ARCHITECTURAL SUPPORT FOR CONTEXT-AWARE APPLICATIONS:
FROM CONTEXT MODELS TO SERVICES PLATFORMS

001
002
003
004
005

006

007
008
009
010
011
012
013
014
015
016

017
018
019

020

Telematica Instituut Fundamental Research Series

G. Henri ter Hofte, Working Apart Together: Foundations for Component Groupware

P. J.H. Hinssen, What Difference Does It Make? The Use of Groupware in Small Groups

D.D. Velthausz, Cost Effective Network Based Multimedia Information Retrievel

L. van de Wijngaert, Matching Media: Information Need and New Media Choice

R.H.]J. Demkes, COMET: A Comprehensive Methodology for Supporting Telematics Investment
Decisions

O. Tettero, Intrinsic Information Security: Embedding Information Security in the Design Process
of Telematics Systems

M. Hettinga, Understanding Evolutionary Use of Groupware

A. van Halteren, Towards an Adaptable QoS Aware Middleware for Distributed Objects

M. Wegdam, Dynamic Reconfiguration and Load Distribution in Component Middleware

I. Mulder, Understanding Designers, Designing for Understanding

R. Slagter, Dynamic Groupware Services — Modular Design of Tailorable Groupware

N.K. Diakov, Monitoring Distributed Object and Component Communication

C.N. Chong, Experiments in Rights Control: Expression and Enforcment

C. Hesselman, Distribution of Multimedia Streams to Mobile Internet Users

G. Guizzardi, Ontological Foundations for Structural Conceptual Models

M. van Setten, Supporting People in Finding Information: Hybrid Recommender Systems and
Goal-Based Structuring

R. Dijkman, Consistency in Multi-viewpoint Architectural Design

J.P.A. Almeida, Model-Driven Design of Distributed Applications

M.C.M. Biemans, Cognition in Context: The effect of information and communication support on
task performance of distributed professionals

E. Fielt, Designing for Acceptance: Exchange Design for Electronic Intermediaries

Architectural Support for
Context-Aware Applications:
From Context Models to Services
Platforms

Patricia Dockhorn Costa

‘= CTIT A

Ce tre fo Telemat l:s a nd
Inform

Telematica
Instituut

Enschede, The Netherlands, 2007

CTIT Ph.D.-Thesis Series, No. 07-108
Telematica Instituut Fundamental Research Series, No. 021 (TI/FRS/021)

Cover Design: Studio Oude Vrielink, Losser and Jos Hendrix, Groningen
Cover Photo: Photograph by Liam Delahunty
http://www liamdelahunty.com
Beatriz Milhazes, Peace and Love, 2006
Gloucester Road Tube Station, District and Circle Line
Underground London
Book Design: Lidwien van de Wijngaert and Henri ter Hofte
Printing: Universal Press, Veenendaal, The Netherlands

Graduation commitee:
Chairman, secretary: ~ prof.dr.ir. A. J. Mouthaan (University of Twente)
Promotor: prof.dr.ir. C. A. Vissers (University of Twente)
Assistant Promotors: dr.ir. M. J. van Sinderen (University of Twente)
dr. L. Ferreira Pires (University of Twente)
Members: prof.dr. C. Atkinson (University of Mannheim)
prof.dr. T. Plagemann (University of Oslo)
prof.dr.ir. S. Heemstra de Groot (Technical University of Delft)
prof.dr.ir. M. Aksit (University of Twente)
prof.dr.ir. R. Wieringa (University of Twente)

CTIT Ph.D.-Thesis Series, No. 07-108

ISSN 1381-3617; No. 07-108

Centre for Telematics and Information Technology, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

Telematica Instituut Fundamental Research Series, No. 021

ISSN 1388-1795; No. 021

ISBN 978-90-75176-45-2

Telematica Instituut, P.O. Box 589, 7500AN Enschede, The Netherlands

Copyright © 2007, Patricia Dockhorn Costa, The Netherlands

All rights reserved. Subject to exceptions provided for by law, no part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior written permission of the copyright owner. No part of this publication

may be adapted in whole or in part without the prior written permission of the author.

ARCHITECTURAL SUPPORT FOR
CONTEXT-AWARE APPLICATIONS:
FROM CONTEXT MODELS TO
SERVICES PLATFORMS

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,
op gezag van de rector magnificus,
prof.dr. W.H.M. Zijm,
volgens besluit van het College voor Promoties
in het openbaar te verdedigen
op woensdag 19 december 2007 om 15.00 uur

door
Patricia Dockhorn Costa
geboren op 11 februari 1978

te Belo Horizonte, Minas Gerais, Brazilié

Dit proefschrift is goedgekeurd door:
prof.dr.ir. C.A. Vissers (promotor), dr.ir. M.]. van Sinderen (assistent-promotor) en
dr. L. Ferreira Pires (assistent-promotor).

Abstract

Context-awareness has emerged as an important and desirable feature in
ubiquitous applications. This feature deals with the ability of applications to
utilize information about the user’s environment (context) in order to tailor
services to the user’s current situation and needs.

This thesis aims at providing an integrated solution for the development
of context-aware systems. The main objective is to facilitate the
development of context-aware applications, focusing on two aspects: on
offering context modelling abstractions and on providing infrastructural support
by means of a context handling platform. The context modelling abstractions
provide application developers with proper conceptual foundations that can
be extended and specialized with specific application requirements. The
context handling platform allows application functionality to be delegated
to the platform, which reduces application development effort, time and,
therefore, costs. This allows application developers to focus on their core
business, instead of being bothered with application realization details.

As applications become more complex and interconnected, there is an
increasing need for context modelling abstractions that are appropriate to:
(i) characterize the application’s universe of discourse; to (ii) support
common understanding, problem-solving, and communication among the
various stakeholders involved in application development; and to (iii)
represent context unambiguously. In order to cope with context modelling
requirements, we define a set of context modelling abstractions which are
based on conceptual modelling theories, and are supported by
developments in foundational ontologies.

Context-aware applications use and manipulate context information to
detect high-level situations, which are used to adapt application behaviours.
We propose a model-driven approach for the specification of situations in
context-aware applications and introduce a rule-based approach to
implement situation detection. In our approach, situations are specified
using a combination of UML class diagrams and OCL constraints. We

VIII

ABSTRACT

support a wide range of situation types, which can be composed of more
elementary kinds of context types. We discuss how to cope with
distribution and to exploit it beneficially for context manipulation and
situation detection. We employ a generic rule-based platform to support
the derivation of situations in a distributed fashion.

Finally, we provide a mechanism that facilitates the dynamic
configuration and execution of particular application behaviours with the
context handling platform, at platform runtime. This mechanism is based
on a mobile rule engine that autonomously gathers context and situation
values from distributed context processing components. This engine accepts
application behaviours written in ECA-DL, which is a domain-specific
language developed by us for the purpose of effectively specifying context-
aware reactive behaviours.

Acknowledgements

I would like to express my gratitude to all those who have helped me
throughout the PhD trajectory.

I start by thanking my promoter Chris Vissers for his impeccable
supervision, helpful insights and great wisdom. I also would like to thank
Luis Ferreira Pires and Marten van Sinderen who have been my daily
supervisors since 2002, first for the master’s, then for the PhD. In these
past years, Luis and Marten have taught me so much! They have been a
constant inspiration to me for their discipline, perseverance and dedication
to science and education. I thank them for becoming the researcher I am
today. I hope we continue working together for a long time, we are a great
team!

I'm honoured to have prof.dr. C. Atkinson, prof.dr. T. Plagemann,
prof.dr.ir. S. Heemstra de Groot, prof.dr.ir. M. Aksit and prof.dr.ir. R.
Wieringa as members of my PhD committee. I thank each one of them for
accepting the invitation.

I have collaborated with Giancarlo Guizzardi and Ricardo Neisse in two
chapters of this thesis, namely the Context Modelling and the Case Study
chapters, respectively. Giancarlo and Ricardo are impressive researchers,
and I'm glad we have worked together. This thesis would not be the same
without their collaboration. I thank them for that! In addition, during the
PhD I have worked with Laura Daniele and Nieko Maatjes whose master’s
theses have contributed to my work. I'm grateful to have had them as
students! I'm also grateful to my AWARENESS colleagues with which I
have cooperated throughout those years. Finally, I would like to thank
Rodrigo Mantovaneli for his amazing photoshop work with the cover of this
book.

Living abroad far from family and in a different (sometimes clashing)
culture can be difficult. ’'m thankful to all my friends for helping me to
overcome those difficulties and for making my life in the Netherlands so
joyful. In this respect, I would like to especially mention some of the old

ACKNOWLEDGEMENTS

and new Macandrian friends (Diana, Maarten, Arjan, Maartje, Ronald, Aleks,
Sander, Azita, Femke, Ivo, Laura, Dimitri, Danah, Kasia, Liga, Sha, Wahe,
Sarah and so many others), the extended Brazilian family (Ricardo, Tiago,
Rodrigo, Giancarlo, Renata, José Gongalves, Luiz Olavo, Luciana, Pablo,
Flavia, Sharon, Lia, Jaqueline, Isménia), the members of the ASNA group
(Dick, Maarten Wegdam, Tom, Laura, Annelies, Marloes, Cristian Tzolov,
Aart, Eduardo, Remco Dijkman, Remco van de Meent, Pravin, Kamran,
Hailiang, Teduh), and so many other interesting people I met along the way
(Agung, Susan, Diego, Sonia, Elfi, Andrew, Martine, Maria, Sorin, Olga,
Maarten Steen, Stanislav, Vania, Riemer, Valerie, Peter, etc.).

I would like to thank my colleagues at the Computer Science
Department of the Federal University of Espirito Santo for making me feel
part of the team so quickly. I'm looking forward to working with all of
them!

None of this would be possible without the support of my dear family
back in Muqui, my hometown. Against all the odds, my parents Carlos
Alberto and Maria do Carmo managed to provide me, my sister Fernanda
and my brother Pedro Henrique with the best education one can get. They
have my profound love and great respect for all they have achieved. I thank
my family for everything and for always being there for me!

Finally, I would like to thank my husband Jodo Paulo for the most
amazing years under the low sky! 1 thank him for the endless technical
discussions at home, for his unconditional support and for always believing
in me! To him I dedicate not only this book, but also my heart.

Patricia Dockhorn Costa,

Vitéria, October 2007.

CHAPTER 1.

CHAPTER 2.

CHAPTER 3.

CHAPTER 4.

Contents

Introduction

1.1 Background

1.2 Motivation

1.3 Related Work

1.4 Objectives

1.5 Approach

1.6 Scope and Non-Objectives
1.7 Structure

General Concepts

2.1 Context

2.2 Context-Aware Applications

2.3 Service-Oriented Architectures

2.4 Context-Aware Service-Oriented Platforms

State-of-the-Art

3.1 Context Modelling

3.2 Middleware and Platforms
3.3 Applications

Architectural Patterns and the Context Handling Platform
4.1 Context-Aware Patterns

4.2 Event-Control-Action (ECA) Pattern

4.3 Context Sources and Managers Hierarchy Pattern

4.4 Actions Pattern

4.5 The Context Handling Platform

4.6 Platform Services

4.7 Platform Stakeholders

4.8 Discussion

—_— —_ =
AN W W S O N OV W

NN
~J =

37
37
46
53

55
55
56
61
66
69
74
78
82

XII

CHAPTER 5.

CHAPTER 6.

CHAPTER 7.

CHAPTER 8.

CHAPTER 9.

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

Context Modelling

5.1 Characteristics of Context

5.2 Foundational Ontologies

5.3 Foundational Context Concepts
5.4 Context Models

5.5 Context Situation Models

5.6 Context Information Models
5.7 Discussion

Situation Realization

6.1 From Situation Specification to Situation Realization
6.2 Rule-Based Systems

6.3 Rule-Based Situation Realization

6.4 Mappings

6.5 Distribution Issues

6.6 Discussion

Controlling Services

7.1 The Controller

7.2 ECA-DL

7.3 Realization of ECA-DL Rules in Jess

7.4 ECA rules and the Situation Detection Framework
7.5 Discussion

Case Study

8.1 The Healthcare Application

8.2 The Context-Aware Policy Management Application
8.3 The Healthcare Application Prototype

8.4 Discussion

Conclusions

9.1 General Considerations

9.2 Research Contributions

9.3 TFuture Work

Mappings from OCL to Jess
ECA-DL Lifetime Constraints

Mappings from ECA-DL to Jess

Case Study Jess Rules

CONTENTS

83
84
84
89
96
105
111
119

121
121
124
129
138
143
152

155
155
161
181
198
204

207
207
225
232
240

243
243
244
249
253
263
265

271

CONTENTS XIII

References 277
Resumo 287

Publications by the Author 289

1.1

Chapter

Introduction

This thesis proposes an integrated solution for the development of context-
aware applications. The main objective is to facilitate the development of
context-aware applications by means of context modelling abstractions and a
context handling platform. The context modelling abstractions provide
application developers with proper conceptual foundations that can be
extended and specialized with specific application requirements. The
context handling platform allows application functionality to be delegated
to the platform, which reduces application development effort, time and,
therefore, costs. This chapter discusses background information, presents
the motivation of this thesis, outlines the main research objectives, and
presents the approach adopted.

This chapter is organized as follows: section 1.1 discusses background
information; section 1.2 motivates the work proposed in this thesis; section
1.3 discusses related work; section 1.4 outlines the main research
objectives; section 1.5 presents the approach adopted in the research;
section 1.6 elaborates on the scope of this thesis, and finally section 1.7
presents the structure of the thesis.

Background

Over the last years, we have seen an unprecedented adoption of the
Internet, communication and computing technologies everywhere in
society. In parallel, advances in mobile computing, ubiquitous devices,
software engineering, wireless and sensor technologies, offer the
opportunity to introduce more sophisticated and user-friendly services
[127]. Networked computing devices, getting increasingly smaller and
combined with various sensing technologies, are being used to make
physical environments “intelligent”. Enabled by these developments,

CHAPTER 1 INTRODUCTION

computation is increasingly embedded in our social activities and physical

environments [81].

Several fields of research have been combined to realize these advances,
such as ubiquitous computing (often called pervasive computing),
combination with mobile and distributed computing, sensor networks,
wearable computing and human-computer interaction. The following
paragraphs briefly introduce some of these areas of research [21, 126]:

Ublqultous computlng, or pervaswe computlng, supports the vision in
which computing is transparently integrated into our living environment
and daily lives. Everyday objects are empowered with computational
capabilities in order to enable users to interact with computing devices
more naturally and casually than we currently do with desktop
computers [124, 126]. Several research topics collaborate to realize the
ubiquitous computing vision, including mobile computing, distributed
computing, sensor networks, service-oriented computing and artificial
intelligence;

— Distributed computing is concerned with the coordinated use of
physically distributed computers and applications. It considers issues
such as communication transparency, data consistency and concurrency,
system scalability, asynchrony and heterogeneity;

— Mobile computing refers to the capability of embedding computational
power in portable and mobile computers and communication devices. It
relies on the use of wireless technologies, such as WiFi, GSM and GPRS
to enable wireless communication among devices;

- Sensor networks refer to networks of many, physically distributed sensor
devices which monitor environmental conditions, such as temperature,
humidity and pollution. This research field is concerned with how these
devices should cope with severe limitations on battery power,
computational capabilities, bandwidth and memory;

— Wearable computing refers to a field of research in which small,
portable computers are designed to be worn on the body during use.
This topic encompasses various lines of research such as user interface
design, pattern recognition, use of wearables by disabled people,
electronic textiles and fashion design.

Until recently, computation was limited to an interaction style in which
users provide to a desktop computer all the required input to perform
particular tasks. Nowadays, computation is evolving to an interaction style
in which explicit user intervention is gradually less required. Explicit user
inputs are being progressively replaced by conditions detected by sensors,
devices and computers distributed over the environment.

Technological advances in the areas mentioned above support (or
enable) the shift of computing from the desktop paradigm into a paradigm
in which computing is immersed in the dynamic world where we live and

1.2

MOTIVATION 3

act [81]. This paradigm shift poses many challenges, mainly related to whom,
how, when and where to deliver services in the myriad of situations that can be
encountered in the real world, which is the ever-changing context of use. In
this view, capturing and monitoring the context in which services should be
delivered, and adapting services according to the context and users’
preferences are essential requirements.

In this thesis we are particularly interested in applications that are
capable of autonomously adapting their behaviour in response to context
changes. These applications are called context-aware applications. Currently,
many applications are already capable of using location as a context
parameter for service adaptation, but an increasing number of opportunities
are appearing to enrich the users’ context, such as the users’ current
activities and medical conditions.

We define context as the set of, possibly interrelated, conditions in which an
entity exists [79]. This definition reveals that context is only meaningful with
respect to a thing that “exists” called an entity. The process of identifying
relevant context consists of determining the circumstances (“related
conditions”) of an entity (or entities) that are relevant for the service
provisioning.

Motivation

The following tele-monitoring scenario [6] illustrates the potential benefits
of context-awareness in the medical domain.

“Mr. Janssen is an epileptic patient and despite his medications, he still suffers
from seizures. Because of his medical condition, Mr. Janssen is unemployed, home-
bound, and his situation requires constant vigilance to make sure healthcare
pny%ssionals are alerted qf a severe seizure. Recently, Mr. Janssen has been provided
with a tele-monitoring context-aware application capable of monitoring epileptic
patients and providing medical assistance moments before and during an epileptic
seizure. Measuring heart rate variability and physical activity, this application predicts
seizures and contacts nearby relatives or healthcare professionals automatically. In
addition, Mr. Janssen can be informed moments in advance about the seizure, being
able to stop ongoing activities, such as driving a car or holding a knife. The aim is to
provide Mr. Janssen with both higher levels of safety and independence allowing him to
function more normally in society despite his disorder.”

Context-aware applications differ from traditional applications since
they use sensed information to adapt the service provisioning to the current
context of the user. In order to achieve that, context-aware applications, in

general, should be capable of:

CHAPTER 1 INTRODUCTION

Sensing context from the environment. The tele-monitoring application, for
example, should be capable of sensing Mr. Janssen’s physical conditions,
such as heart rate, as well as sensing his current location and the
location of relatives and healthcare professionals;

Observing, collecting and composing context information from various sensors. In
the tele-monitoring scenario, for example, the application should be
capable of observing Mr. Janssen’s heart rate variations and inferring
whether he is having an epileptic seizure. Furthermore, the system may
collect location information from various sensors to detect the closest
healthcare professionals and relatives;

Autonomously detecting relevant changes in the context. The tele-monitoring
application should autonomously detect the occurence of an epileptic
alarm;

Reacting to these changes, by either adapting their behaviour or by invoking
(composition of) services. Upon a seizure alarm, the tele-monitoring
application should invoke services to contact the closest available
healthcare professionals and relatives; and

Interoperating with third-party service providers. Location and epileptic seizure
alarms may be context information offered by services designed and
implemented by third-party stakeholders. In addition, services used to
contact Mr. Janssen’s relatives and healthcare professionals are most

probably offered by third-party telecommunication providers.

These and other characteristics pose many challenges to the development of

context-aware applications, such as:

1.

4.

5.

Support for context modelling abstractions that are appropriate to
promote common understanding, problem-solving, and communication
among the various stakeholders involved in application development
[51];

Bridging the gap between information sensed from the environment and
information that is actually syntactically and semantically meaningful to
the applications;

Gathering and processing context information from distributed context
services;

Dynamically adapting application behaviour (reactively and proactively);
and,

Tailoring service delivery as needed by the user and his context.

These challenges require proper abstractions and methodologies that

facilitate the development process of context-aware applications. In the

particular case of large-scale context-aware applications, the following

aspects have so far been (partially) neglected in the literature:

As applications become more complex and interconnected, there is an
increasing need for abstract context modelling techniques to facilitate
the specification of context models that are clearer and easier to

1.3

RELATED WORK 5

understand. What are the fundamental concepts that can be beneficially
used in context modelling?

— Information from several physically distributed context services may be
aggregated and interpreted to yield newly produced context
information, at application runtime. How to address runtime context
information aggregation and interpretation?

- In a ubiquitous computing world where the environment is equipped
with all kinds of sensors, applications may profit from context services
that are unknown to the application beforehand. How to address ad hoc
networking of context services?

Related Work

Much effort has been spent to tackle the challenges mentioned earlier. The
work presented in [56, 58], for example, introduces a conceptual
framework and an infrastructure for context-aware computing, partially
addressing challenges 1, 2 and 5. The basis of this work is a formal,
graphical context-modelling technique called CML (the Context Modelling
Language). CML extends Object-Role Modelling (ORM), which uses fact as
the basic modelling concept, and the situation abstraction to leverage on
facts to represent high level context information.

The framework presented in [7] proposes a rule-based sentient object
model to facilitate context-aware development in an ad-hoc environment.
The main functionality is offered in a tool that facilitates the development
process by offering graphical means to specify context aggregation services
and rules, tackling, to some extent, challenges 3 and 4.

The work presented by [16] proposes a broker architecture for pervasive
context-aware systems (CoBrA). This architecture aims at addressing
context representation, sharing, reasoning and privacy aspects, by means of
an intelligent agent called context broker. The work is based on semantic
web technologies, such as OWL and RDF, and it addresses, to some extent,
challenges 1, 2 and 3.

The context toolkit presented in [24] provides a set of abstractions that
can be used to implement reusable components for context sensing and
interpretation, partially tackling challenge 2. This work has pioneered in
proposing generic support for context-aware application development by
means of a conceptual framework. Since it has been presented in the early
stages of context-aware computing, several issues later identified, such as
the need for proper context modeling abstraction and adaptation support,
were not considered in [24].

Although much work has been proposed to address some of the
challenges we mentioned, an integrated solution aiming at tackling all of

1.4

CHAPTER 1 INTRODUCTION

them has not yet been provided. In addition, most of the approaches in the
literature are technology specific, focusing on solutions to specific
problems. Few approaches consider generic solutions, which aim at
providing conceptualizations and reusable architectural patterns.

Objectives

In this thesis we aim at providing an integrated solution for the
development of context-aware systems by addressing the main challenges
mentioned earlier.

The dynamic nature of context-aware applications, and the increasing
integration of these applications into our daily tasks in a variety of domains
(e.g., home, work and leisure), generate rapid changes in the requirements
for the technology to support these applications. Although it is not possible
to fully predict these changes, the supporting technology can be designed in
such a manner that it can be configured to match changing requirements,
preferably at system runtime. This calls for a high level of flexibility, which
increases development costs and complexity. It is not cost-effective to build
each individual application from scratch. For reasons outlined in the
previous section, it is too complex for each individual application to capture
and process context information just for its own use.

We aim at coping with these issues by means of a shared Context
Handling Platform to support context-aware applications. This platform
comprises, among others, reusable context processing and management
components, which facilitate context-aware application development and
deployment. It provides building blocks that can be combined and
specialized to satisfy specific application requirements. For example, the
platform provides special components that can take application-specified
rules and procedures as input in order to carry out application-specific
adaptation within the platform. Therefore, flexibility and adaptability are
characteristics of strategic importance in the Context Handling Platform.

In order to carry out application-specific adaptation, the platform needs
to properly understand the application’s universe of discourse. In particular,
the platform should be able to understand and reason about the context
situations that are of particular interest to these applications. In order to
cope with this issue, we propose basic conceptual foundations for context
modelling, which allow designers of context-aware applications to represent
relevant elements of a context-aware application’s universe of discourse.
Further, we present a situation-based approach that allows the specification
of context situations.

Furthermore, the platform may incorporate reusable services, which are

externally developed and provided by various third-party stakeholders. The

1.5

APPROACH 7

context models produced using our conceptual foundations are also
beneficially — applied to promote common understanding and
communication between the platform and these third-party services.

The objective of this thesis is to facilitate the development of context-
aware applications. We mainly focus on two aspects: offering context
modelling abstractions and providing infrastructural support by means of a
Context Handling Platform. Our context modelling abstractions provide
application developers with proper conceptual foundations that can be
extended and specialized with specific application requirements. The
context handling platform allows application functionality to be delegated
to the platform, which reduces application development effort, time and,
therefore, costs. This allows application developers to focus on their core
business, instead of being bothered with application realization details.

These objectives have been split into three sub-objectives, targeted to
particular stakeholders:

— To provide context-aware platform developers with a reference
architecture that can be extended and specialized to specific target
architectures;

-~ To provide context-aware application developers with a Context
Handling Platform in which context-aware applications can be
developed and deployed upon. This platform is an instance of the
reference architecture being proposed; and

- To provide context-aware application developers with context modelling
abstractions that serve as a foundation to be extended and specialized
with application specific requirements. These modelling abstractions are
appropriate to (i) define the application’s universe of discourse; (ii)
specify particular situations, which are state-of-affairs of interest to
applications; and (iii) specify context events, which are characterized by
situation transitions.

Approach

In order to achieve our goals, we begin by performing a state-of-the-art
survey on context-aware systems in general, identifying the main
characteristics, requirements and the concepts involved in context-aware
application development. Based on this survey, we identify the
requirements for modelling context and for building a generic and flexible
platform to support context-aware application development. The following
topics are relevant for the approach taken in this thesis.

1.5.1

1.5.2

CHAPTER 1 INTRODUCTION

Context modelling

In order to cope with context modelling requirements, we define a set of
context modelling abstractions that is based on conceptual modelling
theories [80]. As a basic distinction, we propose the separation of the
concepts of entity and context. We also propose that context should be
characterized as either intrinsic or relational. Further, we define a situation-
based approach which allows application designers to compose primitive
elements of the entities’ contexts, to yield more complex situations. We
motivate our concepts by relating them to developments in foundational
ontologies [51], which are in line with conceptual theories in the areas of
philosophy and cognitive sciences.

Following the application design process, we provide support for
bridging the gap between conceptual context models and context information
models. In the scope of context information models, we should refer to
context information as opposed to context. Context information refers to the
representation of (constituents of) context in an application, such that this
representation can be manipulated and exchanged. Situations in context
information models are detected based on context information. Issues that
become relevant for context information models relate to: (i) how context
is sensed; (ii) how context information is produced, learned, inferred and
used, and (iii) the validity and quality of context information.

In order to demonstrate the feasibility of the context modelling approach,
we propose a possible realization alternative based on a model-driven
approach, which enables context and situation realization elements to be
derived systematically from specification elements. We introduce a novel
rule-based situation realization alternative, which executes on mature and
efficient rule engine technology available off-the-shelf.

Context handling platform

Inspired by our state-of-the-art survey, we outline recurring problems that
appear in context-aware application development. For each of these
recurring problems, we propose architectural patterns that contain a
solution scheme, focusing on structural aspects with components, their
relationships and dynamic (behavioural) aspects. Using these architectural
patterns, we identify components that can be generalized and included as
part of the platform. These components form the platform building blocks
that are composed to meet application-specific requirements. For example,
using the Event-Control-Action (ECA) architectural pattern (Chapter 4) we
identify the need to distinguish the tasks of gathering and processing
context information from tasks of triggering actions in response to context
changes, under the control of an application behaviour description.

1.5.3

APPROACH 9

Once the generic components are identified, we are capable of defining
a complete context handling platform. This process includes the identification
and description of stakeholders involved in the platform development and

lifetime (Chapter 4).

Controlling services

Our context handling platform should be capable of providing (i) flexibility
to allow application-specific behaviours to be deployed at platform runtime;
(ii) extensibility to allow newly defined services and application-specific
reactive behaviours to be incorporated in the platform on demand, at
runtime; and (iii) adaptability to allow application-specific adaptation
according to changes in the context to be handled by the platform. We aim
at tackling flexibility, extensibility and adaptability requirements by means
of the Controlling services, which are offered by controller components.

Using our context and situation modelling theory, application
developers are capable of defining the configuration information necessary
to enable the platform to carry out application-specific functionality. This
configuration information follows a rule-based approach, which is in line
with the Event-Control-Action (ECA) pattern mentioned earlier. These
rules are called Event-Condition-Action (ECA) rules, and are composed of
three parts:

— An event part, which allows complex compositions of events that
represent any occurrences of interest in the user’s context;

— A condition part, which allows various combinations of context and
situation conditions;

An action part, which allows the specification of service invocations.

We develop a domain-specific language, coined ECA-DL, to allow the
specification of ECA rules. This language incorporates temporal aspects,
empowering application developers to define complex relationships
between situations, such as their temporal ordering and causal relations.
Since this language is specially developed for the purpose of specifying
context-aware application behaviours, it is expected to be more appealing
and easier to use than other general purpose languages.

Application-specific ECA rules are provided as input to controlling
services, at platform runtime. In order to process and execute ECA rules,
the controller component wuses discovery services, and performs
composition of context provisioning and action services. Context provisioning
services aim at providing information to reason about the context and
situations. Action services implement the actions to be triggered when
certain events occur and the context conditions are satisfied. In order to
detect events, the controller component (i) observes context and situation
information from context provisioning services; (ii) determines, based on

10

1.5.4

1.6

1.7

CHAPTER 1 INTRODUCTION

the observed context and situation information, whether situations hold or
not; and (iii) reasons about situation transitions.

Case study

Finally, as proof of concept, we demonstrate the feasibility of our approach
by developing context-aware applications using our context modelling
abstractions in combination with our proposed platform support. For each
of the case studies, we outline the design process following the development
approach proposed. In order to demonstrate the feasibility in a realistic
application, we have built an application prototype that implements the
design products obtained from the design activities. In addition, this
prototype allows us to critically assess our approach with respect to
performance and scalability issues.

Scope and Non-Objectives

In this thesis we focus on context-aware mobile computing systems and
context-aware networked applications that are widely distributed. We
consider the notion of context applied to the users of services provided by
context-aware applications and platforms, as opposed to computational
context or network resources context.

Our intention is to provide general support for developing context-
aware applications focusing on (i) conceptual context modelling, (ii)
application reactive behaviour modelling, and (iii) infrastructural support.
Furthermore, as part of the context handling platform development, we
address distribution, performance and scalability aspects by means of
situation reasoning distribution, as illustrated in Chapters 5, 6, 7 and 8.

In this thesis we do not extensively address (i) privacy, security and trust
issues, (ii) quality of context information, (iii) usability aspects of context-
aware applications, (iv) sensor technology, and (v) specialized reasoning
algorithms and computational models.

Structure

The structure of this thesis reflects the research approach we adopted to

achieve our goals. The remainder of this thesis is structured as follows:

— Chapter 2 — General Concepts. This chapter presents the basic terminology
and the fundamental concepts used throughout this thesis. Issues like
the distinction between context and context information are addressed. We

STRUCTURE 11

further introduce the notion of service-oriented architecture, which
describes the design principle underlying our context handling platform;

— Chapter 3 — State-of-the-Art. This chapter presents the state-of-the-art in
context-awareness. Our discussion focuses on three main branches of
research, namely context mode]]in(g, middleware and p]ag%rms, and
applications;

— Chapter 4 — Context-Aware Architectural Patterns and the Context Handling
Infrastructure. This chapter presents the architectural patterns we have
proposed to support the development of context-aware platforms and
applications. These patterns present solutions for recurring problems
associated with managing context information and proactively reacting
upon context changes. We demonstrate the benefits of applying these
patterns by discussing our context handling platform architecture. In
addition, this chapter elaborates on the stakeholders involved in the
platform development and commercialization;

— Chapter 5 — Context Modelling. This chapter presents the modelling
abstractions we propose to model context and situations. We focus on
providing modelling foundations that can be extended with application-
specific aspects;

— Chapter 6 — Situation Realization. This chapter aims at demonstrating the
feasibility of our situation modelling approach by proposing a rule-based
realization alternative. This solution is based on the use of a general-
purpose rule-based platform, which guarantees the efficiency of
situation detection;

— Chapter 7 — Controlling Services. This chapter addresses flexibility,
extensibility and adaptability aspects of the context handling platform.
We present a rule-based approach that can be used to configure the
platform in a flexible manner. We also define ECA-DL, which is a rule-
based language used for the specific purpose of defining reactive
behaviours of context-aware applications;

— Chapter 8 — Case Study. This chapter demonstrates the feasibility of the
development approach proposed throughout chapters 2 to 7 by means
of two design examples. The application scenarios considered are the
healthcare, and the policy management scenarios. These scenarios deal with
different application requirements, which demonstrate the suitability of
the context handling platform to support applications in different
domains. We choose one of the design products to be prototyped,
namely for the healthcare scenario. With the prototype we collect
measurements in order to assess scalability and performance issues on a
realistic context-aware application;

— Chapter 9 — Conclusions. In this chapter, we make a critical reflection on
the work presented in this thesis. We outline our most important

12 CHAPTER 1 INTRODUCTION

achievements and discuss the encountered drawbacks. Finally, we
identify the topics that require further investigation.
Figure 1-1 schematically depicts the structure of this thesis.

Figure 1-1 Structure of ’Chapteﬂ— Introduction ‘

the thesis

Chapters 2, 3 and 4 — General Approach

’ Basic concepts ‘

’ State-of-the-art ‘

’ Context-aware architectural patterns ‘

’The context handling platform architecture ‘

Chapter 5 — Context and Situation Modelling

l Structural context models ‘

lSituation models ‘

Chapters 6, 7 — Platform Building Blocks

’ Situation realization ‘

’ Controlling services ‘

Chapter 8 — Case Study
’ Context-aware application development with platform support ‘

’ Prototype design, implementation and evaluation ‘

’ Chapter 9 — Conclusions ‘

2.1

Chapter

General Concepts

This chapter presents the basic terminology and the fundamental concepts
used throughout this thesis. Issues like the distinction between context and
context information are addressed. We further introduce the notion of service-
oriented architecture, which describes the design principle underlying our
Context Handling Platform.

This chapter is organized as follows: section 2.1 introduces basic
concepts and the terminology related to context; section 2.2 elaborates on
the concept of context-aware applications; section 2.3 discusses service-
oriented architectures, and finally section 2.4 introduces our context

handling platform.

Context

Context is a concept that appears in various disciplines [85]. In philosophy
and cognitive sciences, Davies and Thomson [27] highlighted the
importance of understanding and studying context since “organisms,
objects and events are integral parts of the environment and cannot be
understood in isolation of that environment”. In linguistics [43, 95],
researchers seek to understand the impact of context in, for example,
choosing utterance style and utterance interpretation. In psychology [112,
128], researchers are interested in how changes in context affect various
cognitive processes, such as perception, reasoning, decision making, and
learning.

In computer science the notion of context has been first mentioned in
artificial intelligence [49, 73]. In this field, context appears as a means of
partitioning a knowledge base into manageable sets or logical constructs
that facilitate reasoning activities. More recently, with advances in mobile
computing, context has become a topic of interest to other areas of
computer science, such as telematics and ubiquitous computing. In these

14

2.1.1

CHAPTER 2 GENERAL CONCEPTS

areas, context is usually regarded as the set of environmental conditions that
can be used to adapt mobile applications to their user’s current situation
and needs. These areas are particularly interested in context due to
mobility, which generates opportunities to explore context: since the
context of the user changes frequently, applications running on the user’s
mobile devices may adapt their behaviour according to these changes.

In this scope, definitions of context found in the literature focus on
either the application or the application’s user, as indicated by [85]. With
the term application’s user we refer to the “end-user”, i.e. a human being
that uses the application. Chen and Kotz [18], for example, define context
from the perspective of the application. They regard context as the “set of
environmental states and settings that either determines an application’s
behaviour or in which an application event occurs that is interesting to the
user”. Conversely, Dey, Abowd, and Wood [25] define context as “the
user’s physical, social, emotional, or informational state”, thus focusing on
the application’s user, as opposed to focusing on the application. Similarly,
Zetie [129] describes context as “the knowledge about the goals, tasks,
intentions, history and preferences of the user that a software application
applies to optimize the effectiveness of the application”. The most referred
definition of context given by Dey et al. [22] balances the focus on both,
users and applications: “context is any information that can be used to
characterize the situation of entities (i.e. whether a person, place, or object)
that are considered relevant to the interaction between a user and an
application, including the user and the application themselves”.

Context versus context information

The definitions given above actually refer to context information as opposed to
context. We distinguish these concepts in our approach. We regard context
as the real world phenomena, while context information refers to the
representation of (constituents of) context in an application, such that this
representation can be manipulated and exchanged. In section 2.2.2 we
further elaborate on the concept of context information.

In this thesis we consider the following definition of context [79]:

Context: the set of, possibly interrelated, conditions in which an entity exists.

This definition reveals that context is only meaningful with respect to a
thing that “exists”, which we call here an entity. The concept of entity is
fundamentally different from the concept of context: context is what can be
said about an entity in its environment, i.e. context does not exist by itself.
Examples of entities are persons, computing devices and buildings. The
context of an entity may have many constituents, which are defined here as

2.1.2

CONTEXT 15

the “possibly interrelated conditions", or just context conditions. Context
conditions reflect particular aspects of the circumstances in which entities
exist. Examples of some context conditions of a person are the person’s
location, mental state, and activity. Together, these context conditions form
the entity’s context.

Context modelling

The process of identifying relevant context consists of determining the
“conditions” of entities in the application’s universe of discourse (e.g., a
user or its environment) that are relevant for a context-aware application or
a family of such applications.

Context model: the representation qf context conditions or circumstances which

are relevant for a context-aware application or a famil)/ qf such applications.

Context modelling: the process qf producing context models.

We distinguish two modelling phases in our context modelling approach,
namely, conceptual context modelling and context information modelling.
Conceptual context modelling aims at producing models which are
conceptual models of context. Conceptual models are, in the sense of [51,
80], representations of a “given subject domain independent of specific
design or technological choices”. In this scope, only the concept of context
(as opposed to context information) is relevant, since these models abstract
from how context is sensed, provided, learned, produced and/or used.
Context information modelling, on the contrary, aims at delivering models
that extend the conceptual models of context by introducing technology
aspects to the model, such as how context is sensed, gathered or learned.
Although only few definitions of context in the literature explicitly
distinguish between context and context information, and therefore also
between conceptual context modelling and context information modelling,
we argue that this distinction is fundamental in the development of context-
aware applications. We justify this argument based on the importance of
conceptual modelling in the application design process, as emphasized by
[51, 80]: “conceptual specifications are used to support understanding,
problem-solving, and communications, among stakeholders about a given
subject domain. Once a sufficient level of understanding and agreement
about a domain is accomplished, then the conceptual specification is used
as a blueprint for the subsequent phases of a system’s development
process”. Therefore, the quality of context-aware applications depends on
the quality of the conceptual context models upon which their development

is based.

16

2.2

2.2.1

Figure 2-1 Intuitive view
of a context-aware
application interacting
with a user and his/her
context

CHAPTER 2 GENERAL CONCEPTS

We believe that conceptual modelling of context should precede the
detailed design of context-aware applications, in a similar way as analysis
should precede the detailed design of an information system.

Context-Aware Applications

We discuss relevant aspects of context and context-aware applications in
the sequel.

Definition

Figure 2-1 depicts an intuitive view of a user in his/her context, and a
context-aware application (focusing on a single user only). We define a
context-aware application as follows.

Context-aware application: a distributed application whose behaviour is
affected by its users’ context.

user’s context

Vs
[) context-aware

user application

In Figure 2-1, the arrow “a” shows that the user and the context-aware
application interact. Similarly, the arrow “b” shows that the user’s context
and the context-aware application interact.

The interactions represented by arrow “a” enable, for example, user’s
input to be provided to the application, such as user commands and
preferences, and the use of the service delivered by the context-aware
application. The interactions represented by arrow “b” enable the context-
aware application to capture particular context conditions from the user’s
context.

As depicted in Figure 2-2, interactions take place at intersection points,
which are shared mechanisms between interacting entities. Two types of
shared mechanism are shown in this figure: one between a user and the
context-aware application, and the other between the user’s context and
the context-aware application. These shared mechanisms are represented in
Figure 2-2 by the intersections between a user and the context-aware

Figure 2-2 A context-
aware application, its
user and her/his context,
and the shared
mechanisms for
interaction

CONTEXT-AWARE APPLICATIONS 17

application (ip-a,.. ip-a,), and between his/her context and the context-
aware application (ip-b,.. ip-b,), respectively. Each of these intersections
symbolizes an interaction point (ip) [40, 106].

o) a
/zf user’s Vo user's
@ context, context,
user, user,

ip-a |

| ip-by | | ip-a, || ip-b, |
context-aware application

The intersection between a user’s context and a context-aware application
(ip-by.. ip-b,) includes sensors that detect the context conditions used by
applications to respond accordingly. An example of a sensor which is useful
for context-aware applications is a Global Positioning System (GPS) device,
which can be used to continuously track a user’s location. Context
information exchanged in interactions with the user’s context consists of
geographical coordinates for the user’s current location. Another example
of a sensor is a body thermometer, which can be used to monitor a patient’s
body temperature. Context information exchanged in interactions with the
user’s context in this case consist of the temperature measurements in
degrees Celsius.

Figure 2-3 depicts the graphical representation used in this thesis, which
is defined in [40, 106]. An interaction point is expressed by oval shapes
that overlap with the entities that share the interaction point. Interactions
taking place in interaction points ip-a; and ip-b, model the activities
performed in cooperation between the user and the context-aware
application, and between the user’s context and the context-aware
application, respectively. As defined in [40, 106], an “interaction models
the establishment of the result, abstracting from the possible complex
mechanism that lead to the establishment of the result”.

All' possible information types referring to context that may be
established in both ip-a and ip-b are defined in a context information model.

18

Figure 2-3 Entities with
shared interaction points

2.2.2

CHAPTER 2 GENERAL CONCEPTS

user’s
context,

user’s
context,

context-aware application

A user is always complemented by his/her context. Therefore, the user and
his/her context are always paired. Although in the real world users interact
with each other and their contexts influence each others’ contexts, these
(inter)relationships are not modelled by the context-aware application.
Therefore, from the context-aware application point of view, information
established in any paired interaction points (ip-a', ip-b) is independent
from information established in (ip-a™, ip-b'*)), and so forth.

Capturing context

In our definition of context-aware application we do not distinguish
between manually provided information and automatically acquired
(sensed) information. We prefer to give a wider definition of context
information, which encompasses a broader range of context information
types, regardless whether information is sensed or manually provided. Our
intention is to provide guidelines (by means of our context modelling
approach) for identifying context information types, rather than fixing pre-
defined sets of context information types, or prescribing whether
information is acquired or not.

It is actually the responsibility of the application designer to decide
whether context information is relevant to the application, since this
decision depends on the application’s universe of discourse and the
application’s state-of-affairs of interest. In addition, the computational
capabilities (sensor technology) available for building the context-aware
application typically determine the constraints for acquiring context
automatically or manually. Whether manually provided or automatically
acquired, we assume context information is always provided to applications
through interaction points of type ip-b (see Figure 2-3).

In this sense, the definition of context information mentioned in section
2.1 given by Dey et al. [22] suffices, since it allows one to (i) abstract from
whether information is manually or automatically acquired, and (ii) define a
broad range of context information categories. In this thesis we rely on this
definition of context information.

When considering context-aware applications, context consists of
possibly interrelated conditions in the real world (represented in our figures

Figure 2-4 Intuitive view
of context in the real
world (user’'s context)
and context information
ina context-aware
application

2.2.3

CONTEXT-AWARE APPLICATIONS 19

by the user’s context). Applications still need to quantify and capture these
conditions in terms of context information in order to reason about
context. Figure 2-4 shows an intuitive representation of the user’s context
conditions in the context-aware application by means of context information.
Context information values are depicted inside the context-aware
application. These values are approximations of the real world context
conditions of the user’s context. Only specific context conditions are
relevant to the context-aware application. The process of identifying
relevant conditions is part of the context modelling activities.

user's context context-aware

a application
'
context information
locationValue =...
user temperatureValue =...

heartBeatValue =...

b

sénsing

Situations

Modelling the context conditions in the application’s universe of discourse
allows application designers to represent all possible state-of-affairs in the
application’s universe of discourse without discriminating particular
situations that may be of interest to applications. For example, while we
may capture in a context model that a person may be married to another
person, it is not the objective of the context model to make statements
about particular instances of persons. Therefore, we do not explicitly
represent in a context model that John is married to Alice, or that John has
been married to Alice for 10 years. In order to enable the representation of
particular state-of-affairs, we introduce the concept of situation. Situations
are defined as follows:

Situation: particular state-of-affairs that is of interest to applications. A situation
is a composite concept whose constituents may be (a combination of) entities and
their context conditions.

Situations build upon context models since they can be composed of more
elementary kinds of context conditions, and in addition can be composed of
existing situations themselves. Examples of situations that may be of interest
to a context-aware application are “user is running and he/she has access to

20

2.2.4

CHAPTER 2 GENERAL CONCEPTS

his/her mobile phone”, and “user is in danger of an eminent epileptic
seizure and he/she is driving”. The first situation combines the context
conditions “user is running” and “user has access to mobile phone”. The
second situation combines the context conditions “user having an epileptic
seizure” and “user driving a car”.

In our approach we define situation types, which aim at characterizing
situations with similar properties. For example, the situation type “John is
within 50 meters from Alice” consists of all situation instances in which the
distance between John’s and Alice’s location is smaller than 50 meters.
Similarly, the situation type “Person is within 50 meters from another
person” consists of all situation instances in which the distance between any
two persons’ location is smaller than 50 meters.

A situation exhibits temporal properties, such as the time interval during
which the situation holds. As an example, consider the situations “John is
married to Alice” and “John and Alice are divorced”. From time ¢, to t,,
(e.g., for 10 years) John has been married to Alice. During this interval, at
any time, the situation “John is married to Alice” holds. In this way, we can
also define temporal operations for relating situations according to their
occurrence intervals, such as precedence, overlapping, and post-occurrence.

The process of defining situations and situation types is part of the
context modelling activities, which are discussed in Chapter 5.

Quality of context

Context-aware applications depend strongly on the availability and the
quality of sensors, or more generally, context sources. Context-aware
applications also depend on the availability and capabilities of portable
(mobile) devices that can be used to interact with the user. In the last years,
sensors and devices of higher quality are proliferating due to advances in
hardware and miniaturization. However, current sensors and devices are
not sufficiently accurate, and they may introduce noise, delays and
imperfections to the context information being sensed and/or measured.

Therefore, the quality of context information is strongly dependent of
the mechanisms used to capture the corresponding context conditions from
the user’s environment. Some context conditions may have to be measured,
and the measuring mechanisms may have a limited accuracy; other context
conditions may vary strongly in time, so that the measurement may quickly
become obsolete. Decisions based on context information taken in context-
aware applications may also consider the quality of this information, and
therefore context-aware applications also need meta-information about the
context condition values, revealing their quality.

)) bjects in th
Figure 2-5 Diagram of Orjeeaﬁ wme
the concepts related to

context (real world and SRR

applications)

2.3

SERVICE-ORIENTED ARCHITECTURES

ol [represented by objects in the
i LR Context T application
| Entity rl_ Context Ii Jittasy

information /
1.n VoY

, \
/ \
, / X
/ , ‘
/ ’
’ ’ \
1.n Y / \
,

Condition / !

value : K 2 Quality

.
in
é ,
,

Situation !
information

represented by

represented by

Figure 2-5 depicts a UML class diagram that summarizes the concepts
presented so far. This model represents context in the real world (user’s
environment) and in applications (as context information). Context always
refers to an entity, and can be represented by a collection of conditions. In
context-aware applications, context is referred to as context information,
and its corresponding conditions are represented by condition values in the
applications. In addition, these context condition values are related to some
quality measures, which determine the quality of the information (e.g., how
precise, accurate or fresh the information is).

The figure also represents situations, which are particular compositions
of entities and context conditions. Context conditions in a situation may
belong to different entities. A situation is represented as situation
information in context-aware applications.

Although we discuss context and situation information from the point of
view of condition values, context modelling can only be re-used and
generalized when (i) condition and situation types, and (ii) their semantics

and relationships are clearly defined. Chapter 4 focuses on context
modelling issues, which also include situation modelling.

Service-Oriented Architectures

Service-Oriented Architectures (SOAs) use an architectural style centred on
the concept of service that can be applied in the design of distributed
applications [77]. In this thesis, we adopt this architectural style for the
design of context-aware applications. In this sense, we can say that a
context-aware application provides a context-aware service to its users.

In order to understand the concept of service we consider the following

definition of system [79]:

22

Figure 2-6 A system’s

(a) internal perspective

and (b)
perspective

external

CHAPTER 2 GENERAL CONCEPTS

System: a regularly interacting or interdependent group qf items forming a unéﬁed
whole.

This definition acknowledges that a system has an internal perspective, which
consists of a group of items that are interdependent and interact regularly,
but also an external perspective, which gives the system its identity as a whole.
The service concept concentrates on the external perspective of a system, in
terms of the behaviour that can be experienced by the environment (users)
of a system. Therefore, a (complete) service specification consists of the
interactions between the system providing the service and the users of this
service, and the relationships between these interactions. This separates the
service (the supported behaviour) from the entity providing the service (the
system). Figure 2-6 depicts a system as (a) a regular group of items and (b) a
whole. Figure 2-6 also shows the system’s environment and the service this
system provides. The internal perspective of the system is irrelevant for the
definition of the service, as represented in Figure 2-6 (b).

As opposed to the figures depicted in the previous sections, which
represent the interacting entities, the figures presented in this section
represent the behaviours exhibited by entities, and the relations between
these behaviours. Behaviours are presented by oval shapes, while double-
sided arrows represent interactions.

b System parts
(@)

In service-oriented architectures, applications are composed of application

Service

(b)

parts by considering these parts only from the point of view of the services
that these parts provide. Application parts are often called application
components (or simply components) in the literature. From now on we use the
term component when referring to an application part. Components may not
be necessarily implemented using typical component-based technologies,
such as EJB [39] or CCM (CORBA Component Model) [87].

The service-oriented architecture approach implies that components
make use of each other’s services to cooperate in order to support the goals
of the application. In addition, services are the only way to interact with
components, enforcing in this way a discipline in the composition of the
application. Furthermore, service interactions in a service-oriented

Figure 2-7 Example of
an application
consisting of
components that use
each other’s services

2.3.1

SERVICE-ORIENTED ARCHITECTURES 23

architecture are usually implemented using open standard technologies, as
opposed to proprietary solutions.

Figure 2-7 depicts an application as a composition of components that
interact by invoking each other’s services. Directional arrows represent
relations of type use. The application controller component uses the services
of the Context manager component and the Action performer component,
and the Context manager component uses the services provided by the
Context sources i components.

Application
controller
Context
manager
Context Context Context
source 1 source 2 source 3

Service-oriented architectures are often seen as an evolution of component-

y

Action
performer

based architectures. In component-based architectures, components are
defined as the units of deployment of a distributed application, and can only
be reached through their interfaces. Service-oriented architectures resemble
this latter characteristic of component-based architectures, but do not
necessarily preclude the use of component technologies. However, when
component-based technologies are used in the implementation of service-
oriented architectures, application components can be components in the
sense of component-based architectures (units of deployment).

Although in the literature the term service-oriented architecture is
strongly related to Web Services [125], there are many other technologies
that can be used to implement service-oriented architecture. Examples of
these technologies are Jini, Java RMI/EJB and CORBA. Service-oriented
architecture is a design discipline of organising applications as composition
of services. Service-oriented architectures are normally built on top of a
middleware that supports the interactions between application components.

Service user and service provider roles

In most concrete service-oriented architectures there is a sharp distinction
between the roles of service user and service provider. For example, in
Figure 2-7 the Context manager component plays the role of service user
when interacting with the context sources i, but plays the role of a service
provider when interacting with the Application controller component. The
service of the Context manager component in this case is offered to the
Application controller, but in order to support this service the Context

24

2.3.2

Figure 2-8 Typical roles
in a service-oriented
architecture

CHAPTER 2 GENERAL CONCEPTS

manager has to use the services supported by the Context sources i
components.

The service concept can be applied recursively, in the sense that a
system component can provide a service, but at the same time it can shield
a whole composition of services from its service users. Figure 2-7 also
illustrates this situation, since the Context manager provides a service to the
Application controller as can be seen from the external perspective by the
latter application component. The designers of the Context manager know
that in order to provide its service, the Context manager needs to interact
with the Context sources i.

Service descriptions

Another important characteristic of service-oriented architectures is that
services should be described using some suitable notation in order to be
invoked by their users. Normally this description contains the definitions of
the interactions that a service supports, and information on how to perform
these interactions (e.g., the technology and address of the interface). Service
descriptions can be published in directories, which also provide services
themselves (registration and discovery services), allowing the potential
service users to discover and access these services either at design-time or
runtime.

Directories

(1) registration

Service
specification

N

1 description
1

(2) discovery

(3) interaction

Service
provider

Service
user

Figure 2-8 depicts the sequence of messages between the service user,
service provider and the directories. In order to publish the service, the
service provider registers the service description with a service directory
(message (1)). Potential users discover services of interest looking up in
services directories (message (2)). Message (3) represents the actual service
usage.

Often, middleware used in a service-oriented architecture offer basic
services for service publication and discovery. For example, in Web Services
architectures, UDDI repositories [120] are used as service directories, and
in CORBA, the OMG trader [88] can be used for the same purpose.

Figure
message
pattern

2.3.3

2-9 QOne-
interaction

Figure 2-10 Request-

response
pattern

interaction

SERVICE-ORIENTED ARCHITECTURES 25

Interaction patterns

Components in a service-oriented architecture may interact following
different interaction patterns. Some common interaction patterns for
service-oriented architectures include message passing, request-response,
subscribe-notify and publish-subscribe.

The message passing interaction pattern [62] is realized by one-way
message flow, sent by a service user, resulting in the conveyance of
information from the service user to the service provider. Figure 2-9 depicts
a schematic view of the one-way interaction pattern.

Service message
user

Service
provider

vV

The request-response interaction pattern [62] is realized by two related one-
way message flows, one for the request message and one for the response.
Figure 2-10 depicts a schematic view of the request-response interaction
pattern.

The request message, sent by a service user, results in the conveyance of
information from that service user to a service provider, requesting a
function to be performed by the service provider, followed by a second
interaction, called response. The response is sent by the service provider,
resulting in the conveyance of information from the service provider to the
service user in response to the request. Request and response messages are
always paired.

request

Service

Service)
provider

user response (

The subscribe-notify interaction pattern is realized by one-way request
message and, eventually, multiple one-way response messages, called
notifications. The request message is sent by the service user, requesting a
function to be performed by the service provider. The response message
may convey information to the service user in one of the following ways:
time-based, or event-based.

Time-based notifications are sent by the service provider from time to
time, in which the frequency of notifications should be specified in the
request message, or be pre-defined in the service specification.

Event-based notifications are sent by the service provider every time an
event of interest happens, i.e. the frequency of notification may vary
according to the occurrence of events. The subscribe messages should
identify the conditions under which the events are to be notified. This may
require the use of, for example, a pre-defined subscription language.

26

Figure 2-11 Subscribe-
notify interaction pattern

Figure 2-12 Publish-

subscribe
pattern

interaction

CHAPTER 2 GENERAL CONCEPTS

Alternatively, conditions for event notifications may be fixed in the service
specifications. Figure 2-11 depicts a schematic view of the subscribe-notify
mechanism.

subscribe
Service \ notify / Service
user / notify \ provider

The publish-subscribe interaction pattern is a combination of the one-way

message and the subscribe-notify interaction patterns. The publish-

subscribe mechanism provides a loosely coupled form of interaction with

respect to [38]:

— Space: interaction parties do not need to know each other location;

— Time: interaction parties do not need to participate in the interaction at
the same time;

— Synchronization: service users may asynchronously receive notification
messages, and service providers are not blocked while producing
information.

The realization of the publish-subscribe interaction pattern typically
requires the introduction of a mediator party (called here mediator) such as
the event channel of the CORBA notification services [89]. The mediator
plays the role of a service provider, while both publishers and subscribers
play the role of service users. Subscribers have the ability to express their
interest in a piece of information (called here event), or a pattern of events,
and are subsequently notified of any event, generated by a publisher that
matches their registered interest. Figure 2-12 illustrates the publish-
subscribe mechanism.

subscribe

Mediator
publish

Publishers initiate one-way messages to convey the desire to publish event
notifications with the mediator. Subscribers initiate a subscribe message
indicating the interest in receiving notifications about particular events or
event patterns. Variations of the publish-subscribe mechanism allow
subscribers specifying interest in event notifications based on, for example,
topic, content or type. Topic-based publish-subscribe allows participants
to publish event notifications and subscribe to particular topics or subjects,

2.4

2.4.1

CONTEXT-AWARE SERVICE-ORIENTED PLATFORMS 27

which are identified by keywords. Content-based publish-subscribe allows
the participants to publish and subscribe to event notifications based on the
actual contents of the event notifications. Finally, the type-based
mechanism allows participants to publish and subscribe to event
notifications according to event notification types (structures).

When a subscriber’s interest is matched against a publisher’s event
notification, the mediator initiates a message to convey a notify message to
the interested subscriber.

Context-Aware Service-Oriented Platforms

Motivation

Developing context-aware applications is costly and time consuming. An
application may use (combinations of) various types of context information
to provide its service, such as the user’s location, temperature, proximity,
and activity. In addition, applications may require complex computations to
reason about context, for example, for deriving whether the user is in a
meeting based on his/her current location and his/her proximity to certain
colleagues.

These requirements demand the use of (among others): (i) complex and
costly sensor technology to acquire context; (ii) communication
infrastructure to propagate context from sensors embedded in the user’s
environment to other application components that are physically
distributed; and (iii) computational power to undertake context processing
tasks that are complex and resource intensive.

In addition, the dynamic nature of context-aware applications, and the
increasing integration of these applications into our daily tasks in a variety
of domains (e.g., home, work and leisure), generate rapid changes in the
requirements for the technology to support these applications. Although it
is not possible to fully predict these changes, the supporting technology can
be designed such that it can be dynamically configured to match changing
requirements, preferably at system runtime. This calls for a high level of
application flexibility, which increases development costs and complexity.

For all these reasons, it is not cost-effective to build each individual
context-aware application from scratch. It is also too complex for each
individual application to capture and process context information just for
its own use. Consequently, context aware applications should be built as
families of applications.

28

2.4.2
Figure 2-13 Context
handling platform

offering support to two
context aware
applications

CHAPTER 2 GENERAL CONCEPTS

Context handling platform

We observe that similar functions are repeatedly and, therefore, inefficiently
implemented in different context-aware applications or family of
applications. For example, a similar mechanism used to capture location
information in a tourist application is used in an epileptic healthcare
application. These applications would greatly benefit from sharing the same
mechanism used to capture location information. Similarly, a number of
commonly used functions can be made available for reuse to various context-
aware applications, by means of generic services, which are offered by generic
components. We call a coherent and self-contained set of generic services to
support context-aware application development a Context Handling Platform.

In this thesis we aim at coping with the complexity and cost-
effectiveness of building context-aware applications by means of a shared
Context Handling Platform. Figure 2-13 illustrates our context handling
platform (in grey) offering support to two distinct context-aware
applications. Context-aware applications use generic services offered by the
platform and also implement specific services, which are offered by
application-specific components. Specific services typically consist of application
specific functions that are not worth generalizing, since they are too
specific, and therefore not used by other applications. In Chapter 4 we
discuss the context handling platform in detail.

user’s
context,

user's
context,

application-specific
components

application-specific
components

ip-e;

i context-aware
.. application;

application,

ip-6,

context-aware

context handling platform

Users interact with application-specific components through interaction
points of type ip-a. Interaction points of type ip-c and ip-d enable the
user’s context to interact with application-specific components and with
the platform, respectively. Interaction points of type ip-c represent the
mechanisms used to capture context that are application-specific and
cannot be shared. For example, a medical application that measures the

2.4.3

CONTEXT-AWARE SERVICE-ORIENTED PLATFORMS 29

oxygen level in the patient’s blood, is normally not allowed to share this
information with the platform or with other applications.

Analogously, interaction points of type ip-d represent the mechanisms
used to capture context information that may be shared by various
applications via the platform. An example is a GPS device that provides
location information of a user, which can be relevant to the different
applications that might be serving that user. Applications greatly benefit
from sharing the mechanism for capturing context, also because it reduces
the number of sensors that have to be embedded in the user’s context,
which reduces the feeling of intrusiveness generated by context-aware
applications.

Interaction points of type ip-e enable interactions between application-
specific components and the platform. This allows, for example,
application-specific services to make use of shared context information.

Requirements for building the platform

Flexibility and extensibility

The support to context-aware applications by a shared platform should
comprise reusable context acquiring, processing and management services.
Such services may be based on existing mechanisms that are already
deployed, but it should also be possible to dynamically add new services or
mechanisms to the platform that will evolve in the future. In particular, the
platform may have special components or services that can take application-
specified behaviours or procedures as input in order to carry out
application-specific context and situational reasoning mechanisms and
control actions. In this way application functionality is delegated to the
platform, reducing application development effort, time and, therefore,
costs. This allows application developers to focus on their core business,
instead of being bothered with application realization details. This calls for a
high level of flexibility and extensibility.

Figure 2-14 depicts the context handling platform serving two distinct
context-aware applications. A context-aware application is composed of
application-specific ~ components, and by platform components.
Application-specific components may invoke the platform services, through
interaction points of type ip-e, in two ways: by delegating application-
specific behaviours to the platform, which in turn will process this
particular behaviour on behalf of the application; and by traditionally
invoking services, i.e. offering typed parameters. In traditional services, the
behaviour of the service itself is defined at service design-time. Conversely,
in flexible services, the runtime behaviour of the service depends on the

30

Figure 2-14 Platform
flexibility

CHAPTER 2 GENERAL CONCEPTS

particular application behaviour being provided as input, and cannot be
defined completely at design-time.

application-specific
components

application-specific
components

l component,]—-[component, I

| component, l—'l component, |

context-aware application, context-aware application,

context handling platform

Figure 2-14 depicts two occurrences of component, offering flexible
services to applications 1 and 2. The behaviour exhibited by component,
upon receiving inputs from application-specific components depends on
the nature of the input. Since applications 1 and 2 offer distinct inputs,
component, behaves differently. Similarly, if application 1 offers a different
input other than the one depicted in Figure 2-14, component, will take up
yet a different configuration of components, and will behave differently. In
such flexible services, infinite configurations of components and services are
possible.

Our context handling platform should be flexible in order to support
flexible services. In addition, the platform should be extensible, so that
components and services (flexible or not) can be incorporated on demand
in order to cope with newly created applications, which require tackling
new introduced requirements.

Context and situation reasoning

Context-aware applications are adaptive by nature; therefore, the support
platform should be able to carry out adaptation on behalf of applications.
Adaptation requires handling contexts and situations. In order to support
adaptation, platforms should be able to bridge the gap between context
captured by sensors and information that are of particular interest to
applications. Several layers of context information processing may be
required to bridge this gap.

Different applications may be interested in the same context
information, and they may also be interested in context information
produced in the different phases of context information processing.
Therefore, particular context information should not be dedicated to a
single application, but rather be available to a set of collaborative

Figure 2-15 Context
and situation reasoning

CONTEXT-AWARE SERVICE-ORIENTED PLATFORMS 31

applications, in order to promote exchange of context, which enriches the
context-awareness. In addition, context information produced in the
different phases of processing should be also available to these applications.

Figure 2-15 depicts a graph of context processing components, which
are called here context sources (CS). This graph shows a particular
configuration of context sources, which can vary depending on the context
and situation reasoning activities required. In this example, context
information provided through interaction points of type ip-d is gathered by
components CS, and CS;, in applications 1 and 2, respectively. Several
layers of context sources are depicted (CS,...CS)), each performing a
particular piece of context or situation reasoning. Application, specific
components require context information provided by CS,, which in turn
gathers context information produced by CS;, and so forth. Application,
could also gather context information directly from other context sources,
such as CS, or CS,. Application, collaborates with application, by sharing
the context information produced by CS .

user’s
context,

user’s
context,

application-specific
components

application-specific
components

| s, J— o,]._{ cs, |

“..__context-aware application, " .+ context-aware application,

context handling platform

In order to support context and situation reasoning, context information
may be aggregated from different context sources using various composition
mechanisms. The platform should support composition of context sources,
where the composition itself may be defined at runtime by the application
developers. Figure 2-15 illustrates a particular composition of context
sources in which CS, and CS, deliver context information as required by
the applications. This composition may differ (at runtime) to meet
applications changing requirements.

32

CHAPTER 2 GENERAL CONCEPTS

Distribution

The platform should also be highly scalable. The number of context sources
and context-aware applications may be potentially large and will certainly
grow in the near future with further developments of sensor networks and
ubiquitous computing devices. At the same time, the amount of context
information to be handled by the platform will increase and new context-
aware applications may be developed (e.g. in the healthcare domain) that
require high volumes of context-related information (e.g. biosignals). It
should be possible to support increased numbers and volumes by adding
capacity to the platform without changing or disrupting the platform’s
operation.

In order to allow reuse, scalability and reliability of context and situation
reasoning, the context processing phases should be distributed over various
context sources. It should be possible to balance context information
processing among context sources, and to include or remove context
sources at platform runtime.

Mobility

Context-aware applications as well as context sources may be mobile
(running on a mobile device and attached to mobile objects, respectively),
and therefore connections may not rely on computer nodes known in
advance. Mobility is an important characteristic that requires explicit
consideration from the platform. Different qualities for data transfer and
different policies for accessing information and using resources may exist in
different environments that an application or context source may
experience during a single session. The platform should as much as possible
shield the applications from the mechanisms that are necessary to deal with
such heterogeneity.

Rapid development and deployment of applications

The development and deployment time of using the platform should be
reduced with respect to the time required to develop and deploy an
application without the support of the platform. Reduction in application
development time, costs and efforts should compensate for the time, costs
and efforts required to (i) learn how to use the platform, and (ii) install and
maintain the platform.

In order to decrease the learning curve, and therefore shorten the
development time, platforms should = offer application developers
mechanisms for deployment and configuration of applications and
components which are easy to use. These mechanisms should not require
much programming and configuration efforts.

2.4.4

Figure 2-16 Service
classification

CONTEXT-AWARE SERVICE-ORIENTED PLATFORMS 33

Classification of services

We classify the services provided by a context handling platform according

to their degree of generality as:

- General-purpose services: can be used in any application and any
application domain. Examples are a directory service, a naming service
and an event service;

- General context-aware services: can be used in any context-aware
application. Examples are a location discovery service, and an end-user’s
device monitoring service;

— Domain-specific services: can be used in any application in a specific
application domain. A patient record service is an example of domain
specific service in the health domain.

— Domain-specific context-aware services: can be used in any context-
aware application in a specific application domain. Examples of context-
aware services specific for the health domain are a tele-monitoring
service and a tele-treatment service.

In addition to these services, we also have the communication services

provided by the platform, which enable the components supporting the

services to interact. In this thesis, we are mainly interested in general
context-aware services. We regard the context handling platform as the
particular set of general context-aware services.

This service classification resembles the general purpose (horizontal)
and domain-specific (vertical) classification of services defined by the OMG
in the Object Management Architecture (OMA) [86]. In our platform we
can still distinguish context-aware services as an orthogonal class of services
with respect to the services in application domains like health, office and
entertainment. Figure 2-16 shows our classification of services.

specificity

Health Entertainment Office Other

services services 5“990” domains...
services

General-purpose context-aware services

General-purpose services

Basic communication service

generality

The service classification depicted in Figure 2-16 does not imply any specific
layering, i.e. components implementing these services are free to invoke

34

2.4.5

Figure 2-17 Interactions
between application-
specific and platform
components supported
by a middleware
platform

CHAPTER 2 GENERAL CONCEPTS

each other’s services in any specific way. In practise we observe that
components implementing more specific services tend to make use of more
generic services.

