2.5.1.

• A test caset = 〈Q , q0,Lδ,T 〉 is an LTS such that

− t is deterministic and has bounded behaviour
(i.e. ∃ N > 0 : ∀ σ ∈ traces(t) : |σ | ≤ N)

− Q contains the terminal statespass andfail, with

init(pass) = init(fail) = ∅

− for any stateq ∈ Q of the test case withq 6= pass, fail
init(q) = {a} for somea ∈ I , or
init(q) = O ∪ {δ}

− t does not haveτ -transitions

The class of test cases overI andO is denoted asTESTS (I ,O)
• A test suiteT is a set of test cases:T ⊆ TESTS (I ,O)

For the description of test cases, we use a process-algebraic notation with a syntax in-
spired by LOTOS [35]

B , l ; B | B + B | Σ B

wherel ∈ L, B is a countable set of behaviour expressions, and the axioms and inference
rules are:

l ∈ L ⊢ l ; B
l
→ B

B1
l
→ B ′

1, l ∈ L ⊢ B1 + B2
l
→ B ′

1

B2
l
→ B ′

2, l ∈ L ⊢ B1 + B2
l
→ B ′

2

B
l
→ B ′,B ∈ B, l ∈ L ⊢ Σ B

l
→ B ′

A test run of an implementation with a test case is modeled by the synchronous parallel
execution of the test case with the implementation under test. This run continues until no
more interactions are possible, i.e. until a deadlock occurs.

Definition 2.5.2. Let t be a test inTESTS (I ,O) andi be an input-enabled implementation
in LTS(I ,O), then

• Runningt with i is modeled by the parallel operator

|| : TESTS (I ,O) × LTS(I ,O)→ LTS(I ,O)

which is defined by the following inference rules

Section 2.5. Test generation framework 21

i
τ
→ i ′ ⊢ t || i

τ
−→ t || i ′

t
δ
→ t ′, ∀ l ∈ O : i

l

6→ ⊢ t || i
δ
−→ t ′ || i

t
l
−→ t ′, i

l
−→ i ′, l ∈ L ⊢ t || i

l
−→ t ′ || i ′

• A test run oft with i , is a traceσ ∈ L∗
δ of t || i leading to a terminal state oft ; σ is a

test run oft andi =

∃ i ′ : (t || i
σ
⇒ pass || i ′) or (t || i

σ
⇒ fail || i ′)

• i passes t , if all test runs do not lead to afail state oft

i passes t , ∀ σ ∈ L∗
δ : ∀ i ′ : t || i

σ

6⇒ fail || i ′

• i passes T, if i passes all test cases inT

i passes T , ∀ t ∈ T : i passes t

If i does not pass the test suite, itfails

i fails T , ∃ t ∈ T : i pa6sses t

We define the verdict of a test run as the label of the reached terminal state (i.e.pass

or fail). Since an implementation can behave nondeterministically, different test runs of the
same test case with the same implementation may lead to different terminal states and hence
to different verdicts. An implementation passes a test caseif an only if all possible test runs
lead to the verdict pass.

Systems are also considered to be fair in their executions. This means that an infinite
trace of input actions can not prevent an output or internal action to occur. Intuitively, fair
execution means that locally controlled actions cannot be blocked by input actions forever.

2.5.1 Test generation procedure

Using theioco theory, the following algorithm for test derivation is presented in [58]. Here,
a test case is understood as the specification of the behaviour of a deterministic and finite
testing system that can be carried out against an implementation under test. The behaviour
of test cases can be described by an LTS, where the occurrenceof a δ-action1 in a test case
corresponds to the detection of quiescence in an implementation, i.e. the observation that
no output is produced. In practice, the observation ofδ is implemented using a time-out
of sufficiently long duration. For a formal definition of the time-out, we refer the reader to
Chapter 3, where theioco theory is extended with time.

Let S = 〈Q , q0,L,T 〉 be a specification in LTS withQ ′ ⊆ Q as a non-empty subset
of states, and initiallyQ ′ = {q0}. With Q ′ we represent the set of all possible states in
which the specification can be at the current stage of the testcase execution [58]; i.e. states
where the specification could possibly be after the observations made so far. For notational
convenience we abbreviate this test generation procedure as TGP.

The algorithm for the generation of test casest ∈ TESTS in Q ′ consists of a finite
number of recursive applications of a nondeterministic selection between one of the following
three alternatives

1In [58] the action symbolθ is used for the observation of quiescence. We prefer to useδ for both quiescent and
its observation, in line with the philosophy that identicalactions synchronize.

22 Chapter 2. Testing labelled input-output transition systems

1. termination

QQst pass

The single state test casepass. It is possible to stop the recursion at any time using
this step.

t := pass

2. inputs

QQs r
?r l

�
�

A
At ′

Test caset supplies the inputl and behaves as test caset ′:

t := l ; t ′

wherel ∈ I , (Q ′ after l) 6= ∅, andt ′ is obtained by recursively applying the algo-
rithm to (Q ′ after l).

3. outputs

QQs r������
�

��	
lu ?

δ
@

@@R
lv

HHHHHjr
�

�
A
At1

q q r
�

�
A
Atu

r
�

�
A
Atδ

r
fail

r
fail

q q�lu ∈ out(Q′) �lv 6∈ out(Q′)

Test caset checks the next output from the implementation; if it is a valid response the
test case continues recursively; if it is an invalid response, i.e. l 6∈ out(Q ′), then the
test case terminates infail. The observation of quiescentδ is treated separately:

t := σ {lu ; tu | lu ∈ O ∧ lu ∈ out(Q ′)}
+ σ {δ; tδ | δ ∈ out(Q ′)}
+ σ {δ; fail | δ 6∈ out(Q ′)}
+ σ {lv ; fail | lv ∈ O ∧ lv 6∈ out(Q ′)}

wheretu andtδ are obtained by recursively applying the algorithm for(Q ′ after lu)
and(Q ′ after δ), respectively.

Example 2.5.3. Figure 2.4 shows two examples of test cases derived for the cash machine
from Figure 2.2. With these tests cases we can test the cash machine from Figure 2.1 (b),
which passes both tests.

Section 2.6. Completeness 23

�
�	����t0

?
card?�
�	t1

�
��	

give money! @
@@R
δ

fail
�
�	t2

?
ask money?�
�	t3

�
��	
δ @

@@R
give money!

fail pass

�
�	����t0

�
��	
δ @

@@R
give money!

fail
�
�	t1

?

card?�
�	t2

�
��	

money! @
@@R
δ

fail
�
�	t3

?
ask money?

pass

Figure 2.4: Two tests for the cash machine from Figure 2.2

2.6 Completeness

An important property of a test suite is to be sound, i.e. if animplementation fails any
test case of the test suite, then it should be the case that there is an error according to the
specification. If possible, a test suite also should be exhaustive, i.e. if an implementation has
an error the test suite will detect it. Below we define these properties formally forioco and
the TGP.

Definition 2.6.1. Let S be a specification in LTS(I ,O) andT a test suite composed by all
test cases obtained fromS by the TGP. Then for alli an input-enabled implementation in
LTS(I ,O)

T is sound w.r.t.ioco , if i iocoS theni passes T

T is exhaustive w.r.t.ioco , if i passes T theni iocoS

The test generation algorithm presented is sound in the sense that all test suite cases
generated are sound. The test generation algorithm is also exhaustive in the sense that for
every incorrect implementation, a test that exposes the error can be generated by the TGP.
This important properties are shown in the next two theorems. Here we give a sketch of the
proofs for more formal proves we refer the reader to [58].

Theorem 2.6.2. Let S be a specification in LTS(I ,O). Then for all i an input-enabled
implementation in LTS(I ,O) and all t a test case obtained fromS by the TGP

24 Chapter 2. Testing labelled input-output transition systems

if i iocoS then i passes t

Proof.
We give a sketch of the proof. To prove soundness it is sufficient to prove that for allt
obtained fromS by the TGP

if ∀ σ ∈ L∗
δ : t

σ
→ fail then ∃ σ′ : ∃ l ∈ Oδ : σ = σ′ ·l andl 6∈ out(S after σ′)

This property is proved by contradiction: lett be not sound, then∃ i : i ioco S , and
t || i

σ
⇒ fail || i ′. It follows thatt

σ
→ fail andi

σ
⇒ i ′, so from the premise:∃ σ′ : ∃ l ∈

Oδ : σ = σ′·l andl 6∈ out(S after σ′). But sincei
σ′·l
=⇒ i ′ andi iocoS , we havel ∈ out(S

after σ′), so a contradiction.
By straightforward induction over the structure oft , it is then proved that eacht generated

with the TGP fromS satisfies the previous property.

Theorem 2.6.3. Let S be a specification in LTS(I ,O). Then for all i an input-enabled
implementation in LTS(I ,O) with i i 6ocoS , there existst a test case generated fromS by the
TGP such that

i pa6sses t

Proof.
We give a sketch of the proof. To prove exhaustiveness we haveto show that the set of all
test casesT generated with the TGP satisfies

∀ i : i i 6ocoS implies ∃ t ∈ T : t fails i

So letσ be a trace such thatout(i after σ) 6⊆ out(S after σ), so∃ l ∈ out(i after σ)
with l 6∈ out(S after σ). A test caset[σ] can be constructed from the TGP as follows:

• t[ǫ] is obtained with the third choice, followed by the first choice for eachtb with b ∈ O

• t[a·σ] (a ∈ I) is obtained with the second choice, choosingl = a, and followed by
recursive applications to obtaint ′ = t[σ]

• t[b·σ] (b ∈ Oδ) is obtained with the third choice, followed by the first choice for each
t ′b with b′ ∈ O andb′ 6= b, and recursive application to obtaintb = t[σ]

Now it can be shown thatt[σ] || i
σ
⇒ t[ǫ] || i

′ l
⇒ fail || i ′′, soi fails t[σ].

Example 2.6.4.We can see that the test cases from Figure 2.4 are sound with respect to the
cash machine specification from Figure 2.2. However, considering the test suite composed
by these two tests, this test suite is not exhaustive. Because a machine with gives money after
the traceσ = card·ask money·give money·card, is a wrong implementation, but the tests
form Figure 2.4 will not expose the error.

Section 2.7. Conclusion 25

We conclude this section remarking that theioco testing theory has been practically ap-
plied. Different test tools have been built which implement, more or less strictly, the algo-
rithm presented here (i.e. TVEDA [53, 19], TGV [26], TestComposer [37], TestGen [29],
TORX [10]). Indeed, the developed theory plus its TORX support tool have proven to be
quite a useful and successful approach to the functional testing of reactive systems [60].

2.7 Conclusion

We choose to build our testing framework onioco for the following reasons. Theioco testing
relation has several desirable properties that make it an attractive testing relation, suitable for
building extensions on it. Hence, we choose this theory as our starting point. These desirable
properties range from theoretical to practical, and clearly establish the success of theiocoas
a testing theory and relation; we now highlight some of them:

• ioco has a well defined formal testing theoryWe present (a significant part of) this
formal testing theory on this chapter.
• ioco works cleanly with reactive systemsReactive systems are systems that interact

with the environment operating through stimuli and returning reactions. Typically,
black boxes approaches to testing are done through reactivesystems in which the set
of possible actions to be performed are divided into inputs and outputs.
• iocoallows non-determinismAlthough it is a good engineering practice to refrain from

the introduction of unnecessary non-determinism, in the context of black box testing
non-determinism is often unavoidable, and hence it must be part of a sensible testing
theory. Some further reasons are:

− Although the implementation under test may be deterministic, often it can only
be tested through a testing environment. Environments likeoperating system
features or communication media typically introduce non-determinism into the
observed behaviour.

− An implementation under test often consists of concurrent components in asyn-
chronous parallel composition. The lack of information about the relative progress
of components results in nondeterministic properties of their integrated behaviour.

− Non-determinism allows implementation freedom. Having nondeterministic spec-
ifications leaves room for alternatives in implementations.

• iococonsiders quiescence as observableQuiescence characterizes systems that do not
produce output actions without a prior stimulation arisingfrom an input action. Mak-
ing the quiescence concept an observable output action allows to distinguish systems
that without quiescence would be indistinguishable (i.e. Example 2.4.2).
• ioco has been successfully implemented in toolsThe TORX [10] tool and TGV [26]

implementioco . These tools have been used extensively; for instance, TORX has
been applied successfully in the several industrial cases studies [9, 17, 63]. Similar
algorithms have been also implemented in TVEDA [53, 19], TestComposer [37], Test-
Gen [29].

26 Chapter 2. Testing labelled input-output transition systems

CHAPTER 3

Testing timed labelled
input-output transition systems

3.1 Introduction

Most of the typical formal testing approaches (like the one presented in the previous chapter)
are limited to qualitative behaviour of systems, and exclude quantitative aspects such as real-
time properties. However, the explosive advance of embedded software has caused a growing
need to extend existing testing theories to deal with real-time features. To this end, in this
chapter we present an extension of Tretmans’ioco testing theory [58] considering real-time.

As explained in Chapter 2 the notion of quiescence plays a central role, in the (untimed)
test generation framework for labelled transition systems(LTS) on ioco testing theory. Qui-
escence characterizes systems that do not, and never will, produce an output without prior
stimulation with an input. By treating quiescence as a special kind of system output, the
notion of behavioural traces can be generalized to include quiescent observations.

A big difference between the untimed case and the time case isthe recognition of quies-
cence. Since we focus on black box testing to recognize quiescence in an implementation we
have to wait for outputs. But, it is clear that we can not wait forever. Therefore, we make a
realistic assumption in the sense that we assume that there exists a maximal durationM for
the waiting period. Then,M is a bound that precisely tells the time is needed to recognize
that the black box implementation is in a quiescent state.

Treating quiescence as an observable action allows us to formulate an implementation
relation that establishes unambiguously whether an implemented behaviour conforms to a
given specification model or not. More precisely, the conformance relation demands that
after all specified traces, every possible generalized output from the implementation is al-
lowed according to the specification. In other words, every output and quiescence from the
implementation has to be correctly predicted by the specification.

In practice, the above implementation criterion means thatimplementations may be more
deterministic than specifications.

Organization of the chapter We develop a testing theory which addresses both nondeter-
minism and real-time.
Firstly, in Section 3.2, we introduce our real-time model, by defining timed labelled
input-output transition systems (TLTS). In Section 3.2.1,we present a subset of TLTSs:
generated by timed automata (TA). The semantics of a TA is defined in terms of an

27

28 Chapter 3. Testing timed labelled input-output transition systems

TLTS. Even if the TLTS generated by TA is a strict subset of theTLTS, it allows for
an intuitive and well-known way of being illustrated. We usethis drawing capability
for some of our examples through the rest of the chapter. In addition, this first part
is completed with Section 3.3, where we introduce further notations, restrictions and
definitions for TLTSs.
Secondly, in Section 3.4, we present three relations over TLTSs. Initially, we consider
inclusion of normalized timed traces (a handy simplification on the notation of timed
traces). Later, we parameterize this relation with quiescence observations. Finally, we
present an extension of theioco relation on real-time reactive systems. Our relation is
calledtiocoM , and it is based on an operational interpretation of the quiescence notion.
This interpretation gives rise to a family of implementation relations parameterized by
observation durations (M) of quiescence.
Thirdly, in Section 3.5, we formalize precisely the recognition of quiescence in a black
box implementation. We achieve this by using a boundM that represents the time it
takes to infer that the implementation is in a quiescent state.
Fourthly, in Section 3.6, we define a non-deterministic testgeneration framework, pa-
rameterized by the boundM . In Section 3.7 the test generation framework is shown to
be complete with respect to thetiocoM implementation relation. This means that it is
sound (Section 3.7.1) and exhaustive (Section 3.7.2) with respect to thetiocoM imple-
mentation relation. A test generation framework is sound with respect to thetiocoM

if for each implementation that fails a generated test, the implementation is non-
conforming with respect totiocoM . Besides, the test generation framework is ex-
haustive with respect to thetiocoM if for every non-conforming implementation, fol-
lowing the test generation procedure a test case can be generated that detects its non-
conformance.
Finally, in Section 3.8 we show a result that relates our proposed timed extension
with the non-timed approach presented in Chapter 2. Concurrently to the research
carried out in this chapter, several other timed testing approaches have been developed
independently. We compare the approaches in Section 3.9. Weconclude with some
summary and outlook of our approach.

3.2 Timed labelled input-output transition systems

Timed labelled input-output transition system are labelled input-output transition systems
(as described in Chapter 2) extended with time. Apart from having the transitions labelled
just with actions, we now let transitions also be labelled with time values that model delays.
Then now, we distinguish three types of labels: time-passage actions (from a setD), external
actions (from a setL) and the special internal action (τ). Every label which is not a time-
passage action is thought of as occurring instantaneously,i.e. without consuming time. We
model time as the nonnegative reals (thusD = IR≥0); no a priori lower bounds are imposed
on the delays between actions. We denote byL , L ∪ D and for arbitraryL′ ⊆ L, L′τ
denotesL′ ∪ {τ}.

Definition 3.2.1. A timed labelled input-output transition system(TLTS)A is a 4-tuple
〈Q, q0,L, T 〉, where

Section 3.2. Timed labelled input-output transition systems 29

• Q is a non-empty set of states
• q0 ∈ Q is the initial state
• L , L ∪ D are the external actionsL and time-passage actionsD; whereD = IR≥0

andL is partitioned intoI input labels(denoted byl?) andO output labels(denoted
by l !); with L = I ∪O andI ∩O = ∅
• T ⊆ Q×Lτ ×Q is the transition relation with the following consistency constraints,

whered , d1, d2 ∈ D:

Time Determinism: ∀ q, q ′, q ′′ ∈ Q : q
d
→ q ′ andq

d
→ q ′′ thenq ′ = q ′′

Time Additivity : ∀ q, q ′′ ∈ Q : ∀ d1, d2 ≥ 0 : ∃ q ′ ∈ Q :

q
d1−→ q ′ d2−→ q ′′ if and only if q

d1+d2−→ q ′′

Null Delay: ∀ q, q ′ ∈ Q : q
0
→ q ′ if and only if q = q ′

We denote the components ofA byQA, q0
A, LA, andTA (we omit the subscriptA if its

meaning is clear from the context). The class of all timed labelled input-output transition
systems overL is denoted asTLTS(L). When we need to mention explicitly the input and
output sets we denote it byTLTS(I ,O).

Example 3.2.2.Consider the timed cash machine, illustrated in Figure 3.1.The behaviour
of this machine is simple. We can initially ask for money. Then, after5 time units, we receive
it. Despite its simplicity, this example illustrates the general complexity of a TLTS. Formally,
it can be expressed as a TLTSA = 〈Q, q0,L, T 〉 whereQ = {q0} ∪ {q1(d) | d ∈ D ∧ d ∈
[0, 5]}; q0 = q0; L = I ∪ O ∪ D with I = {ask money} andO = {give money}; and
(q0, ask money, q1(0)), (q1(0), 5, q1(5)), (q1(5), give money, q0) ∈ T . Note that because
the infinitary nature of time the number of transitions is also infinite.

Even in Figure 3.1 we show only three states, actually this TLTS has an infinite number of

states. For instance, not shown but of course still there is the stateq1(2) such thatq1(0)
2
→

q1(2) and q1(2)
3
→ q1(5), dictated by the time density together with the time additivity

property.
Unfortunately, a more precise illustration has only been solved for TA, but not yet for

TLTS.

�� �
�
 �	q0

R

ask money? �� �
q1(0)
-5

�� �
q1(5)

Y

give money!

Figure 3.1: A simple cash machine with time as a TLTS

Labels inL represent the observable actions of a system, i.e. externalactions and pas-
sage of time; the special labelτ represents an unobservable internal action. The set of all

30 Chapter 3. Testing timed labelled input-output transition systems

finite sequences of actions overL is denoted byL∗, while ǫ denotes the empty sequence. If
σ1, σ2 ∈ L

∗ thenσ1 ·σ2 is the concatenation ofσ1 andσ2. A transition(q, l , q ′) ∈ T is

denoted asq
l
→ q ′. A path π is a finite, or infinite, sequence of transitions

π = q0
l1→ q1

l2→ q2
l3→ · · ·

ln−1
→ qn−1

ln→ qn(→ . . .)

with qz
lz+1
→ qz+1 andz = 0, 1, . . . ,n, Moreover, we denote withpaths(A) the set of all

paths inA, and withpathsω(A) the set of all infinite paths inA.

3.2.1 Timed automata

Since TLTSs are quite an expressive formalism, we choose them as the starting point for
our testing theory. However, as already mentioned, their infinite set of states makes their
illustration difficult (c.f., Example 3.2.2). This problemhas been resolved for the subset
of TLTSs generated by timed automata. In this section we present the formalism fortimed
automata(or TA) and its well known graphical notation, which is the one we use in future
examples. However, note that we use TA indeed only for illustrative purposes. Our testing
theory is defined on the far more expressive class of TLTS. As expected, given that our theory
relies on TLTS, TA constitute one instance in which our results apply.

Timed automata extend finite LTS with a finite set of clocks over a dense time domain [7].
All clocks increase monotonically with constant rate1, and measure the amount of time that
has elapsed since they started or were reset. The choice of the next state of a timed automaton
depends on the action and its occurrence time relative to theoccurrence’s previous action.
Each transition of the system can reset some of the clocks, and has an associated enabling
condition. Condition are constraints on the clock values. Atransition can be taken only
if the current clock values satisfy its enabling condition.Timing constraints on clocks are
expressed as in the following definition.

Definition 3.2.3. For a setC of clock variables, the setΦ(C) of clock constraintsϕ, where
c ∈ C andκ ∈ Q≥0, is defined inductively by

ϕ , c < κ | c > κ | c ≤ κ | c ≥ κ | ϕ1 ∧ ϕ2

We abbreviatec ≤ κ ∧ c ≥ κ asc = κ, and0 ≤ c as true.

Definition 3.2.4. A timed automaton(TA)F is a tuple〈Q , q0,L,C , Inv ,T 〉, where

• Q is a finite set of locations
• q0 ∈ Q is the initial location
• L is a finite set of actions
• C is a finite set of clocks
• Inv : Q → Φ(C) associates a clock invariant to each location
• T ⊆ Q × Lτ × Φ(C) × 2C ×Q is the set of switches [5]

As before, we denote the components of aF by QF , q0
F , LF , CF , InvF andTF . We

explicitly exclude TA withc < 0 as invariant in its initial state.

Section 3.2. Timed labelled input-output transition systems 31

A switch (q, l , ϕ, λ, q ′) ∈ T represents a change of location fromq ∈ Q to q ′ ∈ Q on
actionl ∈ Lτ . The clock constraint (or guard)ϕ ∈ Φ specifies when the switch is enabled,
and the setλ ⊆ C gives the subset of clocks to be reset when the switch is taken. Clock
invariants determine how long the automaton is allowed to stay in a certain location.

In the original theory of timed automata [6, 7], a timed automaton is a finite-state Büchi
automaton extended with a set of real-valued variables modeling clocks. Constraints on the
clock variables are used to restrict the behaviour of an automaton. A guard on a switch is
only an enabling condition, it can not force the switch to be taken. Because of that, Büchi
accepting conditions are used to enforce progress properties. A simplified version, namely
timed safety automatais introduced in [31] to specify progress properties using local invariant
conditions. An automaton may remain in a location as long as the clocks values satisfy the
invariant condition of the location. Due to their simplicity, timed safety automata have been
adopted in several verification tools for timed automata e.g. UPPAAL [41] and Kronos [21].
In this section, we focus on timed safety automata, and following the literature, refer to them
as timed automata.

Example 3.2.5. Consider the TA in Figure 3.2, which is also a timed cash machine. This
cash machine can be specified by the following timed automatonF = 〈Q , q0,L,C , Inv ,T 〉,
whereQ = {q0, q1}; q0 = q0; L = {ask money, give money}; C = {c}; Inv(q0) =
true, Inv(q1) = c ≤ 5; T = {(q0, ask money, true, {c}, q1), (q1, ask money, c < 5, {c},
q1), (q1, give money, c = 5, ∅, q0)}.

We may ask for money at any moment, since the guard in the outgoing switch fromq0 is
true. (Usually, when a guard is true we omit it.) As soon as themachine receives the request
for money it resets the clockc (denoted as{c} or c := 0) and enters locationq1. At this
location, the machine can either receive another request, and in that case resets the clock
again, or in five time units it produces money. The interpretation of the outgoing labelled
switch fromq1 to q0 is the following. The machine gives money at the precise moment that
the clockc reaches the value5, and does not reset any clock. Note that the invariantc ≤ 5
in locationq1, ensures progress because it forces to take the outgoing switch.

�� �
�
 �	q0

j

ask money?, true,c := 0 �
�

�
�q1

c ≤ 5

Y

give money!,c = 5, ∅

����PPi
ask money?,

c < 5,
c := 0

Figure 3.2: A timed automata specification

The behaviour of a timed automatonF depends on both its current location and the actual
values of all its clocks.

32 Chapter 3. Testing timed labelled input-output transition systems

Definition 3.2.6. A clock valuationover a set of clocksC is a mapν : C → D that assigns
to each clockc ∈ C a value inD. With V (C) we denote the set of clock valuations over
C . For d ∈ D, ν + d denotes the clock interpretation which maps every clockc to the value
ν(c) + d . Whenλ ⊆ C , ν[λ := 0] denotes the clock interpretation forC which assigns0 to
eachc ∈ λ, and agrees withν over the rest of clocks.

TLTSs are used to define the behaviour of timed automata. A state in the TLTS is a pair
〈q, ν〉 such thatq is a location ofF andν is a clock valuation forC satisfying the invariant
InvF(q). Transitions in the TLTS represent either an elapse of time or a switch ofF .

Definition 3.2.7. Thesemantics of a timed automatonF = 〈QF , q0
F ,LF ,CF , InvF ,TF 〉 is

given by the TLTSA = 〈QA, q0
A,LA, TA〉, where

• QA = {〈q, ν〉 ∈ QF ×V (CF) | ν |= InvF (q)}
• 〈q, ν〉 = q0 whereq = q0

F andν(c) = 0 for all clocksc ∈ CF

• LA = LF ∪ D
• TA ⊆ QA × LA ×QA, where

− (〈q, ν〉, d , 〈q, ν + d〉) if d ∈ D ∧ ∀ d ′ : 0 ≤ d ′ ≤ d , ν + d ′ |= InvF(q)

− (〈q, ν〉, l , 〈q ′, ν[λ := 0]〉) if (q, l , ϕ, λ, q ′) ∈ TF andν |= ϕ

A significant advantage of timed automata is that it is possible to construct a quotient
called theregion automaton. This construction makes the uncountable state space of a TLTS
associated to a TA to be partitioned into finitely many regions [5].

Definition 3.2.8. A timed automatonF = 〈Q , q0,L,C , Inv ,T 〉 is calleddeterministicif

• F does not haveτ switches
• ∀ q ∈ Q : l ∈ L : 〈q, l , ϕ1, λ1, q1〉, 〈q, l , ϕ2, λ2, q2〉 ∈ T : ϕ1 ∧ ϕ2 is unsatisfiable

Deterministic timed automata constitute an important subclass of TA that are strictly less
expressive than non-deterministic timed automata [7]. ForTAs to be deterministic, multiple
transitions starting at the same location with the same label are only permitted when their
clock constraints are mutually exclusive. Thus, at most oneof the transitions with the same
action is enabled at a given time.

To show the expressiveness of TLTSs compared with TAs, as follows we present two
examples of systems that can be expressed as a TLTS but not as aTA.

Example 3.2.9. As an intriguing but very interesting example we can use the uncountable
Cantor set1 to specify a cash machine.

1The Cantor set, introduced by German mathematician Georg Cantor, is a construction of a set of points lying
on a single line segment, and involving only the real numbersbetween zero and one. The Cantor set is created by
repeatedly deleting the open middle thirds of a set of line segments. One starts by deleting the open middle third
(1

3
, 2

3
) from the interval[0, 1], leaving two line segments:[0, 1

3
] and[2

3
, 1]. Next, the open middle third of each of

these remaining segments is deleted. This process is continued ad infinitum. The Cantor set contains all points in
the interval[0, 1] that are not deleted at any step in this infinite process. A very important property of the Cantor set
is that it is uncountable.

Section 3.3. Definitions, restrictions and notations 33

Consider a cash machine where, when we ask for money at times that belong to the Cantor
set, the machine gives us money; if the asking time is not in the Cantor set, the machine does
not give us money. Interestingly, although this machine canbe expressed as a TLTS, it cannot
be expressed as a TA. This follows from the fact that we need either an infinite number of
locations or to have guards that are able to express special sets as the Cantor set.

It may be argued that this kind of examples are unrealistic, as no one would specify
such a system. However, in the following we present a more realistic example in which the
expressiveness of TLTSs is still necessary.

Example 3.2.10.Consider a cash machine that has two clocks; the first one is initialized
when we insert the card; the second one is initialized when weintroduce the Pin number. In
this machine, the order in which these two actions are performed is irrelevant, as they are
completely independent. However, the machine gives us money only in the case that these
two actions are carried out together closely in time. In Figure 3.3 this machine is shown in
TA-like notation; however, it should be noted that this is cash machine is indeed not a TA,
since the plus operation does not fall in the format allowed by Definition 3.2.3.

kiq0 �
�

�
�3card?

ccard:=0

Q
Q

Q
Qs

cPin :=0

Pin?

kq1 Q
Q

Q
Qs

Pin?
cPin :=0

kq2 �
�

�
�3

ccard:=0

card?

kq3 �
�

�
�3

ask money?
ccard + cPin>5

Q
Q

Q
Qs

ask money?
ccard + cPin≤5

kq4

kq5 -
give money!

kq6
Figure 3.3: A cash machine in TA-like notation

This kind of system requires to control whether the sum of thetwo clock values is equal or
less than a certain constant (5, in Figure 3.3). Crucially, these kind of guards are not allowed
by TAs, and moreover they can not even be expressed in TAs. On the other hand, this poses
no difficulty to be expressed as a TLTS.

Example 3.2.9 is not expressible as a TA because it requires an infinite number of loca-
tions and TAs have only a finite number of locations available. On the other hand, Exam-
ple 3.2.10 requires strictly more expressiveness on TAs guards.

As we already mentioned, the remainder of this chapter is devoted to TLTS, and we only
refer to TAs when its restrictions are useful or necessary.

3.3 Definitions, restrictions and notations

In the following we present some simplified notations for transitions in TLTSs.

34 Chapter 3. Testing timed labelled input-output transition systems

Definition 3.3.1. LetA = 〈Q, q0,L, T 〉 be a TLTS withq, q ′, qk ∈ Q; d , d ′, e ∈ D;
lk ∈ Lτ ; β ∈ L; αk ∈ L; σ ∈ L∗, then

q
l1...ln−→ q ′ , ∃ q0, . . . , qn : q = q0

l1→ q1
l2→ · · ·

ln→ qn = q ′

q
l1...ln−→ , ∃ q ′ : q

l1...ln−→ q ′

q
l1...ln
6−→ , ∄ q ′ : q

l1...ln−→ q ′

q
ǫ
⇒ q ′ , q = q ′ or q

τ...τ
−→ q ′

q
β
⇒ q ′ , ∃ q1, q2 : q

ǫ
⇒ q1

β
→ q2

ǫ
⇒ q ′

q
e
⇒ q ′ , (∃ q1, q2 : q

ǫ
⇒ q1

e
→ q2

ǫ
⇒ q ′) or

(∃ q1, d , d ′ : d + d ′ = e : q
d
⇒ q1

d′

⇒ q ′)

q
α1...αn==⇒ q ′ , ∃ q0 . . . qn : q = q0

α1⇒ q1
α2⇒ · · ·

αn⇒ qn = q ′

q
σ
⇒ , ∃ q ′ : q

σ
⇒ q ′

q
σ

6⇒ , ∄ q ′ : q
σ
⇒ q ′

Definition 3.3.2. LetA = 〈Q, q0,L, T 〉 be a TLTS withq ∈ Q,Q′ ⊆ Q andσ ∈ L∗, then

ttraces(A) , {σ ∈ L∗ | q0 σ
⇒ }

init(q) , {l ∈ Lτ | q
l
→ }

der(q) , {q ′ | ∃ σ ∈ L∗ : q
σ
⇒ q ′}

q after σ , {q ′ | q
σ
⇒ q ′}

Q′ after σ ,
⋃

q∈Q′

(q after σ)

A is deterministic if ∀ σ ∈ L∗ : (q0 after σ) has at most one element. IfA is
deterministic and(q0 after σ) 6= ∅, then(q0 after σ) is
overloaded to denote the unique element in(q0 after σ)

Timed traces, denoted asttraces, capture the observable behaviour in a TLTS, they are
the sequence of observable actions of apath. For a given ttraceσ we denote its length
with |σ|. The setinit(q) contains all labels of outgoing transitions fromq. The setder(q)
contains all reachable states fromq. In after we collect states that are reached from a given
state (or a set of states) through a fixed ttrace. As opposed tothe untimed case (described
in Definition 2.2.5, page 14), all these sets can be infinite, because of the continuous time
domain.

Example 3.3.3.The above definitions, applied to systemA = 〈Q, q0,L, T 〉 from Figure 3.1
give us: init(q0) = {ask money}, der(q0) = Q and (q0 after ask money) = {q1(0)}.
Moreover,σ = ask money·5 ·give money·ask money·3 is a timed trace ofA, thusσ ∈
ttraces(A).

From Definition 3.3.2 ofttraces we can observe that the time actions that appear on a
ttrace do not represent absolute time, but stand for relative time with respect to the time of
the previous action taken. For instance, in Example 3.3.3, the give money action happened

Section 3.3. Definitions, restrictions and notations 35

5 time units after the askmoney action, and not5 time units since the initialization of the
machine.

3.3.1 Restrictions

In the context of timed systems, particularly TLTSs, there exist three important properties
that are necessary, either for characterizing realistic systems or for carrying out proofs in a
formal and precise manner.

A TLTS is time divergentif it can never reach a time deadlock, i.e. reach a state in which
the system does not allow time to pass. A non-time divergent system does not faithfully
model the flow of time and thus does not model a system that could exist.

A TLTS is strongly convergentif it does not have infiniteτ -paths.
The last property, calledno forced inputs, is specific to timed input-output systems. It

says that a system should always have another possibility than blocking if the environment
does not provide a particular input action; then if the environment does not provide any input
action, the system has the possibility to let time pass. In this way, we exclude the possibility
of blocking the time flow when the environment does not provide certain input actions.

Definition 3.3.4. LetA = 〈Q, q0,L, T 〉 be a TLTS, then

• A is time divergent: if for each stateq there exists an infinite computationσ from q

with infinite cumulative delay, i.e.

∀ q ∈ Q : ∃ σ ∈ Lω
τ : σ = l1 ·l2 ·l3 · · · : q

σ
→ ∧ Σ

lz∈D
lz =∞

• A is strongly convergent: if there are no infiniteτ paths, i.e.

∀ π ∈ pathsω(A) : ∃ qz , l ∈ π : qz
l
→ ∧ l 6= τ

• A hasno forced inputs: if for each stateq there exists an infinite computation fromq
without input actions and with infinite cumulative delay, i.e.

∀ q ∈ Q : ∃ σ ∈ (Oτ +D)ω : σ = l1 ·l2 · · · : q
σ
→ ∧ Σ

lz∈D
lz =∞

From now on, we assume that for all consideredA ∈ TLTS,A is time divergent, strongly
convergent and has no forced inputs.

A related property to the above ones is the Zeno behaviour property. Briefly, aZeno
behaviouris a behaviour that performs an infinite number of actions in finite time. A system
is considered to be Zeno when all prefixes of a given Zeno behaviour can not be extended in
order to be time divergent. In our case, by simply requiring the time divergent property we
are clearly ruling out Zeno systems

Example 3.3.5. Using TA notation, in Figure 3.4 we present a non-deterministic cash ma-
chine. Even though it is a TA, there are no clocks or guards specified, so we can spend as
much time as we want in each location. In this machine we have to insert a card, and then we
can ask either for2 or 7 Euros. Internally, the machine can non-deterministicallyarrive to
one of two locations:q1 andq2. If the machine is in locationq1 and we ask for2 Euros, we
receive2 Euros. However, if we ask for7 Euros the machine does not give it to us. Luckily,

36 Chapter 3. Testing timed labelled input-output transition systems

we can insist and ask again; this time, we will receive the7 Euros. In locationq2 we observe
the opposite behaviour; we can ask and receive7 Euros but we need to insist to receive the2
Euros.