Middleware

The use of a service-oriented approach in the development of our context
handling platform architecture implies the introduction of a middleware
layer to support the interactions between service providers (application and
platform components). For example, the middleware platform can relieve
the application designer from explicitly addressing some common tasks
distributed applications perform, such as the handling of the reliability of
communication, the correlation of requests and responses, the registration,
location and activation of application components, the encoding and
decoding of messages, the use of a transport protocol, and the replication of
application components [2].

Figure 2-17 shows how application and platform components organised
according to the service-oriented approach interact on top of a middleware
platform. A benefit of the service-oriented approach is that the designer can
abstract from the mechanisms necessary to implement the distribution of
application components, which should be considered separately in the
scope of the internal structure of the middleware platform.

Application
controller - %/_\
\ Communicator
*A
Context
source 2

A

Context
manager

L
Context
source 1

Middleware
platform

The view of the application structure that hides the mechanisms that
support the interactions between the application components corresponds
to the ODP-RM notion of computational viewpoint [61].

By providing mechanisms that hide from application developers the
complexity of implementing component distribution and interactions, the
middleware platform is said to offer transparencies [121]. Examples of
transparencies include transaction transparency, which masks coordination of
activities between components in order to achieve consistency, and location,
migration and relocation transparencies, which allow the search and invocation
of services independently from their location, and from any relocation or
migration of components. According to our classification of services

Figure 2-18 Two layers
of middleware platforms

CONTEXT-AWARE SERVICE-ORIENTED PLATFORMS 35

presented in 2.4.4, these are transparencies offered by means of general-
purpose services, i.e. can be used by any application and any application
domain.

Similarly, other types of middleware may offer more specific services,
such as general context-aware services, which serve applications in the
context-aware domain. One could use a combination of middleware
platforms, such that a specific-services platform uses a generic-services
platform, as depicted in Figure 2-18. The context-aware middleware
platform offers transparencies by means context-aware services. This
middleware platform shields application components from dealing with
details of, for example, the distribution of context and situation reasoning
algorithms, or detecting and reacting upon context information changes,
and so forth. In this sense, our context handling platform can be seen as a
context-aware middleware platform.

Application
component’

Application
component?

context-aware
middleware

Application
component®
platform 1\ :

general \ V / \ \ /

middleware
platform

4

In Chapter 4 we discuss our context handling platform in detail.

3.1

Chapter

State-of-the-Art

This chapter presents the state-of-the-art in context-awareness. We discuss
related work using the concepts and terminology we have introduced in
Chapter 2. Our discussion focuses on three main branches of research:

— Context modelling: regards modelling techniques to represent and reason
about context and context information;

— Middleware and platforms: regards reusable building blocks that facilitate
the development and deployment of context-aware applications,
including conceptual frameworks to support context-aware application
development;

— Applications: includes innovative context-aware applications, regardless
the use of middleware, platforms or modelling techniques. Typically
these applications introduce novel context sensor mechanisms.

The remainder of this chapter is organized as follows: section 3.1 presents

examples of context modelling approaches; section 3.2 discusses related

work with focus on platforms and middleware, and section 3.3 provides
links to relevant initiatives focusing on applications.

Context Modelling

Several context modelling approaches have been proposed in the literature.
In the beginning, context models were based on simple data structures,
such as key-value pairs [113, 115]. Over time, context-aware applications
became more complex and interconnected, while demanding more
sophisticated modelling techniques that could provide more complex data
structuring.

Currently, most context modelling approaches are based on ontology
techniques [17, 103, 117]. Fewer models are based on the Unified Modelling
Language (UML) [13, 45] and the Object-Role Modelling (ORM) [56]. The

following sections enumerate relevant related initiatives.

38

3.1.1

Figure 3-1 Fragment of a

context
CML

model

using

CHAPTER 3 STATE-OF-THE-ART

Context modelling language (CML)

The work presented in [56, 57] describes the Context Modelling Language
(CML), which is the most relevant context modelling approach from those
based on ORM. CML is a formal, graphics-oriented context-modelling
technique that uses the fact as the basic modelling concept, and the situation
abstraction to leverage on facts in order to represent higher level context
information. A fact represents any information that is truth in the system,
and a fact type refers to the information type. Facts and fact types are
defined in an ORM model.

CML extends ORM to allow fact types to be categorized according to
their persistence and source, either as static (facts remain unchanged while
the entities they describe persist), or as dynamic (facts dynamically change to
reflect changes in the real world). Dynamic facts are further categorized
into profiled, sensed or derived types. This approach also includes the notion of
history facts, which associates a given fact to a time period in which the fact
holds. Figure 3-1 depicts a context model for a context-aware
communication application based on CML.

has mode synchronous
Communication - Communication EI
Channel (id) — Mode (name) —
requires device
Probability
(nr)+

Key

/A Sensed fact type

s Static fact type

O Profiled fact type

% Derived fact type

[] Temporal fact type

a Ambiguous/alternative fact type
=Key/uniqueness constraint
—Snapshot uniqueness constraint
=™ Alternative uniqueness constraint

Activity Location

(name)

(name)

* Jocated near(p,d) iff located at(p, 11)
and located at (d, 12)
and 11=12

engaged in(p1,a) dependsOn located at(p2,l)
iffpl = p2 --=Dependency
- - - Quality annotation

This model represents users (Person), users’ activities (Activity), devices
(Device), location of wusers and devices, communication channels
(CommunicationChannel) and communication modes (CommunicationMode).
Ellipses represent object types, while each box denotes a role played by an
object type within a fact type. User activities are associated with a temporal
fact, which allows activities to be recorded over time. Locations of both

3.1.2

CONTEXT MODELLING 39

users and devices are represented as “sensed” information, and this
information has a certainty value associated to it. This certainty is calculated
based on a probability estimate of that information to be correct.

In order to allow application designers to represent higher-level types of
context (if compared to facts), this approach allows the definition of
situations. Situations are defined by constraints on context facts expressed
using a variant of predicate logic, and can be combined to define more
complex situations. For example, the following expression defines a
situation in which the user is able (and allowed) to use a communication
channel:

CanUseChannel (person; channel): Wdevice * RequiresDevice [channel; device] e
LocatedNear [person; device] ~ PermittedToUse [person; device].

This expression defines that a person can use the communication
channel (CanUseChannel (person; channel)) when the device required to use this
communication channel (RequiresDevice[channel; device]) is close to the user
(LocatedNear [person; device]) and the user is permitted to use this device
(PermittedToUse [person; device]).

Standard ontology for ubiquitous and pervasive applications
(SOUPA)

SOUPA [16] is a proposal for a shared, standard ontology for supporting
ubiquitous and pervasive computing applications, based on the Web
Ontology Language (OWL) [74]. Part of the SOUPA vocabularies are
adopted from other ontologies, such as the Friend-Of-A-Friend ontology
(FOAF) [12, 98], DAMLTime and the entry sub-ontology of time [100],
the spatial ontologies in OpenCyc [70], Regional Connection Calculus
(RCC) [109], COBRA-ONT [15], MoGATU BDI ontology [97], and the
Rei policy ontology [66].

SOUPA consists of two sets of ontologies: SOUPA Core and SOUPA
Extension. The core ontologies attempt to define the vocabularies which are
common across different pervasive applications. This set of ontologies
consists of vocabularies for expressing concepts that are associated with
person, agent, belief-desire-intention (BDI), action, policy, time, space, and
event.

The extension ontologies extend the core ontology, and aim at providing
additional vocabularies which are common to specific applications. This set
of ontologies is defined with two purposes: (i) define an extended set of
vocabularies for supporting specific pervasive application domains, and (ii)
demonstrate how to define new ontologies by extending the SOUPA Core
ontologies. Figure 3-2 depicts a fragment of the SOUPA core ontology,
which describes a Spatial ontology. This fragment of the SOUPA model

represents a SpatialThing concept, which is associated with a three-

40

Figure 3-2 Fragment of
the SOUPA ontology
regarding Spatial
concepts [51]

3.1.3

CHAPTER 3 STATE-OF-THE-ART

dimensioned location coordinate data type. A SpatialThing represents a thing
that occupies space. The GeographicalSpace concept inherits from a SpatialThing.
The associations spatiallySubsumedBy and spatiallySubsumes characterizes the
contained and the contain relations, respectively.

hasLocation LocationCoordinates

SpatialThing -longitude
/\

-latitude

-altitude
I GeographicalSpace l
spatiallySubsumedBy spatiallySubsumes

Context ontology language (COOL)

The Context Ontology Language [117] aims at enabling context-awareness
and contextual interoperability in the service discovery and execution
phases in service-oriented architectures. CoOL is derived from an Aspect-
Scale-Context (ASC) model, which introduces the concepts of aspect, scale,
entity, context information, context and situation. Context information is defined in
CoOL as any information that can be used to characterize the state of an
entity concerning a speciﬁc aspect. An entity is an object, such as a person, or
a place. An aspect defines a particular classification of context, which may be
characterized by one or more related dimensions called scales. A context is
the set of all context information characterizing the entities relevant for a
specific task in their relevant aspects. A situation is defined as a set of all
known context information.

The CoOL model is a projection of the ASC model into three well-
known ontology languages: OWL and DAML+OIL [74], and F-Logic [67].
Figure 3-3 depicts the Aspect-Scale-Context (ASC) model. This model is
actually a metamodel upon which context-models should be based. It
defines that an aspect should have a default scale associated to it, and may
have a set of scales associated to it. A scale is (i) associated with one or
more aspects, (ii) constructed by context information, and (iii) associated
with a set of concepts related to possible operations supported by this scale.

Context information is associated with a scale, which defines the range
of valid instances of that context information type. A context information
type may also be associated with other types of context information, which
describe meta information about that type, and are called meta context
information types.

Figure 3-3 The Aspect-

Scale-Context
model

(ASC)

3.1.4

CONTEXT MODELLING 41

Aspect

ObjectProp. =1
e = hasDefaultScale: | Scale
ObjectP! >0
LODedroP: 20 hasScale: Scale

ObjectProp.

= hasAspect: M
- constructedBy:
— hasUnit: m
memberCheck:

ObjectProp.

ObjectProp.

ObjectProp.

...................................... .
type cardinality " ‘ ObjectProp. >0 X -
predicatel | WeCTTP- =2 haslntraOperation: | IntraOperation
——————————————————————————————————————— TP =2 haslnterOperation: | InterOperation
ContextInformation

| OvectProp. =1 characterizes:
| OolectProp: =1 asScale: m
| OblectProp. =0 minError:
ObjectProp. 20 meantron
L ONecPor. 20 hasQuality:

An example of aspect is GeographicCoordinateAspect that may have two scales,
namely WGS84Scale and GaussKruegerScale. A valid context information instance
would be an object, instance of one of these scales. This way, every context
information type has an associated scale, which defines the range of valid
instances of that context information type.

Situations are implicitly defined using a filtering mechanism based on F-
Logic. For example, it is possible to define queries, such as “get all entities
where the current state is near, with respect to the aspect place”, which
filters the context information by specitying conditions (near) on the aspect
of interest (place). The corresponding F-Logic query would be:

FORALL E,C,S,V <- C:"urn:cool"# Contextlnformation AND C["urn:cool"#characterizes->E]
AND C["urn:cool"#hasScale->>S] AND S['urn:cool"#hasAspect->>"urn:aspects"#Place]
AND C["urn:cool"#hasValue->V] AND equal(V,"urn:dist"#Near).

Where E states for entity, C for context information, S for Scale and V
for value.

Context ontology (CONON)

The Context Ontology (CONON) [53] proposes a general context model
(called an “upper level ontology”) that supports domain-specific
specializations. The CONON ontologies are serialized using OWL-DL,
which uses description logics to define reasoning and inference rules.
Situations are explicitly defined using description logics. Figure 3-4 depicts a
fragment of the CONON upper level ontology.

42

Figure 3-4 The CONON
upper ontology

CHAPTER 3 STATE-OF-THE-ART

Upper
Ontology

Domain-Specific
Ontologies

/-:ome«Domain Ontology
Office-Domain Ontology

Legend: O owl:Class —— rdfs:subClassOf = — owl:Property

The context model assumes a set of abstract concepts for the foundations of
the ontology. These concepts describe a physical or a conceptual object
including Person, Activity, Computational Entity (CompEntity) and Location. The reason
for assuming this particular set of concepts has not been reported in the
documentation we have studied. The upper ontology defines a set of most
used concepts, such as service, application, device, network, and so forth.
Each of these abstract concepts is associated with attributes and
relations with other concepts. The built-in OWL property owl:subClassOf
allows for hierarchically structuring sub-class concepts, thus providing
extensions to add new concepts that are required in a specific domain.
The following examples illustrate how situations can be modelled in
CONON:
— Person is sleeping: (?u locatedin Bedroom) ~ (Bedroom lightLevel LOW) ~ (Bedroom
drapeStatus CLOSED) = > (?u situation SLEEPING)
— Person is showering: (u locatedln Bathroom) ~ (Bathroom doorStatus CLOSED)
(WaterHeater status ON) => (?u situation SHOWERING)
The first expression defines that a person is in situation sleeping (?u situation
SLEEPING) when he or she is located in the bedroom (?u locatedin Bedroom), the
lights are low in the bedroom (Bedroom lightLevel LOW), and the bedroom door
is closed (Bedroom drapeStatus CLOSED). The second expression defines that a
person is in situation showering (?u situation SHOWERING) when he or she is
located in the bathroom (?u locatedin Bathroom), the bathroom door is closed
(Bathroom doorStatus CLOSED), and the water heater is turned on (WaterHeater
status ON).

3.1.5

CONTEXT MODELLING 43

Discussion

Most of the approaches towards context modelling presented here do not
explore the benefits of conceptual modelling as the first phase in the design
process. Therefore, the distinction between the context concepts and
context information is not explicitly discussed. These approaches consider
technological issues already in the beginning of the design process, giving
computational issues precedence over human understandability.

In addition, these approaches do not consider ontologically well-
founded theories to support their modelling choices. For example, the
concepts of context and entity are frequently used interchangeably, which
does not reflect the fundamental characteristics of these concepts.

We have identified a set of parameters to compare the context
modelling approaches presented here. These parameters have been
discussed in detail in chapter 2, sections 2.1 and 2.2. Our intention is not
to be complete with respect to modelling requirements, but to highlight the
lack of some desirable characteristics in current approaches. This discussion
forms the motivation for our own context modelling approach, presented in
Chapter 5. The following criteria have been used for the comparison:

— Support for conceptual modelling: conceptual modelling helps promoting
common understanding, problem-solving, and communication among
the various stakeholders involved in application development since the
beginning of the development process;

— Support for ontological foundations: since conceptual modelling focuses on
supporting structuring and inferential facilities that are psychologically
grounded [9], the adequacy of conceptual models rests on how it
contributes to common understanding. Therefore, it is important to
justify the modelling decisions with foundational ontologies [4, 6],
which are theories based on proven results from conceptual theories in
philosophy and cognitive sciences;

— Separation of context and context information: context and context
information are fundamentally different concepts, and should be treated
as such in context modelling;

— Support for situation reasoning: in addition to providing proper
characterization of the application’s universe of discourse, context
modelling techniques should offer means to represent particular state-
of-affairs of concern, which are often called situations;

— Support for situational tempora] aspects: context-aware application
behaviours can be defined in terms of how applications evolve from
situation to situation. This requires mechanisms that reason about
temporal aspects, such as situation duration, precedence, and

overlapping;

44

Table 3-1 Evaluation of
context modelling
approaches.

Legend:

e e = comprehensive
support

= partial support

X = no support

CHAPTER 3 STATE-OF-THE-ART

— Support for quality of context information: context-aware applications actually
use context through context information, which is the context measured
by sensor mechanisms. These measuring mechanisms may introduce
imperfections, which affects the quality of the information (quality of
context). Therefore, context information modelling techniques should
provide support for modelling the quality of context information.
Examples of quality parameters are accuracy and freshness.

— Tool Support: context modelling approaches should offer tool support for
(graphically) representing context and situation models. Ideally, these
tools should also offer support for brigding the gap between context
models and application realizations.

In Table 3-1 we present a comparative table evaluating the aforementioned

context modelling initiatives using the dimensions just presented. We

indicate whether the project addresses the respective dimension with the
symbol ®. The symbols ®¢, and ® demonstrate that the project
comprehensively addresses or partially addresses the dimension,
respectively. The symbol x indicates that the project does not address the

dimension.

dimension conceptual ontological context Situa- situation quality tool
modelling foundations and tion tempo- of support
context reaso- ral context
project informa- ning aspects
tion
CML X X X oo U oo X
SOUPA . X X X X . .
CoOL J X X oo X J .
CONON . X X oo X . .

SOUPA, CoOL and CONON partially (and implicitly) address conceptual
modelling by providing an upper level ontology that represents general
concepts, and can be further extended with particular application or
domain requirements. However, this (partial) support does not provide the
level of abstraction required in the conceptual modelling phase, since the
selection of the particular concepts presented in the upper ontology has not
been justified from a conceptual modelling point of view, as discussed in
chapter 2, section 2.1.2 .

None of the initiatives support or refer to results from ontological
foundations in their context modelling approach. Analogously, none of the
projects explicitly distinguishes the concepts of context and context
information. In CML, in particular, there is no graphical (nor semantic)
distinction between the concepts of context and entity, which is
inconsistent with the definition of context we have provided.

CONTEXT MODELLING 45

Except for SOUPA, all initiatives fully support situations by means of
logic-based approaches, such as description logics or F-logics. However,
although it is possible in most models to represent situations, these models
do not allow the definition of temporal relationships amongst situations.
CML partially supports temporal aspects of situations by means of defining
temporal parameters to the situation, such as situation starting time and
ending time. However, temporal relationships between situations are not
explicitly supported by CML. CoOL and CONON do not define a suitable
notion of time with respect to situations; therefore, it is not possible to
define situation duration or any situation temporal relations, such as
situation duration or precedence.

Except for CML, all approaches offer tool support for graphically
representing context. However, there is no support for graphically
representing situations, which are often defined in terms of plain text using
some sort of logics. Although CML is based on a graphical notation, CML
does not provide tool support for graphically representing both context and
situations. We consider tool support as an essential requirement for our
context modelling approach.

With respect to the support for quality of context information, CML
provides strong support by means of defining various quality of context
parameters, such as freshness and accuracy. CONON, CoOL and SOUPA
acknowledge the importance of quality of context by partially addressing
some quality parameters, such as freshness.

We conclude from our research that there is complete lack of support
to conceptual modelling of context in most current approaches, and,
therefore, we should address this aspect with particular interest in our
context modelling abstractions. We have also seen that many of the related
initiatives address situation modelling, but none provides the required level
of expressiveness, especially with respect to temporal aspects. In particular,
the situation theory presented in CML can be used as an inspiration for our
own context modelling approach, since it tackles (to some extend) many of
the issues required for modelling context and situations. We have also
learned from our research that it is useful to provide metamodels with
which application developers can specialize with application-specific
concepts. Using a metamodelling approach, application developers are
provided with a starting point and guidelines that can facilitate the design
process.

46

3.2

3.2.1

Figure 3-5 Example
configuration of the
context toolkit
conceptual framework

CHAPTER 3 STATE-OF-THE-ART

Middleware and Platforms

Various platforms and middleware to support context-aware development
have been discussed in the literature. We present here some initiatives that
we consider most relevant.

The Context Toolkit

The context toolkit [24] provides a set of abstractions that can be used to
implement reusable components for context sensing and interpretation.
This work has pioneered in proposing generic support for context-aware
application development by means of a conceptual framework.

The widget abstraction represents a component that is responsible for
acquiring context information directly from sensors, proving a shielding
mechanism to allow uniform usage of sensors, regardless of differences in
technology. Interpreters combine and interpret context from widgets to
provide higher level context information. Aggregators combine related
context information from different sources (widgets, interpreters or other
aggregators) in order to provide compound context information from a
single component. Finally, services can be used by context-aware applications
to invoke actions using actuators, and discoverers are the components used by
applications to locate suitable widgets, interpreters, aggregators and

services.
N
Aggregator
Widget Widget
Sensor ™ .:"“éenso.r..'

Figure 3-5 depicts a particular configuration of the context toolkit, with two
widget components and an aggregator component. This aggregator fuses
context information provided by these two widgets that encapsulate two
sensors. These sensors could provide, for example, the location of a person
(by means of a GPS device) and the current schedule of that person. Since
these are particular pieces of context information from the same person,
the application might be interested in aggregating them, using this
particular instance of the Aggregator component. The activities necessary to
aggregate context information from different widgets are hard coded in the
aggregator component. The toolkit does not provide means to specify and

3.2.2

Figure 3-6 The CoBrA
architecture

MIDDLEWARE AND PLATFORMS 47

configure particular aggregation activities at runtime, when the aggregator
component is already running.

The context broker architecture (CoBrA)

The CoBrA project [16] is an agent-based architecture for supporting the
development of context-aware applications. Central to this architecture is
an agent called context broker that maintains a shared model of context
based on SOUPA (see section 3.1.2) on behalf of a set of collaborating
agents, services, and devices using this broker.

The context broker can infer knowledge based on information sensed
from the physical sensors and can detect and resolve inconsistent
knowledge that often occurs as the result of imperfect sensing. CoBrA also
proposes a policy language that allows users to control distribution and
notification of user’s context information.

Figure 3-6 depicts the CoBrA architecture. A context broker acquires
context information from heterogeneous sources, such as smart tag sensors,
devices, and gadgets. The broker aims at aggregating context in a model
(SOUPA ontology) that is then shared with other collaborative entities.

[
tabase

Semantic Web &

Web Services
(RDF, DAML+OIL & OWL)

Information Servers
(Exchange Server, iCal,
YahooGroups, etc.)

(MySQL)

Contexts in External Sources

Context-Aware Devices Context-Aware Agents

X
g

s“

© Bluetooth Context

knowledge base

Context
Reasoning Engine

Context
Acquisiton Module
Privacy
Management Module

SOAP + RDF/OWL FIPA-ACL + RDF/OWL

Ethernet

Ethernet

ol

Contexts in the Intelligent Spaces

Brdge [BP

Smart Tag Sensors Environment Sensors
(Radio Frequency Identification) (Xanboo & X10 technology)

2> &

Device & Gadget Sensors
(Java Ring, SmartCard etc.)

The context broker consists of four functional components:

— Context Knowledge Base: manages the centralization of the context
broker’s knowledge, which includes the definitions described in the
SOUPA ontology. This detects
inconsistencies;

— Context Reasoning Engine: reasons about context information in order

component also and resolves

to provide higher level context;
— Context Acquisition Module: acquires contextual information from all
kinds of context sources and

48

3.2.3

Figure 3-7 The Gaia

architecture

3.2.4

CHAPTER 3 STATE-OF-THE-ART

— Privacy Management Module: aims at protecting privacy by enforcing
policies that users have defined to control the sharing and use of their
contextual information.

Middleware infrastructure to enable active spaces (Gaia)

Gaia [105] is a middleware infrastructure aiming at facilitating the
development and deployment of context-aware applications in active
spaces. The term active space refers to spaces (e.g., office rooms and homes)
that are equipped with a large variety of devices, being capable of sensing
user actions in order to assist users in different tasks. The Gaia middleware
proposes a set of core services for building applications to be developed as
loosely coupled components.

Active Space Applications

Application Framework

Space
Replc))sitory M]Z‘rllzrger Context Prseaic | ‘Coutens
. i Service i
Service Service Hile Symem Service

Component Management Core

[ouIaYy eren

Figure 3-7 depicts the Gaia architecture. Gaia’s five basic services (called
Gaia Kernel services) are the Presence Service, Context Service, Context
File System, Space Repository Service, and Event Manager Service. These
services offer functionality to, respectively, (i) detect people, applications
and devices entering and leaving the space, (ii) query and register for
context, allowing applications to find and use the proper context
information providers, (iii) organize context information in an effective
way, (iv) maintain a space repository with hardware and software
descriptions, and (v) monitor event sharing among entities in the space.

Gaia’s applications use a set of component building blocks, organized as
the Gaia Application Framework, to support applications running in an
active space. The framework provides support for application mobility,
adaptation, and dynamic binding. The Active Space Application layer
contains applications and provides functionality to register, manage, and
control these applications through the Gaia Kernel services.

Reconfigurable context-sensitive middleware (RCSM)

The RCSM [118] aims at facilitating the development and runtime
operation of mobile context-aware applications. In this approach, context-

3.2.5

MIDDLEWARE AND PLATFORMS 49

aware application-specific components should implement two separate
parts: (i) an interface that encapsulates the application’s context sensitivity,
such as the list of contexts the application uses, a list of context-triggered
actions the application provides, and the rules defining under which context
conditions the actions should be triggered; and (ii) the actual
implementation of the context-triggered actions that the application must
provide. In order to specify application-specific interfaces, RCSM provides
the applications with an Interface Definition Language (IDL). Action
implementations are not limited to any specific programming language.

IDL interfaces are compiled to produce Adaptive Object Containers
(ADC), which are the underlying system to acquire context information. It
also communicates with others ADCs in order to activate actions. The
communication among ADCs is supported by a context-sensitive object
request broker (R-ORB), similar to the (CORBA ORB) as the key
mechanism for providing communication transparency. The R-ORB also
performs device and service discovery.

Pace middleware

The Pace middleware [58] consists of a set of components and tools that
can be combined and used by application developers to facilitate the
development of context-aware applications. The following components are
described by the Pace middleware:

— Context management system: provides mechanisms to perform
aggregation and storage of context information. The underlying context
modelling approach supported by the Pace middleware is based on CML
(see section 3.1.1);

— Preference management system: manages user’s preferences in order to
trigger actions according to the context and user’s preferences;

— Programming toolkit: offers a conceptual model that provides a
mechanism for invoking actions by evaluating choices with respect to
user preferences and context information;

— Messaging framework: aims at facilitating the communication between
the different components of the middleware and context-aware
applications. It offers transparencies similar to traditional middleware,
such as CORBA;

- Schema compiler toolset: provides a set of tools capable of generating
code. For example, it provides SQL scripts to load and remove context
model definitions from relational databases, which are used to store
context information over time.

50

3.2.6

CHAPTER 3 STATE-OF-THE-ART

Discussion

Most of the platforms and middleware that support context-aware
application development focus on providing mechanisms for (i) resource
and service discovery, (ii) presence of users and devices in smart places, (iii)
communication amongst applications and devices in a smart environment,
and (iv) transparent context sharing. Few approaches concentrate on
context reasoning activities, which combine well-founded context models
with components capable of reasoning about context according to these
models. The reason for this is that most approaches focus on supporting
ubiquity of heterogeneous applications and devices, rather than modelling
context. Therefore, ubiquitous computing issues, such as device discovery
and ad-hoc communications are sometimes given precedence in these
systems over context information handling issues such as context modelling
and reasoning.

We have enumerated a number of characteristics that context handling
Platforms and middleware should exhibit. These characteristics have been
discussed in detail in chapter 2, section 2.4.3. We have chosen these
particular dimensions for comparing the developments because of their
relevance to this thesis. This discussion forms the motivation for our own
context handling platform, which is described in chapter 4. The following
dimensions have been identified:

— Flexibility and extensibility: platforms and middleware should provide
support for flexible components, which are special components or
services that can take application-specified behaviours or procedures as
input in order to carry out application-specific context and situational
reasoning mechanisms and control actions. This allows application
functionality to be delegated to the platform (or middleware), reducing
application development effort, time and, therefore, costs. In addition,
it should be possible to extend platform functionality on demand;

— Ease of use: platforms and middleware should offer application developers
mechanisms for deployment and configuration of applications and
components which are easy to use. These mechanisms should not
require much programming and configuration efforts;

— Support for adaptation: context-aware applications are adaptive by nature:
application behaviours should be adapted to current context conditions.
Therefore, platforms (and middleware) should be able to carry-out
application-specific adaptation, preferably in a flexible manner;

— Support for context and situation reasoning: platforms and middleware to
support context-aware application development should provide support
for context and situation reasoning. They should be able to bridge the
gap between context captured by sensors and context information which
are of particular interest to applications. In addition, context

Table 3-2 Evaluation of
platform and middleware
developments.

Legend:

e * = comprehensive
support

* = partial support

X = no support

MIDDLEWARE AND PLATFORMS 51

information should be available to applications in the different phases of
context information processing;

— Support for distribution of situation reasoning: in order to allow reuse,
scalability and reliability of context and situation reasoning, the context
processing phases mentioned in the above should be distributed over
various computing entities (context sources). It should be possible to
include or remove context sources at platform (or middleware) runtime;

- Support for runtime composition of context sources: in order to support context
and situation reasoning, context information may be aggregated from
different context sources, using various composition mechanisms. The
platform (or middleware) should support composition of context
sources, where the composition itself may be defined at runtime by the
application developers;

— Support for rapid development and deployment of applications: the development
and deployment time should be reduced with respect to the time
required to develop and deploy an application without the support of
the platform (or middleware).

In Table 3-2 we present a comparative table evaluating the aforementioned
developments on the light of the dimensions just presented. We indicate
whether the development addresses or not the dimension with the symbol
®. The indication ®®, and * indicate that the development
comprehensively addresses or partially addresses the dimension,
respectively. The symbol x indicates that the development does not address
the given dimension.

flexibility ease adapta- situation distribution runtime rapid

dimension of tion reasoning of situation composition dev.
use reasoning of context and
project sources dep.
The context . J X X X .
toolkit
COB"A LN] LN] LN] L] X X LN]
Gaia . . . X X X .
RCSM LN] LN] LN] X X X LN]
Pace oo . oo X} X X oo

Flexibility and extensibility are important concerns to all developments
mentioned here. CoBrA, RCSM and Pace score better in this dimension
than the context toolkit and Gaia, since they provide means for applications
to express particular behaviours to be delegated to the platform (or
middleware). For example, RCSM provides the IDL interface, which allows
particular application interests to be deployed on the middleware at
runtime.

52

CHAPTER 3 STATE-OF-THE-ART

Flexibility greatly influences the development time (dimension “support
for rapid development and deployment of applications”). Applications
developed with support of a flexible platform (or middleware) save
development time, since they relieve application developers from the task of
writing programming code from scratch.

The projects CoBrA and RCSM score well in the ease of use dimension,
since they offer flexible mechanisms for application configuration that do
not require much programming efforts. The IDL interface in RCSM, and
the CoBrA policy language provide application developers with domain-
specific languages that facilitate defining context-aware behaviours, as
opposed to other general purpose languages. The configuration mechanism
proposed by Pace, on the contrary, is based on Java, and does not provide
specific support for context-awareness.

Adaptation is also tackled by most of the developments. CoBrA, RCSM
and Pace provide extensive support for adaptation. In these systems, it is
possible to define in a flexible manner the actions that should be invoked in
response to various (not predefined) context change patterns. Pace, in
particular, proposes a powerful adaptation framework that also considers
user’s preferences for service adaptation, in addition to context
information.

Context and situation reasoning activities have been explored in CoBrA
and Pace. CoBrA uses the SOUPA ontology to support context modelling
and reasoning. However, no situation theory has been explicitly applied in
CoBrA. Pace uses the CML modelling approach, which supports both
context and situation reasoning, as discussed in section 3.1.5.

Given the immaturity of the context-awareness research area when the
context toolkit was initially proposed, some of the issues later addressed by
more recent approaches have not been tackled in the context toolkit. For
example, context modelling issues, and semantic interoperability are not
addressed in the toolkit.

We conclude from our state-of-the-art research that none of the
initiatives presented here address distribution of context reasoning and
composition of context sources at runtime. We have also seen that most
approaches offer support for flexibility, but none supports configuration of
components based on context and situation specifications. The
configuration of components in the platform or middleware should reflect
particular requirements for context and situation reasoning. We should
consider these aspects when designing our context handling platform.

3.3

APPLICATIONS 53

Applications

Much effort in context-awareness has been spent in building innovative
applications, without explicit attention for the use of platform, middleware
or modelling. We briefly discuss some projects related to this category. We
do not provide an extensive discussion on this, since application
development without infrastructural support is not the focus of this thesis.

In the beginning, context-aware applications were limited to location
information. A number of office and meeting applications have been
developed, where location information was easily captured, since offices
and meeting rooms are delimited and controllable areas. Examples of such
projects are the Active Badge system [122] and the ParcTab [123]. In the
Active Badge systems, users wore a special badge device that could locate
them anywhere in the building. Once a user’s location was known, phone
calls could be forwarded to the closest phones, and past locations could be
retrieved.

The ParcTab [123] application is based on palm-sized wireless ParcTab
computers and an infrared communication system that links them to each
other and to desktop computers through a local area network. The aim is to
continuously track users’ location inside the office, and offer various
location services, such as call forwarding and historic location data.

Several car navigation systems have appeared in the market. These
systems provide directions to the driver, based on the car’s current location
(GPS coordinates), and the desired destination. The Dutch product
TomTom [116] is a commercial success in Europe and is already available
to the public for more than five years. Similar to car navigation systems are
the tourist guide applications [104, 119]. These applications provide the
tourist with rich maps of the surroundings, and recommendations of
suitable services, considering the user’s context and preferences. The WASP
project [104] delivered the COMPASS application which provides the user
with tourist information and context-aware services, such as finding the
closest restaurants, and tourist attractions. For example, a tourist who has
an interest in history and architecture is served with information about
nearby historical monuments.

Lately, innovative context-aware applications have been proposed in the
health domain. Typically these applications detect context information
related to body conditions, such as heart beat and blood pressure values in
order to help patients that are currently in need. An example is the
AWARENESS tele-monitoring application [6], which aims at helping
epileptic patients in imminence of an epileptic seizure (see Chapter 1).
Other examples of context-aware applications in the health domain can be
found in [5, 78].

54

CHAPTER 3 STATE-OF-THE-ART

The MIT Context-Aware Computing Group [20] focuses on building
applications in various domains, and the main goal is to demonstrate the
usefulness and usability of context-aware applications. Some of the
interesting projects are the placeMap [59] and the foodLab[69].

The placeMap project develops user-centred mapping applications. The
goal of the project is to provide a mapping mechanism in which users’
background, needs, motivations and goals are taken into account to adapt
the map accordingly. In this way, mapping applications are not objective,
but rather subjective to the user’s eye. User-centred maps are inspired by
the idea that maps should not present a single view of spatial information,
like traditional maps. Our individual mental maps of space focus on
relationships between discrete spatial objects. Therefore, our mental maps
are quite different from one another’s. For example, a person with a car
may have a very different understanding of the city than a person who
travels by foot and subway. The person travelling by foot has a much more
fragmented set of spatial relationships, which are centred on proximity
around subway stations.

The foodLab project aims at augmenting the kitchen with devices and
sensors that can detect various types of context conditions in order to assist
the user in various tasks. For example, one of the topics of research is to
equip a spoon with sensors that can measure temperature, acidity, salinity,
and viscosity of the food. The goal is to provide information about any food
the spoon is in contact with, and to offer suggestions to improve the food.

4.1

Chapter

Architectural Patterns and the
Context Handling Platform

This chapter presents the three architectural patterns we have proposed to
support the development of context-aware platforms and applications.
These patterns present solutions for recurring problems associated with
managing context information and proactively reacting upon context
changes. These problems have been discussed in Chapter 2 as part of the
requirements for the platform. In addition, this chapter presents the
generic components that integrate the context handling platform. The selection
of these components is guided by the architectural patterns discussed.

This chapter is organized as follows: section 4.1 introduces architectural
patterns as means of documenting design solutions for well-known
recurring problems; sections 4.2, 4.3 and 4.4 present the proposed
context-aware architectural patterns; section 4.5 discusses our context
handling platform architecture in detail; section 4.6 provides an overview of
the services offered by the context handling platform; section 4.7 elaborates
on the stakeholders involved in the plattorm development and
commercialization; and finally, section 4.8 presents some concluding
discussions.

Context-Aware Patterns

Architectural patterns have been proposed in many domains as means of
capturing solutions to recurring design problems that arise in specific
design situations. They document existing, well-proven design experience,
allowing reuse of knowledge gained by experienced practitioners [10]. For
example, a software architecture pattern describes a particular recurring
design problem and presents a generic scheme for its solutions. The

56

4.2

4.2.1

CHAPTER 4 ARCH. PATTERNS AND THE CONTEXT HANDLING PLATFORM

solution ~scheme contains components, their responsibilities and
relationships.

Patterns for software architectures also exhibit other desirable
properties, such as [10]:

— patterns provide a common vocabulary and understanding for design
principles;

— they are a means for documenting software architectures;

— they support the construction of software with defined properties;

— they support building complex and heterogeneous software
architectures; and

— they help managing software complexity.

We present three architectural patterns that can be applied beneficially in
the development of context-aware platforms, namely the event-control-action
pattern, the context sources and managers hierarchy pattern and the actions pattern.
These patterns present solutions for recurring problems associated with
managing context information and proactively reacting upon context
changes.

The approach chosen to present these patterns has been inspired by [1],
which describes a pattern as a three-part scheme: (i) a situation giving rise
to a problem; (ii) the recurring problem arising in that situation and (iii) a
proven solution to the problem. Therefore, for each pattern presented here,
we discuss (i) an example situation where the problem occurs; (ii) the
recurring problem being considered; (iii) the solution scheme for this
problem containing structural aspects with components and relationships
and dynamic (behavioural) aspects and (iv) the general benefits of applying
this pattern.

Event-Control-Action (ECA) Pattern

The event-control-action architectural pattern provides a high level structure for
systems that proactively react upon context changes. It has been devised in
order to decouple context concerns from reaction (communication and
service usage) concerns, under control of an application model. An
application model defines the behaviour of the application, which may be
described by means of, for example, condition rules. In this pattern,
context management issues, such as sensing and processing context, are
decoupled from issues regarding reacting upon context changes.

Example

Suppose our platform needs to provide support for applications in the
medical domain. An example of such an application would be a tele-

4.2.2

EVENT-CONTROL-ACTION (ECA) PATTERN 57

monitoring application [6] that monitors epileptic patients and provides
medical assistance moments before and during an epileptic seizure.
Measuring heart rate variability and physical activity, this application can
predict future seizures and contact relatives or healthcare professionals
automatically. In addition, the patient can be informed moments in advance
about the seizure, being able to stop ongoing activities, such as driving a car
or holding a knife. The aim of using this system is to provide the patient
with both higher levels of safety and independence allowing him to function
more normally in society despite his disorder.

In this system scenario, the patient wears a heart monitoring system that
collects heart signals along the day. These signals are processed by smart
algorithms which are able to detect abnormalities, such as the probability of
having an epileptic seizure, within seconds.

Several actions may be taken upon an epileptic seizure: (i) a volunteer,
normally an intimate of the patient capable of providing first aid, receives an
alarm of a possible seizure, (ii) in case no volunteer is available, healthcare
professionals are sent to his location, (iii) patient’s bio-signals derived from
the monitoring system are streamed to doctors in real time, and (iv) based
on the real time information, doctors decide whether the patient needs to
be taken to the nearest hospital.

Problem

The example presented above imposes challenging requirements to the

support platform:

— The platform should offer support for gathering context information,
such as the patient’s heart rate and blood pressure in order to predict
possible epileptic seizures;

— The patient’s and volunteers’ locations need to be known, and proximity
information needs to be derived;

— Full time connectivity with the patient needs to be provided;

— Devices (e.g., mobile phones) of volunteers and doctors need to pass an
alarm in case of seizure;

— Real time streaming connections need to be established with the doctor;

— In case of a critical situation, an ambulance needs to take the patient to
the nearest hospital.

Implementing such an application within a single business party is not

feasible. In fact, this application is realized with the cooperation of several

business parties: the location providers, the providers of algorithms to
analyze heart rates, the doctors clinic, the hospital, the connectivity
providers, and the manufacturers of monitoring devices, among others. The
aim of the platform is to guarantee the execution of the application by
configuring and coordinating the cooperation of functions distributed

58

4.2.3

4.2.4

CHAPTER 4 ARCH. PATTERNS AND THE CONTEXT HANDLING PLATFORM

among these business parties. The distribution of responsibilities among
these parties and the coordination of distributed functions require
agreements on certain architectural patterns.

Solution

The event-control-action architectural pattern aims at providing a structural
scheme to enable the coordination, configuration and cooperation of
distributed functionality within the platform. It divides the tasks of
gathering and processing context information from tasks of triggering action
in response to context changes, under the control of an application
behaviour description. Given the reactive nature of context-aware
applications, context-aware application behaviours can be described in
terms of reactive rules, such as if <condition> then <actions>. The condition
part specifies the situation under which the actions are enabled. Conditions
are represented by logical combinations of events. An event models the
completion of some happening of interest, which typically regards a particular
change in the users’ context. The observation of events is followed by the
triggering of actions, under control of condition rules. Events are modelled
and observed by one or more context processor components.

A controller component, empowered with condition rules describing
application behaviours, observes the events. In case the condition turns true,
an action performer component triggers the actions specified in the condition
rules. Actions are operations that affect the application behaviour in
response to the situation defined in the condition part of the rule. An
action can be a simple web services call or a SMS delivery, or it can be a
complex composition of services.

Structure

The architectural scheme proposed by the ECA pattern consists of three
components, namely context processor, controller and action performer
components. Figure 4-1 shows a component diagram of the ECA pattern
scheme as it can be applied in context-aware services platforms.

Figure ~ 4-1 Event-
control-action pattern

4.2.5

EVENT-CONTROL-ACTION (ECA) PATTERN 59

prc(?cn;:gr observe controller rigger p;?:r?]:er
condition rule
event control action

Context concerns are handled by the context processor component, which
generates and observes events. This component depends on the modelling
of context information, which is discussed in Chapter 5. The controller
component is initially provided with an application behaviour specification,
which describes a particular fragment of the application’s logic. This
behaviour specification determines the observation of context information,
and the execution of pertinent actions in response to observed changes in
the context. As already mentioned, given the reactive nature of context-
aware applications, we suggest a rule-based approach for the specification of
context-aware application behaviours. Other specification alternatives are
also possible. Provided with condition rules, the controller component
observes events from context processors, monitors condition rules, and
triggers actions on action performers when the condition is satisfied.

Action concerns, such as decomposition and implementation binding,
are addressed by the action performer component. Both the context
processor and the action performer components may actually consist of
complex composition of components, which characterizes the ECA pattern
as a macro pattern. This pattern suggests how a context-aware application
should be logically structured at the highest level of abstraction. Further
decompositions of the components are possible. Context processor,
controller and action performer components are further elaborated in the
following sections.

Dynamics

Consider the example presented earlier in which a possible epileptic seizure
is detected and volunteers close to the patient are contacted via SMS. We
assume here that, when a possible epileptic seizure is detected, the nearest
volunteers are contacted via SMS.

Figure 4-2 depicts the flow of information between components of the
event-control-action pattern. The condition rule (here applied to a patient
called John) defined within the controller has the form:

60

Figure 4-2 Dynamics of
the event-control-action

pattern

4.2.6

CHAPTER 4 ARCH. PATTERNS AND THE CONTEXT HANDLING PLATFORM

If <event:EpilepticAlarm>
Then <SendSMS(John, closeby(Volunteers, 100))>

CP: BloodPressureDevice
1
CP:HeartRateDevice !
I
I

T
BloodPressureMeasures
N

CP: EpilepticController ActionPerformer

‘ Controller ‘

‘ ParlayX ‘

HeartRateMeasures
EpilepticAlarm 1

{4

getCloseVolunt(patient, 100)
e
SendSMS(Vqume'ers)
'
t
1

The controller observes the occurrence of event EpilepticAlarm. This event is
captured by the component epileptic controller, which is an instance of
context processor. Blood pressure and heart rate measures are gathered
from other dedicated instances of the context processor. Based on these
measures and a complex algorithm, the epileptic controller component is
able to predict within seconds that an epileptic seizure is about to happen,
and an EpilepticAlarm event is generated as a consequence.

Upon the occurrence of event EpilepticAlarm, the controller triggers the
action specified in the condition rule. The action SendSMS(closeby(volunteers,
100)) is a composed action that can be partially resolved and executed by the
platform. The inner action closeby (volunteers, 100) may be completely
executed within the platform.

The execution of this action requires another cycle of context
information gathering on context processors, in order to provide the
current location of the patient and his volunteers, and to calculate the
proximity of these persons. By invoking the operation getCloseVolunt(patient,
100) with assistance of an internal action performer, the controller is able to
obtain the volunteers that are within a radius of 100 meters from the
patient. Finally, the controller remotely invokes an action provided by a
third-party business provider (e.g., a Parlay X provider [101]) to send SMS

alarm messages to the volunteers.

Benefits

By applying the classic design principle of separation of concerns, the event-
control-action pattern has effectively enabled the distribution of
responsibilities in context-aware platforms. Context processor components
encapsulate context related concerns, allowing them to be implemented
and maintained by different business parties. Actions are decoupled from
control and context concerns, permitting them to be developed and
operated either within or outside the platform.

4.3

4.3.1

4.3.2

CONTEXT SOURCES AND MANAGERS HIERARCHY PATTERN 61

Applying such design principles greatly improves the extensibility and
flexibility of the platform, since context processors and action components
can be developed and deployed on demand. In addition, the definition of
application behaviour by means of condition rules allows the dynamic
deployment of context-aware applications and permits the configuration of
the platform at runtime.

Context Sources and Managers Hierarchy Pattern

The context sources and managers hierarchy architectural pattern provides a
hierarchical structure for context processor components. This pattern has
been devised in order to recursively apply context information processing
operations in a hierarchy of context processor components. In this chain of
context information processing, the outcome of a context processing unit
becomes input for a higher level unit in the hierarchy until the required
top-level context information is reached.

Example

Suppose we extend the system scenario presented earlier, in which a
possible epileptic seizure is predicted. In addition to contacting nearby
volunteers, we would like to know whether the patient is driving, in order
to send him a personalized alarm, such as “please, stop the car as soon as
possible, you may have an epileptic seizure”.

Problem

Processing context information is challenging. Deducing rich information

(e.g., an epileptic alarm) from basic sensor samples (e.g., heart rate and

blood pressure measures) may require complex computation. There may be

several information processing phases needed before yielding (syntactically
and semantically) meaningful context information. Context information

processing activities include [29]:

— Sensing: gathering context information from sensor devices. For
example, gathering location information (latitude and longitude) from a
GPS device;

— Aggregating (or fusion): observing, collecting and composing context
information from various context information processing units. For
example, collecting location information from various GPS devices;

— Inferring: interpretation of context information in order to derive
another type of context information. Interpretation may be performed
based on, for example, logic rules, knowledge bases, and model-based

62

4.3.3

4.3.4

CHAPTER 4 ARCH. PATTERNS AND THE CONTEXT HANDLING PLATFORM

techniques. Inference occurs, for instance, when deriving proximity
information from the locations of the objects of concern;

— Predicting: the projection of probable context information of given
situations, hence yielding contextual information with a certain degree
of uncertainty. We may be able to predict in time the user’s location by
observing previous movements, trajectory, current location, speed and
direction of movements.

The platform should provide mechanisms to distribute context processing
activities among multiple components. In addition, it should be able to
create compound context information based on various context information
sources. Distribution and composition of context information components
in a flexible and decoupled fashion require agreements on architectural
decisions.

Solution

The context sources and managers hierarchy architectural pattern aims at
providing a structural schema to enable the distribution and composition of
context information processing components. We define two types of
context processor components, namely context source and context mandager.
Context source components encapsulate single domain sensors, such as
blood pressure measuring device or a GPS. Context manager components
cover multiple domain context sources, such as the integration of a blood
pressure and heart rate measures. Both perform context information
processing activities.

Structure

The structural schema proposed by this pattern consists of hierarchical
chains of context sources and managers, in which the outcome of a context
information processing unit may become input for the higher level unit in
the hierarchy. The result structure is a directed acyclic graph, in which the
initial vertexes (nodes) of the graph are always context source components
and end vertexes may be either context sources or context managers. The
directed edges of the graph represent the (context) information flow
between the components. We assume that cooperating context source and
manager developers have agreements on the semantics of the information
they exchange.

Figure 4-3 details in the event part of Figure 4-1. It shows a UML class
diagram of the context source and manager hierarchy pattern as it can be
applied for context-aware platforms.

Figure

4-3 Context

sources and managers

hierarchy

pattern

Figure 4-4 Instance of

context
managers
pattern

sources and
hierarchy

CONTEXT SOURCES AND MANAGERS HIERARCHY PATTERN 63

context /Qbser\/e

source e

context

manager
” observe
this association is
irreflexive
event

In the pattern, context managers also play the role of context sources, since
a context manager is a source of derived context information. Therefore,
context managers inherit the features of context sources, and implement
additional functions to handle context information gathering from various
context sources and managers. A context manager observes context from
one or more context sources and possibly other context managers. The
association between the context manager class and itself is irreflexive.

Figure 4-4 depicts a directed acyclic graph structure, which is an
instantiation of the diagram depicted in Figure 4-3. CS boxes represent
instances of context sources and CM boxes represent instances of context
managers.

CS CS CS CS
cM |47 CM
v
cM &
WY

Within a single context information processing unit (context source or
manager), we verify recursive applications of the event-control-action
pattern (Section 4.2). Consider the following application condition rule
manipulated by controller C1 in Figure 4-5:

64

Figure 4-5 Recursive
application of the event-
control-action pattern

CHAPTER 4 ARCH. PATTERNS AND THE CONTEXT HANDLING PLATFORM

if <event: (EpilepticAlarm ~ driving)>
then <SendSMS (“please, stop the car as soon as possible, your may have an epileptic
seizure”)>

event control action

event control ation | v T ..

El 1> —" >O L T o
raise E1 event control action

—_ >@ L >&QE2

The event (EpilepticAlarm ” driving) is a compound event observed on

the following components: (i) a context manager component (CMI in
Figure 4-5) that detects an epileptic alarm event (E1) and (ii) a context
source component (CS2 in Figure 4-5) that detects when a patient starts
driving (E2). Within the epileptic detector context manager (CM1), the
following condition rule’ is described in controller C2, characterizing the
recursive nature of the event-control-action pattern:

if <event:(HeartRate > threshold)>
then <RaiseEvent (EpilepticAlarm)>

Controller C2 observes heart rate measures on a context source
component. The action of this rule raises an epileptic alarm event. Within
the driving detector context source (CS2), the following condition rule is
described in controller C3:

if <event:(userSignalOn)>
then <RaiseEvent (driving) >

The event userSignalOn may be directly set by the patient or automatically
sensed by a device embedded in the car that is able to detect his presence.

' We assume there is a sensor in the patient’s car to detect whether he is driving.

? For the sake of the example, we simplify the algorithm to detect epileptic seizures by
specifying it as the verification of heart rate measures against a threshold value. This
algorithm in reality is surely more complex than the simple value comparison given in this

condition rule.

4.3.5

Figure 4-6 Dynamics of
the context sources and
managers pattern on the
highest level of the
event-control-action
pattern recursion

Figure 4-7 Dynamics of
the context sources and
managers pattern on the
second level of
recursion

4.3.6

CONTEXT SOURCES AND MANAGERS HIERARCHY PATTERN 65

Dynamics

Consider again the epileptic seizure example discussed in the previous
sections. Figure 4-6 depicts the flow of information between components in
the context sources and managers structure at the top most application of
the event-control-action pattern. At this level, ControllerC1 observes the
occurrence of event (EpilepticAlarm ~ driving), which is generated from CM:
EpilepticDetector and CS: DrivingDetector, respectively. When the condition turns
true (the alarm has been launched and the patient is driving), the
personalized SMS message is sent to the patient.

CS: DrivingDetector

ControllerC1 SP: ParlayX

|
|
CM: EpilepticDetector | |
|
|
|
|

driving : :
[— I
o |
| |
EpilepticAlarm ! !
~ !

SendSMS("please, stop the car...")
[N

In the second recursion level of the event-control-action pattern in Figure
4-7, the ControllerC2 observes heart rate measures from a heart device
context source. Empowered with algorithms able to detect heart rate
abnormality, the controller raises the EpilepticAlarm event when it detects the
possibility of an epileptic seizure.

CS:HeartRateDevice ControllerC2 ActionPerformer

|
| HeartRateMeasures

|

1

[}

1

1

i

RaiseEvent (EpilepticAlarm)
0
1

Benefits

The context sources and managers architectural pattern defines a
hierarchical =~ structure reference for context source and manager
components. This approach has enabled encapsulation and a more effective,
flexible and decoupled distribution of context processing activities (sensing,

aggregating, inferring and predicting). This attempt improves collaboration

66

4.4

4.4.1

4.4.2

CHAPTER 4 ARCH. PATTERNS AND THE CONTEXT HANDLING PLATFORM

among context information owners and it is an appealing invitation for new
parties to join this collaborative network, since collaboration among more
partners enables availability of potentially richer context information.

Another important benefit of applying this pattern is that it enables
filtering of unnecessary information across the hierarchy of context
information processing units. At the lowest level of context information
gathering, a great overhead of information flow can be detected but only the
relevant information for the application logic is kept and forwarded to the
next level of the hierarchy.

Actions Pattern

The actions architectural pattern provides a structure of components to
support designing and implementing action concerns within the platform.
This pattern has been devised in order to decouple action purposes from
action implementations and to coordinate composition of actions. An
action purpose defines an abstract action intention, while its
implementation represents the realization of this intention utilizing specific
implementation technologies.

Example

Consider the tele-monitoring scenario in which the actions taken upon an
epileptic seizure alarm are (i) a warning message is sent to the patient; (ii)
his close relatives are called, (iii) volunteers close to the patient are notified
of a possible seizure, and (iv) in case no volunteer is available, healthcare
professionals are sent to the patient’s current location.

Problem

Some of the actions presented in the example may be performed
independently in parallel, such as (i) sending a warning message to the
patient, (ii) calling the relatives and (iii) notifying nearby volunteers.
However, the action to call healthcare professionals is only enabled in case
notifying nearby volunteers (action (iii)) has not succeeded (for example, no
volunteers are momentarily available). This situation characterizes a
dependency between actions. In addition, some actions may trigger a
sequence of other actions. For instance, to send help from healthcare
professionals, it may be necessary to request the patient’s medical dossier,
to select relevant medication, to check availability of transportation, and so
forth.

The platform should provide mechanisms to manage coordination of
actions, especially when dependencies exist. In addition, the platform

4.4.3

4.4.4

ACTIONS PATTERN 67

should support decoupling of an action purpose from its implementations.
Although the action “send healthcare professionals” presents a common
purpose, its implementations may vary, since the logistics may differ from
hospital to hospital. Distribution and coordination of actions in a flexible
and decoupled fashion require agreements on architectural decisions.

Solution

The actions architectural pattern aims at providing a structural scheme to
enable coordination of actions and decoupling of action implementations
from action purposes. It involves (i) an action resolver component that
performs coordination of dependent actions, (ii) an action provider
component that defines action purposes and (iii) an action implementor
component that defines action implementations.

An action purpose describes an intention to perform a computation
with no indication on how and by whom these computations are
implemented. Examples of action purposes are “call relatives” or “send a
message”. The action implementor component defines various ways of
implementing a given action purpose. For example, the action “call
relatives” may have various implementations, each defined by a specific
telecom provider. Finally, the action resolver component applies techniques
to resolve compound actions, which are decomposed into units of action
purposes that are indivisible from the platform standpoint.

Structure

Figure 4-8 zooms in on the action part of Figure 4-1. It shows a class
diagram of the actions pattern as it can be applied for context-aware
platforms.

Action resolver and action provider components are special kinds of
action performer, being able to perform actions. Therefore, both the action
resolver and action provider components inherit the characteristics of the
action performer component. The action resolver component performs
compound actions, decomposing them into indivisible action purposes,
which are further performed separately by the action provider component.
Action providers may be communication service providers or (application)
service providers. Communication service providers perform
communication services, such as a network request, while service providers
perform general application-oriented services, implemented either internal
or external to the platform, such as an epileptic alarm generation or an SMS
delivery, respectively.

An action provider may aggregate various action implementor
components, which provide concrete implementations for a given action
purpose (represented by implementors A and B in Figure 4-8).

68

Figure

pattern structure

4-8

Action

4.4.5

Figure 4-9 Dynamics of

action pattern

4.4.6

CHAPTER 4 ARCH. PATTERNS AND THE CONTEXT HANDLING PLATFORM
action observe action
performer
action action imp action
i Ko—>|
resolver provider implementor
communications service implementor implementor
service provider provider A B
Dynamics

Figure 4-9 depicts the flow of information between components of the

actions pattern for the scenario presented in Section 4.4.1.

x

[M
{sendHealthCare is enabled if
call(volunteers) does not succeed}

| sendHeaithCare |
| N (
| 1 [}

ActionResolver ActionProvider Al:ParlayX Al:Hospital

action : : :
;I 1 1

! sendSMS(patient) i sendSMS(patient) i

! . A K A

I call(relatives) 1 call(relatives) !

| y y

: call(volunteers) : call(volunteers) :

I N N

| [} [}

|

1

I

[}

sendHealthCare
1

The action resolver gets a compound action to decompose. Empowered
with techniques to solve composition of services, the action resolver breaks
the compound action into indivisible service units, which are then
forwarded to the action providers. Each action provider delegates each
service unit to the proper concrete action implementation. In our example,
send SMS and calling actions are delegated to the ParlayX implementor and
the action to send healthcare is delegated to the hospital implementor.

Benefits

By defining a structure of action resolvers, providers and implementors, the
actions pattern has enabled the coordination of compound actions and the

4.5

THE CONTEXT HANDLING PLATFORM 69

separation of the abstract action purpose from its implementations. This
attempt allows late binding between an action purpose and its
implementations, allowing the selection of different implementations at
platform runtime. In addition, abstract action purposes and concrete action
implementations may be changed and extended independently, with
benefits for the dynamic configuration and extensibility of the platform.

The Context Handling Platform

In chapter 2 we have introduced our context handling platform. The aim of
this platform is to provide context-aware generic services, i.e. services that
support context-aware applications, regardless of application domain. These
services can be combined and configured to satisfy specific application
requirements.

Figure 4-10 depicts (i) the context handling platform as we have
discussed in chapter 2 (Figure 4-10 (a)), and (i) our focus on the
interactions that are relevant for the platform development (Figure 4-10
(b)). Figure 4-10 (a) shows an example of platform configuration in which
two distinct users use the platform services through application-specific
components. Both platform and user’s contexts participate in the
interactions taking place at interaction points of type ip-d.

Figure 4-10 (b) focuses on a single application. It abstracts from the
entity user and the interaction points of type ip-a and ip-c. Since the
platform does not participate directly in the interactions taking place in the
interaction points of type ip-a and ip-c, these interaction points are not
considered in the platform development.

70 CHAPTER 4 ARCH. PATTERNS AND THE CONTEXT HANDLING PLATFORM

user’s
context?

user’s

Figure 4-10 The context
context'

handling platform

application-specific
components

application-specific
components

ip-e' ip-¢?

context handling platform

focusing on infrastructure ’
interactions user's
context

(b) application-specific
components

ip-e

context handling platform

4.5.1 Using the event-control-action pattern

Figure 4-11 (a) rearranges the components of Figure 4-10 (b) by placing the
user’s context on the left side of the figure. Figure 4-11 (b) depicts a
possible refinement of the context handling platform into subcomponents,
namely context processor, controller, and action components. The use of the ECA
pattern is also represented in Figure 4-11 (b) by means of dashed rectangles
around the components. The configuration of components shown in this
figure demonstrates a particular example in which there is a single
occurrence of each of these platform components. Other configurations of
components, including multiple component occurrences, are also possible,
as can be seen in section 4.5.2.

Figure 4-11
handling
refinement

Context
platform

THE CONTEXT HANDLING PLATFORM 71

application-specific components

{ ip-e)

user’s

context context handling platform

ﬂ refinement

application-specific components

user's

. context . . action
context DroCessor component

context handling platform

event control action

In Figure 4-11 (b), the interaction point of type ip-e has been split into
three different interaction point types, namely ip-e’, ip-e” and ip-e’”.
These interaction points enable application-specific components to interact
directly with the different components of the platform. Application-specific
behaviours are delegated to the platform through interaction points of type
ip-e”. The controller component takes these behaviours as input and
configures the rest of the platform to operate properly according to the
application-specific requirements. For that, the controller should announce
to the context processor components that certain types of context
information are needed.

Context processor components are responsible for interacting with the
user’s context through interaction points of type ip-d. Based on measured
information of the user’s context, context processors generate context
events, which are observed by controller components through interaction
points of type ip-f. Application-specific components may interact directly
with the context processor components, through interaction points of type
ip-¢’. This allows application components to access context information,
independently of using the controller component.

72

4.5.2

Figure 4-12 Refinement
of the action component

CHAPTER 4 ARCH. PATTERNS AND THE CONTEXT HANDLING PLATFORM

When the combination of context conditions defined by the
application-specific behaviours is met, the controller component triggers
the required actions through interaction points of type ip-g. Application-
specific components may also interact directly with action components,

)

through interaction points of type ip-e”””. This allows applications to trigger
(combinations of) actions, independently of wusing the controller

component.

Platform refinements

Figure 4-12 depicts a refinement of the action component into two
subcomponents, namely, action resolver and action provider components. This
refinement follows the solution proposed in the action pattern, as presented
in section 4.4.4.

application-specific components

action
resolver

context
processor

user's controller

context

action
provider

i, action component

context handling platform

We define two possible types of action provider components that might be
capable of performing actions, namely, external action provider components
and internal action provider components. An external action provider
component is developed and maintained by a third-party provider, while an
internal action provider component is developed and maintained by the
platform itself.

Similarly to action components, context processor components may be
internal or external. External context processor components are developed
and maintained by third-party providers, while internal context processor
components are developed and maintained by the platform itself.

In Figure 4-13, we have separated external action providers from
internal action providers, and external context processors from internal
context processors. Invocations to internal actions are performed through
interaction points of type ip-h, and invocations to external actions are
performed through interaction points of type ip-i. Internal context
processors can be invoked through interaction points of type ip-¢’, ip-f and
ip-j. External context processors can be invoked through interaction points

of type ip-j” and ip-j”. The interaction points of type ip-d’ and ip-d” allow

Figure 4-13 Internal and
external components

THE CONTEXT HANDLING PLATFORM 73

internal and external context processors to capture context conditions from
the user’s context, respectively.

Figure 4-13 distinguishes the platform containing external and internal
components from the platform containing only internal components, called
context handling platform’. In this thesis, we are particularly interested in the
internal components, which are entirely developed and maintained by the
platform. Therefore, we focus on the design and implementation of the
context handling platform’. How external components are designed and
implemented is not our concern. However, in order for these components
to properly operate with the platform, they should follow certain
specifications, which are considered in section 4.6.

In the remainder of this thesis we use the term context handling platform
in place of context handling platform’ for the sake of clarity and simplicity.

‘ application-specific components ’

ipe”
! action resolver I
controller internal action
provider

context handling
platform’

external
action
internal provider
context

processor

user's
context

context handling platform

As discussed in the hierarchy of context sources and managers pattern
(section 4.3), a context provider can be refined into context manager and
context sources components. Figure 4-14 depicts a possible refinement of
the internal context processor component, in which two context sources
and a single context manager collaborate to interpret context information at
the right level of abstraction required by the application-specific
components and the controller component.

Context source’ interacts directly with the user’s context. This context
source could be, for example, an encapsulation of a GPS device to capture
the user’s location. Context source’ interacts with an external context
processor, which could be, for example, a weather forecast provider.
Although it is not shown in the figure, the controller component could
interact directly with the context sources, and with the external context
processor.

74

Figure 4-14 refinement
of the internal context
processor component

Figure 4-15 Another
example configuration of

the components

4.6

CHAPTER 4 ARCH. PATTERNS AND THE CONTEXT HANDLING PLATFORM

application-specific components

ip-e”

external
action
provider

action
resolver

user's
context

external context
processor

context
manager

controller

context

A internal action
SOUrCe’

provider

internal context processor

context handling platform (internal components)

Figure 4-15 illustrates a different configuration of the platform components,
in which two distinct applications (application' and application’) use the
platform. This particular configuration of components uses multiple
instances of context processor, controller and action resolver components.
The way in which components should be configured depends on the
application goals. Different goals may require different configurations of

components.

application'-specific components

context
source'

action
resolver'

user's
context

external action
provider'

context
manager

external context
processor

context
source?

external action
provider"

action
resolver?

application®-specific components

The components presented in all these figures offer services as in a service-
oriented architecture. Therefore, services in our approach are registered
and discovered in a service repository (see chapter 2, section 2.3.2). The
discovery of services is not depicted in these figures but it implicitly enables
interactions between components in the architecture.

Platform Services

The service-oriented architecture approach implies that components of the
platform make use of each other’s service in order to support the goal of

4.6.1

Figure 4-16 Discovery
Services

PLATFORM SERVICES 75

the application. In addition, services are the only way to interact with a
component, enforcing in this way a discipline in the composition of the
application. The following paragraphs define the services offered by the

components we have discussed in the previous sections.

Discovery services

In section 2.3.2 (see Figure 2.8) we have introduced the discovery services,
which facilitate the offering and the discovery of instances of services of
particular types. The offering of service instances is supported by the register
service, while the discovery is supported by the discover service. These two
services together form the discovery services, as depicted in Figure 4-16.
Discovery services are offered by entities called service directories.

< <senice>>
discovery
< <serice>> < <service>>
register discover
- register (in offer: ServiceOffer, out - query (in type: ServiceType, in contr:
id:Offerld) Constraint, in pref: preferences, out
- withdraw (in id: Offerld) offers: ServiceOffers[])

The register service defines two operations: register and withdraw. The
operation register allows service providers to register service descriptions
with a service directory. Analogously, the operation withdraw allows services
providers to withdraw service descriptions from a service directory. The
discover service defines the operation query, which allows potential service
users to discover services of interest by looking up in service directories.

To register, a service provider gives the service directory a description of
a service and the location of an interface where that service is provided. To
query, a service user asks the directory for a service having certain
characteristics. The directory checks against the service descriptions it holds
and responds to the service user with the location of the selected service’s
interface. The service user is then able to interact with the service.

The following data types are used in Figure 4-16: (i) a ServiceOffer
represents a description of the service to be included in the service register;
(i) an Offerld is an identification of the service offer; (iii) Constraints define
restrictions on the services offers being selected, for example, restrictions
on quality of service or any other service properties defined; and (iv)
Preferences determine the order in which the selected services should be
presented.

76

4.6.2

Figure 4-17 Context
provisioning service

4.6.3

CHAPTER 4 ARCH. PATTERNS AND THE CONTEXT HANDLING PLATFORM

Context provisioning service

A Context provisioning service facilitates the gathering of context
information. This service is supported by context processor components,
i.e. context source and context manager components. A context
provisioning service may support two types of requests: query-based or
notification-based, as already discussed in section 2.3.3. A query-based
request triggers a synchronous response while a notification-based request
specifies conditions under which the response should be triggered. Example
of query-based and notification-based requests are getLocation (user.John) and
getLocation (user:John, condition: time=t), respectively. In the first request, the
service user immediately gets the current location of user John (assuming
this is available). In the second request, the service user gets John’s location
only when time is t is reached. Figure 4-17 depicts our context provisioning
service.

< <senice>>
context provisioning

- subscribe(in characterization: ContextSubscriptionCharacterization, in subscriber:
ContextSubscriptionReference, out id: ContextSubscriptionld)

- unsubscribe (in id:ContextSubscriptionld)

- query (in expression: ContextQueryExpression, out answer: ContextQueryAnswer)

Operation subscribe is used to register a notification request, operation
unsubscribe is used to withdraw a given notification subscription and
operation query is used to select specific context information instances. The
specification of languages to define context subscription characterization,
context query expression and context query answer is discussed in chapter
6.

Potential users of the context provisioning services are (i) application-
specific components, (ii) the controller component and (iii) other context
provisioning services.

Context provisioning services may be advertised and discovered using
the discovery service. We may define properties of context to be used as
constraints to select context provisioning services, such as the quality of
context properties accuracy and freshness. The definition of such properties
is highly related to the context model discussed in chapter 5.

Action service

An action service allows users of this service to request the execution of
certain actions. This service is offered by the action provider components.
Action implementers provide their action service specifications, which
are wrapped in action services supported by the platform. Furthermore,
action implementers should register their services in the platform service

Figure
services

4-18 Action

4.6.4

PLATFORM SERVICES 77

directory, setting parameters and properties that should be used in the
discovery process. An action provider supports a single standard operation,
namely DO (action_name, parameters), which allows an action to be invoked
uniformly.

Figure 4-18 depicts the generation of action wrappers based on an action
service specification. This action service is the SendSMS [101] service
offered by a telecom provider.

<<senice>> wrapper generator < <ActionService>>

SendSMSParlay SendSMSService
-SendSMS(in:params, address) @
-GetSMSDeliveryStaurs (in:param; ~—"7T L__~7| -DO (ActionType:SendSMS,
out:param, address) w params)

The SendSMSParlay service specifies two operations, SendSMS and
GetSMSDeliveryStatus. This service is wrapped by a service supported by the
platform, containing a DO() operation. The wrapper service has pointers to
the actual implementations of the operations SendSMSParlay —and
GetSMSDeliveryStatus. SendSMSParlay service implementers advertise this
service in the platform service directory, setting parameters and properties
such as costs and location coverage.

Potential users of the action services are (i) specific application
components, (ii) the controller component and (iii) other action services.
In order to find action services, action services users should first discover
these services with the platform service directory.

Controlling service

The controlling service allows users of this service to (i) activate Event-
Condition-Action (ECA) rules and (ii) query for specific instances of
context information.

The controlling service supports the following types of operations:
subscribe, unsubscribe, query and notifyApplication. Subscribe is used to activate an
ECA rule within the platform; unsubscribe is used to deactivate an ECA
rule; query is wused to select specific context information and
notifyApplication is used to notify application components of the
occurrence of ECA events. Figure 4-19 depicts the controlling service.

78

Figure 4-19 Controlling
service

4.7

Figure 4-20 Platform
stakeholders

Legend:

—>> creation refation

| business relation

provisioning relation

CHAPTER 4 ARCH. PATTERNS AND THE CONTEXT HANDLING PLATFORM

< <semice>>
controlling

- subscribe(in characterization:ECASubscriptionCharacterization, in subscriber:
ApplicationSubscriptionReference, out id: ECASubscriptionld)

- unsubscribe (in id: ECASubscriptionld)

- query (in expression: ContextQueryExpression, out answer: ContextQueryAnswer)
- notifyApplication (event: ECAEvent)

The definition of specification languages to define ECA subscription
characterization, ECA events, context query expression and context query
answer is the topic of chapter 7.

Potential users of the controlling Service are application components
that would like to activate ECA rules within the platform. Application
components may use this service to get event notifications back from the

platform.

Platform Stakeholders

The context handling platform architecture provides means for various
business parties, or stakeholders, to collaborate. Context handling platforms
are only realized with the cooperation of various stakeholders, such as the
location providers, the providers of context information reasoning
algorithms, action providers, and so forth. Figure 4-20 depicts the types of
stakeholders involved in the platform development, service and business

26

application end-user s

provisioning.

|

[}

1

I

) action \ “ :
“ component application 1
[}

1

|

[}

]

|

[(

I @

| (I

| action d

: “ component application
|

|

|

|

context-handling
platform

context processor platiorm context processor platform

designers

|
[(1
| 1
! @) !
I action \ “ :
: 0 component application 1

[}
1 1
[1
| I
! 1

context processor platform

We have identified three distinct relations between these types of
stakeholders and the platform, narnely, creation, business and provisioning

4.7.1

PLATFORM STAKEHOLDERS 79

relations. The creation relation refers to the development process, which
includes design and implementation of components and services. The
business relation refers to managing the service provisioning and service
usage from a business perspective. In the scope of business, service
provisioning typically includes marketing, financial and legal issues, and
service usage typically refers to the business agreements between the service
user and the provider, such as subscription contract and fees. The
provisioning relation refers to performing service provisioning from a
technical point of view, which includes configuration, installation and
maintenance of software and hardware artefacts.

In Figure 4-20, creation relations are represented by arrowed lines,
business relations are represented by thicker not arrowed lines, and
provisioning relations are represented by dashed not arrowed lines.

For each type of platform component, there are stakeholders to (i)
create that component (creation relation), (ii) provide the service offered by
that component from the perspective of business matters (business
relation), and (iii) provide the service from a technical point of view
(provisioning relation). These stakeholders may coincide, i.e. the same
organization may play simultaneously the roles of developer, maintainer or
business provider; however, since they are playing different roles, we
consider them separately. We discuss each of these stakeholders in the
sequel.

Platform designer, and business and service providers

Three types of stakeholders are responsible for the development,
maintenance and commercialization of the platform, namely platform
designer, platform business provider, and platform service provider, respectively. The
platform designer is responsible for (i) creating the platform; (ii) defining
the component interfaces; (iii) defining basic context models and the
guidelines for extending such models; (iv) developing the controller
component; and (v) developing internal context processor and action
components. In addition, the platform designer provides guidelines to
applications developers on how components can be used, configured and
composed to meet particular application requirements.

The platform business provider aims at providing the platform services
from a business perspective. It tries to maximize the number of applications
interested in using the platform by offering business opportunities to
application providers, action and context processor providers. The platform
enriches its services by allowing third-party action and context processor
providers to be incorporated to the platform. This way, a wide variety of
services are offered through the platform, which is an appealing invitation
to a larger number of end-users, and therefore, to applications. These

80

4.7.2

4.7.3

CHAPTER 4 ARCH. PATTERNS AND THE CONTEXT HANDLING PLATFORM

business relations are also beneficial to action and context processor
providers, since the platform serves as a bridge to reach end-users.

The platform service provider aims at performing the services offered by
the platform from a technical point of view. The service provider aims at
maintaining high availability of controller, internal context processor and
action components. In addition, the service provider is responsible for
configuration and installation of such components.

Application end-user

Context-aware applications provide value to end-users in a number of ways.
For example, end-users may enhance their productivity at work or improve
their personal lives by using certain types of context-aware applications. In
order to use the applications services, end-users maintain business relations
with applications, i.e. they subscribe to applications in various domains such
as tourism, health, and office applications.

Application end-users are not expected to interact directly with the
platform, but this communication occurs through applications. However,
depending on the business model chosen, there may be business relations
between end-users and the platform business provider in addition to the
business relations between applications business providers and end-users.
This could be characterized, for example, by charging end-users for
particular platform service usage.

Application designer, and business and service providers

Application designer, and business and service providers are the
stakeholders responsible for developing, commercializing and maintaining
the context-aware applications, respectively. Application designers aim at
developing context-aware applications from an engineering perspective. In
order to build applications with the support of the platform, application
designers should (i) understand the services offered by the platform; (ii) be
able to extend the platform context models with application specific
concerns; and (iii) be able to combine and configure platform services to
meet particular application requirements.

Application business providers aim at providing application services
from a business perspective. This stakeholder foresees business
opportunities when using the platform, since applications are enriched with
a variety of context provisioning and action services, which are offered
through the platform. In addition, the platform provides adaptation and
attentiveness with the controlling service. The application business provider
also controls the business relations towards the platform business provider,
and end-users.

4.7.4

4.7.5

PLATFORM STAKEHOLDERS 81

The application service provider aims at performing the services offered
by the applications. This may include installation, configuration and
maintenance of application servers, and the use of mechanisms such as
mirrored servers to allow high application availability.

Context processor designer, and business and service providers

Context processor designer, business and service providers are the
stakeholders involved in the development, commercialization and
maintenance of the context processor components, respectively. The
context processor designer develops context processor components from an
engineering perspective. In order to build context processor components to
be available through the platform, the context processor designer should
understand and comply with the platform context provisioning services and
context models. Context provisioning services should follow the
specification discussed in section 4.6. Furthermore, the platform context
models should be used by the context processor designer as a blueprint to
guide context processing activities, such as interpretation or aggregation.

The context processor business provider aims at providing context
provisioning = services from a business perspective. Providing context
provisioning services through the platform is an opportunity to reach more
end-users and to enrich context provisioning services by collaborating with
other context provisioning services. Collaboration among more context
processor components enables availability of potentially richer context
information (see section 4.3.6). The context processor business provider
also controls the business relations towards the platform business provider,
and end-users, in case such relation exists.

The context processor service provider takes care of performing context
processor components by maintaining the software and hardware artefacts
necessary to offer such context provisioning services.

Action component designer, and business and service providers

Action component designer, business and service providers are the
stakeholders involved in the development, commercialization and
maintenance of the action components, respectively. The action component
designer develops action components from an engineering perspective. In
order to build action components to be available through the platform, the
context processor designer should understand and follow the platform
action service discussed in section 4.6.

The action component business provider aims at providing action
services from a business perspective. Providing action services through the
platform is an opportunity to reach more end-users and to enrich action
services by combining various action services from different providers to

82

4.8

CHAPTER 4 ARCH. PATTERNS AND THE CONTEXT HANDLING PLATFORM

allow composition of various action services. The action component
business provider also controls the business relations towards the platform
business provider, and end-users, in case such relation exists.

The action component service provider installs, configures and
maintains the necessary software and hardware artefacts for performing
action services.

Discussion

We have presented in this chapter the architectural patterns that can be
beneficially applied in the development of context handling platforms and
context-aware applications. We have also discussed our context handling
platform, whose architectural design is based on these patterns.
Furthermore, we have defined the services that are offered by the context
handling platform components.

In the remaining chapters of this thesis, we discuss the components of
the platform in more detail. We mainly focus on context processor and the
controller component. We do not focus in this thesis on the action pattern,
nor on the action components. We use simple examples of actions for the
purpose of demonstrating the controller component. Action components
and complex action compositions are being studied in parallel efforts [8].

Chapter

Context Modelling

Context modelling refers to the process of preparing context models, which
are abstract representations of the context conditions and situations that are
relevant in an application’s universe of discourse. In order to cope with
context modelling requirements, we define a set of context modelling
abstractions that are based on conceptual modelling theories [80] and
supported by developments in foundational ontologies [51]. These
modelling abstractions facilitate the specification of context models that are
clearer and easier to understand. Therefore, the context models produced
using our conceptual foundations are beneficially applied to promote
common understanding and communication between the stakeholders
involved in the application development. In addition, by using our context
modelling abstractions, application developers are provided with proper
conceptual foundations that can be extended and specialized with specific
application requirements.

In this chapter we present the modelling abstractions we propose to
represent context and situations in our context handling infrastructure. We
focus on providing modelling foundations that can be extended with
application or domain-specific aspects. This chapter is further organized as
follows: section 5.1 identifies relevant characteristics of context and context
information; section 5.2 discusses the concepts from foundational
ontologies that are used in our modelling approach; section 5.3 presents
our own foundation extensions to model context concepts; section 5.4 gives
examples of application and domain specific context models, focusing on
the different categories of context; section 5.5 elaborates on situation
models; section 5.6 discusses context information models, and finally,
section 5.7 presents some final remarks.

84

5.1

5.2

CHAPTER 5 CONTEXT MODELLING

Characteristics of Context

In chapter 2 we have defined context as [79] “the set of, possibly
interrelated, conditions in which an entity exists”. According to this
definition, context is only meaningful with respect to a thing that exists,
called entity. The concept of entity is fundamentally different from the
concept of context: context is what can be said about an entity in its
environment, i.e. context does not exist by itself. The context of an entity
may have many constituents, called context conditions. Examples of context
conditions of a person are the person’s location, mental state, and activity.
Together, these context conditions form the entity’s context.

The process of identifying the relevant context consists of determining
the “context conditions” of entities in the application’s universe of
discourse that are relevant for a context-aware application or a family of
such applications. The representation of these relevant conditions or
circumstances is called a context model. We define a context model as a
conceptual model of context.

Conceptual models are, in the sense of [51, 80], abstract
representations of a “given subject domain independent of specific design
or technological choices”. Therefore, in a conceptual model of context, we
abstract from how context is sensed, provided, learned, produced and/or
used. The conceptual modelling phase is fundamental for the development
of context-aware applications, since this phase produces models that
promote “understanding, problem-solving, and communication, among
stakeholders about a given subject domain”. These models are used as a
blueprint for the subsequent phases of a system’s development process.
Therefore, the quality of context-aware applications depends on the quality
of the conceptual context models upon which their development is based.

In our context-aware application development approach, conceptual
modelling of context precedes the detailed design of context-aware
applications.

Foundational Ontologies

We have observed that conceptual modelling of context shares a great deal
of commonalities with conceptual modelling in general. We draw a parallel
between the concepts proposed here for context and those defined
elsewhere for conceptual models based on foundational ontologies [51, 72,
82]. A foundational ontology provides a rich set of basic concepts for
representing conceptualizations that are truthful to reality. This means that

FOUNDATIONAL ONTOLOGIES 85

conceptual models obtained using well-founded concepts aim at
characterizing as precisely as possible the domain they represent.

A foundational ontology, often called an upper level ontology, defines a
range of top-level domain-independent ontological categories, which form a
general foundation for more elaborated domain-specific ontologies [52].
We use the concepts proposed in [51] as foundations to categorize our
concepts for conceptual modelling of context. In the sequel we present
these concepts.

5.2.1 Universals and individuals

Universals and individuals are fundamental categories that have been
considered in our modelling abstractions. Individuals are elements that exist
in reality, possessing a unique identity. Universals, on the contrary, are
space-time independent patterns of features, which can be realized in a
number of different individuals. Every individual instantiates at least one
universal. Intuitively, individuals refer to instances, while universals refer to
types.

Individuals are classified in endurants and perdurants. Endurants are
individuals that endure over time, i.e. they are in time. Examples are a
person, a house, a room, a table, and so forth. Perdurants, on the contrary,
are individuals composed by temporal parts, i.e. they happen in time.
Examples of perdurants are a conversation, a football game, and a business
process. We focus in this thesis on an ontology of endurants. Endurants are
further classified into substantials and moments, which are discussed in the
following section.

Figure 5-1 depicts a fragment of the foundational ontology. A thing
represents any conceivable and perceivable element in the world. Things
can be categorized as sets or a urelements. Urelements are things without any
set-theoretical structure in their build-up. Constructs from the set-theory,
such as the membership relation (€) and the inclusion relation (C) cannot
be applied to urelements. Examples of urelements are a person, or the
Atlantic Ocean. A set, on the contrary, is a thing that has other things as
members (in the sense of set theory).

Urelements are classified into individuals and universals, which have
been previously discussed.

86

Figure 5-1 Fragment of
foundation ontology

CHAPTER 5 CONTEXT MODELLING

isMemberOf >
BT
/\ o .
{disjoint, complete}
/\ subsetOf

{disjoint, complete}
Individual Unlversal
/\

| Perdurant | | Endurant | | EndurantUnlversaI |PerdurantUmversaI|

{disjoint, complete} {disjoint, complete} ‘

| Substantial | | Moment | |substantiaIUniversaI| |MomentUniversaI|

5.2.2 Substantials and moments

Endurants can be categorized as substantials or moments [82]. Substantials
are individuals that exist by themselves; this implies that a substantial is
existentially independent from other individuals. Existential independence
means that “an individual A is existentially independent from an individual
B if and only if it is logically possible for A to exist even if B does not exists”
[51]. A substantial is an endurant that does not inhere in another endurant,
i.e. which is not a moment. Examples of substantials include a person, a
dog, a house, the Atlantic Ocean, and so forth.

A moment is an individual that existentially depends on other individuals to
exist, named its bearers. In addition, a moment should also inhere on its
bearer(s), the way mood inheres in a person and a smile on a face. The
inherence relation, sometimes called ontic predication, connects moments
to the substantials which are their bearers. For example, it connects a smile
to the respective face, or the charge in a specific conductor to the
conductor itself.

As depicted in Figure 5-2, moments can be classified into two categories,
namely intrinsic and relational moment.

Figure 5-2 Intrinsic and
relational moments

FOUNDATIONAL ONTOLOGIES 87

*

inheres in

’ {disjoint, complete} ‘

| Substantial | | Moment bears

/\ {disjointy *
|

| IntrinsicMoment | | RelationaIMoment|

5.2.3 Intrinsic moments

An intrinsic moment is an individual that inheres in a single entity. In this
thesis we are interested in a particular kind of intrinsic moments called
quality. Quality is an intrinsic moment that can be mapped to a value (quale)
in a quality dimension. A quality dimension defines the possible set of
values a quality type can be associated with.

The theory presented in [51] promotes the idea that “for each quality
type there is an associated quality dimension in human cognition. For
example, height and mass are associated with one-dimensional structures
with a zero point isomorphic to the half-line of nonnegative numbers.
Other qualities, such as color and taste, are represented by several
dimensions. For instance, taste can be represented as tetrahedron space
comprising the dimensions of saline, sweet, bitter and sour.”

The term quality structure is used to refer to both quality dimensions
and quality domains. In addition, the term quality universal refers to those
moment universals that are associated with a quality structure, and a quality
is an individual that instantiates a quality universal.

Figure 5-3 depicts an example of a substantial, one of its qualities, and
the corresponding quale. This example shows an apple a (substantial), its
weight w (quality), and ¢, which is the value of the weight in a quality
dimension, for example, a kilogram dimension. The relation i represents
the existentially dependence relation from the weight w towards the apple,
and the relation g/ represents the mapping of the quality onto a specific
quality dimension.

88 CHAPTER 5 CONTEXT MODELLING

Substance Universal Quality Universal Quality Dimension
Figure 5-3 Substantial, R Y
iti i g =R ¥ e \ " . 5
qualities and qualia / \ / ; Weight Dimension
/S Al [/ S Weidht e
(S {) 0
Z AN N, T 4
s % =N A
Extension Extension represented by
g oy i o %
N o X Vs Y
// . / \ ql y
& F——————————F—— .
| a] { w | [q | Weight Values
\ / \ / \ /
o A N yd L s
Substance (apple a) dualily Quale (value of weight w
(weight w of apple a) in this quality dimension)

Figure 5-4 depicts a fragment of the foundational ontology focusing on the
concepts introduced in this section.

*

Figure 5-4 Fragment of e

foundational ontology ~ ~
focusing on quality,
quality structures and
qualia

{disjoint, complete} ‘

. - f
[Universal | |0uallw3tructure%

1.

{disjoint} {disjoint, complete} 1

| Substanial || Moment | [SubstantialUniversal] | Momentlniversal|
/\ /\

< assocfated

< used to define

W QualityUniversal
/N 1 QualityDimension
- < instance of 1
Quality

* < quale of

5.2.4 Relational moments

A relational moment is an individual that connects a plurality of other
individuals. Examples of relational moments are a flight connection that
connects airports, or a marriage contract that connects two persons. The
individuals connected by relational moment are called relata, and the
relation held between them is called a material relation. For example, the
relation between the persons that are connected through a marriage
contract is a material relation.

Figure 5-5 depicts a fragment of the foundational ontology focusing on
relational moment. A relational moment universal is a universal that only
has relational moment individuals as instances.

Figure 5-5 Fragment of
foundational ontology
focusing on relational
moment

FOUNDATIONAL ONTOLOGIES 89

< mediates

Universal

JAN

’ {disjoint} ‘

/\

inheres in

{disjoint, complete}

Substantial | |

Moment bears | RelationalMomentUniversal || MaterialRelation |

{disjoint} ~ *

1 1

"+ instance of >
| RelationalMoment I—

<derived from 1.*

| IntrinsicMoment |

5.2.5 Formal relations

Material relations are not the only means by which one can establish the
relation between individuals. Conceptual modelling theories also define the
notion of formal relation. Formal relations hold between two individuals
directly, without any intervenient individual. Examples of formal relations
are: greater than, taller than, older than and subset of. The immediate relata of
such relations are qualities [82], i.e. formal relations are defined in terms of
their relata qualities.

5.2.6 Situations

Modelling the application’s universe of discourse allows application
designers to represent all possible state-of-affairs in the application’s
universe of discourse without discriminating particular situations that may
be of interest to applications. For example, while we may capture in a
conceptual model that a person may be married to another person, it is not
the objective of the conceptual model to make statements about particular
instances of persons. Therefore, we do not explicitly represent in a
conceptual model that John is married to Alice, or that John has been
married to Alice for 10 years. In order to enable the representation of
particular state-of-affairs, we introduce the concept of situation. Situations
are composite concepts whose constituents are the elements of our
ontology, i.e. substantials and moments. Situations are genuine ontological
elements that are composed by other elements. Examples of theories that
define situations are [26, 55].

We have extended the foundational concepts presented in [51] in order
to support situations. Figure 5-6 extends Figure 5-5 with the concept of
situation: situations are individuals, which are composed by other
individuals. Similarly, situation universals are composed by other universals.

90

Figure 5-6 Fragment of
foundational ontologies
including situations

5.3

CHAPTER 5 CONTEXT MODELLING

{disjoint, complete} {disjoint, complete }
[]

| Substantial | | Moment | |Substantia| Universall |Moment Universall

w Situation Universal

Foundational Context Concepts

5.3.1 Entity and Context

Considering the foundational ontologies described in the previous sections
and our definition of context, we argue that entity and context types should
be classified into substantial universal and moment universal, respectively. Since
entities do not inhere in other entities, they should be classified as
substantials. On the contrary, contexts always inhere in other entities, and
therefore, they should be classified as moments.

We define a universal for entities and a universal for context, namely,
Entity and Context, respectively. For example, the entity type Person and the
context type Location are universals, while John and his actual location are
individuals (instances of these universals), respectively. We focus here on
context models that capture the general aspects of context, and therefore,
we only represent universals in our figures.

Figure 5-7 extends the foundational concepts presented earlier with our
foundational context concepts. The class Entity (representing the concept of
entity) extends the SubstatialUniversal class, while the class Context (representing
a particular context condition) extends the MomentUniversal class. The
relationship between classes context and entity is characterized by the
association ends hasContext and isContextOf, which are subsets of association
ends “bears” and ‘“inheres in” described between moments and endurants
(Figure 5-5). We focus in our approach on foundational context concepts
that capture the general aspects of context, and therefore, we only represent
universals. For the sake of simplicity, we suppress the term “universal” from

our models.

Figure 5-7 Fragment of
the foundational context
concepts

FOUNDATIONAL CONTEXT CONCEPTS 91

Moment Universal

>I

Substantial Universal
isContextOf hasContext

subsets inheres in
{ } {subsets bears} Context

1.* 1.7

{disjoint, complete}

| IntrinsicContext | |RelationaIContext|

The UML constraint {subsets <end>} indicates that an association end
constrains the possible values of association end <end>. For example, the
possible values of association end hasContext are a subset of the possible values
of association end bears, which is defined between classes Endurant and Moment.
In ontology terms, a subsets association is a subproperty.

We distinguish two categories of context, namely intrinsic context
(IntrinsicContext) and relational context (RelationalContext).

Intrinsic context defines a type of context that belongs to the essential
nature of a single entity and does not depend on the relationship with other
entities. An example of intrinsic context is the location of a person or a
building.

Relational context defines a type of context that depends on the relation
between distinct entities. An example of relational context is Containment,
which defines a containment relationship between entities, such as an entity
building that contains a number of entity persons.

This categorization of context is analogous to the ontological categories
of moment defined in the previous sections, which classify moments into
intrinsic or relational. Similar to our definition, an intrinsic moment
inheres in a single individual, while a relational moment inheres in a

plurality of individuals.

5.3.2 Context situations

As part of our foundational context concepts, we have also included the
concept of context situations, which are elements composed of contexts and
entities. Context situation universals (or types) aim at characterizing
situations with similar properties. For example, the context situation
universal “John is within 50 meters from Alice” consists of all situation
individuals in which the distance between John’s and Alice’s location values
is smaller than 50 meters. Similarly, the context situation universal “Person
is within 50 meters from another person” consists of all situation
individuals in which the distance between any two persons’ location values
is smaller than 50 meters. By defining context situation universals, the
application designer is able to generalize situations of interest, as opposed
to cumbersomely specifying situations that are only applicable to a limited
set of entities’ instances.

92

Figure 5-8 Fragment of
the foundational context
concepts including
context situations

CHAPTER 5 CONTEXT MODELLING

As depicted in Figure 5-8, a context situation specialises a situation

Moment Universal

universal and is composed of entities and contexts.
Substantial Universal
isContextOf hasContext

{subsets inheres in} {subsets bears}

Context
1.% 1.%

1.” entities contexts 1.7

Situation Universal

Context Situation
* +initialtime : Time *
+finaltime : Time

A context situation exhibits temporal properties, such as the time interval
during which the situation holds. This aspect is in line with the ontological
definition of situations discussed in [55], which defines a situation as a
snapshot view of some part of the world. In this theory, a situation is framed
by a chronoid. Chronoids are ontological entities that define a temporal
duration. As an example, consider the situations “John is married to Alice”
and “John and Alice are divorced”. From time ¢’ to '’ (e.g., for 10 years)
John has been married to Alice. During this interval, at any time (a
snapshot), the situation “John is married to Alice” holds. We can say that
the situation “John is married to Alice” is framed by a chronoid that refers
to the time interval [¢°, ¢']. Suppose the situation “John and Alice are
divorced” is framed by another chronoid defined by the interval [, ¢].
Since the marriage situation is a pre-requisite for the divorce situation, and
a couple cannot be married and divorced at the same time, we can explicitly
define that ¢ > ¢'°.

A context situation chronoid is defined in our context modelling
approach by means of initial and final times, represented by the attributes
initialtime and_ finaltime (Figure 5-8). The initialtime attribute captures the
moment a situation begins to hold, and the finaltime attribute, the moment a
situation ceases to hold. Since we capture the finaltime, our model represents
past occurrences of situations. We also include temporal operations for
relating situations in their occurrence intervals, such as precedence,
overlapping, and post-occurrence. These operations are defined in OCL 2.0
[90] in terms of initial and final times, and can be used in the definition of
situations. Section 5.5 further discusses temporal aspects.

We have identified a range of situation type patterns that are relevant for
context-aware applications. These patterns involve the different kinds of
context (intrinsic and relational), entities, and formal relations, which are

Figure 5-9 Fragment of
the foundational context
modelling concepts
including context
situation patterns

Figure 5-10 Intrinsic
situation

FOUNDATIONAL CONTEXT CONCEPTS 93

the building blocks for composing context situations. We have identified
five patterns of context situation types according to the types of context
they are composed of. These patterns of situation types are intrinsic situation,
relational situation, formal relational situation, situation of situations and combined
situations. Figure 5-9 depicts these types of situations as extensions of our
foundational context concepts. These patterns are described in the sequel.

Context Situation

{disjoint}

RelationalSituation CombinedSituation
IntrinsicSituation SituationOfSituations

| FormalRelationSituation |

Intrinsic situation

Intrinsic situation defines a type of situation that involves only intrinsic
context types. An intrinsic situation is composed by a unique entity and
part of its intrinsic contexts. An example of an intrinsic situation is the
situation fever, which can be defined as a person (of type entity) who has
his/her temperature (of type context) above 38 degrees Celsius.

Figure 5-10 depicts the IntrinsicSituation type as an extension of our
foundational concepts. The association ends intContexts and intEntity specialize
the association ends contexts and entities defined between the superclasses
ContextSituation and Context, and ContextSituation and Entity, respectively. We use the
UML subsets constraint to define association end specializations.

isContext0f hasContext
@ {subsets inheres in} {subsets bears} Context
1 intEntity I
. |{subsets entities}
intContexts
IntrinsicSitum| {subsets contexts} I IntrinsicContext | |Re|ati0na|Context
x 1

Relational situation
Relational situation defines a type of situation that involves only relational
context types. A relational situation consists of at least two entities and part
of their relational contexts. An example of relational situation is the
situation friends, which defines a situation in which two persons (of type
entity) participate in a friendship (of type relational context).

Figure 5-11 depicts the RelationalSituation type as an extension of our
foundational concepts. Similarly to the intrinsic situation models, the

94

Figure 5-11 Relational

situation

Figure ~ 5-12
relation situation

Formal

CHAPTER 5 CONTEXT MODELLING

associations regarding the RelationalSituation class specialize the associations
defined for its superclass ContextSituation, which are presented in Figure 5-8.

isContextOf hasContext
Entity {subsets inheres in} {subsets bears} Context
1.* 1.*

relEntities
{subsets entities}

relContexts

subsets contexts [——
{ ! RelationalContext IntrinsicContext

* 1.*

RelationalSituation

Formal relation situation

Formal relation situation defines a type of situation that consists of at least
two entities and at least two or more qualities (intrinsic contexts) such that
these qualities are comparable. Two qualities are comparable if they can be
associated to a common quality dimension. An example of formal relation
situation is the situation containment, which defines a situation in which a
person (of type entity) is physically contained in a building (of type entity).
In order to verify the containment relation, quality values of both entities
(for example, their geographical location), should be compared. Figure 5-12
depicts the FormalRelationSituation type as an extension to our foundational
concepts.

isContextOf hasContext

subsets inheres i
{subsets inheres in} {subsets bears} Context

Entity
9 formEntities
{subsets entities}

* 1.7

*

formContexts
{subsets contexts}

FormalRelationSituation

IntrinsicContext RelationalContext

* 9 x

Situation of situations

Situation themselves may be composed of other situations. A Situation of
situations defines a type of situation that is composed of other situation
types. An example of situation of situations is the situation recurrent fever,
which specifies that a person (of type entity) has had fever (of type situation
fever) in the past 5 days. Figure 5-13 depicts the SituationOfSituations type as an
extension of our foundational concepts.

Figure 5-13 Situation of
situations

Figure 5-14 Combined
situations

FOUNDATIONAL CONTEXT CONCEPTS 95

isContextOf hasContext

- {subsets inheres in} {subsets bears} |——|
Entity Context
1.* 1.*

1.% entities contexts 1.

*

Combined situation

Combined situations are the situations that combine the context types and
the situations types we have defined so far. While in the definition of a
situation of situations a situation type is always involved, in a combined
situation definition such characteristic does not apply. Situations and
context types can be freely composed, such that particular application’s
state-of-affairs are represented. Take as an example a particular situation in
which a person is located in a shopping mall and is purchasing a product
while talking to some friends. One can define this situation with combined
situations by composing entity types (persons and shopping mall), situation
types (containment and friendship situations) and intrinsic context types
(person talking). Figure 5-14 depicts the CombinedSituation type as an
extension of our foundational concepts.

isContextOf hasContext
- {subsets inheres in} {subsets bears}
Entity | I Context
1.7 1.%

1.% 1.x entities contexts 1.% 1.*
combEntities combContexts
{subsets entities} — {subsets contexts}

Context Situation

combSituation

5.3.3 Context foundations

In the previous sections we have defined the foundational concepts that can
be extended by context-aware application developers with application- (or
domain-) specific concepts. These concepts should be used as a starting
point for context-aware application design. In the following sections we
provide guidelines on how these foundational concepts can be extended

96

Table 5-1 Foundational

context concepts

5.4

CHAPTER 5 CONTEXT MODELLING

with specific concepts. Table 5-1 summarizes the concepts we have
discussed so far.

Foundational context Description

concepts

Entity an object that beares context

Context a particular condition that inheres in an entity

Intrinsic Context a particular type of context that belongs to the essential nature of a
single entity

Relational Context a particular type of context that depends on the relation between

distinct entities

Contextual Formal Relation a relation that holds directly between two or more entities” intrinsic
values (qualities)

Context Situation a composite concept that defines particular application’s state-of-
affairs. It can be composed of entities, contexts, and other situations

Intrinsic Situation a context situation composed of a single entity and one of its
intrinsic contexts

Relational Situation a context situation composed of at least two entities and their

pertinent relational contexts

Formal Relation Situation a context situation composed of a single entity type and two or more
of its intrinsic contexts

Situation of Situations a context situation composed of other context situations

Combined Situations a context situation composed of other contexts, entities, and other
context situations

Context Models

So far we have discussed the foundational context concepts that can be
beneficially used in the design of context-aware applications. We have not
yet discussed concepts that are specific to particular applications or family
of applications, which are called here application domains. In this section we
discuss context models that represent the context conditions that are
relevant for particular context-aware application’s (or application domain’s)
universe of discourse, and therefore, are application-specific or domain-
specific. The examples presented below show how to specialize the
foundational context concepts with specific concepts. In addition, these
models form the basis for defining context situations, which are introduced in
section 5.5.

A domain-specific model defines concepts that are shared among the
applications that belong to that domain. Some of the domain-specific
models may be specialized by particular applications to accommodate the
concepts that are application-specific and not shared with other
applications in that domain. In this section we show examples of both

CONTEXT MODELS 97

application and domain models without explicitly distinguishing between
them.

So far we have defined the concepts for context and situation modelling
without defining a language with which application designers can specify
application specific context and situation models. We specialize UML class
diagrams for that purpose introducing a UML profile that captures the
concepts which are specific to our models, i.e. the concepts summarized in
Table 5-1. A UML profile is a so called lightweight extension of the UML
metamodel and consists of stereotypes. Stereotypes allow the extension of
UML permitting the creation of new model elements, derived from existing
ones [91]. We have created stereotypes for each element of our
foundational context concepts (Table 5-1), which form our UML profile.
These elements appear as prirnitive constructs for context-aware
application designers to build specific context models. For example, when
an application designer defines the concept Person as a UML class, it is
stereotyped as «Entity», which indicates that this concept is of type Entity
according to our foundational context concepts. Similarly, if the location
concept is defined as a UML class, it is stereotyped as «IntrinsicContext, which
indicates that this concept is of type intrinsic context according to our
foundational context concepts.

5.4.1 Entity types

Figure 5-15 depicts some examples of domain specific (or application
specific) entity types such as SpatialEntity and IntangibleEntity. We use the
stereotypes to denote the classification of a domain (or application) specific
concept with respect to the foundational concepts. For example, by using
the stereotype «Entity» for a class, the designer explicitly specifies that this
class inherits the characteristics of the foundational concept Entity
(depicted in Figure 5-7).

Spatial entities represent tangible objects, such as a person, a device, a
room or a building. Intangible entities represent intangible objects such as
an application and a network. A particular type of spatial entity is the
ContainerEntity, which is capable of physically containing other entities.
Container entities have different shapes and dimensions, such as the height,
width and depth of a rectangular parallelepiped, or the radius of a sphere.
In addition, container entities have a centre of mass, which defines a point in
the centre of the container object. We regard the geographical location of a
container entity, the geographical location of the container’s centre of mass.

The counterparts of container entities are the PointEntity types, which have
no volume dimensions, behaving like a point in the space. In Figure 5-15 we
show person and device as examples of point entity types. Although these
entities in reality have volume, it is the application developer who decides

98

Figure 5-15 Examples of

entities

Figure 5-16
context types

Intrinsic

CHAPTER 5 CONTEXT MODELLING

whether the entity type is relevant as a container or as a point entity.
Therefore, depending on the application’s universe of discourse, entity

types may be represented differently.

«Entity» «Entity»
IntangibleEntity SpatialEntity
{dis]oml}é {disjoint}
| Application || Network | | PointEntity | |ContainerEntily|
ZF ZF {disjoint}
[[[I]
| Device | | Person | | Building |<>—| Room | | Vehicle
N L livesAt {overlaping}
Home | | Office |
: l
+worksAt *

5.4.2 Intrinsic context types

Intrinsic context defines a type of context that inheres in a single entity,
which is the bearer of the intrinsic context. Figure 5-16 and Figure 5-17
depict examples of intrinsic context types. Geographic location (GeoLocation)
is context that inheres in all spatial entities. Spatial entities are bearers of
GeolLocation. Similarly, battery power (BatteryPower) inheres in a device.
Analogous reasoning can be applied to other context types depicted in
Figure 5-16 and Figure 5-17.

«Entity» hasGeolocation [ntrinsicContext>
SpatialEntity GeoLocation
1 1

- hasBatteryPower | «IntrinsicContext>
Device BatteryPower
1 1
«Entity»
IntangibleEntity
hasBandwidth | «IntrinsicContext>
Network Bandwidth

1 1

In order to represent a concept as an entity types or as an intrinsic context
type, the stereotypes «Entity and «IntrinsicContext- are used, respectively. The
association ends between entity and context types are regarded as the
association ends hasContext and isContextOf, i.e. in Figure 5-16, the association
end hasGeoLocation is stereotyped as «hasContext-. We omit stereotypes on
association ends for the sake of clarity of the models.

All intrinsic context types discussed in this thesis are classified as the
ontological notion of quality universal. The geographical location of an entity

Figure 5-17
context types
persons

Intrinsic

for

CONTEXT MODELS 99

is an example of quality, whose quality dimension is defined by all possible
values in a geographical coordinate system.

The quality of an entity is an intrinsic objectified property of that entity,
thus, even if two entities are co-located, they do not have the same location
quality in the strong sense. Co-location depends on the granularity of
associated quality dimension. For instance, take two different quality
dimensions Q, Q’ associated with the quality universal location such that Q
= {list of names (y{ civil]ocations}, Q = {precise GPS location value space}.
Under these circumstances, we can have that two entities are considered
co-located in the quality space Q but not in Q. In other words, the accuracy
of our comparisons of entities’ intrinsic properties depends on the
precision of our quality dimensions. Quality dimensions are represented as
datatypes in our models.

Figure 5-17 presents examples of intrinsic context types of a person,
such as the person’s current activity, mood and mental state. In fact, these
context types are quite subjective and difficult to measure. However, one
could conceptualize an objective notion for these context types in a
context-aware application, by enumerating the possible values (quality
dimension) with which each of these types may possibly be associated. For
example, we may say that the possible values of a person’s mood are: happy,
sad, bored, tired and moody; and the possible values of a person’s current
activity are: working, dancing or attending a meeting.

«Entity»
SpatialEnti
P y hasHeartRate [IntrinsicContext»
HeartRate
’
, hasMood «IntrinsicContext>
' Mood
1
— hasActivity «IntrinsicContext>»
Person Activity
1.*
haslentalState «IntrinsicContext
1 MentalState
L’ ZA
[[\
| Desire | | Belief | | Intention |

Figure 5-18 shows how environmental characteristics can be modelled by
using intrinsic context types associated with a ContainerContext. Examples of
container context types are noise level and temperature of a room and
humidity of a car. These context types are also qualities, and therefore,
quality dimensions should be specified for each of them. The quality
dimension of relative humidity, for example, comprises the values between
0 and 100 (percentage values). Quality dimensions are represented as UML
datatypes in our diagrams, as depicted in Figure 5-18. Datatypes are

100

Figure 5-18
context
container entities

Figure ~ 5-19
location as
context

Intrinsic

types for

Civil
intrinsic

CHAPTER 5 CONTEXT MODELLING

appropriate to represent quality dimension since instances of these types
are values in a value space.

«Entity»
SpatialEntity
/\

hasContainerContext

«IntrinsicContext»

ContainerEntily ContainerContext

1 1

«IntrinsicContext»
ContainerSound

«IntrinsicContext t

[\
| Buing k>{ Room ||

A1

Vehicle |

«IntrinsicContext»

1 ContainerHumidity| | ContainerLuminance
«datatype» |~ * «(latatype»
Temperature SoundLevel
1
«datatype» «datatype»
HumidityLevel LuminanceLevel

In some scenarios, depending on the modelling choices, context
information may be classified as either intrinsic or relational. Take for
example the entity’s civil location (country, state, city, street and house). As
depicted in Figure 5-19, civil location can be classified as intrinsic context,
in which the value of a civil location is mapped to a quality dimension

defined as the CivilLocaiton datatype.

«(atatype»
CivilLocation
«Entity» hasCivilLocation [«InirinsicContext> +country : String
SpatialEntity CivilLocation +state : String
* 1 * 1 +city : String

+street : String
+house : String

However, it may be necessary to treat country, state, city, street and house
as entities themselves, since one may be interested in properties of these
entities, such as the number of persons in a house, the holidays of a country
and the traffic intensity on a street. In such scenarios, a civil location
depends on the existence of a set of entities, and, therefore, should be
classified as relational context (see section 1.2.2), as depicted in Figure 5-
20.

Figure ~ 5-20 Civil
location as relational
context

Figure 5-21 Channel
and network availability
relational context types

CONTEXT MODELS 101

«Entity~ hasCivilLocation [<RelationalContext»
SpatialEntity CivilLocation
N\ ’ 1
= | isCivilLocationOf
1
=

CivilLocationEntity

House

City
State

5.4.3 Relational context types

i

While intrinsic context information inheres in a single entity, relational
context information inheres in a plurality of entities. In order to specify that
an application-specific concept is a relational context, the stereotype
«RelationalContext> is used. The relation that holds between bearers of a
relational context is a material relation. For example, the relation that holds
between devices and channels through ChannelAvailability (see Figure 5-21) is a
material relation. A material relation is defined directly between the entities
participating in a relational context. We have simplified the models in the
remaining examples of the thesis, such that a material relation is not
explicitly shown. Figure 5-21 and Figure 5-22 depict examples of relational
context types.

<Entity> «Entity>
SpatialEntity IntangibleEntity

Device Network

*

9 1 hasNetworkAvailability [«RelationalContext> | isNetworkAvailableTo

NetworkAvailability Channel
1 *
hasChannelAvailability [«RelationalContext>| isChannelAvailableTo N

ChannelAvailability

1

Relational context may be used to relate an entity to the collection of
entities that play a role in the entity’s context. Examples of relational
context types are DeviceAvailability, ~NetworkAvailability, —SocialNetwork and
ChannelAvailability. The DeviceAvailability relational context relates a person to a
collection of devices that are available to that person. NetworkAvailability relates
a device to a collection of networks that are available through that device,
SocialNetwork relates a person to the collection of persons interacting with

102

Figure 5-22
Containment, device
availability and social
network relational
context types

CHAPTER 5 CONTEXT MODELLING

that person by any communication channels, and ChannelAvailability relates a
device to a collection of communication channels supported by that device
(e.g., e-mail, voice and SMS).

«Entity» isContainedin
SpatialEntity 1.7
A 1.7

- - hasContainment | «RelationalContext>
—| ContainerEntity e

1 1

—|_PeT| hasSocialNetwork | «RelationalContexts
> I SocialNetwork

1.* 0.*
1 hasDeviceAvailability |<«RelationalContext

DeviceAvailability
1
- isDeviceAvailableTo
—| Device T T+

Figure 5-22 depicts another example of a relational context, the Containment

context, which represents a direct containment relationship among spatial
entities. More specifically, a ContainerEntity such as a building, a room or a
vehicle may be associated with a containment relational context, which may
in turn contain a set of spatial entities. A containment chain is created with
the condition that every contained entity physically fits in its respective
container entity.

Intuitively, relational context allows us to navigate the context model
from an entity to the contexts of entities that are related to this entity
through the relational context, still maintaining the separation of the
concerns between entity and context. Consider the following example
involving the entity types Person, Device and Channel. Suppose that John (of
type Person) is related to his PDA and phone (of type pevice) through
DeviceAvailability. John’s PDA is related to e-mail (of type Channel) though
ChannelAvailability, and John’s phone is related to a voice channel also through
ChannelAvailability. Therefore, we can conclude that John is (indirectly) related
to certain e-mail/voice channels. This approach can be beneficially used in
reasoning activities.

The participants of a relational context might be of the same type, for
example, the participants of a SocialNetwork relational context are of type
Person. In some scenarios this participation is symmetric, i.e. each entity
participates in the relational context in the same way. For example, in Figure
5-22, the persons participating in the SocialNetwork relational context (e.g., a
friendship) equally contribute to the social network. However, there are
scenarios in which it is necessary to distinguish the participation of entities
in a relational context. As can be seen in Figure 5-22, the participation is
distinguished by means of association names. For example, a person
participates in the DeviceAvailability relational context by means of a

Figure 5-23 Telephone
call relational context

Figure 5-24 Friendship

and book
relational contexts

circle

CONTEXT MODELS 103

hasDeviceAvailability association, while device participates in the DeviceAvailability
relational context by means of a isDeviceAvailableTo association.

Figure 5-23 depicts an example of relational context type in which the
participants are of the same type, but contributing distinctively to the
relational context. The persons in a telephone call participate either as a
caller or a callee, which are defined as distinct associations in the relational
context.

«Entity»
SpatialEntity
/\ 0.*

1 callee

|
«RelationalContext»
TelephoneCall
caller [
1 0.”

Relational context types may be also specialized in order to meet specific
modelling requirements. For example, if we would like to model specific
types of social networks, such as a friendship or a social gathering, such as a
book circle network. Figure 5-24 depicts these relational context types.

isSocialNetworkOf hasSocialNetwork | «RelationalContext>
1.5 SocialNetwork

*

1 hasFriendship

Person | {subsets hasSocialNetwork}

Friendship
* - 0.*
participatesin

2. {subsets hasSocialNetwork}

BookCircle

hasLeadershipOf 0..*
{subsets hasSocialNetwork}

1.*

Persons equally participate in a friendship; therefore, only association
hasFriendship between classes Person and Friendship is defined. In a book circle,
on the contrary, a person may participate in different ways, namely as a
member (participatesin association end) or as a leader (hasLeadershipOf
association end) of the circle.

5.4.4 Contextual formal relations types

Analogous to the definition of formal relations discussed in section 5.2,
contextual formal relations hold directly between intrinsic context types. As
opposed to material relations, there is no intervenient individual between
the intrinsic context types related by a contextual formal relation. Formal

104

Figure
relations

5-25

Formal

CHAPTER 5 CONTEXT MODELLING

relations are defined in our models as operations in the data types which
represent the respective quality dimension.

Figure 5-25 depicts an example of two formal relations, namely nearness
and distance. Nearness is a formal relation in which the truth value of an
expression such as “John is near Maria” (“nearness” being defined, for
example, as within 1 km range) only depends on the values of John’s and
Maria’s locations, which are qualities (intrinsic context). Distance is a
formal relation that calculates the distance between spatial entities. For
example, the distance (Distance(xy.z)) can be thought of as a logical
construction from the intrinsic context a = location(x), b = location(y), such that
7 = |valueof(a)-valueof(b)| (Euclidian distance between a and b). Nearness and
distance are defined in our models as operations in the GeoLocationCoordinates
data type (Figure 5-25).

<Entity» hasGeoLocation [jfnsicContext>

SpatialEntity GeoLocation

+coordinates

«(atatype»
GeoLocationCoordinates
-+latitude : Real
-+longitude : Real
+altitude : Real

+nearness(in entity1 : GeoLocationCoordinates, in enitty2 : GeoLocationCoordinates) : Boolean
-+distance(in entity1 : GeoLocationCoordinates, in entity2 : GeoLocationCoordinates) : Real

The distinction between material and formal relations are useful in our
context models. On one hand, it is possible to derive or infer the truth
value of a formal relation solely from the intrinsic context of the related
entities. On the other hand, direct inference from intrinsic contexts of the
related entities is not sufficient to determine whether a material relation
holds.

Relational context and formal relations may be interchanged, depending
on the context model adopted. For example, one could adopt a model
where the containment relational context is defined in terms of the spatial
dimensions of a container and the location of a contained entity, being
therefore a formal relation. A different approach is to adopt a model where
the containment relational context exists on its own (for example, in a
badge system). In such scenarios, there is no need to explicitly
conceptualize neither the spatial dimensions of a container nor the location
of a contained entity. In this scope, containment is categorized as relational
context (and hence, defines a material relation between the container and
contained entities). Figure 5-26 depicts containment as a relational context,
and Figure 5-27 depicts containment as a formal relation.

Figure
Containment
relational context

Figure

5-26
as

5-27

Containment as formal

relation

5.5

CONTEXT SITUATION MODELS 105

«Entity» isContainedin
SpatialEntity 1.%
1.*
«RelationalContext»
Containment

hasContainment | 4

ContainerEntity

In Figure 5-27, we define the quality dimension SpatialDimension which
describes the dimensions needed to calculate the volume of a container
entity. The value of a SpatialCoordinates intrinsic context must be mapped to a
value in the SpatialDimension quality dimension. We exemplify the spatial
dimension with a spherical shape. Radius and centre of mass are enough to
calculate the volume and the position in space. However, other shapes, such
as parallelepiped and elliptical shapes could also be defined.

We have defined two containment operations (formal relations): to
verify whether the container entity contains another container entity and to
verify whether the container entity contains a point entity.

«(atatype»
GeoLocationC

~+latitude : Real

~longitude : Real

+altitude : Real

-+nearness(in entity? : GeoLocationCoordinates, in enitty2 : GeoLocationCoordinates) : Boolean
-+distance(in entity1 : GeoLocationCoordinates, in entity2 : GeoLocationCoordinates) : Real

hasGeoLocation

«Entity»
SpatialEntity
/\

oordinates | «IntrinsicContext>

SpatialCoordinates
* 1
-+dimension
«(atatype»
SpatialDimension

~+radius : Real

. in point : GeoLocationCoordinates, in container : GeoLocationC in dimension : SpatialDimension) : Boolean

+ in entity1 : GeoLocationCoordinates, in dimension1 : SpatialDimension, in entity2 : GeoLocationC , in 2 : SpatialDi : Boolean

Context Situation Models

We specify context situations using standard UML 2.0 [91] class diagrams
which are enriched with OCL 2.0 [90] constraints to define the conditions
under which context situations of a certain type exist. For example, Figure
5-28 depicts the representation of a simple situation type in which a person
has fever (his/her temperature is above 38 degrees Celsius).

106

Figure 5-28 Situation
fever

CHAPTER 5 CONTEXT MODELLING

{ Context SituationFever inv:
temp = person.hasTemperature AND
person.hasTemperature.value > 38}

person 5
erson
0.1 1
1
«IntrinsicSituation»
SituationFever
1 hasTemperature
0.1
temp | «IntrinsicContext»

Temperature

The situation type SituationFever is composed of entity type Person and his/her
Temperature, which is an intrinsic context type. The OCL invariant defines a
predicate that must hold for all instances of SituationFever. The cardinality also
constrains situation instances, for example, instances of SituationFever should
be associated with a person, and a temperature. The OCL invariant further
constrains instances of SituationFever by defining that the temperature of the
person should be greater than 38 degrees Celsius. The “context” keyword
in the OCL invariant is a reserved OCL primitive that defines the class for
which the constraint should be applied.

The association ends between a situation type and an entity type, and
between a situation type and a context type, are classified according to the
respective association ends defined for that pattern of situation type. For
example, since the situation fever type is an intrinsic situation, the
association ends person and temp are classified as «intEntity» and «intContexts»
(defined in Figure 5-10) respectively. We omit association end stereotypes
for the sake of clarity of the models.

The invariants as presented in our situation type figures are violated for
past occurrences of situations, i.e. these invariants would never allow past
occurrences of situations. In order to avoid that, we should include, for
each invariant, a disjunction with a predicate that verifies whether this
situation is a past occurrence (not finaltime.oclisUndefined()). We omit this
predicate in the rest of the thesis (except when explicitly indicated) for the
sake of readability. In the sequel we discuss application specific examples of
each of the situation patterns discussed in section 5.3.2.

5.5.1 Intrinsic situation types

Intrinsic situation defines a type of situation that involves only intrinsic
context types. An example of an intrinsic situation type is “person has
fever” (SituationFever), which is depicted in Figure 5-28. Another example is

Figure 5-29 Context
model used in the
situation available
specification

Figure 5-30 Situation
available specification

CONTEXT SITUATION MODELS 107

the situation type (SituationAvailable) that captures the availability and
willingness to communicate of MSN and Skype users.

Figure 5-29 depicts a fragment of the structural context model that
represents the MsnStatus and SkypeStatus intrinsic context types, which model
the user’s communication status while using MSN and Skype, respectively.
A person, while playing the role of MsnUser, is associated with MsnStatus
context type, and while playing the role of SkypeUser, is associated with
SkypeStatus context type. The enumeration data types SkypeStatusEnum and
MsnStatusEnum ~ define all possible values for SkypeStatus and MsnStatus,
respectively.

A e «gnumeration» «enumeration»
«role» hasMsnStatus MsnStatus MsnStatusEnum | | SkypeStatusEnum
MsnUser - +online +online
1 4 |tstatus : MsnStatusEnum +husy +offline
— +beRightBack +skypeMe
«role» hasSkypeStatus <<|ng||(r;3|:sCtg$zxt» “+away “+away
SkypeUser P +inCall +notAvailable
1 4 [Status : SkypeStatusEnum | |+ outToLunch ||+ doNotDisturb

Figure 5-30 depicts a situation model which builds on the context model
presented in Figure 5-29, defining the situation type SituationAvailable.

«[0le»

hasMsnStatus

«IntrinsicContext>

MsnUser |

1
] msnUser

1

| MsnStatus

04 msnStatus

{Context SituationAvailable inv:

«IntrinsicSituation»

0ol SituationAvallable

—

skypeUser

0.1

hasSkypeStatus

(skypeUser = msnUser) AND
((not skypeUser.ocllsUndefined()) AND
(skypeUser.skypeStatus = skypeStatus) AND
((skypeStatus.value = "Online")

OR (skypeStatus.value = "SkypeMe")))
OR
((not msnUser.ocllsUndefined()) AND
(msnUser.msnStatus = msnStatus) AND
((msnStatus.value = "Onling")

skypeStatus | "R’ (msnStatus.value — "BeRightBack)))}

«IntrinsicContext»

«role»
SkypeUser

SkypeStatus

1

The OCL invariant in this diagram is a predicate that must hold for all
instances of SituationAvailable. It defines that instances of SituationAvailable must
be either associated with a user available in Skype (with SkypeStatus set to
Online or SkypeMe) or a user available in MSN (with MsnStatus set to Online or
BeRightBack). The OCL operation ocllsUndefined() is part of the OCL standard
library and tests whether the value of an expression is undefined.

5.5.2 Relational situation types

Relational situation defines a type of situation that is composed by relational
types. The following
(SituationConnection) in which a device has established a connection (relational

context example discusses a situation

108

Figure 5-31 Context
model for situation
connection

Figure 5-32 Situation
connection definition

CHAPTER 5 CONTEXT MODELLING

context type) to each of the two network types, WLAN, and Bluetooth (entity
types). By explicitly modelling the connections as relational context, we are
able to assign properties to these connections, such as access rights and
negotiated QoS.

Figure 5-31 depicts the structural context models representing the types
and relationships that are relevant for this example. According to this
diagram, a Device may be connected to a Network through the relational
context Connection.

1 1

- hasConnection [«RelationalContext»| isConnectionOf
Connection

1 0.1

| WLAN || Bluetooth |

Figure 5-32 depicts the situation type SituationConnected. The OCL invariant
defines that instances of this situation must be associated with at least one
connection object.

«RelationalSituation-))
P {Context SituationConnected inv:
SituationConnected not device.hasConnection.ocllsUndefined() }
* *
1
device
- hasConnection k«RelationalContext>
Device 1 k<Relatio an text>
Connection
L. 0.1
network) 0.”)
isConnectionOf
Network

1

5.5.3 Formal relation situation types

Formal relation situation defines a type of situation that consists of at least
two entities and at least two or more intrinsic contexts. Figure 5-33 shows
an example of situation involving two entities and their intrinsic contexts.
Their locations are compared such that instances of SituationWithinRange hold if
two spatial entities are located within a certain range (defined as an
attribute of the SituationWithinRange class). This model builds on the context
model defined in Figure 5-25, which specifies the formal relation distance, as
an operation of the GeolLocationCoordinates data type.

Figure 5-33 Situation
within range
specification

Figure 5-34 Situation
switch specification

CONTEXT SITUATION MODELS 109

{Context SituationWithinRange inv:
entityA.hasGeoLocation = locationA AND
entityB.hasGeoLocation = locationB AND
locationA.value->distance(locationB.value) < range}

«FormalRelationSituation»
SituationWithinRange .
+range
1 1 1 1
entityA | entityB locationA [locationB|
«Entity» hasGeoLocation «IntrinsicContext>»
SpatialEntity 1 1 GeoLocation

5.5.4 Situation of situations types

Situation of situation types are composed of other situations types. Suppose
we would like to know when a device switches from a WLAN connection to a
Bluetooth connection in order to set new quality of service parameters. Since
SituationConnected has been already defined in Figure 5-32, in order to detect
SituationSwitch, we would have to verify whether SituationConnected held in the
past for network WLAN, and currently holds for network Bluetooth. We may
add the additional constraint for the handover time which should not be
longer than one second. This temporal constraint is realized by means of
the initial and final times attributes. This example is depicted in Figure 5-
34, showing that SituationSwitch can be modelled by composing multiple
occurrences of SituationConnection, one called wlan, and the other called
bluetooth.

{ Context SituationSwitch inv:

(wlan.device = bluetooth.device) AND
(wlan.device.hasConnection.network.ocllsTypeOf(WLAN)) AND
(bluetooth.device.hasConnection.network.oclisTypeOf (Bluetooth)) AND
(bluetooth.initialtime - wlan.finaltime <1)}

«RelationalSituation» wlan «SituationOfSituations»
SituationConnected SituationSwitch
| bluetooth 0.1 |

1 0.1

We can also define situations that depend on the duration of other
situations. Suppose we would like to know when two persons are within
certain range for some time, which could mean that they are/were in a
meeting. For that, we can use the SituationWithinRange type depicted in Figure
5-33 with an extra constraint that determines the minimum duration of the
situation. The situation type depicted in Figure 5-35 holds when two
persons are/were within a certain range for at least 1 hour (60 minutes).

110

Figure 5-35 Situation
duration specification

5.5.5

CHAPTER 5 CONTEXT MODELLING

{ Context SituationDuration inv:

((not SituationWithinRange.finaltime.isOclUndefined()) AND
(SituationWithinRange.finaltime - SituationWithinRange.initialtime > 60))
OR

((SituationWithinRange.finaltime.isOclUndefined()) AND)

(Time.now() - SituationWithinRange.initialtime>60)) }

«SituationOfSituations» «FormalRelationSituation»
SituationDuration SituationWithinRange
x 1 |trange

We could also slightly change this OCL constraint to allow SituationDuration to
hold only when the persons were together in the past, or to hold only when
these persons are still together in the present. In order to guarantee that the
persons were together in the past, we would keep the first part of the
invariant, eliminating the binary logical operator OR. Similarly, to guarantee
that the persons are still together in the present, we keep the second part of
the invariant, also eliminating the OR operator.

Defining situation of situations is a good practice when specifying the
application’s state-of-affairs, since it enables modularization of application
design. Situation types can be used as building blocks for composing more
complex structures of situations. This allows reuse of situation types in the
specification of different state-of-affairs.

Combined situation types

Combined situations are the situations that combine the context types and
the situations types we have defined so far. For example, suppose we would
like to define a situation in which a device is capable (with respect to time)
of downloading and launching a presentation. In order to define that, we
should determine (i) whether the device is connected to a network; (ii) the
time necessary to download the presentation given the presentation size and
the current network bandwidth; and (iii) whether the device’s remaining
battery provides enough time to download and give the presentation. Figure
5-36 depicts an example of such situation, which combines intrinsic
context types, relational context types and formal relations.

Figure 5-36 Combined
situation specification

5.6

CONTEXT INFORMATION MODELS 111

{ Context SituationPresentation inv:

(not device.hasConnection.isOclUndefined()) AND
(device.hasConnection = connection) AND
(connection.network = network) AND
(
(
(

«(atatype»
BatteryPowerDT

network.hasBandwidth = bandwidth) AND
device.hasBatteryPower = batterypower) AND
(bandwidth.value->expectedDownloadTime(presentationsize) +
presentationduration) < batterypower.value->remainingTime()) }

+remainingTime(in value : BatteryPowerDT) : Real

1

1 1

«IntrinsicContext»| hasBatteryPower Dovi
BatteryPower [Device
device
batterypowel 9 h
! «CombinedSituation»
. SituationPresentation N

+ presentationduration : Real
-+presentationsize : Real

0.1

i connection | hasConnection

bandwidth
«IntrinsicContext» ! 1 «Relational Context»

Bandwidth | nesganwion Network - Connection

L 1 0."
N 1

«(atatype»
BandwitdthDT

+expectedDownloadTime(in size : Real, in bandwidth : BandwitdthDT) : Real

The SituationPresentation type has the presentation duration and the
presentation size as attributes. These attributes are necessary to know the
download time, and the total time necessary to download and give the
presentation, respectively. The OCL constraint makes sure that
SituationPresentation only holds when the remaining battery time is enough to
download and give the presentation. Both operations expectedDownloadTime()
and remainingTime() are contextual formal relations.

Although designers are free to use combined situations, they should be
aware that complex combined situations are less reusable than simple
situation types. It is more efficient to define simple situation types that are
more reusable, than defining complex combined situations that less
reusable. In addition, it is often the case that complex situation types can be
composed of more elementary situation types. In such cases, using situation
of situations types is preferred over using combined situation types.

Context Information Models

As discussed in chapter 2, sections 2.1.2, we explicit distinguish between
the concepts of context and context information, which leads to two
distinct phases in our modelling approach, namely, conceptual context

112

Figure 5-37 Relations

between models
components

and

CHAPTER 5 CONTEXT MODELLING

modelling and context information modelling. So far we have discussed the
conceptual modelling phase. The context information modelling phase
regards technology-specific aspects in the context models. In addition, we
consider the quality of context information (QoC), which is strongly
dependent on the mechanisms used to capture the corresponding context
conditions from the user’s environment (see chapter 2, section 2.2.4).

Figure 5-37 depicts the relations between the context models and the
components that provide context and situation information, namely context
sources and managers, respectively. Context information models increment
the conceptual models with concepts that vary based on the technology
used, such as quality of context. Context sources and managers accept
requests and provide responses which are in line with the concepts of both
conceptual models and context information models.

Conceptual
Models
] -
Conted |-~ |
Sources and |
Managers ~ :
\\\ _| :
\‘L Context
Information
Models

Consider an example of a context source that provides location
information, which is defined in the scope of the Context Sources and
Managers package. This context source accepts requests of information types
that have been defined in the conceptual models, such as “query
GeoLocation of entity John”. GeoLocation is intrinsic context defined in
our conceptual models. In addition, the location information may present
values that qualify this information. Meta-information about quality of
context is defined in the context information models. For example, we may
want to constraint the query above to only retrieve GeoLocation of entity
John, when the probability of correctness of this information is at least
80%. In this case, the concept of probability of correctness (meta-information),
and how it relates to specific context types are defined in the context
information models.

5.6.1 Quality of context

Since sensor technology is imperfect by definition, we should provide
mechanisms and abstractions that allow us to reason about the quality of
the context information captured by sensors. Quality of Context (QoC) is

CONTEXT INFORMATION MODELS 113

information that qualifies context and context situations. Specific context
and situation types may exhibit particular types of QoC, which are called
quality of context parameters. Examples of such parameters are precision,
probability of correctness, and freshness. These parameters allow us to determine
the deviations between the ideal (perfect) information and the information
that is actually obtained from the sensors.

Quality of context parameters have been extensively discussed in the
literature [9, 48, 111]. Our aim is to use examples of quality parameters
from related work in order to demonstrate how they can be incorporated to
our modelling approach. We do not intend to extensively discuss quality of
context parameters, how they relate to each other, and how they are
calculated. We consider the following examples of QoC parameters [111]:

— Precision: the granularity with which context information describes a
real world situation. Depending on the type of information, different
precision quantification can be used. For numeric values, a range of
values can be used to characterize precision. For example, we can say
that the temperature of a room is 23 degrees Celsius, with precision of 2
degrees, i.e. the temperature value may vary between 21 and 25 degrees.
For temporal types, we may say an event occurred at 15 hrs with
precision of 3 hours, meaning that this event may have occurred
between 12 and 18 hours;

— Freshness: period of time between the determination of context
information, and the time it is delivered to the requester. The freshness
of context information can be quantified by creating a timestamp when
the information is determined. The requester calculates the freshness
based on the current time, and the time when the information has been
determined;

— Probability of correctness: the probability that the context information
value accurately represents the corresponding real world context.
Various factors may contribute to the probability of correctness of
context information, such as partial unavailability or malfunction of the
sensor technology. Notably, the probability of correctness also varies
depending on the precision and freshness parameters. In general, the
more precise and fresh the information is, the more accurate is should
be.

These quality parameters are highly dependent on the measuring

mechanisms used by the context providers (context sources and managers).

The context information models aim at identifying the types of providers

supported in the application, the context types supported by these

providers, and which quality parameters are supported.

In our modelling approach, measurement datatypes are created in order to
define the serializable (context and situation) information types that are
exchanged ~ between components. Figure ~ 5-38 depicts the

114

Figure 5-38
Geolocation
Measurement datatype
in the context
information model

CHAPTER 5 CONTEXT MODELLING

GeolLocationMeasurement datatype, which defines the serializable geographical
location information that may be exchanged between components. This
datatype defines the attributes (i) entitylD, which is a string that uniquely
identifies the spatial entity; and (ii) the geolocation attribute, which are the
measured location coordinates of that entity. This datatype also defines the
quality parameters applied to a context provider that captures geographical
location information, using for example, a GPS device or a GSM
triangulation mechanism.

«(atatype»
GeoLocationCoordinates
-+ latitude : Real
-+longitude : Real
-+altitude : Real

-+nearness(in entity? : GeoLocationCoordinates, in enitty2 : GeoLocationCoordinates) : Boolean
-+distance(in entity? : GeoLocationCoordinates, in entity2 : GeoLocationCoordinates) : Real

«IntrinsicContext>
GeoLocation

hasGeoLocation +coordinates 1

«Entity»
SpatialEntity

conceptual model

«datatype»
- GeoLocationMeasurement

«(atatype» «datatype» «enumeration» —enTyID Sting

RangePrecision Freshness igi " . .

- g — - Origin +geoLocation : GeoLocationCoordinates
+minValue : Real | |+creationtime : Time +sensed ~+precision : RangePrecision
+maxValue : Real | |+temporalResolution : RangePrecision | [+derived +reshness | Freshness

+profiled +origin : Origin
+probabilityOfCorrectness : Real

context information model

The RangePrecision datatype defines a quantification mechanism for precision
based on range values. The Freshness datatype defines the attributes necessary
to quantify the freshness of the information: the timestamp of the context
information creation, and the temporal resolution, which defines the
precision used for the timestamp value. The Origin datatype specifies how the
information has been acquired. This class enumerates the following possible
origins for context information, namely sensed, derived or profiled. Context
information is sensed when acquired directly from sensors, and no reasoning
algorithms, such as derivation, extrapolation or aggregation have been
applied. Context information is derived when some sort of reasoning has
been used to derive such information. For example, context information
that indicates whether a user is busy or not may be derived from the current
activities of that user, such as typing on the computer or talking on the
phone. Finally, context information is profiled when gathered from a static
source, such as a database, possibly provided directly by the user.For
example, a user may indicate his/her preferences directly into the system.