This cash machine is time divergent because we can spend infinite time in each location.
Clearly, this machine is strongly convergent because does not haveτ transitions. Moreover,
it does no forced inputs because it does not have state invariants.

spec: kiq0
�

�
�

�	

card? @
@

@
@R

card?

kq1z
ask 7e?

�
�

�
�

��+

ask 2e?

?
insist?

kq29
ask 2e?

?
insist?

Q
Q

Q
Q

QQs

ask 7e?

kq3

� -

give 2e!

kq4
?

ask 7e?

kq5
?

ask 2e?

kq6

��

give 7e!

kq7��
�
�
�
�
�
�
�
�
�
��

give 7e!

kq8B
B
B

B
B
B

B
B
B

B
B
BM

give 2e!

Figure 3.4: A non-deterministic cash machine

3.3.2 Normalized timed traces

In this section we present a useful simplification of the notion of ttraces (Definition 3.3.2).
A ttraceσ is a sequence of actions and delays, e.g.σ = a?·d1 ·d2 ·b!. Obviously, it

would be more natural to avoid consecutive delays, as inσ = a?·d1+d2 ·b!. Such ttraces
could alternatively be written as sequences of actions with(relative) time stamps attached to
the actions, viz.σ = a?(0)·b!(d1+d2), meaning that actiona? occurs at time0 and action
b! occursd1+d2 time units aftera?. This idea motivates the definition ofnormalized timed
traces, as follows.

Definition 3.3.6. A normalized timed traceσ is an element of(D · L)∗ · (ǫ +D).

Then normalized timed traces are a subset ofttraces which are of the special form(D ·
L)∗ · (ǫ + D), they have actions appearing after a time (that could be0) and there are no
consecutive delays. Thus, actions and time alternate. In case thatσ is a normalized timed
trace,σ = d0 · l0 · d1 · l1 · · · dn · ln · dn+1, we writeσ = l0(d0)·l1(d1) · · · ln(dn)·dn+1.

Definition 3.3.7. LetA = 〈Q, q0,L, T 〉 be a TLTS(I ,O) then we define the set ofnormal-
ized timed tracesofA, denotednttraces(A), as

Section 3.3. Definitions, restrictions and notations 37

nttraces(A) , {σ ∈ (D · L)∗ · (ǫ +D) | q0 σ
⇒}

It is possible to associate to each ttrace a normalized one, given a ttraceσ we denote
its associated normalized timed trace asσ̂. Note that this conversion can always be done
combining delays and adding0 delays if necessary.

We prove that for a TLTS(I ,O) system the set ofnttraces characterize the set of all
ttraces.

Theorem 3.3.8.LetA = 〈Q, q0,L, T 〉 be a TLTS(I ,O), then for allσ ∈ L∗

σ ∈ ttraces(A) if and only if σ̂ ∈ nttraces(A)

Proof.
[⇐ If σ̂ ∈ nttraces(A) then σ ∈ ttraces(A)]

Becausêσ is in nttraces(A) using Definition 3.3.7 it is easy to check that also
σ is in ttraces(A).

[⇒ If σ ∈ ttraces(A) then σ̂ ∈ nttraces(A)]
By induction over the length(|σ |) of σ:
Let |σ | = 1 (the caseσ = ǫ is trivial), then

if σ = d thenσ = σ̂ andσ̂ ∈ nttraces(A);
if σ 6= d thenσ = l . Thenσ̂ = 0 · l or σ̂ = l(0) andσ̂ ∈ nttraces(A).

Suppose that for allσ with |σ | < n there existŝσ such that̂σ ∈ nttraces(A).
Let |σ | = n thenσ = σ′ · µ with |σ′ | < n andµ ∈ (D + L). By inductive

hypothesis there existŝσ′ ∈ nttraces(A) such that̂σ′ = d0 ·l0 · · · dk−1 ·lk−1 ·dk ,
then ifµ ∈ D let µ = dk+1 thenσ̂ = d0 ·l0 · · · dk−1 ·lk−1 ·(dk + dk+1) or

σ̂ = l0(d0) · · · lk−1(dk−1)·(dk + dk+1);
if µ ∈ L let µ = lk then σ̂ = d0 ·l0· · · dk−1 ·lk−1 ·dk ·lk or

σ̂ = l0(d0)· · ·lk−1(dk−1) · · · lk (dk)
thusσ̂ ∈ nttraces(A).

Example 3.3.9.As an example, we can convert the ttraceσ = 2·card·3·1·ask 2e·give 2e·5,
from Figure 3.4, in the normalized timed traceσ̂ = card(2)·ask 2e(4)·give 2e(0)·5.

Using Theorem 3.3.8 from now on, we do not distinguish between a ttraceσ and its
normalized version̂σ. Moreover we lift all defined notations (i.e.

σ
→,

σ
⇒, etc.) that have been

defined forttraces to nttraces.

3.3.3 Input-enabled timed labelled input-output transiti on sys-
tems

To formalize the notion of input-enabledness in timed systems we ask that if an input action
is initiated by the environment, the system is always prepared to participate in such an inter-

38 Chapter 3. Testing timed labelled input-output transition systems

action; inputs are accepted without letting time pass. Then, a TLTS is input-enabled if it is
ready to accept any input at all times.

Definition 3.3.10. LetA = 〈Q, q0,L, T 〉 be a TLTS(I ,O), thenA is weak input-enabledif
all input actions are accepted in all states, abstracting fromτ transitions

∀ q ∈ Q : ∀ l ∈ I : q
l
⇒

Our definition of input-enabled involves a double arrow, since it abstract fromτ -transitions.
However, there does exists a definition with a simple arrow (∀ q ∈ Q : ∀ l ∈ I ∧ l 6= τ :

q
l
→) which is known as strong input-enabled. To avoid confusion, when we refer to the

definition with a simple arrow we explicitly use the word strong. In other case when we use
input-enabled we always mean weak input-enabled.

In the following we assume that implementations can be modelled as weak input-enabled
TLTS. Later on, in Chapter 4, we relax this assumption.

Example 3.3.11.We can observe that the cash machine from Figure 3.4, location q0 does
not allow ask 2e as a label of any outgoing transition nor ask7e. Hence, we conclude that
this system is not input-enabled.

Later on in Example 3.5.6, we present a modified version of this machine which is input-
enabled, and can be used as an implementation.

3.3.4 Quiescence

In the presence of time, a quiescent state is a state where thesystem is unable to produce an
output immediately or in the future, without receiving an input first.

Definition 3.3.12. LetA = 〈Q, q0,L, T 〉 be a TLTS(I ,O). A stateq ∈ Q is quiescent,
denoted byδ(q), if

∀ l ∈ O : ∀ d ∈ D : q
l(d)

6⇒

Similarly to the untimed case, we represent quiescence as a special actionδ (δ 6∈ L), and

extending the timed transition relation of a TLTSA to include self-loop transitionsq
δ
→ q

for each quiescent stateq

q
δ
→ q if and only if δ(q)

Definition 3.3.13. LetA = 〈Q, q0,L, T 〉 be a TLTS, we write∆(A), to denote the same
system with its timed transition relationTA extended with self-loop transitions labelled with
δ in all quiescent states.

Section 3.3. Definitions, restrictions and notations 39

We lift all concepts and notations (i.e.nttraces, init, etc.) that have been defined for
TLTSs to extended TLTSs. In this way, ttraces now have the possibility to performδ actions.

Example 3.3.14. Figure 3.5 shows a timed version of Example 2.4.2 (from Chapter 2,
page 19). Again two different input-enabled non-deterministic systems are represented. On
the left hand side we see an implementation that prescribes that after we introduce a card we
will receive7 Euros in less than5 time units or not Euros at all, and in case we introduce
two cards we can receive2 or 7 Euros in less than5 time units. On the right hand side we
see a specification, where after the introduction of a card ifthe machine internally chooses
to go to stateq2 then it can only produce2 Euros.

These two machines have the same set of ttraces (without quiescence), but with quies-
cence it is possible to distinguish them. Because the nttrace σ = card?(2)·δ(0)·card?(2)·
give 7e!(3) is in the implementation but it is not in the specifications.

�
�	����q0

�
�

��	

card?
c := 0

@
@

@@R

card?�
 �	c <5

?

give 7e !
c < 5

z
card?

c := 0

�
�	q2

?

card?
c := 0�
�	q3z

card?

�
 �	c <5

?

give 7e !
c < 5

@
@

@R
give 2e !

c < 5

9
card?
c := 0

�
�	q5z
card?

�
�	q69
card?

�
�	����q0

�
�

��	

card?
c := 0

@
@

@@R

card?�
 �	c <5

?

give 7e !
c < 5

z
card?

c := 0

�
�	q2

?

card?
c := 0�
�	q3z

card?

�
 �	c <5

?

give 2e !
c < 5

9
card?
c := 0

�
�	q5z
card?

Figure 3.5: Specification of two cash machines

3.3.5 Output set

Given a system in TLTS(I ,O) and a state in it, the output setoutM (q) collects time-stamped
output actions that are allowed from stateq (possibly after someτ -actions) and theδ-actions
that can appear after a delay.

In a specificationS ∈ TLTS, the quiescent states can be identified by analyzing thetimed
transition system, i.e. we can assume that∆(S) is at our disposal. However, given that
we work in a black box framework, for an input-enabled implementationi ∈ TLTS we can
only detect quiescence by waiting for outputs. Obviously, we can not wait forever. Therefore,
there must exist a maximal durationM , setting the time needed to recognize a quiescent state.
We use this boundM in the output set to recognize quiescence. Thus, we are concluding that
the system is in a quiescent state, if afterM time units, no output has occurred.

40 Chapter 3. Testing timed labelled input-output transition systems

Definition 3.3.15. Let ∆(A) = 〈Q, q0,L, T 〉 be a TLTS(I ,O) with q ∈ Q , Q′ ⊆ Q and
M ∈ D be the bound to recognize quiescence, then

outM (q) , {b(d) | b ∈ O ∧ d ∈ D ∧ q
b(d)
⇒ }

⋃
{δ(M) | q

δ(M)
⇒ }

outM (Q′) ,
⋃

q∈Q′

outM (q)

Therefore, the output set with parameterM collects all the output actions that a system
can produce, including observation of quiescence, in a given state or set of states.

Example 3.3.16.In the system from Figure 3.4, if we fixM = 6, we observe that: give2e(5)
∈ out(q3) andδ(6) ∈ out(q1).

3.4 Timed implementation relations

Since we develop the timed testing theory inspired by the untimed case, we define our final
testing relationtiocoM through two auxiliary relations, namely≤tiorf (inclusion ofnttraces)
and≤M

tiorf (inclusion ofnttraces with quiescence appearing only afterM time units).
The extension of the timed transition relation over TLTSs allows us to define a relation

over input-enabled implementations in TLTS(I ,O) and specifications in TLTS(I ,O) as in-
clusion ofnttraces.

Definition 3.4.1. Let i be an input-enabled implementation in TLTS(I ,O) andS be a spec-
ification in TLTS(I ,O), then

i ≤tiorf S , nttraces(∆(i)) ⊆ nttraces(∆(S))

As we mentioned before, in specificationsS quiescent states can be identified, then∆(S)
is at our disposal. However, this is not the case in implementations where we need the bound
M to recognize quiescence. Consequently, the following definition characterizes nttraces in
which quiescence (δ) can only appear after exactlyM time units.

Definition 3.4.2. LetA = 〈Q, q0,L, T 〉 be a TLTS, then

nttraces∆M (A) , nttraces(∆(A)) ∩ (D · L + M · δ)∗ · (ǫ +D)

Thus,nttraces∆M are those nttraces where quiescence comes after exactlyM time units.
This definition motivates the following parameterized version of our tiorf-relation, which
checks for inclusion onnttraces∆M .

Definition 3.4.3. Let i be an input-enabled implementation in TLTS(I ,O) andS be a spec-
ification in TLTS(I ,O) with M ∈ D, then

Section 3.4. Timed implementation relations 41

i ≤M
tiorf S , nttraces∆M (i) ⊆ nttraces∆M (S)

Thenttraces∆M set only takes into account observations of quiescence thatare made after
a delay ofM time units. Hence, we leave out all nttraces with the form:σ ·δ(k) ·σ′ were
k 6= M .

The following proposition states that the previous parametric tiorf relation (parameterized
by M) can be characterized by the inclusion of output sets from Definition 3.3.15.

Proposition 3.4.4. Let i be an input-enabled implementation in TLTS(I ,O) and S be a
specification in TLTS(I ,O), then

i ≤M
tiorf S if and only if ∀ σ ∈ (D · L + M · δ)∗ · (ǫ +D) :

outM (∆(i) after σ) ⊆ outM (∆(S) after σ)

Proof.
[⇒ If i ≤M

tiorf S then outM (∆(i) after σ) ⊆ outM (∆(S) after σ)]

Let σ ∈ (D · L + M · δ)∗ · (ǫ +D), then
if σ 6∈ nttraces(∆(i)), thenoutM (∆(i) after σ) = ∅;
if σ ∈ nttraces(∆(i)), then∀ b : b ∈ outM (∆(i) after σ) then

σ ·b ∈ nttraces∆M (i). Usingi ≤M
tiorf S we have

σ ·b ∈ nttraces∆M (S), thenb ∈ outM (∆(S) after σ).
[⇐ If outM (∆(i) after σ) ⊆ outM (∆(S) after σ) then i ≤M

tiorf S]

Let σ ∈ nttraces∆M (i), i.e. σ ∈ nttraces(∆(i)) ∩ (D · L + M · δ)∗ · (ǫ +D),
then(∆(i) after σ) 6= ∅. Hence, using the no forced inputs property from
Definition 3.3.4 we know thatoutM (∆(i) after σ) 6= ∅. Because,
outM (∆(i) after σ) ⊆ outM (∆(S) after σ), then
outM (∆(S) after σ) 6= ∅. Soσ ∈ nttraces(∆(S)) and
σ ∈ (D · L + M · δ)∗ · (ǫ +D). Then, we haveσ ∈ nttraces∆M (S).

3.4.1 The tiocoM implementation relation

Finally, we are in the position to define the relation we use totest timed labelled input-
output transition systems, thetiocoM relation. For an input-enabled implementationi and a
specificationS , i is tiocoM correct w.r.t.S , if the output set ofi after every nttrace ofS ,
including observations of quiescence, is a subset of the output set ofS after the same nttrace.

Definition 3.4.5. Let i be an input-enabled implementation in TLTS(I ,O) andS be a spec-
ification in TLTS(I ,O), then

i tiocoM S , ∀ σ ∈ nttraces∆M (S): outM (∆(i) after σ) ⊆ outM (∆(S) after σ)

The tiocoM relation is a restriction of the tiorf-relation that only takes into account nt-
traces that belong to the specification. This relation allows us to test black-box implementa-
tions assuming that the systems are input-enabled TLTSs, which is our aim. Hence,tiocoM

42 Chapter 3. Testing timed labelled input-output transition systems

is our target relation from which we define and derive our tests.

3.5 Operational model

To obtain an effective theory of quiescence in a timed setting, we need more than stipulating
that observing quiescence takes time. Since with physical implementations we can only
observe the absence of outputs over finite time intervals, wemust precisely stipulate when
such observations can be interpreted as quiescence.

Definition 3.5.1. Let i = 〈Q, q0,L, T 〉 be an input-enabled implementation in TLTS(I ,O)
andM ∈ D, then

q ∈ Q is M -quiescent , ∀ q ′ ∈ Q : q ′ ∈ (q after M) : q ′ is quiescent
i is M -quiescent , ∀ q ∈ Q : q is M -quiescent

The strategy to formalize how nttraces of an input-enabled TLTS may be enriched with
δ-actions is as follows. Whenever an nttrace allows an actionwith a delay of more thanM
time-units, this creates a possibility to observe quiescence. For example, if a system isM -
quiescent andM = 4 and the nttraceσ = a?(2) ·b?(5) ·c!(3) is observed, then it is also
possible to observeσ′ = a?(2)·δ(4)·b?(1)·c!(3). We formalize the addition ofδ-observations
to nttraces as a relationδM between nttraces.

Definition 3.5.2. Let i = 〈Q, q0,L, T 〉 be aM -quiescent input-enabled implementation in
TLTS(I ,O). Letσ, σ′, σ1, σ2 ∈ (D · Lδ)

∗ · (ǫ +D) benttraces, l ∈ L andd ∈ D, then

• σ δM σ′ , ∃ σ1, σ2 : ∃ l : ∃ d ≥ M :
σ = σ1·l(d)·σ2 ∧ σ′ = σ1·δ(M)·l(d −M)·σ2

• let Σ be a set ofnttraces(A), then

δM (Σ) , pref (
⋃

σ∈Σ

{σ′ | σ δ∗M σ′})

where pref(Σ′) is interpreted as the prefix-closure of a set oftraces Σ′ andδ∗M is the
reflexive and transitive closure of the relationδM .

In the previous definition the actionl(d) can only be an input action. This is because
two reasons: firstly the timed is bigger or equal to the boundM which is the bound for
quiescence observations and secondly the systemi is M -quiescent. An informal interpreta-
tion of theδM relation is that, given a nttraceσ its collects all ttraces similar to it with more
occurrences ofδ(M).

As follows we check the consistency in our proposedδ saturation. If aδ-action is in-
troduced in an nttrace, on the basic observations of a delay of (at least)M time units, we
must have the following property: “there never appears an output action immediately after a
δ(M)”.

Section 3.5. Operational model 43

Lemma 3.5.3. Let i be aM -quiescent input-enabled implementation in TLTS(I ,O), then
∀ σ ∈ δM (nttraces(i))

if σ = σ1 ·δ(M)·l(d)·σ2 then l 6∈ O

Proof.
By contradiction.

Suppose that there exists aσ ∈ δM (nttraces(i)) with σ = σ1 ·δ(M) · l(d) ·σ2 and l is
an output action (l ∈ O). Thenσ′ = σ1 · l(d + M) ·σ2 is also a ttrace of the systemi .

Hence, there exists a statesq ∈ (i after σ1 ·M) such thatq
l(d)
⇒ . Using definition of

output set (Definition 3.3.15) we have thatl(d) ∈ out(i after σ1 ·M). Then, stateq is not
M -quiescent, andi is notM -quiescent, so a contradiction. Then, aσ = σ1 ·δ(M)·l(d)·σ2

with l ∈ O does not exist.

Using the previous corollary, we show that if an input-enabled implementationi can be
assumed to beM -quiescent, then we may use the set of enriched observationsδM (nttraces(i))
to obtain thenttraces∆M (i) set, whose definition is based on the unobservable TLTS,∆(i).
This result is the basis for our test derivation algorithm presented in the next section.

Theorem 3.5.4.Let i be aM -quiescent input-enabled implementation in TLTS(I ,O) with
I 6= ∅, then

δM (nttraces(i)) = nttraces∆M (i)

Proof.
To prove this result we use that for an nttraceσ ∈ nttraces(i) the functionδM only introduces
occurrences ofδ(M). Similarly, in nttraces∆M (i) all occurrences ofδ(d) with d 6= M in
nttraces have been filtered out. Then, we prove this intuitive argument by induction over the
number of occurrences ofδ(M) in a nttraceσ (denoted|σ |δ).

Let |σ |δ = 0 then

σ ∈ δM (nttraces(i))
(By Definition 3.5.2) if and only if σ ∈ nttraces(i)
(By Definition 3.4.3 and|σ |δ = 0) if and only if σ ∈ nttraces∆M (i)

Suppose that for allσ with |σ |δ < n we have

σ ∈ δM (nttraces(i)) if and only if σ ∈ nttraces∆M (i)

Let |σ |δ = n, then there are two cases

• Suppose thatσ is of the formσ1 ·δ(M)·l(d)·σ2 , with |σ1|δ = n − 1 ∧ |σ2 |δ = 0. We
prove that such aσ is in δM (nttraces(i)) if and only if σ is in nttraces∆M (i). First note
that:

σ1 ·δ(M)·l(d)·σ2 ∈ δM (nttraces(i))
(by def ofδM) if and only if σ1 ·l(d + M)·σ2 ∈ δM (nttraces(i))
(Ind. Hyp. onσ1) if and only if σ1 ·l(d + M)·σ2 ∈ nttraces∆M (i)

44 Chapter 3. Testing timed labelled input-output transition systems

[⇐] If σ1 ·δ(M)·l(d)·σ2 ∈ nttraces∆M (i) then by skippingδ-observations
σ1 ·δ(M)·l(d)·σ2 ∈ δM (nttraces(i)). Then, clearly we have that
σ ∈ nttraces∆M (i) impliesσ ∈ δM (nttraces(i)).

[⇒] Let σ ∈ δM (nttraces(i)), then by the above implicationsσ1 ·µ(d + M)·σ2

= σ is in nttraces∆M (i). Now suppose thatσ1 ·δ(M)·µ(d)·σ2 is not in
nttraces∆M (i). This means that there is a non-quiescent state in
(i after σ1·M), i.e. there is an output actionµ ∈ O with σ1 ·δ(M)·µ(d ′)
∈ nttraces∆M (i). Again, by the above implications we have that
σ1 ·δ(M)·µ(d ′) ∈ δM (nttraces(i)). Using Lemma 3.5.3, this contradicts
thati is M -quiescent.

• If σ is not of the required format, it must be of the formσ1 · δ(M), and by input-
enabledness we can extend it to the formσ1 ·δ(M) ·µ(0) by appending some input
actionµ. Thus, the above result together with the prefix-closure ofδM (nttraces(i))
andnttraces∆M (i), implies that these sets also coincide for such ttraces, i.e. the theorem
holds.

As a final property, before presenting the derivation algorithm we present Theorem 3.5.5.
This theorem reveals that thetiocoM relation, in presence ofM -quiescent implementation,
implies anM based pre-order (is a pre-order with respect to the magnitude ofM).

Theorem 3.5.5.Let i be aM1-quiescent input-enabled implementation in TLTS(I ,O) and
S be a specification in TLTS(I ,O) with M1 < M2, then

if i tiocoM1 S then i tiocoM2 S

Proof.
Let assume thati tiocoM1 S andσ is a nttrace innttraces∆M2

(i). Then transformσ into σ′ by
replacing every subsequence of the formδ(M2)·l(d) in σ by δ(M1)·l(d + (M2 −M1)), and
possiblyδ(M2) by δ(M1)·(M2 −M1) in caseδ(M2) is the last action ofσ. Moreover, we
saturated the nttraceσ′ with δ(M1) in case there exists inσ′ a time stampd bigger thanM1,
recursively. Thenσ′ is also an nttrace of∆(i), and therefore ofnttraces∆M1

(i). As i ≤M1

tiorf
S , it follows that σ′ is a nttrace innttraces∆M1

(S). By postponing back all observations
of δ by M2 − M1 we getσ ∈ nttraces∆M2

(S), i.e. nttraces∆M2
(i) ⊆ nttraces∆M2

(S) then
i tiocoM2 S .

This postponing back observation ofδ can be done because the original nttrace,σ, was
from nttraces∆M2

(i). Thenσ has its observation of quiescence done afterM2 time units.
Using this information we can be sure that there is enough time to postpone.

Example 3.5.6. Figure 3.6 presents a new cash machine in TA notation. This system is
similar to the one from Figure 3.4, but it can be an implementation, because it is input-
enabled. Furthermore, it isM -quiescent forM = 5. TheM -quiescent property is archived
by the invariants (c < 5) on all states with outgoing output transitions. In this machine we
can be sure that if we receive money (give2 e or give 7 e) then this action happen before

Section 3.6. Timed test generation framework 45

5 time units have passed. This is the certainly provided by theM -quiescent property.
To keep the illustration readable we assume that all actionsreset the clockc each time

they are taken.

impl:

kiq0?
insist?, ask7e?

ask 2e?

�
�

�
�	

card? @
@

@
@R

card?

kq1z
ask 7e?

card?

�
�

�
�

��+

ask 2e?

?

insist?

kq2 9
ask 2e?
card?

?

insist?

Q
Q

Q
Q

QQs

ask 7e?�
 �	c <5z
ask 7e?

insist?, card?
ask 2e?

� -

give 2e!

kq4zask 2e?
card?, insist?

?

ask 7e?

kq5 9 ask 7e?
card?, insist?

?

ask 2e?

�
 �	c <59
ask 7e?

insist?, card?
ask 2e?

��

give 7e!

�
 �	c <5z
insist?, ask7e?
card?, ask2e?

�
�
�
�
�
�
�
�
�
�
�
�
�
��

give 7e! �
 �	c <5 9
insist?, ask7e?
card?, ask2e?

C
C
C
C
C
C
C
C
C
C
C
C
C
CO

give 2e!

Figure 3.6: A non-deterministic cash machine implementation. We assume that every transi-
tion reset the clockc.

3.6 Timed test generation framework

In this section we define the concept of timed test cases, the nature of their execution, and
the evaluation of their verdict: pass or failure.

A timed test caset is a deterministic TLTS(I ,O) with actions inLδ (whereLδ = L∪{δ})
such that it has bounded behaviour, in the sense that all computations have finitely many
action occurrences. The set of states in a test contains the terminal statespass and fail

without outgoing transitions, except self loops allowing time to pass. For any state different
from pass andfail there exists a bounded time to observe quiescence or to be able to make
an input action. Moreover, because tests under consideration are deterministicτ -transitions
are not allowed. Atimed test suiteT is a set of test cases. To simplify notation we represent
tests similarly as TA.

Definition 3.6.1. GivenM ∈ D a fixed bound to recognize quiescence inD, then

• A timed test caset = 〈Q, q0,Lδ, T 〉 is a TLTS such that

− t is deterministic and hasbounded behaviour, i.e.

46 Chapter 3. Testing timed labelled input-output transition systems

∃ N > 0 : ∀ σ ∈ ttraces(t) : σ = l1 ·l2 ·l3 · · · : |{z | lz ∈ L}| <∞

− Q contains the terminal statespass and fail, with init(pass) and init(fail)
without outgoing transitions except self loops allowing time to pass

− for any stateq ∈ Q of the test case, withq 6= pass, fail there exists0 ≤ d ≤ M

with

q0(q after d ′) = O ∪ {e | e ≤ d − d ′} for all d ′ < d , or
q0(q after d) = {l} with l ∈ I or l = δ

− t does not haveτ -transitions

The class of test cases overI andO is denoted byT EST (I ,O)
• A timed test suiteT is a set of test cases:T ⊆ T EST (I ,O)

For the description of test cases we use, as already done in Chapter 2, a process-algebraic
behaviour notation with a syntax inspired by LOTOS [35]

B , l ; B | B + B | Σ B

wherel ∈ L, B is a set of behaviour expressions, where the axioms and the inference rules
are:

l ∈ L ⊢ l ; B
l
→ B

l = d , d ′ < d ⊢ l ; B
d′

−→ d − d ′; B

l = d ⊢ l ; B
d
−→ B

B1
l
→ B ′

1, l ∈ Lδ ⊢ B1 + B2
l
→ B ′

1

B2
l
→ B ′

2, l ∈ Lδ ⊢ B1 + B2
l
→ B ′

2

B
l
→ B ′,B ∈ B, l ∈ Lδ ⊢ Σ B

l
→ B ′

A test run of an implementation with a test case is modelled bythe synchronous parallel
execution of the test case with the implementation under test. This run continues until no
more interactions are possible, except letting the time pass.

Definition 3.6.2. Let i be aM -quiescent input-enabled implementation in TLTS(I ,O), t be
a test inT EST (I ,O) andT be a test suite inT EST (I ,O), then

• Runningt with i is modelled by the parallel operator

|| : T EST (I ,O)× TLTS(I ,O)→ TLTS(I ,O)

which is defined by the following inference rules

i
τ
→ i ′ ⊢ t || i

τ
−→ t || i ′

t
δ
→ t ′, ∀ l ∈ O : i

l

6→ ⊢ t || i
δ
−→ t ′ || i

t
l
−→ t ′, i

l
−→ i ′, l ∈ L ⊢ t || i

l
−→ t ′ || i ′

t
d
−→ t ′, i

d
−→ i ′ ⊢ t || i

d
−→ t ′ || i ′

Section 3.6. Timed test generation framework 47

• A test run oft with i , is aσ of t || i leading to a terminal state oft . Then,σ is a test
run of t andi if

∃ i ′ : (t || i
σ
⇒ pass || i ′) or (t || i

σ
⇒ fail || i ′)

• i passes t , if all their test runs do not lead to thefail state oft

i passes t , ∀ σ : ∀ i ′ : t || i
σ

6⇒ fail || i ′

• i passes T, if ipasses all test cases inT

i passes T , ∀ t ∈ T : i passes t

If i does not pass the test suite, it fails it:

i fails T , ¬(i passes T)

Since an implementation can behave non-deterministically, different test runs of the same
test case with the same implementation may lead to differentterminal states and hence to
different verdicts. An implementationpasses a test case if an only if all possible test runs
lead to the verdictpass.

3.6.1 Test generation procedure

We define a procedure to generate test cases from a given extended specification∆(S) =
〈Q, q0,L, T 〉 in TLTS(I ,O), we call this test generation procedure as TTGP (from timed test
generation procedure). Similar as in Chapter 2, test cases result from the non-deterministic,
recursive application of three test generation steps fromQ′, corresponding to

1. termination,
2. generation of an input, and
3. observation of outputs(including quiescence).

Where the set ofQ′ ∈ Q represents the set of all possible states in which the specification
can be at the current stage of the test case execution. Initially Q′ is equal to{q0}.

1. termination

QQst pass

t := pass

The single state test casepass is always a sound test case. It stops the recursion in the
algorithm, and thus terminates the test case.

48 Chapter 3. Testing timed labelled input-output transition systems

2. inputs

chooseκ ∈ [0,M) andl ∈ I

QQs
c := 0

��
��
c ≤ κ

����������

b1!

c=d1s
�

�
A
At1

�
�

�
��	

bn !

c=dns
�

�
A
Atn

�bu(du) ∈ outM (Q′)

· · ·

�
�

�
�
�

��

l

c = κs
�

�
A
Atl

�b′
v (d

′
v) /∈ outM (Q′)

· · ·

@
@

@
@@R

b′1!

c =d′1s
fail

HHHHHHHHHj

b′
n′ !

c =d′
n′ s
fail

t := Σ {bu(du); tu | bu ∈ O ∧ du < κ ∧ bu(du) ∈ outM (Q′)}
+ l(κ); tl
+ Σ {b′v(d ′

v); fail | b′v ∈ O ∧ d ′
v < κ ∧ b′v (d ′

v) /∈ outM (Q′)}

wherec is a clock,κ is a time constant,M is the bound to detect quiescence,u is in
[1,n], v is in [1,n ′] andtu andtl are obtained by recursively applying the algorithm
to (Q′ after bu(du)) and(Q′ after l(κ)), respectively.

The test caset is waiting forκ time units, and trying to perform an input (l). If an out-
put from the implementation arrives before timeκ, the test checks whether the output
is an invalid response, i.e.b′v (d ′

v) /∈ outM (Q′); in that case, the test case terminates
with fail. If the output is valid the test case continues recursively with tu . If the in-
tended time has passed (i.e.c = κ) then the test produces the input(l) and continues
with the test casetl .

3. observations of outputs

QQs
c := 0

��
��
c ≤M

����������

b1!

c=d1s
�

�
A
At1

�
�

�
��	

bn !

c=dns
�

�
A
Atn

�bu(du) ∈ outM (Q′)

· · ·

B
B
B
B
B
BBN

δ

c = M s
�

�
A
Atδ

�b′
v (d

′
v) 6∈ outM (Q′)

· · ·

@
@

@
@@R

b′1!

c=d′1s
fail

HHHHHHHHHj

b′
n′ !

c =d′
n′ s
fail

Section 3.6. Timed test generation framework 49

t := Σ {bu(du); tu | bu ∈ O ∧ du < M ∧ bu(du) ∈ outM (Q′)}
+ Σ {δ(M); tδ | δ ∈ outM (Q′ after M)}
+ Σ {δ(M); fail | δ 6∈ outM (Q′ after M)}
+ Σ {b′v(d ′

v); fail | b′v ∈ O ∧ d ′
v < M ∧ b′v (d ′

v) /∈ outM (Q′)}

wherec is a clock,M is the bound to detect quiescence,u is in [1,n], v is in [1,n ′]
andtu andtδ are obtained by recursively applying the algorithm to(Q′ after bi(di))
and(Q′ after δ(M)), respectively.

The test caset is waiting forM time units; if an output arrives from the implementation
it checks whether it is an invalid response, i.e.b′u(d ′

u) /∈ outM (Q′); in that case, the
test case terminates infail. If it is a valid response after the time passed, the test case
continues recursively. The observation of quiescenceδ is treated separately, using the
constantM given by theM -quiescent property.

The construction steps involve (negations of) predicates of the formb(d) ∈ outM (Q′),
which at the general level of TLTSs are undecidable. The procedure given here, therefore,
should be seen as a meta-algorithm that can be used to generate tests effectively for sub-
classes of TLTSs for which these predicates are decidable, such as timed automata [38, 39].

We present an example of our test case generation based on a timed automaton model of
our cash machine, similar to the previous one.

Example 3.6.3.In Figure 3.7 we present three systems in TA notation, where again the initial
locations are represented with a double circle. On the left upper part we see the specification
as already shown in Example 3.3.5, augmented with an explicit denotation for quiescence
with straight self-loops. On the left bottom part is the implementation, where we do not
represent quiescence because we suppose it is a black box implementation. We suppose that
every action (in both systems) reset the clockc.

We can see that the implementation is slightly different to the one presented in Exam-
ple 3.5.6. In this one after asking for7 Euros, if the machine does not give it to us even if we
insist we can not obtain them. A similar behaviour happen for2 Euros in the other branch of
the machine.

On the right of the figure, we present a test case that was derived using the TTGP from
Section 3.6.1. We assumeM = 5.

We suppose the timing between each action is one unit of time or M . Assume that we
let one time unit to pass and then insert the card. After that,we ask the machine for7
Euros. Then, we observe that there is no reaction, so we inferquiescence; then, we insist (for
example by quirking the machine) and ask again for7 Euros. In normalized ttrace notation,
this is as follows

card(1)·ask 7e(1)·δ(M)·insist(1)·ask 7e(1)

In this situation, we would like to obtain7 Euros, as we see in the specification this is the
case, because

50 Chapter 3. Testing timed labelled input-output transition systems

out(spec after card(1)·ask 7e(1)·δ(M)·insist(1)·ask 7e(1)) = {give 7e[0,∞)}

Since the output set in the timed case is infinite, we use the give 7e[0,∞) notation to
denote that the output give7e can be produced at any time between0 and∞.

The test on the right hand side of Figure 3.7 was produced to test the nttrace that we
just described. If we apply this test to the implementation of the left bottom hand side of
Figure 3.7, we obtain

out(impl after card(1)·ask 7e(1)·δ(M)·insist(1)·ask 7e(1)) = {δ(5)}

In this way we know that this implementation is nottiocoM correct with respect to the speci-
fication, because it produces the unspecified outputδ(5).

3.7 Completeness

In this section we prove that our test generation procedure (TTGP) presented in Section 3.6.1
is complete with respect to thetiocoM implementation relation, i.e. it is sound and exhaus-
tive. To be precise we adapt Definition 2.6.1 (from Chapter 2,page 23) to the particular case
of tiocoM .

Definition 3.7.1. LetS be a specification in TLTS(I ,O). Then for alli aM -quiescent input-
enabled implementation in TLTS(I ,O) and forT composed by all test cases obtained from
S by the TTGP

T is sound w.r.t. totiocoM , ∀ t ∈ T : if i tiocoM S then i passes t

T is exhaustive w.r.t. totiocoM , if i ti 6ocoM S then ∃ t ∈ T : i pa6sses t

A test suite, generated by the TTGP, is sound with respect totiocoM , if any implemen-
tation that fails a test in the set is incorrect with respect to tiocoM relation. A test suite is
exhaustive with respect totiocoM relation, if for every incorrect implementation the test suite
contains a test case that detects the non-conformance.