Figure 5-39
DeviceAvailability
Measurement datatype
in the context
information model

CONTEXT INFORMATION MODELS 115

Figure 5-39 depicts an example of measurement datatype of a relational
context type, namely DeviceAvailabilityMeasurement. The DeviceAvailability relational
context provides the devices (attribute devices of class
DeviceAvailabilityMeasurement) that are available to a person (attribute personiD).
In such example, the precision quality parameter does not apply.

hasDeviceAvailability | «RelationalContext»| isDeviceAvailableTo -
Devcohalail [Deiee]

1 1 1.r 1.r
conceptual model

«(atatype»
DeviceAvailabilityMeasurement
+personiD : String
+devices : Collection
+probabilityOfCorrectness : Real
+freshness : Freshness

context information model -+origin : Origin

Figure 5-40 depicts the measurement of a situation type
(SituationAvailable). The precision quality parameter does not apply to
situation types, since they either hold or not. In addition, there is no need
to specify the origin of a situation, since situations are always derived from
other contexts or situations.

116

Figure 5-40
SituationAvailable

Measurement datatype
in the context

information model

CHAPTER 5 CONTEXT MODELLING

«[0le» «IntrinsicContext»
MsnUser hasMsnStatus MsnStatus

1 +status : MsnStatusEnum

1
msnUsel
0.1 r msnStatus

0.1

«IntrinsicSituation» 0.1
SituationAvailable |

@1

0.1 skypeStatus

0.1
skypeUser 0.1 «IntrinsicContext>
«[0le» . SkypeStatus
SkypeUser 1 hasSkypeStatus +status : SkypeStatusEnum

conceptual model

«datatype»
SituationAvailableMeasurement
+personiD : String
+msnStatus : MsnStatusEnum
+skypeStatus : SkypeStatusEnum
+probabilityOfCorrectness : Real
+freshness : Freshness

context information model

The probability of correctness of a situation should be calculated based on
the quality parameters of the elements that compose this situation, and the
quality of the situation detection algorithm itself. In the example above, for
instance, if information about MsnStatus or SkypeStatus is not fresh enough
(e.g., freshness above 30 minutes), it is likely that the probability of
correctness of SituationAvailable is quite low. Identifying such dependencies is
the responsibility of the context processor designer.

5.6.2 Context provisioning services

In chapter 4 we have specified the interfaces of context provisioning
services using opaque types, since we had not yet defined specific context
and situation measurement types. In 5.6.1 we have discussed how
measurement datatypes can be defined. Figure 5-41 depicts the specification
of an interface of a context source that encapsulates a GPS device. This
context source supports the GeolLocationMeasurement data type, defined in
Figure 5-38.

Figure 5-41 Example of
GPS Context Source
interface specification

Figure 5-42 Example of
SituationAvailable
Context Manager
interface specification

CONTEXT INFORMATION MODELS 117

«interface»
GPSContextSource
+subscribe(in characterization : GeoLocationMeasurement, in subscriber . Subscriberldentification) : Subscriptionldentification
+unsubscribe(in subscriptionld : Subscriberldentification)
+query(in expression . GeoLocationMeasurement) : GeoLocationMeasurement

In order to subscribe to geographical location information, the requester
should provide the characterization object (of type GeolLocationMeasurement) with
the filtering attributes. For example, if the requester would like to subscribe
to receive John’s location, the parameter characterization should provide
John’s identification. For that, the value of characterization.entitylD would be
assigned by the requester with a unique identifier of John.

The values assigned for the quality parameters serve as minimum
requirements for the filtering process, for example, if the requester would
like to be notified of John’s location, only when the probability of
correctness of this location information is greater than 80%. This would be
represented by assigning 80 as the value of the
characterization.probabilityOfCorrectness — attribute. The omission of attributes
signifies that there are no filtering requirements for those attributes.

A query expression is similar to a subscription characterization. The
filtering expression is represented by the list of attribute values of the
expression object (of type GeolocationMeasurement). Contrary to the
subscription operation, a query operation returns a GeoLocationMeasurement
object, which respects the filtering requirements passed as argument to the
query operation.

Figure 5-42 depicts the specification of a SituationAvailableContextManager
interface, which is used by a context manager component that provides
information about SituationAvailableMeasurement objects (Figure 5-40).

«interface»
SituationAvailableContextManager
-+subscribe(in transition : Transition, in characterization : SituationAvailableMeasurement, in subscriber : Subscriberldentification) : Subscriptionldentification
-+unsubscribe(in subscriptionld : Subscriptionldentification)
+query(in expression : Situati il {) : Collection

The subscribe operation of this context manager differs from the previous
example, since it includes the situation state transition in which the
notifications should be carried out. For example, a requester may want to
be notified when the SituationAvailable of user John no longer holds. This
would be specified by the state transition enterFalse. Similarly, if a requester
would like to be notified when the user is available (situation begins to
hold), the state transition enterTrue would be passed as argument.

The parameters characterization and expression, both of type
SituationAvailableMeasurement, specify the filtering arguments. For example, if
the requester would like to query all instances of SituationAvailable in which a
particular user is involved (regardless of the user’s status), we would assign
the user’s unique identifier to the expression.situationAvailable.PersoniD attribute.

118

Figure 5-43 Examples of
primitive event
notification structures

CHAPTER 5 CONTEXT MODELLING

The result of a query operation is a collection of instances of SituationAvailable
that satisfy the filtering expression passed as an argument.

Not all events of interest can be modelled (or should be modelled) as
situation events. For example, consider an epileptic alarm that is detected
by means of a complex algorithm that captures variations in the patient’s
vital signs. Due to the high complexity of the algorithm, it is not the
intention to model it with the situation modelling approach proposed. An
abstraction of the algorithm could be to detect the epileptic alarm by means
of primitive events. A primitive event is a happening of interest that is not
detected by means of situation transitions. Another example in which using
primitive events would be appropriate is when presence information is
detected by means of RFID, as opposed to using some formal relation such
as nearness or distance. In such example, one would like to detect when the
RFID tag is read, rather than detecting other context or situation condition
to infer the presence.

We define that primitive events are generated by context source
components. In order to allow exchange of primitive event notifications,
event notification datatypes should be defined. For example, for the
epileptic alarm, we can define the EpilepticAlarmNotification datatype, which
notifies subscribers when an epileptic seizure is detected. Similarly, we can
define the RFIDPresenceNotification datatype, which notifies subscribers when a
particular RFID tag is read. Figure 5-43 depicts these event notification
datatypes.

«(atatype»
RFIDPresenceNotification
+entitylD : String
+readerlD : String

«datatype»
EpilepticAlarmNotification

+patientlD : String

A context source that provides such types of event notifications is similar to
the context source depicted in Figure 5-41. These types of context sources
should provide a subscription interface that allows subscribers to be notified
of primitive events. In addition, these interfaces should allow filtering of
event notifications of interest. Figure 5-44 depicts the specification of a
EpilepticAlarmContextSource interface. The mechanism for filtering primitive
event notification is similar to the mechanism presented previously for
filtering situations and contexts.

Figure 5-44 Context
source offering
EpilepticAlarm ~ event
notifications

5.7

DISCUSSION 119

«interface»
EpilepticAlarmContextSource
+subscribe(in characterization : EpilepticAlarmNotification, in subscriber : Subscriberldentification) : Subscriptionldentification
+unsubscribe(in subscriptionld : Subscriptionldentification)

Discussion

We have defined in this chapter our foundational context modelling
concepts, which can be used beneficially for defining application-specific or
domain-specific context models. Our context foundations support the basic
distinction between the concepts of entity and context, which are classified as
substantials and moments, respectively.

With respect to situations, we have introduced a modelling approach
based on UML and OCL constraints. This allows application designers to
specify a wide range of situation types. The OCL constraints allow
specification of situation types at different levels of generality. For example,
it is possible to define a general situation type, such as “person has fever”,
or more specific ones, such as “John and Alice have fever”.

Situations themselves can be composed of situations. This allows
modularization of the situation models, improving organization and reuse of
situation specifications. We have introduced situation chronoids by means
of initial and final times. This allows us to explicitly capture past and
present situations.

We have discussed the context information modelling phase, which
considers quality of context. Quality of context is meta-information that
describes the quality of the context information. We have discussed three
quality of context parameters, namely, precision, probability of correctness
and freshness. Furthermore, we have defined measurement datatypes which
are used in the definition of context sources and managers interfaces.

6.1

Chapter

Situation Realization

This chapter demonstrates the feasibility of our situation modelling approach
by proposing a possible situation realization alternative. In Chapter 5 we
have proposed abstractions for the specification of context-aware
applications, in particular those related to the detection of situations based
on context information. These context and situation abstractions facilitate
context-aware application design by providing application developers with
means to efficiently structure the application’s state-of-affairs. This chapter
proposes an approach to the realization of context and situation detection
for attentive context-aware applications. Attentiveness regards the ability of
application to take initiative as a result of continuously-running context
reasoning activities. In order to detect situations attentively, WeE propose a
rule-based approach to situation detection. This solution is based on the
use of a general-purpose rule-based platform, which guarantees the
efficiency of situation detection. The rule-based approach allows situation
detection based on triggers as opposed to query-based solutions.

This chapter is further structured as follows: section 6.1 gives an
overview of our realization approach; section 6.2 discusses background
information on rule-based systems, and more specifically on Jess; section
6.3 discusses the proposed rule-based realization solution; section 6.4
elaborates on the systematic mapping between the UML class diagrams and
the Java language, and between OCL expressions and the Jess language;
section 6.5 discusses issues related to situation realization distribution, and
finally section 6.6 presents some conclusions and important remarks.

From Situation Specification to Situation Realization

As discussed in chapter 5, our situation specification approach is based on
UML class diagrams enriched with OCL constraints. Figure 6-1 depicts an
example of a formal relation situation type specification. SituationContained

122

Figure
SituationContained
specification

6-1

CHAPTER 6 SITUATION REALIZATION

specifies a situation type in which a person is inside a building. This
specification is based on a context model that has been previously defined
in Chapter 5, Figure 5-27. In this model, we have defined the entity types
(Person and Building), the context types (GeoLocation and SpatialCoordinates), and
formal relations (Containment), which are the building blocks for constructing
the SituationContained specification.

{Context SituationContained inv:

person.hasGeoLocation = locationPerson AND

building.hasGeoLocation = locationBuilding AND

building. hasSpal\alCoormnales = spatialCoord AND

(spatialCoord.di 1t (locationPerson. i 3 spatialCoord.di ion)) }

= CPeson]

* M 1 * 1

hasGeoLocation

«IntrinsicContext>
Geolocation | -
1 hasGeoLocation
1 -+coordinates

locationPerson

«FormalRelationSituation»
SituationContained)
locationBuilding

building

«datatype~»

1
GeoLocationCoordinates

+latitude : Real

+longitude : Real

+altitude : Real

+nearness(in entity! : GeoLocationCoordinates, in enitty2 : GeoLocationCoordinates) : Boolean
+distance(in entity1 : GeoLocationCoordinates, in entity2 : GeoLocationCoordinates) : Real

hasSpatialCoordinates
«IntrinsicContext>
SpatialCoordinates

-+dimension

spatiaICaprd

1

«(atatype»
SpatialDimension
-+radius : Real
+comammem(m point : GeoLocationCoordinates, in container : GeoLocationC ,in SpatialDi i Boolean
+C in entity1 : GeoLocationCoordinates, in dif ion1 : SpatialDimension, in entity2 : Geoanlmnr‘ i , in di ion2 : SpatialDil i Boolean

The formal relation Containment relates the intrinsic context values (location
values) of two spatial entities, namely, it checks whether an entity is
physically contained in another entity, which is a container entity. In this
particular example, the contained entity is a person, and the container
entity is a building.

The OCL invariant constrains instances of SituationContained class to be
associated with a person that is contained in a building. Therefore,
according to this invariant, for all persons located inside a building, an
instance of SituationContained is created. It would be also possible to further
restrict this constraint by including, for example, the identification of the
person and the building for which a situation is to be created.

In this example we have used the specification artefacts for situation
specification offered by our approach, namely the context models (UML
classes), and the situation models (UML classes and OCL). These artefacts
are used by application developers at the beginning of the design process to
restrict their universe of discourse, and to define the state-of-affairs of
interest, respectively. Following the design process, application developers
need to choose the realization artefacts for situation realization. In this

Figure 6-2
Correspondences

between UmML
specifications and

realization elements

FROM SITUATION SPECIFICATION TO SITUATION REALIZATION 123

Chapter we identify possible realization artefacts and we discuss how they
can be used to derive realization elements.

Figure 6-2 explicitly separates the elements of specification and
realization, and highlights the correspondences between them. Context
models at specification phase correspond to model realization elements in
the realization phase. Similarly, situation models in the specification phase
correspond to situation elements at realization phase.

Figure 6-2 also depicts the relations between the user’s context and the
component-based implementation at the instance level (runtime). Context
source components provide context information, which is input to situation
provider components. Situation provider components have been defined in
the previous chapters as context manager components.

specification : realization
i
—1 ; 1
° [l context models i context models
W |(UML class diagram) + (model realization)
L | =
application~, —_1 ; T
designers] situation models : [situation models
(UML class diagram ; (situation realization)
Template level and OCL) i
. . S
(design-time) — !
._.7/.' IS o e mimimimim e -
/’ . l’
Instance level /universe of discourse and / realization elements
(runtime) V state-of-affairs /
user's context g context /!
sources
/_\‘ . . . N
@ context situation L1, situation
Sources provider requester

user

\\

Various realization alternatives could be used to implement situations,
which would lead to different realization artefacts. A solution based on rules
appears naturally given the nature of situation detection, in which the user’s
context is continuously monitored in order to check whether certain
conditions (situation specification) are met. In a rule-based
implementation, the designer defines rules which are repeatedly applied to
a collection of facts in a working memory.

As opposed to procedural solutions, rule-based solutions offer flexibility
with respect to the maintainability of the rules. Rules can be modified and
added at application runtime with no need for code recompilation. Since
situation specifications may change over time, and new situation
specifications may be defined at application runtime, it is beneficial to use a
mechanism that offers such flexibility for situation realization. For these

reasons, we have based our situation realization artefacts on rule-based

124

6.2

CHAPTER 6 SITUATION REALIZATION

systems. In the next sections we discuss rule-based systems in general and
our rule-based solution in detail.

Rule-Based Systems

6.2.1 Basic concepts

Rule-based systems aim at solving domain problems by using a knowledge

base expressed in terms of rules, which are repeatedly applied to a collection

of facts. These two concepts are essential to a rule-based system:

— Facts represent circumstances that describe a certain situation in the real
world; and,

— Rules represent heuristics that define a set of actions to be executed in a
given situation.

Rules are similar to if-then statements of traditional programming, in which

the if part is often called the left hand side (LHS), predicate or premises, and the

then part is the right hand side (RHS) or conclusions. The LHS consists of an

expression, which can be a single expression or a combination of

expressions (composite expression). For the rule to be applicable, i.e. to

execute the RHS, or to derive the conclusions, the LHS should be true.

A single LHS expression is called a pattem3. A pattern is not a fact. It is
an expression that defines the characteristics of a fact to be matched. A
match occurs when there are facts that fulfil the characteristics defined in a
pattern. A composite LHS expression consists of several single expressions
connected together by using conditional elements, such as “and, or, not” in
order to create complex rules. The LHS of a rule is true when the
(composite) patterns in the LHS are successfully matched.

The RHS of a rule consists of a sequence of actions, typically
represented by function calls, to be executed when the rule is applicable,
i.e. when the expression built with patterns and conditional elements is
successfully matched against facts. In addition to function calls, the RHS of
a rule can also generate new facts. The general structure of a rule is the
following:

If <(pattern,) ... (patterny)> then <(action,) ... (action,)>

* There is an essential difference between the concept of pattern just introduced, and the
pattern concept discussed in Chapter 3 (architectural patterns). Architectural patterns refer
to a technique used to describe a particular recurring design problem and present a generic
scheme for its solutions. The term “pattern” in the sense of rules refers to the single
expressions referring to facts in the LHS of a rule

RULE-BASED SYSTEMS 125

In order to choose a particular rule-based technology, we have carried out a
survey [21] in which we compare several rule-based solutions currently
available, namely Mandarax [71], CLIPS [19], JDrew [65] and Jess [64].
Some of the parameters used in the comparison were documentation,
clarity, expressiveness, platform portability, and licensing.

According to the results obtained in this research, we have concluded
that Jess is the best technology for our situation realization, since (i) Jess
offers free licensing for academic use, (ii) it is highly integrated with the
Java platform, which enables, among others, platform portability, (iii) it is
based on the Rete algorithm [44, 42], which efficiently matches the
patterns for situations; (iv) it offers extensive online documentation; (v) it
provides the level of expressiveness required for situation specification; and
(vi) it offers JessDE [64], which provides an implementation environment
integrated with Eclipse [34].

6.2.2 Jess

Jess (Java Expert System Shell) is a rule engine for the Java platform, which
supports the development of rule-based applications that can be tightly
coupled to code written in the Java language. Jess is also a powerful Java
scripting environment, from which it is possible to create Java objects, call
Java methods, and implement Java interfaces without compiling any Java
code.

In Jess there are three ways to represent knowledge; by using the rule-
based, object-oriented and procedural programming paradigms. It is
possible to develop applications using only rules, only objects, only
procedures, or a mixture of rules, objects and procedures. In addition, Java
applications built using Jess are able to reason using knowledge supplied in
the form of declarative rules.

The Jess architecture

Figure 6-3 depicts the Jess architecture, which is composed by a working
memory, a rule base, a inference engine and an execution engine. The dashed line
groups the components that manipulate rules.

126

Figure 6-3 The Jess
architecture

CHAPTER 6 SITUATION REALIZATION

[e T
! rule !
' ! base !
working ! N H

memory 4 L —n 1T requester
1| inference J| execution |3
i engine engine i
e 1

Jess engine

The Jess rule engine does not contain any facts or rules until they are
loaded, respectively, into the working memory and rule base. The working
memory contains facts and it is sometimes also called a fact base. The Jess
working memory is similar to a relational database, where facts are like rows
of the database. Facts are maintained with indexes to speed up searches in
the working memory.

The rule base contains the rules currently available to the engine. Jess
holds a rule compiler for transforming rules into a format that the inference
engine can manage more efficiently. Particularly, the Jess’s rule compiler
builds a Rete Network [44], which is a complex and indexed data structure
for speeding up rule processing. Rules can only react to additions, deletions,
and changes of facts in the working memory.

The inference engine decides what rules to fire and when. Firing a rule
means executing the actions specified in the rule’s LHS. The main
subcomponent of the inference engine is the pattern matcher, which decides
which rules to activate based on the current content of the working
memory. A rule is activated when the pattern matcher finds facts that satisfy
the LHS of this rule. This is not a trivial task if we take into account that the
working memory may contain thousand of facts, and the rule base may
contain complicated rules with several premises and conclusions. In these
cases, the pattern matcher might need to search through millions of
combinations of facts to find combinations that satisfy rules. This process is
optimized by a rule application mechanism that is based on the Rete
algorithm, which efficiently matches the patterns for situations by
remembering past pattern matching tests. Only new or modified facts are
tested against the rules. By using the Rete algorithm, the Jess engine can
execute many orders of magnitude faster than an equivalent set of
traditional if-then statements in procedural programs.

Finally, the execution engine executes the RHS of the rule once the
inference engine decides what rule to fire. The Jess rule engine works in
discrete cycles consisting of three steps:

— All rules contained in the rule base are compared to the working
memory in order to decide which ones should be activated during this
cycle. The list of activated rules, together with any other rules activated
in previous cycles, is called the conflict set;

RULE-BASED SYSTEMS 127

— The conflict set is ordered to form the agenda. This process is called
conflict resolution. The used strategy depends on many factors, some of
them under the programmer’s control;

- To complete the cycle, the first rule on the agenda is fired and the entire
process is repeated again.

Facts and rules

In Jess, the structure of a fact is defined by a template in the same way the
structure of an object is defined by a class in object-orientation. The template
has a name and a set of slots, i.e. a template defines the structure of a fact.
As an example of template, consider the following:

(deftemplate car “some car” (slot model) (slot color)).

A fact of this template could be (car (model Ferrari) (color red)). In order to
include and delete facts from the working memory, the assert and refract
commands are used, respectively. Jess supports various types of facts, such
as ordered, unordered and shadow facts. We are particularly interested in
shadow facts, which are explained in detail in the next section.

For defining rules, Jess offers the defrule construct. Its general syntax is as
follows:

(defrule name-of-the-rule “comment” (pattern,) ... (pattern™) => (action,)...(action"))

A simple example of rule that fires when a car of type Ferrari is found in
the working memory is the following:

(defrule identify-Ferrari

(car (model Ferrari))

=>

(printout t "Ferrari found." crlf))

The LHS consists of the pattern (car (model Ferrari)), and the RHS consists of
the function call printout, which prints a message on the default system
output. If the pattern matcher component finds a car model Ferrari in the
working memory, we say that there is a match, and the RHS should be
executed. As can be seen in this example, not all structural elements (slots)
of a fact have to be present in a pattern. A pattern describes the minimum
characteristics for a fact to be matched. Complex combinations of patterns
can be used in the LHS of a rule. We illustrate this by means of examples
throughout this chapter.

128

Figure 6-4 JavaBeans
and Shadow facts

CHAPTER 6 SITUATION REALIZATION

Shadow facts

Shadow facts are a special kind of Jess facts that serve as bridges to Java
objects. They form the mechanism offered by Jess to include Java objects
into the working memory. The slots of a shadow fact correspond to the
properties of a JavaBean, which is a Java object whose properties are only
manipulated through get and set methods. The get method of a JavaBean
reads the value of a property, and the set method changes this value.
Therefore, the properties of a JavaBean are always private, and, for each
property, a pair of methods (get and set) is required. The Jess command
defclass creates a template for a shadow fact, and the definstance command
creates an individual shadow fact.

Figure 6-4 (from [42]) depicts the mechanism used by Jess to realize
shadow facts. The JavaBeans API offers a class called introspector that can
inspect the beans and find properties based on the get and set methods. Jess
uses this introspector to generate the deftemplate for shadow facts.

(deftemplate JavaBean
(slot propertyOne)
(slot propertyTwo))

Jess

public class JavaBean {
public String getPropertyOney() ...
public void setPropertyOne (String) ...
public String getPropertyTwo() ..
public void setPropertyTwo (String) ...
}

The following code illustrates a simple example of a JavaBean:

public class Person {
private String name = *”;
public String getName() {return name;}
public void setName(String nm) {
name = nm;

}

If we declare (defclass person Person) in Jess, a deftemplate corresponding to
the Person class is automatically created. In order to create an instance of
Person in the working memory, we would perform (definstance person (new
Person)).

Changes in the JavaBean’s properties can be automatically perceived by
Jess by means of a special kind of event. The JavaBean can inform Jess of
changes in the object by sending an event notification, which is expected at

6.3

RULE-BASED SITUATION REALIZATION 129

any time by the Jess engine. A cycle of pattern matching is performed every
time an event notification is received by the Jess engine.

This characteristic is essential when dealing with attentiveness in
context-awareness. Since context is quite dynamic, object attributes are
continuously updated, which should be automatically reflected in the
working memory. In addition, rules should be checked at the same rate as
the rate in which the working memory is updated. For example, if location is
a property of class Person, this property should have the location
information of the person as up-to-date as possible. This might imply, for
example, that this property has to be updated every five seconds. The
property is then automatically updated in the working memory by means of
event exchanges between Java and Jess. If there are rules that work on the
location of a Person, this rule should be checked again every time the
location of the person is changed.

Rule-Based Situation Realization

Figure 6-5 refines Figure 6-2 by considering Java and Jess as technologies for
situation realization. It depicts the elements of our approach and the
correspondences between the UML specification, the Java code and the Jess
code at the template level (design-time). The context model realization
elements depicted in Figure 6-2 correspond to the actual realization as Java
classes and Jess templates. The situation realization elements appear in the
realization phase as Java classes, Jess templates and rules.

In Figure 6-2, at the instance level (runtime) we have depicted the
situation provider, which is the component responsible for detecting
situations. Since the situation detection implementation is based on Jess,
the situation provider component is implemented by the Jess architecture,
as depicted in Figure 6-5. Figure 6-5 also shows the relations between the
user’s context and the rule-based implementation. The Jess architecture is
simplified to improve clarity. Context sources provide context information,
which is stored as facts in the engine’s working memory. In the inference
engine, rules of the rule base are matched against the facts of the working
memory.

130

Figure 6-5
Correspondences
between UML

specifications, and Java
and Jess code

CHAPTER 6 SITUATION REALIZATION
specification : realization
i
: A “shadow”
context models | | contextmodels | Mechanism [context fact templates
(UML class diagram)| ; (Java classes) . (Jess)
; : ’ , /
. 7] i /
'nl A — i 0 “shadow” [}
/ situation models | situation models | mechanisd situation fact
application g (UM‘L class diagram) (— (Java classes) [« - templates (Jess)
designers = i — / S
":. : : /; I
/ situation models | /| situation detection
Template level (OCL.mvarlams) ; ” - rules (Jess)
(design-time) , ; " ;
i

......................... bmimidbimimimilicieicieieiaaal

’ ’ ’
) "
Instance level 7 univeTse of diScourse and
(run-time) /[state-gh-affairs
ll l’ !
’ 1 ’

’
’ ’ J

7 [K

user's context __7"

e sources
N\ .

H bl
1 H
H 1
king : i
i f worl | N
: context memory ..:,. 4 J,I->
i '
! '

context

situation
requester

Ad .
Sources inference . execution

user d ’ .
— engine engine

We have used shadow facts to implement our structural context models. As
already mentioned, this is the mechanism offered by Jess to integrate a Java
application with the working memory. Context and entity objects created in
the Java application are reflected in the working memory. Therefore, any
alteration of these Java objects is automatically perceived by the Jess
working memory. The Java classes in our implementation directly reflect
the UML models defined in the context model, such that their generation
can be automated.

Similarly to the structural context model, each situation type, as
specified in the UML class diagram, corresponds to a Java class, as well as to
a shadow fact template. Situation instances are represented as shadow facts,
called here situation facts, which are created and deactivated by rules for
situation detection.

Once we have defined the structural and situation context models, we
can carry out the situation detection realization. Each situation type
generally leads to the definition of two rules, namely a rule for situation fact
creation, and a rule for situation fact deactivation. Conditions for enabling
these rules are derived from the OCL invariants of situation classes. The
rule for situation creation detects when an invariant becomes true, and the
rule for situation deactivation detects when the invariant becomes false. We
have identified patterns of situation types that are systematically mapped to
Jess code (see section 6.4.2).

Figure 6-6 Activity
diagram for situation
creation and
deactivation

Table 6-2 Creation and
deactivation rules

RULE-BASED SITUATION REALIZATION 131

6.3.1 Situation life cycle

The situation fact life cycle consists of creation, activation, deactivation and
destruction. The activation of a situation fact occurs simultaneously to its
creation. When the invariant holds and the situation fact does not exist yet,
the situation fact is created. The deactivation of a situation fact occurs when
the situation invariant no longer holds. Figure 6-6 uses a UML 2.0 activity
iagram to show when situation facts should be created or deactivated.

a situation type using pattern matching Situation fact exists
implemented by the rule engine

DetectSituation

Detects continously situations of ﬁ Invariant holds

[situation fact does not
exist and invariant
holds]

CreateSituationFact DetectEndSituation

DeactivateSituationFact

[invariant no longer
holds]

The activities illustrated in Figure 6-6, namely DetectSituation, CreateSituationFact,
DetectEndSituation and DeactivateSituation are implemented in Jess by means of
creation and deactivation rules. Creating a situation fact implies
instantiating a situation class in the Java virtual machine, which is shadowed
in the working memory by a corresponding situation fact.

Deactivated situation facts consist of historical records of situation
occurrence, which may be used to detect situations that refer to past
occurrences. Currently, we implement a simple rule-based time-to-live
mechanism for historical records, which considers the final time of
deactivated situation facts to delete an old record.

We have identified that situation realization in Jess follows certain
patterns of implementation. Table 6-2 depicts how creation and
deactivation rules should be formulated in the Jess language.

Creation rule Deactivation rule

(situation type invariant) (not (situation type invariant))
(not (situation exists)) (Situation exists)

=> =>

create (situation) deactivate (situation)
[RaiseEvent()] [RaiseEvent()]

The condition part of a creation rule checks whether the OCL invariant
holds, and whether an instance of that particular situation is already
currently active (final time not nil). If these conditions are met, a situation
fact is created, and optionally, an event can be raised. Analogously, the

132

6.3.2

6.3.3

CHAPTER 6 SITUATION REALIZATION

condition part of a deactivation rule checks whether the OCL invariant no
longer holds, and a current situation fact active for this situation. When
these conditions are met, this situation instance is deactivated, and
optionally, an event can be raised.

Temporal aspects

Temporal aspects are represented in our approach by means of initial and
final time attributes. Each situation type extends the SituationType class and
inherits the temporal attributes of this class. The initialtime attribute captures
the moment a situation begins to hold, and the finaltime attribute, the
moment a situation ceases to hold. Since we capture the finaltime, our model
is capable of representing past occurrences of situations. When an instance
of class SituationType is created, the initialtime attribute is set to the creation
time.

The SituationType class also implements a deactivation method that sets the
finaltime attribute, and creates serialized copies of the situation and its
dependencies, which are stored for future use. Serialization is necessary to
preserve the situation state at the time the situation was deactivated.
Serialized SituationType objects are given unique identifiers, so that they can
be retrieved unambiguously.

Containment example

Consider the SituationContained specification presented in Figure 6-1. This
situation specification is based on a context model depicted in Figure 5-27
in Chapter 5. As we have discussed before, context models correspond to
Java classes in the realization phase. Similarly, situation UML classes
correspond to Java classes, and the OCL constraints correspond to Jess
rules. Figure 6-7 depicts an overview of the correspondences between UML
and OCL specifications, and Java and Jess code for the SituationContained
example.

RULE-BASED SITUATION REALIZATION 133

1 1
Figure 67\ o k] o)
Correspondences Context Models SituationContained
between UML and Java, specification
and between OCL and [
Jess, for the UML classes UML classes OCL invariant to realization
SituationContained / to Java classes to Java classes Jess code
example —
public class Entity...
public class Context.... (defrule entertrue_situation_contained)
public class IntrinsicContext extends Context... (defrule enterfalse_situation_contained)
public class SpatialEntity extends Entity... - B
public class PointEntity extends SpatialEntity ...
public class ContainerEntity extends SpatialEntity ...
public class Person extends PointEntity. ..
public class Building extends ContainerEntity... public class SituationType...
public class GeoLocation extends IntrinsicContext... public class SituationContained extends SituationType...
public class SpatialCoordinates extends IntrinsicContext. ..
The Java classes are generated almost literally from the UML specifications.
For example, the UML classes Entity and Context, and their association
correspond to the Java classes Entity and Context and their attributes in the
realization phase. The same applies to the other classes of our context and
situation models. Jess rules are also systematically derived from the OCL
constraints. Figure 6-8 depicts the EnterTrue Jess rule derived from the
OCL constraint of the SituationContained class.
) (defrule enterfrue_situation_contained
Figure 6-8

Sure) (Person (OBJECT ?person)(hasGeoLocation ? person_hasGeoLocation))
SituationContained

GeoLocation (OBJECT ?locationPerson&:(eq ?locationPerson ? person_hasGeoLocation
EnterTrue Jess rule ((eq person_|)

(

(Building (OBJECT ?building)(geoLocation ?building_hasGeoLocation))

(GeoLocation (OBJECT ?locationBuilding&:(eq ?locationBuilding ?building_hasGeoLocation)))

(Building (OBJECT ?building)(spatialCoordinates ?building_hasSpatialCoordinates))

(SpatialCoordinates (OBJECT ?spatialCoord&:(eq ?spatialCoord ?building_hasSpatialCoordinates)))

(GeoLocation (OBJECT ?locationPerson) (location ?locationPerson_coordinates))

(GeoLocation (OBJECT ?locationBuilding) (location ?locationBuilding_coordinates))

(SpatialCoordinates (OBJECT ?spatialCoord) (dimension ?spatialCoord_dimension))

(test (call context_control.SpatialDimension Containment ?locationPerson_coordinates
?locationBuilding_coordinates ?spatialCoord_dimension))

(not (SituationContained (OBJECT ?st)(person ?person) (building ?building) (finaltime nil)))

=>

(bind ?SituationContained (new situation_control.SituationContained ?person ?building))

(definstance SituationContained ?SituationContained)

The condition part of the entertrue_situation_contained rule checks whether there
is (i) a person associated to a GeolLocation context object, and (ii) a building
associated to both, a GeoLocation and a SpatialDimension context object. These
parts of the condition correspond to the first lines of the OCL invariant

134

Figure
SituationContained
EnterFalse Jess rule

6-9

CHAPTER 6 SITUATION REALIZATION

defined in Figure 6-1. The condition also checks whether the person is
actually contained in the building by means of the Containment formal
relation. In addition, it checks whether a SituationContained instance does not
already exist for that person and building, which would mean that this
situation instance had been already created. When these conditions are met,
the action part is triggered, i.e. an instance of SituationContained is created for
that person and building.

The EnterFalse rule is quite straightforward; it is just the negation of the
invariant, and the pattern for the existence of the situation fact, as depicted
in Figure 6-9. Contrary to the entertrue_situation_contained, the condition part of
the enterfalse_situation_contained rule checks whether the person is no longer
contained inside the building, and if there is an active SituationContained
instance for that person and building. If these conditions are met, that
particular instance of SituationContained is deactivated, and can be used in the
future as a historical record.

(defrule enterfalse_situation_contained
(not (and (Person (OBJECT ?person)(hasGeoLocation ? person_hasGeoLocation))
(GeoLocation (OBJECT ?locationPerson&:(eq ?locationPerson ? person_hasGeoLocation)))
Building (OBJECT ?building)(geoLocation ?building_hasGeoLocation))
GeoLocation (OBJECT ?locationBuilding&:(eq ?locationBuilding ?building_hasGeoLocation)))
Building (OBJECT ?building)(spatialCoordinates ?building_hasSpatialCoordinates))
SpatialCoordinates (OBJECT ?spatialCoord&:(eq ?spatialCoord ?building_hasSpatialCoordinates)))
GeoLocation (OBJECT ?locationPerson) (location ?locationPerson_coordinates))
GeoLocation (OBJECT ?locationBuilding) (location ?locationBuilding_coordinates))
SpatialCoordinates (OBJECT ?spatialCoord) (dimension ?spatialCoord_dimension))
test (call context_control.SpatialDimension Containment ?locationPerson_coordinates
?locationBuilding_coordinates ?spatialCoord_dimension))
(SituationContained (OBJECT ?st)(person ?person) (building ?building) (finaltime nil))
=>
(call ?SituationContained deactivate)

)

(
(
(
(
(
(
(
(

6.3.4 Wireless network connections example

Figure 6-10 and Figure 6-11 depict other examples of situation specification,
namely SituationConnected and SituationSwitch specifications, which have been
already discussed in Chapter 5. SituationConnected specifies a situation type in
which a device has established a connection (relational context type) to each
of the two network types WLAN and Bluetooth (entity types). SituationSwitch
refers to the situation in which a device switches from a WLAN connection to
a Bluetooth connection. This situation may be used to set, for example, new
quality of service parameters.

Figure
SituationConnected
specification

Figure
SituationSwitch
specification

6-10

6-11

RULE-BASED SITUATION REALIZATION 135

«RelationalSituation» _— .
P {Context SituationConnected inv.
SituationConnected not device.hasConnection.oclisUndefined() }
* "
device
- hasConnection k«RelationalContex
Device | r~RelationalContext-
Connection
1 . 0.1
network 1

isConnectionOf

1

The OCL invariant of SituationConnected (Figure 6-10) defines that instances of
this situation must be associated with at least one connection object.
SituationSwitch (Figure 6-11) is modelled by composing multiple occurrences
of SituationConnection, one called wlan, and the other called bluetooth. In order to
detect SituationSwitch, we would have to verify whether SituationConnected held in
the past for network WLAN, and currently holds for network Bluetooth. This
requires the use of temporal aspects, which are described in the OCL
invariant in terms of initial and final times. We have defined the constraint
that the handover time should not be longer than one second. In addition,
in order to avoid that the active instance of SituationSwitch endures
indefinitely, we have included the condition in which the time interval
between now (current time) and the initial time of SituationConnected for
network Blugtooth should not be bigger than two seconds. This allows
instances of SituationSwitch to be active for some time, but not for more than
three seconds.

{ Context SituationSwitch inv:

(wlan.device = bluetooth.device) AND
(wlan.device.hasConnection.network.ocllsTypeOf(WLAN)) AND
(bluetooth.device.hasConnection.network.ocllsTypeOf (Bluetooth)) AND
(bluetooth.initialtime - wlan.finaltime <1) AND

(Time.now() - bluetooth.initialtime < 2)}

«RelationalSituation» wlan «SituationOfSituations»
SituationConnected SituationSwitch
| bluetooth 0.1 |
1 0.1

Figure 6-12 depicts an overview of the correspondences between UML and
OCL specifications, and Java and Jess code for the SituationConnected and
SituationSwitch example. Examples of Java classes in the realization are Device,
Network and Connection, which correspond to classes of the same name in
the UML class specifications. The same applies to the other classes of our

136

Figure 6-12
Correspondences

between UML and OCL,
and Java and Jess code
for the
SituationConnected and
SituationSwitch example

CHAPTER 6 SITUATION REALIZATION

context and situation models. The enter true and enter false Jess rules are also
systematically derived from the OCL invariant.

1 1
—————————————————————— SituationConnected &
Context Modals SituationSwitch
specification
J R
UML classes UML classes OCL invariant to realization
v to Java classes to Java classes Jess code

public class Entity...

public class Context. ..

public class RelationalContext extends Context...
public class SpatialEntity extends Entity. ..

public class IntangibleEntity extends Entity...

public class PointEntity extends SpatialEntity...
public class Device extends PointEntity. ..

public class Network extends IntangibleEntity. ..
public class Connection extends RelationalContext. ..

(defrule entertrue_situation_connected)
(defrule enterfalse_situation_connected)
(defrule entertrue_situation_switch)
(defrule enterfalse_situation_switch)

public class SituationType...
public class SituationConnected extends SituationType. ..
public class SituationSwitch extends SituationType

Figure 6-13 depicts the Jess rules derived from the OCL constraint of the
SituationConnected class. The condition part of the entertrue_situation_connected
rule checks whether there is a Connection relational context in the list of
contexts of that device. This part of the condition corresponds to the OCL
invariant defined in Figure 6-10. In addition, it checks whether a
SituationConnected instance does not already exist for that device. When these
conditions are met, the action part is triggered, i.e. an instance of
SituationConnected is created for that device.

The condition part of the enterfalse_situation_connected rule checks whether
the device is no longer connected to a network, and if there is an existing
SituationConnected for that device. If these conditions are met, that particular
instance of SituationConnected is deactivated, and can be used in the future as a
historical record.

Figure
SituationConnected
realization in Jess

6-13

RULE-BASED SITUATION REALIZATION 137

:EnterTrue (SituationConnected)

(defrule entertrue_situation_connected
(Device (OBJECT ?device) (hasConnection ?hasConnection))
(not (SituationConnected (OBJECT ?situation) (device ?device) (finaltime nil)))
=>
(bind ?SituationConnected (new situation_control.SituationConnected ?device))
(definstance SituationConnected ?SituationConnected))

;EnterFalse (SituationConnected)

(defrule enterfalse_situation_connected
(not (Device (OBJECT ?device) (hasConnection ?hasConnection)))
(SituationConnected (OBJECT ?situation) (device ?device) (finaltime nil)))
=>
(call ?situation deactivate))

Figure 6-14 depicts the Jess rules derived from the OCL invariant of the
SituationSwitch class. The condition part of the entertrue_situation_switch rule
checks whether there was an instance of SituationConnected associated to
network WLAN in the past (finaltime not nil), and currently there is an instance
of SituationConnected associated to network Bluetooth. In addition, the handover
time should not be longer than 60 seconds, and the time interval between
the SituationConnected for network Bluetooth starting time and the current time
(call System currentTimeMillis) should not be bigger than two seconds. These
parts of the condition correspond to the OCL invariant depicted in Figure
6-11. As in all creation rules, the condition also checks whether there is no
instance of SituationSwitch for that particular currently active handover. When
these conditions are met, an instance of SituationSwitch is created.

Figure 6-14 also depicts the enterfalse_situation_switch, which checks
whether there is a situation switch instance currently active with time
interval between the SituationConnected for network Bluetooth starting time and
the current time bigger than two seconds. If these conditions are met, the
active situation instance is deactivated.

As already mentioned in section 6.3.2, we use a mechanism based on
object serialization to deactivate situations in order to preserve the situation
state and the time the situation was deactivated. The identification of the
serialized objects is based on unique identifiers, which are generated by the
application implementation. For this reason, when checking the existence
of a past instance of SituationConnected, we have used the device’s unique
identifier instead of the object identifier. The Jess command call invokes a
method on a given object, so the command (call ?device getldentity) invokes the
getidentity method on the device object, which returns the device’s unique
identifier. For currently active situation facts, we would use the Jess
command (0BJECT ?device), which refers to the object identifier.

138

Figure
SituationSwitch
realization in Jess

6-14

6.4

CHAPTER 6 SITUATION REALIZATION

:EnterTrue (SituationSwitch)
(defrule entertrue_situation_switch
(Device (OBJECT ?dv) (identity ?dvid))
(SituationConnected (OBJECT ?SWlan)
(device ?device&:(eq (call ?device getldentity) ?dvid))
(network ?net&:(instanceof ?net context_control. WLAN)) (finaltime ?finaltime&:(neq ?finaltime
(SituationConnected (OBJECT ?7SBlue) (device ?dv)
(network 7net2&:(instanceof 7net2 context_control.Bluetooth)) (starttime ?start) (finaltime nil)
(test (<= (- (call ?start getTime)(call ?finaltime getTime)) 60000))
(test (<= (- (call System currentTimeMillis) (call ?start getTime)) 120000))
(not (SituationSwitch (OBJECT ?situation) (wlan ?SWLAN) (bluetooth ?SBlug) (finaltime nil)))
=>
(bind ?SituationSwitch (new situation_control.SituationSwitch ?SWian ?SBlue))
(definstance SituationSwitch ?SituationSwitch))

:EnterFlase(SituationSwitch)
(defrule enterfalse_situation_switch
(Device (OBJECT ?dv) (identity ?dvid))
(SituationConnected (OBJECT ?SWlan)
(device ?device&:(eq (call ?device getldentity) ?dvid))
(network 7net&:(instanceof 7net context_control. WLAN))(finaltime ?final&:(neq ?final nil)))
(SituationConnected (OBJECT ?7SBlue) (device ?dv)
(network 7net2&: (instanceof ?net2 context_control.Bluetooth))(starttime ?start))
(test (not(< = (- (call ?start getTime)(call ?final getTime)) 60000)))
(test (not (<= (- (call System currentTimeMillis) (call ?start getTime)) 120000)))
(SituationSwitch (OBJECT ?situation)(wlan ?SWIan) (bluetooth ?SBlue)(finaltime nil))
=>
(call ?situation deactivate))

Mappings

So far, we have identified the realization artefacts for situation realization
and we have seen how the realization elements can be derived from the
specification elements using these artefacts. We have not discussed yet how
to systematically map the realization elements from the specification
elements. More specifically, we have not yet discussed how to map the
UML specification to Java classes, and how to map he OCL specifications to
Jess rules. This section elaborates on how these artefacts can be derived
from the specifications.

6.4.1 UML class diagrams to Java

Mapping of the model specifications

In order to map our specification models to the Java language, we bring the
context metamodel and the model levels (Chapter 5) to the same model
level, so that the original relationships between metamodel classes and
model classes become specialization relationships. This is necessary since we

Figure
Transformation
specification
context profile

6-15
to
without

MAPPINGS 139

cannot extend the Java language with the context profile we have proposed
in Chapter 5, as we have extended UML with this profile.

Figure 6-15 depicts an example of the transformation from the
specification using the context profile (on the left), and a specification using
inheritance (on the right). In the specification using a profile, classes refer
to (instantiate) classes in the profile by means of stereotypes. For example,
class SpatialEntity instantiates class Entity by means of the stereotype «Entity»,
which is defined in the context profile. In the other modelling alternative,
class SpatialEntity simply extends class Entity by means of the specialization
mechanism.

«Entity»
SpatialEntity

/N

isContextOf hasContext

«IntrinsicContext»
HeartRate

«IntrinsicContext»
Activity
«IntrinsicContext>»
MentalState

hasHeartRate

IntrinsicContext

1 hasHeartRate| _

{subsets hasContext} HeartRate

1. *hasActivity 4 —
{subsets hasContext}

hasMentalState

1 {subsets hasContext}
1.%

hasAct?vity

MentalState

Similar to classes, association ends also use different extension mechanisms
in the modelling alternatives. In the modelling alternative using a context
profile, although not depicted in Figure 6-15, association ends are also
stereotyped. For example, association end hasHeartRate is stereotyped with
stereotype «hasContext», meaning that this association end instantiates
association end hasContext. In the modelling alternative using inheritance, we
use the subsets constraint to explicitly label an association end that extends
another association end. As already explained in Chapter 5, the UML
constraint {subsets <end>} indicates that an association end constrains the
possible values of association end <end>. For example, the possible values
of association end hasHeartRate are a subset of the possible values of
association end hasContext (defined between classes Entity and Context).

Regarding the mappings from UML classes to the Java language, we
consider the modelling alternative using specializations in the following
sections.

Model mappings

In general, the mapping from the model realization elements (Java classes)
to the specification elements (UML classes) is straightforward: classes in the
UML specifications map to classes in the Java code; hierarchy of classes in
UML map to hierarchy in the Java code; and associations in UML map to
attributes in Java, respecting association end naming and cardinality.

140 CHAPTER 6 SITUATION REALIZATION

Association ends are mapped to attributes in the Java implementation,
considering the cardinality. The following types of associations are
supported [68]:

— One-to-one associations can be implemented using two attributes in the
two associated classes, each one making a reference to the other. Set and
get methods are used to set new values to these attributes, and to read
the value of the attributes, respectively. This solution can also be used
when one or both of the association ends is optional, that is, the
cardinality of the association ends is zero or one (0..1);

— One-to-many associations can be implemented using two attributes in the
two associated classes in which one of these attributes is a collection. Set
and get methods are also used to set and read attribute values,
respectively. Since one of the attributes is a collection, operations to
manipulate lists are necessary, such as add/remove an object to/from the
collection, and so forth;

— Many-to-many associations can be implemented similarly to the one-to-
many association, except that the attributes on both associated classes
are collections. Therefore, besides get and set operations, it is also
necessary to implement methods to manipulate collections in both
classes participating in the associations;

— One-way navigable association can be implemented in such way that the
class which the arrow is pointing at does not need additional set and get
methods. The other class needs an attribute, and get and set operations.
In case the cardinality is many, the methods for adding and removing
associated objects from the collections are necessary.

Association ends constrained by subsets are not mapped to attributes in the
realization phase. These association ends are treated separately since they
are actually a subset of the association ends defined between the parent
classes. If the association end between parent classes is already
implemented, i.e. attributes in both parent classes have been created, the
children classes should not implement the association end by means of
attributes again. We have elaborated a solution for implementing subsets
association ends based on filtering methods that collect (from the parent
association ends (attributes)), the objects that in fact belong to the children
classes. The method return type depends on the cardinality of the subset
association end: for cardinality many, a collection is returned; for cardinality
one, a single object is returned.

Consider as an example the association end hasHeartRate between classes
Person and HeartRate, which is a subset of association end hasContext. In the
implementation, the association ends between classes Entity and Context are
mapped to collection attributes in both classes. In the Entity class, there is an
attribute hasContext, which is a collection of objects of type Context. Similarly,
in the Context class there is an attribute, which is a collection of objects of

MAPPINGS 141

type Entity. In order to implement the hasHeartRate association end, we define
a method in class Person (with name hasHeartRate) that returns the objects of
type HeartRate from the hasContext collection attribute. Since the cardinality of
association end hasHeartRate is one, this method returns only one object of
type HeartRate, as opposed to a collection. The same rationale could be
applied to the counterparts of association end hasHeartRate, namely
isHeartRateOf (not depicted in Figure 6-15), which is a subsets of association
end isContextOf. A method in the HeartRate class is created in order to return all
the objects of type Person from the isContextOf collection attribute. Since the
cardinality of association end isHeartRateOf is also one, only one object of type
Person is returned.

Datatypes in the UML specifications are mapped to normal classes in
the Java implementation. Objects that are instance of these classes do not
hold state, i.e. they just represented structures of values. The formal
relation operations defined as methods of datatype classes in the UML
specifications are mapped to static methods in the Java implementation. As
opposed to normal class methods, static methods can be invoked without
instantiating the class they belong to. This implementation decision is in
line with the concept of a formal relation discussed in Chapter 5. Formal
relations operate on quality values (and not objects), which are passed as
parameters for the method. Therefore, the parameters of a method
representing a formal relation should always be datatypes.

Our classes in the Java implementation should be JavaBeans in order to
support shadow facts, as discussed in section 6.2.2. This issue has been
tackled by implementing get and set methods for each attribute. In
addition, changes in the Java objects should be reflected in the Jess working
memory by exchanging a special kind of event, namely a
java.beans.PropertyChangeEvent. In order to support event exchange between the
Java virtual machine and the Jess engine, our Java classes should offer
support for a PropertyChangeListener, which enables the notification of changes
from Java to Jess. Whenever an attribute is changed in the Java code, its
corresponding slot value should also be changed in order to keep the Java
code and the working memory synchronised. This is done by the
programmer by invoking the firePropertyChange method every time an attribute
value is modified.

Since we deal with situational temporal aspects, we need to use
serialization to keep the state of situations and their dependencies at the
time of deactivation. In order to allow serialization, all our classes
implement the Serializable interface.

The majority of UML tools offer code generation facilities for the Java
language [46, 60, 94]. We have used Octopus [96] for generating Java code.
Octopus is able to statically check OCL constraints, and to transform the
UML model, including the OCL expressions, to the Java language. Although

142

CHAPTER 6 SITUATION REALIZATION

the mappings from the specification elements to realization elements may
be automated, there are some issues that currently available automation
tools do not tackle, such as the association type “subsets”. Application
developers, using code generation tools need to treat subsets associations
manually, or create a customized automation mechanism to process subsets
in the proper way during the code generation.

6.4.2 OCL invariants to Jess

OCL and Jess are different languages aiming at different goals. OCL is a
formal constraint language used to describe expressions on UML models.
These expressions aim at specifying the modelling aspects which cannot be
covered by the diagrams. Several types of OCL expressions can be
formulated in a UML diagram, such as invariants, preconditions,
postconditions, among others. In contrast, the Jess language aims at
providing application developers with means to write rules that can be
accepted and understood by the Jess engine.

Our specific goal is to map one type of OCL expression, namely
invariant, to LHS (condition parts) of Jess rules. As we have mentioned in
previous sections, an OCL invariant generates at least two Jess rules in the
implementation, one to create a situation fact (enter true rule) and the other
to deactivate a situation fact (enter false rule). We discuss in this section how
inner parts of an invariant are mapped to speciﬁc Jess expressions.

In our approach, an OCL invariant always refer to a SituationType, which
is, in UML terms, the context of the invariant. We use the term reference class
here instead of context, in order to avoid confusion with the term context
in the scope of context-awareness. For example, in Figure 6-10, the OCL
invariant expression refers to instances of the SituationConnected type class,
which is the reference class. In such expressions, navigating to other
associated objects always starts from the objects instances of a reference
class. This way, the expression device.nasConnection.oclisUndefined() (in Figure 6-
10), starts from SituationSwitch class, so that device is an association attribute of
SituationConnected class.

In the Jess implementation, the concept of a reference class does not
exist. Initially, there are no instances of situation types in the system. These
instances, which we call situation facts, are created when the condition part
of enter true rules become true. For this reason we cannot start navigating
from a situation fact in the condition part of an enter true rule. Instead, Jess
conditions consider a general view of the system, in which the objects that
participate in an invariant are always inspected in order to check whether
the invariant holds or not.

As an example, consider the invariant defined in Figure 6-10
(device.hasConnection.oclisUndefined), which specifies that for all instances of

6.5

DISTRIBUTION ISSUES 143

SituationConnected, there must be an attribute device, which is connected to a
network (hasConnection.oclisUndefined). In Jess, this invariant maps to the
condition part of a rule in which we check whether there is any device
connected to a network. If this holds, an instance of SituationConnected class,
which is associated with that particular device, is created in the working
memory. The mappings from OCL and Jess discussed in this section always
consider this fundamental difference between these languages.

OCL invariants are Boolean expressions, similar to LHS of Jess rules. In
the outer most occurrences of the AND logical operator, each operand of the
AND is mapped to a line in the LHS of a Jess rule, each line representing a
pattern to be matched against the contents of the working memory. For
example, if an OCL invariant defines the expression (expr;) AND (expr,) AND
(expry) this would be mapped to three lines in the rule, namely line 1 (expr,),
line 2 (expr,), and line 3 (exprs).

Jess defines a special slot called OBJECT for each shadow fact. This slot
allows one to access Java objects in the working memory. For example, in
order to refer to object; in the working memory, we would define in Jess
(ObjectType (OBJECT ?object,)), where ObjectType refers to the type of object;, or the
corresponding shadow fact definition (looking from the Jess engine
perspective). In Appendix A we discuss in detail the mappings for specific
elements of the OCL language.

Distribution Issues

So far, we have focussed on the various rule patterns for the detection of
the various kinds of situation. We have presented the realization solutions
without regard for distribution, as if situation detection were based on a
single rule engine, working with a single set of rules and a single working
memory. In this section, we consider alternative distribution scenarios, and
discuss their trade-offs.

6.5.1 Simple scenarios

In Figure 6-16 we consider the fully centralized scenario, in which no
distribution is employed. In this scenario, context sources feed context
information into the central rule engine’s working memory. This is the
simplest scenario, and has limited scalability with respect to the number of
situations detected, even when situations are entirely independent of each
other, i.e. when situations are detected using context conditions that are
sensed independently, and are not composed of other situations. The
centralized approach introduces a single point of access to context
information, which can be considered a potential (privacy) hazard, due to

144

Figure 6-16 Centralized
scenario

Figure 6-17 Multiple
hub-and-spokes
Scenario

CHAPTER 6 SITUATION REALIZATION

the sensitive nature of particular kinds of context information. In addition,
such centralized scenario can present performance and scalability problems,
since situation reasoning is concentrated on a single engine.

all situations and relevant

context as facts in single

user's context _____| context sources ..

’

/

r]

! i

[1| base :
working ' N :’ situation
memory 7 ! T requester

i

! i

! 1

! '

M .
inference execution
user context sources <

engine engine

context sources _—" [gy

In Figure 6-17 we consider a scenario with multiple hub-and-spokes for
situation detection. In this scenario, multiple engines detect independent
situations. In this approach, each rule engine may be associated to a
different administrative domain, which enables more fine-grained control of
the (privacy) policies which apply to the context information for that
domain. The level of distribution is constrained by the nature of the
situation model, each hub-and-spoke pattern consisting of a centralized
solution. The solution is highly constrained by the nature of the situation
model, since all related situations must be detected in the scope of the same
rule engine. Figure 6-17 depicts this solution with two rule engines
detecting independent situations 1 and 2.

situation 1 as fact in

workingmgmory e e
i 1 rule !
i
i
'S context context sources working E bal‘SB :
user's contex =1 memory 47 1 —
— 1| inference J | execution |}
(1| engine engine |
:
(K B RREEEEEEEEEEED | situation
user Fesooooooo---------og| o requester
context sources ! t;ule i
. 1 H
context sources ~~y working \ aAse ;
~— memory T—— —T
: 1| inference J | execution |}
v 4] engine engine |1
situation 2 as factin ! H

working memory

6.5.2 Service-oriented architecture

We consider now a distribution scenario with a higher level of distribution
that not only exploits possible independent situations, but that is able to
decompose situation detection further, and distribute parts of the rule
detection functionality to different rule engines. Different distribution
strategies and rule engine configurations can be accommodated using this
approach. Figure 6-18depicts a possible configuration with two independent

Figure 6-18 Distributed
scenario using service
oriented approach

DISTRIBUTION ISSUES 145

situations 1 and 2 detected independently in rule engines A and B (as in the
hub-and-spokes scenario). The facts corresponding to those situations are
shared with a rule engine C, which detects a situation 3 which is derived
from situations 1 and 2. We propose a mechanism based on a service
oriented architecture as one of the realization alternatives for this approach.

situation 1 as fact in working
memory of context manager*

1 r"""""""l
| rule '
1 A !
working |! bafe H
] memory" Y ¥ N ===
user's context 1| inference || execution [T e '
7 ' R T Ssattiavel H
context 1| engine engine® —|'| base® i —
(manager' Lo o - _____- 1| || working |3 ", 1 situation
/ memory* TH——v L requester
rm=-=----------1 1| inference || execution P "%
e I \ inet T enginec |!
user i pase || conted 1| ENGINe engine !
working | . T manager® L __________)
L1\ memory M —
] H mfergncge%execunon 1| situation 3 as fact in working memory
context 1| engine engine® 1| of context manager®, derived from
manager® , L _____ _____-- 1| situations 1 and 2

situation Z'als fact in working
memory of context manager®

Architectural patterns

Service oriented architectures allow us to encapsulate rule engines in
components, so that situation facts are exchanged by means of situation
events, which are offered through components’ services. These components
are the context manager components, which have been discussed in Chapters
4 and 5. We have presented in Chapter 5 how to design an interface for a
context manager component, but we had not yet discussed the internal
design of such a component, since the internal design depends on the
realization alternative chosen. As we have discussed in Chapter 2,
components are not forced to use any specific realization alternative, since
the internal configuration of a component is not visible to other
components.

Using a rule-based alternative for situation realization suggests that a
context manager component should implement a rule engine for situation
detection. Therefore, in Figure 6-18, context managers A, B and C
implement rule engines A, B and C respectively. In addition, these
components should be able to subscribe to other context manager
components, or other context source components, in order to gather the
necessary information to detect the situation of interest. In the example
presented in Figure 6-18, situation 3 depends of situations 1 and 2 to be
detected, and therefore, context manager C subscribes with context
managers A and B in order to gather situations 1 and 2, respectively. In this
way, a hierarchy of context manager components can be created, so that we
can apply the hierarchy of context sources and managers architectural pattern
discussed in Chapter 4. The subscription mechanism is based on the

146

Figure 6-19 Definition of
the Situation Contained
context manager
component interface

CHAPTER 6 SITUATION REALIZATION

publish-subscribe approach, which has been discussed in Chapter 2. In the
next section we discuss the context manager components and the publish-
subscribe mechanism in more detail.

This distributed scenario enables fine-grained control of the policies
that apply to context information, since different rule engines and parts of
situation detection can be associated with different administrative domains.
The policies for context information may justify the usage of different
distribution strategies. For example, consider an application that uses the
distance between two users to determine whether users can view each
other’s contact information. Suppose further that GPS location is used to
compute the distance between users. Due to the sensitive nature of the
“raw” GPS location, different policies may apply to this information, and to
the aggregate and usually less sensitive distance information. In this case,
GPS location should be only available to the engines that derive proximity
information. Only the aggregated proximity information should be shared
with other engines that define contact information visibility.

Context managers

As discussed in Chapter 5, a context manager component offers a
subscription interface to its users, such that situation event notifications can
be delivered when these events occur. For example, the component
interface specification depicted in Figure 6-19, offers a subscription
interface for SituationContained events. The subscribe operation allows the
requester to specify the situation state transition in which the notifications
should be carried out. For example, a requester may want to be notified
when user John enters a building, which is specified by the state transition
enter true, or when John leaves a building, which is specified by the state
transition enter false.

«interface»
SituationContainedContextManager
+subscribe(in transition : Transition, in characterization : SituationContainedMeasurement, in subscriber : Subscriberldentification) : Subscriptionidentification
+unsubscribe() : Subscriptionldentification
+query(in expression : SituationC dh) : Collection

The parameters characterization —and expression, both of type
SituationContainedMeasurement, specify the filtering arguments. Figure 6-20
depicts the specification of the SituationContainedMeasurement datatype. This
datatype refers to the SituationContained specification, which is depicted in
Figure 6-1. SituationContained specifies a situation type in which a person is
inside a building. The filtering arguments for the subscription operation can
be defined at several levels of specificity. It is possible, for example, to
subscribe to SituationContained events for (i) all users entering any building; (ii)
user John entering any building; or (iii) user John entering a specific
building. If the requester would like to be notified of events when John

Figure 6-20 Definition of
the Situation Contained
Measurement datatype

Figure 6-21 Structure of

context
component

manager

DISTRIBUTION ISSUES 147

enters the “Zilverling” building, we would assign the unique identifiers of
entities John to parameter containerlD, and Zilverling to parameter containerlD.
In addition, the transition argument is assigned to enterTrue. With this type
of subscription, notifications are delivered to the subscriber every time John
enters the Zilverling building.

«datatype»
SituationContainedMeasurement
+containerlD : String
+containedID : String
+probabilityOfCorrecteness : Real
+freshness : Freshness

Exchanging events between event requester and provider is realized by the
publish-subscribe interaction pattern. The publish-subscribe interaction
pattern, as discussed in section 2.3.3, introduces the mediator role, with
which events are published and subscribed. Subscribers express their
interest in an event and are subsequently notified of any event, generated by
a publisher, which matches their registered interest. In our architecture, a
context manager component implements both the publisher and the
mediator of situation events. Therefore, in addition to implementing a rule
engine for situation detection, a context manager component includes an
event mediator, which handles subscriptions and delivers notifications.
Figure 6-21 depicts the structure of a context manager component. The rule
engine detects situation events, the event mediator mediates publish,
subscribe and notify messages, the event requester subscribe to event
notifications and the context processor may feed the rule engine with
relevant context information necessary to detect situations.

context @ rule @ event event
engine mediator

processor requester

context manager

Interaction points of type ip-s allow event requesters to subscribe, query
and unsubscribe to event notifications, which are the operations defined by
the context manager interface, as described in Figure 6-19. In addition,
through this interaction point, the mediator delivers event notifications to
the respective requesters. The relationships between the context manager
and its requesters are defined at runtime.

Interaction points of type ip-n allow the rule-engine to publish situation
events with the event mediator. Contrary to the relationships between the

148

Figure 6-22 EnterTrue
and EnterFalse rules for
situation detection —
focus on notifying the
mediator of situation
events

CHAPTER 6 SITUATION REALIZATION

context manager and event requesters, the relationship between the rule
engine and the mediator is defined at design-time. In order to notify the
mediator that a certain situation event has occurred, an operation
invocation is included in the action part of EnterTrue and EnterFalse rules. This
operation calls the notifyEvent operation with the mediator component,
passing as arguments the event transition (EnterTrue or EnterFalse) and the
situation object.

For example, Figure 6-22 depicts the EnterTrue and EnterFalse rules for
SituationSwitch detection. In addition to activating and deactivating situation
instances, these rules also notify the mediator of the occurrence of these
events. The mediator then distributes these event notifications to the
interested event requesters.

;EnterTrue (Situatior?SwiTch)] Notity mediator of enter-
(defrule entertrue_situation_switch frue Smja,,m event
(...LHS...)

=>

(bind ?SituationSwitch (new situation_control.SituationSwitch 7SWIan 7SBIue))

(definstance SituationSwitch ?SituationSwitch))

(call Mediator notifyEvent EnterTrue ?SituationSwitch)

;EnterFlase(SituationSwitch)

(defrule enterfalse_situation_switch

(...LHS...) Notify mediator of enter-
== false situation event
(call ? SituationSwitch deactivate))

(call Mediator notifyEvent EnterFalse ?SituationSwitch)

Context manager components may play the role of event requester. In this
case, interaction points of type ip-c allow the context manager to receive
notifications from other context manager components. These notifications
are included into the working memory, which is used as knowledge to
derive new situation events. Context manager components may also play the
role of context information requester. In this case, interaction points of
type ip-c allow the context manager to receive context information from
other context source components. These interactions have been discussed
in section 4.5.2.

6.5.3 Djess

A different realization alternative for the distributed scenario uses the
shared memory mechanism offered by the DJess middleware [14]. With
this mechanism, rule engines running in different nodes can apply rules on
shared sets of facts. A rule engine may participate in multiple shared
memory partnerships (which are called Web of Inference Systems in
DJess), each of which defining a shared set of facts, thus allowing arbitrary

Figure 6-23 Distributed

scenario using DJess

DISTRIBUTION ISSUES 149

configurations. Figure 6-23 depicts the distributed scenario implemented
using the DJess middleware.

situation 1 as fact in shared
working memory

working shared ~

| memory* part

user’s context P ———— N ——--------
rule inference | | execution

() pase* T engine* 1T engine?

i H 1
1 ! :
| | |
. 1
@ L L= L= 11| working |4 4 ! situation
______ - d . N
- MEMONY™ |1 inference | | execution {4 requester
1
1 ! :
1 ! i
1

1
. : 1 " - .
user rule H»mferencewexecutlon : engine® T engines
1
H

N

base® 1T engine® TT engine?

LY [, 4

BN M working shared | [\ situation 3 as fact in
memory® part workmg memory derived
from situations 1 and 2

X

\

\
situation 2 as fact in shared
working memory

DJess is a middleware that allows Jess engines running on different nodes of
a network to communicate. Communication and coordination of these
engines is achieved through the ability of each engine to transparently and
asynchronously reason on knowledge located on remote nodes. Conflicts
may occur when multiple nodes try to access the same shared fact by
executing interfering rules at the same time. DJess addresses consistency
problems due to concurrency. Consistency is guaranteed by a two-phase
locking scheme, in which rule firing execution is divided into three steps:
lock acquisition, rule execution and lock release.

Using DJess has advantages over a component-based solution (section
6.5.2) since it provides transparencies for situation distribution, i.e. each
engine works on the distributed facts as if they were local. Therefore, there
is no need to bother with subscribe/notify messages, since communication
functions are hidden by DJess. However, DJess does not support shadow
facts, and because of that, Java objects in the Java implementation cannot be
tightly integrated with DJess working memory. In order to work in DJess,
Java objects have to be asserted in the working memory as a native Jess fact,
and not as a shadow fact. Furthermore, fact templates have to be manually
created using the deftemplate command, as opposed to the defclass
command that would automatically create a deftemplate given a class
definition. In addition, contrary to the shadow facts mechanism, changes in
Java objects have to be manually informed to the DJess engine using the
“modify” command of Jess.

Figure 6-24 depicts the deftemplates that would be necessary for
realizing SituationInChat in DJess. Every object is given a unique identifier,
which is used to relate facts. For example, the Person deftemplate has three
slots: an identification slot, a name slot and a hasInChatWith slot. The
hasInChatWith slot value relates a Person fact to a inChatWith fact. A

150

Figure 6-24
SituationInChat in DJess

CHAPTER 6 SITUATION REALIZATION

person being connected to several inChatWith objects is represented by
multiple facts in the working memory. The SituationInChat deftemplate
extends the SituationType deftemplate, which defines the initial and final
time attributes. In addition, the SituationInChat deftemplate also defines
the slots Person and a slot inChatWith, which realize the association ends
with these names. Suppose person John is currently involved in three chats,
namely a, b and c. This would be represented as follows in the working
memory.

(Person (id 1) (name John) (hasInChatWith a))
(Person (id 1) (name John) (hasInChatWith b))
(Person (id 1) (name John) (hasInChatWith c))

The DJess working memory is similar to a relational database, in which fact
templates are similar to tables, facts are similar to tuples, slots are similar to
columns, and object unique identifiers are similar to primary keys.

{Context SituationinChat inv: (deftemplate SituationInChat extends SituationType
person.name = "John" AND (slot id)
person->hasInChatWith() = inChatWith AND (slot Person)
person->getChats () >= 3} (slot inChatWith))
/
w/
“RelationalSituation>|
SituationinChat
+person 1 +inChatWith | *
+isinChatWith +hasInChatWith
Person {subsets isContextOf} {subsets hasContext} [«RelationalContext»
+getChats() : Integer . X InChatWith
\ \
\ \
\ \
(deftemplate Person (deftemplate InChatWith
(slot id) (slot id)
(slot name) (slot Person))
(slot hasInChatWith))

The EnterTrue rule for SituationinChat in DJess is similar to the one depicted in
Figure 6-25, except that method getChats is no longer implemented in class
Person, since objects are not being “shadowed” in the working memory.
Methods are implemented as static methods, therefore we do not
instantiate a class in order to invoke a method. We have implemented
getChats method in Util, which is a utility class for implementing static
methods.

DISTRIBUTION ISSUES 151

(defrule entertrue_situation_inchatwith
(Person (id ?id) (name “John”))

Figure 6-25 .])
SituationIinChat (Person (id ?id) (hasInChatWith ?hasInChatWith))
realization in DJess (test (>= (call Util getChats ?id) 3))
(not (SituationInChat (Person ?id) (finaltime nil))
=>

(bind ?init (call System currentTimeMillis))
(assert (SituationInChat (Person ?id) (initialtime ?init)))

6.5.4 Combining DJess and service-oriented architectures

Yet another realization alternative for the distributed scenario is to use a
combination of DJess and service-oriented architectures. In this case, nodes
of a DJess network should offer an interface, which provides access to
situation events. This combination is only possible because of the flexibility
offered by service-oriented architectures, in which components are not
required to be implemented in any specific technology. Figure 6-26 depicts
an example of situation detection distribution using a combination of
components and DJess. Engines A, B and C participate in a DJess network,
in which parts of their working memories are shared in order to distribute
knowledge. In addition, engines B and C are encapsulated by components B
and C, respectively. These components offer situation event notification
services to external requesters, such as component E. Component E
subscribes to component B in order to receive notification of occurrences
of situation, events, and subscribes to component C to receive event

notification of occurrences of situation; events.

152

Figure 6-26
Combination of DJess
and service-oriented
architecture

6.6

CHAPTER 6 SITUATION REALIZATION

shared
parts
. 1
’ 1
1
) ’,I.....,
user's] engine, 27
!
(2 ./ <44 Ssituation
@ engine; requester
l
user »;I_
T engineg /
—— N
N
components component,
n N A . "
user’s situation, event situations event
/’% notifications notifications
user" W
componentg

Discussion

We have proposed in this chapter a novel model-driven approach for the
realization of situation detection for attentive context-aware applications.
The situation realization approach is rule-based, and executes on mature
and efficient rule engine technology available off-the-shelf. The rule set is
derived systematically from the specification and has been deployed directly
in the Jess rule engine. Most approaches we have investigated [53, 56, 58,
117] do not provide a model-driven support to the development of
context-aware applications. Typically, situations are specified using logic
specification languages, such as first order logic or description logics and,
contrary to our approach, their realizations are not derived systematically
from the specifications. In addition, most initiatives we have studied do not
address attentiveness of situation detection. Attentiveness allows situations
to be detected simultaneously to their occurrences, enabling applications to
be informed of any changes in the state-of-affairs of interest, rather than
having to query for specific situations of interest.

We have proposed mappings for basic elements of OCL to the Jess
language. Not all OCL expressions are supported by our mapping
framework. For example, our mapping approach does not support native
OCL expressions to manipulate collections. Because of these mapping
limitations, application developers are currently constrained to use the OCL
expressions which are supported by our mapping approach (in the
realization phase). A more complete mapping framework is necessary, and
it is indicated for future work.

We have argued that a distributed solution for situation detection has
benefits, which apply in particular to context-aware applications. We have

DISCUSSION 153

realized communication between rule engines by means of service-oriented
architecture messaging. In this approach, context manager components
encapsulate engines, which are capable of communicating with other
components through their interfaces.

We have also discussed communication between rule engines with the
DJess shared memory mechanism, which allows different engines to
execute their rule base on a shared set of facts. Since shadow facts are not
supported by DJess, we need to manipulate native Jess facts, in which
objects are given unique identifiers, and the working memory is treated
similarly to a relational database. Although shadow facts are not supported,
there is little impact on how rules are derived in DJess; therefore, in
general, our mapping efforts from OCL to Jess still apply for the mappings
from OCL to DJess. The benefit of using DJess lies in the complete
transparency of situation detection distribution, in which each engine works
on the distributed facts as if they were local. However, since shadow facts
are not supported, the Java implementation is not so well integrated with
the contents of the engine’s working memory.

Finally, we have discussed an architectural style in which distribution is
realized by combining service-oriented architectures with the DJess
middleware. The benefit of using this solution is that it allows application
developers to choose particular realization alternatives for different
components of the system.

7.1

Chapter

Controlling Services

In this chapter we aim at tackling the flexibility, extensibility and
adaptability requirements presented in Chapter 2 by means of the
Controlling services. A controlling service aims at facilitating the dynamic
execution of application-specific behaviour specifications using a mobile
rule engine and a mechanism that distributes context and situation
reasoning activities to context processing components. In Chapter 4 we
have discussed that context-aware application-specific behaviours can be
described as logic rules, which are called ECA rules, following the Event-
Control-Action (ECA) pattern. In this pattern, an Event models an
occurrence of interest (e.g., a change in context); Control specifies a
condition that must hold prior the execution of the action; and an Action
represents the invocation of arbitrary services. In this chapter we discuss the
detailed design of the controller component, and we introduce ECA-DL, a
domain-specific language used to describe context-aware reactive
behaviours following the ECA pattern. In addition, we discuss the relations
between the situation detection framework presented in Chapter 6 and
ECA rules.

This chapter is further structured as follows: section 7.1 presents the
detailed design of the Controller component, which offers controlling
services; section 7.2 introduces ECA-DL, its syntax and semantics; section
7.3 discusses how ECA rules can be realized in Jess; section 7.4 elaborates
on the integration between controlling services and context provisioning
services, and finally section 7.5 presents concluding discussions.

The Controller

The controller component aims at tackling flexibility, extensibility and
adaptability of the context handling platform, as discussed in Chapters 2
and 4. A controller component receives application-specific behaviour

156

Figure — 7-1
handling platform

Context

CHAPTER 7 CONTROLLING SERVICES

specifications as input, and executes these behaviours in the platform on
behalf of applications. In order to execute application-specific behaviours, a
controller component observes events, monitors condition rules, and
triggers actions when particular events occur and conditions are satisfied.

Figure 7-1 depicts the context handling platform as discussed in Chapter
4. The platform is refined into subcomponents, namely context processor,
controller, and action components. The use of the ECA pattern (section 4.2) is
also represented in this figure by means of dashed rectangles around the
components. This figure depicts a logical configuration of context
processor, controller and action components. Other configurations are also
possible, in which multiple instances of these components interact with
each other.

application-specific components

user’s |
context ip-d

action
component

context
processor -

controller

context handling platforr

event control action

’

The interaction points ip-¢’, ip-e” and ip-¢”” enable application-specific
components to interact directly with the different components of the
platform. Application-specific behaviours are delegated to the platform
through interaction points of type ip-e”. The controller component takes
these behaviours as input and configures the rest of the platform to operate
properly according to the application-specific requirements. For that, the
controller should announce to the context processor components that
certain types of context information are needed.

Context processor components are responsible for capturing the user’s
context through interaction points of type ip-d. Based on measured
information of the user’s context, context processors generate context
information and events, which are observed by controller components
through interaction points of type ip-f. Application-specific components
may interact directly with the context processor components, through
interaction points of type ip-e’. This allows application components to
access context information, independently of the availability of the
controller component.

7.1.1

THE CONTROLLER 157

When the combination of context conditions defined by the
application-specific behaviours is met, the controller component triggers
the required actions through interaction points of type ip-g. Application-
specific components may also interact directly with action components,

)

through interaction points of type ip-e””. This allows applications to trigger
(combinations of) actions, independently of wusing the controller

component.

The controlling service

The controller component offers controlling service to requesters. This service
allows its users to (i) perform Event-Condition-Action (ECA) rules, and (ii)
query for specific instances of context information. As already discussed in
section 4.6.4, the controlling service supports the following types of
operations: subscribe, unsubscribe, query and notifyApplication. Subscribe activates an
ECA rule within the platform; unsubscribe deactivates an ECA rule; query
selects specific context information values and notifyApplication notifies
application components of the occurrence of ECA events.

ECA rule activation occurs at platform runtime, which requires runtime
discovery of context provisioning and action services. Figure 7-1 depicts a
typical usage flow of the controlling service. The following phases are
identified:

— Phase I initiates with an end-user subscribing to some context-aware
application service by means of a graphical interface. This type of service
typically requires the application to behave reactively to context and
situation changes. The application then delegates the desired reactive
behaviours to the platform, which realizes these behaviours on behalf of
the application;

— Phase 2 consists of performing the mapping of an end-user request to a
rule specification to be provided to the platform, in a scripting format
(e.g., XML). The translation from the user’s requests to rule
specifications in some notation that can be accepted by the platform is
responsibility of the application components. It is also possible that the
application developers (as opposed to an end-user) specify application
rules at application design-time. End-user and application rules are
treated equally here;

— Phase 3 consists of the actual invocation of the controlling service, in
which an application subscribes rule specifications. The controlling
service verifies whether the specification is well-formed and separates it
into events, conditions and actions;

— Phase 4 corresponds to the attempt of the controlling service to find
context provisioning services capable of providing the context and
situation event notifications of interest. The controlling service decides

158

Figure 7-2 Typical usage
flow of the Controlling

Service

7.1.2

CHAPTER 7 CONTROLLING SERVICES

whether or not to subscribe to one of more of these context
provisioning services;

— Phase 5 consists of exchanging subscribe request messages and possible
event notifications, and query requests and answers. The controlling
service determines whether the conditions are satisfied by the
information provided from context provisioning services;

— Phase 6 starts typically when a certain condition is satisfied. At this
moment, an action should be triggered, and, therefore, its actual
implementation needs to be found. For that purpose, the controlling
service uses the action discovery service;

— Finally in phase 7 action service components are invoked by the
controller component.

® Gul

ECARUE
i specification _ : application components

@l context handling platform

CP discovery controlling action discovery
Service service service

context action
provisioning service
service

Discovery services

Context sources and managers offer services as in a service-oriented
architecture and, therefore, they are registered and discovered in a service
repository, as discussed in section 4.6.1. A context source or a manager
registers a description of its service (e.g., the type of context or situation
information it offers) and the location of an interface where this service is
available. Consumers of context information (e.g., the controller and
application components) make a query request for a service having certain
characteristics, e.g., the service type, costs, location and quality of service
parameters. The service registry checks the query request against the service
descriptions it holds and responds to the consumer with the location of the
selected service’s interface. Service registries behave proactively by notifying
consumers of newly exported service offers that better match their service
query description. We assume context sources, managers and context
requesters agree upon the semantics of the context information being
exchanged, which has been extensively discussed in Chapter 5.

THE CONTROLLER 159

Upon an ECA rule subscription, the controller component verifies
whether context and situation events needed are already available to the
controller. If this information is not available, the controller uses the
discovery services to find relevant context sources (for context information
notifications) and context managers (for situation event notifications),
which are capable of offering this information.

The query request may return a set of context sources or managers. We
assume all context providers in this response commit to some level of
quality, as agreed upon in the query request (see section 5.6.1 for more
information on quality). The subscription process with context sources and
managers may use one of the following strategies:

— Subscribe to all sources: the controller subscribes to all context sources
or managers matched in the query request. In this approach, various
notifications are received for the same information. To decide which
one to consider, the requester may use quality properties, such as event
freshness and accuracy. Although this approach may be beneficial to
improve reliability, it is potentially more expensive due to mirror
subscriptions and intensive communication traffic (we assume that
subscription to services require the payment of fees); and

— Subscribe to one source: the controller selects one context source from
the pool of sources resulted in the query request. The selection process
can be random or use quality parameters (e.g., the event source that
promises the most accurate information).

Since context sources are vulnerable to failure, it may be necessary to

perform again a subscription for the same event with a different context

source or manager in case of failure. Events re-subscriptions may be
necessary in the following situations:

- Quality of the event decreases and it is no longer as required in the
service agreement;

— The context source or manager is momentarily unavailable due to
unexpected failure; or

— The context source or manager withdraws itself from the platform or
goes offline on purpose.

The controller usually detects with little effort whether the quality of event
still satisfies the requirements. Whether the source is down either due to
failure or withdrawing, is not so straightforward. We assume, from the
controller point of view, that there will be management types of event to
inform whether a context source is not functioning properly. These events
may be generated either by the sources themselves, by a notification
middleware platform or some other mechanism.

For time-based events, i.e. events notified in a pre-defined frequency,
the detection of whether the event has not been notified at the specified
time is straightforward.

160

7.1.3

Figure 7-3 Controller
detailed design

CHAPTER 7 CONTROLLING SERVICES

The Controller detailed design

As already mentioned in the previous section, the controller component
should (i) interpret ECA-DL rules, which are provided as input to the
controller; (ii) gather context information from various context processor
components; (iii) monitor the occurrence of events and conditions; and (iv)
invoke actions in response to particular event occurrences and condition
evaluations. In order to realize these functions, we have refined the
controller component into subcomponents, namely the ECA handler, the
event handler, the rule engine and the action dispatcher. Each of these
subcomponents aims at realizing the aforementioned functions,
respectively. Figure 7-3 refines Figure 7-1 and focuses on the internal design
of the controller component.

application-specific components

action
component

context
processor

engine

controller

The ECA handler component accepts ECA rule specifications through
interaction points of type ip-e”” and checks whether they are well-formed
with respect to the context and situation models shared by the platform
components (phase 3 in Figure 7-2). Upon the successful validation of the
ECA rule specification, the ECA handler sends to the event handler
component the list of events, context and situation values necessary to
evaluate a rule, through interaction points of type ip—VB. Once the rule
engine’s working memory can be properly populated with context and
situation events, the ECA rule specification can be loaded in the rule engine
component, through interaction points of type ip—VA.

The ECA handler also verifies whether an action specified in the ECA
rule is critical (emergency rule). If this is the case, a request for action pre-
fetching is forwarded to the action dispatcher through interaction points of
type ip—VC, avoiding in this way, action query delays.

Upon receiving information from the ECA handler component, the
event handler component verifies whether context and situation events are
already available to the controller, and if not, it prepares a query request for
each context and situation event that is needed. This query is performed on

7.2

ECA-DL 161

a context discovery component, which is not depicted in Figure 7-3 for the
sake of simplicity. The context discovery component returns a set of service
offers that fulfil the query requirements (phase 4 in Figure 7-1).

The event handler chooses one or more service offers and subscribes to
it through interaction points of type ip-f’, in order to receive event
notifications (see section 7.1.2). It also performs query-based requests, in
which immediate answers with context and situation values are expected.
The event handler populates the rule engine’s working memory by means of
interaction points of type ip-vD. These events are gathered from distributed
context processor components through interaction points of type ip-’. The
event handler performs event filtering and pre-processing. In addition, it
may detect that a time-based event has not been notified in the expected
time, which causes an additional subscription to that event. Throughout this
chapter we discuss the various responsibilities of the event handler
component in detail.

The rule engine component is the core of the controller architecture. It
can be implemented on top of a Jess rule engine, which is capable of
determining when conditions are satisfied by the current set of available
facts in the working memory. In response to a matched condition, an action
is triggered through interaction points of type ip—VE.

The action dispatcher checks whether it contains a pre-fetched action
service for the required action. Otherwise, similarly to the ECA handler, the
action dispatcher performs a query request with an action discovery
component to find proper action service offers. Finally, the action
dispatcher invokes the action component service through interaction points

of type ip-g.

ECA-DL

As we have discussed in Chapter 4, the context handling platform should be
able to cope with rapid changes in application requirements, and should
offer support for reactivity. In order to cope with these aspects, we have
developed a domain specific language (ECA-DL) for the purpose of
specifying context-aware reactive rules, which are called Event-Control-
Action rules (ECA rules). By means of this language, applications developers
are capable of specifying rules that express desired context-aware reactive
behaviours in a scripting format, which can be deployed at platform
runtime. This way, newly defined application requirements that were not
anticipated at design time can be realized by activating new rules into the
platform. This approach facilitates maintenance of particular application
behaviours in the platform, since application developers may add and
remove rules on demand without disrupting platform execution.

162

7.2.1

CHAPTER 7 CONTROLLING SERVICES

ECA-DL is defined based on two complementary foundations:
information and behaviour. Information foundation refers to the
representation of the applications’ universe of discourse and state-of-affairs,
i.e. the context and situation models discussed in Chapter 5. Behaviour

_foundation refers to the dynamics of rule execution, i.e. how and when a rule

should be executed and what are the elements of the language that should
be used to define a particular piece of reactive behaviour. The following
sections elaborate on the details of ECA-DL.

Basic concepts

ECA-DL has been developed considering the following requirements:

- Expressive power in order to permit the specification of complex event
and condition relations. In order to cope with that, ECA-DL allows the
use of relational operator predicates (e.g., <, >, =), and the use of
logical connectives (e.g., AND, OR, NOT) to combine events and
conditions;

— Convenient use in order to facilitate its utilization by context-aware
application developers. ECA-DL provides high-level constructs that
facilitate composition of situation events and context conditions;

- Extensibility in order to allow extension of predicates to accommodate
events and conditions being defined on demand.

In addition, in order to comply with the ECA pattern discussed in Chapter

4, an ECA rule should consist of the following elements:

— One or more events, which model the occurrence of relevant changes in
the user’s context. The occurrence of these events triggers the evaluation
of the ECA rule;

— Zero or more conditions, which represent the situation under which the
actions of the rule are enabled, given that the events have occurred. A
condition is typically expressed as a (simple or complex) Boolean
expression;

— One or more actions, which represent the operations of the rule that
determine the reactive behaviour of the application.

Events, conditions and actions may also have internal structure. For

example, a condition may consist of multiple sub-clauses, or an action may

be implemented as a procedure call that invokes several sub-procedures.
Considering these basic elements that an ECA rule should contain, we
have identified the basic requirements for the ECA-DL language elements.

ECA-DL should offer means to define the rules containing the following

elements:

— An event part, which allows defining a relevant situation change by means
of simple or complex combination of events;

Figure

7-4

Basic

glements of an ECA-DL

rule

7.2.2

ECA-DL 163

— An optional condition part, which allows defining a logical expression that
must hold simultaneously to the occurrence of the specified events and
prior to the execution of the action;

— An action part, which allows the definition of operation invocations to be
executed by the platform as a consequence of the occurrence of the
events and the fulfilment of the condition(s) associated with these
events.

Figure 7-4 depict the basic elements of an ECA rule.

ECA Rule

1 0.1 1

| EventPart | |ConditionPar‘[| | ActionPart |

Navigation

Navigation aims at reaching values or objects of concern in the context and
situation models. Navigating through the context and situation models in
ECA-DL is similar to navigating in the OCL language, i.e. in ECA-DL we
use dots to navigate from an object to its attributes. In contrast to OCL, in
ECA-DL, the target element of a navigation expression is always a primitive
datatype, i.e. a numeric, a Boolean or a string value. In addition, we include
in the navigation expressions the type of the object being navigated, in order
to facilitate the parsing. In general, navigation in ECA-DL starts with an
entity, such as EntityType.entityld, where EntityType refers to the type of the entity
and entityld refers to the entity’s unique identifier. ECA-DL assumes entities
have unique identifiers, which are shared by the platform and applications.
The elements following the entity’s unique identifier aim at navigating
through this entity’s attributes until the desired attribute’s value is reached.

Figure 7-5 depicts a fragment of a context model. In order to navigate to
a device’s battery power value, we would define the following in ECA-DL
expression: Device.id1.hasBatteryPower.value, where id1 is a unique identifier of a
particular entity of type Device. Similarly, in order to navigate to the
device’s bandwidth value, we would have the expression
Device.id1.hasBandwidth.value, and to navigate to the device’s current location’s
latitude value, we would have the expression
Device.id1.hasGeoLocation.coordinates. latitude.

164

Figure 7-5 Fragment of

context model

7.2.3

CHAPTER 7 CONTROLLING SERVICES

+coordinates

«Entity» hasGeoLocation _[<nirinsicContext> «datatype»
SpatialEntity Geolocation GeoLocationCoordinates
/N\ 1 1 1 1 -+latitude : Real

«IntrinsicContext> -+longitude : Real
hasBateryPower | patienyPower +altitude : Real
1 1 +value : Real
«Entity»
IntangibleEntity

. «IntrinsicContext»
hasBandwidth Bandwidth

Network

1 1 +value : Real

Collections in ECA-DL are represented with a star (*) character. For
example, the expression Person.” is used to refer to all instances of class
Person. Manipulating collections is supported by means of the ECA-DL’s
Select clause, which is discussed in section 7.2.4.

Events

An event represents some happening of interest, which occurs at a specific
time [76]. In our approach, an event typically represents changes in the
context. Three types of events are supported by our context handling
platform, namely situation events, primitive events and temporal events.

Situation events

Situation events are defined in terms of situation transitions, which have been
discussed in Chapter 6. Two situation transitions are currently supported,
namely EnterTrue, and EnterFalse. EnterTrue (S;) represents when situation S,
starts to hold, and EnterFalse (S,) represents when situation S, ceases to hold.
Context manager components define interfaces at which it is possible to
subscribe to particular transitions in situation state (see section 5.6.2). For
example, it is possible to subscribe to a context manager to receive event
notifications when a particular situation starts to hold (EnterTrue), or when
a particular situation ceases to holds (EnterFalse).

Figure 7-6 depicts a simple example of situation specification, namely
SituationFever, which defines that a person’s temperature is above 38 degrees
Celsius. If we would like to refer to the event in which John starts to have
fever, we would define the following in ECA-DL: EnterTrue (SituationFever
(Entity.John))*. Similarly, if we would like to refer to the event that occurs
when John no longer has fever we would have the following expression in
ECA-DL.: EnterFalse (SituationFever (Entity.John)).

* We often use in our examples the person’s name as the person’s unique identifier to
improve readability of the examples. Although this is not a problem in our examples, in real
applications, proper unique identifiers should be considered.

Figure
SituationFever
specification

Figure
SituationWithinRange
example

7-6

7-7

ECA-DL 165

{ Context SituationFever inv;
temp = person.hasTemperature AND
person.hasTemperature.value > 38}

person
0

A y

1

«IntrinsicSituation»
SituationFever !
oA hasTemperature
N t «IntrinsicContext»
emp
Temperature

1 +value : Real

In general, in order to verify whether a specific entity is currently in a
particular situation, we provide the entity’s unique identifier as a parameter,
such as SituationType (EntityType.entityld). If the situation specification involves
more than one entity, these entities can be provided as complimentary
parameters. Parameters serve as ﬁltering expressions to refer to situations
that are more specialized than the original situation specification. For
example, SituationType (EntityType.entityld) is more specialized than SituationType (),
and SituationType (EntityType.entityld, EntityType.entityld2) is more specialized than
SituationType (EntityType.entityld). Figure 7-7 depicts a situation specification
example, in which the location coordinates between two special entities are
compared in order to check whether these entities are within 100 meters
distance from each other.

{Context SituationWithinRange inv:
entityA.hasGeoLocation = locationA AND
entityB.hasGeolLocation = locationB AND
locationA.coordinates->distance(locationA.coordinates,
locationB.coordinates) < 100}

u «FormalRelationSituation»
SituationWithinRange

*

1 1 1 1

entityA | entityB locationA |locationB
«Entity> | hasGeoLocation [<InirinsicContext-
SpatialEntity GeoLocation
1 1
1 +coordinates
«datatype»
GeoLocationCoordinates
+latitude : Real

-+longitude : Real

-altitude : Real

+nearness(in entityl : GeoLocationCoordinates, in entity2 : GeoLocationCoordinates) : Boolean
-+distance(in entity? : GeoLocationCoordinates, in entity2 : GeoLocationCoordinates) : Real

The ECA-DL expression SituationWithinRange() refers to all instances of this
situation regardless the spatial entities which are within range. Differently,

166

CHAPTER 7 CONTROLLING SERVICES

the expression SituationWithinRange(Person.John) regards all instances of this
situation in which John is involved, independently of the second entity that
is within 100 meters from John. Expression SituationWithinRange(Person.John,
Device.PDA) regards the situation in which John is within 100 meters from his
PDA. When subscribing to notifications of less specialized situation events,
such as, for example, EnterTrue (SituationWithinRange ())), potentially many event
notifications are generated, each event notification reporting a pair of
entities that gets within 100 meters from each other. The number of event
notification potentially decreases when subscribing for more specialized
situations. For example, subscribing to EnterTrue (SituationWithinRange(Person.John,
Device.PDA)) generates event notifications only when John and his PDA get
closer than 100 meters.

The situation SituationWithinRange specifies a symmetric relation between two
spatial entities, i.e. the order of the entities participating in this situation is
irrelevant. For example, John being close to his PDA means the same as
John’s PDA being close to John. Other situations may specify asymmetric
relations between entities, such as the situation SituationContained (container,
contained), which specifies a containment relationship between two entities,
the container and the contained entity. In such situations, the filtering
expressions must respect the ordering of the attributes, since
SituationContained ~ (Person.John, Building.HouseJohn) is not the same as
SituationContained (Building.HouseJohn, Person.John). The order of the parameters of
a situation specification is defined respecting the order to the attributes in
the respective situation measurement datatype, which is part of the
situation information models. We have already discussed these issues in
Chapter 5.

With respect to the filtering expressions, the parameters that are not
intended to be matched are left blank. For example, if we would like to
know when anyone enter John’s house, we would use the filtering
expression EnterTrue (SituationContained (Building.HouseJohn,)). Similarly, if we
would like to know when John leaves any container entity, we would use the
filtering expression EnterFalse (SituationContained (,Person.John)).

Primitive events

Primitive events are the events that cannot be detected by means of situations.
As opposed to situation events, primitive events are generated by
components that do not necessarily implement our situation detection
mechanism. An example of primitive event could be IncomeCall (entityFrom,
entityTo), which represents the moment there is an incoming call from entity
entityFrom to entity entityTo. As discussed in Chapter 5, primitive events are
defined as datatypes in the context information modelling phase, and the
possible parameters of a primitive event are defined as attributes of the

Figure 7-8 IncomeCall
primitive event datatype
specification

ECA-DL 167

primitive event datatype. Figure 7-8 depicts the specification of the IncomeCall
primitive event.

«datatype»
IncomeCall
+entityFrom : String

+entityTo : String

Filtering primitive events is similar to filtering situation events. For
example, expression IncomeCall (,Person.John), regards all IncomeCall event
notifications in which John is the callee. Similarly, expression IncomeCall
(Person.John,) regards all IncomeCall event notifications in which John is the
caller. Finally, the expression IncomeCall (Person.Mary, Person.John) regards all the
IncomeCall event notification in which Mary is the caller and John is the
callee.

Temporal events

Temporal events regard the events that are generated from time to time, at
some specific frequency. These types of events aim at notifying that a
certain period of time has passed. For example, an application would like to
receive an event notification every 30 minutes. The happing of interest
being notified in this example is that, since the last notification, 30 minutes
have passed. An example of ECA-DL expression that refers to temporal
events is OnEvery(t), which specifies that there is a temporal event generated
every t milliseconds. Temporal events can be generated and handled within
the controller component, with no need to perform event subscriptions on
external components.

Event composition
Context-aware applications often require the specification of behaviours
that refer to complex event compositions, rather than simple events. For
example, a particular piece of application behaviour may require the
specification of the event “John enters the room and at most 5 minutes
later he leaves the room”, or “John approaches Mary, they stay nearby each
other for at most 20 minutes, and no one else approaches John when John
and Mary stay nearby”. In order to support such types of event
compositions, we have considered the approach implemented by the event
distribution framework presented in [76].

In our approach, event composition expressions can combine primitive
and situation events using the event operators depicted in Table 7-3. The
result of an event composition is called a composite event.

168

Table 7-3 Event
composition operators

CHAPTER 7 CONTROLLING SERVICES

Operator Composite event
e1&e2 Occurs when both e1 and e2 occur irrespective of their order

{e1:e2} 1e3 Occurs when e1 occurs followed by e2 and e3 does not occur between them

el|e2 Occurs when el or e2 occurs
el;e2 Occurs when e1 occurs before €2
As an example, consider the operator “;” to specify the behaviour “John

enters the room and at most five minutes later he leaves the room”. The
event composition specification would be as follows:

EnterTrue (SituationContained (Room.3040, Person.John)) ; EnterFalse (SituationContained
(Room.3040, Person.John))

Still, this specification does not express the correct behaviour, which says
that John should leave the room at most 5 minutes after he enters. This is
because the operators shown in Table 7-3 alone do not provide means to
specify particular temporal constrains besides precedence. It is often
necessary to specify particular temporal aspects of application’s behaviours.
In order to (partially) overcome this, we define the occurrence interval of a
composite event. An occurrence interval represents the time period during
which the composite event is being detected, since composite events are
detected in terms of more elementary events (primitive or situation events).
An elementary event occurs at a specific time, which is called the occurrence
time.

The first elementary event of an event composition, which starts the
occurrence interval at time t,, is called the initiator. The last one, which
causes the composite event to occur at time t,, is called the terminator. We

define that the actual occurrence time of the composite event is t,, i.e. the

-
terminator’s occurrence time.

Another aspect of event composition is that elementary event
notifications cannot be considered indefinitely for detecting a particular
composite event. Suppose we would like to detect the event “John enters
the room and at most 15 minutes later he turns his computer on”.
Consider that before turning his computer on, John has entered the room 3
times in the past hour, more precisely, at 15:05 hrs, 15:10 hrs, and at
15:13 hrs, respectively. When John finally turns his computer on at 15:15
hrs (terminator), the composite event should be detected, and the initiator
event should have occurred at most 15 minutes before the terminator. In
this example, the past three times John has entered the room have occurred
at most 15 minutes before he turned his computer on. We define in our
approach that the oldest occurrence of a particular event should be
considered as the initiator. Therefore, the notification generated at 15:05

Figure 7-9 composite
gvent detection

ECA-DL 169

hrs when John has entered the room, is considered the initiator of this
particular event composition.

Suppose now that John turns his computer on again at 15:18 hrs, which
should generate another composite event. Again, three possible occurrences
are within the occurrence interval. In order to avoid that the same
elementary event occurrence is considered in different event composition
detections, we define that particular elementary event notifications should
be considered only once in the composition. Therefore, we should not
consider the 15:05 hrs occurrence again, since it has been already
considered for composition. Since event notifications are considered only
once per event composition detection, we say that the event is consumed by
the composition detection.

Since an ECA rule is responsible for detecting composite events, an ECA
rule is said to consume primitive events in order to detect the occurrence of a
composite event. For example, consider the composite event e3: (el&e2),
which should be defined in the scope of an ECA rule R1. Consider that the
following sequence of event notifications would be received by the
controller component: el, el, e2, el, e2. The composite event e3 is
detected twice, as depicted in Figure 7-9. The first time event e3 is detected
(timeline (b)), both events el and e2 are consumed by R1, i.e. they are not
considered again for detection of e3. In the second time e3 is detected
(timeline (c)), the oldest occurrence of el and €2 are consumed by R1,
and, therefore, not considered again for event composition detection.

event
e1L e1l, e, notifications
time (a)
8| e ewl g,
... ﬁme (b)
61\1/ eS
time (c)

Suppose now that before turning his computer on, John has entered the
room 3 times in the past hour, more precisely, at 15:00 hrs, 15:40 hrs, and
at 15:45 hrs, respectively. When John finally turns his computer on at
15:48, the composite event should be detected, and the initiator event
should have occurred at most 15 minutes before the terminator. Therefore,
the event notification generated when John entered the room at 15:00 hrs
should be discarded, since it occurred 48 minutes before he turned on this
computer, falling outside the maximum period of time determined by the
application behaviour. In order to cope with elimination of events that fall

170

Figure ~ 7-10 Small
detection window
interval in a composite

gvent detection

Figure 7-11 Larger
detection window
interval in a composite

gvent detection

7.2.4

CHAPTER 7 CONTROLLING SERVICES

outside a particular period of time, we defined the detection window interval
concept.

We say that a particular composite event is detected inside a detection
window interval, which defines the maximum occurrence interval for an event
composition. This means that the time between the terminator and the
initiator events should be never greater than the detection window interval.
Event occurrences outside the detection window are not considered for the
composite event detection. Since different application behaviours require
different detection window interval values, a particular detection window
interval is defined per ECA rule, at rule subscription time. A default value is
set by the controller component if no value is provided by the application
developer. Figure 7-10 depicts the detection of composite event e3,
considering a detection window interval dw. When the notification of event
e2 is received, e3 is detected because of the second occurrence of el and
not the first occurrence. Since the first occurrence of el falls outside the
detection window interval, it is not considered for the detection of e3.

dw

event
;&@ e L e, notifications
esl e1l ezl time (a)
time (b)

Figure 7-11 depicts an example of a slightly larger detection window
interval. Since the detection window now is larger than before, the first
occurrence of el is considered for detecting e3. However, in timeline (b),
the second occurrence of el is discarded, since it falls out of the detection
window. In this case, event 3 is detected with the third occurrence of el.

— event
e1L e1l, ezL notifications
[— time (a)
% eS eW\l/ e?
€3
time (c)

Syntax and Semantics

In the following sections we introduce the ECA-DL’s concrete syntax and
semantics. For each of the supported clauses, we present (i) the behaviour
intended with this clause (semantics); and (ii) how the clause can be used

Figure 7-12 Fragment of
metamodel

ECA-DL
focusing
elements

on

top

ECA-DL 171

(syntax). In addition, we present the ECA-DL’s metamodel, which
graphically represents the elements of ECA-DL, and shows how these
elements relate to each other.

Upon-When-Action clauses

We have presented in section 7.2.1 the requirements for the ECA-DL
regarding the need to represent events, conditions and actions in a rule.
These requirements resulted in the ECA-DL clauses Upon, When and Do,
respectively. Events are defined in the Upon clause, while conditions are
specified in the When clause and, finally, actions are specified in the Do
clause. The When clause may be omitted if there are no conditions to be
specified. This way, an ECA-DL rule has the following main structure:

Upon <uponExpression>
When <conditionExpression>
Do <actionExpression>

In the specification shown here, each of the ECA-DL rule parts are
indicated in the syntax on a separate line by tokens (a “primitive block of
structured text”, usually a single word) and their arguments. Syntax is
denoted here using a different font; non-literal tokens are placed between
angled brackets. Figure 7-12 depicts a UML diagram which represents a
fragment of the ECA-DL metamodel.

ECA-DL Rule

1 0.1 1
| Upon | | When | Do

An <uponExpression> can be (a combination of) situation events and primitive

events, or it can be a temporal event, which is used individually. These
events have been discussed in section 7.2.3. The occurrence of the
(composite) event specified in the Upon clause triggers the evaluation of
the When clause. Events can be combined using the operators depicted in
Table 7-3. In addition, it is possible to assign variables to specific events, so
that meta-information about these events, such as the event occurrence
time and parameters, can be evaluated in other parts of the rule.

Figure 7-13 depicts a fragment of the ECA-DL metamodel focusing on
the possible elements of an Upon clause, which are Event, TernaryCompositeEvent
and BinaryCompositeEvent. An Event can be a situation event, a primitive event
or a temporal event. A situation event (SituationEvent) is composed of a
transition (EnterTrue or EnterFalse), a situation type, and possibly parameters,
which are always entities. A primitive event (PrimitiveEvent) is composed of an

172

Figure 7-13 Fragment of
ECA-DL metamodel

focusing on
UponExpression

the

CHAPTER 7 CONTROLLING SERVICES

event description and possibly parameters, which can be entities, context
values, attribute values, literals and function invocations. Details about these
types are discussed in the next paragraphs. A temporal event (TemporalEvent)
is currently supported by the function OnEvery (t), as explained in the section
7.2.3. Figure 7-18 depicts the ECA-DL’s complete metamodel.

The BinaryCompositeEvent type consists of a composite event, in which the
composition is specified in terms of the binary operators &, | and ;. The
TernaryCompositeEvent type consists of a composite event, in which the
composition is specified in terms of the ternary operator {;}!.

+operandB Upon
+operandA +operandB
+operandC

+operandA

TernaryCompositeEvent BinaryCompositeEvent
/\

| PrimitiveEvent | | SituationEvent | | TemporalEvent |

A < actionExpression > consists of a list of function invocations. A function is a

type of Term, which is explained in the following paragraphs.

A <conditionExpression> is a Boolean expression that can be composed of
other Boolean expressions (recursively) by means of binary and unary
Boolean operators. The binary operators (and, or) are composed of two
operands, namely operandA and operandB. The unary operator not is composed
of one operand, namely operand. The inner most occurrences of these
operands are also Boolean expressions, which can be:

— Navigation expressions (section 7.2.2) that refer to a Boolean attribute.
For example, the navigation expression Person.John.hasMsnStatus.value refers
to a Boolean value;

— A function invocation, in which the return of the function is a Boolean
value. Function invocations are explained in the next section;

- A binary comparison expression using the comparison operators >
(greater than), < (less greater than), = (equal), <> (different). Each
operand of these types of binary expressions should be resolved to a
numeric or a string value. An example of comparison between
navigation expressions is Person.John.age > Person.Alice.age, and between a
navigation expression and a literal is Person.John.age>40;

Figure 7-14 depicts a fragment of the ECA-DL metamodel focusing on the

possible elements of a When clause.

Figure 7-14 Fragment of
ECA-DL metamodel
focusing on possible
elements of a When
clause

Figure 7-16 Fragment of
the ECA-DL metamodel
focusing on a Term

ECA-DL 173

ECA-DL Rule

1

1 When +operandB
+operand
+operandA
1
1 A 1 1 1 1
| Variable |—| Select || Term ||UnaryCompositeCondition||BinaryCompositeCondition|

A When clause can be one of the following elements:

- A unary composite condition (represented by class
UnaryCompositeCondition), which is composed of the Boolean operator not
followed by its unique operand (not <expression>). This <expression> is
represented in the model by an association end operand between classes
UnaryCompositeCOndition and When. An operand can be any of the When
elements;

- A binary composite condition (represented by class
BinaryCompositeCondition), which may be composed of one of the following
operators (and, or, >, <, =, <>), and its two operands. These operands
may be again any When element, and are represented by the association
ends operandA and operandB between classes BinaryCompositeCondition and
When;

— A Select (represented by class Select), which allows selecting a collection
of entities respecting a particular filtering expression. A select
expression is defined in detail in the following sections;

— A Term (represented by class Term), which can be a context situation
(ContextSituation), an entity argument (EntityArgument), an entity’s context
value (EntityContext), a collection of entities (Entities), an entity’s attribute
value (EntityAttribute), an event parameter (EventParameter), a literal (Literal) or
a function (Function). Figure 7-15 depicts a fragment of the ECA-DL
metamodel focusing on Term.

Term

/\

EntityContext
EntityArgument |—| EntityAttribute | Function

Context Situation

* 4 params
0.* EventParameter
e
ReferenceVariabIe| | Entity | | EntityCollection | | Literal |

An entity argument (EntityArgument class) is an element that refers to a specitic
entity, by means of an explicit entity (Entity class) or by means of a reference

174

CHAPTER 7 CONTROLLING SERVICES

variable (ReferenceVariable class). An explicit entity refers to the element with
the format EntityType.entityid, for example, Person.id1, where idl is a unique
identifier for that particular person. A reference variable entity uses a
variable to refer to an entity. For example, the expression variable.attribute uses
the reference variable variable to refer to a particular entity. Variables are
defined with Scope and Select clauses, which are discussed in the next
sections.

A context situation (ContextSituation) may be associated with a set of entity
argument parameters, which are represented by association end param
between classes ContextSituation and EntityArgument. Examples of situation
context expressions are SituationContained (Person.id1), SituationContained (variable,
Person.id1), and SituationWithinRange (variable1, variable2).

An entity’s context (EntityContext) refers to a context information value
associated with an entity. Therefore, an entity’s context expression is
composed of an entity argument expression, and a sequence of possible
association attributes, such as EntityType.entityid.[ContextType.attribute], in which
expressions of type [ContextType.attribute] can be repeated, if the context model
allows that. For example, considering the context model depicted in Figure
7-5, the following EntityContext expression is valid:
Person.id1.hasGeoLocation.coordinates.latitude. Similarly, a variable may substitute
the expression EntityType.entityid, for example, and the expression
variable.hasGeoLocation.coordinates. latitude is also valid.

An entity’s attribute (EntityAttribute) refers to an attribute associated with
that particular entity, such as, for example, the age and address of a person.
An entity’s attribute expression is composed of an entity argument
expression, and one possible attribute, such as EntityType.entityid.attribute. For
example, the following expressions are valid: Person.id1.age, Person.id1.height,
variable.age.

A collection of entities (EntityCollection) refers to a collection of entities of
a particular type. An collection of entities expression follows the format
EntityType.*. An example of expression that refers to the collection of all
persons is Person.”.

An event parameter (EventParameter) refers to a specific parameter of an
event that has been specified in the Upon clause, for which a variable is
assigned. For example, suppose we define in the Upon clause the filtering
event expression E2:IncomeCall(Person.id1,). In the When clause, we can refer to
the parameters of that particular event notification, such as E2.entityTo, which
refers to the callee of that particular incoming call. In general, an event
parameter expression has the format eventVariable.eventParameter.

A function (Function) refers to a function invocation, which can accept a
list of arguments. For example, the expression SendSms (Person.id1), refers to
the invocation of function SendSms, passing entity Person.id1 as argument.

ECA-DL 175

Functions

Often ECA-DL expressions refer to functions, which represent invocations to

operation either defined internally or externally to the platform. Three

types of functions are supported in ECA-DL:

— Auxiliary functions refer to the operations which are used as helper
functions, such as, for example, the function count (collection), which
returns the number of elements of a collection. Auxiliary functions are
defined and resolved within the controller component;

— Formal relation functions refer to the formal relation operations defined in
the datatypes of our context and situation models (see Figure 7-7).
Examples of formal relations functions are distance and nearness;

— Action functions consist of invocations to both internal and external
services (with respect to the platform). Typically an action consists of
external service invocations, such as a request for an SMS delivery
(sendSMS (Person.John)) or starting a telephone call between two persons
(TelephoneCall (Person.John, Person.Mary)).

Select clause

The Select clause allows filtering collections respecting particular
conditions. With the select clause we can retrieve a subset of a collection
respecting a variety of constraints. For example, it may be necessary to
select all persons that are in a house, or we would like to select all devices
that are currently being used, or even all the patients of a clinic who have
diabetes. The Select clause syntax is as follows:

Select (<collection-of-entities>; <var>; <filtering-expression-involving-var>)

The <collection-of-entities> expression contains the original collection, for
example, Person.”, which refers to all instances of class Person; the <var>
expression aims at naming each element of this collection with a string
literal; and the <filtering-expression-involving-var> defines a condition involving
<var> which should hold for all elements of the resulting collection.

As an example of select clause, consider the expression Select (Person.”, p,
p.age>40), which returns a collection with all the persons whose age is above
40 years old. Another example is (Person.”, p, SituationWithinRange (p)), which
returns all the persons currently in SituationWithinRange.

Select clauses may be nested. The <collection-of-entities> expression may
be the result of a select evaluation. Variables defined in one occurrence of
the select clause cannot be used in another occurrence. Nesting select
clauses has a similar effect of including extra constraints in the filtering
expression. The following expression exemplifies nesting of select clauses:
Select (Select (Person.*, p1, p1.age>40), p2, SituationWithinRange (p2)), which selects all
persons above 40, and who are currently in SituationWithinRange situation.

176

CHAPTER 7 CONTROLLING SERVICES

Scope clause

ECA rules can be either parameterized or not. Parameterization is necessary
when the rule should be applied to a collection of entities. It would be
cumbersome to write a rule for each target entity. Instead we define a
scope, which specifies a collection of entities for which a single ECA rule
should be applied. For example, a medical clinic would like to apply a
general rule (notify when sugar levels go above 110) to all patients suffering
from diabetes. Parameterization allows the specification of a single rule to
be executed for all the diabetic patients. We have introduced the Scope
clause to define rule parameterization, and its syntax is:

Scope (<collection-of-entities>; var)
{ Upon < eventExpression >

When <conditionExpression>

Do <actionExpression>

}

The <collection-of-entities> expression defines the collection of entities for
which the following ECA-DL rule should be applied. This collection of
entities may be the result of a filtering expression using the Select clause.
The variable var is a reference to each element in <collection-of-entities>.

For example, the following scope clause defines that for each person (p),
who is currently located in his/her own house (SituationContained (person,
person.house)), the rule that follows should be applied. This rule defines that
upon the entrance of any person in the house (EnterTrue (SituationContained (
p.house))), person p should be notified with a message (Notify (p, “there is
someone entering the house”)).

Scope (Select (Person.™, person, SituationContained (person, person.house)), p))
{

Upon EnterTrue (SituationContained (p.house))

Do Notify (p, “there is someone entering the house”)

}

Figure 7-17 depicts a fragment of the ECA-DL metamodel focusing on the
When and Do clauses. We have included in this figure the scope and select
clauses. A scope clause defines a variable, and refers to a collection of
entities, which can be of type EntityCollection, or a Select. A Select clause refers
to a collection of entities (of type Entities), and defines a variable
representing each element of this collection. In addition, a select clause is
associated to either a UnaryCompositeCondition or a BinaryCompositeCondition, which
aims at defining conditions to filter a particular collection.

Figure 7-17 Fragment of
the ECA-DL metamodel
focusing on When and
Do elements

ECA-DL 177

Scope ECA-DL Rule
0.1 1
1 1
1 When -+operandB Do
+operand
1 +operandA
1
1 1 AN 1 1 1 '
1 \ \ \ -
—| Variabe |— Select | [Tern | [UnaryCompositeCondition] [BinaryCompositeCondition|

1 *

T 1.
EntityContext

EntityArgument|—— EntityAtribute | | | [Literal |

EntityCollection

ContextSituation

"4 params
0%

L {ReferenceVariable| | Entiy |
1

Lifetime

In ECA-DL, an additional statement can be used to indicate the lifetime of

the rule. The following lifetime statements are supported:

— always activates the rule and keeps it active. This is the default;

— once activates the rule and deactivates the rule after it has been executed
once;

— <n> times activates the rule and deactivates it after it has been executed
<n> times;

— from <start> to <end> activates the rule at <start> and deactivates it at
<end>. <start> and <end> are moments in time, such as, e.g., “May Ist,
20077,

— to <end> activates the rule, and deactivates the rule at <end>;

— frequency <n> times per <period> activates the rule, and keep it active as
long as it has been executed fewer than <n> during <period>. It
deactivates the rule and keeps it inactive as long as it has been executed
<n> times during <period>.

For example, the following ECA rule notifies Mary that John has entered

her house. Since the lifetime is once, the rule is executed only once and

deactivated.

Upon EnterTrue (SituationContained (Person.John, Person.Mary.house))
Do Notify (Person.Mary, “Mary, John has entered the house”)
once

ECA-DL Metamodel

Figure 7-18 depicts the complete metamodel of the ECA-DL language.
Figure 7-18 shows the associations among Upon and When elements.
Primitive events may have arguments, and each of these arguments is a
Term. These arguments are represented by the association between

178
Figure 7-18 ECA-DL
metamodel
Table 7-4 ECA-DL
clauses

7.2.5

CHAPTER 7 CONTROLLING SERVICES

PrimitiveEvent and Term classes. A situation event consists of an event transition
(EnterTrue or EnterFalse) and a context situation. This relation is represented by
the association between SituationEvent and ContextSituation classes.

Scope ECA-DL Rule Lifetime
%‘ ~+operand 1
Upon +operandB
< +operandC 1 When | foperandB Do
+operandA +operand
—+0peran
+operand
i AN | pay N | .
[[| -
[BinaryC fteEvent| [TemaryCompositeEvent r{ SelectExp [UnaryGompositeCondition] [BinaryC ondition]

1

‘ Function
. ContextSituation }—‘ EntityContext S
_Literal

1
[EntityArgument |——{ EntityAttribute
7N

EntityCollection

[Variable

[]
[Re}erenceVariabIe][Enty |

Table A-4 summarizes the main clauses of ECA-DL.

ECA-DL clause Syntax
Upon-When-Do Allows specification of an action (Do) which is triggered upon the occurrence
of an event (Upon) respecting general conditions defined in the When clause.
Syntax:
Upon < eventExpression >
When <conditionExpression>
Do <actionExpression>

Select Allows the selection from a collection using filtering expressions (logical
expressions). Syntax:
Select (<collection-of-entities>; <var>; <filtering-expression-
involving-var>)
Scope Allows parameterization of ECA rules. Syntax:

Scope (< collection-of-entities>; var)
{ Upon < eventExpression >

When <conditionExpression>

Do <actionExpression>

}

ECA rule execution

There may be various execution alternatives for realizing ECA-DL rules in a
rule engine, respecting the semantics of the language as discussed in

Figure 7-19 ECA rule
execution cycle for the
lifetime always

ECA-DL 179

previous chapters. For example, we may check the conditions before
expecting events, or the other way around. Here we discuss a possible
execution alternative, which is used in our realization approach.

In general, the execution cycle of an ECA rule consists of detecting
events, checking conditions and invoking actions. Upon the activation of an
ECA rule within the controller component, the rule engine starts to
continuously detect whether the events defined in the Upon clause have
occurred or not. Figure 7-19 depicts the execution cycle for the lifetime
always, which is the default value. Continuously detecting events take place
in the DetectEvent state. When the (combination of) events occur, the engine
checks whether the condition defined in the When clause is either true or
false. Checking the condition takes place in the CheckCondition state. If the
condition is evaluated to true, the actions are invoked, which takes place in
InvokeActions state. Regardless of whether conditions are evaluated to true or
false, after leaving the state CheckCondition, the rule engine starts detecting
events again. This cycle continues until the ECA rule is removed from the
controller component.

Continuously detects the events
defined in the Upon clause

[events in the upon
clause have occurred]

.%@Evem

[condition in the when

clause is true |
InvokeActions

CheckCondition

Figure 7-20 depicts the execution cycle of an ECA-DL rule for the lifetime

frequency <n> times per <period>. In this case, it is necessary to keep

information about the n-th past action execution. If the n-th execution
time is outside <period>, there is still room for another action execution
within <period>. Therefore, the action is executed, and information about
this execution, such as execution time, is stored. If the n-th execution time
is inside <period>, n executions have already occurred within <period>.
Therefore, the action should not be invoked. The execution cycle of an
ECA rule for the other possible lifetime constrains are discussed in

Appendix B.

180

Figure 7-20 ECA rule
execution cycle for the
lifetime frequency <n>
times per <period>

7.2.6

CHAPTER 7 CONTROLLING SERVICES

Checks whether the time of the n-th past execution is outside the <period>
Continuously detects the events If s0, save data of the current execution (e.g., execution time) and invoke the action
defined in the Upon clause If no, the action cannot be executed
[events in the upon [condition in the whe
SaveExecutionData InvokeActions

clause have occurred] clause is true |

H De1eclEvemsH{)heckCondiuon

Examples of ECA-DL rules

Below we give some examples to illustrate the use of the ECA-DL in
different application domains. The following ECA-DL rule specifies that
whenever there is an epileptic alarm event for user John, and he is currently
driving, he should receive a warning SMS.

Upon EpilepticAlarm (Patient.John)
When SituationDriving (Patient.John)
Do SendSms (Patient.John, “John, you may have an epileptic seizure, please stop the car”)

The following ECA-DL applies a scope clause to constrain the epileptic
alarm rule for the patients currently located in Enschede.

Scope (select (Patient.™; patient; patient.type = “epileptic” and patient.hasCivilLocation.city
= “Enschede”) ; p)

{

Upon EpilepticAlarm (p)

When SituationDriving (p)

Do SendSms (p, “You may have an epileptic seizure, please stop the car”)
}

The following ECA-DL rule sends a warning to diabetic persons in case of a
high sugar level alarm.

Scope (select (Patient.™; patient; patient.type = “diabetic”) ; p)
{

Upon HighSugarAlarm (p)

Do SendSms (p, “You have high sugar levels”)

The following ECA-DL rule applies a scope clause to constrain the persons
entering a cinema (Cinestar) in Enschede, so that each person receives an
SMS with an advertisement.

7.3

REALIZATION OF ECA-DL RULES IN JESS 181

Scope (Select (Person.*; person; person.hasCivilLocation.city = “Enschede”); p)
{

Upon EnterTrue (SituationContained (p, Building.Cinestart))

Do SendSms (p, “Welcome to Cinestar, we have special deals today!”)

}

The following ECA-DL rule allows policemen working in the field to see
his/her colleagues that are within 100 meters from each other. It uses a
temporal event that allows the rule to be executed every 5 seconds. The
auxiliary function List returns a collection in which the head is one
policemen, and the rest of the collection contains the other policemen that
are within 100 meters from the first. SituationWithinRange is used to verity
whether the policemen are within 100 meters from one another.

Scope (Select (Policeman.”; policeman; policemen.hasActivity.value = ‘working’; p1)
{ Upon OnEvery (5)
Do NotifyApp (application-address,
List (p1.id, select (policeman.*, p2; SituationWithinRange (p1, p2) and
p2.hasActivity.value = ‘working’)))

The following ECA-DL rule sends a warning to John when he leaves the
house and forgets the lunch box inside the house.

Upon EnterFalse (SituationContained (Person.John, Building.HouseJohn))
When SituationContained (LunchBox.id, Building.HouseJohn)
Do SendSms (Person.John, “John, you forgot your lunchbox!”)

Realization of ECA-DL Rules in Jess

There may be various realization alternatives for implementing ECA-DL.
We have attempted to implement an ECA-DL compiler [33], which did not
succeed in providing us with the required levels of performance and
scalability. In order to cope with these aspects, we have decided to use a
mature rule-based technology available off-the-shelf to realize ECA-DL.

As discussed in Chapter 6, we have chosen Jess [42] for realizing our
rule-based situation approach. Similarly, we also use Jess to realize ECA-DL
rules. ECA-DL is a domain specific language, i.e. it has been designed with
the purpose of defining context-aware reactive behaviours. The Jess
language, on the contrary, is a general purpose language, suitable for a
diversity of domains. For this reason, writing context-aware behaviours in
ECA-DL requires less programming effort than in the Jess language. It is
often the case that realizing a single ECA-DL rule in Jess requires several

182

7.3.1

CHAPTER 7 CONTROLLING SERVICES

Jess rules. Since ECA-DL rules are not directly supported by Jess, we
discuss possible mapping alternatives from ECA-DL constructs and
expressions to Jess constructs and expressions. In Chapter 6 we have
discussed the details of the Jess architecture and the Jess language.

In addition, we assume for the mapping that the working memory in the
controller’s engine contains the necessary information to execute the rules
at any moment in time. The content of the working memory is acquired
from context sources, context managers, and local sources. Information
from context sources and managers is typically remotely acquired by, for
example, subscribing to information provided by these components. Local
information is provided to the controller by the platform developer (at
platform design time) or the platform provider (at platform runtime).

We also assume that our context and situation models, which are
necessary to understand ECA-DL rules, have been implemented in the Java
language, as we have discussed in section 5.4. Similar to the situation
realization approach discussed in Chapter 6, the controller also uses the
shadow fact mechanism to integrate the model Java implementation with
the working memory. In this way, modifications to the Java objects are
automatically synchronized with the working memory.

General mappings

The general structure of a Jess rule has the form if <conditions> then
<actions>. For the rule to be applicable, i.e. to invoke the actions, or to
derive the conclusions, the conditions should be true. An essential
difference between ECA-DL and Jess is that events are not directly
supported by Jess. In ECA-DL, the event part (upon clause) describes when
the rule should be executed and contains event expressions (section 7.2.3).
In addition, a possible condition part (when clause) specifies additional
constraints that should hold before the actions are invoked. Therefore, the
Upon clause of an ECA-DL rule cannot be simply mapped to a Jess
condition.

The general mapping mechanism we use is the following: for each ECA-
DL rule, at least two Jess rules are generated, namely one that consumes the
event in case the condition is false, and the other that consumes the event
and invokes the action in case the condition is true. Creating two rules is
necessary in order to correctly realize the semantics of ECA-DL, which
allows actions to be invoked only when the event occurs, and
simultaneously the condition is true. Suppose we would like to specify the

I3

behaviour “when John enters the room, and his computer is on”. The
action should only be invoked when at the time John enters the room
(Upon clause), his computer is on (When clause). When John enters the

room, and the computer is off (false condition), the action should not be

Table 7-5 Jess rules
generated from a single

ECA-DL rule

7.3.2

REALIZATION OF ECA-DL RULES IN JESS 183

triggered. Analogously, when John enters the room, the computer is off,
and minutes later he turns his computer on, the action should still not be
invoked, since at the time the event occurred, the condition was false.

Event consumption is realized with the retract Jess operation, which
deletes a particular fact from the working memory. For example, Table 7-5
depicts the Jess rules generated from a simple ECA-DL rule. Jess rule 1
checks whether the event occurred, and the condition is false. If this is the
case, the event is consumed by retracting if from the Jess working memory.
Jess rule 2 checks whether the event has occurred and the condition is true.
If this is the case, the event is consumed and the action is invoked. For
ECA-DL rules with no when clause, only one Jess rule is generated, namely
Jess rule 2, excluding the (condition) expression. In Appendix C we present
some examples of Jess rules which are generated from ECA-DL rules.

ECA-DL rule Jess rule 1 Jess rule 2
Upon event (event) (event)
When condition (not condition) (condition)
Do action => =>
retract (event) retract (event)
(action)

Upon clause

The realization of the Upon clause in Jess refers to the realization of event
compositions. In the following sections we elaborate on the activities
necessary to realize the semantics of event compositions, as we have defined
in7.2.3.

Event consumption

In order to implement event consumption, events in the working memory
are always related to particular rules. For example, if two rules r1 and r2
refer to the same event el, we would represent el in the working memory
twice as rlel, and r2el, each serving a particular rule, namely r1 and r2,
respectively. This way, rule rl can consume rlel, without interfering with
rule 2. This mechanism allows rules to consume events without interfering
with each other.

Therefore, for each event notification received by the controller
component, n event facts are asserted in the working memory, n being the
number of rules that refer to this event. The ECA handler and the event
handler components keep track of the rules and events referred by these
rules. When an event notification is received, the event handler includes the
respective event facts in the Jess’s working memory.

184

Figure 7-21 Sequence
diagram that illustrates
gvent subscriptions

CHAPTER 7 CONTROLLING SERVICES

Figure 7-21 depicts an example of sequence of messages exchanged
among application components, context processor components and the
subcomponents of the controller architecture. An application component,
namely applicationl, subscribes an ECA rule with the controller
component, which is received by the ECA handler component. This
component invokes the handleEvents operation of the event handler
component, passing as argument the collection of events that need to be
handled for this particular ECA rule. The event handler component checks
for each event description whether there is already a subscription for that
particular event. If no subscription is found, an event subscription
operation is invoked with the appropriated context processor component
(operation (subscribe (transition, characterization)). The appropriate context
processor component is found based on the discovery mechanism already
explained. Event notification messages are delivered to the event handler
whenever the event of interest occurs (operation notify (event)). Upon
receiving an event notification, the event handler checks which rules refer to
that particular event being notified. The event handler invokes an assert
operation for each pair (rule, event), in each rule that refers to the event.

applicationt ECAHandler EventHandler ContextProcessor RuleEngine

subscribe(ECARule) i :

T

: I
)

: hgnd\eEvents(coIIectiop)
I

1

o) subscribe(event1)
subscribe invocations are performed

i

TS S—
for each event of the collection, : subscribe(event2)
if there is no subscription L

yet for that particular event

! 1 nou‘fy(évenn)

notification messagens are sent

assert(R1Event1)
every time an event of interest occurs !

I

I

I

I

I

:

r T
: assert(R2Event1)

1

: 1
I

I

I

I

I

I

[}

I

notify(event2) :

assert(R1Event2)

Y LYY]

Events have unique identifiers, which are assigned by the event handler
component. Parameterized situation and primitive events are considered as
different events, and therefore, are given different unique identifiers. For
example, situation event EnterTrue (SituationContained (Person.John)) is different
from EnterTrue (SituationContained (Person.John, Building.Zilverling)), which is different
from EnterTrue (SituationContained (Person.Mary)). Therefore, these events are
referred to by using different unique identifiers.

Figure 7-22 Event types
used in the realization
phase

REALIZATION OF ECA-DL RULES IN JESS 185

Event facts

Primitive, situation and temporal events are represented in the Jess working
memory using event structures that reflect the definition of these events as
in the measurement datatypes (Chapter 5). In addition, in order to allow
proper event consumption, we include in this event structure the unique
identifier of the event, the unique identifier of the ECA rule referring to
that particular event, and a timestamp that refers to the time an event is
detected. Figure 7-22 depicts the event types representing some examples of
event structures. Suppose three types of events have been defined as part of
the context and situation information modelling phase (Chapter 5), namely
(EnterTrue and EnterFalse) SituationContainedEvent, (EnterTrue and EnterFalse)
SituationWithinRangeEvent, and IncomeCall. The parameters of these events are
defined as attributes of the classes depicted in Figure 7-22. The
SituationContainedEvent event, for example, in addition to the common
attributes inherited from class Event, defines the attributes transition, containeriD,
containedD. The transition attribute defines whether this is an EnterTrue or an
EnterFalse event. The containerlD and containedID attributes define the parameters
of the event notification, which are the entities involved in this particular
situation transition. These event structures are reflected in the Jess working
memory using shadow facts.

Event

+eventlD : String
+rulelD : Real
-+timestamp : Real

[I \

SituationContainedEvent IncomeCall SituationWithinRangeEvent
+transition : String ++entityFrom : String | |+transition : String
+containerlD : String +entityTo : String +ent!ty1 ID: SU!HQ
+containedID : String +entity2ID : String

Event composition

As discussed in the previous chapter, event facts are represented in the Jess
working memory using the shadow facts mechanism, which creates shadows
of the Java event objects into the working memory. If we look in the Jess
working memory, we would see examples of event facts, such as follows:

(SituationContainedEvent (eventID “ev1”) (rulelD “rule1”) (timestamp 12312)

(transition “EnterTrue”) (containerlD “JohnHouse”) (containedID “John”)
(IncomeCall (eventID “ev2”) (rulelD “rule1”) (timestamp 142125)

(entityFrom “John”) (entityTo “Mary”)

The identifier of an event and the identifier of an event fact are slightly
different, because of the event consumption mechanism we use. We define

186

Table 7-6 Mapping
gvent composition to
Jess

CHAPTER 7 CONTROLLING SERVICES

that an event fact is uniquely identified using values, namely eventlD and
rulelD.

Table 7-6 depicts how the event composition operators can be mapped
to Jess expressions. We use the timestamp slot value to verify the temporal
occurrence of events. For example, the operation ¢1;62 verifies whether el
occurred before e2 by checking their respective timestamp values. The
timestamp value captures the time the event occurs in milliseconds, more
precisely, it represents the number of milliseconds since January 1, 1970,
00:00:00 GMT until the date of the event occurrence.

Event Jess expression
expression
e1&e2 (EventType1 (eventlD “e1”) (rulelD “r1”))
(EventType2 (eventlD “e2”) (rulelD “r17))
{e1;e2} 1e3 (EventTypel (eventlD “e1”) (rulelD “r1”) (timestamp ?t1))
(EventType2 (eventD “e2*) (rulelD “r1*) (timestamp ?t2&:(> 72 ?t1)))
(not (EventType3 (eventID “e3) (rulelD “r1*) (timestamp ?t3&:(and (>?t3 ?t1)
(<713 212)))))
el|e2 (or (EventType1 (eventlD “e1*) (rulelD “r1))

(EventType2 (eventlD “e2*) (rulelD “r1)))
el;e? (EventTypel (eventID “e1*) (rulelD “r1*) (timestamp ?t1))
(EventType2 (eventID “e2) (rulelD “r1) (timestamp ?t2&:(> ?t2 ?t1)))

As we have discussed, events are only considered for detecting composite
events if they occur within the detection window interval. In order to
implement the detection window interval in Jess, we include an extra Jess
rule for each ECA rule in the controller. This extra rule detects and discards
event facts that fall out the detection window interval. In order to do that,
we check whether the timestamp of an event plus the detection window
interval value (also in milliseconds) is greater than the current time. In
order to get the current time value in milliseconds we use the Java System’s
operation currentTimeMillis. In order to guarantee that the detection window
interval rule is executed before the other rules, we give priority to this rule
(salience 2). Considering that the detection window interval value is dw, and
that ECA rule “r1” refers to all the events depicted in Figure 7-22, the
detection window interval rule of “r1” is:

(defrule DetectionWindowECAr1
(declare (salience 2))
?eventfact <-
(or (SituationContainedEvent (rulelD “r1”)
(timestamp ?t&:(> (4 ?t dw) (call System currentTimeMillis))))
(IncomeCall (rulelD “r1")

7.3.3

REALIZATION OF ECA-DL RULES IN JESS 187

(timestamp ?t&:(> (+ ?t dw) (call System currentTimeMillis))))
(SituationWithinRangeEvent (rulelD “r1”)
(timestamp ?t&:(> (+ ?t dw) (call System currentTimeMillis)))))
=>
(retract ?eventfact))

For example, suppose we would like to map the following Upon clause (of
ECA rule rule?) to Jess expressions:

Upon EnterFalse (SituationContained (Person.John, Building.HouseJohn)) ;
EnterFalse (SituationContained (Person.Mary, Building.HouseJohn))

This Upon clause is evaluated to true when John leaves his house, followed by Mary. The interval
between John leaving and Mary leaving should be within the detection window interval. These
events are given unique identifiers by the event handler component.
Suppose the following unique identifiers are assigned as follows:

event: EnterFalse (SituationContained (Building.HouseJohn, Person.John))
event2: EnterFalse (SituationContained (Building.HouseJohn, Person.Mary))

Therefore, the corresponding Jess expression according to Table 7-6 would

be the following:

(SituationContainedEvent (eventID “event1”) (rulelD “rule1”) (containerlD “HouseJohn”)
(containedID “John”) (timestamp ?t1))

(SituationContainedEvent (eventD "event2") (rulelD "rule1") (containerlD “HouseJohn”)
(containedID “Mary”) (timestamp ?t2&:(> 72 ?t1)))

When clause

Mapping a when expression to a Jess expression is similar to mapping an OCL
invariant expression to a Jess expression, which has been extensively
discussed in Chapter 6. According to the ECA-DL metamodel depicted in
Figure 7-18, a when clause can be a binary composite condition, a unary composite
condition, a term or a select. Details for each of these elements are discussed

separately in Appendix C.