In order to archive these two results we first have to establish some technicalities. We
saturate an nttrace withδ. An nttrace is considered saturated when for each opportunity of a
δ symbol to appear, it actually does it.

Definition 3.7.2. LetA be a system in TLTS(I ,O) andσ ∈ nttraces∆M (A), then

σ is δ(M)-saturated , ∄ σ′ ∈ nttraces∆M (A) : σ = σ1 ·l(d)·σ2 ∧
σ′ = σ1 ·δ(M)·l(d −M)·σ2

Proposition 3.7.3. Let i be aM -quiescent input-enabled implementation in TLTS(I ,O),
then

Section 3.7. Completeness 51

if σ is δ(M)-saturated then ∀ l(d) 6= δ(M) occurring inσ : d < M

Proof.
By contradiction. Assume thatσ is δ(M)-saturated and there existsl(d) 6= δ(M) with
d ≥ M . Then, becausel can not be an output, sincei is M -quiescent,l is an input, and
σ = σ1·l(d)·σ2 andd ≥ M . So, there existsσ′ such thatσ′ = σ1·δ(M)·l(d −M)·σ2. Thus,
σ is notδ(M)-saturated, which is a contradiction to our initial assumption.

3.7.1 Soundness

The TTGP is sound in the sense that it does not wrongly reject implementations by mistake.
This section formalizes and proves this property.

Theorem 3.7.4.Let S be a specification in TLTS(I ,O). Then for alli M -quiescent input-
enabled implementations in TLTS(I ,O) and for all t a test case obtained fromS by the
TTGP

if i tiocoM S then i passes t

Proof.
Let i be aM -quiescent input-enabled implementation withi tiocoM S . We prove that for all
σ ∈ ∆M (S) and for allt a test cases, generated by the TTGP fromS , the following holds:

if t || i
σ
⇒ t ′ || i ′ then t ′ 6= fail

Without loss of generality we can assume thatσ is δ(M)-saturated. Moreover, we can
assume thatt || i

σ
⇒, because otherwise there is nothing to show. We prove the theorem by

induction over the length ofσ

• if σ = ǫ andt || i
ǫ
⇒ t ′ || i ′

if t was constructed using case 1 in the first step, thent || i
ǫ
⇒ pass || i ′

if t was constructed using cases 2 or 3 in the first step, then
t = t ′ 6= fail and all derivations of

ǫ
⇒ have the form:t || i

ǫ
⇒ t || i ′

• if σ = σ′ · a andt || i
σ′

⇒ t ′′ || i ′′
a
⇒ t ′ || i ′ ∧ a = l(d),

there are only two possibilities to constructt ′:
from case 2:a = l(d) ∧ l ∈ I ∧ d < M and

t || i
σ
⇒ t ′ || i ′ ∧ t ′ 6= fail

from case 3:a = l(d) ∧ a ∈ outM (∆(i) after σ). Since
i tiocoM S , a ∈ outM (∆(S) after σ), and thust || i

σ
⇒ t ′ || i ′ ∧ t ′ 6= fail

3.7.2 Exhaustiveness

The TTGP presented in Section 3.6.1 is also exhaustive with respect to thetiocoM testing
relation. This means that for each non-conforming implementation, a test case can be gener-

52 Chapter 3. Testing timed labelled input-output transition systems

ated that exposes the error. Hence, if we test enough (perhaps infinite times), it is possible to
recognize all erroneous implementations.

Lemma 3.7.5.LetS be a specification in TLTS(I ,O), σ ∈ nttraces∆M (S) beδ(M)-saturated,
andt ′ be a test case generated by the TTGP from(∆(S) after σ). Then there existst a test
case generated fromS with t

σ
⇒ t ′.

Proof.
By induction over the length ofσ, (|σ |):

• If |σ | = 0 then taket = t ′.
• Suppose there existst for all σ with |σ | < n.
• Let |σ | = n with σ = σ′ · a anda = l(d)

if l ∈ I , using case2 for the inputl : t
σ′

⇒ t ′′
a
⇒ t ′

if a ∈ outM (∆(S) after σ), using case3 : t
σ′

⇒ t ′′
a
⇒ t ′

Theorem 3.7.6.Let S be a specification in TLTS(I ,O). Then for alli M -quiescent input-
enabled implementation in TLTS(I ,O) with i ti 6ocoM S , there existst a test case generated
by the TTGP fromS such that

i pa6sses t

Proof.
If i ti 6ocoM S then there existsσ ∈ nttraces∆M (S) such that

outM (∆(i) after σ) 6⊆ outM (∆(S) after σ)

Without loss of generality we can assume thatσ is δ(M)-saturated. Then, letl(d) be in

outM (∆(i) after σ) \ outM (∆(S) after σ) andi
σ
⇒ i ′

l(d)
⇒ i ′′.

Let t ′ be the result of applying case 3 of the procedure to(∆(S) after σ), and lett be the
test case constructed out oft ′ andσ by the Lemma 3.7.5. Then, becausel(d) 6∈ outM (∆(S)

after σ) thent || i
σ·l(d)
=⇒ fail || i ′′. Then using Definitions 3.6.2,i pa6sses t .

The exhaustiveness of our test generation procedure is lessuseful than the corresponding
result in the untimed case. There, the exhaustiveness implies that the test generation algo-
rithm, if repeatedly executed in a fair non-terminating manner, will generate all test cases
in the limit, and therefore, in the limit, will achieve full coverage with respect to a given
specificationS and theioco relation.

In our timed case, as presented, the number of potential testcases is not only infinite
but also uncountable, resulting from our underlying continuous timed model. Moreover, a
non-countable repetition of test generations are necessary to be performed. Nevertheless,
it is still possible to obtain a version of the stronger form of exhaustiveness for real-timed
test generation as well. This is done by considering equivalence classes of (minimal) error

Section 3.8. Relation with ioco 53

traces. It can be shown that with reasonable assumptions in our test generation procedure, in
the limit, we will hit each such equivalence class.

In the timed automata setting, the decision of the predicatelu(du) ∈ outM (Q′) amounts
to reachability analysis. For the simpler version oftiocoM based on timed trace inclusion (i.e.
excluding quiescence) this has already been implemented inthe tool environment IF [38],
and in the UPPAAL -based testing tool T-UPPAAL . Also within a timed automata setting,
although with the addition of quiescence, there exists a real-time extension of the TORX
tool [12].

3.8 Relation with ioco

All our work was inspired by theioco testing relation, as we already mentioned. Here, we
present a theorem that characterizes the relation between the tiocoM and theioco testing
relations.

Given thattiocoM is defined over TLTSs andioco over LTSs, we need to relate a TLTS
with a LTS. To this end, initially, we define the functionun, which transforms a trace in
nttraces∆M into a simple trace.

Definition 3.8.1. The functionun : nttraces∆M → traces, is recursively define as

un(ε) , ε

un(σ ·l(d)) , un(σ)·l

Thus, functionun extracts the untimed trace from a timed one. Now, letA1 be aM -
quiescent input-enabled TLTS withnttraces∆M (A1) (the set ofnttraces∆M fromA1) and let
A2 be a TLTS withnttraces∆M (A2) (the set ofnttraces∆M fromA2). We can always obtain
through theun function the set of untimed traces fromnttraces∆M (A1) andnttraces∆M (A2).
Now, in case that there exists an input-enabled LTSA1 such that its set of tracestraces(A1)
is equal toun(nttraces∆M (A1)) and a LTSA2 such that its set of tracestraces(A2) is equal
to un(nttraces∆M (A2)) then we can define our relation.

Theorem 3.8.2.LetA1 be aM -quiescent input-enabled implementation andA2 be a speci-
fication both in TLTS(I ,O). LetA1 be an input-enabled implementation andA2 be a specifi-
cation both in LTS(I ,O) withun(nttraces∆M (A1)) = traces(A1) andun(nttraces∆M (A2)) =
traces(A2). Then,

if A1 tiocoMA2 then A1 iocoA2

Proof.
We assume thatA1 tiocoMA2 and we prove this theorem proving that:

∀ σ ∈ traces(A2) : ∀ b ∈ O : if b ∈ out(A1 after σ) thenb ∈ out(A2 after σ)

Let σ ∈ traces(A2) and b ∈ out(A1 after σ). Then becauseun(nttraces∆M (A2)) =
traces(A2), we know that there existsσ′ ∈ nttraces∆M (A2) such thatun(σ′) = σ. Now,

54 Chapter 3. Testing timed labelled input-output transition systems

becauseb ∈ out(A1 after σ) it follows that there existsd ∈ D such thatb(d) ∈ out(A1

after σ′). Thus, sinceA1 tiocoMA2 andσ′ ∈ nttraces∆M (A2), so we haveb(d) ∈ out(A2

after σ′), thusb ∈ out(A2 after un(σ′)), thenb ∈ out(A2 after σ).

For all (possibly infinite) sets of traces of the formun(nttraces∆M (A)), it is possible to
construct a LTSA such thattraces(A) = un(nttraces∆M (A)). Moreover, our construction
only uses traces in which at most oneδ occurs between subsequent actions, we call this
propertysimple quiescence occurrence.

Let B be the set of simple quiescence occurrences inun(nttraces∆M (A)) then we con-
struct the LTSA = 〈Q , q0,L,T 〉, whereQ is the set of states of the formqσ for all traces
σ ∈ B ; L is the same set of labels asLA; andT is the set of transitions such that for each

traceσ and each actionl if σ·l ·δ 6∈ B then we create a transitionqσ
l
→ qσ·l , and ifσ·l ·δ ∈ B

then we create two transitionsqσ
l
→ qσ·l andqσ

l
→ qσ·l·δ. Following this construction it is

straightforward to see thattraces(A) = un(nttraces∆M (A)).
The result presented in this section means that thetiocoM relation is a sound extension

of the ioco relation. Note that to obtain this result, it is crucial to consider quiescence in the
timed relation.

3.9 Related work

There are several approaches that focus on the development of testing methods for timed
systems [56, 52, 45, 32, 24, 18, 16, 20, 31]. Most of them, in contrast with our work, which
assumes generic TLTS as the basic model, are developed over asubclass of TA. In the fol-
lowing, we discuss some of the most interesting previous results.

• Nielsen and Skou [52] describe a fully automatic method for the generation of real-
time test sequences from a subclass of timed automata calledEvent-Recording Au-
tomata (ERA). Their technique is based on a symbolic analysis of TA inspired by the
UPPAAL model-checker. Test sequences are selected by covering an equivalence class
partitioning of the state space. They argue that this approach provides a heuristic that
guarantees that a well-defined set of interesting scenariosin the specification is au-
tomatically, completely, and systematically explored. However, this method lacks a
suitable notion of an implementation relation.
• Springintveld, Vaandrager, and D’Argenio [56] show that exhaustive testing (with re-

spect to bisimulation2) of deterministic timed automata with a dense time interpreta-
tion is theoretically possible. The testing of timed systems is described as a variant of
the bounded time-domain automaton (BTA). The BTA describing the specification is
transformed into a region automaton, which in turn is transformed into another finite
state automaton, the Grid Automaton. Test sequences are then generated from the Grid
Automaton. The idea behind the construction of the Grid Automaton is to represent
each clock region with a finite set of clock valuations, referred to as the representatives
of the clock region. However, although being exact, their grid method is impractical
because as said in [56] it generates “an astronomically large number of test sequences”.

2Actually, for the deterministic case, bisimulation and trace equivalence coincide [62].

Section 3.10. Conclusion 55

• Cardell-Oliver [16] presents a testing method for networksof deterministic TA ex-
tended with integer data variables. She checks for trace equivalence, but this is done
only for those parts of a system that are visibly observable.In addition to the usual
time-discretization, test views are used to discriminate between states depending on a
test-purpose. Test views partition variables and events into visible and hidden ones.
Equivalence on visible clocks and variables induces an equivalence relation on states.
States that are evidently different, i.e. that are in different visible equivalence classes,
need to be distinguished from each other. This significantlyreduces the length of test
suites, at the price that the test is not always exhaustive.

Further details discussing the above these approaches can be found in the survey [4].
Most of these works have not been implemented they are more theoretical approaches.

More recently, these theoretical works have been improved to be more practical as our
proposed theory. Closely related to our work is the one done by Larsen et al. [39] and by
Krichen et al. [38]. Both of them are extensions of theioco testing theory, with quiescent-free
interpretations over TA and their relations is inclusions of timed traces. The more important
difference between them is that in [39] the environment is anexplicit part of the model. In
contrast in our work we provide a framework at the TLTS level and we include quiescence.
As follows, in Figure 3.8, we present a comparative table over the ioco testing theory exten-
sions with time.

3.10 Conclusion

In this chapter, we present an extension with real-time of Tretmans’ioco testing theory and
test generation framework. The extension allows us to test timed systems, particularly TLTSs.
Our treatment is based on an operational interpretation of the notion of quiescence that gives
rise to a family of implementation relations parameterizedby observation durationsM of
quiescence. These relations detect differences in behaviour after the execution of timed traces
(extended with quiescence) provided that all observationsof quiescence take longer than the
stipulated durationM .

We explain how this theory can be used to test TLTSs, under theassumption that the
absence of system interaction with its environment forM time units implies quiescence. We
have defined a non-deterministic (M -parameterized) test generation framework that gener-
ates sound test cases with respect to the corresponding implementation relationtiocoM . The
test generation is also exhaustive. This means that for eachnon-conforming implementation,
a test case detecting the non-conformance can be generated.

Our framework can be effectively instantiated for subclasses of TLTSs, as long as the
instance satisfies thatoutM (∆(S) after σ) is computable; this is the case, for instance,
on TA. Using standard symbolic state space representation in the form of difference bound
matrices [23], a real-time version of TORX for TA models has also been recently developed
in [12] which incorporate quiescence.

Our work, as presented here, can be extended in several ways.Unlike the untimed case,
here the test cases are not only infinite but also uncountable. Then our notion of completeness
guarantees that for a non-conforming implementation a testcase “can” be generated. But,
we can not be sure that this test case “will” be generated. We believe it is possible to show
a stronger exhaustiveness result for the test generation procedure, based on an appropriate

56 Chapter 3. Testing timed labelled input-output transition systems

notion of equivalence of error traces. The generation procedure will hit each such class in
the limit, provided that the error class is not negligible, i.e. it must have positive measure in
some appropriate sense.

Another interesting extension is to relax the requirement that there must be a uniform
observation deadlineM for quiescence. Alternatives are:

• To make the observation parameterM (σ) a function of the behaviour (trace)σ ob-
served so far. This would allow us to model sequential phasesof quiescence, i.e. slow
vs. quick response times.
• To divide the output set in subset of communication channelsand make the observation

parameterM (Ci) a function of the communication channelCi on which output (from
that channel) are being observed. This allows us to model different kinds of response
times for different communication channels with the systemunder test. This idea
corresponds to a real-time extension of themioco implementation relation of [28].
This approach is the one we present in the next Chapter 4.

Our real-time theory inherits its focus on control aspects of system behaviour from the
existingiocotheory. Ultimately, it will be important to combine this testing theory with meth-
ods for testing the static data aspects of systems. It will beinteresting to see up to what extent
the symbolic representation of data types can be combined with symbolic representations of
time.

Thanks to several enriching discussions on the applicationof our theory in the TORX
tool, we found that in a more general vein, it can be stated that the development of a real-time
testing theory forces us to confront modeling issues with respect to physical aspects of time
and implementation. From a physical point of view, for example, it is questionable whether
negligible behaviour can be implemented (e.g., Example 3.2.9). This has also implications
for specification formalisms that can be used to specify suchbehaviour, e.g. TA can define
negligible behaviour by using guards that force behaviour to go through specific points in
time, such asκ = 3. Perhaps, realistic specifications and/or implementationrelations should
allow for tolerance in the evaluation of clock conditions. This would then introduce another
source of nondeterminism in the testing theory of real-timesystems. At any rate, a more
systematic study of the formal aspects of tolerance and robustness is a useful and interesting
future work.

Section 3.10. Conclusion 57

spec:

kiq0AA ���δ

�
�

�
�	

card? @
@

@
@R

card?

kq1 ��
HHY

δz
ask 7e?

�
�

�
�

��+

ask 2e?

?
insist?

kq2HH
��*δ 9

ask 2e?

?
insist?

Q
Q

Q
Q

QQs

ask 7e?

kq3

� -give 2e!

kq4HH

��*
δ

?
ask 7e?

kq5��
HHY

δ

?

ask 2e?

kq6

�� give 7e!

kq7��
�
�
�
�
�
�
�
�
�
��

give 7e!

kq8B
B

B
B

B
B
B

B
B

B
B
BM

give 2e!

impl:

kiq0?
insist?, ask7e?

ask 2e?

�
�

�
�	

card? @
@

@
@R

card?

kq1z
ask 7e?
card?

�
�

�
�

��+

ask 2e?

?

insist?

kq2 9
ask 2e?

card?

?

insist?

Q
Q

Q
Q

QQs

ask 7e?

�
 �	c <5

O
card?, ask2e?
insist, ask7e?

� -give 2e!

kq4z
card?, insist?

ask 7e?

?
ask 2e?

kq5 9
card?, insist?

ask 2e?

?
ask 7e?

�
 �	c <5

O
card?, ask2e?
insist, ask7e?

�� give 7e!

�
 �	c <5

O
insist?, ask7e?
card?, ask2e?

�
�
�
�
�
�
�
�
�
�
�
�
���

give 2e!

�
 �	c <5

O
insist?, ask7e?
card?, ask2e?

B
B

B
B

B
B
B

B
B

B
B

B
BBM

give 7e!

test:
c :=0@@R�
 �	c≤2

�
�

��=
give 7e!

c <2

?

c =1
c :=0

card?

Z
Z

ZZ~
give 2e!

c <2

fail fail�
 �	c≤2

�
�

��=
give 7e!

c <2

?

c =1
c :=0

ask 7e?

Z
Z

ZZ~
give 2e!

c <2

fail fail�
 �	c≤M

�
�

��=
give 7e!

c <M

?

c =M
c :=0

δ

Z
Z

ZZ~
give 2e!

c <M

pass fail�
 �	c≤2

�
�

��=
give 7e!

c <2

?

c =1
c :=0

insist?

Z
Z

ZZ~
give 2e!

c <2

fail fail�
 �	c≤2

�
�

��=
give 7e!

c <2

?

c =1
c :=0

ask 7e?

Z
Z

ZZ~
give 2e!

c <2

fail fail�
 �	c≤M

�
�

��=
give 7e!

c <M

?

c =M

δ

Z
Z

ZZ~
give 2e!

c <M

pass fail

fail

Figure 3.7: A specification of a cash machine (spec), anM -quiescent implementation (impl),
and a test case derived from the specification (test). We suppose that every transition reset
the clockc

58 Chapter 3. Testing timed labelled input-output transition systems

Spec Model Impl Model Conformance Test
relation

Larsen TA with environmente TA rtiocoe are tree

et al. are non-deterministic, are non-deterministic, out set: in the

haveτ , haveτ , outputs and time ioco style

are strong input-enabled, are strong input-enabled,

and are non-blocking and are non-blocking

e is output-enabled

Krichen TA TA tioco are total

et al. with lazy, delayable, with lazy, delayable, out set: function

and eager deadlines, and eager deadlines, outputs and time

hasτ , hasτ ,

is non-blocking is non-blocking,

strong input-enabled

Brandán TLTS TLTS tiocoM are tree

Briones is non-deterministic, is non-deterministic, out set: in the

et al. hasτ , hasτ , outputs with time ioco style

is no forced inputs, is no forced inputs, and

has time divergent has time divergent, and δ with

is weak input-enabld (bounded) time

Figure 3.8: Timediocoextensions

CHAPTER 4

Testing timed labelled multi
input-output transition systems

4.1 Introduction

As mentioned in Chapter 2, we perform black box testing by communicating with the en-
vironment in terms of inputs and outputs. In the previous chapters we always assumed that
implementations are systems where input actions are never refused. More precisely, we as-
sumed that IUTs are input enabled, i.e., IUTs accept all inputs at any time. Although many
systems can be modelled with that requirement, there is still a significant portion of realistic
systems that cannot. As an example, consider a cash machine equipped with a card slot.
After a card is inserted in the slot (which can be seen as an input) another card can not be
inserted; the input card is no longer enabled.

In this new setting, a system may have set of actions enabled or disabled depending on
its particular execution stage. It seems convenient to think that the actions between a system
and its environment are triggered through communication channels. In the example of the
cash machine, the slot to enter cards is a possible channel, where the action of inserting a
card happens. Similarly, the cash machine may have a keyboard, which can be considered as
another channel in which the action of entering information(e.g., a Pin number) happens. To
model the fact that actions are enabled or disabled at different execution stages, it is sufficient
to enable or disable the communication channels in which theactions occur.

To deal with this new setting, in the untimed case, the multi input-output transition
systems (called MIOTS) were proposed. This work was done by Heerink [28]. There,
the ioco testing theory is extended to deal with multiple channels.

It is natural to investigate whether the timed testing theory presented in Chapter 3 can
also be extended to deal with multiple channels, thus completing Figure 4.1 (bottom right).
This means that both features, namely communication channels and time, can be combined
together in a richer model. Fortunately, in this chapter we answer this question affirmatively
by extending our timed testing theory to account for multiple channels.

The resulting model is the timed labelled multi input-output transition systems (TLMTS),
and it allows us to consider input enabledness and quiescence properties not only for the
entire system but on a per channel basis, thus relaxing global system assumptions.

Formally, channels are represented as a partition on the input and output sets of actions,
respectively. Each partition class defines the inputs (outputs) belonging to an individual input

59

60 Chapter 4. Testing timed labelled multi input-output transition systems

-

?

LTS
(ioco)

I/O

?

TLTS
(tiocoM)

-MLTS
(mioco)

TLMTS

(. . .)

Figure 4.1: Relation between test generation approaches

(output) channel. Following Heerink’s work in the untimed case, we replace the input en-
abling requirement of a system by the following weaker requirement: for each input channel,
either all inputs are allowed, or they are all blocked. For example, recall the cash machine
example with an input channel where the action of inserting acard may occur. There, the
requirement naturally follows the intuition: initially, the slot accepts a card (that is, the input
channel is enabled). However, after a card is inserted in theslot, no further cards are accepted
(that is, the input channel is blocked).

Additionally, we relax the treatment of quiescence. We replace the global boundM from
thetiocoM testing relation by a vector of boundsM = 〈M1, · · · ,Mm 〉; whereMj represents
the bound on the output channelj . In thetiocoM relation the global boundM is a parameter
that tells us how long a system must be silent before we conclude quiescence. Relaxing the
global boundM for a vector of bounds means that we do not have to wait for the slowest
response time to conclude the quiescence on a faster channel.

The combination of these ideas is formalized as themtiocoM conformance implemen-
tation relation. We develop a test derivation procedure formtiocoM, which is shown to be
sound and exhaustive with respect to themtiocoM implementation relation.

Therefore, our results can be seen as a real-time extension of Heerink’s mioco testing
theory, where we introduce the channel-based treatment of input enabling-blocking and qui-
escence in the timed setting.

Organization of the chapter The chapter consists of two main parts: models and relations
(Sections 4.2, 4.3, and 4.4) and the test generation framework (Sections 4.5 and 4.6).
Initially, in Section 4.2, we introduce the timed labelled input-output transition sys-
tems. In this model we suppose that the input set and output set can be partitioned into
subsets, the so called channels. However, so far we do not require the system to have
any special property on these sets. Over this model we define the tmior conformance
relation, which relates systems with respect to a subset of failure timed traces where
the refusals can only be complete channels. Refusals of complete channels mean that
if one action in a channel is refused, then every other actionin that channel is also
refused. This is in contrast to the definition of refusals given in Chapter 2 (in Defi-
nition 2.2.8, page 15), where any subset of actions can be refused, e.g. one part of a
channel may be refused while another is not.
In Section 4.3, the timed transition relation of the previous model is extended with

Section 4.2. A basic model and a basic conformance relation 61

quiescence and refusals. As a consequence, states of the implementation are required
to be input enabled or blocked per channel. Furthermore, since we consider quies-
cence, we introduce the bounds vector that is necessary to recognize quiescence per
channel. This new feature allows us to define a parameterizedconformance relation in
terms of the bounds vector. The resulting relation is calledmtiorf. In Section 4.4, the
concept of observed output set is introduced and themtiocoM conformance relation is
given, a relation that only takes into account timed traces from the specification with
quiescence and blocking per channel.
Subsequently, in Section 4.5, we develop a parameterized non-deterministic test deriva-
tion procedure. Moreover, the set of tests obtained by our proposed procedure are
proved to be sound and exhaustive with respect to ourmtiocoM relation in Section 4.6.
Finally, in Section 4.7 we prove a result that relates the proposed timed extension
with channels and the timed relationtioco presented in Chapter 3. Then, Section 4.9
presents the conclusions.

4.2 A basic model and a basic conformance relation

We start from the model described in Chapter 3, assuming onlyone extra feature: we ask the
input and output sets to be partitioned in disjoint subsets,that we callchannels.

4.2.1 Timed labelled transition systems with partitioned i nput
and outputs

Through all this chapter we use Definition 3.2.1 (from Chapter 3, page 28) where TLTSs are
defined. Recall thatA = 〈Q, q0,L, T 〉 a TLTS(I ,O) is a labelled transition system where
labels can be: external actions (L), an internal action (τ) or time passage actions (D). In
addition, all other definition and restrictions from Section 3.3 (page 33) also apply to this
chapter.

Up to now we have considered TLTSs with external actions partitioned into only two
set: inputs and outputs. In the following we consider TLTSs with the external actions sub-
partitioned in to subsets, the channels.

Channels Given a TLTS(I ,O), we assume that there exists partitions of the input and
output sets into channels, i.e.I = I1 ∪ . . . ∪ In , O = O1 ∪ · · · ∪ Om and for allk 6= z

then Ij ∩ Iz = ∅ and for all j 6= z ′ thenOj ∩ Oz ′ = ∅. We denote the partitions as
I = {I1, · · · , In},O = {O1, · · · ,Om}, and the TLTS is denoted as TLTS(I,O).

Although our framework is based on TLTSs, for simplicity on the graphical notation all
the examples we present are given as timed automata (TA). Thedefinition of a TA and its
corresponding semantics in terms of TLTSs can be found in Chapter 3, Section 3.2.1.

Example 4.2.1. Our example, illustrated on Figure 4.2 and already anticipated above, is
an adapted version, with time, of the cash machine from [28].In the machine, a card may
be inserted in the slot, and for5 time units a Pin number can be typed in. After that, the
machine decides whether the Pin number is correct; if it is not, the machine returns the card.
If the Pin is correct, a desired amount of money can be requested. In case the machine has

62 Chapter 4. Testing timed labelled multi input-output transition systems

sufficient money, it will return the card and then gives the requested money. However, if there
is not enough money it will produce an error and return the card.

khq0
?

card?
c :=0kq1

� -give card!

kq2
?

Pin?
c≤5
c :=0

6
give card!

c >5 kq3
�� give amount!

kq4
6

Err P! �
 �	c≤5�
τ

c≤5

-
τ

c≤5 kq6
?

Ok!
c :=0 kq7

?

amount?
c≤5
c :=0

	

��

give card!
c >5

kq8

6

give card!

kq9

� -Err a!

�
 �	c≤5�
τ

c≤5

-
τ

c≤5

kq11

6
Ok!

Figure 4.2: A timed cash machine

We can describe Figure 4.2 in terms of Definition 3.2.1, wherethe cash machine is spec-
ified as theA ∈ TLTS(I ,O) where 〈Q, q0,L, T 〉, with I = {card ,Pin, amount} and
O = {give card , give amount ,Ok ,Err P ,Err a}.

We partition the input set in two sets, with respect to the access points of introducing the
card in the slot and typing in the numbers in the keyboard, forthe Pin and desired amount
money. We obtain two subsets:I1 = {card} and I2 = {Pin, amount}. In a similar way,
the output set can be partitioned with respect to the access points: the location in which we
receive the card, where we receive the money and where we receive other messages (e.g.,
the screen). We obtain three subsets:O1 = {give card}, O2 = {give amount} and
O3 = {Ok ,Err P ,Err a}.

As in Chapter 2 (in Definition 2.2.8, page 15) where refusals are introduced, in the timed
setting we can also explicitly encode the inability for a state to perform an action in the set
L′ or an internal actionτ . Even though we consider time as a kind of action, the definition
of refusal only considers the refusal of input or output actions, while it discards the time as a
possible refutable action.

Definition 4.2.2. LetA = 〈Q, q0,L, T 〉 be a TLTS withl ∈ L, q ∈ Q andL′ ⊆ L, then

q refuses L′ , ∀ l ∈ L′
τ : q

l

6→

Section 4.3. An extended model and its conformance relation 63

Moreover we extend all previous definitions (like⇒,→) to our new setting. As before,

we extend the timed transition relation with self-loop transitions:q
L′

→ q, in caseL′ is refused
in the stateq (slightly relaxed by abstracting fromτ internal actions):

q
L′

→ q ′ , ∀ l ∈ L′
τ : q

l

6⇒ ∧ q = q ′

As a result, the timed traces (ttraces, recall Definition 3.3.2, page 34) can be extended
to express not only the actions that can be taken but also the sets of actions which are not
allowed.

Definition 4.2.3. LetA = 〈Q, q0,L, T 〉 be a TLTS, then

Fttraces(A) , {σ ∈ (L+ P(L))∗ | q0 σ
⇒}

As expected, a failure timed trace (Fttrace) is a ttrace extended with sets of actions that
can not be performed; in other words, with sets of actions that are refused.

Example 4.2.4. In Figure 4.2 we can observe that in stateq0 input actions: Pin and amount
are not enabled, but card is. Then this system has the Fttraceσ with σ = {Pin, amount}·card.

4.2.2 The tmior conformance relation

The channels’ partition of the input and output sets gives usthe possibility to introduce the
tmior-conformance relation.

Definition 4.2.5. Let i be an implementation in TLTS(I,O) and S be a specification in
TLTS(I,O), then

i ≤tmior S , Fttraces(i) ∩ (L+ I +O)∗ ⊆ Fttraces(S)

This conformance relation refers to the inclusion ofFttraces where the refusals can only
be a set inI or inO.

4.3 An extended model and its conformance relation

The tmior-conformance relation inspired us to define an extension of TLTSs where the input
and output sets are subdivided in channels and where each input channel is either input-
enabled or blocked.

4.3.1 Timed labelled multi input-output transition system

A timed labelled multi input-output transition system, TLMTS(I,O), is a TLTS(I,O) where
in each reachable state, each input channel is either blocked or all inputs of that channel are

64 Chapter 4. Testing timed labelled multi input-output transition systems

accepted (input-enabling for a particular channel).

Definition 4.3.1. Let I = {I1, · · · , In} andO = {O1, · · · ,Om} with for all k 6= z then
Ij ∩ Iz = ∅ and for all j 6= z ′ thenOj ∩ Oz ′ = ∅. Then a timed labelled multi input-
output transition system (TLMTS) over(I,O) is aA = 〈Q, q0,L, T 〉 in TLTS(I ,O) with
I = ∪

1≤k≤n
Ik andO = ∪

1≤j≤m
Oj , where

∀ q ∈ der(q0) : ∀ 1 ≤ k ≤ n : (∀ l ∈ Ik : q
l

6⇒) ∨ (∀ l ∈ Ik : q
l
⇒)

Moreover, whenever a channelIk is blocked in stateq, it is denoted asγk (q).

In a similar way to the refusals, we can extend the timed transition relation in TLMTSs to
denote explicitly when a channel is blocked. Hence, we add a self-loop transition in a stateq
with aγk label whenever channelIk is blocked in stateq

q
γk→ q if and only if γk (q)

Obviously, every TLTS can be interpreted as a TLMTS by havingone channel for each
action in the TLTS.

Example 4.3.2. Figure 4.3 is a modified version of Figure 4.2. It is possible to see it as
a specification of a cash machine withA = 〈Q, q0,L, T 〉 in TLMTS(I,O). WhereI =
{I1, I2} andO = {O1,O2,O3} with I1 = {card}, I2 = {Pin, amount} andO1 = {card},
O2 = {amount}, O3 = {Ok ,Err P ,Err a}.

The differences between Figure 4.2 and Figure 4.3 are that now we have per state and
per channel input-enabledness or blocking. In Figure 4.3 each state is input-enabled per
channel or it has a state self-loop with the correspondingγk denoting that the input channel
k is blocked in that state.

Since the model of TLMTS(I,O) from Definition 4.3.1 implies that input channels are
either input-enabled or blocked, we only use this model whenthese properties are necessary.
Otherwise, we use the most general model of TLTS(I,O), which only assumes a TLTS with
its input and output sets partitioned in channels.

4.3.2 Quiescence

We take advantage of the channel partition in the output set to define quiescence. Hence, we
have a definition of quiescence particularly per each channel.

In TLTS(I,O) there are two possible approaches to deal with quiescence. Firstly, we
may consider the situation in which the observer can only seeone channel. In this case, it is
not relevant for the notion of quiescence whether the remaining channels stay silent or not.
Secondly, we may consider the environment to be able to observe all possible channels.

We adopt the latter direction, assuming that the observer can see simultaneously all chan-

Section 4.3. An extended model and its conformance relation 65

khq0AA ���

γ2

?

card?
c :=0kq1 ��

HHY
γ1
γ2

� -give card!

kq29 amount?
HH
��*

γ1

?

Pin?
c≤5
c :=0

6give card!
c >5 kq3 ��

HHY
γ1
γ2

�� give amount!

kq4HH
��*

γ1
γ2

6
Err P! �
 �	c≤5

�� AAK
γ1γ2

�
τ

c≤5

-
τ

c≤5 kq6 ��
HHY

γ1
γ2

?

Ok!
c :=0

kq7 9 Pin?
HH
��*

γ1

?

amount?
c≤5
c :=0

	

��

give card!
c >5

kq8 ��
HHY

γ1
γ2

6

give card!

kq9
�� AAK
γ1γ2

� -

Err a!

�
 �	c≤5

�� AAK
γ1γ2

�
τ

c≤5 -
τ

c≤5 kq11

��
HHY

γ1
γ2

6
Ok!

I1 = {card} ⇒ γ1 I2 = {Pin, amount} ⇒ γ2

Figure 4.3: A timed cash machine with input-enabled or blocked channels

nels. This choice fits well with the testing framework of Chapter 3, where tests synchronize
on all output actions. Partial observations of system outputs can be dealt with by considering
modified IUTs where the unobservable channels became internal actions to the system.

Definition 4.3.3. Let A = 〈Q, q0,L, T 〉 be a TLTS(I,O) with q ∈ Q, thenq is called
Oj -quiescent, denotedδj (q), if

∀ l ∈ Oj : ∀ d ∈ D : q
l(d)

6⇒

With the definition ofOj -quiescent we can extend the timed transition relation (as we do
it with refused channels) to include self-loop transitionsfor quiescence per channel. We use
theδj symbol to denote that the channelOj is quiescent.

q
δj

→ q if and only if δj (q)

66 Chapter 4. Testing timed labelled multi input-output transition systems

In order to denote explicitly whenA = 〈Q, q0,L, T 〉 a TLTS(I,O) has its timed transi-
tion relationT extended with quiescence and refusals, we define∆(A).

Definition 4.3.4. LetA = 〈Q, q0,L, T 〉 be a TLTS(I,O), we write∆(A), to denote the
system〈Q, q0,L, ∆(T)〉, where∆(T) is the timed transition relationT extended with self-
loop transitions labelled withδj in all Oj -quiescent states and withγk in all states that have
channelIk blocked.

We lift all concepts and notations (i.e.ttraces, init, etc.) that have been defined for
TLTS(I,O) to extend TLTS(I,O).

A direct consequence of this extension is that representingIk asγk for all input channels
andOj asδj for all output channels, we have:

Fttraces(A) ∩ (L+ I +O)∗ = ttraces(∆(A))

Therefore, using this notation we can rewrite the tmior conformance relation as:

i ≤tmior S if and only if ttraces(∆(i)) ⊆ ttraces(∆(S))

Example 4.3.5. Figure 4.4 illustrates the cash machine with the extended timed transition
relation with refusals(γk) and quiescence(δj).

4.3.3 Operational model

In a black box implementation we can not know if a state is quiescent or not, instead we
can only observe the absence of output actions. To resolve the problem of the detection of
quiescence in black box implementations we adopt a solutioninspired by Chapter 3. There, to
recognize quiescence, the implementations are required tobeM -quiescent. AnM -quiescent
implementation is an implementation in which all output responses take place beforeM time
units. In other words,M is the amount of time a tester has to wait for outputs before itcan
conclude that the system is in a quiescent state.

As mentioned earlier in TLMTS(I,O) we relax theM -quiescent requirement and allow
each channel to have its particular (and possibly different) value forM . Therefore, theM -
quiescent requirement can be seen as imposing the same boundfor all channels.

We start by defining what it means for a state to be quiescent with respect to a channel
and a particular time bound. Intuitively, the fact that a state is quiescent on a channel with
respect to a particular bound means that all reachable states after the given bound delaying
are quiescent on that particular channel. More precisely, an implementation’s stateq is con-
sideredMj -quiescent, for an output channelj , if and only if all states reachable fromq by
delaysd ≥ Mj are quiescent.

Definition 4.3.6. Let A = 〈Q, q0,L, T 〉 be a TLMTS(I,O) with q, q ′ ∈ Q andM =
〈M1, · · · ,Mm〉 with Mj ∈ D for all j = 1, · · · ,m be an ordered set of bounds, then

Section 4.3. An extended model and its conformance relation 67

khq0AA ���

γ2δ1δ2δ3

?

card?
c :=0kq1 ��

HHY

γ1
γ2
δ2
δ3

� -give card!

kq29 amount?
HH
��*

γ1
δ2
δ3

?

Pin?
c≤5
c :=0

6give card!
c >5 kq3 ��

HHY

γ1
γ2
δ1
δ3

�� give amount!

kq4HH
��*

γ1
γ2
δ1
δ2

6
Err P! �
 �	c≤5

�� AAK
γ1γ2δ1δ2

�
τ

c≤5

-
τ

c≤5 kq6 ��
HHY

γ1
γ2
δ1
δ2

?

Ok!
c :=0

kq7 9 Pin?
HH
��*

γ1
δ1
δ2
δ3

?

amount?
c≤5
c :=0

	

��

give card!
c >5

kq8 ��
HHY

γ1
γ2
δ2
δ3

6

give card!

kq9
�� AAK

γ1γ2δ1δ2

� -

Err a!

�
 �	c≤5

�� AAK
γ1γ2δ1δ2

�
τ

c≤5 -
τ

c≤5 kq11

��
HHY

γ1
γ2
δ1
δ2

6
Ok!

I1 = {card} ⇒ γ1

I2 = {Pin, amount} ⇒ γ2

O1 = {give card} ⇒ δ1

O2 = {give amount} ⇒ δ2

O2 = {Ok, Err P, Err a} ⇒ δ3

Figure 4.4: A timed cash machine with blocked channels and quiescence

q isMj -quiescent , ∀ q ′ ∈ (q after Mj) : δj (q
′)

A isMj -quiescent , ∀ q ∈ Q : q isMj -quiescent
A isM-quiescent , ∀ 1 ≤ j ≤ m : ∀ q ∈ Q : q isMj -quiescent

An interpretation of this definition is that for a tester to check for quiescence in channel
j , it is enough to wait a period of time equal toMj , for outputs to occur. Note that the set of
boundsM = 〈M1, · · · ,Mm〉 is a set with an order, that assignMj to channelj .

There are two important principles involved in the previousdefinition. We are spending
different times for detecting quiescence for different channels and we are assuming that after
the corresponding delay there will not be any spontaneous output on that channel. The next
corollary and proposition prove that Definition 4.3.6 is well defined.

Corollary 4.3.7. LetA = 〈Q, q0,L, T 〉 be aMj -quiescent system in TLMTS(I,O) with

68 Chapter 4. Testing timed labelled multi input-output transition systems

q ∈ Q, then

δj (q) if and only if ∀ l ∈ Oj : ∀ d ∈ D : d ≤ Mj : q
l(d)

6⇒

Proof.

[⇒ If δj (q) then∀ l ∈ Oj : ∀ d ∈ D : d ≤ Mj : q
l(d)

6⇒]
Let δj (q), then by Definition 4.3.3, ofOj -quiescent, we have that for all action

l ∈ Oj and for alld ∈ D such thatq
l(d)

6⇒ then for alll ∈ Oj and for alld ∈ D with

d ≤ Mj we haveq
l(d)

6⇒ .

[⇐ If ∀ l ∈ Oj : ∀ d ∈ D : d ≤ Mj : q
l(d)

6⇒ thenδj (q)]
BecauseMj -quiescent(A) using Definition 4.3.6, ofMj -quiescent, we have
thatMj -quiescent(q), then again by Definition 4.3.6,∀ q ′ ∈ (q after Mj) : W

δj (q
′). Now, because for alll ∈ Oj and for alld ∈ D with d ≤ Mj thenq

l(d)

6⇒ ,
we haveδj (q).

Proposition 4.3.8. LetA = 〈Q, q0,L, T 〉 be aM-quiescent system in TLMTS(I,O) with
q ∈ Q , andM = 〈M1, · · · ,Mm〉, then∀ 1 ≤ j ≤ m :

δj (q) if and only if ∀ l ∈ Oj : ∀ d ∈ D : d ≤ Mj : q
l(d)

6⇒

Proof.

M-quiescent(A)
⇔ {Definition 4.3.3}

∀ 1 ≤ j ≤ m :Mj -quiescent(A)
⇔ {Corollary 4.3.7}

δj (q) if and only if ∀ l ∈ Oj : ∀ d ∈ D : d ≤ Mj : q
l(d)

6⇒

Example 4.3.9. In the cash machine of Figure 4.4 forM = {M1,M2,M3} with M1 = 6,
M2 = 5 andM3 = 7 we recognize that stateq0 is M1-quiescent.

4.3.4 The mtiorf conformance relation

Using theM-quiescent property, we can detect quiescence in implementations by the ab-
sence of outputs in the stipulated period of time per channel. Therefore, requiringM-
quiescent input-enabled implementations we define the mtiorf conformance relation, a re-
lation that is parameterized byM.

Section 4.4. The ultimate model and its conformance relation 69

Definition 4.3.10. Let A = 〈Q, q0,L, T 〉 be a TLTS(I,O) with M = 〈M1, · · · ,Mm〉,
Mj ∈ D for all j = 1, · · · ,m be an ordered set of bounds, then

ttraces∆M(A) , ttraces(∆(A)) ∩
⋃
k

⋃
j

(L+ γk + Mj ·δj)∗

Definition 4.3.11. Let i be aM-quiescent input-enabled implementation in TLMTS(I,O)
andS be a specification in TLTS(I,O), then

i ≤M
mtiorf S , ttraces∆M(i) ⊆ ttraces∆M(S)

The mtiorf relation considers ttraces extended with the information about blocked input
channels and the quiescence in output channels. Moreover, the quiescence information on a
channel can only appear after the time’s period stipulated by the channel bounds. Then aδj
can only occur afterMj time units.

4.4 The ultimate model and its conformance relation

All the relations that we considered up to now are built up on information based on be-
havioural knowledge of both specifications and implementations. In this section we define
a relation that uses information (or knowledge) from the specification behaviour and only
observations from the implementation behaviour. In this way, our approach became more
desirable in the context of black box testing.

4.4.1 Normalized timed traces

Similarly as in Section 3.4 (from Chapter 3, page 40), we define a practical notation in the
form of normalized timed traces. Normalized timed trace, denoted nttraces, are a subset of
ttraces with a particular form; they do not have consecutivedelays.

Definition 4.4.1. A normalized timed traceσ is a trace such that

σ ∈
⋃
k

⋃
j

(D·(L + γk + δj))
∗ ·(ε +D)

Definition 4.4.2. Let∆(A) = 〈Q, q0,L, T 〉 be a TLTS(I,O), then

nttraces(A) , {σ ∈
⋃
k

⋃
j

(D·(L + γk + δj))
∗ ·(ε +D) | q0 σ

⇒}

for nttracesσ = d0 ·δ1 ·d1 ·γ1 ·d2 ·a we also writeσ = δ1(d0)·γ1(d1)·a(d2).

Moreover, the definition of nttraces already assumes that givenA, a system in TLTS(I,O),
has its timed transition relation extended with quiescenceand refusals, implying that

70 Chapter 4. Testing timed labelled multi input-output transition systems

nttraces(∆(A)) = nttraces(A)

Definition 4.4.2 and Definition 3.3.7 (from Chapter 3, page 36) have one similarity and
one difference. The similarity is that in both definitions ttraces do not have consecutive de-
lays. The difference is that now we assume the system to be already extended with quiescence
and refusals.

Example 4.4.3. In the cash machine of Figure 4.4, we observe the nttraceσ with σ =
card(3)·Pin(2)·Err-P(5)·γ1(6)·give card(0).

For consistency, we need to show that by using nttraces we arenot losing expressiveness.
Hence, in Theorem 4.4.4, we prove that the inclusion of nttraces for two systems and inclu-
sion of ttraces for the corresponding extended systems are equivalent. As in Chapter 3, given
a ttraceσ we can always associate it a normalized one, denotedσ̂, combining delays and
adding0 delay if they are necessary.

Theorem 4.4.4.LetA1,A2 ∈ TLTS(I,O) , then

ttraces(∆(A1)) ⊆ ttraces(∆(A2)) if and only if nttraces(A1) ⊆ nttraces(A2)

Proof.

[⇒ If ttraces(∆(A1)) ⊆ ttraces(∆(A2)) thennttraces(A1) ⊆ nttraces(A2)]
Direct using Definition 4.4.2 ofnttraces.

[⇐ If nttraces(A1) ⊆ nttraces(A2) thenttraces(∆(A1)) ⊆ ttraces(∆(A2))]
If σ ∈ ttraces(∆(A1)), andl ∈ Ik or l = γk . Then
σ ·l ∈ ttraces(A1)
⇒ {Definition 4.4.2, adding consecutive times and putting0 times when

is necessary}
σ̂ ·l ∈ nttraces(∆(A1))
⇒ {property ofnttraces}

σ̂ ·l ∈ nttraces(A1)
⇒ {hypothesis}
σ̂ ·l ∈ nttraces(A2)
⇒ {property ofnttraces}

σ̂ ·l ∈ nttraces(∆(A2))
⇒ {Definition 4.4.2 and turning back the procedure done before}
σ ·l ∈ ttraces(∆(A2))
⇒ {density ofD}
σ ∈ ttraces(∆(A2))

Using this result from now on we do not distinguish between a ttrace or its normalization.
Moreover, we can extend Definition 4.3.10 to nttraces.

Section 4.4. The ultimate model and its conformance relation 71

Definition 4.4.5. Anσ is annttraces∆M if σ is a nttrace andσ is an element of

σ ∈
⋃
k

⋃
j

(D·(L + γk) + Mj ·δj)∗ ·(ε +D)

Thus,nttraces∆M are nttraces, meaning they do not have consecutive delays actions and
for each channel an occurrence ofδ appears exactly after its particular bound.

Definition 4.4.6. LetA = 〈Q, q0,L, T 〉 be a TLTS(I,O) withM = 〈M1, · · · ,Mm〉, Mj ∈
D for all j = 1, · · · ,m be an ordered set of bounds, then

nttraces∆M(A) = nttraces(A) ∩
⋃
k

⋃
j

(D·(L + γk) + Mj ·δj)∗ ·(ε +D)

4.4.2 Output set

The observable output set of a given set of statesQ′, denotedoutM(Q′), is defined as the
union of two sets: the set of output actions enriched with quiescence, denotedoutoM, and
the set of refusals, denotedoutrM. Thus,outoM is the set of outputs that could happen after
a period of time plus the special symbolδj (Mj) expressing quiescence on output channelj

in case a reachable state afterMj is quiescent on channelj . Further, the setoutrM is the set
of refusalsγk (d) for each input channelk that is refused afterd time units.

Definition 4.4.7. Let ∆(A) = 〈Q, q0,L, T 〉 be TLTS(I,O) with Q′ ⊆ Q andM =
〈M1, · · · ,Mm〉, Mj ∈ D for all j = 1, · · · ,m be an ordered set of bounds, then

outM(Q′) ,
⋃

q∈Q′

outoM(q) ∪
⋃

q∈Q′

outrM(q)

where outoM(q) , {l(d) | l ∈ O ∧ q
l(d)
⇒ } ∪

⋃
j

{δj (Mj) | q
δj (Mj)
⇒ }

outrM(q) ,
⋃
k

{γk(d) | ∀ l ∈ Ik : q
l(d)

6⇒ }

An immediate and useful consequence of this definition is that a TLTS(I,O) has an
nttrace if and only if the observed output set,outM, of the system after that nttrace is not
empty.

Corollary 4.4.8. LetA = 〈Q, q0,L, T 〉 in TLTS(I,O) with σ ∈ nttraces, then

outM(q0 after σ) = ∅ if and only if σ 6∈ nttraces(q0)

Proof.
[⇐ If outM(q0 after σ) = ∅ thenσ 6∈ nttraces(q0)]

By contradiction.
SupposeOj ∈ O andσ ∈ nttraces(q0), then∃ q ′ : q0 σ

⇒ q ′, then

72 Chapter 4. Testing timed labelled multi input-output transition systems

if ∃ l ∈ Oj : ∃ d ∈ D : q ′ l(d)
⇒ then

l(d) ∈ outM(q0 after σ)

if ∀ l ∈ Oj : ∀ d ∈ D : q ′
l(d)

6⇒ then
δj (Mj) ∈ outM(q0 after σ). Contradiction, then if

outM(q0 after σ) = ∅ thenσ 6∈ nttraces(q0)
[⇒ If σ 6∈ nttraces(q0) thenoutM(q0 after σ) = ∅]

Direct from Definition 4.4.7 ofoutM sets.

We also prove that the parameterized mtiorf relation is equivalent to checking the inclu-
sion of observed output set for all nttraces that only haveδj afterMj time units.

Proposition 4.4.9. Let i be aM-quiescent input-enabled implementation in TLMTS(I,O)
andS be a specification in TLTS(I,O). Then,

i ≤M
mtiorf S if and only if ∀ σ ∈ nttraces∆M: outM(i after σ) ⊆ outM(S after σ)

Proof.
[⇒ If i ≤M

mtiorf S then∀ σ ∈ nttraces∆M: outM(i after σ) ⊆ outM(S after σ)]

Let σ ∈ nttraces∆M, then
if σ 6∈ nttraces∆M(i), then

outM(i after σ) = ∅
if σ ∈ nttraces∆M(i), then
∀ l(d) ∈ outM(i after σ)
⇒ {Definition 4.4.7}
σ · l(d) ∈ nttraces∆M(i)
⇒ {hypothesis}
σ · l(d) ∈ nttraces∆M(S)
⇒ {Definition 4.4.7}
l(d) ∈ outM(S after σ)

[⇐ If ∀ σ ∈ nttraces∆M: outM(i after σ) ⊆ outM(S after σ) theni ≤M
mtiorf S]

Let σ ∈ nttraces∆M(i) : σ ∈ nttraces∆M(i) ∩ nttraces∆Mthen,(∆(i) after σ) 6= ∅
let Ik ∈ I, then

(∃ a ∈ Ik : l = a(d) ∧ ∃ q : q ∈ (∆(i) after σ) ∧ q
l
⇒)∨

(l = γk (d) ∧ ∃ q : q ∈ (∆(i) after σ) ∧ q
l
⇒)

l ∈ outM(i after σ)
⇒ {hypothesis}
l ∈ outM(S after σ)
⇒
outM(S after σ) 6= ∅
⇒ {Corollary4.4.8}
σ ∈ nttraces∆M(S)

Section 4.5. Multi timed test generation framework 73

4.4.3 The mtiocoM implementation relation

We are ready to define themtiocoM relation, based solely on information from the observed
output set and the specification. Crucially, the definition does not rely on any internal knowl-
edge of the implementation, which complies with out requirement of black box testing.

For i aM-quiescent input-enabled implementation in TLMTS(I,O) andS a specifica-
tion in TLTS(I,O) theni is mtiocoM correct with respect toS if and only if the observable
output set ofi , after everynttraces∆M of S is a subset of the observable output set ofS after
the same nttrace.

Definition 4.4.10. Let i be aM-quiescent input-enabled implementation in TLMTS(I,O)
andS be a specification in TLTS(I,O), then

i mtiocoM S , ∀ σ∈ nttraces∆M(S) : outM(i after σ) ⊆ outM(S after σ)

ThemtiocoM relation is a parameterized timed relation (with parameterM) that consid-
ers quiescence for each particular channel. We use this relation to build our test derivation
framework over TLTS(I,O).

4.5 Multi timed test generation framework

In this section we define the concept of time multi test cases;further, we detail the nature of
their execution and the evaluation of their verdict: pass orfailure.

A timed multi test caset is a deterministic TLTS(I,O) with actions inLδγ (whereLδγ ,
L∪{δ1, . . . , δn , γ1, . . . , γm}) such that it has bounded behaviour, i.e. all computations have
finitely many action occurrences. The set of states in a test contains the terminal statespass

andfail without outgoing transitions, except self loops which let the time pass. For any state
different frompass andfail, there exists a bounded time to observe quiescence in a channel
or for being able to perform an input action. Moreover, sincetests under consideration are
deterministic,τ -transitions are not allowed. Atimed multi test suiteT is a set of test cases.
Similarly as done in Chapter 3, in order to simplify notationwe represent tests as TA. The
difference between multi timed test cases and timed tests cases as defined in Chapter 3 (in
Section 3.6, page 45) is precisely the channel and blocking treatments. Now a test is able to
recognize not only quiescence per channels but also a blocked channel.

Definition 4.5.1. GivenM = 〈M1, · · · ,Mm〉with Mj ∈ D for all j = 1, · · · ,m an ordered
set of bounds to recognize quiescence, then

• A timed multi test caset = 〈Q, q0,Lδγ , T 〉 is a TLTS(I,O) such that

− t is deterministic and hasbounded behaviour, i.e.

∃ N > 0 : ∀ σ ∈ ttraces(t) : σ = l1l2l3 · · · : |{z | lz ∈ L}|<∞

− Q contains the terminal statespass and fail, with init(pass) and init(fail)
without outgoing transitions expect self loops allowing time to pass

74 Chapter 4. Testing timed labelled multi input-output transition systems

− for any stateq ∈ Q of the test case withq 6= pass, fail, there existsd in
0 ≤ d ≤ max 〈M1, · · · ,Mm〉 with

init(q after d ′) = O ∪ {e | e = d − d ′} for all d ′ < d , or
init(q after d) = {l} with l ∈ I or l = δj or l = γk

for all 1 ≤ j ≤ m and1 ≤ k ≤ n

− t does not haveτ -transitions

The class of test cases overI andO is denoted byMT EST (I,O)
• A multi timed test suiteT is a set of test cases:T ⊆MT EST (I,O)

For the description of test cases, as before, we use a processalgebraic behavioural nota-
tion: B , l ; B | B + B | Σ B. Wherel ∈ Lδγ , B is a countable set of behaviour
expressions, and the axioms and the inference rules are:

l ∈ L ⊢ l ; B
l
→ B ′

l = d , d ′ < d ⊢ d ; B
d′

−→ d − d ′; B

l = d ⊢ l ; B
d
−→ B ′

B1
l
→ B ′

1, l ∈ Lδγ ⊢ B1 + B2
l
→ B ′

1

B2
l
→ B ′

2, l ∈ Lδγ ⊢ B1 + B2
l
→ B ′

2

B
l
→ B ′,B ∈ B, l ∈ Lδγ ⊢ Σ B

l
→ B ′

A test run of an implementation with a test case is modelled bythe synchronous parallel
execution of the test case together with the implementationunder test. This run continues
until no more interactions are possible, except letting thetime pass.

We reuse the definition of run, passes and fails from Chapter 3(from Definition 3.6.2,
page 46), but we have to adapt the notion of test composition,this is done in the next defini-
tion.

Definition 4.5.2. Let i be aM-quiescent input-enabled implementation in TLMTS(I,O), t

be a test inMT EST (I,O) andT be a test suite included inMT EST (I,O) , then

• Runningt with i is modelled by the parallel operator

|| : MT EST (I,O) × TLMTS (I, O)→ TLTS (I, O)

which is defined by the following inference rules. For all1 ≤ j ≤ m and1 ≤ k ≤ n:

i
τ
→ i ′ ⊢ t || i

τ
−→ t || i ′

t
δj

−→ t ′, ∀ l ∈ Oj : i
l

6→ ⊢ t || i
δj

−→ t ′ || i

t
γk−→ t ′, i

l

6−→ i ′, l ∈ Ik ⊢ t || i
γk−→ t ′ || i

t
l
−→ t ′, i

l
−→ i ′, l ∈ L ⊢ t || i

l
−→ t ′ || i ′

t
d
−→ t ′, i

d
−→ i ′, d ∈ D ⊢ t || i

d
−→ t ′ || i ′

Section 4.5. Multi timed test generation framework 75

4.5.1 Test generation procedure

We define a procedure to generate test cases from a given extended specification∆(S) in
TLTS(I,O), we call this test generation procedure as MTGP. Again (as inbefore chap-
ters) test cases result from the nondeterministic, recursive application of three test generation
steps:

1. termination,
2. inputs and blocking, and
3. observation of outputs(including quiescence).

The set ofQ′ ∈ Q represents the set of all possible states in which the specification can
be at the current stage of the test case execution. InitiallyQ′ is equal to{q0}.

1. termination

QQst pass

t := pass

The single state test casepass. It is possible to stop the recursion at any time using
this step.

2. inputs and blocking

chooseκ ∈ [0,Max{M1, · · · ,Mm}) andl ∈ I

QQs
c := 0

��
��
c ≤ κ

����������

b1!

c=d1s
�

�
A
At1

�
�

�
��	

bn !

c =dns
�

�
A
Atn

�bu(du) ∈ outM(Q′)

· · ·

�
�
�

�
�
��

l

c =κs
�

�
A
Atl

?

γk

c =κs
�

�
A
Atγk

A
A
A
AAU
δj

c=Mjs
fail

�b′
v (d

′
v) 6∈ outM(Q′)

· · · · · ·

@
@

@
@@R

b′1!

c =d′1s
fail

HHHHHHHHHj

b′
n′ !

c=d′
n′ s

fail

t := Σ{bu(du); tu | bu ∈ O ∧ du < κ ∧ bu(du) ∈ outM(Q′)}
+ {l(κ); tl | l ∈ Ik ∧ ∃ q ∈ Q′ : γk (κ) 6∈ outM(q)}
+ {l(κ); fail | l ∈ Ik ∧ ∀ q ∈ Q′ : γk (κ) ∈ outM(q)}
+ {γk (κ); tγk

| γk (κ) ∈ outM(Q′)}
+ {γk (κ); fail | γk (κ) 6∈ outM(Q′)}
+ Σ{δj (Mj); fail | Mj ∈ M∧Mj < κ ∧ δj (Mj) 6∈ outM(Q′)}
+ Σ{b′v (d ′

v); fail | b′v ∈ O ∧ b′v (d ′
v) 6∈ outM(Q′)}

76 Chapter 4. Testing timed labelled multi input-output transition systems

wherec is a clock,κ is a timed constant,Mj is the bound to detect quiescence in chan-
nel j , u is in [1,n], v is in [1,n ′] andtu , tl andtγk

are obtained by recursively applying
the algorithm to(Q′ after bu(du)), (Q′ after l(κ)) and(Q′ after γk (Mk)), respec-
tively.

The test caset is waiting for κ time units, and trying to perform an input (l) or to
observe a blocking channel (γk). If an output arrives from the implementation, the test
checks whether the output is an invalid response, i.e.b′v (d ′

v) /∈ outM (Q′); in that
case, the test case terminates infail. If the output is a valid response after the time
passed, then the test case continues recursively. If the intended time pass (i.e.c = κ)
then the test produces the input (l) or it observe the blocking channel (γk), and contin-
ues recursively.

3. observation of outputs

choose a channelj

QQs
c := 0

��
��
c ≤ Mj

����������

b1!

c =d1s
�

�
A
At1

�
�

�
��	

bn !

c=dns
�

�
A
Atn

�bu(du) ∈ outM(Q′)

· · ·

�
�
�

�
�
��

δj

c=Mjs
�

�
A
Atδj

A
A
A
AAU

δ
j ′

c =M
j ′ s
fail

�b′
v(d

′
v) 6∈ outM(Q′)

· · · · · ·

@
@

@
@@R

b′1!

c =d′1s
fail

HHHHHHHHHj

b′
n′ !

c=d′
n′ s

fail

t := Σ{bu(du); tu | bu ∈ O ∧ du < Mj ∧ bu(du) ∈ outM(Q′)}
+ Σ{δj (Mj); tδj

| δj ∈ outM(Q′ after Mj)}
+ Σ{δj (Mj); fail | δj 6∈ outM(Q′ after Mj)}
+ Σ{δj ′(Mj ′); fail | Mj ′ ∈ M∧Mj ′ < Mj ∧ δj ′ (Mj ′) 6∈ outM(Q′)}
+ Σ{b′v (d ′

v); fail | b′v ∈ O ∧ b′v (d ′
v) 6∈ outM(Q′)}

wherec is a clock,κ is a timed constant,Mj andMj ′ are the bounds to detect quies-
cence in channelj andj ′ respectively;u is in [1,n], v is in [1,n ′] andtu andtδj

are
obtained by recursively applying the algorithm to(Q′ after bu(du)) and(Q′ after

δj (Mj)), respectively.

The test caset is waiting forMj time units; if an output arrives from the implementa-
tion it checks whether it is an invalid response, i.e.b′u (d ′

u) /∈ outM (Q′); in that case,
the test case terminates infail. If it is a valid response, the test case continues with test
casetu , generated from(Q ′ after b′u(d ′

u)). The observation of quiescence in channel
j (δj) is treated separately, using the constantMj . Moreover, the test reports a failure
in case a channel with a smaller bound (Mj ′ < Mj) shows incorrectly to be quiescent.

Section 4.5. Multi timed test generation framework 77

We use case1 to stop the recursion and bound the behaviour of the test.
Case2 is used for two purposes: either try to test the acceptance ofan input or try to test

the blocking of an input channel; both trials are done in a particular time (κ). Since we need to
wait until this particular time happens, we use this waitingperiod for observations. There are
two kinds of observations: outputs observations and quiescent observations. For the former,
if we observe an output we check its correctness. For the latter, if we observe quiescence
in a channel whose quiescent observation bound is smaller than our waiting period, then we
check its incorrectness.

There are two possible approaches to check the blocking of a channel (γk). Firstly, we
can repeat a test for each input in channelk . Secondly, using the input-enabled property
assumed on implementations, we can try to apply any input from channelk and if it is not
accepted we conclude that the channel is blocked.

We use case3 for the observation of outputs or quiescence. In case we wantto observe
quiescence in channelj , using theMj -quiescent property, it is enough to wait untilMj to
recognize it. If no output comes from that channel we conclude that it is quiescent. On the
other hand, if we want to observe an output from channelj , again using theMj -quiescent
property, it is enough to wait forMj time units. If no output actions, from channelj , appears
again we conclude quiescence in channelj . If an output appears we check it correctness.

It is possible to recognize that case3 has an overlapping with the waiting period from case
2, as follows. Suppose we derive a test using case2 and we find out, during the derivation
procedure, that there exists an arrow labelled withδj . This means that the boundMj from
channelj is smaller thatκ (the intended time to apply the input) and moreover channel
j should not be quiescent. Thus, if an implementation produces an output beforeκ, the
intended input will not be applied. Besides, if the implementation does not produce any
output from channelj beforeMj , we must have found an error and the intended input will
not be applied neither. Hence, if an arrow lebelled withδj appears deriving case2 then we
know that the intended input will not be applied. Fortunately, we can use this knowledge.
Once it is known that there exists an arrow forδj deriving case2, we could suggest to choose
case3 and wait for outputs on channelj . But, because the recognition of this knowledge
could take time, our proposed improvement may only be used onbatch derivation test (that
is, tests that are derived before they are applied).

As a final remark, the construction steps involve negations of predicates of the form
b(d) ∈ outM(Q′) or γk (d) ∈ outM(Q′); which in general for TLTS(I,O) are unde-
cidable. Hence, the procedure given here can be seen as a meta-algorithm which is useful for
generating tests effectively for the subclasses of TLTS(I,O) in which these predicates are
decidable; for example TA [38, 39], with sub-partitioning of the input and output sets.

Example 4.5.3.Figure 4.5 shows a test for the cash machine. The test checks that it is not
possible to ask for money before a card is authenticated. This is done using case2 for γ2.
Then, a card and a Pin are inserted using case2 for the inputs card and Pin, respectively.
Subsequently, using case3 we expect an answer from the machine; if the Pin is correct, we
then ask for an amount of money, using case2 with input amount. We expect the answer from
the machine using case3; if the answer is positive we wait for the card and the amount of
money. We finally end the recursive procedure of the test withcase1.

We suppose that this test will be used with an implementationthat we know isM-
quiescent withM = {M1,M2,M3} andM1 > 3, M2 > 4 andM3 > 5.

78 Chapter 4. Testing timed labelled multi input-output transition systems

4.6 Completeness

In this section we show that the test generation framework (MTGP) presented in Section 4.5.1
is complete with respect to themtiocoM implementation relation. We first recall when an
implementation is sound and exhaustive with respect to themtiocoM.

A set of tests, generated by the MTGP, is sound with respect tomtiocoM if for any imple-
mentation that fails a test in the set, the implementation isincorrect with respect tomtiocoM.
Furthermore, a set of tests is exhaustive with respect tomtiocoM if for every incorrect
implementation a test case can be generated, following the MTGP, that detects the non-
conformance.

Definition 4.6.1. LetS be a specification in TLTS(I,O). Then for alli aM-quiescent input-
enabled implementation in TLMTS(I,O) and forT the test set of all test cases obtained from
S by the MTGP

T is sound w.r.t. tomtiocoM , if ∀ t ∈ T : i mtiocoM S theni passes t

T is exhaustive w.r.t. tomtiocoM , if i mt 6iocoM S then∃ t ∈ T : t pa6sses i

In the proofs of soundness and exhaustiveness we use the termsaturationto refer to satu-
rations ofδ’s, in nttraces∆M. The following definition gives a relation betweennttraces∆Mwith
δ in a particular location and a similar one, withoutδ in that location.

Definition 4.6.2. LetA be a system in TLTS(I,O) withM = 〈M1, · · · ,Mm〉, Mj ∈ D for
all j = 1, · · · ,m be an ordered set of bounds andσ ∈ nttraces∆M(A), then

σ is δ(M)-saturated , ∄ σ′ ∈ nttraces∆M(A) : ∃Mj ∈M : σ = σ1 ·l(d)·σ2 ∧
l 6= δj ∧ σ′ = σ1 ·δj (Mj)·l(d −Mj)·σ2

A δ(M)-saturatednttraces∆M is anttraces∆M that does not permit an action to come after
max{M1, · · · ,Mm} without observing quiescence.

4.6.1 Soundness

The MTGP presented is sound with respect tomtiocoM testing relation.

Theorem 4.6.3.LetS be a specification in TLTS(I,O), then for alli aM-quiescent imple-
mentations in TLMTS(I,O) and for all t a test cases obtained fromS by the MTGP

if i mtiocoM S then i passes t

Proof.
Let i beM-quiescent with(i mtiocoM S), then we show that for allσ ∈ nttraces∆M(S) and
for all t test cases generated fromS by the MTGP the following holds

Section 4.6. Completeness 79

if t || i
σ
⇒ t ′ || i ′ then t ′ 6= fail

Without loss of generality we can assume thatσ is δ(M)-saturated. We prove the theorem
by induction over the length ofσ

• If σ = ǫ andt || i
ǫ
⇒ t ′ || i ′

if t was constructed using case 1 in the first step, then
t || i

ǫ
⇒ pass || i ′

if t was constructed using cases 2 or 3 in the first step, then
t = t ′ 6= fail and all derivations of

ǫ
⇒ have the form:

t || i
ǫ
⇒ t || i ′

• If σ = σ′ · a andt || i
σ′

⇒ t ′′ || i ′′
a
⇒ t ′ || i ′ ∧ a = l(d),

becauset can doa there are only two possibilities to constructt ′:
from case2: (l ∈ Ik) or (l = γk) ∧ d < Max{M1, · · · ,Mm}, then
because(i mtiocoM S)

if l ∈ Ik thenγk (d) 6∈ outM(S after σ′), then
t || i

σ
⇒ t ′ || i ′ ∧ t ′ 6= fail

if l = γk thenγk (d) ∈ outM(S after σ′), then
t || i

σ
⇒ t ′ || i ′ ∧ t ′ 6= fail

from case3 for j : (l ∈ Oj) or (l = δj) ∧ a ∈ outM(i after σ′), then
because(i mtiocoM S): l(d) ∈ outM(S after σ′), and thus
t || i

σ
⇒ t ′ || i ′ ∧ t ′ 6= fail.

4.6.2 Exhaustiveness

The MTGP is also exhaustive, in the sense that for each non-conforming implementation, a
test case can be generated that detects the non-conformance.

Before proving the theorem of exhaustiveness, we establisha useful property. For every
specificationS in TLTS(I,O) and everyδ(M)-saturatedσ ∈ nttraces∆M(S) such that there
exists a test caset ′ for (S afterσ), then there also exists a test caset such that fromt doing
σ it is possible to obtaint ′. This property is reflected in the next lemma.

Lemma 4.6.4.LetS be a specification in TLTS(I,O), σ ∈ nttraces∆M(S) beδ(M)-saturated,
andt ′ be a test case generated by the MTGP for (S after σ). Then, there existst a test case
generated fromS with t

σ
⇒ t ′.

Proof.
By induction over the length ofσ:

• Let |σ | = 0 then taket = t ′

• Suppose there existst for all σ with |σ |< n

• Let |σ | = n with σ = σ′ · a anda = l(d)

if (l ∈ I or l = γk) using case2 for the inputl : t
σ′

⇒ t ′′
a
⇒ t ′

if a ∈ outM(S after σ), using case3 for channelj (l ∈ Oj) : t
σ′

⇒ t ′′
a
⇒ t ′.

80 Chapter 4. Testing timed labelled multi input-output transition systems

Theorem 4.6.5. Let S be a specification in TLTS(I,O). Then for everyi aM-quiescent
implementation in TLMTS(I,O) with i mt 6iocoM S , there existst a test case generated by
the MTGP fromS such that

i pa6sses t

Proof.
If i mt 6iocoM S then there existsσ ∈ nttraces∆M(S) such that

outM(i after σ) 6⊆ outM(S after σ)

Without loss of generality, we can assume thatσ is δM-saturated. Then, leta = l(d)

such thata ∈ outM(i after σ)\outM(S after σ) andi
σ
⇒ i ′

a
⇒ i ′′.

• If l ∈ Oj then lett ′ be the result of applying case3 for j of the procedure to(∆(S)
after σ), and lett be the test case constructed out oft ′ and σ by Lemma 4.6.4.
Becausea 6∈ outM(S after σ) then(t || i

σ·a
=⇒ fail || i ′′), soi pa6sses t

• If l = γk then lett ′ be the result of applying case2 for γk of the procedure to(∆(S)
after σ), and lett be the test case constructed out oft ′ and σ by Lemma 4.6.4.
Becausea 6∈ outM(S after σ) then(t || i

σ·a
=⇒ fail || i ′′), soi pa6sses t .

The exhaustiveness of our test generation procedure, similarly as in Chapter 3, is less
useful than the corresponding result in the untimed case. There, the repeated execution of
the test generation algorithm in a fair, nondeterministic manner, will generate for every error
a test exposing it in finite time. This is not feasible for the real-time case, since the number
of potential test cases is uncountable due to the underlyingcontinuous time domain. It is
possible to recover such limit-completeness by considering suitable equivalent classes of
errors (i.e., an implementation has either all or no errors of a given class), such that a repeated
test generation procedure will automatically expose an error in every equivalence class.

4.7 Relation with tiocoM

In this section we present the relation between themtiocoM and thetiocoM testing relations.
Note that even that themtiocoM relation is defined over TLMTS(I,O) implementations and
TLTS(I,O) specifications, because TLMTS(I,O) and TLTS(I,O) are TLTS(I ,O) (where
I = ∪

1≤k≤n
Ik andO = ∪

1≤j≤m
Oj) we can definetiocoM over them.