Term, binary and unary expressions

Navigating through context and situation models in ECA-DL is similar to
the navigation used in the OCL language, except that we have created some
shortcuts to facilitate the specification of commonly used constraints. For
example, when we would like to refer to a given entity in ECA-DL, e.g.,
entityl, we use the expression EntityiType.entityl, as we have elaborated in

188

CHAPTER 7 CONTROLLING SERVICES

section 7.2.2. This corresponds to the OCL expression
Entity1Type.allnstances()->any (id = “entity1”), which selects all instances of type
Entity1Type, and returns the one whose attribute id is “entityl”. In Jess this
would be defined as (EntityType1 (OBJECT ?object) (id “entity1”)), which is a pattern
that matches the entities of type EntityTypel whose slot id has value “entity1”.
Table 6-2 (Chapter 6) shows examples of mappings from OCL to Jess,
which can also be used as reference for the mapping of navigation between
ECA-DL and Jess. Appendix C provides examples of mappings from ECA-
DL terms to the Jess language.

Logical binary composite conditions (using the and, and or operators),
and unary composite conditions (using the not operator) are mapped to the
Jess pattern matching operators as shown in Appendix A. For example, the
ECA-DL expression operand1 and operand2 maps to expression (operand1)
(operand2) in Jess. Similarly operandl or operand2 in ECA-DL maps to
expression (or (operand1) (operand2)) in Jess. Furthermore, occurrences of and
expressions within or expressions, such as ((operand1 and operand2) or operand3),
are mapped to (or (and (operandi operand2)) (operand3)) in Jess. Other binary
composite conditions using equality or other comparison operators (e.g.,
=, >, <) are mapped as shown in Appendix A. Appendix C depicts some
examples of how binary composite conditions in ECA-DL can be mapped
to binary expressions in Jess.

Select expression

An ECA-DL select expression is mapped to a Jess defquery expression. A
defquery returns a collection of facts in the working memory, which match
a number of conditions. A defquery is declared separately from a rule, and
has the following format:

(defquery <name-defquery>
(declare (<variables>))
(<expressions>))

The run-query command is used to invoke a defquery and to supply values
for the external variables of a query and obtain a list of matches. Consider
the following defquery, which returns a collection of fact Persons whose age
is above a certain value, which is provided as an argument for the query.

(defquery getPersonsAboveAge
(declare (variables ?value))
(Person (age ?age&: (>"7age 7value)))

)

7.3.4

REALIZATION OF ECA-DL RULES IN JESS 189

In order to run this query, the Jess command (run-query getPersonsAboveAge 30)
should be used. In addition, the Jess command count-query-results can be
used to obtain the number of matches of a query. Consider for example the
following ECA-DL select clause.

Select (Policeman.™, p2; SituationWithinRange (p1, p2) or SituationWithinRange (p2, p1))

This select clause returns a collection of policemen that are within range of
policeman p1, which is a variable that has been previously defined (for
example, in a scope clause). In order to generate a defquery from this select
clause, the first argument of the select clause, which is the collection
Policemen.*, is mapped to a pattern match of all facts of that particular
entity type. In addition, we assign the value of the OBJECT slot to the select
variable, which is p2 in the given example. This would be the expression
(Policemen (OBJECT ?p2)) in Jess. Mapping the condition expression (the last
argument of the select clause) to Jess is similar to mapping any ECA-DL
condition expression to a Jess expression. The following defquery
corresponds to the aforementioned select clause:

(defquery getPolicemenWithinRange
(declare (variables ?p1))
(Policemen (OBJECT ?p2))
(or (SituationWithinRange (person1 ?p1) (person2 ?p2))
(SituationWithinRange (person1 ?p2) (person2 7p1))
)

The ECA-DL function count (collection) can be mapped to the count-
query-results Jess command. For example, count(Select (Policeman.”, p2;
SituationWithinRange (p1, p2) or SituationWithinRange (p2, p1))), can be mapped to
(count-query-results getPolicemenWithinRange ?p1), which returns the number of
policemen that are within range of policemen ?p1.

Do clause

The do clause of an ECA-DL rule consists of a sequence of action function
invocations. As already discussed in Chapter 7, function invocations are
mapped to the Jess call command. The arguments to be passed to an action
should be previously resolved in the LHS of the rule. Consider the following
action clause:

Do NotifyApp (application-address,
List (p1, Select (Policeman.*, p2; SituationWithinRange (p1, p2) or
SituationWithinRange (p2, p1))))

190

7.3.5

CHAPTER 7 CONTROLLING SERVICES

Both functions NotifyApp (action function), and List (auxiliary) function
are implemented in the Java application, rather than in Jess. The defquery
getPolicemenWithinRange implements this select clause in Jess. The following
RHS is generated in Jess:

(...LHS..))
=>
(call SomeClass NotifyApp “application-address”
(call SomeClass List “id1” (run-query getPolicemenWithinRange ?p1)))

Scope clause

In general, the scope clause maps to a simple pattern match, in which the
value of the OBJECT slot is assigned to the scope variable. The select clause
nested in as scope clause is not evaluated with a defquery, as explained in
the previous section. Instead, the select expression is mapped to condition
on slot values, following the mapping of a normal ECA-DL condition
expression. For example, consider the following example of scope clause,
which selects all persons located in “Enschede”, and assigns variable p to
each of these persons:

Scope (Select (Person.*; person; person.hasCivilLocation.city = “Enschede”); p))

The corresponding Jess expression pattern matches the persons located in
Enschede, and assigns the value of slot OBJECT to variable ?p. This variable

can then be used in other parts of this rule.

(Person (OBJECT ?p) (hasCivilLocation ?hasCivilLocation))
(CivilLocation (?hasCivilLocation) (city “Enschede”))

The following example of scope clause selects all persons that are within
range of a person whose id is id1, and assigns variable p to each of these
persons:

Scope (Select (Person.™; person; SituationWithinRange (person, Person.id1); p))
The corresponding Jess expression is as follows:
(Person (OBJECT ?p))

(Person (OBJECT ?pid1) (id id1))
(SituationWithingRange (person1 ?p) (person2 ? pid1))

REALIZATION OF ECA-DL RULES IN JESS 191

The scope clause introduces a problem for the Upon clause when primitive
and situation events refer to a scope variable, which is related to how event
subscriptions are maintained. Suppose our scope clause defines a variable p,
like the example presented above, i.e. p represents each person that is
within range of person whose id is id1. Consider now that a nested upon
clause defines an event, such as EnterTrue (SituationContained (,p)), which
generates event notifications every time person p enters any container
entity. As we have mentioned, an Upon clause generates event subscriptions
with context sources and managers. Event subscription for an Upon clause
without scope is trivial, and it has been discussed in section 7.3.2. However,
event subscriptions for an Upon clause nested in a scope clause requires
special attention, since the collection defined in the Upon clause is
dynamic, i.e. the entities belonging to the scope collection change over
time. This means that the persons within range of person idl may change
over time, and to reflect that, new event subscription may need to be
performed, and old event subscriptions may need to be cancelled while the
rule is still executing.

In order to overcome this problem, we create a separate Jess rule that
detects every time there is a change in the collection resulted from a scope
clause. When this collection changes, we invoke a method of the event
handler component, namely maintainSubs to indicate that there was a change
in the scope collection. Based on these indications, the context handler may
perform new event subscriptions or may cancel old ones that are no longer
needed. The argument passed to the maintainSubs method is the result of a
defquery, which should be defined from the scope nested in the select

clause. For the SituationWithinRange scope example, the following defquery
should be defined:

(defquery PeopleWithinRange
(declare (variables ?7p1))
(Person (OBJECT ?p2))
(SituationWithinRange (entity1 7p1) (entity2 7p2)))

In addition, the following Jess rule should be defined, in order to invoke the
maintainSubs method:

(defrule SubscriptionScopeRule
(Person (OBJECT ?p))
(Person (OBJECT ?pid1) (id id1))
(SituationWithingRange (entity1 ?p) (entity2 ?pid1))
=>
(call EventHandler maintainSubs “ecarule1” (run-query PeopleWithinRange ?pid1))

192

Table 7-7 Example of
event registrations that
are maintained in the
gvent handler
component

CHAPTER 7 CONTROLLING SERVICES

The event handler component performs and maintains event subscription
registrations for each of the entities in the scope. This way, event
notifications that are received for all entities in the scope are correctly
included into the working memory. Suppose, for example, that persons
John, Mary and Alice are currently supported, and that John is within range
of Mary and Alice. Consider the following ECA-DL rule (rule3):

Scope (Select (Person.™; person; SituationWithinRange (person, Person.John); p))
{
Upon IncomeCall (p, Person.John)

-}

According to this rule, the event handler component should maintain
registrations of IncomeCall event notification from both Mary and Alice to
John, since they are both in the scope. Table 7-7 depicts the registration
structure that should be maintained by the event handler component.

Event Description rulelD Parameters
IncomeCall rule3 Mary, John
IncomeCall rule3 Alice, John

When an IncomeCall event notification is received, for example IncomeCall
(Peter, John), the controller matches this notification with the registrations
available (Table 7-7). Since no matches are found, the event handler does
not include the event notification in the Jess working memory. Suppose
now that the event notification IncomeCall (Mary, John) arrives. Since now there
is a match, an instance of IncomeCall event notification is created in the Jess
working memory.

So far, we have solved the issue of subscribing to event notifications
dynamically. We have not yet discussed how events are consumed by an
scoped ECA-DL rule. Similar to the rules with no scope clause, we assign a
variable to the matched event fact on the rule’s LHS, in such way we can
retract this event fact on the RHS of the rule, as follows:

?eventfact <- (IncomeCall (eventlD “ev1”) (rulelD “rule3”) (entityFrom ?p)
(entityTo “John”))

(... other conditions ...)

=>

(retract ?eventfact)

(... actions...)

7.3.6

REALIZATION OF ECA-DL RULES IN JESS 193

Loading the working memory

For the correct execution of the rules we have presented so far, the working
memory should be always up-to-date. The synchronization between Java
objects and the working memory in the controller component is based on
shadow facts, as discussed in Chapter 6. Therefore, we should guarantee
that the Java objects contain up-to-date context and situation values every
time the Jess engine needs to check the conditions defined in the when
clause of a rule. Keeping the working memory up-to-date with respect to
events in the Upon clause is carried out by subscribing to events, as
discussed in section 7.3.2. With respect to the When clause, we consider
two different approaches, namely subscription-based or query-based.

The subscription-based approach is realized at the time an ECA rule is
subscribed with the ECA handler component. The ECA handler component
checks the When clause, and identifies which context and situation values
need to be gathered from context sources and managers, respectively. The
ECA handler component then indicates the event handler component the
list of required context and situation information values.

For context value types, time-based subscriptions may be performed.
For example, if the when clause refers to
Person.John.hasGeoLocation.coordinates.latitude, the event handler component needs
to find a context source that is capable of offering instances of John’s
location context (GeoLocation information). When that particular context
source is found, the event handler component subscribes to it in order to
receive time-based notifications with updates of John’s location. These
notification values generate updates to the Java objects, which guarantee
that the working memory is up-to-date.

For situation value types, event-based subscriptions are performed, since
the controller components wants to receive notifications about changes in
the situation. For example, if the When clause refers to SituationContained
(Building.JohnHouse ,Person.John), the event handler component subscribes to a
context manager component which is capable of offering this situation
value. In this case, EnterTrue and EnterFalse event notifications are
expected. The EnterTrue event notification creates a situation instance in
the working memory, and EnterFalse event notification deactivates that
particular situation instance in the working memory.

Figure 7-23 depicts a sequence diagram that illustrates time-based
subscriptions for the GeolLocation example. The event handler subscribes with
a context source to receive time-based notification with the value of John’s
geographical location. When these notifications are received, the respective
GeoLocation Java object is updated accordingly.

194

Figure 7-23 Sequence
diagram for time-based
subscriptions

CHAPTER 7 CONTROLLING SERVICES

applicationt ECAHandler EventHandler ContextSource JavaObject

subscribe(ECARule) : :

: |
I

: HandleCondition(collection)
I

1

subscribe(GeoLocation)

subscribe invocations are performed | N
for each context value of the |)

collection, if there is no subscription
yet for that particular context
I 1

1
|
) [}
notify |
setMethod()

1

notify '
setMethod()

.-y __ . ___

The query-based approach is realized only when the events in the Upon
clause have occurred. Contrary to time-based and event-based approaches,
the query-based approach is not realized upon an ECA rule subscription.
Instead, context source and managers components are queried when the
rules are already running in the rule engine. In order to realize this
approach, we include an extra Jess rule that indicates to the event handler
component when the events in the Upon clause occur. The execution of
this rule has higher priority than the Jess rules normally generated from an
ECA rule (see Table 7-5), but it has lower priority than the detection
window interval rule. Therefore, we declare salience 1 to this rule, which
gives priority over normal rules, but not to the detection window interval
rule, which has salience 2. The general format of this rule is the following:

(defrule queryConditionRule1
(declare (salience 1))
(event)
=>
(call EventHandler queryCondition rule1))

The event handler component keeps the list of context and situation values
that need to be queried. The queryCondition method implemented by the
event handler component starts the query process. The result of the queries
generates updates in the working memory by means of shadow facts. Figure
7-24 depicts an example of query-based approach for the geographical
location example. The event handler component only queries the context
source when the queryCondition method has been invoked. Query answers
generate set method invocations on the Java objects, which updates the
working memory.

Figure 7-24 Sequence
diagram for query-based
approach

REALIZATION OF ECA-DL RULES IN JESS 195

applicationt ECAHandler EventHandler RuleEngine ContextSource JavaObject

subscribe(ECARule) | i
| 1
HandIeCond‘mon(coIIecti'on)
1 |
—
The queryCondition method is ﬁ queryCond\'t\'on(ruIeW)}
i

invoked by the rule engine H :
when the upon clause is true. 1 query(Ge?Locauon)

T ! queryAnswer(Geochation\mormation)

setMethod

————p—L Y]
RN 2 ——

7.3.7 Automating the mapping from ECA-DL to Jess

We have automated the generation of Jess rules from ECA-DL rules using
two different alternatives, namely by building a parser and by defining MDA
transformations. Automation allows Jess code to be generated automatically
from ECA-DL rules, with no need to write code by hand. Both automation
processes should consider the systematic derivation of Jess code from ECA-
DL rules as we have discussed in the previous sections.

Parser approach

The parser approach implements a parser for ECA-DL rules that generates
Jess rules using a simplified version of the mappings discussed so far [33,
37]. This parser receives ECA-DL rule descriptions in XML format, rather
than text. In order to allow XML documents to be checked for
conformance with respect to the ECA-DL syntax, we have created an XML
schema, which reflects the ECA-DL syntax presented in section 7.2.4. A
simplified version of this schema can be found in [28].

As soon as an application subscription is received by the ECA handler
component, it is parsed and each element of this rule is identified. In order
to be a valid rule, each of these elements in the rule should exist in the
context and situation model adopted by the controller component. The
parser generates a tree composed by the primitive elements of ECA-DL.
For example, the ECA-DL rule below has its parsed tree depicted in Figure
7-25. Variable definitions and their respective reference variables are
depicted using the same line pattern.

Scope (Select (Policeman.”; policeman; policemen.hasActivity.value = ‘working’; p1)
{ Upon OnEvery (5)
Do NotifyApp (application-address,
List (p1.id, select (policeman.*, p2; SituationWithinRange (p1, p2) and
p2.hasActivity.value = ‘working’)))}

196

Figure 7-25 Example of
parsed ECA-DL rule

CHAPTER 7 CONTROLLING SERVICES

Variable:
® ©®-
Entities

Variable:
Policemen.™ policemen .
Temporal Function:
e Event NotifyApp

EntityContext: Literal @ m
hasActivity.value “working”
ReferenceVariable:
pt
ReferenceVariable T
policemen Entities { Variable: p2)

Policemen.*

ContextSituation
SituationWithinRange
ReferenceVariable: I,f"'ﬁeferenceVar'\ablé\\.’ EntityContext: Literal:
p p2 . _ hasActivity.value “working’

- p2

The parser performs two levels of validity checking of an ECA-DL rule:

— A typing and static semantics checking, using the context and situation
models adopted by the controller component. At this level, the parser
verifies the existence of the entity, context and situation types, and the
proper combinations between (i) entity types and context types; and (ii)
between situation types and entity types. For example, the combination
SituationDriving (Building.id) should give an error because the situation driving
is not applicable to an entity of type Building. In addition, the parser
verifies the validity of Functions and Actions. Specific functions and
actions have some number and types of parameters defined when they
are specified. For example, function sendSMS receives as argument the
identifier of a person, and a message to be sent to the person’s mobile
phone.

— An instance checking level to check the existence of specific entities in
the controller component. If an application ECA-DL rule refers to
entities Person.id1, Person.id2, Building.id3, and Building.id4, the parser checks
the existence of such entities in the current Java implementation of the
context model.

Once an ECA-DL rule is validated, the parser generates Jess expressions

from each of the parsed ECA-DL elements, following the mappings we have

described in the previous sections.

Figure 7-26 Overview of

the
process

transformation

REALIZATION OF ECA-DL RULES IN JESS 197

MDA approach
We have also worked on an alternative solution [75] to generate Jess rules
from ECA-DL, which is based on the Model Driven Architecture (MDA)
[92] approach. The aim of this solution is to formalize the mapping process
from ECA-DL rules to Jess rules and implement this mapping following the
MDA approach.

The main idea behind MDA is that applications are no longer
architected to specific platforms such as Java, or C#, but instead are
specified as Platform-Independent Models (PIM). These models allow the design
of application-specific concerns without regard for platform-specific
concerns. Such platform-independent model can be transformed to a
Platform-Specific Model (PSM), which considers platform-specific concerns.
This PSM can then be transformed to an actual implementation, possibly
using automated transformations.

This design approach facilitates (i) the maintenance of rules when a
newer version of the Jess engine is released; and (ii) the implementation of
ECA-DL rules in a different rule-based platform, e.g., CLIPS or Mandarax.
Adopting a different or an improved platform requires regenerating the
PSM and actual implementation, avoiding costly manual conversions, in
case automated transformations are used.

Following the MDA approach, ECA-DL and Jess rules are no longer
treated as text, but are converted to models, and the transformation
between rules occurs at the model level. We have followed the Meta-Object
Facility (MOF) [93] standard defined by the OMG, which specifies the
modeling architecture we applied. In this architecture, the first step
towards the model-based transformation process is to define the language
metamodels, and how each element of the ECA-DL metamodel relates to
the Jess metamodel. The transformation from elements of the ECA-DL
metamodel to elements of the Jess metamodel is specified in a transformation
language. We have used the ATLAS Transformation Language (ATL) [3, 4]
for specifying transformations from ECA-DL to Jess, since there is available
tool support for this language for the Eclipse development environment
[36]. Figure 7-26 depicts an overview of the transformation process.

1
ECA-DL rule (text) PIM

2

PSM Jess rule (text)

In step 1 (Figure 7-26), we define an instance model of an ECA-DL rule,
which contains entity, context and situation instances, conforming to the
ECA-DL metamodel. This step is performed using text-to-model

198

Figure 7-27 Fragment of
the mapping between
the ECA-DL and Jess
metamodels

7.4

CHAPTER 7 CONTROLLING SERVICES

transformation. In MDA terminology, the resulting model is a PIM model,
since ECA-DL is the platform-independent language in this particular case.

Step 2 concerns the transformation from the PIM to a PSM, which is
done (semi)-automatically by a transformation tool. For the automated part
of this model-to-model transformation, the OMG has specitied the
Queries/Views/ Transformations (QVT) standard [107]. Queries can be used to
access the source model and extract information from it, Views can be used
to focus on specific aspects, and Transformations can be used to take the
information from the Queries and produce a target model. The result of
this transformation is a PSM model, since Jess is the platform-specific
language in this case.

In step 3, the PSM is transformed back to its textual form, ready for
execution in the Jess engine. This step is performed using model-to-text
transformation.

Figure 7-27 depicts a fragment of the mappings between the ECA-DL
and the Jess metamodels. The arrows here indicate which part of the ECA-
DL rule is mapped to which part of the Jess rules. As shown in Table 7-5, an
ECA-DL rule (without scope clause) generates two Jess rules. Both the
Upon and When clauses are mapped to two LHS’s in Jess. The Do clause
maps to the RHS of the second Jess rule. The Jess parts that are not linked
to the ECA-DL rule are filled in by the transformation process. For details
of the transformation specification in ATL, we refer to [75].

ECA-DL Rule

1 0.1 1

ECA rules and the Situation Detection Framework

We have discussed through this chapter how the controller component
communicates with context manager components to obtain situation
information (sections 7.3.2 and 7.3.6). Our discussions have been based on
service-oriented architectures, and the messages exchanged between the

Figure 7-28 Using
DJess to realize the
controller’s rule engine

ECA RULES AND THE SITUATION DETECTION FRAMEWORK 199

controller and the context manager components follow the event-based
interaction style for both upon and when clauses.

An alternative solution for communicating with context manager
components for obtaining situation information is using some rule-based
middleware to allow distribution, such as the DJess middleware, discussed
in section 6.5.3. DJess allows Jess engines running on different nodes of a
network to communicate. It provides transparencies for context and
situation distribution, i.e. each engine works on the distributed facts as if
they were local. Using the DJess middleware, the controller component can
become a member of the DJess web of inference, and the situation facts
detected on remote nodes can be automatically reflected in the controller’s
working memory.

Figure 7-28 depicts a distribution scenario, in which two situation
detection engines and a controller’s rule engine participate in a web of
inference. ECA-DL rules in the controller’s rule engine execute on the
contents of the controller’s working memory, which is (partially) shared
with the other engines.

situation 1 as fact in shared
working memory ~

ECA-DL rule refers to
working * shared situations 1 and 2 as if

A
- memory part these facts were local ECA
user's context Fommmom—oo N-—--------- PEELLEELELNLEL handler

1
rule inference | | execution | | ,
it hig 1 i [controller's
1
i

1
I |
| 4) ;
[1| base* enging* [engine* i
[S E I 11i| working 44 ¥
0 roo-oo- e LLLEE < i| memory |} inference || execution
1 i R d
! 1
1
H 1
1

|
user rule 4 inference%execution H engine engine
base® engine® [engine® |})

action

___\ ___________ ST ! dispatcher
S working shared

memory® part

<

>
4
LA

controller's
rule engine

situation 2 s fact in shared *
working memory

Suppose an ECA-DL rule refers to situation facts 1 and 2, which are
detected by remote engines, namely, engines A and B, respectively. Since
the controller and the engines A and B participate in the same web of
inference, situation facts 1 and 2 are also perceived by the controller’s
working memory. The benefit of using DJess is that it alleviates the
responsibility of managing event-subscription messages and query-based
messages. Therefore, the design and implementation of the controller
component is substantially simplified.

Since situation event notifications are no longer expected by the
controller component, the way the Upon and Scope clauses are realized in
DJess differs from the way they are realized in Jess. In the service oriented
approach, event notifications are identified by a unique identified, which is
assigned by the event handler component. When the event handler receives

200

Table 7-8 Examples of
Jess rules to detect
situation events

CHAPTER 7 CONTROLLING SERVICES

a notification, it includes the respective event into the controller’s working
memory. Suppose, for example, we would like to detect the following upon
clause of rulel: Upon EnterTrue (SituationContained (Zilverling, John)); EnterTrue
(SituationContained (HouseJohn, John)), which specifies that John enters the
Zilverling building, and after that he enters his house. The event handler
assigns the following unique identifiers to these events:

ev1: EnterTrue (SituationContained (Zilverling, John))
ev2: EnterTrue (SituationContained (HouseJohn, John))

When the event handler component receives notifications of these events, it
creates corresponding instances of SituationContainedEvents, which are
shadowed in the working memory. Using DJess this mechanism works
differently, since there is no event handler component intermediating the
working memories. Situation facts detected in a particular working memory
are perceived by the others participating in the same web of inference. In
order for the controller component to detect the occurrence of situation
events (event facts), we include additional DJess rules in the controller’s
rule engine that explicitly detect and assert these event facts. Table 7-8
depicts the rules that are used to detect events for a particular ECA-DL rule
in D]Jess.

Type of rule DJess rule
ECA-DL Upon Upon EnterTrue (SituationGontained (Zilverling, John));
clause EnterTrue (SituationContained (HouseJohn, John))

DJess rule for :enterTrue
event ev (defrule event1Rulet
(SituationContained (person “John”) (building “Zilverling”) (finaltime nil))
=>
(assert (SituationContainedEvent (eventlD ev1) (rulelD rulel) (transition
“EnterTrue”) (containerlD “Zilverling”) (containedID “John”) ...))

DJess rule for :enterTrue
event ev2 (defrule event2Rule
(SituationContained (person “John”) (building “HouseJohn”) (finaltime nil))
=>
(assert (SituationContainedEvent (eventlD ev2) (rulelD rulel) (transition
“EnterTrue”) (containerlD “HouseJohn”) (containedID “John”) ...))

If we would like, for example, to detect when John leaves the Zilverling
building, i.e. Upon EnterFalse (SituationContained (Zilverling, John)), the event
detection rule would verify whether the situation final time is not nil, which

ECA RULES AND THE SITUATION DETECTION FRAMEWORK 201

indicates that the event EnterFalse has occurred for this particular situation.

The DJess rule would be the following:

; enterFalse
(defrule event3Rulel
(SituationContained (person “John”) (building “Zilverling”) (finaltime ~nil))
=>
(assert (SituationContainedEvent (eventD ev3) (rulelD rule1) (transition “EnterFalse”)
(containerlD “HouseJohn”) (containedID “John”) ...))

These additional rules detect when particular situation events occur, and
insert corresponding event facts in the working memory. These rules are
included when an ECA-DL rule is subscribed with the controller
component. For each situation event referred in an ECA-DL rule, a DJess
rule should be defined. These rules assert the corresponding event fact into
the working memory.

In order to realize the scope clause in DJess, we also need to modify the
approach discussed in section 7.3.2, since there is no need to maintain
situation event subscriptions for the scope clause, except for primitive
events, which are still expected by means of primitive event notifications.
Therefore, we do not need to create the Jess rule that maintains the scope
subscriptions up-to-date, namely, we do need to include the
SubscriptionScopeRule rule in order to implement the scope clause. Suppose for
example, the following scope clause is defined in an ECA-DL rule:

Scope (Select (Person.™; person; SituationWithinRange (person, Person.id1); p))
{

Upon EnterFalse (SituationContained (Building.HouseJohn, p))

When conditions

Do actions

}

Three DJess rules should be defined to implement this ECA-DL rule (see

Table 7-9):

— A scope DJess rule that detects the occurrences of event EnterFalse
(SituationContained (Building.HouseJohn, p)), where p is any person within range
of person whose id is id1;

— A DJess rule] that consumes the event in case the event occurs and
condition does not hold;

— A DJess rule2 that consumes the event and triggers the action when both
the event occurs, and the condition holds.

202 CHAPTER 7 CONTROLLING SERVICES

Type of rule DJess rule
trha:t/eim%IZmE#fZi E“C'f\s Scope DJess rule :enterFalse
DL ruﬁ)e with scope (defrule event1Rule1
clause (SituationWithinRange (person ?p) (person2 “id1”))

(SituationContained (person ?p) (building “Zilverling”)

(finaltime ~nil))

==
(assert (SituationContainedEvent (eventlD ev1) (rulelD rulet) (transition
“EnterFalse”) (containerlD “Zilverling”) (containedID ?p)...))

DJess rulet (defrule DJessRuled
?evenfact <- (SituationContainedEvent (eventlD ev1) (rulelD rulel)
(transition “EnterFalse”) (containedID ?p))
(not conditions)
=>
(retract ? evenfact))

Djess rule2 (defrule DJessRule2
?evenfact <- (SituationContainedEvent (eventlD ev1) (rulelD rulet)
(transition “EnterFalse”) (containedID ?p))
(conditions)
=>
(retract ? evenfact)
(actions))

Consider now the following ECA-DL rule example, in which two events are
composed in the Upon clause. This upon clause is true when person p leaves
John’s house and after that enters the Zilverling building. Scope variable p
refers to the persons within range of person whose id is id1.

Scope (Select (Person.™; person; SituationWithinRange (person, Person.id1); p))

{

Upon EnterFalse (SituationContained (Building.HouseJohn, p)); EnterTrue (SituationContained
(Building.Zilverling, p))

}

For this ECA-DL rule, four DJess rules should be defined:

— A scope DJess rulel that detects the occurrences of event Upon EnterFalse
(SituationContained (p, Building.HouseJohn)), where p is any person within range
of person whose id is id1;

Table 7-10 DJess rules
to implement an ECA-DL
rule with scope clause
and event composition

ECA RULES AND THE SITUATION DETECTION FRAMEWORK

- A scope

Djess rule2 that detects the occurrences of event EnterTrue

(SituationContained (p, Building Zilverling)), where p is any person within range
of person whose id is id1;

— A DJess rulel that consumes the event in case the event occurs and

condition does not hold;

— A DJess rule2 that consumes the event and triggers the action when both

the event occurs, and the condition holds.

Type of rule

DJess rule

Scope DJess
rulet

Scope DJess
rule2

DJess rulet

;enterFalse
(defrule event1Ruled

(SituationWithinRange (person ?p) (person2 “id1”))

(SituationContained (person ?p) (building “HouseJohn”) (finaltime ~nil))
=>
(assert (SituationContainedEvent (eventlD ev1) (rulelD rulel) (transition
“EnterFalse”) (containerlD “HouseJohn”) (containedID ?p)...))

;enterTrue
(defrule event2Rulel
(SituationWithinRange (person ?p) (person2 “id1”))
(SituationContained (person ?p) (building “Zilverling”) (finaltime nil))
=>
(assert (SituationContainedEvent (eventlD ev2) (rulelD rulel) (transition
“EnterTrue”) (containerlD “Zilverling”) (containedID ?p)...))

7evenfact! <-

(SituationContainedEvent (eventID ev1) (rulelD rulel) (transition “EnterFalse”)
(containerlD “HouseJohn”) (containedID ?p) (timestamp ?t1)

?eventfact? <-

(SituationContainedEvent (eventID ev2) (rulelD rulet) (transition “EnterTrue”)
(containerlD “Zilverling”) (containedID ?p) (timestamp ?t2)

(timestamp ?t2&:(> 712 ?t1)))

(not conditions)

=>

(retract ?eventfact1)

(retract ?eventfact2)

203

204

7.5

CHAPTER 7 CONTROLLING SERVICES

Djessrule2 ?evenfact! <-
(SituationContainedEvent (eventID ev1) (rulelD rule1) (transition “EnterFalse”)
(containerlD “HouseJohn”) (containedID ?p) (timestamp ?t1)
Peventfact? <-
(SituationContainedEvent (eventID ev2) (rulelD rulel) (transition “EnterTrue”)
(containerlD “Zilverling”) (containedID ?p) (timestamp ?t2)
(timestamp ?t28&:(> ?t2 ?t1)))
(conditions)
=>
(retract ?eventfact1)
(retract ?eventfact2)
(actions)

Discussion

We have presented in this chapter the detailed design of the controller
component, which enables ECA rules to be added to the platform at
runtime. The controller component implements a rule engine that can
efficiently process rules, which are matched against various types of events,
context, and situation conditions. When events have occurred and
conditions hold, the action part of the rule is executed, which consists of
various types of service invocations.

In order to facilitate the specification of context-aware reactive
behaviours, we have developed ECA-DL, a domain specific language for
context-aware reactivity. With this language application developers specify
ECA-DL rules, which are composed of three parts:

— An event part, which allows complex compositions of temporal,
primitive and situation events;

- A condition part that allows various combinations of context and
situation conditions;

— An action part that that allows the specification of service invocations.

In addition, an ECA-DL rule may be parameterized by means of the scope

clause, which facilitates the specification of ECA-DL rules to a collection of

entities that respect certain (contextual) conditions.

In order to demonstrate the feasibility of ECA-DL rules, we have
discussed how the Jess engine can be used as the ECA-DL execution
environment. Since only Jess rules are accepted by the Jess engine, we have
discussed mappings that can be used to generate Jess rules from ECA-DL
rules.

In general, writing context-aware behaviours in ECA-DL requires less
programming effort than in the Jess language, since ECA-DL is specific to
the context-awareness domain, while the Jess language is a general purpose

DISCUSSION 205

language. Often the realization of a single ECA-DL rule in Jess requires
several Jess rules. The mapping problems encountered are mainly related to
the lack of support to events in Jess. Therefore, the mappings we have
defined consider issues to correctly implement event consumption and
event composition.

We have discussed two approaches for the automation of the mappings
from ECA-DL rules to Jess rules, namely the parser and the MDA approach.
The parser approach implements a parser that breaks down an ECA-DL
rule into indivisible elements, which are defined in the ECA-DL
metamodel. For each of these elements, Jess expressions are generated. The
MDA approach generates Jess rules from ECA-DL based on
transformations defined in terms of elements of the metamodels of these
languages, following the guidelines of the Model Driven Architecture
(MDA) [92] approach. The aim of this solution is to formalize the mapping
process from ECA-DL rules to Jess rules and implement this mapping
following the MDA standards. This design approach facilitates (i) the
maintenance of rules when a newer version of the Jess engine is released;
and (ii) the implementation of ECA-DL rules in a different rule-based
platform, e.g., CLIPS or Mandarax. Both automation alternatives partially
consider the mappings issues we have discussed in this chapter. Extensions
to the automation processes are needed, and are indicated for future work.

Finally, we have discussed in the chapter how the controller component
can be integrated to the situation framework discussed in the previous
chapter. We discuss how the mapping framework needs to be adapted in
order to use DJess. Since in DJess the working memory is shared, there is
no need to manage situation event subscriptions and notifications. This
facilitates the mappings of issues related to events.

8.1

Chapter

Case Study

This chapter demonstrates the feasibility of the development approach
proposed throughout Chapters 2 to 7 by means of two design examples.
The scenarios we have considered for the demonstration are a healthcare
scenario, and a policy management scenario. Since these scenarios deal with
different application requirements, we also demonstrate the suitability of
our context handling platform to support applications in different domains.

For each of the scenarios, we provide a high level description of the
application intended to implement the scenario, and the design process
following the development approach proposed. The design process includes
the activities (i) context modelling, (ii) context information modelling; (iii)
application structural design; (iv) context provisioning services design; and
(v) usage of the controlling service. In order to prove feasibility, we build an
application prototype for the healthcare scenario that implements the
design products obtained from the design activities. With this prototype we
are capable of measuring scalability and performance issues on a realistic
application. Finally, we provide in this chapter a discussion that analyses our
development approach in the light of the requirements presented in
Chapter 2.

This chapter is further structured as follows: section 8.1 presents the
design of the healthcare application following the design process proposed;
section 8.2 presents the design of the policy management application; 8.3
elaborates on the prototype of the healthcare application, and provides
measurements obtained from the prototype; finally, section 8.4 discusses
our approach in the light of the requirements presented in Chapter 2.

The Healthcare Application

The healthcare epilepsy scenario has been mentioned several times
throughout this thesis. For example, in section 1.2 we have presented a

208

CHAPTER 8 CASE STUDY

scenario in which Mr. Janssen, who is an epileptic patient, is monitored in
order to detect or predict epileptic seizures. Upon an epileptic seizure
alarm, a number of actions can be taken, such as warning Mr. Janssen of an
upcoming seizure, and sending an SMS message to relatives that are
currently near him. This scenario is used in the AWARENESS project, and
its relevance on improving the quality of life of such patients has been
confirmed by Roessingh research and development. Roessingh Research and
Development [110] is an internationally recognised research institute that
contributes to improvements in rehabilitation medicine with particular
interests in rehabilitation technology. The healthcare epileptic scenario
storyline, already presented in section 1.2, is as follows:

“Mr. Janssen is an epileptic patient and despite his medications, he still suffers
from seizures. Because of his medical condition, Mr. Janssen is unemployed, home-
bound, and his situation requires constant vigilance to make sure healthcare
pny%ssionals are alerted qf a severe seizure. Recently, Mr. Janssen has been provided
with a tele-monitoring context-aware application capable of monitoring epileptic
patients and providing medical assistance moments before and during an epileptic
seizure. Measuring heart rate variability and physical activity, this application predicts
seizures and contacts nearb)/ relatives or healthcare prqfessiona]s automatica]]y. In
addition, Mr. Janssen can be informed moments in advance about the seizure, being
able to stop ongoing activities, such as driving a car or holding a knife. The aim is to
provide Mr. Janssen with both higher levels of safety and independence allowing him to
function more freely in society despite his disorder.”

In order to implement this scenario, we propose a context-aware
application, namely the healthcare context-aware application. The aim of this
application is to detect the seizures, and to react in the following ways: (i)
notify the epileptic patient of an upcoming seizure; and (i) notify his/her
nearby caregivers of an upcoming seizure of the patient by showing a map
with the location of the patient. The caregivers who receive the notification
for help should be (i) assigned as one of the caregivers of that particular
patient; (ii) available for helping; and (iii) physically close to the patient.
Upon a notification for help, caregivers may either accept or reject the
request for helping the epileptic patient. When a particular caregiver
accepts to help, the other caregivers who had received the notification for
help are informed that a certain caregiver has already accepted to help that
patient.

Figure 8-1 depicts an intuitive view of the types of users supported in
this scenario, their contexts, and the healthcare context-aware application.
We focus in this figure on a single instance of user for each type of user
supported. Figure 8-1 is similar to Figure 2-1 that has been introduced in
Chapter 2. Three types of users are shown, namely, the epileptic patient, the
healthcare professional and the caregiver. The arrows of type aj, a, and a; show
that these users and the healthcare application interact. Similarly, the

THE HEALTHCARE APPLICATION 209

arrows of type b, b, and b, show that the users’ contexts and the healthcare
application interact.

. . professional’s context
Figure 8-1 Informal view heallh
of the healthcare professional

application @

patient’s context caregiver's context

() healthcare %
X

7N context-aware / \

epileplic application e

patient b, b, giver

[{P%i)]

For all the three types of users, the interactions of type “a” enable the user’s
inputs to be provided to the healthcare application, such as starting
commands, and defining configuration preferences. Tin addition, the
interactions represented by arrows of type a; enable a patient to receive a
notification of upcoming epileptic seizure, which is delivered by the
healthcare application. The interactions represented by arrows of type b,
enable the healthcare application to capture particular context conditions
from the epileptic patient’s context, such as his/her biosignals (e.g., heart
rate measures and blood pressure), and location information. An epileptic
patient may be performing a potentially hazardous activity, such as holding a
knife or driving a car. The interactions represented by arrows of type b,
enable the healthcare application to capture information on whether the
patient is performing a hazardous activity or not.

Similarly, the interactions represented by arrows of type a, enable the
health professional’s to receive notifications of epileptic seizure alarms and
to monitor the biosignals of the patient in order to detect dangerous
abnormalities. The interactions represented by arrows of type b, enable the
healthcare application to capture particular context conditions from the
health professional’s contexts, such as his/her location information.

The interactions represented by arrows of type a; enable a caregiver to
(i) receive notifications for helping particular epileptic patients with
upcoming seizures; and (i) accept or reject requests for help. The
interactions represented by arrows of type b, enable the healthcare
application to capture particular context conditions from the caregiver’s
contexts, such as his/her location and availability status information.
Caregiver’s availability status might be “on call”, “not on call”, “busy”, or
“emergency only”, which are explained in detail in the next section.

210

8.1.1

Figure 8-2 Healthcare

application
model

context

CHAPTER 8 CASE STUDY

Context modelling

According to our development approach, the first step towards application
realization is the modelling of the application’s universe of discourse. Our
methodology for context and situation modelling has been extensively
discussed in Chapter 5. Analysing the application scenario, we identify the
entity, context and situation types necessary to model the healthcare
application. Figure 8-2 depicts the context model that represents this
application’s universe of discourse regarding the relevant entity and context

types.
«Entity» hasGeoLocation | «IntrinsicContext»
SpatialEntity Geolocation
/\ 1 1
PointEntity
/\
{overlap, incomplete} «gnumeration»
[[| CaregiverStatusEnum
«role» «role» «role» hasCareStatus | «IntrinsicContext» +onCall
HealthProfessional EpilepticPatient Caregiver CaregiverStatus +notOnCall
1 1 11 +busy
* * * -+emergencyOnly

1 *

o
oluntaryCare «IntrinsicContext>

1 HazardousActivity
1 -+hazardousValue : Boolean

We identify the roles a person can play in this scenario, which are
HealthProfessional, EpilepticPatient, and Caregiver. A HealthProfessional can be a doctor,
a nurse or a trained person that is capable of providing professional
treatment to an epileptic patient. An EpilepticPatient represents the persons
who suffer from an epilepsy medical condition. Finally, the Caregiver
represents the persons who have volunteered to assist epileptic patients
having an epileptic seizure. The relationship between a health professional
and an epileptic patient is characterized by a treatment, which is
represented by the Treatment class. Similarly, the relationship between an
epileptic patient and his/her caregivers is characterized by a voluntary care
relation, which is represented by VoluntaryCare class.

Three intrinsic context types are identified: a person’s geographical
location (GeolLocation), the status of a caregiver (CareStatus), and information
on whether a patient is currently doing a hazardous activity (HazardousActivity).
Caregivers can set their status to (i) onCall, which specifies they are currently
available to receive requests for helping patients, (ii) notOnCall, which
specifies they are not available for receiving requests for help, (iii) busy,
which specifies they are currently receiving requests, but are busy at the
moment; (iv) emergencyOnly, which specifies they are currently available for
receiving requests only on emergency situations. A person’s geographical

THE HEALTHCARE APPLICATION 211

location value is represented by the GeoLocationCoordinates datatype (Figure 8-
4), which specifies the latitude, longitude and the altitude of the person’s
current location. In addition, in this datatype we specify the formal relation
operations neamess and distance. An epileptic patient may be also doing a
potentially hazardous activity, which is captured by a Boolean attribute of
the class HazardousActivity.

In order to know whether a person is a caregiver of a given patient, we
define a static operation in the Caregiver class (isCaregiver (Caregiver c,
EpilepticPatient p)), which receives a caregiver ¢ and patient p as arguments,
and returns true if patient p can be helped by caregiver ¢, and false

otherwise. The body of this method is defined in OCL as follows:

context Caregiver::isCaregiverOf (caregiver:Caregiver, patient: EpilepticPatient): Boolean
body: caregiver.VoluntaryCare->exists (care | care.EpilepticPatient = patient)

Similarly, in order to know whether a person is one of the health
professionals who has a treatment relationship with a given patient, we
define a static operation in the HealthProfessional class, namely
isHealthProfessionalOf (HealthProfessional hp, EpilepticPatient p). This operation receives
a health professional hp and patient p as arguments, and returns true if hp
is one of the health professional of patient p, and false otherwise. The body
of this method is defined in OCL as follows:

context HealthProfessional:: isHealthProfessional Of (professional: HealthProfessional,
patient: EpilepticPatient): Boolean
body: professional. Treatment->exists (prof| prof.EpilepticPatient = patient)

The epileptic seizure alarm is generated by devices attached to the patient’s
body. These devices collect patient’s biosignals in order to predict an
epileptic seizure. Roessingh Research and Development has worked on a
prediction algorithm that detects seizures based on certain heart rate and
blood pressure variation patterns. Epileptic alarms are generated
automatically from biosignals, but patients are capable of turning oft the
alarm in case of an erroneous prediction.

The detection of epileptic seizures generates seizure alarms, which can
be defined as primitive events. Epileptic alarm events are represented by
(EpilepticAlarm (EpilepticPatient)), and the event generated by the patient when he
turns off the alarm is represented by (RejectEpilepticAlarm (EpilepticPatient)).
When caregivers who are near the patient receive a notification that a
certain patient may be in need of help, a caregiver may accept or reject the
request. Acceptance or rejection generates primitive events, which are
originated from the caregivers’ devices. These primitive events are

212

Figure 8-3 Situation
SituationCaregiverAvaila
ble specification

CHAPTER 8

represented by AcceptHelpRequest (EpilepticPatient, Caregiver), and RejectHelpRequest

(EpilepticPatient, Caregiver), respectively.

Following the design process, application’s particular state-of-affairs of
interest are modelled, by means of situation models. We define two
situation types, which are of interest to the epileptic scenario, namely
SituationCaregiverAvailable, and SituationCaregiverWithinRange. The situation type
SituationCaregiverAvailable specifies that caregivers are available when their status
is set to “onCall” or “emergencyOnly”. Figure 8-3 depicts the specification

CASE STUDY

of this situation using our situation modelling approach.

«IntrinsicContext>»
CaregiverStatus

+value : CaregiverStatusEnum

«ole» hasCaregiverStatus
Caregiver
1 1
" |+caregiver
«IntrinsicSituation»

*

1 -+ caregiverstatus

SituationCaregiverAvailable

1

{Context SituationCaregiverAvailable inv;

(caregiverstatus.value = "onCall' OR
caregiverstatus.value = "emergencyOnly")}

caregiver.hasCaregiverStatus = caregiverstatus AND

Figure 8-4 depicts the specification of the situation SituationCaregiverWithinRange,
in which a patient and a caregiver are within 100 meters distance from each
other. This situation is a specialization of SituationWithinRange presented in

Figure 7-7.

Figure 8-4
SituationCaregiverWithin
Range specification

8.1.2

Figure 8-5 Healthcare
application
measurement datatypes

THE HEALTHCARE APPLICATION 213

{Context SituationCaregiverWithinRange inv:

caregiver.hasGeolLocation = locationcaregiver AND
patient.hasGeoLocation = locationpatient AND
locationcaregiver.coordinates- > distance(locationcaregiver.coordinates,
locationpatient.coordinates) < 100}

-+patient
«role»
EpilepticPatient
1 «
* - +locationpatienty +hasGeol ocation
«IntrinsicContext»

«FormalRelationSituation»
SituationCaregiverWithinRange

GeoLocation

*

+locationcaregiver [-hasGeoLocation

+caregiver
«role»
Caregiver '
1 M

«(atatype»
GeoLocationCoordinates

+latitude : Real

+longitude : Real

+altitude : Real

+nearness(in entity : GeoLocationCoordinates) : Boolean
+distance(in entity : GeoLocationCoordinates) : Real

Context information modelling

In section 8.1.1 we have presented conceptual context models without
considering characteristics of the context information handled by the
context-aware application, such as, e.g., the quality of the context
information. As discussed in section 5.6, the information types exchanged
between components in our context handling platform are context information
types, as opposed to context types. When modelling context information
types we consider whether context is sensed, derived, learned or provided,
and we take quality of context into account.

Figure 8-5 depict the context information types exchanged in the
epileptic scenario.

«Qatatype» «datatype» «(latatype»
GgoLocaﬂonMeasurement CaregiverStatusMeasurement HazardousActivityMeasurement
+personiD - String _)) +caregiverlD : String +patientlD : String
+geogogat\on000rd\nat¢§. GeoLocationCoordinates -+ caregiverStatus : CaregiverStatusEnum | |+hazardousActivityValue : Boolean
++precision : RangePrecision +ireshness : Freshness +freshness : Freshness
igﬁzm?s&i-gﬁ;%h”ess -+origin : Origin +origin : Origin
-+probabilityOfCorrectness : Real +probabiityOfCoreeingss: Real probeb Ty OCorectiess Red

These measurement datatypes refer to serialized values of the respective
context types. For example, the GeolLocationMeasurement datatype refers to the
person’s unique identifier (attribute personiD), and his/her measured
geographical location coordinates (attribute geoLocationCoordinates of type
GeoLocationCoordinates). In addition, various quality of context attributes are
used, as discussed in Chapter 5. For the CaregiverStatusMeasurement datatype we
define two attributes, which indicate the unique identifier of the caregiver

214

Figure 8-6 Primitive
event notification
datatypes

Figure 8-7 Situation
datatype measurements

8.1.3

CHAPTER 8 CASE STUDY

(caregiverlD) and his/her availability status (caregiverStatus). Similarly, the
HazardousActivityMeasurement datatype defines two attributes, which indicate the
patient identifier (patientiD) and whether he/she is undergoing a possibility
hazardous activity (hazardousActivityValue).

The primitive events supported are EpilepticAlarm (EpilepticPatient),
RejectEpilepticAlarm (EpilepticPatient), AcceptHelpRequest (EpilepticPatient, Caregiver), and
RejectHelpRequest (EpilepticPatient, Caregiver). Figure 8-6 depicts the event
notification structures, which aim at notifying requesters of occurrences of
these events. Possible parameters for event notifications are specified as
datatype attributes.

«(atatype» «(atatype»

«datatype» «datatype»

EpilepticAlarm

RejectEpilepticAlarm

-+ patientlD : String

+patientID : String

AcceptRequest

RejectHelpRequest

+patientID : String
+caregiverlD : String

+patientID : String
+ caregiverlD : String

With respect to situation types, two measurement types are necessary,
namely SituationCaregiverAvailableMeasurement, and
SituationCaregiverWithinRangeMeasurement. These measurement datatypes refer to
serialized values of situation instances, i.e. the unique identifiers of entities,
the context values as datatype values (e.g., GeolLocationCoordinates datatype),
and the situation’s initial and final times. Figure 8-7 depicts these
measurements datatypes.

«(atatype»

SituationCaregiverWithinRangeMeasurement
-+ caregiverlD : String
+patientlD : String
+caregiverCoordinates : GeoLocationCoordinates
+patientCoordinates : GeoLocationCoordinates
+initialtime : Date
+finaltime : Date
+probabilityOfCorrectness : Real
+freshness : Freshness

«(atatype»
SituationCaregiverAvailableMeasurement
+caregiverlD : String
+caregiverStatus : CaregiverStatusEnum
+initialtime : Date
-+finaltime : Date
-+ probabilityOfCorrectness : Real
+freshness : Freshness

Healthcare application structural design

Figure 8-8 depicts an overview of the healthcare context-aware application
using the formal graphical representation adopted by this thesis, which is
discussed in Chapter 2, section 2.2.1. This particular style for structuring
context-aware applications and platforms has been extensively discussed in
Chapters 2 and 4. Interactions taking place in interaction points ip-a; and
ip-b, model the activities performed in cooperation between the users and
the healthcare context-aware application, and between the users’ contexts
and the healthcare context-aware application, respectively. All possible
information types that may be established in both ip-a and ip-b are defined

in a context information model, which has been presented in section 8.1.2.

Figure 8-8 Healthcare
application general view

THE HEALTHCARE APPLICATION 215

health
professional’s
context

care
giver's
context

epileptic
patient's
context

health
professional

epileptic
patient

healthcare context-aware application

In order to cope with complexity and cost-effectiveness, the healthcare
context-aware application is developed using the services offered by our
context handling platform, which has been discussed in general in Chapter
4. Figure 8-9 illustrates the healthcare application developed with the
support of our context handling platform. The healthcare context-aware
application uses generic services offered by the platform (grey area in Figure
8-9) and also implements specific services, which are offered by application-
specific components. Application-specific services typically consist of
application-specific functions that are not worth generalizing, since they are
bound to the purpose of the application. These services should not be
included in the context handling platform. Some context information values
are often privacy sensitive, and therefore should not be shared.

In general, functions implementing user interfaces, which capture and
render results from/to users, should be implemented as application-specific
components.

The patient’s application specific components should also include the
functions to detect the upcoming epileptic seizure, which are too specific to
be generalized in the platform. In addition, the patient’s application-specific
components should be able to determine whether the patient is currently
undergoing a hazardous activity or not.

The health professional’s application-specific components should
include the functionality to filter and render biosignal streaming
information. The caregiver’s application-specific components should
include the functionality to capture the status of the caregiver, and to
capture the caregiver’s acceptance or rejection for a particular request for
help.

All the application-specific components are developed by the application
developers. These components run on the mobile device carried by their
respective users. Therefore, for each particular user there are particular
instances of application-specific components, which are running on that
user’s mobile device.

216

Figure 8-9 Context
handling platform
offering support to the
healthcare context-aware
application

8.1.4

CHAPTER 8 CASE STUDY

]
@&
epileptic
patient

epileptic
patient’s
context

health
professional’s

care
giver's
context

health professional‘s
application-specific
components

ip-e,

caregiver’s application-
specific components

patient application-
specific components

ip-e,

healthcare context-aware application

context handling platform

In Figure 8-9, users interact with application-specific components through
interaction points of type ip-a. Interaction points of type ip-c and ip-d
enable the users’ contexts to interact with application-specific components
and with the platform, respectively. Interaction points of type ip-c
represent the mechanisms that are used to capture context, which are
application-specific and cannot be shared, such as the detection of an
upcoming epileptic seizure. Analogously, interaction points of type ip-d
represent the mechanisms that are used to capture context information and
may be reused by various other applications via the platform. For example,
the mechanism that is used to capture geographical location information
can be shared among various context-aware applications, and is, therefore,
provided by the context handling platform. Interaction points of type ip-e
enable interactions between application-specific components and the
platform. This allows, for example, application-specific services to make use
of shared context information.

Context provisioning services

So far, we have (i) modelled the application’s universe of discourse and
state-of-affairs by specifying relevant context and situation types,
respectively; (ii) identified context and situation information measurement
datatypes; (iii) refined the healthcare application into application-specific
parts and generic parts, and (iv) distinguished the specific and generic
functionality that should be realized in the specific-application parts and in
the shared platform, respectively. We should now be able to identify the
context processor components (context sources and managers), which are
needed for capturing the relevant context and situation information types.
The application components that are capable of offering epileptic
alarms, patient’s activity information, caregiver status information and
caregiver’s acceptance or rejection for help notifications, play the role of
context sources, as discussed in Chapter 4. The services offered by these
components should be registered with the discovery service so that the
platform is capable of finding them when necessary. Geographical location

Figure 8-10 Context
sources in the
application-specific
components and in the
platform

THE HEALTHCARE APPLICATION 217

information can be provided by the context handling platform, which is
capable of offering geographical location information based on GSM cell
triangulation.

We also need context manager components capable of detecting the
particular situation types identified before. The services offered by these
context manager components should also be registered with the discovery
service so that the platform is capable of finding them when necessary.

Given these context information requirements, and the structural
configuration of the healthcare application, we conclude that the following
context sources should be developed: EpilepticAlarmContextSource (CS,),
GeoLocationContextSource (CS,), HazardousActivityContextSource (CS,),
CaregiverStatusContextSource (CS,), and the AcceptRequestContextSource (CSg). Except
for the GeoLocationContextSource (CS,), all the other context sources are specific,
and should be realized as part of the application-specific parts.

Given the situation information requirements, we conclude that the
following context managers should be developed:
SituationWithinRangeContextManagers (CM,), and SituationAvailableContextManager (CM,).
These context manager components can be generalized, and therefore, are
part of the context handling platform.

Figure 8-10 depicts the context sources and managers as part of
application-specific components, and part of the context-handling
platform.

o)
LU
epileptic
patient

epileptic
patient’s

health
professional’s
context

care
giver's
context

&
health

health professional‘s
application-specific
components

ip-e,

context handling platform

Several realization alternatives to implement the context sources are
possible. Application developers are free to choose the most preferable
alternative for their own purpose. An example of possible realization
alternative for the EpilepticAlarmContextSource (CS,) implements the algorithm for
the detection of upcoming epileptic seizure defined by Roessingh research
and development [110]. CS; interacts with the patient’s context through
interaction points of type ip-c, in order to gather the patient’s biosignals. A
possible implementation of the GeoLocationContextSource (CS,) calculates the
users’ geographical locations using a GSM cell-based location mechanism,
and is implemented by the platform developers. CS, interacts with the

218

CHAPTER 8 CASE STUDY

patient’s and the caregiver’s contexts through interaction points of type ip-d
in order to obtain signalling information from their mobile devices.

A possible implementation of the HazardousActivityContextSource (CS,) takes an
explicit input provided by the patient, when he/she undergoes a possible
hazardous activity. As we have discussed in Chapter 2, in our definition of
context information we do not distinguish between manually provided and
automatically acquired (sensed) context information. Although in this
application some context information values are manually provided by the
user, these values still represent conditions in the user’s context. Therefore,
these values should be gathered through interaction points of type ip-c,.
Similarly, the CaregiveStatusContextSource (CS,), and the AcceptRequestContextSource
(CSs) can be realized by means of explicit inputs provided by the caregiver,
who provides his/her current status information and whether he/she accepts
or not the request for help, respectively.

Both context manager components realize the situation detection
mechanism we have discussed in Chapter 6. The
SituationWithinRangeContextManager (CM,) gathers location information from the
GeoLocationContextSource (CS,) in order to detect whether patients are nearby
caregivers or not. The SituationAvailableContextManager (CM,) gathers status
information from the CaregiveStatusContextSource (CS,) in order to reason about
whether the caregiver is available or not.

Figure 8-11 depicts the context source interfaces, which should be
offered by the context sources just defined. The GeoLocationContextSource
provides location information measurement notifications from time to
time, e.g, on every minute. The CaregiverStatusContextSouce, and the
HazardousActivityContextSource, in constrast, provide notifications of caregiver
status measurements and hazardous activity measurements whenever these
values are changed by the caregiver and the patient, respectively.

Figure 8-11 Context
source interfaces
expected to offer the
healthcare context

measurement datatypes

Figure 8-12 Context
source interfaces
expected to offer the
healthcare primitive
event notification
datatypes

Figure 8-13 Healthcare

application situation
measurement datatype
and the respective
context manager
component

8.1.5

THE HEALTHCARE APPLICATION 219

«interface»
GeoLocationContextSource
+subscribe(in characterization : GeoLocationMeasurement, in subscriber : Subscriberldentification) : Subscriptionidentification
+unsubscribe(in subscriptionld : Subscriberldentification)
+query(in expression : GeoLocationMeasurement) . GeoLocationMeasurement

«interface»
CaregiverStatusContextSource
-+subscribe(in characterization : CaregiverStatusMeasurement, in subscriber : Subscriberldentification) . Subscriptionldentification
+unsubscribe(in subscriptionld : Subscriberldentification)
-+query(in expression : CaregiverStatusMeasurement) : CaregiverStatusMeasurement

«interface»
HazardousActivityContextSource
+subscribe(in characterization : HazardousActivityMeasurement, in subscriber : Subscriberldentification) : Subscriptionidentification
+unsubscribe(in subscriptionld : Subscriberldentification)
+query(in expression . HazardousActivityMeasurement) : HazardousActivityMeasurement

Figure 8-12 depicts context source interfaces that provide primitive event
notifications, i.e. the the
EpilepticAlarmContextSource and AcceptRequestContextSource.

interfaces of context sources

«interface»
EpilepticAlarmContextSource
-+subscribe(in characterization : EpilepticAlarm, in subscriber : Subscriberldentification) . Subscriptionldentification
+unsubscribe(in subscriptionld : Subscriptionldentification)

«interface»
AcceptRequestContextSource
-+subscribe(in characterization : AcceptRequest, in subscriber . Subscriberldentification) : Subscriptionldentification
-+unsubscribe(in subscriptionld . Subscriptionldentification)

Figure 8-13 depicts the context manager interfaces for the context managers
SituationAvailableContextManager and the SituationWithinRangeContextManager.

«interface»
SituationAvailableC
ization - SitualionCaregi i L in

+subscribe(in transition : Transition, in
+ i jonld : Subscri
-query(in exp jtuali il

ification) :

) - Collection

«interface»
SituationWithinRangeContextManager
ization : SituationCaregiver

-+subscribe(in transition : Transition, in , in subscriber tification

n
-+query(in exp

lification) : Subscriptic

jon : SituationCaregiverWithi () : Collection

Action services

The application-specific components running on the users devices should
implement action services in order to receive the invocations from the
context handling platform. The invocations, in turn, are responses to
particular occurrences of events and condition evaluations. We have
discussed action services in detail throughout Chapters 2, 4 and 7. Three
types of action services should be offered, as follows:
— PatientActionService (AS,): action service offered by a patient’s application-
specific component. It implements the indicateEpilepticSeizure operation,
which receives the notification of a possible epileptic seizure;

220

Figure 8-14
Specification of action
services to be offered by
the application-specific
components

8.1.6

CHAPTER 8 CASE STUDY

— ProfessionalActionService (AS,): action service offered by a health
professional’s application-specific component. It implements logSeizure
operation, which receives the notification of an epileptic alarm and logs
it;

— CaregiverActionService (AS;): action service offered by a caregiver’s
application-specific component. It implements the requestHelp and
indicateAcceptance operations, which receives the requests for helping a
particular patient, and notifies the acceptance of a certain caregiver,
respectively;

Figure 8-14 depicts the specification of the interfaces offered by these

action service components.

«interface» «interface»
PatientActionService ProfessionalActionService

-+indicateEpilepticSeizure() +logSeizure(in patientlD : String)

«interface»
CaregiverActionService
++requestHelp(in patientlD : String, in coordinates : GeoLocationCoordinates)
+indicateAcceptance(in patientlD : String, in caregiverlD : String)

Controlling services

In order to delegate required pieces of reactive behaviour to the platform,

we should specify ECA-DL rules that represent these behaviours. The

controlling services and the ECA-DL language have been extensively
discussed in Chapter 7. The following reactive behaviours are required:

1. SeizureAlarm: upon an epileptic seizure alarm, the application running on
the patient’s device should be notified of the possibility of an epileptic
seizure and that the patient is currently performing a hazardous activity.
This patient’s application may launch a voice message warning the
patient to stop such activity in the next minutes;

2. HelpRequestNotification: upon an epileptic seizure alarm, a collection of
caregivers should be notified that a patient is in need of help. Only
caregivers that are available and nearby the patient should receive the
notification. Upon receiving such notification, the application running
on the caregiver’s device may plot on a map a possible route between
the caregiver and the patient;

3. HelpAcceptedNotificafion: upon receiving an acceptance from a particular
caregiver, the caregivers that had previously received the notification for
help should be notified that one of the caregivers has already accepted to
help that particular patient;

4. LogSeizureAlarm: upon an epileptic seizure alarm, log the alarm on the
health professional’s application for further analysis.

THE HEALTHCARE APPLICATION 221

Healthcare action resolver component

An action resolver component receives invocations from a controller

component aiming at dispatching a number of actions. We have defined a

healthcare action resolver that implements all possible actions that can be

referred to by ECA-DL rules running in the controller component. When
events occur and conditions are matched, the controller invokes actions on
the healthcare action resolver, which may in turn dispatch the appropriate
invocations to the right action services, which are implemented in the
respective application-specific components. A single invocation of an action
implemented in the resolver may generate several invocations on the action
services running on the users’ application-specific components.

The following actions should be implemented by the healthcare action
resolver component in order to realize the aforementioned behaviours:

- notifyPatientApplication is required to realize reactive behaviour SeizureAlarm,
which aims at notifying the proper patient’s application of his/her
possible seizure alarm. This action receives as argument the patient’s
unique identifier, with which it is possible to acquire the address of the
application’s service endpoint on the patient’s device. When the
patient’s address is acquired, the indicateEpilepticSeizure operation offered
by the PatientActionService is invoked,;

— notifyCaregiversApplications is required to realize reactive behaviour
HelpRequestNotification, which aims at notifying the proper caregivers’
applications. The arguments accepted by this action are (i) the location
of the patient; and (ii) the collection of caregivers who need to be
notified. For each of these caregivers, the requestHelp operation offered by
the CaregiverActionService is invoked;

- notifyAcceptanceCaregivers is required to realize reactive behaviour
HelpAcceptedNotification, which aims at notifying the proper caregivers’
applications. This action receives as arguments (i) the collection of
caregivers who need to be notified; (ii) the patient that needs help; and
(iii) the caregiver that accepted to help. For each of the caregivers who
need to be notified, the indicateAcceptance operation offered by the
CaregiverActionService is invoked;

— logEpilepticAlarm is required to realize reactive behaviour LogSeizureAlarm,
which aims at notifying the health professionals’ applications that an
epileptic alarm has occurred. This action receives as argument (i) the
unique identifier of the patient having the seizure; and (ii) a collection
with the health professionals’ identifiers. The logSeizure operation offered
by the ProfessinalActionService is invoked.

Figure 8-15 depicts the specification of the healthcare action resolver interface

that dispatches the required action invocations to the proper

implementations. These implementations are distributed and running on
the users’ devices.

222

Figure 8-15
Specification of action
resolver services for the
Healthcare application

Figure 8-16
Configuration of
components for the
healthcare application

CHAPTER 8 CASE STUDY

«interface»
HealthcareActionResolver

-+notifyPatientApplication(in patientld . String)

-+notifyCaregiversApplications(in patientlD : String, in coordinates : GeoLocationCoordinates, in caregivers : Collection)
-+notifyAcceptanceCaregivers(in caregivers . Collection, in patientlD . String, in caregiverlD . String)
+logSeizureProfessionalsApplications(in patientlD : String, in professionals : Collection)

Component conﬁguration

Figure 8-16 depicts the complete configuration of the components that are
necessary to realize the healthcare context-aware application. It refines the
architecture presented in Figure 8-8, incorporating the healthcare controller
component, the healthcare action resolver component, and the application-
specific action service components. Such types of refinements have been
extensively discussed in Chapter 4. The gray area indicates the context
handling platform part. As already discussed, the application-specific parts
consist of specific functions that should not be generalized in the platform.
These include several context sources and the application-specific action
services. Context manager components and the location context source are
implemented as part of the platform.

patient’s application components

professional’s
application
components

patient’s

context @

. healthcare
location healthcare : =
context controller action — ("ip-i,) As,
- resolver
caregiver's source
context

ip-e5’

(%)

caregiver's application components

cs,

We have proposed a single controller component to realize the reactive
behaviours of the healthcare application. However, it would be also possible
to use several instances of the controller component, each containing
specific ECA-DL rules. Since ECA-DL rules are independent from each
other, they can be distributed arbitrarily over different instances of
controller components.

ECA-DL rules

Each of the ECA-DL rules discussed below aims at specitying a particular
behaviour required by the healthcare application. These rules are offered to
the healthcare controller component at platform runtime, ie. at the

THE HEALTHCARE APPLICATION 223

controller component operation time. We assume for the healthcare
application scenario that the ECA-DL rules presented here are defined at
application design-time, and at platform runtime. However, it is also
possible that ECA-DL rules are defined at application runtime. For
example, the health professional could be provided with a user interface
that allowed him/her to define desired reactive behaviours, which could be
translated to ECA-DL by some specific component running on the
professional’s device. In this case, ECA-DL rules would be provided to the
controller component by the health professional’s application-specific
components. We have discussed these alternative configurations in Chapter
7. In addition, other rules, different from the ones presented here, could
also be specified. The only requirement is that the context and situation
values, events, and actions referred to by the rules should be available to the
controller component. The Jess rules derived from these ECA-DL rules can
be found in Appendix D.

The following ECA-DL rule (ECARulel) aims at realizing the reactive
behaviour SeizureAlarm. It uses a scope clause to define that this rule should
be applied to all epileptic patients registered in the controller component.
The When clause checks whether this patient is currently performing any
potentially hazardous activity. When both the event happens and the
condition in the when clause is true, the action notifyPatientApplication is
invoked.