To prove this result we usenttraces∆M as defined in Definition 3.4.2 (from Chapter 3,
page 40) andnttraces∆M as defined in Definition 4.4.6 (from Chapter 4, page 71). Moreover,
as follows we define how to transform anttraces∆M to anttraces∆M.

Definition 4.7.1. LetA be a TLTS(I,O) withM = 〈M1, · · · ,Mm〉 and
M = max〈M1, · · · ,Mm〉, we define the function()M : nttraces∆M → nttraces∆M as

Section 4.7. Relation with tiocoM 81

(ǫ)M , ǫ

(σ ·l(d))M ,

{
(σ)M ·l(d) l 6= δ
(σ)M ·δz (Mz) l = δ ∧Mz = max〈M1, · · · ,Mm〉

Then the only difference betweenσ ∈ nttraces∆M (A) and(σ)M is in theδ-actions.

Lemma 4.7.2. Let A = 〈Q, q0,L, T 〉 be a TLTS(I,O) withM = 〈M1, · · · ,Mm〉 and
M = max〈M1, · · · ,Mm〉, then

if σ ∈ nttraces∆M (A) then (σ)M ∈ nttraces∆M(A)

Proof.
We prove this lemma by induction over the length of aσ in nttraces∆M (A).

• Letσ = l(d) then if l 6= δ thenσ = (σ)M and immediatelyσ ∈ nttraces∆M(A). If l =

δ thend = M and there existsq ∈ Q such thatq0 M
⇒ q andq isM -quiescent. Because

M = max〈M1, · · · ,Mm 〉, there existsMz ∈ 〈M1, · · · ,Mm〉 such thatMz = M and
q isMz -quiescent. Soδz (Mz) ∈ nttraces∆M(A) and then since(σ)M = δz (Mz) we
have(σ)M ∈ nttraces∆M(A).
• Suppose that for all|σ | < n with σ ∈ nttraces∆M (A) then(σ)M ∈ nttraces∆M(A).
• Let |σ| = n then there existsσ′ : σ = σ′·l(d). If l 6= δ then using hypothesis inductive

is direct that(σ)M ∈ nttraces∆M(A). If l = δ thend = M , so there existsq ∈ Q

such thatq0 σ′·M
=⇒ q andq is M -quiescent. But sinceM = max〈M1, · · · ,Mm〉 also

there existsMz ∈ 〈M1, · · · ,Mm〉 such thatMz = M andq isMz -quiescent. So
using hypothesis inductive(σ′)M ·δz (Mz) ∈ nttraces∆M(A) and then since(σ)M =
(σ′)M ·δz (Mz) we have(σ)M ∈ nttraces∆M(A).

Theorem 4.7.3.LetS be a specification in TLTS(I,O), i be an input-enabledM-quiescent
implementation in TMLTS(I ,O) and letM = max〈M1, · · · ,Mm〉 then

if i mtiocoM S then i tiocoMS

Proof.
We prove the theorem proving that for allσ in nttraces∆M (S)

if l(d) ∈ outM (i after σ) then l(d) ∈ outM (S after σ)

We prove it by induction over the length ofσ, then

• Let σ = ǫ and l(d) ∈ outM (i after ǫ), then if l 6= δ then l(d) ∈ outM(i after

ǫ). So, becausei mtiocoM S we know thatl(d) ∈ outM(S after ǫ), thenl(d) ∈
outM (S after ǫ). If l = δ then becauseM = max〈M1, · · · ,Mm〉 we know that
there existsz such thatδz (Mz) ∈ outM(i after ǫ). So using thati mtiocoM S we
know thatδz (Mz) ∈ outM(S after ǫ). But, again sinceM = max〈M1, · · · ,Mm〉
we haveδ(M) ∈ outM (S after ǫ).

82 Chapter 4. Testing timed labelled multi input-output transition systems

• Suppose that for allσ with |σ| < n, if l(d) ∈ outM (i after σ) thenl(d) ∈ outM (S
after σ).
• Let | σ | = n and l(d) ∈ outM (i after σ), then using Lemma 4.7.2 we know

that (σ)M ∈ nttraces∆M(i). If l 6= δ then l(d) ∈ outM(i after (σ)M). So
becausei mtiocoM S we know thatl(d) ∈ outM(S after (σ)M) then l(d) ∈
outM (S after σ). If l = δ then δ(M) ∈ outM (i after σ) and becauseM =
max〈M1, · · · ,Mm〉 we know that there existsz such thatδz (Mz) ∈ outM(i after

(σ)M). Now using thati mtiocoM S we have thatδz (Mz) ∈ outM(S after (σ)M).
So sinceM = max〈M1, · · · ,Mm〉 we obtain thatδ(M) ∈ outM (S after σ).

The difference between themtiocoM testing relation and thetiocoM testing relation is
that the former relaxes the input-enabled assumption in implementations and allows different
bounds to detect quiescence per each channel. So the Theorem4.7.3 shows that requiring
input-enabledness and the same bound to detect quiescence for all channels (the maximum
of all the previous bound) is enough to prove that amtiocoM-correct implementation is also
a tiocoM-correct implementation with respect to a given specification.

4.8 Related work

The work of Heerink [28] is an extension of Tretmans’ioco testing theory [58] to deal with
channels. In his untimed work, a testing theory is presentedbased on singular observers; only
one output channel is observed at the time. Li et al. in [43] develop a similar theory with
an alternative type of observers, called all-observers. The all-observers can see every output
channels simultaneously. Later in [44] they extend their approach with queues. However, in
contrast to the work presented here, both approaches are concerned with untimed systems.

Recently, another approach for the test generation on real-time systems was presented [38,
40], as we discussed in Chapter 3. But, their techniques consider neither quiescence nor
multiple channels.

4.9 Conclusions

To the best of our knowledge, we propose the first attempt to generate test cases from multi
input-output real-time specifications. More specifically,our contributions are:

• We show how the concept of multi input-output transition systems can be applied to
the modeling of real-time systems.
• We develop a new parameterized conformance relation using the enriched real-time

multi input-output transition systems: themtiocoM testing relation.
• We relax theM -quiescent assumption by allowing different bounds for different chan-

nels.
• We relax the input-enabled assumption allowing input channels to be blocked.
• We relate our results with the timed relationtioco without channels.

We are continuing our work along two lines. Firstly, we are studying thelimit-completeness
of our approach, as explained in Section 4.6.2. Secondly, weare working on an implementa-
tion of the timed multiple input-output theory as an extension of the TORX tool [10, 12].

Section 4.9. Conclusions 83

test: @@R
c :=0�
 �	c≤2

?
Err P!

c <2

?
Err a!

c <2

?

give
card!

c <2 ?
Ok!

c <2

?

give
amount!
c <2

?

γ2
c=2
c :=0

failfailfailfailfail �
 �	c≤2

?
Err P!

c <2

?
Err a!

c <2

?

give
card!

c <2 ?
Ok!

c <2

?

give
amount!
c <2

?

card?
c=2
c :=0

failfailfailfailfail �
 �	c≤2

?
Err P!

c <2

?
Err a!

c <2

?

give
card!
c <2

?
Ok!

c <2

?

give
amount!
c <2

?

Pin?
c=2
c :=0

failfail passfailfail �
 �	c≤2

?
Err P!
c <2

?
Err a!

c <2

?

give
card!

c <2 ?

give
amount!
c <2

?

Ok!
c=2
c :=0

failfailfail pass�
 �	c≤2

?
Err P!

c <2

?
Err a!

c <2

?

give
card!

c <2 ?
Ok!

c <2

?

give
amount!
c <2

?

amount?
c=2
c :=0

failfailfailfailfail �
 �	c≤2

?
Err P!

c <2

?
Err a!
c <2

?

give
card!

c <2 ?

give
amount!
c <2

?

Ok!
c=2
c :=0

failfail passfail �
 �	c≤M1

?
Err P!

c <M1 ?
Err a!

c <M1 ?
Ok!

c <M1 ?

give
amount!
c <M1

?

give card!
c=2
c :=0

failfailfailfail �
 �	c≤M2

?
Err P!

c <M2 ?
Err a!

c <M2 ?

give
card!

c <M2 ?
Ok!

c <M2

?

give amount!
c=2
c :=0

pass

failfailfailfail

Figure 4.5: A test case for the cash machine consideringM1 > 3, M2 > 4 andM3 > 5

84 Chapter 4. Testing timed labelled multi input-output transition systems

CHAPTER 5

Semantic coverage in testing

5.1 Introduction

As we anticipated in the first chapter, another interesting direction (studied in this chapter) is
to investigate testing coverage. Even though so far we have considered extensions of labelled
transition systems with time, to study coverage we start from regular, unextended labelled
transition systems.

Since testing is inherently incomplete, test selection hasvital importance. Coverage mea-
sures evaluate the quality of a test suite and help the testerto select test cases with maximal
impact or minimum cost.

Existing coverage criteria for test suites are usually defined in terms of syntactic char-
acteristics of the implementation under test or its specification. Typical black-box coverage
metrics are state and transition coverage of the specification that would be visited by execut-
ing a test suite against it [61, 42, 49]. White-box testing often considers the number of state-
ments, conditional branches, and paths through the implementation code that are touched by
the test suite execution [47, 48, 8]. A disadvantage of this syntactic approach is that different
coverage figures are assigned to systems that are behaviorally equivalent, but syntactically
different. The approaches are based on syntactic model features, i.e. coverage figures are
based on a specific model or program used as a reference. As a consequence, we may get
different coverage results when we replace the model with one behaviorally equivalent but
syntactically different.

Moreover, those coverage metrics do not take into account that certain failures are more
severe than others, and that more testing effort should be devoted to uncover the most im-
portant bugs, while less critical system parts can be testedless thoroughly. In other words,
these approaches fail to account for the non-uniform gravity of failures, whereas it would be
natural to select test cases in such a way that the most critical system parts are tested most
thoroughly.

It is important to realize that the weight of a failure cannotbe extracted from a purely
behavioural model, as it may depend, in an essential way, on the particular application of
the implementation. The importance of the same bug may vary considerably between its
occurrence in a part of an electronic game or in a part of the control of a nuclear power plant.

In practice, the exhaustiveness notion is usually problematic, since exhaustive test suites
will contain infinitely many test cases. This raises the question of test selection, i.e. the
selection of well-chosen, finite test suites that can be generated (and executed) within the

85

86 Chapter 5. Semantic coverage in testing

available resources. Test case selection is naturally related to a measure of coverage, indicat-
ing how much of the required conformance is tested for a giventest selection. In this way,
coverage measures can assist the tester in choosing test cases with maximal impact against
some optimization criterion, e.g. number of tests, execution time, or cost.

Organization of the chapter This chapter introduces a semantic approach for test coverage
that aims to overcome the two points mentioned above. Our point of departure is
the weighted fault model (WFM) that assigns a weight in the specification to each
potential error in an implementation. We define our coveragemeasures relative to
these WFMs. Since WFMs are augmented specifications, our coverage framework
qualifies as black-box. Moreover, since WFMs are infinite semantic objects, we need
to represent them finitely if we want to model them or use them in algorithms. We
provide such representations by the fault automata (Section 5.4). Fault automata are
rooted iniocotesting theory [58] (recapitulated in Chapter 2), but theirprinciples apply
to a much wider setting.
We provide two ways of deriving WFMs from fault automata, namely the finite depth
WFM(Section 5.5) and the discounted WFM(Section 5.6). The coverage measures
obtained for these fault automata are invariant under behavioural equivalence.
For both weighted fault models, we provide algorithms that calculate and optimize
test coverage (Section 5.8). In particular, we compute the (total, absolute and relative)
coverage of a test suite with respect to a WFM. Also, given a test lengthk , we present
an algorithm that finds the test of lengthk with maximal coverage and an algorithm
that finds the shortest test with coverage exceeding a given coverage bound. Moreover,
in Section 5.9 we apply our theory to the analysis and comparison of several test suites
derived for a chat protocol. Related work is discussed in Section 5.10 and we end
providing conclusions and suggestions for further research in Section 5.11.

5.2 Coverage measures in weighted fault models

LetL be any set. ThenL∗ denotes the set of all finite sequences overL. As in before chapters
the empty sequence is denoted byε and|σ | denotes the length of a traceσ ∈ L∗. Moreover,
we useL+ = L∗ \ {ε}. Forσ, σ′ ∈ L∗, we say thatσ is aprefixof σ′, if there exists a trace
σ′′ ∈ L∗ such thatσ′ = σ ·σ′′. On the other hand, ifσ is a prefix ofσ′, thenσ′ is asuffixof
σ. We callσ aproper prefixof σ′ andσ′ aproper suffixof σ if σ is a prefix ofσ′, butσ 6= σ′.
For any functionf : L→ IR≥0, we use the convention that

∑
x∈∅

f (x) = 0 and
∏
x∈∅

f (x) = 1.

5.2.1 Weighted fault models

A weighted fault model specifies the desired behaviour of a system by not only providing the
correct system traces, but also giving the severity of the erroneous traces. In this section, we
work with a fixed action alphabetL.

Definition 5.2.1. A weighted fault modeloverL, denoted WFM(L), is a functionf : L∗ →
IR≥0 such that

Section 5.2. Coverage measures in weighted fault models 87

0 <
∑

σ∈L∗

f (σ) < ∞

Thus,f a WFM(L) assigns a non-negative error weight to each traceσ ∈ L∗. If f (σ) =
0, thenσ represents correct system behaviour. Iff (σ) > 0, thenσ represents incorrect
behaviour andf (σ) denotes the severity of that error. In this way, the higher the value of
f (σ) is the worse the error. We refer to tracesσ ∈ L∗ with f (σ) > 0 aserror tracesand
traces withf (σ) = 0 ascorrect tracesin f .

In order to define coverage measures relative to the total error weight, we require the total
error weight

∑
σ∈L∗

f (σ) to be finite and non-zero.

5.2.2 Coverage measures

In this section we abstract from the exact shape of test casesand test suites. Givenf a WFM
over the action alphabetL, we only use that a test is a trace set,t ⊆ L∗. As well, a test suite
is a collection of trace sets,T ⊆ P(L∗). Then, we define the absolute and relative coverage
with respect tof of a test and of a test suite. In this way, our coverage measures apply in all
settings where test cases can be characterized as trace sets(in which case test suites can be
characterized as collections of trace sets). This is the case for tests in TTCN [25],ioco testing
theory [58] and FSM testing [61, 42].

Definition 5.2.2. Let f : L∗ → IR≥0 be a WFM(L), let t ⊆ L∗ be a set of traces and let
T ⊆ P(L∗) be a collection of sets of traces, then

abscov(t , f) ,
∑
σ∈t

f (σ)

abscov(T, f) , abscov(∪
t∈T

t , f)

totcov(f) , abscov(L∗, f)

relcov(t , f) ,
abscov(t ,f)
totcov(f)

relcov(T, f) ,
abscov(T,f)
totcov(f)

The coverage of a test suiteT, with respect tof , measures the total weight of the errors
that can be detected by tests inT. The absolute coverageabscov(T, f) simply accumulates
the weights of all error traces inT. Note that the weight of each trace is counted only once,
since one test case is enough to detect the presence of an error trace in an IUT. The relative
coverage,relcov(T, f), yields the error weight inT as a fraction of the weight of all traces in
L∗. Since absolute (coverage) numbers have meaning only if they are put in perspective of a
maximum or average; we advocate that the relative coverage yields a good indication for the
quality of a test suite.

Completeness of a test suite can easily be expressed in termsof coverage.

Definition 5.2.3. Let f : L∗ → IR≥0 be a WFM(L). A test suiteT ⊆ P(L∗) is complete
with respect tof if

88 Chapter 5. Semantic coverage in testing

relcov(T, f) = 1

The following proposition characterizes the complete testsuites.

Proposition 5.2.4. Let f be a WFM(L) and letT ⊆ P(L∗) be a test suite. Then

T is complete w.r.t.f if and only if ∀ σ ∈ L∗ : f (σ) > 0 : ∃ t ∈ T : σ ∈ t

Proof.
From Definition 5.2.3 we have thatT is complete forf if and only if relcov(T, f) = 1 =
abscov(T,f)
totcov(f) if and only if

∑
σ∈ ∪

t∈T

t

f (σ) =
∑

σ∈L∗

f (σ) if and only if for all σ ∈ L∗ with

f (σ) > 0 thenσ ∈ ∪
t∈T

t if and only if for all σ ∈ L∗ with f (σ) > 0 there exists a testt ∈ T

such thatσ ∈ t .

5.3 Test cases in labelled input-output transition sys-
tems

In this section we make use of all definitions from Chapter 2 about labelled input-output
transition systems (LTS) and we only extend some of them because it prepares for the next
section that treats an automaton-based formalism for specifying WFMs.

5.3.1 Labelled input-output transition systems

Definition 5.3.1. GivenA = 〈Q , q0,L,T 〉 a deterministic LTS, we define the input transi-
tion relation,T I , and the output transition relation,TO as

T I , the restriction ofT to Q × I ×Q

TO , the restriction ofT to Q ×O ×Q

Moreover, givenA = 〈Q , q0,L,T 〉 a deterministic LTS, we writeT (q) = {(l , q ′) |
(q, l , q ′) ∈ T} and similarly forT I (q) andTO (q). We denote byoutdeg(q) = |T (q)| the
out-degree of stateq, meaning the number of outgoing transitions ofq.

We requiredA to be deterministic only for technical simplicity. This is not a real restric-
tion, since we can always determinizeA. In case we incorporate quiescence by adding a self
loopq

δ
→q labelled with a special labelδ to each quiescent stateq as in Chapter 2, we should

note that: since quiescence is not preserved under determinization, we must first determinize
and then add quiescence.

Example 5.3.2.Figure 5.1 (a) presents a LTS of a cash machine: if the user askfor money,
the machine should give money. We use this simple cash machine to make simple examples
through all this chapter, later in Section 5.9 we present a more elaborated one. In Figure 5.1

Section 5.3. Test cases in labelled input-output transition systems 89

(b), we see the extension with quiescence. Sinceδ is not enabled in stateq1, we explicitly
forbid the absence of outputs inq1, i.e. the machine must give money. As in before chapters,
the double circles represent the initial state.

(a)

�
�	����q0

j

ask money? �
�	q1

Y

give money!

����PPi
ask money?

(b)

�
�	����q0

j

ask money?

����PPi δ
�
�	q1

Y

give money!

����PPi
ask money?

Figure 5.1: A LTS specification of a cash machine and its extension with quiescence

As follows we introduce some language theoretic concepts for LTSs.

Definition 5.3.3. Let A = 〈Q , q0,L,T 〉 be a LTS,π = q0l1q1l2 . . . lnqn be a path in
paths(A), andσ ∈ L∗ be any trace, not necessarily one fromA, then

| π | , | {q | q ∈ π} |
last(π) , qn
trace(π) , l1 ·l2 . . . ln
reachk

A(σ) , {q ′ | ∃ π ∈ paths(A) : |σ | = k ∧ trace(π) = σ ∧ last(π) = q ′}

reachA(σ) , ∪
k∈N

reachk
A(σ)

As before, we leave out the subscriptA if it is clear from the context.

Then,| π | denotes the number of states in the pathπ and last of a path denotes the last
state of the path. Withtrace(π) we refer to the actions occurring in the pathπ and we write
traces(A) = {trace(π) | π ∈ paths(A)} for the set of all traces inA. With reachk

A(σ) we
denote the set of states that can be reached inA in exactlyk steps by followingσ. Moreover,
we writereachk

A for the set of states that can be reached ink number of steps, by following
any trace,reachk

A = ∪
σ∈L∗

reachk
A(σ). Note thatreachk (σ) contain as most one state, sinceA

is deterministic. Finally,reachA(σ) is the set of states that can be reached through the trace
σ in any number of steps and we writereachA = ∪

σ∈L∗
reachA(σ) for the set of all reachable

states inA. This definition is only a re-phrasing of theder set from Definition 2.2.5 (in
Chapter 2, page 14).

Definition 5.3.4. Let A = 〈Q , q0,L,T 〉 be a LTS andq ∈ Q be a state inA, then byA[q]
we denote the LTS such thatA[q] = 〈Q , q,L,T 〉.

90 Chapter 5. Semantic coverage in testing

Thus,A[q] is the same asA, but with q as its initial state. This notation allows us to
speak ofpaths, traces, in A starting from a state that is not the initial state. For instance,
paths(A[q]) denotes the set of paths starting from stateq.

5.3.2 Test cases

As we already mentioned, the test cases for LTSs that we consider are based on theiocotesting
theory [58]. As in TTCN,ioco test cases are adaptive. That is, the next action to be performed
(observe the IUT, stimulate the IUT or stop the test) may depend on the test history, that is,
the trace observed so far. If, after a traceσ, the tester decides to stimulate the IUT with an
inputa?, then the new test history becomesσ·a?; in case of an observation, the test accounts
for all possible continuationsσ ·b! with b! ∈ O an output action. Theioco testing theory re-
quires that tests fails fast, because they stop after the discovery of the first failure, and never
fail immediately after an input. Ifσ ∈ traces(A), butσ ·a? 6∈ traces(A), then the behaviour
afterσ ·a? is not specified, leaving room for implementation freedom. Formally, a test case
consists of the set of all possible test histories obtained in this way.

For a detailed description of a test we refer the reader to Chapter 2. Here we only recall
that givenA a LTS a test is a finite, prefix-closed subset ofL∗

A such that: ifσ ·a? ∈ t , then
σ ·a′? /∈ t for anya′? ∈ L with a 6= a′; if σ ·b! ∈ t , thenσ ·b′! ∈ t for all b′! ∈ O ; if
σ 6∈ traces(A), then no proper suffix ofσ is contained int . Moreover, recall that we denote
the set of all tests forA by TESTS (A). The length of a testt , denoted| t |, is the length of
the longest trace int , | t | = max

σ∈t
{|σ |}. We denote byTESTS k (A) the set of all tests forA

with lengthk .

Example 5.3.5. Figure 5.2 shows two test cases for the cash machine from Figure 5.1 (b),
represented as trees and augmented with verdicts pass and fail. The prefix closed trace set is
obtained by taking all traces in these trees.

Since each test ofA is a set of traces, we can apply Definition 5.2.2 and speak of (abso-
lute, total and relative) coverage of a test case (or a test suite) of A, with respect tof a WFM.
However, not all WFMs are consistent with the interpretation that traces ofA represent cor-
rect system behaviour, and that tests are ”fail fast” and do not fail after an input.

Definition 5.3.6. Let A = 〈Q , q0,L,T 〉 be a LTS and letf : L∗ → IR≥0 be a WFM. Then
f is consistent withA if L = LA and for allσ ∈ L∗

A we have

• if σ ∈ traces(A), thenf (σ) = 0 (correct traces have weight0)
• f (σ ·a?) = 0 (no failure occurs after an input)
• if f (σ) > 0 thenf (σ ·σ′) = 0 for all σ′ ∈ L+

A (at most one failure per trace)

The following result states that the set containing all possible test cases has complete
coverage.

Theorem 5.3.7.LetA = 〈Q , q0,L,T 〉 be a LTS andf be a WFM consistent withA. Then,
the setTESTS (A) of all test cases forA is complete with respect tof .

Section 5.4. Fault automata 91

test1�
�	����t0

?

ask money?�
�	t1

�
�

��	

δ @
@

@@R

give money!

fail
�
�	t2

?

ask money?

pass

test2�
�	����t0

�
�

��	

give money! @
@

@@R

δ

fail
�
�	t1

?

ask money?�
�	t2

�
�

��	

δ @
@

@@R

give money!

fail pass

Figure 5.2: Two test cases for the LTS from Figure 5.1, augmented with verdictspass and
fail

Proof.
For all σ ∈ L with f (σ) > 0, we build a testt ∈ TESTS (A) with σ ∈ t . Let σ be
σ = l1 ·l2 ·. . .·ln . Then, for1 ≤ z ≤ n, we define a setXz by

Xz =

{
{l1 . . . lz} lz ∈ I

{l1 . . . lz−1b | b ∈ O} lz ∈ O

The sett is defined ast = ∪
1≤z≤n

Xz . Sincef is consistent withA, the sett is a test

in TESTS (A). Clearly, t containsσ. Now, Proposition 5.2.4 yields thatTESTS (A) is
complete forf .

5.4 Fault automata

Weighted fault models are infinite semantic objects. This section introducesfault automata,
which provide a syntactic format for specifying WFMs. A fault automatonA is a LTS aug-
mented with a state weight functionr . Then,A is a behavioural specification of the system;
its traces represent the correct system behaviours. Hence,these traces will be assigned error
weight0; traces not inA are erroneous and get an error weight throughr , as explained below.

Definition 5.4.1. A fault automaton(FA) F is a pair 〈A, r〉, whereA = 〈Q , q0,L,T 〉 is a
LTS andr : Q ×O → IR≥0 is a function such that

r(q, b!) > 0 , ∄ q ′ ∈ Q : (q, b!, q ′) ∈ T

92 Chapter 5. Semantic coverage in testing

We denote the components ofF by AF andrF and leave out the subscriptsF if it is clear
from the context.

Then we require that ifr(q, b!) > 0 then there is nob!-successor ofq in F . Moreover,
we extendr to a functionr : Q × L→ IR≥0 by puttingr(q, a?) = 0 for a? ∈ I and define
r : Q → IR≥0 as

r(q) ,
∑

b∈O(q)

r(q, b)

Thus,r accumulates the weight of all the erroneous outputs in a state. We lift all concepts
and notations (e.g.traces, paths, etc.) that have been defined for LTSs to FA.

Example 5.4.2. Figure 5.3 presents an FA for our cash machine example from Figure 5.1
(b). We give error weight10 if in stateq0 the cash machine gives us money with out asking;
and weight5 if in stateq1 the cash machine does not gives us money ones we did ask for it.

�� �
�
 �	q0

j

ask money?

����PPi δ

?

give money!

10

�� �
q1

Y

give money!

����PPi ask money?

?

δ

5

Figure 5.3: An FA for our cash machine extended with a value per error per state

We wish to constructf a WFM from theF an FA, usingr to assign weights to traces not
in A. If there is no outgoingb!-transition in stateq, then the idea is that, for a traceσ ending
in q, the (incorrect) traceσ·b! gets weightr(q, b!). Doing so, however, could cause the total
error weighttotcov(f) to be infinite.

We consider two solutions to this problem. Firstly, in finitedepth WFM(Section 5.5),
for a givenk ∈ N, we only consider faults in traces of lengthk or smaller. Secondly, in
discounted WFM(Section 5.6) we obtain finite total coveragethrough discounting, while
considering error weight in all traces. The solutions presented here are only two potential
solutions, there are many other ways to derive a WFM from a fault automaton.

5.5 Finite depth weighted fault models

As said before, the finite depth model derives a WFM from an FAF , for a givenk ∈ N, by
ignoring all traces of length longer thank , i.e. by putting their error weight to0. For all other

Section 5.6. Discounted weighted fault models 93

traces, the weight is obtained through the functionr . If σ is a trace ofF ending in the state
q, butσ ·b! is not a trace inF , thenσ ·b! gets weightr(q, b!).

Definition 5.5.1. GivenF = 〈A, r〉 an FA withA = 〈Q , q0,L,T 〉 andr : Q ×O → IR≥0.
Then, letk be a number inN, we define the functionf k

F : L∗ → IR≥0 by

f k
F (ε) , 0

f k
F (σ ·b) ,

{
r(q, b) q ∈ reachz

F(σ) ∧ b ∈ O ∧ z ≤ k

0 otherwise

This function is uniquely defined becauseF is deterministic, so that there is at most one
stateq with q ∈ reachk

F(σ). Also, if f k
F (σ ·b) = r(q, b) > 0, thenσ ∈ traces(F), but

σ ·b 6∈ traces(F).
The following proposition states thatf k

F is a WFM consistent withF , provided thatF
contains at most one state with a positive accumulated weight and that is reachable withink
steps.

Proposition 5.5.2.LetF = 〈A, r〉 be an FA withA = 〈Q , q0,L,T 〉 andr : Q×O → IR≥0.
Letk be a number inN, then if there is a numberz ≤ k and a stateq in reachz

F with r(q) > 0,
thenf k

F is a WFM consistent withF .

Proof.
We have thatf k

F < ∞ because it is finite andf k
F > 0 because∃ z ≤ k : ∃ q ∈ reachz

F :
r(q) > 0. By constructionL = LF and for allσ ∈ traces(F) : f k

F (σ) = 0.
Now we only need to prove that iff k

F (σ) > 0 then for allσ′ ∈ L+
F : f k

F (σ ·σ′) = 0.
So, becausef k

F (σ) > 0 we know that there existsσ′′ such thatσ = σ′′ · l and there exists
a stateq ′ such thatq0 σ

→ q ′ with r(q ′, l) > 0, this means that then for allσ′ we have that
f k
F (σ ·σ′) = 0.

Example 5.5.3. GivenF the FA from Figure 5.3 andk = 3, then Figure 5.4 shows the
functionf k

F . Using the tests test1 and test2 presented in Figure 5.2, we obtain
abscov(test1, f k

F) = 5 and abscov(test2, f k
F) = 15. Moreover, if T = {test1,test2} then

abscov(T, f k
F) = 20.

5.6 Discounted weighted fault models

While finite depth WFMs achieve finite total coverage by considering finitely many traces,
discounted WFMs take into account the error weights of all traces. To do so, only finitely
many traces may have weight greater thanǫ, for any ǫ > 0. One way to do this is by
discounting: lowering the weight of a trace proportional toits length. The rationale behind
this is that errors in the near future are worse than errors inthe far future, and hence, the latter
should have lower weights.

In its basic form,f a discounted WFM forF an FA sets the weight of a traceσ ·b! to

94 Chapter 5. Semantic coverage in testing

�
�	�����������������9

give money!
����������)

ask money?

PPPPPPPPPPq

δ

10
�
�	

�
�

��	

give money! @
@

@@R
ask money?

HHHHHHHj

δ

�
�	��������

give money! �
�

��	
ask money?

@
@

@@R

δ

5 10

�
�	
�

�
��	

give money!

?
ask money?

@
@

@@R

δ

10 0 0

�
�	
�

�
��	

give money!

?
ask money?

@
@

@@R

δ

0 0 5

�
�	
�

�
��	

give money!

?
ask money?

@
@

@@R

δ

0 0 5

�
�	
�

�
��	

give money!

?
ask money?

@
@

@@R

δ

10 0 0

Figure 5.4: Functionf k
F , with k = 3, consistent withF from Figure 5.3

α|σ| · r(q, b!), for some discount factorα in (0, 1). If we takeα small enough, then one can

easily show that
∑

σ∈L∗

f (σ) < ∞. To be precise, we takeα <
1
d

, whered is the branching

degree ofF , i.e. d = max
q∈Q

{outdeg(q)}. Indeed, letα · d < 1 andM = max
q
{

r(q ,b)
α
}.

Thenf (σ) ≤ α|σ| ·M . Since there are at mostdk traces of lengthk in F , it follows that:

∑
σ∈L∗

f (σ) =
∑
k∈N

∑
σ∈Lk

αk ·M ≤
∑
k∈N

dk · αk ·M =
M

1−dα < ∞

To obtain more flexibility, we allow the discount to vary per transition. That is, we work
with a discount functionα : Q × L × Q → IR≥0 that assigns a positive weight to each
transition ofF . Then we discount the tracel1 · · · lk obtained from the pathq0l1q1 . . . qk by
α(q0, l1, q1) · α(q1, l2, q2) · · ·α(qk−1, lk , qk). The requirement thatα is small enough now
becomes

∑
l∈L,q′∈Q

α(q, l , q ′) < 1

for each stateq.
We can even be more flexible and, in the sum above, do not range over states in which all

paths are finite, as in these states we have finite total coverage anyway. Thus, ifInfF is the
set of all states inF with at least one outgoing infinite path, we require for all statesq:

∑
l∈L,q′∈InfF

α(q, l , q ′) < 1

Definition 5.6.1. LetF = 〈A, r〉 be an FA withA = 〈Q , q0,L,T 〉 andr : Q ×O → IR≥0.

Section 5.6. Discounted weighted fault models 95

Then the setInfF ⊆ Q of states with at least one infinite path is defined as

InfF , {q ∈ Q | ∃ π ∈ paths(F [q]) : |π | > |Q |}

The following proposition states that the setInfF is closed under taking the predecessors
of a state.

Proposition 5.6.2.LetF = 〈A, r〉 be an FA withA = 〈Q , q0,L,T 〉 andr : Q×O → IR≥0,
then

if (q, l , q ′) ∈ T ∧ q ′ ∈ InfF then q ∈ InfF

Proof.
Let (q, l , q ′) be inT andq ′ ∈ InfF then there exists a pathπ in paths(F [q]) with |π |> |QF |
then letπ′ = qlq ′π then|π′ | > |π | > |QF | ∧ π ∈ paths(F [q]), so by definitionq ∈ InfF .

Definition 5.6.3. LetF = 〈A, r〉 be an FA withA = 〈Q , q0,L,T 〉 andr : Q ×O → IR≥0.
Then, adiscount functionfor F is a functionα : Q × L×Q → IR≥0 such that

• for all q, q ′ ∈ Q , andl ∈ L we have

α(q, l , q ′) = 0 , (q, l , q ′) 6∈ T

• for all q ∈ Q , we have ∑
l∈L,q′∈InfF

α(q, l , q ′) < 1

Definition 5.6.4. Letα be a discount function forF = 〈A, r〉 an FA withA = 〈Q , q0,L,T 〉
andr : Q ×O → IR≥0. Letπ = q0l1 . . . qn be a path inpaths(F), then

α(π) ,
n∏

z=1
α(qz−1, lz , qz)

Definition 5.6.5. LetF = 〈A, r〉 be an FA withA = 〈Q , q0,L,T 〉, r : Q × O → IR≥0,
q ∈ Q andα a discount function forF . We define the functionf α

F : L∗ → IR≥0 by

f α
F (ε) , 0

f α
F (σ ·b) ,

{
α(π) · r(q, b) q ∈ reachF(σ) ∧ b ∈ O ∧ trace(π) = σ
0 otherwise

SinceF is deterministic, there is at most oneπ with trace(π) = σ and at most one
q ∈ reach(σ). Hence, the function above is uniquely defined.

The following proposition states thatf α
F is a WFM consistent withF , provided thatF

contains as most one reachable state with a positive accumulated weight.

96 Chapter 5. Semantic coverage in testing

Proposition 5.6.6. LetF = 〈A, r〉 be an FA withA = 〈Q , q0,L,T 〉, r : Q × O → IR≥0,
andα be a discount function forF . If there is a stateq ∈ reachF with r(q) > 0, thenf α

F is
a WFM consistent withF .

Proof.
We have thatf α

F <∞ because
∑

l∈L,q′∈InfF

α(q, l , q ′) < 1 andf α
F > 0 because∃ q ∈ reachF :

r(q) > 0. By constructionL = LF . Now we need to show that for allσ, q ′ ∈ traces(F) :
f α
F (σ) = 0. Letσ = σ′·l then exists a pathπ such thattrace(π) = σ′. So, there exists a state

q ∈ Q such thatq0 σ′

→ q, q
l
→ q ′ andr(q, l) = 0 thenf α

F (σ) = 0.
To prove that iff α

F (σ) > 0 then for allσ′ ∈ L+
F : f α

F (σ ·σ′) = 0. So, becausef α
F (σ) > 0

we know that there does not exists a pathπ with trace(π) = σ andσ in traces(F) then
f α
F (σ ·σ′) = 0.

Example 5.6.7.Figure 5.5 presents the functionf α
F for F from Figure 5.3 withα(q, l , q ′) =

γ for every transition(q, l , q ′) ∈ T . Using the testst1 and t2 presented in Figure 5.2,
we obtainabscov(test1, f α

F) = γ5 and abscov(test2, f α
F) = 10 + γ25. Moreover, ifT =

{test1,test2} thenabscov(T, f α
F) = 10 + γ5 + γ25.

�
�	�����������������9

give money!
����������)

ask money?

PPPPPPPPPPq

δ

γ10
�
�	

�
�

��	

give money! @
@

@@R
ask money?

HHHHHHHj

δ

�
�	��������

give money! �
�

��	
ask money?

@
@

@@R

δ

γ25 γ210

�
�	
�

�
��	

give money!

?
ask money?

@
@

@@R

δ

γ310

�
�	
�
�
B
B
· · ·

�
�	
�
�
B
B
· · ·

�
�	
�

�
��	

give money!

?
ask money?

@
@

@@R

δ�
�	
�
�
B
B
· · ·

�
�	
�
�
B
B
· · ·

γ35

�
�	
�

�
��	

give money!

?
ask money?

@
@

@@R

δ�
�	
�
�
B
B
· · ·

�
�	
�
�
B
B
· · ·

γ35

�
�	
�

�
��	

give money!

?
ask money?

@
@

@@R

δ

γ310

�
�	
�
�
B
B
· · ·

�
�	
�
�
B
B
· · ·

Figure 5.5: Functionf α
F for F from Figure 5.3 withα(q, l , q ′) = γ

Section 5.7. Properties 97

5.7 Properties

5.7.1 Calibration of the discount function

Discounting weighs errors in short traces more than in long traces. Thus, if we discount too
much, we may obtain very high test coverage just with a few short test cases. The calibration
result (Theorem 5.7.2) presented in this section shows that, for any FAF , any given lengthk
andǫ > 0, there exists a discount functionα such that the relative coverage of all test cases
of lengthk or shorter is less thanǫ. This means that by choosing the rightα we can always
make the contribution of short tests (i.e. smaller than the givenk) arbitrarily small (i.e.< ǫ).

For technical reasons, the weight assignment function of anFA have to be fair, i.e. all
states inInf must be able to reach some state with a positive weight.

Definition 5.7.1. LetF = 〈A, r〉 be an FA withA = 〈Q , q0,L,T 〉 andr : Q ×O → IR≥0,
thenF has afair weight assignmentif

∀ q ∈ InfF : ∃ q ′ ∈ reachF [q] : r(q ′) > 0

Theorem 5.7.2.LetF = 〈A, r〉 be an FA withA = 〈Q , q0,L,T 〉, r : Q ×O → IR≥0, and
a fair weight assignment. Then there exists a family of discount functions{αǫ}ǫ∈(0,1) for F
such that for allk ∈ N

lim
ǫ→0

relcov
(
TESTS k (f αǫ

F), f αǫ

F

)
= 0

The prove of this theorem follows from the next propositionsand definitions.

Definition 5.7.3. GivenF = 〈A, r〉 an FA withA = 〈Q , q0,L,T 〉, r : Q ×O → IR≥0, and
a numberǫ ∈ (0, 1). We define a discount functionαǫ : Q × L×Q → (0, 1) as

αǫ(q, l , q ′) ,






(1−ǫ)
|OutInf(q)|

(q, l , q ′) ∈ T ∧ q ′ ∈ InfF
> 0 (q, l , q ′) ∈ T ∧ q ′ 6∈ InfF
0 otherwise

HereOutInf(q) = {(l , q ′) ∈ T (q) | q ′ ∈ InfF}. We usually writeAǫ to denote theAαǫ

matrix.

Definition 5.7.4. GivenF = 〈A, r〉 an FA withA = 〈Q , q0,L,T 〉 andr : Q ×O → IR≥0,
we define the vector1Inf indexed byq ∈ Q as

1Inf(q) ,

{
1 q ∈ InfF
0 otherwise

Proposition 5.7.5. 1Inf is an eigenvector ofAǫ with eigenvalue1− ǫ,

98 Chapter 5. Semantic coverage in testing

Aǫ · 1Inf = (1 − ǫ) · 1Inf

Proof.
Firstly, we considerq ∈ InfF , then

(Aǫ · 1Inf)q =
∑

q′∈Q

(Aǫ)qq′ · 1Inf(q
′)

=
∑

q′∈InfF

(Aǫ)qq′

=
∑

q′∈InfF

∑
l∈L

αǫ(q, l , q ′)

=
∑

(l,q′)∈OutInf (q)

(1−ǫ)

|OutInf (q)|

= | OutInf (q) | · (1−ǫ)

|OutInf (q)|

= 1− ǫ

Forq ∈ Q/InfF we get, using Proposition 5.6.2

(Aǫ · 1Inf)q =
∑

q′∈Q

(Aǫ)qq′ · 1Inf(q
′)

=
∑

q′∈Inf
(Aǫ)qq′

=
∑

q′∈Inf

∑
l∈L

αǫ(q, l , q ′)

=
∑

q′∈Inf

∑
l∈L

0

= 0

Corollary 5.7.6.
(
Aǫ)

n · 1Inf = (1− ǫ
)n
· 1Inf

Proof.
Direct using induction overn.

Proposition 5.7.7. LetF = 〈A, r〉 be an FA withA = 〈Q , q0,L,T 〉, r : Q × O → IR≥0,
and a fair weight assignmentr then for everyq ∈ InfF

(|Q|−1∑
z=0

Az
ǫ · r

)
q

> 0

Proof.
Note that(Az

ǫ)qq′ > 0 implies thatq ′ can be reached fromq in z transitions. AsF is based
on an FA every stateq is at most|Q | −1 transitions removed any of the statesq ′ that can be

reached from it, so that there is anz < |Q | with (Az
ǫ)qq′ > 0. Hence

(|Q|−1∑
z=0

Az
ǫ

)
qq′ > 0 for

Section 5.7. Properties 99

any pair of suchq, q ′ ∈ Q . By the definition of fair weight assignment all statesq ∈ InfF
can reach anq ′ ∈ Q with r(q ′) > 0. Thus we get

(|Q|−1∑
z=0

Az
ǫ · r

)
q

=
∑

q′∈Q

|Q|−1∑
z=0

(Az
ǫ)qq′ · r(q ′) > 0

Now we are ready to show that the family of discounted functions{αǫ}ǫ∈(0,1) has the
desired properties.

Proposition 5.7.8. LetF = 〈A, r〉 be an FA withA = 〈Q , q0,L,T 〉, r : Q × O → IR≥0,
and a fair weight assignment. Then for everyq ∈ InfF

lim
ǫ→0

relcov
(
TESTS k (f αǫ

F), f αǫ

F

)
= 0

Proof.
Recall that

relcov
(
TESTS k (f αǫ

F), f αǫ

F

)
=

abscov(TESTS k (f αǫ
F),f αǫ

F)
totcov(f αǫ

F)

As abscov
(
TESTS k (f αǫ

F), f αǫ

F

)
is always finite, it suffices to show that

lim
ǫ→0

totcov(f αǫ

F) = ∞

This can be shown as follows. Let

rmin = min
q′∈Inf

(
|Q|−1∑
z=0

Az
ǫ · r)q′

Then Proposition 5.7.7 yields thatrmin > 0. Moreover, we have for allq ′ ∈ Q that

(
|Q|−1∑
z=0

Az
ǫ · r)q′ ≥ rmin · 1Inf(q

′)

Therefore,

totcov(f αǫ

F) =
(∞∑
z=0

Az
ǫ · r

)
q

=
(∞∑
j=0

A
j |Q|
ǫ ·

|Q|−1∑
z=0

Az
ǫ · r

)
q

≥ rmin ·
(∞∑
j=0

A
j |Q|
ǫ · 1Inf

)
q

= rmin ·
(∞∑
j=0

(1− ǫ)j |Q| · 1Inf
)
q

=
rmin

1−(1−ǫ)|Q|

As rmin > 0 and1− (1− ǫ)|Q| is of the orderO(ǫ), we get

100 Chapter 5. Semantic coverage in testing

lim
ǫ→0

(∞∑
z=0

Az
ǫ · r

)
q

= ∞

5.7.2 Invariance under bisimilarities

It is not difficult to see that our coverage notions are truly semantic in that they are invariant
underr -preserving bisimilarity, andα-preserving bisimilarity.

Definition 5.7.9. LetF = 〈A, r〉 be an FA withA = 〈Q , q0,L,T 〉, r : Q×O → IR≥0, and
let R ⊆ Q ×Q be an equivalence relation on the state space ofF . ThenR is ar -preserving
bisimulation onF if for all (q, q ′) ∈ R, l ∈ L, we have

• if q
l
→ q1 then there is a transitionq ′ l

→ q ′
1 with (q1, q

′
1) ∈ R

• for all b ∈ O : r(q, b) = r(q ′, b)

Theorem 5.7.10.LetF = 〈A, r〉 be an FA withA = 〈Q , q0,L,T 〉, r : Q ×O → IR≥0, R
be ar -preserving bisimulation onF and(q, q ′) ∈ R, then for allk

f k
F [q] = f k

F [q′]

Proof.
We prove thatf k

F [q](σ·b) = f k
F [q′](σ·b). Let f k

F [q](σ·b) = r(q1, b) then using Definition 5.5.1
we know thatq1 ∈ reachf k

F[q]
(σ) ∧ b ∈ O then becauseR is anr -preserving bisimulation

onF then∃ q ′
1 ∈ reachf k

F[q′]
(σ) such that(q1, q

′
1) ∈ R and moreover forb ∈ O we have

f k
F [q′](σ ·b) = r(q ′

1, b). Now, again because(q1, q
′
1) ∈ R we know thatr(q1, b) = r(q ′

1, b).

So,f k
F [q](σ ·b) = f k

F [q′](σ ·b).

Definition 5.7.11.LetF = 〈A, r〉 be an FA withA = 〈Q , q0,L,T 〉, r : Q×O → IR≥0, and
let R ⊆ Q ×Q be an equivalence relation on the state space ofF . ThenR is aα-preserving
bisimulation onF if for all (q, q ′) ∈ R, l ∈ L, we have

• if q
l
→ q1 then there is a transitionq ′ l

→ q ′
1 with (q1, q

′
1) ∈ R

• for all l ∈ L : α(q, l , q1) = α(q ′, l , q ′
1)

Theorem 5.7.12.LetF = 〈A, r〉 be an FA withA = 〈Q , q0,L,T 〉, r : Q ×O → IR≥0, R
be ar -preserving bisimulation andα-preserving bisimulation onF . Then,

if (q, q ′) ∈ R then f α
F [q] = f α

F [q′]

Proof.
We prove thatf α

F [q](σ ·b) = f α
F [q′](σ ·b). Let f α

F [q](σ ·b) = α(π)·r(q1, b) then using Defini-
tion 5.6.5 we know thatq1 ∈ reachf α

F[q]
(σ) ∧ b ∈ O ∧ trace(π) = σ then becauseR is an

Section 5.8. Algorithms to compute and optimize coverage 101

r -preserving bisimulation onF then∃ q ′
1 ∈ reachf α

F[q′]
(σ) ∧ ∃ π′ : trace(π) = σ′ such that

(q1, q
′
1) ∈ R and moreover forb ∈ O we havef α

F [q′](σ ·b) = α(π′) ·r(q ′
1, b). Now, again

because(q1, q
′
1) ∈ R using thatR is α-preserving bisimulation onF thenα(π) = α(π′).

So,f α
F [q](σ ·b) = f α

F [q′](σ ·b).

5.7.3 More weighted fault models from fault automata

We like to stress that the finite depth and discounted models are just two examples for deriv-
ing WFMs from fault automata, but there are many more possibilities. For instance, one may
combine the two and do not discount the weights of traces of length less than somek , and
only discount traces longer thank . Alternatively, one may let the discount factor depend on
the length of the trace. We claim that the methods and algorithms we present in this chapter
can easily be adapted for WFMs with such variations.

5.8 Algorithms to compute and optimize coverage

This section presents various algorithms for computing andoptimizing coverage for a given
FA, interpreted under the finite depth or discounted weighted fault model. In particular,
Section 5.8.1 presents algorithms to calculate the absolute coverage in a test suite of a given
FA. In Section 5.8.2 we give algorithms that yield the total coverage in a weighted fault
model derived from a FA. Section 5.8.4 provides three optimization algorithms for tests with
lengthk . The first one finds a test case with maximal coverage; the second one finds then
test cases with maximal coverage; and the third one finds a test suite withn test cases with
maximal coverage, i.e. the bestn test cases with minimum overlap.

We use the following notation. Recall thatF [q] denotes the FA that is the same asF , but
with q as initial state. WhenF is clear from the context, we write respectivelyf k

q andf α
q

for the weighted fault modelsf k
F [q] andf α

F [q] derived fromF . Moreover, givenF = 〈A, r〉
an FA, we writeAF for the multi-adjacency matrix ofA. That is,AF contains at position
(q, q ′) the number of edges betweenq andq ′, then

(AF)qq′ =
∑

l:(q,l,q′)∈T

1

If α is a discount function forF , thenAα
F is a weighted version ofAF , then

(Aα
F)qq′ =

∑
l∈L

α(q, l , q ′)

We omit the subscriptF if it is clear from the context.

5.8.1 Absolute coverage in a test suite

GivenT a test suite, anF = 〈A, r〉 an FA withA = 〈Q , q0,L,T 〉, r : Q ×O → IR≥0, and
either a discounting functionα for F or a numberk , we desire to compute

102 Chapter 5. Semantic coverage in testing

abscov(T, f) = abscov(∪
t∈T

t , f)

wheref = f k
F or f α

F .
Given two testst andt ′ and an actionl , we writel ·t for {l ·σ | σ ∈ t} andt + t ′ for the

uniont ∪ t ′. We call a super-test the union of any number of tests.
Now, we can write each test ast = ε; or t = l ·t1 in casea is an input; ort = b1 ·t1 +

· · · + bn ·tn whenb1, · · · , bn are all output actions ofF . Each super-test can be written as
a1 ·t ′1 + · · ·+ am ·t ′m + b1 ·t ′′1 + · · ·+ bn ·t ′′n whereaz are inputs andbj are all outputs and
t ′z , t

′′
j are super-tests.
To compute the union∪

t∈T
t , we recursively merge all tests inT into a super-test using

the infix operator⊎, then we add the error weights of all traces in∪
t∈T

t via the functionac

defined below.

Tests merge Let t ′ = a1 ·t ′1 + · · ·+ am ·t ′m + b1 ·t ′′1 + · · ·+ bn ·t ′′n be a super-test andt
be a test. Thent = ε or t = a ·t1 or t = b1 ·t ′1 + · · ·+ bn ·t ′n . Then, we define

t ′⊎t =






a1t
′
1 + · ·+aj (t

′
j ⊎ t1) + · ·+am t ′m + b1t

′′
1 + · ·+bn t ′′n t = at1 ∧ a = aj

a1t
′
1 + · ·+am t ′m + b1(t

′′
1 ⊎ t1) + · ·+bn(t ′′n ⊎ tn) t = b1t

′
1 + · ·+bn t ′n

t ′ + t otherwise

Absolute coverage in a super-test Given a super-testt of F and a stateq onF , then

ac(ε, q) = 0

ac(t , q) =
n∑

z=1
aux(lz ·tz , q)

where aux(lz ·tz , q) =

{
α(q, lz , δ(q, lz)) · ac(tz , δ(q, lz)) lz ∈ δ(q)
r(lz , q) otherwise

The correctness of this algorithm is stated in the followingtheorem.

Theorem 5.8.1.GivenF = 〈A, r〉 an FA withA = 〈Q , q0,L,T 〉, r : Q × O → IR≥0, a
stateq ∈ Q , a numberk ∈ N, a functionα : Q × L×Q → [0, 1] andT a test suite, then

• if α is a discount function forF thenabscov(T, f α
q) = ac(⊎T, q)

• if k ≥ max
t∈T
| t | andα(q, l , q ′) = 1 for all transitions(q, l , q ′) in F , then

abscov(T, f k
q) = ac(⊎T, q)

Where we write⊎{t1, t2, . . . tn}meaningt1 ⊎ t2 ⊎ . . . tn .

Section 5.8. Algorithms to compute and optimize coverage 103

5.8.2 Total coverage

Total coverage in discounted FA GivenF = 〈A, r〉 an FA withA = 〈Q , q0,L,T 〉,
r : Q ×O → IR≥0, a stateq ∈ Q and a discounting functionα for F , we desire to calculate

totcov(f α
q) =

∑
σ∈L∗

f α
q (σ)

We assume that from each state inF we can reach at least one error state, then

∀ q ∈ Q : ∃ q ′ ∈ reachF [q] : r(q) > 0

In this way,f α
q is a WFM for every stateq.

The basic idea behind the computation method is that the function tc : Q → [0, 1] (for
the total coverage) given byq 7→ totcov(f α

q) satisfies the following set of equations:

tc(q) = r(q) +
∑

l∈L,q′∈Q

α(q, l , q ′) · tc(q ′) = r(q) +
∑

q′∈Q

Aα
qq′ · tc(q ′)

These equations express that the total coverage in stateq equals the weightr(q) of all
immediate errors inq, plus the weights in all successorsq ′ in q, discounted by

∑
l∈L

α(q, l , q ′).

The following proposition gives an alternative recursive characterization ofF .

Proposition 5.8.2. LetF = 〈A, r〉 be an FA withA = 〈Q , q0,L,T 〉, r : Q × O → IR≥0,
andα be a discount function forF , then

f α
q (l ·σ) =






∑
q′∈Q

α(q, l , q ′) · f α
q′ (σ) l ∈ T (q)

r(q, l) l 6∈ T (q) ∧ σ = ε
0 otherwise

wherel ∈ T (q) means that there existsq ′ such that(l , q ′) ∈ T (q).

Proposition 5.8.3. LetF = 〈A, r〉 be an FA withA = 〈Q , q0,L,T 〉, r : Q × O → IR≥0,
andα be a discount function forF . Then the functiontc : Q → [0, 1], q 7→ totcov(f α

q)
satisfies the following set of equations

tc(q) = r(q) +
∑

l∈L,q′∈Q

α(q, l , q ′) · tc(q ′)

Proof.

tc(q) =
∑

σ∈L∗

f α
q (σ)

= f α
q (ε) +

∑
l 6∈T(q)

f α
q (l) +

∑
l 6∈T(q),σ∈L+

f α
q (l ·σ) +

∑
l∈T(q),σ∈L∗

f α
q (l ·σ)

104 Chapter 5. Semantic coverage in testing

(Proposition 5.8.2)
= 0 +

∑
l 6∈T(q)

r(q, l) + 0 +
∑

l∈T(q),q′∈Q,σ∈L∗

α(q, l , q ′) · f α
q′ (σ)

= r(q) +
∑

l∈L,q′∈Q

α(q, l , q ′) · tc(q ′)

Using matrix-vector notation, we obtain

tc = r + Aα · tc

The next Proposition 5.8.4 states that the matrixI −Aα is invertible.

Proposition 5.8.4. LetF = 〈A, r〉 be an FA withA = 〈Q , q0,L,T 〉, r : Q × O → IR≥0,
such that for all statesq ∈ Q there is a stateq ′ ∈ reachF [q] with r(q) > 0. Let α be a
discount function forF . Then, the matrixI −Aα is invertible.

Proof.
By reordering the states we can obtainInfF = {q1, . . . , qn1} and
VF\InfF = {qn1+1, . . . , qn1+n2} with n1 + n2 = n = |QF|. Without loss of generality we
may therefore assume thatAα is of the form

(
B C

0 D

)

with B then1× n1 matrix that is the restriction ofAα to InfF , andD is the restriction ofAα

to VF\InfF . It follows thatI(n)−Aα is invertible if and only ifI(n1)−B andI(n2) −D are
invertible.

We first show that‖B · v‖∞ < ‖v‖∞ for all v 6= 0, where‖v‖∞ = max
z
{vz} denotes

the supremum norm ofv .
Assumev 6= 0 and consider thez th component(B · v)z of the vectorB · v

(B · v)z =
∑

j6n1

Bzj · vj

≤
∑

j6n1

Bzj · ‖v‖∞

= ‖v‖∞ ·
∑

(j ,a)∈OutInf(z)
α(z , a, j) (Definition 5.6.3)

< ‖v‖∞

Hence,‖B · v‖∞ < ‖v‖∞. ThereforeB · v 6= v , so(I − B) · v 6= 0 for v 6= 0, which
yields thatI − B is invertible.

Without loss of generality we can also assume that the stateshave been numbered such
that for z , j ∈ QF\InfF (z , l , j) ∈ δF implies z < j . It follows that Dzj = 0 for all

Section 5.8. Algorithms to compute and optimize coverage 105

1 < j 6 z < n2, and that(I −D)zj = 0 for all 1 < j < z < n2 with (I −D)zz = 1 for all
1 < z < n2. We can conclude that det(I −D) = 1 6= 0, and thus thatI −D is invertible.

Theorem 5.8.5.LetF = 〈A, r〉 be an FA withA = 〈Q , q0,L,T 〉, r : Q×O → IR≥0, such
that for all q ∈ Q there exists a stateq ′ ∈ reachF [q] with r(q ′) > 0, and letα be a discount
function forF , then

tc = (I −Aα)−1 · r

The time complexity of the method above is dominated by matrix inversion, which can
be computed inO(|Q|3) with Gaussian elimination, inO(|Q|log27) with Strassen’s method.

Example 5.8.6.GivenF the FA from Figure 5.3 and a discount functionα = {(q0, δ, q0,
1
5),

(q0, ask money?, q1,
1
3), (q1, ask money?, q1,

1
4), (q1, give money!, q0,

1
2)}, then

tc(q0) = r(q0) + α(q0, δ, q0) · tc(q0) + α(q0, ask money?, q1) · tc(q1)
tc(q1) = r(q1) + α(q1, give money!, q0) · tc(q0) + α(q1, ask money?, q1) · tc(q1)

In matrix notation:

tc = r + (Aα · tc)
tc− (Aα · tc) = r

(I −Aα) · tc = r

tc = (I −Aα)−1 · r

Then, with matrixAα, matrixI −Aα and(I −Aα)−1 equal to

Aα =




1
5

1
3

1
2

1
4


, I −Aα =




4
5
−1

3

−1
2

3
4


, (I − Aα)−1 =




45
26

10
13

15
26

24
13




andr as the one given in Figure 5.3:r = [10, 5], we obtaintc = 21.15384616.

Total coverage in finite depth FA GivenF = 〈A, r〉 an FA withA = 〈Q , q0,L,T 〉,
r : Q ×O → IR≥0, a stateq ∈ Q and a depthk ∈ N, we desire to compute

totcov(f k
q) =

∑
σ∈L∗

f k
q (σ)

We assume that from each state, there is at least one error reachable ink steps,

∀ q ∈ Q : ∃ q ′ ∈ reachk
F [q] : r(q ′) > 0

106 Chapter 5. Semantic coverage in testing

This makes thatf k
q is a weighted fault model for anyq.

The basic idea behind the computation method is that the function tck : Q → [0, 1] given
by q 7→ totcov(f k

q) satisfies the following recursive equations:

tc0(q) = 0
tck+1(q) = r(q) +

∑
(a,q′)∈T(q)

tck (q ′)

= r(q) +
∑

a∈L,q′∈Q

Aq,q′ · tck (q ′)

The following proposition gives an alternative recursive characterization off k
q ; it is the

analogon in the finite depth model from Proposition 5.8.2.

Proposition 5.8.7. LetF = 〈A, r〉 be an FA withA = 〈Q , q0,L,T 〉, r : Q × O → IR≥0,
andk ∈ N be a number, then

f k
q (l ·σ) =






∑
q′:(l,q′)∈T(q)

f k−1
q′ (σ) l ∈ T (q) ∧ |σ | ≤ k

r(q, l) l 6∈ T (q) ∧ σ = ε
0 otherwise

Proposition 5.8.8. LetF = 〈A, r〉 be an FA withA = 〈Q , q0,L,T 〉, r : Q × O → IR≥0,
and α a discount function forF . Then the functiontck : Q → [0, 1], q 7→ totcov(f k

q)
satisfies the following set of equations

tck (q) = r(q) +
∑

(l,q′)∈T(q)

tck−1(q
′)

Proof.
As the proof of Proposition 5.8.3.

In matrix-vector notation, we have

tc0 = 0
tck+1 = r + A · tck

Theorem 5.8.9.LetF = 〈A, r〉 be an FA withA = 〈Q , q0,L,T 〉, r : Q ×O → IR≥0, and
for all stateq ∈ Q existsq ′ ∈ reachk

F [q] such thatr(q ′) > 0. Letq be a state inQ andk be
in N, then

tck =
k−1∑
z=0

Az · r

Note that for a stateq in an arbitraryF , there exists a stateq ′ ∈ reachk
F [q] with r(q ′) > 0 if

Section 5.8. Algorithms to compute and optimize coverage 107

and only if
(k−1∑
z=0

Az · r
)
q

> 0.

Using Theorem 5.8.9 with sparse matrix multiplication, or iterating the equations just
above it,tck can be computed in timeO(k · |T | + |Q |).

Example 5.8.10.GivenF the FA from Figure 5.3 andk = 2 the matrixA, becomes

A =

[
1 1
1 1

]
and tck =

[
10
5

]
+

[
1 1
1 1

]
·

[
10
5

]

Then, we calculatetck = 25.

A similar method to the one above can be used to compute the weight of all tests of length
k in the discounted weighted fault model,abscov(Tk , f α

q), whereTk is the set of all tests of
lengthk in F .

Writing tcdk (q) = abscov(Tk , f α
q) (for the total coverage discounted), the recursive

equations become

tcd0(q) = 0
tcdk+1(q) = r(q) +

∑
l∈L,q′∈Q

tcdk (q ′)

= r(q) +
∑

l∈L,q′∈Q

Aα
qq′ · tcdk (q ′)

and the analogon of Theorem 5.8.9 becomes:

tcdk =
k−1∑
z=0

(Aα)z · r

= (I −Aα)−1 · (I − (Aα)k) · r

The latter equality holds becauseI −Aα is invertible.
The computing oftcdk requires one matrix inversion and, using the power method,

log2(k) matrix multiplications, we have time complexity equal toO(|Q |log2 7 + |Q |log2(k))
with Strassen’s method. If(I − Aα) can be put in diagonal form, the problem can be solved
in O(|Q |3 + log2 n). These tricks cannot be applied in the finite depth model, becauseI −A

is not invertible; sinceA has row sum1, we have for the vector1 whose entries are all equal
to 1 thatA · 1 = 1. Hence,1 is in the kernel ofI − A, soI −A is not invertible.

Example 5.8.11.GivenF our FA from Figure 5.3,k = 2, matrix Aα, matrix I − Aα,
(I −Aα)−1, and(Aα)k are equal to

108 Chapter 5. Semantic coverage in testing

Aα =




1
5

1
3

1
2

1
4


 I −Aα =




4
5
−1

3

−1
2

3
4




(I −Aα)−1 =




45
26

10
13

15
26

24
13


 (Aα)k =




31
150

3
20

9
40

11
48




Here, we calculatetcdk = 13.66666667.

5.8.3 Relative coverage

Combining the algorithms for computing total and absolute coverage from the previous sec-

tions, we can compute easilyrelcov(T, f) =
abscov(T,f)
totcov(f) for a test suiteT andf = f k

q or

f = f α
q .

5.8.4 Optimization

Optimal coverage in a test case GivenF = 〈A, r〉 an FA withA = 〈Q , q0,L,T 〉,
r : Q ×O → IR≥0, andk a length, we compute the best test case with lengthk , i.e. the test
with highest coverage. We treat the finite depth and discounted model at once by fixing, in
the finite depth model

α(q, l , q ′) =

{
1 (q, l , q ′) ∈ T

0 otherwise

We call this functionα anextended discount functionif it is a discount function or it is
obtained from a finite depth model.

The optimization method is again based on recursive equations. We write

acoptk (q) = max
t∈TESTSk

{abscov(t , f α
q)}

for the optimal absolute coverage. To understand the recursive characterization ofacoptk ,
we consider two situations. Firstly, we consider a test caseof lengthk + 1 that in stateq
applies an inputa? and in the successor stateq ′ applies the optimal test of lengthk . The
(absolute) coverage of this test case isα(q, a?, q ′) · acoptk (q ′). The best coverage that we
can obtain by stimulating the IUT is given by

max
(a?,q′)∈T I (q)

α(q, a?, q ′) · acoptk (q ′)

Secondly, we consider the test case of lengthk +1 that in stateq observes the IUT and in
each successor stateq ′ applies the optimal test of lengthk . The coverage of this test case is

Section 5.8. Algorithms to compute and optimize coverage 109

r(q) +
∑

(b!,q′)∈TO(q)

α(q, b!, q ′) · acoptk (q ′)

Now, the optimal testacopt(q) of lengthk +1 is obtained fromacoptk by selecting from
these options (i.e. inputing an actiona? or observing) the one with the highest coverage.

Proposition 5.8.12.LetF = 〈A, r〉 be an FA withA = 〈Q , q0,L,T 〉, r : Q ×O → IR≥0,
and letα be a discount function forF andk ∈ N

1. Letq be a state, let(a?, q ′) ∈ T I (q), and lett ′ be a test case in statesq ′. We writet

for the test caset = {a?·σ | σ ∈ t ′}. Then

abscov(t , f α
q) = α(q, a, q ′) · abscov(t ′, f α

q′)

abscov(t , f k
q) = abscov(t ′, f k−1

q′) | t | ≤ k + 1

2. Let q be a state andTO(q) = {(b1!, q1), (b2!, q2) . . . (bn !, qn)}, where allbz ! are
different. Also, writeO\{b1, . . . bn} = {c1, c2, . . . cm}. Let t1, t2, . . . tn be test cases
in statesq1 . . . qn respectively. Writet for the test caset = {bz ! ·σ | σ ∈ tz} ∪
{c1, c2, . . . cm}. Then

abscov(t , f α
q) = r(q) +

n∑
z=1

α(q, bz , qz) · abscov(tz , f
α
qz

)

abscov(t , f k
q) = r(q) +

n∑
z=1

abscov(tz , f
k
qz

) | t | ≤ k + 1

Proof.
We give the proof forf α

q ; the one forf k
q is similar.

1. abscov(t , f α
q) =

∑
σ∈t

f α
q (σ)

=
∑

σ′∈t′
f α
q (a ·σ′) (Proposition 5.8.2)

=
∑

σ′∈t′
α(q, a, q ′) · f α

q′ (σ′)

= α(q, a, q ′) · abscov(t ′, f α
q′)

2. abscov(t , f α
q) =

∑
σ∈t

f α
q (σ)

=
∑

c 6∈T(q)

f α
q (c) +

n∑
z=1

∑
σ′∈tz

f α
q (bz ·σ′) (Proposition 5.8.2)

= r(q) +
n∑

z=1

∑
σ′∈tz

α(q, bz , qz) · f α
qz

(σ′)

= r(q) +
n∑

z=1
α(q, bz , qz) · abscov(tz , f

α
qz

)

Thus, we obtain the following result, which follows from previous Proposition 5.8.12.

110 Chapter 5. Semantic coverage in testing

Theorem 5.8.13.LetF = 〈A, r〉 be an FA withA = 〈Q , q0,L,T 〉, r : Q × O → IR≥0,
α be an extended discount function, andk ∈ N be a test length. Thenacoptk satisfies the
following recursive equations

acopt0(q) = 0

acoptk+1(q) = max
(
r(q) +

∑
(b!,q′)∈TO(q)

α(q, b!, q ′) · acoptk (q ′),

max
(a?,q′)∈T I (q)

α(q, a?, q ′) · acoptk (q ′)
)

Based on Theorem 5.8.13, we can computeacoptk in timeO(k(|Q | + |T |)).

Shortest test case with high coverage We can use the above method not only to com-
pute the test case of a fixed lengthk with optimal coverage, but also to derive the shortest test
case with coverage higher than a given boundκ. We iterate the equations in Theorem 5.8.13
and stop as soon as we achieve coverage higher thanκ, i.e. at the firstn with acoptn(q) > κ.

We have to take care that the boundκ is not too high, i.e. higher than what is achievable
with a single test case. In the finite depth model, this is easy: if the test length is the same
asκ then we can stop, since this is the longest test we can have. Inthe discounted model,
however, we have to ensure thatκ is strictly smaller than the supremum of the coverage of
all tests in single test case.

Let mw(q) = supp
t∈TESTS

{abscov(t , q)}, i.e. the maximal absolute weight of a single test

case. Thenmw is again characterized by a set of equations.

Theorem 5.8.14.LetF = 〈A, r〉 be an FA withA = 〈Q , q0,L,T 〉, r : Q × O → IR≥0,
andα be a discount function forF . Thenmw is the unique solution of the following set of
equations

mw(q) =

max

(
r(q) +

∑
(b!,q′)∈TO(q)

α(q, b!, q ′) ·mw(q ′), max
(a?,q′)∈T I (q)

α(q, a?, q ′) ·mw(q ′)

)

The solution of these equations can be found by linear programming (LP).

Theorem 5.8.15.LetF = 〈A, r〉 be an FA withA = 〈Q , q0,L,T 〉, r : Q × O → IR≥0,
andα be a discount function. Thenmw is the optimal solution of the following LP problem :
minimize

∑
q∈Q

mw(q) subject to

mw(q) ≥ α(q, a?, q ′) ·mw(q ′) (a?, q ′) ∈ T I (q)

mw(q) ≥ r(q) +
∑

(b!,q′)∈TO(q)

α(q, b!, q ′) ·mw(q ′) q ∈ Q

The above LP problem contains|Q | variables and|Q | + |T I | inequalities. Thus, solving

Section 5.8. Algorithms to compute and optimize coverage 111

this problem is polynomial in|Q |, |Q | + |T I| and the length of the binary encoding of the
coefficients [57].

Optimal coverage in n test cases The first algorithm in this section for computing the
best test case of lengthk can be extended to a method for computing the bestn test cases with
optimal coverage: the previous algorithm picks the best test case with lengthk . To pick the
second best test case, we apply the same procedure, except that we exclude the first choice
from all possible options; for the third best choice, we exclude the previous two, and so on.

Optimal coverage in a test suite (with n test cases) Differently from the previous
algorithm where then chosen tests may overlap, we now present an algorithm to compute
the best coverage in a test suite withn tests. In this test suite, we avoid test overlapping.
Avoiding overlapping after we combined the tests in a super-test we obtain the test suite with
optimal coverage. The idea is the following, we write

acoptnk (q) = maxn
t1,t2,...tn∈TESTSk

{abscov(TESTS , q)}

for the ordered list[l1, l2, . . . ln], wherelz is the coverage of thez th best test of lengthk . We
characterizeacoptnk recursively. To do this we start dividing our reasoning in two sets: a test
suite for inputs and a test suite for outputs, and later we combine them.

Assume the input actions area1, a2, . . . am . Let T be a test suite started in stateq such
that t = {a1 ·T1, · · · , am ·Tm}. To computeacoptnk (q) of the test suiteT we assume that
there exists the set ofn best test cases that start onqz : acoptnk−1(qz) for all 0 ≤ z ≤ m

(whereqz is the state reachable froms after the input actionaz). Then, letacoptnk−1(qz) be
equal to[l ′1, l

′
2, . . . l

′
n] wherel ′1 is the optimal coverage of a test started inqz , l ′2 is the second

optimal coverage of a test started fromqz , and so on.

acoptnk−1(qz) = [l ′1, l
′
2, . . . l

′
n]

= [(acoptnk−1(qz))1, · · · , (acoptnk−1(qz))n]

acoptnk (q) = maxn [α(q, a1, q1)(acoptnk−1(q1))1, · · · , α(q, a1, q1)(acoptnk−1(q1))n , · · ·
α(q, am , qm)(acoptnk−1(qm))1, · · · , α(q, am , qm)(acoptnk−1(qm))n]

= maxn [α(q, a, q ′) · l | (a?, q ′) ∈ T I (q) ∧ l ← (acoptnk−1(q
′))j

∧ 0 ≤ j ≤ n]

For the case of outputs. Assume the outputs actions areb1, b2, . . . bp . Let T be a test
suite started in stateq such thatT = {b1 ·T1, · · · , bp ·Tp}. To computeacoptnk (q) of the
test suiteT, again, we assume that there exists the set ofn best test cases that start onqz :
acoptnk−1(qz) for all 0 ≤ z ≤ m (whereqz is the state reachable fromq after an output
actionbz). Also, letacoptnk−1(qz) be equal to[l ′1, l

′
2, . . . l

′
n] wherel ′1 is the optimal coverage

of a test started inqz , and so on.

acoptnk−1(qz) = [l ′1, l
′
2, . . . , l

′
n]

112 Chapter 5. Semantic coverage in testing

= [(acoptnk−1(qz))1, · · · , (acoptnk−1(qz))n]

acoptnk (q) = [r(q)+α(q, b1, q1)(acoptnk−1(q1))1+· · ·+α(q, bp , qp)(acoptnk−1(qn))n , · · ·
r(q) + α(q, b1, q1)(acoptnk−1(q1))n + · · ·+ α(q, bp , qp)(acoptnk−1(qp))n]

= r(q)⊕ [
∑

(b!,q′)∈TO(q)

α(q, b, q ′) · l | l ← (acoptnk−1(q
′))j ∧ 0 ≤ j ≤ n]

Where,x⊕l adds the numberx ∈ IR≥0 to each element of the listl (i.e.,x⊕[e1, e2, . . . en]
= [x + e1, x + e2, . . . x + en]). Moreover,maxn yields then maximal elements in a list. By
keeping the lists sorted (largest element first) we can efficiently implement the algorithm. To
do so, it suffices thatmaxn returns a sorted list.