Scope (EpilepticPatient.”; p)

{
Upon EpilepticAlarm (p)
When p.hasHazardousActivity.hazardousvalue
Do NotifyPatientApplication (p)

}

The following ECA-DL rule (ECARule2) aims at realizing the reactive
behaviour HelpRequestNotification. This rule uses the same scope clause as the
rule above. In addition, there is no when clause in the rule. Upon receiving
event notification of an epileptic alarm for any epileptic patient, the action
NotifyCaregiversApplications is invoked. The select clause selects all the patient’s
caregivers who are within range and available. The result collection of this
select is passed as one of the arguments of the action.

Scope (EpilepticPatient.”; p)
{
Upon EpilepticAlarm (p)
Do NotifyCaregiversApplications (p, p.hasGeoLocation.coordinates,
Select (Caregiver.; care; isCaregiverOf (care, p) and SituationWithinRange (p, care)

224

CHAPTER 8 CASE STUDY

and SituationCaregiverAvailable (care)))

}

The following ECA-DL rule (ECARule3) aims at realizing the reactive
behaviour HelpAcceptedNotification. This rule uses the same scope clause as
the previous rules. The upon clause specifies an event composition, in
which Ev1 (EpilepticAlarm (p)) should occur followed by Ev2 (AcceptRequest (p)).
This means that this composite event happens every time there is an
epileptic seizure alarm, followed by an acceptance for helping the patient
having the seizure. As shown in Figure 8-6, the AcceptRequest accepts two
arguments, namely a caregiver and a patient. In this example, only a patient
is provided as argument. This way, we can filter the AcceptRequest event
notifications for patient p, from any caregiver. Upon the occurrence of this
composite event, the action notifyAcceptanceCaregivers is invoked. The select
clause selects all the patient’s caregivers who are within range, and are
different from the caregiver who accepted the request. The identification of
the caregiver who accepted the request is obtained by accessing one of the
attributes of the event, namely Ev2.caregiverlD. The result collection of this
select is passed as one of the arguments for the action.

Scope (EpilepticPatient.”; p)
{
Upon Ev1: EpilepticAlarm (p); Ev2: AcceptHelpRequest (p)
Do notifyAcceptanceCaregivers (
Select (CareGiver.™; care; isCareGiverOf (care, p) and
SituationWithinRange (care, p) and
care <> Ev2.caregiverID), p, Ev2.caregiverlD)

}

The following ECA-DL rule (ECARuled) aims at realizing the reactive
behaviour LogSeizureAlarm. Upon receiving an epileptic alarm notification for
any epileptic patient, the action logEpilepticAlarm is invoked. The select clause
selects all the patient’s health professionals.

Scope (EpilepticPatient.”; p)
{

Upon EpilepticAlarm (p)

Do logEpilepticAlarm (p, Select (HealthProfessional.™; prof; isHealthProfessionalQf (prof, p)))
}

8.1.7

8.2

THE CONTEXT-AWARE POLICY MANAGEMENT APPLICATION 225

Deployment

The situation detection specification should be deployed in the context
managers, and the ECA-DL rules in the controller component. Deploying
ECA-DL rules consists of submitting a textual representation of the rule
with the controller component. This has been discussed in Chapter 7. For
the situation specification, only Jess rules and Java code can be deployed in
a context manager component. The systematic derivation of Jess rules and
Java code from UML and OCL, respectively, has been extensively discussed
in Chapter 6. Appendix D shows the Jess rules that correspond to the
situation specification and ECA-DL rules.

The Context-Aware Policy Management Application

Suppose we would like to extend the healthcare scenario presented in
section 8.1 in order to allow caregivers and health professionals to access,
for example, Mr. Janssen’s private information in particular situations. We
may define, for privacy reasons, that the health professional may access Mr.
Janssen’s biosignals only for 15 minutes after an epileptic alarm
notification. Similarly, we could also define that patients can only check
his/her caregiver’s availability status upon an epileptic alarm prediction.
These types of privacy rules are commonly referred to as policies. In general,
managing policies in a context-aware application concerns controlling
access to context information, enforcing user’s privacy, and managing trust
relationships among end-users and components.

Context-aware applications and platforms may potentially handle
thousands of entities (e.g., end-users, service providers, context providers),
making the management of policies difficult [84]. In such cases, a policy
management tool that assists and automates management of policies is
desirable. Standard policy management tools, however, typically do not
offer support for context-aware policy management, which allow the
definition of policies based on the users’ context information. These tools
usually offer support for the definition of static policies, in which the
entities for which these policies apply are known beforehand.

In contrast, context-aware applications and platforms require dynamic
policy management, in which policies may be created and destroyed when
entities enter or leave particular context and situation conditions. In order
to tackle this issue, we propose here a dynamic policy management
mechanism that defines policies based on the users’ context information.
This mechanism is realized by means of our situation detection framework
and the controlling services. For this particular scenario, we reuse the

226

8.2.1

Figure 8-17 Overview of
the context-aware policy
management application
structural design

8.2.2

CHAPTER 8 CASE STUDY

context and situation models already presented in section 8.1.1, and the
context and situation information models presented in section 8.1.2.

Policy management application structural design

Figure 8-17 shows how the context handling platform offers support to the
policy management application. This application uses generic services
offered by the platform and also implements specific services (application-
specific components). Figure 8-17 extends Figure 8-9 by including a policy
administrator user and his/her respective administrator application-specific
components. By means of interaction points of type ip-a,, the policy
administrator defines the policies of interest to this application, in addition
to configuration information such as starting commands. The policy
administrator-specific components map the behaviours gathered from the
policy administrator to ECA-DL rules, which are offered to the controller
platform through interaction points of ip-e,. In addition, interaction points
of type ip-e, enable the administrator application to gather management
information regarding the policy enforcement activities from the platform.

A epileptic health l)\

& PO N o

et patient’s professional’s policy
epiteptic context context context administrator

administrator
application-specific
components

health professional's
application-specific
components

caregiver's application-
specific components

patient application-
specific components

context-aware policy management application

context handling platform

Policy enforcement components

In the policy management application, the context source components also
implement policy enforcement interfaces. These interfaces allow context sources
to be configured in order to fulfil particular policy requirements, which are
context and situation-dependent. For example, the EpilepticAlarmContextSource
should permit configuration of policies, such as the one to only allow
caregivers and health professionals that are currently in particular context
situations to access the patient’s vital signs. Similarly, it should be possible
to configure the CaregiverStatusContextSource to only allow patients and health
professionals that are in particular context situations to access the
caregivers’ status information.

Figure 8-18 depicts the policy enforcement interfaces that should be
implemented by the EpilepticAlarmContextSource (CS;), and by the
CaregiverStatusContextSource (CS,).

Figure 8-18 Policy
enforcement interfaces
to be implemented by
context source
components

8.2.3

THE CONTEXT-AWARE POLICY MANAGEMENT APPLICATION 227

«interface»
EpilepticAlarmPolicyEnforcement
-+grantAccessBiosignals(in entities : Collection, in duration : Real)

++denyAccessBiosignals(in entities : Collection)
+increaseTrustLevelCaregiver (in caregiverlD . String)
+decreaseTrustLevelCaregiver(in caregiverlD : String)

«interface»
CaregiverStatusPolicyEnforcement
+grantAccessStatus(in entities : Collection, in duration : Real)
+denyAccessStatus(in entities : Collection)

The operation grantAccessBiosignals grants access to the patient’s biosignals
information to a collection of entities (caregivers and health professionals),
which is provided as argument to this operation. The denyAccessBiosignals
operation configures the EpilepticAlarmContextSource to deny access to the
patient’s biosignals to a particular collection of entities, which is passed as
argument to this operation.

A patient’s application maintains trust values that are assigned to the
patient’s caregivers. The aim of a trust value is to give the patient an
indication of how much she/he can rely on a particular caregiver. The trust
value changes as a result of the caregiver’s reaction to a request. When a
caregiver accepts a request for help (AcceptRequest event notification), his
trust value should be increased, and when a caregiver rejects to help
(RejectHelpRequest event notification), his trust value should be decreased. The
operation increaseTrustLevelCaregiver allows the patient’s application to increase
the trust value of a particular caregiver, and the operation
decreaseTrustLevelCaregiver allows the patient’s application to decrease the trust
value of particular caregiver.

With respect to the CaregiverStatusPolicyEnforcement interface, we defined
two operations, namely grantAccessStatus, and denyAccessStatus. The
grantAccessStatus operation grants access to status information of this
particular caregiver to collection of entities, for a certain period of time.
Similarly, the denyAccessStatus operation denies access to the caregiver status
information to a given collection of entities.

Policy administrator action service

The administrator’s application-specific ~ components implement
management functionality that allows the administrator to have a global
view of the policies that are applied and to which entities they refer.
Therefore, the administrator’s application-specific components should be
informed of all policies that are applied in the platform. In order to realize
that, we define an AdministratorActionService (AS,) component that receives
invocations from the context handling platform. This action service
component offers operations to inform the administrator’s application-

228

Figure 8-19
Administrator action
service interface

8.2.4

CHAPTER 8 CASE STUDY

specific components of policy related activities. Figure 8-19 depicts the
interface implemented by the AdministratorActionService component.

«interface»
AdministratorActionService

-+indicatePolicyActivity(in type : String, in ECARulelD : String, in subjects : Collection, in targets . Collection)

The operation indicatePolicyActivity informs the type of the policy (e.g, “access
control of patient’s biosignals”), the identification of the ECA-DL rule that
triggers the policy, the subjects and the targets referred to in this particular
policy. Subjects and targets are entities that play different roles depending
on the type of policy. For example, in an access control policy, a subject is
the entity being granted or denied with access to information about a target.
In the example of access control to the patient’s biosignals, the patient is
the target and the caregiver is the subject. In trust management policies, the
subjects refer to the entities that maintain trust values about targets. In our
example, a patient that maintains trust values about caregivers is the subject,
while the caregivers are the targets.

Controlling services

In order to delegate required pieces of reactive behaviour to the platform,

ECA-DL rules that represent these behaviours should be defined first. The

following reactive behaviours are required by the policy management

application:

1. GrantAccess: upon a patient’s epileptic seizure alarm, the patient’s
caregivers that are available and nearby should be granted with rights to
access the patient’s biosignals. In addition, the status information of
caregivers who are nearby should become available for the patient for 30
minutes;

2. DenyAccess: upon a caregiver’s acceptance notification, the other
caregivers that had previously received the request for help should be
denied rights to access the patient’s biosignals;

3. IncreaseTrust: upon a caregiver’s acceptance notification, the patient’s
application should increase his/her trust value on the caregiver that
accepted the request to help;

4. DecreaseTrust: upon a caregiver’s rejection notification, the patient’s
application should decrease his/her trust value on the caregiver that
rejected a request for help.

For management reasons, the administrator should have a global view of

policy management activities that are occurring within the platform. In

order to inform the administrator’s application-specific components of
such activities, whenever a policy is deployed or removed, the policy
administrator action service should be invoked.

THE CONTEXT-AWARE POLICY MANAGEMENT APPLICATION 229

Policy management action resolver component
In contrast to the previous application in which the healthcare action
resolver component only invokes action services on application-specific
parts, in the policy management application, context sources (CS; and CS,)
are invoked as the result of ECA-DL rules execution. The following actions
are implemented by the policy management action resolver in order to
realize the aforementioned behaviours:

— grantAccessControlPolicyPatient: used to realize reactive behaviour GrantAccess
in order to deploy access control policies over the patient’s biosignals. It
receives as arguments (i) the patient to be configured; and (ii) the
collection of entities for which biosignals should be granted to. It
invokes the operation grantAccessBiosignals on the EpilepticAlarmContextSource
running on the patient’s device;

— denyAccessControlPolicyPatient: used in reactive behaviour DenyAccess to
remove access control policies over the patient’s biosignals. It receives as
arguments (i) the patient to be configured; and (ii) the collection of
entities for which biosignals should be denied to. It invokes the
operation denyAcccessBiosignals on the EpilepticAlarmContextSource running on
the patient’s device;

— grantPolicyCaregiversStatus : used to realize reactive behaviour GrantAccess in
order to deploy access control policies over the caregiver’s status
information. It receives as arguments (i) a collection of caregivers to be
configured; and (ii) the patient to which the status information should
be granted; For each caregiver, it invokes the operation grantAccessStatus
on the CaregiverStatusAvailabilityContextSource running on the caregivers’
devices;

— increaseTrustPolicyPatient: used to realize reactive behaviour IncreaseTrust in
order to deploy trust management policies over the caregiver’s trust
values. It receives as arguments (i) a patient to be configured; and (ii)
the caregiver for which the trust level should be increased. It invokes the
operation increaseTrustLevelCaregiver on the EpilepticAlarmContextSource running
on the patient’s device;

— decreaseTrustPolicyPatient: used to realize reactive behaviour DecreaseTrust in
order to deploy trust management policies over the caregiver’s trust
values. It receives as arguments (i) a patient to be configured; and (ii)
the caregiver for which the trust level should be decreased. It invokes
the operation decreaseTrustLevelCaregiver on the EpilepticAlarmContextSource
running on the patient’s device.

Each of these actions invokes the indicatePolicyActivity on the action service

running on the administrator device in order to inform the administrator of

the particular policy activity that is currently taking place. Figure §-20
depicts the specification of the action resolver component interface for the
policy management application.

230

Figure 8-20
Specification of action
resolver interface for the
policy management
application

Figure 8-21 Component
configuration for the
policy management
application

CHAPTER 8 CASE STUDY

«interface»
PolicyManagementActionResolver

+grantAccessControlPolicyPatient(in patientlD : String, in entities : Collection)
+denyAccessControlPolicyPatient(in patientlD : String, in entities : Collection)
+grantPolicyCaregiversStatus(in caregivers : Collection, in patientlD : String)
+increaseTrustPolicyPatient (in patientlD : String, in caregiverlD : String)
+decreaseTrustPolicyPatient(in patientlD . String, in caregiverlD : String)

Configuration of components

Figure 8-21 depicts the complete configuration of the components that are
necessary to realize the policy management application. It refines the
architecture presented in Figure 8-17, incorporating the policy management
controller component, the policy management action resolver component, and the
application-specific action service components. Differently from the healthcare
application, the context sources also implement policy enforcement points,
which are invoked by the action resolver component through interaction
points of type ip-i; and ip-i;. Invocations to the administrator’s application
are performed by means of interaction points of type ip-i,. Context source
CS; has been omitted in Figure 8-21 for clarity.

patient’s application components

administrator’s
— application
patient’s components

context policy policy

location management management -~~~

context controller action 'p"m
resolver

source

caregiver's

caregiver's application components

ECA-DL
Each of the following ECA-DL rules aims at specifying a particular
behaviour required by the policy management application. These rules are
offered to the policy management controller by the administrator’s
application at platform runtime. The interaction point that enables the
administrator’s application to provide ECA-DL rules to the platform is not
shown in Figure 8-21 for the sake of clarity. The Jess rules derived from
these ECA-DL rules can be found in Appendix D.

The following ECA-DL rule (ECARuleb) aims at realizing the reactive
behaviour GrantAccess. The scope and upon clauses are similar to the
healthcare application ECA-DL rules, which have been discussed in section

THE CONTEXT-AWARE POLICY MANAGEMENT APPLICATION 231

8.1.6. Upon receiving event notification of an epileptic alarm for any
epileptic patient, actions grantAccessControlPolicyPatient and
grantPolicyCaregiversStatus are invoked.

Scope (EpilepticPatient.”; p)
{

Upon EpilepticAlarm (p)

Do grantAccessControlPolicyPatient (p,

Select (Caregiver.™; care; isCaregiverOf (care, p) and SituationWithinRange (p, care)
and SituationCaregiverAvailable (care)));
grantPolicyCaregiversStatus (Select (Caregiver.*; care; isCaregiverOf (care, p) and
SituationWithinRange (p, care) and SituationCaregiverAvailable (care)), p)

}

The following ECA-DL rule (ECARule6) aims at realizing the reactive
behaviour DenyAccess. The upon clause defines that an epileptic seizure alarm
should be followed by a caregiver acceptance for helping the patient having
the seizure. Upon the occurrence of this composite event, the action
denyAccessControlPolicyPatient is invoked. This operation denies access control to
all caregivers that were previously granted access to the patient’s biosignals,
except for the caregiver who accepted the request for helping.

Scope (EpilepticPatient.”; p)
{
Upon Ev1: EpilepticAlarm (p); Ev2: AcceptHelpRequest (p)
Do denyAccessControlPolicyPatient (p,
Select (CareGiver.; care; isCareGiverOf (care, p) and
SituationWithinRange (care, p) and SituationCaregiverAvailable (care)
and care <> Ev2.caregiveriD), p, Ev2.caregiveriD));

}

The following ECA-DL rule (ECARule7) aims at realizing the reactive
behaviour IncreaseTrust. The upon clause defines the same composite event
as ECARule6. Upon the occurrence of this composite event, the action
increaseTrustPolicyPatient is invoked, which increases the trust value of a
particular caregiver.

Scope (EpilepticPatient.”; p)

{
Upon Ev1: EpilepticAlarm (p); Ev2: AcceptHelpRequest (p)
Do increaseTrustPolicyPatient (p, Ev2.caregiveriD)

}

232

8.3

8.3.1

CHAPTER 8 CASE STUDY

The following ECA-DL rule (ECARule8) aims at realizing the reactive
behaviour DecreaseTrust. The scope clause applies the rule to all the
caregivers in the system. Upon receiving a RejectHelpRequest event
notification, the action decreaseTrustPolicyPatient is invoked. The identification
of the patient is retrieved as one of the parameters of the RejectHelpRequest
event notification.

Scope (Caregiver.™; ¢)
{
Upon Ev:RejectHelpRequest (c)
Do decreaseTrustPolicyPatient (Ev.patientlD, ¢)

}

The Healthcare Application Prototype

We have built a prototype that implements the healthcare application. The

objective of this prototype is twofold:

— To demonstrate the feasibility of our approach. The prototype serves to
demonstrate that the abstractions proposed in this thesis (context and
situation modelling), and the context handling platform can be built in a
computing system; and

— To allow the assessment of the performance and the scalability of the

approach proposed.

System configuration

The prototype implements a design product, which is the result of our design
efforts presented in section 8.1. The design product includes (i) the Java
code that implements the context and situation model; (ii) the Jess rules for
situation detection; (iii) the Jess rules for ECA-DL rules; (iv) the
architecture presented in Figure 8-16; (v) the context information
measurement datatypes; and (vi) the specification of the component
interfaces.

We have implemented the components using Java as the programming
language, Java RMI [63] for enabling the distribution of the components,
and Eclipse [34] as the development environment. We have implemented
in the prototype all the components that were identified in our design
efforts, namely the context sources, the context managers, the controller,
the action resolver, and the action services (see architecture in Figure §8-16).
Application-specific components that are neither context sources, nor
action services have not been implemented, i.e. we have not implemented
end-user interfaces, and other user-specific functionality.

THE HEALTHCARE APPLICATION PROTOTYPE 233

Context sources

We have simulated the production of context information and events. The
GeoLocationContextSource randomly generates geographical location coordinates
for its users, but respecting a maximum variation of the location changes.
The EpilepticAlarmContextSource and ~ AcceptRequestContextSource also randomly
generate EpilepticAlarm and AcceptRequest events, respectively. Similarly, the
CaregiverStatusContextSource and ~ the HazardousActivityContextSource randomly
changes the availability status of caregivers and whether the user is
performing a potentially hazardous activity or not. The context sources do
not implement the context models proposed, since they generate simple
isolated values, which are not yet combined with other context values. We
assume, however, that users in the system (caregivers, patients and health
professionals) are uniquely identified by an id, which is shared among the
components.

Context managers

The context managers to detect situations SituationCaregiverWithinRange, and
SituationCaregiverAvailable have been implemented as discussed in Chapter 6.
The SituationCaregiverWithinRangeContextManager gathers context information from
the GeoLocationContextSource through a callback interface, which allows the
GeoLocationContextSource to push location information to the
SituationCaregiverWithinRangeContextManager component whenever a new location
value is generated. When location information is received from the location
context source, the SituationCaregiverWithinRangeContextManager updates local Java
objects, which are automatically shadowed in the Jess working memory.
Location values are exchanged using the GeolocationMeasurement datatype
depicted in Figure 8-5.

The SituationCaregiverWithinRangeContextManager detects when patients and
caregivers are nearby each other by means of Jess rules running on the local
Jess engine. In order to detect this type of situation, this context manager
implements part of the situation model, in accordance to the specification
of the SituationCareGiverWithinRange, depicted in Figure 8-4.

Similarly, the SituationCaregiverAvailableContextManager component implements
the situation model presented in Figure 8-3. In order to reason about the
availability of the caregivers, it gathers context information from the
CaregiverStatusContextSource through a callback interface, which allows the
CaregiverStatusContextSource to push caregiver status information to the
SituationCaregiverAvailableContextManager whenever the status of a particular
caregiver changes. Caregiver status information is exchanged following the
CaregiverStatusMeasurement datatype depicted in Figure 8-5. The
SituationCaregiverAvailableContextManager component runs a local Jess engine,
which detects when the situation begins and ceases to hold.

234

Table 8-11 Example of
gvent registrations that
are maintained in the
controller component

CHAPTER 8 CASE STUDY

Controller

The healthcare controller component gathers context information from
context sources and managers in order to gather event notifications and
condition values. Since the controller integrates context and situation
information, it implements the complete context and situation models, as
presented in Figure 8-2, Figure 8-3 and Figure 8-4. We have implemented
callback interfaces in the controller, which allows the context sources and
managers to push context and situation information in the controller.
When these callback methods are invoked, context and situation
information is received by the controller and included into the local Jess
working memory, by means of shadow facts. ECA-DL rules are
continuously-running in the local Jess engine.

The controller implements the event structures, which are necessary to
realize event consumption and composition, as presented in Chapter 7.
According to the ECA-DL rules defined for the healthcare application, two
types of event notifications are expected, namely EpilepticAlarm and
AcceptRequest. As we have defined in Chapter 7, all event notifications
expected from context sources should be registered with the controller.
Since the ECA-DL rules are scoped, there are EpilepticAlarm event
registrations for each epileptic patient and for each rule that refers to this
event. Suppose, for example, only Mr. Janssen is currently supported as an
epileptic patient, and his caregivers are Mary and Alice. The controller
maintains event registrations, as depicted in Table 7-6. In this way,
whenever an epileptic alarm event notification is received, such as, for
example EpilepticAlarm (Mr Janssen), the controller matches this notification
with the registrations available (Table 7-6). Since there are four matches,
the controller includes four instances of the EpilepticAlarm event in the
working memory, one for each rule referring to that event. Similarly when
event notifications of AcceptRequest (Mr.Janssen, caregiver) are received, the
controller finds two matches, one for each caregiver, and creates two
instances of this event in the working memory.

In total, our prototype runs three instances of the Jess engine, one for
each context manager component, and one for the controller component.
Context sources are not implemented using Jess engines.

Event Description rulelD Parameters
EpilepticAlarm ECARulet Mr. Janssen
EpilepticAlarm ECARule2 Mr. Janssen
EpilepticAlarm ECARule3 Mr. Janssen
EpilepticAlarm ECARule4 Mr. Janssen
AcceptRequest ECARule3 Mr. Janssen, Mary

AcceptRequest ECARule3 Mr. Janssen, Alice

8.3.2

Table 8-12 Comparison
between specification
and realization efforts

8.3.3

THE HEALTHCARE APPLICATION PROTOTYPE 235

Indication of realization efforts

We argue in this thesis that our approach facilitates and simplifies
application development since it provides a framework that systematically
derives part of the application realization from its specification. This
framework supports the derivation of the following application parts: (i)
context models; (ii) situation detection; and (iii) reactive behaviours. In
order to have an indication of how our approach facilitates and simplifies
application development, we have attempted to quantify the specification
and the realization efforts.

In order to provide a rough quantification of the specification efforts,
we count the number of UML class diagrams, and the number of OCL and
ECA-DL lines of code (LOC). For roughly quantifying the realization efforts,
we count the Java and the Jess lines of code that are systematically derived
from the aforementioned specifications. For counting Java code we have
used Metrics [35], an open-source Eclipse plug-in that gathers various
metrics of Eclipse projects. Table 8-12 shows these quantification values.

UML classes (units) OCL (LOC) ECA-DL (LOC) Java (LOC) Jess (LOC)
23 9 21 663 126

The results presented in Table 8-12 indicate that the efforts required for the
realization phase are a substantial part of the application development.
Therefore, since our approach alleviates application realization, it facilitates
and simplifies a substantial part of the application development.

Performance evaluation

In order to evaluate the scalability and the performance of the healthcare
application, we have defined the reaction time evaluation parameter. Reaction
time is defined as the period of time between generating an event and
finally invoking an action of an ECA-DL rule that refers to that event. For
example, we can assess the reaction time between an EpilepticAlarm event
occurrence and triggering ECARulel, or we can assess the reaction time
between an AcceptRequest event occurrence and triggering ECARule3.
Therefore, the reaction time consists of the processing time that takes place
between an event occurrence, and the invocation of the action. We capture
the reaction time in the EpilepticAlarmContextSource, which receives a callback
invocation from the controller when rules ECARule2 and ECARule3 are
triggered. These callback invocations are included in the RHS (action part)
of the Jess rules derived from ECARule2 and ECARule3, for the purpose of
evaluating the performance. Therefore, every time one of these rules is
executed, the controller’s Jess engine invokes the EpilepticAlarmContextSource

236

CHAPTER 8 CASE STUDY

component, which is then capable of calculating the reaction time. These
callback invocations are not part of the normal application’s behaviour.

General configuration

We have measured in our evaluation the reaction time between the
occurrence of an EpilepticAlarm, and triggering ECARule2 and ECARule3. The
reaction time between an occurrence of the EpilepticAlarm and triggering
ECARule3 is bigger than between the same EpilepticAlarm occurrence and
triggering ECARule2. This is due to the composition of events defined in
ECARule3, which requires that an event AcceptRequest should occur after the
EpilepticAlarm.

We have collected reaction time measurements for different numbers of
patients and caregivers (entities), and for different amounts of events
generated per second. For each pair (number of entities, number of events
per second), we have collected 100 reaction time measurements, for which
we calculate an average reaction time value. The average reaction time includes
the reaction times for both ECARule2 and ECARule3.

We have performed tests in order to evaluate how the application
behaves under extreme circumstances, such as with extreme numbers of
users and events. These types of tests are often called stress tests. Stress
testing aims at assessing the robustness and the availability of the system
under heavy load. In order to perform such stress testing, we have observed
and measured the reaction times when the system is loaded with up to
35000 entities, and is generating up to 450 events per second.

Centralized configuration

Figure 8-22 depicts a graphic which demonstrates the increase of the
average reaction time in milliseconds (Y axis) with respect to the number of
entities (X axis). Three curves are shown, each one representing a particular
number of events generated per second. For these measurements all the
components are running on a single machine with 1GB of memory.

Figure 8-22 Average
reaction times for
ECARule2 and
ECARule3 in a
centralized configuration

THE HEALTHCARE APPLICATION PROTOTYPE 237

Average Reaction Time (ECARule2 and ECARule3)

1200
% 1000
E
Q
E 800 -
5 ---e--- 45 events/s
600 4 --=--90 events/s
3 —+— 180 evets/s
S 400
o
2
< 200

0
0 5000 10000 15000 20000 25000 30000 35000
Number of patients and caregivers (entities)

We have verified that about 85% of the reaction time consists of the
processing time required by the Jess engine. The other 15% is due to the
event consumption mechanism implemented by the controller component.
The later could be improved by optimizing the event structures using, for
example, hash tables.

The shape of these curves can be explained by considering how Jess
works. Jess implements the Rete algorithm, which builds a network of
nodes on memory, each node representing one or more patterns on the
rule LHS. Facts that are being added to or removed from the working
memory are processed by this network of nodes. At the bottom edges of the
network are the nodes representing individual rules. When a set of facts
filters all the way down to the edges of the network, it has passed all the
tests on the LHS of a particular rule and its RHS is executed. The Rete
algorithm remembers past test results across iterations of the rule loop.
Only new facts are tested against any rule LHSs. In addition, new facts are
tested against only the rule LHSs to which they are most likely to be
relevant. As a result, the computational complexity is linear with respect to
the size of the working memory [64].

When we increase the number of entities, the size of the working
memory increases proportionally to the number of entities and their
context attributes, which should be also included to the working memory.
As mentioned, the increase of the working memory linearly degrades the
performance of the Jess engine, which consequently increases the reaction
time. In addition, event notifications are also added to the working
memory. Although they are not kept for long time due to event
consumption and detection window interval, the addition and removal of
events requires rearranging the Rete network of nodes, which also

238

CHAPTER 8 CASE STUDY

consumes processing time, and increases the reaction time. These
behaviours are reflected on the shapes of two curves in Figure §-22, namely
the 45 events/s and the 90 events/s. For these curves, the reaction time is
roughly linear with respect to the number of entities in the system.

In the curve 180 events/s, for more than 7500 entities, we see that the
reaction time is highly unpredictable, which indicates a saturation point. This
is explained by the fact that Jess cannot process the events fast enough to
keep up with the frequency in which events are being generated (180
events/s). Therefore, event notifications may not be processed in the order
they arrive, which leads to event starvation. To handle this saturation point,
an event queuing event mechanism is probably necessary.

When the system gets to a saturation point, and the waiting time for
processing events is bigger than the detection window interval defined for a
certain rule, incorrect behaviour may possibly occur. For example, suppose
we define a detection window interval of 1 second for ECARule2. Suppose
that, due to system saturation, an EpilepticAlarm notification takes 3 seconds
to be processed. This means that this event is discarded before it is
consumed by ECARule2, because it fell out of the detection window
interval. In this example, ECARule2 should have been triggered, which
characterizes incorrect system behaviour. In applications that cannot afford
such types of possible incorrect behaviours, we recommend defining a big
detection window interval value, which can accommodate the delays caused
by system saturation. If there are specific event timing constraints to be
defined in a rule, such as “eventl should occur and event2 should occur at
most 50 milliseconds after event1”, these constraints should be included as
conditions in the When clause of the rule.

Distributed configuration

Figure 8-23 depicts a graphic similar to the one in Figure 8-22. For this
experiment we distribute the components in two different machines with
1GB memory, and 2GB memory. In the 1GB machine we run all the five
context sources, and in the 2GB machine the context managers and the
controller.

Figure 8-23 Average
reaction times for
ECARule2 and
ECARule3 in a
distributed configuration

THE HEALTHCARE APPLICATION PROTOTYPE 239

Average Reaction Time (ECARule2 and ECARule3)

300

250 4

200 +

---m--- 90 events/s
o - - -180 events/s

—— 450 events/s

100

Average reaction time (ms)

50

0 T T T T T T
0 5000 10000 15000 20000 25000 30000 35000

Number of patients and caregivers (entities)

The graphic shows that the average reaction times in a distributed
configuration improve considerably. In addition, the saturation point has
not been reached even with a bigger number of entities, and a higher
frequency of event generation. This behaviour can be explained by another
characteristic of Jess, which is the usage of memory. Jess is said to be a
“memory-intensive application” [64], since Rete is an algorithm that
explicitly trades space for speed. Therefore, Jess performance is impacted by
memory availability. In the distributed configuration, the three engines run
on separate machines with increased memory availability, which improves
the performance of these engines. In addition, the context sources consume
a considerable amount of memory to simulate large amounts of context
information and events. In the distributed configuration, the engines do not
need to compete with the context sources for memory.

Figure 8-24 compares the average reaction times for the centralized and
for the distributed configurations when 90 events/s are generated. In the
beginning (until 7500 entities), the centralized configuration performs
better. Since at this point not much memory is required, the network latency
for exchanging events plus the processing time required by the engines in
the distributed configuration is bigger than the processing time required in
the centralized configuration. Therefore, until this point, the reaction time
in the centralized configuration is better than in the distributed
configuration. This behaviour changes when we increase the number of
entities, due to the increase in the memory usage.

Memory availability also explains why the curves in the distributed
configuration are more predictable than the curves in the centralized
configuration. In the centralized configuration, in which the resources are
more limited, the Jess engines are more sensitive to other operating system

240

Figure 8-24 Comparing
average reaction times
for the centralized and
distributed
configurations

8.4

CHAPTER 8 CASE STUDY

activities, such as threading and swapping, causing unpredictable variations
in the performance.

Average Reaction Time (ECARule2 and ECARule3)
900
800 +
n
£ 700 -
Q
£ 600 -
§ 500 / ---m--- 90 efs (distributed)
§ 400 —+— 90 e/s (centralized)
& 300
/
g200 40— — — A4 ——————— -
< .
100 ——r
g
0 T T T T T T
0 5000 10000 15000 20000 25000 30000 35000
Number of patients and caregivers (entities)
Discussion

In this chapter we have demonstrated the feasibility of the development
approach presented in this thesis. We have provided the complete design
process of two different application, handling different requirements,
namely the healthcare and policy management applications. In addition, we
have implemented a prototype for the healthcare application, which
demonstrated that the approach can be implemented in a computing
system. We have also carried out evaluations that allowed us to draw
relevant conclusions with respect to the performance and scalability issues.
We have considered a particular medical condition in our healthcare
application, namely epilepsy. Our design and prototype can be easily
adapted to other medical conditions, such as heart related medical
conditions. In such scenarios, a patient suffering from a heart disease can be
monitored and informed of possible abnormal alterations in the heart
signals.

The following paragraphs analyse our development approach on the light
of the requirements defined in Chapter 2. We briefly discuss how our
approach fulfils each of these requirements.

— Support for rapid development and deployment of applications is achieved with
the systematic derivation of application realization from application
specification, as discussed in 8.3.2. Since our approach alleviates
application realization, it facilitates and simplifies a substantial part of
the application development. In addition, application reactive

DISCUSSION 241

behaviours can be deployed at platform runtime, by means of ECA-DL
specifications;

— Flexibility and extensibility is achieved with the possibility of (i) adding
various application reactive behaviours at runtime; (ii) extending the
platform with situation detection activities that have not been defined at
specification time; and (iii) extending the platform with controller and
action service components that have not been defined at design-time;

— Support for adaptation has been achieved by means of the situation
detection framework and the controlling services. The situation
detection framework allows applications not only to use context
information to react on a user’s request, but also to take initiative as a
result of (continuously-running) context reasoning activities. In this
sense, the situation framework enabled attentive application adaptation
in addition to reactive application adaptation. The controlling services
also perform reactivity on behalf of applications, providing explicit
support for adaptation;

— Support for distribution of context and situation reasoning is achieved by means
of distributing context sources, context managers, and controller
components. In this chapter we have demonstrated distribution using
the service-oriented architectural style;

— Performance is evaluated by collecting reaction time measurements from
the healthcare prototype (section 8.3.3). Due to the Rete algorithm, Jess
efficiently processes rules, which lead to satisfactory reaction times for
our healthcare experiments (in the order of milliseconds). To the best
of our knowledge, reaction times of this order would be acceptable for
various types of context-aware applications;

— Scalability of our development approach has been assessed in the
healthcare application by increasing the number of entities, the number
of events generated per second, and the number of rules. We have
shown that the approach scales for arbitrary number of ECA-DL rules,
since ECA-DL rules can be distributed over several controller
components, which can be added on demand. We have also shown that
the system behaves satisfactory for a large number of entities and events.

9.1

Chapter

Conclusions

In this chapter we present the conclusions of the work presented in this
thesis, and we identify the topics that we recommend for future work. This
chapter is further structured as follows: section 9.1 presents some general
considerations; section 9.2 elaborates on the most important research
contributions of this thesis; and finally, section 9.3 discusses future work.

General Considerations

Context-awareness has emerged as an important and desirable feature in
ubiquitous applications. This feature deals with the ability of applications to
utilize information about the user’s environment (context) in order to tailor
services to the user’s current situation and needs. We have argued in this
thesis that the design of context-aware applications is a challenging task,
which justifies the development of novel methods, abstractions and
platforms.

We aimed in this work at providing an integrated solution for the
development of context-aware systems. The main objective was to facilitate
the development of context-aware applications, focusing on two aspects:
offering context modelling abstractions and providing infrastructural support by
means of a context handling platform. Our context modelling abstractions
provide application developers with proper conceptual foundations that can
be extended and specialized for specific application requirements. Our
context handling platform allows application functionality to be delegated
to the platform, reducing application development effort, time and,
therefore, costs. This allows application developers to better focus on their
core business, instead of being bothered with application realization details.

We have shown that the methodology proposed in this thesis truly
facilitates the development of context-aware applications. However, the
success of context-awareness cannot be achieved by only using our

244

9.2

9.2.1

CHAPTER 9 CONCLUSIONS

development approach. Results from other complementary research
initiatives, which fall outside the scope of this thesis, are also necessary,
such as (i) sensor technology, which enables various context attribute values to
be gathered from the users’ environments; (ii) communication middleware,
which allows transparent distribution of system parts; (iii) user interfaces,
which deliver context-aware services to end-users in a usable and useful
way; (iv) security and privacy, which guarantee privacy-sensitive information to
be properly used; and (v) mobile technologies, which allow embedding
computational power in portable and mobile computers and
communication devices.

Research Contributions

The main contributions of this thesis have been to:

— context modelling abstractions, which includes conceptual modelling of
context and situation, and their respective realizations; and

— a context handling platform, which includes the generic services we have
designed to support context-aware application development.

These contributions are discussed in the sequel.

Context modelling abstractions

The following aspects of context modelling have been addressed in this

thesis.

Structural context models

The process of identifying relevant context consists of determining the
“conditions” of entities in the application’s universe of discourse (e.g., a
user or its environment) that are relevant for a context-aware application or
a family of such applications. We have argued throughout this thesis that
the application’s universe of discourse should be adequately characterized.
As a result of this characterization process, we obtain a conceptual model of
context. We argued that the definition of such a context model should
precede the detailed design of a context-aware application.

As part of conceptual modelling of context, we have proposed basic
conceptual foundations for context modelling, which allow designers of
context-aware applications to represent relevant elements of a context-
aware application’s universe of discourse. These conceptual foundations
should facilitate the specification of context models that are clearer and
easier to understand. In the conceptual foundations proposed, application
designers are instructed to separate the concepts of entity and context. In
addition, context should be characterized as either intrinsic or relational.

RESEARCH CONTRIBUTIONS 245

Since conceptual modelling focuses on supporting structuring and
inferential facilities that are psychologically grounded, the adequacy of our
context modelling technique is determined by its contribution to common
understanding of context among the stakeholders of a context-aware
application (e.g., users and designers). Therefore, we have justified our
modelling choices with results from foundational ontologies, which are in
line with conceptual theories in philosophy and cognitive sciences.

Situation models

Our structural context models allow application designers to represent all
possible state-of-affairs of an application’s universe of discourse, without
discriminating particular situations that may be of interest to applications.
In order to explicitly discriminate particular state-of-affairs of interest, we
have introduced the concept of situation. A situation is a composite concept
whose constituents are (a combination of) entities and their context
conditions. Situations extend context models since they can be composed
of more elementary kinds of context conditions, and in addition can be
composed of existing situations themselves.

We have proposed a novel model-based approach for the specification
of situations. Situations are specified using standard UML 2.0 class
diagrams enriched with OCL 2.0 constraints to define the conditions under
which situations of a certain type are allowed to exist. We support a wide
range of situations, which can be composed of more elementary kinds of
context and situations. This allows modularization of the situation models,
improving organization and reuse of situation specifications. We have also
introduced situation chronoids, which allow us to explicitly capture past and
present situations.

Context and situation information models

We have distinguished the concepts of context and context information in our
approach. We regard context as the real world phenomena, while context
information refers to the representation of (constituents of) context in a
software application, such that this representation can be manipulated and
exchanged. We have provided support for bridging the gap between
conceptual context models and context information models, by means of
serializable measurement datatypes.

As part of the context information modelling phase we consider (i) how
context is sensed; (ii) how context information is produced, learned,
inferred and used, and (iii) the validity and Quality of Context (QoC)
information. QoC is concerned with meta-information that describes the
quality of the context information. We have discussed three QoC
parameters, namely, precision, probability of correctness and freshness.

246

9.2.2

CHAPTER 9 CONCLUSIONS

Context and situation realization

We have proposed a novel model-driven approach for the realization of
situations in context-aware applications. This realization is rule-based, and
executes on mature and efficient rule engine technology available off-the-
shelf. The rule set for situation detection is derived systematically from the
UML and OCL situation specifications and is deployed directly in the rule-
based engine. In order to perform situation detection rules, we use a
general-purpose rule-based platform, namely Jess.

The use of a rule-based approach in the situation detection framework
allows applications not only to use context information to react on a user’s
request, but also to take initiative as a result of (continuously-running)
context reasoning activities. In this sense, our situation detection
mechanism enables attentive application adaptation in addition to reactive
application adaptation. The rule-based approach also facilitates the
generation of special events that are created when situations begin and cease
to hold. These events are called enter true and enter false events, respectively.

We have argued that a distributed solution to situation detection has
benefits, which apply particularly to context-aware applications. We have
realized communication between rule engines in two different ways, namely
by using a generic rule-based distribution middleware, and by following a
service-oriented architecture style.

The context handling platform

We have argued throughout this thesis that it is not cost-effective to build
each individual context-aware application from scratch. It is also too
complex for each individual application to capture and process context
information just for its own use. In addition, we have observed that similar
functions are inefficiently implemented in different context-aware
applications or family of applications. Therefore, we have concluded that a
number of commonly used functions can be made available for reuse to
various context-aware applications, by means of generic services, which are
offered by generic components.

In order to cope with complexity and cost-effectiveness of building
context-aware applications, we have proposed a context handling platform
that provides context-aware generic services, i.e. services that support
context-aware applications, regardless of the application domain. As part of
the platform, we have defined discovery, context provisioning, controlling and
action services, which can be combined and configured to satisfy application
specific requirements. Particularly, in this thesis we have focused on the
context provisioning and the controlling services.

RESEARCH CONTRIBUTIONS 247

Context-aware architectural patterns

In this thesis we have proposed three architectural patterns that can be
beneficially applied in the development of context-aware services platform,
namely the Event-Control-Action pattern, the Context Sources and Managers
Hierarchy pattern and the Actions pattern. By decoupling context concerns
from action concerns, the Event-Control-Action pattern has effectively
enabled the distribution of responsibilities among various business parties in
a context-aware services platform. Applying such design principles greatly
improves the extensibility and flexibility of the platform, since context
processors and action components can be developed and deployed
separately and on demand. In addition, the definition of application
behaviour by means of condition rules allows the dynamic deployment of
context-aware application behaviours and permits the configuration of the
platform at runtime.

The Context Sources and Managers Hierarchy pattern enables flexible
and dynamic distribution of context information processing activities within
a collaborative network of context sources and managers. This approach has
enabled encapsulation and a more effective, flexible and decoupled
distribution of context processing activities (sensing, aggregating, inferring
and predicting). This approach improves collaboration among context
information owners and it is an appealing invitation for new parties to join
this collaborative network, since collaboration among more partners enables
the availability of potentially richer context information.

Finally, the Actions pattern defines a structure of action performer
components, which enables the coordination of compound actions and the
separation of abstract action purposes from their implementations. This
allows the dynamic selection of action implementations at runtime,
improving the extensibility and flexibility of the platform. It also allows 3rd
party services to be developed and deployed on demand at platform
runtime.

Context handling platform architecture

We have proposed an architecture for the context handling platform that
applies our context-aware architectural patterns. In this architecture, we
define context processor, controller, and action components.

Context processor components gather context information from the
user’s environment. Based on context information measurements, context
processor components perform context reasoning and generate context and
situation events, which are offered to the other components of the platform
and to application-specific components.

The controller component aims at executing particular context-aware
application-specific behaviours within the platform. In this scope, context-
aware application behaviours can be described as logic rules, which are

248

CHAPTER 9 CONCLUSIONS

called Event-Condition-Action (ECA) rules that are consistent with the
Event-Control-Action pattern. In order to realize application behaviours,
the controller component gathers context from context processor
components. When the combination of context conditions defined by the
application-specific behaviours is met, the controller component invokes
the required actions on the action components.

Controlling services

The controlling services are the services offered by controller components,
which aim at executing particular application behaviours in the platform.
The controller component implements a rule engine that can efficiently
process rules, which are matched against various types of events, context,
and situation conditions. When events have occurred and conditions hold
for a rule, the action part of the rule is executed, which consists of various
types of service invocations. In order to facilitate the specification of
context-aware reactive behaviours, we have developed ECA-DL, a domain
specific language for specifying context-aware reactivity. In order to
demonstrate the suitability of ECA-DL rules, we have used the Jess engine
as the ECA-DL execution environment. Since only Jess rules are accepted
by the Jess engine, we have provided a mapping framework that can be used
to generate Jess rules from ECA-DL rules.

We have discussed two approaches for the automation of the mappings
from ECA-DL rules to Jess rules, namely the parser and the MDA approach.
The parser approach implements a parser that breaks down an ECA-DL
rule into indivisible elements, which are defined in the ECA-DL
metamodel. For each of these elements, Jess expressions are generated. The
MDA approach generates Jess rules from ECA-DL based on
transformations defined in terms of elements of the metamodels of those
languages. The aim of this solution is to formalize the mapping process from
ECA-DL rules to Jess rules and implement this mapping by applying MDA
technologies.

The controller component has effectively improved the flexibility,
extensibility and adaptability of the platform. Higher flexibility and
extensibility have been achieved by allowing arbitrary application logics to
be deployed at platform runtime. This enables the platform to match
applications’ requirements at runtime, which have not been anticipated at
platform design-time. Finally, higher platform adaptability has been
achieved since the controller is capable of reacting on both events and
conditions by executing actions that allow adaptation of components
according to context.

9.3

FUTURE WORK 249

Structural design of context-aware applications

We have proposed a design methodology for structuring context-aware
applications, which is based on the service-oriented architectural style.
Service-oriented architecture is a design discipline in which applications are
organized as compositions of services. At the beginning of the design
process, we focus on the application service as whole, i.e. on the external
perspective of the application, in terms of the behaviour that can be
experienced by the environment (end-users) of the application. Following
this design process, we gradually refine the application service into sub-
services, until the system can be finally implemented in a computing system.

Since applications in our approach are developed with the support of
the platform, application developers should be able to identify the
application-specific functions, and the generic functions that can be
performed by the platform. The application-specific services are
implemented by the application developers themselves, and the generic
functions are provided by the platform components.

We have demonstrated the suitability of our development approach by
means of case studies. We have designed the healthcare and the policy
management application following the design process proposed in this
thesis, and we have implemented a prototype for the healthcare application.
The application design process included the activities (i) context modelling,
(i) context information modelling; (iii) application structural design; (iv)
context provisioning services design; and (v) application deployment on the
controlling service. In addition, we have successtully assessed the
performance and scalability of the prototype. Performance has been
evaluated using the reaction time parameter, which indicates the period of
time between generating an event and invoking an action. Our experiments
showed that the healthcare application performed satisfactory for a large
number of users and events.

Future Work

We have identified future research in the following areas:

— handling context and situation, which is related to our context and situation
modelling approach;

— automation processes, which is related to the automation of specifications
to realizations;

— context handling platforms, which is related to the components and services

offered by the platform.

250

9.3.1

9.3.2

CHAPTER 9 CONCLUSIONS

Handling context and situations

Since sensor technology is imperfect by definition, as part of our context
and situation modelling abstractions, we have defined simple quality
parameters, which specify the quality of the context information with
respect to the probability of correctness, freshness and precision aspects.
We have not discussed in this thesis how Quality of Context (QoC) is
evaluated, how quality of situation information can be derived from QoC
information, and how to improve QoC using, for example, redundancy of
context sources. These aspects of QoC should be handled by realistic
context-aware application, which requires further investigation. In addition,
we have not incorporated QoC in our healthcare prototype. Extensions to
our approach should also include the implementation of QoC abstractions.

In this thesis we have studied context reasoning by means of the
situation detection framework, which detects particular (past or current)
situations of interest. We have not tackled reasoning activities using learning
and prediction techniques. Past occurrences of context and situation
information can be extrapolated to predict future user’s and application’s
behaviours. Similarly, pattern of situation occurrences could be used in a
learning process in order to anticipate all kinds of application behaviours.
Future research is necessary to incorporate learning and prediction in our
context modelling abstractions.

In future work, one should study more complex mechanisms for
discarding historical situation records that will no longer be used. Our
current solution uses time-to-live for discarding historical records. An
alternative solution is to eliminate all historical data that is not referred to
by any active situation. This requires inspection on situation type
dependencies, which tends to be complex.

Automation processes

In the realization approach for both situation detection and ECA-DL rule
execution, we have considered Jess as the underlying technology. In order
to map situation and ECA-DL rule specifications to Jess code, we provide
mappings that can be used to systematically derive rules from UML, OCL
and ECA-DL specifications. We have partially automated the mappings
from ECA-DL specifications to Jess. As part of future work, our approach
should be extended to provide automated transformations from
specifications to realizations for both the situation detection and ECA-DL
rules. Preferably, the automation processes should be based on the MDA
approach, in order to facilitate (i) the maintenance of rules whenever a
newer version of the Jess engine is released; and (ii) the implementation of
ECA-DL rules in a different rule-based platform.

9.3.3

FUTURE WORK 251

Finally, future measurement datatypes, context source, and context
manager components should be automatically generated from the
conceptual models. As we have argued, our approach provides guidelines to
fill the gap between conceptual models and context information models
(measurement dataypes). We have noticed that the derivation of the
information models from the conceptual models follows certain patterns.
Therefore, it should be possible to automatically derive the measurement
datatypes from the conceptual models.

Analogously, we have noticed that context sources and managers can be
systematically derived from the measurement datatypes these components
are supposed to provide. Therefore, it should be possible to automatically
generate context sources from context measurement datatypes, and context

managers from situation measurement datatypes.

Context handling platform

We have focused on two specific types of services offered by the platform,
namely context provisioning and controlling services. For scoping reasons,
two types of services have been explicitly disregarded in this thesis, namely
discovery services, and action services. A discovery service allows distributed
services that are not known beforechand to be found using various
characteristics of the service, such as type of the information offered by the
service, quality of the information, quality of the service, and so forth.
Parallel efforts have been carried out in the field of context-aware service
discovery [54, 99]. Our current simplified discovery mechanism could be
extended with these efforts in order to enable richer discovery of context
provisioning, controlling, actions and application-specific services, at
platform runtime.

The action services we have presented in this thesis offer simple actions,
which can be invoked from the controller component independently from
each other. In practice, actions often have interdependencies, such as when
an action can only be enabled when another action has been successfully
executed. The action services we propose could be extended to allow
complex compositions and interdependencies of action services. Future
work could investigate how ECA-DL can be extended to allow action
composition specification based on standard service composition
specification languages, such as BPEL [11].

With respect to quantitative crosscutting issues, we have assessed
performance and scalability, but we have not considered the reliability of the
context handling platform components. In future work, one could study
how to tackle reliability in case unexpected circumstances occur, such as
when context provisioning or controlling services stop working. A simple

252

CHAPTER 9 CONCLUSIONS

solution to improve reliability may consist of using redundancy of
components. Further investigation in this area is necessary.

We have briefly discussed in this thesis the importance of privacy,
security and trust issues. Given the privacy sensitive nature of context
information, we believe that the acceptance of context-awareness by
application users will heavily rely on how users can trust that the
applications use their context information in a private and secure way.
These issues are also identified for future work.

Finally, in order to demonstrate the suitability of the platform in other
application domains, context-aware applications should be developed on
top of our platform for different application areas, such as leisure,
government, and banking.

Appendix

Mappings from OCL to Jess

This appendix presents how particular OCL constructs can be systematically
mapped to Jess constructs.

Navigation

In UML, it is possible to navigate from object to object by means of their
associations, using dots. For example, if object; is associated with object,, we
can navigate to object, through object;, such as object.object,, In the
implementation this is also possible, since object, is implemented as an
attribute of object;. An example of navigation from our context model is
person.hasGeoLocation.GeoCoordinates.latitude, which allows us to access the
location’s latitude value of a person.

For each object and its respective attribute (navigation), one line in the
Jess language is necessary. For example, we would need three lines in the
Jess language to navigate to a person’s latitude value. The first line to
navigate to the person’s location object (person.hasGeoLocation), the second to
navigate to the geolocation coordinates (person.hasGeoLocation.GeoCoordinates)
and finally the third line to navigate to the latitude value
(person.hasGeoLocation.GeoCoordinates. latitude).

Consider a simple example in which we access an attribute of an object
(object;), which is also an object (object,), as opposed to a primitive type (e.g.,
numbers and strings). In OCL this navigation is represented in the
following way: object;.object,. In Jess, we would represent this example as
follows: (ObjectType, (OBJECT ?object;) (object, ?object,)), where (i) ObjectType refers
to the type of object object, (ii) OBJECT is the special slot which refers to a
Java object, and finally (iii) the slot object, representing the name of the
attribute, in which ?object, is a variable containing a reference to the object
itself.

Consider yet another example of a primitive datatype attribute (e.g., a
numeric value) object.pdatatype, where pdatatype refers to the attribute name. In
Jess we would navigate to this attribute by defining (ObjectType (OBJECT Zobject)

254

Table A-1 Examples of
navigation mappings

APPENDIX A MAPPINGS FROM OCL TO JESS

(pdatatype ?pdatatype)), in which ?pdatatype is a variable containing the value of
the attribute. Table A-1 depicts some examples of navigation and their
corresponding statements in the Jess language.

OCL language Jess language
object ObjectType (OBJECT ?object))
object.pdatatype ObjectType (OBJECT ?object) (pdatatype ?pdatatype))

(
((
object;.object, (ObjectType, (OBJECT ?object;) (object, ?object,))
object;.object,.objecty (ObjectType, (OBJECT ?object;) (object, ?object,))
(ObjectType, (OBJECT ?object,) (objects ?objects))
object,.datatype (ObjectType, (OBJECT ?object,) (datatype ?pdatatype))
()
(
(
(
(
(

object;.datatype.pdatatype ObjectType, (OBJECT ?object,) (datatype ?datatype))
DataType (OBJECT ? datatype) (pdatatype ?pdatatype))
ObjectType, (OBJECT ?object;) (object, ?object,))
ObjectType, (OBJECT ?object,) (datatype ?datatype))
DataType (OBJECT ?datatype) (pdatatype ?pdatatype))

ObjectType (OBJECT ?object) (collection ?collection)

object,.object,. datatype. pdatatype

object->collection

When navigating from one object to another (e.g., object;.object;), only one
line in Jess is necessary, since the second object is an attribute (slot) of the
first. When navigating through three objects, in which object; is an attribute
of object,, which in turn is an attribute of object, (object;.object,.objecty), two
lines are necessary in Jess, one line to access object; and its attribute object,,
and the other line to access object, and its attribute objects.

An example of navigation through a datatype (e.g., GeoLocationCoordinates)
to a primitive datatype (e.g., latitude, which is a numeric value) is represented
in the following way object, datatype.pdatatype (see Table A-1). Since a datatype is
implemented as normal class in the Java implementation, the mapping to
Jess is the same for object;.object,.pdatatype, i.e. the expression (ObjectType,
(OBJECT ?object;) (datatype ?datatype)) is used to navigate to the datatype object,
and (DataType (OBJECT ? datatype) (pdatatype ?pdatatype)) is used to navigate to the
value of the pdatatype attribute.

The last example of Table A-1 shows the mapping for the navigation to a
collection attribute (object->collection). Similar to the other examples, in Jess
this would be mapped to (ObjectType (OBJECT ?object) (collection ?collection)). The
mechanism we have used to manipulate collections is discussed in the
following sections.

Equality

In general, equality in the OCL language maps to equality between slot
values. The simplest example of equality between two objects, object; and
object, (object; = object,), maps to the following in Jess: the first line navigates

Table A-2 Examples of
equality mappings

MAPPINGS FROM OCL TO JESS 255

to object, ((ObjectType, (OBJECT object;))), and the second line navigates to object,
and tests whether this object is equal to object;, like in (ObjectType, (OBJECT
object,&:(eq (?object, ?object;)))). We use the Jess function eq (expr expr*) to test
equality between objects and strings, which returns TRUE if the first
argument is equal in type and value to all subsequent arguments. Similar
functions (eq* or =) may be used to check equality for numeric values. The
combination of symbols & reads “such that” in Jess. So, the code
(...70bject,&:(eq (?object, 7object,))) reads “object 2 such that object 2 is equal to
object 1”. In fact, the ampersands symbol (&) represent the logical “and”,
and the colon symbol (:) followed by a functional call performs a test in the
LHS of a Jess rule, in which the test succeeds if the function returns TRUE.
These symbols together (&:) allow one to name a variable and to perform a
functional test on this variable. Table A-2 depicts examples of equality

mappings.

OCL language Jess language

object, = object, (ObjectType, (OBJECT ? object,))
(ObjectType, (OBJECT ?object,&:(eq (?object, 7object;))))
(ObjectType, (OBJECT ?object,) (object,? Object,))
(ObjectType, (OBJECT ?object,&:(eq (?objects ?object,)))

object;. object,= object;.object, (ObjectType, (OBJECT ?object;) (object, 7object,))
(
(
(
=

=

object;. object,= object,

e =

ObjectType, (OBJECT ?object;) (object, ?object,&:(eq

70bject, 20bject,))))

ObjectType, (OBJECT ?object;) (pdatatype ?pdatatype&:
(?pdatatype number))))

object;.pdatatype = number

object;.pdatatype
object,.datatype.pdatatype

= (ObjectType; (OBJECT ?object,) (pdatatype ? pdatatype;))

(ObjectType,; (OBJECT ?object;) (datatype ?datatype))

(DataType (OBJECT ?datatype) (pdatatype ? pdatatype, &:

(eq (?pdatatype, ?pdatatype;))))

object;->collection; = object,-> (ObjectType, (OBJECT 2object;) (collection ?collection,)
(ObjectType, (OBJECT ?object,) (collection ?collection,&:

(eq

collection,)
(?collection, ?collectiony))))

The mapping of other comparison infix operators (>, > =, <, <=, <>)
is similar to the equality operator, except that they only work on numeric
values. For example, the expression object, pdatatype > number is mapped to
(ObjectType, (OBJECT ?object,) (pdatatype ?pdatatype&: (> (?pdatatype number)))).

Pattern matching logical operators

In Jess, there are two sets of logical operators, namely the pattern matching
logical operators (called conditional elements), and the Boolean logical
operators. The conditional elements (e.g., and, or and not) operate on
patterns. For example, the expression not (pattern) returns true if there is no

256

Table A-3 Examples of
mappings with logical
operators

APPENDIX A MAPPINGS FROM OCL TO JESS

match for patten in the working memory. The Boolean logical operators

(e.g., &,! and |), in contrast, operate on Boolean expression, as opposed to

patterns. For example, the expression Ix returns frue if the value of x is false.

The following conditional elements are supported in our implementation:

- and: matches multiple facts in the working memory. The and conditional
element can combine any number of patterns, and the resulting pattern
is matched if and only if all enclosed patterns are matched. For example,
the resulting pattern of and (pattern1 pattern2) matches if both patterns are
matched in the working memory;

— or: matches alternative facts. The or conditional element can combine
any number of patterns, the resulting pattern is matched if at least one
of these patterns is matched. For example, the result pattern of or
(pattern? patter2) is matched when at least one patterns is matched in the
working memory;

— not: matches if no facts match. The not conditional element is a unary
operator, i.e. it matches one pattern only. For example, the result of not
(pattern) is matched when the pattern pattern is not matched in the working
memory.

As we have already mentioned, the outer most occurrences of the AND

logical operators in OCL are mapped to lines in the Jess rules. However,

inner occurrences of AND (<expr,> AND <expr,>), for example, as an
operand of the OR logical operator, are mapped to an and ((expr;) (expr,)) in

Jess. The <expr;> OR <expr,> logical operator, in contrast, is always mapped

to an or ((expry) (expry)) in Jess. Finally, the NOT <expr> logical operator is

mapped to not (expr) in Jess. Table A-3 depicts examples of mappings from

OCL expressions using logical operators, to conditional elements in Jess.

OCL language Jess language
object; AND object, (ObjectType, (OBJECT ?object,))
(ObjectType, (OBJECT ?object,))
(object;.pdatatype = number) (and (ObjectType, (OBJECT ?object;)
AND (pdatatype ?pdatatype&:(= ?pdatatype number)))
(object,.pdatatype = number) (ObjectType, (OBJECT ?object,)
(pdatatype ?pdatatype&:(= ?pdatatype number)))

)
object; OR object, (or (ObjectType, (OBJECT ?0bject;))
(ObjectType, (OBJECT ?abject,))
)
(object,. pdatatype = value) (or (ObjectType; (OBJECT ? object,)
OR (pdatatype ?pdatatyped&:(eq (?pdatatype valug))))
(object,. pdatatype = value) (ObjectType, (OBJECT ? object,)
(pdatatype ?pdatatyped&:(eq (?pdatatype valug))))

MAPPINGS FROM OCL TO JESS 257

((object;.object;= object,) (or (and (ObjectType, (OBJECT ? object,) (object; ? object,))

AND (ObjectType, (OBJECT ? object,&:

(object,. pdatatype = value)) (eq (?object, ? object,)))

OR (ObjectType, (OBJECT 2object,)

(A(,?lgieCTs-ObJeth object;) (pdatatype ?pdatatype&: (eq(?pdatatype value))))

)
(object;. pdatatype = value)) (and (ObjectTypes (OBJECT ? object) (object, 2object)
(ObjectType; (OBJECT ? object;&:
(eq (7object7 7object;))
(ObjectType; (OBJECT ?object,)
(pdatatype ?pdatatype&:
(eq (?pdatatype value))))

)
)
NOT ((object;.object;="not (and (ObjectType, (OBJECT ? abject;) (object; ? object,))
object,) AND (ObjectType, (OBJECT ? object,&:
(object,. pdatatype = value)) (eq (?object, ? objecty))

(ObjectType, (OBJECT ?abject,)
(pdatatype ?pdatatyped&:(eq(?pdatatype value)))

Method invocations

Method invocations in OCL are mapped to method invocations on Java

objects using the Jess function call. If the method requires parameterization,

the parameters are resolved beforehand. The first argument of call is a Java
object, and the second argument is the name of the method to invoke. The
next arguments to Gall are the arguments to be passed as parameters to the

method. The Test conditional element is used to check the value of a

Boolean expression, which could be the result of a method invocation, or

the result of a comparison. For example, the OCL invariant object;->method

(object,), maps to the following lines to in Jess:

— (ObjectType, (OBJECT ?object;)): navigates to object 1;

— (ObjectType, (OBJECT ?0bjecty)): navigates to object 2, which is an argument
of the method;

— (test (call 7object! method 2object2)): invokes the method on objectl using the
call function, passing object2 as argument. The test conditional element
checks whether the return of this method is true.

It is also possible to compare the result of a method invocation using

comparison functions, such as >, and <. For example, the mapping of

expression object;->method (object,) > number is almost identical the previous
example, except that test now checks whether the result of (> (call ?object,
method ? object,) number) is true. Table A-4 depicts examples of mappings from

OCL expressions using method invocations, to expressions in Jess.

258

Table A-4 Examples of
mappings with method
invocations

APPENDIX A MAPPINGS FROM OCL TO JESS

OCL language Jess language

object;->method (object,) ObjectType, (OBJECT ?object;))

ObjectType, (OBJECT ?object,))

test (call ?object, method ?object,))

ObjectType, (OBJECT ?object,) (object, 2object,)
ObjectType, (OBJECT ?object;) (pdatatype ?pdatatype))
test (call ?object, method ?pdatatype))

ObjectType, (OBJECT ?object,) (object, 2object,)
ObjectType1 (OBJECT ?object,) (pdatatype ?pdatatype))
test (call ?object, method ?pdatatype ?valug))
ObjectType, (OBJECT ?object,))

ObjectType, (OBJECT ?object,) (pdatatype ?pdatatype))
ObjectType, (OBJECT ?object,) (object, ?objects))

test (call ?object, method ?pdatatype ?objects))
ObjectType, (OBJECT ?object;))

ObjectType, (OBJECT ?object,))

test > (call ?object, method ?object,) number)
ObjectType, (OBJECT ?object,))

ObjectType, (OBJECT ?object,))

ObjectType,; (OBJECT ?objecty))

test (eq (call ?object, method ?object,) ?object,))
ObjectType, (OBJECT ?object,))

test (call ObjectType StaticMethod ?object,))

object;.object,->method
(object,.pdatatype)

object,.object,->method
(object;.pdatatype, value)

object;->method
(object;.pdatatype, object,.object;)

object;->method (object)) >
number

object;->method (object) =
object,

ObjectType::StaticMethod (object,)

P ey gy g el P Py gy gy py ey ey gy] N Py P g o

Boolean and arithmetic operators

The Boolean logical operators (AND, OR, NOT) in OCL used in method
arguments are mapped to &, |, ~ in Jess, respectively. In OCL, it is
possible to pass complete Boolean expression as method arguments; for
example, object->method (object.pdatatype = value,) OR (object.pdatatype = value,) is a
valid OCL expression. In Jess, the OR logical operator would be mapped to
a Boolean logical operator, as opposed to a conditional element, since the
application of the OR in this case should return either false or true, and not
a pattern match. The mapping in Jess of an or, in which the first two lines
aim at navigating to object; and its pdatatype attribute is the following.

(ObjectType, (OBJECT ?object,))
(ObjectType, (OBJECT ?object,) (pdatatype ?pdatatype))
(test (call 7object, method (eq (?pdatatype value,) | (eq (?pdatatype value,))))

The third line invokes the method, and tests whether the return of the
method is true. The argument passed to the method is a Boolean value,
which is true if the value of the pdatatype is either equal to valug, or value,.

Table A-5 Examples of
mappings with Boolean
operators

Table A-6 Examples of
mappings with temporal
attributes

MAPPINGS FROM OCL TO JESS 259

Table A-5 depicts examples of mappings from OCL expressions using
Boolean expressions in method parameterizations, to expressions in Jess.

OCL language Jess language

objgct1-> method (ObjectType, (OBJECT ?object,))

(ot()jjecn.datatype.pdatatype (ObjectType, (OBJECT 2object,) (datatype, ?datatype,))

an

: (DataType, (OBJECT ?datatype,) (pdatatype, ?pdatatype;))

(jbjjfjggatatype'pdatatype (ObjectType, (OBJECT 2object,))
(ObjectType, (OBJECT ?abject,) (datatype2 ?datatype,))
(DataType, (OBJECT ?datatype,) (pdatatype, ?pdatatype,))
(test (call ?object; method (eq (?pdatatypel value,) & (eq
(?pdatatype, value,))))

object;->method (not (ObjectType; (OBJECT ?object,))

)
object,.datatype.pdatatype) (ObjectType, (OBJECT Zobject,) (datatype ?datatype))
(DataType (OBJECT ?datatype) (pdatatype ?pdataype))
(test (call ?object, method (~?pdataype))

The OCL arithmetic operators +, -, * and / are mapped to their
corresponding operators in the Jess language (+, -, * and /), using the usual
form of a function call. For example, the OCL expression number + number is
mapped to (+ number number) in Jess. The same applies to the other
arithmetic operators.

Temporal attributes

In our approach, temporal aspects are implemented by using situation
initial and final time attributes, which are defined as the Java datatype Date
in the implementation. Therefore, the operations performed on these
attributes in the OCL are mapped to the operations supported by the Date
datatype. Table A-6 depicts some examples of mappings with temporal
attributes. The method getTime returns the number o milliseconds
represented by a Date object, since January first, 1970. The methods after and
before test whether some date is after or before some other date,
respectively.