Theorem 5.8.16.LetF = 〈A, r〉 be an FA withA = 〈Q , q0,L,T 〉, r : Q × O → IR≥0, α
a discount function forF , k ∈ N be a test length andn ∈ N be a number. Thentck satisfies
the following equations

v0(q) = [0, 0, . . . , 0]
vk+1(q) = maxn

{ [
α(q, a, q ′) · v | (a?, q ′) ∈ T I (q), v ← (vk (q ′))j ∧ 0 ≤ j ≤ n

]

+ + r(q)⊕ [
∑

(b!,q′)∈TO(q)

α(q, b, q ′) · l | l ← (vk (q ′))j ∧ 0 ≤ j ≤ n]
}

Example 5.8.17.This example shows the difference between the last two algorithms: optimal
coverage inn test cases and optimal coverage in a test suite (withn test cases).

In Figure 5.6 upper part we see four tests with length3. Testt1 is the test with optimal
coverage in length3, it value is30 (for any f k

q with k > 3). Any of the next three tests (t2,
t3 andt4) can be the second test with optimal coverage, given that allof them have value20.
Then, using the optimal coverage inn test cases algorithm, we can chooset1 as the optimal
test case andt2 as the second optimal test case. But, as we appreciate in the button part in
Figure 5.6 the test suiteT with T = {t1, t2} is not the test suite with optimal coverage (it
has value40). The test suite with optimal coverage isT = {t1, t4} (with value50). This is
because to compute the value of a test suite we first combined the tests and then we compute
the value. Thus, we obtain a tests suite with optimal coverage if we choose test that have less
overlap between them, as is the case withT = {t1, t4}.

5.9 Application: a chat protocol

This section applies our theory to a practical example, namely a chat protocol, also known
as a conference protocol [10]. This protocol provides a multi-cast service to users engaged
in a chat session. A chat is a group of users that can exchange messages. Each user can
send messages to and receive messages from all other partners participating in the same chat
session. The chat participants are dynamic, as the chat service allows them to join and leave
the chat at any moment in time. Different chats can exist at the same time, but each user can
only participate in at most one chat at a time.

The protocol specifies the data units, the underlying service and the chat service. The
protocol data units describes the format of the data units that are used by the protocol entities

Section 5.9. Application: a chat protocol 113

t1�� ������
�

��	

g-m!

?

δ

10 �� ��
?

δ
�

��	

g-m!

10 �� ��
?

δ
�

��	

g-m!

10
0

t2�� ������
�

��	

g-m!

?

δ

10 �� ��
?

a-m?�� ��
?

δ
�

��	

g-m!

10
0

t3�� ������
�

��	

g-m!

?

δ

10 �� ��
?

δ
�

��	

g-m!

10 �� ��
?

a-m?

0

t4�� ������
?

a-m?�� ��
?

δ
�

��	

g-m!

10 �� ��
?

δ
�

��	

g-m!

10
0

T = {t1, t2}�� ������
�

��	

g-m!

?
δ

10 �� ��
?
δ

�
��	

g-m! @
@

@R

a-m?

10 �� ��
?
δ

�
��	

g-m!

10
0

�� ��
?

δ
@

@@R

g-m!

10
0

T = {t1, t3}�� ������
�

��	

g-m!

?
δ

10 �� ��
?
δ

�
��	

g-m!

10 �� ��
?
δ

�
��	

g-m! @
@@R

a-m?

10
0

0

T = {t1, t4}�� ������
�

��	

g-m!

?
δ
@

@
@R

a-m?

10 �� ��
?
δ

�
��	

g-m!

�� ��
?

δ
@

@@R

g-m!

1010 �� ��
?
δ

�
��	

g-m!

10
0

�� ��
?

δ
@

@@R

g-m!

10
0

Figure 5.6: We use am? for ask money? and gm! for give money!

to communicate with peer entities, the underlying service describes the service of the un-
derlying communication medium through which these data units have to be communicated
between peer entities and the behaviour of the protocol entities. Details of all these services
can be found in [10]. The chat service is explained as follows. Each chat session has a name.
The chat service has the following service primitives (called CSPs), which can be performed
at the chat service access points (CSAPs):

• join: a user joins a named chat and defines its user title in this session; the user title
identifies a user in a chat
• datareq: a user sends a message to all other users participating in its session
• dataind: a user receives a message from another user participating in its session
• leave: a user leaves the chat; since a user can only participate in one chat at a time,

there is no need to identify the chat in this primitive.

The service primitives join and leave are used for chat control. The service primitives
datareq and dataind are used for data transfer. Initially, auser is only allowed to perform a

114 Chapter 5. Semantic coverage in testing

join to a chat. After joining, the user is allowed to send messages, by performing datareq’s,
or to receive messages, by performing dataind’s. In order tostop its participation in the chat,
a user can a leave at any time after it has done a join.

Data transfer is multi-cast, which means that each datareq causes corresponding dataind’s
in all other participants in the chat. Data transfer in the chat service is not reliable: messages
may get lost, but they never get corrupted; corrupted messages are discarded. Also, the
sequence delivery of messages is not guaranteed.

Figure 5.7 displays a LTS model of the chat protocol. This model considers two chat
sessions and three users (A, B and C). We consider different weights values per error, de-
pending on the gravity of the error, in Figure 5.8 we present the transition weight function
r . Basically, we consider absence of required answers as the worse errors with weight10;
inappropriate answers as less serious with weight7 and inappropriate joins or leaves as the
least severe with weight3.

We interpretF as a discounted WSM under different discount functions,α1, α2 andα3.
If θ = (q, l , q ′) is a transition inF leaving from stateq with out-degreed , we useα1(θ) =
1
8
; α2(θ) = 1

d
− 1

100
; andα3(θ) = 1

d
− 1

10000
.

States error values (i.e.r), out-degree (i.e.d), and the different values of discount function
(i.e.α1, α2, α3) can be found in Figure 5.9. Figure 5.10 gives the total coverage inF , again,
for α1, α2, α3. Also, in Figure 5.10 are the absolute and relative coverageof the test suites
containing all tests of lengthk , for k = 2, 4, 50 andα1, α2, α3. We used Maple 9.5 to resolve
the matrix equations in these algorithms.

Figure 5.11 displays the relative coverage for test suites that have been generated automat-
ically with TORX, using discount functionsα2. For tests with lengthsk = 30, 35, 40, 45, 50,
TORX has generated a test suiteTk , consisting of 10 teststk1 , . . . tk10 of lengthk . Finally,
Figure 5.12 lists the coverage for the same test suitesTk generated by TORX, also usingα2.

The running times of all computations were very small, in theorder of a few seconds.
Notice the influence of the discount factor and the test length on the coverage numbers.

5.10 Related work

There is a vast literature on syntactic test coverage criteria [8]. Test coverage and optimiza-
tion are well studied for (extended) finite state machines [61, 42]. Most works consider syn-
tactic coverage measures and optimize preset tests, i.e. find the shortest sequence of inputs
to the IUT that achieves a certain coverage.

Test optimization in the adaptive setting is also considered in [49]. Their specification
models are Markov Decision Processes, i.e. the tester chooses an input to the IUT and the
IUT makes a probabilistic choice among all possible outputs, and assigns a cost to each
transition to be executed. This paper provides optimization techniques for deriving test suites
with maximal expected coverage for (final) states and transitions at minimal expected cost.
Thus, their coverage criteria are syntactic.

The work [13] optimize the order in which a test suite is executed, such that the impact
(i.e. the probability that a certain error occurs times its weight) is maximized against total
duration, cost and produced quality.

Section 5.11. Conclusions 115

5.11 Conclusions

Semantic notions of test coverage have long been overdue, while they are much needed in the
selection, generation and optimization of test suites. In this chapter, we presented semantic
coverage notions based on WFMs. We introduced fault automata, FA, to represent syntacti-
cally (a subset of) WFMs and provided algorithms to compute and optimize test coverage.
This approach is purely semantic since replacing an FA with asemantically equivalent one
(i.e. r -preserving bisimilar andα-preserving bisimilar) leaves the coverage unchanged. Our
experiments with the chat protocol indicate that our approach is feasible for small protocols.
Larger case studies should evaluate the applicability of this framework for more complex
systems. In order to do this we are implementing our theory inthe SECO tool, standing for
Semantic Coverage. This new tool is being developed in Java under Eclipse.

Our weighted fault models are based on (adaptive)ioco test theory. We expect to be easy
to adapt our approach to different settings, such as FSM testing or on-the-fly testing. Further-
more, our optimization techniques use test length as an optimality criterion. To accommodate
more complex resource constraints (e.g time, costs, risks/probability) occurring in practice,
it is relevant to extend our techniques with these attributes. Since these fit naturally within
our model and optimization problems subject to costs, time and probability are well-studied,
we expect that such extensions are both feasible and useful.

116 Chapter 5. Semantic coverage in testing

�
 �	�� ��q0

�
�
�
�
�
�
�
��

JA1?

B
B
B
B
B
B
B
BN

JA2?

kq1 ����1
JA1!

kq3�

?

LAtoB1!

kq4
�

�
��	

LAtoC1!

�
 �	q7
����PPi
Dreq?
LC?
LB?

R
D?

�-

JB1?

�-
JC1?

� -
WB1?

� -WC1?

kq9 XXXXXz
WB1!

kq10�����:
WC1!

kq13�� LAtoBC1!

kq15

Y
Dind!

kq17

�

DtoB!kq18

?
Dind!�
 �	q19�

?

JB1?

L?

� ���BBM
LC1?

6D?

�Dreq?

����:JC1?

PPPPPPPPPq

WC1?

�
 �	q20�6
LC1?

� �
BB��

LB1?

?
D?

	
Dreq?

XXXXzJB1?

���������1

WB1?

� L?
kq21

6
Dind!

kq22

1

DtoC!

kq29

@
@

@
@R

WC1!

kq30�
�

�
��

WB1!

�
 �	q33PPPPPPPPPi
LC1?

���������)
LB1?

-D? j
Dreq?

%� L?

kq35�
Dind!

kq37

I
DtoBC!

kq2 PPPPq
JA2!

kq5@
@

@@I
LAtoC2!

kq6�

6

LAtoB2!

kq14

��
LAtoBC2!

�
 �	q8
����PPi
Dreq?
LC?
LB?

R
D?

�-

JB2?

�-
JC2?

� -
WB2?

� -WC2?

kq11XXXXXz
WB2!

kq12�����:
WC2!

kq16

Y
Dind!

kq23

�

DtoB!kq24

?
Dind!�
 �	q25�

?

JB2?

�
L?

� ���BBM
LC2?

6D?

�Dreq?

����:JC2?

PPPPPPPPPq

WC2?

�
 �	q26�6
LC2?

� �
BB��

LB2?

?
D?

	
Dreq?

XXXXzJB2?

���������1

WB2?
M

L? kq27

6
Dind!

kq28

1

DtoC!

kq31

@
@

@@R

WC2!

kq32�
�

�
��

WB2!

�
 �	q34PPPPPPPPPi
LC2?

���������)
LB2?

-D? j
Dreq?

$�
L?

kq36�
Dind!

kq38

IDtoBC!

Figure 5.7: Chat protocol with two chats. L = leave, J = join, D= data and W = answer

Section 5.11. Conclusions 117

name of error value name of error value
join.A.1.PDU!(JA1!) 3 leave.A.to.C.2.PDU!(LAtoC2!) 3
join.A.2.PDU!(JA2!) 3 leave.A.to.BC.1.PDU!(LAtoBC1!) 3
answer.B.1!(WB1!) 7 leave.A.to.BC.2.PDU!(LAtoBC2!) 3
answer.B.2!(WB2!) 7 dataind!(Dind!) 3
answer.C.1!(WC1!) 7 data.to.B.PDU!(DtoB!) 3
answer.C.2!(WC2!) 7 data.to.C.PDU!(DtoC!) 3
leave.A.to.B.1.PDU!(LAtoB1!) 3 data.to.BC.PDU!(DtoBC!) 3
leave.A.to.B.2.PDU!(LAtoB2!) 3 quiescent! 10
leave.A.to.C.1.PDU!(LAtoC1!) 3

Figure 5.8: Error names and error values

state r d α1 α2 α3

q0 64 3 1/8 0.323 0.333
q1 71 1 1/8 0.990 0.999
q2 71 1 1/8 0.990 0.999
q3 71 1 1/8 0.990 0.999
q4 71 1 1/8 0.990 0.999
q5 71 1 1/8 0.990 0.999
q6 71 1 1/8 0.990 0.999
q7 64 9 1/8 0.101 0.111
q8 64 9 1/8 0.101 0.111
q9 67 1 1/8 0.990 0.999
q10 67 1 1/8 0.990 0.999
q11 67 1 1/8 0.990 0.999
q12 67 1 1/8 0.990 0.999
q13 71 1 1/8 0.990 0.999
q14 71 1 1/8 0.990 0.999
q15 71 1 1/8 0.990 0.999
q16 71 1 1/8 0.990 0.999
q17 71 1 1/8 0.990 0.999
q18 71 1 1/8 0.990 0.999
q19 64 8 1/8 0.115 0.124

state r d α1 α2 α3

q20 64 8 1/8 0.115 0.124
q21 71 1 1/8 0.990 0.999
q22 71 1 1/8 0.990 0.999
q23 71 1 1/8 0.990 0.999
q24 71 1 1/8 0.990 0.999
q25 64 8 1/8 0.115 0.124
q26 64 8 1/8 0.115 0.124
q27 71 1 1/8 0.990 0.999
q28 71 1 1/8 0.990 0.999
q29 67 1 1/8 0.990 0.999
q30 71 1 1/8 0.990 0.999
q31 67 1 1/8 0.990 0.999
q32 67 1 1/8 0.990 0.999
q33 64 6 1/8 0.156 0.166
q34 64 6 1/8 0.156 0.166
q35 71 1 1/8 0.990 0.999
q36 71 1 1/8 0.990 0.999
q37 67 1 1/8 0.990 0.999
q38 71 1 1/8 0.990 0.999

Figure 5.9: The accumulated weights of erroneous outputs (r), the out-degree (d) and the
different discountsα per state

118 Chapter 5. Semantic coverage in testing

tc

α1 99.134
α2 511.369
α3 743.432

ack k = 2 k = 4 k = 50
α1 89.750 97.171 99.134
α2 130.607 239.025 510.768
α3 132.652 249.320 733.540

rck k = 2 k = 4 k = 50
α1 91% 98% 100%
α2 25% 47% 100%
α3 18% 34% 99%

Figure 5.10: Total coverage (tc) for different discount functions, absolute (ack) and relative
coverage (rck) of the test suite containing all tests of lengthk

testtk1 testtk2 testtk3 testtk4 testtk5
k = 30 15.3% 4.6% 14.0% 5.3% 15.3%
k = 35 14.1% 15.3% 15.3% 8.5% 8.6%
k = 40 5.3% 14.0% 14.2% 15.3% 5.3%
k = 45 5.0% 8.5% 14.0% 5.0% 8.5%
k = 50 5.3% 14.2% 5.3% 4.9% 14.0%

testtk6 testtk7 testtk8 testtk9 testtk10
k = 30 4.6% 14.2% 8.5% 15.3% 4.9%
k = 35 5.3% 15.3% 8.5% 8.5% 4.9%
k = 40 14.1% 15.3% 5.3% 14.0% 15.3%
k = 45 15.3% 4.9% 15.3% 4.5% 14.2%
k = 50 5.3% 14.2% 5.3% 14.0% 15.3%

Figure 5.11: Relative coverage, as a percentage, of tests generated by TORX, with α2

test suiteTk

k = 30 63.1%
k = 35 69.1%
k = 40 72.8%
k = 45 47.2%
k = 50 54.2%

Figure 5.12: Relative coverage, as a percentage, of tests generated by TORX, with α2

CHAPTER 6

Concluding remarks

In this thesis we study a formal approach to software testing. More specifically, we provide
a mathematical foundation for conformance testing of implementations with respect to spec-
ifications formally described. Our developments and modelsare shaped by the following
assumptions:

• We assume that the implementation is completely opaque, that is it is black box (i.e.,
we do not know its internal structure and can only observe itsbehaviour).
• We assume that the real implementation can be modelled by a formal model. This is

known as the testing assumption.
• We assume the implementation to be input-enabled. (This is always the case except

for Chapter 4, where we are able to relax slightly this assumption.)
• We assume that we are always testing reactive systems, whichallow us to interact by

applying inputs to them and observing their outputs.
• We assume that the interaction between the implementation and a test is fully syn-

chronous (i.e., there is an unison coordination between inputs from the test and inputs
on the implementation, and outputs from the test and outputson the implementation).
• We assume that the given specification reflects precisely theintended behaviour of the

system (i.e. specifications are considered correct).

We start our study in Chapter 1 by giving a formal interpretation to the various concepts
used in model based conformance testing. Next, in Chapter 2,we present the testing for-
malism applied specifically to non-deterministic labelledinput-output transition systems; in
particular, we present theioco testing theory. There, the notion of quiescence plays a central
role. Quiescence characterizes systems that do not, and never will, produce an output without
prior stimulation with an input. By treating quiescence as aspecial kind of system output,
the notion of behavioural traces can be generalized to include quiescent observations. This
allows to distinguish systems that are not distinguishableotherwise. A test derivation algo-
rithm is presented and it is proved that the set of generated test is sound and exhaustive with
respect to theioco testing relation. These two chapters review existing formal approaches
for conformance testing, and they provide the base-line to which these thesis’ contributions
build upon.

In Chapter 3 we present our first extension toioco. The extension considers time ex-
plicitly, and this constitutes a crucial addition to the models considered in this thesis. The
concepts defined in this chapter to deal with real-time propagate throughout the remainder
of the chapter. In particular, the notion of quiescence becomes parameterized by the amount

119

120 Chapter 6. Concluding remarks

of time that is need to recognize quiescent states on the implementation. As a consequence,
our testing relation (tiocoM) is parameterized as well, with quiescence recognition as apa-
rameter (M). This boundM represents the time it takes to infer that the implementation is
in a quiescent state. We define a non-deterministic test generation framework, parameterized
by the boundM , and show that the set of test generated is sound and exhaustive with re-
spect totiocoM . Moreover, we explore the relation between our proposed timed extension,
tiocoM , and the non-timed approach,ioco.

Subsequently, in Chapter 4, we present our second extensionconsisting of both real-time
and the addition of channels, which are partition on the inputs and output actions. The com-
bination of channels and real-time are interestingly integrated together. A system may have a
channel enabled or disabled depending on its particular execution stage, thus to model the fact
that actions are enabled or disabled, it is sufficient to enable or disable the communication
channels in which the actions occur. The resulting model is the timed labelled multi input-
output transition systems (TLMTS), and it allows us to consider input enabledness and quies-
cence properties on a per channel basis, thus relaxing global system assumptions. We replace
the input enabling requirement of a system by the following weaker requirement: for each in-
put channel, either all inputs are allowed, or they are all blocked. Also, we replace the global
boundM from the tiocoM testing relation by a vector of boundsM = 〈M1, · · · ,Mm〉;
whereMj represents the bound on the output channelj . Relaxing the global boundM for a
vector of bounds means that we do not have to wait for the slowest response time to conclude
the quiescence on a faster channel. The resulting testing relation is parameterized by a set
of bounds which detect quiescence per each output channel, themtiocoM conformance im-
plementation relation. We develop a test derivation procedure formtiocoM, which is shown
to be sound and exhaustive with respect to themtiocoM implementation relation. Moreover,
we elaborate on the relation between our proposed timed extension with channels,mtiocoM,
and the timed approach,tiocoM.

Finally, in Chapter 5, we present our semantic approach for test coverage. In this chapter,
we provide a semantic point of view which allows us to study coverage formally and pre-
cisely. Our point of departure is a weighted fault model (WFM) that assigns a weight in the
specification to each potential error in an implementation.We define our coverage measures
relative to these WFMs. Since WFMs are augmented specifications, our coverage framework
qualifies as black-box. Moreover, because WFMs are infinite semantic objects, we provide a
finite representation as fault automata. Our theory allows to assign equal coverage measures
to semantically equivalent specifications, taking into account that certain failures are more
severe than others. Moreover, we provide algorithms that calculate and optimize test cover-
age. In particular, we compute the (total, absolute and relative) coverage of a test suite with
respect to a WFM. Also, given a test lengthk , we present an algorithm that finds the test of
lengthk with maximal coverage and an algorithm that finds the shortest test with coverage
exceeding a given coverage bound.

Our extensions, based (mostly) on theioco testing theory, are directed to answer the
research questions proposed in Section 1.3, where we searchfor new theories that are able to
test better, effectively and efficiently.

In this thesis we believe that we achieve our goal successfully. We support this conclusion
by describing our contributions as follows:

• We present new models and formalisms that are usable for implementations and spec-
ifications taking into account real-time and real-time withchannels.

Chapter 6. Concluding remarks 121

• We develop new testing relations between our models.
• We compare and elaborate on the relation between the original relation we consider

and the new ones proposed.
• We develop an algorithm to derive test for our timed testing relations.
• We prove that the proposed algorithms are sound and exhaustive with respect to their

corresponding testing relation.
• We propose a new approach for test coverage in a semantic style.
• We prove that the proposed coverage approach is authentically semantic under pre-

serving bisimilarities.
• We develop several algorithms to calculate test with optimal coverage.

More precisely, some of the main contributions for each chapter are shown in Figure 6.1.

Contribution
Chapter 3 timed output set Definition 3.3.15

nttraces∆M Definition 3.4.2
tiocoM Definition 3.4.5
M -quiescent implementations Definition 3.5.1
test generation procedure (TGP) Section 3.6.1
soundness of TGP Theorem 3.7.4
exhaustiveness of TGP Theorem 3.7.6
relation betweeniocoandtiocoM Theorem 3.8.2

Chapter 4 Oj -quiescent Definition 4.3.3
M-quiescent implementations Definition 4.3.6
nttraces∆M Definition 4.4.5
channels output set Definition 4.4.7
mtiocoM Definition 4.4.10
multi test generation procedure (MTGP)Section 4.5.1
soundness of MTGP Theorem 4.6.3
exhaustiveness of MTGP Theorem 4.6.5
relation betweentiocoM andmtiocoM Theorem 4.7.3

Chapter 5 weighted fault models (WFM) Definition 5.2.1
coverage measures Definition 5.2.2
fault automaton Definition 5.4.1
finite depth WFM Definition 5.5.1
discounted WFM Definition 5.6.5
calibration Theorem 5.7.2
invariance under bisimilarities Section 5.7.2
absolute coverage algorithms Section 5.8.1
total coverage algorithms Section 5.8.2
relative coverage algorithm Section 5.8.3
optimization algorithms Section 5.8.4

Figure 6.1: Principal contributions of this thesis per chapter

122 Chapter 6. Concluding remarks

As possible future work, it would certainly be interesting to apply thetiocoM testing
relation to more realistic examples. We would also like to conclude the implementation tool
of themtiocoM testing relation, and apply the semantic coverage algorithms (that is being
implementing in the SECO tool) to existing examples, thus allowing us to make more realistic
judgments.

From theory to practice Our first proposed extensiontiocoM , is already implemented
for timed automata on the TORX tool. The second proposed extensionmtiocoM is being
implemented as part of current work. The third proposed approach for semantic coverage is
also, as we mention above, currently being implemented in a new tool called SECO.

Moreover, most of the results presented in this thesis are published in refereed confer-
ences (i.e. ATVA, ICFEM, FATES), so we are confident that these theories have been “tested”
on the research community.

Formal methods, in general, are not yet smoothly integratedwith practical, day-to-day
development tools. We believe that theories should be easily applicable, in a way that prac-
tical communities (e.g., the industry) can appreciate the advantage that formal methods can
offer. The work in this thesis attempts to achieve this effect. Although we focus on formal
approaches, indeed we carefully develop them in a way that they can be built in practical and
useful tools. By having this in mind, the tools which implement our theories can be directly
applied to real life examples.

Bibliography

Author references

[1] L. Brandán Briones and E. Brinksma. A test generation framework for quiescent real-
time systems. In Jens Grabowski and Brian Nielsen, editors,Formal Approaches to Soft-
ware Testing, FATES, pages 64–78, Linz, Austria, Sep 2004. Springer-Verlag GmbH.
Also an Extended Version in Centre for Telematics and Information Technology, Univ.
of Twente, The Netherlands. Technical report, TR-CTIT-04-40, 20 pp., Oct. 2004.

[2] L. Brandán Briones and E. Brinksma. Testing multi input-output real-time systems.
In ICFEM 2005 Seventh International Conference on Formal Engineering Methods.,
pages 264–279, Manchester, UK, Nov 2005. Springer-Verlag GmbH. Also as Extended
Version in Centre for Telematics and Information Technology, Univ. of Twente, The
Netherlands. Technical report, TR-CTIT-05-40, 20 pp., Sep. 2005.

[3] L. Brandán Briones, E. Brinksma, and M.I.A. Stoëlinga. A semantic framework for
test coverage. In S. Graf and W. Zhang, editors,Proceedings of the fourth international
symposium on Automated Technology for Verification and Analysis (ATVA’06), LNCS
4218, pages 399–414. Springer, 2006. Also an Extended Version in Centre for Telem-
atics and Information Technology, Univ. of Twente, The Netherlands. Technical report,
TR-CTIT-06-24, 31 pp., 2006.

[4] L. Brandán Briones and M. Röhl. Test derivation from timed automata. In M. Broy,
B. Jonsson, and et al. J-P Katoen, editors,Model-Based Testing of Reactive Systems:
Advanced Lectures, pages 201–232. Springer-Verlag GmbH, Sep 2005.

Other references

[5] R. Alur. Timed automata. In Nicolas Halbwachs and Doron Peled, editors,Proceedings
of the 11th Internation Conference on Computer Aided Verification (CAV 1999), volume
1633 ofLNCS, pages 8–22. Springer-Verlag, 1999.

[6] R. Alur and D. Dill. Automata for modeling real-time systems. InIn Proceedings, Sev-
enteenth International Colloquium on Automata Languages and Programming, volume
443, pages 322–335. Springer-Verlag, 1990.

[7] R. Alur and D. Dill. A theory of timed automata. InJournal of Theoretical Computer
Science, volume 126(2), pages 183–235, 1994.

[8] T. Ball. A theory of predicate-complete test coverage and generation. InProceedings
of FMCO, pages 1–22, 2004.

[9] A. Belinfante, J. Feenstra, L. Heerink, and R.de Vries. Specification based formal test-
ing: The easylink case study. InProgress 2001-2nd Workshop on embedded Systems,
pages 73–82. STW Technology Foundation, Utrecht, 2001.

[10] A. Belinfante, J. Feenstra, R.de Vries, J. Tretmans, N.Goga, L. Feijs, S. Mauw, and
L. Heerink. Formal test automation: A simple experiment. InInternational Workshop
on Testing of Communicating Systems 12, pages 179–196. Kluwer, 1999.

124 Bibliography

[11] G. Bernot. Testing against formal specifications: A theoretical view. InTAPSAFT’91,
volume 2, pages 99–119. Springer-Verlag, 1991.

[12] H. Bohnenkamp and A. Belinfante. Timed testing withTORX. In FM 2005: Formal
Methods, volume 3582/2005, pages 173–188, 2005.

[13] R. Boumen, I. de Jong, J. Vermunt, J. van de Mortel-Fronczak, and J. Rooda. Test
sequencing in a complex manufacturing system. InXootic Magazine, 11(2), pages 9–
16, 2005.

[14] E. Brinksma, R. Alderden, R. Langerak, J. Lagemaat, andJ. Tretmans. A formal ap-
proach to conformance testing. InSecond Int. Workshop on Protocol Test Systems,
pages 349–363. North-Holland, 1990.

[15] Ed Brinksma. On the coverage of partial validations. InAMAST ’93: Proceedings of
the Third International Conference on Methodology and Software Technology, pages
245–252, London, UK, 1994. Springer-Verlag.

[16] R. Cardell-Oliver. Conformance test experiments for distributed real-time systems. In
Proceedings of the International Symposium on Software Testing and Analysis, pages
159–163. ACM Press, 2002.

[17] P. Christian. Specification based testing with IDL and formal methods: A case study in
test automation. InMaster’s Thesis. University of Twente, Enschede, The Netherlands,
2001.

[18] D. Clarke and I. Lee. Automatic test generation for the analysis of a real-time system:
Case study. InIEEE Real Time Technology and Applications Symposium, pages 112–
124, 1997.

[19] M. Clatin. Manuel d’utilisation de TVEDA V3. InUser Manual LAA/EIA/EVP/109.
France Télécom CNET, Lannion, France, 1996.

[20] R. Cleaveland, I. Lee, P. Lewis, and S. Smolka. A theory of testing for soft real-time
processes, 1996.

[21] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The toolKRONOS. InProceedings of
Workshop on Verification and Control of Hybrid Systems III, pages 208–219. Springer-
Verlag, October 1995.

[22] M.van der Bijl and F. Peureux. I/O-automata based testing. InModel-Based Testing of
Reactive Systems: Advanced Lectures, pages 173–200. Springer Berlin, 2005.

[23] D. Dill. Timing assumptions and verification of finite-state concurrent systems. InPro-
ceedings of the International Workshop on Automatic Verification Methods for Finite
State Systems, pages 197–212. Springer-Verlag NY, 1990.

[24] A. En-Nouaary, R. Dssouli, and F. Khendek. Timed test cases generation based on
state characterization technique. In19th IEEE Real-Time Systems Symposium, pages
220–229, 1998.

[25] ETSI. Es 201 873-6 v1.1.1 (2003-02). Methods for Testing and Specification (MTS).
In The Testing and Test Control Notation version 3: TTCN-3 Control Interface (TCI).
ETSI Standard, 2003.

[26] J-C. Fernandez, C. Jard, T. Jéron, and C. Viho. Using on-the-fly verification techniques
for the generation of test suites. InComputer Aided Verification, 8th International
Conference, CAV ’96, volume 1102 ofLNCS, pages 348–359. Springer, 1996.

[27] R.J.van Glabbeek. The linear time-branching time spectrum II (the semantics of sequen-
tial systems with silent moves). InCONCUR’93, volume 715, pages 66–81. E.Best,
1993.

Bibliography 125

[28] L. Heerink. Ins and outs in refusal testing. InPhD thesis, 1998.
[29] L. Heerink and J. Tretmans. Refusal testing for classesof transition systems with inputs

and outputs. InFormal Description Techniques and Protocol Specification,Testing and
Verification, FORTE X, volume 107 ofIFIP Conference Proceedings, pages 23–38.
Chapman & Hall, 1997.

[30] M. Hennessy. Algebraic theory of processes. InFoundations of Computing. Series.
MIT Press, 1988.

[31] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine.Symbolic model checking for
real-time systems. InProceedings of the 7th Symposium of Logics in Computer Science,
LICS, pages 394–406. IEEE Computer Scienty Press, 1992.

[32] T. Higashino, A. Nakata, K. Taniguchi, and R. Cavalli. Generating test cases for a timed
I/O automaton model. InIWTCS 1999, pages 197–214, 1999.

[33] C. Hoare. InCommunicating Sequential Processes. Prentice-Hall, 1985.
[34] G. Holzmann. InDesign and Velidation of Computer Protocols. Prentice-Hall, 1991.
[35] ISO8807. Information processing systems, Open Systems Interconnection, LOTOS,

A formal description technique based on the temporal ordering of observational be-
haviour. International Organization for Standardization, 1989.

[36] P. Kars. The application of PROMELA and SPIN in the BOS project. InProceedings
Second SPIN Workshop, volume 32, 1996.

[37] A. Kerbrat, T. Jéron, and R. Groz. Automated test generation from SDL specifications.
In SDL ’97 Time for Testing, MSC and Trends - 8th International SDL Forum, pages
135–152. Elsevier, 1999.

[38] M. Krichen and S. Tripakis. Black-box conformance testing for real-time systems. In
SPIN 2004, pages 109–126. Springer-Verlag, 2004.

[39] K.G. Larsen, M. Mikuc̆ionis, and B. Nielsen. Real-timesystem testing on-the-fly. In
The 15th Nordic Workshop on Programming Theory (NWPT), Åbo Akademi University,
Turku, Finland, 2003. Extended abstract.

[40] K.G. Larsen, M. Mikuc̆ionis, and B. Nielsen. Online testing of real-time system using
UPPAAL . In Formal Approaches to Software Testing, Linz, Austria, 2004.

[41] K.G. Larsen, P. Petterson, and W. Yi. UPPAAL in a nutshell. InJournal on Software
Tools for Technology Transfer, 1997.

[42] D. Lee and M. Yannakakis. Principles and methods of testing finite state machines - A
survey. InProceedings of the IEEE, volume 84, pages 1090–1126, 1996.

[43] Z. Li, J. Wu, and X. Yin. Testing multi input/output transition system with all-observer.
In TestCom, pages 95–111, 2004.

[44] Z. Li, X. Yin, and J. Wu. Distributed testing of multi input/output transition system. In
2nd International Conference on Software Engineering and Formal Methods (SEFM),
pages 271–280. IEEE Computer Society, 2004.

[45] D. Mandrioli, S. Morasca, and A. Morzenti. Generating test cases for real-time systems
from logic specifications.TOCS, 13(4):365–398, 1995.

[46] R. Milner. In A Calculus of Communicating Systems, volume LNCS. Springer-Verlag,
1980.

[47] G. Myers.The Art of Software Testing. Wiley & Sons, 1979.
[48] G. Myers, C. Sandler, T. Badgett, and T. Thomas.The Art of Software Testing. Wiley

& Sons, 2004.

126 Bibliography

[49] L. Nachmanson, M. Veanes, W. Schulte, N. Tillmann, and W. Grieskamp. Optimal
strategies for testing nondeterministic systems. InInternational Symposium on Software
Testing and Analysis, pages 55–64. ACM Press, 2004.

[50] R. De Nicola. Extensional equivalences for transitionsystems. InActa Informatica,
volume 24, pages 211–237.

[51] R. De Nicola and M.C.B. Hennessy. Testing equivalencesfor processes. InTheoretical
Computer Science, volume 34, pages 83–133, 1984.

[52] B. Nielsen and A. Skou.Automated Test Generation from Timed Automata. TACAS
2001, 2001.

[53] M. Phalippou. Relations d’implantation et hypothèses de test sur des automates à
entrèes et sorties. In France L’Université de Bordeaux I,editor,PhD thesis, 1994.

[54] R.S. Pressman. Software engineering: A practitioner’s approach. pages 1–22. McGraw
Hill, 1992.

[55] H. Schaefer. Risk based testing, strategies for prioritizing tests against deadlines. Winter
2005 issue of Methods & Tools, 2005.

[56] J. Springintveld, F. Vaandrager, and P. D’Argenio. Testing timed automata.Theoretical
Computer Science, 254(1–2):225–257, 2001.

[57] E. Tardos. A strongly polynomial minimum cost circulation algorithm.Combinatorica,
5(3):247–255, 1985.

[58] J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. InSoftware-
Concepts and Tools, TACAS, pages 127–146, 1996. Also: Technical Report N0. 96-26,
Center for Telematics and Information Technology, University of Twente, The Nether-
lands.

[59] J. Tretmans. Testing techniques. InFormal Methods & Tools Group. Faculty of Com-
puter Science. University of Twente. The Netherlands, 2002.

[60] J. Tretmans and E. Brinksma. TORX: Automated model-based testing. InFirst Euro-
pean Conference on Model-Driven Software Engineering. A.Hartmann and K.Dussa-
Ziegler, 2003.

[61] H. Ural. Formal methods for test sequence generation.Computer Communications
Journal, 15(5):311–325, 1992.

[62] R.J. van Glabbeek. The linear time-branching time spectrum I: The semantics of con-
crete, sequential processes. InHandbook of Process Algebra, pages 3–99, 2001.

[63] R.de Vries, A. Belinfante, and J. Feenstra. Automated testing in practice: The highway
tolling system. In H. König, I. Schieferdecker, and A. Wolisz, editors,TestCom. Kluwer
Academic, 2002.

[64] ITU-T SG 10/Q.8 ISO/IEC JTC1/SC21 WG7.Information Retrieval, Transfer and
Management for OSI; Famework:Formal Methods in Conformance Testing. Committee
Draft CD 13245-1, ITU-T proposed recommendation Z.500.ISO-ITU-T. International
Organization for Standardization, 1996.

Nomenclature

LTS
A label input-output transition system
Q set of states
Q ′ subset of states
L set of labels
L′ subset of labels
L′

τ L′ ∪ {τ}
L′

δ L′ ∪ {δ}
L′

δτ L′ ∪ {τ} ∪ {δ}
L∗ finite label sequences
L+ L∗ \ {ε}
Lω infinite label sequences
I input labels
O output labels
T set of transitions

TLTS
A timed label input-output transition system
Q set of states
Q′ subset of states
L set of timed labels
L′ subset of timed labels
L′τ L′ ∪ {τ}
L′δ L′ ∪ {δ}
L′δτ L′ ∪ {τ} ∪ {δ}
L′δγ L′ ∪ {δ1, · · · , δn} ∪ {γ1, · · · , γm}
D set of time-passage actions
L∗ finite timed label sequences
Lω infinite timed label sequences
T set of timed transitions

TMLTS
M = 〈M1, · · · ,Mm〉 ordered set of bounds
I = {I1, · · · , In} input set partition
O = {O1, · · · ,Om} output set partition

128 Nomenclature

Variables and constants
q states
q0 initial state
σ trace (timed or untimed)
l action (timed or untimed)
τ internal action
β action different thanτ
a input action or action and time
b output action
δ action that denotes quiescence
δj action that denotes quiescence in channelj

γk action that denotes blocking in channelk

π path
ε empty sequence
d , e time variables
c clock
C set of clocks
κ constant
u variable over[1, · · · ,n]
v variable over[1, · · · ,n ′]
j variable for output channels over[1, · · · ,m]
k variable for input channels over[1, · · · ,n]
z extract constant
M , Mj quiescence observation bounds

Tests
i , iIUT implementations
S specification
t tests
T test suite
k test length
TESTS set of tests for LTS(I ,O)
T EST set of tests for TLTS(I ,O)
MT EST set of tests for TLMTS(I,O)

Coverage
r error weighted function
r error weighted function per state
α discounted function
T I set of input transitions
TO set of output transitions
F fault automaton
f k
F finite depth weighted fault model
f α
F discounted weighted fault model

Summary
In the last years, increasingly complex systems are being put in charge of critical tasks. When
these complex systems, are drive by sophisticated software, they need to attain a high degree
of reliability. Unfortunately, developing correct systems is difficult, and in the past there have
been several complex systems that went wrong because they lacked serious analysis of their
potential behaviour. In this thesis, we study an effective way of obtaining confidence on the
correctness of a system, known as testing. Testing is the systematic process of finding errors
in a system by means of extensively experimenting with it.

In order to successfully test a system, it is crucially needed to count with both effective
test cases and feasible strategies to execute them. Fortunately, work in formal methods helps
us achieving this task in a precise and rigorous manner. A particularly successful formal
theory of testing is theioco theory, devised by Tretmans to work on labelled input-output
transition systems. The theory smoothly covers issues likenondeterminism and quiescence
(that is, the notion representing the absence of outputs). The ioco testing theory is clean and
precise, and is the basis used in successful testing tools, like the TORX tool and the TGV
tool. In this thesis we extend theioco testing theory in three important directions, as follows.

Our first extension concerns the addition of real-time, which is crucial to the analysis
of several systems (e.g., systems where actions are required to occur in a precise moment).
New models and formalisms that take into account real-time are introduced. Furthermore, we
develop a new testing relation between these real-time models, and a sound and exhaustive
algorithm to derive tests for that relation.

Our second extension arises when we consider the input and output actions as being
subdivided in communication channels. We explore how thesechannels interact with real-
time. Interestingly, this new setting is more flexible sinceit allows us to relax some standard
assumptions. We develop a testing relation between models with real-time and channels, and
a sound and exhaustive algorithm to derive tests for this newricher setting.

Our third, final extension is concerned with the common problem that complete test suites
usually cannot be covered in finite time for most interestingcases. Test coverage measures
the proportion of the implementation exercised by a test suite. Existing coverage criteria
are usually defined in terms of syntactic characteristics, having the disadvantage that behav-
iorally equivalent, although syntactically different systems have different measures. More-
over, these metrics do not take into account risks (i.e., values which represent that certain
failures are more severe than others). We propose a novel approach for test coverage in a
semantic style, where bisimilar processes measure equally. Moreover, we develop several
algorithms to calculate tests with optimal coverage.

The results presented in this thesis enrich the formal theory of testing. They provide a
solid basis for make the process of testing more applicable,complete, and effective, helping
today’s and tomorrow’s complex systems to be more reliable.

130 Summary

Samenvatting
De laatste jaren worden steeds complexere systemen ingezetvoor kritieke taken. Als deze
complexe systemen bestuurd worden door geavanceerde software dienen ze aan een hoge
graad van betrouwbaarheid te voldoen. Helaas is het ontwikkelen van correcte systemen
moeilijk, en er zijn in het verleden dan ook complexe systemen geweest die de fout ingin-
gen als gevolg van het ontbreken van een serieuze analyse vanhun mogelijke gedrag. Dit
proefschrift gaat over een effectieve manier om vertrouwenin de correctheid van een sys-
teem te krijgen: testen. Testen is het systematisch zoeken naar fouten in een systeem door
het uitgebreid aan experimenten bloot te stellen.

Om een systeem succesvol te kunnen testen is het van cruciaalbelang om te kunnen
beschikken over effectieve tests en over een werkbare strategie om die uit te voeren. Gelukkig
is er werk gedaan op het gebied van formele methoden dat ons kan helpen om dit accuraat
en zorgvuldig te doen. Een bijzonder succesvolle formele testtheorie is deioco theorie, ont-
wikkeld door Tretmans, voor gelabelde transitiesystemen waarin onderscheid wordt gemaakt
tussen invoer en uitvoer. Zaken als non-determinisme en quiescence (dat wil zeggen, de
afwezigheid van uitvoer) zijn voor deze theorie geen probleem. Deioco testtheorie is onge-
kunsteld en precies, en vormt de basis voor sucessvolle testtools zoals TORX en TGV. In dit
proefschrift breiden we deioco theorie als volgt uit op drie belangrijke gebieden.

Onze eerste uibreiding bestaat uit het toevoegen van het begrip tijd, wat van cruciaal
belang is voor de analyse van bijvoorbeeld systemen waarin activiteiten op een exact moment
plaats moeten vinden. We introduceren nieuwe modellen en formalismen waarin het begrip
tijd meegenomen kan worden. Verder ontwikkelen we een nieuwe formele testrelatie tussen
deze modellen met tijd en een algoritme, dat correct en volledig is voor het afleiden van tests
voor deze relatie.

Onze tweede uitbreiding komt tot stand wanneer we in- en uitvoeracties aan communi-
catiekanalen koppelen. We onderzoeken het effect van het koppelen aan kanalen in combi-
natie met het begrip tijd. Het blijkt dat deze combinatie hetmogelijk maakt om een aantal
standaard aannamen af te zwakken. We ontwikkelen een formele testrelatie tussen modellen
met tijd en kanalen, en een algoritme, dat correct en volledig is voor het afleiden van tests
voor deze uitgebreidere relatie.

Onze derde en laatste uitbreiding betreft het veelvoorkomende probleem dat volledige
verzamelingen van tests over het algemeen niet volledig kunnen worden afgedekt in eindige
tijd, in ieder geval voor de interessantere gevallen. De dekkingsgraad geeft aan hoeveel van
het gedrag van het te testen systeem wordt geraakt door een verzameling tests. Bestaande
dekkingsgraadcriteria zijn over het algemeen gedefinieerdaan de hand van de syntactische
vorm van een systeembeschrijving. Dit heeft als nadeel heeft dat syntactisch verschillende
beschrijvingen van het zelfde systeemgedrag verschillende dekkingsgraadwaarden (kunnen)
hebben. Daarenboven kunnen in bestaande dekkingsgraadbenaderingen geen risico’s uitge-
drukt worden (waarmee we getalswaarden bedoelen die aangeven dat bepaalde fouten ern-
stiger zijn dan andere). We stellen een nieuwe aanpak voor die gebruikt kan worden om
de dekkingsgraad op een semantische manier te definiëren, zodanig dat beschrijvingen die
bisimulatie-gelijk aan elkaar zijn dezelfde dekkingsgraadwaarde krijgen. Tevens ontwikke-

132 Samenvatting

len we een aantal algoritmes voor het berekenen van testverzamelingen met optimale dekkings-
graad.

De in dit proefschrift gepresenteerde resultaten vormen een verrijking van de formele the-
orie op het gebied van testen. Ze vormen een solide basis om het testproces beter toepasbaar,
vollediger en effectiever te maken, waarmee ze ertoe bijdragen dat de systemen van vandaag
en morgen betrouwbaarder worden.

Resumen
En los últimos años, cada vez más, sistemas complejos sonpuestos a cargo de tareas crı́ticas.
Cuando estos sistemas son controlados por un software sofisticado, necesitan un alto grado de
confiabilidad. Desafortunadamente, desarrollar sistemascorrectos es difı́cil, y en el pasado
varios de estos sistemas han fallado debido a que su comportamiento potencial carecı́a de un
análisis serio. En esta tesis, estudiamos una manera eficazde obtener confianza en que un
sistema sea correcto, conocida como testing. El testing consiste en un proceso sistemático
desarrollado para encontrar errores en un sistema por mediode su experimentación extensiva.

Para testear con éxito un sistema, es crucialmente necesario contar con tests eficaces y
estrategias factibles para ejecutarlos. Afortunadamente, el trabajo realizado en métodos for-
males nos ayuda a realizar estas tareas de manera exacta y rigurosa. Una de las mas famosas
teorı́as de testing formal es la teorı́a deioco, ideada en el trabajo de Tretmans sobre sistemas
etiquetados de transición con entrada-salida (LTS). Dicha teorı́a cubre adecuadamente temas
como el no-determinismo y la quietud (es decir, la noción que representa la ausencia de sali-
das). La teorı́a de testingiocoes rigurosa y exacta, y es la base usada por varias herramientas
de testing, como TORX y TGV. En esta tesis extendemos dicha teorı́a en tres direcciones
importantes, como presentamos a continuación.

Nuestra primera extensión se refiere a la adición de tiemporeal, lo que es crucial para
el análisis de varios sistemas (por ejemplo, sistemas donde las acciones deben ocurrir en
un momento preciso). Introducimos nuevos modelos y formalismos que consideran tiempo
real. Desarrollamos una nueva relación de testing entre dichos modelos con tiempo real, y
un algoritmo que es consistente y exhaustivo para derivar tests confirmando dicha relación.

Nuestra segunda extensión considera las acciones de entrada y salida como subdivididas
en canales de comunicaciones, donde exploramos cómo estoscanales interactúan con tiempo
real. Interesantemente, este nuevo contexto es más flexible debido a que permite relajar
algunas suposiciones que eran estándar. También desarrollamos una relación de testing entre
los modelos con canales y tiempo real, y un algoritmo consistente y exhaustivo que deriva
tests para dicho nuevo contexto.

Nuestra tercera y última extensión se refiere al problema de que el testing, en general,
no puede ser completado en tiempo finito, al menos para la mayorı́a de los casos más in-
teresantes. La cobertura de un test, o un conjunto de tests, mide qué partición de una im-
plementación es experimentada por dicho test, o dicho conjunto de tests. Los criterios de
cubrimientos existentes, en general, son definidos en términos de caracterı́sticas semánticas.
Esto tiene la desventaja de que sistemas con comportamientos equivalentes, pero expresados
sintácticamente en forma diferente, tienen medidas diferentes. Por otra parte, dichas métricas
no tienen en cuenta riesgos, es decir, valores representando que ciertas fallas son más severas
que otras. En esta tesis proponemos un nuevo método para medir el cubrimiento de un test,
o de un conjunto de tests, de manera semántica. Mas aún, desarrollamos varios algoritmos
para calcular tests con cubrimiento óptimo.

Los resultados presentados en esta tesis enriquecen la teorı́a formal del testing. Propor-
cionan una base sólida que hace el proceso de testing más aplicable, completo y efectivo,
ayudando a que los sistemas complejos de hoy y mañana sean m´as confiables.

134 Resumen

Titles in the IPA dissertation series

J.O. Blanco. The State Operator in Process
Algebra. Faculty of Mathematics and Com-
puting Science, TUE. 1996-01

A.M. Geerling. Transformational Devel-
opment of Data-Parallel Algorithms. Fac-
ulty of Mathematics and Computer Science,
KUN. 1996-02

P.M. Achten. Interactive Functional Pro-
grams: Models, Methods, and Implementa-
tion. Faculty of Mathematics and Computer
Science, KUN. 1996-03

M.G.A. Verhoeven. Parallel Local Search.
Faculty of Mathematics and Computing
Science, TUE. 1996-04

M.H.G.K. Kesseler. The Implementation
of Functional Languages on Parallel Ma-
chines with Distrib. Memory. Faculty of
Mathematics and Computer Science, KUN.
1996-05

D. Alstein. Distributed Algorithms for
Hard Real-Time Systems. Faculty of Mathe-
matics and Computing Science, TUE. 1996-
06

J.H. Hoepman. Communication, Synchro-
nization, and Fault-Tolerance. Faculty of
Mathematics and Computer Science, UvA.
1996-07

H. Doornbos. Reductivity Arguments and
Program Construction. Faculty of Mathe-
matics and Computing Science, TUE. 1996-
08

D. Turi . Functorial Operational Seman-
tics and its Denotational Dual. Faculty of
Mathematics and Computer Science, VUA.
1996-09

A.M.G. Peeters. Single-Rail Handshake
Circuits. Faculty of Mathematics and Com-
puting Science, TUE. 1996-10

N.W.A. Arends. A Systems Engineering
Specification Formalism. Faculty of Me-
chanical Engineering, TUE. 1996-11

P. Severi de Santiago. Normalisation in
Lambda Calculus and its Relation to Type
Inference. Faculty of Mathematics and
Computing Science, TUE. 1996-12

D.R. Dams. Abstract Interpretation and
Partition Refinement for Model Checking.
Faculty of Mathematics and Computing
Science, TUE. 1996-13

M.M. Bonsangue. Topological Dualities
in Semantics. Faculty of Mathematics and
Computer Science, VUA. 1996-14

B.L.E. de Fluiter. Algorithms for Graphs
of Small Treewidth. Faculty of Mathematics
and Computer Science, UU. 1997-01

W.T.M. Kars . Process-algebraic Transfor-
mations in Context. Faculty of Computer
Science, UT. 1997-02

P.F. Hoogendijk. A Generic Theory of Data
Types. Faculty of Mathematics and Com-
puting Science, TUE. 1997-03

T.D.L. Laan. The Evolution of Type The-
ory in Logic and Mathematics. Faculty of
Mathematics and Computing Science, TUE.
1997-04

C.J. Bloo. Preservation of Termination for
Explicit Substitution. Faculty of Mathemat-
ics and Computing Science, TUE. 1997-05

J.J. Vereijken. Discrete-Time Process Al-
gebra. Faculty of Mathematics and Com-
puting Science, TUE. 1997-06

F.A.M. van den Beuken. A Functional Ap-
proach to Syntax and Typing. Faculty of
Mathematics and Informatics, KUN. 1997-
07

A.W. Heerink . Ins and Outs in Refusal
Testing. Faculty of Computer Science, UT.
1998-01

G. Naumoski and W. Alberts. A Discrete-
Event Simulator for Systems Engineering.

Faculty of Mechanical Engineering, TUE.
1998-02

J. Verriet . Scheduling with Communication
for Multiprocessor Computation. Faculty of
Mathematics and Computer Science, UU.
1998-03

J.S.H. van Gageldonk. An Asynchronous
Low-Power 80C51 Microcontroller. Fac-
ulty of Mathematics and Computing Sci-
ence, TUE. 1998-04

A.A. Basten. In Terms of Nets: System
Design with Petri Nets and Process Alge-
bra. Faculty of Mathematics and Comput-
ing Science, TUE. 1998-05

E. Voermans. Inductive Datatypes with
Laws and Subtyping – A Relational Model.
Faculty of Mathematics and Computing
Science, TUE. 1999-01

H. ter Doest. Towards Probabilistic
Unification-based Parsing. Faculty of
Computer Science, UT. 1999-02

J.P.L. Segers. Algorithms for the Simu-
lation of Surface Processes. Faculty of
Mathematics and Computing Science, TUE.
1999-03

C.H.M. van Kemenade. Recombinative
Evolutionary Search. Faculty of Mathemat-
ics and Natural Sciences, UL. 1999-04

E.I. Barakova. Learning Reliability: a
Study on Indecisiveness in Sample Selec-
tion. Faculty of Mathematics and Natural
Sciences, RUG. 1999-05

M.P. Bodlaender. Scheduler Optimization
in Real-Time Distributed Databases. Fac-
ulty of Mathematics and Computing Sci-
ence, TUE. 1999-06

M.A. Reniers. Message Sequence Chart:
Syntax and Semantics. Faculty of Mathe-
matics and Computing Science, TUE. 1999-
07

J.P. Warners. Nonlinear approaches to sat-
isfiability problems. Faculty of Mathemat-
ics and Computing Science, TUE. 1999-08

J.M.T. Romijn . Analysing Industrial Pro-
tocols with Formal Methods. Faculty of
Computer Science, UT. 1999-09

P.R. D’Argenio. Algebras and Automata
for Timed and Stochastic Systems. Faculty
of Computer Science, UT. 1999-10

G. Fábián. A Language and Simulator for
Hybrid Systems. Faculty of Mechanical En-
gineering, TUE. 1999-11

J. Zwanenburg. Object-Oriented Concepts
and Proof Rules. Faculty of Mathematics
and Computing Science, TUE. 1999-12

R.S. Venema. Aspects of an Integrated
Neural Prediction System. Faculty of Math-
ematics and Natural Sciences, RUG. 1999-
13

J. Saraiva. A Purely Functional Implemen-
tation of Attribute Grammars. Faculty of
Mathematics and Computer Science, UU.
1999-14

R. Schiefer. Viper, A Visualisation Tool for
Parallel Program Construction. Faculty of
Mathematics and Computing Science, TUE.
1999-15

K.M.M. de Leeuw. Cryptology and State-
craft in the Dutch Republic. Faculty of
Mathematics and Computer Science, UvA.
2000-01

T.E.J. Vos. UNITY in Diversity. A stratified
approach to the verification of distributed
algorithms. Faculty of Mathematics and
Computer Science, UU. 2000-02

W. Mallon . Theories and Tools for the
Design of Delay-Insensitive Communicat-
ing Processes. Faculty of Mathematics and
Natural Sciences, RUG. 2000-03

W.O.D. Griffioen. Studies in Computer
Aided Verification of Protocols. Faculty of
Science, KUN. 2000-04

P.H.F.M. Verhoeven. The Design of the
MathSpad Editor. Faculty of Mathematics
and Computing Science, TUE. 2000-05

J. Fey. Design of a Fruit Juice Blending
and Packaging Plant. Faculty of Mechani-
cal Engineering, TUE. 2000-06

M. Franssen. Cocktail: A Tool for Deriv-
ing Correct Programs. Faculty of Mathe-
matics and Computing Science, TUE. 2000-
07

P.A. Olivier . A Framework for Debug-
ging Heterogeneous Applications. Faculty
of Natural Sciences, Mathematics and Com-
puter Science, UvA. 2000-08

E. Saaman. Another Formal Specifica-
tion Language. Faculty of Mathematics and
Natural Sciences, RUG. 2000-10

M. Jelasity. The Shape of Evolution-
ary Search Discovering and Representing
Search Space Structure. Faculty of Math-
ematics and Natural Sciences, UL. 2001-01

R. Ahn. Agents, Objects and Events a
computational approach to knowledge, ob-
servation and communication. Faculty
of Mathematics and Computing Science,
TU/e. 2001-02

M. Huisman. Reasoning about Java pro-
grams in higher order logic using PVS and
Isabelle. Faculty of Science, KUN. 2001-03

I.M.M.J. Reymen. Improving Design Pro-
cesses through Structured Reflection. Fac-
ulty of Mathematics and Computing Sci-
ence, TU/e. 2001-04

S.C.C. Blom. Term Graph Rewriting: syn-
tax and semantics. Faculty of Sciences, Di-
vision of Mathematics and Computer Sci-
ence, VUA. 2001-05

R. van Liere. Studies in Interactive Visual-
ization. Faculty of Natural Sciences, Math-
ematics and Computer Science, UvA. 2001-
06

A.G. Engels. Languages for Analysis
and Testing of Event Sequences. Faculty
of Mathematics and Computing Science,
TU/e. 2001-07

J. Hage. Structural Aspects of Switching
Classes. Faculty of Mathematics and Nat-
ural Sciences, UL. 2001-08

M.H. Lamers. Neural Networks for Analy-
sis of Data in Environmental Epidemiology:
A Case-study into Acute Effects of Air Pollu-
tion Episodes. Faculty of Mathematics and
Natural Sciences, UL. 2001-09

T.C. Ruys. Towards Effective Model
Checking. Faculty of Computer Science,
UT. 2001-10

D. Chkliaev. Mechanical verification of
concurrency control and recovery proto-
cols. Faculty of Mathematics and Comput-
ing Science, TU/e. 2001-11

M.D. Oostdijk . Generation and presen-
tation of formal mathematical documents.
Faculty of Mathematics and Computing
Science, TU/e. 2001-12

A.T. Hofkamp . Reactive machine control:
A simulation approach usingχ. Faculty of
Mechanical Engineering, TU/e. 2001-13

D. Bošnǎcki. Enhancing state space reduc-
tion techniques for model checking. Fac-
ulty of Mathematics and Computing Sci-
ence, TU/e. 2001-14

M.C. van Wezel. Neural Networks for In-
telligent Data Analysis: theoretical and ex-
perimental aspects. Faculty of Mathematics
and Natural Sciences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal Specifi-
cation and Analysis of Industrial Systems.
Faculty of Mathematics and Computer Sci-
ence and Faculty of Mechanical Engineer-
ing, TU/e. 2002-02

T. Kuipers. Techniques for Understanding
Legacy Software Systems. Faculty of Nat-
ural Sciences, Mathematics and Computer
Science, UvA. 2002-03

S.P. Luttik . Choice Quantification in Pro-
cess Algebra. Faculty of Natural Sciences,
Mathematics, and Computer Science, UvA.
2002-04

R.J. Willemen. School Timetable Con-
struction: Algorithms and Complexity. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est: Verifi-
cation of Probabilistic, Real-time and Para-
metric Systems. Faculty of Science, Mathe-
matics and Computer Science, KUN. 2002-
06

N. van Vugt. Models of Molecular Com-
puting. Faculty of Mathematics and Natural
Sciences, UL. 2002-07

A. Fehnker. Citius, Vilius, Melius: Guid-
ing and Cost-Optimality in Model Check-
ing of Timed and Hybrid Systems. Faculty
of Science, Mathematics and Computer Sci-
ence, KUN. 2002-08

R. van Stee. On-line Scheduling and Bin
Packing. Faculty of Mathematics and Natu-
ral Sciences, UL. 2002-09

D. Tauritz . Adaptive Information Filtering:
Concepts and Algorithms. Faculty of Math-
ematics and Natural Sciences, UL. 2002-10

M.B. van der Zwaag. Models and Log-
ics for Process Algebra. Faculty of Natural
Sciences, Mathematics, and Computer Sci-
ence, UvA. 2002-11

J.I. den Hartog. Probabilistic Extensions
of Semantical Models. Faculty of Sciences,
Division of Mathematics and Computer Sci-
ence, VUA. 2002-12

L. Moonen. Exploring Software Systems.
Faculty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2002-13

J.I. van Hemert. Applying Evolutionary
Computation to Constraint Satisfaction and
Data Mining. Faculty of Mathematics and
Natural Sciences, UL. 2002-14

S. Andova. Probabilistic Process Algebra.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2002-15

Y.S. Usenko. Linearization inµCRL. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2002-16

J.J.D. Aerts. Random Redundant Storage
for Video on Demand. Faculty of Mathe-
matics and Computer Science, TU/e. 2003-
01

M. de Jonge. To Reuse or To Be Reused:
Techniques for component composition and
construction. Faculty of Natural Sciences,
Mathematics, and Computer Science, UvA.
2003-02

J.M.W. Visser. Generic Traversal over
Typed Source Code Representations. Fac-
ulty of Natural Sciences, Mathematics, and
Computer Science, UvA. 2003-03

S.M. Bohte. Spiking Neural Networks.
Faculty of Mathematics and Natural Sci-
ences, UL. 2003-04

T.A.C. Willemse. Semantics and Verifica-
tion in Process Algebras with Data and Tim-
ing. Faculty of Mathematics and Computer
Science, TU/e. 2003-05

S.V. Nedea. Analysis and Simulations of
Catalytic Reactions. Faculty of Mathemat-
ics and Computer Science, TU/e. 2003-06

M.E.M. Lijding . Real-time Scheduling of
Tertiary Storage. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2003-07

H.P. Benz. Casual Multimedia Process An-
notation – CoMPAs. Faculty of Electri-
cal Engineering, Mathematics & Computer
Science, UT. 2003-08

D. Distefano. On Modelchecking the Dy-
namics of Object-based Software: a Foun-
dational Approach. Faculty of Electri-
cal Engineering, Mathematics & Computer
Science, UT. 2003-09

M.H. ter Beek. Team Automata – A For-
mal Approach to the Modeling of Collabo-
ration Between System Components. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2003-10

D.J.P. Leijen. Theλ Abroad – A Functional
Approach to Software Components. Fac-
ulty of Mathematics and Computer Science,
UU. 2003-11

W.P.A.J. Michiels. Performance Ratios for
the Differencing Method. Faculty of Mathe-
matics and Computer Science, TU/e. 2004-
01

G.I. Jojgov. Incomplete Proofs and Terms
and Their Use in Interactive Theorem Prov-
ing. Faculty of Mathematics and Computer
Science, TU/e. 2004-02

P. Frisco. Theory of Molecular Computing
– Splicing and Membrane systems. Faculty
of Mathematics and Natural Sciences, UL.
2004-03

S. Maneth. Models of Tree Translation.
Faculty of Mathematics and Natural Sci-
ences, UL. 2004-04

Y. Qian. Data Synchronization and Brows-
ing for Home Environments. Faculty of
Mathematics and Computer Science and
Faculty of Industrial Design, TU/e. 2004-
05

F. Bartels. On Generalised Coinduction
and Probabilistic Specification Formats.
Faculty of Sciences, Division of Mathemat-
ics and Computer Science, VUA. 2004-06

L. Cruz-Filipe . Constructive Real Analy-
sis: a Type-Theoretical Formalization and
Applications. Faculty of Science, Mathe-
matics and Computer Science, KUN. 2004-
07

E.H. Gerding. Autonomous Agents in Bar-
gaining Games: An Evolutionary Investiga-
tion of Fundamentals, Strategies, and Busi-
ness Applications. Faculty of Technology
Management, TU/e. 2004-08

N. Goga. Control and Selection Techniques
for the Automated Testing of Reactive Sys-
tems. Faculty of Mathematics and Com-
puter Science, TU/e. 2004-09

M. Niqui . Formalising Exact Arithmetic:
Representations, Algorithms and Proofs.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2004-10

A. L öh. Exploring Generic Haskell. Fac-
ulty of Mathematics and Computer Science,
UU. 2004-11

I.C.M. Flinsenberg. Route Planning Al-
gorithms for Car Navigation. Faculty of
Mathematics and Computer Science, TU/e.
2004-12

R.J. Bril . Real-time Scheduling for Me-
dia Processing Using Conditionally Guar-
anteed Budgets. Faculty of Mathematics
and Computer Science, TU/e. 2004-13

J. Pang. Formal Verification of Distributed
Systems. Faculty of Sciences, Division of
Mathematics and Computer Science, VUA.
2004-14

F. Alkemade. Evolutionary Agent-Based
Economics. Faculty of Technology Man-
agement, TU/e. 2004-15

E.O. Dijk . Indoor Ultrasonic Position Es-
timation Using a Single Base Station. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2004-16

S.M. Orzan. On Distributed Verification
and Verified Distribution. Faculty of Sci-
ences, Division of Mathematics and Com-
puter Science, VUA. 2004-17

M.M. Schrage. Proxima - A Presentation-
oriented Editor for Structured Documents.
Faculty of Mathematics and Computer Sci-
ence, UU. 2004-18

E. Eskenazi and A. Fyukov. Quanti-
tative Prediction of Quality Attributes for
Component-Based Software Architectures.

Faculty of Mathematics and Computer Sci-
ence, TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process Algebra.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2004-20

N.J.M. van den Nieuwelaar. Supervisory
Machine Control by Predictive-Reactive
Scheduling. Faculty of Mechanical Engi-
neering, TU/e. 2004-21

E. Ábrahám. An Assertional Proof System
for Multithreaded Java -Theory and Tool
Support-. Faculty of Mathematics and Nat-
ural Sciences, UL. 2005-01

R. Ruimerman. Modeling and Remodeling
in Bone Tissue. Faculty of Biomedical En-
gineering, TU/e. 2005-02

C.N. Chong. Experiments in Rights Con-
trol - Expression and Enforcement. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2005-03

H. Gao. Design and Verification of Lock-
free Parallel Algorithms. Faculty of Math-
ematics and Computing Sciences, RUG.
2005-04

H.M.A. van Beek. Specification and Anal-
ysis of Internet Applications. Faculty of
Mathematics and Computer Science, TU/e.
2005-05

M.T. Ionita . Scenario-Based System Archi-
tecting - A Systematic Approach to Devel-
oping Future-Proof System Architectures.
Faculty of Mathematics and Computing
Sciences, TU/e. 2005-06

G. Lenzini. Integration of Analysis Tech-
niques in Security and Fault-Tolerance.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2005-07

I. Kurtev . Adaptability of Model Trans-
formations. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science, UT.
2005-08

T. Wolle. Computational Aspects of
Treewidth - Lower Bounds and Network Re-
liability . Faculty of Science, UU. 2005-09

O. Tveretina. Decision Procedures for
Equality Logic with Uninterpreted Func-
tions. Faculty of Mathematics and Com-
puter Science, TU/e. 2005-10

A.M.L. Liekens. Evolution of Finite Pop-
ulations in Dynamic Environments. Faculty
of Biomedical Engineering, TU/e. 2005-11

J. Eggermont. Data Mining using Genetic
Programming: Classification and Symbolic
Regression. Faculty of Mathematics and
Natural Sciences, UL. 2005-12

B.J. Heeren. Top Quality Type Error Mes-
sages. Faculty of Science, UU. 2005-13

G.F. Frehse. Compositional Verification of
Hybrid Systems using Simulation Relations.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2005-14

M.R. Mousavi. Structuring Structural Op-
erational Semantics. Faculty of Mathemat-
ics and Computer Science, TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis of
Probabilistic Systems. Faculty of Mathe-
matics and Computer Science, TU/e. 2005-
16

T. Gelsema. Effective Models for the Struc-
ture of pi-Calculus Processes with Replica-
tion. Faculty of Mathematics and Natural
Sciences, UL. 2005-17

P. Zoeteweij. Composing Constraint
Solvers. Faculty of Natural Sciences,
Mathematics, and Computer Science, UvA.
2005-18

J.J. Vinju . Analysis and Transformation
of Source Code by Parsing and Rewriting.
Faculty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2005-19

M.Valero Espada. Modal Abstraction and
Replication of Processes with Data. Fac-

ulty of Sciences, Division of Mathematics
and Computer Science, VUA. 2005-20

A. Dijkstra . Stepping through Haskell.
Faculty of Science, UU. 2005-21

Y.W. Law . Key management and link-
layer security of wireless sensor networks:
energy-efficient attack and defense. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2005-22

E. Dolstra. The Purely Functional Soft-
ware Deployment Model. Faculty of Sci-
ence, UU. 2006-01

R.J. Corin. Analysis Models for Security
Protocols. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science, UT.
2006-02

P.R.A. Verbaan. The Computational Com-
plexity of Evolving Systems. Faculty of Sci-
ence, UU. 2006-03

K.L. Man and R.R.H. Schiffelers. Formal
Specification and Analysis of Hybrid Sys-
tems. Faculty of Mathematics and Com-
puter Science and Faculty of Mechanical
Engineering, TU/e. 2006-04

M. Kyas. Verifying OCL Specifications of
UML Models: Tool Support and Composi-
tionality. Faculty of Mathematics and Nat-
ural Sciences, UL. 2006-05

M. Hendriks . Model Checking Timed Au-
tomata - Techniques and Applications. Fac-
ulty of Science, Mathematics and Computer
Science, RU. 2006-06

J. Ketema. Böhm-Like Trees for Rewriting.
Faculty of Sciences, VUA. 2006-07

C.-B. Breunesse. On JML: topics in tool-
assisted verification of JML programs. Fac-
ulty of Science, Mathematics and Computer
Science, RU. 2006-08

B. Markvoort . Towards Hybrid Molecular
Simulations. Faculty of Biomedical Engi-
neering, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured Data.
Faculty of Mathematics and Natural Sci-
ences, UL. 2006-10

G. Russello. Separation and Adaptation of
Concerns in a Shared Data Space. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2006-11

L. Cheung. Reconciling Nondeterministic
and Probabilistic Choices. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2006-12

B. Badban. Verification techniques for Ex-
tensions of Equality Logic. Faculty of Sci-
ences, Division of Mathematics and Com-
puter Science, VUA. 2006-13

A.J. Mooij . Constructive formal methods
and protocol standardization. Faculty of
Mathematics and Computer Science, TU/e.
2006-14

T. Krilavicius . Hybrid Techniques for Hy-
brid Systems. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2006-15

M.E. Warnier . Language Based Secu-
rity for Java and JML. Faculty of Science,
Mathematics and Computer Science, RU.
2006-16

V. Sundramoorthy. At Home In Service
Discovery. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science, UT.
2006-17

B. Gebremichael. Expressivity of Timed
Automata Models. Faculty of Science,
Mathematics and Computer Science, RU.
2006-18

L.C.M. van Gool. Formalising Interface
Specifications. Faculty of Mathematics and
Computer Science, TU/e. 2006-19

C.J.F. Cremers. Scyther - Semantics and
Verification of Security Protocols. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2006-20

J.V. Guillen Scholten. Mobile Channels
for Exogenous Coordination of Distributed
Systems: Semantics, Implementation and
Composition. Faculty of Mathematics and
Natural Sciences, UL. 2006-21

H.A. de Jong. Flexible Heterogeneous
Software Systems. Faculty of Natural Sci-
ences, Mathematics, and Computer Sci-
ence, UvA. 2007-01

N.K. Kavaldjiev . A run-time reconfig-
urable Network-on-Chip for streaming DSP
applications. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2007-02

M. van Veelen. Considerations on Mod-
eling for Early Detection of Abnormali-
ties in Locally Autonomous Distributed Sys-
tems. Faculty of Mathematics and Comput-
ing Sciences, RUG. 2007-03

T.D. Vu. Semantics and Applications of
Process and Program Algebra. Faculty of
Natural Sciences, Mathematics, and Com-
puter Science, UvA. 2007-04

L. Brand án Briones. Theories for Model-
based Testing: Real-time and Coverage.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2007-05