OCL language Jess language

object,.initialtime->after ObjectType, (OBJECT ?object,) (initialtime ?initialtime))
(object, finaltime) ObjectType, (OBJECT 2object,) (finaltime ?finaltime))
test (call ?initialtime after ?finaltime))

ObjectType, (OBJECT ?object,) (initialtime ?initialtime))
ObjectType, (OBJECT ?object,) (finaltime ?finaltime))
test (call ?initialtime before ?finaltime))

Objec,.initialtime->before
(object,.finaltime)

—_ e~~~ —~ —

260

Figure
SituationInChat
specification

A-25

APPENDIX A MAPPINGS FROM OCL TO JESS

object,.initialtime - (ObjectType, (OBJECT ?object,) (initialtime ?initialtime))

object, finaltime < 60000 (ObjectType, (OBJECT 20bject,) (finaltime ?finaltime))
(test (< (- (call Zinitialtime getTime) (call ?finaltime getTime))
60000)))

object,.initialtime + (ObjectType; (OBJECT ?abject;) (initialtime ?initialtime))

object, finaltime = 3000 (ObjectType, (OBJECT 2object,) (finaltime ?finaltime))
(test (= (+ (call ?initialtime getTime) (call ?finaltime getTime))
30000)))

Time->now() (call System currentTimeMillis)

Collections

Collections in our approach are only manipulated by means of special
manipulation methods, which are implemented in the classes holding the
collection attributes. Our mappings do not support native manipulation of
collections offered by OCL. Consider the following example, which
specifies that the situation (SituationinChat) exists when a person named John
is involved in three or more chats. This can be useful, for example, to refuse
further incoming invitations for chatting.

{Context SituationinChat inv:

person.name = "John" AND
person->hasInChatWith() = inChatWith AND
person->getChats () >= 3 }

«RelationalSituation»
SituationInChat
+person 1 +inChatWith *
+isInChatWith -+hasInChatWith
Person {subsets isContextOf} {subsets hasContext} [<«RelationalContext-
+getChats() : Integer . X InChatWith

The subsets association hasinChatWith is implemented in class Person by the
method hasInChatWith, which returns a collection of inChatWith objects, each
one representing a chat in which John is participating. The method getChats
returns the number of chats John is participating. Implementing these
methods is the responsibility of the application developer. These methods
may be specified already at design time, together with the situation models.

Since manipulating collections is realized by means of method
invocations, the mapping to the jess language follows the mapping of
method invocations discussed in the previous sections (Table A-4). For
example, the invariant of Figure A-25 is mapped to the EnterTrue rule
depicted in Figure A-26.

Figure
SituationInChatWith
realization in Jess

Table A-7 Examples of

mappings
collections

A-26

with

MAPPINGS FROM OCL TO JESS 261

;EnterTrue (SituationinChatWith)
(defrule entertrue_situation_inchatwith Manipulating the collection
(defrule entertrue_situationinchat

(Person (OBJECT ?person) (identity "John"))

(Person (OBJECT ?person) (hasInChatWith ?hasinChatWith))
(test (> = (call ?person getChats) 3))

(not (SituationinChat (OBJECT ?SituationinChat)(person ?person)(finaltime nil)))
=>

(bind ?SituationinChat (new situation_control.SituationinChat ?person))
(definstance SituationinChat ?SituationinChat)

The equality person->isinChatWith() = inChatWith is mapped to (Person (OBJECT
?person) (isinChatWith ?inChatWith)), i.e. inChatWith is omitted in the Jess rule, and
the collection person->isinChatWith is mapped as a normal collection, as
depicted in Table A-1.

Since collections are manipulated by means of methods implemented in
the classes holding the collection attribute, the inChatWith collection would
normally be manipulated by methods implemented in the SituationinChat class,
which is the reference class of this invariant. However, at runtime, instances
of SituationinClass initially do not exist, since they are created when the OCL
invariant starts to hold. Therefore, it is not possible to invoke methods of
SituationinClass from the EnterTrue Jess rule, simply because initially there is
no instance of SituationinClass in the working memory. For this reason, the
inChatWith collection is not mapped to Jess code. This imposes no limitations
to the mapping because the associations between situation type classes and
context type classes are also represented between entities type classes and
their respective context types.

The method invocation person->getChats (inChatWith), on the contrary, is
mapped as a normal method invocation, as depicted in Table A-4. Table A-7
depicts examples of how collections are mapped to the Jess language.

0CL language Jess language

object->collection (ObjectType (OBJECT ?object) (collection ?collection))
object->collection, = (ObjectType (OBJECT ?object) (collection ?collection,))
collection,

object;->collection, = (ObjectType; (OBJECT ?object;) (collection ?collection)
object,-> collection, (ObjectType, (OBJECT ?object,) (collection ?collection,&: (eq

(?collection ?collection,))))

OcllsUndefined

The OCL operation ocllisUndefined() is part of the OCL standard library and
tests whether the value of an expression is undefined. This is mapped to the
Jess not conditional element, which pattern matches if a fact does not exist

262

Figure
SituationContained
realization in Jess

A-27

APPENDIX A MAPPINGS FROM OCL TO JESS

in the working memory. In case the oclisUndefined() is used in combination
with not Boolean operator, such as not oclisUndefined(), this maps to a normal
pattern matching in the rules, since it checks whether an expression is
existent in the working memory.

For example, the expression object->ocllsUndefined(), maps to (not (ObjectType
(OBJECT ?object)) in Jess language, and the expression not object.oclisUndefined()
maps to (ObjectType (OBJECT Zobject)).

Example

Figure A-27 depicts the EnterTrue Jess rule for SituationContained,
depicted in Figure 6-1. The OCL invariant for this situation specification is
shown in the sequel. The numbers depict the correspondences between the
OCL specification and the Jess code.

Context SituationContained inv:

© person.hasGeoLocation = locationPerson AND

@ nuilding.hasGeoLocation = locationBuilding AND

(3] building.hasSpatialCoordinates = spatialCoord AND

(4] (spatialCoord.dimension->containment (locationPerson.coordinates,
locationBuilding.coordinates, spatialCoord.dimension)) AND

© huilding.ID = Zilverling"

Tab]es A2 af]d A-3

(defrule entertrue_situation_contained / i

(Person (OBJECT ?person)(hasGeoLocation ? person_hasGeoLocation)) N ;
(GeoLocation (OBJECT ?locationPerson&:(eq ?locationPerson ? personfhasGeoLocétion)X)

(Building (OBJECT ?building)(geoLocation ?building_hasGeoLocation))
(GeoLocation (OBJECT ?locationBuilding&:(eq ?locationBuilding ?buiIdingihasGeoLocatﬁon)))

(Building (OBJECT ?building)(spatialCoordinates ?building_hasSpatialCoordinates))
(SpatialCoordinates (OBJECT ?spatialCoord&:(eq ?spatialCoord ?building_hasSpatialCoordinates))

Tables A-2 and A-5

(GeoLocation (OBJECT ?locationPerson) (location ?locationPerson_coordinates))
(GeoLocation (OBJECT ?locationBuilding) (location ?locationBuilding_coordinates))
(

(

(-]

SpatialCoordinates (OBJECT ?spatialCoord) (dimension ?spatialCoord_dimension))
test (call context_control.SpatialDimension Containment ?locationPerson_coordinates
?locationBuilding_coordinates ?spatialCoord_dimension))

Tables A-2 and A-3

6§(Bunding (OBJECT ?building)(ID 21D&:(eq (2D “Zilverling"))))

(not (SituationContained (OBJECT ?st)(person ?person) (building ?building) (finaltime nil)))
=>
(bind ?SituationContained (new situation_control.SituationContained ?person ?building))
(definstance SituationContained ?SituationContained)

)

Figure B-1 ECA rule
execution cycle for the
lifetime once

Figure B-2 ECA rule
execution cycle for the
lifetime <n> times

Appendix

ECA-DL Lifetime Constraints

The activity models presented in this appendix specify the execution cycle
of an ECA-DL rule for the various lifetime constraints. Figure B-1 depicts
the execution cycle of an ECA-DL rule for the lifetime once. In this case,
actions are invoked just once, and the rule is further deactivated.

Continuously detects the events
defined in the Upon clause

[events in the upon [condition in the when
clause have occurred] clause is true]

DetectEvents CheckCondition InvokeActions O

Figure B-2 depicts the execution cycle of an ECA-DL rule for the lifetime

<n> times. In this case, a counter is defined and incremented every time
an action is invoked. When an action is invoked more than n times, the rule
is deactivated.

Continuously detects the events
defined in the Upon clause

[events in the upon [condition in the whe
clause have occurred] clause is true |

.%@Evems

CheckCondition

\ncremenlCounteD%@vokeAclions
yes

is counter>= N?

Figure B-3 depicts the execution cycle of an ECA-DL rule for the lifetime

Sfrom <start> to <end>. In this case, two checking points are necessary,

namely one that detects whether it is time to start detecting events, and the
other that checks whether it is already past the <end> period. If it is
passed the <end> period, the rule is deactivated. Otherwise, the action is
invoked and incoming events should be detected.

264

Figure B-3 ECA rule
execution cycle for the
lifetime from <start>
fo <end>

Figure B-4 ECA rule
execution cycle for the
lifetime fo <end>

APPENDIX B ECA-DL LIFETIME CONSTRAINTS

Continuously detects the events
defined in the Upon clause

[events in the upon
clause have occurred]

[condition in the whe

is (now > = start)? clause is true |

yes

is (now>= end)?

Events

CheckCondition

InvokeActions

Figure B-4 depicts the execution cycle of an ECA-DL rule for the lifetime to
<end>. In this case, one checking points is necessary, namely to detect
whether the current time is past the <end> period. If it is passed the

<end> period, the rule is deactivated. Otherwise, the action is invoked and
incoming events should be detected.

Continuously detects the events
defined in the Upon clause

[events in the upon
clause have occurred]

‘——}@Evems

[condition in the whe
clause is true]

is (now>= end)?

CheckCondition

InvokeActions

Table C-1
Terms to Jess

Mapping

Appendix

Mappings from ECA-DL to Jess

In this appendix we provide details of the mappings between ECA-DL
expressions to Jess expressions. In addition, this appendix also presents
examples of Jess rules, which are generated from ECA-DL rules using our
mapping framework.

Term

Table C-1 provides examples of mappings from ECA-DL terms to the Jess
language. These types of mappings have been extensively discussed
Appendix A.

Term ECA-DL expression Jess expression

Entity EntityType.id1 (EntityType (OBJECT ?entity) (id id1))
Reference variable (VariableType (OBJECT ?variable))
Variable

EntityContext ~ EntitytType.id1.object (EntityType (OBJECT ?entity) (id id1) (object1 ?object1))
1.datatype.pdatatype (ObjectType1 (OBJECT ?object1) (datatype ?datatype))
(DataType (OBJECT ?datatype) (pdatatype ?pdatatype)
variable.object1.datat (VariableType (OBJECT ?variable) (object1 object1))
ype.pdatatype ObjectType1 (OBJECT ?object1) (datatype ?datatype))
(DataType (OBJECT ?datatype) (pdatatype ?pdatatype)
EntityAttribute EntitytType.id1.pdatat (EntityType (OBJECT ?entity) (id id1) (pdatatype

ype ?pdatatype))
EntitytType.id1.dataty (EntityType (OBJECT ?entity) (id id1) (datatype
pe.pdatatype ?datatype))

(DataType (OBJECT ?datatype) (pdatatype ?pdatatype))
EntityType (OBJECT ?entity) (id id1))

test (call SomeClass Function ?entity))

test (call SomeClass Function ?variable))

Function Function
(EntityType.id1)

Function (variable)

e e

Function (literal) test (call SomeClass Function literal))

266

APPENDIX C MAPPINGS FROM ECA-DL TO JESS

Function (EntityType (OBJECT ?entity) (id id1) (object1 ?object1))

(variable.objectl.data (ObjectType1 (OBJECT ?object1) (datatype ?datatype))

type.pdatatype) (DataType (OBJECT ?datatype) (pdatatype ?pdatatype)
(test (call SomeClass Function ?pdatatype))

ContextSituati SitugltionType (EntityType (OBJECT ?entity) (id id1))
on (EntityType.id1) (SituationType (OBJECT ?situation) (entitytype ?entity))
SituationType (EntityType1 (OBJECT ?entity1) (id id1))

(EntityTypet.id1, (EntityType2 (OBJECT ?entity2) (id id2))
EntityType2.id2) (sjuationType (OBJECT ?situation) (entitytypel ?entity)

(entitytype2 ?entity2))
SituationType (VariableType (OBJECT ?variable))
(variable) (SituationType ~ (OBJECT ?situation) (variabletype 2
variable))
EntityCollecti EntityType.* (EntityType (OBJECT ?entity))

on

Binary and unary expressions

We use the Jess equality operator eq (expr expr) to test equality between
objects and strings, which returns TRUE if the first argument is equal in type
and value to all subsequent arguments. Similar functions (eg* or =) may be
used to check equality for numeric values. Again, the combination of
symbols &: is used to compare a slot values. The symbols &: reads “such
that” in Jess. So, the code (...70bject,&:(eq (?object, ?object;))) reads “object2
such that object2 is equal to objectl”. Similary, for numeric values, the
expression (...7number,&:(>(?number, ?number,)) reads “numberl such that
numberl is greater than number2.

When Boolean expression are used as parameters of functions in ECA-
DL, such as Function (operand1 and operand2), these expressions are mapped to
expressions using the Boolean operators and, or, not in Jess. Consider for
example, the following ECA-DL expression, which invokes an action, which
received two arguments, namely a unique identifier of the person, and a
Boolean value which is true when this person’s age is between 21 and 65
years old: Action (variable.id, variable.age > 21 or variable.age >65). This variable
refers to each person of a collection of entities of type Person. This would
be mapped to the following Jess expression:

(EntityType (OBJECT ?variable) (id ?id) (age ?age))

=>
(call NameClass Action ?id (or (>7age 21) (> ?age 65)))

The parameters of a function should be always resolved before the function
invocation expression, and in the LHS of a rule. Table C-2 depicts some

Table C-2 Examples of
mapping of binary
expressions from ECA-
DL to Jess

MAPPINGS FROM ECA-DL TO JESS 267

examples of how binary expressions in ECA-DL can be mapped to binary
expressions in Jess.

ECA-DL expression Jess expression
S?tuation (Entity.idt Entity.id2) and (EntityType1 (OBJECT ?entity1) (id id1))
Situation (variable) (EntityType2 (OBJECT ?entity2) (id id2))

(EntityType (OBJECT ?variable))
(SituationType (OBJECT ?situation) (entitytype1 ?entity1)
(entitytype2 ?entity2))

(SituationType (OBJECT ?situation) (entitytype ?variable))
(EntitytType.id1.pdatatype1 > (EntityType (OBJECT ?entity) (id id1) (pdatatypel
number) and ?pdatatype1&:(> ?pdatatype1 number)))
(EntitytType.id1.object1.datatype.pd (EntityType (OBJECT Zentity) (id id1) (object! 2object1))
atatype2) ObjectTypeT (OBJECT 2objectt) (datatype ?datatype))
DataType (OBJECT ?datatype) (pdatatype2 ?pdatatype2))
EntityType (OBJECT ?entity) (id id1) (object? ?object1))
ObjectType1 (OBJECT ?object1) (datatype1 ?datatypel))
DataType1 (OBJECT ?datatype1) (pdatatype1

?pdatatype1&: (>pdatatypel number)))
(EntityType (OBJECT ?entity) (id id2) (object2 ?object2))
(ObjectType2 (OBJECT ?object?) (datatype? ?datatype2))
(DataType2 (OBJECT ?datatype?2) (pdatatype2
?pdatatype2&: (< pdatatype2 number)))

(EntitytType.id1.object1.datatype.pd
atatype > number) and
(EntitytType.id2.object2.datatype2.p
datatype2 < number)

e e e

(not (not (and ((EntityType (OBJECT ?entity) (id id1) (object1

(EntitytType.id1.object1.datatype.pd 20bject1))

atatype = number)) (ObjectType1 (OBJECT object) (datatype
?datatype))

(DataType (OBJECT ?datatype) (pdatatype
?pdatatyped&: (= pdatatype number)))))

Function (variable) or Function (EntityType (OBJECT ?variable))
(Entity.id1) (EntityType (OBJECT ?entity) (id id1))

(or (test (call SomeClass Function ?variable))

(test (call SomeClass Function ?entity))

)
Function (not (EntityType (OBJECT ?entity) (id id1) (pdatatype
EntitytType.id1.pdatatype) ?pdatatype))

(test (call SomeClass Function (not ?pdatatype)))

Mapping examples

Consider the examples of ECA-DL rule specifications depicted in 7.2.6.
For each of these rules, we partially depict in Table C-3 the Jess rules that
are generated. In addition to these rule, the following structures may be

268

Table C-3 Examples of

mapping
rules

of

ECA-DL

APPENDIX C MAPPINGS FROM ECA-DL TO JESS

also generated: a detection window rule; defqueries; a rule to update scope

clause.
ECA-DL rule Jess rule 1 Jess rule 2
ECA Rulet: evl:
Upon EpilepticAlarm EpilepticAlarm(Patient.John); (defrule Jess2Rulel
(Patient.John) (defrule Jess1Rulet (?eventfact <-
When SituationDriving (?eventfact <- (EpilepticAlarm (id ev1)
(Patient.John) (EpilepticAlarm (id ev1) (rule rulet)))
Do SendSms (Patient.John, (rule rule1))) (Patient (OBJECT ?patient)
“John, you may have an (not (and (id “John™))
epileptic seizure, please stop (Patient (OBJECT ?patient) (SituationDriving
the car”) (id “John™)) (person ?patient))
(SituationDriving ==
(person ?patient)))) (retract ?eventfact)
=> (call SomeClass SendSms
(retract Zeventfact)) “John” “John, you may have an
epileptic seizure, please stop
the car”))
ECA Rule2: ev1: EpilepticAlarm(P);
Scope (defrule Jess1Rule2 (defrule Jess2Rule?
(select (Patient (OBJECT ?p) (Patient (OBJECT ?p)
(Patient.™; patient; (id ?scopeid) (type “epileptic”) (id ?scopeid) (type “epileptic”)
patient.type = “epileptic” (hasCivilLocation (hasCivilLocation
and ?hasCivilLocation)) ?hasCivilLocation))
patient.hasCivilLocation.city (CivilLocation (OBJECT (CivilLocation (OBJECT
= “Enschede”) ; p) 7hasCivilLocation) ?hasCivilLocation)
{ (city “Enschede”)) (city “Enschede”))

Upon EpilepticAlarm (p) ?eventfact <- (EpilepticAlarm ?eventfact <- (EpilepticAlarm
When SituationDriving (p) (eventiD evl) (rulelD (eventD evl) (rulelD
Do SendSms (p, “You may rule2) (patientlD ?scopeid)) rule2) (patientlD ?scopeid))

have an epileptic seizure, (not (SituationDriving (person (SituationDriving (person
please stop the car”) 7scopeid))) 7scopeid))
I => =>

(retract ?eventfact)) (retract ?eventfact)

(call SomeClass SendSms
?scopeid “You may have an
epileptic seizure, please stop the
car’))

Table C-4 depicts some examples of mapping from ECA-DL to Jess for rules
without a when clause.

Table C-4 Examples of

mapping
rules
clause

of
without

ECA-DL
when

MAPPINGS FROM ECA-DL TO JESS 269

ECA-DL rule Jess rule
ECA Rule3: ev1: HighSugarAlarm (P);
Scope (select (Patient.™; patient; (defrule JessRule3
patient.type = “diabetic”) ; p) (Patient (OBJECT ?p) (id ?scopeid)
{ (type “diabetic”)
Upon HighSugarAlarm (p) ?eventfact <- (HighSugarAlarm
Do SendSms (p, “You have high sugar (eventID ev1) (rulelD rule3)
levels”) (patient ?scopeid))
i ==
(retract 7eventfact)

(call SomeClass SendSms ?scopeid “You have
high sugar levels”))
ECA Rule4: (Policemen (OBJECT ?p1) (id ?id1)
Scope (Select (Policeman.*; policeman; (hasActivity ?hasActivity))
policemen.hasActivity.value = ‘working’; (HasActivity (OBJECT ?hasActivity)
p1) (value “working”))
{ 2eventfact <- (OnEvery (eventlD ev1) (rulelD
Upon OnEvery (5) rule4))
Do NotifyApp (application-address, =>
List (p1.id, select(policeman.™, p2; (retract ?eventfact)
SituationWithinRange (p1,p2) and (call SomeClass NotifyApp “application-address”
p2.hasActivity.value = ‘working’))) (call ~ SomeClass List ~ ?id1 (run-query
I getPolicemenWithinRange ?7p1)))

Appendix

Case Study Jess Rules

This appendix presents the Jess rules that correspond to the situation
specifications and ECA-DL rules of the case studies discussed in Chapter 8.

SituationCaregiverAvailable rules

Figure D-1 depicts the EnterTrue and EnterFalse Jess rules that are generated
from the situation SituationCaregiverAvailable specification (Figure 8-3). The
EnterTrue rule checks whether the OCL invariant holds and there is no
current situation fact. If so, it creates an instance of situation
SituationCaregiverAvailable, and invokes the notifySubscribers method, so that the
SituationCaregiverAvailableContextManager can inform all the subscribers (in this
case the healthcare controller) of that particular “EnterTrue” situation
event. The Enterfalse rule checks whether this OCL invariant no longer holds
and there is a current situation fact. If so, it deactivates the current
situation fact, invokes the notifySubscribers method, so that the
SituationCaregiverAvailableContextManager can inform the healthcare controller of
that particular EnterFalse situation event.

272

Figure D-1 Jess rules
derived from Situation
CaregiverAvailable
specifications

APPENDIX D CASE STUDY JESS RULES

;enter_true
(defrule enter true _situationcaregiveravailable
(Caregiver (OBJECT ?caregiver) (identity ?caregiverld) (hasCaregiverStatus ?status))
(or (CaregiverStatus (OBJECT ?status) (status_value ?statusvalue&: (eq ?statusvalue 0)))
(CaregiverStatus (OBJECT ?status) (status_value ?statusvalue&: (eq ?statusvalue 2))))
(not (SituationCaregiverAvailable (care_giver ?caregiver) (care_giver_status ?status)))
=>
(bind ?SituationCaregiverAvailable (new situation_control.SituationCaregiverAvailable ?caregiver))
definstance SituationCaregiverAvailable ? SituationCaregiverAvailable)
bind ?initialtime (call ?SituationCaregiverAvailable getStarttime))
bind ?finaltime (call ?SituationCaregiverAvailable getFinaltime))
call SituationAvailableContextManager notifySubscribers "EnterTrue" ?caregiverld ?initialtime ?finaltime))

;enter_false
(defrule enter_false_situationcaregiveravailable
(Caregiver(OBJECT ?caregiver) (identity ?caregiverld)(hasCaregiverStatus ?status))
(not (or (CaregiverStatus (OBJECT ?status) (status_value ?statusvalue&: (eq ?statusvalue 0)))
(CaregiverStatus (OBJECT ?status) (status value ?statusvalue&: (eq ?statusvalue 2)))))
(SituationCaregiverAvailable(OBJECT 7situation) (care_giver ?caregiver) (care_giver status ?status))
=>
(call ?situation deactivate)
(bind ?initialtime (call ?situation getStarttime))
(bind ?finaltime (call ?situation getFinaltime))
(call SituationAvailableContextManager notifySubscribers "EnterFalse" ?caregiverld ?initialtime ?finaltime))

SituationCaregiverWithinRange rules

Figure D-2 depicts the EnterTrue and EnterFalse Jess rules that are derived from
the situation SituationCaregiverWithinRange specification (Figure 8-4). The EnterTrue
rule checks whether the OCL invariant holds and there is no current
situation fact. If so, it creates an instance of situation SituationWithinRange, and
invokes the notifySubscribers method, so that the SituationWithinRangeContextManager
can inform all the subscribers (in this case the healthcare controller) of that
particular “EnterTrue” situation event. The EnterFalse rule checks whether
this OCL invariant no longer holds and there is a current situation fact. If
so, it deactivates the current situation fact, invokes the notifySubscribers
method, so that the SituationWithinRangeContextManager can inform the healthcare
controller of that particular EnterFalse situation event.

Figure D-2 Jess rules
derived from Situation
CaregiverWithinRange
specifications

Figure D-3 Jess rules
derived from ECARule1

CASE STUDY JESS RULES 273

;enter_true
(defrule enter_true_situationcaregiverwithinrange
(EpilepticPatient (OBJECT ?patient) (identity ?patientld) (geoLocation ?patientLocation))
(Caregiver (OBJECT ?caregiverd&: (?caregiver isCaregiverOf ?caregiver ?patient)) (identity ?caregiverld) (geoLocation ?caregiverLocation))
(GeoLocation (OBJECT ?patientLocation) (location ?location1))
(GeoLocation (OBJECT ?caregiverLocation) (location ?location2))
(test (< (call ?location1 Distance ?location ?location2) 100.0))
(not (SituationCaregiverWithinRange (patient ?patient) (caregiver ?caregiver) (finaltime nil))
==
(bind ?SituationCaregiverWithinRange (new situation_control.SituationCaregiverWithinRange ?patient ?caregiver))
(definstance SituationCaregiverWithinRange ? SituationCaregiverWithinRange)
(bind ?initialtime (call ?SituationCaregiverWithinRange getStarttime))
(bind ?finaltime (call ?SituationCaregiverWithinRange getFinaltime))
(call SituationCaregiverWithinRangeContextManager notifySubscribers "EnterTrue" ?patientld ?caregiverld ?initialtime ?finaltime))

senter_false
(defrule enter_false_situationcaregiverwithinrange
(EpilepticPatient (OBJECT ?patient) (identity ?patientld) (geoLocation ?patientLocation))
(Caregiver (OBJECT ?caregiverd&: (?caregiver isCaregiverOf ?caregiver ?patient)) (identity ?caregiverld) (geoLocation ?caregiverLocation))
(GeoLocation (OBJECT ?patientLocation) (location ?location1))
(GeoLocation (OBJECT ?caregiverLocation) (location ?location?))
(not (test (< (call ?locationt Distance ?location1 ?location2) 100.0)))
SituationCaregiverWithinRange (OBJECT ?situation) (patient ?patient) (caregiver ?caregiver) (finaltime nil))
==
(call ?situation deactivate)
(bind ?initialtime (call ?situation getStarttime))
(bind ?finaltime (call ?situation getFinaltime))
(call SituationCaregiverWithinRangeContextManager notifySubscribers "EnterFalse" ?patientld ?caregiverld ?initialtime ?finaltime))

Jess rules for ECA-DL rules of the healthcare application

The ECARulel derived two rules, one that only consumes the event in case
the when clause is false, and the other rule that consumes the event and
invokes the action. We consider in the healthcare application a default
detection window interval of one hour.

(defrule ECARule1_1
?event <-(EpilepticAlarm (idevent "ev1") (idrule "rl1") (patientD ?patientld) (timestamp ?t))
(EpilepticPatient (OBJECT ?patient)(identity ?patientld) (hazardousActivity ?ha))
(not (HazardousActivity (OBJECT ?ha) (hazardousvalue ?value&:(= ?value TRUE))))
=>
(retract event))

(defrule ECARule1_2
?event <-(EpilepticAlarm (idevent "ev1") (idrule "rl1") (patientlD ?patientld) (timestamp ?t))
(EpilepticPatient (OBJECT ?patient) (identity ?patientld) (hazardousActivity ?ha))
(HazardousActivity (OBJECT ?ha) (hazardousvalue ?7value&: (= ?value TRUE)))
=>
(retract ?event)
(call HealthcareActionResolver notifyPatientApplication ?patientld))

The ECARule2 rule derives a Jess rule and a defquery. Only one Jess rule is
derived since there is no when clause defined in this ECA-DL rule. This
rule consumes the event and invokes the action.

274 APPENDIX D CASE STUDY JESS RULES

(defquery SelectCaregiversECARule2
. (declare (variables ?patient))
Figure D-4 Jess rules (Caregiver (OBJECT ?caregiverd&:(?caregiver isCaregiverOf ?caregiver ?patient)) (identity ?idcaregiver))
derived from ECARule2 (SituationCaregiverAvailable (caregiver ?caregiver) (finaltime nil))
(SituationCaregiverWithinRange (caregiver ?caregiver) (patient ?patient) (finaltime nil)))

(defrule ECARule2
7event <- (EpilepticAlarm (idevent "ev1") (idrule "rl2") (patientiD ?patientld) (timestamp ?t))
(EpilepticPatient (OBJECT ?patient)(identity ?patientld) (geoLocation ?geolocation))
(GeoLocation (OBJECT ?geoLocation) (location ?coordinates))
=>
(retract ?event)
(bind ?query_result (run-query* SelectCaregiversECARule2 ?patient))
(bind ?result (call Util List ?query_result))
(call HealthcareActionResolver notifyCaregiversApplications ?patientld ?coordinates ?result))

The ECARule3 rule derives a Jess rule and a defquery. Only one Jess rule is
derived since there is no when clause defined in this ECA-DL rule. This
rule consumes the event and invokes the action.

(defquery SelectCaregiversECARule3
Figure D-5 Jess rules (declare (variables ?patient ?caregiver))
derived for ECARule3 (Caregiver (OBJECT ?care&: (and (?care isCaregiverOf ?care ?patient) (neq ?care ?caregiver))) (identity ?idcaregiver))
(SituationCaregiverAvailable (caregiver ?care) (finaltime nil))
(SituationCaregiverWithinRange (caregiver ?care) (patient ?patient)(finaltime nil)))

(defrule ECARule3
?event! <- (EpilepticAlarm (idevent "ev1") (idrule "rl3") (timestamp ?t1) (patientlD ?patientld))
?event2 <- (AcceptRequestEvent (idevent "ev2") (idrule 'rl3") (patientlD ?patientld) (careGiverlD ?caregiverld)
(timestamp ?t2&:(> 712 7t1)))
(EpilepticPatient (OBJECT ?patient) (identity ?patientld))
(Caregiver (OBJECT ?caregiver) (identity ?caregiverld))
=>
(retract ?event1)
(retract ?event2)
(bind ?query_result (run-query* SelectCaregiversECARule3 ?patient ?caregiver))
(bind ?result (call Util List ?query_result))
(call HealthcareActionResolver notifyAcceptanceCaregivers ?result ?patientld ?caregiverld))

The ECARule4 rule derives a Jess rule and a defquery. Only one Jess is
derived since there is no when clause defined in this ECA-DL rule. This
rule consumes the event and invokes the action.

CASE STUDY JESS RULES 275

(defquery SelectHealthProfessionalsSECARule4

) (declare (variables ?patientID))

Figure D-6 Jess rules (EpilepticPatient (OBJECT ?patient) (identity ?patientID))

derived for ECARule4 (HealthProfessional (OBJECT ?healthprofessional) (identity ?healthprofessionallD))
(test (call ? healthprofessional isHealthProfessionalOf ? healthprofessional ?patient)))

(defrule ECARule4
7event <- (EpilepticAlarm (idevent "ev1") (idrule "rl4") (patientlD ?patientID) (timestamp ?t))
=>
(retract ?event)
(bind ?query result (run-query* SelectHealthProfessionalsSECARule4 ?patientID))
(bind ?result (call Util List ?query_result))
(call HealthcareActionResolver logEpilepticAlarm ?patientld ?result))

Jess rules for ECA-DL rules of the policy management application
The ECARule5 rule derives a Jess rule and a defquery.

(defquery SelectCaregiversECARule5
Figure D-7 Jess rules (declare (variables ?patient))
derived from ECARule5 (Caregiver (OBJECT ?caregiver&:(?caregiver isCaregiverOf ?caregiver ?patient)) (identity ?idcaregiver))
(SituationCaregiverAvailable (caregiver ?caregiver) (finaltime nil))
(SituationCaregiverWithinRange (caregiver ?caregiver) (patient ?patient)(finaltime nil)))

(defrule ECARule5
?event <- (EpilepticAlarm (idevent "ev1") (idrule "rl5") (patientlD ?patientld) (timestamp ?t))
(EpilepticPatient (OBJECT ?patient)(identity ?patientld) (geoLocation ?geolocation))
=>
(retract ?event)
bind ?query result (run-query* SelectCaregiversECARule5 ?patient))
bind ?result (call Util List ?query_result))
call PolicyManagementActionResolver grantAccessControlPolicyPatient ?patientld ?result)
call PolicyManagementActionResolver grantPolicyCaregiversStatus ?result ?patientld))

The ECARule6 rule derives a Jess rule and a defquery. Only one Jess rule is
derived since there is no when clause defined in this ECA-DL rule. This
rule consumes the event and invokes the action.

276 APPENDIX D CASE STUDY JESS RULES

(defquery SelectCaregiversECARule6
. (declare (variables ?patient ?caregiver))
Figure D-8 Jess rules (Caregiver (OBJECT ?care&: (and (?care isCaregiverOf ?care ?patient) (neq ?care ?caregiver))) (identity ?idcaregiver))
derived for ECARule6 (SituationCaregiverAvailable (caregiver ?care)(finaltime nil))
(SituationCaregiverWithinRange (caregiver ?care) (patient ?patient)(finaltime nil)))

(defrule ECARule6
?event! <- (EpilepticAlarm (idevent "ev1") (idrule "rl6") (timestamp ?t1) (patientlD ?patientld))
?event2 <- (AcceptRequestEvent (idevent "ev2") (idrule "rl6") (patientlD ?patientld) (careGiverlD ?caregiverld)
(timestamp ?t2&:(> ?t2 ?t1)))
(EpilepticPatient (OBJECT ?patient) (identity ?patientld))
(Caregiver (OBJECT ?caregiver) (identity ?caregiverld))
=>
(retract ?event1)
(retract ?event2)
(bind ?query_result (run-query™ SelectCaregiversECARule6 ?patient ?caregiver))
(bind ?result (call Util List ?query_result))
(call PolicyManagementActionResolver denyAccessControlPolicyPatient ?patientld ?result)
(call PolicyManagementActionResolver increaseTrustPolicyPatient ?patientld ?caregiverld))

The ECARule7 rule derives a Jess rule, which consumes the event and
invokes the action.

(defrule ECARule7
Figure D-9 Jess rules ?event! <- (EpilepticAlarm (idevent "ev1") (idrule "rl7") (timestamp ?t1) (patientiD ?patientld))
derived for ECARule7 ?event2 <- (AcceptRequestEvent (idevent "ev2") (idrule "rl7") (patientlD ?patientld) (careGiverlD ?caregiverld)

(timestamp ?t2&:(> 712 7t1)))
(EpilepticPatient (OBJECT ?patient) (identity ?patientld))
(Caregiver (OBJECT ?caregiver) (identity ?caregiverld))
=>
(retract 7event1)
(retract ?event2)
(bind ?query_result (run-query™ SelectCaregiversECARule6 ?patient ?caregiver))
(bind ?result (call Util List ?query_result))
(call PolicyManagementActionResolver increaseTrustPolicyPatient ?patientld ?caregiverld))

The ECARule8 rule derives a Jess rule. Only one Jess is derived since there
is no when clause defined in this ECA-DL rule. This rule consumes the
event and invokes the action.

(defrule ECARule8
Figure D-10 Jess rules ?2event <- (RejectHelpRequest (idevent "ev3") (idrule "rl8") (careGiverlD ?caregiverld)
derived for ECARule8 (patientiD ?patientld) (timestamp ?t))
=>
(retract ?event)

(call PolicyManagementActionResolver decreaseTrustPolicyPatient ?patientld ?caregiverld))

References

1. C. Alexander, The Timeless Way of Building, Oxford University Press, 1979.

2. J.P. Andrade Almeida, Model-Driven Design of Distributed Applications, Ph.D.
Thesis in Computer Science, CTIT Ph.D.-Thesis Series, No. 06-85,
Telematica Instituut Fundamental Research Series, No. 018 (TI/FRS/018),
Enschede, The Netherlands, 2006.

3. ATLAS group, LINA & INRIA, ATL Starter’s Guide. Version 0.1, December
2005. Available at: http://www.eclipse.org/m2m/atl/doc/
ATL_Starter_Guide.pdf

4. ATLAS group, LINA & INRIA, ATL User Manual. Version 0.7, February
2006. Available at: http://www.eclipse.org/m2m/atl/doc/
ATL_User_Manual[v0.7].pdf

5. J. Bardram, “Applications of Context-Aware Computing in Hospital work”,
Proc. of ACM Symposium on Applied Computing (SAC), Nicosia, Cyprus,
2004, pp. 1547-1579.

6. H. Batteram, et al., “AWARENESS Scope and Scenarios”. AWARENESS
Deliverable D1.1, 2004. Available at: http://awareness.freeband.nl

7. G. Biegel and V. Cahill, “A Framework for Developing Mobile, Context-
Aware Applications”, Proc. of the 2nd IEEE Conference on Pervasive
Computing and Communications (Percom2004), Orlando USA, 2004.

8. L.O. Bonino da Silva Santos, M. van Sinderen, and L. Ferreira Pires,
“Dynamic Service Discovery and Composition for Ubiquitous Networks
Applications”, Second Conference on Future Networking Technologies

(CoNEXT 2006), Poster Track, Lisbon, Portugal, December 2006.

9. T. Buchholz, A. Kiipper, and M. Schiffers, “Quality of context: What it is and
why we need it”. In Proceedings of the Workshop of the HP OpenView
University Association 2003 (HPOVUA 2003), Geneva, 2003.

278

REFERENCES

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

F. Buschmann, et al., “Pattern-Oriented software architecture: A System of
Patterns”. John Wiley and Sons, New York, U.S.A. , 2001.

Web Services Business Process Execution Language v. 2.0, OASIS Committee
Specification, Jan. 31, 2007.

D. Brickley and L. Miller. “FOAF vocabulary specification”, In RDFWeb
Namespace Document. RDFWeb, xmlns.com, 2003.

J. Bauer, Identification and Modeling of Contexts for Different Information Scenarios in
Air Traffic, Diplomarbeit , Technical University of Berlin, Mar. 2003.

F. Cabitza, M. Sarini, B. Dal Seno, “DJess - a context-sharing middleware to
deploy distributed inference systems in pervasive computing domains”, Proc.
Int’l Conference on Pervasive Services (ICPS '05), IEEE CS Press, 2005.

H. Chen, T. Finin, and A. Joshi, “An ontology for context-aware pervasive
computing environments”, Knowledge Engineering Review, Special Issue on
Ontologies for Distributed System, 2003.

H. Chen, An Intelligent Broker Architecture for Pervasive Context-Aware Systems, Ph.D
Thesis, University of Maryland, Baltimore County, December 2004.

H. Chen, et al., “SOUPA: Standard Ontology for Ubiquitous and Pervasive
Applications”, Proc. International Conference on Mobile and Ubiquitous

Systems: Networking and Services, August 2004.

G. Chen and D. Kotz, “A survey of context-aware mobile computing
research”, Technical Report TR2000-381, Department of Computer Science,
Dartmouth College, 2000.

G. Riley, Clips: A Tool for Building Expert Systems, CLIPS website. Available
at: http://www.ghg net/clips/CLIPS html

Context-Aware, the MIT context-aware group. Available at:
http://context.media.mit.edu/press

L. M. Daniele, Towards a Rule-Based Approach for Context-Aware Applications, M.Sc.
thesis, Dept. Computer Science, University of Twente, Enschede, The
Netherlands, 2006.

A. Dey, G. D. Abowd, and D. Salber, “A conceptual framework and a toolkit
for supporting the rapid prototyping of context-aware applications”, Human-

Computer Interaction, 16:97-166, 2001.

A. Dey, “Context-aware computing: The CyberDesk Project”, Proc. of AAAI
1998 Spring Symposium Series on Intelligent Environments, Dagsthul,
Germany, 1998.

A. Dey, “Supporting the construction of context-aware applications”,
Presentation delivered at the Dagstuhl Seminar on Ubiquitous Computing,

Dagsthul, Germany, 2001.

REFERENCES 279

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

A. Dey and G. Abowd, “Towards a better understanding of context and
context-awareness”, Technical ReportGIT-GVU-99-22, Georgia Institute of
Technology, 1999.

K. Devlin, Logic and Information, Cambridge University Press, 1995.

M.G. Davies and D.M. Thomson, “Introduction”, in Memory in context; context
in memory (G. M. Davies and D. M. Thomson, Eds.). Chichester, England:
Wiley, 1998, pp. 1-10.

P. Dockhorn Costa, “Towards a Services Platform for Context-Aware
Applications”, M.Sc. thesis, Dept. Computer Science., University of Twente,
Enschede, The Netherlands, 2003.

P. Dockhorn Costa, et al., “AWARENESS Services Infrastructure”,
AWARENESS Deliverable D2.1, 2004. Available at:
http://awareness.freeband.nl

P. Dockhorn Costa, L. Ferreira Pires, M. van Sinderen, and]. Pereira Filho,
“Towards a Service Platform for Mobile Context-Aware Applications”, Proc.
Ist Intl. Workshop on Ubiquitous Computing (IWUC 2004), Portugal, 2004,
pp- 48-61.

P. Dockhorn Costa, L. Ferreira Pires, M. van Sinderen, and D. Rios, “Services

Platforms for Context-Aware Applications”, Proc. 2nd European Symp. on

Ambient Intelligence (EUSAI 2004), The Netherlands, 2004, pp. 363-366.

P. Dockhorn Costa,]J.P.A. Almeida, L. Ferreira Pires, G. Guizzardi, and M.
van Sinderen, “Towards Conceptual Foundations for Context-Aware
Applications”, Proc. of the Third International Workshop on Modeling and
Retrieval of Context (MRCO06), Boston, USA, 2006.

P. Dockhorn Costa, L. Ferreira Pires, and M. van Sinderen, “Designing a
Conlfigurable Services Platform for Mobile Context-Aware Applications”, Int’l
Journal of Pervasive Computing and Communications (JPCC), 1(1):13-25,
Troubador Publishing, 2005.

Eclipse Foundation, “Eclipse - an open development platform”, Eclipse
website. Available at: http://www.eclipse.org

SourceForge.net, Eclipse =~ Metrics plugin = website. Available at:
http://sourceforge.net/projects/metrics

Eclipse Foundation, the ATLAS Transformation Language. Available at:
http://www.eclipse.org/m2m/atl/

R. Etter, P. Dockhorn Costa and T. Broens, “A Rule-Based Approach
Towards Context-Aware User Notification Services”, Proc. of the IEEE Int'l
Conference on Pervasive Services, Lyon, France, June 2006.

P. Eugster, P. Felber, R. Guerraoui and A.M. Kermarrec, “ The Many Faces of
Publish/Subscribe”, ACM computing Surveys, Vol. 35(2), June 2003.

280

REFERENCES

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Sun Microsystems, Enterprise Java Beans technology. Available at:

http://java.sun.com/products/ejb/

L. Ferreira Pires, Architectural Notes: a_framework for distributed systems development,
Ph.D. Thesis, University of Twente, The Netherlands, Sept. 1994.

Freeband Kennisimpuls, “AWARENESS project”. The Netherlands, 2004.
Available at: http://awareness.freeband.nl

E. Friedman-Hill, Jess in Action, Java Rule Based Systems, Manning
Publications Co., 2003.

A. Fetzer, “Recontextualizing context”, Proc. of Context Organiser workshop

at ECCS *97. April 9—11, Manchester, UK, 1997.

C. Forgy, “Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern
Match Problem”, Artificial Intelligence 19, 1982, pp. 17-37.

EF. Fuchs, I. Hochstatter, M. Krause and M. Berger, “A Meta—Model Approach
to Context Information”, Proc. of 2nd IEEE PerCom Workshop on Context
Modeling and Reasoning (CoMoRea) (at 3rd IEEE International Conference
on Pervasive Computing and Communication (PerCom 2005)), IEEE, Hawaii,
USA, March, 2005.

Gentleware products, Poseidon for UML. Available at:
http://www.gentleware.com/products.html

E. Gamma, et al., Design Patterns: Elements of Reusable Object-Oriented Software.
Massachusetts, U.S.A., Addison Wesley, 1996.

P. Gray and D. Salber, “Modeling and Using Sensed Context Information in
the design of Interactive Applications”, Proc. of 8th IFIP Working Conference
on Engineering for Human-Computer Interaction (EHCI 01), Toronto,

Canada, May 2001.

R. Guha, “Contexts: a formalization and some applications”, Technical
Report, Stanford University, Stanford, CA, 1992. Available at: http://www-
formal.stanford.edu/guha/guha-thesis.ps

G. Guizzardi, H. Herre and G. Wagner, “On the General Ontological
Foundations of Conceptual Modeling”, Proc. of the 21st Int’l Conference on
Conceptual Modeling (ER-2002), LNCS 2503, 2002.

G. Guizzardi, Ontological Foundations for Structural Conceptual Models, PhD Thesis,
University of Twente, The Netherlands. TI-FRS No. 15, 2005.

G. Guizzardi, and G. Wagner, “Towards Ontological Foundations for Agent
Modeling Concepts using UFO”, Agent-Oriented Information Systems
(AOIS), Lecture Notes on Artificial Intelligence (LNAI) 3508, Springer-
Verlag, 2005.

X. Hang Wang, D. Qing Zhang, T. Gu, and H. Keng Pung, “Ontology-Based
Context Modeling and Reasoning Using OWL”, Proc. of the 2nd IEEE Conf.

REFERENCES 281

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

on Pervasive Computing and Communications Workshop (PERCOMWO04),
USA, 2004.

C. Hesselman, A. Tokmakoff, P. Pawar, and S. Tacob, “Discovery and
Composition of Services for Context-Aware Systems”, Proc. of the Ist IEEE
European Conference on Smart Sensing and Context, Enschede, The

Netherlands, October 2006.

B. Heller and H. Herre, “Ontological Categories in GOL”, Axiomathes
14:71-90 Kluwer Academic Publishers, 2004.

K. Henricksen and]. Indulska, “A software engineering framework for
context-aware pervasive computing”, Proc. of the 2nd IEEE Conf. on
Pervasive Computing and Communications (Percom2004), USA, IEEE CS
Press, 2004.

K. Henricksen, A framework for context-aware pervasive computing applications, PhD
thesis, School of Information Technology and Electrical Engineering, The
University of Queensland, September 2003.

K. Henricksen,]. Indulska, T. McFadden, and S. Balasubramaniam,
“Middleware for distributed context-aware systems”, Proc. of the Int’l
Symposium on Distributed Objects and Applications (DOA), volume 3760 of
Lecture Notes in Computer Science, Springer, 2005, pp. 846-863.

M. Hockenberry, R. Gens, and T. Selker, “User Centered Mapping:
Theoretical and Practical Framework, MIT Whitepaper, 2005. Available at:
http://placemap.mit.edu/papers/ucm.pdf

IBM Rational Software, Rational Rose modelling products. Available at:
http://www-306.ibm.com/software/awdtools/developer/rose

ITU-T X.901 | ISO/IEC 10746-1 ODP Reference Model Part 1. Overview.
1995.

ISO/IEC, Open Distributed Processing Reference Model, Part 3:
Architecture, IS 10746-3 | X.903.

Java Remote Method Invocation (Java RMI) website. Available at:
http://java.sun.com/javase/technologies/core/basic/rmi/index jsp

Sandia Labs, Jess: the Rule Engine for the Java Platform, Jess website.
Available at: http://herzberg.ca.sandia.gov/jess/

SourceForge.net, JDrew: the Java Deductive Reasoning Engine for the Web,
jDREW website. Available at:
http://www.jdrew.org/fDREWebsite/fDREW.html

L. Kagal, T. Finin, and A. Joshi, “A Policy Based Approach to Security for the
Semantic Web”, Proc. 2nd International Semantic Web Conference
(ISWC2003), September 2003.

282

REFERENCES

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

M. Kifer, G. Lausen, and J. Wu, “Logical foundations of object-oriented and
framebased languages”, ACM 42, 1995, pp. 741-834.

A. Kleppe and J. Warmer, “Wed Yourself to UML with the Power of
Associations”, DevX online magazine article, June 2005. Available at:
http://www.devx.com/enterprise/Article/28528/0

CH. Lee, L. Bonanni, J.H. Espinosa, H. Lieberman, and T. Selker,
“Augmenting Kitchen Appliances with a Shared Context Using Knowledge
about Daily Events”, Proc. of Int’l Conference on Intelligent User Interfaces

(IUI), Sydney, Australia, 2006.

D. B. Lenat and R. V. Guha, Building Large Knowledge-Based Systems:
Representation and Inference in the CycProject. Addison-Wesley, February 1990.

The Mandarax project, Mandarax website. Available at:
http://mandarax.sourceforge.net

C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari, “Ontology
Library”, WonderWeb deliverable D18, 2003.

J. McCarthy, “Notes on formalizing context”, Proc. of the Thirteenth
International Joint Conference on Artificial Intelligence (IJCAI-93), Morgan
Kaufmann, Mountain View, CA, 1993. Available at: http://vww-
formal.stanford.edu/jmc/home.html

D.L. McGuinness and F. van Harmelen, “OWL web ontology language
overview”, 2004. Available at: http://www.w3.org/TR/owl-features

N. Maatjes, Automated transformations from ECA rules to Jess, M.Sc. thesis, Dept.
Computer Science., University of Twente, Enschede, The Netherlands, 2007.

M. Mansouri-Samani and M. Sloman, “GEM: A Generalized Event Monitoring
Language for Distributed Systems”, IEE/IOP/BCS Distributed Systems
Engineering . Journal., vol. 4, no. 2, June 1997.

E. Meeuwissen, et al., “Functional Architecture of the AWARENESS
Infrastructure”, AWARENESS Deliverable D1.3 (2005). Available at:
http://awareness.freeband.nl

The MyHeart Consortium, MyHeart project — webpage. Available at:
http://www.extra.research.philips.com/euprojects/myheart/

Merriam-Webster, Inc., Merriam-Webster Online. Available at: http:/m-

w.com

J. Mylopoulos, “Conceptual modeling and Telos”, in Conceptual modeling,
databases, and CASE (P. Loucopoulos and R. Zicari, Eds), Wiley, pp. 49-68.

T. P. Moran and P. Dourish, “Introduction to This Special Issue on Context-
Aware Computing”, Special Issue of Human-Computer Interaction, Volume
16, IBM Almaden Research Center, University of California, Irvine, 2001.

REFERENCES 283

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.
92.

93.

94.

95.

96.

97.
98.
99.

K. Mulligan and B. Smith, A Relational theory of the Act. Topoi (5/2), 115-
30, 1986.

R. Neisse, M. Wegdam, and M. van Sinderen, “Context-Aware Trust
Domains”, Proc. of the 1st European Conference on Smart Sensing and
Context, Enschede, The Netherlands, 2006.

R. Neisse, M. Wegdam, P. Dockhorn Costa, and M. van Sinderen, “Context-
Aware Management Domains”, Proc. 1st Int’l Workshop on Combining
Context with Trust, Security, and Privacy Moncton, Canada, Jul-2007.

N.A. Bradley and M.D. Dunlop, “Toward a Multidisciplinary Model of
Context to Support Context-Aware Computing”, Human Computer
Interaction, 2005, Volume 20, pp. 403 446.

Object Management Group, “A Discussion of the Object Management
Architecture”, formal/00-06-41, January 1997.

Object Management Group, “CORBA Components (version 3.0)”,
formal/02-06-65, June 2002.

Object Management Group, “Trading Object Services Specification”, Version
1.0. Available at: http://www.omg.org/docs/formal/00-06-27.pdf

Object Management Group, “Notification Service Specification”, Version 1.1.
Available at: http://www.omg.org/docs/formal/04-10-11.pdf

Object Management Group, “Unified Modelling Language: Object Constraint
Language”, version 2.0, ptc/03-10-04, 2003.

Object Management Group, “UML 2.0 Superstructure”, ptc/03-08-02, 2003.

Object Management Group, “the Model Driven Architecture”. Available at:
http://www.omg.org/mda/

Object Management Group, MetaObject Facility. Available at:
http://www.omg.org/mof/

Objecteerring software, Objeteering/UML. Available at
http://www.objecteering.com/products.php

E. Ochs, “ What a child language can contribute to pragmatics”, in
Developmental pragmatics (E. Ochs and B. B. Schriffin, Eds.), New York
Academic, 1979, pp. 1-17.

Octopus: OCL Tool for Precise UML Specifications Website. Available at:
http://www.klasse.nl/octopus/index.html

E. Perich. MoGATU BDI Ontology, 2004.
S. Powers. Practical RDF. O’Reilly & Associates, 2003.

P. Pawar and A. Tokmakoff, “Ontology-Based Context-Aware Service
Discovery for Pervasive Environments”, Proc. Ist IEEE International

284

REFERENCES

Workshop on Services Integration in Pervasive Environments (SIPE 2006),
Co-located with IEEE ICPS 2006, Lyon, France, June 2006.

100.F. Pan and J. R. Hobbs, “Time in OWL-S”, Proc. of AAAI-04 Spring
Symposium on SemanticWeb Services, Stanford University, California, 2004.

101.Parlay Group, “Parlay X Web Services White Paper”, 2002. Available at:
http://www.parlay.org/ about/parlay_x/ParlayX-WhitePaper-1.0.pdf

102.M.P. Papazoglou and D. Georgakopoulos, “Service-oriented computing”,
Communications of the ACM 46(10): 25-28, October 2003.

103.D. Preuveneers, et al., “Towards an extensible context ontology for ambient
intelligence”, Proc. Second European Symposium on Ambient Intelligence
(EUSAI 2004), Eindhoven, the Netherlands, 2004.

104.S. Pokraev, J. Koolwaaij, M. van Setten, T. Broens, P. Dockhorn Costa, M.
Wibbels, P. Ebben, and P. Strating, “Service Platform for Rapid Development
and Deployment of Context-Aware, Mobile Applications”, Proc. of
International Conference on Webservices (ICWS'05), Orlando, Florida, USA,
2005.

105.M. Romin, C.K. Hess, R. Cerqueira, A. Ranganathan, R.H. Campbell, and K.
Nahrstedt, “Gaia: A Middleware Infrastructure to Enable Active Spaces”,
IEEE Pervasive Computing, Oct-Dec 2002, pp. 74-83.

106.D. Quartel, Action relations Basic design concepts for behaviour modelling and
refinement, Ph.D. thesis, University of Twente, The Netherlands, Feb. 1998.

107.D. Rapela, et al., MDA modeling and application principles, MODA-TEL
Consortium, Deliverable 3.3, 2004. Available at:
http://www.modatel. org/public/deliverables/D3.3.htm

108.P. Ross, “Managing Care Through the Air”, IEEE Spectrum, December 2004,
pp- 26-31.

109.D. A. Randell, Z. Cui, and A. Cohn, “A spatial logic based on regions and
connection”, Proc. of the Third International Conference, Morgan Kaufmann,
San Mateo, California, 1992, pp. 26-31.

110.Roessingh ~ Research and Development website. Available at:
http://www.rrd.nl/www/indexa.html

111.K. Sheikh, M. Wegdam and M.]J. van Sinderen, “Middleware Support for
Quality of Context in Pervasive Context-Aware Systems”, IEEE Percom
workshop proceedings, part of the Proceedings of the Fifth Annual IEEE
International Conference on Pervasive Computing and Communications,

2007.

112.S. Smith, “Environmental context-dependent memory”, In Memory in context;
context in memory (G. M. Davies and D. M. Thomson, Eds.). Chichester,
England: Wiley, 1988, pp. 13-34.

REFERENCES 285

113.B.N. Schilit, N. Adams, and R. Want, “Context-aware computing
applications”, Proc. Workshop on Mobile Computing Systems and
Applications, December 1994.

114.M.]. van Sinderen, A.T. van Halteren, M. Wegdam, H.B. Meeuwissen, and
E.H. Eertink, “Supporting Context-aware Mobile Applications: an
Infrastructure Approach”, IEEE Communications Magazine, 44 (9). Sept
2006, pp. 96-104.

115.T. Strang and C. Linnhof-Popien, “A context modeling survey”, Proc. Ist
International Workshop on Advanced Context Modelling, Reasoning and
Management, Nottingham (2004) 34-41.

116.Tom Tom, the Navigatiesystemen, Tom Tom online. Available at:
http://www.tomtom.com.

117.T. Strang, C. Linnhoff-Popien, and K. Frank, "CoOL: A Context Ontology
Language to enable Contextual Interoperability,“ Proc. 4th IFIP International
Conference on Distributed Applications and Interoperable Systems
(DAIS2003), 2003.

118.8.S. Yau, F. Karim, Y. Wang, B. Wang, S.K.S. Gupta, “Reconfigurable
Context-Sensitive Middleware for Pervasive Computing”, IEEE Pervasive
Computing, vol. 01, no. 3, Jul-Sept 2002, pp. 33-40.

119.Jie Yang, Weiyi Yang, Denecke, M., Waibel, A. (1999). Smart sight: a tourist
assistant system. 3rd International Symposium on Wearable Computers, San
Francisco, California, 18-19 October, 1999, pp. 73-78.

120. Universal Description, Discovery and Integration (UDDI) project: UDDI:
Specifications. Available at: http://www.uddi.org/specification.html.

121.A. Vallecillo, RM-ODP: The ISO Reference Model for Open Distributed
Processing, DINTEL Edition on Software Engineering. No. 3. pp. 69-99.
March 2001.

122.R. Want, A. Hopper, V. Falcao, and J. Gibbons, “The Active Badge Location
System”, ACM Transactions on Information Systems 10(1), 1992, pp. 91-
102.

123.R. Want, et al., “An Overview of the PARCTAB Ubiquitous Computing
Environment”, EE Personal Communications, vol 2, no 6, Dec 1995, pp. 28-

43.

124.M. Weiser, “The Computer for the 21st Century”, Scientific American,
265(3):66—75, September 1991.

125.World Wide Web Consortium: Web Services Architecture, 2004. Available at:
http://www.w3.org/TR/ws-arch/

126. Wikipedia, the Free Encyclopedia. Available at: http://en.wikipedia.org/wiki

286 REFERENCES

127.A. Zaslavsky, “Mobile Agents: Can They Assist with Context Awareness?”,
School of Computer Science and Software Engineering, Monash University,
Australia.

128.T. Ziemke, “Embodiment of context”, Proc. of ECCS, Manchester, UK, April
1997.

129.C. Zetie, “Market overview - The emerging context-aware software market”,
2002. Available at:
http://ww.forrester.com/Research/Legacyl T/Excerpt/0,7208,25595,00.html

Resumo

Sensibilidade ao contexto do usudrio tornou-se uma importante e desejavel
caracteristica em aplicagdes ubiquas. Esta caracteristica permite que as
aplicagoes usem informagdes do ambiente (contexto) para customizar seus
servigos de acordo com a situagdo e as necessidades atuais de seus usudrios.

Esta tese tem como objetivo a proposta de uma solugdo integrada para o
desenvolvimento de aplicacdes sensiveis ao contexto. O objetivo principal é
facilitar o desenvolvimento destas aplicagoes com énfase em dois aspectos:
(i) na modelagem do contexto e das situacoes na qual usudrios podem se
encontrar; e (ii) no apoio infraestrutural a aplicagées por meio de uma
plataforma de gerenciamento de contexto e de detecgao de situagoes.

Nossa proposta de modelagem de contexto oferece aos desenvolvedores
de aplicagbes conceitos basicos que podem ser extendidos e customizados
com requisitos especificos de aplicacao. A plataforma de gerenciamento de
contexto permite que funcionalidades especificas das aplicagdes sejam
delegadas para a plataforma, reduzindo os esforgos e o tempo de
desenvolvimento da aplicagdo, e por consequéncia, reduzindo os custos de
desenvolvimento. Isto permite que os desenvolvedores de aplicagao se
concentrem nos aspectos principais dos seus negécios ao invés de serem
distraidos com detalhes de realizagao da aplicagao.

A medida que aplicagdbes tornam-se mais complexas, hd uma
necessidade crescente de abstracbes de modelagem que sao apropriadas
para: (i) caracterizar o universo de discurso das aplicagdes; (ii) promover o
entendimento, resolugio de problemas e a comunicagio entre os
“stakeholders” envolvidos no desenvolvimento da aplicagio; e (iii)
respresentar o contexto sem ambigiiidades. Com o objetivo de satisfazer os
requisitos de modelagem de contexto, nés definimos um conjunto de
abstragbes conceituais que siao baseados em teorias de modelagem
conceitual estabelecidas na literatura.

Na abordagem proposta nesta tese, aplicagées sensiveis ao contexto
usam e manipulam informagoes contextuais para detectar situagoes de alto

288

RESUMO

nivel, que sao usadas para adaptar o comportamento das aplicagoes. N6s
propomos uma abordagem orientada a modelos para a especificagio de
situagbes e introduzimos uma abordagem baseada em regras para
implementar a deteccao de situagoes.

Situagdes sao especificadas usando uma combinagio de diagramas de
classe UML, e restricoes OCL. As situagdes podem ser compostas a partir
de tipos elementares de contexto.

Este trabalho discute ainda como gerenciar a distribui¢ado e como
explord-la beneficialmente na manipulagao de contexto e na detecgao de
situacoes de modo distribuido.

Finalmente, nés propomos um mecanismo para facilitar a configuragao
e a execugao de comportamentos da aplicagdio na plataforma de
gerenciamento de contexto, em tempo de execugio da plataforma. Este
mecanismo ¢ baseado em uma mdquina de regras que autonomamente
coleta contexto e valores das situacbes originadas de componentes
processadores de contexto, que estao distribuidos. Esta maquina aceita
especificagoes de comportamento de aplicagao escritos em ECA-DL. ECA-
DL ¢ uma linguagem especifica de dominio desenvolvida no escopo desta
tese com o propdsito de especificar os comportamentos das aplicagoes
sensfveis ao contexto.

Publications by the Author

During the development of this thesis, the author has published various

parts of this work in the following papers (listed in reverse chronological

order):

R. Neisse, M. Wegdam, P. Dockhorn Costa, M. van Sinderen, “Context-Aware
Management Domains”, Proc. of the First International Workshop on
Combining Context with Trust, Security, and Privacy, Moncton, Canada, Jul-
2007.

L. Daniele, P. Dockhorn Costa, L. Ferreira Pires, “Towards a Rule-Based
Approach for Context-Aware Applications”, Proc. of the 13th EUNICE Open
European Summer School 2007 (EUNICE 2007), LNCS 4606, July 2007.

L.O Bonino da Silva Santos, F. Ramparany, P. Dockhorn Costa, P. Vink, R.
Etter, T. Broens, “A Service Architecture for Context Awareness and Reaction
Provisioning”, 2nd Modeling, Design, and Analysis for Service-Oriented
Architecture Workshop (MDA4SOA 2007) co-located with the 2007 IEEE
Int’l Conference on Services Computing (SCC 2007) and the 2007 IEEE Int’]
Conference on Web Services (ICWS 2007), Salt Lake City, USA, July 2007.

P. Dockhorn Costa,].P. Andrade Almeida, L. Ferreira Pires, M. van Sinderen,
“Situation ~ Specification and Realization in Rule-Based Context-Aware
Applications”, 7th IFIP International Conference on Distributed Applications
and Interoperable Systems (DAIS 2007), LNCS 4531, Paphos, Cyprus, 2007.
P. Dockhorn Costa, G. Guizzardi,].P. Andrade Almeida, L. Ferreira Pires, M.
van Sinderen, “Situations in Conceptual Modeling of Context”, workshop on
Vocabularies, Ontologies, and Rules for the Enterprise (VORTE 2006) at IEEE
EDOC 2006, IEEE Computer Society Press.

P. Dockhorn Costa, J.P.A. Almeida, L. Ferreira Pires, G. Guizzardi, and M. van
Sinderen, “Towards Conceptual Foundations for Context-Aware Applications”,
Proc. of the Third International Workshop on Modeling and Retrieval of
Context (MRCO06), Boston, USA, 2006.

290

PUBLICATIONS BY THE AUTHOR

R. Etter, P. Dockhorn Costa, T. Broens, “A Rule-Based Approach Towards
Context-Aware User Notification Services”, Proc. of the IEEE International
Conference on Pervasive Services 2006, Lyon, France, June 2006.

P. Dockhorn Costa, L. Ferreira Pires, M. van Sinderen, T. Broens, “Controlling
Services in a Mobile Context-Aware Infrastructure”, Proc. of the Second
Workshop on Context Awareness for Proactive Systems (CAPS 2006), Kassel,
Germany, June 2006, pp. 153-167.

P. Dockhorn Costa, L. Ferreira Pires, M. van Sinderen, “Architectural Support
for Mobile Context-Aware Applications”, book chapter of the Handbook of
Research on Mobile Multimedia, Idea Group Inc., 2005.

S. Pokraev, J. Koolwaaij, M. van Setten, T. Broens, P. Dockhorn Costa, M.
Wibbels, P. Ebben, P. Strating, “Service Platform for Rapid Development and
Deployment of Context-Aware, Mobile Applications”, Proc. of International
Conference on Webservices (ICWS'05), Orlando, Florida, USA, 2005.

P. Dockhorn Costa, L. Ferreira Pires, M. van Sinderen, “Architectural Patterns
for Context-Aware Services Platforms”, Proc. of the Second International
Workshop on Ubiquitous Computing (IWUC 2005), Miami, May 2005, pp. 3-
19.

P. Dockhorn Costa, L. Ferreira Pires, and M. van Sinderen, “Designing a
Configurable Services Platform for Mobile Context-Aware Applications”, Int’l
Journal of Pervasive Computing and Communications (JPCC), 1(1):13-25,
Troubador Publishing, 2005.

T. Broens, S. Pokraev, M. van Sinderen,]J. Koolwaaij, P. Dockhorn Costa,
“Context-aware, ontology-based, service discovery”, Proc. of the Second
European Symposium on Ambient Intelligence (EUSAI 2004), LNCS 3295,
Eindhoven, The Netherlands, November 8-10, 2004, pp. 72-83.

P. Dockhorn Costa, L. Ferreira Pires, M. van Sinderen, and D. Rios, “Services
Platforms for Context-Aware Applications”, Proc. 2nd European Symp. on
Ambient Intelligence (EUSAI 2004), LNCS 3295, The Netherlands, 2004, pp.
363-366.

P. Dockhorn Costa, L. Ferreira Pires, M. van Sinderen, and J. Pereira Filho,
“Towards a Service Platform for Mobile Context-Aware Applications”, Proc.
Ist Intl. Workshop on Ubiquitous Computing (IWUC 2004), Portugal, 2004,
pp. 48-61.

D. Rios, P. Dockhorn Costa, G. Guizzardi, L. Ferreira Pires, J.G. Pereira
Filho, M. van Sinderen, “Using Ontologies for Modeling Context-Aware
Services Platforms”, Workshop on Ontologies to Complement Software
Architectures (OOPSLA 2003), Anaheim, CA, October 26-30, 2003.

P. Dockhorn Costa, J.G. Pereira Filho, M. van Sinderen, “Architectural
Requirements for Building Context-Aware Services Platforms”, Proc. of 9th
Open European Summer School and IFIP Workshop on Next Generation
Networks (EUNICE 2003), Hungary, September 2003, pp. 62-70.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

